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Abstract 

Cell migration plays a central role during organismal development, and is 

essential for wound healing and immune cell defence in multicellular organisms. 

The ability of cells to move is largely underpinned by the actin cytoskeleton, 

which can be rapidly and dynamically assembled and disassembled in response to 

a host of intrinsic and extrinsic signals. To produce coordinated movement, the 

cell exerts a fine level of control over the actin cytoskeleton. Loss of control can 

lead to the development of many types of disease, including cancer. We 

therefore strive to discover the complex and multifaceted mechanisms 

controlling cell migration and invasion, in order to understand how and why cells 

move. This knowledge will help us to understand and explain important 

biological processes, and help us develop novel therapeutics for many types of 

disease. 

During recent decades, one family of proteins have emerged as master 

regulators of the actin cytoskeleton. These are the Rho family of GTPases, which 

are small molecular switches controlled by guanine nucleotide hydrolysis. In 

their active state, they can affect a whole host of signalling pathways. The 

discovery of the classic family members Rac1, Cdc42 and RhoA, and their 

downstream targets revolutionised the way we understand cell migration. The 

individual molecular pathways downstream of Cdc42, Rac1 and other Rho 

GTPases are well documented, but we know surprisingly little about how these 

pathways are coordinated when cells move in a complex environment in vivo.  

To further understand the role of Rho GTPases in vivo, we used the melanoblast 

journey through the developing mouse embryo as a model. In the developing 

embryo, melanoblasts originate from the neural crest, and must traverse the 

dermis to reach the epidermis of the skin and hair follicles where they become 

melanocytes. We previously established that Rac1 signals via SCAR/WAVE and 

Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. 

Here, we show that RhoA is redundant in the melanocyte lineage, but Cdc42 

controls multiple motility systems independently of Rac1. Cdc42 null mice 

displayed a severe loss of pigmentation, and melanoblasts showed cell cycle 

progression, migration and cytokinesis defects. However, unlike Rac1 knockouts, 

Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods 
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with active actin dynamics. Despite assuming a shape usually associated with 

fast motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in 

the epidermis, with nearly static pseudopods. 

By performing global RNA-sequencing on cultured primary melanocytes, we 

revealed alterations in expression of adhesion and lysosomal pathways in the 

absence of Cdc42. This correlated with fewer, less dynamic integrin-based 

adhesions in these cells along with a delay in cell spreading. In addition, in-

depth molecular analysis revealed a mislocalisation of active myosin and 

branched actin regulators in Cdc42 null cells. Therefore, while Rac1 has a very 

specific role in signalling to branched actin network generation, we believe that 

Cdc42 coordinates multiple systems, such as actin polymerisation, adhesion 

dynamics and contractility, to achieve efficient migration. 

In addition, we highlight a key role for Cdc42 in the invasion, but not the 

migration or proliferation of melanoma cells. We demonstrate that partial 

knockdown of Cdc42 in B16F10 melanoma cells does not lead to significant 

morphology changes, nor does it affect their 2D migration or proliferation. 

Surprisingly however, we demonstrate that these cells are less able to invade 

into in vitro invasion assays. 

  



  iv 
  

Declaration 

I declare that all of the work in this thesis was performed personally. No part of 

this work has been submitted for consideration as part of any other degree or 

award. 

  



  v 
    

Acknowledgements 

Firstly I would like to thank my supervisor Laura Machesky for giving me the 

opportunity to undertake a PhD under her guidance. She is an exceptional role 

model and was always enthusiastic towards my work. I appreciate the respect 

and guidance she provided me with over the last four years and I am very 

thankful to have been her student. I would also like to thank Cancer Research UK 

for funding my work and providing me with a fantastic environment to complete 

my research training. 

I am also extremely grateful to my fellow lab members. This work would not 

have been possible with their constant help and guidance, particularly the post-

doctoral researchers Ben Tyrrel, Nikki Paul and Karthic Swamanithan and our 

Scientific Officer Heather Spence, whom I worked closely with. They, along with 

the other group members past and present were always generous with their time 

and willing to answer my questions. Special thanks also goes to my advisor 

Robert Insall and his lab for their helpful discussions and support. I also would 

like to thank my summer student Shelly Scribner, who carried out some of this 

work. The Machesky and Insall groups are not just colleagues, but extremely 

close friends, never failing to put a smile on my face during difficult times, 

usually with lots of cake! I would particularly like to thank Clelia Amato for daily 

warm Italian greetings and hugs, and fellow students Micheala Mrschtik and 

Evangelos Giampazolias for sharing this experience with me. I am also extremely 

grateful for the lovely support staff at the Beatson, for making it a warm and 

friendly place to work. I particularly want to thank Margaret O’Prey not only for 

training me at the imaging facility, but for being a great friend. 

Completing this PhD was a huge challenge for me, one which I wouldn’t have 

managed without fantastic friends. I firstly want to thank Marie Indahl and Alix 

Healey for being the best flatmates, never failing to cheer me up during the 

evenings, I will always remember our time at Broomhill. I am also grateful to 

Fiona Macleod, Aisling O’Conner and many others for their friendship and good 

times during the last four years. And to my best friends Katherin Shippin and 

Olivia Duthie, for your love and kindness during particularly difficult times, for 

always being there for me, encouraging and believing in me. 



  vi 
  
I am also hugely grateful to my parents Colin and Mary, and to my brother 

Gordon for everything you have done for me. Also my Uncles, Grandparents and 

wider family for your support and belief in me and what I can achieve. I would 

finally like to express my gratitude to my boyfriend Anthony. For his love and 

support during the years we spent apart to complete my PhD, for making me 

happy no matter what. 

I would like to dedicate this thesis to my Grandad, Dr Anthony Arthur Woodham, 

who sadly passed away at the beginning of my PhD.  

 

  



  vii 
  

Publications  

WOODHAM, E. F.*, PAUL, N.P.*, TYRRELL, B., SPENCE, H.J., SCRIBNER, M.R., 
GIAMPAZOLIAS, E., HEDLEY, A., CLARK, W., KAGE, F., MARSTON, D.J., HAHN, 
K.M., TAIT, S.W.G, LARUE, L., BRAKEBUSCH, C., INSALL, R.H., & LAURA M. 
MACHESKY. Coordination by Cdc42 of actin, contractility and adhesion for 
melanoblast movement in mouse skin. (Current Biology, in press) 
 
GIAMPAZOLIAS, E., ZUNINO.B., DHAYADE, S., LOPEZ, J., ICHIM, G., PROICS, E., 
RUBIO-PATINO,C., FORT, L., YATIM, N., WOODHAM, E.F., OROZCO, S., LECIS, D., 
MACHESKY, L.M., MILLING, S., OBERST, A., RICCI, J.E., RYAN, K., BLYTH, K., 
& STEPHEN W.G. TAIT. Mitochondrial permeabilisation engages NFκB and anti-
tumour activity under caspase-deficient conditions. (Revisions ongoing, Nature 
Cell Biology) 
 
TYRRELL, B. J., WOODHAM, E. F., SPENCE, H. J., STRATHDEE, D., INSALL, R. H. 
& MACHESKY, L. M. 2016. Loss of strumpellin in the melanocytic lineage impairs 
the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res. 
  
WOODHAM, E. F. & MACHESKY, L. M. 2014. Polarised cell migration: intrinsic and 
extrinsic drivers. Curr Opin Cell Biol, 30, 25-32. 
 
LI, A., MORTON, J. P., MA, Y., KARIM, S. A., ZHOU, Y., FALLER, W. J., 
WOODHAM, E. F., MORRIS, H. T., STEVENSON, R. P., JUIN, A., JAMIESON, N. B., 
MACKAY, C. J., CARTER, C. R., LEUNG, H. Y., YAMASHIRO, S., BLYTH, K., 
SANSOM, O. J. & MACHESKY, L. M. 2014. Fascin is regulated by slug, promotes 
progression of pancreatic cancer in mice, and is associated with patient 
outcomes. Gastroenterology, 146, 1386-96 e1-17 

  



  viii 
  

Abbreviations 

Arp2/3  Actin related protein 2/3 

ARPC1-5  Actin related protein 2/3 complex subunit 1-5 

Brdu   5-Bromo-2’-deoxyuridine 

BSA   Bovine serum albumin 

Cdc42   Cell division control protein 42 homolog 

CDKN2   Cyclin dependent kinase inhibitor 

COPI   Coat protein 1 

Cre   Cre recombinase 

DAPI   4’,6-diamidino-2-phenylindole 

DCT   Dopachrome tautomerase 

DMEM   Dulbecco’s modified eagle medium 

DMSO   Dimethyl sulfoxide 

DRF   Diaphanous-related formins 

ECM   Extracellular matrix 

EEA1   Early endosomal antigen 1 

EMT   Epithelial to mesenchymal transition 

Ena/VASP  Enabled/vasodilator-stimulated phosphoprotein 

ERK    Extracellular signal-regulated kinase 

FAK    Focal adhesion kinase 

FBS    Foetal Bovine Serum 

FLIM   Fluorescence lifetime imaging microscopy 

FRET    Fluorescence resonance energy transfer 

GAPDH  Glyceraldehyde 3-phosphate dehydrogenase 

GDI    Guanine nucleotide dissociation inhibitor 

GDP   Guanosine diphosphate  

GEF   Guanine nucleotide exchange factor 

GAP   GTPase activating protein 

GFP   Green fluorescent protein 

GSK3B   Glycogen synthase kinase 3 beta 

GTP   Guanosine triphosphate 

HBSS   Hank's Buffered Salt Solution 

HBS    HEPES buffered saline 

HCl   Hydrochloric acid 



  ix 
  
IQGAP   Ras GTPase-activating-like protein 

Kit    Kit receptor tyrosine kinase 

KitL    Kit ligand 

mDia   mouse Diaphanous-related formin 

MITF   Microphthalmia-associated transcription factor 

MLC   Myosin light chain 

MMP   Matrix metalloproteinase 

MRCK   Myotonic dystrophy kinase-related Cdc42-binding kinase 

MTOC   Microtubule organising centre 

NC   Neural crest 

NPF   Nucleation promoting factor 

WASH   WASP and SCAR homologue 

WASP   Wiskott-Aldrich syndrome protein 

N-WASP  Neural Wiskott-Aldrich syndrome protein 

OHT   4-hydroxytamoxifen 

Pak   p21 activated kinase 

PAR1   Partitioning defective 1 

PAR3   Partitioning defective 3 

PBS   Phosphate Buffered Saline 

PE   PBS/EDTA 

PFA   Paraformaldehyde 

Rac   Ras-related C3 botulinum toxin substrate 

Pax3 Paired domain and homeodomain-containing transcription 

factor 

Rho   Ras homolog gene family 

RhoA   Ras homolog gene family member A 

ROCK   Rho kinase 

RTK   Receptor tyrosine kinase 

SCP   Schwann cell precursor 

Sox10    SRY (sex determining region Y)-box 10 

TAE   Tris-acetate-EDTA 

TAZ   Transcriptional coactivator with a PDZ-binding domain 

TE   Tris-EDTA 

TBST   TBS Tween 

VCAM-1  Vascular cell adhesion protein 1 



  x 
    
WASP   Wiskott-Aldrich syndrome protein 

WAVE   WASP family verprolin homologous 

Wnt3a   Wnt family member 3a 

YAP   Yes associated protein 

X-Gal   5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 



  xi 
  

Table of Contents  

Abstract ...................................................................................... ii 

Declaration ................................................................................. iv 

Acknowledgements ........................................................................ v 

Publications ................................................................................ vii 

Abbreviations ............................................................................. viii 

List of Figures and Tables .............................................................. xiv 

1 Introduction ............................................................................... 1 
1.1 Cell migration modes and the actin cytoskeleton .................................. 1 

1.1.1 The cytoskeleton and cell movement .............................................. 1 
1.1.2 Actin Polymerisation .................................................................. 1 
1.1.3 2D cell migration ...................................................................... 2 
1.1.4 3D cell migration ...................................................................... 8 
1.1.5 Adhesions and cell migration ....................................................... 11 
1.1.6 The actin cytoskeleton and cancer metastasis ................................... 13 

1.2 The Rho GTPase family and Cdc42 .................................................... 17 
1.2.1 The Rho GTPase family .............................................................. 17 
1.2.2 Rho GTPases coordinate cell migration ........................................... 20 

1.3 Cdc42 in cell migration .................................................................. 24 
1.3.1 Cdc42 activation and effectors ..................................................... 24 
1.3.2 Cdc42 and polarity ................................................................... 25 
1.3.3 Cdc42 and mammalian cell division ............................................... 28 
1.3.4 Cdc42 in invasion and cancer ....................................................... 29 

1.4 Melanoblasts and the melanocyte lineage ........................................... 31 
1.4.1 Melanoblast specification ........................................................... 32 
1.4.2 The melanoblast journey ............................................................ 34 
1.4.3 Melanoblasts from Schwann cells: a second wave ............................... 38 
1.4.4 Melanoblasts to melanoma .......................................................... 40 

2 Materials and Methods ................................................................ 43 
2.1 Materials .................................................................................... 43 

2.1.1 Reagents and solutions .............................................................. 43 
2.1.2 Antibodies and Dyes .................................................................. 45 
2.1.3 Kits ...................................................................................... 46 
2.1.4 DNA Constructs ........................................................................ 47 
2.1.5 Oligos ................................................................................... 47 
2.1.6 RNA Sequences ........................................................................ 47 

2.2 Methods .................................................................................... 48 
2.2.1 Mouse strains and genotyping ....................................................... 48 
2.2.2 Cell culture ............................................................................ 49 
2.2.3 SDS-PAGE and western blotting .................................................... 51 
2.2.4 Immunoflourescent staining of cells and immunohistochemistry ............. 52 
2.2.5 Cloning and molecular biology ...................................................... 54 
2.2.6 Embryo study techniques ............................................................ 55 
2.2.7 Cell biology techniques .............................................................. 57 
2.2.8 RNA Sequencing ....................................................................... 61 

3 Investigating the Role of Cdc42 in Melanoblast Migration and Proliferation ......... 64 
3.1 Introduction and aims ................................................................... 64 
3.2 Results ...................................................................................... 66 

3.2.1 Loss of Cdc42 in the melanocyte lineage leads to coat colour defects, 
suggesting migration and proliferation defects .......................................... 66 
3.2.2 Loss of RhoA in the melanoblast lineage does not lead to coat colour 
defects. ......................................................................................... 69 



  xii 
  

3.2.3 Cdc42-null melanoblasts fail to fully populate the developing mouse embryo 
before birth .................................................................................... 69 
3.2.4 Cdc42 controls melanoblast cell-cycle progression and cytokinesis .......... 79 
3.2.5 Cdc42 is not required for melanoblasts to cross the basement membrane 
into the epidermis ............................................................................ 81 
3.2.6 Loss of Cdc42 uncouples actin dynamics and pseudopod extension from 
migration ....................................................................................... 84 
3.2.7 Loss of Cdc42 and Rac1 from the melanoblast lineage leads to death at birth 
and a reduction in melanoblast number ................................................... 94 

3.3 Discussion .................................................................................. 97 
3.3.1 Cdc42 is necessary for melanoblast population of the developing embryo 
before birth .................................................................................... 97 
3.3.2 Cdc42 controls melanoblast proliferation by promoting S phase entry and 
aiding cytokinesis ............................................................................. 98 
3.3.3 Loss of Cdc42 uncouples actin dynamics and pseudopod extension from 
migration ....................................................................................... 99 
3.3.4 Loss of RhoA in the melanoblast lineage does not lead to coat colour 
defects. ........................................................................................ 100 
3.3.5 Rac1 and Cdc42 double knockout melanoblasts fail to populate the 
developing embryo ........................................................................... 100 

3.4 Summary ................................................................................. 101 

4 Investigating the Role of Cdc42 in Melanocyte Migration and Proliferation
 .............................................................................................. 102 

4.1 Introduction and aims ................................................................. 102 
4.2 Results .................................................................................... 103 

4.2.1 Knock-down of Cdc42 in cultured melanocytes leads to migration and 
proliferation defects ......................................................................... 103 
4.2.2 Isolation of an inducible Cdc42 knockout primary melanocyte cell line .... 103 
4.2.3 Primary melanocytes require Cdc42 for efficient pseudopod extension and 
ruffling ......................................................................................... 107 
4.2.4 Expression levels of Cdc42 effectors and other actin regulators is unchanged 
in knockout cells ............................................................................. 114 
4.2.5 Cdc42 controls the localisation of P-MLC in primary melanocytes ........... 117 
4.2.6 Cdc42 controls the activation and nuclear accumulation of YAP, but not its 
response to serum starvation ............................................................... 119 
4.2.7 Knockout protrusions are not solely dependent on microtubules, formins or 
Arp2/3 to form ............................................................................... 122 
4.2.8 Cdc42 promotes G1 to S transition and is necessary for efficient cytokinesis 
in melanocytes ................................................................................ 124 

4.3 Discussion ................................................................................ 130 
4.3.1 Cdc42 is essential for normal pseudopod dynamics and migration in 
melanocytes, as in their melanoblast precursors ....................................... 130 
4.3.2 Cdc42 coordinates the regulators of branched actin networks, but not the 
activation of Rac1 ............................................................................ 130 
4.3.3 Cdc42 controls cell contractility by directing the location of myosin light 
chain phosphorylation ....................................................................... 131 
4.3.4 Cdc42 controls YAP nuclear accumulation but abrogation of YAP signalling 
does not affect melanocyte morphology ................................................. 132 
4.3.5 Knockout protrusions are not dependent on microtubules, Arp2/3 or formins 
to extend ...................................................................................... 133 
4.3.6 Cdc42 promotes G1 to S transition and controls cytokinesis in 
melanocytes….. ............................................................................... 134 

4.4 Summary ................................................................................. 135 

5 Cdc42, Melanocyte Gene Expression and Coordination of Adhesion Dynamics
 .............................................................................................. 137 

5.1 Introduction and aims ................................................................. 137 



  xiii 
  

5.2 Results .................................................................................... 138 
5.2.1 RNA sequencing of Cdc42 knockout melanocytes reveals global changes in 
diverse signalling networks ................................................................. 138 
5.2.2 Cdc42 controls melanocyte adhesion number, size and lifetime ............ 146 
5.2.3 Defects in adhesion and filopodia formation delay the spreading of Cdc42 
knockout cells ................................................................................ 149 

5.3 Discussion ................................................................................ 155 
5.3.1 Loss of Cdc42 alters the expression of diverse signalling pathways including 
up-regulation of lysosomal proteins ....................................................... 155 
5.3.2 Cdc42 controls the expression of genes involved in focal adhesion 
pathways.. .................................................................................... 156 
5.3.3 Cdc42 controls adhesion formation and dynamics to support migration and 
spreading ...................................................................................... 157 

5.4 Summary ................................................................................. 160 

6 Investigating the role of Cdc42 in Melanoma Migration and Invasion ...... 161 
6.1 Introduction and aims ................................................................. 161 
6.2 Results .................................................................................... 162 

6.2.1 Knockdown of Cdc42 in B16F10 melanoma cells does not effect cell 
morphology, migration or proliferation ................................................... 162 
6.2.2 Cdc42 knockdown slows the invasion on B16F10 melanoma cells ............ 166 

6.3 Discussion ................................................................................ 169 
6.3.1 B16F10 Melanoma migration and proliferation are not affected by Cdc42 
knockdown .................................................................................... 169 
6.3.2 Cdc42 aids melanoma cell invasion ............................................... 169 

6.4 Summary ................................................................................. 170 

7 Conclusions and Future Directions ................................................ 171 
7.1 Conclusions .............................................................................. 171 

7.1.1 Cdc42 and Rac1 have important and distinct roles during the melanoblast 
journey, but RhoA is not required ......................................................... 171 
7.1.2 Cdc42 coordinates the spatial positioning of key actin regulators to facilitate 
migration ...................................................................................... 173 
7.1.3 Cdc42 promotes G1 to S cell cycle transition and cytokinesis ................ 173 
7.1.4 Cdc42 coordinates adhesion dynamics and actin polymerisation to drive 
migration ...................................................................................... 174 
7.1.5 Cdc42 aids melanoma invasion .................................................... 175 

7.2 Future Directions ....................................................................... 175 
7.2.1 How do melanoblasts achieve orchestrated population of the developing 
embryo? ........................................................................................ 175 
7.2.2 Is the lysosomal network affected in Cdc42 knockout melanocytes? ........ 177 
7.2.3 Which pathways link Cdc42 to adhesion dynamics? ............................ 180 
7.2.4 Does Cdc42 control invasion in vivo? ............................................. 182 

8 References ............................................................................. 183 

9 Appendix ................................................................................ 193 

 

  



  xiv 
  
 

List of Figures and Tables  

Figure 1.1 Actin polymerisation geometry controls the formation of different 
actin based structures for motility .................................................. 3	

Figure 1.2 Cell Migration in 2D ............................................................ 5	
Figure 1.3 Cells use diverse migration modes to navigate 3D environments ....... 9	
Figure 1.4 Integrin-based adhesions and signalling ................................... 14	
Figure 1.5 The metastatic cascade ...................................................... 16	
Figure 1.6 The Rho GTPase family ....................................................... 19	
Figure 1.7 The GTPase activation cycle ................................................ 21	
Figure 1.8 Rho GTPases coordinate cell migration .................................... 23	
Figure 1.9 Cdc42 integrates multiple signalling inputs into diverse cellular 

effects .................................................................................. 26	
Figure 1.10 Cdc42 and invasion .......................................................... 30	
Figure 1.11 Melanoblast	specification	and	migration	during	mouse	embryonic	

development ............................................................................ 33	
Figure 1.12 Melanoblast	population	of	the	developing	embryo .......................... 35	
Figure 1.13 Melanoblasts use pseudopods to migrate between keratinocytes ... 37	
Figure 1.14 The peripheral nerve: a novel melanoblast source during 

development ........................................................................... 39	
Figure 1.15 Melanoma Progression ...................................................... 41	
Figure 3.1 Loss of Cdc42 in the melanoblast lineage leads to coat colour defects 

in adult mice .......................................................................... 67	
Figure 3.2 Melanocytes are not present in the hair follicles of hypopigmented 

areas .................................................................................... 68	
Figure 3.3 Deletion of RhoA from the melanoblast lineage does not result in any 

coat colour defects ................................................................... 70	
Figure 3.4 Gene strategy to achieve melanoblast-specific expression of β-

galactosidase to track the melanoblast journey ................................. 71	
Figure 3.5 Loss of Cdc42 does not affect melanoblast number at E11.5 .......... 73	
Figure 3.6 Cdc42 controls the number and position of melanoblasts around the 

belly at E13.5 .......................................................................... 74	
Figure 3.7 Cdc42 controls the number and position of melanoblasts down the 

developing limb at E13.5 ............................................................ 75	
Figure 3.8 Cdc42 controls the number and position of melanoblasts around the 

belly at E15.5 .......................................................................... 77	
Figure 3.9 Cdc42 controls the number and position of melanoblasts down the 

developing limb at E15.5 ............................................................ 78	
Figure 3.10 Cdc42 null melanoblasts are in the cell cycle, but fewer are in S-

phase ................................................................................... 80	
Figure 3.11 Loss of Cdc42 in melanoblasts and melanocytes leads to an extended 

division time due to a cytokinesis defect ......................................... 82	
Figure 3.12 Cdc42 knockout melanoblasts are able to cross from the dermis into 

the epidermis during development. ............................................... 83	
Figure 3.13 Gene strategy to achieve melanoblast specific expression GFP to 

image live melanoblast migration through skin .................................. 85	
Figure 3.14 Cdc42 null melanoblasts have a striking elongated and bleb-like 

morphology as they move through the skin ....................................... 86	
Figure 3.15 Cdc42 null melanoblasts display less-dynamic pseudopods and have a 

‘bi-polar’ morphology ................................................................ 88	



  xv 
  
Figure 3.16 Cdc42 null melanoblasts have an altered morphology and defects in 

pseudopod dynamics ................................................................. 89	
Figure 3.17 Loss of Cdc42 in melanoblasts leads to less efficient migration ..... 90	
Figure 3.18 Gene strategy to achieve melanoblast-specific expression of Lifeact-

GFP to image live actin dynamics .................................................. 92	
Figure 3.19 Actin bursts can be seen at the tips of knockout pseudopods ........ 93	
Figure 3.20 Gene strategy to achieve melanoblast targeted double knockout of 

both Rac1 and Cdc42 ................................................................. 95	
Figure 3.21 Loss of both Cdc42 and Rac1 in the melanoblast lineage leads to 

death at birth and many fewer melanoblasts at E15.5 ......................... 96	
Figure 4.1 Knockdown of Cdc42 by siRNA leads to an elongated cell morphology 

and slows proliferation ............................................................ 104	
Figure 4.2 Cdc42 knockdown melanocytes have a severe migration defect .... 105	
Figure 4.3 Generation of an inducible Cdc42 knockdown melanocyte cell-line 106	
Figure 4.4 Cdc42 is lost at the protein level after 5 days of OHT treatment ... 108	
Figure 4.5 Cdc42 knockout melanocytes fail to make lamellipods and have 

pseudopod and migration defects ................................................ 109	
Figure 4.6 Actin branching machinery is poorly localised in knockout melanocytes

 ........................................................................................ 111	
Figure 4.7 Levels of active Rac1 are modestly enhanced in the absence of Cdc42

 ........................................................................................ 113	
Figure 4.8 Transient expression of Cdc42-YFP in Cdc42 knockout cells rescues 

cell morphology changes .......................................................... 115	
Figure 4.9 Protein levels of Cdc42 regulators and actin related proteins were not 

altered in the absence of Cdc42 ................................................. 116	
Figure 4.10 Knockout melanocytes have the same levels of phosphorylated-MLC 

but is differently localised ........................................................ 118	
Figure 4.11 YAP phosphorylation is increased in the absence of Cdc42 leading to 

a decrease in nuclear YAP ......................................................... 120	
Figure 4.12 Knockdown of YAP in melanocytes does not mimic loss of Cdc42 . 121	
Figure 4.13 Microtubules are not essential to support the long thin protrusions 

made by knockout melanocytes, but they contribute to their bipolar nature
 ........................................................................................ 123	

Figure 4.14 Cdc42 knockout melanocytes do not rely on formins to form 
protrusions or spread. .............................................................. 125	

Figure 4.15 Knockout melanocytes can still spread in the presence of Arp2/3 
inhibitor and cells are less bi-polar .............................................. 126	

Figure 4.16 Cdc42 is required for cell-cycle transition from G1 to S-phase .... 127	
Figure 4.17 Cdc42 knockout melanocytes have an extended division time and 

cytokinesis defect .................................................................. 129	
Figure 5.1 RNA sequencing of Cdc42 knockout melanocytes implicates Cdc42 in 

the expression of diverse signalling components .............................. 139	
Figure 5.2 Genes involved in lysosomal networks are up-regulated in the absence 

of Cdc42 .............................................................................. 141	
Figure 5.3 Genes involved in pathways in cancer and focal adhesion signalling are 

down-regulated in the absence of Cdc42 ....................................... 142	
Figure 6.1 Cdc42 is successfully knockout-down in B16F10 melanoma shRNA cell 

lines ................................................................................... 163	
Figure 6.2 Knock-Down of Cdc42 does not change B16F10 melanoma cell 

morphology, proliferation or migration ......................................... 164	
Figure 6.3 Knock-down of Cdc42 does not impair the ability of B16F10 melanoma 

cells to close a wound ............................................................. 165	



  xvi 
  
Figure 6.4 Knock-down of Cdc42 impairs the ability of B16F10 melanoma to 

invade into matrigel ................................................................ 167	
Figure 6.5 Expression of Cdc42 shRNA impairs B16F10 melanoma cell invasion 

into Matrigel ......................................................................... 168	
Figure 7.1 Rac1 null and Cdc42 null melanoblasts have different morphologies 

but both migrate more slowly than wild-type melanoblasts ................. 172	
Figure 7.2 Rho GTPases act in a coordinated manner to achieve coordinated cell 

migration ............................................................................. 176	
Figure 7.3 Staining for various markers of the vesicular network reveals no gross 

abnormalities ........................................................................ 178	
Figure 7.4 Cdc42 null melanocytes have a large, highly acidic compartment and 

overall have a higher pH than control cells .................................... 181	
 

 

Table 1 Reagents and solutions .......................................................... 43	
Table 2 Antibodies and dyes .............................................................. 45	
Table 3 Kits ................................................................................. 46	
Table 4 DNA constructs .................................................................... 47	
Table 5 Oligos ............................................................................... 47	
Table 6 RNA sequences .................................................................... 47	
Table 7 Mouse stains and genotyping ................................................... 48	
  

  



 1 

1 Introduction 

1.1 Cell migration modes and the actin cytoskeleton 

1.1.1 The cytoskeleton and cell movement 

Cell movement plays an essential role in the life of single and multi-cellular 

organisms. For example, the simple amoeba Dictyostelium discoideum moves in 

order to seek nutrients and to aggregate during development. Cell movement 

has maintained this central role in organismal survival throughout evolution, 

with multicellular organisms relying on highly orchestrated cell migration 

programmes during development and throughout their adult life. In early stages 

of development, large sheets of cells must migrate and fold over each other to 

complete gastrulation and dorsal closure. As the organism continues to develop, 

cells from the neural crest lineage migrate large distances until they reach their 

destination (Huang and Saint-Jeannet, 2004). Cell motility is also required in 

adult life for the migration of many types of immune cells to aid in the immune 

response, and during wound healing. The cell’s diverse cytoskeletal components 

underpin its ability to migrate. Providing the force behind migration is the actin 

cytoskeleton, which can be dynamically assembled and shaped by a diverse array 

of actin binding proteins (Insall and Machesky, 2009). However, cancer cells 

hijack this powerful system to help them spread to new areas of the body. 

Cancer metastasis is defined as one of the hallmarks of cancer (Hanahan and 

Weinberg, 2000), and is the most common cause of cancer related death (Sporn, 

1996).  

1.1.2 Actin Polymerisation 

Polymerisation of actin monomers (G-actin) into filamentous actin (F-actin) 

provides protrusive force directly underneath the plasma membrane. F-actin is 

in a constant state of flux, with G-actin monomers being added at the barbed 

‘plus’ end of the filament, antagonising depolymerisation at the ‘minus’ end 

(Pollard and Cooper, 2009). Polymerisation can be induced either by increasing 

the rate of monomer addition onto plus ends, severing filaments to create new 

barbed ends, or by nucleating new filaments. Clustering of monomers to create 

a new filament is called ‘nucleation’, and there is a kinetic barrier on this 

process. It is therefore aided by nucleation promoting factors (NPFs) that help 



Introduction  2 
 
overcome this barrier by keeping the monomers and filament in direct proximity 

(Insall and Machesky, 2009)  

When forming new filaments, the cell can extend linear filaments forming long 

straight filaments, or to nucleate a new filament on the side of an existing one, 

resulting in the formation of a new filament at a 70° angle to the existing one 

(Olson and Sahai, 2009). This choice, executed by the type of nucleation 

proteins recruited, will ultimately dictate cell shape and therefore motility. 

Stated simply, recruitment of formin homology proteins (FH) or members of the 

Ena/VASP family will lead to extension of linear filaments at the ‘barbed’ ends. 

With the help of actin bundling proteins such as fascin, these linear filaments 

can be grouped into slender actin structures called filopodia that protrude from 

the cell (Jacquemet et al., 2015) (Figure 1.1).  

Alternatively, recruitment of the Arp2/3 complex to the sides of existing 

filaments leads to the formation of a branched network. This 7-member complex 

consists of two actin related proteins Arp2 and Arp3 and five non-Arp 

components, p41/ARPC1, p34/ARPC2, p21/ARPC3, P20/ARPC4 and p16/ARPC5, 

which was the first barbed end actin nucleation factor to be identified, which 

was plausible as an effector of leading edge protrusion (Machesky et al., 1994). 

This branched network supports the formation of wide thin membrane 

extensions called lamellipoda (Nobes and Hall, 1995) (Figure 1.1). In addition to 

these two basic geometric choices, other actin-binding proteins add an 

additional layer of control over the actin network, allowing it to be moulded 

dynamically depending on the cell’s needs. For example, actin-severing proteins 

such as cofilin can increase the number of barbed ends by cleaving existing 

filaments (Devreotes and Horwitz, 2015). We are still discovering new actin 

binding proteins, and elucidating the roles of others in controlling this complex 

system. 

1.1.3 2D cell migration 

1.1.3.1 Coordinating migration in 2D 

We have learnt much about how cell migration is coordinated by investigating  
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Figure 1.1 Actin polymerisation geometry controls the formation of different actin based 
structures for motility 
F-actin filaments are polymerised from G-actin monomers underneath the membrane, generating 
protrusive force. The geometry of monomer addition and direction of filament growth are dependent 
on the nucleation promoting factor (NPF) that is recruited. Actin filaments are extended at the plus 
end in a linear fashion by members of the formin homology (FH) domain family, including Ena and 
VASP. These long actin filaments can then be bundled together by actin bundling proteins such as 
fascin, forming finger-like membrane protrusions called filopodia. Alternatively, monomers can be 
added to the side of filaments through recruitment of the Arp2/3 complex, resulting in filament 
extension at a 70° angle forming branched actin networks. The Arp2/3 complex requires the NPFs 
N-WASP or SCAR/WAVE to reach maximal activation. These NPS are in turn activated by the Rho 
family GTPases Cdc42 or Rac1. Cleavage of actin filaments by cofilin creates new barbed ends for 
monomer addition. 
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cell migration along  2D surfaces. In this context, multiple cell types undergo a 

cycle of events to achieve efficient movement. First, the cell extends a 

lamellipod, driven by actin polymerisation below the membrane. It is essential 

that this extension is supported underneath by the formation of nascent 

adhesions that connect the cytoskeleton with the extracellular matrix (ECM) (Le 

Clainche and Carlier, 2008). These adhesions also form a positive feedback loop, 

encouraging extension of the protrusion (Ridley, 2015). The cell then creates 

force for translocation using myosin motors, moving the cell body and nucleus in 

the direction of travel. Finally, the cell must release adhesions at its rear as it 

moves forward. To achieve persistent and efficient movement these processes 

must be coordinated in time and space (Figure 1.2). 

By studying cells moving in a 2D environment, we are beginning to unravel the 

complex mechanisms and protein families that control this process. Cells receive 

signals from their environment that provide migration cues in the form of 

chemoattractants, chemokines and growth factors. These signals bind to and 

activate receptors on the cell membrane, initiating signalling cascades that 

ultimately lead to moulding of the actin cytoskeleton and adhesion formation. 

The Rho family of GTPases are key convergence points for these signalling 

inputs. These molecular switches receive and integrate these signals into 

downstream responses by activating effector proteins (Raftopoulou and Hall, 

2004). Rho GTPases can control actin polymerisation through activation of the 

WASP family of proteins. These proteins act as scaffolds, activating the Arp2/3 

complex to generate branched actin filaments, forming lamellipodia. In 

addition, Rho GTPases can activate formin homology domain proteins and those 

from the Ena/VASP family to promote the extension of linear filaments, forming 

filopodia. These are the two key actin-based structures that cells utilise to 

migrate along a 2D substratum (Figure 1.1). 

1.1.3.2 Lamellipodia 

These actin based fan-like protrusions are used by many cell types to move and 

spread in 2D. Though it is difficult to assign formation of a structure to one Rho  
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Figure 1.2 Cell Migration in 2D 
Cells migrating in 2D adhere to the substratum on their ventral side. In order to migrate, cells 
progress through a migration cycle. Firstly, the cell extends a lamellipod, a large thin fan-like 
protrusion which can often contain thin finger like protrusions called filopodia. These extending 
lamellipodia and filopodia are then supported underneath by nascent adhesions, which in time can 
mature into larger focal adhesions. To complete this cycle, the cell rear must retract through 
myosin contraction, and adhesions must be disassembled. 
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GTPase family member, lamellipodium formation is most commonly associated 

with Rac1 activity (Ridley and Hall, 1992). At the membrane, this GTPase can 

induce the formation of branched actin networks by activation of the Arp2/3 

complex through the SCAR/WAVE complex, which is a member of the WASP 

family of nucleation promoting factors (NPFs) (Insall and Machesky, 2009). WASP 

proteins all contain a highly conserved C-terminal VCA domain that promotes the 

actin nucleating activity of the Arp2/3 complex. The SCAR/WAVE complex 

consists of five subunits, SCAR/WAVE, HSPC300, Abi, Nap1 and Cyfip, and is the 

major NPF to activate the Arp2/3 complex in lamellipodia. Like other WASP 

family members, it acts as a scaffold, bringing Arp2/3 and G-actin into close 

proximity. This interaction speeds up the addition of new monomers onto the 

filament. We are still trying to understand the factors controlling this complex, 

and recently Chen et al. reported a novel family of around 120 membrane 

proteins containing a sequence motif that binds to a conserved sequence on the 

complex. This interaction face appears to be key to the organisation and 

dynamics of the actin cytoskeleton (Chen et al., 2014). In addition, the Arp2/3 

complex can also be activated by N-WASP, another WASP family member that is 

activated by the Rho GTPase Cdc42. This interaction also contributes to 

endocytic processes at the plasma membrane (Insall and Machesky, 2009). 

1.1.3.3 Filopodia 

Many cell types extend these thin, finger-like structures when migrating in 2D. 

Filopodia can vary in length, number and lifetime, and are highly dynamic 

structures. They can be seen as spiky membrane protrusions, but can also form 

within the boundary of the membrane as straight ridges. We are still in the early 

stages of understanding these beautiful and delicate structures, and have yet to 

fully explain their role in cell migration. 

