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Abstract 

Recent scientific advancements regarding the generation and detection of terahertz 

(THz) radiation have led to a rapid increase in research interest in this frequency band 

in the context of its numerous potential applications including high-speed wireless 

communications, biomedical diagnostics, security screening and material science. 

Various proposed solutions have been investigated in the effort to bridge this relatively 

unexplored region of the electromagnetic spectrum, and thus exploit its untapped 

potential. Among them, the resonant tunnelling diode (RTD) has been demonstrated 

as the fastest electronic device with its room temperature operation extending into the 

THz range. The RTD exhibits a negative differential resistance (NDR) region in its 

I-V characteristics, with this feature being key to its capabilities.

Even though the unique capabilities of RTD devices have been experimentally proven 

in the realisation of compact NDR oscillators and detectors, with fundamental 

frequencies of about 2 THz, and high-sensitivity detectors up to 0.83 THz, the reliable 

design procedures and methodologies of RTD-based circuits are yet to be fully 

developed. In this regard, significant effort has been devoted primarily to the accurate 

theoretical description of the high-frequency behaviour of RTDs, using various small-

signal equivalent circuit models. However, many of these models have had either 

limited or no experimental validation, and so a robust and reliable RTD device model 

is desirable. The aim of this thesis is to describe a systematic approach regarding the 

design, fabrication and characterisation of RTD devices, providing a universal 

methodology to accurately determine their radio-frequency (RF) behaviour, and so this 

way enable a consistent integrated circuit design procedure for high-frequency circuits. 

A significant challenge in the modelling of RTD devices is represented by the presence 

of  parasitic bias oscillations within the NDR region. This has been identified as one 

of the main restricting factors with regards to the accurate high-frequency 

characterisation of this operating region. The common approach to overcoming this 



 

limitation is through a stabilising technique comprising of an external shunt-resistor 

network. This has been successfully demonstrated to suppress bias oscillations in 

RTD-based circuits which require operation within the NDR region. However, the 

introduction of the additional circuit component associated with this method increases 

the complexity of the de-embedding procedure of the extrinsic parasitic elements, 

rendering the overall device characterisation generally difficult at high-frequencies. 

In this work, a novel on-wafer bond-pad and shunt resistor network de-embedding 

technique was developed in order to facilitate the characterisation of RTDs throughout 

the complete bias range, without limitation to device sizing or frequency, under a 

stable operating regime. The procedure was demonstrated to accurately determine the 

circuit high-frequency behaviour of the RTD device from S-parameter measurements 

up to 110 GHz. The universal nature of this procedure allows it to be easily adapted to 

accommodate higher complexity stabilising networks configuration or different bond-

pad geometries. Furthermore, the de-embedding method has also enabled the 

development of a novel quasi-analytical procedure for high accuracy extraction of the 

device equivalent circuit parameters, which is expected to provide a strong 

experimental foundation for the further establishment of a universal RTD RF model. 

The applicability of the developed high-frequency model, which can be easily scaled 

for various device sizes, together with the measured RTD I-V characteristics was 

further demonstrated in the development of a non-linear model, which was integrated 

in a commercial simulator, the Advanced Design Systems (ADS) software from 

Keysight Technologies. From an application perspective, the model was used in the 

design of an RTD as a square-law detector for high-frequency data transmission 

systems. The simulated detector performance was validated experimentally using an 

RTD-based transmitter in the W-band (75 – 110 GHz) up to 4 Gbps (error free 

transmission: BER < 10-10 in a waveguide connection), and in the Ka-band (26.5 – 50 

GHz) up to 2.4 Gbps (error free transmission in a wireless data link), which 

demonstrated the accuracy of the developed RTD modelling approach. 

Lastly, a sensitivity analysis of the RTD-based detector within the Ka-band showed a 

superior RTD performance over commercially available solutions, with a peak 

(corrected) detector responsivity of  13.48 kV/W, which is a factor of >6 better 

compared to commercially available Schottky barrier diode (SBD) detectors.  
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Chapter 1. Terahertz wave technology 

1.1 Introduction 

The terahertz (THz) frequency range is generally regarded as the region in the 

electromagnetic spectrum that encapsulates frequencies from 300 GHz up to 3 THz, 

with a corresponding wavelength (λ) between 1 mm and 100 μm [1]. Due its spectral 

position, as seen in Fig. 1.1, between the millimetre-wave (mmWave) band (30 GHz 

– 300 GHz) and the infrared (IR) photonics band (3 THz – 430 THz), until recently, it 

was commonly referred to as sub-millimetre [2][3] or far-infrared (FIR) radiation 

[4][5], depending on the methodological perspective [6] (modal or bulk – wave or 

photon). 

 

Figure 1.1 The electromagnetic spectrum. 

From a historical perspective, the presence of this uncharted region in the frequency 

spectrum, between traditional electronics and optical sources, was first specifically 

acknowledged in the mid-1920s [7]. 

Despite its designation as part of the highest official radio bands [8] (band 12: 300 

GHz to 3 THz) by the International Telecommunication Union (ITU) in 1947, the 

development of successful applications within this spectral span was hindered by the 

Earth’s relatively high atmospheric absorption. This is primarily due to the levels of 

rotational and vibrational transitions of water vapours, which overlap almost entirely 

with the THz domain [9], as shown in Fig. 1.2.  
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Over the next decades, this factor mainly limited exploration of this frequency range 

to the astrophysics and cosmology community, which made use of the scarce available 

transmission ‘windows’, while conducting experiments in the higher atmosphere [10].  

 

Figure 1.2 Atmospheric attenuation up to 1 THz for standard (red – relative humidity 

50%) and dry (black – relative humidity 0%) conditions. Source:[11]. 

Although originally considered a relatively niche field, and frequently referred to as 

the ‘terahertz gap’ due to the limited technological development of reliable sources, 

with adequate power levels, and high sensitivity detectors, the unique properties of 

terahertz radiation started to draw a rising interest in the prospect of its potential 

applications. Its corresponding quantum energy level falls between 1.24 meV and 12.4 

meV, which is considered non-ionizing (insufficient to displace an electron from an 

atom or molecule [12]) and thus harmless to biological tissue. However, it is capable 

to penetrate through various non-metallic materials such as plastic [13], fabric [14], 

wood [15], and paper [16], while reflected by conducting materials (metals and highly 

doped semiconductors). This property, in combination with the good spatial resolution 

achievable within this frequency range, enabled the prospect of developing novel high-

resolution imaging techniques [17], with superior performance in comparison with the 

well-established X-ray and microwave systems. Furthermore, despite their poor 

suitability for applications involving long-range communication (i.e. radio and 
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television broadcasting), and detection (i.e. radar) systems, due to the above-

mentioned environmental factors, the short wavelengths of millimetre and terahertz 

radiation offers high capability of handling transmission (over short ranges) of large 

amounts of data at a time [11]. 

Despite numerous notable advancements regarding the development of sources such 

as electrical discharge-pumped THz gas laser [18], optically excited gas laser [19], 

carcinotrons or backward wave oscillators (BWO [20]) and detectors (i.e. n-InSb 

electron bolometer [21], Ge bolometer [22], tunable far-infrared detector [23]), the 

most important milestone in the field of THz radiation was marked by the invention of 

the femtosecond laser in the late 1980s [24]. This led to the development of time-

domain spectroscopy (THz-TDS), culminating with the successful demonstration in 

1995 of the first THz imaging system [25], and has enabled a broader exploration of 

this technology in other related fields such as medical diagnostics [26], defence [27], 

pharmaceutics [28], genetics [29], security screening [30], and quality inspection [31].  

With the beginning of the 21st century, THz technology witnessed another exponential 

growth in research activity, marked by the first successful demonstration of wireless 

THz transmissions systems [32]. This was achieved at frequencies of over 100 GHz 

and up to 1 THz using pulse and intensity-modulated lasers in combination with 

photoconductors and photodiodes for both impulse and continuous wave generation 

[33-35]. In the following years, record data rates of over 10 Gbps have been reached 

with the establishment of the first commercially available wireless-links. This has been 

proven to operate over an effective distance of 5 km [36], and received 18 GHz 

bandwidth allocation (116 GHz ~ 134 GHz) in Japan by the Ministry of Internal 

Affairs and Communications (MIC) for broadcasting purposes in 2014. Considering 

the continuous demand for increased data rates in recent years, in order to match the 

rapid ongoing developments in mobile and computer networks, a new milestone of 

100 Gbps is expected to be achieved within the present decade [37], by exploring the 

unallocated frequency bands between 275 GHz and 3 THz. 

Current research is now focussed on developing suitable semiconductor-based THz 

sources and detectors which are compact and cost-effective solutions in order to bring 

this technology to the consumer marketplace.  
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1.2 THz technology applications 

As previously mentioned, the unique properties of THz radiation have been exploited 

in a vast number of scientific and industrial fields, involving space exploration, high 

data rate wireless communications, molecular analysis and high-resolution imaging 

and sensing. The aim of this section is to present a brief summary of some of the 

established emerging applications. 

THz time-domain spectroscopy is considered one the most relevant direct applications 

of this type of radiation, due to its frequency correspondence to the resonance levels 

in different molecules [38]. This technique relies on generation and detection of short 

sub-picosecond pulses (typically <0.1 ps), where the amplitude and phase of the 

reflected signal, at a measured sample interface, provides information in relation to 

both its intramolecular and intermolecular interactions [39]. This type of chemical 

composition analysis, in combination with density functional theory (DFT) [40], can 

be performed to study various substances and compounds [41], and is adequate for 

detection of illicit substances such as drugs [42] or explosives [43]. Similar techniques 

can be applied for characterisation of several organic material by probing the low 

frequency collective vibrational modes of biomolecules. 

From a more industrial perspective, THz spectroscopy has been used for 

characterisation and inspection of numerous materials and processes [44] such as 

behavioural observations of polymer properties (i.e. plastics [45], composite materials 

[46], foams [47] and adhesives [48]); multi-layer thickness measurements of paint and 

coatings [49]; fault inspection of integrated circuits (ICs) [50] and semiconductor 

carrier and mobility concentration measurements [51] in electronics; petrochemical 

quality assessment (i.e. fuels [52] and oils [53]); quality control of pharmaceuticals 

products [54]; and also food inspection [55]. 

Furthermore, THz waves have the distinct property of penetrating most common 

physical barriers, such as packaging and clothing items, with minimal attenuation, and 

when combined with their selective reflection and absorption levels can be 

implemented in non-destructive security imaging systems, for the purpose of revealing 

concealed items. In comparison to traditional systems, adopted at densely populated 

security checkpoints by customs and border control, which rely on pulse induction 
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systems for on-body metal detection or X-ray technology for baggage inspection, due 

to its non-invasive nature, THz imaging provides a universal solution for both people 

and package screening. Additionally, such systems have the superior ability to also 

identify non-metallic weapons and explosives (i.e. ceramic, plastic, polymer) [56].  

Fig. 1.3 shows two images of an on-body hidden firearm, acquired using a THz camera 

at different frequencies (0.35 THz – left and 0.85 THz – right). 

 

Figure 1.3 THz images revealing on-body concealed firearm at 0.35 THz (left) and 

0.85 THz (right). Source: [57]. 

The demonstrated capabilities of THz radiation systems to generate two-dimensional 

(2D) images, in addition to its non-ionizing energy levels have opened new 

possibilities for this technology to be highly explored in the medical field, for various 

disease diagnostics [58], including cancer [59]. Currently, medical imaging techniques 

are limited to X-ray computed tomography (CT), which poses serious health risks due 

to its ionizing levels, magnetic resonance imaging (MRI), which require expensive and 

complex cryogenic cooling for superconductors, and ultrasonography, which most 

often cannot achieve the required resolution for comprehensive diagnosis. Due to high 

level of absorption of THz waves by polar molecules, such as water, which is the main 

constituent of biological tissue, THz radiation represents a promising solution for 

contrast imaging techniques. Using this property, cancerous tumours, which have a 

higher water concentration than healthy tissues, can thus be distinguished and 

identified based on the variation in energy absorption [60]. To date, multiple in vivo 

analysis of breast, lung, colon and oesophageal cancer tumours [61], and also extent 

and depth measurement of basal cell carcinomas (skin cancer) [26] have been 
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performed using THz reflectance mode imaging techniques. In addition to soft tissue 

density characterisation, similar systems have been used in the context of dental 

healthcare, for detection of tooth cavities [62], by variation in refractive index 

measurement, as shown in Fig. 1.4. 

 

Figure 1.4 THz image of tooth sample displayed as power absorption spectra taken 

at different frequencies (0.14, 0.23 and 0.35 THz). Red arrows indicate cavity 

affected areas. Source: [63]. 

Recently, exploration of reflective imaging techniques, involving THz radiation have 

been extended to even more ‘exotic’ research fields, such as history and archaeology, 

for non-destructive evaluation of century-old artwork [64]. 

Another major field of application of THz technology is represented by wireless data 

communications. Following Edholm’s law, which has modelled the exponential 

increase in telecommunication data rates for over half a century (Fig. 1.5), wireless 

communication systems will match and even surpass wireline technology (ethernet) 

around 2030, by effectively doubling their bandwidth every 18 months [65]. 



Chapter 1. Terahertz wave technology 

7 

 

Figure 1.5 Evolution of data rate capability for wireline, nomadic and wireless 

technology. Source: [37]. 

This continuously growing effort to achieve and provide data rates upwards of tens of 

gigabit per second (Gbps) is fuelled by the unceasing market demand, predominantly 

in the modern multimedia sector, in which currently researched techniques for video 

and data compression are unable to provide a unique solution to the strain imposed on 

the current wireless infrastructure [66].  

An annual report conducted by Cisco in 2020 [67] predicts that around 66% of the 

global population will have access to internet services and around 70% to mobile 

connectivity by 2023, with the consumer segment accounting for almost 75% of the 

global devices and connections. Furthermore, the estimated number of devices 

connected to internet protocol (IP) networks will reach approximately 29 billion, of 

which the share of mobile devices would be more than half. This includes the fastest 

projected growing category Machine-to-Machine (M2M) connections (i.e. home 

automation, connected car systems, etc.), also referred to as the Internet-of-Things 

(IoT) [68].  

Since the introduction of the ground-breaking smartphone concept by Apple in 2007, 

at the unveiling of the first generation of iPhones, the mobile data traffic has witnessed 

an unprecedented boost, reaching a combined uplink and downlink monthly figure of 

41 exabytes (1018 bytes) in 2020 and is expected to almost double by 2022 [67]. 

Currently, in order to sustain the required IP traffic, mobile communication channels, 

based on mmWave frequencies have been proposed in the Ka-band around 28 GHz 

and 38 GHz, in the V-band at around 60 GHz and in the E-band between 71-76 GHz 

and 81-86 GHz, as part of the ongoing establishment of the emerging 5G technology 
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[69], with a maximum globally allocated continuous bandwidth of 7 GHz. This 

however constitutes a major bottleneck in terms of channel capacity, and delivering a 

targeted speed of 100 Gbps would require unrealistic transmission efficiencies of 14 

bit/s/Hz [37]. In order to tackle this problem, unallocated frequency bands in the THz 

range are currently explored by various research groups as potential targets for the next 

ultra-high bandwidth beyond-5G or even six generation (6G) technologies [70-72], 

with potential data rates above 10 Gb/s.  

 

Figure 1.6 Potential implementation of THz technology in backhaul and fronthaul 

architectures for optical fibre network extension. Source: [73]. 

The primary outdoor applications for THz communications are mobile backhaul 

(connection to and between mobile base stations) and fronthaul (connection between 

cell tower remote radio heads and baseband units) infrastructures, which would serve 

as optical fibre extensions of the backbone networks by switchable point-to-point or 

point to multipoint connections [74], as shown in Fig. 1.6. For this purpose, high gain 

directive antennas/antenna arrays with automatic error correction capabilities (i.e. 

beam steering [75]) need to be considered in order to compensate for potential events 

(i.e. wind, animal interaction, seismic activity, etc), that could cause misalignment.  

Other prospective outdoor macro scale applications for THz wireless systems include 

small and ultra-dense cell technology [76], based on short-range wireless base station 

for additional mobile coverage; traffic communication networks for autonomous 

vehicles [77]; space applications involving inter-satellite communication [78]; and 

even military grade communication systems between aircrafts [79]. The most suitable 

range of applications for this particular technology is represented however by short 
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range (<10 m) indoor communication systems. Among these, wireless local area 

networks (WLAN), wireless personal area networks (WPAN), kiosk downloading and  

near-field communications (NFCs) would highly benefit from the potential ultra-high 

speed connectivity offered between multiple users and access points and also inter-

device communications (i.e. smartphones, cameras, projectors, displays, etc.) [37].  

With the increasing necessity for distributed storage and recent advancements in cloud 

computing, server stacks interconnects in data centres have become another important 

target application for THz wireless links [80]. At this end of the network backbone, 

the integration of THz technology would be able to replace the need for extended 

lengths of category 6 ethernet cables [81], which highly restrict adequate airflow, while 

also requiring high maintenance costs. Such wireless implementation would thus 

provide an efficient solution for space requirements, offering a new degree of 

flexibility, while and also promoting superior cooling performance [82]. 

Clearly, there is rising interest in THz technology from a wide variety of scientific 

fields and industry applications due to the unique properties of THz radiation and 

therefore the advantages that THz systems can offer. However, the lack of efficient, 

compact, high-power sources and high-sensitivity detectors has often hindered 

successful development and deployment of the technology solutions beyond controlled 

lab environments [83]. 

1.3 THz sources and detectors 

1.3.1 THz Sources 

From the THz emission techniques perspective, the majority of available sources can 

be generally classified as either electronic or photonic based technologies [84]. On the 

photonics side, far infrared (FIR) gas lasers have been considered the oldest source of 

coherent THz emission [85][86]. As a more recent alternative to FIR technology, 

quantum cascade lasers (QCLs) have become an established method for generation of 

THz radiation [87], with the lowest frequency reported in continuous-wave operational 

mode at 1.2 THz with around 0.12 mW of output power [88]. However, the required 

environmental temperature to achieve this value is very low, around 10 K, and thus 

complex cryogenic cooling systems are typically needed. 
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Furthermore, THz emission mechanisms have also been demonstrated in bulk 

semiconductor lasers with highly doped p-type/n-type junctions, such as electrically 

excited Ge lasers, or optically excited Si lasers [89]. The drawbacks related to the 

operation of these sources arise from the very specific emission conditions (i.e. 

temperature, electric and magnetic fields, etc.), which limits their usability outside 

controlled lab environments. Similarly, optical excitation mechanisms, typically from 

femtosecond lasers sources, have been used in combination with photoconductive 

antennas (PCAs) for the generation of short THz pulses [90]. 

Several other approaches of generating THz radiation have been investigated using 

photonic sources in combination with various optical-to-THz conversion methods. As 

such, one of the most generally employed methods in high-speed communication 

systems is photomixing, also known as heterodyne frequency down-conversion 

[91][92]. Generally, for this purpose, solid-state photomixers such as, uni-traveling-

carrier photodiodes (UTC-PDs) [93], GaAs-Schottky diodes [94] and even PCAs [95] 

have been used, however their reported output powers are typically in the μW range 

[96], with low conversion efficiency between high-frequency light and THz waves.  

In a similar system configuration, differential frequency generation (DFG) of 

continuous wave THz radiation can be achieved by mixing two optical near-IR lasers 

beams in nonlinear optical (NLO) crystals [97-99]. The presented optical-to-THz 

conversion techniques [100] typically represent an unattractive solution for most 

applications due to their complex and cumbersome system architectures highly 

limiting their wide range implementation. 

At the lower end of the THz frequency spectrum, high-power free-electron based 

sources, such as free-electron lasers (FELs), vacuum-tube sources and extended-

interaction klystrons have been demonstrated to produce both continuous-wave and 

pulsed-mode THz radiation [101] with output powers up to tens of W [92]. This 

performance, however, can be achieved at the cost of bulky and complex systems, 

requiring high vacuum and magnetic field conditions and also water-cooling, due to 

the high operating voltages [102]. 

In contrast to vacuum devices, solid-state electronic sources have been intensively 

researched in the context of THz range radiation generation at room temperatures. The 
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main intrinsic limitations of these devices to operate within the entire THz spectrum 

is associated with the very short carrier transit time requirement through 

semiconductor junctions [85]. In order to overcome this performance limitation, the 

most commonly employed method for increasing the operational frequencies of solid-

state emitters is by implementing them in frequency multiplier circuits [103]. 

Typically, this implies the use of non-linear device chain circuits, which can up-

convert the microwave frequencies of provided RF signals by harmonic generation 

[104]. The main drawback of this technique is represented by the fact that in order to 

achieve THz range operation, several cascaded frequency multiplier stages are 

required, which leads to very poor DC-to-RF conversion efficiencies (~0.001% [105]), 

due to associated power losses. The average output powers of such circuits are in μW 

range and require complex amplification stages for frequencies above 2 THz [106]. 

However, based on continuous advancements in the field of semiconductor material 

and monolithic microwave integrated circuit (MMIC) technology, the reported 

fundamental operating frequencies of solid-state sources have seen a steady increase 

over the past years [92]. As such, three-terminal devices (i.e. transistors) have 

witnessed significant improvement in terms of their maximum cut-off frequencies, 

derived from increased electron mobility, together with reduced gate length and 

contact resistance [107]. Operating frequencies above 1 THz at room temperatures 

have recently been reported for indium phosphide (InP) based heterojunction bipolar 

transistors (HBTs) [108] and high-electron-mobility transistors (HEMTs) [109].  

Furthermore, oscillators based on two terminal devices, which have been considered 

relevant sources for microwave and mm-wave technologies in the past, are being 

investigated for their potential to extend their operational frequencies well into the 

THz range [110]. These systems exploit the capability of particular non-linear devices 

(i.e. diodes) to exhibit negative differential resistance (NDR) regions in their current-

voltage (I-V) characteristics, which when integrated in a resonant circuit are capable 

of generating sustained oscillations [111]. Commonly employed two-terminal NDR 

devices for this purpose include Gunn diodes (10 mW up to 0.4 THz [112]), impact 

ionization avalanche transit-time (IMPATT) diodes (300 mW at 140 GHz [113], 

tunnelling transit-time (TUNNETT) diodes (up to 0.7 THz [114]) and resonant 

tunnelling diodes (RTDs). 
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Among two-terminal solid-state THz sources, RTDs have demonstrated the highest 

fundamental oscillation frequency at room temperature operation [115]. These devices 

rely on the quantum mechanical tunnelling transport mechanism through successive 

barriers, by alignment of discrete energy levels between the adjacent semiconductor 

layers, under specific bias conditions [116]. NDR can be achieved with further increase 

in bias, for which the resonant condition is no longer satisfied. Since this device is the 

main focus of this thesis, a more in-depth description of the operation principle of 

RTDs is presented in Chapter 2. 

1.3.2 THz detectors 

From the perspective of coherent THz radiation detection, two main methodologies 

are generally adopted. The first relies on down-converting the received signal to 

significantly lower intermediate frequencies (IF), for which well-established signal 

processing and amplification techniques can be employed. This is known as 

heterodyne detection [117], and typically involves the use of an active device for 

mixing the received signal frequency with a locally generated reference frequency. 

