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Abstract

Lattice methods are essential theoretical tools for performing calculations in quan-
tum chromodynamics (QCD). To make theoretical predictions (or postdictions) of
properties of hadrons, we must solve the theory of QCD which describes their con-
stituent quarks — and conversely, to further our knowledge of quarks, which are fun-
damental constituents of matter, we must examine the properties of their hadronic
bound states, since free quarks are not observed due to the phenomenon known as
quark confinement. It is not possible to solve QCD analytically, and so we must
turn to numerical methods such as lattice QCD.

Despite being a well-established and mature formalism, lattice QCD has only
really come into fruition over the last decade or so, developing in parallel with the
advent of high-performance computing facilities. The available computing power is
now sufficient to perform calculations on very fine lattices, with lattice spacings of
about 0.06 fm or less. These are beneficial for two reasons: firstly, they are closer to
the continuum limit, meaning that continuum extrapolations are better controlled;
and secondly, it is only on finer and finer lattices that we are able to accurately
simulate heavier and heavier quarks, such as charm and bottom.

We use very fine lattices from the MILC collaboration to determine multiple
properties of heavyonium systems, in each case using the HISQ action for heavy
valence quarks. Correlator fitting, and continuum and chiral extrapolations, are
performed via Bayesian least-squares fitting methods.

The first calculation simulates charmonium via charm quarks at their physical
mass, as well as bottomonium, via multiple intermediate heavy quark masses and
an extrapolation in this heavy mass. Notably, this is a fully relativistic method
of calculating the bottom quark, and is complementary to effective-action methods
such as NRQCD. We perform this calculation on gauge configurations with 2+1
flavours of quarks in the sea, and are able to accurately determine properties of the
ground-state pseudoscalar and vector mesons in each system, including their decay
constants, the hyperfine mass splitting, and the temporal moments of the vector
correlators — which we also make use of to renormalise the vector current. To fully
investigate some small anomalies in some of the vector results, we also repeat a
subset of these calculations using a one-link instead of a local vector current.



The second calculation represents an in-depth study of charmonium, including
radial and orbital excitations as well as the ground states. We again simulate charm
quarks at their physical mass, but this time on gauge configurations with 2+1+1
flavours of quarks in the sea, including those with light sea quarks at their physical
masses. We also include a set of well-constructed smearing functions designed to
increase the overlap of our correlators with the ground state, and therefore allow us
to extract data on charmonium excited states more accurately.

Specifically, we concentrate on conventional low-lying excited states in the char-
monium system, and accurately extract various mass splittings in the spectrum
(including the 1S hyperfine splitting, and the spin-averaged 2S − 1S splitting) as
well as temporal moments of the vector correlator (which we again utilise in a
renormalisation procedure), and decay constants of the ground-state pseudoscalar
and vector. We also use the calculated mass splittings to accurately reconstruct a
selected portion of the charmonium spectrum.

This is the first time that we have used smeared operators with staggered quarks
for this purpose, and so this calculation acts as a strong base upon which to build
future work on excited states.
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How to Get There
Go to the end of the path until you get to the gate.
Go through the gate and head straight out towards the horizon.
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Sit down and have a rest every now and again,
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Keep on going as far as you can.
That’s how you get there.
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What did the subatomic duck say?
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Chapter 1

Lattice Quantum Chromodynamics

1.1 The Standard Model

The Standard Model of particle physics describes our current understanding of fun-
damental particles and their interactions. Mathematically, it is represented as a
gauge quantum field theory with the symmetries of the unitary product group
SU(3)× SU(2)× U(1).

The particle content of the Standard Model is divided into two classes: fermions,
with spin 1

2
, and bosons, with spin 1 (or spin 0 in the case of the recently-discovered

Higgs boson). Fermions obey the Pauli exclusion principle, meaning that any two
fermions are forbidden from occupying the same quantum state, and they interact
via the exchange of spin-1 gauge bosons. These bosons are the photon, γ, which
mediates the electromagnetic force, the gluon, g, which mediates the strong force,
and the Z and W± bosons which mediate the weak force.

The fermions in the Standard Model are further divided into quarks and lep-
tons. There are six flavours of quark (up, down, strange, charm, bottom and top),
and six leptons: three which are electrically charged (electron, muon and tau) and
three corresponding uncharged neutrinos. These fermions can be arranged in three
generations according to their mass and electric charge, as shown in Table 1.1.

The six quarks vary greatly in their masses, and can be arranged in a mass
hierarchy which correlates with the three generations. Current world averages for
the masses of the quarks in the MS scheme, from [4], are also listed in Table 1.1, and
we note the increased magnitude of the masses with each generation. In particular,
the mass of the top quark is far greater than any of the others — there is no clear
explanation of why this should be the case, and research into this issue may reveal
new insights into the origin of quark masses.

For each particle, there also exists a corresponding antiparticle with opposite
electric charge. Photons, gluons, and the Z boson are their own antiparticles; it is
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+2
3
e

up charm top
mu = 2.3+0.7

−0.5 MeV mc = 1.275± 0.025 GeV mt = 173.21± 0.51± 0.71 GeV

−1
3
e

down strange bottom
md = 4.8+0.5

−0.3 MeV ms = 95± 5 MeV mb = 4.18± 0.03 GeV

−1e
electron muon tau

me = 0.510998928(11) MeV mµ = 105.6583715(35) MeV mτ = 1776.82(16) MeV

0
electron neutrino muon neutrino tau neutrino
mνe < 225 eV mνµ < 0.19 MeV mντ < 18.2 MeV

Table 1.1: The three generations of fermions in the Standard Model, with the world
average determinations of their masses from [4]. The first column lists their electric
charges in units of the elementary charge e.

currently an open question as to whether neutrinos exhibit this behaviour [5]. If
they do, they would be the only fermions to do so.

The fourth fundamental force, gravity, is not included in the Standard Model
for two reasons. Firstly, it is far weaker than any of the three other forces at the
scales of fundamental particles (with a relative strength of 10−41 for two up quarks
in comparison to their electromagnetic interaction) and so is frequently negligible
in calculations of processes in elementary particle physics. The second reason is
that we do not yet have a consistently renormalizable quantum theory of gravity.
This is necessary to accurately describe conditions where enough mass is present for
spacetime to be appreciably curved following the axioms of general relativity, and
yet in a small enough region of space that quantum effects are also important. Such
conditions arise within the event horizon of a black hole, for example, or in the very
early universe following the Big Bang.

1.2 Quantum Chromodynamics

The SU(3) sector of the Standard Model, which deals with interactions of the strong
force, is known as quantum chromodynamics (QCD). The QCD Lagrangian is [6]

LQCD =
∑

f

ψ̄f (iγµDµ −mf )ψf −
1

4
F a
µνF

µνa (1.1)

where the sum is over quark flavour f . ψ is the quark field, mf is the mass of the
quark, and γµ are the Dirac gamma matrices:

γt =

(
1 0

0 −1

)
γi =

(
0 σi

σi 0

)
(1.2)
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where σi are the Pauli matrices:

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (1.3)

We also define γ5 = γxγyγzγt, and note that γ2
µ = 1. It follows that γ2

5 = 1 also.
F a
µν is the gluon field strength tensor, defined as

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν (1.4)

with Aµ the gluon field and fabc the structure constants of the SU(3) group. gs

defines the strength of the strong coupling, and is related to the strong coupling
constant αs through αs = g2

s/4π.
The interactions between the quark and gluon fields are contained within the

covariant derivative Dµ:

Dµ = ∂µ + igsA
a
µ

λa
2

(1.5)

where λa is a Gell-Mann matrix. The Gell-Mann matrices are a representation of
the generators of SU(3).

QCD is a non-Abelian gauge theory in which the gauge bosons, the gluons,
self-interact according to the last term in equation 1.4. The QCD vacuum therefore
consists of strongly-interacting background gluons as well as virtual quark-antiquark
pairs, referred to as sea quarks.

Quarks and gluons carry an SU(3) ‘colour’ charge, but coloured states are never
observed. Instead, they are confined within colourless objects called hadrons, and
the constituent quarks bound inside a hadron are known as valence quarks. Hadrons
containing three quarks are known as baryons — the familiar proton and neutron
are examples of these — and hadrons containing one quark and one antiquark are
known as mesons.

A further important feature of QCD is that the theory is asymptotically free
[7, 8], meaning that the strength of the interaction between quarks and gluons
decreases with increasing energy. Consequently, at low energies such as those for
valence quarks bound inside hadrons, calculations using perturbative methods will
not be applicable, since gs is too large to perform an expansion in. For such cases,
we require a non-perturbative formulation such as lattice QCD.

1.2.1 Quarkonium

Before we delve into formulating lattice QCD, we briefly outline different meson
states that will be relevant to the work presented in this thesis.

As mentioned, mesons are hadrons consisting of one quark and one antiquark.
The name ‘quarkonium’ refers to a flavourless meson state which consists of a quark
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and its own antiquark, and usually refers to either charmonium (cc̄) or bottomonium
(bb̄). The top quark has such a high mass that it will undergo electroweak decay
before it forms a bound state, and the lighter quarks (up, down and strange) form
admixtures such as the η and π mesons rather than pure qq̄ states.

We will use ‘heavyonium’ to refer specifically to quarkonium states formed by
heavy quarks — that is, charmonium or bottomonium, or analogous states formed
on the lattice by quarks with masses between those of the c and b quarks. The
results presented in this thesis will primarily concern properties of charmonium or
bottomonium states, and these will be detailed further in the relevant chapters.

1.3 Path Integrals

To construct a formulation of QCD on the lattice it is instructive to consider the
path integral formulation of quantum field theory [9]. Firstly we note that the action
S for a quantum field theory is given by the integral of the Lagrangian, viz.

SQCD =

∫
d4xLQCD . (1.6)

The path integral approach allows us to express the amplitude for some event as
a quantum superposition of all possible paths between the initial and final states of
the system, with each path weighted by the action. The expectation value for some
operator Γ in QCD can then be written as

〈Γ〉 =

∫
DφΓeiSQCD

∫
Dφ eiSQCD

(1.7)

where the denominator is simply for normalisation.
It is useful in a lattice formulation to Wick rotate the fields into Euclidean

space, by applying the transformation t→ it in the time direction. The action then
transforms as SQCD → iSQCD. This simplifies the contribution of the action to the
path integral since the oscillating complex exponential is transformed to a decaying
exponential, eiSQCD → e−SQCD , and is then easier to integrate [10]. Explicitly, after
the Wick rotation we now have

〈Γ〉 =

∫
DφΓe−SQCD

∫
Dφ e−SQCD

. (1.8)

The integration measure Dφ denotes that the path integral is over all possible
values of each field in the Lagrangian. In continuum QCD, the quark and gluon
fields in the Lagrangian have values at all points in spacetime. In a numerical
simulation, we would therefore require an infinite number of integrations over this
infinite number of points, which is of course not feasible. To proceed, we must
somehow regularise the spacetime.
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1.4 Discretising QCD

In 1974, Kenneth Wilson showed that it was possible to reduce the infinite number
of integrations required in the QCD path integral by discretising the theory onto
a 4-dimensional hypercubic lattice with a finite volume [11]. Quark fields are then
defined only on the lattice sites and are represented as 3-component colour vectors.

Gluon fields are defined as 3× 3 matrices on the gauge links between the lattice
sites. A gauge link connecting site x to the next site in the forward µ direction,
(x+ µ̂), is defined as

Uµ(x) = eigsAµ(x) (1.9)

with Aµ(x) the gluon field. The conjugate U †µ(x) represents the reverse link from
(x + µ̂) to x, since the gauge links are unitary. This construction preserves gauge
invariance when parallel-transporting colour across the links. Any closed loop of
gluon fields or any connected path of gauge links terminated by quark fields, as
shown in Figure 1.1, will be gauge-independent.

(a) A closed (Wilson) loop of gluon fields

ψ̄(x1)

ψ(x2)

(b) A series of gauge links terminated by
quark fields

Figure 1.1: Gauge-independent quantities on the lattice

The distance between lattice points is referred to as a, the lattice spacing. For
all of the lattices used for calculations in this thesis, a is the same in each of the 4
lattice directions. It is also possible to use anisotropic lattices, where a is smaller
in the time direction than in the three spatial directions, to produce a better signal
for some classes of calculation [12].

Now that we have discretised our spacetime, there are methods available to us for
the calculation of quantities on the lattice. The practicalities of these methods will
be described in more detail in the next chapter, once we have defined discretised
actions for the quark and gluon fields. For now, though, we should note that in
translating continuum QCD to the lattice, discretisation errors are unavoidably
introduced, and must be kept under control in order to obtain accurate physical
values. In analysing lattice results, we may choose to either perform a continuum
extrapolation a → 0 (provided we have results at multiple lattice spacings), or
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simply include discretisation effects as a systematic error. It is clear that in both
cases, discretisation errors will have a significant negative impact on the final result
if they are not reduced to an acceptable level.

1.4.1 Lattice Gluon Action

The simplest discretisation of the gluonic part of the QCD action is known as the
Wilson action, and is given by [12]

SW = β
∑

plaq

(
1− 1

nc
Re [Tr(Uplaq)]

)
(1.10)

where β is the gauge coupling, equal to 2nc/g
2
s ≡ 6/g2

s . nc is the number of colour
charges in the theory, which is 3 for QCD. The sum is over 1×1 loops of gauge links
known as plaquettes, defined by

Uplaq = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x) (1.11)

and shown in Figure 1.2.

Uµ(x)

U †ν(x) Uν(x+ µ̂)

U †µ(x+ ν̂)

x

Figure 1.2: The smallest possible Wilson loop on the lattice, a 1× 1 loop of gauge
links known as a plaquette.

In the continuum limit, the Wilson gluon action reduces to the purely gluonic
part of the QCD Lagrangian. We are free to use any lattice action with this property
in our simulations. This is a useful tool in combatting discretisation errors which
appear at finite lattice spacing:

S lattice
W = Scontinuum

W +O(a2) + . . . (1.12)

Symanzik proposed a programme of improvement in [13, 14], improving the Wilson
action by adding counterterms that vanish in the continuum limit. For example,
two six-link Wilson loop terms — a rectangle Ur and a ‘parallelogram’ Up — can be
added to the Wilson action viz.

SW = β
∑

plaq

(
1− 1

3
Re [Tr(Uplaq)]

)

+ βr

∑

r

(
1− 1

3
Re [Tr(Ur)]

)

+ βp

∑

p

(
1− 1

3
Re [Tr(Up)]

)
(1.13)
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where βr and βp are determined such that they cancel the discretisation errors arising
from the plaquettes in the first term. These loops are depicted in Figure 1.3.

(a) Rectangle Ur (b) ‘Parallelogram’ Up

Figure 1.3: The six-link Wilson loop terms added by the Symanzik improvement
procedure

The original β parameter requires retuning for improved gauge actions to ensure
that we accurately match the continuum action, and for the MILC ensembles that
we describe in chapter 2 [15, 16], β is set to be 10/g2

s .

1.4.2 Fermions on the Lattice

The fermionic part of the continuum QCD action is naively discretised by replacing
the covariant derivative Dµ with a finite difference operator ∆µ, to obtain

S f =
∑

x

ψ̄(x)(γµ∆µ +m)ψ(x) (1.14)

for a quark of mass m. The simplest difference operator is that which is averaged
over the forward and backward gauge links, namely

∆µψ(x) =
1

2

(
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

)
. (1.15)

These links are visualised in Figure 1.4.

U †µ(x− µ̂) Uµ(x)

x− µ̂ x+ µ̂x

Figure 1.4: The gauge links used in applying the difference operator ∆µ to the field
ψ(x).

The Doubling Problem

The naive quark discretisation suffers from a problem known as doubling, for reasons
which will become clear. To identify the source of this problem, it is instructive
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to examine the fermion propagator in momentum space. By applying a Fourier
transform to the continuum fermion fields, we can obtain the continuum action in
momentum space, which is

1

(2π)4

∫
dp Ψ̄(p)(iγµpµ +m)Ψ(p) (1.16)

with pµ the momentum operator and Ψ(p) the fermion fields in momentum space.
The propagator in momentum space is then the inverse of (iγµpµ +m).

On the lattice, our Fourier transform gives a different result since we have a finite
difference operator instead of the derivative. In addition, due to the finite lattice
spacing a, the lattice momentum is constrained to be between p = ±π

a
. The lattice

action in momentum space is then

1

(2π)4

∫ +π
a

−π
a

dp Ψ̄(p)(iγµ
sin pµa

a
+m)Ψ(p) (1.17)

and so the inverse propagator on the lattice is (iγµ sin pµa

a
+m).

The lattice propagator behaves like the continuum propagator for sin pµa = 0,
and this occurs whenever each component of pµ is either 0 or π

a
. Therefore, a d-

dimensional propagator represents 2d identical fermions on the lattice, which must
reduce to a single physical fermion in the continuum limit. In the work presented in
this thesis, we use 4-dimensional lattices, and so in using the naive quark discreti-
sation we would obtain 15 extra copies of the same quark flavour for each quark we
attempted to simulate.

Wilson Action

Kenneth Wilson determined that the doubling problem could be addressed by in-
cluding an additional two-link term in the fermion action [17]:

SW
f = S f −

∑

x

ψ̄(x)
r

2
∆2
µψ(x) (1.18)

with Wilson parameter r which is usually set to 1, and the two-link finite difference
operator ∆2

µ defined as

∆2
µψ(x) = Uµ(x)ψ(x+ µ̂) + U †µ(x− µ̂)ψ(x− µ̂)− 2ψ(x) . (1.19)

This gives the doublers a mass in the continuum limit and thus decouples them from
the theory. To see this, consider the inverse lattice propagator in this case:

(
iγµ

sin pµa

a
+m+

2r

a
(cos pµa− 1)

)
. (1.20)

It is clear that the new third term vanishes only for the quark with pµ = 0, and so
prevents the doublers from behaving like continuum quarks.
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Unfortunately the Wilson action explicitly breaks chiral symmetry [17]. There
are other methods which address the doubling problem — for example, we can add
counterterms in a programme of Symanzik improvement, much like for the gluon
action, to obtain what is known as the Wilson clover action [18] — but the method
we focus on in this thesis is known as staggering.

1.5 Staggered Fermions

Staggering addresses the doubling problem by reducing the total number of quarks
of a given flavour from 16 to 4. This is achieved through the use of a staggering
transformation [17, 19, 20] given by

ψ(x) → Ω(x)χ(x) (1.21)

ψ̄(x) → χ̄(x)Ω†(x) (1.22)

where we define

Ω(x) =
∏

µ

(γµ)xµ . (1.23)

Note that, since γ2
µ = 1, the staggering matrix Ω(x) depends only on whether the

coordinates of site x are even or odd, and therefore, in four spacetime dimensions,
there are only 24 = 16 different Ω matrices. It follows that

Ω(x+ nµ̂) =

{
Ω(x) for n even
Ω(x+ µ̂) for n odd

(1.24)

and similarly, for neighbouring lattice sites,

Ω(x+ µ̂) = ±γµΩ(x) (1.25)

with the phase factor (±) dependent on x and the direction µ in which we travel to
its neighbour.

It follows readily from the above definitions that

Ω†(x)Ω(x) = 1 (1.26)

and also that

Ω†(x)γµΩ(x± µ̂) = (−1)x
<
µ (1.27)

where we have used the notation

x<µ =
∑

ν<µ

xν . (1.28)
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Therefore, applying the staggering transformation to the naive fermion action will
absorb the Dirac γ matrix to give the staggered action:

Sstag =
∑

x

χ̄(x)
(

(−1)x
<
µ ∆µ +m

)
χ(x) . (1.29)

The staggered action is diagonal in spin space, meaning that the four components
of the spinor χ(x) are equal. Thus we may discard three of them, which reduces
the number of doublers by a factor of 4. The 4 remaining doublers in the staggered
formulation are usually referred to as tastes, and must be accounted for in staggered
simulations. However, we are now simulating a one-component spinor instead of a
four-component spinor, which will be less computationally intensive. In addition,
we still have an exact symmetry in our Lagrangian, unlike in the case of Wilson
fermions.

Note that the Dirac γ matrices have been replaced in the action by position-
dependent phases. This will also be helpful in implementing computer simulations,
and we will return to this point in the next chapter.

1.5.1 Asqtad Improvement

To attempt to improve our naive staggered discretisation, we consider the main
sources of discretisation errors. The first of these is in the replacement of our
derivatives with finite-difference operators. This can be improved by introducing
a 3-link term referred to as the Naik term [21]:

∆µ → ∆µ −
1

6
∆3
µ . (1.30)

Thanks to the identity in equation 1.24, the Naik term has no adverse effect on the
staggered phase factor since it acts across an odd number of links and so behaves
exactly like a 1-link term.

The second major source of error is taste-exchange interactions. As a conse-
quence of the doubling symmetry, a low-energy quark which absorbs momentum
π/a is not driven off-shell, but instead changes into a low-energy quark of a dif-
ferent taste. The simplest process by which this occurs is the emission of a single
gluon with any components of its four-momentum equal to π/a — recall that this
is the highest possible momentum on the lattice, and that this is the point where
the doublers live. The emitting quark will then, therefore, change taste. Since this
gluon is highly virtual (with momentum scale q2 ≈ (π/a)2), it must immediately be
reabsorbed by another quark, which also changes taste. This process is illustrated
in Figure 1.5.

Taste-exchange interactions are unphysical and so it is desirable to remove their
effects by reducing the coupling between quarks and high-momentum gluons to zero
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π/a

0

0

−π/a

π/a

Figure 1.5: A Feynman diagram of taste exchange. The quark entering on the lower
left of the diagram emits a gluon with momentum π/a, and thus changes taste. This
gluon is highly virtual and is immediately reabsorbed by the quark entering on the
top left, which also changes taste.

[22, 23, 24]. This can be implemented by introducing a form factor to the gluon-
quark vertex which vanishes for taste-changing gluons, and this is done by smearing
the link operator in the action:

Uµ(x)→ FµUµ(x) (1.31)

where the smearing operator Fµ is [20]

Fµ =
∏

ρ 6=µ

(
1 +

a2δ
(2)
ρ

4

)
(1.32)

and δ(2)
ρ approximates a covariant second derivative:

δ(2)
ρ Uµ(x) =

1

a2

(
Uρ(x)Uµ(x+ ρ̂)U †ρ(x+ µ̂)

− 2Uµ(x)

+ U †ρ(x− ρ̂)Uµ(x− ρ̂)Uρ(x− ρ̂+ µ̂)
)
.

(1.33)

The smeared operator FµUµ(x) is then identical to the unsmeared link operator
Uµ(x) (up to O(a2) errors, which we shall deal with momentarily) for gluons with
low momentum. However, when acting on a gluon field that has any component of
its momentum other than qµ equal to π/a, the smeared operator Fµ will vanish [24].
For gluons with qµ = π/a, the corresponding quark-gluon vertex is approximately
zero even with the naive quark action, so no correction is necessary [24].

Smearing with Fµ removes the leading-order taste-exchange interactions, but
introduces new discretisation errors of order a2. It is possible to remove these by
adding a new term known as the Lepage term [24] to obtain

Fasqtad
µ = Fµ −

∑

ρ 6=µ

a2(δρ)
2

4
(1.34)
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where δρ approximates a covariant first derivative:

δρUµ(x) =
1

a

(
Uρ(x)Uµ(x+ ρ̂)U †ρ(x+ µ̂)

− U †ρ(x− ρ̂)Uµ(x− ρ̂)Uρ(x− ρ̂+ µ̂)
)
.

(1.35)

The Lepage term does not affect taste exchange but clearly counteracts the errors
introduced by Fµ.

Smearing with Fasqtad
µ is implemented in practice by introducing fattened gauge

links, consisting of a combination of 1-link, 3-link, 5-link and 7-link paths between
lattice sites [25]. The Lepage term is introduced via the addition of a second 5-link
term. These smeared gauge links are illustrated in Figure 1.6 below.

1 3 5 7 5′

Figure 1.6: The smeared gauge links included in the asqtad action, which together
constitute a fattened gauge link. The 5-link structure responsible for implementing
the Lepage term is the rightmost one, labelled 5′.

Starting from the naive staggered action of equation 1.29, if we include the Naik
term in the derivative and smear the gauge links with Fasqtad

µ , we have removed
all tree-level O(αsa

2) errors arising from taste-exchange interactions. The resulting
action is known as the asqtad (a2 tadpole improved) action, and is given by

Sasqtad =
∑

x

χ̄(x)

[∑

µ

γµ

(
∆µ(V )− 1

6
∆3
µ(U)

)
+m

]
χ(x) (1.36)

where V is the smeared link operator defined by

Vµ(x) = Fasqtad
µ Uµ(x) . (1.37)

The ‘tadpole’ improvement portion of the asqtad name refers to a procedure
whereby each link operator Uµ in the action is divided by u0, the scalar mean value
of the link [26, 27]. The mean link can be nonperturbatively defined in terms of the
value of the plaquette Uplaq measured on the lattice [26]:

u0 ≡
〈

1

3
Tr(Uplaq)

〉1/4

. (1.38)
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This has the effect of reducing the large perturbative contributions of the so-called
‘tadpole’ diagrams of QCD. However, it is also prudent to note that tadpole im-
provement is not required when the gauge links are smeared and reunitarised [28,
10] — just like those which we will shortly describe.

1.5.2 Highly Improved Staggered Quarks

The remaining discretisation errors in the asqtad action are dominated by taste-
exchange interactions within quark loops, i.e. at one-loop order rather than at tree
level. These effects can be suppressed by repeated smearings of the gauge links, as
discussed in detail in [20].

Multiple iterations of the smearing process can introduce further problems. It is
immediately apparent that we must take care not to introduce further O(a2) errors,
which would only be compounded by multiple smearings. This can be avoided by
using an a2-improved smearing operator such as Fasqtad

µ above:

Fasqtad
µ → Fasqtad

µ Fasqtad
µ (1.39)

Another problem with multiple smearings is that diagrams with two-gluon ver-
tices are unphysically enhanced. This is due to the replacement of single gauge links
in the action with a sum of large numbers of products of links. Thankfully we can
eliminate this problem by reunitarising the link operator after smearing:

Fasqtad
µ → Fasqtad

µ U Fasqtad
µ (1.40)

where U is an SU(3) projection operator1. This has no effect on single-gluon vertices,
and so no additional O(a2) errors are introduced.

We may simplify our double-smearing operator by moving both Lepage terms
(contained within Fasqtad

µ as per equation 1.34) to be applied in the outermost smear-
ing step. We therefore define the double-smearing operator as

FHISQ
µ =

(
Fµ−

∑

ρ 6=µ

a2(δρ)
2

2

)
U Fµ (1.41)

with Fµ as defined in equation 1.32, and the new Lepage correction term twice that
defined in equation 1.34.

Returning briefly to examine tree-level diagrams once again, we note that the
largest remaining discretisation errors are of order (apµ)4. These will be negligibly

1In fact it is valid and advantageous to reunitarise the link operator by projecting onto U(3), not
necessarily SU(3), since the key requirement we wish to fulfil here is that the gluons are unitary.
This is how the HPQCD collaboration currently defines the HISQ action, making it slightly simpler
to compute. See [29] for some further detail.
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small for light (up, down and strange) quarks, but larger for the more massive
charm quarks — on the order of (amc)

4, since the c quarks in typical mesons can
be considered to be nonrelativistic. These errors will appear, for example, in the
relativistic dispersion relation for the charm quark, and can be removed by adjusting
the coefficient of the Naik term in the derivative:

∆µ → ∆µ −
1

6
(1 + ε)∆3

µ . (1.42)

Our choice of ε is dependent on the lattice quark mass am and is determined by a
perturbative expansion in this parameter, stated explicitly in [20]:

ε = −27

40
(am)2 +

327

1120
(am)4 − 5843

53760
(am)6 +

153607

3942400
(am)8 − · · · . (1.43)

The particular values we use in our calculations are noted alongside the relevant
quark masses in chapters 4 and 5.

With an appropriate choice for ε, discretisation errors through order (am)4 are
removed, and the tree-level dispersion relation for the charm quark becomes c2 =

1 + O((amc)
12) at leading order in v/c [20], with v the quark’s velocity. It is clear

that the action we are currently constructing will be capable of simulating charm
quarks very accurately.

Applying FHISQ
µ to the gauge links, and retuning the coefficient of the Naik term,

the resulting action is

SHISQ =
∑

x

χ̄(x)
(
γµDHISQ

µ +m
)
χ(x) (1.44)

where we define the difference operator DHISQ
µ as

DHISQ
µ = ∆µ(W )− 1

6
(1 + ε)∆3

µ(X) (1.45)

with the smeared gauge links

Wµ(x) = FHISQ
µ Uµ(x) (1.46)

and
Xµ(x) = U Fµ Uµ(x) . (1.47)

This action is known as the Highly Improved Staggered Quark (HISQ) action [20],
and is the action used for valence quarks in all the simulations presented in this
thesis.
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Calculations on the Lattice

In the previous chapter we discretised both fermionic and gluonic parts of the QCD
action onto a regularised spacetime lattice. We now wish to proceed with calculating
expectation values for QCD quantities using the path integral formulation set forth
in section 1.3, viz.

〈Γ〉 =

∫
DφΓe−SQCD

∫
Dφ e−SQCD

(2.1)

for some operator Γ.
Now that we have our lattice action, we can describe this path integral in a form

suitable for simulation. For gauge links Uµ, and anticommuting quark and antiquark
fields represented by Grassmann numbers ψ and ψ̄, we have:

〈Γ〉 =
1

Z

∫
DUµDψDψ̄ Γ e−Sg+ψ̄( /D+m)ψ (2.2)

with Sg our chosen gauge action, Dψ the integration measure, and m the quark
mass. /D is the difference operator corresponding to our chosen action from the
previous chapter (inclusive of the relevant gamma matrices), making ( /D + m) the
corresponding Dirac matrix. Z is simply for normalisation:

Z =

∫
DUµDψDψ̄e−Sg+ψ̄( /D+m)ψ . (2.3)

The quark and antiquark fields must be integrated out to obtain a path integral
of the form

〈Γ〉 =
1

Z

∫
DUµ Γ e−Sg det( /D +m) (2.4)

which can be calculated on the lattice, as we will detail in the following sections.
If the operator Γ has any dependence on the fermion fields, integrating these out
means that we must also include a quark propagator ( /D + m)−1 connecting the
positions of the fields, as well as the fermionic determinant above [30].

We note that by integrating out the quark and antiquark fields, this formulation
has separated the valence quarks — those which appear in the propagator — from
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the sea quarks, which are accounted for by the determinant in equation 2.4. This
means that we are now free to choose different masses for the sea quarks and va-
lence quarks in our simulations, a point that will be useful when generating gauge
configurations.

2.1 Gauge Configurations

By virtue of the lattice and of our discretised actions, we no longer need to perform
our path integration over an infinite spacetime. However, we must still integrate
over all possible configurations of the gluon field in equation 2.4, and this makes the
number of integration variables so large as to be impractical.