Filopodia are composed of parallel actin filaments, tightly bundled by the actin 

bundling proteins such as fascin (Jacquemet et al., 2015). In contrast to 

lamellipodia, filopodia are produced by polymerisation of linear filaments from 

their tip, consisting of the barbed filament ends proximal to the plasma 

membrane. As discussed earlier, linear filaments are extended by formin 

homology proteins or members of the Ena/VASP family. These catalyse addition 

of actin monomers to the barbed ends while remaining attached to the filament 
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end, at the same time preventing capping proteins from binding (Kovar and 

Pollard, 2004). The Rho GTPase Cdc42 is most commonly associated with the 

formation of filopodia. Cdc42 can activate formin homology domain proteins 

such as mDia1, 2 and 3 (Raftopoulou and Hall, 2004). Microinjection of Cdc42 

under the plasma membrane has been shown to induce filopod formation (Nobes 

and Hall, 1995). However, filopodia have been reported in Cdc42 null cells 

(Czuchra et al., 2005) so it appears Cdc42 can induce filopodia, but is not 

absolutely required for their formation. Filopodia that arise within branched 

lamellipodial networks could form from the bundling of existing networks by 

various actin-binding proteins. It is unknown whether these structures have a 

different role than filopodia that extend beyond the membrane. 

The parallel nature of the filaments in these structures allows molecular motors 

such as myosin-X (MYO10) to transport components such as receptors to the tip 

of the filopod (Jacquemet et al., 2015). In addition, adhesions have been seen at 

the base, shaft and tip of filopods, suggesting that these structures could be 

acting as antennae for the cell, feeling around the surrounding environment and 

somehow relaying back this information to the cell. It is possible for example 

that filopodia could sense both the topology and stiffness of the surroundings, 

suggested by work that shows that filopodia are important for haptotaxis and not 

chemotaxis (Johnson et al., 2015). In support of this hypothesis, filopodia are 

often seen during cell spreading. Cells could employ these structures to gain 

information about the environment as the cell settles. Alternatively, filopodia 

could function as support cables to aid advancement of the lamellipod during 

spreading. In this context, adhesions mature after advancement of the 

lamellipod, suggesting that adhesions under filopodia could be nascent 

adhesions, providing initial attachment before full cell spreading (Wong et al., 

2014). These structures have also been seen in cells migrating in three-

dimensional environments, which will be explored later in this chapter. In the 

future, it would be interesting to gain a deeper understanding of these 

structures, and unravel the mechanism by which they communicate back to the 

cell. 
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1.1.4 3D cell migration 

1.1.4.1 Cell migration in 3D 

Historically, studying cell migration in 2D environments has helped us build an 

understanding of how the cytoskeleton is coordinated and controlled. We now 

face the challenge of applying and adapting this knowledge to cell migration in 

3D. The challenges cells face to navigate through a complex 3D environment are 

of course very different to those in 2D. Cells in 3D are surrounded by, and 

communicate with other cells or matrices. Often, cells must squeeze through 

tight spaces or tunnel their way through barriers to reach their destination. With 

the advances in in vivo imaging techniques and the design of in vitro 3D 

matrices, we are beginning to understand the different ways cells navigate 

through 3D environments. As in 2D, different cell types move in different ways 

through the 3D environment. However, two popular modes of migration are 

emerging in the field and have been termed ‘mesenchymal’ and ‘amoeboid’ 

migration (Petrie and Yamada, 2016). Mesenchymal migration is a term used to 

generally describe migration dependent on adhesion, which uses actin based 

protrusion at the front. Amoeboid is less dependent on adhesion formation and 

uses contractile force to drive migration. 

1.1.4.2 3D cell migration, degrading vs squeezing 

It is clear from imaging cells moving in 3D that they favour different types of 

protrusions to those used for 2D migration. As already discussed, cells migrating 

in 2D often display large fan-shaped protrusions called lamellipodia. These 

structures are not often seen in 3D, with cells favouring chunkier protrusions 

that shall be referred to here as pseudopods. Pseudopods are actin driven, and 

are characteristic of a cell displaying a ‘mesenchymal’ phenotype (Figure 1.3). 

Similarly to lamellipods, actin polymerisation and protrusive force in pseudopods 

can be driven through the Arp2/3 SCAR/WAVE pathway, under the control of 

Rac1 (Li et al., 2011). These pseudopods can possess degradative abilities 

through secretion of membrane bound metalloproteases (MMPs) that cleave the 

surrounding ECM (Figure 1.3) (Friedl and Wolf, 2003). Cells undergoing 

mesenchymal motility are elongated in the direction of migration, for example  
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Figure 1.3 Cells use diverse migration modes to navigate 3D environments 
The migration modes utilised by cells moving through three dimensions can be classified into actin 
driven and pressure driven. Cells migrating in an actin- dependent manner extend protrusions by 
actin polymerisation under the leading edge. For example, melanoblasts move through the 
developing embryo skin using actin-based pseudopods to squeeze between surrounding 
keratinocytes. The pseudopods of transformed or cancerous cells can acquire the ability to 
degrade the surrounding matrix (shown by black lines) by secreting matrix metalloproteinases 
(shown in red), which they use to hollow out a tunnel through which the cell can squeeze. This type 
of migration is displayed by MDA-MB-231 breast cancer carcinoma cells, and is thought to be 
classically mesenchymal. Cells can also navigate through the 3D environment independent of the 
protrusive force of the actin cytoskeleton. These cells migrate in a pressure-driven manner 
extending protrusions as a result of a build up of intracellular pressure. These modes of migration 
are more novel and less well understood, but are associated with elevated levels of Rho/ROCK 
signalling and myosin contraction. This migration mode is termed ‘amoeboid migration’. A new type 
of protrusion has recently been associated with this protrusion, seen in fibroblasts, and have been 
termed ‘lobopodia’. 
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MDA-MB-231 carcinoma cells (Yu et al., 2012). Filopodia appear to have an 

important function in vivo and can be seen extending from pseudopods and from 

sheets of cells (Li et al., 2014). Filopodia that extend from epithelial sheets 

during dorrsal closure in flies appear to be crucial for efficient closure, with the 

filopods acting as a zip-like structure (Pickering et al., 2013). The expression of 

the actin bundling protein fascin is correlated with cancer invasion, suggesting 

that these structures could aid cancer cell invasion (Li et al., 2010). 

However, cells can also move in 3D by primarily using force generated by 

contraction of the acto-myosin network. Initially, this migration mode termed 

‘amoeboid’ migration was only thought to be utilised by a limited number of cell 

types; however, this mode of migration has now been seen in a diverse array of 

cell types. It is characterised by bubble-like protrusions that are driven by 

hydrostatic pressure (Figure 1.3) (Olson and Sahai, 2009). This mode is driven 

mainly by contractility generated by the GTPase Rho and its associated kinase 

ROCK. A new type of actin-dependent protrusion has been described, called 

‘lobopodial’ protrusions. These protrusions have been seen in adherent 

fibroblasts, where they use intracellular pressure generated by acto-myosin 

contractility to extend a blunt, cylindrical protrusion (Figure 1.3) (Petrie et al., 

2014). Interestingly, these cells are polarised and can sustain prolonged, 

directional movement. 

A key study by Wolf et al. utilised degradable collagen lattices and 

nondegradable substrates with various pore sizes to study the parameters 

controlling migration through confined spaces (Wolf et al., 2013). They suggest 

that migration through 3D tissue is dependent on the cell’s ability to deform and 

its capacity to degrade the ECM. The nucleus is highlighted as a key factor for 

migration of cells in 3D, and they hypothesise that a cell’s success in traversing 

tight environments is its ability to deform the nucleus, the largest and most rigid 

organelle. When a deformation limit is reached, cells then depend on MMP 

mediated degradation to enlarge the pore in order to proceed. 

It is likely that cells moving in 3D will use the most efficient migration method 

to proceed through the environment. Cells might therefore use aspects of 

‘mesenchymal’ and ‘amoeboid’ motility, and these modes are better considered 

as a spectrum than two defined pathways. As actin regulators all partake in the 
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same feedback and feed-forward loops, it is unlikely that migration pathways 

are linear. 

1.1.5 Adhesions and cell migration 

Adhesions function as essential sites of contact between the intracellular 

cytoskeleton and the extracellular environment, containing multimolecular 

scaffolds and signalling complexes. Failure to establish functional adhesions can 

lead to disease, as they are essential during embryonic development, for tissue 

maintenance, host defence and homeostasis (Winograd-Katz et al., 2014). They 

are key to such a diverse array of processes as they provide the cell with 

information on its location, environment, adhesive state and matrix type. In 

addition to mediating the influx of signals from the environment, adhesions also 

provide a platform for the cell to signal to its environment in a bi-directional 

manner. Adhesions are fascinating and intricate structures, and we are still 

striving to understand the full range of adhesion components and the signalling 

networks surrounding these structures.  

During migration, tiny nascent adhesions form underneath the advancing 

lamellipod, acting both to stabilise the protrusion and to facilitate migration 

(Swaminathan et al., 2016). As the cell advances and adhesions are put under 

tension, they can mature into larger focal or fibrillar adhesions (Gardel et al., 

2010). These maturing adhesions facilitate polymerisation and retrograde flow of 

the actin cytoskeleton above to support the forward movement of the cells. We 

understand that this crosstalk between the polymerising actin above and the 

adhesion below must be subject to complex feedback and feed forward loops, 

but it still remains unclear exactly how this is coordinated 

1.1.5.1 Integrin mediated adhesions and signalling 

Adhesion complexes are most commonly built upon integrin heterodimers, which 

are the best characterised family of cell surface ECM receptors. Integrin 

heterodimers consist of non-covalently associated α and β subunits which are 

single pass type I transmembrane proteins. Various combinations of different 

integrin pairings bind to a diverse array of ECM components including 

fibronectin, laminin, collagen, thrombospondin, vitronectin, and to cell surface 
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adhesion molecules such as VCAM-1 (Humphries et al., 2006). Integrins can be 

described as allosteric receptors. Upon ligand binding, integrins can become 

activated by binding of activating proteins such as talin to the short cytoplasmic 

tail of the β integrin causing conformational changes (Outside-In signalling) 

(Calderwood, 2004) (Tadokoro et al., 2003). This binding and activation in turn 

leads to conformational changes in the integrin head groups, increasing integrin 

affinity for the ligand (Inside-out signalling). Multimolecular complexes then 

build on the cytoplasmic integrin tail, consisting of many different types of 

proteins including scaffold and signalling proteins, linking the adhesion site with 

the actin cytoskeleton. 

In the past, many approaches have been taken to characterise the composition 

of adhesions, termed the ‘integrin adhesome’ but recent technological advances 

based on proteomics and advanced imaging techniques have begun to reveal the 

complexity of these structures. These approaches identify two- or three-fold 

more proteins than would be expected from the previous literature. Despite this 

complexity, a set of ‘core’ adhesion proteins is emerging, with the other non-

canonical proteins often functioning in a cell-type manner and which are still 

being investigated (Horton et al., 2015, Humphries et al., 2015). 

Members of the ‘core’ adhesome include talin, focal adhesion kinase (FAK), 

paxillin, vinculin, and α-actinin, which appear to commonly assemble around the 

tails of activated integrins (Harburger and Calderwood, 2009). As described 

earlier, talin functions to activate ligand bound integrins. It can only do this 

after it is freed from its autoinhibited head tail conformation by calpain–

mediated proteolysis or by binding to phosphatidylinositol (4,5)-bisphosphate 

(PtdIns(4,5)P2) (Calderwood, 2004, Goksoy et al., 2008). FAK, which can bind to 

talin and paxillin is a non-receptor tyrosine kinase and signalling scaffold 

regulated by phosphorylation. FAK contains a FERM domain, through which it can 

interact with the Arp2/3 complex (Serrels et al., 2007). Recently, this 

interaction has been shown to be necessary to couple nascent adhesions to 

lamellipodial actin (Swaminathan et al., 2016). Both FAK and the Arp2/3 

complex can also bind to vinculin, which may also couple the actin cytoskeleton 

to adhesion sites (DeMali et al., 2002). Vinculin does not directly bind to β 

integrin tails but rather, through its interaction with other focal adhesion 
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proteins such as FAK, Arp2/3, α-actinin and paxillin, it plays an important role in 

adhesions. Vinculin null cells have spreading defects, enhanced adhesion 

turnover and migrate significantly faster (Ziegler et al., 2006). Paxillin is another 

signalling scaffold that is recruited in the early stages of adhesion formation 

(Deakin and Turner, 2008). It possesses many protein-protein interaction 

sequences, including leucine rich repeats, a proline rich region and LIM domains. 

Through these modules, this versatile scaffold can recruit many different types 

of proteins to the adhesion, including phosphatases, actin binding proteins and 

regulators of Rho GTPases. Together with the other components of the 

adhesome, these proteins mediate the ‘inside-out’ and ‘outside-in’ signalling 

associated with adhesions, making adhesions essential and versatile structures 

(Figure 1.4). 

Disassembly of adhesions is crucial to achieve coordinated cell migration. 

Integrins are in a state of flux, constantly being turned over by internalisation by 

clathrin dependent and independent mechanisms. Integrins then enter recycling 

paths to be returned to the membrane, or can be sent for degradation 

(Bridgewater et al., 2012). In addition to disassembly, adhesions can also 

remodel or slide to new positions. Therefore, it is essential to have a fully 

functional endocytic trafficking system to connect adhesion assembly and 

disassembly loops. Integrin recycling is not only key in the coordination of 2D 

cell migration, but has also been shown to control the invasive ability of cancer 

cells (Yoon et al., 2005, Ramsay et al., 2007a) reviewed in (Ramsay et al., 

2007b). 

1.1.6 The actin cytoskeleton and cancer metastasis 

1.1.6.1 Regulators of the actin cytoskeleton facilitate metastasis 

Metastasis is the spread of cancer from its original site to secondary sites, and is 

the main cause of cancer related death (Sporn, 1996). In order to disseminate 

from the original tumour and colonise secondary sites, cancer cells must 

navigate through diverse environments seeking out space and nutrients. In the 

case of melanoma metastasis, Muinonen-Martin et al. have suggested that these 

cells metastasise by locally breaking down lysophosphatidic acid (LPA), thus 
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Figure 1.4 Integrin-based adhesions and signalling 
Integrin-based adhesions are built around a heterodimeric pairing of α and β subunits bound to a 
ligand in the extracellular matrix such as fibronectin, laminin, collagen thrombospondin or 
vitronectin. Integrins are then activated by proteins such as talin binding to the cytoplasmic tail of 
the β subunit, inducing conformational changes that strengthen the attachment of the integrin head 
with the ligand. Subsequently, a multi-molecular complex is built at this site consisting of large 
scaffold and signalling proteins. This schematic highlights ‘core’ adhesion proteins which appear to 
be commonly recruited to adhesion sites. The scaffold proteins FAK and vinculin interact with and 
recruit the Arp2/3 complex to adhesion sites, linking adhesion dynamics to actin polymerisation and 
membrane extension. The multi-domain scaffold paxillin is recruited early to adhesions and 
provides docking sites for many types of molecules including activators of GTPases. Αlpha- actinin 
forms an anti-parallel rod-shaped dimer which bundles actin filaments at adhesion sites. 

  



Introduction  15 
 
Creating a gradient (Muinonen-Martin et al., 2014). The metastatic journey is 

driven through aberrant regulation of multiple components of the actin 

cytoskeleton, which are normally tightly regulated. We are still uncovering the 

roles that different actin related proteins play in cancer cell movement in the 

hope of building a picture of how the actin cytoskeleton facilitates metastasis. 

A whole host of actin regulators have been identified as mutated or mis-

regulated in different types of cancer, including the classic GTPases Rac1, Cdc42 

and RhoA. Also implicated are multiple actin binding proteins such as cofilin, 

profilin, gelsolin and actin nucleation promoting factors including N-WASP, 

WAVE1,2 and 3 and inducers of actin polymerisation Arp2/3 and Ena/VASP (Olson 

and Sahai, 2009). It is becoming clear that cancer cells hijack different aspects 

and components of migratory pathways to aid them at different times in their 

journey to new sites. 

1.1.6.2 The metastatic cascade 

We are still striving to fully understand what drives cancer cells to metastasise, 

and the paths which different types of cancers take to achieve this. Generally, 

cancer cells must first move out of the tumour, and invade towards the 

bloodstream or lymphatic system, which they use as a transport system to reach 

other organs. We are beginning to appreciate the complexity of the tumour 

environment, and its role in promoting metastasis. Tumours are complex 

entities, containing blood vessels, immune cells, fibroblasts, lymphocytes and 

ECM. The tumour cells are in close proximity and are constantly interacting with 

these components. It has been suggested that this interaction and the presence 

of other signalling molecules induces cancer cells to undergo epithelial-

mesenchymal transition (EMT) (Thiery et al., 2009). This process involves de-

regulation of cell-surface adhesion molecules such as E-cadherin and gene 

expression changes, resulting in the cell breaking free from their neighbouring 

cells and becoming more motile and invasive (Christofori and Semb, 1999). 

These changes allow the cells to break free from the tumour environment, and 

allow them to invade their way efficiently towards the bloodstream or lymphatic 

system (Figure 1.5). 
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Figure 1.5 The metastatic cascade 
Cancer spread is a multi-faceted process, where cancer cells break free from the original tumour, 
invade the surrounding matrix and spread to secondary sites using the blood or lymphatic system. 
Cells within the tumour gain migratory and invasive abilities through changes in gene expression, 
sometimes referred to as epithelial to mesenchymal transition (EMT) (A to B) Cells can then use 
actin-based ventral membrane protrusions called invadopodia to breach the basement membrane 
and invade through the surrounding matrix (B). Cells then intravasate into the blood and lymphatic 
systems to be transported through the body (C). At distant sites, a small proportion of circulating 
tumour cells extravasate, and colonise other organs forming a secondary tumour (D). 
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To enter the vasculature, cells need to degrade and re-model the ECM. To do 

this they use actin-based structures called invadopodia. These are ventral 

membrane protrusions composed of a variety of proteins including actin 

regulatory proteins, adhesion molecules and matrix degradation enzymes (Beaty 

and Condeelis, 2014). The actin bundling protein fascin is a key component of 

invadopodia, leading to their stabilisation (Li et al., 2010). These structures 

protrude into the surrounding matrix and secrete matrix-degrading proteases to 

locally degrade the ECM, forming a tunnel through which the cell can move. 

Once cancer cells have successfully entered the vasculature, called 

‘intravasation’, they travel in the blood stream until they become lodged in 

capillary beds. Only a small proportion of circulating tumour cells endure this 

journey through the vasculature, as they must survive in an anchorage-

independent manner and tolerate strong forces and immune cell surveillance 

(Steinert et al., 2014). The cancer cells then extravasate and begin to colonise 

the surrounding tissue.  

1.2 The Rho GTPase family and Cdc42 

1.2.1 The Rho GTPase family 

As discussed so far in this chapter, cells can move using a diverse array of 

migration modes, utilising different types of actin-based structures to do so. 

These migration modes are the product of complex signalling networks, involving 

many factors. Remarkably however, one family of proteins appears to play a 

central role in regulating all modes of migration. This family is the Rho GTPases, 

a sub family of the Ras superfamily of GTPases, which also includes Ras, Rab, Arf 

and Ran (Etienne-Manneville and Hall, 2002). Rho GTPases act as  signalling 

hubs, receiving signals from cell-surface receptors and a host of other pathways 

and transducing these cues into cytoskeletal rearrangements to facilitate cell 

migration and division. The small GTPases are generally 20-25 kDa and are highly 

conserved throughout evolution. They act as molecular switches, cycling 

between an active GTP bound state and an inactive GDP bound state. When 

active, they can proceed to activate a host of downstream signalling molecules 

(Nobes and Hall, 1999). The ability of GTPases to be easily and quickly 

controlled through many signalling inputs makes them ideal candidates to impart 

temporal-spatial information to the cell to induce a fast response by the cell. In 
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addition, activation of one GTPase can activate several distinct signalling 

pathways. This family has emerged as a master regulator of many aspects of cell 

migration, including actin polymerisation, adhesion formation and turnover, cell 

contractility and polarity.  

1.2.1.1 Rho GTPase family members 

Since their discovery over 20 years ago, the Rho family of GTPases has 

revolutionised our understanding of cell movement. Our understanding of the 

classic members Rac, Rho and Cdc42 began with 2D tissue-culture studies using 

fibroblasts, and injection of dominant-negative and constitutively active forms 

(Ridley and Hall, 1992, Nobes and Hall, 1995, Nobes and Hall, 1999). They noted 

that injection of active Rac induced membrane ruffling, as did Cdc42, but Cdc42 

activation could also trigger filopodia assembly. Rho activation triggered focal 

adhesions and stress fibres, suggesting a role in cell contractility, and Cdc42 was 

seen to promote filopodia. Since this seminal work by Alan Hall and colleagues, 

we have developed a deeper understanding of this family, which we now know 

acts synergistically to control diverse aspects of cell migration. 

20 members of the Rho GTPase family have been identified in mammals, with 

Rho, Rac and Cdc42 being the most highly conserved, present across eukaryotic 

species. Seven members have been identified in Drosophila melanogaster, five in 

Caenorhabditis elegans and fifteen in Dictyostelium discoideum (Raftopoulou 

and Hall, 2004). In mammals, there are groups of closely related Rho genes 

(RhoA, B and C) and also Rac genes (Rac1, 2 and 3). In addition, there are also 

splice variants of Cdc42 and Rac1 (Heasman and Ridley, 2008). The family can be 

classified into eight subfamilies (See Figure 1.6 adapted from (Heasman and 

Ridley, 2008)). The atypical Rho GTPases RhoBTB, Rnd, RhoU and RhoV and RhoH 

are all predominantly GTP bound and are therefore regulated by other 

pathways. Rho proteins can be post-translationally modified on their c-terminus 

by addition of a lipidic group by prenylation to allow interaction with 

membranes (Vega and Ridley, 2008). 
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Figure 1.6 The Rho GTPase family 
Phylogenetic tree based on the amino acid similarity between the 20 classic and atypical Rho 
GTPase family members. They fall into 8 subfamilies; GTPases Rho, Rac and Cdc42 and RhoF 
and RhoD families cycle between active GTP bound and inactive GDP bound forms. The atypical 
members include RhoBTB, Rnd, Rho, RhoV and RhoH. These proteins are predominantly GTP 
bound and appear to be regulated by alternative mechanisms such as degradation and post-
translational modification. 

Adapted from Heasman et al, (2008) 

  



Introduction  20 
 
1.2.1.2 Controlling Rho GTPase activity 

In order for Rho GTPase signalling to be effective, it must be tightly regulated. 

For this reason, the activity of Rho GTPases can be controlled in a number of 

ways through a host of signalling pathways. Generally, they are active when in 

the GTP bound form and inactive when bound to GDP. Exchange of nucleotides 

results in structural changes in two regions of the G protein called switch I and II 

(Morreale et al., 2000). Activation leads to a cascade of signalling through 

diverse effector proteins. Nucleotide status is controlled by guanine nucleotide 

exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs induce the 

exchange of GDP for GTP and GAPs catalyse the hydrolysis of GTP to GDP (Figure 

1.7). The location and activation state of GAPs and GEFs are crucial to 

controlling GTPase behaviour. Some GAPs and GEFs are shared between Rho 

GTPases allowing synergistic control of their pathways. However, some GTPases 

have unique GAPs and GEFs, allowing specific control of these members and 

their associated signalling pathways. Identification of these factors is complex as 

they do not contain one common sequence motif; however, evidence suggests 

that there are over 60 GEFs and over 70 GAPs (Etienne-Manneville and Hall, 

2002). As well as GAPs and GEFs, Rho GTPases are also subject to regulation by 

guanine nucleotide dissociation inhibitors (GDIs) which extract inactive GTPases 

from the membrane.  

1.2.2 Rho GTPases coordinate cell migration 

Having identified the Rho GTPases Rho, Rac and Cdc42 as integral players in the 

transduction of cytoskeletal rearrangements, the challenge we face is to 

understand what part each plays in the overall coordination of cell movement, 

and how they synergise to achieve this. We are still in the early stages of 

understanding the relationships between GTPases, and how they work together 

in 3D systems. It is clear however that GTPases are part of elaborate feedback 

and feed forward loops, making it difficult to extrapolate linear pathways linking 

a single GTPase to an output. However, this chapter will try to summarise which 

GTPases have been implicated to date in the formation of various structures 

required for migration. 
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Figure 1.7 The GTPase activation cycle 
Classical GTPases become activated upon the binding of GTP, mediated by guanine exchange 
factors (GEFs). When in their active form, GTPases control a host of signalling pathways, including 
actin polymerisation, proliferation, polarity and gene expression. GTPases are deactivated by 
guanine activating proteins (GAPs) which catalyse the hydrolysis of GTP to GDP in the binding 
pocket. Binging of Rho GDI prevents nucleotide exchange and membrane association. 
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The role of Rac has been studied extensively in 2D environments and recently 

some studies have emerged in 3D systems. Rac is a central player in the 

polymerisation of actin at the leading edge of the migrating cell. It achieves this 

through activation of the actin nucleation promoting factor Scar/WAVE, which 

activates the Arp2/3 complex resulting in branched filament polymerisation, as 

discussed earlier. Previous work in the lab has shown that Rac1 is required for 

the extension of long pseudopods by melanoblasts. Without Rac1, cells migrate 

poorly using short stubby protrusions (Li et al., 2011). Both Rac and Cdc42 can 

bind and activate the PAK family of Serine/Threonine kinases. These kinases can 

phosphorylate and activate LIM kinase, which can phosphorylate and inactivate 

cofilin, preventing filament severing. PAK kinases have also been linked to the 

turnover of focal adhesions. Adhesions are essential during cell migration, 

forming traction points through which the cell can generate force for migration, 

and acting as signalling hubs, connecting the cell to the surrounding ECM 

(Raftopoulou and Hall, 2004) (Figure 1.8).  

In addition to activation of PAK kinases, Cdc42 has also been identified as master 

regulator of cell polarity through its interaction with the Par polarity complex. 

This complex ensures correct placement of the microtubule organising centre  

(MTOC) to allow growth of the microtubule cytoskeleton in the direction of 

migration to facilitate directed movement of vesicles to the leading edge 

(Etienne-Manneville, 2004). This pathway ensures directed and sustained 

migration, and will be discussed in more detail later on in this chapter. As 

discussed earlier, Cdc42 can also induce branched actin polymerisation via the 

Arp2/3 complex through activation of the actin nucleation promoter N-WASP 

(Figure 1.8). However, it is thought that Rac is the main activator of the Arp2/3 

complex at the leading edge. 

In contrast to Rac and Cdc42 which drive actin polymerisation and directionality, 

Rho has mainly been implicated in controlling contractility via the acto:myosin 

cytoskeleton. Through its effector kinase ROCK, RhoA can lead to 

phosphorylation of the regulatory myosin light chain subunit, opening up the  
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Figure 1.8 Rho GTPases coordinate cell migration 
The classical Rho GTPases Rac1, Cdc42 and Rho dynamically coordinate the processes involved 
in cell migration, including actin polymerisation, contractility and adhesion turnover. Rapid and 
dynamic control over these processes is required to facilitate movement, and GTPases do this by 
controlling overlapping but unique signalling pathways. Rac1 is mainly associated with driving actin 
polymerisation at the leading edge through activation of the SCAR/WAVE and Arp2/3 complexes, 
driving pseudopod/lamellipod extension. Cdc42 can also stimulate actin polymerisation but via the 
N-WASP-Arp2/3 pathway, and is associated with filopod formation. In addition, Cdc42 and Rac can 
also control the activity of PAK kinases, which carry out many functions including control of 
adhesion turnover. Rho family GTPases are associated with controlling cell contractility through 
ROCK. ROCK can phosphorylate the myosin regulatory light chain (MLC) opening up myosin head 
groups to assist with actin filament sliding.  

Adapted from Ridley et al (2015) and Raftopoulou et al (2004)  
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myosin motor to bind to actin filaments to allow contraction. Contraction is 

essential for movement of the cell body and for rear end retraction to allow 

cells to move forward (Mitchison and Cramer, 1996). This pathway plays a major 

role in bleb-based migration modes (Figure 1.8).  

The contribution of each GTPase to different migration modes is dependent on 

the cell type and the environment. Fluorescence resonance energy transfer 

(FRET) imaging and fluorescence lifetime imaging (FLIM) using fluorescence 

based reporters for GTPase activity have helped forge new advances in our 

understanding of the localisation of GTPase activation (Kraynov et al., 2000). 

One such reporter has helped us gain a high-resolution picture of GTPase 

activation in motile HT1080 fibroscaroma cells, demonstrating that Cdc42 is 

active at the leading edge, whereas Rac is active slightly behind this (Itoh et al., 

2002). Recently, reporters have evolved such that the activation levels of two 

GTPases can be studied simultaneously within the same cell (MacNevin et al., 

2016). These types of reporters as well as photo-activatable probes (Wu et al., 

2009) will be useful tools in elucidating the role of Rho GTPases in coordinated 

cell migration. 

1.3 Cdc42 in cell migration  

1.3.1 Cdc42 activation and effectors 

Early insights into the function of the Rho GTPase Cdc42 showed that it was a 

crucial factor in bud site selection in yeast (Johnson and Pringle, 1990), and 

could induce the formation of actin cytoskeletal rearrangements and the 

formation of filopodia in mammalian cells (Nobes and Hall, 1995)). In the 20 

years since its discovery we have come to recognise Cdc42 as a master regulator 

of the actin cytoskeleton, with an incredible capacity to influence a wide variety 

of cellular responses. This is in part due to its capacity to integrate signals from 

multiple pathways to activate many downstream effectors. Cdc42 has a lipid 

anchor, and active Cdc42 can be found at the plasma membrane of the leading 

edge, or at the Golgi (Raftopoulou and Hall, 2004). Activation of Cdc42 can 

occur through many signalling receptors, including those from the tyrosine 

kinase, G-protein, cytokine and integrin families (Sinha and Yang, 2008). Many 

GEFs are known to Activate Cdc42, including B-Pix, TIAM1 and Vav1,2 and 3 
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(Schmidt and Hall, 2002). As mentioned earlier, when active, Cdc42 can control 

many aspects of cell migration through its diverse range of downstream 

effectors, including actin polymerisation, cell contractility, vesicle trafficking, 

adhesion turnover, invadopodia formation and cell polarity (Figure 1.9). 

 Cdc42 can contribute to acto:myosin contractility in addition to Rho/ROCK 

pathways through its effector MRCK. Similarly to ROCK, MRCK can phosphorylate 

the light chain regulatory subunit on non-muscle myosin to allow crosslinking to 

actin to generate contractile force. In addition to generating cell contractility, 

Cdc42 can contribute to the protrusive force required for cell motility by 

activating the WASP family NPF N-WASP to generate branched actin filaments, 

and the FH domain NPF Dia1 to extend linear filaments (Raftopoulou and Hall, 

2004). In some cell types, activation of FH domain proteins by Cdc42 results in 

filopodia formation to aid cell migration (Nobes and Hall, 1995). In addition to 

promoting branched filament polymerisation, the activation of N-WASP by Cdc42 

is also crucial for invadopodia (Yamaguchi et al., 2005). The F-BAR domain 

protein TOCA-1 has been shown to play a key role in N-WASP activation 

downstream of Cdc42 (Ho et al., 2004).This family of proteins are large 

scaffolding proteins that play a crucial role in the interface between membrane 

dynamics and acin reorganisation (Reviewed in (Aspenström, 2014). Cdc42 has 

also been linked to adhesion turnover through the PAK family of kinases, 

however the mechanism linking Cdc42 to adhesion turnover is unknown. Cdc42 is 

also widely regarded as master regulator of cell polarity. 

1.3.2 Cdc42 and polarity 

1.3.2.1 Early insights from Saccharomyces cerevisiae 

Studies using this model revealed the importance of Cdc42 in establishing 

cellular asymmetry otherwise known as ‘polarity’. Building polarity in yeast is 

essential for many processes such as response to pheromones, cytokinesis, 

shmoo formation and differentiation (Sinha and Yang, 2008). The simplicity of 

this model allowed us to gain molecular insight into how Cdc42 builds such 

asymmetries (reviewed in (Woodham and Machesky, 2014). Cdc42p drives bud 

growth in S. cerevisiae by localising to the small cortical area at the bud site. 

Recent models suggest that yeast amplify random, transient  
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Figure 1.9 Cdc42 integrates multiple signalling inputs into diverse cellular effects 
Cdc42 can be activated via a diverse array of signalling pathways initiated by many types of cell 
surface receptors such as tyrosine kinases, G-protein coupled receptors, cytokine receptors and 
integrins. Cdc42 activity is controlled through regulation of GAP and GEF activity. When active, 
Cdc42 can control many aspects of cell behaviour, acting through many effectors. Cdc42 is a 
master regulator of cell polarity, acting through the Par polarity complex. It can induce actin 
polymerisation through its effectors N-WASP and Dia1, cell contractility through MRCK and 
adhesion turnover through PAK.  The F-BAR family of BAR domain proteins have also been 
reported to be Cdc42 effectors. Cdc42 controls the localisation of the Cdc42 effector interacting 
protein 4 (CIP4) and also binds the CIP4-like protein TOCA-1. Both of these proteins play important 
roles in the interface between cytoskeletal dynamics and membrane trafficking, such as during 
clathrin-mediated endocytosis. 
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breaks of symmetry to create asymmetry. The scaffold protein Bem1 has been 

identified as a key player in this process. Bem1 binds the Cdc42-GEF Cdc24 and 

the Cdc42 effector PAK. This complex can be captured by spontaneously arising 

Cdc42-GTP at the cortical site via PAK. This brings the Cdc42 GEF into close 

proximity to neighbouring Cdc42-GDP creating Cdc42-GTP, which in turn recruits 

more Bem 1 complex (Johnson et al., 2011). This positive feedback loop leads to 

a cluster of Cdc42-GTP at the bud site, which orientates actin cables and 

therefore directs vesicular transport to the site, reinforcing this as the site of 

bud emergence. In addition to these mechanisms, recent work suggests that 

asymmetries in the lipid composition of the cell membrane may aid the 

development of polarity. Using a GFP-Lat-C2 probe to visualise 

phosphatidylserine (PS) distribution in S. cerevisiae, Fairn et al. demonstrated 

that PS is concentrated in the plasma membrane of growing buds, and acts as a 

platform for the accumulation of Cdc42 at the bud neck. Mutants in PS 

biosynthesis were unable to localise Cdc42 to the bud neck (Fairn et al., 2011).  

Since the discovery of the role of Cdc42 in yeast polarity, much work has been 

done using mammalian cells to try to uncover if this role in generating cellular 

asymmetry is conserved throughout evolution. 

1.3.2.2 Cdc42 and mammalian polarity 

The complexity of multicellular life brings another dimension to the concept of 

polarity. Cells must integrate a whole host of signals to divide, differentiate and 

migrate at the correct time and in a coordinated manner. Despite the 

complexity these cells encounter, there is evidence for a conserved molecular 

toolbox to interpret these signals into polarisation. As in yeast, Cdc42 is a 

master coordinator of polarisation in mammalian cells. However, its intricate 

regulation and its many effectors have made it difficult to elucidate the 

mechanisms through which Cdc42 exerts its effects on polarity. Cdc42 has 

maintained its major role in coordination of the cytoskeleton in mammalian 

cells, though the part it plays has become more complex. 

Unlike in yeast, polarity in mammalian cells is mainly driven by external cues, 

such as cell-cell contact, soluble factors or release of physical constraints such 

as in a scratch wound (Etienne-Manneville, 2004). The molecular mechanism 
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through which Cdc42 initiates asymmetry in mammals was investigated in an 

elegant set of studies analysing astrocyte migration into a scratch wound. It was 

noted that after wounding, the actin and microtubule cytoskeleton aligned 

perpendicular to the wound, and the MTOC moved to face the direction of 

migration. This process was abrogated in the presence of a dominant negative 

Cdc42 (Etienne-Manneville and Hall, 2001). To achieve this, Cdc42 activates the 

PAR polarity complex, consisting of the scaffold proteins PAR-6 and Par-3 and 

atypical protein kinase (aPKC)(Etienne-Manneville et al., 2005). Cdc42 binds to 

PAR-6 inducing a conformational change that activates aPKC, leading to 

activation of GSK3-B and association of adenomatous polyposis coli (APC) with 

microtubule plus ends (Etienne-Manneville and Hall, 2003). Re-orientation of the 

MTOC and microtubule network supports persistent and directional migration. 

1.3.3 Cdc42 and mammalian cell division 

Shortly after the discovery of Rho-GTPases, it was shown that Rac, Rho and 

Cdc42 could control cell-cycle progression. Injection of Rac1 and Cdc42 into 

quiescent fibroblasts stimulated G1 to S transition (Olson et al., 1995). 

Microinjection of dominant negative Rac and Cdc42 blocked serum induced DNA 

synthesis, giving the first indication that these GTPases were essential for cell 

growth. The downstream signalling events linking GTPases to division were 

further elucidated shortly afterwards, when it was shown that Cdc42 and Rac 

could induce cyclin D1 accumulation and subsequently phosphorylation of the 

‘pocket protein’ retinoblastoma to induce transcription by E2F family 

transcription factors leading to G1 to S transition (Gjoerup et al., 1998). In 

addition, Cdc42 has also been proposed to localise directly at the spindle and on 

kinetochores of condensed chromosomes, regulating spindle assembly, and 

controlling the orientation of division (Chircop, 2014). Therefore, Cdc42 is not 

only a master regulator of the actin cytoskeleton, but also has control over 

diverse signalling pathways including those responsible for cell cycle transition. 