Usually for this purpose, complex circuitry is required in the form of beam splitters or 

diplexers to couple the two signals, together with expensive low-noise amplifier and 

filter stages, in order to compensate for the noise component introduced by the mixer 

element [118]. 

Conversely, THz sensing can be achieved in a direct detection approach, relying on a 

quantifiable physical response of the employed device in relation to the imposed 

signal. Generally, direct detection is preferred in the context of applications that 

require higher sensitivity such as imaging, while heterodyne detection is capable of 

offering higher spectral resolution [119][120], also being characterised by the fact that 

it preserves information regarding the frequency and phase of the incoming THz signal 

(i.e. coherent detection). However, the choice of detector topology design for specific 

applications is primarily made from the employed device perspective. As such, the 

most generally described classification of THz detectors, in relation to the device 

technology, is based on their detection mechanism [121]. 

An important category, predominantly employed in direct detection schemes, is 

represented by thermal detectors, in which the implemented device exhibits a material 
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temperature variation, when subjected to THz radiation, further translated into a 

generated electrical response based on various thermal phenomena. The most common 

thermal detectors include bolometers [122], Golay cells [123], pyroelectric detectors 

[124] and thermopiles [125]. Out of these, microscale niobium nitride hot electron 

bolometers (NbN HEBs) have been demonstrated to operate in direct detection 

schemes, with responsivities around 100 A/W at 0.65 THz [126], however the reported 

operating temperature is around 4 K. 

The second relevant class of detectors can be defined based on the device coherent 

electron movement variation, or individual electron excitation by incident photons, as 

a result of THz radiation absorption [127]. Plasmonic detectors, which are based on 

collective motion of carriers can typically be implemented as HEMTs [128] and field 

effect transistors (FETs) [129], for which GaN THz FET detectors (TeraFETs) have 

been demonstrated to operate at high temperatures (473 K) up to 0.14 THz, with 

respectable sensitivities of 15 kV/W [130]. However, the main limitation of these 

detectors is represented by their relatively small spectral range [131]. 

In highly doped extrinsic semiconductors, (i.e. Ge:Ga, Ge:Be, Si:Ga, Si:In), absorbed 

photons are capable of exciting carriers from impurity-bound states and generate a 

highly specific wavelength response due to a variation in electron energy distribution 

[132]. Ge:Ga based photoconductor are considered among the most sensitive detectors 

at the higher frequency end of the THz spectrum [133], due to the small material 

energy band-gap at room temperature (0.67 eV for Ge), however they require cooling 

at liquid helium temperatures.  

Photon-electron interaction mechanisms have also been exploited for THz radiation 

sensing in the context two-terminal junction devices, in which charged particles 

acquire sufficient energy to overcome potential barriers, thus providing a rectification 

effect for the incoming field. This rectification principle has been demonstrated for 

various p-n junction photodiodes, however for this purpose Schottky barrier diodes 

(SBDs) are most commonly employed [127]. SBDs are capable of offering a superior 

high-frequency performance in comparison to generic p-n diodes, due to their faster 

switching times and low shot noise, when operated under zero bias conditions at room 

temperature. GaAs based SBD detectors have become the wide commercially 

available packaged solution for direct THz detection, with responsivities ranging from 
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1000 V/W to 400 V/W between 0.1 THz and 0.9 THz [134], whereas Si based SBD 

cell arrays have been intensively researched due to their compatibility with most 

CMOS processes and technologies [135]. Several factors, however, need to be 

considered for the operation of these detectors at frequencies above 1 THz, primarily 

the presence of various parasitic effects, which renders the design procedure highly 

complex and costly [136]. Furthermore present non-linearity in their I-V characteristics 

enables SBDs to be also implemented as mixers in heterodyne detection [137][138], 

demonstrated up to 25 THz [139].  

More recently, based on the same electron excitation principle, high-sensitivity RTD 

based detectors have been demonstrated up to 0.83 THz for direct detection and also 

0.78 THz, when implemented as oscillators in a heterodyne detection scheme, using 

an injection-locking phenomena [140]. A more comprehensive performance analysis 

of different RTD detector topologies (coherent and direct detection schemes), in 

comparison with more conventional solutions, particularly zero bias SBD detectors is 

presented in Chapter 6. 

1.4 Thesis overview 

1.4.1 Thesis aims and objectives 

Due to the distinct capabilities of RTDs, mentioned in the previous section in relation 

to their ability to source and detect THz radiation, numerous studies have been focused 

on understanding their complex high-frequency behaviour. Generally, this has been 

attempted through the aid of either theoretical (physics based) small-signal equivalent 

circuit models or empirical models, derived based on data trends acquired from 

measurements. However, due to the fact that typically there has been limited 

agreement between the two methodologies, more precisely limited frequency 

validation of the developed models, or a low degree of experimental repeatability, a 

systematic approach for RTD characterisation is yet to be developed. 

The aim of this thesis was to design, fabricate and characterise RTDs, in order to 

investigate the development and experimental validation of accurate high-frequency 

equivalent circuit models, for the purpose of assessing the performance of these 

devices as THz sources and detectors.  
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1.4.2 Achievements and contributions to the field 

The main achievement described in this thesis is the development of a universal on-

wafer pad and stabilising network de-embedding technique to accurately determine the 

device small-signal behaviour of an RTD device throughout its entire bias range. In 

comparison to more traditional de-embedding methods, such as the cascade method, 

or the short and open dummy pad test structure technique, previously used in RTD 

characterisation studies, the theoretical basis of the proposed approach does not suffer 

from frequency limitations due to idealised models of the pad parasitics (which are 

valid in a limited spectral span). Furthermore, based on its capability to accommodate 

different biasing circuitry (i.e. different bond-pad and stabilising network 

configurations), the described procedure is applicable to external stabilised devices. 

As such, the de-embedding method is not restricted by device sizing, which is known 

to play a key role in the RTD stability. 

The performance of the proposed methodology was assessed in the characterisation of 

an externally stabilised (by a shunt resistor network), large active area RTD (100 μm2), 

through S-parameter measurements up to 110 GHz, which is to date, the highest 

reported frequency range of a study of this nature [141]. Based on the acquired 

measurements, an accurate device large-signal model, enabled by a novel proposed 

quasi-analytical equivalent circuit parameter extraction methodology was created. 

Furthermore, the relatively large measurement span enabled the investigation of the 

RTD device behaviour throughout the complete bias range using a physics based 

equivalent circuit model [142], which confirmed the theoretical prediction regarding 

the frequency independent nature of the intrinsic parameters. These findings play a 

key role in the validation and establishment of a universal equivalent RTD model and 

confirms its expected usability in predicting the device behaviour in THz range. 

Finally, the developed device non-linear model, based on the presented 

characterisation study was validated in the context of designing, simulating and 

realising a high sensitivity RTD-based detector, operating in the 26.5 GHz – 84 GHz 

frequency range, which demonstrates the applicability of the systematic 

characterisation approach. 
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1.4.3 Thesis organisation 

The thesis is structured as follows: Chapter 1 presents an introduction to THz radiation 

technology and its research evolution, in relation to its potential scientific and 

industrial applications. A review of various generation and detection techniques is 

given from the perspective of employed devices. 

In Chapter 2 the fundamental operating principles of RTDs are presented, together 

with the general device epitaxial structure and common employed material systems. A 

review of the evolution and state of the art RTD high-frequency equivalent circuit 

models is discussed. 

Chapter 3 introduces the main fabrication process involved in the realization of RTD 

devices and circuits in MMIC technology. The various stage processing techniques 

including photolithography, dry/wet etching, metallization, lift-off and via opening 

through polyimide are presented. 

Chapter 4 presents the realisation (design and fabrication) and characterisation of 

various components required for the realisation of RTD integrated circuits, such as 

coplanar-waveguide (CPW) transmission lines, metal-insulator-metal (MIM) 

capacitors, and thin-film resistors. An InP-based PIN diode epitaxial structure, suitable 

for monolithic integration with the RTD structure is proposed and investigated for 

potential high-frequency switching applications. 

Chapter 5 discusses the associated RTD parasitic oscillations and their impact on the 

DC I-V characteristics, together with common device stabilisation methods. A novel, 

on-wafer de-embedding technique is presented for accurate high-frequency device 

characterisation and demonstrated using S-parameter measurements up to 110 GHz. 

Furthermore, based on the de-embedded data, a novel quasi-analytical extraction 

procedure for the device small-signal equivalent circuit parameters is proposed and 

validated using experimental and theoretical determined parameters.  

In Chapter 6, the detection capabilities of an RTD operating in the square-law regime 

are investigated. An RTD large-signal model is developed based on the device DC and 

high-frequency behaviour and is used in the design of an RTD detector operating in a 

direct detection scheme. The detector simulations are validated experimentally using 
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an RTD-based transmitter in a data transfer experiment in the W-band (with waveguide 

connections) and in the Ka-band (wireless data-link over 15 cm), with achieved error-

free transmission bit-rates (BER <10-10) of 4 Gbps and 2.4 Gbps respectively for an 

on-off keying (OOK) modulation scheme. Lastly, from a sensitivity analysis in the Ka-

band, a comparison of the responsivity between the realised RTD detector (peak 

corrected responsivity of 13.38 kV/W) and commercially available SBD detectors is 

shown. 

Finally, the conclusions and future work are covered in Chapter 7. 
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Chapter 2. The resonant tunnelling diode 

2.1 Theoretical background 

From the perspective of classical physics, a particle propagating towards a barrier with 

a higher potential (U0) than its kinetic energy (E < U0), will not be able to overcome 

it, and will thus be reflected at its interface. However, based on the quantum 

mechanical concept described in 1924 by L. de Broglie, particles when in motion 

exhibit wave-like properties [1], and thus their behaviour can be described by the time-

independent Schrodinger’s equation, which for this simple system can be expressed 

as: 

 −
ℏ2

2𝑚∗

𝜕2

𝜕𝑥2
𝜓(𝑥) + (𝑈0 − 𝐸)𝜓(𝑥) = 0 (2.1) 

where m* is the electron effective mass, ℏ is the reduced Planck’s constant, U0 is the 

barrier potential, and ψ(x) represents the particle wavefunction, for which the 

probability (P(x)) of the particle to occur at distance x can be computed as: 

 𝑃(𝑥) = |𝜓(𝑥)|2 (2.2) 

By satisfying the energy conservation principle, together with the fact that ψ(x) and its 

derivatives are considered continuous at the barrier boundary, the electron 

wavefunction is not entirely reflected by the potential barrier, and a fraction penetrates 

into the ‘forbidden’ region, where it starts decaying exponentially (Fig. 2.1). For a 

given barrier width l (l < ∞), the function will never reach zero inside the ‘forbidden’ 

region, and thus a particle that is initially observed on one side of the barrier, has a 

finite probability to be found on the opposite side. This quantum mechanical effect is 

known as tunnelling, and its probability is inversely proportional to the difference 

between the barrier’s potential and particle’s energy, and also to the width of the 

barrier. The particle tunnelling probability, or transmission coefficient T(E), as a 

function of associated kinetic energy [2], can be approximated by: 

 𝑇(𝐸) = 16
𝐸

𝑈0
(1 −

𝐸

𝑈0
) 𝑒

−2𝑙√2𝑚∗(𝑈0−𝐸)
ℏ , 𝑓𝑜𝑟 𝑇(𝐸) < 1 (2.3) 
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Figure 2.1 Particle wavefunction propagating through a potential barrier. 

The general principle of electrons tunnelling in solids, where the potential barriers 

were created using high doping disparities in p-n junction Ge diodes, was theoretically 

introduced by L. Esaki in 1958 (Nobel prize laureate in 1973), in order to explain the 

transport mechanism [3] for the devices he co-invented a year earlier (Esaki tunnel 

diodes) [4]. Under specific bias conditions in such devices, electrons from the 

conduction band in the n-doped material are able, with sufficient energy, to tunnel 

through the barrier to the valence band in the p-doped material (inter-band tunnelling), 

on the opposite side of the junction [5].  

In 1973, Tsu and Esaki reported a variation of this quantum mechanical phenomenon, 

in the form of resonant tunnelling (intra-band tunnelling), in finite GaAs/AlGaAs and 

GaAs/AlAs super-lattice heterostructures [6], in which alternating semiconductor 

materials, with different energy band-gaps are able to create periodic potential barriers 

(Fig. 2.2). 

The concept of electron tunnelling through successive barriers, based on illustration in 

Fig. 2.3, at a first glance would indicate a decrease in transmission probability, due to 

the associated decay of the wavefunction amplitude in each individual barrier. 

However, if the barrier separation is comparable to that of the de Broglie thermal 

wavelength of the particle (typically <10 nm), a quantum-well (QW) is formed, where 

the allowed energy states of the carriers (i.e. electrons or holes) become discrete 

resonant states [7], confining their motion to two dimensions (Fig. 2.3).  



Chapter 2. The resonant tunnelling diode 

36 

 

Figure 2.2 GaAlAs/GaAs superlattice with the corresponding conduction band 

energy profile along the x direction. 

 

Figure 2.3 Resonant tunnelling through a double barrier quantum-well structure 

with associated confined state wavefunctions at two discrete energy levels. 

The transmission coefficient T(E) for incident wavefunctions, with matching energies 

to the quasibound states in the QW becomes close to unity for a perfectly symmetrical 

structure, and thus particles with these specific associated energy levels will tunnel 

through the structure without being reflected [8].  

The experimental demonstration of this phenomenon was first reported in 1974 by 

Chang, Tsu and Esaki for a double barrier GaAs/GaAlAs heterostructure device [9], 

currently known as resonant tunnelling diode (RTD). This constituted a major 
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breakthrough in this field as also being the first demonstration of a semiconductor 

heterojunction to achieve negative differential resistance (NDR) in its current-voltage 

characteristics at 77 K [9]. The successful validation of the novel high-speed quantum 

mechanical process has led in the following years to extensive research involving 

resonant tunnelling devices employing double-barrier (DBQW), triple-barrier 

quantum well (TBQW) [10] heterostructures, and also multiple coupled quantum well 

systems [11], primarily in the underlying development of the QCL.  

The high-frequency operation of RTDs was investigated by Sollner in 1983 [12], while 

comparing the current response as a function of applied bias voltage at DC and 2.5 

THz respectively, for a GaAs/AlGaAs DBQW hetero-junction. The demonstrated 

high-speed switching capability, together with the first reported room temperature 

operation of such devices (within the same publication NDR was achieved at 230 K), 

opened a new perspective regarding their employability as electronic sources and 

detectors within the THz range. 

2.2 RTD design concept and operating principle 

The RTD is unipolar two-terminal device, primarily constructed in a vertical charge 

transport configuration, on a semi-insulating substrate as shown in Fig. 2.4. 

 

Figure 2.4 Typical RTD layer structure. 
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The core region within its structure, as previously described, is the DBQW structure, 

composed of an un-doped narrow band-gap material (QW) sandwiched between two 

thin wide band-gap layers (barriers). Adjacent to this structure, two un-doped spacer 

layers are employed, followed by a lightly-doped (n-type) emitter and collector region, 

in order to source and respectively collect the electrons that tunnel through the QW. 

The main purpose of the spacer layer included in the design is to avoid any unwanted 

dopants diffusing into the barriers (from the emitter/collector region) during the wafer 

material growth. The device is completed by two highly-doped contact layers, on 

which metal pads are deposited. 

The resonant tunnelling mechanism through the DBQW structure in relation to the 

exhibited DC I-V characteristics of the device [13] can be illustrated using the 

simplified conduction band potential profile as shown in Fig. 2.5, under different bias 

(Vb) conditions. In this two-dimensional representation 𝐸𝐶
𝑒 , 𝐸𝐶

𝑐, 𝐸𝐹
𝑒 , 𝐸𝐹

𝑐 denote the 

emitter and collector conduction band edges and quasi-Fermi levels respectively, while 

𝐸1 and 𝐸2 indicate the first and second discrete resonant energy states in the QW. 

When no voltage is applied across the region (Fig. 2.5 (a)), the Fermi levels on both 

sides of the structure are aligned below the first energy level 𝐸1 in the well, and the 

device is considered in a “steady state”, due to thermal equilibrium. The presence of a 

small applied bias will shift the conduction band profile downwards (Fig. 2.5 (b)), and 

as soon as the first resonant state is lowered so that 𝐸1 = 𝐸𝐹
𝑒 , electrons with sufficient 

acquired kinetic energy will be able to tunnel from the emitter towards the collector. 

Neglecting any contribution from thermionic emission components (for 𝐸1 > 𝐸𝐹
𝑒), a 

resonant current begins to flow, marking the onset of the first positive differential 

resistance (PDR) region. The current flow will continue to increase as 𝐸1 is brought 

further below 𝐸𝐹
𝑒 , reaching a peak value (denoted Ip) when 𝐸1 = 𝐸𝐶

𝑒  (Fig. 2.5 (c)), for 

which the transmission coefficient is unity in the case of a symmetric structure. 

Increasing the bias beyond the peak voltage point (Vp) will result in a misalignment 

between 𝐸1 and 𝐸𝐶
𝑒  (Fig. 2.5 (d)), which in turn is translated to a rapid decrease in 

resonant current, displaying thus an NDR region in the I-V curve. The current will 

reach a minimum point (Iv), corresponding to the valley voltage (Vv), after which, 

further increase in applied bias causes a second tunnelling process (when 𝐸2 = 𝐸𝐹
𝑒) 

(Fig. 2.5 (e)). However, at this point the second barrier is shifted below 𝐸𝐹
𝑒 , and due to 
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the high applied field, the rapid increase in current (second PDR region) is primarily 

due to the thermionic emission of electrons over the first barrier [14]. 

 

Figure 2.5 Potential profile of an RTD for different bias conditions. (a) At 

equilibrium (Vb = 0). (b) Start of resonant current flow (Vb > 0) – 1st PDR region. (c) 

Peak current (Vb = Vp) at the alignment between the first resonant level (E1) and the 

conduction band edge. (d) Decrease in resonant current (Vp < Vb < Vv) due to 

misalignment between E1 and the conduction band edge – NDR region. (e) Valley 

current (Vb = Vv), after which the current will begin to increase again with bias, 

primarily due to thermionic emissions, giving rise to a 2nd PDR region. (f) 

Corresponding device DC I-V characteristics.  

The typical idealised representation of the complete RTD non-linear I-V characteristics 

(resembling a distinct ‘N’-like shape) is presented in Fig. 2.5 (f), from which various 

parameters can be extracted, in order to assess the device performance and suitability 

for the intended application. As such, from the perspective of its implementation as a 
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high-frequency source, the key investigated aspects are related to the NDR region. 

Among the important quantitative parameters that define this region are the peak-to-

valley current ratio (𝑃𝑉𝐶𝑅 = 𝐼𝑝/𝐼𝑣) and the peak-to-valley current and voltage 

difference (𝛥𝐼 = 𝐼𝑝 − 𝐼𝑣 and 𝛥𝑉 = 𝑉𝑣 − 𝑉𝑝), which can aid in the estimation of the 

absolute negative device conductance [15], together with the maximum output power 

delivered to a load [16]. For this purpose, the typical device I-V characteristics within 

the NDR region (defined between point C and E in Fig. 2.5 (f)) can be approximated 

using a cubic polynomial [17]: 

 𝐼(𝑉) =  −𝑎𝑉 + 𝑏𝑉3 (2.4) 

In order to derive the values of the device coefficients a and b using this analysis, the 

origin of the I-V curve is set at the middle of the NDR region (point D in Fig. 2.5 (f)). 

At the peak (V = Vp) and valley (V = Vv) points in the I-V curve the first derivative of 

the function is zero: 

 
𝑑𝐼(𝑉)

𝑑𝑉
=  −𝑎 + 3𝑏𝑉2 = 0 (2.5) 

From Eqn. 2.5 the values of the peak and valley bias voltages can be expressed as: 

 
𝑉𝑝 = −√

𝑎

3𝑏
 

𝑉𝑣 = √
𝑎

3𝑏
 

(2.6) 

Similarly, the peak-to-valley current and voltage difference can be derived in terms of 

the constant device coefficients:  

 𝛥𝑉 = 𝑉𝑣 − 𝑉𝑝 = 2√
𝑎

3𝑏
 (2.7) 

 𝛥𝐼 = 𝐼𝑝 − 𝐼𝑣 = −𝑎𝑉𝑝 + 𝑏𝑉𝑝
3 + 𝑎𝑉𝑣 − 𝑏𝑉𝑣

3 

= 𝑎(𝑉𝑣 − 𝑉𝑝) − 𝑏(𝑉𝑣
3 − 𝑉𝑝

3) =
4𝑎

3
√

𝑎

3𝑏
 

(2.8) 

By combining Eqn. 2.7 and Eqn. 2.8, the coefficients a and b can be expressed in terms 

of the peak-to-valley current and voltage difference as: 
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𝑎 =
3𝛥𝐼

2𝛥𝑉
 

𝑏 =
2𝛥𝐼

𝛥𝑉3
 

(2.9) 

The device conductance will reach its absolute maximum value at the center of the 

NDR region (V = 0), which can thus be approximated to: 

 |𝐺𝑑𝑒𝑣𝑖𝑐𝑒| = |−𝑎 + 3𝑏𝑉2| =
3𝛥𝐼

2𝛥𝑉
, 𝑓𝑜𝑟 𝑉 = 0 (2.10) 

Following a similar analysis, the maximum RTD output power delivered to a load can 

be thus derived as: 

 𝑃𝑚𝑎𝑥 =
𝐺𝑑𝑒𝑣𝑖𝑐𝑒

2

6𝑏
=

3

16
𝛥𝐼𝛥𝑉 (2.11) 

Furthermore, from a detector circuit standpoint, the most attractive device 

characteristic is represented by the high non-linearity exhibited in particular around 

the peak current region and at the onset of the resonant tunnelling current. The impact 

of the I-V curvature component in relation to the performance of the RTD, when 

employed in a direct detection scheme, is further discussed in Chapter 6.  

The described device figures of merit (FOM) can be enhanced in a direct approach by 

varying the thickness of its structural semiconductor material layers. In addition to the 

barrier’s thickness, which can exponentially impact the device peak current density 

(Jp), by altering the transmission probability T(E), as previously discussed, the width 

of the QW contributes directly to the RTD DC behaviour by determining the level of 

quantised energy states as: 

 𝐸𝑛 = (
ℏ22

2𝑚𝑒
∗𝑤𝑞𝑤

2
) 𝑛2, 𝑓𝑜𝑟 𝑛 = 1,2,3, … (2.12) 

where 𝑚𝑒
∗  is the electron effective mass in the well and 𝑤𝑞𝑤 is the layer width. Thus, 

for a reduced QW size, the ground resonant state appears at a higher energy level, 

resulting in a shift in Vp to a higher bias point [18]. At the same time the PVCR will 

increase as a result of the reduced current leakage through the second resonant state, 

due to the higher separation between the 𝐸1 and 𝐸2 energy levels [19]. 
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Furthermore, the introduction of a thick un-doped spacer layer will result in the 

formation of a pseudo-triangular well on the emitter side and a wide depletion region 

between the second barrier and the collector layer [7], when bias is applied across the 

device (Fig. 2.6). 