To overcome this problem, we note that the path integral is effectively a weighted
average over paths with weight e−Sg+ln det( /D+m). This means that instead of perform-
ing the integration directly, it is possible to use Monte Carlo importance sampling,
whereby a representative ensemble of gauge configurations is generated. A config-
uration is simply a set of field values on all gauge links of the lattice, and these
are generated in a Markov chain such that the probability of a single configuration
being present in the ensemble is proportional to e−Sg+ln det( /D+m). We may then es-
timate the expectation value of Γ by computing its value on each configuration and
performing a simple unweighted average over these results.

This method has a further advantage in that configurations need only be gen-
erated once, and can then be used repeatedly for a variety of different lattice cal-
culations. The downside is that the Monte Carlo estimate of an expectation value
will never be exact — statistical errors are inherent in the procedure which vanish
only as infinitely many configurations are included in the ensemble. However, it is
possible to keep these errors under control by using enough configurations: as N ,
the number of configurations, increases, the statistical error decreases as 1/

√
N [31].

Generating gauge configurations which facilitate accurate calculations presents
a number of challenges. The most important of these is including the effects of
sea quarks. Early calculations in lattice QCD were forced to neglect sea quarks
entirely, by setting det( /D + m) = 1 in equation 2.4, due to limitations in raw
computational power. This is known as the quenched approximation, and it leads
to large systematic errors of order 10% [32, 33]. It is only relatively recently that
enough computing power has become available to make unquenched simulations
possible [33].

The principal difficulty here is that direct evaluation of the determinant det( /D+

m) is not viable. By rewriting it in terms of so-called ‘pseudofermion’ fields, we
can exchange the determinant for the inverse of the Dirac operator, ( /D + m)−1

[30]. This is more feasible than computing the determinant, but presents its own
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issues — we must now invert the large sparse matrix ( /D +m). The computational
cost of this inversion is proportional to the ratio of the matrix’s maximum and
minimum eigenvalues, and since its minimum eigenvalue is approximately m [30],
more computation time is required for smaller sea quark masses.

As a compromise, configurations are frequently generated with heavier-than-
physical up and down quark masses in the sea, requiring the results of calculations
to be extrapolated to the physical point. Additional extrapolations will of course
introduce additional errors into the calculation, but these can be controlled by simu-
lating at a variety of light sea quark masses. State-of-the-art configurations are now
available with up and down quarks in the sea at their approximate physical masses,
and some of these will be detailed in the next section.

Up and down quarks are nearly degenerate in their masses, and their degree
of non-degeneracy is quantified by the breaking of a symmetry known as isospin.
Generally, isospin breaking effects are too small to affect the results of lattice
calculations, and so sea quarks are simulated in the isospin-symmetric limit with
mu = md ≡ m` = (mphys

u + mphys
d )/2. However, the precision of lattice calculations

is beginning to reach the point where isospin breaking effects should be included,
and research is underway into simulations with mu 6= md.

An additional issue is encountered when simulating sea quarks with staggered
actions, namely that we must somehow deal with the extra tastes that these actions
introduce. Traditionally this has been done by replacing the determinant det( /D+m)

in the path integral with its fourth root, which then represents only a single taste
(per quark flavour). This procedure, known as rooting, has been controversial, and
its validity has been discussed and tested extensively in the lattice literature [15, 34,
35, 36, 37, 38, and references therein]. While there is no rigorous mathematical proof
of its validity, it suffices to note for our purposes that a number of criticisms of the
rooting procedure have been comprehensively addressed in the previous references,
and, while there are still open questions to be resolved, the numerical and theoretical
evidence in favour of its validity remains strong.

2.1.1 Algorithms and Computing Power

Ensembles of gauge configurations are generated using the Hybrid Monte Carlo
algorithm [39], or more modern variants thereof which include the effects of sea
quarks [40, 41, 42]. Starting from some randomly-chosen initial values, the algorithm
performs a molecular dynamics (MD) evolution of the configuration in a fictitious
time dimension. A Metropolis step is included which decides whether to accept or
reject the updates based on the variation of the action that they induce. A certain
number of configurations are discarded at the beginning of this procedure to allow
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the values to thermalise.
Modern algorithms spend most of their computer time inverting the Dirac matrix

( /D+m) in order to include the effects of sea quarks. These inversions are typically
performed using variants of the conjugate gradient algorithm, which is discussed in
more detail in section 2.2.2 with respect to valence quarks.

Due to the way the Monte Carlo algorithm evolves the configurations, it is clear
that configurations at adjacent MD times will be strongly correlated with one an-
other. The extent of this correlation is statistically quantified by an autocorrelation
length in the MD time. Performing calculations on configurations which are closer
together in MD time than this autocorrelation length can lead to underestimates
of statistical errors. In an attempt to avoid this, the algorithm also generally dis-
cards a certain number of intermediate configurations before saving one for inclusion
in the final ensemble. This will clearly reduce the statistical correlations between
neighbouring configurations, although they may still be present to such an extent
that we must perform statistical binning on meson correlation functions calculated
using the configurations.

The computational cost of generating lattice gauge configurations is substantial,
and in most cases much larger than the cost of calculations performed on them. The
largest contribution to this cost comes from the lattice size V , with the computa-
tional cost varying as V 1+δ [30]. This limits the size of lattices that can be generated
within a reasonable time, especially since one requires O(103) statistically indepen-
dent configurations to generate results with small statistical errors. For the Hybrid
Monte Carlo algorithm, δ = 1

4
[43, 44].

The computational cost of a calculation performed on the lattice is roughly
proportional to: (

L

a

)3(
T

a

)
1

a

1

am2
π

(2.5)

where L/a is the number of lattice points in each of the three spatial directions, and
T/a the number of points in the temporal direction. The first two factors simply
give the number of lattice sites, and the other two account for a so-called ‘critical
slowing-down’ of the algorithms used to evaluate the path integral [10]. Since the
lattice spacing a appears in all four factors, it is clear that it is the most important
element in determining computer time: computational cost is roughly proportional
to a−6.

Performing calculations on configurations with larger lattice spacings is therefore
faster, but discretisation errors become smaller with smaller lattice spacings as we
approach the continuum limit more closely. Lattice calculations have traditionally
had to balance these factors very carefully, but we are now in an era where comput-
ing power has grown to the extent that generating large lattices with small lattice
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spacings, and performing calculations on them, can be done in a feasible amount of
time. This will form a large part of the focus of calculations in this thesis.

2.1.2 MILC Configurations

The results presented in this thesis have been calculated using two different sets of
gauge configurations generated (and made freely available) by the MILC Collab-
oration [1]. Here we detail some of their properties for reference in the following
chapters.

Asqtad Configurations

The first set of configurations [15] are generated using a tree-level improved gluon
action, and include the effect of u, d and s quarks in the sea, generated using
the asqtad formalism. These ensembles are listed in Table 2.1 along with relevant
parameters. The u and d quarks in the sea are degenerate and are denoted by
the subscript `. We will refer to these as the 2+1-flavour configurations, or the
(three-flavour) asqtad configurations.

Label a / fm Lattice size β δx` δxs r1/a

(approx.) (L3 × T )
fine 0.09 283 × 96 7.09 0.20 0.19 3.699(3)
superfine 0.06 483 × 144 7.47 0.16 -0.03 5.296(7)
ultrafine 0.045 643 × 192 7.81 0.17 0.04 7.115(20)

Table 2.1: Ensembles of MILC configurations which include the effects of 2+1
flavours of quarks in the sea (u, d and s). The inverse lattice spacing values are
given here in units of r1 [15] (defined in section 2.1.3). This can be converted to an
inverse lattice spacing in GeV as also explained in section 2.1.3. The δ values repre-
sent the difference between the sea quark mass and its physical value as a fraction
of the s quark mass, and β is the gauge coupling used in generating the ensembles
as discussed in section 1.4.1.

The parameters δx` and δxs quantify the mistuning of the sea quark masses on
each ensemble, and are defined as

δxq =
mq,sea −mq,phys

ms,phys

. (2.6)

Values for these parameters were determined in [45] and are also listed in Table 2.1.
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HISQ Configurations

The second set of configurations [16] also includes the effect of c quarks in the sea,
and all four flavours of sea quark are generated with the HISQ action. The gluon
action here is improved to order αsa2. These configurations are listed in Table 2.2,
and will be referred to as the 2+1+1-flavour configurations, or the (four-flavour)
HISQ configurations.

Label a / fm m`/ms Lattice size β δm w0/a

(approx.) (L3 × T )
very coarse 0.15 1/5 163 × 48 5.80 0.228 1.1119(10)

1/10 243 × 48 5.80 0.046 1.1272(7)

phys. 323 × 48 5.80 −0.048 1.1367(5)

coarse 0.12 1/5 243 × 64 6.00 0.237 1.3826(11)

1/10 323 × 64 6.00 0.068 1.4029(9)

phys. 483 × 64 6.00 −0.040 1.4149(6)

fine 0.09 1/5 323 × 96 6.30 0.291 1.9006(20)

1/10 483 × 96 6.30 0.104 1.9330(20)

phys. 643 × 96 6.30 −0.010 1.9518(7)

superfine 0.06 1/5 483 × 144 6.72 0.366 2.8960(60)

ultrafine 0.045 1/5 643 × 192 7.00 0.276 3.892(11)

Table 2.2: Details of the 2+1+1-flavour MILC configurations [16]. We label each
according to its approximate lattice spacing, and can then refer uniquely to each
ensemble with a combination of its label and the mass of the light quarks in the
sea (expressed as a fraction of the sea strange quark mass). The lattice spacing a
is listed in units of w0 (defined in section 2.1.3), as determined in [46] and, in some
cases, updated in [47].

The up and down quarks here are once again degenerate. In contrast to the
three-flavour configurations, however, this set includes ensembles where the u/d sea
quark masses are set to their physical average value. As we have discussed, such
configurations are far more computationally intensive to generate than those with
heavier light quarks, but they allow us to obtain results which require little to no
chiral extrapolation.

Here we quantify the mistuning of the sea masses with the parameter

δm = 2δx` + δxs (2.7)

with δxq defined as in equation 2.6. Many of these values have been determined
in [47], although some are calculated by hand using the tuned lattice charm quark
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masses from chapter 5. Multiplying the tuned charm mass by the world-average ratio
of charm-to-strange-quark masses from [4] gives the physical strange mass ms,phys in
lattice units, and likewise multiplying this by the world-average ratio of strange-to-
light-quark masses [4] allows us to determine the physical light quark mass m`,phys.
These values can then be used in equation 2.6 to obtain the required δxq on each
ensemble.

The primary contribution to δm for these ensembles is that from the light quarks:
on each of these configurations, the sea strange quark mass has been tuned to close
to its physical value1, as has the charm. The sea charm quark masses on these
ensembles are in fact mistuned to a much smaller degree than the light and strange
sea quarks. This is quantified in [47]. We therefore safely neglect any consideration
of sea charm mistunings on fits performed to results obtained on these ensembles.

Note that the w0/a values listed in Table 2.2 are mostly published in [46] or
[47], but there is an important exception: the value on the ultrafine ensemble was
determined by Craig McNeile for the HPQCD collaboration, and does not yet appear
in any published works.

2.1.3 Fixing the Lattice Scale

When generating gauge configurations, the lattice spacing a is not known a priori,
and must be determined via quantities with a known physical value that can be cal-
culated on the lattice — or, equivalently, through some interpolating quantity whose
value can be both determined accurately on the lattice and derived accurately from
experimental measurements [16]. By comparing the value derived from experiment
with that calculated on the lattice, we can determine a in fm for each ensemble, or
equivalently, a−1 in GeV which is needed to convert lattice results to physical units.
Clearly the accuracy with which such a parameter can be determined is crucial in
setting the overall accuracy of any dimensionful quantity derived from lattice calcu-
lations. Numerous different parameters have been used to set the lattice scale over
time, and here we will briefly review those which we use for the MILC configurations
in the previous subsection.

Sommer Parameter

The Sommer parameter r0 was introduced in 1992 [48], and is based on the potential
between two static quarks. More recently, the MILC collaboration has used a slightly
modified version of this parameter, known as r1 [49]. On the lattice, this is calculated

1The MILC collaboration has also produced a separate set of ensembles with unphysical strange
quark masses in the sea [16], should a study of effects arising from this be required — we will not
use these in this work.
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by fitting large Wilson loops as a function of lattice time [46] to extract the potential
between two infinitely heavy quarks separated by a distance r/a (in lattice units).
r1 is then defined as the point where the force F (r) calculated from the derivative
of this potential satisfies [50]

r2F (r) = 1 (2.8)

which requires a further fit to the potential to be performed. The original Sommer
parameter r0 is defined by setting the same expression equal to 1.65 [48].

The actual calculation here is advantageous in that it requires no evaluation of
quark propagators, since Wilson loops are simply products of gauge links, but the
subsequent analysis is a complicated one to perform. In addition, it is challenging
to calculate large Wilson loops with good signal-to-noise ratios, and this may be
a contributing factor to tensions between different determinations of the Sommer
scale [51].

The physical value of r1 that we will use has been accurately determined on
2+1-flavour lattices2 by the HPQCD collaboration in [52] as r1 = 0.3133(23) fm,
by comparing the PDG value of fπ, the decay constant of the pion, with a lattice
calculation of r1fπ. The MILC collaboration has calculated r1/a on each of its
generated ensembles [15] as listed in Table 2.1.

Wilson Flow Parameter

The Wilson flow parameter w0 was introduced in [51] to attempt to remedy some of
the problems encountered with r1. It keeps the advantages of the Sommer parameter
in that it also requires no quark propagators to calculate, but is easier to compute
with high precision because, unlike r1, it does not require the asymptotic-time fit-
ting of Wilson loops, and does not suffer from the same signal-to-noise issues. Its
evaluation is simpler, and the analysis required to compute it from lattice data is
less cumbersome, and correspondingly more precise.

Measurement of the Wilson flow parameter is performed by smoothing the gluon
field using a series of infinitesimal smearing steps [51]. The field then becomes
smooth and renormalised, and gauge-invariant functions of the field therefore become
physical quantities. Different parameters suitable for fixing the lattice scale can then
be defined from the flow-time dependence of these quantities [46]. Specifically, w0

is defined by:

t
d

dt

(
t2〈E〉

)∣∣∣∣
t=w2

0

= 0.3 (2.9)

2The HPQCD collaboration has also determined r1 on the 2+1+1-flavour lattices, in [46], as
r1 = 0.3112(30) fm, using the same method. We will not use this number, preferring to fix the
lattice spacing on the four-flavour ensembles using the Wilson flow parameter, but note it here for
posterity.



Chapter 2 23

where t is the flow time, and 〈E〉 is the expectation value of the gluon action density,
a gauge-invariant function of the gluon field [46].

The physical value of the Wilson flow parameter has again been determined accu-
rately by HPQCD, using the decay constant of the pion fπ [46], as w0 = 0.1715(9) fm,
and similarly, the w0/a value as determined on each ensemble is listed in Table 2.2.

Perhaps the single disadvantage of using the w0 parameter is that, due to the
use of pure gluon fields in its computation, its value can be somewhat affected by
the masses of quarks in the sea [47], and so can introduce such a dependence into
quantities calculated using it. However, it is relatively straightforward to deal with
this when fitting the overall results in a chiral and continuum extrapolation, by
including some terms in the fit function to account for it.

2.2 Flavour Physics with the HISQ Formalism

The properties of a stable meson M can be determined on the lattice by calculating
two-point correlation functions 〈Γsk(y) Γ†sc(x)〉. Here sc and sk stand for ‘source’ and
‘sink’ respectively, which we shall define momentarily. Γsc,sk(x) are operators which
have non-zero overlap with the mesonic state |M〉 we wish to investigate; in other
words,

〈0|Γsc,sk(x)|M〉 6= 0 . (2.10)

Consider a meson with quantum numbers JPC created at lattice site 0 at time 0,
allowed to propagate, and destroyed at site x at time t. The site (0, 0) is then labelled
the source of the meson, and the site (x, t) the sink3. Performing a discrete Fourier
transform in the spatial directions allows us to express the two-point correlator as
a function of Euclidean time [30]:

C2pt(t;p) =
∑

x

〈
J(x, t)J†(0, 0)

〉
e−ip·x (2.11)

with the current, J , defined by

J(x, t) = ψ̄(x, t) Γψ(x, t) (2.12)

where Γ is some combination of Dirac γ matrices, chosen appropriately at the source
(and sink) to create (and destroy) a meson with the desired quantum numbers. In
all of the calculations in this thesis, we will consider only correlators with zero
momentum, and can therefore reduce the above expression to:

C2pt(t) =
∑

x

〈
J(x, t)J†(0, 0)

〉
. (2.13)

3Note that we have switched to a three-vector notation for the spatial components of the lattice
sites, to explicitly show the time-dependence of the correlation function.
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In cases where the current J couples to the same point (x, t) for both quark and
antiquark fields, as we have illustrated here, the operator is said to be local. If ΓA

and ΓB are our chosen γ matrix combinations at the source and sink respectively,
this imposes a restriction on the correlator that ΓA = ΓB. This restriction may be
avoided by using a non-local current J(x, t) = ψ̄(x, t)Γψ(x′, t′), with the lattice sites
(x, t) and (x′, t′) in the same hypercube.

Explicitly writing the correlator in terms of the quark fields, we obtain [12]

C2pt(t) =
∑

x

〈
ψ̄(x, t) ΓB ψ(x, t) ψ̄(0, 0) ΓA ψ(0, 0)

〉
(2.14)

and noting that our creation and annihilation operators can be combined into quark
propagators by Wick contracting the quark and antiquark fields, we can rewrite the
expression for the correlator in terms of these propagators. We can calculate valence
quark propagators on the lattice (the procedure for which we examine in more detail
in section 2.2.2), and may therefore compute our correlation functions by combining
them:

C2pt(t) =
∑

x

Tr [ΓB G(x, t;0, 0) ΓAG(0, 0;x, t)] (2.15)

where G(x, t;0, 0) is the propagator from site (0, 0) to site (x, t), and the trace is
over (implicit) colour and spin indices.

We view the path-reversed propagator G(0, 0;x, t) as describing the antiquark
in our meson pair. This can be simply computed from the identity G(0, 0;x, t) =

γ5G
†(x, t;0, 0)γ5 and does not require a separate matrix inversion to calculate.

2.2.1 Staggered Operators

The choice of operators ΓA,B in the correlation function is what will determine the
quantum numbers of the meson that we create from the vacuum. For staggered
mesons, the spin γn of the operator fixes what JPC it couples to, and the taste
of the operator, γs, is its total Dirac γ matrix content after staggering. Staggered
operators are defined by their spin and taste, and are generally denoted γn ⊗ γs.

Staggered operators with the same spin γn but different taste content γs will,
appropriately, create different tastes of meson, with slightly different masses on the
lattice. However, as outlined in the previous chapter, taste splittings are inherently
a discretisation effect, and so each taste of meson must have the same mass in the
continuum limit. With the HISQ action, taste splittings are generally very small [20,
53], and so we are free to choose different tastes of operator if one is more suitable
for the calculation being performed.

An appropriate choice of operators is now all that we need in order to deter-
mine the masses of a system of stable mesons. For example, if we were to choose
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Γsc = Γsk = d̄γµγ5u, we could determine the mass of the π+ from the rate of expo-
nential fall-off of the correlator, and also its decay constant from the exponential’s
coefficient. These useful properties of the correlator are exactly what we utilise to
fit lattice data, and this is dealt with fully in section 3.1.

As noted in section 1.5, four different quark tastes remain in staggered quark
propagators, which can be combined to produce 16 different tastes of meson. This
can be accounted for by normalising each quark loop for one staggered taste [34].
Two-point correlators by definition contain a single quark loop, and so we should
divide two-point functions by 4 to cover this.

Point Splitting

We can rewrite equation 2.15 for the two-point lattice correlator in terms of staggered
quark propagators g(x, t;0, 0) by applying the relevant staggering transformations
Ω(x, t) and Wick contracting the quark fields:

C2pt(t) =
∑

x

Tr
[
ΓB Ω(x, t)g(x, t;0, 0)Ω†(0, 0) ΓA Ω(0, 0)g(0, 0;x, t)Ω†(x, t)

]
.

(2.16)
The trace here is over spin, and this rewriting is only possible when the correlator
written in terms of naive quarks is spin-diagonal. In other words, the only spin-
dependence is in the Ω matrices, so we can factor out the propagators from the
above expression in a separate trace over colour. We may then perform the spin
trace and cancel out the taste γ matrices to generate staggered phase factors, which
we will compute shortly.

The staggering matrix for neighbouring lattice sites follows the relation set out
in equation 1.25. It follows from this that the use of a non-local operator will change
the γ matrix content of a correlator once the staggering transformation is applied.
For example, an operator with one link of point splitting in the µ direction will
gain one extra γµ after staggering. When point splitting is included, the general
staggered operator γn ⊗ γs therefore looks like4

χ̄(x)Ω†(x)γnΩ(x+ n+ s)χ(x+ n+ s) . (2.17)

Staggered Operator Phases

In addition to being spin-diagonal, a staggered correlation function must be a taste
singlet, i.e. the product of all the tastes must be 1. When the taste γ matrices are
anticommuted so that they can be cancelled out, an overall phase factor arises in
the correlator, and this can be determined analytically by performing the spin trace

4Note again a change in notation here: we have switched back to labelling the lattice sites as
four-vectors for simplicity.
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described above. If our correlation function is not a taste singlet, this trace will
yield a result of zero.

To perform the spin trace and obtain an expression for the overall phase factor,
consider the general staggered operator in equation 2.17 above. First, let us find the
phase factor which arises from writing the point-split staggering matrix Ω(x+n+s)

as γn+sΩ(x). This results in a factor of (−1)x
<
µ for each component of (n+ s)µ = 1,

of which there are 4. Here we have used the notation

x<µ =
∑

ν<µ

xν (2.18)

which we introduced in equation 1.28. We can now write our general staggered
operator as


 ∏

(n+s)µ=1

(−1)x
<
µ


 χ̄(x)Ω†(x)γnγn+sΩ(x)χ(x+ n+ s) (2.19)

or, since γnγn+s = ±γs,

±


 ∏

(n+s)µ=1

(−1)x
<
µ


 χ̄(x)Ω†(x)γsΩ(x)χ(x+ n+ s) . (2.20)

Our next step is now clearly to anticommute γs with Ω(x) so that the staggering
matrices will cancel each other. This results in a factor of (−1)x̄µ for each µ with
sµ = 1. Here we have introduced another convenient shorthand:

x̄µ =
∑

ν 6=µ
xν . (2.21)

The overall factor appearing in our taste-singlet operator is then

 ∏

(n+s)µ=1

(−1)x
<
µ




∏

sµ=1

(−1)x̄µ


 . (2.22)

Phases for a selection of local staggered currents are detailed in Table 2.3.

Operator JPC Partner Phase

γ5 ⊗ γ5 0−+ 0+− 1

γ0γ5 ⊗ γ0γ5 0−+ 0++ (−1)(x+y+z+t)

γi ⊗ γi 1−− 1+− (−1)i

γiγ0 ⊗ γiγ0 1−− 1++ (−1)(x+y+z+t+i)

Table 2.3: Phases and spins for local staggered currents
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Finally, we determine a relationship between quark and antiquark propagators
for staggered quarks. Much like the naive-quark equivalent

G(y, x) = γ5G
†(x, y)γ5 (2.23)

where G(x, y) describes a propagator from site x to site y, we view the path-reversed
propagator as describing an antiquark propagating from x to y. The anticommuta-
tion relation for the staggering matrix with γ5 is

Ω(x)γ5 = ε(x)γ5Ω(x) (2.24)

where we define
ε(x) = (−1)

∑
µ xµ . (2.25)

Therefore, in applying the staggering transformation and anticommuting the γ ma-
trices appropriately, we find that

g(y, x) = g†(x, y)ε(x)ε(y) . (2.26)

for staggered propagators.

Oscillations

The naive quark action of equation 1.14 is invariant under the doubling transforma-
tion

ψ(x) → iγ5γµ(−1)xµψ(x)

= iγ5γµe
iπxµψ(x) (2.27)

and this gives rise to the doubling problem discussed in chapter 1. Recall that, since
this transformation is applicable in each of the 4 spacetime directions, a naive quark
field will describe 16 different quarks of a given flavour instead of just one. The
staggering transformation reduces the total number of quarks of each flavour to 4,
and we refer to them as tastes.

In calculating a two-point correlation function as described above, a sum over
space is carried out to give zero three-momentum, and (for staggered quarks) this
cancels out the three spatial doublers. The doubler in the time direction remains,
however, and so the staggered quark may have low energy E ≈ 0 or high energy
E ≈ π (in lattice units).

To quantify the effect this has on our correlator, we will follow a similar example
to that given in [54], and closely emulate the treatment used there. First we note that
the high-energy staggered quark field may be transformed back into a low-energy
field by reapplying the time component of the doubling transformation, viz.

ψ(x)|E≈π → iγ5γ0(−1)tψ(x) . (2.28)
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Now consider the case of a pseudoscalar current

J5(x) = Ψ̄(x)γ5ψ(x) (2.29)

which will, in the continuum limit, couple to pseudoscalar JP = 0− mesons. Here
Ψ denotes a quark field which may also be staggered, but which describes a quark
of different mass to the field ψ. Substituting the transformed high-energy field into
this current, we obtain

J5(x)|E≈π → Ψ̄(x)γ5(iγ5γ0)(−1)tψ(x)

= (−1)tΨ̄(x)iγ0ψ(x) (2.30)

which implies that the current J5 also couples to JP = 0+ mesons: those with
opposite parity to the pseudoscalar5.

In constructing a correlator from the pseudoscalar current, we will therefore
obtain an expression of the form

C2pt(t) =
∣∣〈0
∣∣Ψ̄γ5ψ

∣∣0
〉∣∣2 e−E−t + (−1)t

∣∣〈0
∣∣Ψ̄iγ0ψ

∣∣0
〉∣∣2 e−E+t (2.31)

where E− and E+ are the energies of the JP = 0− and JP = 0+ mesons respectively.
It is clear that the second component oscillates in sign from one time step to the
next.

In staggered simulations, oscillating components of meson correlators are a fre-
quent occurrence. In addition to their appearance in flavoured mesons as explained
here, they will also appear in flavourless mesons where both quarks are staggered.
Oscillations must therefore be properly accounted for when fitting correlation func-
tions, and more details on how this is done are discussed in section 3.1.

The exception to this is in local pseudoscalar currents at zero momentum with
a quark and antiquark of equal mass, where the oscillating components cancel out.
This is important for our purposes, since it makes staggered lattice calculations of
pseudoscalars very accurate. Indeed, several of the calculations in the following
chapters will compute exactly these types of currents.

It should be noted that since oscillating components will, in general, couple to
the parity partner of the intended current, they can in fact be very useful, allowing
us to extract the properties of two different mesons from a single correlator (given
sufficient accuracy). Indeed this is exactly the method used in chapter 5 of this
thesis when calculating the spectrum of excited charmonium states. For example,
the hc axial-vector meson (JPC = 1+−) is the parity partner of the ground-state J/ψ
vector meson (JPC = 1−−) and so we can extract information on both of them from
the same correlation function. Partners for selected local currents are also listed in
Table 2.3 above.

5We can explicitly see this by noting: 1. that there is no three-vector index, so J = 0, and
2. that Pγ0P = γ0, where P ≡ γ0 is the parity operator, so P = +.
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2.2.2 Random Wall Sources

Staggered quark propagators g(x, y) are calculated as the inverse of the appropriate
Dirac matrix: for HISQ quarks, we have the relation

g(x, y) =
(

[ /D
HISQ

+m](x, y)
)−1

. (2.32)

This inversion is performed using an iterative procedure based on the conjugate
gradient algorithm [55], which, for a square matrix A and vector η, solves Ab = η

for b. In the case of the propagator inversion we have here, A is the Dirac matrix
[ /D

HISQ
+m](x, y), and η(x) is known as the source vector. Since we have defined the

propagator g(x, y) as the inverse of the Dirac matrix, the solution to this problem is

b = g(y) =
∑

x

g(x, y)η(x) (2.33)

which describes a quark propagating from all sites x to site y. The complex conjugate
g†(y) describes the corresponding antiquark.

We can take advantage of this fact to increase the statistics in our simulations
by using what is known as a random wall source [52]. On a single source timeslice
t = t0 of the lattice, the source vector η(x) is defined as a colour 3-vector of U(1)

random numbers with unit norm. On all other timeslices η(x) is set to zero.
We can obtain an expression for the contraction of quark and antiquark propa-

gators g(y) and g†(y) made from these random wall sources:

g†(y)g(y) =
∑

x,x′

g†(x′, y)g(x, y)η†(x′)η(x) (2.34)

and, noting that when x′ 6= x the random source vectors will cancel on the average
and only contribute a small amount of noise, this can, to a good approximation, be
simplified to:

g†(y)g(y) =
∑

x,x′

g†(x′, y)g(x, y)δx,x′ =
∑

x

g†(x, y)g(x, y) (2.35)

which describes a separate meson correlator originating at each spatial point x on
the source timeslice. We are now, in effect, simulating L3 correlators rather than
just one. This represents a significant increase in statistics6 with no increase in
computational cost, and is clearly much faster than attempting to simulate all these
correlators individually.

This ‘embedding’ of the source timeslice into g(y) is extended to include the
source operator when using staggered quarks: the relevant staggered phase and

6Of course there exist statistical correlations between the spatial points on a single timeslice,
so the net statistical gain is less than L3. Qualitatively, there is still a significant increase, since
the gain in signal overcomes the increase in noise for all the calculations which we perform.



30 Chapter 2

point-splitting must be applied to η(x) before computing the staggered propagator
g(y). For example, to produce a correlator for a local vector meson polarised in the
x-direction (i.e. using the γx ⊗ γx operator), we require a phase of (−1)x embedded
in the source, and must insert a phase of (−1)x when combining the propagators at
the sink. The correlator is therefore made by combining a quark propagator gη(y)

made from a random wall source η(x) with an antiquark propagator g†ρ(y) made
from the same random wall but patterned with the appropriate staggered phases:
ρ(x) = (−1)xη(x).

This patterning of the source is slightly different if the source operator includes
any point splitting. Taking a similar example of the x-polarised one-link vector
meson γx ⊗ 1, the same quark propagator gη(y) is combined with an antiquark
propagator g†σ(y) made from a source vector σ(x) with point splitting averaged
symmetrically over the forward and backward directions — explicitly:

σ(x) =
1

2
[η(x+ x̂) + η(x− x̂)] . (2.36)

To further improve statistical precision, in all of the simulations presented in this
thesis we calculate propagators from several different time sources t0 on each gauge
configuration, which are then averaged over.