However, there is still much to be learned about Cdc42s role in the cell cycle 

and during cell division. 
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1.3.4 Cdc42 in invasion and cancer 

Due to Cdc42’s prominent role in cell migration, polarity and division, it is 

unsurprising that it has been suggested to be a putative oncoprotein. Cdc42 is 

not usually mutated in human cancer, but is overexpressed in many cancers 

including non-small cell lung cancer (Liu et al., 2009), melanoma (Tucci et al., 

2007), breast cancer (Fritz et al., 1999) and testicular cancer (Fritz et al., 

2002). The exact role that Cdc42 plays in cancer progression, or indeed at which 

stages it is most crucial is still unclear. Interestingly, it has been observed that 

mutant Cdc42 fibroblasts display elevated levels of glutamine, a crucial 

metabolite required to support proliferation and sustained manufacture of 

lipids, proteins and nucleic acids (Wang et al., 2010). It will be interesting in the 

future to further investigate Cdc42’s role in cancer cell metabolism, as we have 

made great advances in understanding of this field in recent years.  

Cdc42 has also been linked to cancer cell invasion and metastasis (Gao et al., 

2013, Bouzahzah et al., 2001, Johnson et al., 2010). As described earlier, the 

spread of cancer is a multifaceted process, involving escape from the primary 

tumour and degradation of the surrounding matrix to reach blood or lymphatic 

vessels (Figure 1.5). This role may be in part due to Cdc42’s role in the 

formation of invasive structures found on the base of the cell known as 

invadopodia, and that Cdc42 can help to traffic matrix degrading enzymes to the 

invasive protrusions of cells, helping them invade the surrounding matrix 

(Yamaguchi et al., 2005) (Sakurai-Yageta et al., 2008). Cdc42 can localise to 

tumour cell-matrix contacts where it activates the scaffold protein IQ-GAP which 

can interact with the exocyst complex to select vesicles containing Matrix 

metalloproteinases (MMP) for incorporation into the invading membrane 

compartment (Sakurai-Yageta et al., 2008). Release of MMPs leads to 

degradation of the surrounding matrix. The invading pseudopod can then 

advance through Arp2/3 mediated actin polymerisation via the Cdc42 effector N-

WASP (Yamaguchi et al., 2005) (Figure 1.10). In addition, constitutively active 

forms of Cdc42 (Cdc42 Q61L and Cdc42 G12V), promote anchorage independent 

growth in immortalised fibroblasts (Fidyk et al., 2006) (Lin et al., 1997). 
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Figure 1.10 Cdc42 and invasion 
Cdc42 aids tumour cell invasion by localising to tumour cell-matrix contacts where it activates the 
scaffold protein IQ-GAP. There it can interact with the exocyst complex to select vesicles 
containing matrix metalloproteinases (MMPs) for incorporation into the invading membrane 
compartment. MMPs cleave and degrade matrix components, creating a tunnel through which the 
cell can advance through using Arp2/3 mediated actin polymerisation via the Cdc42 effector N-
WASP. Orange lines represent matrix, black represent actin filaments and green microtubules. 
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Recent work has provided some mechanistic insight into Cdc42s role in the 

transendothelial migration of breast cancer and prostate cancer cells, a key 

process during metastatic spreading (Reymond et al., 2012). Cdc42 knockdown 

cells were less able to intercalate between endothelial cells due to a decrease in 

B1 integrin expression. Transient depletion of Cdc42 decreased early 

colonisation of the lungs. Their data indicate an interesting and unique role for 

Cdc42 in the metastatic cascade. 

In addition to Cdc42’s role in cancer invasion, it has also been suggested that in 

some contexts, Cdc42 could act as a tumour suppressor through its roles in 

maintaining cell polarity and adhesions. This role of Cdc42 is particularly 

important in epithelial sheets, consisting of a monolayer of polarised epithelial 

cells surrounding a lumen. Cdc42 maintains polarity by arranging an asymmetric 

distribution of cytoskeletal components, vesicle trafficking and adhesion types, 

and by controlling the orientation of division. Loss of Cdc42 or Par6/aPKC leads 

to aberrant cysts with multiple lumens (Jaffe et al., 2008) (Durgan et al., 2011). 

We have yet to determine the activity and expression pattern of Cdc42 during 

the stages of cancer progression, or to fully understand its role in different 

tumour types and microenvironments. This knowledge will be key to develop any 

strategies to target Cdc42 activity in tumours. It is likely that any inhibition of 

Cdc42 activity to combat tumourigenesis might also impact on cell polarity, 

complicating this as a potential therapeutic agent. Inhibitors could however 

prove effective at low doses in combination with other therapies. 

1.4 Melanoblasts and the melanocyte lineage 

Melanocytes are the pigment producing cells in the skin. In humans most 

melanocytes reside in hair follicles and the epidermis of the skin, but in mice 

they mainly reside within the hair follicles. The main function of melanocytes is 

to produce melanin, which they pass to surrounding keratinocytes using dendritic 

protrusions in packages called melanosomes. This causes pigmentation of the 

skin in humans and the hair in mice. The melanocyte lineage originates from the 

neural crest, and their embryonic precursors are called melanoblasts. Unlike 

melanocytes, melanoblasts are plastic and highly migratory, moving large 

distances through the skin to reach their final destination in the epidermis from 

their site of origin at the neural tube. Studying the melanoblast lineage is of 
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interest for many reasons. Firstly we know very little about how these cells 

achieve this highly orchestrated journey during development, and we would like 

to understand the factors controlling this process. Secondly, melanoblasts 

provide an excellent model system for studying 3D cell migration, as there are 

methods available to perform high-resolution imaging. Lastly, there are parallels 

between these embryonic precursor cells and melanoma cells; therefore, 

understanding the migration of this lineage might also provide information on 

how melanocytes transform into melanoma and why they are so metastatic. 

1.4.1 Melanoblast specification 

Melanoblasts derive from the neural crest (NC) lineage, a transient population of 

pluripotent cells that delaminate from the neural tube between the overlying 

ectoderm and the somites, and migrate great distances through the developing 

vertebrate embryo before homing to their target destination. In addition to 

pigment cells, a diverse array of cell types derive from the neural crest, 

including bone, cartilage, adipose tissue, endocrine cells, neurons and glia. The 

specification of cells from the neural crest is a stepwise process, where 

pluripotent cells become specified to a certain lineage through expression of 

pivotal transcription factions and activation of signalling pathways. This induces 

certain neural crest populations to adopt a unique gene expression profile and 

morphology (Thomas and Erickson, 2008). 

The process of melanoblast specification begins very early in their journey, as 

they emerge from the neural tube (Figure 1.11 adapted from (Silver et al., 

2006)). As pigment cells are not essential for the viability of the organism, many 

mutants have been available to determine this developmental pathway. 

Melanoblasts specify from a glial/melanogenic bipotent precursor cell through 

the up- or down-regulation of a suite of transcription factors, controlled by 

signalling from the environment. These transcription factors include MITF, Pax3 

and Sox10, and loss of these prevents development of the melanocyte lineage. 

Pax3 mutant mice have neural  
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Figure 1.11 Melanoblast	specification	and	migration	during	mouse	embryonic	development	
Cells of the neural crest lineage emerge from the neural tube below the overlying ectoderm (red). 
Melanoblast specification begins as they emerge through the presence of Wnt signalling and the 
expression of transcription factors Sox10 and Pax3 and repression of the FoxD3 transcription 
factor. These in turn drive expression of MITF, which is the master transcription factor defining the 
melanocyte lineage by driving expression of melanocyte genes such as dopachrome tautomerase 
(DCT) and tyrosinase. During early development, melanoblasts (blue) take a dorsolateral path 
through the dermis, above the somites, initially moving through the dermis (E11.5-13.5). 
Melanoblasts then cross the basement membrane into the epidermis. By E15.5, the majority of 
melanoblasts reside in the epidermis of the skin, and some begin homing to hair follicles. 
Expression of the Kit receptor and signalling through Kit ligand (KitL) binding promote survival and 
proliferation of melanoblasts. By birth, melanocytes reside almost exclusively in the hair follicles in 
mice. Neural crest cells of the neuronal lineage take a ventral path through the developing embryo, 
populating the lower levels of the skin. 

Adapted from Silver et al (2006) 
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tube defects and in other neural crest derivatives (Moase and Trasler, 1992), 

whereas Sox10 mutants can have megacolon due to a deficit of enteric NC cells 

(Tachibana et al., 2003). These transcription factors in turn drive expression of 

the transcription factor MITF. MITF is regarded as the master regulator of 

melanogenesis, and is crucial for the specification and survival of melanoblasts. 

It is expressed soon after emergence from the neural tube (Opdecamp et al., 

1997, Nakayama et al., 1998, Lister et al., 1999, Kumasaka et al., 2004). In 

addition, 20 MITF mutants that lead to pigmentation defects have been 

described in mice (Steingrimsson et al., 2004), highlighting the importance of 

this transcription factor in regulating the function of this lineage. MITF regulates 

the transcription of tyrosinase and dopachrome tautomerase (DCT), key enzymes 

in the biosynthesis of melanin, by binding to the E-box regulatory site (Aksan and 

Goding, 1998). The Wnt signalling pathway also plays a key role in the 

specification of melanoblasts. Wnt3a is expressed in the dorsal neural tube, and 

MITF has been shown to be upregulated by Wnt3a in melanocytes (Takeda et al., 

2000). Targeting of the Wnt pathway by knockout of B-catenin in NC cells 

abrogates melanocyte and sensory neuron development (Hari et al., 2002). 

1.4.2 The melanoblast journey 

Melanoblast specification begins early during embryonic development, as they 

emerge from the neural tube. This however is only the beginning of their 

journey, and we are still investigating the paths and modes that melanoblasts 

use to populate the embryo by birth. Different populations of the neural crest 

take different defined paths through the skin. Our understanding of neural crest 

pathways comes from a set of elegant experiments using the chick and quail 

embryos. Neural tubes can be dissected from chick embryos and transplanted, as 

chick and quail cells can be distinguished by the amount of heterochromatin in 

their nuclei (Teillet and Le Douarin, 1970). Similar experiments were also 

performed using chimeric albino and black-6 mice (Mayer, 1973). These 

experiments showed that melanoblasts take a dorsolateral path between the 

somites and the ectoderm, whereas neurogenic NC cells migrate ventrally along 

the neural tube. After gathering in the migration staging area at E10.5, 

melanoblasts in the developing mouse embryo must then proliferate and migrate 

to fill the embryo by birth (Figure 1.12). From E11.5 to 13.5, melanoblasts  
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Figure 1.12 Melanoblast	population	of	the	developing	embryo	
During development, the melanoblast lineage must expand greatly in numbers to fill the embryo 
before birth. At E11.5 melanoblasts reside in the migration staging area either side of the neural 
tube. As the embryo develops, the melanoblast population migrates and proliferates, filling the 
developing embryo in a dorsoventral manner.  By E15.5, melanoblasts mostly reside in the 
epidermis, squeezing between the neighbouring keratinocytes in order to move. 
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migrate in the dermis of the skin, with some beginning to transverse the 

developing basement membrane into the epidermis. At E15.5, the majority of 

melanoblasts are in the skin epidemis, some melanoblasts already residing within 

the developing hair follicle, which develops from placodes at sites of thickening 

of the epidermis. By birth, nearly all melanoblasts home to hair follicles (Figure 

1.11). We are still trying to fully understand the factors that induce 

melanoblasts to move into hair follicles. Jordan et al. have suggested that KIT 

ligand could be involved in this process (Jordan and Jackson, 2000). The KIT 

tyrosine kinase receptor and its associated ligand are essential for the 

proliferation and survival of melanoblasts at later stages in their journey. They 

observed more melanoblasts in hair follicles after treatment of cultures of skin 

explants with KIT ligand. However, it is possible that this treatment simply sped 

up melanoblast migration into the hair follicle, as melanoblasts did not move 

towards KIT ligand coated beads, suggesting it might not act as a 

chemoattractant. 

1.4.2.1 Melanoblast modes to colonise the skin  

We are beginning to build a picture of how melanoblasts move individually 

through the skin, but it still remains unclear what controls the global 

coordination of their journey. It is clear however that melanoblasts must migrate 

and proliferate to complete their journey. Recent advances on the ex-vivo 

imaging of skin explants has helped us understand how these cells migrate, and 

have provided a nice model to understand the role of different actin regulators 

in 3D cell migration (Mort et al., 2014). As melanoblasts migrate through the 

epidermis, they extend multiple dynamic pseudopods between the surrounding 

keratinocytes (Figure 1.13). The extension of long pseudopods is dependent on 

Rac1 which is crucial for efficient melanoblast migration, loss of Rac1 in the 

melanoblast lineage leads to coat colour defects (Li et al., 2011). Myosin 

contractility allows pseudopod retraction and force generation to squeeze 

through the junctions between keratinocytes. We have also identified a role for 

the actin bundling protein fascin in the size and lifetime of melanoblast 

pseudopods; loss of fascin leads to coat colour defects in adult mice (Ma et al., 

2013). Interestingly, it appears that melanoblasts do not rely on matrix  
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Figure 1.13 Melanoblasts use pseudopods to migrate between keratinocytes 
Staining skin from embryos at E15.5 expressing GFP in melanoblasts with tyrosinated tubulin 
(Red) and DAPI (Blue) shows that melanoblasts extend multiple pseudopods between the 
surrounding keratinocytes. Hair follicles can be seen as dense groups of keratinocytes, and at this 
time point melanoblasts have started to enter this structure. Scale 100 µm (top panel) 10 µm 
(bottom panel). 
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degradation to cross the basement membrane or to move between keratinocytes 

as deletion of N-WASP, a key factor in invadopodia formation did not lead to 

coat colour defects (Li et al., 2011). 

In addition to their efficient migration, melanoblasts must also proliferate to fill 

the developing embryo. By combining mathematical modelling with 

experimental observation, Larue et al. have suggested that melanoblast-

doubling time is around 16 hours, and that melanoblasts proliferate three times 

faster in the epidermis (Larue et al., 2013). Interestingly, the numbers of 

melanoblasts present at each time point are extremely consistent between 

embryos, suggesting tight regulation over this process. It remains unclear, 

however, whether melanoblast migration and proliferation, in conjunction with 

contact inhibition together suffice to fill the embryo. It is still under debate 

whether the melanoblast journey is also driven by some kind of attractant, or if 

melanoblasts are following paths carved out by the developing nervous system 

below. Mathematical models are useful tools to investigate which of these 

factors might be playing a role in this process. A recent mathematical model by 

Mort et al. has suggested that melanoblast migration occurs through undirected 

migration, and that proliferation alone can explain defects in pigmentation (Mort 

et al., 2016). However, the parameters and assumptions behind these models 

are still being debated. 

1.4.3 Melanoblasts from Schwann cells: a second wave 

In addition to this ‘traditional’ mode of melanoblast migration through the 

epidermis, recent work from Adameyko et al. has provided substantial in vivo 

evidence that Schwann cell precursors (SCPs) could provide a second ‘wave’ of 

melanoblasts later in development (Adameyko et al., 2009). SCPs are associated 

with the perinatal nerves and provide protection and trophic support. Unlike 

early-specified melanoblasts, these neuronal lineage cells take a ventral path 

through the embryo, innervating lower levels of the skin (Figure 1.11). SCPs are 

dependent on contact with the nerve for survival. If they remain associated with 

the nerve, they will develop into myelinating and non-myelinating glial cells. 

However, their work demonstrates that SCPs which move away from the 

signalling environment of the developing nerve with high levels of neuregulin 1 

take on melanocytic properties in both chicks and mouse models (Figure 1.14).  
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Figure 1.14 The peripheral nerve: a novel melanoblast source during development 
It is widely believed that the majority of melanoblasts are specified from neural crest cells as they 
emerge from the neural tube, early in development. There is however now substantial in vivo 
evidence that this population of melanoblasts can be supplemented later on in development via 
differentiation of schwann cell precursors into melanoblasts. This occurs when schwann cell 
precursors move away from the signalling environment of the nerve, inducing gene expression 
changes towards the melanoblast lineage. 

Adapted from Adameyko et al (2010). 
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It remains unclear, however, what proportion of melanoblasts derive from this 

pathway. Recent advances in imaging will allow further elucidation of the 

contribution of this pathway, and could change how we understand the 

melanoblast journey. 

1.4.4 Melanoblasts to melanoma 

1.4.4.1 Stages of melanoma progression 

Melanoma, the most dangerous form of skin cancer, arises from the neoplastic 

transformation of melanocytes. Melanoma cells are plastic and aggressive, with 

a high propensity to metastasise. Melanoma most commonly develops from a 

benign nevus, a group of melanocytes that has undergone controlled division. A 

host of driver mutations have been associated with the development of 

melanoma, but the most common mutations occur in BRAF, a serine/threonine 

kinase that signals downstream of RTKs and Ras proteins. It is mutated in 30-70% 

of melanomas with mutation at V600E by far the most common (Klein et al., 

2013). Mutations in BRAF, along with other mutations, drive progression from a 

benign to dysplastic nevus, which can then expand in the epidermis during the 

radial growth phase. Down-regulation of E-Cadherin and upregulation of N-

cadherin are associated with downward growth through the basement membrane 

into the dermis, termed the vertical growth phase. At this stage, tumour cells 

acquire the ability to invade through the surrounding matrix and metastasise to 

secondary sites such as the lungs and brain via the bloodstream or lymphatic 

system (Figure 1.15). 

1.4.4.2 Melanoma and embryonic signalling networks 

The aggressive and motile nature of melanoma is in contrast to melanocytes, 

their cell of origin, which are terminally differentiated and largely static. 

However, as previously discussed, during development, the melanoblast lineage 

is extremely plastic and highly migratory. It is unsurprising then that a 

hypothesis was put forward, suggesting that melanoma is the result of aberrant 

re-activation of the embryonic signalling pathways that support the plastic 

differentiation and migration of the melanoblast lineage. Bailey et al. cleverly  
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Figure 1.15 Melanoma Progression 
Melanocytes in human skin can proliferate in a controlled manner into a group called a nevus. 
Commonly, mutations in BRAF can drive progression from a benign to a dysplastic nevus. Aberrant 
proliferation of this nevus, which is limited to the epidermis, is termed the ‘radial growth phase’. In 
time, the lesion can progress to ‘vertical growth phase’ where transformed melanocytes invade 
through the basement membrane into the dermis. At this time, melanoma cells are extremely 
invasive, and they can invade towards the bloodstream and metastasise rapidly to secondary 
organs. 
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investigated this hypothesis by transplanting metastatic melanoma cells into the 

chick embryonic neural crest microenvironment. They saw that melanoma cells 

could respond to cues from the host tissue, adopting the correct migratory path 

through the skin, which was not the case for poorly invasive melanoma cells 

(Bailey et al., 2012). By carrying out genetic analysis on cell populations by 

laser-capture microdissection, they demonstrated that this ability was through 

the upregulation of genes associated with neural crest induction. 

The transcription factor Pax3, which is pivotal in shaping the melanoblast 

lineage from the neural crest, is an interesting candidate to study in the context 

of melanoma. Studies have shown that Pax3 expression continues on after 

development of the melanocyte lineage (Gershon et al., 2005) and is expressed 

in melanoma (Plummer et al., 2008) where it can contribute to tumour cell 

survival (Scholl et al., 2001). We are still striving to understand what exact role 

Pax3 plays, but it is likely that its roles in maintaining stemness and promoting 

proliferation and migration could explain its function in melanoma progression 

(Medic and Ziman, 2009). Therefore, understanding the factors controlling 

melanoblast population of the embryonic skin may provide us with clues as to 

how melanoma cells spread through the body, giving us a new insight and 

markers for metastasis, with the aim of providing better therapeutic options for 

those with this disease.
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2 Materials and Methods 

2.1 Materials 

2.1.1 Reagents and solutions 

Table 1 Reagents and solutions 
Reagent/Solution Description Source 

Inhibitors 
CK869 Arp2/3 inhibitor Tocris Bioscience 
Nocodazole Microtubule 

Polymerisation Inhibitor 
Sigma 
 

SMIFH2 Broad spectrum formin 
inhibitor 

Sigma 

Matrix  
Growth Factor Reduced 
Matrigel 

Matrix BD Bioscience 

Fibronectin from Bovine 
Plasma 

Matrix Sigma 

X-Gal Embryo Staining 
X-Gal  Promega 
Gluteraldehyde  Sigma 
Permeablisation Solution 2 mM MgCl2, 0.02% 

NP-40 and 0.01% 
sodium deoxycholate in 
PBS, pH 7.5 

In house 

X-Gal Buffer 2 mM MgCl2, 0.02% 
NP-40, 2 mM 
K3Fe(CN)6 and 2 mM 
K4Fe(CN)6) containing 
2 mg/ml X-Gal 

In house 

Immunohistochemistry 
Citrate Buffer  Dako 
Hematoxlyin  Beatson Histology Service 
PBST  In house 
Blocking buffer  Rabbit/Goat serum in 

PBS 
Sigma 

SDS-PAGE and Western Blotting 
RIPA Buffer 50 mM Tris-HCl, 150 

mM NaCl, 1% NP-40 
and 0.25% 
Nadeoxycholate 

In house 

NuPAGE Reducing Reagent 
10X 

 Invitrogen 

NuPAGE Bis-TRIS gels 4-12%, 10%, 12% Invitrogen 
Protein Ladder PageRuler  Thermo Fisher Scientific 
Nu PAGE Protein Sample 
buffer 4X 

 Invitrogen 

Western Membranes Amersham Protran 0.45 
µm 

GE healthcare 
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MOPS Running Buffer 20X  Life technologies 
Transfer Buffer 10X  Beatson Central Services 
TBST 10X 10mM Tris-HCl, pH 7.4, 

150mM NaCl 
Beatson Central Services 

Protease Inhibitor Cocktail  Thermo Scientific 
Phosphatase Inhibitor 
Cocktail 

 Thermo Scientific 

Cloning and Molecular Biology 
DNA Loading Dye  In house 
DNA Ladder O’GeneRuler Thermo Fisher Scientific 
DNA Visualisation Dye Midori Green Geneflow 

TAE 40mM Tris, 0.1% glacial 
acetic acid, 1 mM EDTA 

Beatson Central Services 

TE 10mM Tris-HCl, pH 8.0, 
1mM EDTA 

Beatson Central Services 

PCR Mastermix  Takara 
Kanamycin  Sigma 
Ampicillin  Sigma 
L-Broth  Beatson Central Services 
Genotyping Buffer 100mM Tris HCl, 5 mM 

EDTA, 0.2%SDS, 200 mM 
NaCl at pH 8.5 

In house (Max Nobis) 

Cell Culture 
DMEM  Gibco 
F-12 Nutrient Mixture  Gibco 
Fetal Bovine Serum  Gibco 
L-Glutamine  Gibco 
Primocin  InvivoGen 
PMA  Sigma 
HBSS 10X  Gibco 
Dissociation Buffer  Gibco 
Trypsin  Gibco 
PE PBS 1 mM EDTA Beatson Central Services 
OHT  Sigma 
DMSO  Fisher Chemicals 
Doxycyclin   
Penicillin-Streptomycin  Gibco 
PBS 170mM NaCl, 3.3mM 

KCl, 1.8 mM Na2HPO4, 
10.6mM H2PO4 

Beatson Central Services 

PBT 0.1% BSA+0.01% Tween 
20 in PBS 

In house 

OptiMEM  Gibco 
Collagenase Type I  Gibco 
Collagenase Type IV  Gibco 
Puromycin  Invivogen 
Polybrene  Sigma 
Propidium Iodide  Sigma 
Ethanol  VWR chemicals 
AllStars Neg control siRNA 20 nmol Qiagen 
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2.1.2 Antibodies and Dyes 

Table 2 Antibodies and dyes 

Immunofluorescence 
PFA  Electron Microscopy 

Studies 
Methanol  VWR Chemicals 
Permablisation buffer PBS 1% Triton In house (triton sigma) 
Blocking buffer PBS 10% Goat serum Sigma 
Mounting Solution Prolong Antifade Thermo Fisher 
BSA  Sigma 
Formalin  In house 
RNA Isolation and Sequencing 
RNA ScreenTape Sample 
Buffer 

 Agilent Technologies 

RNA ScreenTape Ladder   
RNase-free water  Ambion 

Antibody Source Usage 
Mouse anti-Cdc42  BD Bioscience WB 1:500 

Goat anti-DCT TRP2  Santa Cruz IHC 1:200 WB 1:500 
Mouse anti-Rac1 Cytoskeleton WB 1:500 
Rabbit anti-RhoA Cell Signalling WB 1:1000 

Rabbit anti-IQGAP1 Cell Signalling WB 1:1000 
Rabbit anti-PAK2 Cell Signalling WB 1:1000 

Rabbit Phospho-PAK1 
(Ser199/204)/PAK2 

(Ser192/197) 

Cell Signalling WB 1:1000 

Rabbit anti-Phospho-
Myosin Light Chain 

2(Thr18/Ser19) 

Cell Signalling WB 1:1000 

Rabbit anti-FAK Cell Signalling WB 1:1000 
Rabbit anti Phospho-

FAK 
Cell Signalling WB 1:1000 

Mouse anti- YAP(1A12) Cell Signalling WB 1:1000 
Rabbit anti-Phospho-

YAP 
Cell Signalling WB 1:1000 

Ki67 rabbit anti-Ki67 Neomarkers, SP6 IHC 2:200 
BrdU mouse  DAKO FACS 1:40 
BrdU mouse  BD Bioscience IHC 

Rabbit N-WASP  Cell Signalling WB 1:1000 
Mouse T-MLC 

MRCL3/MRCL2/MYL9 (E-
4)  

Santa Cruz WB 1:500 

Rabbit anti-p34-Arc  Millipore WB 1:500 
IF 1:200 

Mouse ERK  Cell Signalling WB 1:500 
Rabbit P-ERK  Upstate WB 1:500 

Rat Beta 1 integrin Millipore WB 1:500 
IF 1:1000 

 Rabbit α 4 integrin Cell Signalling WB 1:1000 
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2.1.3 Kits 

Table 3 Kits 

Rabbit α 6 integrin Cell Signalling WB 1:1000 
Rabbit α V integrin Cell Signalling WB 1:1000 
Rabbit Β 3 integrin Cell Signalling WB 1:1000 
Rabbit P-Paxillin  Cell Signalling WB 1:1000 

IF 1:200 
Goat WAVE2 (H-110) Santa Cruz IF 1:50 

YAP mouse Santa Cruz IF 1:100 
 Rabbit Ki67 (SP6) Thermo Scientific IHC 1:400 

Mouse GAPDH Ambion WB 1:3000 
Rabbit GAPDH Cell Signalling WB 1:3000 

Mouse Alpha Tubulin In house WB 1:3000 
Rabbit WASH Atlas IF 1:100 
Rabbit EEA1 Cell Signalling IF 1:200 
Rabbit Rab7 Cell Signalling IF 1:50 

Rabbit Clathrin Cell Signalling IF 1:100 
Mouse HRP secondary  Cell Signalling WB 1:200 

Rabbit 800 Thermo Scientific WB 1:10000 
Mouse 800 Thermo Scientific WB 1:10000 

Donkey anti- Rabbit 680 Life Technologies WB 1:10000 
Donkey anti- Mouse 680 Life Technologies WB 1:10000 
Donkey anti-goat 680 Invitrogen WB 1:10000 
 Goat anti-Mouse 594 Life Technologies IF 1:1000 
Goat anti-Rabbit 488 Life Technologies IF 1:1000 
 Goat anti-Mouse 488 Life Technologies IF 1:1000 

Donkey anti-Rabbit 594 Life Technologies IF 1:1000 
IHC 1:500 

Donkey anti-Goat 488 Life Technologies IF 1:1000 
IHC 1:500 

Donkey Anti-Mouse 594 Life Technologies IHC 1:500 
Goat anti-Rat 568 Life Technologies IF 1:1000 

Phalloidin 488 Life Technologies IF 1:200 
Phalloidin 589 Life Technologies IF 1:200 
Phalloidin 647 Life Technologies IF 1:200 

Rabbit anti-Goat 
biotinylated 

Dako IHC 1:250 

Kit Source 
Precision Red Advanced Protein 
Assay 

Cytoskleton 

Rapid DNA ligation kit Roche 
RNeasy isolation kit Qiagen 
DNAse Kit Ambion 
QIAshredder Qiagen 
RNase OUT Invitrogen 
Lipofectamine 2000 Invitrogen 
Lullably OZ Biosciences 
Gel Extraction kit Zymo Research 
ECL substrate pico Thermo Scientific 
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2.1.4 DNA Constructs 

Table 4 DNA constructs 

2.1.5 Oligos 

Table 5 Oligos 

2.1.6 RNA Sequences 

Table 6 RNA sequences 

ECL Substrate fempto Thermo Scientific 
Melanin bleach kit Polysciences Inc 
ABC reagent Vector Laboratories 
Alkaline phosphate  Vector Laboratories 
Active Rac pull-down kit Cytoskeleton 
PCR mastermix Takara 
pHrodo Green pH indicator Thermofisher 

Construct Vector type Source 
Cdc42 shRNA clone 
70288 

GIPZ Lentiviral shRNAmir 
vector 

GE Healthcare 

Cdc42 shRNA 2 clone 
488921 

GIPZ Lentiviral shRNAmir 
vector 

GE Healthcare 

Non-Targeting TRIPZ Lentiviral shRNAmir 
vector 

GE Healthcare 

Cdc42 shRNA clone 
70288 

TRIPZ Lentiviral shRNAmir 
vector 

This study 

Cdc42 shRNA 2 clone 
488921 

TRIPZ Lentiviral shRNAmir 
vector 

This study 

Cdc42-FLARE.dc Transient expression vector Dr. Klaus Hahn 
dTurquoise Transient expression vector Dr. Klaus Hahn 
GFP-paxillin Transient expression vector  
RacV12 Transient expression vector Prof. L Machesky 
Rac-GFP Transient expression vector Prof. L Machesky 
Cdc42-YFP Transient expression vector Prof. L Machesky 
EGFP.N1 Transient expression vector Prof. L Machesky 
Venus Transient expression vector Max Nobis/Kurt 

Anderson 

Gene Catalogue number Sequence 

PCR Primers 
RhoA 
JVH 11 

 AGCCAGCCTCTTGACCGATTTA 
 

RhoA 
JVH 15 

 TGTGGGATACCGTTTGAGCAT 

pTRIPZ sequencing 
primer 

 GGAAAGAATCAAGGAGG 

 Clone ID Sequence 
Cdc42 (mouse) 70288 V2LMM-70288 TAGGAACTCAATCCATTTG 
Cdc42 (mouse) 488921 Gene AACTTAGCGGTCGTAGTCT 
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2.2 Methods 

2.2.1 Mouse strains and genotyping 

Table 7 Mouse stains and genotyping 
Allele Source Details 

Cdc42 flox Cord Brakebusch Previously described (Czuchra et 
al., 2005) 

Tyrosinase CreB Lionel Larue Previously described (Delmas et al., 
2003) 

Lifeact-mEGFP In house Previously described (Li et al., 
2011) 

LacZ/EGFP Peter Jackson Previously described (Novak et al., 
2000) 

DCT-LacZ Peter Jackson Previously described (Mackenzie et 
al., 1997) 

Tyrosinase Cre-ERT2 Owen Samson Previously described (Yajima et al., 
2006) 

Ink4a Owen Samson Previously described (Ackermann et 
al., 2005, Serrano et al., 1996) 

2.2.1.1 Extracting mouse tail DNA and manual genotyping 

Mice tails were lysed in 400 µl genotyping buffer (Table 1) by incubation 

overnight at 800 rmp at 55°C.  The following day, 300 µl of water was added and 

lysates were clarified by spinning for 15mins at 14000 rpm at 4°C and the 

supernatant transferred to a new tube. Then 600 µl of isopropanol was added 

and mixed. Tubes were spun down at 14000 rpm at 4°C and the supernatant was 

removed carefully. The pellet was washed in 500 µl of ethanol and spun again at 

14000 rpm at room temperature.  The ethanol was aspirated carefully and the 

pellet was left to air dry. The pellet was resuspended in 30 µl of TE (Table 1). 

The PCR reaction was carried out using the BIO-RAD T100 Thermal Cycler. 1 µl of 

the isolated tail DNA was used in the PCR reaction along with 0.5 µl of each 

primer and 25µl of the PCR mastermix (Table 3) (cycle : 94°C   2 min, 94°C   30 

sec,  55°C   30 sec,  72°C   30sec, 72°C   10 min, 4°C, 35cycles. The reaction 

mixture was made up to 50 µl with water. Then 5µl of PCR product was run 

through a 0.8% agarose gel to obtain the genotyping information. 
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2.2.2 Cell culture 

2.2.2.1 Source of cell lines 

Mouse melanoma B16 cells were obtained from ATCC. Primary melanocytes and 

primary mouse-tail fibroblasts were isolated from stock mice as described 

below. 

2.2.2.2 Cell line maintenance 

All cell lines were grown at 37°C in 5% CO2 typically in 10 cm cell culture dishes. 

Melanoctyes were cultured in F-12 growth media containing 10% FCS, 200nM PMA 

and 100 μg/ml primocin. Mouse melanoma B16 cells and mouse tail fibroblasts 

were grown in DMEM containing 10% FCS, 2 mM glutamine and penicillin-

streptomycin. To passage cells, media was aspirated from confluent plates and 

washed briefly in PE (melanocytes) or PBS then incubated for 5 minutes with 1X 

trypsin and resuspended in 5 ml of media. Melanocytes were typically passaged 

at 1 in 5 and B16 F10 cells and mouse-tail fibroblasts at 1 in 10. Media was 

changed every 3 to 4 days.  

2.2.2.3 Storage and defrosting of cell lines 

To be frozen down, cells were washed and trypsinised as described above. Cells 

were re-suspended in growth media and spun down at 1000rpm for 5 mins. Cells 

were re-suspended in freezing down media (50% growth media, 40% FCS, 10% 

DMSO) and aliquoted into 1 ml cryovials and wrapped in cotton wool for gentle 

freezing at -80°C and then long-term storage in liquid nitrogen tanks. To defrost, 

vials were thawed at 37°C then diluted into 10ml of fresh media. Media was 

changed the following day. 

2.2.2.4 Isolation of primary melanocytes 

Melanocytes were isolated from 1 day old Cdc42 f/f CreER CDKN2-/- (#1 #7, #2.1 

#2.2) according to methods already described (Li et al., 2011). Mouse pups were 

culled by concussion of the cranium followed by exsanguination.  Each pup was 

briefly dipped in 70% Ethanol then skin dissected from the back of the pup and 

cut into small pieces in 1.5 ml of type I and IV collageanse and incubated for 40 

mins at 37°C.  Skin pieces were then cenrtifuged at 1000 rpm for 5 mins then re-
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suspended in 10 ml 1x HBSS. Skin was spun down again at 1000 rpm for 5 mins 

and re-suspended in 2 ml dissociation buffer (Table 1) and incubated for 20 mins 

at 37°C. Skin pieces where then passed through 18g needle 10 times then 20g 

needle 10 times to break pieces up them strained through a 70 µm filter into 10 

ml of wash buffer. Cells were then centrifuged and the pellet re-suspended in 4 

ml of F12 media and plated into two wells of a 6-well dish. After cells had 

settles for 4 days, contaminating fibroblasts and keratinocytes were removed by 

treatment with G418 (50	μg/ml) for 4 days per week and extensive washing for 

at least 4 mins with PE. Pure cultures were obtained one to two months after 

isolation. Cells were treated with DMSO or 1 μM OHT for 5 days prior to use in 

assays, with media with drugs refreshed once. 

2.2.2.5 Transient transfection 

Typically, 1x105 cells were seeded into 6-well plates the day proceeding 

transfection. Each well was transfected according to manufacturers instructions. 

For each well, 4 µg of plasmid was mixed in 200 μl of Opti-MEM media in an 

eppendorf. In a separate eppendorf, 8 μl of lipofectamine 2000 reagent was 

mixed with 200μl Opti-MEM media. Both were left for 5mins then mixed together 

for 20 mins before adding onto cells.  

2.2.2.6 Lentiviral infections 

On day 1, 2 x 106 293T cells were pleated in 10 cm dishes, one for each 

transfection. On day 2, they were transfected using the calcium phosphate 

method. Cells were transfected with 10 μg of lenti construct, 7.5 μg of pSPAX2 

packaging plasmid, 4 μg of pVSVG packing plasmid. DNA was diluted in 440 µl of 

water then 500 μl of 2x HBS was added and mixed. Then 60 µl of 2 M CaCl was 

added and mixed thoroughly. The mixture was incubated at 37°C for 30 mins 

then mixed and added to plate. The following day media was removed and 

replaced with DMEM with 20% FCS. Recipient cells were also plated in 

appropriate media to be sub-confluent the following day. On day 4, the medium 

was removed from 239T cells with a 10 ml syringe and filtered directly onto the 

recipient cells and 2.5 μl of polybrene was added on top. Fresh medium was 

added to the 293T cells. This process of transferring virus containing medium to 

the recipient cells was repeated on day 5. On day 6, virus containing medium 
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was removed and replaced with DMEM/10% FCS containing the appropriate 

selection antibiotic. Medium with selection antibiotic was also added to a plate 

of untransfected cells to act as a control. 

2.2.2.7 siRNA transfections 

Typically, 1x105 cells were treated in suspension 6-well plates. For each well, 10 

μl of 20 μM oligo or 2.5 µl of each of a 20 μM 4-oligo flexi-tube pack were mixed 

with 200 µl of Opti-MEM media. In another eppendorf, 8	μl of lullaby transfection 

reagent was mixed with 200 µl of Opti-MEM. Both tubes were left for 5 mins then 

mixed for 20 mins before being added onto cell suspension. This procedure was 

repeated 48 h later to deliver the second shot of siRNA. After 48 h cells were 

then tested for knockdown of protein by SDS-PAGE and western blotting. 