 

Figure 2.6 Simplified conduction band profile of an RTD employing thick spacer 

layers adjacent to each barrier, under applied bias. Adapted from [7]. 

Within the newly formed secondary well, a 2DEG system is formed by electrons 

localised in the quasibound states, leading to a 2D – 2D resonant tunnelling mechanism 

[20]. This transport mechanism is based on the alignment of the discrete energy levels 

in the emitter with the resonant states in the primary QW, which is in a sense more 

limited than the 3D – 2D resonant tunnelling. This effectively translates to a narrower 

transmission coefficient around the specific energy levels, improving thus the device 

PVCR at the cost of a reduced peak current density.  

The effect of the narrower T(E) can also be seen on the overall shape of the device I-

V curve, creating a sharper transition between the positive and negative differential 

resistance regions. Other potential effects that are correlated with the width of the 

spacer layers, such as potential charge build-ups will be further discussed in Chapter 

5, in the context of the employed layer structures within this thesis. 

2.3 RTD materials 

Various III-V compound semiconductor material systems have been investigated in 

the context of the specific heterojunctions realization, out of which the most relevant 
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are gallium arsenide (GaAs/AlAs, GaAs/AlGaAs and InAs/AlSb) and indium 

phosphide (InGaAs/AlAs) based. RTDs based on such material systems are typically 

characterised by high peak current densities and PVCRs due to their small electron 

effective mass (m*) and large conduction band offset which offers high carrier mobility 

while providing a reduced valley current, by minimizing the thermionic emission 

component [21]. 

The first demonstration of the resonant tunnelling principle used GaAs in combination 

with AlGaAs [22] and AlAs [23] DBQW structures, grown on GaAs semi-insulating 

substrate [24]. These devices, however, have been proven to have the lowest 

performance among the above-mentioned material systems, due to their high m* [25]. 

Nonetheless, fundamental oscillations of GaAs/AlAs RTDs up to 420 GHz have been 

reported at room temperature operation [23]. Several techniques have been attempted 

in order to improve the PVCR (from around 1.5) such as altering the barrier material 

mole fraction x (AlxGa1-xAs)  [26], or the introduction of an additional Al0.2Ga0.8As 

monolayer, acting as ‘chair’ barrier on the emitter side, with which a PVCR value of 

6.3 was achieved [27]. 

In contrast, InAs/AlSb [28] systems are able to provide superior peak current densities 

due to the fact that the effective mass in InAs is approximately three times smaller than 

in GaAs. This is also the result of the larger offered conduction band offset (~ 1 eV), 

which gives rise to more resonant levels [29] in the QW, while also improving the 

associated attenuation of carriers tunnelling through the AlSb barrier [30]. 

Furthermore, a lower device series resistance can be achieved due to almost ideal 

ohmic contact formation between the metal and InAs material [31]. However, such 

material systems are prone to impact ionisation due to the low energy bandgap of InAs, 

which in the presence of strong electric fields can lead to avalanche breakdown 

processes, thus placing a major limitation in terms higher power operation [32]. High-

frequency oscillations of 712 GHz have been reported in InAs/AlSb RTDs with a low 

output power of 0.3 μW [33]. 

Although historically InGaAs alloys have been characterised by complex growth 

processes, due to the lack of lattice matched substrates in comparison to GaAs, the 

introduction of the pseudomorphic In0.53Ga0.47As/AlAs [34] has made InP based 

material systems the most widely employed choice for RTDs operating as high-power 
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THz sources and detectors. To date, the highest operating frequency [35] (1.98 THz) 

and output power (1 mW at 260 GHz) of an RTD oscillator have been achieved using 

InGaAs/AlAs heterostructures [36], being also the primary layer structure investigated 

throughout this thesis. Novel variations of this structure have been proposed in order 

to improve the performance of the device, by maximising the energy level difference 

between the adjacent resonant states in the QW. Methods such as the introduction of 

an additional InAs subwell [37] or the later indium-rich QW  (In0.9Ga0.1As) [35] have 

yielded devices with PVCRs of 50 and current densities of 2.4 × 103 kA/cm2, 

respectively. The high PVCR value, which translates to an increased slope of the 

device conductance, has been demonstrated experimentally to minimise the effective 

device switching time by providing superior current rise and fall times between the on-

and off-resonant states [38], thus making this material system a primary target for high-

speed applications [39]. 

The most important limitations of group III-V RTDs are represented by their high 

processing costs and incompatibility with most Si based CMOS technologies, which 

has not allowed their wide deployment in the mainstream application market. As an 

alternative, Si/SiGe heterostructures [40] have also been considered, however their 

performance has been proven inferior to III-V material systems, due to the limited 

conduction and valence band discontinuities between Si and SiGe alloys [41]. 

Resonant tunnelling of both electrons (reported Jp = 282 kA/cm2 at room temperature) 

[42] and holes (reported PVCR = 9 at 4.2 K) [43] have been demonstrated through 

Si/SiGe heterostructures, however their performance degrades abruptly with increased 

device active area and operating temperature respectively, due to the poor thermal 

conductivity of the structure. The determined thermal conductivity of the fabricated n-

Si0.8Ge0.2 structure was reported at 5.1 W/(m-K), in comparison to that of bulk Si, 

which is 140 W/(m-K) [44]. Such devices have been investigated primarily in the 

context of high-speed memory [45] and digital logic [46] applications. 

2.4 RTD equivalent circuit models for high-frequency 

applications 

Extensive research has been devoted to the prediction of the DC current-voltage 

characteristic of RTDs through self-consistent theoretical models [47][48] and 
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quantum transport numerical simulations [49][50], or even quasi-empirical approaches 

[51-53], compatible with simulation environments, in which long computation times 

are not particularly suitable [54]. However, due to the spectral band in which most 

targeted system applications are required to operate, in addition to the basic I-V 

characteristics, the high-frequency behaviour representation of the device, through the 

aid of accurate small-signal equivalent circuit models is of paramount importance for 

the successful realisation of RTD based circuits. 

The first attempt to describe the radio frequency (RF) behaviour of RTDs, based on 

equivalent circuit models has been presented in [55]. The generical device model, for 

which the device polarity is neglected (i.e. device can be operated in both forward and 

reverse bias), comprises of a parallel combination of the device differential 

conductance (Gn) and the RTD self-capacitance (Cn), in series with the contact and 

access resistance (Rs), as shown in Fig. 2.7. 

 

Figure 2.7 RTD equivalent circuit model comprised of the parallel combination of 

device differential conductance (Gn) and self-capacitance (Cn). Rs denotes the series 

contact and access resistance. 

The device conductance can be directly determined from the first derivative of the I-V 

curve, with a bias dependent negative value within the NDR region: 

 𝐺𝑛 =
∆𝐼

∆𝑉
 (2.13) 

The RTD self-capacitance, in this model, is attributed to the static capacitance that 

arises from the formation of the depletion region on the collector side, which confined 



Chapter 2. The resonant tunnelling diode 

46 

by the highly doped emitter and collector layers can be viewed as a standard parallel 

plate capacitor. The device capacitance can thus be estimated solely by the geometric 

static capacitance (C0) as [56]: 

 
𝐶𝑛 = 𝐶0 =  

𝐴

𝑙𝑞𝑤

𝜖𝑤
+

2𝑙𝑏

𝜖𝑏
+

𝑙𝑑

𝜖𝑑

 
(2.14) 

where lqw, lb, ld, are the bias-dependent widths of the quantum-well, barrier and 

depletion region respectively, εw, εb, εd, are the corresponding material dielectric 

constants, and A is the RTD active area. 

A validation of the proposed model is presented in the same publication using high-

frequency measurements up to 12 GHz, for three similar GaAs/AlGaAs RTD 

structures. An interesting resonance behaviour was first observed beyond 3 GHz, 

which was simply attributed to an extrinsic series inductive element introduced by the 

measurement cables (series inductance model). As stipulated by the original 

assumption, the device capacitance was determined as bias independent within the 

limited voltage span of the measured impedance. However, the discrepancies between 

the fitted and experimentally acquired data, together with the variation of the extracted 

inductive element between the three RTD structures suggested a more complex device 

behaviour, difficult to characterise at low frequencies. 

A different explanation for the displayed resonance was proposed in [57], which 

attributes the device inductive behaviour to an intrinsic phenomenon, particularly the  

charging and discharging effect of the quantum-well. The time constant required for 

this mechanism to take place was determined to be dominated by the electron dwell 

time (τdwell), which is defined as the electron quasibound-state lifetime in quantum-

well [58] (i.e. the total time required for an electron to tunnel through the DBQW 

structure). This quantity, which plays an important role in the high-speed operation 

RTDs, can be estimated by: 

 𝜏𝑑𝑤𝑒𝑙𝑙 =
ℏ

Δ𝐸𝑛
 (2.15) 

where ΔEn is the energy full-width of the transmission probability function through the 

resonant state. This novel concept has given rise to an improved proposed device 
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model, in which the time delay, associated with the electron transport mechanism 

through the RTD structure, is represented by a quantum-well inductance (Lqw), in series 

with the differential conductance (parallel inductance model), as shown in Fig. 2.8. 

 

Figure 2.8 RTD equivalent circuit model, in which the quantum-well inductance 

(Lqw) appears in series with the differential conductance (Gn) and in parallel with the 

device capacitance (Cn). Rs denotes the series contact and access resistance. 

Furthermore, the quantum-well inductance has been determined to have a bias 

dependency (i.e. determined by the net electron flow through the structure), and thus 

can be estimated based on the differential conductance by Eqn. 2.16, derived in [23]: 

 𝐿𝑞𝑤 =
𝜏𝑑𝑤𝑒𝑙𝑙

𝐺𝑛
 (2.16) 

Since its introduction, the described device parallel inductance model has become an 

important design resource for RTD circuits, particularly in their implementation as 

negative differential resistance oscillators [59] in THz sources. The fundamental 

concept of such circuits relies on the principle of a standard LC resonator comprised 

of the device capacitance (Cn) together with an external inductive element (L), 

typically realised through a transmission line [60], or in more compact designs an 

integrated antenna which acts as both a resonator as well as radiator [61].  

The fundamental oscillation frequency of the circuit can be predicted using Eqn. 2.17, 

for which the device quantum well inductance (Lqw) is neglected. 

 𝑓𝑜𝑠𝑐 ≈
1

2√𝐿𝐶𝑛

 (2.17) 
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Large discrepancies have been reported between measured fundamental oscillations 

frequencies and theoretical predictions, based on the above presented estimation, and 

have generally been attributed to device extrinsic parasitic components [62]. However, 

such reported inconsistencies, in combination with large experimentally determined 

oscillator frequency variabilities (i.e. voltage-controlled oscillation [63][64]) indicate 

a complex bias dependent capacitive component of the RTD, which cannot be 

correlated to the small changes in geometric capacitance with applied bias voltage (i.e. 

due to variations in active depletion region thickness (Eqn. 2.14)).  

A bias dependent capacitance variation of an RTD was initially presented in [65], as 

part of an impedance measurement experiment of a GaAs/AlGaAs device up to 18 

GHz. The extracted device equivalent circuit, based on a simple fitting method of the 

series inductance model showed a distinctive capacitance peak in the NDR region, 

which was assumed related to the change in charge distribution, as a result of carrier 

tunnelling effects and transit times through the RTD structures [66].  

Originally presented as a capacitance anomaly, the distinct behaviour (i.e. peak 

capacitance value within the NDR) has become widely acknowledged within the 

scientific community, as evidenced in multiple RTD studies [67-69], however, the 

underlying nature of this phenomenon has been highly disputed.  

One theoretical approach to model this effect is presented in [66], where the geometric 

capacitance is determined solely by the depletion layers (Cdep), whereas the bias 

dependent capacitive element is considered as a result of the electron transit time 

through both the DBQW structure and depletion region. The carrier transit time 

through these regions (τrtd) is given as: 

 𝜏𝑟𝑡𝑑 = 𝜏𝑑𝑤𝑒𝑙𝑙 +
𝜏𝑑𝑒𝑝

2
 (2.18) 

where τdep is the transit time across the depletion region. This theorised effect has been 

translated into an alternative of the parallel inductance model, as shown in Fig. 2.9, 

with the introduction of an additional bias dependent capacitance component (given 

by τrtdGn). The total device capacitance Cn within this model, is thus given as the 

parallel combination of the depletion geometric capacitance (Cdep), and the bias 

dependent capacitance (τrtdGn), due to the electron delay time. The quantum-well 



Chapter 2. The resonant tunnelling diode 

49 

inductance has been intentionally omitted from the equivalent circuit, as it is estimated 

that the associated time delay that determines this value, can thus be incorporated by 

the capacitive component [70]. This model, however, has not yet been validated 

experimentally through high-frequency impedance measurements within the RTD 

NDR region. Typically, most RTD RF studies that adopt this device equivalent circuit 

(particularly the underlying mechanism of the charge variation), often compute the 

bias dependent capacitance from oscillator performance [71], numerical computations 

[72], or even empirical models based on Gaussian bell curves [73].  

 

Figure 2.9 RTD equivalent circuit model, where the device capacitance is given by 

the parallel combination of the static capacitance (Cdep), determined by the depletion 

region and the bias dependent capacitance (τrtdGn), due to the electron delay time.  

A different derivation of the bias dependent capacitance was proposed in [74], where 

the variation in charge distribution is governed predominantly by the much shorter 

electron tunnel time from the quantum-well to the collector (τc). Within this derivation 

however, the above described mechanism is considered restricted to the NDR region, 

assumed additionally to the depletion capacitance (Cdep), which solely determines the 

complete device capacitance in the two PDR regions. Furthermore, the quantum-well 

inductance is completely neglected in the device RF behaviour. 

Based on the mentioned shortcomings of the described RTD high-frequency 

equivalent circuit representations, a unified model has been proposed in [75] (Fig. 

2.10), incorporating the parallel-inductance model, and a voltage dependent quantum-

well capacitance component (Cqw). The basis of the charge variation, described in this 
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model, that determines Cqw is represented by the change in the quantum-well – 

collector current density (ΔJc) as a function of electron escape rate through the second 

barrier (𝜈𝑐 = 1/𝜏𝑐) expressed as: 

 ∆𝐽𝑐 =  ∆𝜈𝑐∆𝑄𝑞𝑤 ≅  𝜈𝑐∆𝑄𝑞𝑤 (2.19) 

where ΔQqw is the variation of stored charge in the quantum well, and the tunnelling 

current resulting from electron travelling from the collector back into the quantum-

well is considered insignificant. Also, it is assumed that the escape rate is constant for 

a small variation in applied voltage.  

 

Figure 2.10 Unified RTD equivalent circuit model, where C0 and Cqw denote the 

geometric and quantum-well capacitance, respectively. 

By further considering the device differential conductance (Gn) being completely 

dependent on Jc (i.e. ignoring the very low contribution of the quantum-well – emitter 

current density Je), it is given by: 

 𝐺𝑛 =  𝐴
∆𝐽𝑐

∆𝑉
 (2.20) 

Combining Eqn. 2.19 and 2.20, and assuming that the charge variation in the quantum-

well induces an equal positive charge variation in the collector (ΔQc): 

 ∆𝑄𝑐 =  −∆𝑄𝑞𝑤 =  −
𝐺𝑛

𝐴𝜈𝑐
∆𝑉 (2.21) 
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The derived charge variation in the collector, as a function of device differential 

conductance, results in a quantum-well capacitance as: 

 𝐶𝑞𝑤 =  𝐴
∆𝑄𝑐

∆𝑉
=  −

𝐺𝑛

𝜈𝑐
 (2.22) 

As the obtained formula for the quantum-well capacitance is identical to the one 

proposed in [74], the derivation, in the above presented form, demonstrates its 

existence throughout the entire bias range, which together with the geometric 

capacitance C0, estimated by Eqn. 2.14, defines the complete RTD self-capacitance. 

In a similar fashion, the formula for the quantum-well inductance, proposed in [23] is 

derived, for which the electron dwell time is approximated by the electron escape rates 

through the emitter and collector barriers (i.e. νe and νc): 

 𝜏𝑑𝑤𝑒𝑙𝑙 =
1

𝜈𝑒
+

1

𝜈𝑐
 (2.23) 

The validity of the unified RF model has been demonstrated with the aid of high-

frequency impedance measurements in [76] and [77], in the entire device bias range 

of InGaAs/AlAs RTDs, however, within a relatively narrow frequency range (up to 20 

GHz and 30 GHz, respectively). In both publications, the extracted RTD self-

capacitance, as a function of applied bias voltage, displayed the expected behaviour, 

with a peak value occurring within the NDR region. The performance of the 

characterised devices was not further investigated from an application perspective. 

The analysis and extraction of the derived quantum-well inductance, included in this 

model represents an important device quality factor, beyond its integration as a simple 

fitting parameter, as described in the series inductance model. Although, this quantity 

is not generally referenced in the design process of RTD circuits (e.g. estimating the 

fundamental oscillation frequency of sources), it was demonstrated relevant in the 

prediction of the RTD maximum operation frequency (fmax) due to conductance roll-

off (i.e. NDR degradation) [78]. Thus, for an RTD operating within its NDR region, at 

a frequency that approaches the electron lifetime (i.e. 𝑓𝑚𝑎𝑥 ≈ 1/(2𝜋𝜏𝑟𝑡𝑑) ) the real 

part of the circuit admittance tends towards zero, as the imaginary part becomes 

predominantly inductive [79].  
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Most reported high-frequency sources have been designed to oscillate well below their 

cut-off frequencies, primarily due to epi-structure optimizations, that would enable 

low electron resonant-state lifetimes (i.e. 𝑓𝑜𝑠𝑐 ≪ 1/(2𝜋𝜏𝑟𝑡𝑑)). More recently, targeted 

studies have demonstrated the operation of individual devices and oscillators beyond 

the imposed limitation [80]. The presented behaviour has been theoretically attributed 

to the fact that the RTD response time, governed by the time constant associated to the 

charge-relaxation processes (τrel), can be considerably shorter or longer in comparison 

to the quasibound resonant-state lifetime (τdwell) [81], as a result of the Coulomb 

interactions between electrons, which were not considered in the original derivation. 

By a more complex derivation, τrel can be estimated as: 

 𝜏𝑟𝑒𝑙 =
1 + 𝛽

𝜈𝑒
+

1

𝜈𝑐
 (2.24) 

where the factor β describes the mechanism of Coulomb acceleration of the charge 

relaxation and is typically in the range of 2 – 10 for InGaAs or GaAs devices [78]. The 

bias dependent change in the diode response time in comparison with electron lifetime 

was experimentally demonstrated for a specific wide barrier InGaAs/AlAs RTD using 

high-frequency impedance measurements up to 12 GHz [82]. The presented results 

showed that the above-mentioned factors highly impact the charge-relaxation time 

constant of the device, with a large variation between the positive (𝜏𝑟𝑒𝑙 ≪ 𝜏𝑑𝑤𝑒𝑙𝑙) and 

negative (𝜏𝑟𝑒𝑙 ≫ 𝜏𝑑𝑤𝑒𝑙𝑙) differential resistance regions.  

Furthermore, it was suggested that the space-charge effects will also generate a 

displacement-current mechanism, which impacts the net current flow through the 

DBQW structure. The described complex behaviour can be modelled by adapting the 

existing RTD equivalent circuit, shown in Fig. 2.1, to include an additional parallel 

high-frequency channel with no associated delays (i.e. instantaneous current flow), in 

order to potentially explain the device operation capability beyond the described 

maximum cut-off frequency fmax [82].  

Although the presented device RF model is considered to date, the most complex 

theoretical high-frequency representation of the RTD, due to its relatively limited 

validation (i.e. narrow frequency span and targeted device epi-structure) its 

applicability has yet to be fully demonstrated in the design process of RTD-based 

circuits. 
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2.5 Summary 

This chapter provides an overview of the fundamental quantum mechanical charge 

transport mechanism in double-barrier quantum-well heterostructures, primarily from 

the perspective of the basic operation principles of resonant tunnelling diodes, together 

with the device general design concepts and common adopted material systems. 

Furthermore, a review of the state of the art RTD equivalent circuit models, used to 

describe the device RF behaviour is presented, illustrating the key device bias 

dependent elements, such as the self-capacitance and quantum-well inductance, and 

their imposing performance limitations for high-frequency applications. 

The accuracy of the small-signal equivalent circuit models will be further discussed in 

Chapter 5, in the context of a realised device high-frequency characterisation, together 

with the associated challenges in extracting the discussed specific circuit elements and 

their theoretical representation. Due to the predominantly experimental 

characterisation approach adopted in this work, the RF parallel inductance circuit (Fig. 

2.8) has been considered as a starting point for device high-frequency modelling. 
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Chapter 3. RTD MMIC technology and 

fabrication processes 

3.1 Introduction 

This chapter describes the main fabrication processes involved in the realisation of 

micron-scale RTD devices and monolithic integrated circuits. The generic fabrication 

flow of the devices will be discussed, with a detailed description of the specific device 

layer structure, followed by an in-depth explanation of the individual fabrication 

techniques. The basic processes that have been adopted in this thesis include optical 

lithography, metal and dielectric deposition, wet/dry etching and lift-off methods, 

suitable to be conducted entirely in the James Watt Nanofabrication Centre (JWNC) 

at the University of Glasgow. 

3.2 RTD layer structure and fabrication process overview 

The RTD wafer used in this work, for high-frequency device characterisation purposes 

and realisation of an RTD-based detector is based on an InGaAs/AlAs material system 

and was grown by molecular beam epitaxy (MBE) by IQE Ltd on a semi-insulating 

InP substrate. 

The epitaxial layer structure consists of a 4.7 nm InGaAs quantum well (Eg = 0.75 eV) 

sandwiched between 2.5 nm thick AlAs barriers (Eg = 2.16 eV), forming a double 

barrier quantum well structure (DBQW). The structure is completed by three-step 

doping-graded spacer layers on either side of the DBQW (un-doped, 5E16 doping and 

2E16 doping), a drift layer on the collector side and highly doped contact layers (2E18 

and 3E19 doping) on both sides, as detailed in Table 3.1. The presented epitaxial layer 

structure was previously investigated within the research group for the purpose of 

realising high-power RTD sources [1], and was designed specifically to enhance the 

device I-V characteristics by maximising the peak-to-valley current and voltage 

differences, as proposed in [2]. In the context of the work described in this thesis, the 

structure was chosen and characterised due to the high non-linearity displayed around 

the peak current region, making it suitable for a square-law detector application.  
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The distinct characteristic of this structure is the introduction of a relatively large 

depletion region (120 nm). Although this feature will highly reduce the device self-

capacitance [3] and facilitates the sharp transition between the positive and negative 

differential resistance regions, as discussed in Chapter 2, it however negatively 

impacts the RTD peak-current density. The value for the peak-current density was 

estimated at approximately 18 kA/cm2 and was determined based on the measured DC 

characteristics acquired from various fabricated device sizes on this structure, further 

presented in Chapter 5 and 6. 