Subset Corner Mask

In the case of vector mesons we can use a method to allow us to obtain correlators
in each of the three orthogonal spatial directions from a single random wall source.
This method is referred to in what follows as the subset corner mask.

After the random wall source is constructed, we set its values on all lattice
sites to be zero except on the corners of each 24 hypercube. This means that the
appropriate phases we need to insert to produce a vector correlator are all simply
set to 1, which allows us to obtain correlators for different vector polarisations from
the same source.

If this were not implemented, we would require three different sources patterned
with phases of (−1)x, (−1)y and (−1)z. The computational cost of the calculation
is therefore significantly decreased, at the expense of slightly reducing our statistics.

Quantitatively, the HPQCD collaboration has found that using three differently-
patterned sources gains us a factor of

√
3 in statistics, compared to using a single

source with the subset corner mask. This is often a worthwhile sacrifice to make
to gain a factor of 3 in computer time. In cases where it is not possible to use the
subset corner mask (such as alongside the smearings detailed below), but where we
still wish to reduce our computational costs, the simplest solution is often to study
just a single vector polarisation, albeit with the corresponding reduction in statistics
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this entails7.

2.2.3 Smearings

We have discussed how the choice of operators used in calculating a correlator will
determine what JPC it couples to, and how this can be used to determine the prop-
erties of a meson with these quantum numbers by fitting to a decaying exponential.
In fact, the chosen operators will couple to any meson with the same quantum num-
bers, and so in principle we can also determine the properties of excited meson states
by fitting to a sum of decaying exponential functions.

It is difficult to obtain a reasonable signal for radially excited states unless the
chosen operator Γ has a very large overlap with the corresponding state. Thankfully
there are steps we can take to improve this overlap via the use of smeared operators
— these are simply the standard staggered operators we have already discussed,
with smearing functions applied to them. Ideally we would use smearings which
improve overlap with the excited states we wish to study, but in practice these are
very difficult to find.

Instead, we use smearings which have a large overlap with the ground state.
Finding these is a much more feasible task, and also improves determinations of
excited states since it allows us to precisely extract the ground state at small t-values.
We are therefore able to more accurately determine the corresponding excited-state
contributions to the correlator, which manifest themselves most strongly at the same
small t-values.

In many of our calculations of excited charmonium states in chapter 5, we apply
Gaussian covariant smearings to both source and sink operators to improve their
overlap with the ground state as described. The use of covariant smearings is a
deliberate choice, as it means that we do not have to take the extra step of gauge-
fixing the lattice configurations we wish to use. These smearings are of the form

[
1 +

r2 · D2

4 · n

]n
n→∞−−−→ exp

(
r2 ·D2

4

)
(2.37)

where n is the number of iterations applied, and the parameter r determines the
width of the Gaussian — effectively setting the size of the smearing. Values used
for these parameters are given in chapter 5. Note that D here is, specifically, the
stride-2 covariant difference operator (in spatial directions only), which is necessary
to preserve the taste of the staggered mesons we are studying.

7This is, in fact, probably a smaller reduction in statistics than one might expect. Vector cor-
relators with different polarisations but created from the same source (patterned with appropriate
phases) will exhibit a significant degree of statistical correlation, and so averaging them for analysis
does not gain us a huge amount in the way of statistics.
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Several different smearings can be applied in otherwise identical calculations to
increase statistics. This also allows for the comparison of different smearings to
determine if one results in a better overlap.

Smearing the operators in this way results in a matrix of different correlation
functions being obtained, and these can be fit simultaneously to take account of
correlations between them. Methods for performing such a fit are also discussed in
section 3.1.

2.2.4 MILC Code

The procedures described in the preceding sections for calculating staggered-quark
correlators on various gluon ensembles are implemented in this thesis through the
use of the MILC collaboration’s open-source lattice gauge theory code [1]. The
utilities within this code are written with lattice QCD in mind, and indeed there
are several designed for working with HISQ quarks.

The code allows us to script the reading in of gauge configurations; the calculation
of an appropriate Dirac matrix [ /D

HISQ
+ m], including specifying an appropriate

coefficient ε for the Naik term in the derivative (see equation 1.42) which depends on
the quark mass; the calculation of appropriate source vectors on a specific timeslice
of the lattice, and the application of the appropriate phase patterns; the inversion of
the Dirac matrix, using a version of the conjugate gradient algorithm, to calculate
staggered propagators; and the combination of these propagators with appropriate
phases at the sink to produce correlation functions.

In other words, we can compute correlation functions on pre-existing gauge con-
figurations simply by specifying certain input parameters, and the procedures to be
carried out. The ability to use the MILC code in such a way makes performing
calculations on many different gauge configurations, with multiple time sources on
each configuration, much more efficient. This is crucial in allowing us to obtain
correlators with high statistical precision.
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Obtaining Physical Results

3.1 Correlator Fitting

Two-point lattice correlators are functions of t, the time separation between the
source and the sink, and, as we have already mentioned, can be expressed as a series
of decaying exponentials. Staggered correlation functions will, in general, also con-
tain oscillating states as discussed in section 2.2.1. Combining all this information,
we arrive at a suitable fit function for our correlators:

C2pt(t) =

nexp∑

n=0

[
A2
ne
−Ent − (−1)tA2

o,ne
−Eo,nt

]
(3.1)

where the subscript o denotes a parameter belonging to the oscillating part of the
correlator. Terms with n = 0 represent the ground states, and larger values corre-
spond to excited states with the same quantum numbers. En denotes the energy of
a particular state n (which, at rest, is equal to its mass). We constrain the energies
in a hierarchy such that En < En+1. An is the state’s amplitude and is related to
the matrix element 〈0|Γ|n〉, from which we can extract properties of the meson’s
decays.

Before fitting, we average each set of correlators for the same meson over time
sources and configurations, and, in the vector case, also over the three different
polarisations. The fit is performed to the average correlator C2pt(t), and takes
account of statistical correlations between neighbouring lattice times t. In some
cases we bin the correlators in Monte Carlo time to remove statistical correlations
between data from neighbouring configurations, and thus obtain a more realistic
estimate of statistical errors from the fit.

In all of the calculations in this thesis, we use periodic boundary conditions
on our lattices, which means that we must also account for mesons propagating in
the opposite direction. To extract physical quantities, we therefore fit the resulting
average correlators C2pt(t) to an augmented form of our fit function, which includes
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some additional terms to account for this periodic nature:

C2pt(t) =

nexp∑

n=0

[
A2
n fn(En, t)− A2

o,n fo(Eo,n, t)

]
(3.2)

where

fn(E, t) = e−Et + e−E(T−t) (3.3)

fo(E, t) = (−1)t/afn(E, t) (3.4)

with T the time extent of the lattice [56].
In principle there can be an infinite number of terms included in the fit function,

but correlation functions are, generally, dominated by contributions from the ground
state, especially at large t values, and so higher-order terms describing the excited
states become negligibly small in this region. This is evident in examining a rescaled
version C̃2pt of the average correlators C2pt, calculated by dividing out the ground
state exponential:

C̃2pt =
C2pt

e−Et + e−E(T−t) (3.5)

where T is the time extent of the lattice. E is the energy of the ground state,
obtained either from the full fit to the correlator or from an effective mass calculation
as detailed later in this section. C̃2pt will then exhibit a central plateau of value A2

0,
the square of the ground state amplitude, rather than following the continuous
exponential decay of the raw average correlator.

Two examples of such rescaled correlators are shown in Figure 3.1 — one JP = 0−

pseudoscalar and one JP = 1− vector. These were calculated on the superfine 2+1
ensemble as listed in Table 2.1 for charmonium mesons, and form part of the data
that we focus on in chapter 4. The oscillatory behaviour of the vector correlator is
clearly demonstrated.

The mid-point of the correlator — where the time separation t reaches half of
the time extent of the lattice — is the furthest point from the random wall source.
Values of the correlator at and around this point are a good test of the convergence
of the matrix inversions required to calculate our propagators, and we often monitor
them for this purpose. A magnified version of the correlator data in Figure 3.1b
centred on the mid-point is presented in Figure 3.2.

It is clear that there is a bump present in the data, but this appears to be a very
small effect. This justifies the way in which we allow the fit code to treat correlators
as periodic, and fold them about the midpoint in t before averaging and fitting. This
folding is another way of increasing our statistics, and any additional uncertainty it
introduces will clearly be very small, since values either side of the midpoint agree
very well.
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Figure 3.1: Plots of rescaled two-point charmonium correlators C̃2pt on the superfine
2+1 ensemble. These plots include statistical errors, which are smaller than the size
of the points. The rescaling is performed by dividing the average correlator C2pt by
the ground state exponential, and the plateau of value A2

0 is evident in each. Lines
are drawn between the points, which clearly reveal the oscillating behaviour of the
vector correlator.
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Typically, we therefore only need include somewhere in the region of nexp = 6–10
exponentials to obtain a good fit, depending on how many correlators are included,
and on the time range of the fit. Practically, we carry out successive fits while
increasing the number of exponentials included. This allows us to determine when
the fit has converged by observing that the parameters we are interested in have
stabilised once a certain number of exponentials have been added. An example of
this convergence is shown in Figure 3.3.

Strictly speaking, because all four tastes of meson remain in staggered propaga-
tors, we should normalise our correlators for one taste by dividing by 4, as noted in
section 2.2.1. In practice, when using the MILC code to calculate two-point corre-
lators this is not necessary, because the lattice derivative defined in the code omits
the factor of 1

2
shown in equation 1.15. Each propagator it calculates (by inverting

the Dirac matrix including this derivative) is therefore already smaller by a factor
of 2, and in combining two propagators to make a two-point correlator, we obtain
the required normalisation without further manipulation.

3.1.1 Bayesian Methods

Traditionally, a multi-exponential fit to the function in equation 3.2 would be per-
formed by minimising a χ2 parameter, defined as the difference between the data
and the values of the fit function, taking into account the statistical correlations be-
tween successive data points through the use of a correlation matrix. This method
becomes unsuitable with more than a few exponentials in the fit, because the pa-
rameters related to the high-energy terms are poorly constrained. This means that
they wander off from their true value in the multi-dimensional parameter space, and
hence affect the error estimates for the (better-constrained) low-energy parameters.

We address this through the use of Bayesian constrained curve fitting [57], in
which we augment the traditional χ2 parameter with a Bayesian prior:

χ2
aug = χ2 + χ2

prior (3.6)

where

χ2
prior =

∑

n

(An − Ãn)2

σ̃2
An

+
∑

n

(En − Ẽn)2

σ̃2
En

. (3.7)

The χ2
prior terms discourage the fit from venturing outside the region [Ãn− σ̃An , Ãn+

σ̃An ] for each amplitude, and the region [Ẽn − σ̃En , Ẽn + σ̃En ] for each energy. The
Bayesian priors Ãn±σ̃An and Ẽn±σ̃En are inputs to the fit which must be chosen with
physical motivation, and perhaps based on previous knowledge. Since we must define
a prior for each parameter included in the fit, we can include as many exponentials
as we wish without worrying about how many data points we have — the fit will



Chapter 3 37

62 64 66 68 70 72 74 76 78 80 82

Lattice time t

0.0066

0.0068

0.0070

0.0072

0.0074

N
or

m
a
li
se

d
co

rr
el

at
or
C̃

2
p
t

superfine 2+1, amq = 0.271

Figure 3.2: A rescaled and cropped version of Figure 3.1b, showing the small ‘kink’
at the central t-value. Although this is definitely present in the data here, the
vertical axis has had to be scaled up significantly to show it — indeed it is not clear
at all from the original plot that it even exists. This is another indication of the
quality of the correlator data that we have obtained.
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Figure 3.3: A plot demonstrating the convergence of a fit parameter as the number
of exponentials in the fit function is increased. The specific parameter used in
the example here is the energy of the ψ(2S) charmonium meson, expressed as its
difference to the energy of the ground-state J/ψ(1S). The fit has clearly converged
once the sixth exponential is added, and shows no change as we continue to add
more. The χ2 values for each fit are shown below the corresponding points, and
these also stabilise as the fit converges.
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simply not constrain higher-order parameters more tightly than their prior value if
it cannot extract any further information about them from the data.

Typically, we can take quite wide priors on most of the parameters. Amplitudes
are typically taken to be 0.01 ± 1.0 with our normalisation of the correlators, and
the energy splittings in the hierarchy of states as approximately 600 ± 300 MeV

expressed in lattice units. The prior for the energy of the ground state can be
determined from an effective mass calculation on the correlator. The effective mass
meff of a correlator is defined as

meff(t) = − ln

[
C2pt(t+ 1)

C2pt(t)

]
(3.8)

and will provide a good approximation to the ground state mass at large t values.
Note that we will shortly describe a number of methods which will automatically
generate more precise priors for us from the data at hand, so the prior values quoted
here are in fact rarely entered manually in the fits we describe in the following
chapters.

3.1.2 Fitting Code

We perform the fitting procedure using code developed by G. P. Lepage [57], which
performs Bayesian least-squares fits to given data. For our fit function, we take
equation 3.2 with a number of exponentials nexp. Our fit parameters are the am-
plitudes An and Ao,n along with, perhaps counterintuitively, the logarithm of the
ground-state energy and (for excited states) the logarithms of the energy differences
to the next-lowest state. This keeps the values of the energies positive and correctly
ordered — a key problem faced by previous fit methods.

To obtain good fits, we also remove values in the correlator at time separations
below tmin/a and above (T − tmin)/a. This reduces adverse effects from higher
excitations, which manifest themselves most strongly at extremal t values, although
we must be careful not to be too harsh in our choice of tmin if we are also attempting
to determine the parameters of some of these excited states.

It is also sometimes useful to introduce a singular value decomposition (SVD)
[58], removing small eigenvalues of the statistical correlation matrix to regulate its
singularity. Values derived from the inverse of this matrix are used in the calculation
of the χ2 value to be minimised, and it is impossible to compute this inverse accu-
rately if the matrix is singular, or nearly so. An SVD cut regulates the singularity
of the matrix by effectively replacing its smallest eigenvalues by a larger minimum
eigenvalue, at the cost of some precision in the data being input to the fit. However,
this cost is often worth the gain in numerical stability [59].

In the standard Bayesian fit, priors for energy and amplitude values can be
determined by an initial ‘fast fit’ which removes all terms from the data other than
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those with n = 0, via statistical marginalisation [60]. Inputting even very wide
priors of 1(100) to this fast fit allows it to return a good estimate of the ground
state amplitude and energy in the correlator under consideration, and these are
then used as more precise priors in the full fit. The fit code keeps track of statistical
correlations between the ‘fast fit’ results and the data, and this ensures that the
statistical errors in the full fit are estimated correctly.

From the fit to each average correlator, we can extract the amplitude and energy
of the ground state and (ideally) some excited states. From these, it is possible to
compute a number of physical quantities of interest, and this is exactly what we will
do in the following chapters.

3.1.3 EigenBasis Method

When applying smearings to source and sink operators in a lattice calculation, we
will end up with a matrix of correlation functions containing each combination of
different smearings applied. We use this method in chapter 5 to improve the overlap
of operators with the ground state meson, with the aim of making more accurate
determinations of the parameters of excited states.

It is often the case when looking at excited states that the fit code can find
plausible solutions to the fit which incorporate spurious, non-physical states with
vanishing amplitudes. This is due to a lack of prior knowledge about excited states
in the fit, the existence of which can be tricky to establish definitively due to their
contributions to the correlator rapidly reducing as t increases.

A fit method based on the generalised eigenvalue approach to lattice spectroscopy
[61, 62, 63] has also been developed by G. P. Lepage [64] as part of the same fit
code mentioned above, and is known as the EigenBasis method. Given N different
smearings (including no smearing) and an N ×N matrix of correlators formed from
every combination of these smearings applied at the source and sink, a new basis
can be defined which makes the matrix of correlators approximately diagonal at a
given value of t.

The diagonal elements then overlap strongly with the lowest-lying states [64]
and there is an obvious choice of priors for the amplitudes: approximately 1 on the
diagonal elements and approximately 0 elsewhere. In the EigenBasis fits described
in this thesis, we define these priors more precisely as 1.0(3) and 0.0(1) respectively.
Such a prior is optimised for this type of fit, as by construction it encodes information
about the excited states present, and so stabilises the fit against the spurious states
mentioned previously.

Note that the EigenBasis fit method does not take oscillating states into ac-
count, as it derives its fundamental quantity — the optimised prior — from just
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two t-values. It is possible, however, to fit oscillating states using the standard
Bayesian fit method above at the same time as using the EigenBasis method to
fit the non-oscillating states, simply by defining additional priors for the oscillating
contributions. This is exactly the method used in many of the fits in chapter 5.

On a related note, when fitting correlators with different smearings applied, we
must make a slight modification to our fit function in equation 3.2, as the amplitudes
for each state will differ depending on which smearing is used:

C2pt(t) =

nexp∑

n

[
An,scAn,sk fn(En, t)− Ao,n,scAo,n,sk fo(Eo,n, t)

]
(3.9)

with fn(E, t) and fo(E, t) having the same meanings as before. We now have a
different amplitude An for each smearing used at the source (sc) and sink (sk) of the
correlator. For correlators on the diagonal of the matrix, where the same smearing
is applied to the source and sink, this simplifies to the same form as before, since
An,scAn,sk = A2

n,sc = A2
n,sk.

3.2 Physical Extrapolation

We noted in section 1.4 that to obtain physical results from lattice QCD calcula-
tions, we must extrapolate our lattice results to the physical world, and this requires
calculations to be performed at multiple lattice spacings. The extrapolation neces-
sarily introduces some systematic errors which we must understand in order to be
able to quantify them and keep them under control.

More generally, we note that statistical errors in lattice calculations are due to
Monte Carlo evaluation of the path integral, but these can easily be kept under
control if we have sufficient statistics — using several time sources on large numbers
of configurations, for instance. Systematic errors, on the other hand, are inherent
in lattice calculations, due to the ultraviolet cutoff imposed by the lattice, and the
need to use discretised derivatives [31]. These are the errors which will manifest
themselves during the following extrapolations.

3.2.1 Continuum Limit

Results from lattice calculations depend on the finite lattice spacing a, and must be
extrapolated to a = 0 to be compared with physical results. A controlled extrap-
olation is only possible by fitting to results from multiple lattice spacings. The fit
function used to carry out this extrapolation can vary in its details, but generally it
will take the form

P (a) = P (0)

(
1 +

∑

i

ci(Λa)i

)
(3.10)
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with P (0) the physical result, and ci some coefficients of the powers of Λa. Λ here is
some factor modelling the scale of the discretisation errors. The HISQ action, being
improved to better than O(a2), contains only even powers of a, and so we will only
require even powers of a to describe its discretisation errors. In fact we will see that
the functional dependence on a is often at an even higher order than this.

Smaller lattice spacings are, clearly, closer to the continuum limit, and so the
use of very fine lattices in our calculations is expected to improve the accuracy of
the continuum extrapolations we perform.

3.2.2 Infinite Volume Limit

Lattices necessarily only represent finite boxes of spacetime: the MILC configura-
tions we use are asymmetric, with L points in each of the spatial directions and
T points in the Euclidean time direction. The temporal length is longer (T > L),
which allows more time for the contributions of excited states in a correlator to
decay. In addition, for the mesons that we consider in this work, the spatial lengths
are long enough that the volume of the box greatly exceeds the size of the particle.

The largest finite-volume effect, then, is that which arises due to virtual pions
crossing the periodic spatial boundaries of the lattice. As the spatial volume in-
creases, this effect is suppressed in approximate proportion to e−mπL [30]. It has
been estimated [65, 66] that the errors arising from this effect are less than 1% when
mπL & 4, and the MILC collaboration have taken care to ensure that the lattices
they generate fulfil this condition [15, 16].

This does depend, to some extent, on the quantities that we are calculating. How-
ever, the HPQCD collaboration has previously performed tests on several different
lattice volumes, and found that finite-volume errors are negligible in calculations of
strangeonium. Given that charmonium and bottomonium states are both smaller
than strangeonium (and far smaller than pions), finite size effects should therefore
be negligibly small for all of the calculations described in this thesis.

3.2.3 Chiral Limit

As explained in section 2.1, it is more computationally demanding to generate lighter
quarks in the sea. This means it is often the case that configurations will be gener-
ated with up and down quarks in the sea which are unphysically heavy, and if we
perform calculations on these lattices, we should perform a chiral extrapolation to
remove the dependence of lattice quantities on the sea quark masses.

It is not feasible to address this using the 2+1 ensembles in chapter 4, since the
ensembles we use there all have the same relative light sea quark masses. However,
there are sets of the 2+1+1 ensembles where all of the quarks in the sea are set at
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their physical mass (except that the up and down quarks are still isospin-symmetric,
mu = md) and using these in conjunction with the heavier-mass ensembles enables
us to perform a chiral extrapolation with very well-controlled errors.

Due to the effect of virtual pions as discussed above, lattices with physical pions
must have a large volume, which makes them even more computationally intensive
to generate. However, their inclusion in simulations is invaluable in controlling
discretisation errors, and were they numerous enough that we could discard all
other gauge configurations, we would eliminate the need for chiral extrapolation
altogether.

3.2.4 Operator Renormalisation

Meson operators on the lattice are defined in a different regularisation scheme to
their equivalents in the continuum. A finite lattice spacing is all the regularisation
required on the lattice, since it removes high-energy states with momentum p > π/a.
In the continuum, operators are frequently defined in the MS scheme, for example,
and so a renormalisation factor Z is required to match the two currents:

Jcontinuum = ZJlattice . (3.11)

This is not required for absolutely every lattice quantity. For example, the local
pseudoscalar operator P = χ̄(γ5 ⊗ γ5)χ needs no renormalisation thanks to the
partially-conserved axial current relation for staggered quarks:

∂µA
µ = (m1 +m2)P (3.12)

where m1 and m2 are the masses of the valence quarks in the pseudoscalar meson. It
is clear from this relation that mqP is conserved, and so the renormalisation factors
for the operators mq and P must cancel.

There are many different methods available to calculate these Z-factors, and we
will delve into more details as and when we require them.

3.3 Treatment of Heavy Quarks

Heavy quark dynamics are not easily simulated with most quark actions on the lat-
tice [28]. The introduction of the HISQ action made this possible for c quarks with
errors at the few-percent level, as demonstrated in [20] and noted in section 1.5.2.
This was a significant step forward [67] since effective field theories like nonrelativis-
tic QCD (NRQCD) work very well for the heavy b quark, but are less successful for
the much lighter (and thus less nonrelativistic) c quark.
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The difficulty with heavy quarks stems from the ultraviolet cutoff that we intro-
duce by discretising our spacetime onto a lattice. On a lattice with lattice spacing
a, the shortest wavelength oscillation that can be simulated is that with wavelength
λmin = 2a [10]. Therefore, energies and momenta larger than π/a are not resolved
by the lattice. This implies that lattice quark actions will result in large discreti-
sation errors for quarks with rest mass on the order of the cutoff π/a or above, or,
equivalently, where the quark mass in lattice units am does not satisfy am� 1 [12].

Consider what this means for charmonium. The charm quark mass is approxi-
mately 1.275 GeV [4], and so simulating charmonium mesons with small discretisa-
tion errors requires a lattice spacing of less than 1/1.275 GeV ≈ 0.15 fm. State-of-
the-art gauge configurations have been produced by the MILC collaboration with
lattice spacings of this order and below [15, 16]. Hence, we can set out to perform
a fully relativistic simulation of charmonium on these lattices using HISQ valence
quarks — indeed this is exactly the technique used in [56], and is the method we
will follow in this thesis.

The situation for bottomonium is not so straightforward. Analogously to the
rough calculation for charmonium, the bottom quark has a mass of approximately
4.18 GeV [4], and so it would only be accurately resolved by a lattice spacing of
significantly less than 1/4.18 GeV ≈ 0.05 fm. This is below the bound of current
computational ability, and so we must resort to different techniques to those used
for charmonium.

Alternative methods have been developed to deal with this problem, for example
NRQCD [68, 50], where advantage is taken of the fact that relativistic effects are very
small for heavy quarks. The theory then discretises a nonrelativistic Lagrangian to
describe the heavy quarks, which avoids the above problem by allowing the lattice
spacing to be matched to the size, rather than the mass, of the relevant hadron.

We will not consider NRQCD in any detail here as we wish to determine the
robustness of fully relativistic simulations. As mentioned, the MILC collaboration
have produced a recent generation of gauge field ensembles with lattice spacings as
low as approx. 0.045–0.06 fm [15, 16], and this allows for an alternative treatment.
Accurate, fully relativistic calculations of mesons containing valence b quarks are
still out of reach directly on these lattices, but it is possible to perform calculations
at the charm quark massmc and a number of heavier intermediate massesmh, where
mc < mh < mb.

The behaviour of bottomonium states can then be determined by extrapolating
to mb from these intermediate masses, meaning that all relativistic effects are in-
cluded. The extrapolation inherently introduces extra errors into the final result,
and so care must be taken to control other sources of error — in particular, discreti-
sation errors, which would obviously have a detrimental effect on the extrapolation.
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Very fine lattices allow us to attain heavy quark masses mh close to the physical mb

— because the inverse lattice spacing is larger, and so the mass of the b quark in
lattice units is reduced — and thus increase the accuracy of our extrapolations.

In this thesis, we will perform relativistic calculations at heavy intermediate
masses, and attempt to extrapolate to the bottom quark mass. We will also per-
form fully relativistic simulations at the charm quark mass directly, and attempt to
investigate some of the excited states of charmonium. We now turn to these matters
as the subject of the following chapters.
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Heavyonium Physics

The mass spectra of charmonium and bottomonium are well-determined experimen-
tally, and exhibit a number of similar features. We will briefly examine these here,
as a background to our calculations, with reference to the plot in Figure 4.1. This
is an updated version of a similar figure in [69], with values revised and added ac-
cording to the current Particle Data Group estimates [4], and it shows the different
states in the charmonium and bottomonium spectra as determined by experimental
measurements.
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Figure 4.1: The experimental heavyonium spectrum, with masses plotted relative to
the spin-averages of the χb(1P) and χc(1P) states. Bottomonium states are plotted
in red and charmonium states in blue, with the width of the lines corresponding to
the uncertainty on their mass. This plot is based on a figure in [69] and has been
updated with current experimental data from [4].
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Since the bottom quark is significantly heavier than the charm quark, the abso-
lute scale of bottomonium meson masses is much larger than for charmonium, but
here we fit both spectra onto the same plot by defining the masses relative to the
spin-average of the respective χ(1P) states. It is clear from this plot that radial
excitations match very closely between the two systems1, and this matching is even
better if we consider just the spin-averaged S-states [69].

The lowest-energy states in each system, the η(1S) mesons, have masses of ap-
proximately 2984 MeV and 9398 MeV for charmonium and bottomonium respec-
tively. Comparing this to the scale of the vertical axis in Figure 4.1, we see that the
splittings between states in both systems are significantly smaller than the absolute
masses of the mesons. Therefore, dynamical scales such as the kinetic energies of
the heavy valence quarks are also much smaller than the meson masses, meaning
that the velocities of these quarks are non-relativistic [69].

The momenta of the valence quarks are of the same order as the momenta of
typical gluons in the system, meaning that the energies of these gluons will be large
[68], and strong interactions between heavy quarks will be almost instantaneous.
This interaction can therefore be well-described by a potential model. The heavy
quark potential is reviewed fully in [72], and we will not discuss it in detail here,
save to say that the spin-averaged values of energy splittings can be accurately
predicted with this model [69]. Mass splittings between excited states can therefore
be thought of as consequences of a spin-independent non-relativistic potential. On
the other hand, splittings between states with the same excitation require a spin-
dependent potential to be modelled successfully [69], and we therefore often refer to
them as spin splittings.

An important example of such a spin-dependent splitting is the hyperfine mass
splitting between 1S states, in both charmonium and bottomonium. In this chapter
and the following chapter, we will calculate values for these hyperfine splittings as
well as referring back to them for several other purposes.

Heavyonium on the Lattice

Precision studies of heavyonium in lattice QCD are important tests of QCD as a
theory, in that they can provide pre- or postdictions of experimentally determined
quantities. In this chapter, we will focus on the ground-state pseudoscalar (JPC =

0−+) and vector (JPC = 1−−) mesons in the charmonium and bottomonium systems.

1Radial excitations of the ψ system match so closely to those of the Υ that they provide evidence
in favour of the suggestion that the ψ(3770), with quantum numbers JPC = 1−−, is not in fact
an S-wave state but a D-wave state [70]. Thanks to measurements of its leptonic decay width, the
current hypothesis is in fact that the ψ(3770) is an admixture of D-wave, S-wave and DD̄ states
[71].
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The charmonium ground-state pseudoscalar is referred to as the ηc, and that for
bottomonium is, analogously, denoted ηb. The vector states are known as the J/ψ
for charmonium, and the Υ for bottomonium.

The energies of all four of these states are experimentally well-determined [4],
as are the hyperfine splittings between the vector and pseudoscalar states. In ad-
dition, we have knowledge of their behaviour on the lattice from previous lattice
calculations [56, 73, 74] and the determination of the 1S hyperfine splitting in both
charmonium and bottomonium is regarded as a sensitive test of the precision of our
lattice formalism [67, 20].

In this chapter we report on attempts to precisely determine the hyperfine split-
ting on state-of-the-art gauge configurations. We will also determine the decay
constants of the vector states, and renormalise these by calculating moments of
current-current correlators and comparing them to values derived from experiment.
Finally, we will calculate the decay constants of the pseudoscalar states, and compare
these to previous lattice determinations.

Charm and bottom are both heavy quarks, and so simulating them on the lattice
requires some extra considerations. We will perform fully relativistic calculations
at the physical charm quark mass, relying on our use of the HISQ action to keep
discretisation errors small even on the coarser lattices. The bottom quark is too
heavy for this to be a viable method, and so we will calculate at several intermediate
heavy masses mh and extrapolate to the physical bottom quark mass.

4.1 Details of Lattice Calculation

We perform our lattice calculation using the MILC code [1], on the fine, superfine
and ultrafine 2+1-flavour ensembles listed in Table 2.1. The lattice spacing a is de-
termined from the MILC collaboration’s values for the modified Sommer parameter
r1/a on each ensemble (also in Table 2.1), and the physical value of r1 = 0.3133(23) fm

determined in [52].
On each of these ensembles, we calculate HISQ propagators for quarks of mass

amc and several heavier masses amh. The lattice c quark mass amc is tuned on each
ensemble by fixing to the mass of the ηc meson, and has been determined on the
ensembles that we are using in [45]. These are listed in Table 4.1 for each ensemble.