2.2.3 SDS-PAGE and western blotting 

2.2.3.1 Cell lysate isolation 

Cells in appropriate culture dish were removed form the incubator, media 

aspirated and washed three times in ice cold PBS. Plates were then placed on 

ice and the appropriate volume of RIPA buffer containing protease and 

phosphatase inhibitors (typically 100 µl in 6-well dish and 300 µl for 10 cm dish) 

added to dish for 3-5 mins. Dishes were then scraped on ice and lysate 

transferred into chilled eppendorfs and centrifuged at 13000 rpm for 10 mins. 

The supernatant was transferred to a new eppendorf and either used 

immediately for SDS-PAGE or frozen down at -20°C for later use. 

2.2.3.2 Lysate protein quantification 

The protein concentration was estimated by adding 20 µl of lysate to 1ml 

Precision Red reagent (Table 3). The absorbance was read on the 

spectrophotometer and the protein concentration was directly calculated from 

this absorbance. Typically, 15ug of protein was used for SDS-PAGE. 

2.2.3.3 SDS-PAGE 

Samples for SDS-PAGE were prepared by adding the correct volume of cell lysate 

(up to 26 µl) to 4 µl of NuPAGE sample reducing agent and 10 µl of NuPAGE 
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sample buffer. Samples were made to 40 µl with water. Samples were boiled for 

1 min at 100°C before being loaded into correct percentage (4-12%, 10% or 12%) 

pre-cast Bis-Tris 10-well gel along with 10 µl of PageRuler protein ladder. Gels 

were run in MOPS running buffer at 140 V for around 100 mins.  

2.2.3.4 Western blotting 

Proteins separated by SDS-PAGE were transferred onto a membrane sandwiched 

between two pieces of whatman paper at 160V for 60 mins in blotting buffer 

with an ice pack. Membranes were blocked for 45 mins at room temperature in 

5% milk TBST then incubated with primary antibody in 5% BSA TBST overnight at 

4°C. Membranes were then washed for 3x 10 mins in TBST before adding the 

secondary antibody in 5% BSA TBST for 1 h at room temperature. 

2.2.3.5 Development and quantification of western blots 

Membranes were incubated with secondary antibodies conjugated with infra-red 

dye picked up in the 700 nm and 800 nm channels. Membranes were then 

scanned using LI-COR Odyssey CLx scanner. Blots shown are representative blots 

performed multiple times. Band intensities were quantified using the Li-COR 

Image Studio lite software. 

2.2.4 Immunoflourescent staining of cells and 
immunohistochemistry  

2.2.4.1 Immunoflourescence 

Cells to be fixed and stained were seeded on 13 mm fibronectin-coated 

coverslips in a 6-well dish the previous day. Media was aspirated from coverslips 

and then they were washed 3 times with PBS.  They were then fixed in 4% PFA 

for 20 mins or in -20°C methanol for 4 mins if staining to image microtubules. 

Coverslips were then washed 3 times in PBS then incubated with permeablisation 

buffer (Table 1) at room temperature for 3 mins, washed three times with PBS 

then incubated with blocking buffer (Table 1) for 1 h at room temperature. After 

washing three times in PBS, coverslips were then inverted on top of 30 µl of 

primary antibody diluted to the manufactures instructions in 1% goat serum on 

parafilm for 1 h in a humidified chamber. Coverslips were returned to 6-well 

plates and washed three times with PBS. Coverslips were then inverted on top of 
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30 µl of the appropriate species and class specific secondary antibody, with 

phalloidin if desired, in 1% goat serum on parafilm again in a dark humidified 

chamber. They were then returned to a 6-well dish and washed three times in 

PBS before being mounted in mounting media on glass slides. Slides were left 

overnight in the dark for mounting media to set then stored in the fridge. 

Staining was images using an inverted Nikon A1R confocal microscope. 

2.2.4.2 Immunohistochemistry 

Tissue was dissected and fixed at least overnight in formalin. For adult skin 

sections, skin was shaved dissected from the belly and back and stretched 

dermis down onto whatman paper. Skin and paper was cut into strips with the 

direction of the hair to achieve full cross-sections of the hair follicle and placed 

into formalin. For embryos sections, whole embryos were dissected, fixed in 

formalin then trimmed, cut transversely and embedded head or back limbs down 

onto the wax block by histology services. For staining, sections were first 

deparaffinised and rehydrated by passing through xylene then through an 

ethanol gradient. After washing in TBST, antigen retrieval was achieved by 

placing rehydrated slides in 300 ml of citrate buffer and microwaving in a pre-

heated pressure cooker for 13 mins. Slides were then left to cool on ice. For 

fluorescent immunohistochemistry of embryo sections, slides were blocked, 

washed, then incubated in the correct dilution of primary antibody overnight in 

a humidified chamber at 4°C. After washing, sections were incubated with 

fluorescently conjugated secondary antibodies for 1h at room temperature. 

After final washing, sections were covered with coverslips in mounting media 

and left to set at room temperature overnight before moving to 4°C for long 

term storage. For immunohistochemical staining of adult skin, slides were 

blocked in 10% rabbit serum, washed in TBST, then incubated in the correct 

dilution of primary for 2 h in a humidified chamber at room temperature. After 

washing in TBST, sections were incubated with Rabbit-anti-goat biotinylated 

secondary antibody for 1 h at room temperature. Signal amplification was 

achieved using the Vectastain ABC kit prepared in TBST, incubation for 30 mins. 

The staining was revealed with the red alkaline phosphatase substrate kit 

prepared in 5 ml 200 mM TRIS-HCL pH8.2 (Table 3). When staining was complete, 

sections were passed up an ethanol gradient and finally in xylene. Sections were 

counterstained with hematoxylin for 2 mins then covered with coverslips in 
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mounting media and left to set at room temperature overnight before moving to 

4 °C for long term storage. 

2.2.4.3 Fixing and staining embryo skin explants 

After imaging, skins were removed from the microscope and the media was 

removed from the imaging set-up. The skin was then fixed in 4% PFA overnight. 

After fixation, the skin was washed and the skin was cut from the dish and 

inverted onto a slide. The nucleopore membrane was slid from the top and the 

skin was mounted underneath a large coverslip in vectashield mounting media 

with DAPI. The skin was imaged the following day on a Nikon A1R confocal 

microscope. 

2.2.5 Cloning and molecular biology 

2.2.5.1 Agarose gel electrophoresis 

Agarose gels were made up to the correct percentage (between 0.8% and 1.5% 

depending on the DNA fragment size) by mixing the agarose with TAE buffer and 

heating in the microwave until dissolved. Midori green was added before setting 

the gel with comb in a gel tank. Gels were run at 140 V in TE buffer and then 

viewed in the transilluminator. DNA fragments were excised using gel 

purification kit (Table 3). 

2.2.5.2 Restriction digests 

Enzyme digests were planned using the New England Biolabs double digest 

finder. Digests contained 1X the appropriate amount of enzyme buffer typically 

10 ug of DNA, 5-10 U of enzyme made up to 20 µl with water. Reactions were 

incubated overnight at 37°C. 

2.2.5.3 Ligation 

DNA ligations were achieved using the Roche Rapid DNA ligation kit according to 

the manufacturers instructions. Vector DNA and insert DNA were diluted in 1X 

DNA dilution buffer to a final volume of 10 µl. Then 10 µl of T4 DNA ligation 

buffer was added to the vile. Finally 1 µl of T4 DNA ligase was added. After 

mixing, the vile was incubated for 5 min at room temperature. 2 µl of this 
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reaction was then used in a transformation reaction and clones were selected 

and screened by sequencing. 

2.2.5.4 Transformation of competent cells 

Competent E.coli DH5α were thawed on ice for 15 mins, the plasmid DNA was 

added to cells and incubated on ice for a further 15 mins. Cells were then heat-

shocked at 40°C for 30 seconds then incubated on ice for a further 2 mins. Then 

500µl of pre-heated L-Broth was added to the heat shocked cells and the cells 

were places shaking in a 37°C incubator for 1 h before plating on pre-warmed LB 

agar plates containing the correct selection antibiotic and incubated overnight 

at 37°C. 

2.2.6 Embryo study techniques 

2.2.6.1 X-Gal staining of embryos 

Timed embryos expressing B-Galactosidase under the control of the DCT 

promotor were harvested and stained as described previously (Loughna and 

Henderson, 2007, Ma et al., 2013). Embryos were dissected in PBS and 

immediately fixed in ice-cold 0.25% glutaraldehyde in PBS for 30 mins. Embryos 

were washed for 10 mins in ice-cold PBS, and placed in permeablisation solution 

(Table 1) for 30 mins at room temperature and stained with X-gal buffer (Table 

1) in PBS for 48 hrs at 4°C. Embryos were stored in 10% formalin after extensive 

washes with PBS. Embryo images for quantification were taken at the same 

magnifications with a Zeiss Stemi-2000 dissection microscope (EOS utility, 

Edmund Optics, NJ, USA).  

2.2.6.2 Ex-vivo skin explant imaging 

Experimental set up was adapted from (Mort et al., 2010) and (Li et al., 2011). 

Briefly, a freshly dissected E15.5 embryonic skin sample was sandwiched 

between a nuclepore membrane (Whatman) and a gas permeable Lumox 

membrane in a 24-well Greiner Lumox culture dish, so that the epidermal side of 

skin was in contact with Lumox membrane. To immobilize the sample, Matrigel 

(BD Bioscience) was used to cover the membrane and incubated at 37°C for 10 

min. Culture medium (Phenol red free DMEM supplied with 10% FBS and 100 
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mg/ml primocin (InvivoGen)) was added. Time-lapse images were captured using 

an Olympus FV1000 or Nikon A1 confocal microscope in a 37°C chamber with 5% 

CO2 for 4 hrs. 

2.2.6.3 Melanoblast tracking in ex-vivo skin explants 

Melanoblasts were tracked separately using the MTrackJ ImageJ plugin from 

time-lapse images taken every 5 minutes for 4 hrs. Speed measurements were 

taken from these tracks produced by the MTrackJ plugin. At least 100 

melanoblasts from at least three different skin explants from different embryos 

were quantified. Mean values ±SEM and statistical analysis were calculated and 

plotted using Graphpad Prism (Graphpad Software), and significance was 

determined using two-tailed unpaired t-tests. 

2.2.6.4 Melanoblast proliferation studies 

To assess the proliferation rate of melanoblasts, the mother was injected with 

BrdU either 2 hrs or 24 hrs before harvesting, dissecting and fixing of embryos. 

Once fixed, embryos were trimmed and cut transversely and embedded head or 

feet down into the paraffin block. These sections were then stained 

fluorescently by IHC to visualise DCT, BrdU and Ki67 expression within the skin as 

described above. 

2.2.6.5 Dermal/Epidermal imaging of embryos 

Timed embryos expressing B-Galactosidse under the control of the DCT promoter 

were stained with X-Gal as described above. After staining and fixation, embryos 

were trimmed, sectioned transversely and embedded head or tail down into wax 

blocks by the histology department. Sections were then counterstained with 

light eosin and the number of melananoblasts sitting above and below the 

basement membrane was quantified from at least three different sections from 

three different embryos from three different litters. 



Materials and Methods  57 
 
2.2.7 Cell biology techniques 

2.2.7.1 Live cell imaging 

To image melanocyte migration, cells were plated onto glass-bottom dishes 

coated with fibronectin. The dishes were prepared by incubation with 20 ug/ml 

fibronectin in PBS for 2 hrs followed by extensive PBS washes. Cells were seeded 

onto dishes the day prior to imaging. Time-lapse movies were acquired using a 

Nikon TE2000 microscope in a 37°C chamber with 5% CO2. 

2.2.7.2 Quantifying adhesion dynamics 

For adhesion dynamics quantification, melanocytes were transfected with GFP-

Paxillin, replated on fibronectin and imaged 24 hrs later.  Live-cell imaging was 

performed using a Zeiss 880 Laser Scanning Microscope with Airyscan at 37°C/5% 

CO2 with a Plan-Apochromat 63x/1.4 oil DIC M27 objective. Cells were imaged 

for 30 min at 1 min intervals using the 488 nm laser.  Movies were processed and 

exported using ZEN software (version 2.1 SP1 (black)). The x/y drift was 

corrected using the Image Stabilizer plugin (K. Li, "The image stabilizer plugin 

for ImageJ: "http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html, 

February, 2008) for Fiji/Image J (version 1.49o) prior to analysis. 

Movies were submitted to the Focal Adhesion Analysis Server (FAAS) (Berginski 

and Gomez, 2013) for analysis of adhesion dynamics.  The mean rate of adhesion 

assembly/disassembly was calculated for each cell (n = 15 cells per condition 

over 3 independent experiments). 

2.2.7.3 Melanocyte growth assay 

DMSO or OHT treated melanocytes as described were seeded into 6 well plates in 

triplicate. Cells were counted each day for 4 days using a haemocytometer. This 

was carried out 3 times. 

2.2.7.4 FACS 

For cell-cycle analysis, three sub-confluent plates treated for 5 days with either 

DMSO and OHT were incubated for 3hrs with 10 μM BrdU (BD bioscience). Plates 

were then washed in PBS, trypsinised and spun down at 1000 rpm for 5 mins. 
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Cells were then fixed in room temperature 70% Ethanol in PBS while vortexing 

and left at 4°C overnight. Tubes were brought to room temperature before 

pelleting and washing with PBS. Cells were pelleted and bleached using a 

melanin bleach kit (Table 3) according to the manufacturers instructions. 

Pelleted cells were re-suspended in 1ml of pre-treatment solution A from kit for 

2 mins, washed with PBS then treated with treatment solution B from kit for 1 

min. After extensive washes with PBS cells were then treated with 4N HCl for 15 

mins then stained with mouse Anti-BrdU in PBT for 30 mins. Cells were then 

pelleted and washed then incubated with Alexa-488 conjugated goat anti-mouse 

secondary antibody in PBT for 30 mins. After washes, cells were stained with 

Propidium Iodide for 30 mins at room temperature then acquired on a BD FACS-

Calibur flow cytometer. 

2.2.7.5 Adhesion studies 

To quantify adhesion size and number, melanocytes pre-treated with DMSO or 

OHT for 5 days were seeded onto coverslips coated with 20 µg/ml fibronectin 

the day prior to fixation. The following day, coverslips were fixed in 4% PFA and 

stained with p-paxillin and rhodamine phalloidin according to the 

immunofluorescence protocol described above. Adhesions were quantified using 

the ‘analyse particle’ function of the ImageJ software. Cells were selected one 

at a time using the imageJ selection tool on the p-paxillin stained channel. A 

standard threshold was applied to the cell, picking out individual adhesions. 

Next, the ImageJ binary ‘watershed’ filer was applied to the image to separate 

areas joined by only one or two pixels, helping to separate adjacent adhesions. 

The ‘analyse particle’ function was then applied to count the number of 

adhesions per cell and the area of each adhesion. The results generated from 

this analysis were compared with some test quantifications done by hand to 

ensure accuracy. Cells taken from three independent experiments, at least 46 

cells per genotype 

2.2.7.6 IncuCyte ZOOM invasion and proliferation assays 

For invasion assays using the IncuCyte ZOOM, 1 x 105 B16 cells pre-treated for 5 

days with 2 μg/ml doxycyclin were plated into 96-well forming a confluent layer 

the next day. A scratch wound was then made in this layer using the 
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WoundMaker tool to create 96-homogeneous scratches simultaneously. The well 

was then cleaned with PBS and dried before placing 50 µl of matrigel diluted 1:2 

on top of the layer. Once set for 45 mins at 37°C, media containing doxycycline 

was then added on top and the plate was taken to the IncuCyte ZOOM system. 

For proliferation assays using the IncuCyte ZOOM, 1x 104 B16 cells pre-treated 

for 5 days with doxycycline were plated the previous day in media containing 

doxycycline. The following day, the plate was taken to the IncuCyte ZOOM 

system. Each well was imaged every 2 h and the data collected using the 

IncuCyte ZOOM software. Invasion data was analysed using the wound confluence 

option and cell proliferation data was analysed using the confluence option. 

Data was exported into Excel format and plotted using Prism software. 

2.2.7.7 xCELLigence cell spreading assay 

For this assay, 1 x 104 melanocytes were seeded on a gold microelectrode 

microtiter plate well plate previously coated with fibronectin. The plate was 

immediately fitted into an ACEA RTCA xCELLegence machine and the 

conductivity of the plate was read every 15 mins. The conductivity is 

proportional to the area of the microtiter plate well covered with cells. The 

assay was performed in triplicate wells over two independent experiments. 

2.2.7.8 Spheroids 

To form spheroids, 70 μl of 1.5% agarose was set in each well of a 96 well plate. 

After setting for 10 mins, 1000 B16 melanoma cells pre-treated with 2 μg/ml 

doxycycline were added in 100 µl of media to each well. Media was refreshed 

after two days of growth. After 5 days of growth, the spheroid was transferred 

onto 50 µl of set matrigel and the media removed. Then 50 µl of matrigel was 

placed on top, forming a sandwich with the spheroid in the centre. 100 µl of 

media containing doxycycline was then added onto of the set matrigel. 

Embedded spheroids were then left to invade and images taken every second 

day. 

2.2.7.9 Active Rac pull-downs 

Pull-downs to determine the levels of active Rac in melanocytes were achieved 

using the Rac Activation Assay Biochem Kit (Cytoskeleton) according to 
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manufacturers instructions. Three sub-confluent dishes of melanocytes pre-

treated for 5 days with DMSO or OHT were removed from the incubator and 

washed in 10 ml of PBS. All PBS was removed from the plate and plates were 

transferred to the cold room. Immediately, 400 µl of lysis buffer was added to 

one DMSO and one OHT plate and the places were sequentially scraped, lysed 

and the lysate finally transferred into a chilled eppendorf. The lysates were 

immediately clarified by centrifugation at 13,000 g for 1 min. At this point, 20 µl 

of lysate was taken to estimate the protein quantification using Precision Red 

Advanced Protein Assay Kit. The absorbance was multiplied by 5 to determine 

the protein concentration in mg/ml. Samples were then diluted to be of equal 

protein concentration using ice-cold lysis buffer. 20 μl of these equivalent 

samples was taken to represent the input on SDS-PAGE. Equal volumes of lysates 

now at equivalent protein concentration were added to 10ug of GST-PBD beads 

and incubated at 4°C rotating for 1 h.  The beads were then pelleted at 10,000 

xg at 4°C for 1 min. Most of the supernatant was removed and the beads then re-

suspended in 500	µl of wash buffer. Beads were once again pelleted and the 

supernatant removed. Beads were then re-suspended in 20 μl of laemmli sample 

buffer and boiled for 2 mins. The samples were then analysed by SDS-PAGE then 

western blot probing with mouse-anti-Rac primary antibody (Cytoskeleton). 

2.2.7.10 FLIM 

A dual-chain Rac1 biosensor (CFP/YFP) was used to determine levels of active 

Rac in melanocytes. This construct and the control turquoise vector were gifted 

as collaboration from Hahn group (Machacek et al., 2009, Goedhart et al., 2010). 

The probe and control vectors were transfected transiently into melanocytes 

using the lipofectamine 2000 kit as described earlier. The day after transfection, 

melanocytes were moved onto fibronectin-coated plates. The following day, 

lifetime readings were taken from the whole-cell using the Nikon FLIM/TIRF 

system Z6014. The system was calibrated using fluorescein and readings from 

each repeat were taken on the same MCP. Lifetimes were read from at least 15 

cells per condition from three independent experiments. 
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2.2.7.11 Melanocyte Inhibitor Studies 

Melanocytes pre-treated with DMSO or OHT for 5 days were seeded onto 

fibronectin-coated (20 µg/ml) coverslips in 6-well plates. The following day, 

cells were treated with either 5 µm or 10 µm SMIFH2 (Sigma) or 20 µm or 40 µm 

of CK-869 (Tocris Bioscience) for 3 hrs. Control cells were treated with the 

corresponding volume of DMSO. Cells were then fixed in 4% PFA and stained 

according to the protocol above. For nocodazole experiments, cells were treated 

for 1hr on ice with 5 ug/ml of drug or appropriate volume of DMSO. Cells were 

them moved to 37°C for a further h before fixation in -20°C Methanol and 

staining via protocol above. For re-settling experiments, the same procedure 

was described above, but instead of fixation cells were trypsinised and moved 

onto a fresh 6-well glass-bottom plate with appropriate concentration of drug or 

DMSO. Cells were left for 30 mins to attach then imaged for 10 hrs using a Nikon 

TE2000 microscope in a 37°C chamber with 5% CO2. Plates containing cells re-

settled in the presence of nocodazole were removed from the microscope and 

fixed in -20°C methanol to ensure microtubules were still disrupted. 

2.2.8 RNA Sequencing 

2.2.8.1 RNA Isolation 

RNA was isolated using the RNeasy kit from Qiagen according to the 

manufacturers instructions. Working with 1-5x106 adherent cells per 10 cm 

plate, plates were removed from the incubator and placed on ice. Media was 

removed and the plate was washed with 10 ml ice cold PBS. Cells were then 

harvested in 1 ml cold PBS by scraping into an eppendorf. Cells were pelleted at 

250 rcf for 5 min at 4oC and then placed on ice. The supernatant was aspirated 

and the pellet snap-frozen. At room temperature, 350 µl buffer RLT was added 

to the cell pellet. The lysate was pipetted into a QIAshredder column in a 2 ml 

collection tube and spun at full speed for 2 min. One volume of 70% ethanol was 

added to the homogenised lysate. The lysate was transferred into an RNeasy spin 

column placed in 2 ml collection tube. The column was centrifuged for 30 sec at 

8000 rcf, the flow-through discarded and 350 µl buffer RW1 was added to the 

RNeasy spin-column. The column was centrifuged for 30 sec at 8000 rcf and the 

flow-through discarded. The bound RNA was eluted with 50 µl RNAse free water. 

The RNA was then DNase treated using the DNase kit from ambion. To each tube 
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of isolated RNA, 6 μl of 10X buffer, 2 µl DNAse1, and 2 µl RNAse out was added. 

Tubes were incubated for 30 min at 37oC then 20 µl if DNAse inactivation reagent 

was added. The inactivation reagent was removed by centrifugation at 8000rcf 

for 30 sec. RNA concentration was measured on the nanodrop and stored at -

80°C before sequencing. 

2.2.8.2 RNA quality check 

The quality of the RNA isolated was checked using the Agilent Technologies 

TapeStation instrument according to the manufacturers instructions. 5 µl of RNA 

sample buffer and 1 µl of the RNA Ladder was added to the first tube in a mini-

tube strip (RNAse free). 5 µl of RNA sample buffer and 1µl of the RNA sample 

were then loaded into the following tubes. Samples were mixed in a vortex at 

2000 rpm for 1 min.  Samples were spun down and then heated to 72oC for 3 

mins then placed on ice for 2 mins. Samples were spun down once again and 

loaded into the Agilent 4200 TapeStation instrument. 

2.2.8.3 RNA sequencing and analysis 

The RNA library was prepared using the Library Prep kit (llumina TruSeq RNA 

Sample prep kit v2) according to methods previously described (Fisher et al., 

2011). Libraries were sequenced using the Illumina NextSeq500 platform using 

the sequencing Kit High Output v2 75 cycles (2x36cycle Paired End, single 

index). Quality checks on the raw RNASeq data files were done using fastqc 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) and fastq screen 

(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). RNASeq reads were 

aligned to the GRCm38 (Church et al., 2011) version of the mouse genome using 

tophat2 version 2.0.10 (Kim et al., 2013) with Bowtie version 2.1.0 (Langmead 

and Salzberg, 2012). Expression levels were determined and statistically 

analysed by a combination of HTSeq version 0.5.4p3 

(http://wwwhuber.embl.de/users/anders/HTSeq/doc/overview.html), the R 3.1.1 

environment, utilizing packages from the Bioconductor data analysis suite and 

differential gene expression analysis based on a generalized linear model using 

the DESeq2 (Love et al., 2014). Significantly changed genes (padj<0.05) were 

submitted to DAVID for Gene Ontology (GO) analysis (Huang da et al., 2009). 

KEGG Pathway analysis was performed for genes demonstrating an increase (Up) 
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or decrease (Down) in RNA expression between KO and WT cell lines.  Significant 

KEGG GO Terms were identified (pValue<0.05, Supplementary spreadsheet 1). 

Hierarchical clustering of log2 fold changes in gene expression was performed on 

the basis of Euclidian Distance using complete linkage and visualised using 

MultiExperiment Viewer (MeV v4.8).
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3 Investigating the Role of Cdc42 in Melanoblast 
Migration and Proliferation 

 
3.1 Introduction and aims 

Since their discovery over 20 years ago, the Rho family of GTPases have been 

studied intensively, largely through in vitro studies using constitutively active 

and dominant negative mutants. Understanding this family and uncovering their 

roles in the global coordination of the actin cytoskeleton have revolutionised the 

way we understand cell movement. We are growing increasingly familiar with 

the different downstream effectors of the classic Rho GTPases Rho, Rac and 

Cdc42 and the roles they play individually in a motile cell in 2D. We now face 

the challenge of extending this knowledge into 3D systems. To date, amenable 

systems such as Drosophila melanogaster and Caenorhabditis elegans have 

helped us with this challenge, confirming that the classic Rho GTPase Cdc42 is 

indeed a master regulator of the actin cytoskeleton in vivo, required for 

epithelial morphogenesis, polarity and spindle orientation during development 

(Genova et al., 2000, Gotta et al., 2001). Knockout mice are also becoming 

available, however due to the prominent role of Cdc42 during embryonic 

development, a constitutive whole body knockout is lethal before E7.5 (Chen et 

al., 2000). For this reason, a tissue-specific knockout approach is necessary to 

investigate Rho GTPases in vivo. 

Melanoblasts, the embryonic precursors of melanocytes, are an attractive and 

effective model in which to study 3D cell migration. These cells migrate great 

distances during development, navigating through both the dermal and 

epidermal skin environments. Recent technological advances now permit high 

resolution imaging of embryo skin. We can now observe melanoblast movement 

through the epidermis closely, and by driving melanoblast-targeted deletion of 

actin regulators, we are building a picture of how the actin cytoskeleton is 

controlled during 3D migration. 

The role of Rac1 in melanoblast migration has previously been investigated in 

the lab, revealing Rac1 as a pivotal player in the melanoblast journey (Li et al., 

2011). Targeted deletion of Rac1 in the melanoblast lineage led to coat colour 
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defects in adult mice. Skin explant imaging revealed that Rac1 null melanoblasts 

could only extend short stubby protrusions, resulting in extremely poor migration 

through the skin. Rac1 was therefore identified to be essential in the extension 

of long pseudopods through its activation of the SCAR/WAVE and Arp2/3 

pathway. In addition to Rac1’s role in migration, it is also important in 

promoting G1 to S phase cell cycle transition. This study demonstrated how 

effective and informative the melanoblast model could be in the study of Rho 

GTPases, and we therefore wanted to utilise it to investigate the loss of the 

other classical GTPases Cdc42 and RhoA. 

The aim of this chapter is primarily to explore the function of Cdc42 during 

melanoblast population of the developing embryo, but also touching on RhoA’s 

part in the melanoblast journey. We wanted to understand if these other 

classical Rho GTPases played distinct or similar roles to Rac1 in 3D cell 

migration. To do this, we aimed to delete these proteins in the melanoblast 

lineage and monitor mice for coat colour defects. In addition, we wanted to gain 

a deeper understanding of the part played by these Rho GTPases by performing 

high-resolution imaging of melanoblast migration and detailed analysis of 

melanoblast proliferation and cytokinesis. This study would provide a rare 

insight into the role of this family in mammalian cell migration in 3D. In 

combination with our previous knowledge of Rac1 in this system, this knowledge 

would also allow us to build a model of how these classical GTPases cooperate 

during 3D cell migration, while at the same time defining any unique 

contributions of individual GTPases. 
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3.2 Results 

3.2.1 Loss of Cdc42 in the melanocyte lineage leads to coat 
colour defects, suggesting migration and proliferation 
defects 

To investigate the role of Cdc42 in the melanoblast journey, a strategy was 

designed to achieve targeted deletion of a portion of the Cdc42 gene in the 

melanoblast lineage. To do this, mice carrying a Cdc42 transgene with two 

internal loxP sites (Czuchra et al., 2005) were bred with mice carrying CreB 

recombinase under control of the tyrosinase promoter. Tyrosinase is an enzyme 

which is important for melanin biosynthesis, and expression from its promoter 

begins around E10.5 in the melanoblast lineage (Delmas et al., 2003). CreB 

expression in melanoblasts leads to recombination between the loxP sites, and 

subsequent loss of the floxed Cdc42 allele (Figure 3.1A). Cdc42 f/f Tyr::CreB 

embryos were born at the expected Mendelian ratio, but pups were smaller and 

shaky due to some tyrosinase expression by neuronal tissues (not shown). 

All Cdc42 f/f Tyr::CreB mice (n=20) displayed a white patch running down the 

ventral midline, ranging from half the area of the belly region to almost the 

whole area in size (Figure 3.1B). As well as the white belly region small white 

patches could often be seen along the dorsal midline of mice (indicated by 

yellow arrows). Pigmented areas contained frequent white hairs, and the paws 

and tails were hypopigmented. The back legs of Cdc42 f/f Tyr::CreB mice were 

often ‘frog like’, resulting in back leg paralysis on some occasions. 

We wondered whether the hair follicles in hypopigmented areas of adult skin 

were devoid of melanocytes. To investigate this, dorsal and ventral sections of 

adult skin were histologically processed and stained with anti-Dopachrome 

tautomerase (DCT) antibody to reveal melanocyte location (Figure 3.2). Like 

tyrosinase, DCT is also involved in melanin biogenesis and is expressed by 

melanoblasts in the developing embryo at E10.5. Using this marker, melanocytes 

can be seen in both dorsal and ventral skin sections of control skin (Ctr). Hair 

follicles on the back of Cdc42 f/f Tyr::CreB embryos contain melanocytes, 

demonstrating that some Cdc42 null melanoblasts are able to home to hair 

follicles. However, hair follicles in areas  
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Figure 3.1 Loss of Cdc42 in the melanoblast lineage leads to coat colour defects in adult 
mice 
In all images, Ctr=Control (Cdc42 wt/wt), Cdc42 f/f= Cdc42 f/f Tyr::CreB (A) Schematic of the gene 
targeting strategy leading to Cdc42 f/f Tyr::CreB mice. Cre recombinase is under the control of the 
tyrosinase promoter, leading to targeted deletion of Cdc42 in the melanocyte lineage.(B) Images 
showing coat, tail and limb colour of wild-type (Ctr) mice and Cdc42 f/f Tyr::CreB (Cdc42 f/f) mice 
at P22. Yellow arrows indicate dorsal white patches. Images represent n=20 mice. 
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Figure 3.2 Melanocytes are not present in the hair follicles of hypopigmented areas 
Sections from dorsal and ventral control (Ctr) and Cdc42 f/f Tyr::CreB (Cdc42f/f) pup skin stained 
with anti-DCT (melanocyte marker) and developed with alkaline phosphatase (red), counterstained 
with haematoxylin. Scale 100 µm. Insets show hair follicles. 
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devoid of pigment on the ventral side of Cdc42 f/f Tyr::CreB embryos do not 

contain melanocytes. Therefore, the pigment defects seen in Cdc42 f/f 

Tyr::CreB embryos are due to a lack of melanocytes in areas distal to the neural 

tube, where these cells begin their journey. 

3.2.2 Loss of RhoA in the melanoblast lineage does not lead to 
coat colour defects 

Having previously described a role for Rac1 in the melanoblast journey (Li et al., 

2011), and having observed that Cdc42 was also important, we were curious to 

investigate the role RhoA plays, as it is also a key regulator of the actin 

cytoskeleton. RhoA most notably plays a role in stress fibre formation and in 

acto:myosin contractility, amongst many other functions important for cell 

migration (Raftopoulou and Hall, 2004). 

RhoA was removed from the melanoblast lineage using the same strategy as for 

deletion of Cdc42 (Figure 3.1A). RhoA f/f Tyr::CreB mice were born at the 

expected Mendelian ratio and appeared to be healthy and indistinguishable from 

control littermates (Figure 3.3A). The fur, paws and tail of RhoA f/f Tyr::CreB 

mice were normally pigmented, and this was still the case after aging mice to 6 

months (data not shown). To confirm successful floxing of the RhoA gene in our 

mouse model, we carried out a genotyping PCR on mouse-tail DNA. This showed 

that the RhoA allele was indeed floxed (Figure 3.3B). This suggests that RhoA 

alone is not necessary for melanoblasts to populate the developing embryo, but 

it does not rule out the possibility that other Rho family GTPases, including RhoB 

and RhoC might compensate for the loss of RhoA. 

3.2.3 Cdc42-null melanoblasts fail to fully populate the 
developing mouse embryo before birth 

To further understand the pigment defects observed after removing Cdc42 from 

the melanoblast lineage, the melanoblast journey was visually tracked in control 

and Cdc42 f/f Tyr::CreB embryos at different embryonic stages by breeding 

these mice with DCT::LacZ reporter mice (Figure 3.4). This reporter gene leads 
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Figure 3.3 Deletion of RhoA from the melanoblast lineage does not result in any coat colour 
defects 
(A) Images showing coat-colour of wild-type (Ctr) mice and RhoA f/f Tyr::CreB (RhoA f/f) mice at 6 
weeks. (B) DNA gel showing PCR from wild-type RhoA locus (RhoA WT) and floxed RhoA locus 
(RhoA FLOX). 
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Figure 3.4 Gene strategy to achieve melanoblast-specific expression of β-galactosidase to 
track the melanoblast journey 
The DCT::LacZ transgene was introduced onto the Cdc42f/f Tyr::CreB model to achieve targeted 
expression of β-galactosidase in the melanoblast lineage alongside loss of Cdc42 
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to expression of the enzyme β-galactosidase in cells expressing DCT (cells of the 

melanocyte lineage). When embryos are fixed and stained with X-Gal, 

melanoblasts specifically metabolise this compound into a blue substrate. After 

staining embryos with X-Gal, the dorsolateral positioning and number of 

melanoblasts can be imaged and quantified. 

The first embryonic snapshot investigated was E11.5. At this early time-point in 

development, melanoblasts have emerged from the neural tube and are residing 

in two populations either side in the migration staging area (Figure 3.5A). The 

number of melanoblasts present between the two dashed lines placed between 

the limbs was quantified to investigate whether Cdc42 controlled melanoblast 

number at this stage in the journey. No difference in melanoblast number was 

observed between control (Ctr) embryos, and embryos with one (f/+) or both 

(f/f) copies of Cdc42 disrupted (Figure 3.5B). 

At E13.5, melanoblasts in control embryos have expanded around the developing 

embryo, reaching half way around the dorsal-ventral axis (Figure 3.6A). This 

expansion is delayed in Cdc42 f/f Tyr::CreB embryos, with the melanoblast front 

only having partially progressed around the embryo (dashed line indicates front). 

Melanoblast progression was quantified by placing a box between the limbs 

which was segregated into 6 smaller areas, box 1 being the furthest dorsally 

(Figure 3.6B and C).  Quantification shows there is a deficit of melanoblasts in 

all boxes of Cdc42 f/f Tyr::CreB (Figure 3.6D). Box 1 sits behind the leading 

wave of melanoblasts at an area of average melanoblast density, suggesting that 

there are fewer melanoblasts overall in knockout embryos. There are also 

significantly fewer melanoblasts in boxes 2-5, suggesting knockout melanoblasts 

are delayed in progression around the embryo at this time-point compared to 

control embryos.  

At this time-point, melanoblasts in Cdc42 f/f Tyr::CreB embryos have also 

progressed less far down the developing limb (Figure 3.7A). Melanoblasts in 

control embryos have progressed half way down the developing limb, whereas 

melanoblasts in Cdc42 f/f Tyr::CreB embryos have only progressed to the top of 

the limb. This was quantified by placing a box over the developing limb and 

separating it into four smaller areas, with box 1 sitting at the top of the limb  
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Figure 3.5 Loss of Cdc42 does not affect melanoblast number at E11.5 
(A)	β-Galactosidase stained DCT::LacZ Control (Ctr) and Cdc42 f/f Tyr::CreB (Cdc42 f/f) embryos 
at E11.5. Area between dashed lines in (A) represents area quantified. Scale 1 mm. (B) Number of 
melanoblasts within area quantified in E11.5 embryos. Scale 1mm Quantification from at least four 
different embryos taken from three separate litters. Graph shows SEM, Kruskal-Wallis one-way 
ANOVA test and Mann-Whitney test performed, n.s=not significant. Kruskal-Wallis denoted on 
graph. 
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Figure 3.6 Cdc42 controls the number and position of melanoblasts around the belly at 
E13.5 
(A) β-Galactosidase stained DCT::LacZ Control (Ctr) and Cdc42 f/f Tyr::CreB (Cdc42 f/f) embryos 
at E13.5. Furthest extent of the melanoblast journey traced with dashed line. Scale 1mm. (B) 
Lower magnification images of embryos showing area quantified (box). Scale 1 mm. (C) 
Representative cropped sections of stained embryos showing six boxes used for quantification. (D) 
Number of melanoblasts spanning from box 1 (most dorsal) to box 6 (most ventral) at E13.5. 
Results are expressed as mean +	SEM. Quantification from at least four different embryos taken 
from three separate litters. Kruskal-Wallis one-way ANOVA test and Mann-Whitney test performed, 
*p<0.05, **p<0.01 n.s, not significant. Kruskal-Wallis denoted on graph. 