Table 3.1 RTD Epitaxial layer structure 

Layer Thickness (Å) Composition Doping (cm-3) Description 

1 400 In0.53Ga0.47As 3E19 : Si Collector 

2 800 In0.53Ga0.47As 2E18 : Si Sub-Collector 

3 1200 In0.53Ga0.47As 5E16 : Si Drift Region 

4 100 In0.53Ga0.47As 2E16 : Si Spacer 

5 20 In0.53Ga0.47As Un-doped Spacer 

6 25 AlAs Un-doped Barrier 

7 47 In0.53Ga0.47As Un-doped Well 

8 25 AlAs Un-doped Barrier 

9 20 In0.53Ga0.47As Un-doped Spacer 

10 100 In0.53Ga0.47As 2E16 : Si Spacer 

11 100 In0.53Ga0.47As 5E16 : Si Spacer 

12 800 In0.53Ga0.47As 2E18 : Si Sub-Emitter 

13 4000 In0.53Ga0.47As 3E19 : Si Emitter 

14 2000 InP Un-doped Buffer 

  SI : InP  Substrate 

 

Starting from the presented grown material structure, the process to realise a functional 

RTD device can be illustrated using the diagrams in Fig. 3.1. The initial fabrication 

step is represented by the deposition of the top contact metal layers (i.e. emitter or 

collector contact depending on the chosen polarity), as shown in Fig. 3.1 (a). For this 

purpose, a Ti/Pd/Au (20/30/150 nm [4]) metal scheme was chosen, due to the reported 

low specific contact resistance that can be achieved with this material combination 

(0.73 Ωμm2 [5]).  
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Figure 3.1 Diagram of RTD fabrication process: (a) Top contact metal deposition. 

(b) Etch to bottom contact layer. (c) Bottom contact metal deposition. (d) Etch to 

substrate. (e) Passivation layer deposition and via opening. (f). Bond-pad metal 

deposition. 
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Following the initial metallisation step, which predominantly determines the device 

active area, the top mesa can be defined by a wet etching process down to the bottom 

emitter/collector layer (Fig. 3.1 (b)), with the use of an orthophosphoric acid (H3PO4) 

together with hydrogen peroxide (H2O2) solvent diluted with water (i.e. 

H3PO4:H2O2:H2O in the ratio 1:1:38). The presented two steps are repeated in order to 

create the bottom contact and define a single RTD structure (Fig. 3.1 (c) and Fig. 3.1 

(d)). The buffer layer is etched using a different solvent (i.e. HCl:H2O2 with ratio of 

1:4) exposing thus, the semi-insulating InP substrate. Further, a polyimide (i.e. PI-

2545) layer is deposited, for the purpose of passivating the semiconductor surface and 

isolating the created mesa, and a via is opened for the top contact (Fig. 3.1 (e)), using 

a dry etch process (i.e. combination of CF4/O2 gases with flow rates of 5/20 sccm). 

Finally, the device metallic bond-pads are deposited, using a Ti/Au metal scheme, with 

a relatively large thickness (20/380 nm), in order to ensure their integrity during 

probing/bonding. Fig. 3.1 (f) illustrates a vertical cross-section of a fabricated RTD 

device, for which the complete fabrication process is detailed in Appendix A. A 

micrograph image of the fabricated RTD device is shown in Fig. 3.2. 

Additional steps, typically before the bond-pad metal deposition, may be employed in 

order to realise passive components (i.e. thin film resistors or metal-insulator-metal 

(MIM) capacitors), required for RTD based monolithic integrated circuits. The design 

and realisation of such components will be further discussed in Chapter 4. 

 

Figure 3.2 Micrograph of realised RTD device. 
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3.3 Fabrication processes 

3.3.1 Sample preparation and cleaning 

The discussed fabrication process requires as an initial step the preparation of 

individual samples from the grown 3-inch material wafer, in order to accommodate 

multiple fabrication runs. In this project, square samples with a side length between 

10 – 12 mm were manually cleaved using a precision diamond scriber (Wafer Scribe 

ATV RV-129). Furthermore, as the originally outsourced wafer is coated with a layer 

of photoresist, in order to protect the polished sides during transportation from 

unwanted abrasion, a three-step cleaning stage is required. The choice of solvents for 

this purpose involve acetone ((CH3)2CO), methanol (CH3OH) and isopropyl alcohol 

(IPA - C3H8O), with the sample placed in an ultrasonic bath, which also ensures the 

physical removal of any contaminant particles. As acetone is the primary organic 

compound involved in the removal of the resist coating, its high evaporation rate leads 

to associated residue on the sample surface, which can be further cleaned with 

methanol, followed by IPA. The same sample cleaning scheme is adopted between the 

individual fabrication steps in order to ensure uniform etching or good metal adhesion 

for deposition processes. The last step in sample preparation is represented by the 

identification of the correct side on which the fabrication is carried out. As previously 

discussed, due to the fact that both sides of the original wafer are polished, correct 

identification of the epi-side is important. A DC/impedance measurement obtained via 

probing of the wafer would reveal a higher impedance, typically in the MΩ range on 

the InP substrate side, in comparison to a tens of Ohms range on the side with the 

epitaxially grown device layers. 

3.3.2 Lithography 

Patterning is one of the main fabrication processes involved in semiconductor 

manufacturing technology, in which various features and structures are transferred 

from a mask onto the sample, via a radiation sensitive compound called resist [6]. The 

commonly employed lithography techniques include photolithography [7], in which 

the shape transfer from a template mask is achieved via exposure from an ultra-violet 

(UV) source, and electron-beam lithography (EBL) [8], which uses a highly focused 

beam of electrons to scan the sample surface. EBL is characterised by a superior 
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resolution in comparison with standard optical lithography, being typically adopted for 

patterning of sub-micron features, however its high associated costs and process times 

make it an unattractive solution for the RTD device fabrication involved in this work.  

As the designed RTD mesa sizes described in this thesis range from 5 × 5 μm2 up to 

25 × 25 μm2, photolithography was chosen as the primary patterning technique, which 

satisfies the imposed resolution constraints (achievable resolution of 0.5 μm). In 

addition, the high throughput of this optical lithography process constitutes an 

important advantage in terms of lowering the fabrication time for a complete RTD 

fabrication run, which requires a total of 9 patterning steps (including the realisation 

of passive components for RTD-based circuits). Another important benefit of the 

chosen patterning technique in terms of overall cost is represented by the reusability 

of the fabricated template mask in processing multiple samples with the same design 

(i.e. for different epitaxial structures), or even in the case of repeated fabrication runs. 

The photolithography process was carried out using a Karl SuSS MA6 mask aligner, 

which using a UV source (with a corresponding wavelength λ = 365 nm) can transfer 

the designed layer pattern onto the sample, by exposing the coated resist through the 

optical windows, defined by a chromium metal layer on a physical mask. The hard 

mask, which incorporates the multi-layer RTD device and circuit layouts, was 

designed using the Tanner L-Edit software tool from Mentor Graphics [9], and realised 

using EBL, for increased feature accuracy, by Compugraphics International Ltd. 

Specific alignment markers are also included in the mask (along the boundaries), so 

that a subsequent fabrication step can be aligned with the preceding one.  

Furthermore, the designed mask polarity needs to be made in line with the choice of 

light sensitive coating material, which is typically composed of a polymer, sensitiser 

and solvent [10] combination. Depending on the nature of the used polymer, which 

changes its chemical structure under UV radiation, photoresists can be classified as 

positive-tone, which becomes more soluble to developer agents, and negative-tone, for 

which in contrast, the exposure triggers a polymerisation reaction, making it difficult 

to dissolve. Negative-tone photoresist is known to have better adhesion capabilities to 

semiconductor wafers, without pre-treatment, and can attain a higher feature height-

to-width ratio [11], but it is also characterised by lower resolution and inferior thermal 

stability in comparison to its counterpart. In this work, the patterning processes were 
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carried out using different positive-tone photoresists, from the S1800 series provided 

by MicroChem, in combination with a positive optical mask. 

The uniform coating of the sample with a thin layer of the specific photoresist is 

achieved through a standard spin coating process. For this purpose, the compound 

dissolved into liquid form with the addition of the solvent, is deposited in the centre of 

the semiconductor material, which in turn is spun at a very high speed (typically 

around 4000 rpm), in order to achieve the desired film. Various parameters, such as 

spin time, speed and ramp speed, play key roles in the defined distribution and 

thickness of the applied photoresist. The generic three step (i.e. deposition, spread and 

thickness control) spin coating cycle can be illustrated using the timing diagram in Fig. 

3.3, in which the compound is dispensed onto the stationary wafer. 

 

Figure 3.3 Typical photoresist spin coating cycle. Adapted from:[12].  

Two photoresists (S1805 and S1818) were used in the fabrication of RTD devices 

described in this thesis. Based on the variation in compound viscosity, they can achieve 

different layer thicknesses under the same coating cycle conditions. The measured film 

thickness for the S1805 and S1818 photoresists (around 0.5 μm and 2 μm respectively, 

at 4000 rpm) are shown in Fig. 3.4, with a corresponding variation of approximately 

one over the square root of the spin speed. This feature plays a crucial role, particularly 

in the case of desired metal deposition thickness, for which the choice of photoresist 

needs to be made accordingly.  
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After the coating process, the excess solvent in the photoresist film is removed by a 

soft bake treatment, also called prebake (approximately 1 min at 115° C), which 

stabilises the compound at room temperature, improving the adhesion, and also 

making it less prone to contamination factors. 

 

Figure 3.4 Characteristic spin speed curves for S1800 series photoresist. 

Source:[13]. 

Various other techniques can be adopted to improve the patterning process, such as 

removing waste resist from the back side of the sample, or excess resist near the sample 

edges.  

By ensuring uniformity, the contact between the optical mask and the sample is thus 

improved, minimising the light diffraction effect during exposure. Following exposure 

(typically between 2 and 3 seconds required for the S1800 series resist) a developer is 

used to dissolve the exposed photoresist, revealing the design pattern. 

Finally, a low temperature plasma ashing process is used to remove any residual resist 

(120 W RF power for 2 min.), which was not dissolved during the development phase, 

yielding the sample ready for the required metallisation or etching stage. The complete 
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photolithography process, adopted for a positive-tone photoresist, is presented with the 

aid of the diagrams in Fig. 3.5. 

 

Figure 3.5 Photolithography process flow: (a) photoresist spin coating, (b) exposure 

using designed photomask under UV radiation, and (c) resist development 

3.3.3 Metal deposition and lift-off process 

Metal deposition in semiconductor devices and monolithic integrated circuits 

fabrication can be achieved through various methods, such as vacuum metallisation, 

also called physical vapour deposition (PVD), flame and/arc spraying, sputtering and 

plating processes [14]. The chosen technique for the metallisation processes involved 

in the fabrication of the device contacts and bond-pads in this project is electron-beam 

physical vapour deposition (EBPVD). In this process, the deposition is carried out 

under high-vacuum conditions in which an electron beam from a charged source 

(typically a tungsten filament) is focussed onto a target crucible, containing the desired 

metal, releasing metal atoms, which precipitate onto the sample. An important 

advantage of this processing technique is represented by the low pattern side wall 

coverage, which facilitates an optimal lift-off application.   

The metal deposition process was carried out using the Plassys MEB550S (Plassys II 

and Plassys IV) equipment, capable of multi-layer coating, with up to 8 metals and 

alloys, including gold (Au), aluminium (Al), germanium (Ge), molybdenum (Mo), 

nickel (Ni), nickel-chromium (NiCr), palladium (Pd) and titanium (Ti). 

A key aspect which was considered in the deposition of the metal contacts is the use 

of the available argon gun feature in the Plassys IV metallisation equipment, which 

uses plasma activated atoms to bombard the surface of the sample, and thus vaporise 
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any organic contaminants and natural oxides which form when the sample is exposed 

to air. This surface treatment technique, together with the discussed choice of metal 

scheme, should provide an optimal metal-semiconductor contact resistance, which was 

assessed through characteristic transmission line model (TLM) (details in Appendix 

B) and high-frequency measurement, and will be further discussed in Chapter 5.  

Following the successful deposition of metal onto the entire surface of the sample, the 

next step of the metallisation process is the lift-off of the excess metal film (described 

below), in order to obtain the required design. For this purpose, a positive photoresist 

stripper formulation (SVC-14) is used, which removes the coating without damaging 

the thin metallic film. As previously discussed, the choice of photoresist thickness for 

patterning (i.e. present underneath the unwanted metal film regions) plays a critical 

role in maintaining the integrity of the features during the lift-off process. Generally, 

a higher resist thickness in comparison to the chosen film deposition thickness needs 

to be employed, (typically a ratio of resist to feature thickness > 2) in order to ensure 

metal discontinuity. In the case of the contact metal deposition, which has a total 

chosen thickness of 200 nm [4], a single layer of the S1805 photoresist coating would 

provide a sufficient height difference (approximately 300 nm) to meet the imposed 

specification. The complete process steps associated with the fabrication of the device 

metal contacts is illustrated in Fig. 3.6. 

 

Figure 3.6 RTD metal contact fabrication steps: (a) spin coating S1805, (b) exposure 

and pattern development, (c) metal deposition, and (d) lift-off. 

Other techniques to further optimise this process include the use of a photoresist 

treatment with organic compounds, such as chlorobenzene (C6H5Cl) or toluene (C7H8), 

prior to exposure, in order to create a specific undercut, by varying the solubility of 

the top part of the coating. However, the use of such compounds has been recently 

stopped within the JWNC facility, due to associated health risks. Instead, a slow lift-
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off process has been employed using an SVC-14 photoresist stripper, with the sample 

placed in hot bath (50° C) for several hours. 

A variation of the described process, however, was adopted for the fabrication of the 

RTD bond-pads, for which a Ti/Au metal scheme was chosen, with a total combined 

thickness of 400 nm (20/380 nm). Due to the increased deposition thickness, a lift-off 

resist (LOR-10A) coating was used in addition to the S1805 photoresist, in order to 

achieve a bi-layer lift-off process. During the two-step spin-coating process, a thin 

layer of LOR-10A was first applied to the sample, which by having a different 

dissolution rate in comparison to the S1805 photoresist, in the presence of the specific 

developer, creates a large undercut profile (Fig. 3.7 (b)). This feature guarantees a 

robust lift-off process, by ensuring no metal deposition along the resist sidewalls, as 

seen in the diagram illustration in Fig. 3.7.  

 

Figure 3.7 RTD bond-pad fabrication steps: (a) spin coating LOR-10A followed by 

S1805, (b) exposure and pattern development, showing the characteristic obtained 

undercut, (c) metal deposition, and (d) bi-layer lift-off process. 

Poor metal lift-off, in the case of low photoresist thickness, without a well-defined 

undercut, could result in film peeling during subsequent fabrication steps, which could 

in turn lead to potential overall circuit failure. 

3.3.4 Dielectric deposition 

Deposition of dielectric materials, such as silicon dioxide (SiO2), or silicon nitride 

(Si3N4) for fabrication of metal-insulator-metal (MIM) capacitors, or device 

passivation layers can be achieved by chemical vapour deposition (CVD). During this 

process, the sample is exposed under vacuum conditions to gas or vapor precursors, 
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for which a thermally induced chemical reaction triggers the formation of a solid 

coating at the heated interface [15]. 

The realisation of MIM capacitors for RTD based detectors, in this project, was 

accomplished using silicon nitride (Si3N4) as the insulator layer, which was deposited 

by inductively coupled plasma chemical vapour deposition (ICP-CVD) using the 

System 100 ICP-CVD from Oxford Instruments. The primary advantage of this 

deposition technique consists in the low achievable process temperature with the aid 

of the high plasma density (typically >1011 cm-3) present at the sample interface [16], 

making it thus suitable with the use of the S1800 series photoresist (i.e. it can be 

patterned using a lift-off process). Although the deposition directivity is low (i.e. 

deposition on the resist sidewalls is possible), the relatively low dielectric layer 

thickness of 75nm that was used, makes it possible to pattern Si3N4 film with the bi-

layer lift-off process. The design and characterisation of the passive component will 

be further discussed in Chapter 4. 

3.3.5 Etching and via opening process 

The RTD mesa can be realised by either a wet or dry etching process, which selectively 

removes semiconductor material layers around the predefined contact, following the 

successful metal deposition and lift-off stages. Wet etching, which has been the 

primary methodology adopted in this work for device fabrication, involves the use of 

a liquid reactant (typically a diluted acid compound), which dissolves the specific 

material. This technique is generally preferred due to its low associated cost, process 

time and minimal surface impact, without the need for complex fabrication equipment, 

which requires operation by specialised personnel [17].  

Although wet etching is characterised by a high degree of selectivity (i.e. solvents can 

be specific to the targeted material), the process also suffers from high isotropy [18] 

(but also dependent on the crystal orientation), which is defined as the ratio of lateral-

to-vertical etching rate. This effect will result in an undercut profile of the device mesa 

(i.e. semiconductor is etched underneath the mask structure), which is exacerbated in 

the case of a high feature aspect ratio (i.e. mesa area to thickness ratio). This in turn 

leads to a degradation of the RTD effective area. An illustration of the wet etching 
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process used in the realisation of the RTD mesa, using the top metal contact as a mask 

is shown in Fig. 3.8. 

The wet etching process of the InGaAs and AlAs layers was performed using a highly 

diluted solution composed of hydrogen peroxide, which acts as an oxidizing agent, and 

orthophosphoric acid (H3PO4:H2O2:H2O = 1:1:38), with an etch rate of approximately 

100 nm/min.  

 

Figure 3.8 Illustration of the wet etching process used to define the InGaAs RTD 

mesa, using the metal contact as an etching mask (a). The isotropic nature of the 

process causes a large undercut profile of the mesa (b). 

Due to the high selectivity of the described etchant, which does not react with the InP 

substrate, a different solution of hydrochloric acid and hydrogen peroxide (HCl:H2O2 

= 1:4) was used to remove the InP buffer layer, with a characteristic etch rate of around 

600 nm/min. An SEM image of a fabricated RTD top mesa is presented in Fig. 3.9. 

In order to avoid the large undercut profile created by the wet etching process, 

particularly in the case of sub-micron device active areas, the RTD mesa can be 

defined by a dry etch technique. A dry etch process for InP-based materials has been 

developed by the JWNC at University of Glasgow, and has been proven to produce 

well-defined structures, with vertical feature side-walls [19], based on reactive ion 

etching (RIE), with the aid of a methane/hydrogen/oxygen gas combination 

(CH4/H2/O2), with corresponding flow rates of 6, 54 and 0.16 sccm, respectively. This 

processing technique was not adopted in this work, due to the high designed RTD 

active areas (> 5 × 5 μm2). 
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Figure 3.9 SEM image of a realised RTD top a mesa displaying the undercut profile 

due to the isotropic nature of the wet etching process. 

A dry etch method, however, was used to open a via in the passivation layer, in order 

to facilitate the physical connection between the top metal contact and the deposited 

bond-pad. The dry etching process relies on material removal by exposing the sample 

to a bombardment of high energy gas ions, which react with the exposed surface, and 

has been preferred for this particular purpose due to its high uniformity and anisotropic 

characteristic (i.e. directional etching). As previously discussed, the device passivation 

was accomplished using the PI-2545 polyimide from HD Microsystems, with a coating 

thickness of approximately 1.2 μm, in order to meet the required RTD mesa height 

(approximately 1.16 μm distance from the top contact layer to the InP substrate). The 

PI-2545 was applied to the sample using a spin coating process, with a spin speed of 

8000 rpm, in order to achieve the desired thickness [20] and thermally cured at 180° 

C for 6 hours. The specific dry etching process of the PI-2545 layer was adapted from 

[17], and has been carried out in this work using the RIE80+ equipment from Oxford 

Instruments. For this purpose, a combination of tetrafluoromethane (CF4) and oxygen 

(O2) gases was used, with corresponding flow rates of 5 sccm and 20 sccm, 

respectively, which resulted in a measured etch rate of approximately 215 nm/min for 

the polyimide. Due to the fact that this process also etches the S1805 coating, used to 
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define the via feature at a measured rate of 150 nm/min, a higher thickness of 

photoresist layer was chosen, and achieved using spin coating at 1500 rpm, with a 

resulting thickness of around 0.9 μm (based on Fig. 3.4). 

 

Figure 3.10 SEM image of the realised via in the polyimide passivation layer, which 

surrounds the RTD mesa and aid the connection between the top metal contact and 

bond-pads. 

To further ensure the integrity of the designed via pattern, the precise process timing 

(i.e. time required for the removal of the exposed polyimide layer) was controlled 

using a laser interferometry end-point detector LEM from Horiba Scientific [21]. In 

this in situ technique, a monochromatic light beam from a laser source is directed at 

the partially transparent, exposed polyimide film (i.e. patterned by the photoresist 

layer) on the sample. The detected intensity of the total reflected radiation is altered 

by the constructive and destructive interference, generated between the reflected 

radiation from the vacuum-polyimide interface and the polyimide-substrate interface. 

The continuous variation in optical path length between the reflected light beams, as a 

result of the change in polyimide thickness during the etching process, translates to an 

oscillating behaviour of the overall detected radiation intensity (i.e. due to the phase 

difference of the two light components) [22]. Upon the entire removal of the polyimide 

layer, the signal intensity will remain constant signalling the process completion. 
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Given the relatively small sample size (12 mm × 12 mm), the process timing was 

monitored continuously using a single point measurement, with the light beam directed 

at the center of the sample. The typical process time using this technique is 

approximately 6 min (350 seconds) and can vary slightly due to potential uneven 

distribution of the PI-2545 during the spin coating process. 

3.4 Summary and discussion 

In this chapter, the main processes associated with the realisation of RTD devices and 

monolithic integrated circuits have been described. The complete device fabrication 

flow has been presented starting from the epitaxial heterostructure of the device. 

Photolithography was the preferred patterning technique due to the low process cost 

and design repeatability. This process satisfied the imposed feature constraints 

determined by the choice of device active area sizes (ranging between 5 × 5 μm2 and 

25 × 25 μm2), which were investigated in relation to device stability and also 

maximising the device non-linear characteristics for the detector application, further 

described in Chapter 5 and 6 respectively. Two different lift-off techniques, based on 

the thickness of the deposited metal, in the case of device contacts and bond-pads, or 

dielectric material for MIM capacitor realisation were employed (single layer and bi-

layer). Furthermore, a wet etching process for the purpose of defining the RTD mesa 

structure, by selective removal of the InGaAs/AlAs layers was adopted, while a dry 

etch process, based on reactive-ion etching was used to open a via in the RTD 

passivation layer. The complete RTD fabrication process is detailed in Appendix A, 

while the characterisation of various circuit components and RTD devices is further 

discussed in Chapter 4 and 5, respectively. 
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Chapter 4. Components for RTD circuits 

4.1 Introduction 

As briefly discussed in Chapter 3, additionally to the realisation of the RTD device, 

various other components need to be considered for the successful implementation of 

monolithic integrated circuits. In relation to the targeted application in this project, 

which consists of an RTD based detector, the design requirements include passive 

components such as thin film resistor networks, for device stabilisation purposes, 

transmission lines, realised in coplanar waveguide (CPW) configurations, metal-

insulator-metal (MIM) capacitors for RF decoupling, and inductive elements, designed 

as shorted CPWs. In this chapter, the design concepts of the above-mentioned 

components are described, and their assessed performance is presented as a 

comparison between theoretical determined values and experimental data. 

Furthermore, an InP based PIN junction diode suitable for hetero-epitaxial integration 

with the presented RTD structure is proposed and characterised, in order to investigate 

its performance for high-speed applications. 