The Naik parameter ε for each lattice quark mass is calculated by an expansion
in powers of the quark mass given explicitly in [20], and its value is also listed in
Table 4.1 for the charm quarks. The heavier intermediate masses are chosen to run
in discrete steps from just above the lattice charm mass up to about amh = 0.8,
and the specific heavy masses used across all three ensembles are listed in Table 4.2
along with their corresponding values of ε.
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Label a / fm amc Naik ε Ncfg ×Nt

(approx.)

fine 0.09 0.413 −0.107 1355× 4

superfine 0.06 0.271 −0.0480 519× 4

ultrafine 0.045 0.193 −0.0247 708× 4

Table 4.1: Parameters used on the different ensembles of 2+1-flavour MILC configu-
rations in this calculation. Specifically, we list the lattice charm mass on each ensem-
ble, the Naik parameter ε associated with each amc, the number of configurations
Ncfg from each ensemble, and the number of time sources Nt on each configuration,
used in the calculation.

amh Naik ε

0.3 −0.0584

0.4 −0.101

0.5 −0.151

0.6 −0.208

0.7 −0.268

0.8 −0.329

0.85 −0.359

Table 4.2: Parameters used to tune the Naik coefficients for each heavy valence
quark mass. These are dependent only on the value of amh and so remain the same
across different ensembles for the same amh values (in lattice units).
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The propagators are made from a random wall source on a given timeslice of
the lattice, and the calculation is repeated for multiple different timeslices Nt, on
multiple configurations Ncfg in each ensemble. The numbers of configurations and
time sources that we use on each ensemble are also listed in Table 4.1.

The propagators are then combined with appropriate operators to produce the
desired correlators. The most accurate meson correlators are those from local or
one-link separated sources and sinks, and so we choose the local γ5 ⊗ γ5 operator
to produce pseudoscalar correlators, and the local γµ ⊗ γµ operator for the vectors.
In the vector case, we utilise a subset corner mask to allow us to obtain correlators
for three different vector polarisations from a single random wall source (in fact
the same source as that used for the pseudoscalar, with appropriate vector phases
applied).

All of the correlators are normalised by dividing by a factor of 3 to account for the
random colour 3-vectors in the source, and also by the spatial volume of the lattice
L3, since we are using a random wall source. We average each set of correlators over
time sources and configurations, and for the vector, also over the three different
polarisations. In the cases where we use the subset corner mask, we also scale the
resulting correlators up by a factor of 8, to account for the smaller effective spatial
lattice volume resulting from using only the corners of each hypercube.

It should be noted that correlators as described above had previously been gen-
erated by members of the HPQCD collaboration on the fine ensemble, for masses
amc = 0.413 and amh = 0.7 and 0.85. These correlators are included in the fits
described in the next section, along with those generated by the author on the
superfine and ultrafine ensembles.

4.1.1 Fitting Methodology

Once we have averaged sets of two-point meson correlators for a range of heavyonium
pseudoscalar and vector states on several different ensembles, we fit the average
correlators C2pt to extract physical quantities. This fit is performed to the function
given in equation 3.2, using the fit code described in section 3.1.2. No oscillating
terms are necessary in the analysis of zero-momentum heavy-heavy pseudoscalar
correlators (such as we have here) as this current does not couple to an additional
opposite-parity meson. These terms are necessary in the analysis of heavy-charm
or heavy-strange mesons, and, importantly, for the heavy-heavy vector mesons that
we have generated here.

We use the amplitudes An and logarithms of the energies En as fit parameters.
Priors for energy and amplitude values are determined by an initial ‘fast fit’ as
described in section 3.1.2. For each of the correlator fits considered here we use
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tmin = 8 to reduce unwanted effects from higher excitations in the correlator. This
is determined by trial and error, comparing the χ2 and statistical Q-values for a
sample of possible fits as tmin is altered. We find that the use of an SVD cut
larger than the fit code’s very small default of 10−15 is not necessary in any of these
correlator fits, probably due to the use of fast fits to determine accurate priors.

Taking 10 exponentials in the fit function gives a χ2 per degree of freedom < 1

for each correlator fit, and when this happens we see the parameters for the ground
state stabilise, meaning that we can determine these as accurately as possible while
still accounting for the systematic effects of higher excitations in the correlator. The
pseudoscalar and vector correlators for each bare quark mass are fitted simultane-
ously to take account of the correlations between them. All but one of the fits have
a χ2 value per degree of freedom less than 0.7, with some as low as about 0.14.

From the fit to each average correlator, we can extract the amplitude and mass
of the ground state for both the pseudoscalar and vector mesons. From these, we
compute a number of physical quantities of interest which will be described in detail
in the following sections. In what follows, we will generically refer to the pseudoscalar
heavyonium ground-state meson as the the ηh, and the vector as the φh.

4.2 Hyperfine Splitting

The hyperfine splitting — the difference between the φh and the ηh masses — can
be determined from each of our fits. The results we obtain, in lattice units, for these
masses and their differences are given in Table 4.3.

The calculated values of a−1 on each ensemble (as derived from the r1/a values
in Table 2.1) are used to translate these results into physical units, and we can then
plot the results from different ensembles together. In plotting, we must use a proxy
for the quark mass amh since the same bare quark mass in lattice units corresponds
to different physical quark masses at different lattice spacings — in other words, the
mass ‘runs’ with the QCD scale set by the lattice spacing. Here we use the mass of
the ηh as a proxy. A plot of the hyperfine splitting results against the inverse of the
ηh mass (since we expect the hyperfine splitting to be roughly inversely proportional
to the quark mass) is shown in Figure 4.2.

When converting the lattice hyperfine splittings to physical units, we take dou-
ble the error on the values of r1/a in Table 2.1, due to this approximate inverse
relationship between hyperfine splitting and quark mass [56]. To understand the
origin of this factor of two, suppose the inverse lattice spacing is increased by some
small value δ. The mass of a heavyonium meson is then shifted upwards by the
same proportion, which therefore affects the hyperfine splitting. However, we must
then retune the heavy quark mass to correct the mass of the meson — this means
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Label amh aMηh aMφh a(Mφh −Mηh)

fine 0.413 1.28053(7) 1.32901(13) 0.04848(11)
0.7 1.86535(5) 1.90242(9) 0.03706(6)
0.85 2.14982(5) 2.18500(8) 0.03519(5)

superfine 0.271 0.89512(4) 0.92926(13) 0.03415(11)
0.4 1.18141(3) 1.20886(9) 0.02745(7)
0.5 1.39346(3) 1.41783(7) 0.02437(6)
0.6 1.59907(3) 1.62136(6) 0.02229(5)
0.7 1.79893(3) 1.81986(5) 0.02093(4)
0.8 1.99303(3) 2.01315(5) 0.02013(3)

ultrafine 0.193 0.66635(3) 0.69186(7) 0.02552(6)
0.3 0.91365(2) 0.93359(5) 0.01995(4)
0.4 1.13305(2) 1.15010(4) 0.01705(3)
0.5 1.34512(2) 1.36033(3) 0.01521(2)
0.6 1.551350(15) 1.56534(3) 0.013993(19)
0.7 1.752240(14) 1.76544(3) 0.013201(16)
0.8 1.947690(13) 1.96043(2) 0.012738(14)

Table 4.3: Results in lattice units for the masses of the ηh and φh mesons, and their
difference, for each bare quark mass used on each of the ensembles listed in Table
2.1.
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Figure 4.2: The heavyonium hyperfine splitting as a function of the inverse heavyo-
nium mass. Values are shown on the fine (magenta), superfine (green) and ultrafine
(blue) lattices, using the local pseudoscalar and vector operators. The coloured
dashed lines give the fitted result at each lattice spacing. The black points repre-
sent the experimental values and are shown at the physical masses of the ηc and ηb
mesons. The grey band shows the combined fit to all the data, i.e. the extrapolation
to the continuum.
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a decrease in the quark mass of the same proportion δ. Because of the inverse rela-
tionship mentioned, the hyperfine splitting is then increased by a further factor of
δ. Overall, then, the uncertainty in the hyperfine splitting value is 2δ, twice that of
the original change in the inverse lattice spacing.

We attempt a fit to these data points using the same fitting codebase as for the
individual correlator fits. To obtain a result at the ηc mass we must extrapolate to
the continuum limit by taking account of the results at different lattice spacings.
To obtain a result at the ηb mass we must also extrapolate in Mηh as described
previously. Discretisation errors are well controlled since we have results at several
different lattice spacings.

Our fit function takes care of these requirements simultaneously — following [74]
we set it up as:

F (M,a) = A

(
M

M0

)b 6∑

i=0

4∑

j=0

cij

(
M0

M

)i
(am)2j (4.1)

where M is the pseudoscalar meson mass and am the quark mass in lattice units.
For the hyperfine splitting we take priors on A of 0.5(5) and on b of 0(1). Priors
on the coefficients cij are generally taken as 0(1), and we take M0 = 1 GeV for
simplicity — this is simply a fixed point for scaling.

It is worth pointing out here that we do not include any terms to model for
dependence on the masses of the sea quarks. The reasons for this are two-fold:
firstly, on each of the lattices we use here, the light quark mass is identical in
relation to the strange quark mass; and secondly, previous HPQCD calculations
have determined that there is no significant sea quark mass dependence when using
r1/a to fix the lattice spacing [75]. Sea-quark mass dependence will be included in
the fits in the next chapter, where we use the four-flavour ensembles and set the
lattice scale using the Wilson flow parameter w0/a.

The fit we obtain in the continuum limit is represented as the grey band in Figure
4.2. Note that our lattice calculations do not include the effects of electromagnetism
or qq̄ annihilation, and so far we have not attempted to include these in the fit or
on the plot. The fit is excellent, with a χ2 value per degree of freedom of 0.11 and a
statistical Q-value of 1.0, and gives continuum results at the physical b and c masses
of:

MΥ −Mηb = 50.9(3.5) MeV (4.2)

MJ/ψ −Mηc = 115.0(2.0) MeV (4.3)

where the errors quoted are purely statistical.
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Accounting for Annihilation Effects

Both pseudoscalar and vector heavyonium mesons have zero electric charge, and
thus there are no electromagnetic effects which contribute to the hyperfine splitting.
However, it is true for both charmonium and bottomonium that the vector state
has negligible width compared to the pseudoscalar, and so annihilation effects will
be larger for the ηb and ηc than they are, respectively, for the Υ and J/ψ.

To account for this, we make an estimate of how large these annihilation effects
will be. A perturbative calculation in [20] estimates the shift ∆Mηc that annihilation
produces in the mass of the ηc, by relating it to the total decay width Γ via:

∆Mηc = Γ(ηc → hadrons)

(
ln(2)− 1

π
+O(αs)

)
(4.4)

and we can reasonably assume that the same relationship will hold for the ηb.
Looking at bottomonium first, the total decay width has been experimentally

determined as 10.8+6.0
−4.2 MeV [4, 76]. Substituting this into the expression above

gives us ∆Mηb = −1.1+0.4
−0.6 MeV. Since this has a significant uncertainty attached

to it, we account for the full range of possibilities by shifting our result for the
bottomonium hyperfine splitting upwards by 2(2) MeV.

The situation is slightly more complicated for charmonium. The original calcu-
lation in [20] obtains a value of ∆Mηc = −2.4 MeV, but the experimental average
for the total ηc decay width has increased to 31.8(8) MeV [4] since its publication.
Using this new value, we obtain a shift of ∆Mηc = −3.1 MeV.

However, nonperturbative calculations of disconnected diagrams in [77], while
agreeing on a value of a few MeV for ∆Mηc , obtain the opposite sign. The discussion
in [56] suggests that this could be due to the gluons produced by cc̄ annihilation
forming either a resonance such as a glueball that is lighter than the ηc, or a lighter
hadron, which disrupts the perturbative result.

To account for both of these possibilities, we do not apply a shift to the char-
monium hyperfine splitting, but instead take an additional systematic error of
±3.0 MeV. It makes sense to pursue a different course of action here, given that the
perturbative result will be more reliable in the (less relativistic) bottomonium case
than for the lighter charmonium.

Our final results are then:

MΥ −Mηb = 52.9(4.0) MeV (4.5)

MJ/ψ −Mηc = 115.0(3.6) MeV (4.6)

where we have applied the shift to the bottomonium value, and combined the sta-
tistical and systematic errors for charmonium to facilitate comparisons.
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The differences of the current experimental averages for the masses of these
mesons are [4]:

MΥ −Mηb = 62.3(3.2) MeV (4.7)

MJ/ψ −Mηc = 113.3(7) MeV. (4.8)

The charmonium value is in good agreement with the experimental average, and also
with the value obtained from the lattice in [56] (which implemented a very similar
method to this calculation) of 116.5(2.1)(2.4) MeV.

The bottomonium value is not incompatible with the experimental average —
the two results agree at the 2σ level once we have accounted for annihilation effects
— but clearly favours the most recent result included in this average, that from
the Belle collaboration of 57.9(2.3) MeV [76]. Our bottomonium result is also in
agreement with the value obtained on 2+1+1-flavour lattices but using NRQCD to
simulate the b quark, which is 60.0(6.4) MeV [73].

More extensive comparisons of various charmonium and bottomonium hyperfine
splitting results, including those determined here, are made in chapter 6. We defer
further discussion on them until then.

4.2.1 Charmonium Cross-Check

As a test of the stability of our charmonium result, we can perform a separate fit
to only the charmonium points. This means that we have no heavy quark mass de-
pendence to take account of, since all of our charmonium correlators were generated
using a well-tuned physical c quark mass, and we need only concern ourselves with
continuum extrapolation.

We are able to obtain a good fit with the simplest possible form of the fit func-
tion: that to a single physical value p. We do not require any terms which model
dependence on discretisation errors, and this suggests that the discretisation errors
are very small. Indeed this can be seen on the plot. Taking a Bayesian prior of
100(50) MeV on p produces a fit with a χ2 of 0.44 and a Q-value of 0.72.

A plot of the charmonium results is shown in Figure 4.3. Here we plot against
the square of the lattice charm quark mass as a proxy for the lattice spacing. The
fit we obtain is displayed as the grey band on the plot, and gives a physical value for
the charmonium hyperfine splitting of 113.69(53) MeV. The error here is purely sta-
tistical, and to account for annihilation effects as described above, we again include
a systematic error of ±3.0 MeV.

We also take an additional systematic error of ±(2 × 0.73%). This is twice the
relative error on the physical value of r1 = 0.3133(23) fm used to determine the
lattice spacing, which — unlike in the heavyonium fits — is not included when
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Figure 4.3: The charmonium hyperfine splitting. The magenta point represents the
experimental value. We plot against the squared lattice charm mass as a proxy for
the lattice spacing. The grey band shows our calculated fit, although since the form
of our fit function is so simple, this is equivalent to our calculated physical hyperfine
splitting value inclusive of statistical errors only. The light magenta band shows our
fitted continuum result with the addition of systematic errors, as described in the
text.
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converting the lattice results to physical units, and is therefore not included on the
plotted points. As in the previous section, we also take double the error on the
values of r1/a in Table 2.1 when converting our lattice results to physical units. The
reason for doubling both of these errors is also explained in detail in the previous
section, relating to our use of the ηc mass to tune the bare charm quark mass.

Combining these errors for ease of comparison we obtain a final result of:

MJ/ψ −Mηc = 113.9(3.5) MeV (4.9)

which is in agreement with the result from our full fit as well as the experimental
average. We therefore conclude that the charmonium hyperfine splitting is mainly
unaffected by inclusion in the heavy-quark extrapolation.

4.3 Moments of the Vector Correlator

Time moments GV
n of the vector heavyonium correlator are defined as:

GV
n = Z2CV

n = Z2
∑

t̃

t̃nCφh(t̃) (4.10)

where C is the average correlator, and t̃ is lattice time symmetrised2 around the
centre of the lattice. Going forward in lattice time t, t̃ runs from 0 to (T/2 − 1),
is 0 again at the midpoint in t, and then runs from (−T/2 + 1) to −1. Z is a
renormalisation factor which matches the vector current on the lattice to that in
the continuum, and is different for each heavy mass at each lattice spacing. We
determine Z using the current-current correlator method, which is explained in
more detail in section 4.3.1, and use the value obtained from the 8th moment, Z8,
to renormalise the rest.

Lattice results for the 4th, 6th, 8th and 10th moments at each bare heavy quark
mass are given in Table 4.4. Multiplying the lattice results by Z2

8 performs the
renormalisation as described, and we take each moment GV

n to the power 1/(n− 2)

to reduce them all to the same dimension. Finally, we divide by a−1 (determined, as
before, from the r1/a values in Table 2.1) to obtain the correct physical dimensions
of GeV−1.

We perform a continuum fit to the same functional form as in equation 4.1, and
this again allows for extrapolation to the physical bottom quark mass. Here, how-
ever, we strongly constrain the leading power b to be −1.000000(1), since we expect
the moments (with appropriate roots as defined above) to be inversely proportional

2More precisely, as we will define it, t̃ is actually antisymmetric around the centre of the lattice.
Since we will only ever calculate even moments in this work, meaning that n is always even in
equation 4.10, the sign of t̃ has no bearing on our results.
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Label amh

(
GV4
Z2a2

)1/2 (
GV6
Z2a4

)1/4 (
GV8
Z2a6

)1/6 (
GV10
Z2a8

)1/8

fine 0.413 0.758630(73) 1.63514(12) 2.38869(15) 3.09524(18)
0.7 0.491872(24) 1.135643(38) 1.669306(48) 2.153072(58)
0.85 0.409219(15) 0.987658(24) 1.466719(30) 1.893197(36)

superfine 0.271 1.07379(16) 2.28194(26) 3.36231(32) 4.38204(37)
0.4 0.795125(76) 1.72128(12) 2.53238(16) 3.30000(19)
0.5 0.663350(48) 1.462713(79) 2.14895(10) 2.79403(12)
0.6 0.568088(32) 1.280873(53) 1.882604(69) 2.441009(83)
0.7 0.494791(22) 1.144570(37) 1.687259(48) 2.183120(59)
0.8 0.435875(16) 1.037224(27) 1.537373(35) 1.987749(43)

ultrafine 0.193 1.43172(20) 3.03834(32) 4.49688(41) 5.87100(47)
0.3 1.017444(84) 2.18429(14) 3.23559(18) 4.23450(21)
0.4 0.806782(46) 1.754420(78) 2.59278(10) 3.39039(12)
0.5 0.669669(29) 1.481237(48) 2.184022(64) 2.848464(78)
0.6 0.571624(19) 1.291509(32) 1.903425(42) 2.474582(52)
0.7 0.496786(13) 1.150697(22) 1.699636(29) 2.203839(36)
0.8 0.4369835(94) 1.040678(16) 1.544610(21) 2.000320(26)

Table 4.4: Time moments of the heavyonium vector correlator for each heavy-quark
mass on each ensemble, raised to the appropriate power, in lattice units. As dis-
played here, these results are unrenormalised; to do this, we use the renormalisation
factor Z8 obtained from the 8th moment of the correlator as detailed in section 4.3.1.
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to the quark mass. Since the moments are not as sensitive to short-distance effects
as the hyperfine splitting [56], we reduce the prior on the overall factor A to be
x± x and the prior on the coefficients cij of the lattice spacing-dependent terms to
be 0 ± y, where x = 0.15n − 0.3 and y = 4/n. This dependence on n means that
the fit function has an appropriate normalisation for each different moment, both
in terms of its overall factor A (dependent on x) and the scale of the discretisation
errors (modelled by y, and decreasing with increasing n).

We fit to the 4th, 6th, 8th and 10th moments separately and obtain fits with χ2

values per degree of freedom of 0.25, 0.22, 1.94 and 1.18, and Q-values of 1.0, 1.0,
0.013 and 0.27 respectively. These fits are good, with the exception of that to the
8th moment. While this fit is not unacceptable, it is significantly worse than its
counterparts. However, as we will see in Table 4.8 in the next section, it is the
best possible fit to these data, far better than the other fits obtained using different
Z-factors for renormalisation. The physical results derived from Table 4.4, along
with our fits, are plotted in Figure 4.4 as a function of the heavyonium mass.

The fitted continuum results at the physical ηh masses can be compared to the
q2-derivative momentsMk of the heavy quark vacuum polarisation Πh(q

2) [78]:

Mk =
12π2e2

h

k!

(
d

dq2

)k
Πh(q

2)

∣∣∣∣∣
q2=0

(4.11)

where n = 2k+2 and eh is the electric charge of the heavy quark under consideration.
Values forMk can be extracted very accurately [79, 80] from experimental results
in the c and b regions for the normalised heavy-quark cross-section

Rh(s) =
σe+e−→hh̄+X(s)

σe+e−→µ+µ−(s)
(4.12)

with h denoting a charm or bottom quark, since we can define [78, 79, 80]

Mk ≡
∫

ds

sk+1
Rh(s) . (4.13)

We must then normalise these moments and reduce them to the same dimension
before comparing to our lattice results, viz.

Mnorm
k =

(
(2k + 2)!Mk

12π2e2
h

)1/2k

. (4.14)

The extracted values from [79] and [80], appropriately normalised for comparison,
are listed alongside our physical results in the continuum limit in Table 4.5, and are
also plotted in Figure 4.4 at the physical ηc and ηb masses.

The agreement of our physical results with those derived from experiment is
variable, as we show in Table 4.6, although none of the agreements are unreasonable.
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Figure 4.4: Moments of the heavyonium vector correlator as a function of heavyo-
nium mass, determined on the same lattices as in Figure 4.2. The black points are
the results derived from experiment, and the grey band shows the fit as described
in the text.
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Charmonium Bottomonium
n k (GV

n )
1

n−2/GeV−1 Mnorm
k /GeV−1 (GV

n )
1

n−2/GeV−1 Mnorm
k /GeV−1

4 1 0.3257(34) 0.3142(22) 0.0946(22) 0.09151(31)
6 2 0.6760(40) 0.6727(30) 0.1939(28) 0.19910(49)
8 3 1.0136(42) 1.0008(34) 0.2927(31) 0.29964(55)
10 4 1.3196(44) 1.3088(35) 0.3937(35) 0.39548(59)

Table 4.5: Time moments of the charmonium and bottomonium vectors. In the
left-hand columns, we list the physical results from our continuum fits and their
associated index n. In the right-hand columns, we list the comparable results ex-
tracted from experiment in [79] and [80], indexed by k and appropriately normalised
for comparison to our results.

Most of the continuum values are within 3σ of their experimental counterparts, with
only one value — the 4th charmonium moment — exhibiting a greater discrepancy
than this, at the 3.4σ level, and a further two agreeing to better than 1σ. Our lattice
results have small statistical errors, of similar size to their experimental counterparts
in the charmonium case, and it may be the case that we are underestimating the
discretisation errors present in these results.

n k Charmonium agreement Bottomonium agreement
4 1 +3.4σ +1.4σ

6 2 +0.8σ −1.9σ

8 3 +3.0σ −2.2σ

10 4 +2.5σ −0.5σ

Table 4.6: Agreement of the calculated time moments of the charmonium and bot-
tomonium vectors from our continuum fits with the corresponding values extracted
from experiment, as listed in Table 4.5. We define this as the difference between the
calculated lattice value and the experimentally-extracted value, (GV

n )
1

n−2 −Mnorm
k ,

divided by the error estimate on the lattice value.

There are other possible causes of this discrepancy, and we will investigate some
of these in considerable detail in later subsections. For now, let us explain the
process of calculating the renormalisation factors that have been used in this section,
as mentioned earlier.

4.3.1 Current-Current Renormalisation

To determine the renormalisation factors Z used in this chapter, we follow the
current-current renormalisation method detailed in Appendix B of [56]. An overview
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of the procedure is given here.
We define lattice time moments for our vector correlators as in equation 4.10:

Z2CV
n = Z2

∑

t̃

t̃nCφh(t̃) (4.15)

and for our pseudoscalar correlators as:

CP
n =

∑

t̃

t̃n(amh)
2Cηh(t̃) (4.16)

with an extra factor of (amh)
2 to ensure that CP

n is finite as a→ 0.
The pseudoscalar correlator is absolutely normalised due to the partially-conserved

axial current relation for HISQ quarks [20, 81], but the vector current on the lattice
must be renormalised by a factor Z as included above. We can match the lattice
moments to results derived from perturbation theory in the continuum [78, 79] and
thus obtain values for Z on each ensemble for each heavy-quark mass used.

In the continuum we define for the pseudoscalar:

cPn =
gPn (αMS(µ), µ/mh)

(amh(µ))n−4
+O((amh)

m) (4.17)

and for the vector:

cVn =
gVn (αMS(µ), µ/mh)

(amh(µ))n−2
+O((amh)

m) (4.18)

where m generically denotes some higher power of amh, and gP,Vn is the perturbative
series for continuum QCD in the MS scheme, for the pseudoscalar (P ) and vector
(V ) respectively. These series have been calculated to four loops in [78, 79], and
we use the coefficients determined there to determine gP,Vn to this order. We take
µ/mh = 1; however, the values we obtain depend only very weakly on µ since we
also allow for higher-order terms in the series up to 20th order. Priors of 0.0(0.5) are
taken on the coefficients of these higher-order terms.

The dominant subleading term in the perturbative series is that arising from the
gluon condensate, viz.

gP,Vn = O(αMS(µ), µ/mh) + ∆M〈G2〉
n + . . . (4.19)

and an analytic expression for this term is constructed in [78] which contains a correc-
tion factor of 〈αsG2/π〉. An upper bound for the value of this factor has been deter-
mined in [82], as 0.006±0.012 GeV4. We therefore also include such a term to correct
for contributions from the gluon condensate, allowing for 〈αsG2/π〉 = 0±0.012 GeV4

in the correction factor.
We define both pseudoscalar and vector moments since this will allow us to

eliminate the terms in (amh)
m from the continuum expressions in (4.17) and (4.18).
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Taking the ratio of the appropriate pseudoscalar and vector moments, these terms
will cancel and eliminate any error from not including their contribution3. We can
then match the moments on the lattice to those in the continuum, and determine Z
via:

Zn =

√
CP
n+2/C

V
n

cPn+2/c
V
n

. (4.20)

Since the continuum moments are functions of αMS(µ) and amh, Z will be dif-
ferent for each bare quark mass and at each lattice spacing. Therefore, we must
perform this matching separately for each heavy-quark mass on each of our ensem-
bles. The Z-factors obtained from this procedure are listed in Table 4.7 for n = 4,
6 and 8.

Label amh Z4 Z6 Z8

fine 0.413 0.994(14) 0.929(12) 0.932(14)
0.7 1.1105(31) 0.9768(27) 0.9488(34)
0.85 1.20938(62) 1.04776(80) 0.9998(20)

superfine 0.271 0.982(12) 0.959(12) 0.967(13)
0.4 0.9927(70) 0.9407(64) 0.9458(66)
0.5 1.0174(50) 0.9376(45) 0.9357(46)
0.6 1.0563(33) 0.9497(29) 0.9367(29)
0.7 1.1083(17) 0.9776(15) 0.9513(16)
0.8 1.17095(62) 1.01949(56) 0.97884(71)

ultrafine 0.193 0.986(11) 0.978(11) 0.984(12)
0.3 0.9833(57) 0.9605(55) 0.9679(56)
0.4 0.9930(42) 0.9455(39) 0.9512(39)
0.5 1.0170(32) 0.9410(29) 0.9402(29)
0.6 1.0553(22) 0.9514(19) 0.9398(19)
0.7 1.1066(12) 0.9777(10) 0.9523(10)
0.8 1.16854(40) 1.01787(35) 0.97757(37)

Table 4.7: Renormalisation factors determined from the current-current correlator
method, for each heavy quark mass on each ensemble. Zn is the renormalisation
factor obtained by matching the nth lattice moment to its equivalent continuum
value, derived from experimental results.

3There is a slightly subtle point related to taking this ratio that is worth making here. One
may be surprised to find that, despite using Z8 to fix the normalisation — meaning that we have,
in essence, set the values of the 8th moment equal to those derived from perturbation theory —
these values (as plotted in Figure 4.4c) still exhibit some discretisation errors, albeit small. The
reason for this is likely to be that we are in fact setting the value of the ratio of pseudoscalar to
vector moments equal to its perturbative partner, and not the vector moment directly.
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4.3.2 Choice of Z-Factor

We must choose which Z-factor to use to renormalise the moments in the previous
section, and also the vector decay constants in the following section. To do so, we
consider two points related to the renormalisation of the moments.

The first point is illustrated in Table 4.8, which lists the χ2 and statistical Q
values of the continuum fit performed to each calculated moment (GV

n )1/(n−2) for each
choice of Z. It is clear from the values in the table that using the renormalisation
factors Z8 obtained from the 8th moment results in the best continuum fits to the
data, evidenced by the minimal χ2 and maximal Q values this produces. This is our
first reason to select Z8 for use in our renormalisations.

Z4 Z6 Z8

n χ2 Q χ2 Q χ2 Q

4 0.8 0.69 3.7 5.6× 10−7 0.25 1.0

6 1.3 0.16 3.0 6.1× 10−5 0.22 1.0

8 3.4 5.1× 10−6 6.8 7.5× 10−16 1.9 0.013

10 1.8 0.024 4.5 3.4× 10−9 1.2 0.27

Sum 7.3 0.8740 18.0 6.156× 10−5 3.57 2.283

Table 4.8: χ2 and statistical Q values for continuum fits to the nth moments of the
vector correlator, when renormalised using the listed Z-factors. It is clear that using
Z8 results in the minimal χ2 and maximal Q values.

The second point is most simply understood by considering plots of the moments
(GV

n )1/(n−2) when using different renormalisation factors. The previous Figure 4.4
showed the plots obtained when renormalising with Z8. We now plot the same
quantities, but instead using Z4 and Z6 for renormalisation, in Figures 4.5 and
4.6 respectively. In comparing the results from different ensembles in each case, it
is clear that the calculated moments exhibit the smallest discretisation errors when
renormalised by Z8. This is unsurprising, since in general, the lower moments contain
larger momenta and are hence more relativistic, and we therefore expect larger
discretisation errors there. Choosing Z4 or Z6, then, pushes these discretisation
errors onto the results for each of the moments. Predictability notwithstanding, this
is our second reason for selecting Z8, and it is therefore the factor which we use to
renormalise the local vector current whenever it is required in this chapter.

4.3.3 One-link Vector Operator

To further investigate the differences in our fitted continuum moments from their
experimentally-determined values, we repeat a subset of our lattice calculation using
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Figure 4.5: Moments of the heavyonium vector correlator as a function of heavyo-
nium mass, as in Figure 4.4, but renormalised using Z4, the renormalisation factor
obtained from the 4th moment.
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Figure 4.6: Moments of the heavyonium vector correlator as a function of heavyo-
nium mass, as in Figure 4.4, but renormalised using Z6, the renormalisation factor
obtained from the 6th moment.
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a different vector operator. Whereas before we used the local γi ⊗ γi operator, we
now use the one-link γi ⊗ 1 operator. Since we are using staggered quarks, this will
project on to a different taste of meson, although we recall from section 1.5.2 that
different tastes should have identical properties in the continuum limit. This new
calculation then acts as a probe of taste-dependent effects which may be affecting
our results.