  



Investigating the Role of Cdc42 in Melanoblast Migration and Proliferation 75 
 

 

Figure 3.7 Cdc42 controls the number and position of melanoblasts down the developing 
limb at E13.5 
(A) Forelimb of β-Galactosidase stained DCT::LacZ Control (Ctr) and Cdc42 f/f Tyr::Cre (Cdc42 f/f) 
embryos at E13.5. Scale 500 µm. (B) Forelimb of E13.5 β-Galactosidase stained embryo, showing 
the grid used for quantification. (C) Quantification of melanoblast number and positioning down the 
developing limb of E13.5 embryos. Quantification from at least four different embryos taken from 
three separate litters, error bars show SEM. Kruskal-Wallis one-way ANOVA test and Mann-
Whitney test performed, *p<0.05, **p<0.01. Kruskal-Wallis denoted on graph. 
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(Figure 3.7B). Similarly to quantification around the belly, this revealed that 

there are fewer melanoblasts in each box, showing that melanoblasts in Cdc42 

f/f Tyr::CreB embryos have not progressed as far down the developing limb 

(Figure 3.7C). 

Finally, we investigated melanoblast positioning at E15.5. At this later time-

point, melanoblasts in control embryos have spread around the entire embryo 

and down to the paws of the developing limbs, and are beginning to group into 

hair follicles (Figure 3.8A and B). Melanoblasts in Cdc42f/f Tyr::CreB embryos 

are still delayed in their journey, having reached part way around the belly and 

half way down the developing limb (Figure 3.8A). Cells have begun to group into 

hair follicles towards the back of Cdc42 f/f Tyr::CreB embryos, but less 

efficiently than in control embryos (Figure 3.8A and B). These high magnification 

images also reveal that Cdc42 null melanoblasts appear larger than control 

melanoblasts, with longer thinner protrusions (Figure 3.8B). Melanoblast number 

and positioning were again quantified by placing boxes over embryos, as 

previously shown with E13.5. Similarly, fewer melanoblasts can be seen in box 1 

of Cdc42 f/f Tyr::CreB embryos, suggesting knockout embryos still contain fewer 

overall melanoblasts than control embryos. There are also significantly fewer 

melanoblasts in boxes 2-6 of Cdc42 f/f Tyr::CreB embryos, demonstrating that 

melanoblasts have progressed less far around the developing embryo (Figure 

3.8C). 

Quantification of melanoblast positioning down the developing limb at this time 

point also shows that knockout melanoblasts are also slower to make the 

journey. Melanoblasts in control embryos are now at the paw of developing 

limbs, in contrast to Cdc42 f/f Tyr::CreB where the migrating front is only half 

way down the developing limb (Figure 3.9A). In a similar way to E13.5, 

melanoblast progression was quantified by placing a box over the developing 

limb to quantify melanoblast number (Figure 3.9B). Fewer Cdc42 null 

melanoblasts were observed in each box down the limb than in control embryos, 

confirming the delay in the melanoblast journey in the absence of Cdc42 (Figure 

3.9C). 

These data shows that Cdc42 does not play a part in determining the number of 

melanoblasts at E11.5, assuming complete loss of Cdc42 has occurred at this 
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Figure 3.8 Cdc42 controls the number and position of melanoblasts around the belly at 
E15.5 
(A) β-Galactosidase stained DCT Lac::Z Control (Ctr) and Cdc42 f/f Tyr::CreB (Cdc42 f/f) embryos 
at E15.5. Scale 1 mm. (B) Higher magnification image from E15.5. Scale 200 µm (C) Number of 
melanoblasts spanning from box 1 (most dorsal) to box 6 (most ventral) at E15.5. Results are 
expressed as mean ± SEM Quantification from at least four different embryos taken from three 
separate litters. Kruskal-Wallis one-way ANOVA test and Mann-Whitney test performed, *p<0.05, 
**p<0.01, ***p<0.001. Kruskal-Wallis denoted on graph. 
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Figure 3.9 Cdc42 controls the number and position of melanoblasts down the developing 
limb at E15.5 
(A) Forelimb of β-Galactosidase stained Control (Ctr) and Cdc42 f/f Tyr::Cre (Cdc42 f/f) embryos at 
E15.5. Scale 1 mm. (B) Forelimb of E15.5 β-Galactosidase stained embryo showing grid used in 
quantification. (C) Quantification of melanoblast number and positioning in E15.5 embryos from at 
least four different embryos taken from three separate litters. Kruskal-Wallis one-way ANOVA test 
and Mann-Whitney test performed. Error bars show + SEM. **p<0.01. Kruskal-Wallis denoted on 
graph.| 
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early stage in CRE expression (Adameyko et al., 2009). However, Cdc42 is 

required for the proliferation and possibly the migration of melanoblasts after 

this time-point. Fewer melanoblasts can be seen in Cdc42 f/f Tyr::CreB embryos 

at E13.5 and E15.5, and these cells have progressed less far around the 

developing embryo and down the limb than in control embryos. We assume this 

delay in their journey prevents melanoblasts reaching areas distant to the neural 

tube before birth, resulting in the belly, paws and tail being hypo-pigmented. 

3.2.4 Cdc42 controls melanoblast cell-cycle progression and 
cytokinesis 

As Cdc42 f/f Tyr::CreB embryos had fewer melanoblasts after E11.5, we wanted 

to further investigate the role of Cdc42 in melanoblast proliferation. To 

determine the number of melanoblasts in the cell-cycle, embryos were 

embedded and sectioned transversely and co-stained fluorescently with anti-DCT 

and anti-Ki67 antibodies (Figure 3.10A). Ki67 is an endogenous protein present 

during all phases of the cell cycle (G1, S, G2 and mitosis).  Overall, the 

percentage of Ki67 positive (Figure 3.10A, yellow arrows) and negative (white 

arrows) melanoblasts was similar in control and Cdc42 f/f Tyr::CreB embryos 

(283/302 cells in control embryos and 166/184 cells in Cdc42f/f embryos from 

four embryos, p=0.32) (Figure 3.10A). This indicates that Cdc42 is not required 

for entry into the cell-cycle in melanoblasts at this stage. 

Since cell-cycle entry was not affected in Cdc42 null cells, we explored the 

possibility of cell-cycle delay. The number of melanoblasts in S phase was 

determined by injecting the pregnant mother with the thymidine analogue BrdU 

2 hrs or 24 hrs prior to harvesting of embryos. Embryos from these mothers were 

sectioned and co-stained with anti-BrdU and anti-DCT antibodies, revealing cells 

that were proliferating (yellow arrows) and those that were not (white arrows) 

(Figure 3.10B). After 2 hrs, an average of 21% of Cdc42 null melanoblasts per 

embryo (71/343 cells in total) were in S phase compared with 34% in control 

embryos (136/420 cells) (n.s, p=0.0607).  However at 24 hrs post BrdU injection, 

29% (79/259) were in S phase in Cdc42 null embryos compared with 51% in 

control embryos (119/239 cells in total) (* p=0.014), indicating that loss of Cdc42 

slows cell cycle progression in melanoblasts in vivo (Figure 3.10B and C). 
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Figure 3.10 Cdc42 null melanoblasts are in the cell cycle, but fewer are in S-phase 
(A-C) Representative images of transverse sections of control (left panels) and Cdc42 f/f Tyr::CreB 
(right panels) E15.5 embryos stained with DAPI (blue) to mark nuclei, the melanoblast marker DCT 
(green) and: (A) Ki67 (red) staining to mark cells within the cell-cycle, plus quantification of the 
percentage of Ki67 positive melanoblasts in control (Ctr) and Cdc42 f/f embryos. (B) BrdU (red) 
staining on embryo sections from mothers injected with BrdU 2 hrs or 24 hrs (C) before embryos 
were harvested, plus quantification of the percentage of BrdU positive melanoblasts in control (Ctr) 
and Cdc42 f/f embryos. Yellow arrows highlight DCT-positive cells expressing Ki67 or labelled with 
BrdU. White arrows show only DCT-positive cells. At least 184 cells from three embryos per 
genotype were quantified. Graph shows mean +SEM, *p<0.05, n.s, not significant, t-test with 
Welch’s correction. 
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Using videos from skin explant imaging (technique described in section 3.2.6), 

we also investigated the time melanoblasts took to divide in the absence of 

Cdc42. Division time was calculated as the time taken for melanoblasts to round 

up through to separation of daughter cells. Control melanoblasts begin division 

by rounding up (first frame), followed by cleavage furrow formation (shown in 

green) and then efficient separation into two daughter cells (shown in red) 

(Figure 3.11A). In contrast, Cdc42 null melanoblasts struggle to round up 

completely, leaving the remains of pseudopods extended. The cleavage furrow is 

formed, but cells struggle to undergo cytokinesis (Figure 3.11A). In Cdc42 

knockout embryos melanoblasts take twice as long to progress through division 

(Figure 3.11B). This extended division time is specifically due to the extra time 

these cells take to undergo cytokinesis (Figure 3.11B and C) (Supplementary 

video 1). 

Altogether, these data demonstrate that Cdc42 plays an important role in 

melanoblast division. It is required for efficient transition from G1 into S Phase, 

stimulating melanoblast proliferation to fill the developing embryo. Cdc42 also 

controls melanoblast cytokinesis, as Cdc42 null melanoblasts struggle to 

complete this process efficiently. 

3.2.5 Cdc42 is not required for melanoblasts to cross the 
basement membrane into the epidermis 

As embryos develop, their skin thickens and matures, forming a dermis and an 

epidermis, which are separated by a basement membrane. Melanoblasts initially 

reside and migrate through the dermis of the skin, but by birth melanoblasts 

reside largely in hair follicles within the epidermis. We are still in the process of 

understanding this transition. It is still unclear what drives the melanoblasts to 

cross the basement membrane, but we know that this process is not invasive (Li 

et al., 2011). To investigate whether Cdc42 null melanoblasts are capable of 

completing this process, control and Cdc42 f/f Tyr::CreB embryos were 

harvested, stained with X-Gal then embedded and sectioned transversely to 

investigate melanoblast positioning within the skin layers at E13.5 and E15.5. At 

E13.5, around 25% of melanoblasts reside in the dermis and around 75% in the 
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Figure 3.11 Loss of Cdc42 in melanoblasts and melanocytes leads to an extended division 
time due to a cytokinesis defect 
(A) Stills from melanoblast division in Z/EG+/- Tyr::Cre+/o control, Z/EG+/- Cdc42 f/f Tyr::Cre+/o skin 
skin explants from rounding up, cleavage formation (green) to separation of daughter cells (red). 
Images captured every 5 min, Scale 10 µm. (B) Total division time (min) from rounding up to 
complete separation of daughter cells (red). Measurements from 15 cells per genotype. (C) 
Cytokinesis time (min) from cleavage furrow initiation (green) to separation of daughter cells (red). 
Measurements from 19 cells per genotype. Box plots (B,C) show mean with maximum and 
minimum values, ***p<0.001 t-test. 
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Figure 3.12 Cdc42 knockout melanoblasts are able to cross from the dermis into the 
epidermis during development. 
(A) Transverse sections of embedded β-Galactosidase stained DCT::LacZ Control (Ctr) and Cdc42 
f/f Tyr::Cre (Cdc42 f/f) embryos at E13.5 counterstained with eosin. (B) Quantification of 
melanoblasts in dermis and epidermis from (A) from at least five different embryos for each 
genotype, at least 85 cells per embryo. Error bars show SEM. Scale bar 10 µm. (C) Transverse 
sections of embedded β-Galactosidase stained Control (Ctr) and Cdc42 f/f Tyr::Cre (Cdc42 f/f) 
embryos at E15.5 counterstained with eosin. Scale 20 µm. (D) Quantification of melanoblasts in 
dermis and epidermis from (C) from at least four different embryos for each genotype, at least 140 
cells per embryo. 
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epidermis in both control and Cdc42 f/f Tyr::CreB embryos (Figure 3.12A and B). 

By E15.5, the epidermis has thickened and the melanoblasts reside mostly in the 

epidermis, sitting on the basement membrane. The epidermis also begins to 

invaginate into hair follicles, with some melanoblasts already resident inside. At 

this time-point, only 5% of melanoblasts are left in the dermis, with around 95% 

having moved into the epidermis (Figure 3.12C and D). Therefore, Cdc42 

expression is not necessary for melanoblasts to transition form the dermis to the 

epidermis. 

3.2.6 Loss of Cdc42 uncouples actin dynamics and pseudopod 
extension from migration  

3.2.6.1 Cdc42 null melanoblasts have altered pseudopod dynamics and 
migration defects 

X-Gal staining revealed that the melanoblast journey is delayed in Cdc42 f/f 

Tyr::CreB embryos, which suggested that Cdc42 may be important for 

melanoblast migration as well as division. In order to image melanoblast 

migration through embryo skin, the Cdc42 f/f Tyr::CreB mouse was bred with 

transgenic mice containing the Z/EG reporter gene (Novak et al., 2000). This 

reporter consists of GFP downstream of a lox-stop-lox sequence. Upon CreB 

expression, this stop sequence is removed and expression of GFP is driven in the 

melanoblast lineage (Figure 3.13A).  

Skin from Tyr::CreB Z/EG+/- control mice and Cdc42 f/f Tyr::CreB Z/EG+/- mice 

was imaged using ex vivo skin explant imaging, a method refined by Mort et al. 

to achieve high resolution imaging of melanoblasts moving through mouse 

embryonic skin (Mort et al., 2014). Skin from embryos at E15.5 was dissected 

and placed epidermis side down onto a 24-well membrane-bottom dish, with a 

nuclepore membrane placed on top. The set-up was overlaid with Matrigel and 

then phenol-free growth media (Figure 3.13B). Imaging of these skin explants 

revealed that Cdc42 null melanoblasts had an elongated morphology, which we 

refer to as ‘bipolar’, as well as extending long pseudopods that had a ‘beads on 

a string’ morphology (Figure 3.14A). Knockout melanoblasts also appeared to be 

larger, and fewer melanoblasts were present overall than in control skins. 

Fixation of the skin explants and staining with DAPI revealed that the 

pseudopods of Cdc42 null melanoblasts extended between  
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Figure 3.13 Gene strategy to achieve melanoblast specific expression GFP to image live 
melanoblast migration through skin 
(A) The Z/EG transgene was introduced onto the Cdc42f/f Tyr::CreB model to achieve targeted 
expression of GFP in the melanoblast lineage alongside loss of Cdc42. Tyrosinase expression 
leads to recombination and removal of the STOP sequence proceeding the GFP gene. This leads 
to removal of Cdc42 alongside GFP expression. Cdc42 WT Tyr::CreB  Z/EG mice were used for 
controls in these experiments. (B) Set up to perform skin explant imaging. The dissected skin was 
sandwiched between a membrane dish and a nucleopore membrane and overlaid with matrigel 
then media prior to imaging.  
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Figure 3.14 Cdc42 null melanoblasts have a striking elongated and bleb-like morphology as 
they move through the skin 
(A) Stills from explant imaging of Control Tyr::CreB Z/EG+/-  skins (Ctr) or Cdc42f/f Tyr::CreB 
Z/EG+/-  skins at E15.5. 50 µm scale. (B) Confocal imaging of fixed skins stained with DAPI (Blue). 
Scale 30 µm. 
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many surrounding keratinocytes (Figure 3.14B). Time-lapse imaging of 

melanoblast migration showed that wild-type melanoblasts extend multiple, 

dynamic pseudopods  to help them navigate efficiently between surrounding 

keratinocytes (Figure 3.15 yellow arrow). In contrast, melanoblasts from Cdc42 

f/f Tyr::CreB Z/EG+/- skins extend long, static pseudopods which the cell 

struggles to retract (yellow arrow). They also take on a bi-polar shape, with a 

preference to producing two pseudopods (orange arrows). Knockout pseudopods 

appear to be segregated into ‘beads on a string’ in a bleb-like morphology (red 

arrow) (Figure 3.15) (Supplementary video 2). 

It was also clear from this imaging that knockout melanocytes were larger, with 

a statically significant increase of around 40% in area (Figure 3.16A). In addition, 

Cdc42 null cells frequently displayed two pseudopods, with 56% adopting what 

we termed a ‘bipolar’ phenotype (Figure 3.16B). Melanoblasts in control skins do 

not display this bias towards two pseudopods, with 10% displaying four or more 

pseudopods. The ‘bipolar’ morphology of knockout cells led to a significant 

increase in the length to width ratio (Figure 3.16C), and was accompanied by an 

increase in pseudopod length (Figure 3.16D). Elongated knockout pseudopods 

were extremely long-lived, with 10% lasting the entirety of the 4-hour time-lapse 

video, as they do not seem to retract efficiently. In contrast, pseudopods 

created by wild-type melanoblasts were transient, with the majority (84%) only 

lasting between 5 and 80 minutes (Figure 3.16E).  

Melanoblasts from Tyr::CreB Z/EG+/- control skins and Cdc42 f/f Tyr::CreB 

Z/EG+/- skins were tracked from a 4 hour time-lapse video using an ImageJ plugin 

to gain information about their migration speed and persistence (Figure 3.17A 

and B). Due to the extended nature of knockout melanoblasts and their ability to 

form pseudopods, one might expect these cells to move well through the skin, 

however this is not the case. On average, control melanoblasts move twice as 

fast (0.42 µm/min) as Cdc42 null melanoblasts (0.2 µm/min) (dashed lines Figure 

3.17A). Overall, melanoblasts from control skins moved further than knockout 

melanoblasts. As control skins are densely packed with melanoblasts, 
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Figure 3.15 Cdc42 null melanoblasts display less-dynamic pseudopods and have a ‘bi-polar’ 
morphology 
Stills from imaging of melanoblasts in (A) Control (Ctr) and (B) Cdc42 f/f Tyr::CreB Z/EG+/-  (Cdc42 
f/f) skin explants. Yellow arrows highlight pseudopod dynamics. Red arrow highlights bead-like 
structures. Orange arrows show cells with ‘bipolar’ phenotype. Scale 10 µm 
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Figure 3.16 Cdc42 null melanoblasts have an altered morphology and defects in pseudopod 
dynamics 
Graphs represent measurements taken from Control (Ctr) and Cdc42 f/f Tyr::CreB Z/EG+/- skin 
explants from 5-6 embryos from four different litters. Data are from 125 cells per genotype, from 
301 control pseudopods and 239 Cdc42 f/f pseudopods. 

(A) Cell area (B) Number of pseudopods per melanoblast (C) Length to width ratio (D) Pseudopod 
length (E) Distribution plot of pseudopod lifetimes. Box plots show mean and minimum and 
maximum values, ***p<0.001 t-test. 
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Figure 3.17 Loss of Cdc42 in melanoblasts leads to less efficient migration 
(A) Average speed (µm /min) of melanoblasts gained from tracking individual melanoblasts for 4 
hours moving through skin explants. Measurements from 115 cells per genotype from five different 
skins. (B) Spider plots showing migration paths of melanoblasts from Tyr::CreB Z/EG+/- Control 
(Ctr) and Cdc42 f/f (Cdc42 f/f) skins over 4 hours of imaging. 
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they move in circular paths, because when they encounter each other they 

change direction, most likely due to contact inhibition. Knockout melanoblasts 

fell into two subsets, most not moving far (tracks around the graph origin), and 

those able to move (around 20/100 cells tracked). This subset moved 

persistently as they had fewer neighbouring melanoblasts to block their 

migration,  unlike in control skins which are densely packed with melanoblasts 

(Figure 3.17B).  

Therefore, Cdc42 plays an important role in regulating the overall size and shape 

of melanoblasts. It is essential in regulating melanoblast pseudopod dynamics to 

facilitate migration. Null melanoblasts are unable to retract their elongated 

pseudopods and use this force to translocate between the surrounding 

keratinocytes. Therefore, these cells struggle to migrate as efficiently through 

the skin as wild-type melanoblasts. We believe that these defects, together with 

the reduced number of melanoblasts in Cdc42 f/f Tyr::CreB embryos leads to the 

pigment defects seen in adult mice. 

3.2.6.2 Cdc42 null melanoblasts are unable to translate actin bursts into 
efficient migration 

We wondered whether defects in actin dynamics might explain the inability of 

Cdc42 knockout cells to translocate in the epidermis. To investigate whether 

actin polymerisation was occurring normally in these cells, Cdc42 f/f Tyr::CreB 

mice were bread with mice expressing a lox-stop-lox lifeact transgene 

(Schachtner et al., 2012). Lifeact is expressed In the presence of CreB. It is a 

chemically modified peptide that binds to filamentous actin, allowing 

visualisation of actin polymerisation in vivo (Riedl et al., 2008) (Figure 3.18). 

Skin explant imaging from these embryos revealed that regular actin bursts 

could be seen at the tips of both control and knockout pseudopods (Figure 

3.19A). However, there was a small but significant difference in the time 

between actin bursts, increasing from an average of 8.9 min between bursts in 

control cells to 11.5 min in the absence of Cdc42 (Figure 3.19B). Therefore, 

actin bursts occur in knockout conditions at a relatively normal frequency, but 

this protrusive force is apparently not translated into coordinated pseudopod 

extension and translocation. Scatter plots illustrating pseudopod lifetime and  
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Figure 3.18 Gene strategy to achieve melanoblast-specific expression of Lifeact-GFP to 
image live actin dynamics  
The Lifeact-GFP transgene was introduced onto the Cdc42f/f Tyr::CreB model to achieve targeted 
expression of Lifeact-GFP in the melanoblast lineage alongside loss of Cdc42. Tyrosinase 
expression leads to recombination and removal of the STOP sequence preceding the Lifeact-GFP 
gene. This leads to removal of Cdc42 alongside Lifeact-GFP expression. Cdc42 WT Tyr::CreB  
Z/EG +/- mice were used as controls in these experiments. 
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Figure 3.19 Actin bursts can be seen at the tips of knockout pseudopods 
(A) Representative images of melanoblast F-actin dynamics in Control GFP-Lifeact f/f Tyr::Cre 
(Ctr) skin explants and GFP-Lifeact f/f Cdc42 f/f  Tyr::CreB (Cdc42 f/f) skin explants. Scale 10 µm. 
(B) Quantification of the time between actin bursts within a pseudopod (C) Scatter plots showing 
individual pseudopod lifetime against number of actin bursts observed during it’s lifetime. 
Quantification of 100 pseudopods per genotype from at least four different embryos from three 
different litters. Dot plot shows mean ± SEM. **p<0.01 t-test 
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number of actin bursts shows a different distribution of protrusions in each 

condition. The majority of pseudopods made by control melanoblasts are short 

lived, displaying a few actin bursts (Figure 3.19C). Unexpectedly, knockout 

pseudopods last longer, producing many actin bursts without resulting in 

migration (Supplementary video 3). Therefore, Cdc42 appears to play a crucial 

role in the coordination of actin polymerisation into efficient cell translocation. 

Despite displaying a relatively normal rate of actin bursts, knockout 

melanoblasts appear unable to couple this to efficient migration. 

3.2.7 Loss of Cdc42 and Rac1 from the melanoblast lineage leads 
to death at birth and a reduction in melanoblast number 

Having identified a prominent role for Cdc42 and Rac1 in the melanoblast 

journey, we wanted to investigate the effect of a double Rac1 and Cdc42 

deletion in the melanoblast lineage. To do this, mice carrying a floxed copy of 

Rac1 were bred with Cdc42 f/f Tyr::CreB mice, leading to double knockout of 

Cdc42 and Rac1 in the melanoblast lineage (Figure 3.20). Loss of one copy of 

Cdc42 or Rac1 alongside deletion of one or both copies of the other had no 

effect on pup survival. Loss of both copies of both Rac1 and Cdc42 lead to death 

at birth, although these pups appeared to have developed normally (Figure 

3.21A). To investigate melanoblast positioning in double knockout embryos, they 

were harvested at E15.5, embedded and sectioned and stained with anti—DCT 

antibody (Figure 3.21B). Imaging of these stained sections showed that double 

knockout embryos appear to contain no melanoblasts at any position around the 

circumference of the embryo in the dermis or epidermis (Figure 3.21C). Although 

preliminary, these data indicate that without Rac1 and Cdc42, the melanoblasts 

lineage does not develop, or there are very few melanoblasts due to a severe 

proliferation defect. 
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Figure 3.20 Gene strategy to achieve melanoblast targeted double knockout of both Rac1 
and Cdc42  
Schematic of the gene targeting strategy leading to Cdc42 f/f  Rac 1 f/f Tyr::CreB mice. Cre 
recombinase is under the control of the tyrosinase promoter, leading to targeted deletion of Cdc42 
and Rac1 in the melanocyte lineage. 
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Figure 3.21 Loss of both Cdc42 and Rac1 in the melanoblast lineage leads to death at birth 
and many fewer melanoblasts at E15.5 
(A) Images of wild-type (WT) and Cdc42 f/f Rac1 f/f Tyr::CreB (Cdc42 f/f Rac1 f/f) pups which were 
found dead at birth. (B) Schematic of approach used to investigate melanoblast positioning in 
Cdc42 f/f Rac 1 f/f Tyr::CreB embryos. A transverse section was taken and images around the 
dermis/epidermis were imaged as seen below (C). (C) Transverse sections of control (Ctr) and 
Cdc42 f/f Rac1 f/f  Tyr::CreB (Cdc42f/f Rac1 f/f) embryos stained with DCT (green) (melanocyte 
marker) and DAPI (blue) (nuclear marker). Scale 100 µm. 
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3.3 Discussion 

3.3.1 Cdc42 is necessary for melanoblast population of the 
developing embryo before birth 

The role of Cdc42 in cell migration in 2D systems in vitro has been well studied, 

and we understand Cdc42 as a master regulator of the actin cytoskeleton in this 

context. However, we do not yet fully appreciate how these functions translate 

into 3D migration in vivo, and the role of Cdc42 during development is not well 

understood. Targeted deletion of Cdc42 in the melanoblast lineage during 

development led to striking coat colour defects in adult mice, suggesting Cdc42 

was controlling melanoblast proliferation and/or migration (Figure 3.1). These 

coat colour defects mirrored those seen in Rac1 f/f Tyr::CreB mice (Li et al., 

2011). Interestingly, Cdc42 is not required for melanoblasts to enter developing 

hair follicles although we still do not fully understand the factors controlling this 

process (Figure 3.2). 

Visually tracking the melanoblast journey at different embryonic stages by X-Gal 

staining revealed that Cdc42 controls melanoblast number at later stages in 

development, but does not control the initial number of melanoblasts that 

gather in the migration staging area at E11.5 (Figure 3.5). Tyrosinse expression, 

and therefore Cdc42 deletion occurs at E10.5, suggesting that loss of Cdc42 at 

this time point does not affect melanoblast number. This observation confirms 

those made by Fuchs et al. that Cdc42 is dispensable for the migration of early 

neural crest cells (Fuchs et al., 2009). Cdc42 expression was however essential 

for melanoblast proliferation and positioning at E13.5 and E15.5 (Figure 3.6-3.9). 

Cdc42 f/f Tyr::CreB embryos at these time points displayed a paucity of 

melanoblasts and delay in melanoblast progression away from the neural tube 

towards the belly. It is, however, difficult to separate the relative contribution 

of melanoblast migration versus proliferation in successful population of the 

embryo. It is clear that the melanoblast population must expand rapidly from 

the ‘founder’ population of melanoblasts that are specified from the neural 

tube, so proliferation defects alone can lead to coat colour defects. However, 

melanoblasts must also migrate away from each other to spread throughout the 

embryo. Recent evidence demonstrating that the melanoblast population may 

also be ‘topped up’ by differentiation from Schwann cell precursors later on in 
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development complicates our currently accepted model. These findings may 

require a rethink of mathematical models of melanoblast population of the 

developing embryo, building upon and refining those models already suggested 

(Mort et al., 2016) (Larue et al., 2013). We could therefore conclude that Cdc42 

controls melanoblast number and positioning after E13.5, but could not yet 

determine its role in migration. 

3.3.2 Cdc42 controls melanoblast proliferation by promoting S 
phase entry and aiding cytokinesis 

Injection of BrdU into pregnant mice revealed a 22% drop in the number of 

melanoblasts in S phase in Cdc42 f/f Tyr::CreB embryos compared to control 

embryos after 24 hrs (Figure 3.10). This defect in G1 to S transition was also 

observed in Rac1 null melanoblasts (Li et al., 2011), which confirms in vitro work 

that demonstrated that microinjection of dominant negative Rac and Cdc42 

blocked serum induced DNA synthesis (Olson et al., 1995). It is likely that both 

Cdc42 and Rac1 control G1 progression in melanoblasts by controlling the 

activation of cyclins D and E (Chou et al., 2003, Gjoerup et al., 1998). In 

addition to controlling S phase entry, Rho GTPases are also associated with 

various stages of mitosis including cytokinesis. This is not surprising, due to the 

drastic changes in cell architecture that occur during mitosis. To divide, cells 

must alter their adhesion placement and cortical rigidity to round up during 

mitotic onset. Cdc42-GTP levels peak at metaphase in Hela mitotic extracts, 

whereas Rac-GTP levels are relatively constant (Oceguera-Yanez et al., 2005).  

In skin explants, we frequently saw that Cdc42 null melanoblasts were unable to 

fully round up when entering mitosis, sometimes leaving their long thin 

protrusions extended (Figure 3.11A). This may be due to a defect in adhesion 

disassembly in these pseudopods in the absence of Cdc42, leaving them stuck 

outside the cell body. This adhesion defect could be in occurring in combination 

with actin:myosin contractility defects, preventing the cells from retracting the 

extended pseudopod. It appears that these melanoblasts are able to initiate 

cleavage furrow formation in a timely manner, but on average take three times 

longer to undergo cytokinesis than control melanoblasts (Figure 3.11C). We also 

observed an increase in cytokinesis time in Rac1 null melanoblasts, but the 

defect was not as striking (Li et al., 2011). Efficient cytokinesis and membrane 
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scission after chromosome segregation are dependent on the formation of a 

contractile ring, which consists of parallel filaments of actin and non-muscle 

myosin II. Its assembly and myosin motor are driven by phosphorylation of MLC at 

position T18 S19. It has been demonstrated that tight regulation of Cdc42 

activation is necessary for proper equatorial actin assembly and to control RhoA 

localisation to the ring to initiate contractility (Zhu et al., 2011). The 

combination of cell cycle and cytokinesis defects imparted by the loss of Cdc42 

presents a compound problem for melanoblasts, explaining the drop in 

melanoblast number in Cdc42 f/f Tyr::CreB embryos. 

3.3.3 Loss of Cdc42 uncouples actin dynamics and pseudopod 
extension from migration 

The coat colour defects and melanoblast proliferation and positioning issues 

highlighted by X-Gal staining of Cdc42 f/f Tyr::CreB embryos were reminiscent of 

Rac1 f/f Tyr::CreB embryos. This raised the question if loss of Cdc42 was 

mimicking Rac1 loss, suggesting that these two GTPases were carrying out 

similar functions in these cells. However, ex vivo imaging revealed that loss of 

Cdc42 led to a drastically different morphology to Rac1 loss. In contrast to the 

rounded nature of Rac1 null melanoblasts, which moved with short stubby 

protrusions (Li et al., 2011), Cdc42 null melanoblasts are larger and more 

elongated than control cells (Figure 3.14A and B). The number, length and 

lifetime of knockout pseudopods are strikingly different to controls, with Cdc42 

null cells being biased to forming two pseudopods, taking on what we termed a 

‘bipolar’ phenotype. Many pseudopods were extremely long-lived and they were 

longer in length than control pseudopods (Figure 3.16 D and E). These weedy, 

bleb-like pseudopods could not provide the drive and support necessary to 

sustain cell translocation between keratinocytes, as null melanoblasts moved 

much more slowly through the skin (Figure 3.17). Despite their division defects, 

these cells were not bi-nucleate, but may have issues with nuclear movement. 

Taking into account these defects, we were very surprised to find that 

melanoblasts could polymerise actin at a relatively normal rate. Both control 

and Cdc42 null pseudopods produced an actin burst at their tip every 10 min on 

average (Figure 3.19B). However, it was clear that knockout pseudopods 

struggled to harness the protrusive force of the actin burst into efficient 
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migration. The dynamic nature of control melanoblasts is underpinned by their 

ability to channel actin bursts into nascent pseudopods, retracting older ones. 

Although Cdc42 null melanoblasts display regular actin bursts, they also extend 

longer lived pseudopods, without branching or retracting them (Figure 3.19C). 

From these data, we hypothesise that Rac1 is responsible for producing actin 

bursts in the absence of Cdc42. As we have previously found no role for N-WASP 

or PAK alone in melanoblast migration, we assume a minor role for Cdc42 in 

these bursts (Li et al., 2011). However, Cdc42 appears to be necessary for 

coordinating actin polymerisation by Rac1 and cell contractility into coordinated 

and persistent migration.  

3.3.4 Loss of RhoA in the melanoblast lineage does not lead to 
coat colour defects 

Despite the prominent role of Rac1 and Cdc42 in the melanoblast lineage, 

targeted deletion of RhoA did not lead to coat colour defects (Figure 3.3). From 

this phenotypic observation, we can infer that there is no drastic difference in 

melanoblast number, as this would most likely lead to grey hairs or white 

patches in adult mice. We cannot however rule out that there may be some 

minor defects in proliferation, or that these cells migrate in an alternative way. 

We hypothesise that loss of RhoA is compensated by other members of the Rho 

sub-family of Rho GTPases, such as Rho B or C. Through this mechanism 

melanoblasts could retain their ability to contract and move normally through 

the epidermis. 

3.3.5 Rac1 and Cdc42 double knockout melanoblasts fail to 
populate the developing embryo 

Having observed unique roles for the classic Rho GTPases Rac1 and Cdc42 in 

melanoblast migration in vivo, we were curious to investigate what effect losing 

both of these proteins might have on melanoblast migration. Pilot experiments 

have revealed some very interesting and striking observations. It appears that 

either very few or no melanoblasts are present in double knockout embryos at 

any location dorso-ventrally (Figure 3.21). Because these pups died at birth, it 

was not possible to study the coat colour of these mice. This lethality may be 

due to expression of CreB in other neural crest lineages, such as the neuronal 
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lineage, as it is unlikely that mice would not survive due to the absence of 

melanocytes. 

3.4 Summary 

The work presented in this chapter has provided a rare insight into the role of 

the classical Rho GTPases Cdc42 and RhoA in 3D cell migration in vivo. By 

comparing these findings with previous work from the lab, we have 

demonstrated that Cdc42 and Rac1 play unique roles in controlling melanoblast 

migration, but RhoA alone does not appear to have a prominent role. Whereas 

Rac1 provides the protrusive force behind migration by inducing actin 

polymerisation at the tips of pseudopods, Cdc42 is responsible for the 

coordination of pseudopod extension, branching and retraction. In addition, 

Cdc42 induces G1 to S cell-cycle transition in melanoblasts, similarly to Rac1. 

However, Cdc42 appears to pay an even more vital role than Rac1 during 

cytokinesis, where it is essential in controlling contractile ring formation and 

completing membrane scission to allow separation of daughter cells. Loss of both 

Cdc42 and Rac1 in the melanoblast lineage appears to abrogate or abolish the 

melanoblast population. However, these are only preliminary findings, and 

further investigation would be needed to discover if the melanoblast lineage is 

determined from the neural crest at all, and if so what migration or proliferation 

defects these cells might encounter at earlier stages, or indeed if they are dying 

due to apoptosis
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4 Investigating the Role of Cdc42 in Melanocyte 
Migration and Proliferation 

 
4.1 Introduction and aims 

Our investigation into the role of Cdc42 in cell migration in vivo using the 

melanoblast model uncovered an essential role for this GTPase in driving their 

migration and division. High resolution imaging of knockout melanoblasts 

migrating through developing embryo skin revealed their strikingly elongated 

cell morphology, and their inability to dynamically extend and retract 

pseudopods. This rendered them unable to migrate efficiently through the skin. 

Remarkably though, relatively normal actin polymerisation occurred in the tips 

of these pseudopods, however the force generated by these bursts was not 

harnessed into migration, although it was not clear why this was the case. 

Interestingly, this work suggested that Cdc42 was playing a different role to Rac 

in the migration of these cells, apparently coordinating actin polymerisation 

with pseudopod extension and retraction. We were keen to investigate further 

the molecular details and signalling behind this role. 

To investigate these more closely, our aim was to isolate an inducible Cdc42 

knockout melanocyte cell line from one-day-old pups. By culturing and studying 

these cells in vitro we first wanted to discover if deletion of Cdc42 caused the 

same sort of defects to those seen in melanoblasts. Using these cells as a model, 

we wanted to investigate the expression and localisation of classic Cdc42 

effectors and actin related proteins to more fully understand the striking 

morphology and migration defects of melanoblasts in vivo. We also aimed to 

study the impact of Cdc42 loss on their progression through the cell-cycle and 

cytokinesis. 
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4.2 Results 

4.2.1 Knock-down of Cdc42 in cultured melanocytes leads to 
migration and proliferation defects 

We began these studies using the M4 primary immortalised melanocyte cell line 

(Rac1 f/f Tyr::Cre-ERT2; CDKN2 -/-) previously isolated and described (Li et al., 

2011). Taking an siRNA approach, Cdc42 was successfully depleted in these cells 

by two independent oligos (Figure 4.1A). Knockdown of Cdc42 by both oligos, but 

particularly Si2, resulted in an elongated bipolar morphology. Like Cdc42 null 

melanoblasts, their pseudopods were long and weedy. This was in contrast to 

control melanocytes, which produce large fan-like lamellipods (Figure 4.1B). 

This knockout morphology was very reminiscent of Cdc42 knockout melanoblasts 

(Figure 3.14 and 3.15). In addition, knockdown also induced a proliferation 

defect, with Si2 affecting proliferation most severely (Figure 4.1C). Tracking the 

movement of non-treated melanocytes or those treated with scramble (SC) or 

anti-Cdc42 oligos revealed a striking migration defect in Cdc42 knockdown 

conditions (Figure 4.2). These migration and proliferation defects were also 

similar to the defects seen in Cdc42 null melanoblasts, making cultured 

melanocytes a useful model to study in vitro to more fully understand Cdc42’s 

role in this lineage. 