4.2 Design of passive components 

4.2.1 Coplanar waveguide (CPW) 

The coplanar waveguide (CPW), which was first demonstrated in [1], is a type of 

planar transmission line, consisting of a central conductor with adjacent, equally 

spaced ground planes on either side, as shown in Fig. 4.1. In comparison with the more 

popular microstrip transmission line design, the CPW has a superior advantage in 

terms of fabrication simplicity, which arises from the fact that all conductive elements 

are situated in the same plane, eliminating thus the need for via connections to a 

backside ground plane. In addition, the CPW is characterised by a superior 

performance at millimetre-wave (mmWave) frequencies (i.e. above 30 GHz) in 

particular due to its suppression of higher spurious wave propagation modes, lower 

radiation loss and minimal dispersion properties [2]. The main disadvantages of this 

structure are its relatively low power handling capability and the requirement for 

potential airbridge connections between the ground planes at discontinuities or at 
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quarter wavelength intervals (λ/4). This technique is implemented in order to suppress 

the parasitic mode (coupled slotline mode) while equalising the potential of the two 

ground planes [3]. Fortunately, both disadvantages are not applicable to the inherently 

low power (mW levels) and compact (longest CPW dimension is less than λ/4 ) RTD 

circuits. 

 

Figure 4.1 Diagram of a standard coplanar waveguide (CPW) transmission line 

structure. The key design parameters include the thicknesses of the substrate (h) and 

conductor (t), the conductor length (l), the conductor spacings (s) and the widths of 

the ground planes (g) and signal line (w). 

In this work, the CPW has been used to connect to RTD devices for on-wafer probing. 

The characteristic impedance (Z0) of the CPW is defined in terms of the width of the 

central conductor line (w), the spacing between the adjacent conductors (s) and the 

substrate dielectric constant (εr) by [4]: 

 𝑍0 =
30𝜋

√𝜀𝑒𝑓𝑓

𝐾(𝑘′)

𝐾(𝑘)
 (4.1) 

where εeff is the effective dielectric constant, and can be approximated as [5]: 

 𝜀𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
 (4.2) 

and K(k) and K(k’) represent a complete elliptic integral of the first kind and its 

complement, for which k and k’ are given by: 
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 𝑘 =
𝑤

𝑤 + 2𝑠
 (4.3) 

 𝑘′ = √1 − 𝑘2 (4.4) 

Finally, the ratio of the two integrals can be approximated by: 

 
𝐾(𝑘′)

𝐾(𝑘)
=

1

𝜋
log (2

1 + √𝑘′

1 − √𝑘′
) , 𝑓𝑜𝑟 𝑘 ≤ 0.7 (4.5) 

The designed CPW characteristic impedance, used in this work has been chosen at Z0 

= 50 Ω, in order to satisfy the impedance matching requirement imposed by the 

measurement equipment. The structural parameters (i.e. w, and s) required to obtain 

the targeted impedance have been computed with the aid of the LineCalc tool, 

available within the Advanced Design System (ADS) software from Agilent 

Technologies [6]. Based on the InP substrate used in the design of the RTD epi-

structure, detailed in Table 3.1, with a corresponding thickness of h = 630 μm and a 

dielectric constant εr = 12.5 [7], the calculated parameters for the width of the central 

conductor and the conductor spacings are 60 μm and 40 μm, respectively. In addition, 

in order to ensure minimal signal attenuation within the CPW structure, the conductor 

thickness should typically be chosen to be at least 3 times the skin depth (δ) [8], which 

defines the relative depth of the current flow in the conductor. The skin depth is given 

by: 

  𝛿 = √
𝜌

𝜇0𝜇𝑟𝑓
 (4.6) 

where  is the metal resistivity (gold  = 2.44 × 10-8 Ωm), μ0 is the permeability of 

vacuum (μ0 = 4 × 10-7 H/m), μr is the relative permeability (μr = 1), and f is the 

targeted design frequency. For example, for a targeted frequency of f = 110 GHz (i.e. 

maximum frequency for device RF characterisation) the corresponding skin depth, 

based on Eqn. 4.6 is approximately δ = 237 nm, and will vary proportional to the square 

root of f -1. 

In RTD-based circuits, the CPW is used to convey DC and RF signals between the 

device and various passive components, and in a shorted configuration (i.e. CPW stub, 
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it is used to realise an inductive element) [9]. Fig. 4.2 shows an inductor designed as a 

shorted CPW stub.  

 

Figure 4.2 Inductor realised as a CPW in shorted configuration. Adapted from: [9]. 

The input impedance (Zin) of a standard CPW structure looking into the line (assuming 

a lossless line model) can be defined in terms of its effective length (l) for an arbitrary 

load (ZL) as [8]: 

 𝑍𝑖𝑛 = 𝑍0

𝑍𝐿 + 𝑗𝑍0𝑡𝑎𝑛(𝛽𝑙)

𝑍0 + 𝑗𝑍𝐿𝑡𝑎𝑛(𝛽𝑙)
 (4.7) 

where β is the phase constant computed as: 

 𝛽 =
2𝜋𝑓√𝜀𝑒𝑓𝑓

𝑐0
 (4.8) 

Considering the special case shown in Fig. 4.2, for which the CPW is terminated in a 

short, the load impedance can be approximated as ZL ≈ 0 (i.e. neglecting the inductive 

component, which appears beyond the indicated reference plane, due to the stored 

magnetic energy resulting from the RF current flow though the termination [9]). Eqn. 

4.7 can thus be simplified to: 

 𝑍𝑖𝑛 = 𝑗𝑍0𝑡𝑎𝑛(𝛽𝑙) (4.9) 

where Zin considered purely imaginary, irrespective of length l. Furthermore, for a 

given CPW with a designed electrical length less than /2, the input impedance can be 

considered as an inductive reactance: 
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 𝑍𝑖𝑛 = 𝑗ωL = 𝑗𝑍0𝑡𝑎𝑛(𝛽𝑙) (4.10) 

where L is the equivalent inductance of the CPW line, and ω is the angular frequency 

defined as: 

 ω = 2f (4.11) 

From a design perspective, Eqn. 4.10 can be rearranged to obtain the desired CPW 

length l in terms of the targeted operating frequency and designed characteristic 

impedance: 

 𝑙 =
1

𝛽
tan−1 (

ωL

𝑍0
) (4.12) 

This concept of the shorted CPW stub as inductor, for the design of RTD based 

integrated circuits, however, suffers from a major drawback, due to the fact that it does 

not facilitate different potentials between the signal line and ground conductors. This 

limitation can be overcome by loading the transmission line short by a MIM 

capacitance [5]. The realised capacitor, between the central signal conductor and 

ground plane appears in series with the line inductance and can be designed to act as 

an RF low impedance path at the design frequency. The design concept of MIM 

capacitors will be further detailed in the following section. 

4.2.2 Metal-insulator-metal (MIM) capacitor 

Metal-insulator-metal (MIM) and interdigital are the two approaches to realise planar 

capacitors for MMICs. The implementation choice is typically based on the size 

constraints imposed by the design and the required capacitor value. Generally, MIM 

capacitors are preferred due to their low associated parasitics and high quality factor 

(Q), used particularly for highly compact circuit designs, which require capacitance 

values in the pF range [10].  

In this project, MIM capacitors were mainly used in the design of RTD-based 

detectors. The design details of the detector circuit, together with its operation 

principle will be further discussed in Chapter 6. The basic design layout of the 

designed MIM capacitor consists of two metal layers separated by a dielectric layer, 
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as shown in Fig. 4.3, with the geometry of the component designed to load the shorted 

CPW between the signal and ground lines. 

 

Figure 4.3 Top (a) and cross-sectional (b) view of a standard MIM capacitor layout 

used to load the shorted CPW, with an effective area defined by w and l, and a 

dielectric thickness d. 

The designed capacitance value can be computed as: 

 𝐶 = 𝜀0𝜀𝑟

𝑤𝑙

𝑑
 (4.13) 

where ε0 is vacuum permittivity (ε0 = 8.854 × 1012 F/m), εr is the material dielectric 

constant, w and l are the component width and length, and d is the thickness of the 

dielectric layer.  

In this work, silicon nitride (Si3N4) with a thickness of d = 75 nm was the choice 

dielectric material (εr = 6.8). Considering the insulator layer structural and physical 

parameters, the computed capacitance, based on Eqn. 4.13 is approximately 0.8 

fF/μm2. The parasitic components formed formed between the (lateral) top and bottom 

conductor was neglected in this estimation as it was estimated to ~ 0.6 fF, lower by 

four orders of magnitude compared to the designed capacitance. Capacitors, in parallel 

configuration, with a fixed width of w = 140 μm (determined by the ground-to-ground 

spacing of the designed 50 Ω CPW structure) and various lengths l, ranging from 10 

μm up to 20 μm have been designed and fabricated in this work. The characterisation 

of such passive component will be further described in section 4.3. 
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4.2.3 Thin-film resistors 

Thin-film resistors were employed for device stabilisation purposes, particularly in 

order to suppress the low-frequency bias parasitic oscillations of the RTD within the 

NDR region during characterisation. Typically, metal thin-film resistors are used in 

MMIC (monolithic microwave integrated circuit) designs as they offer a higher 

temperature stability and precision, with a lower temperature coefficient of resistance 

(TCR) in comparison to semiconductor mesa resistors [11][12]. For this purpose, a 

nickel-chromium (NiCr) alloy (60:40) was chosen for the realisation of the stabilising 

resistors, deposited by EBPVD directly on the InP substrate. Even though NiCr 

resistors are commonly characterised by good power density handling capability, low 

TCR (77 ppm/°C [13]), and high resistance to oxidation [14], they generally tend to 

suffer from low fabrication repeatability due to high variation in Ni:Cr percentage as 

a result of the difference in vapour pressure between the two constituent metals [15], 

which could result resistivity variations between sequential runs. 

The layout design of the shunt resistor network (i.e. two parallel thin-film resistors 

between the signal line and the ground plane of the CPW structure), is shown in Fig. 

4.4 (top and side view). 

 

Figure 4.4 Top (a) and side view (b) of the thin-film NiCr shunt resistor network, for 

which w, l, and t are the width, length and thickness of the NiCr layer, respectively.  

The designed resistor value can be computed by: 

 𝑅 = 𝜌
𝑙

𝑤𝑡
= 𝑅𝑠ℎ

𝑙

𝑤
 (4.14) 
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where l, w, and t are the length (in the direction of the current flow), width and 

thickness of the NiCr thin-film resistor respectively, and  is the material bulk 

resistivity ( = 1.65 × 10-6 Ωm). A more common expression for the resistor value, in 

the case of constant thickness designs, can be given in terms of the sheet resistance 

Rsh, defined as 𝑅𝑠ℎ =
𝜌

𝑡
 (Ω/□). The defined sheet resistance value of NiCr for a thin-

film thickness of 33 nm has been determined experimentally at approximately 50 Ω/□ 

in [16], and was adopted as a design  guideline for the realisation of the shunt resistor 

network in this work. 

4.3 Characterisation of passive components 

The accuracy of the designed passive components described in section 4.2, including 

CPW transmission lines, MIM capacitors and thin-film NiCr resistors, used in the 

characterisation of RTD devices and the realisation of RTD-based detector circuits, 

was assessed using 2-port scattering parameter (S-parameter) measurements up 110 

GHz. For this purpose, the vector network analyser (VNA) Keysight E8361A was used 

in order to measure the transmission and reflection coefficients (S12, S21, S11 and S22) 

of the structure under test, as a function of applied signal frequency. Standard 

calibration of the VNA was performed to eliminate systematic errors and to move the 

measurement reference plane close to the tips of the probes. In this project, the Short-

Open-Load-Thru calibration technique was performed, using the reference loads 

provided on the impedance standard substrate (ISS) from Cascade Microtech. 

By measuring the provided short, open, load (50 Ω) structures, for each individual port, 

and further connecting the two ports using the thru structure, the VNA software can 

compute, and further compensate for [17]: 

• Directivity, due to generated signal leakage through the transmission path 

directly towards the receive path, thus bypassing the structure under test.  

• Transmission/reflection tracking, due to potential frequency variations 

between the reference and transmitted/reflected waves. 

• Port match errors, due to source/load mis-matches, resulting in multiple 

reflections between the ports and the structure under test. 

• Signal leakage or crosstalk between probes. 
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4.3.1 Coplanar waveguide 

The characterisation of the Finite Ground CPW transmission line was performed using 

a fabricated structure on the semi-insulating InP substrate of the RTD wafer. As 

previously discussed, the targeted design characteristic impedance was chosen as Z0 = 

50 Ω and was realised using a signal line width w = 60 μm, and a spacing s = 40 μm 

to each ground plane. The width of the ground plane was designed with g = 150 μm, 

2.5 times larger than the signal line width, in order to ensure minimal radiation losses 

[18]. An SEM image of the fabricated test structure (l = 500 μm) is shown in Fig. 4.5. 

 

Figure 4.5 SEM image of a Finite Ground CPW transmission line test structure 

designed with a characteristic impedance Z0 = 50 Ω. 

The computed inductance per unit length of the presented transmission line is 

approximately 0.42 fH/nm, while the calculated insertion loss is approximately 0.53 

dB/mm at 110 GHz [19]. 

The test structure was characterised using a 2-port S-parameter measurement up to 110 

GHz. The corresponding port-1 and port-2 reflection coefficients (S11 and S22) are 

shown on the plotted Smith chart in Fig. 4.6. As expected, the experimentally 

determined characteristic impedance Z0 of the CPW is in good agreement with the 

designed value of 50 Ω. In addition, the measured transmission coefficients (S12 and 

S21), plotted in Fig.4.7, indicate an average insertion loss of approximately 0.2 dB, 
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ensuring minimal signal attenuation when transmitted through the structure. Noise was 

observed for frequencies above 60 GHz, which is believed to be introduced by the 

measurement equipment extenders, which provide a transition between the coaxial and 

rectangular waveguide, in order to facilitate the frequency range up to 110 GHz. 

 

Figure 4.6 Measured Port-1 and Port-2 reflection coefficients (S11 and S22) of the 

CPW test structure presented on a Smith chart. 

 

Figure 4.7 Measured transmission coefficients (S12 and S21) of the CPW test 

structure. 
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4.3.2 MIM capacitors 

In the design of RTD-based detector circuits, MIM capacitors were designed in a 

parallel configuration, in order to realise shorted CPW inductors, while also providing 

a low impedance path for specific signal frequencies. An SEM image of a realised test 

structure, for characterisation purposes of parallel MIM capacitors is shown in Fig. 

4.8. 

 

Figure 4.8 SEM image of a fabricated CPW test structure, shorted by a parallel 

capacitor. The inset shows the Si3N4 dielectric layer sandwiched between two metal 

layers to realise the MIM capacitor. 

The behaviour of the MIM capacitor can be modelled using the equivalent circuit 

shown in Fig. 4.9, where Rs is the series resistance introduced by the conductor, L is 

the equivalent inductance of the shorted CPW structure, and C represents the designed 

MIM capacitor. Similar to the case of the standard CPW transmission line, the MIM 

capacitor shorted structure, was characterised using S-parameter measurements, up to 

110 GHz. The equivalent circuit parameters (i.e. Rs, L and C), were extracted by fitting 

the measured reflection coefficient of the structure, with the aid of the presented model 

in the entire frequency range, using a standard optimization process. Fig. 4.10 shows 

a comparison between the measured and modelled structure in the form of its reflection  
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and transmission coefficients S11 and S21 on a Smith chart, with the extracted parameter 

values of: Rs = 0.2 Ω, L= 40.6 pH and C = 1.8 pF. The obtained capacitance is close to 

the designed value of 1.68 pF, which was estimated using Eqn. 4.13, for an area of 140 

μm × 15 μm and a Si3N4 dielectric thickness of 75 nm. Furthermore, the measured data 

indicates that the capacitor will act as a low impedance (Z = 0.65 + j0.03 Ω) path to 

ground, for frequencies above 18.5 GHz, and its performance will start degrading at 

very high frequencies, where the series parasitic inductance becomes dominant.  

 

Figure 4.9 Equivalent circuit model of a shorted CPW by a MIM capacitor. 

 

Figure 4.10 Measured and simulated reflection and transmission coefficients S11 and 

S21 of a shorted CPW by a MIM capacitor. 
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4.3.3 Thin-film resistors 

NiCr thin-film resistors were used to suppress the bias parasitic oscillations of the 

RTD, when operated within the NDR region. The stabilising resistance was realised 

by a parallel combination of two shunt devices (across the CPW structure), in order to 

provide a symmetrical input port design. A micrograph of a fabricated shunt resistor 

network test structure is shown in Fig. 4.11.  

 

Figure 4.11 Micrograph of a fabricated resistor network test structure. 

Due to the fact that typically the DC characteristics of such a biasing network show an 

accurate design procedure, the performance of a shunt resistor structure was also 

investigated using 2-port S-parameter measurements. 

 

Figure 4.12 Measured Z11 parameter of a shunt resistor network test structure. 

The acquired measurements from the presented test structure, were converted to 

equivalent Z-parameters, where the input parameter Z11 models the CPW pad parasitics 
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together with the shunt resistor and is presented in Fig. 4.12. The real part of the Z-

parameter indicates an equivalent network resistance of 19 Ω close to DC, with a 

frequency variation of approximately 8% over 110 GHz. The determined resistance is 

in close agreement with the parallel equivalent designed 20 Ω value, for which, the 

individual component resistance (40 Ω) was computed using Eqn. 4.14 for the 

structural parameters w = 40 μm, l = 50 μm and t = 33 nm. The inductive behaviour 

displayed by the imaginary part of Z11 is attributed primarily to the series parasitic 

component introduced by the CPW structure, estimated at Lp = 35 pH. 

4.4 PIN diodes for high-speed applications 

The passive components described in section 4.2 constitute the key building blocks of 

fundamental RTD-based circuits, including sinusoidal oscillators and direct detectors. 

However, for high-speed applications, which require more complex circuitry, other 

components need to be considered [20] for purposes such as RF signal higher-order 

modulation [21][22], or routing of the signal through defined transmission paths in the 

case of high-frequency transceiver modules [23]. This section describes the 

performance of a proposed p-type intrinsic n-type (PIN) diode structure, suitable for 

monolithic integration with the RTD device for high-speed switching and modulation 

applications. 

 

Figure 4.13 Illustration of a standard PIN diode. 

The PIN diode is a semiconductor device, which comprises of a wide intrinsic region 

(drift region) sandwiched between highly doped p-type and n-type regions [24], as 

illustrated in Fig. 4.13. Due to the presence of the un-doped semiconductor material, 

the rectification capabilities of the PIN diode are inferior to the standard p-n junction 

diode, however its fast switching speeds, low package parasitic inductance and ability 

to control high-power RF signals make it a suitable solution for numerous applications 

operating at microwave and mmWave frequencies [25]. 
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Based on the polarity of the applied bias, between the highly doped regions, PIN diodes 

can operate in two distinctive modes, which can be easily illustrated using the device 

equivalent circuits [26] presented in Fig. 4.14.  

 

Figure 4.14 Equivalent circuit of a PIN diode in forward bias operation (a), where 

Rs denotes the series variable resistance, and in reverse bias operation (b), where Rp 

is the large parallel resistance and C is the device capacitance. L denotes in both 

states the series parasitic inductance, independent of biasing condition. 

Under forward bias conditions (Fig. 4.14 (a)), the device acts as a variable RF 

resistance (Rs), dependent on the charge concentration in the i-layer (i.e. current 

controlled resistance), behaviour which can be exploited in the realisation of  high-

speed switches, attenuators and amplitude modulators [25]. The variable series 

resistance Rs can be defined as: 

 𝑅𝑠 =
𝑙2

(𝜇𝑁 + 𝜇𝑃)𝑄
 (4.15) 

where l is the width of the i-layer, μn and μp are the mobility of electrons and holes in 

the material, respectively, and Q is the amount of stored charge in the un-doped layer 

(assuming same concentration of holes and electrons in the highly doped regions) 

given as: 

 𝑄 = 𝐼𝐹𝜏 (4.16) 

where IF is the forward bias current and τ is the carrier lifetime.  
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In reverse bias operation (Fig. 4.14 (b)), the PIN diode can be modelled as the parallel 

combination of a loss element (Rp) and device capacitance (C), in series with the 

parasitic inductance. The value of the parallel resistance Rp is considered infinite for 

an ideal device, given the absence of free charge in the i-layer. However, due to 

unwanted material impurities, a finite large resistance models the associated leakage 

current. The device capacitance, primarily determined by the thickness of the i-layer l, 

the effective area A and semiconductor dielectric constant εr, for an operating 

frequency above the dielectric relaxation constant [25], can be expressed as: 

 𝐶 =
𝜀0𝜀𝑟𝐴

𝑙
 (4.17) 

In contrast to the standard p-n junction diode, for which the device capacitance 

displays a continuous variation with bias, up to the breakdown voltage, the PIN diode 

capacitance becomes constant beyond a small applied reverse bias, lowering the 

complexity of the associated circuit design impedance matching process. 

The proposed InGaAs based PIN diode epi-layer design investigated in this work was 

adapted from [27] and is presented in Table 4.1. The relatively large i-layer region was 

chosen in order to reduce the device capacitance, thus improving the insertion loss, 

together with a higher doping of the p+/n+ layers, which will reduce the on-state 

resistance in order to improve isolation, when operated as a standard RF switch. 

Table 4.1 PIN diode epitaxial layer structure 

Material Thickness (μm) Doping (cm-3) 

In0.53Ga0.47As (p+) 0.15 1E20 : Si 

In0.53Ga0.47As (n) 1 5E15 : Si 

In0.53Ga0.47As (n+) 1 3E19 : Si 

SI : InP Substrate - 

 

For DC and RF characterisation purposes, PIN diodes with active areas of 10 × 10 μm2 

were fabricated using an optical mask and processing techniques described in Chapter 

3. Compared to RTD fabrication, the single fabrication variation is represented by the 
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greater InGaAs etch depth during the mesa definition stage due to the larger layer 

thickness of the PIN structure. The forward bias operation of the PIN diode was 

investigated using the measured I-V characteristics, shown in Fig. 4.15, alongside the 

variation of the series resistance Rs. The measurements indicate a turn-on voltage of 

around 0.6 V and an on-state resistance Ron = 1.3 Ω at 0.8 V. The relatively low on-

state resistance was achieved due to the designed high doping concentrations of the 

p+/n+ layers. 

 

Figure 4.15 Measured I-V (red) and R-V (black) characteristics of a fabricated 10 × 

10 μm2 PIN diode. 

 

Figure 4.16 Measured (solid line) and simulated (dotted line) real and imaginary 

part of device input impedance in the off-state at 0 V. 
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The corresponding off-state device capacitance (i.e. zero-bias capacitance Coff) was 

determined at Coff = 18.2 fF, using high-frequency one-port S-parameter 

measurements, with the same methodology as described in section 4.3. This was 

achieved based on fitting the small-signal equivalent circuit of the PIN diode (Fig. 4.14 

(b)) onto the converted imaginary impedance data, over the entire frequency range (up 

to 100 GHz), as shown in Fig. 4.16. Based on the acquired parameters, the maximum 

device cut-off frequency was estimated using 𝑓𝑐 = 1/(2𝜋𝑅𝑜𝑛𝐶𝑜𝑓𝑓) [28] at 

approximately 6.7 THz, which together with its wide resistance tuning range (between 

1.3 Ω and 250 MΩ), confirms its suitability for integration in high-frequency 

applications, such as high-data rate communication systems, which will be explored 

in the future. 