We repeat the calculation and analysis performed above, now using the one-link
operator, for a subset of the bare quark masses listed in Table 4.4. Results of fits to
these new correlators are shown in Table 4.9.

Label amh

(
GV4
Z2a2

)1/2 (
GV6
Z2a4

)1/4 (
GV8
Z2a6

)1/6 (
GV10
Z2a8

)1/8

fine 0.413 0.594170(45) 1.460396(82) 2.22450(11) 2.93953(14)
0.7 0.362690(15) 0.980100(28) 1.517808(37) 2.010432(45)
0.8 0.314406(11) 0.881246(21) 1.376697(27) 1.826937(33)

superfine 0.271 0.890235(58) 2.09808(11) 3.18783(14) 4.21373(17)
0.4 0.640559(27) 1.561972(49) 2.384145(67) 3.159609(83)
0.7 0.3740909(80) 1.003207(15) 1.552352(20) 2.058225(25)
0.8 0.3234130(59) 0.899214(11) 1.402675(15) 1.862044(18)

ultrafine 0.193 1.225552(66) 2.83312(12) 4.29848(16) 5.67769(20)
0.7 0.3817612(44) 1.0185031(82) 1.575144(11) 2.089763(14)
0.8 0.3294951(33) 0.9111399(60) 1.4198339(81) 1.885236(10)

Table 4.9: Time moments of the heavyonium vector correlator for each heavy-quark
mass on each ensemble, calculated using the one-link vector operator. These results
are again displayed in lattice units, raised to the appropriate power — that being,
for the nth moment, 1/(n− 2).

Renormalisation is once again performed using Z8, the renormalisation factor
obtained from the 8th moment. This allows for a closer comparison to the results
obtained using the local vector operator, but is also the most appropriate choice in
this calculation for the same reasons as before. This was verified by carrying out
continuum fits to the data renormalised using each of Z4, Z6, and Z8, and examining
the χ2 and statistical Q-values of the fits. These are listed in Table 4.10.

In this case, the fits resulting from renormalisation with Z8 and Z4 have equal
total χ2 and Q values. However, the data renormalised with Z4 still exhibits larger
discretisation errors. This can be clearly seen in comparing Figure 4.7, which plots
each of the moments renormalised using Z8, to Figure 4.8, which plots the same
quantities renormalised using Z4. For posterity, Figure 4.9 plots the moments renor-
malised using Z6.
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Z4 Z6 Z8

n χ2 Q χ2 Q χ2 Q

4 0.74 0.69 1.2 0.27 1.0 0.42

6 0.94 0.49 0.99 0.45 0.78 0.65

8 1.2 0.29 1.3 0.22 1.1 0.36

10 1.2 0.27 1.3 0.20 1.2 0.31

Sum 4.08 1.74 4.79 1.14 4.08 1.74

Table 4.10: χ2 and statistical Q values for continuum fits to the nth moments of the
one-link vector correlator, when renormalised using the listed Z-factors. We use Z8

again for minimal χ2 and maximal Q values.

Our continuum fits are carried out in exactly the same manner as those using the
local data. Using Z8 for renormalisation, the fits we obtain are good, with χ2 values
per degree of freedom of 1.0, 0.78, 1.1 and 1.2, and Q-values of 0.42, 0.65, 0.36 and
0.31, for the 4th, 6th, 8th and 10th moments respectively. We do not generally expect
these fits to be as good as those to the local data, since we are now only working
with just over half as many data points, although in some cases they are in fact even
better. These fits are also plotted in Figure 4.7.

Our physical results for each moment in the continuum limit, along with purely
statistical errors, are listed in Table 4.11, alongside the appropriately-normalised
continuum moments Mnorm

k derived from experimental results, as described previ-
ously.

Charmonium Bottomonium
n k (GV

n )
1

n−2/GeV−1 Mnorm
k /GeV−1 (GV

n )
1

n−2/GeV−1 Mnorm
k /GeV−1

4 1 0.3147(37) 0.3142(22) 0.0894(27) 0.09151(31)
6 2 0.6721(42) 0.6727(30) 0.1976(40) 0.19910(49)
8 3 0.9990(43) 1.0008(34) 0.2975(45) 0.29964(55)
10 4 1.3069(44) 1.3088(35) 0.3942(48) 0.39548(59)

Table 4.11: Time moments of the charmonium and bottomonium one-link vectors.
In the left-hand columns, we list the physical results from our continuum fits and
their associated index n. In the right-hand columns, we list the comparable re-
sults extracted from experiment in [79] and [80], indexed by k and appropriately
normalised for comparison to our results.

The agreement between the calculated values from our fits and the values derived
from experiment is now less than 1σ in every case for both the charmonium and
bottomonium moments. This suggests that there are significant taste effects present
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Figure 4.7: Moments of the heavyonium vector correlator as a function of heavyo-
nium mass, determined on the same lattices as in Figure 4.4, but this time using the
one-link vector operator. The black points are the results derived from experiment,
and the grey band shows the fit as described in the text. In this case we renormalise
using Z8.
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Figure 4.8: Moments of the heavyonium vector correlator as a function of heavy-
onium mass determined using the one-link vector operator, as in Figure 4.7, but
renormalised using Z4, the renormalisation factor obtained from the 4th moment.
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Figure 4.9: Moments of the heavyonium vector correlator as a function of heavy-
onium mass determined using the one-link vector operator, as in Figure 4.7, but
renormalised using Z6, the renormalisation factor obtained from the 6th moment.
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in this quantity which we have not fully understood. As a rudimentary first check
with the data we already have, we can plot the mass splitting between the tastes
of each vector meson to ensure it is, as expected, small. This is shown in Figure
4.10, and clearly indicates that taste splittings are on the order of a few MeV — less
than 0.1% in all cases. Thankfully, this is too small a difference to be appreciably
affecting our results directly, as we would expect with the HISQ action, and it seems
likely that a more subtle effect is at play.

It would be worthwhile investigating this effect further with a complete set of
one-link results — that is, adding to the present calculation until we have data for
as many heavy quark masses as we do in the local case, to allow for an even fuller
comparison. We note also that statistical errors for the calculated bottomonium
moments are slightly increased in comparison to their local counterparts. This is
probably due to simply having fewer data points available with which to perform the
heavy-mass extrapolation, and so would presumably also be solved by introducing
further data at other heavy quark masses.

4.3.4 Four-Flavour HISQ Ensembles

Another effect that our original calculation is missing is that of c-in-the-sea: the
gluon field ensembles from the MILC collaboration that we have been using include
the effect of u, d and s quarks in the sea — generated using the asqtad action —
but not charm. MILC have also generated a set of configurations that utilise an
improved gluon action and include four flavours of HISQ sea quarks [16], so we
repeat part of our calculation on one of these ensembles to determine how large an
effect this may have. These 2+1+1-flavour configurations are used extensively in
the next chapter, and have been described in detail in section 2.1.2.

We choose the superfine 2+1+1-flavour lattice with parameters closest to the
superfine 2+1-flavour lattice we have been using, and once again repeat the above
calculation, reverting to the use of the local vector operator since we have more local
data for comparison. A full range of heavy quark masses is used, from a charm of
0.269 (in lattice units) to heavier intermediate masses of 0.5, 0.6, 0.7 and 0.8. This
charm mass was subsequently found to be slightly too low4, but we are still able to
compare with the 2+1 results. In the 2+1 case we also have a heavy mass of 0.4,
which is omitted on the 2+1+1 ensemble for speed.

The results from the 2+1+1-flavour ensemble are converted to physical units by
using the w0/a value listed in Table 2.2, and then plotted alongside the results from

4The correctly-tuned charm mass on this ensemble is 0.274, which is the value we use for the
calculations in chapter 5. The difference between the two values is less than 2%, which justifies
our claim that a comparison is still valid in this case.
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(a) Taste splittings expressed as an absolute value in MeV
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Figure 4.10: Taste splittings between the local and one-link vector mesons calculated
in this chapter, plotted against the inverse of the pseudoscalar meson mass. The
magenta points are those on the fine lattice, the green, superfine, and the blue,
ultrafine. Note the narrow range of the scale on the vertical axis in both cases.
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Figure 4.11: Moments of the heavyonium vector correlator as a function of heavyo-
nium mass, determined using the local vector operator, and renormalised with Z8,
on two different ensembles. Results on the superfine 2+1-flavour lattices are dis-
played in green, with results from the superfine 2+1+1-flavour lattices displayed in
red.
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the 2+1-flavour ensemble. For simplicity we again renormalise using Z8, although
of course this is recalculated for the results from the four-flavour ensemble. A plot
for each moment is shown in Figure 4.11.

Clearly we do not expect these two sets of results to agree exactly — only one
has charm quarks in the sea, and the sea quark actions are different in each case.
We also use different quantities to fix the lattice spacing. Nevertheless, they agree
very closely, within errors at each lattice heavy quark mass. This suggests that our
results have very little dependence on sea charm effects, and also on what quantity
we use to fix the lattice scale.

The discrepancies we have examined here will be discussed further in section 4.6.

4.4 Vector Decay Constant

The ground-state amplitude A0 that we obtain from our vector correlator fits is
directly related to the matrix element for the vector operator we use to create the
meson from (and annihilate it to) the vacuum. The definition of the decay constant
fφh for the local vector operator is:

〈
0
∣∣ψ̄γiψ

∣∣φh
〉

= fφhMφhε
i (4.21)

where εi is the polarisation of the meson. The decay constant is therefore a measure
of the internal structure of a meson, and is related to the leptonic width Γ measured
by experiment via:

Γ(φh → e+e−) =
4π

3
α2

QEDe
2
h

f 2
φh

Mφh

(4.22)

where αQED is the electromagnetic coupling constant, and eh is the electrical charge
of the heavy quark in units of the electron’s charge; this is +2

3
for charm and −1

3

for bottom.
On the lattice, we can calculate decay constants from the ground-state masses

and amplitudes obtained from our correlator fits, viz.

fφh = Z · A0,φh

√
2

Mφh

(4.23)

where Z is a renormalisation factor which matches the lattice QCD vector current
to the same current in the continuum. We determine Z via the current-current
correlator method as described in section 4.3.1 above, using the same correlators as
are fitted to determine A0,φh and Mφh . This provides the advantage of cancelling
some discretisation errors which appear in the unrenormalised decay constant. Our
calculated (and as yet unrenormalised) decay constants are listed in Table 4.12, along
with the Z-factor determined from the 8th time-moment of the vector correlator in
section 4.3.1.
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Label amh afηh afφh/Z Z8

fine 0.413 0.17211(11) 0.18289(29) 0.932(14)
0.7 0.22337(11) 0.22989(23) 0.9488(34)
0.85 0.25661(11) 0.26108(22) 0.9998(20)

superfine 0.271 0.11844(7) 0.12383(34) 0.967(13)
0.4 0.13755(8) 0.14030(27) 0.9458(66)
0.5 0.15121(8) 0.15257(24) 0.9357(46)
0.6 0.16503(9) 0.16515(21) 0.9367(29)
0.7 0.17985(9) 0.17863(20) 0.9513(16)
0.8 0.19646(9) 0.19364(19) 0.97884(71)

ultrafine 0.193 0.08813(4) 0.09156(16) 0.984(12)
0.3 0.10361(4) 0.10444(13) 0.9679(56)
0.4 0.11580(4) 0.11512(12) 0.9512(39)
0.5 0.12720(5) 0.12540(11) 0.9402(29)
0.6 0.13867(5) 0.13587(11) 0.9398(19)
0.7 0.15088(5) 0.14698(10) 0.9523(10)
0.8 0.16447(5) 0.15918(10) 0.97757(37)

Table 4.12: Results in lattice units for the decay constants of the ηh and φh mesons
for each bare quark mass on the ensembles listed in Table 2.1. Z8 is the renormaliza-
tion factor obtained from the 8th moment of the correlator as described in the text.
This is used to renormalise the vector decay constant by setting the above Z = Z8

and then multiplying to cancel it out. The equivalent renormalization factor for the
ηh is unity, so no change is necessary there. These results were obtained using the
local vector operator.
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We renormalise the calculated vector decay constants by multiplying by Z8,
and translate to physical units by multiplying by the inverse lattice spacing a−1 —
determined, as before, from the r1/a values in Table 2.1. These values are then
plotted against the inverse of the ηh mass, in Figure 4.12.

0.10 0.15 0.20 0.25 0.30 0.35

M−1
ηh

(GeV−1)

300

400

500

600

700

800

f φ
h

(M
eV

)

MηcMηb

Figure 4.12: The decay constant of the heavy-heavy vector meson, as determined
on the same lattices as in Figure 4.2 using the local vector operator. The colours
represent the same lattices as they did in Figure 4.2.

We attempt a continuum fit to these points using the same method as for the
hyperfine splitting, and with the same fit function and broad priors given in equation
4.1. The fit is excellent, with a χ2 per degree of freedom of 0.088 and a Q-value of
1.0. Our continuum and heavy-quark extrapolation then gives results at the physical
b and c masses of:

fΥ = 616(39) MeV (4.24)

fJ/ψ = 407.5(6.8) MeV. (4.25)

The errors here are statistical only, and, for bottomonium, are dominated by errors
in the continuum extrapolation.

We can compare these results to experimentally-determined values by making
use of equation 4.22. Experimental averages for the leptonic widths Γ of both the
Υ and J/ψ can be used [4], along with their experimentally-determined masses, to
extract values for comparison:

fΥ = 689(5) MeV (4.26)

fJ/ψ = 407(5) MeV. (4.27)



Chapter 4 85

These values are also plotted in Figure 4.12 as the black points at the physical ηb
and ηc masses.

Our determined charmonium value agrees very well with the experimental result,
and is of comparable accuracy. This provides further evidence of the ability of the
HISQ action to simulate charm quarks very accurately.

Our bottomonium value exhibits a discrepancy with the experimental value at
the 2σ level, and also has a notably increased error compared to the charmonium
value — although the latter is not surprising, given the large discretisation errors
evident in the plot. A number of further investigations into the source of this
discrepancy were carried out, and we now recount the details of these investigations.

4.4.1 One-link Vector Operator

We further investigate the difference in our fitted result for fΥ from its value de-
termined by experiment by examining the same quantity when calculated using the
one-link vector operator, much as we did for the moments in the previous section.
Using the correlators from the one-link calculation carried out for the moments, we
repeat the analysis performed above. Results of fits to these new correlators are
shown in Table 4.13, along with the renormalisation factor Z8 determined from the
one-link moments in the previous section.

Label amh aMφh afφh/Z Z8

fine 0.413 1.32959(14) 0.15037(24) 1.154(17)
0.7 1.90408(10) 0.18114(18) 1.2623(46)
0.8 2.09431(9) 0.19330(18) 1.3367(30)

superfine 0.271 0.92942(7) 0.10658(12) 1.134(15)
0.4 1.20902(5) 0.11923(11) 1.1334(80)
0.7 1.82013(4) 0.14640(8) 1.2215(20)
0.8 2.01357(3) 0.15643(8) 1.28878(94)

ultrafine 0.193 0.69180(6) 0.08012(10) 1.126(14)
0.7 1.76556(2) 0.12331(6) 1.1964(13)
0.8 1.96061(2) 0.13197(6) 1.25862(48)

Table 4.13: Results in lattice units for the mass and decay constant of the φh meson
for a subset of the heavy quark masses used before, but using the one-link vector
operator. Results are obtained on each of the ensembles listed in Table 2.1. We
also list the renormalisation factors Z8 calculated for this data, again using the
current-current renormalisation method.

We plot these results and carry out a continuum fit in exactly the same manner
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as we did for the results using the local operator. This fit is very good, with a χ2

value per degree of freedom of 0.84 and a Q-value of 0.58. We do not expect the fit
to be as good as before since we are now only working with just over half as many
data points. These results and the fit to them are plotted in Figure 4.13.
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Figure 4.13: The decay constant of the heavyonium vector meson as determined for
a subset of the bare quark masses on the same lattices as in Figure 4.12, but using
the one-link vector operator.

This fit gives results at the physical b and c masses of:

fΥ = 636(24) MeV (4.28)

fJ/ψ = 410.8(5.4) MeV (4.29)

where the errors are once again purely statistical.

Both of these results are consistent with the results obtained using the local
vector operator, and the charmonium result is once again in good agreement with
experiment. We verified in Figure 4.10 that taste splittings were small for the
mesons in this calculation, and these results suggest that taste effects are small for
this quantity more generally.

The bottomonium result, although slightly increased, still exhibits a 2σ discrep-
ancy in comparison to experiment, indicating that our observed discrepancy is not
caused by taste effects in this case. The plot of results suggests that discretisation
errors on fφh are apparently even larger in this formalism.
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4.4.2 Four-Flavour HISQ Ensembles

We also investigate the effect of missing charm quarks in the sea for the vector decay
constant, like we did for the moments. Again we use the same correlators that were
calculated in that case, using the superfine 2+1+1-flavour ensemble and reverting
to the use of the local vector operator. The full range of heavy quark masses is
identical: a slightly-mistuned charm of 0.269 plus heavier intermediate masses of
0.5, 0.6, 0.7 and 0.8, with the heavy mass of 0.4 omitted for speed.

The results from the 2+1+1-flavour ensemble are once again converted to physi-
cal units by using the w0/a value listed in Table 2.2, and then plotted alongside the
results from the 2+1-flavour ensemble. This plot is shown in Figure 4.14.
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Figure 4.14: The decay constant of the heavyonium vector meson as determined
using the local vector operator. Results on the superfine 2+1-flavour lattices are
displayed in green, with results from the superfine 2+1+1-flavour lattices displayed
in red.

As in the case of the moments, we do not expect these two sets of results to
agree exactly — only one has charm quarks in the sea, and the sea quark actions
are different in each case. We also use different quantities to fix the lattice spacing.
Nevertheless, they agree very closely, within errors at each lattice heavy quark mass.
This suggests that the heavyonium decay constant has negligible dependence on sea
charm effects, and also on what quantity we use to fix the lattice scale.
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4.5 Pseudoscalar Decay Constant

In Table 4.12, we also list the decay constants determined from the ground-state
amplitude A0 of our fits to the pseudoscalar correlators, viz.

fηc = 2mcA0,ηc

√
2

M3
ηc

(4.30)

where mc is the charm quark mass. Thanks to the PCAC relation for HISQ quarks,
no renormalisation of this quantity is required. We can therefore simply translate
these results to physical units by multiplying by the inverse lattice spacing as before.
The physical results are again plotted, in Figure 4.15, against the inverse of the ηh
mass.
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Figure 4.15: The decay constant of the heavy-heavy pseudoscalar meson as deter-
mined on the same lattices as in Figure 4.2, with the colours representing the same
lattices as in that figure. The black points at the physical ηb and ηc masses represent
determinations in the continuum limit from previous lattice calculations, in [74] and
[45] respectively.

We perform a continuum fit to these points using the same method and fit
function as we have used previously for the hyperfine splitting and the vector decay
constant. Once again we are able to use the same broad priors thanks to the ‘fast
fit’ carried out prior to the full fit. The fit that we obtain is excellent, with a χ2

value per degree of freedom of 0.028 for 16 degrees of freedom, and a Q-value of 1.0.
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Results from the extrapolation to the physical b and c masses are:

fηb = 662(31) MeV (4.31)

fηc = 391.8(3.7) MeV (4.32)

where the errors are purely statistical.
Unfortunately, there is no meaningful experimental comparison for this quantity,

for either charmonium or bottomonium. There are, however, previous lattice results
at the physical b and c masses of:

fηb = 667(6) MeV (4.33)

fηc = 394.7(2.4) MeV (4.34)

from [74] and [45] respectively. These are also plotted in Figure 4.15 as the black
points at the physical ηb and ηc masses.

Our result for fηb is in agreement with the determination in [74], but has a
significantly larger statistical error. The method used in [74] was very similar to
that used in this calculation (in fact it is another of the precursors to this work).
This means that the act of performing a heavy-mass extrapolation is not the root
cause here. It may well be the case that the previous work was able to achieve
a smaller error since they had results at further different lattice spacings to those
used here. This is therefore another way in which this calculation could possibly be
extended.

Our result for fηc agrees well with the previous lattice determination, and has
a comparable error. A further comparison of results for the decay constant of the
ηc is delayed until chapter 6, as this quantity will also be determined in the next
chapter.

4.6 Outstanding Discrepancies

In this chapter, we have successfully extended the methods used for the lattice
calculations in [56] and [74] to include heavyonium as well as charmonium states,
and to investigate vector heavyonium correlators as well as pseudoscalars. Our choice
of Z-factor for renormalising these vectors, and the corresponding justification for
that choice, are not the same as those in [56]. It is therefore non-trivial that our
charmonium results, in the main, agree with those determined in that work. We
have already mentioned that our result for the ηb decay constant is in agreement
with that obtained in [74], but could be improved in accuracy by the addition of
results at even more different lattice spacings.

Our investigations into possible reasons for the discrepancy between our calcu-
lated value of fΥ and the experimental result have proven inconclusive, although we
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have demonstrated that it is not a simple taste-splitting effect. There are also still
some unresolved questions surrounding certain of our calculated moments and their
values derived from experiment in both the bottomonium and charmonium cases.
There is excellent agreement between these values when we calculate the moments
using the one-link vector operator, but this is not the case when we do so using the
local vector operator. The discrepancy between the one-link and the local moments,
albeit small, is likely to require some additional calculations to fully understand.
This seems especially prudent when we consider that this study includes fewer data
sets than that in [56], which calculated continuum vector charmonium moments that
were in good agreement with the experimental results.

In fact, many of the calculations described in this chapter would undoubtedly
benefit from some further work, to either resolve or solidify the discrepancies that
we have found. It is possible that performing a full calculation on 2+1+1-flavour
lattices would resolve things. The preliminary calculation outlined above — for the
moments and the vector decay constant on the 2+1+1-flavour superfine ensemble
— does not seem to support this hypothesis, but we must remember that it is
a calculation at a single lattice spacing. No continuum extrapolation has therefore
been performed and so we cannot draw reliable conclusions based on this calculation
alone. It is also worth noting again that we are not allowing for any sea quark mass
dependence in any of these fits, and so studies which take this into account may be
able to provide some resolution.

The discrepancies in the cases of the moments and of fΥ are different in some key
respects. Firstly, it is clear from the plots in Figures 4.12 and 4.13 that discretisation
effects are large for the decay constant fit, and it could be that we require a more
sophisticated fitting function to fully account for this. This is not obviously true in
the case of the moments. In addition, the largest discrepancy in the moments case
when calculated using the local operator is only on the order of 3%. The smallest
discrepancy in the case of the vector decay constant, by contrast, is around 8%, and
so this is the more compelling of the two.

Ultimately these calculations are still computationally expensive, and it is only
recently that the ability to perform them to the required accuracy has been devel-
oped. The work described in this chapter therefore provides an excellent base from
which to develop these methods further.
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Radial and Orbital Excitations of
Charmonium

The charmonium system consists of mesons formed of a charm quark and its own
antiquark. The masses and decay rates of the pseudoscalar (JPC = 0−+) and vector
(JPC = 1−−) ground states, as well as numerous radially and orbitally excited
states, are well-determined experimentally [4], and we examined the form of the
mass spectrum (in tandem with that of bottomonium) at the beginning of chapter
4. Figure 5.1 provides an overview of the current experimental determinations of
states in the charmonium system, as well as some of their known relative transitions.

Previous studies of multiple states in the charmonium spectrum have been per-
formed on the lattice — see [83] for a particularly impressive example, with deter-
minations of numerous excited states — but these have typically only been done at
one lattice spacing, and frequently also with unphysical masses for light quarks in
the sea. With only one lattice spacing, it is not possible to be sure of values in the
continuum limit, and so studies at multiple lattice spacings are required.

One previous study performed at multiple lattice spacings is that by the Fermilab
Lattice and MILC Collaborations [84], which uses the Wilson clover formulation
[18] for valence charm quarks on gauge configurations with 2+1 flavours of asqtad
quarks in the sea [15]. However, this produced preliminary results for the spin-
averaged 2S− 1S splitting which showed a surprisingly large disagreement with the
experimental value. A plot of their results for this quantity is reproduced in Figure
5.2. The HPQCD collaboration has previously performed an accurate calculation
of ground-state charmonium masses in [56], and the previous chapter of this thesis
builds on many of the methods developed there. In combination, then, this provides
a foundation and motivation to study excited states in the charmonium system, and
determine whether we also observe a similar discrepancy.

In this chapter we will examine states below the open charm threshold for decay
into D and D̄ mesons, since these can, in principle, be determined accurately via
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Figure 5.1: An overview of the current experimental understanding of the charmo-
nium spectrum, as presented in [4]. Note the open charm threshold, labelled DD̄,
just above 3700 MeV.

Figure 5.2: The Fermilab/MILC result for the spin-averaged 2S − 1S splitting in
charmonium. Note the magenta burst at the lower left which represents the experi-
mental value. This figure is reproduced from [84].
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straightforward lattice QCD calculations with single meson operators — that is,
we can assume that the impact of hadronic decays and multihadronic scattering is
small or negligible. Specifically, we will concentrate on determinations of the ηc(1S),
ηc(2S), J/ψ(1S), ψ(2S) and hc(1P) states, and will additionally make some less
detailed determinations of the χc0(1P) and χc1(1P) states. The HISQ action will be
used for valence charm quarks to keep discretisation errors small. We will perform
calculations on the 2+1+1-flavour gauge configurations [16] detailed in section 2.1.2,
which include the effects of light quarks in the sea at their physical masses.

Radially excited states are accessed on the lattice via their contributions to
correlation functions at small t, and we discuss this further when considering our
correlator fits. We use Gaussian covariant smearings on our source and sink opera-
tors, as discussed in section 2.2.3, to improve overlap with the ground state. This
then allows for data on the radially excited states to be extracted more accurately.
Data on orbital excitations are obtained by considering the oscillating parts of the
correlators, since those that we consider are the parity partners of other states we
are calculating.

This is the first time that the HPQCD collaboration has used smeared operators
with staggered quarks to obtain continuum results. The overall effects of their inclu-
sion will therefore be evaluated in chapter 6, via comparisons to earlier calculations.

5.1 Lattice Calculation

We again perform our lattice calculations using the MILC code [1]. In contrast
to most of the heavyonium calculations in the previous chapter, here we use the
2+1+1-flavour ensembles detailed in Table 2.2, and we now determine the lattice
spacing a using the Wilson flow parameter w0 as described in section 2.1.3. We take
its physical value to be w0 = 0.1715(9) fm as calculated in [46].

We use ensembles with multiple different lattice spacings, including those where
the masses of light quarks in the sea are set to their physical values. As in the
previous chapter, we begin by generating a random wall source on a given timeslice
of the lattice, and the following procedure is repeated for a number of timeslices Nt

on multiple configurations Ncfg in each ensemble. The numbers of configurations
and time sources that we use on each ensemble are given in Table 5.1.

Bare lattice charm masses are also shown in Table 5.1, and these were tuned
by fixing to the mass of the ηc(1S). We will see later just how well-tuned these
actually are. For now, we note that we do not match directly to the experimental
average of the ηc(1S) mass, since we make an allowance for annihilation to two
gluons. Annihilation effects are not included in our lattice calculation and we must
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Label m`/ms amc Naik ε Ncfg ×Nt Smearing s1 Smearing s2

r n r n

very coarse 1/5 0.888 −0.3820 1020× 8 — — — —
1/10 0.873 −0.3730 1000× 8 — — — —
phys. 0.863 −0.3670 1000× 8 — — — —

coarse 1/5 0.664 −0.2460 1053× 8 1.5 10 3.0 20
1/10 0.650 −0.2378 1000× 8 1.5 10 3.0 20
phys. 0.643 −0.2336 1000× 8 1.5 10 3.0 20

fine 1/5 0.450 −0.1250 300× 8 2.5 20 3.5 30
1/10 0.439 −0.1197 300× 8 2.5 20 3.5 30
phys. 0.433 −0.1167 565× 8 2.5 20 3.5 30

superfine 1/5 0.274 −0.0491 1019× 8 2.5 20 4.0 50
ultrafine 1/5 0.188 −0.0235 100× 8 4.0 50 — —

Table 5.1: Parameters used on the different ensembles of 2+1+1-flavour MILC con-
figurations in the calculations in this chapter. We list the bare lattice charm mass
amc and the Naik parameter ε on each ensemble, the number of configurations Ncfg

from each ensemble, and the number of time sources Nt on each configuration that
are utilised. The rightmost four columns list the parameters used to define the
Gaussian covariant smearings applied to the source and sink operators, as described
by equation 2.37. No smearings are used on the very coarse ensembles, and only
one smearing is used in the ultrafine case.
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therefore shift our target ηc(1S) mass upwards1.
Using equation 4.4 from the previous chapter, obtained from a perturbative

calculation in [20], we obtain a shift of −3.1 MeV. This shift will have a negligible
effect on most of the quantities that we will calculate, being only just over 0.1% of
the ηc mass. It could have a relatively large effect when considering the hyperfine
splitting, though, and we consider this fully in section 5.2.1.

Table 5.1 also lists the Naik ε parameter used in conjunction with each bare
lattice charm mass. This is determined by computing the expansion in powers of
the charm mass as defined in [20], exactly as we did in chapter 4.

5.1.1 Smearings

Since we are using staggered quarks, the source operator is embedded in the random
wall source that we generate, and so we apply our Gaussian smearings to this oper-
ator by modifying the random wall source. This allows us to retain the statistical
advantages of using the random wall source for each smearing that we apply.

We use two different smearing functions on most of the ensembles, with some
exceptions: no smearings are used on the very coarse lattices, since we do not expect
to be able to extract the excited states here with enough statistical precision, even
when smearings are used. Only one smearing is used on the ultrafine configurations
to reduce the amount of computer time required, since these configurations have such
a large volume (L3×T = 643× 192). Smearings were used on the fine m`/ms = 1/5

ensemble, but we do not extract excited states from these correlators due to doubts
over the thermalisation of the different molecular dynamics streams in the ensemble,
which we have entered into correspondence with the MILC Collaboration about.

Values for the smearings we use are listed in Table 5.1. These were determined for
the coarse and fine ensembles by Peter Knecht [2], while working with the HPQCD
collaboration, by calculating correlators on a small subset of configurations with
different preselected values for the smearing parameters r and n. In plotting a nor-
malised effective amplitude for these correlators, it becomes clear which smearings
cause the correlator to reach a plateau most quickly — these are therefore the smear-
ings with the largest ground-state overlap. The best smearings determined in [2] for
the coarse and fine ensembles are those which we have listed in Table 5.1.