4.2.2 Isolation of an inducible Cdc42 knockout primary 
melanocyte cell line 

Having confirmed that primary melanocytes are an interesting and valid model 

to understand the role of Cdc42 in the melanoblast journey, we set out to 

isolate a primary melanocyte line in which Cdc42 deletion was inducible by 

addition of tamoxifen. To achieve this, mice carrying Cdc42 containing a floxed 

portion of the gene were bred with mice carrying Cre recombinase under control 

of the estrogen receptor promoter. Inducible deletion of the tumour suppressor 

CDKN2 was also incorporated to help immortalise cells isolated from this model. 

Upon addition of tamoxifen, Cre recombinase is expressed and Cdc42 and CDKN2 

are lost (Figure 4.3).  
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Figure 4.1 Knockdown of Cdc42 by siRNA leads to an elongated cell morphology and slows 
proliferation 
Knockdown experiments were performed on M4 (Rac1 f/f Tyr Cre-ERT2; CDKN2 -/-) primary 
melanocytes. Conditions include non treated (NT) and scramble (SC) controls. Cdc42 was knocked 
down using two separate oligos referred to as Si1 and Si2. (A) Western blotting on control and 
knockdown primary melanocyte lysate probed with anti-Cdc42 and anti-GAPDH antibodies. (B) 
Images showing the morphology of control and knockdown melanocytes. (C) Proliferation curve of 
control and knockdown melanocytes over 8 days, absorbance taken every 2 days. Plot is an 
average of three repeats, error bars show SEM. 
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Figure 4.2 Cdc42 knockdown melanocytes have a severe migration defect 
Spider migration plots showing tracks of M4 (Rac1 f/f Cre-ERT2; CDKN2 -/-) primary melanocytes. 
Conditions include non treated (NT) and scramble (SC) controls. Cdc42 was knocked down using 
two separate oligos referred to as Si1 and Si2. Plots show tracks from 7 cells. 
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Figure 4.3 Generation of an inducible Cdc42 knockdown melanocyte cell-line 
(A) Melanocytes were isolated from the skin of one-day-old Cdc42 f/f Cre-ERT2; CDKN2 -/-pups. 
Expression of Cre in this case was placed under the control of the estrogen receptor; allowing 
knockout to be induced by addition of the potent tamoxifen metabolite 4-hydroxytamoxifen (OHT). 
Loss of the tumour suppressor CDKN2 was included in this model to promote growth of the 
isolated lines in culture 
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Melanocytes were isolated from the skin of 1-day-old pups. Initially, cultures are 

a mixed population of melanocytes and fibroblasts. Pure melanocyte cultures 

were obtained after 2 months of selection. The purity of cultures was verified by 

staining for the melanocyte transcription factor MITF (Figure 4.4A). The two 

melanocyte lines EW1 and EW7 were incubated with 1 µM OHT or an equivalent 

volume of DMSO for 5 days, and loss of Cdc42 protein was confirmed by western 

blot (Figure 4.4B). As Cdc42 protein is depleted from the primary melanocyte 

line EW7, cells become increasingly elongated in comparison to the DMSO 

treated cells (Figure 4.4C and D). Therefore, both knockdown of Cdc42 using 

siRNA in melanocytes and knockout of Cdc42 in melanoblasts using a genetic, 

inducible model induces an extended morphology. In a strikingly similar manner 

to that seen in vivo, loss of Cdc42 leads to an elongated cell morphology due to 

long, weedy pseudopods, which render the cells unable to move efficiently. This 

suggests a conserved role for Cdc42 in melanocytes and melanoblasts. 

4.2.3 Primary melanocytes require Cdc42 for efficient pseudopod 
extension and ruffling 

DMSO and OHT treated primary melanocytes from lines EW1 and EW7 (Cdc42 f/f 

Cre-ERT2; CDKN2 -/-) were plated on fibronectin to investigate their ability to 

engage and migrate on matrix. DMSO treated melanocytes from both lines 

formed large lamellipodia, leading to a small length to width ratio. This is in 

contrast to Cdc42 knockout cells of both lines, which, similarly to Cdc42 

knockdown melanocytes, stretched out over the matrix forming extended thin 

protrusions in opposite directions leading to a 10 fold increase in their length to 

width ratio from 2 to 20 (Figure 4.5A and B). The long thin protrusions of 

knockout melanocytes are often static, with the majority lasting over 600 

minutes in both lines EW1 and EW7 (Figure 4.5C). Once extended, these 

protrusions are stuck in place, and the cells seem unable to coordinate adhesion 

formation and release with protrusion formation. As seen in melanoblasts in 

vivo, the majority of protrusions extended by DMSO treated melanocytes are 

very dynamic, lasting under 100 minutes (Figure 4.5C). These cells migrate 

efficiently over the matrix using large fan-like lamellipods at an average speed 

of 0.4 µm/min. The static  
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Figure 4.4 Cdc42 is lost at the protein level after 5 days of OHT treatment 
(A) Primary melanocyte line EW7 (Cdc42 f/f Cre-ERT2; CDKN2 -/-) fixed and stained with DAPI to 
stain nuclei (Blue), phalloidin to stain F-actin (green) and the melanocyte transcription factor MITF 
(red). Scale 20 µm (B) Western blot from two primary melanocyte cell lines (EW1 and EW7) with 
and without out treatment, probed with anti-Cdc42 and anti-GAPDH antibodies. (C) Western blot on 
EW7 lysate over days 1-4 of OHT treatment probed for Cdc42 and GAPDH. (D) Images of EW7 
primary melanocytes after treatment with OHT over 4 days and control DMSO cells on day 4. Scale 
100 µm. 
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Figure 4.5 Cdc42 knockout melanocytes fail to make lamellipods and have pseudopod and 
migration defects 
(A) Stills from time-lapse imaging of primary EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- melanocytes 
treated with DMSO or OHT, migrating on fibronectin. Scale 30 µM. (B) Length to width 
measurements of DMSO treated and OHT treated primary melanocyte lines EW1 and EW7 (59 
cells quantified per condition). (C) Pseudopod lifetimes (57 pseudopods quantified per condition). 
(D) Melanocyte migration speed from time-lapse imaging of cells on fibronectin (90 cells quantified 
per condition). Graphs (B and D) show mean ± SEM, ***p<0.001 t-test. 
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nature of knockout pseudopods appears to prevent them from migrating 

efficiently; these cells barely move over the matrix, and a large proportion are 

completely static over the 10 hour time-lapse (Figure 4.5D) (Supplementary 

video 4). Similarly to Cdc42 knockdown melanocytes, the morphology of these 

inducible knockout melanocytes is very similar to that of Cdc42 null 

melanoblasts (Figure 3.14 and 3.15). We therefore hypothesise that Cdc42 is 

playing a very similar role in both lineages. Our data suggests that Cdc42 is 

necessary for the coordination of pseudopod dynamics and possibly adhesion 

assembly and disassembly to achieve efficient cell migration. 

4.2.3.1 Cdc42 is required to coordinate lamellipod formation despite 
elevated levels of active Rac1 in knockout cells 

We wanted to look more closely at the mechanisms driving protrusions in the 

primary melanocyte lineage. Control melanocytes migrate efficiently over matrix 

by extending lamellipods, based on the branched actin network (Figure 4.5). 

Interestingly, loss of Cdc42 prevents formation of these structures and these 

cells instead are limited to the extension of pseudopods, often in opposite 

directions. To understand this difference in protrusion formation, we looked 

closely at the actin regulators responsible for protrusion generation.  

We used antibodies to localise WAVE2 and p34, two subunits within the 

Scar/WAVE complex and Arp2/3 complex respectively. The Scar/WAVE complex 

and Arp2/3 play a prominent role in the induction and formation of the branched 

actin network that forms the structure and protrusive force behind lamellipod 

formation. Control (DMSO treated) melanocytes display large lamellipodia, and 

both p34 and WAVE are strongly recruited at the leading edge of these structures 

(Figure 4.6A). Both WAVE2 and p34 can be seen at the tips of knockout 

pseudopods, but their localisation appears weak and patchy (Figure 4.6B), 

suggesting that Cdc42 is required for the correct placement of these factors. In 

the absence of Cdc42, these players are limited to the tips of pseudopods, and 

seem unable to localise strongly to broad areas of the membrane to form large 

ruffling structures, which are imperative for efficient migration. This agrees  
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Figure 4.6 Actin branching machinery is poorly localised in knockout melanocytes 
Immunofluorescence imaging of EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- melanocytes: (A) DMSO 
treated then fixed and stained with phalloidin to stain F-actin (green) and p34 or WAVE2 (red). 
Scale 15 µm. (B) OHT treated then fixed and stained with phalloidin (green) and p34 or WAVE2 
(red). Scale 15 µm. 
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with our skin explant data in, showing that actin bursts still occurred in the 

narrow pseudopods formed in null melanoblasts, but this was not as productive 

for motility as in the wild-type. 

A possible explanation for lack of lamellipodia in Cdc42 null melanoblasts could 

be due to defects in activation of Rac1, which is most commonly associated with 

the formation of lamellipodia (Insall and Machesky, 2009). We therefore 

measured the levels of active Rac1 in melanocytes using FLIM imaging of a 

Rac1FLARE dual-chain biosensor, in which activated Rac1-CFP binds to PAK 

(fragment)-YFP leading to a decrease in lifetime of the donor CFP fluorophore 

(Machacek et al., 2009, Goedhart et al., 2010). Lifetime heat maps of 

melanocytes expressing the control dTurquoise (donor alone) vector or the 

Rac1FLARE.dc vector shows that the donor fluorophore has a lower lifetime in 

the biosensor cells than the control, showing that FRET is occurring (Figure 

4.7A). When the lifetimes of the CFP donor fluorophore are expressed as a 

percentage of the lifetime of the donor alone, we see this is higher in Cdc42 

knockout cells indicating that these cells have more active Rac1 than control 

cells (Figure 4.7B).  

 

To complement this data, active Rac1 levels were also quantified using a pull-

down method. This involved incubation of lysate from DMSO and OHT treated 

cells with GST-PAK beads. The specificity of these beads was verified using 

lysate from DMSO and OHT treated M4 Rac1 f/f Tyr::Cre-ERT2; CDKN2 -/-primary 

melanocyte line (Figure 4.7C). Roughly equal levels of Rac1-GTP were found in 

DMSO and OHT treated EW7 primary melanocytes. Combined ratios of input to 

active levels of 2.7 in DMSO and 2.8 in OHT were observed, suggesting no 

significant difference in the levels of Rac1 in the absence of Cdc42 using this 

method (more replicates necessary to perform statistics). It is likely however 

that this approach is substantially less sensitive than the FLIM approach, and 

may not report modest changes on active Rac levels. 

Therefore, in the absence of Cdc42, cells show reduced pseudopod dynamics, 

only forming small lamellipods at the tips of their pseudopods due weaker 

recruitment of branched actin nucleation machinery. We found normal to high 

levels of active Rac1 (the predominant GTPase required to orchestrate  
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Figure 4.7 Levels of active Rac1 are modestly enhanced in the absence of Cdc42 
(A) Heat maps showing lifetimes of control fluorophore (dTurquoise) and fluorophore in 
Rac1FLARE.dc biosensor in DMSO and OHT treated EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- 

melanocytes. (B) FRET efficiency of fluorophores in DMSO and OHT treated melanocytes, 
calculated as a percentage of the control lifetime. (C) Pull-down for active Rac1 in DMSO and OHT 
treated M4 (Rac1 f/f Tyr::Cre-ERT2; CDKN2 -/- ) primary melanocytes and EW7 (Cdc42 f/f Cre-
ERT2; CDKN2 -/- ) primary melanocytes, showing input and bound fractions blotted for Rac1. Graph 
shows mean ± SEM, ***p<0.001 Mann-Whitney test 
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lamellipod formation), in knockout melanocytes. This may explain why Cdc42 

null melanoblasts displayed a relatively normal rate of actin bursts in skin 

explants. However, Cdc42 knockout cells are unable to harness and direct these 

bursts of actin polymerisation to produce pseudopods dynamic enough to support 

migration.  

4.2.3.2 Re-expression of Cdc42-YFP in melanocytes rescues cell 
morphology 

We wanted to confirm whether rescuing levels of Cdc42 in knockout primary 

melanocytes would revert their extended morphology and lead to normal 

pseudopod generation. Using expression of YFP as a control, both DMSO and OHT 

treated melanocytes were transfected with YFP tagged Cdc42 (Figure 4.8A). 

Expression of Cdc42-YFP in DMSO treated melanocytes did not alter the length to 

width ratio of cells relative to the YFP control. However, expression of Cdc42-

YFP in OHT treated cells rescued the elevated length to width ratio of 30 seen in 

YFP transfected down to an average of 4 (Figure 4.8B). Therefore, rescuing 

levels of Cdc42 in knockout melanocytes back to wild-type levels restores normal 

cell morphology. 

4.2.4 Expression levels of Cdc42 effectors and other actin 
regulators is unchanged in knockout cells 

To further investigate the molecular mechanisms behind the striking phenotype 

of Cdc42 knockout melanocytes, the protein levels of Cdc42 effectors and other 

actin regulators were assessed using western blotting (Figure 4.9). The lineage 

of these cells was confirmed by western blotting against the melanocyte marker 

DCT. We noted that there was no significant changes in the levels of the other 

Rho GTPases family members Rac1, Rac2 or Rac3 or RhoA, however this does not 

reflect the activation levels of these species. The Cdc42 associated actin 

nucleation promoting factor N-WASP is also unchanged at the protein level, 

similarly to p34, a subunit of the actin branching complex Arp2/3. Interestingly, 

there was no change in the total or phosphorylated levels of the PAK family of 

kinases, which are well-characterised down-stream effectors of Cdc42. Blotting 

for total levels of myosin light chain (MLC) showed that the primary melanocyte 

line EW1 expresses more MLC than EW7, furthermore a  
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Figure 4.8 Transient expression of Cdc42-YFP in Cdc42 knockout cells rescues cell 
morphology changes 
(A) Images of DMSO and OHT treated EW7 melanocytes on fibronectin transfected transiently with 
YFP or Cdc42-YFP. Scale 20 µm. (B) Quantification of length/width ratio of transfected 
melanocytes Graphs show mean ± SEM, ***p<0.001 t-test, n.s= not significant 
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Figure 4.9 Protein levels of Cdc42 regulators and actin related proteins were not altered in 
the absence of Cdc42 
Cell lysates from Cdc42 f/f Cre-ERT2; CDKN2 -/- primary melanocyte cell lines (EW1 and EW7) 
treated with DMSO or OHT were separated by SDS-PAGE, transferred to PVDF membranes and 
probed with antibodies as indicated. Blots were repeated at least three times and loading always 
verified to alpha tubulin or GAPDH. Conclusions were made taking into account these three 
repeats and the loading of each blot. 
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much higher proportion of this MLC is phosphorylated in EW7 cells. However, 

phosphorylated levels of MLC remains unchanged in OHT treated cells relative to 

DMSO treated cells. This is investigated further later in this chapter. In addition, 

levels of FAK, P-FAK, ERK and P-ERK remain unchanged in knockout cells. 

Intriguingly, the only significant and consistent change at the protein level in 

knockout cells was the level of P-YAP. This observation is further explored later 

in this chapter. We conclude that the morphology of knockout cells can not be 

explained by a down regulation at the protein level of the Cdc42 effectors 

explored or of other actin related proteins. It is possible that the spatio-

temporal control or localisation of some of these proteins at a global level leads 

to the observed phenotype. 

4.2.5 Cdc42 controls the localisation of P-MLC in primary 
melanocytes 

Imaging of Cdc42 knockout melanocytes and melanoblasts revealed that they 

were inefficient at retracting their pseudopods (Figure 3.15B, 3.16 and Figure 

4.5). Cell contractility occurs through interaction between actin filaments and 

myosin motors, and their interaction is controlled through phosphorylation of the 

myosin regulatory light chain (MLC). It has been reported that Cdc42 can control 

phosphorylation of MLC through its downstream effector MRCK. Active Cdc42 can 

activate MRCK, which in turn can phosphorylate the myosin light chain, leading 

to opening up of the myosin protein structure and binding onto nearby actin 

filament. This cross binding of myosins to the actin cytoskeleton allows 

contractile force generation as the myosin heads walk along filaments (Figure 

4.10A). This led us to hypothesise that this phenotype may be caused by a 

reduction in this regulatory phosphorylation. 

However, as shown earlier in this chapter (Figure 4.9), phosphorylation levels of 

the MLC were unchanged in DMSO and OHT treated cells. The graph in Figure 

4.10B expresses this data as a ratio as an average from three blots, showing that 

the levels of P-MLC between DMSO and OHT treated EW7 and EW1 melanocytes 

is unaltered. This lead us to question whether in fact it was the localisation of 

MLC phosphorylation that was altered in these cells. To investigate this,  
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Figure 4.10 Knockout melanocytes have the same levels of phosphorylated-MLC but is 
differently localised 
(A) Schematic demonstrating that Cdc42 can control phosphorylation of the  regulatory myosin light 
chain through it’s effector MRCK. (B) Graph showing the p-MLC ratio between DMSO/OHT treated 
melanocytes from three independent western blots from lysates of EW1 and EW7 Cdc42 f/f Cre-
ERT2; CDKN2 -/- primary melanocyte probed for P-MLC Thr18/Ser 19. (C) Immunofluorescence 
staining of EW7 primary melanocytes treated with DMSO or OHT stained for DAPI (nucleus) (blue) 
phalloidin (F-actin) (red) and P-MLC Thr18/Ser19 (green). Scale 20 µm. 
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immunoflourescence staining was performed to visualise the localisation of MLC 

phosphorylation at position threonine 18 or serine 19 (Figure 4.10C). Staining in 

DMSO control cells revealed that myosin phosphorylation occurs around the cell 

cortex, co-localising with actin staining. However, staining in OHT treated cells 

revealed a very different localisation, with phosphorylation mainly occurring 

around the cell nucleus. We therefore believe that Cdc42 is required by the cell 

to phosphorylate the MLC in the correct location in the cell. The lack of P-MLC in 

knockout pseudopods may partly explain why these cells are unable to retract 

these extensions, rendering them unable to migrate efficiently. 

4.2.6 Cdc42 controls the activation and nuclear accumulation of 
YAP, but not its response to serum starvation 

As highlighted earlier, YAP phosphorylation was increased in Cdc42 knockout 

cells (Figure 4.11A). YAP and TAZ are newly emerging transcriptional regulators 

that play exciting roles in development, tissue homeostasis and cancer (Low et 

al., 2014). Due to recently reported links between Cdc42 and YAP during kidney 

development (Reginensi et al., 2013), we decided to further investigate the 

relationship between YAP and Cdc42 in primary melanocytes. According to the 

literature, an increase in the phosphorylated population of YAP would mean 

more inactive, cytoplasmic YAP. To explore this, we quantified the 

nuclear/cytoplasmic ratio of YAP in fixed DMSO and OHT treated primary 

melanocytes on fibronectin by immunofluorescence (Figure 4.11B). This 

quantification suggested that there is in fact more YAP in the cytoplasm of OHT 

cells compared to DMSO treated cells (Figure 4.11C).  

We were intrigued by this finding, and we wondered whether this inactivation of 

YAP in the absence of Cdc42 led to the migration and morphology defects of 

these cells. However, knocking down YAP in EW7 primary melanocytes did not 

result in a Cdc42 null-like phenotype, showing that less transcription from YAP 

related targets are not alone responsible for the knockout morphology (Figure 

4.12A and B). We were also intrigued whether Cdc42 played a role in YAP 

signalling in response to serum addition. In DMSO treated cells, addition of 

serum after serum starvation results in a decrease in YAP phosphorylation,  
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Figure 4.11 YAP phosphorylation is increased in the absence of Cdc42 leading to a 
decrease in nuclear YAP 
(A) Western blotting on lysates from EW1 and EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- primary 
melanocyte cell lines treated with DMSO or OHT probed for YAP and P-YAP. (B) 
Immunofluorescence staining of EW7 primary melanocytes treated with DMSO or OHT on 
fibronectin, fixed and stained for DAPI (nucleus) (blue) phalloidin (F-actin) (green) and YAP (red). 
Scale 20 µm. (C) Quantification of the nuclear-to-cytoplasmic ratio of YAP in DMSO or OHT treated 
EW7 melanocytes. Measurements taken from 80 cells from each condition from 3 separate 
experiments Graph shows mean ± SEM, ***p<0.001 t-test. 
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Figure 4.12 Knockdown of YAP in melanocytes does not mimic loss of Cdc42 
(A) Images of EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/-  primary melanocytes non-treated (NT) or 
treated with scramble siRNA (Scramble) or YAP siRNA (si1,5,6 and7). (B) Western blot on lysates 
from cells treated in (A). (C) Western blotting on DMSO or OHT treated EW7 melanocyte lysate for 
levels of YAP and P-YAP in response to serum starvation. Cells were serum starved overnight (0) 
then serum was added back and lysates taken 30, 60, 120 and 240 min after re-addition. Control 
lysate shows levels prior to starvation (NS). Blots representative of three independent experiments. 
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meaning signalling from these factors leads to YAP activation and nuclear 

translocation (Figure 4.12C). However, loss of Cdc42 did not impair this 

signalling, showing it is not a major player in this pathway (Figure 4.12C). We 

conclude that levels of phosphorylated-YAP are elevated in the absence of 

Cdc42, and that this leads to confinement of YAP in the cytoplasm. However, 

YAP signalling alone does not seem to underpin the morphology of these cells, 

although it may contribute in some way along with other factors. 

4.2.7 Knockout protrusions are not solely dependent on 
microtubules, formins or Arp2/3 to form 

Following on from our investigation into the actin dynamics at the tips of 

knockout pseudopods, we wanted to gain a deeper understanding of how these 

were generated. We wanted to see if in the absence of Rac driven lamellipod 

formation, whether pseudopods were based on other drivers such as the 

microtubule network or formins.  

Given the relative stability of knockout pseudopods, we though it possible that 

the microtubule cytoskeleton was driving and supporting them. To investigate 

this, DMSO and OHT treated primary melanocytes were treated with the 

microtubule destabilising agent nocodazole. Immunofluorescent staining using 

the tyrosinated tubulin antibody revealed that the microtubule network was 

indeed abolished (Figure 4.13A). Interestingly, OHT treated cells were still 

elongated after drug treatment, and their long, thin protrusions were still 

present. This told us that microtubules alone are not supporting these aberrant 

pseudopods. We then wondered if these protrusions could form in the absence of 

microtubules, and whether they were in fact driving their formation. To answer 

this we imaged these nocodazole treated control and knockout primary 

melanocytes re-settling in the presence of nocodazole (Figure 4.13B and C). 

Intriguingly, when knockout melanocytes are challenged to settle in the absence 

of the microtubule network, they no longer extend two long protrusions in either 

direction, instead they form multiple spider-like extensions in a similar manner 

to control cells in the same conditions. We therefore conclude that knockout  
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Figure 4.13 Microtubules are not essential to support the long thin protrusions made by 
knockout melanocytes, but they contribute to their bipolar nature 
(A) Immunofluorescence staining of DMSO or OHT treated EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- 

primary melanocytes on fibronectin after 2 hours treatment with 5µg/ml nocodazole. Stained to 
show the microtubule cytoskeleton using tyrosinated tubulin (red) and the nucleus using DAPI 
(blue). 30 µm scale. (B) Immunofluorescence staining of EW7 melanocytes pre-treated with 5µg/ml 
nocodazole then trypsinised and re-settled in the presence of 5µg/ml nocodazole. Stained for 
tyrosinated tubulin (red) and DAPI (blue). 20 µm scale (C) TL images on melanocytes described in 
(B) prior to fixation and staining. Scale 30 µm. 
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pseudopods are not dependent on the microtubule network for support or to 

drive their growth. It does seem however that in the absence of Cdc42 that the 

microtubule cytoskeleton may be responsible for the bi-polar aspect of their 

morphology. 

To extend these findings, we performed similar experiments using the broad 

formin inhibitor SMIFH2 and the Arp2/3 inhibitor CK-869 to investigate weather 

actin polymerisation via formins or the Arp2/3 was responsible for the Cdc42 

knockout phenotype. Treatment with either drug on settled OHT treated 

melanocytes did not appear to drastically alter cell morphology (Figure 4.14A 

and 4.15A), however, as expected treatment with 20 µM CK-869 prevented 

control melanocytes from ruffling (Figure 4.15A). Knockout melanocytes pre-

treated with these drugs also successfully managed to settle in the presence of 

these inhibitors (Figure 2.14B and 2.15B). It seems therefore that in the absence 

of Cdc42, cells are not reliant on formins or pathways leading to activation of 

the Arp2/3 complex to extend their characteristic static protrusions, forming the 

knockout morphology that we see when these cells are spread. 

4.2.8 Cdc42 promotes G1 to S transition and is necessary for 
efficient cytokinesis in melanocytes 

Cultured primary melanocyte lines also provided a tool to further investigate the 

proliferation defects observed in Cdc42 null melanoblasts in vivo. OHT treated 

melanocytes were markedly slower to proliferate on plastic in culture, with 

cultures barely increasing in number over a four day period after treatment 

(Figure 4.16A). Cell-cycle analysis was performed on DMSO and OHT treated EW7 

melanocytes by incubating adherent cells with BrdU for 3 hours, followed by 

flow-cytometry analysis using an anti-BrdU antibody to highlight cells in S-phase 

and propidium iodide to stain the chromatin of all cells (Figure 4.16B). The cell-

cycle distribution of Cdc42 knockout melanocytes showed significantly less cells 

in S phase, falling to just 5% compared to 18% in DMSO populations. More cells 

were seen in G1 increasing from around 80% in DMSO conditions to 93% knockout 

populations. This demonstrates that cells are gathering in G1 and not progressing  
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Figure 4.14 Cdc42 knockout melanocytes do not rely on formins to form protrusions or 
spread. 
(A) Immunofluorescence staining of DMSO or OHT treated EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- 
primary melanocytes on fibronectin after 3 hours treatment with 5µM of the formin inhibitor 
SMIFH2, stained with phalloidin (green). 30 µm scale. (B) Time lapse images of EW7 melanocytes 
pre-treated with 5 µM SMIFH2 then trypsinised and re-settled in the presence of 5 µM SMIFH2 
stained with phalloidin. Scale 30 µm. 
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Figure 4.15 Knockout melanocytes can still spread in the presence of Arp2/3 inhibitor and 
cells are less bi-polar 
(A) Immunofluorescence staining of DMSO or OHT treated EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- 

primary melanocytes on fibronectin after 3 hrs treatment with DMSO (Ctl) or 20µM of the Arp2/3 
inhibitor CK-869, stained with phalloidin (green) and p34 (red). 20 µm scale. (B) TL images of EW7 
melanocytes pre-treated with 20 µM or 40 µM CK-869 then trypsinised and re-settled in the 
presence of 20 µM or 40 µM CK-869. 30 µm scale. 
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Figure 4.16 Cdc42 is required for cell-cycle transition from G1 to S-phase 
(A) Melanocyte proliferation assay of control (DMSO treated) and Cdc42 knockout (OHT treated) 
cell lines (EW1 and EW7). Error bars show SEM from three independent experiments in triplicate. 
(B) Representative plot from flow-cytometry analysis of Cdc42 f/f Cre-ERT2; CDKN2 -/- melanocytes 
pre-treated with DMSO or OHT and pulse labeled with BrdU for 3 hrs and stained with PI. (C) 
Percentage of melanocytes in cell-cycle phases from three independent experiments (B). Error 
bars show SEM **p= 0.0039 (G1 phase) **p= 0.0017(S phase). *p<0.05, **p<0.01 t-test. Scale 10 
µm 
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efficiently into S phase (Figure 4.16C). This confirms our findings in vivo that 

loss of Cdc42 results in a smaller population of cells entering S phase. This work 

using cultured primary cells adds to this finding, and support a role or Cdc42 in 

G1 progression. 

Cdc42 appears to play a similarly important role in cytokinesis in vitro as seen in 

vivo. Analysis of time-lapse imaging of melanocyte division from rounding up to 

cytokinesis showed that melanocytes from both EW1 and EW7 lines took over 

twice as long to complete the division cycle (Figure 4.17A and B). As seen during 

Cdc42 null melanoblast division, this extended time can be attributed to a 

defect in cytokinesis (highlighted between green and red frames). Knockout 

melanocytes failed to separate efficiently from each other, suggesting that 

Cdc42 plays a key role in cytokinesis (Supplementary video 5). Taken with our in 

vivo findings that Cdc42 controls the number of cells entering S phase, and that 

is required for normal cytokinesis in melanoblasts, this data show that Cdc42 is 

in fact promoting transition of cells from G1 into S-phase. It also confirms that 

Cdc42 is not only required for cytokinesis in 3D, but cultured melanocytes 

dividing on a 2D substrate also require Cdc42 to efficiently carry out cytokinesis. 
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Figure 4.17 Cdc42 knockout melanocytes have an extended division time and cytokinesis 
defect 
(A) Time-lapse imaging of division of DMSO or OHT treated Cdc42 f/f Cre-ERT2; CDKN2 -/-  
primary melanocyte cells (EW7) on fibronectin from rounding up, cleavage formation (green) to 
separation of daughter cells (red). Images captured every 15 mins, Scale 10 µm. (B) Total division 
time from rounding up to complete separation of daughter cells (red) of primary melanocyte lines 
EW1 and EW7. Graph shows mean ± SEM, ***p<0.001 t-test. 
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4.3 Discussion 

4.3.1 Cdc42 is essential for normal pseudopod dynamics and 
migration in melanocytes, as in their melanoblast 
precursors 

Knockdown or inducible knockout of Cdc42 in three primary melanocyte lines 

consistently resulted in an elongated morphology, preventing the formation of 

lamellipodia, which were frequently seen in control melanocytes (Figure 4.1B 

and 4.5A). Instead, knockout melanocytes could often only extend two long, thin 

protrusions in opposite directions, bearing a striking similarity to Cdc42 null 

melanoblasts. Imaging of the inducible Cdc42 knockout lines EW1 and EW7 

showed that their pseudopods were extremely long-lived, in fact these cells 

were often static, confined to the location where they initially spread (Figure 

4.5C and D). The bipolar nature of these cells, together with their defects in 

pseudopod dynamics and inability to migrate mirrored almost exactly our 

observations in Cdc42 knockout melanoblasts. In fact, loss of Cdc42 in vitro 

caused a more severe phenotype than in vivo. Cdc42 null melanoblasts in vivo 

are at least able to migrate some distance, and extend some short-lived 

protrusions (Figure 3.16), whereas knockout melanocytes are almost static even 

on fibronectin matrix (Figure 4.5). This difference could be due to the extra 

structural support from surrounding cells in vivo, and it would be interesting to 

see if knockout melanocytes were more motile in a co-culture of keratinocytes. 

These observations confirmed that these melanocytes were a valid and 

interesting in vitro model to further investigate the role of Cdc42 in the 

migration of the melanocyte lineage. 

4.3.2 Cdc42 coordinates the regulators of branched actin 
networks, but not the activation of Rac1 

It was clear from the morphology of Cdc42 knockout melanocytes that loss of 

Cdc42 in some way prevented the formation of lamellipodia (Figure 4.5A). 

Traditionally, the Rho GTPase Rac1 is more commonly associated with formation 

of these branched actin structures, as it can activate the Arp2/3 complex 

through activation of the NPF SCAR/WAVE, inducing extension of existing F-actin 

filaments at a 70° angle (Figure 1.1)(Insall and Machesky, 2009). We confirmed 

that there was strong recruitment of both the Arp2/3 and SCAR/WAVE 
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complexes at the leading edge of lamellipodia in control melanocytes (Figure 

4.6A). However, only weak, patchy recruitment could be seen at the tips of 

Cdc42 knockout cells, presumably contributing to the formation of the small 

ruffles at the tips of these cells (Figure 4.5B). This is also in agreement with our 

observation that actin bursts can be seen at the tips of Cdc42 null melanoblasts 

(Figure 3.19). 

Remarkably, this lack of branched actin networks in the absence of Cdc42 is not 

due to a reduction of active Rac, as shown using a FLIM reporter of Rac activity 

and by pull-downs for active Rac with PAK-CRIB beads. Indeed, results from FLIM 

assays suggest more active Rac is present in knockout cells (Figure 4.7). Our 

current knowledge of the interaction and feedback/feed forward loops between 

Rac1 and Cdc42 are limited, but this observation is in contrast to that of 

Nishimura et al. who suggest that Cdc42 is responsible for Rac activation through 

the Rac GEFs STEF/Tiam1 (Nishimura et al., 2005). It is likely that the activation 

of Rac by Cdc42 and vice versa is cell type and context dependent. In this 

system, we hypothesise that Cdc42 is responsible for the correct localisation of 

Rac within the cell. Without Cdc42, Rac can be activated, possibly to higher 

levels than that of control cells possibly due to its aberrant localisation and GEF 

proximity. However, without Cdc42 to provide positional cues, knockout 

melanocytes have a restricted ability to form branched actin networks, and 

can’t open up into lamellipodia to facilitate efficient migration. Cdc42 also 

appears to provide cues for the robust recruitment of Arp2/3 and SCAR/WAVE to 

the membrane, which may also contribute to the lack of lamellipodia in 

knockout cells. 

4.3.3 Cdc42 controls cell contractility by directing the location of 
myosin light chain phosphorylation 

Loss of Cdc42 in both melanoblast and melanocyte systems caused elongated and 

long lived pseudopods, presumably due to the cells inability to retract them. We 

were therefore interested in investigating the actin-myosin cytoskeleton in these 

cells. Force for movement can be generated through coordination of the 

elongation and retraction of actin-myosin meshes. The assembly of actin-myosin 

fibres can be controlled through multiple mechanisms, one of which is 

phosphorylation of the myosin regulatory light chain. 
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 Due to their static nature and inability to achieve pseudopod retraction, we 

were surprised not to see a reduction in the phosphorylated levels of MLC in 

Cdc42 knockout melanocytes (Figure 4.10B). We therefore hypothesised that the 

contribution of the Cdc42/MRCK pathway to phosphorylation at this position 

could be compensated for through other pathways (such as the RhoA/ROCK) in 

the absence of Cdc42. Such convergence between Cdc42/MRCK and Rho/ROCK 

signalling has been described to enable switching between rounded and 

elongating cell migration (Wilkinson et al., 2005). We did observe however, that 

Cdc42 is essential for MLC to be phosphorylated in the correct location within 

the cell. This was intriguing as small changes in the spatial location of MLC 

phosphorylation are key in modifying actin-myosin dynamics, and can lead to 

changes in adhesion, morphology and motility (Unbekandt and Olson, 2014). Loss 

of Cdc42 resulted in a drastic accumulation if p-MLC around the cell nucleus, 

and we hypothesise that the lack of MLC phosphorylation along the length of 

their pseudopods is the reason why they are unable to retract them (Figure 

4.10C). It seems therefore that Cdc42 controls the spatial cues for correct MLC 

phosphorylation. This observation is in line with Cdc42s role as a master 

regulator of cell polarity, leading the spatial organisation of various components. 

We suggest that this mislocalisation of myosin phosphorylation in the absence of 

Cdc42 partly underpins the elongated morphology and migration defects of 

melanoblasts and melanocytes, most likely in combination with other factors 

that still remained unclear. 

4.3.4 Cdc42 controls YAP nuclear accumulation but abrogation of 
YAP signalling does not affect melanocyte morphology 

In an attempt to identify the molecular players behind the Cdc42 knockout 

phenotype, we blotted for a broad array of Cdc42 effectors or actin binding 

proteins. We largely saw no difference at the protein levels of the classical 

Cdc42 effectors N-WASP, IQGAP1, PAK2 or ERK, actin related proteins p34 and 

FAK or the other classic Rho GTPases Rac1 or RhoA (Figure 4.9). This suggested 

that the knockout phenotype was most likely not due any obvious 

downregualation at the protein level of any single effector, but this approach 

does not take into account the activation state or localisation of these effectors. 
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Recent studies have implicated YAP, a transcriptional co-activator downstream 

of the hippo kinase pathway as a new Cdc42 effector. In a study of kidney 

development, Reginensi et al demonstrated that a tissue specific inactivation of 

Cdc42 caused a severe defect in nephrogenesis, which was strikingly similar to 

loss of YAP in this tissue (Reginensi et al., 2013). YAP and TAZ have recently 

been the focus of a great number of studies, and appear to regulate cell 

proliferation, differentiation and homeostasis (Varelas, 2014, Elbediwy et al., 

2016). Due to their emerging roles in cancer, tissue regeneration stem cell 

biology, the race is on to fully understand how these hippo pathway effectors 

control these processes (Hiemer et al., 2014, Zanconato et al., 2016). 

The activity of YAP/TAZ is regulated through phosphorylation, primarily by LATS 

kinase. This phosphorylation allows binding of 14-3-3 proteins, which harbour 

YAP/TAZ in the cytoplasm, preventing transcription of their target genes 

(Piccolo et al., 2014). We were interested in investigating the activation levels 

of YAP in our Cdc42 knockout melanocytes, particularly due to the reported role 

of YAP/TAZ in matrix adhesion, mechanotransduction and polarity. We 

hypothesised that these transcriptional co-activators may be downstream 

effectors of Cdc42 and therefore misregulated in knockout, leading to 

ineffective communication between cells and the underlying matrix. This could 

explain the morphology of our knockout cells. We did indeed see a consistent 

and substantial increase in the phosphorylation of YAP in Cdc42 knockout cells, 

suggesting a down regulation of YAP target genes (Figure 4.11A). Furthermore, 

we observed that this translated into a higher proportion of cytoplasmic YAP in 

knockout melanocytes (Figure 4.11B and C). However, this alteration in YAP/TAZ 

signalling does not appear to directly underpin the phonotype of our cells, as 

blocking YAP signalling by knockdown of YAP did not lead to an elongated cell 

morphology (Figure 4.12A and B). 