4.5 Summary and discussion 

In this chapter, the design and fabrication of various integrated circuit (IC) components 

required for the realisation of device stabilising networks and RTD-based ICs have 

been presented. The basic passive components include coplanar waveguides (CPW), 

CPW shorted by a MIM capacitor, and thin film NiCr resistors. Corresponding test 

structures for each discussed component have been fabricated and characterised using 

S-parameter measurements up to 110 GHz. Good agreement between the 

experimentally acquired data and analytical/simulated behaviours has been observed, 

which validates the described design procedures and fabrication processes.  

Furthermore, a PIN diode epitaxial structure, which will be shown to be suitable for 

monolithic epitaxial integration with the  RTD was proposed and characterised.  The 

PIN diode is expected to enable RTD-based high-speed switching or higher-order 

modulation schemes. 
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Chapter 5. RTD device modelling 

5.1 Introduction 

As resonant tunnelling diodes have been proven to be among the fastest solid-state 

electronic devices operating at room temperature [1], in recent years they have been 

considered key components for successful realization of THz oscillators, with 

fundamental frequencies of approximately 2 THz (1.98 THz) [2], high-sensitivity 

detectors in both wireless communication [3] and imaging systems [4], high-speed 

analogue-to-digital converters [5], digital logic gates [6] and memory [7]. However, in 

order for these applications to make the transition from the laboratory to the 

commercial and industrial markets, standard circuit design procedures need to be 

widely employed. The primary step in achieving the required methodologies is 

represented by the development of accurate device models, which can provide a 

foundation for their compact implementation into computer-aided design (CAD) 

software [8]. Such models would offer a new degree of circuit optimisation through 

simulation and functional verification, in comparison to the currently employed more 

generic theoretical and experimental approaches.  

As previously discussed in section 2.4, modelling the high-frequency behaviour of 

RTDs has represented the main focus of numerous device characterisation studies in 

the past decades, resulting in the continuous evolution of the various proposed small-

signal equivalent circuit representations. However, despite the establishment of a 

generic equivalent circuit model, that unifies the key RTD operational concepts 

evidenced experimentally (i.e. impedance measurements, or circuit performance 

analyses), the underlying physical mechanisms that determine the bias and frequency 

dependent circuit characteristics and their impact on the device performance are still 

highly disputed. In order to aid the combined efforts of validating the existing 

theoretical models, while also enabling their further development, a suitable extraction 

technique for small-signal equivalent circuit elements is needed. 

This chapter presents the challenges associated with RTD accurate device modelling, 

particularly in the negative differential resistance (NDR) region which confers the 

RTD with its unique capabilities that, for instance, in enabling THz sources, but which 
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induces parasitic oscillations with the bias cables in standard characterisation setups, 

hindering its accurate characterisation. In this context, a novel proposed systematic 

methodology is described for reliable RTD high-frequency characterisation. 

5.2 RTD DC characteristics and bias instabilities 

RTD devices with relatively large active areas of 10 × 10 μm2 were realised on the 

low-current density epi-structure described in Table 3.1, using the basic 

photolithography techniques discussed in Chapter 3. The DC characteristics of a 

fabricated device were acquired using a Keysight B1500A device parameter analyser 

and are presented in Fig. 5.1. The I-V curve is characterised by a peak-valley voltage 

difference (∆V) of around 2 V and peak-valley current difference (∆I) of around 16 

mA.  

 

Figure 5.1 Measured I-V characteristics of a 10 × 10 μm2 RTD device, exhibiting a 

plateau-like distortion within the NDR region, due to the presence of low-frequency 

parasitic oscillations.  

One of the biggest challenges in accurate DC and high-frequency characterisation of 

the device NDR region is represented by the presence of low-frequency parasitic 

oscillations, which manifest in the I-V measurement in the form of a plateau-like 

distortion [9-12], as highlighted in Fig. 5.1 between 3 V and 3.7 V . Several intrinsic 

factors have been identified as potential causes for low-frequency oscillations (i.e. 

coupling mechanisms between adjacent energy levels in the emitter – quantum well 
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region [9]), however, in most cases, they are primarily attributed to the resonant circuit 

created between the biasing cable inductance and the device self-capacitance [13]. As 

device bias oscillations have also been proven to limit the performance of RTD based 

circuits, different suppression techniques are generally employed. The most common 

stabilizing approach consists of an external resistance connected in parallel with the 

RTD, chosen such that the combined circuit conductance is positive [14]. In order to 

analyse the DC stability criterion, the simple device RC model can be considered (Fig. 

5.2), which consists of the device negative differential conductance (assuming 

operation within the NDR region) and self-capacitance. 

 

Figure 5.2 Stabilization circuit schematic of an RTD using a shunt-resistor (Rb), for low-

frequency bias oscillation. A simplified RTD model consisting of the device negative 

differential conductance (-Gn) and self-capacitance (Cn) is considered, where Lp represents 

the parasitic inductance. 

The admittance of the circuit presented in Fig. 5.2 is defined by: 

 
𝑌𝑖𝑛 =

1

𝑍𝑖𝑛
=

1

𝑅𝑏
+

1

𝑗𝜔𝐿𝑝 +
1

−𝐺𝑛 + 𝑗𝜔𝐶𝑛

 
(5.1) 

where Lp represents the parasitic inductive elements, Rb is the stabilizing resistor, -Gn 

is the device negative differential conductance and Cn is the self-capacitance. Based 

on Eqn. 5.1, the real part of the circuit admittance is: 
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𝑅𝑒(𝑌𝑖𝑛) =
1

𝑅𝑏
+

−
𝐺𝑛

𝐺𝑛
2 + 𝜔2𝐶𝑛

2

(
𝐺𝑛

𝐺𝑛
2 + 𝜔2𝐶𝑛

2)
2

+ (𝜔𝐿𝑝 −
𝜔𝐶𝑛

𝐺𝑛
2 + 𝜔2𝐶𝑛

2)
2

=
1

𝑅𝑏
− 𝐺𝑛

1

(1 − 𝜔2𝐿𝑝𝐶𝑛)
2

+ (𝜔𝐿𝑝𝐶𝑛)
2 

(5.2) 

In order to satisfy the stability condition at DC (assuming 𝜔 = 0), the real part of the 

admittance (Eqn. 5.2) needs to be positive [15][16]: 

 𝑅𝑒(𝑌𝑖𝑛) =
1

𝑅𝑏
− 𝐺𝑛 > 0 (5.3) 

Thus, from Eqn. 5.3, the value of the biasing resistor, based on the absolute value of 

Gn, given by Eqn. 2.10, can be chosen such that: 

 𝑅𝑏 <
1

𝐺𝑛
=

2∆𝑉

3∆𝐼
 (5.4) 

As a consequence, the considered resistance value needs to be small in order to 

suppress the bias oscillations. However, the value of the real part of the admittance 

will significantly decrease for 𝜔 ≈ 1/√𝐿𝑝𝐶𝑛, and thus at very high frequencies Re(Yin) 

< 0, potentially making the circuit unstable. In this case, high-frequency oscillations 

may occur when the device is biased in NDR region. The criterion for high-frequency 

device stability is derived in [14], based on a Van der Pol analysis approach and is 

given as: 

 
𝐿𝑝𝐺𝑛

𝐶𝑛
< 𝑅𝑏 (5.5) 

Furthermore, for large current density RTD structures, a low stabilising resistor value 

will lead to high bias current associated power losses, in turn degrading the DC-to-RF 

conversion efficiency, when implemented in an oscillator circuit, or reducing the 

overall detection sensitivity in the case of RTD based receivers. Therefore, various 

other stabilization techniques have been proposed based on non-linear devices (i.e. 

Schottky diodes) [17] or RC networks [18]. However, for the device characterisation 

study discussed in this work, the simple shunt-resistor network was considered, 

primarily due to the reduced design and fabrication complexity. RTDs with similar 
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active areas were fabricated on the same sample, with an included thin film NiCr 

stabilizing resistor network (Fig. 5.3), in order to investigate and characterise the 

device NDR region. The stabilizing resistor value was chosen to be 20 Ω, in order to 

satisfy Eqn. 5.4, where 1/Gn = 83.3 Ω for this particular device. 

 

Figure 5.3 Micrograph of realised RTD with a 20 Ω stabilizing resistor network. 

The device I-V characteristics were determined indirectly, by first de-embedding the 

current through the resistor and the measurements and are shown alongside the un-

stabilised curve in Fig. 5.4.  

 

Figure 5.4 Comparison between the measured I-V characteristics of an un-stabilised 

(red) and stabilised (black) 10 × 10 μm2 RTD device. 

The effect of stabilising resistor network on the low-frequency bias oscillations can be 

directly observed from the de-embedded measurement, as the characteristic plateau-
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like feature is absent in NDR region. The relatively small differences between the two 

separate sets of measurements, in terms of peak-current, can be attributed to the 

fabrication process not yielding two perfectly identical devices (i.e. uneven metal 

deposition, or anisotropic mesa etching). The sharp transition between the peak-

current region and the NDR, as discussed in Chapter 2, is attributed to the narrow 

resonance that arises between the discrete energy levels in the quantum-well and the 

enhanced pseudo-triangular well (2D-2D tunnelling), as a result of the un-

doped/lightly doped graded spacer layer, present in the epi-structure design [19]. 

Furthermore, the relatively large voltage drop across the wide depletion region, in the 

case of this particular epitaxial structure, leads to a shift in peak-voltage to a relatively 

high observed value (2.95 V), due to the increased bias requirement to achieve the 

resonance condition. 

The impact of the presented stabilisation method on the low-frequency bias 

oscillations was further investigated using a Keysight E4448A spectrum analyser, 

connected to the measurement setup through a bias tee, as shown in Fig. 5.5, while the 

device was biased in the NDR region (3.1 V).  

 

Figure 5.5 Diagram of on-wafer RTD measurement setup. The B1500A provides the 

device bias voltage and also acquires the current measurement, while the spectrum 

analyser is used to measure the parasitic oscillations. 

Fig. 5.6 shows the measured low-frequency oscillations present in the case of the 

unstabilised device (red curve) that lie in the 1-2 MHz range for fundamental 

oscillations. The same measurement was taken from the device with an integrated 

stabilising shunt resistor (black curve), under the same bias conditions. No significant 

oscillations could be observed in the spectrum when biased within the NDR region.  
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Figure 5.6 Measured low-frequency bias oscillations spectrum, in the NDR region 

for a stabilised (black) and un-stabilised (red) RTD.  

The final performed DC analysis of the device was done using a double voltage sweep 

measurement (between 0 V and 6 V) for the stabilised RTD, which revealed no 

distinctive plateau-like regions or particular current discontinuities in both forward and 

reverse direction bias variation, that could potentially hinder the device high-frequency 

characterisation. However, a hysteresis behaviour was observed in the NDR region, 

when the reverse voltage sweep occurred after the positive increase in bias, as shown 

in Fig. 5.7.  

 

Figure 5.7 Measured stabilised device I-V characteristics using a forward and 

reverse voltage sweep. 



Chapter 5. RTD device modelling 

111 

Previous studies have related this behaviour to an extrinsic induced bistability 

operation regime by external series resistance [20-22] introduced in the metal-

semiconductor contact regions or by the biasing equipment. In the case of this 

particular device, the relatively small voltage span of the hysteresis (approx. 50 mV) 

was observed unaffected by the variation in contact resistance (i.e. devices with 

different active areas) or different measurement setups (voltage source, cables, etc.). 

An alternative cause of this behaviour can be attributed to an intrinsic phenomenon, 

modelled by the dynamic charge build-up in the quantum well [23-25], which arises 

from the feedback-like dependence between the electron sheet concentration and the 

tunnelling current. This interaction leads to a change in the potential profile of the 

device, altering the energy level of the resonant state, and therefore reducing the effect 

of the applied bias, which results in two stable operational regimes [26][27]. Such 

behaviour has been demonstrated experimentally for specific layer structures in 

relation to the introduction of a large asymmetric spacer layer  [28-30], similar to the 

one presented in this project, with a proven dependence of the hysteresis voltage span 

on the width of the un-doped/lightly doped region [31]. However, the observed 

hysteresis behaviour does not impose any restrictions on the device high-frequency 

characterisation of the device (i.e. no variation in current is observed at any set bias 

point during high-frequency measurements), and so it was not investigated further as 

part of this study.  

5.3 RTD high-frequency characterisation 

As previously mentioned, device bias circuit instabilities present in the NDR region 

have represented a major challenge in accurate characterisation of RTD devices at 

relevant operating frequencies. Typically, RTD studies of this nature within the NDR 

region, rely on the use of devices with small physical active area dimensions (usually 

< 1 μm2) [11][32], for which their proportionally small negative differential 

conductance can be compensated by the impedance of the measurement equipment 

(i.e. when characterised by a vector network analyser with a typical 50 Ω system 

impedance) to achieve a stable operating regime. This approach is, however, only 

applicable to low peak current density RTDs (typically < 100 kA/cm2) [33]. In the case 

of high current density epitaxial designs (i.e. exceeding 300 kA/cm2), however, a 

stabilising method needs to be adopted [34], making the characterisation of the NDR 

region usually impossible. RF characterisation of the NDR region of a stabilised device 
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using the common shunt resistor approach has been reported once in the literature [35], 

however no details about the passive component de-embedding were given, which puts 

in question the accuracy of the extracted data.  

Currently, high-frequency modelling of RTDs is conducted in the positive differential 

resistance (PDR) regions of the device, and then the results are used to estimate the 

RF behaviour within its NDR region, based on theoretical and analytical predictions 

[36][37]. Furthermore, key equivalent circuit elements, such as the device self-

capacitance, are generally extracted in narrow frequency range [36], and as such, there 

is limited scope to validate the accuracy of this approach. 

5.3.1 Bond-pad and shunt resistor de-embedding 

For the required high-frequency measurements for RTD characterisation, typically 

done using S-parameter measurements, the impact of the surrounding extrinsic circuit 

elements comprising the stabilisation resistor and bonding pads will be substantial. 

Therefore, modelling these extrinsic circuits as fixed value lumped elements, as 

presented in [38], is in most cases not adequate. For this purpose, a robust on-wafer 

bond-pad de-embedding technique is generally preferred. Two main methods are 

commonly described in the literature: the cascade method [39], which treats the device 

together with the extrinsic network as a series of unknown linear networks; and the 

short and open (SO) dummy pad test structure method [40], which models the two-

port network as a standard transmission-line. The biggest known drawback of the 

cascade method is that its accuracy is based on the assumptions that the series of 

extrinsic networks represented by pads and interconnects are identical and their 

connection is a perfect short, which in practice is not accurate at very high frequencies.  

The SO de-embedding technique has been primarily employed for RTD 

characterisation. It generally accommodates the pad geometry and uses short and open 

dummy pad test structures as illustrated in Fig. 5.8, in order to recreate a simplified 

model of the bond-pads. The open dummy pad test structure is used to characterise the 

parallel parasitic capacitive component (Cp), whereas the short dummy pad test 

structure is used to characterise the series inductive component (Lp). 

The two-step SO de-embedding procedure can be summarised as follows: The RTD 

circuit Z-parameters are obtained from the measured one-port S-parameters: 



Chapter 5. RTD device modelling 

113 

  𝑍 = 𝑍0

1 + 𝛤𝑖𝑛

1 − 𝛤𝑖𝑛
 (5.6) 

where Γin or S11 is the input reflection coefficient of the RTD and bond-pad 

combination and Z0 is the characteristic impedance of the measurement setup 

(typically 50 Ω). 

 

Figure 5.8 Micrographs of an open (left) and short (right) RTD dummy pad test 

structures. Source:[41]. 

The impact of the parallel capacitive component (Cp) can be first eliminated by 

subtracting the measured Y-parameters of the open dummy pad structure (Yopen) from 

the measured RTD admittance (Ymeas): 

  𝑌𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑌𝑚𝑒𝑎𝑠 − 𝑌𝑜𝑝𝑒𝑛 (5.7) 

The impedance of the series inductive component (Zseries) can be isolated from the 

measured admittance of the short dummy-pad structure (Yshort) by again removing the 

parallel component: 

  𝑍𝑠𝑒𝑟𝑖𝑒𝑠 = (𝑌𝑠ℎ𝑜𝑟𝑡 − 𝑌𝑜𝑝𝑒𝑛)−1 (5.8) 

Finally, the Z-parameters of the RTD can be obtained as: 

  𝑍𝑅𝑇𝐷 = ((𝑌𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙)
−1

−  𝑍𝑠𝑒𝑟𝑖𝑒𝑠) (5.9) 
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The accuracy of this method has been shown to produce reliable results for low peak 

current density devices, as attempted in [42], however, as previously stated, for high 

current density designs and even large active area RTD designs, an external stabilising 

circuit across the bond-pad structure is required in order to suppress existing 

oscillations. This configuration, with the additional extrinsic components, deviates 

from the standard transmission-line model and thus, the increased complexity cannot 

be fully accommodated by the SO method, which would also neglect additional 

parallel parasitic components introduced in the case of a shunt thin film resistor.  

In this thesis, a new approach is proposed in order to accurately characterise the NDR 

regions of (stabilised) RTDs without limitations to device sizing or frequency [43]. 

This is based on a universal on-wafer bond-pad and shunt resistor de-embedding 

technique for reliable high-frequency device characterisation. The basis of the 

proposed method relies on the fact that the stabilising resistor including the extrinsic 

elements can be considered as a standard 2-port network connected to a load (RTD). 

 

Figure 5.9 RTD biased through a shunt resistor Rb, which is modelled as a 2-port 

network together with the bond-pad parasitic elements (Lp and Cp). 

Fig. 5.9 shows an RTD device with a shunt resistor for bias stabilisation connected 

across it, together with the parasitics elements (Lp and Cp) introduced by the metallic 

bond-pads. The bond pads and stabilisation resistor can be considered as a 2-port 

network, which can be represented by the S-parameter matrix in terms of the incident 

(ai) and reflected (bi) ‘power waves’ [44]: 
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  (
𝑏1

𝑏2
) = (

𝑆11 𝑆12

𝑆21 𝑆22
) (

𝑎1

𝑎2
) (5.10) 

By expanding the matrix identity in Eqn. 5.10, the reflected waves are given by: 

  𝑏1 = 𝑆11𝑎1 + 𝑆12𝑎2 (5.11) 

  𝑏2 = 𝑆21𝑎1 + 𝑆22𝑎2 (5.12) 

If the RTD has a reflection coefficient, ΓRTD, then using the standard above expansion, 

the circuit input reflection coefficient Γin will be given by [45]: 

  𝛤𝑖𝑛 =
𝑏1

𝑎1
= 𝑆11 +

𝑆12𝑆21𝛤𝑅𝑇𝐷

1 − 𝑆22𝛤𝑅𝑇𝐷
 (5.13) 

Finally, rearranging Eqn. 5.13, the reflection coefficient of the RTD can be obtained: 

  𝛤𝑅𝑇𝐷 =
𝛤𝑖𝑛 − 𝑆11

𝛤𝑖𝑛𝑆22 − 𝑆11𝑆22 + 𝑆12𝑆21
 (5.14) 

The S-parameters (i.e. S11, S12, S21, S22) that define the 2-port network presented in the 

circuit (Fig. 5.9), can be determined by a two-port measurement of a fabricated 

auxiliary dummy-pad and resistor structure, identical to the one employed for the 

stabilised RTD, but without the device under test (DUT), as shown in Fig. 5.10. 

The main advantage of the proposed procedure is represented by the fact that it ensures 

the stabilising network, together with the additional parasitic components are de-

embedded from the intrinsic RTD data, thus greatly simplifying the device modelling 

process (i.e. making a clear distinction between the external shunt resistance and the 

device conductance together with the contact resistance). Furthermore, the reduced 

complexity of this de-embedding method, by requiring only one additional set of 

measurements (in comparison with the SO method), together with the use of measured 

data provides a significant improvement in accuracy, since no initial assumptions are 

required. The main disadvantage of this approach is however the requirement for a 2-

port measurement of the auxiliary test structure, with the associated calibration stages 

of the measurement setup. Additionally, specific care must be taken in relation to the 

second port probe positioning in order to accurately reproduce the extent of the 

metallic pads. 
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For the experimental demonstration of the proposed method, S-parameter 

measurements of a stabilised RTD and the auxiliary test structures were done using 

the Keysight E8361A vector network analyser (VNA). The measurement setup was 

similar to the one presented in Fig. 5.5 (spectrum analyser replaced by the VNA), with 

both the bias voltage and VNA signal fed to the DUT using a 100 μm pitch ground-

signal-ground (GSG) probe. An initial on-wafer calibration was initially performed, 

using the short-open-load-through (SOLT) technique described in Chapter 4.  

The measurements were carried out in a 10 MHz – 110 GHz frequency span, with the 

port power set at -17 dBm to ensure that a maximum peak-to-peak voltage seen by the 

device was of less than 0.1 V. This is particularly important for the accurate 

characterisation of key device bias regions, such as the peak-current region, where the 

device differential conductance may vary between a positive and a negative value. For 

the auxiliary test structure, the probe for port 2 was positioned as indicated in Fig. 5.10. 

 

Figure 5.10 Micrograph of the auxiliary test structure – bond-pad and shunt resistor 

network. The red circles indicate the placement of standard ground-signal-ground 

(GSG) high-frequency probes for the 2-port measurement. 

In order to assess the applicability of the proposed de-embedding method, initial 

measurements were acquired in the PDR region in the case of both the stabilised and 

unstabilised RTD device under the same bias conditions. The measured S11 parameters 

of the two devices, at a bias of 2.9V (close to the peak region) are shown in Fig. 5.11. 

The presence of the shunt resistor network in the case of the stabilised device (black 

curve) can be directly observed from magnitude and phase differences between the 

two sets of measurements, in the chosen frequency range. 
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Figure 5.11 S-parameters stabilised (black trace) and unstabilised (red trace) RTD 

device biased at 2.9 V in the positive differential resistance (PDR) region – around 

the peak-current, showing magnitude (solid line) and phase (dashed line). 

The presence of the shunt resistor network in the case of the stabilised device (black 

curve) can be directly observed from magnitude and phase differences between the 

two sets of measurements, in the chosen frequency range. The de-embedding 

procedure was carried out in both cases using the measured 2-port S-parameter data 

from their corresponding test structures (i.e. metal pads and shunt resistor in the case 

of the stabilised device, and only metal pads in the case of the un-stabilised device). 

An example of the measured S-parameters (magnitude and phase) from the pad and 

resistor test structure is shown in Fig. 5.12, where a clear variation in the behaviour of 

the input (S11) and output port (S22) reflection coefficients can be observed at higher 

frequencies. This response is attributed to the physical design differences between the 

transmission line geometries at port-1 and port-2 (i.e. tapered configuration at port-2). 