Such extensive testing was not performed on the superfine or ultrafine ensem-

1To be clear, the calculated shift in the ηc mass due to annihilation effects is negative for the
perturbative approach that we use, meaning that the mass is reduced by these effects. Our lattice
calculations do not include annihilation effects, and so the masses computed by them will be higher
than the physical mass. To calculate a mass to match to when rescaling, we therefore apply this
shift to the experimental average of the ηc mass, but in the opposite direction — as an increase —
to ‘undo’ the effects of annihilation.
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bles due to the extra computing power required to perform calculations on these
ensembles. Instead, reasonable adjustments were made to the smearings from the
next-coarsest lattices, and effective amplitudes for correlators calculated using these
smearings were plotted to confirm that they were suitable for use. Plots of the effec-
tive amplitude Aeff for the two smearings used on the superfine ensemble are shown
in Figure 5.3, where we define:

Aeff(t) =
1

N
· C2pt(t)

e−Et + e−E(T−t) (5.1)

with C2pt(t) the average correlator, E the energy of the ground state, and T the
temporal extent of the lattice. N is a normalisation factor equal to the average value
of the correlator’s central plateau, and so the effective amplitude will converge to 1
when the plateau is reached.

It is clear for both the smaller and larger smearings in Figure 5.3 that the cor-
relator converges more quickly than when no smearing is applied. In addition, the
approximate shape of the smeared effective amplitudes is what we expect from Peter
Knecht’s work [2], where an example is given of a calculation where the smearing
has too small a number of iterations n to properly approximate a Gaussian shape.
Our choice of smearings on the superfine ensemble is discussed further in section
5.5.

5.1.2 Matrices of Correlators

We generate a HISQ quark propagator beginning from each of our random wall
sources, and tie together each possible combination with an appropriate sink opera-
tor to calculate both pseudoscalar and vector correlators. Let us consider these cases
separately. The pseudoscalar case is simpler since it does not require the source to
be patterned with phases. We may simply use the local γ5⊗γ5 operator at the sink,
which we will represent by `, or we may also apply one of the smearings in Table
5.1 at the sink: s1 denotes the smaller smearing, and s2 the larger.

We may uniquely refer to the different propagators that we generate by specify-
ing the operators applied at their sources and sinks. For example, the propagator
denoted by `.` has no smearings applied at either end. Combining this local-local
propagator with each other propagator then results in the following matrix of cor-
relators being generated: 


`.` `.s1 `.s2

s1.` s1.s1 s1.s2

s2.` s2.s1 s2.s2


 (5.2)

where the same notation now refers to the overall smearing applied at the source
and sink of each correlator.
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Figure 5.3: Plots of the effect of smearings on the convergence of correlators to a
plateau. Here we show the effect of two different smearings applied to pseudoscalar
charmonium correlators on the superfine 2+1+1 ensemble. The blue points are those
obtained when no smearing is applied, and the red points show the results with the
respective smearing applied to both the source and sink operators. It is clear that
in both cases, the smearing causes the correlators to plateau more quickly than they
otherwise would.
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Because the pseudoscalar is generated from a simple random wall source with
no phases applied, we may also combine pairs of propagators which both have a
smearing applied to the source or sink, and still produce a pseudoscalar meson of
the same taste. This results in another matrix of correlators being obtained:




`.` `.d1 `.d2

d1.` d1.d1 d1.d2

d2.` d2.d1 d2.d2


 (5.3)

where, for example, d1.` denotes that the smaller smearing has been applied at the
source of both propagators that are being combined, not just one.

Consider now the vector case. Here we must pattern the source with appropriate
vector phases, and applying a smearing once this has taken place would destroy the
signal that we obtain. We therefore apply the appropriate vector phases to the local
source, and only combine the local-local propagator resulting from this patterned
source with each of the smeared propagators from the unpatterned source. Using
the local vector operator γx ⊗ γx (or, in practice, applying the appropriate vector
phases) at the sink then results in the production of a vector meson in each case,
and we obtain a matrix of correlators with the same form as that in equation 5.2.

Note here that, for efficiency, we only study a single vector polarisation (in this
case, in the x direction, although this is a somewhat arbitrary choice) since the
smearing function cannot be applied to a source generated with the subset corner
mask.

Correlators are again normalised by dividing by 3 to account for the random
colour 3-vectors in the source, and by L3 to account for the statistics of the random
wall source. We also average over time sources and over configurations in each
ensemble before performing correlator fits.

Correlators were generated as described above on the coarse m`/ms = 1/5 en-
semble, and on the fine physical ensemble, by Peter Knecht while working with the
HPQCD collaboration. We include these two sets of correlators in the fits in the
next subsection, along with the correlators on the other ensembles generated by the
author.

5.1.3 Correlator Fits

Our averaged correlators are fit to the form given in equation 3.9, which allows the
specific amplitudes for each smeared operator to take on different values. We again
use the fit code described in section 3.1.2, and include oscillating terms for the vector
correlators. Opposite-parity terms cancel for the pseudoscalar correlators, and so
oscillating terms are not necessary in this case.
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Since we are here attempting to fit a matrix of correlators, we can make full use
of the EigenBasis method described in section 3.1.3. This will inherently generate
priors for our fit parameters — the energy-logarithm and amplitude values — by
virtue of its determination of a diagonalised basis. The only exception to this is when
studying the hc(1P) meson: its associated values are extracted from the oscillating
part of the vector correlators, and this is not examined by the diagonalisation. We
therefore simply feed the fit a prior of ∼ 3500±200 MeV for the mass of the hc(1P),
converted to lattice units.

Values for tmin and SVD cuts are again altered to find the fit which gives the best
χ2 and statistical Q-values. Generally, we find that a tmin value of about 8 is enough
to give a good fit, but that SVD cuts of around 10−4 or even 10−3 are required
to complement this. In each case, we check the impact of binning the correlators
before averaging them. This is only implemented if it increases the errors on our
ground-state parameters, since this indicates that statistical correlations between
neighbouring configurations are being reduced. We find that this is necessary in
only a few cases, and the bin sizes we use are never larger than 4.

We perform separate fits to the pseudoscalar and vector data, relying on the
EigenBasis method for accuracy. Any correlations between vector and pseudoscalar
data are small enough to be negligible — we have performed some (traditional)
simultaneous fits to the pseudoscalar and vector correlators, and the results from
these agree in all cases with those from the separate fits. We extract values from
the fits only once they have stabilised: in each case we include at least nexp = 7

exponentials in the fit function, and, as explained further in section 5.5, we extend
some out as far as nexp = 13. All the fits have a stable χ2 value of less than 0.98,
with some as low as 0.49.

Generally we find that including the matrix of ‘doubly-smeared’ pseudoscalar
correlators (e.g. d1.`) is not necessary in order to obtain a good fit. When they are
included, we are significantly increasing the number of degrees of freedom that the
fit must take care of, and this does not result in any notable increase in statistical
precision. These correlators are therefore usually neglected in the pseudoscalar fits.
This is no great loss since they required very little extra computer time to produce.

For several of the ensembles, we have performed a more traditional fit alongside
the fit using the EigenBasis method, and we extract values from the best fit in each
pair, preferring the EigenBasis fit if there is only a small difference between the
two, since it generally has smaller statistical errors. On the ensembles where no
smearings were applied, we do not have a matrix of correlators to fit, and so only a
traditional fit is carried out. Priors used in performing traditional fits are the same
as those listed in section 3.1.1.

From these numerous fits, we are able to accurately extract the mass and the
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amplitude for several states in the charmonium system. We list the masses of these
states on each ensemble in Table 5.2, and the corresponding (local) amplitudes in
Table 5.3.

Label m`/ms aMηc(1S) aMJ/ψ(1S) aMηc(2S) aMψ(2S) aMhc(1P)

very coarse 1/5 2.331900(70) 2.42000(30) — — — *
1/10 2.305350(40) 2.39305(15) — — — *
phys. 2.287710(30) 2.37483(14) — — — *

coarse 1/5 1.876549(44) 1.943562(80) 2.2980(32) 2.3319(66) 2.1965(91)
1/10 1.848042(30) 1.914726(54) 2.2529(26) 2.2830(84) 2.1814(68)
phys. 1.833954(16) 1.900475(32) 2.2371(15) 2.2726(55) 2.1675(94)

fine 1/5 1.366850(90) 1.41574(21) — — — *
1/10 1.342465(19) 1.391323(34) 1.6413(20) 1.6546(86) 1.5891(27)
phys. 1.329308(16) 1.378308(26) 1.6255(18) 1.6420(48) 1.5644(46)

superfine 1/5 0.896686(23) 0.929906(43) 1.0975(40) 1.1148(97) 1.0549(60)
ultrafine 1/5 0.652460(50) 0.677810(50) 0.8115(63) 0.8179(39) 0.7787(16) ‡

Table 5.2: Results in lattice units for the rest masses of the ηc(1S), J/ψ(1S), ηc(2S),
ψ(2S) and hc(1P) charmonium mesons as determined on each of the ensembles listed
in Table 5.1. The presence of a symbol in the rightmost column indicates that values
in that row have been taken from a traditional fit; else, they have been determined
via an EigenBasis fit. Rows with a * had no EigenBasis fit performed to the data, and
in the ultrafine row denoted by ‡, the traditional fit was chosen over the EigenBasis
fit for all correlators. The ultrafine case is the only one where the traditional fit is
better, most likely because the of relatively small data sample on this ensemble.

Effect of Smearings

It is a simple matter to demonstrate that our smearings have the desired effect on
our correlators. Taking the vector correlators on the fine m`/ms = phys ensemble
as an example, we can fit only the local (`.`) correlators and compare the results to
those from a full matrix fit. Both of the fits described here are traditional fits, and
a comparison with the results in Tables 5.2 and 5.3, we can see that the use of an
EigenBasis fit has, in most cases, further improved our error estimates.

The full matrix fit on this ensemble has a χ2 value per degree of freedom of 0.72

(for an impressive 387 degrees of freedom), and a Q-value of 1.0. The best fit we
can find to just the local correlators has a χ2 value per degree of freedom of 0.93 for
43 degrees of freedom, and a Q-value of 0.59.
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Label m`/ms Aηc(1S) AJ/ψ(1S) Aηc(2S) Aψ(2S) Ahc(1P)

very coarse 1/5 0.53392(26) 0.4737(17) — — — *
1/10 0.52486(14) 0.46306(60) — — — *
phys. 0.519001(83) 0.45412(73) — — — *

coarse 1/5 0.367338(76) 0.28974(13) 0.3768(70) 0.313(14) 0.1033(80)
1/10 0.360436(53) 0.28206(10) 0.3461(55) 0.280(17) 0.1134(57)
phys. 0.357350(29) 0.278484(62) 0.3413(33) 0.290(12) 0.1134(76)

fine 1/5 0.22841(18) 0.16313(44) — — — *
1/10 0.224696(28) 0.159453(48) 0.1887(58) 0.133(16) 0.0629(19)
phys. 0.222803(26) 0.157507(35) 0.1852(62) 0.1337(96) 0.0557(32)

superfine 1/5 0.128767(32) 0.084147(47) 0.1078(54) 0.074(12) 0.0291(34)
ultrafine 1/5 0.086034(53) 0.052529(52) 0.0802(69) 0.0517(20) 0.02166(44) ‡

Table 5.3: Results in lattice units for the local amplitudes of the ηc(1S), J/ψ(1S),
ηc(2S), ψ(2S) and hc(1P) charmonium mesons as determined on each of the ensem-
bles listed in Table 5.1. The ‡ and * symbols mean the same as in Table 5.2.

Moreover, the accuracy with which we are able to determine energies and ampli-
tudes is significantly improved when the smeared correlators are included. The mass
of the ground-state J/ψ(1S) is determined, in lattice units, as 1.378263(40) with an
associated amplitude of 0.157480(76) from just the local correlators, or 1.378291(29)

with an amplitude of 0.157498(43) from the full fit. The error on the mass is reduced
by more than 27%, while the error on the amplitude sees a reduction of over 43%.

This is likely to be a greater reduction in statistical errors than we would ex-
pect from simply having greater statistics. Statistical errors scale approximately as
1/
√
N , with N the number of data points. The amount of data generated when

using a total of three different smearings (including no smearing) is, in principle, 9
times as much as when using no smearings (since this results in a 3 × 3 matrix of
correlators instead of the equivalent of a 1× 1 matrix) so with nine times as much
data, errors would be reduced by at most 67%. However, the data with smearings
is correlated, and so we cannot expect a full 1/

√
N reduction in statistical errors in

this case. The smearings appear to be further improving our determinations.

The improvement is even more striking for higher excitations. The ψ(2S) mass
from just the local correlators comes out at 1.6488(117) with an amplitude of
0.1470(130), whereas from the full fit we obtain a mass of 1.6463(53) and a cor-
responding amplitude of 0.1441(69). In this case, the errors on the mass and am-
plitude have been reduced by approximately 55% and 47% respectively. It is clear
that the use of smeared operators is helpful in accurately extracting excited states.
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Parity Partners

Determinations were also made of the rest masses of the χc0(1P) and χc1(1P). These
are less straightforward to access on the lattice than the other five charmonium states
in Tables 5.2 and 5.3, and so have correspondingly fewer determinations. We do not
utilise the results for these mesons in the following sections, but they are depicted
in Figure 5.4, and so we briefly describe them here.

The χc0(1P) is a JPC = 0++ meson, and is the parity partner of the pseudoscalar
JPC = 0−+ meson. This is inaccessible when using the local pseudoscalar γ5 ⊗ γ5

operator, since the opposite-parity terms cancel and no oscillation is observed in the
correlator. To access the χc0(1P), we therefore use the γ0γ5 ⊗ γ0γ5 operator — this
also creates a local pseudoscalar, but the opposite-parity term no longer cancels and
we can extract the χc0(1P) from the oscillating part. This was calculated by Peter
Knecht on the coarse m`/ms = 1/10 lattices.

The χc1(1P) is a JPC = 1++ meson, and is a parity partner of the vector JPC =

1−− meson. The oscillating partner of the J/ψ(1S) when created using the γx ⊗ γx
operator is, as we have noted previously, the hc(1P) meson, and so we must again
use a different operator to create the vector if we wish to access a different oscillating
state. In the case of the χc1(1P), we use the γxγ0⊗ γxγ0 operator to create the local
vector and access it via the oscillation of this correlator. The χc1(1P) was calculated
by Peter Knecht on the coarse m`/ms = 1/10 lattices, and by the author on the
superfine m`/ms = 1/5 lattices.

Peter Knecht’s determinations of the rest masses of these mesons on the coarse
m`/ms = 1/10 ensemble were as follows:

Mχc0(1P) = 3416.5(3.1) MeV (5.4)

Mχc1(1P) = 3518.7(7.3) MeV (5.5)

and the author’s determination on the superfine m`/ms = 1/5 ensemble was:

Mχc1(1P) = 3524.9(7.8) MeV . (5.6)

Given that no continuum or chiral extrapolation has been carried out, these are all
in reasonable agreement with the experimental values [4], which are:

Mχc0(1P) = 3414.75(31) MeV (5.7)

Mχc1(1P) = 3510.66(7) MeV (5.8)

and this provides a further test of the validity of our methods.

Spectrum Plot

Using the masses determined from our fits displayed in Table 5.2, as well as the
handful of results obtained for the χc0(1P) and χc1(1P) listed above, we construct a
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plot of the spectrum of charmonium that we have determined. This is displayed in
Figure 5.4.
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Figure 5.4: The spectrum of low-lying charmonium states as computed on each of
the ensembles in Table 5.1. Individual determinations of each mass are plotted in
order of decreasing lattice spacing from left to right, atop an indication of their
experimental values. The lattice charm quark masses are tuned by fixing to the
value of the ηc(1S), and it is clear from the plot how well-tuned they actually are
— excepting, of course, the results on the ultrafine ensemble, which are discussed
further in the text. Results for excited states on the superfine ensemble, particularly
the 2S states, have an increased error in comparison to their coarser counterparts,
and this is also discussed further in the text.

A few items are worthy of note in this plot. Firstly, we have tuned our bare
lattice charm masses by fixing to the mass of the ηc(1S), and generally, we can see
that they are all very well-tuned. There is a notable exception, however: the points
corresponding to results on the ultrafine lattices are significantly lower than their
counterparts on the other ensembles, in the masses of both the ηc(1S) and J/ψ(1S).
We can therefore conclude that the charm quark mass on the ultrafine ensemble is
mistuned, and so we will not use the ultrafine results in the majority of what follows.

The second unusual feature is the relatively large errors on the masses of excited
states calculated on the superfine ensemble. It is curious that these results should
be less accurate than those from their coarser relatives. We discuss the investigation
into these results, and the cause of their increased statistical error, much further in
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section 5.5. For now, we note that it is still perfectly possible to attempt continuum
fits with a larger error on the superfine results than on the coarse and fine results,
and also that the ground states do not seem to be affected to the same extent.
We will therefore delay a full discussion until we have examined the results of said
continuum fits.

Errors for the ηc(2S) and ψ(2S) masses are also significant on the ultrafine lat-
tices. This is not a direct concern at the moment, since we will not use these results
in any of the fits that follow, but this may be indicative of some problem appearing
at finer lattice spacings. It is difficult to be sure without any results at a correctly-
tuned charm mass, but this will also be taken into consideration in section 5.5.

5.2 Mass Splittings

We will first examine four different mass splittings between the charmonium states
that we have calculated. These are the 1S hyperfine splitting ∆Mhyp(1S), the spin-
averaged 2S − 1S splitting ∆M2S−1S, the 2S hyperfine splitting ∆Mhyp(2S), and the
splitting between the axial vector hc(1P) and ground-state vector J/ψ(1S) states,
∆M1P−1S. Values calculated for these splittings on each lattice ensemble are given
in Table 5.4, and we now look at each in more detail.

5.2.1 1S Hyperfine Splitting

Recall that the charmonium 1S hyperfine splitting is the difference between the
masses of the ground-state vector J/ψ(1S) and the ground-state pseudoscalar ηc(1S).
Results for this quantity are displayed in Table 5.4, and we convert to physical units
using the inverse lattice spacings a−1 in GeV that are determined from the w0/a

values on each ensemble. Physical values are plotted in Figure 5.5 using the squared
lattice charm mass as a proxy for the lattice spacing, since we expect discretisation
errors to depend on a2 when using the HISQ action.

This set of results is very accurate, due to the fact that it only requires calculation
of the ground-state pseudoscalar and vector mesons: our smearings were designed
to achieve a large overlap with the ground states, and as before, the ground-state
contributions dominate our correlators at large t-values. This is further evidence of
the ability of the HISQ action to accurately simulate charm quarks.

We note that in translating these results to physical units, we have doubled the
error on w0/a as it appears in Table 2.2. This is necessary when determining the
hyperfine splitting due to our use of the ηc(1S) mass to fix the bare lattice charm
mass, as outlined in detail in section 4.2.

We also adjust the value of the hyperfine splitting to correct for mistunings of the
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Label m`/ms a∆Mhyp(1S) a∆M2S−1S a∆M1P−1S a∆Mhyp(2S)

very coarse 1/5 0.08810(31) — — —
1/10 0.08770(16) — — —
phys. 0.08712(14) — — —

coarse 1/5 0.067013(91) 0.3966(50) 0.2529(91) 0.0339(73)
1/10 0.066684(62) 0.3774(63) 0.2667(68) 0.0301(88)
phys. 0.066521(36) 0.3799(41) 0.2670(94) 0.0355(57)

fine 1/5 0.04889(23) — — —
1/10 0.048858(39) 0.2722(65) 0.1978(27) 0.0133(88)
phys. 0.049000(31) 0.2718(36) 0.1861(46) 0.0165(51)

superfine 1/5 0.033220(49) 0.1889(73) 0.1250(60) 0.0173(105)
ultrafine 1/5 0.025350(71) 0.1448(33) 0.1008(16) 0.0064(74)

Table 5.4: Results in lattice units for selected mass splittings in the charmonium
system, as determined on each of the ensembles listed in Table 5.1. The splitting
between the vector and pseudoscalar 1S states is known as the 1S hyperfine splitting,
and is labelled as ∆Mhyp(1S). Similarly for the vector and pseudoscalar 2S states,
we list the 2S hyperfine splitting ∆Mhyp(2S). The spin-averaged 2S− 1S splitting is
denoted by ∆M2S−1S. The splitting between the axial vector hc(1P) and ground-
state vector J/ψ(1S) states is referred to as ∆M1P−1S.
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Figure 5.5: The hyperfine splitting of charmonium as determined on a range of
ensembles. The groups of points from right to left indicate results on the very coarse,
coarse, fine, superfine and ultrafine ensembles respectively, the ultrafine result having
been corrected for mistuning with an appropriate uncertainty included. The grey
band indicates the fitted curve at the physical light sea quark mass, and the magenta
band shows our final result in the continuum limit, including both statistical and
systematic errors. This is in excellent agreement with the experimental average [4],
shown as the magenta point at zero lattice spacing. Note that the range of the
vertical scale is just over 20 MeV, giving an indication of the accuracy of this entire
set of results.
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charm quark mass. This is done by determining the scaling factor required to match
the experimental average of the ηc(1S) mass, appropriately corrected for annihilation
effects as in section 5.1. It is then possible to apply the same simple linear scaling
to the bare quark mass, to obtain a well-tuned value. The hyperfine splitting is
approximately inversely proportional to the bare quark mass — as demonstrated
explicitly in section 4.2 — and so we may also apply the inverse of the same scaling
factor to our hyperfine splitting results on each ensemble.

In practice this makes very little difference to almost all of our results, since the
charm mass is already very well-tuned on all but one of the ensembles we use. Indeed,
the adjustment required on all except the ultrafine ensemble is less than 0.2%. The
ultrafine result, with its badly-tuned charm mass, requires a shift downwards of
approximately 2.2%, and becomes 110.97(70)(83) MeV at a rescaled charm quark
mass2 of 0.1923. The first error on this value is statistical; the second is an estimate
of the uncertainty introduced by the rescaling, obtained by applying a percentage
error of one-third of the shift required — approximately 0.75%. The values plotted
in Figure 5.5 are the rescaled values, and these are also what we include in the fit
that follows.

It is worth noting that this is the only quantity for which we include results from
the ultrafine ensemble, as the charmonium hyperfine splitting’s relatively simple
dependence on the bare quark mass means we can rescale to obtain an estimate of
the well-tuned result. This is not the case for the fits we consider in the following
sections.

On this wide range of data, we attempt a continuum fit to the form:

p
(

1.0 + A1x+ A2x
2 + A3x

3 + A4x
4 + A5x

5 + χ1δ̃m(1.0 + χa2a
2) + χ2δ̃

2
m

)
(5.9)

where the A and χ terms are coefficients to be determined by the fit, along with p,
the physical value of the hyperfine splitting. The fit is a function of x = (amc)

2, our
chosen proxy for the lattice spacing, and δ̃m = δm/10, with δm the mistuning of the
sea quark masses as discussed in section 2.1.2. δm is, of course, very small on the
physical point lattices.

It is clear in the above function that taking the continuum limit corresponds to
taking x → 0, and the chiral limit corresponds to taking δm → 0. The terms in x
can therefore be thought of as modelling dependence on discretisation errors, and
likewise, the terms in δm as modelling the sea-quark mass dependence. Dependence
on sea masses can be clearly seen on the plot in Figure 5.5 by comparing results
at similar lattice spacings, but different m`/ms values. This arises, at least in part,
from the use of w0/a to determine the lattice spacing, as discussed in section 2.1.3.

2We note that this rescaled charm mass is that which we use to calculate the δm value on the
ultrafine ensemble (δm = 0.276), as alluded to in section 2.1.2.
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We divide δm by 10 before including it in the fit to allow for a natural choice
of priors for the respective coefficients. This arises from chiral perturbation theory:
taking fπ = 0.13 GeV, we can manipulate the chiral term viz.

m2
π

(4πfπ)2
≈ m2

π

5m2
ηs

≈ m`

5ms

(5.10)

which clearly relates back to our definition of δm, and would naturally lead us to
divide by 5. However, we are here describing sea-quark mass effects, which we expect
to be smaller than valence-quark mass effects. Dividing by 10 in the fit is therefore
more appropriate, and allows us to assume that χ1 and χ2 will be of order 1. We
take simple priors for them centred on 0.0 with widths of ±1.0.

The fit is carried out using Bayesian methods, and the prior on p is taken as
100± 50 MeV. Priors on the coefficients are generally taken as (0.0± 1.0), with two
exceptions: A1 and χa2 are slightly more constrained with priors of (0.0±0.5), since
we expect the associated terms to have coefficients of order αs.

The fit values at the physical point (i.e. with δm set to zero) are shown in Figure
5.5 as the grey band, and give a continuum result of

MJ/ψ −Mηc = 116.0(1.2) MeV (5.11)

with the quoted error purely statistical. The fit here is very good, with a χ2 value
per degree of freedom of 0.61 for 11 degrees of freedom, and a Q-value of 0.82.

Following chapter 4, we include a systematic error of ±3.0 MeV to account for
ηc annihilation effects, while also allowing for uncertainty regarding the sign of the
mass shift that these effects induce. Here, however, we must also take account of
the error on the physical value of w0, which until now has been omitted since it
is correlated between points. We therefore also include a systematic error equal to
twice the relative error on w0 = 0.1715(9) fm — this is small but not negligible at
±(2×0.5%), and is doubled in this case for the same reason that we double the error
on each value of w0/a as explained before. Combining these contributions gives a
total systematic error of ±3.2 MeV.

Overall, then, our result for the physical value of the charmonium hyperfine
splitting is:

MJ/ψ −Mηc = 116.0(3.4) MeV (5.12)

with combined statistical and systematic errors to facilitate comparisons. This is
shown in Figure 5.5 as the magenta band, and is clearly dominated by the system-
atics included to account for annihilation effects.

This result compares very well with numerous others, notably the current ex-
perimental average of 113.2(7) MeV [4]. We will perform a detailed comparison of
charmonium hyperfine splitting results in chapter 6.
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5.2.2 Spin-Averaged 2S− 1S Splitting

The spin-averaged 2S− 1S splitting in the charmonium system is

∆M2S−1S =
1

4

[ (
Mηc(2S) −Mηc(1S)

)
+ 3

(
Mψ(2S) −MJ/ψ(1S)

) ]
(5.13)

and this can clearly be calculated from the masses that we have extracted from our
fits. Recall that this is the quantity we mentioned at the start of this chapter, which
exhibited a significant discrepancy from the experimental value when calculated by
the Fermilab Lattice and MILC Collaborations in [84].

We once again use the w0/a values from Table 2.2 to determine the lattice spac-
ings required to convert our results to physical units, and these are plotted in Figure
5.6. Doubling the errors on w0/a, as we did for the hyperfine splitting, is not appro-
priate here, since we do not have the same inverse dependence on quark mass seen
in the hyperfine case. The squared lattice charm mass is again used as a proxy for
the lattice spacing.
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Figure 5.6: The spin-averaged 2S − 1S splitting in charmonium as determined on
a range of ensembles — the groups of points from right to left indicate results on
the coarse, fine and superfine ensembles respectively. The grey band indicates the
fitted curve at the physical light sea quark mass, and the magenta band shows our
final result in the continuum limit, including both statistical and systematic errors.
This is in good agreement with the experimental average [4], shown as the magenta
point at zero lattice spacing.

We perform a continuum and chiral extrapolation by fitting to the function
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in equation 5.9, with an important modification. In the hyperfine splitting case,
we expect discretisation errors to depend on x = (amc)

2, whereas here they will
depend on (aΛ)2, with the QCD scale Λ ≈ 500 MeV, since the 2S − 1S splitting is
— unlike the hyperfine splitting — a result of the spin-independent heavy quark
potential discussed at the beginning of chapter 4. We therefore account for this by
multiplying each term containing an A coefficient by 0.5 (≈ Λ/mc) raised to the
appropriate power, and simply take priors on the A coefficients of (0.0 ± 1.0), or a
smaller (0.0±0.5) for A1, as before. The priors on the χ coefficients are the same as
those used for the hyperfine splitting: (0.0± 1.0) except for χa2 , which we constrain
as (0.0± 0.5).

For the physical value p, we take a prior of 600± 100 MeV, and the fit values at
the physical point are shown as the grey band in Figure 5.6. The fit is very good,
with a χ2 value per degree of freedom of 0.42 and a Q-value of 0.87. This gives a
continuum result of

∆M2S−1S = 606(15) MeV (5.14)

with the quoted error purely statistical. Here annihilation effects are not significant
in the final result3, and we simply need to take account of the error on the physical
value of w0. This is done by including a systematic error equal to the relative error
on w0 of 0.5%, or ±3 MeV.

This systematic error is small enough to be negligible in comparison to the sta-
tistical error, so the above is our overall result. This is in good agreement with the
current experimental average of 605.82(37) MeV, and we do not seem to observe a
similar discrepancy to that in the Fermilab/MILC study [84].

The statistical error on the singular superfine result is somewhat higher than
corresponding results on the coarse and fine lattices. Reduction of this error could
go some way towards reducing the error on the continuum result, which is just over
2.6%. Unfortunately, the cause of the larger error on the superfine lattices is not
clear, and requires further investigation. We discuss this further in section 5.5.

Separate Fits

For the purpose of obtaining a full spectrum of the states we have determined (see
section 6.2.4), we use the same methods as above to perform continuum and chiral
extrapolations separately for the 2S − 1S splittings in the pseudoscalar and vector
cases. These fits are plotted in Figure 5.7.

For the pseudoscalar, we fit to the same revised fit function as in the spin-
averaged case, with all of the same priors. The fit is good, with a χ2 value per

3Given the different widths of the 2S and 1S states [4], annihilation effects would presumably
be of order 1–2 MeV — negligible in comparison to our error estimate.
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(a) Pseudoscalar
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(b) Vector

Figure 5.7: The 2S− 1S splitting in charmonium pseudoscalar and vector channels,
fitted separately rather than being spin-averaged as in Figure 5.6.
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degree of freedom of 0.81 and a Q-value of 0.56. This gives a continuum result of

Mηc(2S) −Mηc(1S) = 666(12) MeV (5.15)

which agrees well with the difference of the experimental averages for these two
masses [4], of 655.7(1.5) MeV. The systematic error here, arising from the uncer-
tainty on the physical value of w0, is ±3 MeV and adding this to the statistical error
in quadrature makes the final physical result 666(13) MeV.

We carry out the same procedure for the vector, obtaining a fit with a χ2 value
per degree of freedom of 0.34 and a Q-value of 0.91. This gives a continuum result
of

Mψ(2S) −MJ/ψ(1S) = 586(17) MeV (5.16)

again with a systematic error of ±3 MeV. This is negligible in this case, making the
above our final physical result. This result also agrees well with the difference of the
experimental averages [4], which is 589.193(18) MeV.

Although it is evident from the above, it is worth noting explicitly that these two
results are not the same, nor are they compatible with each other, which we would
expect were our methods not sensitive to spin effects — specifically, the difference
between the hyperfine splittings in the 1S and 2S energy levels. This leads us neatly
to an examination of the said 2S hyperfine splitting.