4.3.5 Knockout protrusions are not dependent on microtubules, 
Arp2/3 or formins to extend 

By observing control and knockout melanocytes spreading, we saw that their 

morphology resulted from the slow but steady extension of thin and long 

protrusions. To more fully understand the Cdc42 knockout phenotype, we used 

various inhibitors in order to disrupt cytoskeletal arrangements. We hoped this 
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would identify which cytoskeletal components or binding proteins were involved 

in the extension of knockout pseudopods. 

Our data suggest that knockout protrusions do not rely on the microtubule 

cytoskeleton for support, and microtubule polymerisation does not drive their 

extension (Figure 4.13A and B). However, when knockout melanocytes spread 

after disruption of the microtubule cytoskeleton by nocodazole treatment, they 

no longer take on a bi-polar morphology. This might suggest that microtubules 

are providing the bi-polar framework during spreading in the absence of Cdc42, 

and with that driving the vesicle network down these two tracks. Due to Cdc42s 

role in organisation of the MTOC and microtubule network to drive cell polarity 

and support persistent migration, this could be a likely scenario (Etienne-

Manneville and Hall, 2001) (Etienne-Manneville and Hall, 2003, Etienne-

Manneville et al., 2005).  

We hypothesised that the extended morphology of Cdc42 null melanocytes could 

be explained by switching from the activation of branched actin filaments to 

linear ones. The obvious candidates in this case would be formin homology 

domain proteins such as the diaphanous related proteins (Figure 1.1). However, 

we observed that knockout melanocytes spreading in the presence of the broad 

spectrum formin inhibitor SMIFH2 have no trouble in extending their long thin 

protrusions at the concentrations used (Figure 4.14). This was also the case 

when they were spread in the presence of the Arp2/3 inhibitor CK-869, 

suggesting that neither formins nor the Arp2/3 complex play a major role in the 

extension of these pseudopods in the absence of Cdc42 (Figure 4.15).  

4.3.6 Cdc42 promotes G1 to S transition and controls cytokinesis 
in melanocytes 

Similarly to Cdc42 null melanoblasts, loss of Cdc42 in primary melanocyte lines 

in vitro also led to a proliferation defect (Figure 4.16A). We investigated this 

defect more closely in melanocytes lines using flow-cytometry to separate the 

melanocyte population into the different cell-cycle phases after incubation with 

BrdU. This analysis confirmed our observation in vivo that fewer knockout 

melanoblasts are in S phase (Figure 4.16 B and C). We observed that instead of 

progressing into S phase, knockout cells accumulate in G1, suggesting that Cdc42 
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is important for this progression. Therefore, Cdc42 appears to pay a similar role 

in promoting G1 to S transition in vivo and in vitro, confirming previous 

observations linking Cdc42 to cell-cycle progression (Olson et al., 1995). 

Interestingly, we also observed cytokinesis defects in cultured primary 

melanoblasts. As seen during melanoblast division in vivo, Cdc42 knockout 

melanocytes are unable to round up at mitotic onset (Figure 4.17). This defect in 

even more striking in vitro, as in the majority of cases knockout cells remain 

almost entirely attached and spread throughout division. The severity of this 

defect in vitro may be due to the lack of support by surrounding cells. As in vivo 

total division time is doubled, again largely due to the extended time the cell 

takes to complete cytokinesis in the absence of Cdc42. The requirement for 

Cdc42 during division in both 2D and 3D environments appears to be unique, as 

this was not the case for Rac1 (Li et al., 2011). Despite playing a role in the 

separation of daughter cells in vivo, no obvious delay was observed in Rac1 

depleted melanocytes in vitro. This observation is in agreement with the current 

hypothesis that Rac1 activity must be repressed at the equator for efficient 

cytokinesis. Overexpression of a constitutively active form of Rac1 causes 

multinucleation or failed cytokinesis in HeLa cells (Bastos et al., 2012). 

Therefore, our observations of melanoblast and melanocyte division in 2D and 3D 

have highlighted similar but distinct roles for these GTPases during this process. 

Both Cdc42 and Rac1 are important in promoting G1 to S transition both in vivo 

and in vitro, but it remains unclear if they achieve this through the same 

pathway. Cdc42 maintains its integral role during cytokinesis in vitro, which is 

mostly likely due to its role in regulating formation of the contractile ring (Zhu 

et al., 2011). On the other hand, Rac1 activity must be repressed during 

cytokinesis, and loss of Rac1 does not impact cytokinesis in vitro (Bastos et al., 

2012, Li et al., 2011). 

4.4 Summary 

Using cultured primary melanocyte cell lines with a capacity for inducible 

knockout of Cdc42, we have demonstrated that Cdc42 is also essential for 

normal pseudopod dynamics and efficient migration in this in vitro model. Using 

this system, we demonstrated that Cdc42 is essential for the recruitment of 

branched actin regulators to the leading membrane, but not for Rac activation. 

We hypothesise that Cdc42 is responsible for the correct positioning of active 
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Rac to the membrane to produce branched actin networks. In addition, we 

observed that Cdc42 directs phosphorylation of the myosin light chain to the 

correct localisation in the cell to control cell contraction. We also demonstrated 

a conserved role for Cdc42 in G1 to S transition and cytokinesis in 2D and 3D 

systems.
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5 Cdc42, Melanocyte Gene Expression and 
Coordination of Adhesion Dynamics 

5.1 Introduction and aims 

Studying the effect of Cdc42 deletion on melanoblast and melanocyte migration 

and proliferation demonstrated a major role for Cdc42 in the global and spatial 

coordination of actin related proteins into efficient pseudopod extension, cell 

translocation and cytokinesis. Interestingly, our work suggests unique roles for 

Cdc42 and Rac1 in migration, with Rac primarily involved in inducing actin 

polymerisation to drive pseudopod extension. In contrast, Cdc42 null cells can 

produce pseudopods that display relatively normal actin dynamics, with elevated 

levels of active Rac. We therefore believe that Cdc42 has a more global role in 

coordinating the actin polymerisation stimulated by Rac into coordinated cell 

migration, however the link between these still remains unclear. Taking a global 

approach to discover the implication of Cdc42 deletion on melanocyte signalling 

networks may give us clues into the defects behind the morphology of Cdc42 

knockout cells. 

To achieve this, we selected an RNA sequencing approach due to our recent 

success with this technique in Rac1 knockout melanocyte cells lines. This 

technique begins with isolation of RNA from cells. RNA is then reverse 

transcribed into a cDNA library which is then mathematically processed to 

identify genes significantly up or down-regulated between conditions. We aimed 

to isolate RNA of sufficient quality from control and Cdc42 knockout 

melanocytes, perform library preparation and sequencing followed by pathway 

analysis to identify genes up or down-regulated in the absence of Cdc42. We 

could use this information to build a picture of changes in global cell gene 

expression in the absence of Cdc42, providing a deeper understanding of which 

networks Cdc42 controls to facilitate cell migration. 
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5.2 Results 

5.2.1 RNA sequencing of Cdc42 knockout melanocytes reveals 
global changes in diverse signalling networks   

In order to map changes in gene expression profiles when Cdc42 is lost in the 

melanocyte lineage, RNA sequencing analysis was performed on two primary 

melanocyte cell lines with capacity for inducible Cdc42 knockout. RNA was 

isolated from melanocyte lines EW2.1 and EW2.2, which are of the same 

genotype as melanocyte lines EW1 and EW7 (Cdc42 f/f Cre-ERT2; CDKN2 -/-). 

Lines EW1 and EW7 were not used in this study as RNA isolated from these lines 

was not of sufficient quality to proceed with sequencing. However, Cdc42 

deletion was confirmed in EW2.1 and EW2.2 (Figure 5.1A), which adopt the same 

elongated morphology as seen in EW1 and EW7 lines. RNA was isolated in two 

separate experiments from these primary melanocyte lines previously incubated 

with DMSO or OHT for 5 days. Principle component analysis (PCA) of EW2.1 and 

EW2.2 (WT and KO) showed that these two biological replicates were consistent 

(Figure 5.1B). 

From this analysis, seven genes were discovered to be significantly altered in 

expression between DMSO and OHT conditions in both cell lines (Figure 5.1C). 

The most significant of these was prostaglandin D2 synthase (Ptgds), which was 

found to be up-regulated 5-fold in Cdc42 knockout lines. This is an enzyme 

expressed mostly in the brain that catalyses the conversion of prostaglandin H2 

to prostaglandin D2, which acts as a neuromodulator and trophic factor. The 

ADAMTS like 4 gene (a disintegrin and metalloproteinase with thrombospondin 

motifs) (Adamtsl4) encodes a protein with seven thrombospondin type 1 repeats 

was also seen to be up-regulated 3-fold. These domains are found in proteins 

with many different functions, such as modulation of cellular adhesion. 

Interestingly, expression of the adhesion receptor integrin α4 was also 

significantly down-regulated, demonstrating a 3-fold down-regulation in Cdc42 

knockout cells. 

Transcripts from both DMSO conditions and OHT conditions were then pooled, 

and genes that demonstrated significant (padj<0.05) down-regulation (290 

genes) and up-regulation (343 genes) were submitted to DAVID for Gene  
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Figure 5.1 RNA sequencing of Cdc42 knockout melanocytes implicates Cdc42 in the 
expression of diverse signalling components 
(A) Western blot of DMSO or OHT treated EW2.1 and EW2.2 Cdc42 f/f; Cre-ERT2; CDKN2-/- 
primary melanocyte cell line lysates probed for Cdc42 and GAPDH. (B) Principal component 
analysis (PCA) plot of the RNA sequencing data showing the trends exhibited by the expression 
profiles of Cdc42 KO in EW2.1 (red) and EW2.2 (pink) and wild-type EW2.1 (dark blue) and EW2.2 
(light blue). (C) Table summarising the genes found to be significantly up or down-regulated in the 
absence of Cdc42, that were consistent without grouping cell lines. (D) Significant expression 
changes between KO and WT cell lines (padj<0.05) were submitted to DAVID Gene Ontology 
analysis.  Significantly enriched KEGG Pathways (pValue<0.05) for genes demonstrating a change 
in expression. 
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Ontology analysis to identify pathways that were altered in the absence of Cdc42 

(Gene lists can be found in Supplementary Spreadsheet 1). Lysosomal signalling 

networks came out as most significant from this analysis, indicating that the 

largest group of genes significantly altered in Cdc42 knockout melanocytes fall 

into this category (Figure 5.1D). Genes involved in ‘Pathways in cancer’ and in 

‘Focal Adhesion’ KEGG pathways were the next two significant groups (Figure 

5.1D). Our analysis explores the role of Cdc42 at a global level in the melanocyte 

lineage and demonstrates that Cdc42 is affecting a wide array of signalling 

pathways. 

5.2.1.1 Genes involved in lysosomal signalling are significantly up-regulated 
in Cdc42 knockout melanocytes 

When genes that demonstrated significant up-regulation (padj<0.05, 343 genes 

in total) were submitted to DAVID for Gene Ontology analysis, the lysosomal 

KEGG pathway was again the most significant pathway from this analysis (Figure 

5.2A). Interestingly, multiple subunits of the V-ATPase enzyme are up-regulated 

in knockout cells (ATP6voc, ATP6ap1, ATP6voc-ps2, ATP6v0a1,ATP6v0b and 

ATP6vod2) (Figure 5.2B). These genes encode multiple components of the 

vacuolar ATPase, which acidifies organelles. The acidification of organelles is 

necessary for many processes, including protein sorting, receptor-mediated 

endocytosis, and the generation of the synaptic vesicle proton gradient. It seems 

likely that the up-regulation of this complex could indicate defects in organelle 

acidification in knockout cells. Changes caused by this up-regulation could in 

some way add to the unusual morphology of these cells. 

5.2.1.2 Signalling to global adhesion networks is down-regulated in Cdc42 
knockout melanocytes  

We then focused on the 290 genes that were significantly (padj<0.05) down-

regulated in OHT treated cell-lines compared to DMSO treated cell-lines. These 

genes were submitted to DAVID for Gene Ontology analysis to find if they 

grouped into global signalling networks. The top two KEGG pathways from this 

analysis were ‘Pathways in cancer’ and ‘Focal adhesion’ (Figure 5.3A). We then 

looked closely at the genes involved in these pathways that had been picked out 

from our data set (Figure 5.3B). They included integrin α4 (Itga4), 
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Figure 5.2 Genes involved in lysosomal networks are up-regulated in the absence of Cdc42 
Data from RNA sequencing analysis from DMSO or OHT treated EW2.1 and EW2.2 Cdc42 f/f; Cre-
ERT2; CDKN2-/- primary melanocyte cell lines. (A) Significantly changed genes between KO and 
WT cell lines (padj<0.05) were submitted to DAVID for Gene Ontology analysis.  Significantly 
enriched KEGG Pathways (pValue<0.05) were identified for genes demonstrating an increase (Up) 
in expression. (B) Hierarchical clustering analysis of KEGG GO: ‘Lysosome’ genes identified as 
significantly changed in the dataset. Heat bar indicates the mean log2 fold change in gene 
expression between KO and WT cell lines EW2.1 and 2.2 
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Figure 5.3 Genes involved in pathways in cancer and focal adhesion signalling are down-
regulated in the absence of Cdc42 
Data from RNA sequencing analysis from DMSO or OHT treated EW2.1 and EW2.2 Cdc42 f/f Cre-
ERT2; CDKN2-/- primary melanocyte cell lines. (A) Significant expression decreases between KO 
and WT cell lines (padj<0.05) were submitted to DAVID Gene Ontology analysis.  Significantly 
enriched KEGG Pathways (pValue<0.05) for genes demonstrating a decrease (Down) in 
expression. (B) Hierarchical clustering analysis of KEGG GO: ‘Focal adhesion’ genes identified as 
significantly changed in the dataset.  Heat bar indicates the mean log2 fold change in gene 
expression between KO and WT cell lines EW2.1 and EW2.2. (C) Graph showing the relative log2 
fold change of the genes associated with the KEGG GO ‘Pathways in cancer’ data set. 
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Integrin α8 (Itga8), integrin α6 (Itga6), Rock2, FAK (Ptk2), and Vasp. All of the 

genes in this pathway were down-regulated in both EW2.1 and EW2.2 cell lines, 

with the exception of Phosphoinositide-3-Kinase regulatory subunit 3 (Gamma), 

which was up-regulated. Although most of these genes were significantly down-

regulated in both cell lines, fold changes were consistently lower in EW2.1 than 

EW2.2. The ‘Pathways in cancer’ KEGG pathway showed down regulation of Cdk6 

(cyclin dependant kinase 6), Pdgfa (Platelet-derived growth factor subunit A), 

Breast cancer associated gene 2 (Brca2), ABL1 (Abelson murine leukemia viral 

oncogene homolog 1) and Tgfb1 (transforming growth factor beta 1), all down 

between –0.5 to -1.2 log2 fold-change (Figure 5.3C). 

Western blotting was used to investigate whether the down regulation of these 

focal adhesion signalling pathway genes would lead to a decrease at the protein 

level (Figure 5.4 A-J). Integrin α4 was significantly decreased at the protein 

level, reduced by over half. Interestingly, integrin β3 was also reduced, although 

this gene was up regulated at the RNA level (Supplementary table 1). This may 

suggest that integrin β3 is downregulated at the protein rather than the RNA 

level. Other adhesion related proteins such as Rock2, Talin and integrin α6 

showed a trend towards lower protein levels, but these changes were not 

significant. 

This striking change in the levels of integrin α4 prompted us to look at integrin 

β1, the subunit with which it is often partnered. RNA transcript levels were 

modestly but not significantly decreased according to our data set 

(Supplementary table 1). There was no observable difference in the levels of 

integrin β1 in either cell line tested (Figure 5.5A). However, looking at the 

localisation of integrin β1 using immunofluorescence staining shows that Cdc42 

null cells have fewer β1 integrin mediated adhesions (Figure 5.5B). Integrin β1 

can be seen in adhesions beneath the lamellipod in DMSO treated cells. In OHT 

treated cells, integrin B1 still localises to adhesions but there are many fewer 

foci and they appear to be smaller. We also confirmed that there is no change in 

integrin αV at the protein level as seen in our RNA sequencing data (Figure 

5.5A). 
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Figure 5.4 Protein levels of integrins α4 and β6 are decreased in Cdc42 knockout 
melanocytes 
(A, C, E, G , I) Western blot of EW1 and EW7 melanocyte cell line lysates probed as indicated to 
show protein levels of adhesion related genes. (B, D, F, H, J) Normalised integrated density of 
western blot bands from three independent experiments as indicated. Graphs show mean ±	SEM	
*p<0.05, **p<0.01 t-test 
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Figure 5.5 Integrin β1 levels are unchanged in Cdc42 knockout melanocytes but less is 
recruited to adhesions 
(A) Western blot of EW1 and EW7 melanocyte cell line lysates probed with anti- integrin	β1, αV and 
GAPDH antibodies. (B) DMSO or OHT treated EW7 melanocytes (Cdc42 f/f; Cre-ERT2; CDKN2-/-) 
melanocytes fixed and stained with phalloidin (F-actin) (green) and integrin β1 integrin (red). 
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We looked at the expression levels of other classical Rho GTPases in DMSO and 

OHT treated cells to discover if the loss of Cdc42 induced the expression of 

another GTPase to compensate (Figure 5.6). This appeared not to be the case. 

Cdc42 transcripts are still detected in the knockout cells as only one exon has 

been deleted from this gene, meaning it is transcribed but not translated. Rac1 

expression also appears to be high in the melanocyte lineage, but levels are 

unaltered in the absence of Cdc42. Other members such as RhoB, C, G, J and Q 

are expressed in melanocytes, but again are unchanged in OHT conditions. 

Redundancy between these members may explain why RhoA is not necessary for 

normal melanoblast migration. 

We conclude therefore that Cdc42 is involved in controlling the expression of a 

diverse range of signalling pathways. Interestingly, RNA sequencing analysis 

revealed that a suite of genes involved in focal adhesion signalling are down 

regulated in Cdc42 knockout melanocytes. Notably, integrin α4 and integrin β3 

were substantially reduced at the protein level in these cells, and other 

adhesion related genes were also modestly reduced at the protein level. 

However, loss of Cdc42 does not appear to induce the expression of any other 

GTPase family member in order to compensate for its loss. 

5.2.2 Cdc42 controls melanocyte adhesion number, size and 
lifetime  

Our data showing that Cdc42 knockout melanocytes have defects in migration 

and pseudopod dynamics, together with the down-regulation of adhesion 

signalling networks prompted us to ask whether adhesion dynamics were 

affected in these cells. To explore this, DMSO and OHT treated primary 

melanocytes were plated on fibronectin then fixed and stained for 

phosphorylated paxillin (p-paxillin), an adhesion adaptor protein that is 

recruited early in adhesion formation (Figure 5.7A). DMSO treated control 

melanocytes display a thick band of large adhesions underneath the lamellipod. 

This is in contrast to OHT treated melanocytes which have fewer, smaller 

adhesions at the tips of their protrusions. Quantification from this staining shows 

that OHT treated cells have significantly fewer adhesions per cell with an  
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Figure 5.6 RNA levels of other classic Rho GTPases are unchanged in Cdc42 knockout 
melanocytes 
Data from RNA sequencing analysis from DMSO or OHT treated EW2.1 and EW2.2 Cdc42 f/f; Cre-
ERT2; CDKN2-/- primary melanocyte cell lines. Graph showing the average expression level (RNA 
counts) of the classic Rho GTPase members 
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Figure 5.7 Cdc42 knockout melanocytes form less, smaller adhesions 
(A) EW7 Cdc42 f/f; Cre-ERT2; CDKN2-/- melanocytes treated with DMSO (control) or OHT (Cdc42 
knockout) fixed and stained with F-actin phalloidin (green) and phospho-paxillin (red). Scale 15 µm. 
(B) Number of adhesions per cell and (C) Average adhesion area from at least 46 cells per 
genotype, quantified from phospho-paxillin staining, graphs show mean, ***p<0.001 t-test. 
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 average of 20 compared to 70 in control cells (Figure 5.7B). Their adhesions are 

also significantly smaller, with an average area of 0.75 µm2 compared to 1 µm2 

in control cells (Figure 5.7C). 

Using live cell imaging, we also demonstrated that adhesion dynamics are also 

altered in knockout cells (Figure 5.8A). In control cells expressing paxillin-GFP, 

adhesions formed dynamically under the newly formed lamellipod. This can be 

seen clearly in the ‘merge’ panel, where each frame has been rendered in a 

different colour. Adhesions in knockout cells were relatively static over the 16 

minute time-course, with much less adhesion assembly and disassembly 

occurring in their pseudopod extensions. Measurement of the rate of adhesion 

assembly and disassembly rates revealed that both of these processes occurred 

more slowly in the absence of Cdc42 (Figure 5.8B and C). 

These data show that Cdc42 plays a role in the assembly, maturation, and 

disassembly of adhesions in the melanocyte lineage. Taken together with RNA 

sequencing data that shows a down regulation of focal adhesion signalling in 

knockout cells, we hypothesise that Cdc42 is a key regulator in the expression 

and control of adhesion related proteins. We hypothesise that in the absence of 

Cdc42, cells are unable to support membrane extensions due to this defect, and 

it is likely that this impedes the migration of these cells over matrix in vitro and 

in melanoblast migration In vivo.  

5.2.3 Defects in adhesion and filopodia formation delay the 
spreading of Cdc42 knockout cells 

We were curious whether the adhesion defects observed in cells at steady state 

would also affect their ability to spread after initial attachment to the ECM. We 

predicted that studying the spreading process my also help us understand the 

unusual morphology of Cdc42 knockout cells adopted during spreading. To 

investigate this, DMSO and OHT treated cells were fixed and stained with 

phalloidin at 15, 30, 60 and 120 minutes after seeding to visualise and quantify 

their ability to spread (Figure 5.9A). Cdc42 knockout melanocytes had a smaller 

area than control melanocytes at each time point, indicating that Cdc42 is 

important for these cells to spread (Figure 5.9B). Interestingly, knockout cells  
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Figure 5.8 Cdc42 knockout melanocytes are slower to assemble and disassemble adhesions 
(A) Live confocal imaging sequence of EW7 Cdc42 f/f; Cre-ERT2; CDKN2-/- melanocytes 
transiently transfected with paxillin-GFP, imaged every 4 mins. Merge with each frame in a unique 
colour. Scale 5 µm. (B) Quantification of the rate of assembly and disassembly (C) of adhesions 
from melanocytes transiently expressing paxillin-GFP over 30 minutes. Movies were submitted to 
the Focal Adhesion Analysis Server (FAAS) for analysis of adhesion dynamics.  The mean rate of 
adhesion assembly/disassembly was calculated for each cell (n = 15 cells per condition over 3 
independent experiments). Graphs show mean ± SEM **p<0.01,***p<0.001 t-test with Welch’s 
correction 
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Figure 5.9 Cdc42 knockout melanocytes take longer to spread and have thick cortical actin 
(A) Spreading assay where DMSO or OHT treated EW7 Cdc42 f/f; Cre-ERT2; CDKN2-/- 
melanocytes were plated onto fibronectin coated coverslips and fixed 15, 30, 60 or 120 minutes 
after seeding. Staining shows F-actin (phalloidin) (green). White arrows highlight cortical actin. 
Scale 30 µm. (B) Area of melanocytes (µm2) spreading at indicated times, measurements from at 
least 123 cells per genotype per condition. Plot shows mean plus minimum and maximum values. 
(C) Line graph showing cell index reading from XCELLignence software (indicates cell attachment) 
over 4 hours after seeding. Graph shows average readings taken every 15mins from 3 wells from 
two independent experiments ± SEM **p<0.01,***p<0.001 t-test 
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also have strong cortical actin at each time point, which may restrain these cells 

and prevent them from spreading as quickly. This spreading defect was also 

apparent when using the xCELLigence system. When cells are adhered to the 

microtitre plates used in this assay, it increases the conductivity of the system, 

which can be converted into a cell index. OHT treated cells have a similar index 

in initial stages of the assay, and lines are difficult to separate due to the error 

in this method. As the assay progresses, it becomes clear that OHT treated cells 

are slower to settle and spread than DMSO treated cells (Figure 5.9C). 

The adhesion dynamics of the cells in this assay at 60 and 120 minutes were 

investigated using staining for phosphorylated-paxillin, a multi-domain scaffold 

protein with is recruited early to adhesions (Figure 5.10A). This demonstrated 

that knockout cells are not able to form as many adhesions as they spread as 

control cells. Control cells have an average of 24 adhesions at 60 minutes, 

increasing to around 37 at 120 minutes. Knockout cells only display an average of 

16 adhesions at 60 minutes, and this increased marginally to an average of 20 at 

120 minutes (Figure 5.10B). In addition, knockout cells also appear to have 

problems in producing and extending filopodia during spreading (Figure 5.11A). 

As discussed earlier, filopodia can act as probes to the external environment, 

and can provide a scaffold to support the advancing lamellipod (Section 1.1.3.3). 

At 60 minutes, fewer filopodia are seen per cell in knockout cells in comparison 

to control. However, by 120 minutes, knockout cells begin producing filopodia, 

with an average of around 7 filopodia being made per cell (Figure 5.11B). The 

filopodia produced by knockout cells are significantly shorter at both 60 and 120 

minutes of spreading. Control filopods are an average of 2.3 µm long, reaching a 

maximum of 7.9 µm, but knockout filopods are on average 1.2 µm, reaching a 

maximum of 4 µm (Figure 5.11C). 

We conclude therefore that Cdc42 is necessary for the efficient spreading of 

melanocytes. Knockout melanocytes are slower to spread, and our data suggest 

that this defect may be due to the role of Cdc42 in adhesion and filopod 

formation. Knockout melanocytes make fewer adhesions at both 60 and 120 

minutes of spreading. They are also slower to produce filopods, and they are 

shorter which is important, as these structures may be important in helping cells 

spread.  
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Figure 5.10 Cdc42 knockout melanocytes form less adhesions when spreading 
(A) DMSO or OHT treated EW7 Cdc42 f/f; Cre-ERT2; CDKN2-/- melanocytes seeded onto 
fibronectin coated coverslips and fixed after 60 or 120 minutes and stained for F-actin (phalloidin) 
and phospho-paxillin (red). (B) Quantification of the number of adhesions after 60 and 120 minutes 
from images in (A). 75 cells per genotype per condition were quantified from three independent 
experiments. Box plots show mean plus minimum and maximum values. ***p<0.001 t-test. Scale 
15 µm. 
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Figure 5.11 Loss of Cdc42 leads to fewer and shorter filopodia during spreading 
(A) DMSO or OHT treated EW7 Cdc42 f/f; Cre-ERT2; CDKN2-/- melanocytes seeded onto 
fibronectin coated coverslips and fixed after 60 or 120 minutes and stained for F-actin (phalloidin). 
White asterisks indicate structures counted as filopod like structures (FLS). (B) Average number of 
FLS per cell at 60 or 120 min after spreading, quantified from 77 different cells from three 
independent experiments. (C) Length of FLS 60 or 120 min after spreading. Measurements from at 
least 77 filopodia from at least 20 different cells from three independent experiments. Graphs show 
mean ± SEM, n.s= not significant, **p<0.01,***p<0.001 t-test.  
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5.3 Discussion 

5.3.1 Loss of Cdc42 alters the expression of diverse signalling 
pathways including up-regulation of lysosomal proteins 

We began our attempts to isolate RNA from control and Cdc42 knockout EW1 and 

EW7 primary melanocytes, as these were the lines that we had carried out our 

investigations with to this point. However, after multiple attempts, RNA of 

sufficient quality could not be isolated from OHT treated EW7 melanocytes. We 

believe the severity of the knockdown phenotype in these cells resulted in 

degradation of their RNA over time. We therefore began isolating RNA from 

other primary melanocyte lines isolated in the same way, but from a different 

litter of pups. Deletion of Cdc42 was successful in these lines (Figure 5.1A) and 

they displayed the same phenotype as lines EW1 and EW7. RNA isolated from 

these lines was of the highest quality (see appendix) and we decided to proceed 

to library preparation and analysis. 

We were surprised to discover that lysosomal networks were the most 

significantly altered from KEGG pathway analysis using the DAVID software. This 

means that there were most matches between the list of genes altered after 

Cdc42 deletion within the lysosomal gene set defined by DAVID Gene Ontology 

analysis (Figure 5.1D). Lysosomes are the last organelle in the endocytic pathway 

containing many enzymes that digest macromolecules and make their 

components available to the cell. Lysosomal enzymes require a low pH for 

maximal activity, which is achieved through a proton-pumping V-type ATPase, 

which pumps protons into the lysosomal lumen (Mindell, 2012). Interestingly, we 

observed that multiple subunits of the V-ATPase enzyme are up-regulated in 

knockout cells (Figure 5.2B). In addition to mediating the acidification of 

lysosomes for lysosome mediated degradation, the also have a role in sorting 

cargo in the endosomal and secretory pathways (Marshansky and Futai, 2008), 

proton-coupled transport of ions and solutes and acidification of the pericellular 

space (Rath et al., 2014). It is not surprising therefore that changes in the 

function of the V-ATPase complex are linked to diverse diseases, including 

lysosomal storage disorders, neurodegeneration, myopathy, bone diseases and 

cancer (Hinton et al., 2009). If up-regulation of this complex in Cdc42 knockout 

melanocytes leads to aberrant acidification of vesicles, it could have a broad 
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and drastic effect on the endocytic pathway. This could lead to perturbation of 

vesicle trafficking systems, would could explain the mis-localisation of proteins 

in Cdc42 knockout cells and the poor recruitment of actin nucleators to the 

leading edge. In this way, changes in the expression of lysosomal genes, and 

those involved in the metabolism of signalling intermediates could in part 

underpin the morphology of these cells. 

5.3.2 Cdc42 controls the expression of genes involved in focal 
adhesion pathways 

Submission of genes down-regulated in the absence of Cdc42 to Gene Ontology 

analysis revealed that a substantial number were involved in focal adhesion 

signalling and regulation of the actin cytoskeleton (Figure 5.3A). Of these genes, 

integrin α4 displayed the highest fold change, and had the most significant 

adjusted p value. This down-regulation in expression led to a large drop in 

integrin α4 protein levels (Figure 5.4A). Interestingly, this integrin is expressed 

in cells of the neural crest lineage, as well as leukocytes and developing skeletal 

muscle (Shimizu et al., 1999). It most commonly dimerises with integrin β1, 

binding to cell surface adhesion molecules such as VCAM-1, MAdCAM-1 and ECM 

components including fibronectin, binding to LDV sequences (Humphries et al., 

2006). An increase in expression of integrin α4 has been correlated with 

melanoma progression from the radial to vertical growth phase, during the 

switch to invasive growth (Schadendorf et al., 1993, Albelda et al., 1990). It has 

also been shown to be crucial in assisting melanoma metastasis via the lymphatic 

system, with high expression of integrin α4 in melanoma cells increasing lung 

metastasis by 50% (Rebhun et al., 2010). This association with integrin α4 

expression and migration in melanocyte lineage cells suggests that down 

regulation of this particular integrin may in part be responsible for the migration 

defects seen in Cdc42 knockout cells. In addition, the scaffold protein paxillin 

has been shown to associate tightly with the tail of integrin α4, with this 

interaction required for promotion of cell migration (Han et al., 2001). Due to its 

multiple protein binding domains, recruitment of paxillin to nascent adhesion 

sites is crucial to build and mature these sites into fully functional adhesions. It 

is interesting to speculate that the down regulation of integrin α4 in Cdc42 

knockout melanocytes could prevent adhesion formation and maturation. We 

were surprised that the protein level of its most common partner, integrin β1 
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was not altered in Cdc42 knockout melanocytes, however less was seen to be 

recruited to adhesion sites (Figure 5.5), showing some sort of adhesion 

recruitment defect in these cells despite consistent protein levels. 

We also saw a significant decrease in integrin β3 protein in knockout cells 

(Figure 5.4). This was intriguing because the RNA levels were not significantly 

altered. We hypothesise that this could be due to aberrant degradation of this 

integrin in the absence of Cdc42. It is possible that defects during integrin 

recycling could shuttle this integrin for degradation. This fits in with our 

observation that the lysosomal networks of Cdc42 knockout cells are disrupted 

(Figure 5.2). Integrin β3 levels have also been linked to melanoma invasiveness; 

expression is repressed during melanoma progression by microRNAs, which 

accompanies reduced invasive potential (Muller and Bosserhoff, 2008). 

5.3.3 Cdc42 controls adhesion formation and dynamics to 
support migration and spreading 

Interestingly, down-regulation of focal adhesion signalling pathways in Cdc42 

knockout melanocytes correlated with reduced adhesion number and area 

(Figure 5.7). By expressing paxillin-GFP in control melanocytes, we observed 

rapid extension of lamellipodia, which were dynamically supported by underlying 

adhesions which formed, grew and disassembled in a coordinated manner as the 

cell translocated (Figure 5.8). This observation is consistent with the standard 

migration cycle model, in which leading edge protrusion and matrix adhesion are 

tightly coupled both spatially and temporally (Gupton and Waterman-Storer, 

2006, Giannone et al., 2004). The cycle begins with the extension of thin 

portions membrane driven by actin polymerisation, which are rapidly supported 

by tiny nascent adhesions containing integrins. A small proportion of these grow 

in size as a multi-molecular complex assembles on the cytoplasmic side of the 

membrane, linking these sites to the actin cytoskeleton. This linkage can act as 

a ‘clutch’ by immobilisation the cytoskeleton at this site, increasing the force 

exerted by extending filament, preventing the retrograde flow of actin (Gardel 

et al., 2010). Adhesion sites in migrating melanocytes therefore act as bi-

directional platforms, transducing signals between the cell and the environment 

to induce cytoskeletal rearrangements to facilitate migration. However, we do 
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not fully understand the mechanisms that link adhesion and the actin 

cytoskeleton. 

Our studies suggest that Cdc42 plays a major role in coordinating the molecules 

involved in this bi-directional conversation. We see that knockout cells form far 

fewer adhesions, dotted around the cell periphery but mainly concentrated at 

the tips of pseudopods (Figure 5.7). In addition, adhesions are less dynamic and 

take longer to assemble and disassemble (Figure 5.8). We hypothesise that 

Cdc42 coordinates either the recruitment or activation of proteins involved in 

the linkage of adhesion to the actin cytoskeleton. Recently, work by 

Swaminathan et al. have shown that FAK is crucial to this linkage of adhesions to 

actin polymerisation through its interaction with the Arp2/3 complex 

(Swaminathan et al., 2016). They showed that this interaction is essential for 

transient nascent adhesion stabilisation and advancement of the cell edge. It is 

interesting to speculate the Cdc42 can in some way control such interactions 

between focal adhesion proteins and the actin cytoskeleton, linking actin 

polymerisation at the leading edge to adhesion formation. In this way, Cdc42 

could play a part in controlling the proposed ‘molecular clutch’, immobilising 

the actin cytoskeleton to allow generation of protrusive force at the cell 

membrane.  

It is possible that Cdc42 facilitates this linkage to the actin cytoskeleton by 

controlling adhesion maturation through recruitment of adhesion proteins to the 

site of nascent adhesions. Therefore in the absence of Cdc42, failure to recruit 

the full complement of proteins could sever the link to the actin cytoskeleton. In 

addition, we understand that adhesions act as important sites for 

mechanosensing of matrix stiffness, which can in turn control cell polarity and 

migration (Prager-Khoutorsky et al., 2011, Hytonen and Wehrle-Haller, 2016). As 

Cdc42 knockout melanocytes possess fewer, smaller adhesions, they may be 

unable to effectively transmit signals such as stiffness or cellular tension back to 

the cell. It is likely that his break in outside-in signalling could lead to defects in 

the dynamic regulation of the cytoskeleton, disrupting the smooth migration 

cycle observed in control melanocytes. 

This hypothesis fits nicely with our observations of Cdc42 knockout melanoblasts 

migrating in vivo, where we saw that actin polymerisation is unaffected, but 
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cells can’t harness this force into migration. It appears that Cdc42 not only acts 

to promote the expression of adhesion related genes, but it is also essential in 

the coordination of adhesion with the actin cytoskeleton. Therefore 

melanoblasts in vivo are unable to form enough robust adhesions to tether 

extending pseudopods to the basement membrane below to communicate 

effectively with the matrix and to generate protrusive force to allow the cell to 

propel itself forward. 

In addition to adhesion defects observed during cell migration, it is also clear 

that Cdc42 is an important regulator of adhesion dynamics and actin 

cytoskeleton arrangements during cell spreading (Figure 5.9 and 5.10). In 

general, when cells encounter matrix proteins in a 2D environment, they 

respond by adhering then spreading out into a flattened morphology. This 

complex process is mediated by integrins, which transmit signals about the 

underlying matrix to the actin cytoskeleton. This process appears to involve the 

activation of diverse signalling pathways, including tyrosine kinases, protein 

kinase C, arachidonic acid metabolism and calcium signalling (Chun and 

Jacobson, 1992, Chun and Jacobson, 1993, Pelletier et al., 1992, Vuori and 

Ruoslahti, 1993). However the contribution of these signalling pathways is not 

well understood. 

Our data suggest that Cdc42 plays a key role in the coordination of adhesion 

formation and the actin cytoskeleton during spreading. Knockout melanocytes 

took longer to spread in the 2 hours after plating, and a thick actin cortex could 

be seen at all time-points (Figure 5.9A and B). In contrast to this, the 

cytoskeleton of control cells is highly dynamic during spreading, and after 2 

hours they display lamellipodia and stress fibres. The cytoskeletal 

rearrangements seen in control cells are most likely facilitated by the many, 

mature adhesions that form underneath the cell. Similarly to our observations 

during migration of these cells, the inability of Cdc42 knockout cells to form and 

mature adhesions during spreading likely contributes to their slowness to spread.  