A comparison between the resulting de-embedded signals from the two RTDs are 

shown in Fig. 5.13 (black trace – originally stabilised device and red trace originally 

unstabilised device). Good agreement can be observed between the two measurements 

under the same bias conditions, which validates the applicability of this procedure. The 

observed minor discrepancies at lower frequencies can be attributed to the fabrication 

factors. Overall, this result shows that the proposed de-embedding method is not 

limited by a specific device external circuitry, and so is suitable to accommodate 

different bond-pad and stabilizing network configurations. 
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Figure 5.12 S-parameters of the pads and shunt resistor test structure used for de-

embedding the stabilised device. 

 

Figure 5.13 S-parameters stabilised (black trace) and unstabilised (red trace) RTD 

device biased at 2.9 V in the positive differential resistance (PDR) region, showing 

magnitude (solid line) and phase (dashed line) after the de-embedding procedure. 

5.3.2 Small-signal equivalent circuit parameter extraction procedure 

For the purpose of RTD high-frequency characterisation, based on the proposed de-

embedding procedure, the generic parallel inductance RTD model shown in Fig. 5.14 

which was previously discussed in section 2.4 was investigated.  
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Figure 5.14 RTD parallel inductance model used in the device high-frequency 

characterisation. Rs is the contact and access resistance, Gn the device conductance, 

Cn the device self-capacitance and Lqw the quantum-well inductance. 

The input impedance of the small-signal equivalent circuit can be described as: 

 
𝑍𝑅𝑇𝐷 = 𝑅𝑠 +

1

𝑗𝜔𝐶𝑛 +
1

𝑅𝑛 + 𝑗𝜔𝐿𝑞𝑤

 
(5.15) 

or in terms of its real and imaginary input impedance as: 

 𝑅𝑒(𝑍𝑅𝑇𝐷) = 𝑅𝑠 +
𝑅𝑛

(1 − 𝜔3𝐿𝑞𝑤𝐶𝑛)
3

− (𝜔𝑅𝑛𝐶𝑛)2
 (5.16) 

 
𝐼𝑚(𝑍𝑅𝑇𝐷) =

−𝜔3𝐿𝑞𝑤
2 𝐶𝑛 − 𝜔𝑅𝑛

2𝐶𝑛 + 𝜔𝐿𝑞𝑤

(1 − 𝜔3𝐿𝑞𝑤𝐶𝑛)
3

− (𝜔𝑅𝑛𝐶𝑛)2
 (5.17) 

where the resistance 𝑅𝑛 = 𝐺𝑛
−1. 

The increased model complexity does not allow for a purely analytical extraction of 

the RTD parameters, however an inspection of the circuit presented in Fig. 5.14 reveals 

a few key aspects in relation to the equivalent circuit elements and their influence at 

different frequencies. Firstly, based on Eqn. 5.16, it is clear that at the higher end of 

the measurement spectrum, the contact resistance Rs dominates the real part of the 

device impedance, since Gn is typically a few milli-Siemens, Cn is tens of femto-Farads 

or larger, Lqw is considered in the pico-Henry range, and therefore their contribution to 

the intrinsic device resistance can be negligible at millimetre-waves. Furthermore, at 
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high enough frequencies, the capacitance Cn would provide a short-circuit path, which 

would effectively mask any contributions to the input impedance from the series 

combination of Gn and Lqw. Based on these observations the following extraction 

procedure is proposed: 

a) The de-embedded RTD S-parameter data (ΓRTD) is first converted into Z-

parameters, which provides the real and imaginary device impedance (ZRTD). As 

previously explained, the real part of the impedance at high frequencies provides 

an estimate of Rs as: 

 𝑅𝑠 ≈ 𝑅𝑒(𝑍𝑅𝑇𝐷)𝜔→∞ (5.18) 

Fig. 5.15. provides such plots for one bias point in the PDR and another in the 

NDR, respectively. As expected, the real parts of the device input impedance 

become frequency independent at high frequencies (typically > 80 GHz), with  

Rs ≈ 2.5 Ω at Vbias = 1 V and Rs ≈ 3.5 Ω at Vbias = 3.1 V. These values of Rs are 

initial estimates at the respective bias voltages. The final value of Rs at each bias 

point is determined in conjunction with the simultaneous determination of the 

other intrinsic parameters, namely Cn, Rn and Lqw. Here, the basis of the parameter 

extraction is that each of these lumped elements is independent of frequency. 

 

Figure 5.15 Real part of Z-parameters in the PDR region at 1V (blue curve) and in 

the NDR region at 3.1V (red curve). The high frequency regions used for Rs 

estimation are presented in the inset graph. 



Chapter 5. RTD device modelling 

121 

b) The initial Rs estimation is de-embedded from ZRTD. The resulting data represents 

Cn in parallel with Gn and Lqw and thus, it can be expressed using its admittance:  

  𝑌𝑅𝑇𝐷 = 𝑗𝜔𝐶𝑛 +
1

𝑅𝑛+𝑗𝜔𝐿𝑞𝑤
=

𝑅𝑛

𝑅𝑛
2+𝜔2𝐿𝑞𝑤

2 + 𝑗𝜔 (𝐶𝑛 −
𝐿𝑞𝑤

𝑅𝑛
2+𝜔2𝐿𝑞𝑤

2 )  (5.19) 

The circuit admittance with the de-embedded contact resistance value for the 

chosen two bias points defined in (a) is shown in Fig. 5.16. 

 

Figure 5.16 Imaginary part of Y-parameters with de-embedded Rs – linear region 

shown in inset used to estimate Cn: in the PDR region Cn= 93 fF (a) and in the NDR 

region Cn= 110 fF (b). 

c) From (5.19), it should be clear that a correct value of Rs would provide an 

imaginary part which varies linearly with frequency (at low frequencies). The 
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value of Rs may be further adjusted to achieve this targeted linearity. At this stage 

Cn can be assumed dominant at lower frequency and estimated as: 

 𝜔𝐶𝑛 ≈ 𝐼𝑚(𝑌𝑅𝑇𝐷) (5.20) 

Similarly to Rs, the estimated value of Cn can be de-embedded from the data in 

order to obtain the equivalent series circuit comprised of Gn and Lqw, which after 

converting to impedance can be expressed as: 

  𝑍𝑅𝑇𝐷1 = 𝑅𝑛 + 𝑗𝜔𝐿𝑞𝑤 (5.21) 

 

Figure 5.17 Real part of Z-parameters with de-embedded Rs and Cn – linear region 

shown in inset used to estimate Rn: in the PDR region Rn= 284 Ω (a) and in the NDR 

region Rn= 136 Ω (b). 
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Figure 5.18 Imaginary part of Z-parameters with de-embedded Rs and Cn – linear 

region shown in inset used to estimate Lqw: in the PDR Lqw = 0.37 nH (a) and in the 

NDR region Lqw = -0.48 nH, where Cn is further adjusted to 94 fF to achieve 

linearity (b). 

d) By using Eqn. 5.21 the correct value of Rs (and Cn) should provide the frequency 

independent values for Rn and Lqw. Thus, Rs and Cn can be again adjusted to 

achieve this. The real part of ZRTD1, (Fig. 5.17), can be used to directly determine 

Rn, while the imaginary part (Fig. 5.18) yields Lqw. As expected, the magnitudes 

of both Rn and Lqw become negative when the device is biased in the NDR region. 

In specific cases, for which the magnitude of Lqw is large (i.e. in the NDR region), 

its effects can be observed more dominant at lower frequencies in the susceptance 
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of the circuit (Im(YRTD)). Using the estimation presented in (c) would provide an 

overcompensated value of Cn, which needs further adjustment in order to achieve 

linearity in the real and imaginary part of ZRTD1. 

In summary, the described extraction procedure starting with an estimate value of Rs 

would determine the intrisic RTD elements, through sequential de-embedding of the 

fixed component between stages. Due to the implied estimations, a few iterations 

might be required in specific bias ranges, in which the values for Rs and Cn are typically 

varied within ± 10% in order to account for potential under-/overcompensation. 

Futhermore, the somewhat random behaviour at higher frequencies, as shown in Fig. 

5.17 and 5.18, might be attributed to reduced measurement accuracy at these 

frequencies. 

The proposed extraction procedure was carried out for several key points thoughout 

the entire device bias range and the obtained parameters were used to compute 

simulated device input impedance and reflection coefficient. The results are compared 

with the measured impedance data as illustrated in the following figures (i.e. Fig. 5.19, 

Fig. 5.20 and Fig. 5.21, respectively), for the device input impedance in all three 

regions of interest. 

 

Figure 5.19 De-embedded real and imaginary measured (line) and fitted (circles) Z-

parameters of a stabilised RTD at 1V in the first PDR region. 
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Figure 5.20 De-embedded real and imaginary measured (line) and fitted (circles) Z-

parameters of a stabilised RTD at 3.1V in the NDR region. 

 

Figure 5.21 De-embedded real and imaginary measured (line) and fitted (circles) Z-

parameters of a stabilised RTD at 5V in the second PDR region. 

Excellent agreement between measurement and simulated RTD data, based on the 

above described extraction methodology, can be observed over the complete 

measurement frequency range (i.e. 10 MHz to 110 GHz), demonstrating the accuracy 

of the proposed procedure. 
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In order to further validate the accuracy of the extracted parameters, a standard 

optimisation process was used with the aid of the extracted data as starting parameters 

in order to obtain an error margin for each coefficient with 95% confidence bounds. A 

summary of the extracted small-signal equivalent circuit elements at various bias 

points, throughout the entire bias range, is presented in Table 5.1, alongside the 

computed variation range (tabulated in brackets), following the optimisation stage. 

Table 5.1 Summary of extracted parameters 

Bias 

Voltage (V) 
Rs () Gn (mS) Cn (fF) Lqw (nH) 

1 
2.5 

(2.87) 

3.52 

(3.48 : 3.55) 

93 

(91 : 94) 

0.37 

(0.32 : 0.35) 

2 
3.18 

(3.3) 

11.11 

(10.86 : 11.36) 

86 

(86 : 89) 

0.11 

(0.08 : 0.13) 

2.9 
3.5 

(3) 

7.57 

(7.46 : 7.75) 

85 

(84 : 89) 

0.17 

(0.15 : 0.2) 

3.1 
3.6 

(3.9) 

-7.35 

(-7.46 : -7.35) 

94 

(91 : 95) 

-0.478 

(-0.54 : -0.45) 

3.4 
3.73 

(3.9) 

-3.83 

(-3.83 : -3.76) 

92 

(92 : 93) 

-0.63 

(-0.62 : -0.6) 

3.6 
3.8 

(4) 

-2.52 

(-2.56 : -2.51) 

91 

(88 : 91) 

-0.80 

(-0.88 : -0.79) 

4.8 
4.3 

(4.23) 

0.52 

(0.5 : 0.53) 

90 

(87 : 91) 

8 

(8.12 : 8.5) 

5 
4.42 

(4) 

1.49 

(1.49 : 1.51) 

90 

(86 : 90) 

1.8 

(1.78 : 1.89) 

5.2 
5.12 

(5.12) 

3.09 

(3.07 : 3.09) 

89 

(87 : 90) 

0.54 

(0.54 : 0.56) 

5.4 
5.23 

(4.87) 

5.2 

(5.15 : 5.23) 

88 

(86 : 91.5) 

0.28 

(0.27 : 0.29) 
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A comparison between the computed goodness-of-fit based on the initially extracted 

parameter values and the improved fit obtained through an optimisation process using 

the initial values as the procedure start values is given in Table 5.2 in the form of R-

squared value [46]. 

Table 5.2 Computed goodness-of-fit between measurement and simulation 

Bias Voltage  

(V) 

R-squared 

extracted values 

R-squared 

improved by optimization 

1 0.9985 0.9995 

2 0.9988 0.9998 

2.9 0.9679 0.9857 

3.1 0.9939 0.9947 

3.4 0.9965 0.9974 

3.6 0.9988 0.9994 

4.8 0.9696 0.9890 

5 0.9876 0.9907 

5.2 0.9919 0.9934 

5.4 0.9897 0.9938 

 

An R-squared value above 97% was obtained across the entire RTD operating range 

based solely on the initial extracted data. Overall, a further improvement of 

approximately 2% was observed after the optimisation stage which shows that good 

extraction accuracy can be achieved using the proposed procedure. 

5.3.3 Modelling of RTD intrinsic parameters 

The behaviour of the determined RTD equivalent circuit parameters has been further 

investigated, particularly in relation to their bias dependence, through alternative 

proposed theoretical and experimental estimation methods.  
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Firstly, the metal-semiconductor contact resistance was determined experimentally by 

using  standard the transmission line model (TLM) measurements, which are detailed 

in Appendix B. The total Rs value (i.e. considering the contribution of the top and 

bottom contacts) for the 10 × 10 μm2 devices investigated in this characterisation study 

is estimated at approximately 2.6 Ω. The results of the complete extraction procedure 

indicate a relatively small linear bias dependence of the contact and access resistance 

(1.3 Ω over a range of 4V), as shown in Fig. 5.22.  

 

Figure 5.22 Extracted RTD contact resistance Rs showing a variation of 

approximately 1.3 Ω over a bias range of 4V. 

The presented variation in contact resistance with bias was possible to observe at high 

frequencies, between 80 – 110 GHz. Even though this phenomenon has never been 

previously reported in the context of RTD characterisation studies, i.e. Rs is usually 

assumed to be bias independent, it could be attributed to the electric field dependence 

of the carrier mobility [47][48]. 

Furthermore, the estimated contact resistance has been de-embedded from the 

measured stabilised RTD I-V characteristics (Fig. 5.4) in order to yield the intrinsic 

device I-V curve. Based on the “true” current-voltage data, the device differential 

conductance Gn was computed directly as the first derivative of the de-embedded 

curve. Good agreement can be seen in Fig. 5.23, between the variation of Gn with bias 

and the extracted Gn values from S-parameter data. 
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Figure 5.23 Differential device conductance Gn computed from the intrinsic I-V 

characteristics (black trace) and extracted (red dots). 

The RTD self-capacitance, Cn can be computed throughout the entire bias range as the 

combination of geometric capacitance, C0 together with the quantum-well capacitance, 

Cqw, which arises from the electron density change in the quantum well as a function 

of applied bias, as derived in [35]: 

  𝐶𝑛 = 𝐶0 + 𝐶𝑞𝑤 = 𝐶0 −
𝐺𝑛

𝜈𝑐
 (5.22) 

Based on the approximation of the DBQW structure as a standard parallel-plate 

capacitor (i.e. an undoped region confined between a highly doped collector and 

emitter), C0 was estimated as described in section 2.4 (Eqn. 2.14) at 88 fF, using the 

widths of the particular layer structure and their corresponding material dielectric 

constants summarised in Table 5.3. 

Table 5.3 Summary of material parameters 

Layer Width (L) Dielectric constant (εr) 

Quantum-well 4.7 nm 13.1 [49] 

Barrier 2.5 nm 13.1 [49] 

Depletion region 120 nm 10.1 [50] 
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Assuming the width of the depletion region to be bias independent, the extracted 

device capacitance from S-parameters, which corresponds to Cn, indicates that the 

static capacitance C0 is slightly higher (~90 fF). Furthermore, using this parameter 

(C0), together with the measured device differential conductance, the magnitude of the 

quantum-well – collector electron escape rate (assumed bias independent), which 

defines Cqw, was determined using Eqn. 5.22 to be 1/νc ≈ 0.55 ps. The total calculated 

RTD capacitance variation is presented in Fig. 5.24, alongside the extracted device 

capacitance from S-parameter data. The small observed discrepancies at lower bias 

voltages (approximately 4 fF) can be correlated to the assumption regarding the bias 

independency of the electron escape rate, which was not computed theoretically. 

 

Figure 5.24 RTD Device capacitance Cn simulated (black trace) and extracted (red 

dots). 

For modelling the behaviour of the quantum-well inductance, the initial derivation 

proposed in [51] was used, where, as previously stated, Lqw is determined by the 

electron dwell time (τdwell). In order to compute this quantity based on Eqn. 2.15, the 

energy full-width of the transmission probability function through the resonant state 

(ΔEn) was estimated by the Wentzel–Kramers–Brillouin (WKB) approximation 

method as follows [52]: 

 ∆𝐸𝑛 = 𝐸𝑛exp [−2𝐿𝑏√
2𝑚𝑏(𝑈0 − 𝐸𝑛)

ℏ2
] (5.23) 
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where En is the nth resonance level, Lb is the width of the barrier (2.5 nm), U0 is the 

barrier energy level (1.322 eV) and mb is the effective electron mass in the barrier.  

Fig. 5.25 shows the transmission probability through the RTDs DBQW structure, 

computed using the nonequilibrium Green function based 1D quantum transport 

simulator WinGreen software [53]. The estimation for the carrier lifetime is generally 

calculated for the first resonance energy level (E0 = 0.17 eV for this structure), 

however, the transmission probability plot suggests that the primary resonant current 

occurs at a higher energy level (E1 = 0.73 eV). Thus, the computed value for τdwell was 

found to be approximately 1.86 ps. 

 

Figure 5.25 Simulated transmission probability for the measured RTD layer 

structure. 

Based on the estimated value for the electron quasibound-state lifetime in the quantum-

well and the experimentally determined RTD differential conductance, the variation 

of Lqw with bias was computed and is shown in Fig. 5.26, together with the extracted 

values from the S-parameter measurements. As expected, the computed inductance 

becomes negative in the NDR region following the nature of the differential 

conductance. However, a discrepancy can be observed between the measured and 

simulated data within this region, which can be better illustrated in Fig. 5.27, as a 

comparison between the computed (based on Eqn. 2.15) and extracted τdwell. This 

behaviour is consistent with the phenomenon described in [54], and relates the 

extracted time constant to the charge-relaxation process (τrel) of the RTD. A large 
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variation with bias of the associated time constant can be observed between the 

positive and negative differential resistance regions of the device. 

 

Figure 5.26 Quantum-well inductance Lqw simulated (black trace) and extracted 

(red dots). 

 

Figure 5.27 Electron dwell time τdwell computed (black dashed line) and extracted 

(red dots). 
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5.4 Summary and discussion 

In this chapter the characterisation of an RTD device was described, particularly in 

relation to its high-frequency behaviour. The challenges associated with accurate 

modelling of the negative differential resistance (NDR) region due to the presence of 

low-frequency parasitic oscillations have been discussed. For this purpose, a standard 

stabilisation method, based on a shunt-resistor bias network was adopted, and its 

effectiveness to suppress bias oscillations was assessed experimentally in the MHz 

frequency range.  

Due to the requirement for the external stabilisation network in the context of high-

frequency RTD modelling, a novel on-wafer bond-pad and shunt-resistor de-

embedding technique was developed. The accuracy of the proposed method, which 

relies principally on measured data from one auxiliary test structure, was demonstrated 

experimentally in the case of a stabilised RTD using S-parameter measurements up to 

110 GHz across the entire device bias range.  

Furthermore, using the obtained de-embedded data, a robust quasi-analytical small-

signal equivalent circuit extraction procedure was described, based on a sequential 

approach, and validated by a standard optimisation process. The proposed procedure, 

aided by the high-frequency nature of the measurements, enabled an accurate 

extraction of the parameter values of the small signal equivalent circuit, resulting in a 

clear distinction between key RTD elements such as the differential conductance and 

contact resistance. Finally, the physical relevance of the acquired device bias-

dependent parameters was determined based on alternative experimental and 

previously proposed theoretical approaches. 

The presented complete experimental approach for high-frequency RTD 

characterisation is expected to provide a strong foundation for the ongoing 

development of compact CAD device models, thus accelerating the advancement of 

RTD technology for THz applications. The scalability of such models is further 

investigated in Chapter 6 in the context of realisation of an RTD based detector 

application. 
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Chapter 6. RTD-based detector 

6.1 Introduction 

As discussed in the introductory chapter of this thesis, the terahertz (THz) frequency 

range has become an important target for research fields involving high data rate 

wireless communications and high-resolution sensing due to its extremely large 

available bandwidth, which is yet to be allocated for specific applications [1]. As a 

semiconductor electronic device based THz source, the RTD has been proven to be 

one of the primary contenders in the race for integration into consumer based 

applications due to its high oscillation frequency [2], relatively high output power (~1 

mW in the 220 GHz– 325 GHz frequency range) [3][4], low manufacturing cost and 

compact implementation, in comparison to other candidate technologies.  

Additionally to the proven implementation as a THz transmitter, the RTD’s 

performance in a square-law detection scheme is also currently researched due to its 

strong non-linearity in the I-V characteristics. Furthermore, the fact that the RTD 

detector can be designed in a similar fashion as an RTD source raises the important 

advantage of having the capability of integrating the transmitter/receiver (Tx/Rx) 

system on one chip, or operating the same device in either configuration by altering 

the biasing conditions [5], thus considerably reducing design fabrication costs. 

The work presented in this chapter focuses on demonstrating the operation and 

performance of an RTD-based detector operating as a square-law demodulator. This 

was done primarily from the perspective of an accurate circuit simulation methodology 

enabled by the device modelling procedure described in Chapter 5. Results of a data 

transmission experiment using the detector in the W-band (75 – 110 GHz) frequency 

range are also described. 

6.2 RTD detector basics 

The standard double-barrier RTD I-V characteristics display two high non-linearity 

regions as shown in Fig. 6.1. The first region (a) is exhibited by the initial tunnelling-

current flow through the device, proportional to the thermal component expressed as: 
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 𝐽𝑅𝑇𝐷 ≈ 𝑒𝑥𝑝 (
𝛼𝑒𝑉𝑏𝑖𝑎𝑠

𝑘𝑇
) (6.1) 

where Vbias is the bias point of the device, k is Boltzmann’s constant, e is the electron 

charge, T is the temperature, and  is a device factor describing the voltage drop 

between the emitter and the quantum well. This initial region, which is also present in 

the more commonly used Schottky diode detectors, has a comparable non-linearity, 

generated by the same thermal mechanism, but weaker by a factor of , which is 

dependent on the device layer structure characteristics (i.e. thicknesses of the emitter-

well and of the well-collector regions).  

 

Figure 6.1 Typical RTD I-V characteristics showing the two high non-linearity 

regions. 

The second region of interest (b) can be observed near the current peak, at the start of 

resonant-current switch-off. At this point, the non-linearity will be significantly higher 

due to the fact that it is predominantly determined by the broadening of the quantum-

well resonant sub-band, rather than thermal exponent, as in the case of Schottky diodes 

[6]. This has been experimentally shown in [7], where the sensitivity of an RTD based 

detector was shown to be around 12 dB higher than that of commercially available 

Schottky diode. 

The initial investigation into the operation of RTDs as THz detectors was originally 

presented in [8], where the device was proven to have a frequency response up to 2.5 

THz. The non-linearity was investigated by measuring the changes in the DC I-V 
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characteristics when high power, pulsed, far-infrared radiation was applied from a 

free-electron laser, as shown in Fig. 6.2. The shifts in the bias point of the device 

produced by the oscillating field were captured in the form of a rectified response using 

a tungsten probe tip. In a similar fashion, the highest reported frequency response 

measured for such devices was 3.9 THz [9]. Currently, RTD based detectors with 

integrated antennas have been reported in imaging systems [10], wireless data links 

[11], and spectrometer applications [12]. 