5.2.3 2S Hyperfine Splitting

The charmonium 2S hyperfine splitting is the difference between the masses of the
first excited state vector ψ(2S) and the first excited pseudoscalar ηc(2S). Much
like its 1S-level counterpart, this quantity is listed in Table 5.4, and we plot the
physical results in Figure 5.8, using the squared lattice charm mass as a proxy for
the lattice spacing. We once again convert to physical units using inverse lattice
spacings determined from the w0/a values on each ensemble.

Our continuum and chiral fit here is to the same form as for the 1S hyperfine
splitting, with discretisation errors dependent on amc and identical priors to before,
apart from the prior on the physical value p, which we take as 50 ± 25 MeV. This
produces an excellent fit, with a χ2 value per degree of freedom of 0.40 and a Q-value
of 0.88, which is plotted as the grey band in Figure 5.8. Our continuum result is
then

Mψ(2S) −Mηc(2S) = 44.3(8.5) MeV (5.17)

with a purely statistical error quoted. Annihilation effects will again come into play
for this quantity, but given the decay width of the ηc(2S) [4], we can reasonably
assume that they will be negligible in comparison to our statistical error. Our only
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Figure 5.8: The mass splitting between the radially-excited charmonium vector
meson ψ(2S), and its corresponding pseudoscalar meson, the ηc(2S), as determined
on a range of ensembles. The groups of points from right to left indicate results on
the coarse, fine and superfine ensembles respectively. The grey band indicates the
fitted curve at the physical light sea quark mass, and the magenta band shows our
final result in the continuum limit, including both statistical and systematic errors.
This is in good agreement with the experimental average [4], shown as the magenta
point at zero lattice spacing.
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other systematic error, that arising from the relative error on w0, is ±3 MeV, and
once again has no effect given its relative size.

The above is therefore our final result, more readily quoted as 44(8) MeV, and
agrees well with the current experimental average of 46.9(1.2) MeV. It is plain to
see that this is a quantity which is far more difficult to determine precisely than its
1S counterpart, both experimentally and on the lattice. We would have been unable
to achieve this level of accuracy without the use of smeared operators.

It is notable in Figure 5.8 that the result on the superfine ensemble has a large
statistical error associated with it, much like the corresponding results for the 2S−1S

splittings, although in this case the effect is magnified since we are dealing with two
2S states and not just one. Again, reduction of this error is likely to be very helpful
in improving the accuracy of our continuum determination, but we delay discussion
of the underlying issues on the superfine ensemble to section 5.5.

5.2.4 Vector–Axial Vector Splitting

Finally, we determine the mass splitting between the ground-state vector meson
J/ψ(1S), and the orbitally-excited axial vector meson hc(1P). Again this is calcu-
lated from the values extracted from our correlator fits, in Table 5.2, and shown
in Table 5.4. We convert to physical units via w0/a, and the resulting values are
plotted against the squared lattice charm mass in Figure 5.9.

We fit to the form of equation 5.9, revised, as before, for discretisation errors
dependent on (aΛ)2, since this is not a spin-dependent splitting. We take the same
priors on the A and χ values as for the 2S − 1S splitting, and a prior on p of
400± 200 MeV. This continuum and chiral extrapolation is shown as the grey band
in Figure 5.9, and gives a physical result of

Mhc(1P) −MJ/ψ(1S) = 438(12) MeV (5.18)

with the quoted error purely statistical. The fit is again satisfactory, with a χ2 value
per degree of freedom of 1.2 and a Q-value of 0.28.

Including a systematic error of ±2 MeV — derived from the error on the physical
value of w0 — does not affect the error estimate, and the above is our final result.
This is in good agreement with the current experimental average of 428.46(11) MeV,
but may suffer from the same problem as the 2S− 1S and 2S hyperfine splittings in
that the statistical error on the superfine result is significantly larger than the rest.
Reducing this error would allow for a more accurate continuum extrapolation, but
again we defer to the discussion in section 5.5.
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Figure 5.9: The mass splitting between the ground-state charmonium vector meson
J/ψ(1S), and its parity partner, the orbitally-excited axial vector meson hc(1P),
as determined on a range of ensembles. The groups of points from right to left
indicate results on the coarse, fine and superfine ensembles respectively. The grey
band indicates the fitted curve at the physical light sea quark mass, and the magenta
band shows our final result in the continuum limit, including both statistical and
systematic errors. This is in good agreement with the experimental average [4],
shown as the magenta point at zero lattice spacing.
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5.3 Moments of the Vector Correlator

Analogously to the calculations in the previous chapter, we can determine the time
moments GV

n of our local vector correlators, defined as in section 4.3 by:

GV
n = Z2CV

n = Z2
∑

t̃

t̃nC`.`(t̃) . (5.19)

This will once again allow us to determine renormalisation factors Z for each en-
semble using the current-current correlator method, and these will be used in the
next section to make a physical determination of the J/ψ(1S) decay constant.

Unrenormalised moments in lattice units, calculated as above and taken to the
power 1/(n − 2) to reduce them to the same dimension, are displayed in Table 5.5
for each ensemble.

Label m`/ms amc

(
GV4
Z2a2

)1/2 (
GV6
Z2a4

)1/4 (
GV8
Z2a6

)1/6 (
GV10
Z2a8

)1/8

very coarse 1/5 0.888 0.38967(4) 0.94979(6) 1.41052(8) 1.81550(9)
1/10 0.873 0.39628(2) 0.96126(3) 1.42550(4) 1.83387(5)
phys. 0.863 0.40078(2) 0.96905(2) 1.43567(3) 1.84637(3)

coarse 1/5 0.664 0.51119(1) 1.16435(2) 1.70104(3) 2.18470(3)
1/10 0.650 0.520634(8) 1.18118(1) 1.72431(2) 2.21471(2)
phys. 0.643 0.525456(5) 1.189780(8) 1.73622(1) 2.23007(1)

fine 1/5 0.450 0.70981(13) 1.53941(20) 2.24688(27) 2.90799(32)
1/10 0.439 0.72376(1) 1.56612(2) 2.28596(3) 2.95928(4)
phys. 0.433 0.73149(1) 1.58094(2) 2.30765(2) 2.98772(3)

superfine 1/5 0.274 1.07074(3) 2.27654(6) 3.35547(8) 4.37418(10)
ultrafine 1/5 0.188 1.46556(17) 3.10710(31) 4.59734(43) 6.00058(56)

Table 5.5: Time moments of the charmonium vector correlator on each ensemble,
in lattice units and as yet unrenormalised. The nth moment is raised to the power
1/(n− 2) — this reduces all of the moments to the same dimension.

From here, we divide each result by appropriate powers of the inverse lattice
spacing a−1 (determined from w0/a on each ensemble) to obtain the moments in
physical units, and renormalise them by multiplying by (appropriate powers of) Z2.
We once again use Z8, the value obtained from the 8th moment, for this purpose,
and the reasoning behind this choice will be explained in section 5.3.1. The physical
values of the 4th, 6th, 8th and 10th moments are plotted in Figure 5.10.

We perform continuum and chiral extrapolations using the same fit function
and priors as for the hyperfine splitting, since the moments are also short-distance
quantities with discretisation errors described by amc. These fits are plotted as the



Chapter 5 117

grey bands in Figure 5.10, and have χ2 values per degree of freedom of 0.077, 0.038,
0.079 and 0.088, for the 4th, 6th, 8th and 10th moments respectively. They each have
statistical Q-values of 1.0, indicating four excellent fits.

As in the previous chapter, we can compare our continuum determinations of
the lattice moments to the q2-derivative momentsMk of the charm quark vacuum
polarisation Πc(q

2) [78], appropriately normalised as described in section 4.3. The
values of Mnorm

k for the charm quark are listed again in Table 5.6 alongside our
continuum values for (GV

n )
1

n−2 from the above fits. The continuum results for the
lattice moments are displayed with separate statistical and systematic errors, the
systematic arising from the error on the physical value of w0 which is correlated
between the data points. In most cases this is too small in comparison to the
statistical error to have a significant effect, but nevertheless, the physical results
with the systematic error included are also displayed as the magenta bands in Figure
5.10.

n (GV
n )

1
n−2/GeV−1 k Mnorm

k /GeV−1

4 0.3148(82)(16) 1 0.3142(22)
6 0.6701(112)(34) 2 0.6727(30)
8 0.9962(126)(50) 3 1.0008(34)
10 1.3061(139)(65) 4 1.3088(35)

Table 5.6: Time moments of the charmonium vector correlators. In the left-hand
columns, we list the physical results from our continuum fits and their associated
index n. In the right-hand columns, we list the comparable results extracted from
experiment in [79] and [80], indexed by k and appropriately normalised for compar-
ison to our results.

Each of our results in Table 5.6 is in excellent agreement with its respective
experimentally-derived value. Errors on the lattice determinations are significantly
higher than those on their experimental counterparts, although still on the order of
1% at their highest. This is due to a number of different factors, and we will discuss
these further in the sections that follow.

We note that this is one case in which the superfine result does not exhibit a
higher statistical error than results on its coarser counterparts, since calculating
the moments does not require us to carry out correlator fits. In turn, this gives us
much confidence that the raw lattice data from the superfine ensemble is robust and
accurate, and that inaccuracies are being introduced only as a result of complications
in fitting the correlators. This will be discussed in much more detail in section 5.5.
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Figure 5.10: Moments of the charmonium vector correlator, determined on a range
of lattice ensembles. From right to left, the groups of points indicate results on the
very coarse, coarse, fine and superfine lattices. The magenta points are the results
derived from experiment, and the grey bands show the fit as described in the text.
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5.3.1 Current-Current Renormalisation

We determine our renormalisation factors Z by following the current-current corre-
lator method, as detailed in section 4.3.1, and matching the ratio of pseudoscalar to
vector moments on the lattice to that determined from perturbation theory in the
continuum:

Zn =

√
CP
n+2/C

V
n

cPn+2/c
V
n

. (5.20)

Our determinations of these Z-factors on each of our ensembles, using the 4th, 6th

and 8th vector moments, are listed in Table 5.7.

Label m`/ms amc Z4 Z6 Z8

very coarse 1/5 0.888 1.2437(25) 1.0736(62) 1.021(18)
1/10 0.873 1.2321(27) 1.0640(60) 1.013(18)
phys. 0.863 1.2244(28) 1.0577(58) 1.008(17)

coarse 1/5 0.664 1.0890(82) 0.9557(77) 0.929(12)
1/10 0.650 1.0811(90) 0.9503(82) 0.925(12)
phys. 0.643 1.0772(94) 0.9477(85) 0.923(12)

fine 1/5 0.450 1.001(12) 0.926(11) 0.926(13)
1/10 0.439 0.998(13) 0.926(12) 0.926(13)
phys. 0.433 0.996(13) 0.926(12) 0.927(13)

superfine 1/5 0.274 0.981(11) 0.960(10) 0.968(12)
ultrafine 1/5 0.188 0.985(11) 0.978(11) 0.984(13)

Table 5.7: Renormalisation factors determined from the current-current correlator
method, for each ensemble listed in Table 5.1. Zn is the renormalisation factor
obtained by matching the nth lattice moment to its equivalent continuum value,
derived from experimental results.

Following the logic of the previous chapter, we renormalise the vector moments
using each of Z4, Z6 and Z8, and determine which of these sets of results gives the
best continuum fit. Table 5.8 lists the χ2 and statistical Q values of the fit performed
to each calculated moment for each choice of Z, and, while there is less of a disparity
between Z-factors than in the previous chapter, it is once again clear that using Z8

results in the minimal χ2 value. Q is the same for all fits, which makes it a less
useful discriminator this time round.

Plots of the vector moments renormalised with Z4 and Z6 are shown in Figures
5.11 and 5.12 respectively, for comparison to our previous plots using Z8 in Figure
5.10. As expected, since the lower moments contain higher momentum and are
therefore more relativistic, these sets of results both exhibit larger discretisation
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Z4 Z6 Z8

n χ2 Q χ2 Q χ2 Q

4 0.075 1.0 0.12 1.0 0.077 1.0

6 0.14 1.0 0.12 1.0 0.038 1.0

8 0.19 1.0 0.20 1.0 0.079 1.0

10 0.17 1.0 0.18 1.0 0.088 1.0

Sum 0.575 4.0 0.62 4.0 0.282 4.0

Table 5.8: χ2 and statistical Q values for continuum fits to the nth moments of the
vector correlator, when renormalised using the listed Z-factors. It is clear that using
Z8 results in the minimal χ2 and maximal Q values.

errors than those renormalised with Z8, although the difference in most cases is in
fact quite small.

We therefore choose to use Z8 in renormalising all the required quantities in
this chapter, despite noting that it has slightly increased errors in comparison to its
lower-n counterparts in Table 5.7.

5.3.2 Previous Lattice Results

The HPQCD collaboration has previously determined the time moments of vector
charmonium on 2+1-flavour lattices, and this calculation is detailed in [56], which
is a direct forerunner of this work. Comparing our results to those obtained in the
previous calculation, we note that despite using very similar methods for both the
lattice calculation and the determination of Z, our results have statistical errors
that are around twice as large.

Let us take the 4th moment as a specific example, for reasons which will soon
become apparent. Including only statistical errors, we have determined this as
0.3148(82) GeV−1, compared to 0.3152(41) GeV−1 in [56]. Both of these results are
in good agreement with the experimental result, but the error estimate on our value
is notably larger.

There are two main reasons why this seems to be the case. The first is a difference
in the Z-factor chosen for renormalisation: we use Z8 whereas the previous work uses
Z4. The rationale behind this in [56] is to use the Z-factor with the smallest error
estimate, and so naturally this will produce a smaller error on the final result. Quite
separately, our reasoning is based on the results which produce the best continuum
fit, despite having noted in the previous section that we also observe an error on Zn
which increases as n does4.

4This effect is explained in [56] as arising from errors on the perturbative portion of our calcu-
lation of the gluon condensate, which increase faster with n than discretisation errors fall.
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Figure 5.11: Moments of the charmonium vector correlator, as in Figure 5.10, but
renormalised using Z4, the renormalisation factor obtained from the 4th vector mo-
ment.
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Figure 5.12: Moments of the charmonium vector correlator, as in Figure 5.10, but
renormalised using Z6, the renormalisation factor obtained from the 6th vector mo-
ment.
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Both sets of reasoning are valid, since the differences between different Zn values
on the same ensemble are simply a discretisation effect, and so we should obtain the
same continuum value no matter which Z we choose. Indeed we can verify this by
comparing Figures 5.10, 5.11 and 5.12. The continuum fits shown in the latter two
figures give results for the 4th moment of 0.3080(60) GeV−1 and 0.3103(63) GeV−1

when using Z4 and Z6 respectively — both in agreement with our result using Z8,
but with smaller errors, and both still in agreement with the experimental point.

The second reason for this difference is that the work in [56] includes a correctly-
tuned calculation on the ultrafine 2+1-flavour ensemble. Being closer to the contin-
uum limit, the inclusion of an ultrafine data point will clearly improve the accuracy
of the continuum fits. We have omitted our ultrafine results from the fits we per-
form, since our value for the charm quark mass there is not well-tuned, and the
vector moments that we calculate have an explicit dependence on this quantity: as
per equation 4.18, the nth vector moment varies as 1/(amc)

n−2.

Our 4th moment therefore has the lowest-order amc dependence, and so it is
worthwhile to include our mistuned ultrafine value in a new continuum fit to this
quantity, to test how our error estimate then fares. Figure 5.13 shows just this,
using data renormalised with Z4 as a direct comparison to the result from [56] —
this result is also plotted in the figure, as the grey point at zero lattice spacing.

The result of this revised continuum fit, performed with the same fit function and
priors as the other moments in this chapter, is 0.3161(44) GeV−1, in agreement with
each of the previous determinations discussed here, as well as the experimentally-
derived value. Crucially, though, the statistical error on this estimate is commen-
surate with that on the previous lattice value of 0.3152(41) GeV−1, indicating that
our understanding of the errors outlined here seems to be correct.

It is important to note once again that there is still a small amc dependence
present in the 4th moment, and that the higher moments have an even greater
amc dependence, which is why we have not simply included the ultrafine result in
the previous fits. A further calculation at the correctly-tuned charm mass on the
ultrafine ensemble would, however, clearly help reduce the error estimates on our
continuum extrapolations.

5.4 Decay Constants

We turn now to the examination of decay constants for some of the mesons we have
been studying. Values calculated for these decay constants (or their ratios) on each
lattice ensemble are given in Table 5.9, and we will look more closely at each of
them in turn.
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Figure 5.13: The 4th moment of the charmonium vector correlator, as determined
on a range of ensembles including the ultrafine, and renormalised with Z4, plotted
on the same scale as Figure 5.10a. The groups of points from right to left indicate
results on the very coarse, coarse, fine, superfine and ultrafine ensembles respectively.
The grey band indicates the fitted curve at the physical light sea quark mass, and
the magenta band shows our final result in the continuum limit. The magenta point
is that derived from experimental results, and the grey point at zero lattice spacing
is the continuum result from [56].
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Label m`/ms afηc(1S) afJ/ψ(1S)/Z fηc(1S)/fηc(2S) fJ/ψ(1S)/fψ(2S)

very coarse 1/5 0.37659(18) 0.4306(16) — —
1/10 0.37025(10) 0.42333(55) — —
phys. 0.366119(59) 0.41674(67) — —

coarse 1/5 0.268373(56) 0.29392(13) 1.321(25) 1.014(45)
1/10 0.263766(39) 0.28827(10) 1.402(22) 1.100(67)
phys. 0.261678(22) 0.285683(64) 1.411(14) 1.050(43)

fine 1/5 0.18192(15) 0.19389(52) — —
1/10 0.179370(23) 0.191176(58) 1.610(50) 1.31(16)
phys. 0.178039(21) 0.189732(42) 1.627(55) 1.286(92)

superfine 1/5 0.117528(30) 0.123405(69) 1.617(82) 1.25(20)
ultrafine 1/5 0.086804(54) 0.090232(89) 1.49(13) 1.116(43)

Table 5.9: Results for selected decay constants (or their ratios) in the charmonium
system, as determined on each of the ensembles listed in Table 5.1. The ground-state
pseudoscalar decay constant fηc(1S) is absolutely normalised, so we quote a value for it
here in lattice units. The decay constants of the vector mesons J/ψ(1S) and ψ(2S)

require a renormalisation factor to be matched to continuum results (indeed, we
quote the ground-state vector decay constant fJ/ψ(1S)/Z before this renormalisation
is performed) but this is the same for both mesons on each ensemble, so we can take
their ratio to cancel it out. We also determine the ratio of the decay constants of
the ηc(1S) and ηc(2S) as a cross-check, since this should be of the same order as the
equivalent quantity for the vectors.
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5.4.1 Ratio of Vector Decay Constants

We extract the decay constant fV of a vector meson V from our fitted amplitudes
and masses via:

fV
Z

= AV

√
2

MV

(5.21)

with Z the required renormalisation factor. This must be determined separately
if we wish to normalise our results appropriately for comparison to experimental
values. However, Z will be the same for both the J/ψ(1S) and ψ(2S) on each
ensemble, and so we can take the ratio of their decay constants such that Z cancels
out.

This ratio can then be compared to a value derived from experimental measure-
ments, using the relation given in equation 4.22. Since we are taking a ratio, the
relevant portion of this relation for us to consider is fV ∝ (Γl,VMV )1/2, where Γl,V

is the total leptonic width of meson V . In using the current experimental averages
from [4], we find that the value we wish to compare to is fJ/ψ(1S)/fψ(2S) = 1.406(32).
This is plotted in Figure 5.14 along with each of the points determined on the lattice.
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Figure 5.14: The ratio of the decay constants of the vector mesons J/ψ(1S) and
ψ(2S), as determined on a range of ensembles. The groups of points from right to
left indicate results on the coarse, fine and superfine ensembles respectively. The
grey band indicates the fitted curve at the physical light sea quark mass, and the
magenta band shows our final result in the continuum limit. The magenta point at
zero lattice spacing is derived from experimental results [4] as described in the text.
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We perform this fit to the functional form in equation 5.9 — the same as we
use for the hyperfine splitting — since we have a large lattice spacing dependence
evident in the plot5, and so take discretisation errors to be dependent on (amc)

2.
Priors are also kept the same as in the hyperfine splitting fit, apart from that on
the physical value p, which we take as (1.4± 1.4).

The resulting fit is very good, with a χ2 value per degree of freedom of 0.27 and
a Q-value of 0.95. This fit is shown as the grey band in Figure 5.14, and gives a
continuum result of

fJ/ψ(1S)/fψ(2S) = 1.351(118) (5.22)

with a purely statistical error. It is not necessary to add a systematic error derived
from the uncertainty on w0, since this ratio is a dimensionless quantity and we do
not therefore fix the lattice spacing in computing it. The continuum result plotted
as the magenta band in Figure 5.14 is therefore equal in width to the grey band at
zero lattice spacing.

The final result is consistent with our value derived from experiment, although
its accuracy could be improved by reducing the error on the (seemingly rather low)
result on the superfine ensemble. This will again be discussed in more detail in
section 5.5.

5.4.2 Ratio of Pseudoscalar Decay Constants

As a cross-check on the vector ratio, we also determine the ratio of the decay con-
stants of the pseudoscalar mesons ηc(1S) and ηc(2S). We have noted previously
that the pseudoscalar decay constant is absolutely normalised when using the HISQ
action, and so no renormalisation is required here. Unlike in the vector case, there
is no corresponding experimental quantity for comparison, and so this calculation is
purely a check that we obtain a result of the same order as that for the vectors.

The decay constant fP of a pseudoscalar meson is extracted from our fitted
amplitudes and masses via:

fP = 2mcAP

√
2

M3
P

(5.23)

with mc the charm quark mass. We then simply take the required ratio of quantities
in lattice units, since a conversion to physical units would cancel out in any case.
Ratios as listed in Table 5.9 are plotted in Figure 5.15.

For a robust comparison, we perform a continuum fit using identical priors to
the same fit function as in the vector case, including the prior on the physical value

5Like the hyperfine splitting, decay constants are short-distance quantities, so one would gener-
ally expect sizeable discretisation errors set by amc. Of course it is not clear that this is necessarily
true for a ratio of decay constants, but it does indeed seem to be the case here for the vectors, and
later for the equivalent ratio of pseudoscalar decay constants also.
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Figure 5.15: The ratio of the decay constants of the pseudoscalar mesons ηc(1S) and
ηc(2S), as determined on a range of ensembles. The groups of points from right to
left indicate results on the coarse, fine and superfine ensembles respectively. The
grey band indicates the fitted curve at the physical light sea quark mass, and the
magenta band shows our final result in the continuum limit. The magenta point at
zero lattice spacing is the equivalent ratio of vector decay constants derived from
experimental results [4], and the overlapping grey point is our fitted result to the
vector ratio from Figure 5.14.
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p of (1.4±1.4). The resulting fit is very good, with a χ2 value of 0.37 and a Q-value
of 0.9, and is plotted as the grey band in Figure 5.15. This gives a continuum result
for the ratio of 1.704(98), which is indeed of the same order as the vector ratio. The
experimental vector ratio and our continuum determination of it are also plotted in
Figure 5.15 for comparison.

5.4.3 ηc Decay Constant

The decay constant of the ηc(1S) can be calculated using equation 5.23 in the pre-
vious section, and charmonium pseudoscalar correlators are absolutely normalised
when using the HISQ action, so no Z-factor is required here. Unfortunately the
ηc(1S) decay constant does not directly correspond to any observable experimental
quantity, and so we can only use it to show consistency with other lattice calcula-
tions. Here we will compare it to the HPQCD collaboration’s previous determination
on 2+1-flavour lattices, detailed in [45], of fηc(1S) = 394.7(2.4) MeV.

The ηc(1S) decay constants listed in Table 5.9 have been calculated from the
relevant amplitudes and masses in Tables 5.3 and 5.2, and are plotted in Figure
5.16 after conversion to physical units, along with the fit at the physical light sea
quark mass. The fit function and priors are identical to those used for the hyperfine
splitting, apart from the continuum value p, on which we take a prior of 400 ±
200 MeV.

It is clear from Figure 5.16 that there are significant discretisation effects in this
quantity, but we are able to take them into account and obtain a very accurate fit
thanks to the relevant terms in the fit function: here we have a χ2 value per degree
of freedom of 0.25 and a Q-value of 0.99. This gives a continuum result for the ηc
decay constant of

fηc(1S) = 396.3(2.3) MeV (5.24)

with a purely statistical error. Adding a systematic error of ±2.0 MeV, obtained by
applying the relative error of 0.5% on the physical value of w0, we have an overall
result of

fηc(1S) = 396.3(3.0) MeV (5.25)

with combined errors for ease of comparison. This is in excellent agreement with the
HPQCD collaboration’s previous value on 2+1-flavour lattices as shown in Figure
5.16, and is also of very similar accuracy (< 0.8%).

5.4.4 J/ψ Decay Constant

The decay constant of the J/ψ(1S) can be calculated using equation 5.21 as we
stated for the ratio of vector decay constants, but here we note that we also require
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Figure 5.16: The decay constant of the ground-state charmonium pseudoscalar me-
son ηc(1S), as determined on a range of ensembles. The groups of points from right
to left indicate results on the very coarse, coarse, fine and superfine ensembles re-
spectively. The grey band indicates the fitted curve at the physical light sea quark
mass, and the magenta band shows our final result in the continuum limit. This is
in very good agreement with the continuum result obtained by the HPQCD collab-
oration in [45] using HISQ valence quarks on the asqtad configurations, shown as
the magenta point at zero lattice spacing.
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a renormalisation factor Z. We have, in fact, calculated these in section 5.3 above,
and just as for the moments, we use the Z8 values from Table 5.7 to renormalise the
decay constant.

We convert the J/ψ(1S) decay constants in Table 5.9 to physical units by multi-
plying by the inverse lattice spacing, and then renormalise them by multiplying by
Z8. These physical results are plotted in Figure 5.17, along with a continuum fit to
the same fit function and priors as those used for the ηc(1S) decay constant. This
is also a short-distance quantity, with discretisation effects expected to depend on
amc.
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Figure 5.17: The decay constant of the ground-state charmonium vector meson
J/ψ(1S), as determined on a range of ensembles. The groups of points from right to
left indicate results on the very coarse, coarse, fine and superfine ensembles respec-
tively, and the results have been renormalised using Z8, determined from the 8th

moment of the vector correlators. The grey band indicates the fitted curve at the
physical light sea quark mass, and the magenta band shows our final result in the
continuum limit. This is in good agreement with the experimental result derived
from [4], shown as the magenta point at zero lattice spacing.

The fit is very good, with a χ2 value per degree of freedom of 0.23 and a Q-value
of 0.99. It yields a continuum result of

fJ/ψ(1S) = 403(11) MeV (5.26)

where the error quoted is purely statistical. The systematic error arising from the
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physical value of w0 is ±2.0 MeV, which is negligible in comparison to the statistical
error, so the above is our final result.

Experimental values are available in [4] for the leptonic width Γl of the J/ψ(1S),
and as noted previously, we can therefore use equation 4.22 to derive an experimental
value for the decay constant. This is found to be 407.0(5.0) MeV, in good agreement
with our continuum value, and is plotted as the magenta point in Figure 5.17.

5.5 Consideration of Superfine Results

We have noted several times in passing now that the results we have obtained on the
superfine ensemble are, generally, less accurate than those on the coarser ensembles,
particularly in cases involving excited states. This is puzzling, particularly given that
we have higher statistics than, for example, on the fine physical ensemble (where 565
configurations were used compared to 1017 on superfine). We therefore investigate
the work performed on the superfine ensemble in more detail in this section.

5.5.1 Details of Superfine Calculations

Our first superfine run was based on that which we performed to test our heavyonium
fits in the previous chapter, although this used a lattice charm mass which was
subsequently found to be mistuned. The charm mass was retuned to the correct
0.274, and one smearing added with parameters r = 5.25 and n = 45, with the
reasoning that a larger smearing would be required on the superfine lattice, but that
having two smearings would make the calculation too computationally intensive.
An initial run with 333 configurations was performed, and this was subsequently
extended to 1016 configurations — though as it turns out, this made little difference
to the correlator fits.

Selected results from initial analyses of these runs are listed in Table 5.10, and
we pay particular attention to the results for the pseudoscalar and vector 2S − 1S

splittings. Given that the results for these quantities on coarser lattices were broadly
consistent with experimental results, we expect that the superfine results will follow
suit, and produce results in lattice units of approximately 0.1968 and 0.1768 in the
pseudoscalar and vector cases respectively6.

It is clear from the results in the table that in both the pseudoscalar and vector
cases, extending the run to 1016 configurations has reduced the statistical error,
but neither of these pairs of results are consistent with the experimental values.

6These rough values are calculated only for comparison purposes, by taking the experimental
results from [4] and dividing by the inverse lattice spacing in GeV on the superfine ensemble,
derived from w0/a.
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Calculation Ncfg Spin tmin SVD cut nexp χ2 Q ∆M2S−1S

(lat. u.)

One smearing 333 ps 10 1× 10−4 7 0.87 0.94 0.2010(64)
γx vector vec 10 5× 10−4 7 0.94 0.74 0.1950(37)
One smearing 1016 ps 10 1× 10−4 7 0.83 0.98 0.2042(26)
γx vector vec 6 5× 10−4 7 0.75 1.00 0.1942(30)
Two smearings 1017 ps 10 1× 10−4 13 0.98 0.62 0.2041(17)
γx vector vec 9 5× 10−4 13 0.84 1.00 0.1908(24)
γxγ0 vector vec 6 5× 10−4 13 0.87 0.99 0.1908(17)

Table 5.10: Results of fits to correlators using the EigenBasis fit method, for three
different lattice calculations on the superfine ensemble. We denote pseudoscalar
results with ps and vector results with vec. Various input and output parameters of
the fits are also listed — in particular, the final column lists the 2S − 1S splitting
that is discussed in the text.

However, the smaller errors from the extended run are comparable to the errors
obtained on coarser lattices, on the order of 1.4%.

Two further runs were performed to check the effect of certain calculational
choices on these results. It was possible that the smearing we chose was not suitable
for our purposes, so the calculation was repeated on 1017 configurations, with the
two smearings detailed previously in Table 5.1. Correlators produced using these
smearings were also plotted to ensure that they were suitable choices, and the plots
in Figure 5.3 confirm that they are. Compared to the results in the one-smearing
case, statistical errors are again reduced thanks to the extra data from using an
extra smearing, but the results for the 2S − 1S splittings remain consistent with
those obtained using only the initial single smearing, and inconsistent with the
experimental results.

Finally, we perform a third calculation to ensure that this is not an effect related
to the taste of our mesons. Our original vector operator was γx ⊗ γx, so we repeat
the calculation using the γxγ0 ⊗ γxγ0 operator, thus generating a different taste of
vector meson7. As is clear from the table, the result obtained is almost identical
to that from the original vector, so taste effects are not the cause here. This is,
however, clear further evidence of the HISQ action’s very small taste splittings.