Observations implicating Cdc42 in cell spreading are in agreement with Price et 

al., who showed that expression of a dominant negative form of Cdc42 

profoundly inhibited spreading (Price et al., 1998). However, from their 

observations, they hypothesise that the primary role for Cdc42 during spreading 
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is to induce formation of filopodia and to activate Rac to induce lamellipodial 

spreading over the scaffold of filopodia. Our data partly agree with this model, 

as filopodia are shorter without Cdc42, but filopod number is largely unaltered 

in the absence of Cdc42 (Figure 5.11). This is a surprising discovery, as Cdc42 has 

always been primarily associated with the formation of these structures (Nobes 

and Hall, 1995). We therefore suggest that in addition to modulating the 

extension of filopods during spreading, that Cdc42 also coordinates adhesion 

formation and cytoskeletal rearrangements to achieve efficient cell spreading. 

5.4 Summary 

In this chapter, we used an RNA sequencing approach to investigate gene 

expression changes after deletion of Cdc42. This approach allowed us to take an 

unbiased, global view of Cdc42’s role in the cell, providing insight that could not 

be gained from a single candidate approach. We observed an up-regulation of 

genes associated with the lysosomal network in Cdc42 knockout melanocytes, 

particularly components associated with the acidification of vesicles, which may 

disrupt endosomal recycling or trafficking. In addition, loss of Cdc42 leads to a 

down-regulation of focal adhesion signalling, which is accompanied by fewer 

smaller adhesions and a delay in spreading. We hypothesise that Cdc42 is a key 

player in linking adhesion formation and maturation to the actin cytoskeleton to 

coordinate and facilitate efficient cell migration by inducing the expression of 

focal adhesion genes, and providing the spatiotemporal signals to activate and 

recruit proteins to adhesion sites. 
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6 Investigating the role of Cdc42 in Melanoma 
Migration and Invasion 

6.1 Introduction and aims 

The data presented in previous chapters has described a major role for Cdc42 in 

the migration and proliferation of both melanoblasts and melanocytes. These 

findings prompted us to explore the role of Cdc42 in the migration and invasion 

of melanoma cells. As discussed in the introduction, the melanoblast lineage and 

melanoma share common molecular signatures, and it is thought the plastic and 

invasive nature of melanoma stems from reactivation of developmental 

signalling pathways of the neural crest. Currently, very little is known about the 

role that Cdc42 plays in melanoma progression and metastasis. We hypothesised 

that depletion of Cdc42 from mouse B16F10 melanoma cells might impede their 

migration and growth as seen in other cells of the melanocyte lineage (Data 

shown in previous chapters). We hoped that depletion of Cdc42 might also 

prevent the invasion of these cells into matrix, slowing the spread of these 

particularly aggressive cells. 

We aimed to begin our investigation by producing a stable B16F10 melanoma cell 

line in which the deletion of Cdc42 could be induced. To do this, we first 

purchased a set of lentiviral shRNA constructs containing non-targeting or anti-

mouse Cdc42 shRNA oligos (GIPZ from Dharmacon). Each oligo was then cloned 

into an inducible vector system (TRIPZ from Dharmacon), which tags the oligo 

onto turboRFP as a control to visualise oligo expression. Stable integration of 

this construct into B16F10 melanoma cells allowed inducible expression of shRNA 

oligos, and knockdown of Cdc42. We aimed to use this system to investigate the 

effect of Cdc42 knockdown of melanoma cell morphology and migration in 2D 

and invasion into in vitro invasion assays. 
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6.2 Results 

6.2.1 Knockdown of Cdc42 in B16F10 melanoma cells does not 
effect cell morphology, migration or proliferation 

Cdc42 was successfully knocked-down in B16F10 melanoma cells by inducible 

expression using two anti-Cdc42 oligos, 70288 and 488921 (Figure 6.1A). Oligo 

488921 (sh2) provided the most effect knockdown, reducing Cdc42 levels by 70%. 

Expression of oligo 70288 resulted in a knockdown of 60% (Figure 6.1B) (values 

an average from three independent experiments). Having seen the major role 

Cdc42 played in the migration and proliferation of melanoblasts and 

melanocytes, we were intrigued whether knockdown of Cdc42 in this melanoma 

line would lead to an elongated morphology, altered pseudopod dynamics and 

proliferation defects. Interestingly, knockdown cells had a relatively normal 

morphology. F-actin was visualised by staining with phalloidin, which revealed 

that knockdown cells formed normal looking stress fibres and lamellipods (Figure 

6.2A white arrows). Proliferation studies using the IncuCyte ZOOM system 

showed that cells expressing oligos against Cdc42 proliferate at the same rate as 

cells expressing a non-targeting (NT) oligo (Figure 6.2B).  

The migration of Cdc42 knockdown B16F10 cells was first analysed using a 

random migration assay. Cells tracked in all conditions moved at around 0.8 

µm/min (Figure 6.2C), indicating that Cdc42 knockdown does not impair 

migration. The ability of these cells to close a wound was also investigated using 

the IncuCyte ZOOM system in a 96-well plate format. It is clear from the final 

images taken from these experiments by the system that knockdown cells had no 

problem closing the wound (Figure 6.3A) (initial wound shown by mask). This is 

confirmed by the quantification of the wound confluence in each condition over 

the experiment time course, which shows that cells close the wound at the same 

rate (Figure 6.3B). We can therefore conclude that knockdown of Cdc42 by 60-

70% in B16F10 melanoma cells does not affect cell morphology, proliferation or 

migration. It is likely that residual Cdc42 protein left from the incomplete 

knockdown is enough to maintain these functions. In addition, as these cells are 

cancerous and not primary lines, it is possible that these cells have acquired 

additional mutations that help drive these processes in the absence of Cdc42. 
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Figure 6.1 Cdc42 is successfully knockout-down in B16F10 melanoma shRNA cell lines 
(A) Western on lysates taken from cells containing non-targeting shRNA vector (NT) or vectors 
containing shRNA against CDC42 (sh1 or sh2) with (+d) and without addition of doxycycline to 
induce shRNA expression from the vector. (B) Quantification of % knock-down of Cdc42 by sh1 
(70288) and sh2 (488921). Quantification from 3 independent blots, graphs show mean ± SEM. 
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Figure 6.2 Knock-Down of Cdc42 does not change B16F10 melanoma cell morphology, 
proliferation or migration 
(A) B16F0 melanoma cells containing non-targeting shRNA vector (NT) or vectors containing 
shRNA against CDC42 (70288 or 488921) with (+d) and without addition of doxycycline to induce 
shRNA expression. Cells plated on collagen, fixed and stained with phalloidin and DAPI. Scale 30 
µm. (B) Proliferation assay of cells expressing non-targeting shRNA (NT) or CDC42 shRNA (70288 
or 488921). Proliferation measured as cell confluence on IncuCyte ZOOM system, values plotted 
from readings every two hours are an average of multiple wells from three independent 
experiments. Graph shows mean ± SEM. (C) Average speed of B16F10 melanoma cells on 
collagen. 
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Figure 6.3 Knock-down of Cdc42 does not impair the ability of B16F10 melanoma cells to 
close a wound 
(A) Images from IncuCyte ZOOM system showing cells expressing non-targeting shRNA (NT) or 
CDC42 shRNA (70288 or 488921) closing a wound.  Image is a merge of a mask showing initial 
wound edge from first time-point and a clear image from the final time-point. (B) Graph showing 
wound confluence, readings taken every 2 hours using the IncuCyte ZOOM system. Readings are 
an average of multiple wells from three independent experiments. Graph shows mean ± SEM. 
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6.2.2 Cdc42 knockdown slows the invasion on B16F10 melanoma 
cells 

Given the invasive nature of this cell line, we decided to explore whether Cdc42 

knockdown impaired their ability to invade into commonly used in vitro invasion 

assays. These cells did not display a proliferation defect, which makes them a 

good model to ask this question, as if cells divided more slowly this could have 

an impact on their invasive ability. We first investigated their ability to close a 

scratch wound overlaid with Matrigel using IncuCyte ZOOM system. It is clear 

from the last image from this experiment (taken 22 hours after wounding) that 

cells expressing either anti-Cdc42 oligo 70288 and 488921 have not moved as far 

into the wound as cells expressing a non-targeting (NT) oligo (Figure 

6.4A)(wound showed by mask). This was confirmed in a high-throughput manner 

by the IncuCyte ZOOM software by tracking the wound confluence over the 

course of the assay. After 22 hours of invasion into the wound, cell expressing 

the non-targeting oligo showed nearly 80% cell confluence in the wound. In 

contrast, cells expressing the anti-Cdc42 oligo 70288 only displayed 50% wound 

confluence, and those expressing oligo 488921 only 38% (Figure 6.4B). The 

apparent difference in the invasive abilities of these two knockdown lines can 

follows nicely the difference in levels of Cdc42 knockdown, with oligo 488921 

achieving an extra 10% knock-down than 70288 (Figure 6.1A and B). 

To confirm if this defect could be observed in additional invasion assays, we 

asked whether Cdc42 was important for the invasion of B16F10 spheroids into 

matrigel. Spheroids were grown for 5 days with or without doxycycline then 

embedded into matrigel, overlaid with media and left to invade for 7 days. 

Spheroids at the end of this process can be seen in Figure 6.5A. Spheroids 

without doxycycline have invaded into the surrounding matrigel (Figure 6.5A left 

panel). Cells expressing the non-targeting oligo in the presence of doxycycline 

invade well into the surrounding matrigel. The invasion of spheroids expressing 

anti-Cdc42 oligos is poor (Figure 6.5A right panel). Successful expression of 

oligos can be confirmed as they are tagged with the red fluorescent protein 

turboRFP, which can be visualised seen under the red camera. We therefore 

conclude that knockdown of Cdc42 impairs the ability of B16F10 melanoma cells 

to degrade and invade the surrounding matrix, despite not effecting their 

migration and division in a 2D environment.   
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Figure 6.4 Knock-down of Cdc42 impairs the ability of B16F10 melanoma to invade into 
matrigel 
(A) Images from IncuCyte ZOOM system showing cells expressing non-targeting shRNA (NT) or 
CDC42 shRNA (70288 or 488921) closing a wound overlayed with matrigel.  Image is a merge of a 
mask showing initial wound edge from first time-point and a clear image from the final time-point. 
(B) Graph showing wound confluence, readings taken every 2 hours using the IncuCyte ZOOM 
system. Readings are an average of multiple wells from three independent experiments. Graph 
shows mean ± SEM. 
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Figure 6.5 Expression of Cdc42 shRNA impairs B16F10 melanoma cell invasion into Matrigel 
(A) Images of spheroids containing non-targeting shRNA vector (NT) or vectors containing shRNA 
against CDC42 (70288 or 488921) with (+d) and without addition of doxycycline to induce shRNA 
expression. Images taken under light (right) or with the red laser (left) to demonstrate turboRED 
expression. (B) Growth of spheroids over 7 days embedded in matrigel. (C) Relative invasion of 
spheroids into Matrigel over 7 days. Graphs show mean ± SEM, *p<0.05, **p<0.01 t-test. 
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6.3 Discussion 

6.3.1 B16F10 Melanoma migration and proliferation are not 
affected by Cdc42 knockdown 

Inducible expression of anti-Cdc42 shRNA oligos reduced Cdc42 protein levels by 

60-70%, with oligo 488921 consistently achieving a better knockdown than oligo 

70288 (Figure 6.1). It appears that this partial reduction in Cdc42 levels does not 

impart any morphological changes in B16F10 melanoma cells, and their actin 

cytoskeleton appears to be organised normally (Figure 6.2A). Remarkably, 

knockdown cells are still able to form lamellipods, unlike Cdc42 knockout 

melanoblasts or melanocytes. We don’t see these cells adopting an extended 

morphology, and they are able to proliferate and migrate normally unlike Cdc42 

deletion in melanoblasts and melanocytes (Figure 6.2B and C and 6.3). It is 

possible that residual levels of Cdc42 in melanoma cells are enough to maintain 

regulation of the actin cytoskeleton in these cells. Given the aggressive nature 

of these cells, it is likely that these cells have acquired additional mutations, 

possibly in multiple different pathways such as those controlling cell division and 

survival. These additional changes may also compensate for any defects caused 

by a reduction in Cdc42 levels. 

6.3.2 Cdc42 aids melanoma cell invasion 

As Cdc42 knockdown did not appear to cause any problems for B16F10 melanoma 

cells, we thought it was unlikely to impair their invasion. When we explored the 

ability of Cdc42 knockdown cells to invade into matrigel during a high-

throughput wound closure assay, we observed that Cdc42 knockdown cells were 

in fact slower to close the wound (Figure 6.4A and B). This defect was also 

apparent when the ability of B16F10 spheroids to invade into matrigel was 

assessed. After 5 days of invasion, cells expressing shRNA oligos were barely able 

to spread into the surrounding matrix. This defect was striking, and suggests 

Cdc42 plays a key role in the invasive motility of these cells. These observations 

are consistent with previous work that showed Cdc42 localisation to tumour cell-

matrix contacts, where it activates the scaffold protein IQ-GAP to select vesicles 

containing Matrix metalloproteinases (MMP) for incorporation into the invading 

membrane compartment via interaction the exocyst complex (Sakurai-Yageta et 

al., 2008). We hypothesise that Cdc42 deletion prevents this coupling and 
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therefore less MMPs are released, impeding the cell’s progress. It would be 

interesting to investigate the amount of MMP release at sites of cell-matrix 

contact to conform this hypothesis. Previous work has also identified Cdc42 as a 

key player in invadopodia formation. Invadopodia, formed by cancer cells, are 

actin-rich membrane protrusions with matrix degradation activity. Using an RNA 

interference approach, Yamaguchi et al. showed that N-WASP, Arp2/3 and their 

upstream regulators Nck1, Cdc42 and WIP are necessary for invadopodium 

formation downstream of EGF signalling (Yamaguchi et al., 2005). It is possible 

therefore that Cdc42 depletion reduces invadopodia formation in these 

melanoma cells, reducing their ability to degrade the matrix. 

6.4 Summary  

This preliminary work has revealed a key role for Cdc42 in B16F10 melanoma cell 

invasion. Our studies have shown that knockdown of Cdc42 in this cell line does 

not effect cell morphology, migration or proliferation, in contrast to 

melanoblasts or melanocytes. However, Cdc42 knockdown impairs the ability of 

B16F10 melanoma cells to invade into matrix from scratch wounds or out from 

spheroids. Given this fairly striking defect, it would be interesting to investigate 

the ability of these cell lines to invade in vivo. This could be achieved through 

injection into mammary fat pats or through tail vein injections to explore 

whether Cdc42 maintains this key role in invasion in vivo. 
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7 Conclusions and Future Directions 

7.1 Conclusions 

7.1.1 Cdc42 and Rac1 have important and distinct roles during 
the melanoblast journey, but RhoA is not required 

During this project, we aimed to deepen our understanding of the role of the 

Rho GTPase Cdc42 in 3D migration by utilising the melanoblast model system. 

With this knowledge, and together with our previous studies in this system, we 

hoped to extend our currently limited understanding of how the Rho GTPase 

family members and other actin regulating proteins are coordinated globally 

during cell migration in vivo. Through targeted deletion of Cdc42 in the 

melanoblast lineage, we revealed a crucial role for Cdc42 during the 

melanoblast journey. Similarly to Rac1 null melanoblasts, Cdc42 null 

melanoblasts were unable to complete population of the developing embryo 

before birth leading to coat colour defects at birth. However, skin explant 

imaging revealed that, unlike Rac1 knockout melanoblasts which were largely 

rounded (Figure 7.1C), Cdc42 null melanoblasts were elongated and displayed 

large, bulky pseudopods (Figure 7.1B). Despite being able to extend pseudopods, 

Cdc42 knockout melanoblasts migrated slowly and inefficiently through the 

embryo epidermis and were unable to retract their pseudopods efficiently. 

Surprisingly however, we showed that these pseudopods have active actin 

dynamics, displaying frequent actin bursts at pseudopod tips.  

We have previously established that Rac1 primarily promotes melanoblast 

migration by driving pseudopod extension through SCAR/WAVE and Arp2/3 

signalling (Li et al., 2011). Rac1 null melanoblasts are therefore rounded and 

move slowly through the epidermis using short stubby protrusions (Figure 7.1). 

Our in vivo data showed a unique role for Cdc42 during 3D migration. We showed 

that Cdc42 null melanoblasts are able to polymerise actin at pseudopods tips, 

but appear unable to link the protrusive force generated into coordinated and 

persistent cell movement. We also showed that RhoA does not play a crucial role 

in melanoblast migration, as loss of RhoA in the melanoblast lineage did not lead  
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Figure 7.1 Rac1 null and Cdc42 null melanoblasts have different morphologies but both 
migrate more slowly than wild-type melanoblasts 
Wild-type melanoblasts are highly motile and extend multiple, dynamic pseudopods between the 
surrounding keratinocytes (A). Loss of Cdc42 leads to an increase in cell area and elongated, bulky 
pseudopods which are extremely long-lived (B). Conversely, Rac1 null melanoblasts are rounded 
and migrate slowly through the skin using short stubby pseudopods (C). 
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to coat colour defects. In addition, preliminary results indicate that melanocytes 

must express Rac1 and Cdc42 for successful melanoblast specification and 

expansion during development, as melanoblast double knockout of these family 

members resulted in embryos devoid of melanoblasts. 

7.1.2 Cdc42 coordinates the spatial positioning of key actin 
regulators to facilitate migration 

Our next aim was to explore the molecular impact of Cdc42 loss on the 

melanocyte lineage, in order to understand and explain the morphology of Cdc42 

null melanoblasts using an in vitro model. To do this, we isolated cultures of 

primary melanocytes from 1-day-old pups in which Cdc42 deletion could be 

induced. Using this system, we showed that the branched actin regulators N-

Wasp and Arp2/3 were poorly localised in Cdc42 knockout melanocytes, 

preventing them from forming the large fan-like lamellipods that wild-type 

melanocytes use to migrate. Surprisingly however, we showed that the lack of 

branched actin networks in knockout cells was not due to reduced levels of 

active Rac1. We therefore hypothesise that Cdc42 does not control Rac1 

activation in these cells, but is important for the correct placement of Rac1 at 

the membrane to induce branched actin networks. Immunofluorescence staining 

on these cells also revealed that Cdc42 coordinates the spatial positioning of 

myosin light chain phosphorylation, explaining the inability of Cdc42 null cells to 

retract their pseudopods. 

7.1.3 Cdc42 promotes G1 to S cell cycle transition and 
cytokinesis 

Through X-Gal staining of embryos expressing β-galactosidase in the melanoblast 

lineage, we saw that Cdc42 f/f Tyr::CreB+/- embryos had a paucity of 

melanoblasts, similarly to Rac1 f/f Tyr::CreB+/- embryos (Li et al., 2011). Live 

imaging of melanoblast division in skin explants revealed a crucial role for Cdc42 

in melanoblast cytokinesis. Cdc42 null melanoblasts were unable to fully round 

up efficiently during mitotic onset, and took three times longer to complete 

cytokinesis than wild-type melanoblasts. Our data indicate that Cdc42 is 

particularly crucial for the final stages of membrane separation, unlike Rac1, 

which appears most crucial in regulating cleavage furrow formation (Li et al., 

2011). In addition, Cdc42 also plays a key role in division in 2D. Cdc42 knockout 
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melanocytes also took over twice as long to divide than wild-type melanocytes 

whereas Rac1 null melanocytes did not display division defects in vitro. In line 

with previous work, we also showed that Cdc42 promoted G1 to S transition. 

Together, our findings show that by driving melanoblast cell-cycle progression 

and cytokinesis, Cdc42 is crucial for stimulating melanoblast expansion as well as 

migration during development. 

7.1.4 Cdc42 coordinates adhesion dynamics and actin 
polymerisation to drive migration 

Using a global RNA sequencing approach, we investigated the gene expression 

changes after deletion of Cdc42. Interestingly, our data showed a significant 

increase in the expression of genes within lysosomal pathways, most notably, 

loss of Cdc42 led to an up-regulation of six subunits of the V-ATPase enzyme 

responsible for the acidification of vesicles. This RNA sequencing approach also 

revealed a down-regulation of adhesion associated genes in the absence of 

Cdc42. We showed that Cdc42 null melanocytes had decreased levels of integrin 

α4 and β3, but levels of integrin β1 were unaltered. We showed that this down-

regulation of adhesion related genes correlated with slower adhesion dynamics 

in Cdc42 null melanocytes. In addition, we also showed that knockout cells 

displayed fewer adhesions that were smaller in size. Our data indicate a role for 

Cdc42 in linking adhesions to actin dynamics. To this end, fewer adhesions were 

formed underneath spreading Cdc42 null melanocytes, and null melanocytes 

were slower to spread overall, displaying a think band of cortical actin 

underneath the membrane. We hypothesise that Cdc42 coordinates the inside-

out and outside-in signalling at adhesion sites, and in the absence of Cdc42 

adhesion formation is reduced, along with adhesion maturation and dynamics. 

This defect within adhesions impacts the organisation of the actin cytoskeleton 

and renders the cell unable to migrate efficiently. 

By combining the data gained from our in vitro melanocyte system with our 

observations of melanoblast migration in vivo, a new and exciting picture is 

beginning to emerge of Cdc42’s role in the coordination of cell migration. We 

believe that unlike Rac1, which has a very specific role in signalling to branched 

actin network generation, Cdc42 functions to coordinate multiple systems 

including actin polymerisation, adhesion dynamics and contractility during cell 
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migration. In this way, it appears that Cdc42 has a clearly distinct role to Rac1 

during migration. Our hypothesis, summarised in Figure 7.2, is that melanoblast 

pseudopod extension is primarily driven by Rac1 via SCAR/WAVE and Arp2/3 

pathways. Cdc42 is key in linking this protrusive force into migration through 

controlling adhesion turnover and maturation through mechanisms still unknown, 

but possibly through linkage of adhesions to the actin cytoskeleton. Cdc42 is also 

crucial for the spatial organisation of cell components including actin-binding 

proteins and phosphorylation of myosin light chain to produce dynamic adhesions 

through coordination of extension and retraction of pseudopods to achieve 

efficient movement. 

7.1.5 Cdc42 aids melanoma invasion 

Given the prominent role of Cdc42 in the migration and proliferation of both 

melanoblasts and melanocytes, we also aimed to investigate whether loss of 

Cdc42 could slow the spread of melanoma cells. Somewhat surprisingly, 

knockdown of Cdc42 in B16F10 melanoma cells did not impact their ability to 

migrate or proliferate, presumably due to the residual levels of Cdc42 remaining 

in these cells. When analysed in invasion assays however, it was clear that Cdc42 

does drive melanoma cell invasion. Our data showed that knockdown of Cdc42 

reduced melanoma cell invasion into scratch wound assays and out from 

spheroids. It still remains unclear, however, exactly how Cdc42 aids melanoma 

invasion in these assays, or whether the same observations would be made in in 

vivo studies. 

7.2 Future Directions 

7.2.1 How do melanoblasts achieve orchestrated population of 
the developing embryo? 

This project, along with previous work in the lab and other recent studies have 

utilised modern imaging approaches to understand the melanoblast journey. We 

are only beginning to understand how these dynamic and highly motile cells 

complete their journey through the developing embryo. In particular, the 

imaging techniques used in this study could be extended to investigate many  
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Figure 7.2 Rho GTPases act in a coordinated manner to achieve coordinated cell migration 
In our current model, we believe that Rac1 is primarily responsible for stimulating actin 
polymerisation at pseudopod tips to drive pseudopod extension. Cdc42 then links the actin network 
with adhesions, controlling adhesion turnover and maturation, translating protrusive force into cell 
translocation. It is likely that RhoA couples myosin to actin to generate a contractile network, but 
Cdc42 controls the spatial organisation of myosin phosphorylation. As RhoA alone is not required 
for melanoblast population of the developing embryo, we believe that its role can be compensated 
for by RhoA isoforms that are highly expressed in melanoblasts. 
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elements of the melanoblast journey, such as their movement from dermis to 

epidermis, the role of gradients and contact inhibition during their migration, 

and their movement into hair follicles. Also, there are many other interesting 

actin regulating proteins that could be studied in addition to those already 

described in the melanoblast system. Knockout of interesting candidates in the 

same system allows us to build a detailed picture of how these proteins 

contribute to 3D cell migration, giving us a more valuable insight into how they 

might play different roles during 3D migration than previously understood from 

in vitro 2D studies. Our preliminary investigation concerning double knockout of 

both Rac1 and Cdc42 in the melanoblast lineage suggests that, together, Rac1 

and Cdc42 are crucial for either melanoblast determination, their survival or 

expansion during development. Ideally, these findings could be confirmed and 

extended through X-Gal staining and explant imaging of double knockout 

embryos. In addition, double knockout cells could be studied in vitro to 

investigate the interplay between Rac1 and Cdc42 during migration. 

7.2.2 Is the lysosomal network affected in Cdc42 knockout 
melanocytes? 

Our data from global RNA sequencing of Cdc42 knockout melanocytes showed a 

significant up-regulation of genes involved in lysosomal networks. Given the 

substantial number of genes that changed in expression in this network, many 

questions remain as to the effect this might have on cell migration. Currently, 

understanding the lysosome is particularly exciting as substantial interest is 

gathering in its potential role as a novel target for cancer therapies (Piao and 

Amaravadi, 2016). We have begun some preliminary investigations to discover 

whether the vesicle network is intact in Cdc42 null melanocytes by staining for 

various vesicular markers (Figure 7.3). We stained for WASH (WASP and SCAR 

homologue), the Arp2/3 activating protein that is localised at the surface of 

endosomes where it induces the formation of branched actin networks. 

Surprisingly, this revealed an intact endosomal network spread throughout the 

cell. Similarly, staining for EEA1 (early endosomal antigen 1), a marker of early 

endosomes and Rab7, a marker found on late endosomes, in knockout 

melanocytes revealed no abnormalities. Staining for clathrin to investigate sites 

of clathrin mediated endocytosis suggested increased levels in the peri-nuclear 

region, possibly underneath the Golgi.
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Figure 7.3 Staining for various markers of the vesicular network reveals no gross 
abnormalities 
Confocal imaging of DMSO (left side) or OHT (right side) treated EW7 Cdc42 f/f Cre-ERT2; CDKN2 
-/- melanocytes, stained with phalloidin (red) to show F-actin and DAPI to highlight the nucleus with 
vesicular markers WASH, EEA1 (early endosomes), Rab7 (late endosomes) or clathrin (sites of 
endocytosis) in green. 
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In addition to this staining, and taking into account the up-regulation of multiple 

subunits of the V-ATPase complex in our RNA sequencing data, we wanted to 

investigate the intracellular pH of Cdc42 null melanocytes. We hypothesised that 

up-regulation of this complex could lead to an increase in the number of protons 

being pumped across internal membranes, leading to elevated vesicular 

acidification. We achieved this using the pHrodo green AM intracellular pH 

indicator (Thermo Fisher). This is a cell soluble fluorogenic probe, which is 

weakly fluorescent at neutral pH, but increasingly fluorescent as the pH drops. 

This probe was weakly fluorescent inside DMSO treated melanocytes, but sites of 

higher florescence could be seen inside the cytoplasm, most likely acidic vesicles 

(Figure 7.4A, top panel). Interestingly, the cytoplasm of OHT treated cells 

appeared brighter, and large bright clumps could be seen next to the nucleus 

(Figure 7.4A, bottom panel, green arrows). Preliminary measurements of the 

average fluorescent intensity of DMSO and OHT treated melanocytes after 

incubation with pHrodo suggests that Cdc42 null cells have an elevated pH in 

comparison to control cells (Figure 7.4B). 

These preliminary findings suggest that despite up-regulation of genes associated 

with lysosmal pathways, the vesicular network in Cdc42 null cells is intact. It 

would be interesting to extend these findings by assessing the protein levels of 

the lysosomal genes found to be up-regulated, and by performing 

immunofluorescence staining against LAMP1 (lysosomal-associated membrane 

protein 1), to assess if the lysosomal network looks normal. In addition, it would 

be very interesting to further explore the large, acidic compartment highlighted 

by the pHrodo probe in Cdc42 knockout cells. To do this, these cells could be 

fixed and co-stained with Golgi, endoplasmic reticulum, V-ATPase and 

mitochondrial markers. We believe this compartment may be the Golgi. This is 

an interesting discovery given the emerging roles for Cdc42 at the Golgi, 

reviewed recently by Farhan et al (Farhan and Hsu, 2016). It is still unclear 

whether Cdc42 at the Golgi functions primarily to replenish Cdc42 at the plasma 

membrane, or whether these pools have a coordinating role, but blocking 

transport from the golgi to the plasma membrane decreases the activity of 

Cdc42 at the plasma membrane (Baschieri et al., 2014). Cdc42 can polarise 

transport at the Golgi to favour the anterograde direction by modulating the 

cargo sorting function of the COPI (Coat protein 1) complex (Park et al., 2015). 
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It is surprising therefore that the vesicular network appears to be largely 

unaffected in Cdc42 null melanocytes, however we have not confirmed whether 

the contents or sorting of these vesicles is altered. To our knowledge, there has 

not been any work regarding the link between Cdc42 and Golgi acidification. We 

believe it is possible that the absence of Cdc42 causes an up-regulation and 

accumulation of the V-ATPase complex in the Golgi, leading to its acidification. 

This could have drastic knock-on effects for the cells, as proteins would be 

unable to fold correctly at this level of acidity. 

7.2.3 Which pathways link Cdc42 to adhesion dynamics? 

One of the main questions arising from this study is which downstream effectors 

of Cdc42 play a part in controlling adhesion dynamics. Due to Cdc42’s major role 

in controlling cell polarity, actin dynamics and gene expression, it is likely that 

there are many factors that link Cdc42 to this process. It is possible that Cdc42 

controls the localisation and/or activation of key proteins involved in adhesion 

assembly and maturation. It would be intriguing to investigate the composition 

of adhesions in Cdc42 knockout cell lines. It would be particularly interesting to 

explore the cell surface levels of integrins α4 and β3 using flow cytometry to 

discover if their down-regulation at the gene and protein level leads to less 

incorporation into adhesions. It would also be valuable to analyse melanoblast 

adhesion in skin explants though fixation and staining. It would be important to 

define whether controlling integrin expression levels is directly a function of 

Cdc42, or if this is a compensatory mechanism of the cells to long-term loss of 

Cdc42. This could be explored by rescuing integrin expression in melanocyte cell 

lines, or by exploring the effect of activating Cdc42 on integrin levels. 

Our preliminary results which suggest that Cdc42 null melanoblasts may have a 

highly acidic Golgi. This could mean that components essential to build nascent 

adhesions get stuck or misfolded at this location, and are not transported to 

distant sites of adhesion in pseudopods.  
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Figure 7.4 Cdc42 null melanocytes have a large, highly acidic compartment and overall have 
a higher pH than control cells 
(A) Confocal images of EW7 Cdc42 f/f Cre-ERT2; CDKN2 -/- melanocytes treated with DMSO or 
OHT after 30 minutes incubation with pHrodo green AM intracellular pH indicator. Higher 
fluorescence indicates acidic conditions, green arrows indicate highly acidic compartments. (B) 
Quantification of the average pixel intensity of DMSO and OHT treated cells in (A) as a read out of 
cellular pH. Measurements taken from 22 cells (n=1). Graph shows mean + SEM. 
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7.2.4 Does Cdc42 control invasion in vivo? 

Our investigations showed that Cdc42 plays a role in the invasion of B16F10 

melanoma cells into two different in vitro invasion assays. Having gained 

positive results from this preliminary study, it would be worthwhile extending  it 

further into an in vivo melanoma metastasis study. In the absence of a good 

metastatic model for melanoma metastasis, these cells could initially be 

injected into the tail veins of mice, and their ability to colonise the lung 

analysed through histological analysis.  
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9 Appendix 

Supplementary video 1 Division is extended in Cdc42 null melanoblasts due 
to a defect in cytokinesis  
Move showing the division of control (Ctl) and Cdc42 null (Cdc42 f/f) 
melanoblasts in skin explants from rounding up through to the separation of 
daughter cells. Images taken every 5 minutes, video played at 8 frames per 
second. 
 
Supplementary video 2 Cdc42 null melanoblasts have an elongated, bipolar 
morphology and move more slowly through skin explants. 
Movie of skin explant from Z/EG+/o expressing embryos at E15.5. Confocal 
section of control (Ctl) and Cdc42 null (Cdc42 f/f) melanoblasts moving through 
the epidermal layer of the skin. Images taken 5 minutes, video played at 15 
frames per second. 
 
Supplementary video 3 Actin bursts can be seen at the tips of Cdc42 null 
pseudopods  
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Movie of lifeact expressing control (Ctl) and Cdc42 null (Cdc42 f/f) melanoblasts 
moving through the embryo skin epidermis. Orange areas show bursts of actin. 
Images taken every minute, video played at 8 frames per second 
 
Supplementary video 4 Cdc42 knock-out melanocytes are extended and 
bipolar and are unable to form lamellipods 
Time lapse movies of DMSO or OHT treated Cdc42 f/f Cre-ERT2; CDKN2 -/- 

 

primary melanocyte cells (EW7) on fibronectin primary melanocyte lines 
migrating on fibronectin. Images taken every 15 minutes, video played at 8 
frames per second. 
 
Supplementary video 5 Division is extended in Cdc42 null melanocytes due to 
a defect in cytokinesis  
Time-lapse imaging showing division of DMSO (Ctl) or OHT (Cdc42 f/f) treated 
Cdc42 f/f Cre-ERT2; CDKN2 -/- 

 primary melanocytes (EW7). Division counted from 
from rounding up through to the separation of daughter cells. Images taken 
every 15 minutes, video played at 2 frames per second. 
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RNA Sequencing Quality Check 
 
EW1 EW2.1 DMSO (Repeat1) 
EW2 EW2.1 DMSO (Repeat2) 
EW3 EW2.1 OHT (Repeat1) 
EW4 EW2.1 OHT (Repeat2) 
EW5 EW2.2 DMSO (Repeat1) 
EW6 EW2.2 DMSO (Repeat2) 
EW7 EW2.2 OHT (Repeat1) 
EW8 EW2.2 OHT (Repeat2) 
 
 

Gel Images 
 

 
 

Default image (Contrast 179%), Image is Scaled to view larger Molecular Weight range 
 

Sample Info 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
A1 21.6 Ladder  Ladder 
B1 11.3 EW1   C1 11.8 EW2   
D1 9.95 EW3   
E1 10.3 EW4   
F1 16.9 EW5   
G1 11.3 EW6   
H1 20.1 EW7   A2 11.1 EW8   
B2 142 HOM1   
C2 125 HOM2   
D2 9.20 HOM3   
E2 95.3 HOM4   
F2 117 WT1   G2 15.3 WT2   
H2 16.5 WT3   
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A1: Ladder B1: EW1 C1: EW2 D1: EW3 

 
 

E1: EW4 F1: EW5 G1: EW6 H1: EW7 

 
 

A2: EW8 B2: HOM1 C2: HOM2 D2: HOM3 

 
 

E2: HOM4 F2: WT1 G2: WT2 H2: WT3 
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A1: Ladder 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
A1 21.6 Ladder  Ladder 

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 5.85 - 360 -  Lower Marker 
50 2.39 - 73.6 11.09   
100 2.56 - 39.4 11.89   
200 2.64 - 20.3 12.25   
300 2.65 - 13.6 12.28   
400 2.56 - 9.85 11.88   500 2.92 - 8.97 13.52   
700 2.70 - 5.94 12.52   

1,000 3.14 - 4.83 14.57   
1,500 6.50 6.50 6.67 -  Upper Marker 
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B1: EW1 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
B1 11.3 EW1   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 6.42 - 395 -  Lower Marker 
288 11.1 - 59.5 98.25   

1,500 6.50 6.50 6.67 -  Upper Marker 
2,004 0.199 - 0.153 1.75   
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C1: EW2 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
C1 11.8 EW2   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 5.98 - 368 -  Lower Marker 
284 11.8 - 64.1 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 
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D1: EW3 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
D1 9.95 EW3   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 5.99 - 369 -  Lower Marker 
283 9.95 - 54.1 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 
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E1: EW4 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
E1 10.3 EW4   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 6.41 - 394 -  Lower Marker 
129 0.0766 - 0.911 0.74   
278 10.2 - 56.5 99.26   

1,500 6.50 6.50 6.67 -  Upper Marker 
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F1: EW5 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
F1 16.9 EW5   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 6.27 - 386 -  Lower Marker 
278 16.9 - 93.6 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 



  

Appendix 

 

203 
 

 
 
 
 

G1: EW6 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
G1 11.3 EW6   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 6.31 - 388 -  Lower Marker 
278 11.3 - 62.3 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 



  

Appendix 

 

204 
 

 
 
 
 

H1: EW7 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
H1 20.1 EW7   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 6.17 - 380 -  Lower Marker 
274 20.1 - 113 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 
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A2: EW8 
 

 
 

Sample Table 
 

We ll Conc. [ng/µl] Sample De scription Ale rt O bse rvations 
A2 11.1 EW8   

 
Peak Table 

 
Siz e [bp] Calibrate d Conc. 

[ng/µl] 
Assigne d Conc. 

[ng/µl] 
Pe ak Molarity 

[nmol/l] % Inte grate d Are a Pe ak Comme nt O bse rvations 

25 5.81 - 357 -  Lower Marker 
285 11.1 - 59.8 100.00   

1,500 6.50 6.50 6.67 -  Upper Marker 

 
 
 
 
 