7Incidentally, this is the calculation which allowed us to extract the parameters of the parity-
partner χc1(1P) meson in section 5.1.3.
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5.5.2 Effects of Different Fit Methods

Satisfied that our smearings are suitable and that what we are observing is not a
taste effect, we look now at different fit methods on our highest-statistics set of
correlators, that with two smearings on 1017 configurations.

A large number of different fits were performed to this set of data, testing varia-
tions in different tmin and SVD cut values using both traditional and EigenBasis fit
methods. The number of exponentials nexp used in the fits was also extended out
to 13 in many cases, to ensure that fit stability was not an issue. These variations
generally produced similar final results, still inconsistent with the experimental val-
ues. We keep binning of the correlator data consistent, using a bin size of 4 in each
case. Beyond this value, for the fits that we eventually choose, there is no increase
in statistical error on the fitted ground state parameters, and we do not vary this
so as to prevent it from affecting the other fits. In any case, the binning procedure
only affected our error estimates and did not make any significant difference to our
central values.

One change to the fit that did seem to affect the result was thinning the correlator
data beforehand, meaning that after averaging over time sources, only a subset of
the averaged correlator data was fed into the fit. We denote a situation where
we keep data from every xth lattice t-value, and discard the rest, by thinx in the
plots that follow. This procedure helps to eliminate correlations between data at
neighbouring lattice times. Thinning should also enable us to use a smaller SVD cut,
since eliminating correlations between these data will clearly regulate the eigenvalues
of the associated covariance matrix that the SVD cut acts on.

Forced Priors

We will shortly discuss results from varying thinned fits in both pseudoscalar and
vector cases, but first we examine whether these data are at all compatible with the
experimental results. To do so, we force the amplitudes A0 and A1 for the vector
ground state and first excited state to be close to values which give the correct ex-
perimental value for the ratio fJ/ψ(1S)/fψ(2S) = 1.406(32), by feeding precise, narrow
priors for these quantities into a traditional fit. We repeat the fit with varying, wider
priors, and plot the results for the 2S− 1S splitting in Figure 5.18.

It is clear from the plot that in forcing the amplitudes to their physical values,
the fit will happily return a value for the 2S− 1S mass splitting close to the exper-
imental value, and with a low error. Widening the priors on the amplitudes blurs
this situation, however, increasing the error on the mass splitting and allowing it to
deviate from the expected value. We have also checked that this procedure works
when reversed: forcing the mass of the ψ(2S) to its physical value returns ampli-
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Figure 5.18: Vector channel 2S − 1S mass splitting with varying degrees of forced
priors for the associated amplitudes A0 and A1. No thinning of the data is performed
on any of the fits above the dotted line. For comparison, the priors used in the
bottom two cases are A0 = A1 = 0.01(1.00) and A0 = A1 = 0.10(20), from the
bottom up. As the priors are widened and made less precise, there is a clear drift
away from the experimental value [4] (shown as the magenta dotted line) and an
accompanying increase in statistical error.
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tudes for the ground state and first excited state which are compatible with the
experimental value of the ratio of vector decay constants, with a small statistical
error, and this too becomes less true as the priors are widened.

We conclude from this that the data are compatible with a result in agreement
with experiment, but there are other effects at play here which are suppressed by
being very specific about what the fit is permitted to find. We also make a related
observation that the vast majority of these fits are compatible with one another —
a point that we shall return to momentarily.

Varying Parameters

It is logical now to compare the results of fits with different parameters, as we have
mentioned already. Figure 5.19 shows a comparison of the vector 2S− 1S splitting
obtained from three different traditional fits and six different EigenBasis fits, each
with varying degrees of thinning, and assorted values used for the SVD cut. It
is generally true, as we supposed above, that more extensive thinning of the data
allows us to use smaller SVD cuts.

This plot shows that while it is clearly possible to obtain fit results for the vector
2S−1S splitting that have very small statistical errors, none of the results for which
this is true are compatible with the experimental value. Conversely, other results
with larger errors do straddle the experimental value, but are also compatible with
the more accurate results.

It is possible that contributions from another nearby state are causing higher
excitations in the correlator that our fit is not expecting, and it is attempting to
take account of these in its determinations of the first excited state. This additional
state is unlikely to be a spurious state recognised only by the fit code, since it is not
removed by the EigenBasis fits designed to take care of precisely this problem. If
contributions from an additional state are truly the problem here, it is a state which
is genuinely present in the data.

We have verified that this situation is unique to the superfine ensemble by
analysing results for the vector 2S − 1S splitting from a similar set of fits on the
coarse and fine ensembles with physical m`/ms values in the sea. Separate plots of
the results from two different traditional fits and four different EigenBasis fits on the
coarse and the fine ensemble are shown in Figures 5.20 and 5.21 respectively. It is
clear in both of these cases that the results all have errors of comparable size, while
remaining mainly compatible with each other and with the experimental point. On
the coarse ensemble, the agreement with experiment is generally not as good, but
this is to be expected since discretisation effects will be much more significant on
the coarse lattices. Over both ensembles, it seems that using the EigenBasis method
produces results which are more closely compatible with the experimental values.
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Figure 5.19: The vector channel 2S− 1S splitting from various different traditional
(trad) and EigenBasis (gevp) fits to data from the superfine m`/ms = 1/5 ensemble.
Thinning of the correlator data is denoted by the thin parameter, and the applied
SVD cut by svd. The experimental value [4] is again plotted as the magenta dotted
line.
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Note that we do not perform such extensive thinning of the data on either of
these ensembles: because the lattice spacing is larger and the temporal extent of the
lattice is reduced, the same degree of thinning results in fewer data points available
to fit to. It could well be true in these cases that thinning to every third data point
is too extensive, particularly on the coarse lattice, but we may still make a useful
comparison to the superfine results if we bear this in mind.

Choice of Fits

Without performing a detailed further investigation, it is difficult to conclude ex-
actly what is happening in this situation. To account for the greatest number of
possibilities, we conservatively select one of the fits with larger errors to extract
results from and use in the continuum fits that we have already detailed in the pre-
ceding sections. In the case of the vector fits in Figure 5.19, we use the fit labelled
gevp thin3 svd2e-5, a thinned EigenBasis fit.

A similar analysis is performed on the pseudoscalar 2S− 1S splitting, as plotted
in Figure 5.22, and we find that a similar picture emerges, although these results
exhibit a smaller spread, and smaller errors in general. Here we select the fit labelled
gevp thin4 svd1e-8, a thinned EigenBasis fit. This is a more arbitrary choice than in
the vector case, since we have a greater number of suitable fits to choose from here;
however, we constrain ourselves to choosing between only the EigenBasis fits so as
to maintain consistency with our vector fit selection.

In both the pseudoscalar and vector cases, choosing fits which utilise a small
SVD cut allows us to be sure that statistical correlations are small, and that effects
due to this are not significant in our final results.

The results from our chosen superfine fits are those quoted in Tables 5.2, 5.3, 5.4
and 5.9. In other words, for the sake of consistency we do not optimise individually
for each of the quantities that we are determining, and instead use, for example,
the ∆M1P−1S value obtained from the selected fits. This has a significant effect on
our extrapolations of several quantities, since the 2S state amplitudes calculated
on the superfine ensemble have order-of-magnitude larger errors than on the other
ensembles, as do the corresponding 2S state energies.

5.5.3 Possible Causes

We appear to be observing an unusual effect in correlators on the superfine lattices
that is not present (or at least not as pronounced) on coarser ensembles. Fits to these
correlators can be forced to produce accurate results which agree with experimental
averages, but they are also capable of producing accurate results which are not
consistent with experiment. This leads us to use fits which return results with
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Figure 5.20: The vector channel 2S−1S splitting from different traditional (trad) and
EigenBasis (gevp) fits to data from the coarse m`/ms = phys ensemble. Thinning of
the correlator data is denoted by the thin parameter, and the applied SVD cut by svd.
The experimental value [4] is again plotted as the magenta dotted line. This does
not display the same erratic behaviour as the corresponding data from the superfine
ensemble, displayed in Figure 5.19. We also note here that we do not necessarily
expect agreement with the experimental result due to larger discretisation effects on
the coarse lattices, and indeed this seems to be the case.
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Figure 5.21: The vector channel 2S − 1S splitting from different traditional (trad)
and EigenBasis (gevp) fits to data from the fine m`/ms = phys ensemble. Thinning
of the correlator data is denoted by the thin parameter, and the applied SVD cut
by svd. The experimental value [4] is again plotted as the magenta dotted line.
This does not display the same erratic behaviour as the corresponding data from
the superfine ensemble, displayed in Figure 5.19.
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Figure 5.22: The pseudoscalar channel 2S− 1S splitting from various different tra-
ditional (trad) and EigenBasis (gevp) fits to data from the superfine m`/ms = 1/5

ensemble. Thinning of the correlator data is denoted by the thin parameter, and
the applied SVD cut by svd. The parameter diag here represents the pair of t-values
used to diagonalise the matrix of correlators, and as expected for the EigenBasis
method [64], this choice has almost no effect on the result. The magenta dotted
lines again represent the range of the experimental determination in [4].
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significant statistical errors, since we are unable to precisely determine the cause of
these effects.

In a sense, we have explicitly chosen to increase the error on our superfine fit
results to more accurately reflect the range of values they return for the 2S states.
It is not the case that our correlator data is somehow less accurate than those
on coarser lattices, as evidenced by our calculations of the time moments of the
vector correlators, which do not display evidence of any anomalies in their superfine
results. This is, reassuringly, what we would expect, and thankfully, the inclusion of
the superfine results in continuum extrapolations does improve the statistical error
on the fits.

How are we to explain this behaviour though? It is possible that an additional
state (which may or may not be physical) is interfering with the lattice results by
contributing to the correlators, and thus ‘stealing’ some amplitude from the states
that we expect to see in the fits. This would account for the large errors on, and the
relative weakness of, the 2S state amplitudes in Table 5.3, owing to the fact that the
fit cannot accurately allocate the different contributions it is examining. It could
also be the reason that the vector correlator data are compatible with a relatively
wide range of values for the second excited state mass, as seen in Figures 5.18 and
5.19.

We have already seen, at the beginning of this chapter, that the Fermilab/MILC
collaborations find a continuum result for the spin-averaged 2S − 1S splitting that
is much higher than the experimental value [84]. Our results are not compatible
with this prediction in the continuum limit, but qualitatively, we do also observe a
2S − 1S splitting higher than the experimental value, albeit only on the superfine
ensemble.

The discussion in [84] speculates that since the 2S states are close to the DD̄
threshold, as illustrated in Figures 5.1 and 5.2, an accurate determination of these
states may require the inclusion of effects from open charm decays. This does
not seem to be the case for our results, since we obtain an accurate continuum
extrapolation which agrees with experiment. However, it is possible that there
are open charm effects that manifest themselves in our calculation only for finer
lattices like the superfine. One plausible explanation for this is that, when using
staggered quarks, there are 16 different taste DD̄ thresholds. On coarser lattices,
taste splittings are larger, so some of these taste thresholds will have significantly
higher masses than the others, and therefore less impact on any results. On very
fine lattices such as the superfine, each taste will be of roughly the same mass, and
therefore the effect will be enhanced.

However, of the states we are considering, only the ψ(2S) can decay to DD̄,
so it is unlikely that this threshold would have any effect on our calculation of
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the ηc(2S) mass. We have observed similar effects in both the ηc(2S) and ψ(2S)

cases, suggesting that DD̄ effects are, at best, only a partial explanation for this
discrepancy. Additionally, lattice results including DD̄ operators have recently been
published in [85], and these do not indicate any dependence of the ψ(2S) mass —
within uncertainties — on the inclusion of these operators.

There is some evidence that this problem appears in other formalisms too. An ex-
tensive calculation of charmonium excited states in [86], using twisted-mass fermions,
also obtains continuum results for 2S masses which are too high to be in agreement
with the experimental average [4]. Discussion in [86] suggests that this could be due
to the plateau ranges chosen when fitting the correlators being too short to reliably
extract excited states. The systematic uncertainties introduced by the choice of
plateau range are investigated in more detail in an extended and improved analysis
in [87], which seems to resolve the issues with the ψ(2S) mass, but produces simi-
lar results for the ηc(2S). This could indicate that this problem is a lattice effect,
observed across multiple different fermion actions.

A potentially fruitful avenue of investigation in our case would be a more com-
plete calculation on the ultrafine ensemble. Should it be the case that our fits are
being thrown off by the contributions of a state which is, for some reason, only
being (at least partially) resolved at small lattice spacings, this should also be true
on the ultrafine configurations. The fact that our superfine and ultrafine fits are
the only ones in Tables 5.2 and 5.3 where the EigenBasis method does not yield a
significantly better fit than the traditional fit method would seem to support this
hypothesis: the EigenBasis method works by attempting to align the matrix of cor-
relators with the states that can be resolved from it, so any state for which is difficult
to allocate a clear position in the hierarchy will naturally make things more tricky
for the EigenBasis fit.

Indeed, the original reason that we undertook our ultrafine calculation was to
determine whether we observed similar effects to those we have just discussed on
the superfine ensemble. However, the lattice charm mass used in our preliminary
ultrafine studies was mistuned, and we deliberately ran on a relatively small number
of configurations, with just a single smearing, as a test. A full high-statistics run
on the ultrafine ensemble, with a correctly-tuned charm mass, would be computa-
tionally expensive, but would almost definitely be able to shed further light on this
problem. For now, the fundamental reasons behind it remain unclear.
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Conclusions and Comparisons

We have successfully used the HISQ action to accurately simulate heavy valence
quarks on multiple sets of gauge configurations with various different lattice spac-
ings. By analysing the correlator data produced through these simulations, and
fitting them to particular functional forms, we have calculated a number of different
properties of both bottomonium and charmonium. We will now discuss individual
results for each of these mesons in turn.

6.1 Bottomonium

By calculating two-point correlators for HISQ valence quarks at masses intermediate
to the charm quark and bottom quark, on the MILC asqtad gauge configurations,
we have been able to successfully extrapolate to, and extract a number of results at,
the physical bottomonium mass. It is clear that this extrapolation has introduced
some additional uncertainty in our physical results (compared, say, to the equivalent
results for charmonium) but this has, in most cases, been well controlled.

6.1.1 Hyperfine Splitting

The result we have obtained for the bottomonium hyperfine splitting is the one
which has the most straightforward experimental comparison. In chapter 4, we
calculated a value of 52.9(4.0) MeV, and noted that this was more than 2σ away
from the current experimental world average of 62.3(3.2) MeV [4].

In Figure 6.1, we compare both of these results to a number of others. It is
immediately clear, as we claimed in chapter 4, that our calculated value favours the
most recent (and most accurate) experimental result included in the world average
— that of the Belle Collaboration in 2012 [76], of 57.9(2.3) MeV, which is plotted
in blue in the figure.

Our result is also compatible with three other values computed on the lattice,
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Figure 6.1: A comparison of our continuum-extrapolated result for the bottomonium
hyperfine splitting, in red, with two values from experiment, and another three
lattice results. In magenta is the world average result from [4], and in blue, the
result from the Belle Collaboration [76]. In black are the Fermilab Lattice and
MILC Collaborations’ Clover result [88], Stefan Meinel’s NRQCD result [89], and the
HPQCD Collaboration’s NRQCD result [73], which each agree well with our value.
Although our determination is not incompatible with the experimental average, it
clearly favours the recent Belle result.
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plotted in black in the figure. The first of these is the Fermilab Lattice and MILC
Collaborations’ result of 54.0(12.4) MeV from 2010 [88], which utilises the Clover
action for valence b quarks on the same three-flavour MILC configurations that we
employ in our calculation. The second is the HPQCD Collaboration’s result from
2014 of 60.0(6.4) MeV [73], which used improved NRQCD to simulate the valence
b quarks on the four-flavour MILC gluon field configurations. These improvements
included αs corrections to the leading spin-magnetic coupling term in the NRQCD
action (which is the term that gives rise to the hyperfine splitting). Finally, we
include the result of 60.3(7.7) MeV from an NRQCD analysis performed by Stefan
Meinel, on gauge configurations generated using the Iwasaki action for the gluons
and a domain-wall action for the sea quarks [89].

In addition, a very recent perturbative analysis based on a non-relativistic con-
stituent quark model [90] obtains a result for the bottomonium hyperfine splitting
of 47 MeV. Although no estimate of uncertainty is quoted on this figure, it is signif-
icantly lower than the experimental average. This solidifies the point that there are
still tensions to be resolved in making an accurate determination of this quantity,
whether via perturbative or non-perturbative methods, and we therefore contribute
our result for consideration in this effort in the future.

The lattice results presented here have errors which have steadily improved over
time, and will always benefit from further improvement in this regard. Neverthe-
less, the good agreement between the lattice results, combined with our result’s
agreement with the most recent experimental result from Belle, suggest that more
sophisticated experimental determinations of bottomonium physics would also be
greatly beneficial in resolving this situation.

6.1.2 Decay Constants

In chapter 4 we made two determinations of the decay constant of the Υ(1S):
one using a local vector current, and one using a one-link vector current. These
were, respectively, 616(39) MeV and 636(24) MeV — in good agreement with each
other. However, both of these results are approximately 2σ away from the value of
689(5) MeV derived from experiment. Indeed, the disagreement of the local value
was our main motivation for performing the one-link calculation in the first place.

While this is not a huge discrepancy, it is still worthy of further investigation.
Given the large discretisation errors evident on both previous plots of this quantity,
in Figures 4.12 and 4.13, it may be the case that we are underestimating the errors
that need to be included in our heavy-quark extrapolation to the bmass, particularly
since we observe no similar discrepancies for charmonium, where no such extrapo-
lation is required. Correcting this in a quantitative way would require further work
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to better understand the specific sources of error for this quantity.

6.1.3 Vector Moments

Time moments of the vector correlator were calculated and appropriately normalised
for two different vector currents, and are shown in Tables 4.5 (for the local current)
and 4.11 (for the one-link current).

We have already mentioned that the one-link current produces results which
are in much better agreement with the experimentally-derived values. There is
no obvious reason why this should be the case, as the two currents merely probe
different tastes of meson, which should have identical properties in the continuum
limit. This is an issue worthy of further investigation, particularly given our results
for the charmonium moments which we discuss further in the relevant section below.

6.1.4 Outlook

We have successfully extended the methods laid out by the HPQCD collaboration
in [91] to very fine lattices, and have established a solid base from which to un-
dertake further explorations of bottomonium and B physics. Notably, this is a
fully-relativistic alternative to NRQCD, and one of only a few methods with which
we can currently simulate b quarks on the lattice. It is therefore useful even just as
an additional check on NRQCD results.

The extrapolation in the mass of the heavy quark does inherently introduce
additional errors, but just as is concluded in [91], these additional errors can, by
and large, be kept under control.

Overall, this method will only get better and become more feasible with time,
given that the available computing power continues to increase. In the medium term
we should be able to dispense with coarser lattices, and in the longer term, simulate
directly at the b quark mass, and therefore test whether the HISQ action performs
as well in this regime as it does for charm quarks.

6.2 Charmonium

We have calculated several properties of charmonium ground states and excited
states using a variety of methods. Ground states were extracted by analysing two-
point correlators for HISQ valence quarks on both the MILC 2+1-flavour (asqtad)
configurations and the 2+1+1-flavour (HISQ) configurations. We have also, for
the first time, applied smearings to our two-point HISQ correlators across multiple
lattice spacings, on the 2+1+1-flavour configurations, and used these correlators to
calculate properties of charmonium excited states in the continuum limit.
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6.2.1 Decay Constants

The decay constant of the pseudoscalar ηc(1S) was calculated twice in this work:
once on the asqtad configurations in chapter 4 with a result of 391.8(3.7) MeV, and
once in chapter 5 on the HISQ configurations, with a result of 396.3(3.0) MeV. As
noted previously, there is unfortunately no direct experimental comparison possible
for this quantity, so we instead compare it to the HPQCD Collaboration’s previous
determination in [45], of 394.7(2.4) MeV. These three values are plotted in Figure
6.2, and are in excellent agreement. The range of the horizontal scale indicates that
this is a quantity we have been able to extract very accurately, since it depends only
on the ground state parameters extracted from the correlator.

Calculating the decay constant of the vector J/ψ(1S) requires renormalisation
of the vector current used to create it on the lattice, and so we do not expect to be
able to determine this quite as accurately as for the ηc(1S). Nevertheless, we have
also obtained a number of values for this quantity: in the 2+1-flavour case, thanks
to our attempts to resolve the discrepancies between experimental values and our
calculated values of the decay constant for vector bottomonium, we determined the
J/ψ(1S) decay constant once using a local vector current, and again using a one-
link vector current. Our calculated values were 407.5(6.8) MeV and 410.8(5.4) MeV

respectively, in excellent agreement with each other.
In chapter 5 we also obtained a value of 403(11) MeV on the 2+1+1-flavour

lattices. In Figure 6.3, we plot each of these results, as well as two further results for
comparison. The first of these is the value of 407(5) MeV derived from experimental
measurements, and the second is the value of 405(6) MeV obtained from a precision
lattice calculation by the HPQCD collaboration on 2+1-flavour lattices [56]. It is
clear that these results all agree very well, and that our lattice results are still very
accurate despite the need for renormalisation.

6.2.2 Vector Moments

As mentioned for bottomonium, time moments of the vector correlator were cal-
culated and appropriately normalised on the 2+1-flavour lattices for two different
vector currents, and are shown in Tables 4.5 (for the local current) and 4.11 (for the
one-link current).

Again, much as for the bottomonium case, it is clear that the one-link current pro-
duces results which are in much better agreement with the experimentally-derived
values. However, in the case of charmonium, we have additional data available for
comparison: that from [56], which also agrees with the values from experiment, but
only considered the local vector current.

There is no obvious reason why the one-link current should produce results which
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this work - chapter 5

Figure 6.2: A comparison of results for the decay constant of the ηc(1S). The lower
section plots a previous determination by the HPQCD collaboration on 2+1-flavour
lattices in [45]. The middle section contains the continuum result on 2+1-flavour
lattices from chapter 4 of this thesis, and the top section the continuum result on
2+1+1-flavour lattices from chapter 5 of this thesis.
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Figure 6.3: A comparison of results for the decay constant of the J/ψ(1S). The
lower section plots a previous determination by the HPQCD collaboration on 2+1-
flavour lattices in [56], and the two continuum results on 2+1-flavour lattices from
chapter 4 of this thesis, determined using local and one-link vector currents. The
middle section plots the continuum result on 2+1+1-flavour lattices from chapter
5 of this thesis, and the top section contains the result derived from experimental
world averages in [4].
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differ from those produced with the local current. The deviation between these two
sets of results is not large — at most 2σ — but this is still a minor open issue
which is worthy of further investigation. The main difference between our local-
current calculation and that presented in [56] is our extrapolation in the heavy
quark mass, and it is possible that this is adversely affecting the results obtained
for the charmonium moments.

Further work would be required to claim this conclusively, but it is notable that
we also have another set of results which do agree with experimental values. In the
process of renormalising the local vector current on the 2+1+1-flavour lattices, we
again calculated time moments of the vector correlator using the same method as in
the 2+1 case, and as in [56]. Continuum results in this case are presented in Table
5.6, and agree well with both the experimental values and the values calculated in
[56]. Our continuum values have larger statistical errors than those in [56], and an
understanding of why this is the case, and how to address it if required, was detailed
in section 5.3.2.

We have noted several times in chapter 5 that further calculations on superfine
and ultrafine lattices would help to increase the accuracy of many of our continuum
fits, especially those which incorporate information about excited states. Indeed,
this was explicitly shown to be one of the ways to reduce the statistical error on
our determination of the 4th charmonium moment. Such calculations would also be
crucial in resolving the unexpected uncertainties we encountered on the superfine
ensemble, as outlined in section 5.5. However, they are also extremely expensive in
terms of computer resources, and therefore require careful consideration and plan-
ning of their execution, as well as taking a considerable amount of time.

6.2.3 Hyperfine Splitting

We have determined the 1S hyperfine splitting of charmonium multiple times in this
work. On 2+1-flavour lattices in chapter 4, we obtained 115.0(3.6) MeV from the
full fit including heavy quark masses, and 113.9(3.5) MeV from a fit purely to the
well-tuned charm quark data.

In chapter 5, we calculated a value of 116.0(3.4) MeV. This was a state-of-the-art
calculation, performed on gluon configurations which include the effect of 2+1+1
flavours of HISQ quarks in the sea, at multiple different lattice spacings and multiple
different u/d quark masses, down to and including their physical mass. We were
therefore able to perform a very well-controlled continuum and chiral extrapolation,
and the error on the final result is dominated by the uncertainty introduced by cc̄
annihilation effects.

In Figure 6.4, we plot these results alongside the current experimental average of
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113.2(7) MeV [4], and three further lattice results. The first of these is the HPQCD
Collaboration’s previous determination on 2+1-flavour lattices, of 116.5(3.2) MeV

[56]. The next is the Fermilab Lattice and MILC Collaborations’ continuum result,
extrapolated from results at multiple lattice spacings, of 116.0(7.5) MeV [88].

Finally, we plot a result from the Hadron Spectrum Collaboration determined
at a single lattice spacing, of 80(2) MeV [83]. This result must be interpreted with
a caveat in mind: since it is not a continuum determination, we do not necessarily
expect it to agree with the experimental value, and indeed the authors also do not
claim it is a final result. It is included to illustrate the accuracy of modern lattice
results over many different discretised actions, and also, inversely to the previous
statement, to reinforce the need for calculations at multiple lattice spacings to obtain
continuum results.

It is clear from the plot that the continuum lattice results are all in very good
agreement with each other, and with the experimental average. Including errors, all
of the results drawn from this work (as well as the previous HPQCD determination)
fall entirely within the 10 MeV range from 110–120 MeV, giving an indication of the
accuracy with which we have been able to determine this quantity.

6.2.4 Continuum Spectrum

To draw together the work on excited charmonium states detailed in chapter 5, we
present a plot of the low-lying charmonium spectrum as calculated via the mass
splittings that we have determined in the continuum and chiral limit. Starting from
the experimental value of the ηc(1S) mass at 2983.6(6) MeV [4], we can add our
fitted continuum values for different splittings to obtain the masses of various other
states.

Explicitly, we add the hyperfine splitting (116.0(3.4) MeV) to obtain the mass of
the J/ψ(1S); the pseudoscalar 2S − 1S splitting (666(12) MeV) to obtain the mass
of the ηc(2S); the hyperfine splitting and the vector 2S− 1S splitting (586(17) MeV)
for the mass of the ψ(2S); and finally, the hyperfine splitting and the vector–axial
vector splitting (438(12) MeV) to get the mass of the hc(1P).

The results of these computations are plotted atop the experimental averages
for the respective masses in Figure 6.5, and it is clear that we have succeeded in
making accurate determinations of them all which match the experimental results.
Uncertainties on the excited states are clearly larger than the corresponding error on
the ground-state J/ψ(1S), but this is to be expected since the excited states are much
less straightforward to determine. Nevertheless, the uncertainties are impressively
small: the errors on the excited state masses are all less than 0.5%, and the error
on the mass of the J/ψ(1S) comes in at just over 0.1%.
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Figure 6.4: A comparison of results for the charmonium hyperfine splitting, as
determined in this work and in others. The lower section contains results computed
on 2+1-flavour lattices, in blue: two in chapter 4 of this thesis via different continuum
fits, and previous determinations by several lattice collaborations [56, 83, 88]. The
middle section contains the continuum result on 2+1+1-flavour lattices from chapter
5 of this thesis, in red. In magenta in the top section is the current experimental
average from [4].
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Figure 6.5: The spectrum of low-lying charmonium states computed from the con-
tinuum results of fits to the hyperfine splitting, pseudoscalar and vector 2S − 1S

splittings, and the vector–axial-vector splitting. The black lines indicate the ex-
perimental averages from [4], and the line widths correspond to the (generally very
small) uncertainties on these results. The magenta boxes indicate the range of our
results from the continuum fits. The baseline here which all the splittings are added
to is the mass of the ηc(1S), which we fix to for tuning our bare lattice charm quark
masses, and for which we do not therefore compute a continuum determination.
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A key conclusion of this work in relation to the excited charmonium states is that
we find a spin-averaged 2S− 1S splitting consistent with experiment (606(15) MeV

compared to 605.82(37) MeV), and do not observe the same discrepancy as the
Fermilab/MILC Collaborations in [84]. We have discussed at length the possibility
that we are observing a similar effect on the superfine lattices (although fortunately
not in the continuum limit) and that this may also be manifesting itself in simulations
using other lattice actions [86, 87]. Whether this is actually the case is an open
question worthy of further study, perhaps on even finer lattices.

6.2.5 Outlook

As has been noted multiple times, in this work and in others [20, 91], the HISQ action
is eminently capable of accurately simulating charm quarks on the lattice. This has
been demonstrated many times in this thesis by our extremely accurate extraction of
the ground states from two-point HISQ correlators — see, for example, Figures 3.1
and 3.2 — and by our accurate extractions of mass splittings and decay constants
in the charmonium spectrum, particularly the ground-state hyperfine splitting.

We have also demonstrated, for the first time, the high-precision determination
of excited state charmonium masses using HISQ valence charm quarks. This is not
solely down to the HISQ action: careful consideration of smeared sources and sinks
is required when constructing correlators with the intention of extracting excited
states. We have made a significant improvement on rudimentary calculations of
excited charmonium states with the HISQ action, as shown, for example, in Figure
7 of [20]. It is also notable that we have been able to perform these calculations on
very fine lattices, something that would have been at least infeasible if not downright
impossible when the HISQ action was first introduced. This is an important step
towards ensuring that future calculations are able to improve upon current levels of
precision.

The work presented in this thesis on the charmonium spectrum has deliberately
concentrated on relatively low-lying excited states, but has performed calculations
at multiple lattice spacings and multiple sea quark masses. In contrast, work such
as that presented by the Hadron Spectrum Collaboration in [83] utilises multiple
operators to make determinations of many states including exotics, but does not
undertake any lattice spacing studies. These are important endeavours with com-
plementary aims.

In concentrating on more conventional excited states, we have laid the ground-
work for possible studies of more exotic states like the X(3823) [92] and X(3872)

[93, 94] which may be undertaken with the HISQ action in the future. These would
be extremely challenging calculations by today’s standards, and indeed would be
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tricky to perform with the HISQ action in general, since they would require non-
trivial exotic operators that cannot currently be constructed in the HISQ formalism.

It is, however, clear that our results here represent significant progress in mak-
ing accurate determinations of more conventional excited states over a wide range of
lattices, including state-of-the-art gauge configurations with very fine lattice spac-
ings. These have proven crucial in obtaining small errors when extrapolating to the
continuum.
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