 

Figure 6.2 Rectified response of an applied THz pulse by the device non-linear I-V 

characteristics (Fig. 6.1) for region (a). Adapted from [9]. 

Recent work suggests that triple-barrier (TB) RTDs could have improved performance 

compared to devices explored in this thesis (double-barrier RTDs), when employed as 

detectors, since they have a stronger non-linearity in both regions (a) and (b). This is 

because of the fact that the resonant current is not predominantly determined by 

thermal effects, but rather due to the alignment of the 2D sub-bands in the adjacent 

quantum-wells [6]. Furthermore, triple barrier RTDs exhibit region (a) at zero bias, as 

shown in Fig. 6.3. [13], providing a superior curvature component due to the additional 

tunnelling current contribution in forward direction that is quantum mechanically 

blocked in reverse bias. The shift in the high non-linearity region would thus provide 

an important advantage in terms of the required operating voltage, enabling TB-RTDs 

to be designed as zero bias detectors. The rectification capabilities of such devices 

have been investigated in [14] for a device integrated into an on-chip slot antenna, 
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providing a relatively high responsivity of 66 kV/W for an applied 280 GHz signal. 

However, the main disadvantage of these devices is their low current density and 

relatively high impedance, when compared to double-barrier RTDs, which results in 

difficulty to design an optimal matching network between the detector and antenna 

[15]. 

 

Figure 6.3 Typical TB-RTD I-V characteristics. 

6.2.1 Square-law demodulation 

The theory of operation of a non-linear device as a square-law demodulator can be 

easily illustrated in the context of electronic communication systems that employ a 

standard amplitude modulation (AM) scheme. Fig. 6.4 shows the generalised 

frequency spectrum of an amplitude modulated signal. 

 

Figure 6.4 Frequency spectrum of a standard AM signal, showing the centre carrier 

frequency ωc and the sidebands of the baseband signal of frequency ωm.  
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The non-linear regions exhibited by the device I-V characteristics presented in Fig. 6.1 

can be approximated by a quadratic function in the form: 

 𝑖(𝑡) = 𝑘1𝑣(𝑡) + 𝑘2𝑣2(𝑡) (6.2) 

where k1 and k2 are constants associated with the particular device. If the applied time 

varying voltage v(t) is an AM wave expressed as: 

 𝑣(𝑡) = 𝐴𝑐(1 + 𝑚𝑥(𝑡)) cos(𝜔𝑐𝑡) (6.3) 

where Ac is the carrier amplitude, m is the modulation index (defined as the ratio of the 

modulation signal amplitude to the carrier amplitude), x(t) is the original baseband 

signal and ωc is the angular frequency of the carrier [16]; the output of the system can 

be expressed as: 

 𝑖(𝑡) = 𝑘1𝐴𝑐(1 + 𝑚𝑥(𝑡)) cos(𝜔𝑐𝑡) + 𝑘2𝐴𝑐
2(1 + 𝑚𝑥(𝑡))

2
𝑐𝑜𝑠2(𝜔𝑐𝑡) (6.4) 

By expanding Eqn. 6.4 and using the identity 𝑐𝑜𝑠2(𝑥) =  
1+cos(2𝑥)

2
, we get: 

 

𝑖(𝑡) = 𝑘1𝐴𝑐 cos(𝜔𝑐𝑡) + 𝑘1𝐴𝑐𝑚𝑥(𝑡) cos(𝜔𝑐𝑡) +
1

2
𝑘2𝐴𝑐 + 𝑘2𝐴𝑐

2𝑚𝑥(𝑡)

+
1

2
𝑘2𝐴𝑐

2𝑚2𝑥2(𝑡) +
1

2
𝑘2𝐴𝑐

2 cos(2𝜔𝑐𝑡)

+ 𝑘2𝐴𝑐
2𝑚𝑥(𝑡) cos(2𝜔𝑐𝑡) +

1

2
𝑘2𝐴𝑐

2𝑚2𝑥2(𝑡) cos(2𝜔𝑐𝑡) 

(6.5) 

The terms containing high-frequency carrier components (cos(𝜔𝑐𝑡) and cos(2𝜔𝑐𝑡)) 

are filtered out using a low-pass filter at the output stage, for which the cut-off 

frequency is determined by the baseband signal. The remaining components represent: 

- 
𝟏

𝟐
𝒌𝟐𝑨𝒄 – DC component.  

- 𝒌𝟐𝑨𝒄
𝟐𝒎𝒙(𝒕) – scaled version of the original baseband signal, which can 

be recovered with the aid of a low-pass filter stage.  

- 
𝟏

𝟐
𝒌𝟐𝑨𝒄

𝟐𝒎𝟐𝒙𝟐(𝒕) – distortion component. 

If however, the RTD I-V characteristics around the operating region of the detector 

cannot be represented as a quadratic function, as shown in Fig. 6.5 for an experimental 
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device, a more accurate approximation can be obtained using a higher order Taylor 

series expansion at the peak-current point [17], as shown by the red trace in the inset 

figure. The form of the expansion is represented as: 

 

𝐼(𝑉) = 𝐼(𝑉0) + (
𝑑𝐼

𝑑𝑉
)

𝑉=𝑉0

𝑑𝑉 +
1

2!
(

𝑑2𝐼

𝑑𝑉2
)

𝑉=𝑉0

𝑑𝑉2

+
1

3!
(

𝑑3𝐼

𝑑𝑉3
)

𝑉=𝑉0

𝑑𝑉3 + ⋯ 

(6.6) 

By inspecting this equation from the perspective of the output current, it can be 

determined that the cubic and higher order terms can be ignored for a given relatively 

small input signal (i.e. 𝑑𝑉 = 𝑉 − 𝑉0 is small). Since the first term is a DC component 

and the net response of the second term will be effectively zero, the non-linearity will 

be predominantly proportional to the second derivative of the device I-V 

characteristics. Furthermore, as also illustrated by the simplified approximation, the 

main advantage of this demodulation technique is therefore represented by the fact that 

the output current is proportional to the square of the amplitude of the incoming 

voltage signal. Thus, the overall response of the system will produce a linear output 

with respect to the input power, proportional to the I-V curvature component [18]: 

 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = (
𝑑2𝐼

𝑑𝑉2
)/(

𝑑𝐼

𝑑𝑉
) (6.7) 

 

Figure 6.5 Measured I-V characteristics of a fabricated device. Inset graph shows 

the non-linearity region approximated by a 5th order Taylor series expansion. 
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The major limitation of this detector, however, is related to the signal distortion 

introduced by the scaled noise component, as shown from Eqn. 6.5. The spurious free 

dynamic range level is proportional to the ratio of desired output to the undesired one, 

and is equal to: 

 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑎𝑛𝑔𝑒 𝑙𝑒𝑣𝑒𝑙 ∝  
𝑘2𝐴𝑐

2𝑚𝑥(𝑡) 

1
2 𝑘2𝐴𝑐

2𝑚2𝑥2(𝑡)
=  

2

𝑚𝑥(𝑡)
 (6.8) 

The performance of this demodulation method will thus be decreased if the input AM 

wave has a high percentage modulation (m is close to unity). A comparison between 

AM modulated waves for different index m is exemplified in Fig. 6.6.  

Furthermore, as the operating region is chosen close to the start of the resonant-current 

switch-off, the precise bias voltage needs to be adjusted according to the amplitude of 

the input signal. This is essential in order to ensure that the RTD is not forced into the 

NDR region, where it tends to induce strong parasitic oscillations. Thus, the main 

constraint of using an RTD as a detector is related to the responsivity degradation with 

increased input signal power due to the necessity to lower the bias point in order to 

maintain the integrity of the recovered baseband signal. 

 

Figure 6.6 Amplitude modulated signals with different modulating index m. 

Such detectors that employ an RTD operating in the square-law region have been 

demonstrated with data rates up to 13 Gbps [19] with an RTD based transmitter in a 

wireless-link experiment (7.5 cm at 345 GHz) and 9 Gbps [11], as part of a wireless 

uncompressed 4 k video signal transmission experiment (10 cm at around 286 GHz).  
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6.2.2 Synchronous demodulation 

In square law detection, detector sensitivity is the major bottleneck in terms of 

maximum achievable data rate, and so coherent RTD detectors have recently been 

proposed as an alternative. In contrast to the square-law detector operation, coherent 

detection relies on multiplying (mixing) the incoming signal by the original carrier. 

i.e. same frequency and phase, as shown in the diagram in Fig. 6.7. 

 

Figure 6.7 Block diagram of standard coherent detector circuit. 

By using the standard form for an AM signal described by Eqn. 6.3, the output of the 

mixer can be expressed as: 

 𝑣𝑜𝑢𝑡(𝑡) = 𝐴𝑐(1 + 𝑚𝑥(𝑡)) cos(𝜔𝑐𝑡) × 𝐴𝑐cos (𝜔𝐿𝑂𝑡 + 𝜙) (6.9) 

where it is considered that the local oscillator is synchronised with the AM transmitter 

with a frequency 𝜔𝐿𝑂 = 𝜔𝑐 and a phase difference 𝜙 = 0. Using the same 

trigonometric identity 𝑐𝑜𝑠2(𝑥) =  
1+cos(2𝑥)

2
  the above equation can be expanded as: 

 

𝑣𝑜𝑢𝑡(𝑡) =
1

2
𝐴𝑐

2 +
1

2
𝐴𝑐

2 cos(2𝜔𝑐𝑡) +
1

2
𝐴𝑐

2𝑚𝑥(𝑡)

+
1

2
𝐴𝑐

2𝑚𝑥(𝑡)cos(2𝜔𝑐𝑡) 

(6.10) 

Eqn. 6.10 is similar to the expansion of the square-law detector output and so the 

output can be evaluated from the perspective of its frequency components. Thus, after 

the low-pass filter stage where the high-frequency carrier components (terms 

containing cos(2𝜔𝑐𝑡)) are eliminated, the demodulated signal will contain a DC 

component and a scaled version of the original baseband signal. In addition to the fact 

that signal recovery in direct demodulation is not dependent directly on the I-V 

characteristics of the non-linear device (Eqn. 6.7), the SNR is greatly improved by the 
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absence of any distortion component within the desired spectrum [20]. However, 

mismatches between the transmitter and local oscillator carrier signals, as seen from 

Eqn. 6.9. would lead to distortion in the detected signals (i.e. additional components 

in the form of cos(𝜔𝐿𝑂 + 𝜙)). Thus, the main disadvantage of this demodulation 

scheme is related to the increased design complexity, usually in the form of phase-

locked loop (PLL) circuits required to achieve synchronization between the Tx and Rx 

elements [21].  

A different approach to match the carrier signal at the receiver side is proposed in [22], 

in which the coherency is achieved by using an injection-locking mechanism at the 

RTD based local oscillator, as exemplified in Fig. 6.8. This phenomenon is exploited 

by setting the received signal carrier frequency in close vicinity of the fundamental 

oscillating frequency of the RTD LO [23]. The locking range in which the 

synchronization of the signals occurs is given by [24]: 

 
𝐿𝑜𝑐𝑘𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 =

𝑓0

𝑄

∆𝑉

𝑉0 √

1

1 − (
∆𝑉
𝑉0

)
2 

(6.11) 

where f0 and V0 are the frequency and voltage amplitude of the LO, Q is the LCR 

resonator figure of merit and ΔV denotes the voltage variation induced by the injection.  

 

Figure 6.8 Coherent detection by injection locking mechanism. Adapted from:[22]. 

The highest data rate achieved by this homodyne detection scheme is 27 Gbps with a 

bit error rate (BER) below 10-10 (i.e. error free transmission) [25], using a uni-

travelling-carrier photodiode (UTC-PD) at the transmitter side, and 30 Gbps [26] in an 

RTD based Tx/Rx wireless link. However, the record error-free data rate reported with 

an RTD detector is 32 Gbps [27], in a square-law demodulation scheme together with 

a photonic based transmitter (3 cm at around 350 GHz). 
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6.3 RTD detector realisation and simulation 

6.3.1 Detector design and modelling 

The device epitaxial layer structure design chosen for the detector application is 

identical to the one presented in Chapter 3 and characterised for the RTD small-signal 

parameter extraction and modelling in Chapter 5. With the aid of the fabricated 10 × 

10 μm2 device, the material parameters (independent of mesa area) were determined 

around the region of interest (current-peak) and are summarised in Table 6.1. 

Table 6.1 Summary of material parameters. 

Operating 

Point 
Rs C0 

1

𝜈𝑐
 τdwell 

Peak current 

region 
360 Ωμm2 0.9 fF/μm2 0.55 ps 1.15ps 

 

where Rs is the contact resistance, C0 is the geometric capacitance, 𝜈𝑐 is the quantum-

well – collector electron escape rate, and τdwell is the electron life time in the well. 

A relatively large device active area of 20 × 20 μm2 was investigated for this 

application, in an attempt to maximise the targeted non-linearity of the device I-V 

characteristics. The increased peak-current value exhibited in the same bias voltage 

span, would translate to a superior second order derivative component (𝑑2𝐼/𝑑𝑉2), 

resulting in a net increase in detector responsivity.  

The measured I-V characteristics have been previously presented in Fig. 6.5 and 

exhibits a plateau-like feature in the NDR region (between 2.94V and 3.7V) due to the 

presence of parasitic oscillations during DC measurements. Using these characteristics 

as the starting point, together with the extracted parameters shown in Table 6.1, the 

small-signal behaviour of the RTD can be accurately computed over the entire bias 

range. In order to accurately determine the differential device conductance (Gn), the I-

V characteristics of the large area RTD (20 × 20 μm2) were modelled based on the 

stable I-V behaviour of the devices characterised in Chapter 5 (10 × 10 μm2). Fig. 6.9 

shows the modelled device I-V characteristics, alongside the extracted Gn, calculated 

using Eqn. 2.13. 
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Figure 6.9 Modelled I-V characteristics under stable operating regime (black). 

Computed differential conductance Gn (red). 

 

Figure 6.10 Modelled device capacitance Cn (black) and quantum-well inductance 

Lqw (red). 

The contact resistance (Rs), assumed bias independent for this application, was 

calculated using the device area as a simple scaling factor. The last two parameters of 

the small-signal equivalent circuit model, the device capacitance (Cn) and the 

quantum-well inductance (Lqw) are obtained from the computed Gn and the extracted 

parameters by Eqn. 2.22 and Eqn. 2.16, respectively, and are shown in Fig. 6.10. 
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The modelled device parameters together with the I-V characteristics were used in 

creating a non-linear model of the device [28][29] in order to simulate and analyse the 

performance of the RTD in a square-law detector circuit. Although the small-signal 

parameters Cn and Lqw are bias dependent, the values used are considered (fixed) 

around the peak current region, where the operating point of the circuit lies. 

The circuit topology chosen for the detector design is similar to the one described in 

[11], with the RTD acting as the square-law device in a shunt-diode configuration [30] 

as shown in Fig. 6.11.  

 

Figure 6.11 Shunt-diode detector circuit. 

The presence of an RF modulated signal applied at the input of the detector circuit will 

cause a variation of the operation point of the RTD. When the device is biased in the 

highly non-linear region, as shown in Fig. 6.5, the RTD will produce an asymmetric 

response (i.e. rectified response) between the negative and positive cycles of the 

incoming AM signal, proportional to the degree of non-linearity of the I-V 

characteristics. The two components L and CE form a low-pass filter for the rectified 

signal, which rejects the high-frequency carrier component. Following the low-pass 

pass filter, the demodulated signal is measured across the load resistance RL, which is 

typically 50 Ohms (determined by the measurement equipment). The operation 

principle of the detector circuit will be further illustrated in section 6.3.2. 

In terms of the specific circuit design, the value for the capacitor was chosen at CE = 

1.35 pF, while the inductor was realised using tapered CPW line (200 μm length) with 

a designed inductance of L = 130 pH, creating thus a low-pass filter stage with a cut-
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off frequency fc = 12 GHz (𝑓𝑐 = 1/2𝜋√𝐿𝐶). This initial detector circuit was developed 

for operation in the W-band frequency range (75 – 110 GHz), in order to be compatible 

for pairing with an existing high-power RTD-based source in a wireless-link system 

experiment. The modulation and transmission capabilities of this oscillator have 

already been demonstrated within the research group for data rates up to 10 Gbps 

(OOK modulation) over a distance of 50 cm. [31]. 

Since it is ensured that the RTD will never operate within the NDR region, no 

stabilizing network was included in this design, leading to an increase in overall 

sensitivity. A micrograph of a fabricated detector circuit is shown in Fig. 6.12. 

 

Figure 6.12 Micrograph of fabricated RTD detector. 

The complete equivalent circuit model of the detector circuit is represented in Fig. 

6.13, where Cp and Lp denote the parasitic capacitance and inductance, introduced by 

the metal pads and were estimated based on the designed CPW structure using the 

software tool described in Chapter 4 [32]. 

The designed circuit elements together with the predicted equivalent device parameter 

values were used to simulate the entire modelled circuit behaviour up to 100 GHz and 

compared to the realised detector for validation. The experimental data was acquired 

using a 2-port S-parameter measurement from the fabricated circuit shown in Fig. 6.12, 

using the same setup conditions described in section 4.3 (frequency range between 10 

MHz and 100 GHz), with the RTD biased in the current peak region (around 2.95 V). 
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Figure 6.13 Equivalent circuit model of the RTD detector. 

Fig. 6.14 shows the comparison between the measured (black trace) and simulated 

(blue trace) equivalent input Z-parameters (Z11) of the detector circuit. A final 

optimisation process using the predicted circuit components as starting values was 

performed in order to further improve the accuracy (red trace) of the developed 

detector software model, which will be further discussed in section 6.3.2. Based on the 

same analytic approach described in section 5.3.2, the goodness-of-fit (R-squared 

value) between the measured and simulated (optimised) behaviour was computed at 

0.9398 (real(Z11)) and 0.9832 (imag(Z11)), respectively, for which the fitting 

inaccuracies could be attributed to the reduced measurement accuracies at higher 

frequencies, or to the simplified model of the surrounding parasitics. 

A summary of the computed circuit parameters is presented in Table 6.2 alongside the 

obtained values as a result of the optimisation process. The observed discrepancies 

between measurement and simulation were determined predominantly as a result of an 

overestimation of the pad parasitic elements. 

Table 6.2 Summary of extracted parameters. 

 
Lp 

(pH) 

Cp 

(fF) 

Gn 

(mS) 

Rs 

(Ω) 

Cn 

(fF) 

Lqw 

(pH) 

L 

(pH) 

Ce 

(pF) 

Modelled/ 

Designed 
71 28 25.6 0.9 346 44.9 132 1.35 

Optimised 54.5 18.6 27.7 1.2 360 25 122 1.3 
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Overall good agreement can be observed between the simulated and optimised values, 

particularly in relation to the predicted RTD intrinsic elements and estimated circuit 

components, which validates the accuracy of the modelling and design process. 

 

 

Figure 6.14 Comparison between measured (black trace) and simulated (blue trace) 

real (a) and imaginary (b) Z11 of the RTD detector circuit. The result of the final 

optimisation process is shown as the red trace. 

6.3.2 Detector simulations 

The optimised parameters were used in creating an accurate device and circuit model 

in Keysight’s Advanced Design System (ADS) software in order to simulate the 

performance of the detector in the intended frequency band. The implemented RTD 

RF large-signal model is illustrated in Fig. 6.15, where the device I-V characteristics 

are represented as a voltage dependent current source [33][34]. As previously stated, 
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the remaining device parameters are considered bias independent for this particular 

application, with the fixed extracted values at the operational bias point (i.e. 

considerably small variation in values neglected for a low amplitude applied signal). 

The measured device I-V characteristics, shown in Fig. 6.5 have been reproduced using 

the Curve Fitting Toolbox in MATLAB software and described as a series of explicit 

equations in terms of voltage (detailed in Appendix C). 

 

Figure 6.15 RTD large signal model used for software implementation, where the 

device I-V characteristics are represented as a voltage dependent current source. 

 

Figure 6.16 Schematic of complete RTD detector circuit. 

The schematic representation of the simulated RTD detector is shown in Fig. 6.16. The 

device is biased in the highly non-linear region at the output of the circuit through the 
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DC port of a bias-tee network, while the demodulated signal is recovered through the 

AC port and measured across the load resistance RL. 

In order to further illustrate the circuit’s operation, a standard AM signal with a 

modulation index m=0.5 was simulated and applied at the input of the detector circuit 

(Fig. 6.17 (a)). The chosen carrier frequency was fcarrier = 90 GHz, while the 

modulating signal was set at fsignal = 1 GHz. Fig. 6.17 (b) shows the simulated rectified 

signal response at the input of the low-pass filter stage for the device biased close to 

the current peak region (2.944V). Finally, the demodulated signal is shown in Fig. 6.17 

(c). 

 

Figure 6.17 Simulated detector operation for a standard AM input signal (a), 

showing the rectified RTD response (b) and demodulated signal (c). 

To evaluate the detector performance and suitability for integration with the high-

power RTD source described in [31], similar data transmission conditions and 

modulation scheme were investigated. As such, the input signal was constructed based 

on an on-off keying (OOK) modulation scheme, generated using a pseudo-random bit 

sequence (PRBS) as the baseband signal (1 Gbps), and modulated by a high-frequency 

carrier (90 GHz), as illustrated in Fig. 6.18.  

The input signal power was set relatively low at -26.5 dBm in order not to saturate the 

detector while the demodulated output was evaluated using eye-probe component with 

load impedance of 50 Ω. The complete simulation conditions and setup are given in 

Appendix C. 
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Figure 6.18 ADS generated OOK modulation of a 90 GHz carrier signal (shown in 

inset graph) by a 1 Gbps pseudo-random bit sequence. 

The simulated 1 Gbps eye diagram at 90 GHz is presented in Fig. 6.19 in the form of 

a density plot for a simulation interval of 1 μs, 10000 points and an amplitude 

resolution of 1 μV.  

 

Figure 6.19 Simulated 1 Gbps eye diagram at 90 GHz. Eye amplitude of 1.62 mV 

and a SNR of 27.1 dB 

The calculated eye amplitude using the default 40% and 60% lower and upper eye 

level boundaries is 1.62 mV for a generated bit pattern with an amplitude of 40 mV 
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peak-to-peak. The signal-to-noise ratio was calculated at 27 dB, based on the eye 

amplitude and the standard deviation (σ) for the logic level-0 and logic level-1, 

computed by the software [35] using Eqn. 6.12: 

 𝑆𝑁𝑅 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝜎𝑙𝑒𝑣𝑒𝑙1 + 𝜎𝑙𝑒𝑣𝑒𝑙0
 (6.12) 

The maximum achievable data rate for this detector is defined by the low-pass filter 

stage (formed by L and CE) with a cut-off frequency of 12.64 GHz, based on the 

optimised circuit values. A degradation in eye amplitude and signal-to-noise ratio can 

be observed at a data rate close to the cut-off frequency (12 Gbps), as seen in Fig. 6.20, 

due to the distortion (attenuation) of the higher frequency components of the PRBS 

data. However, an eye contour at a bit-error rate (BER) of 10-12 is identified by the 

system, which proves the data integrity is not altered. 

 

Figure 6.20 Simulated 12 Gbps eye diagram at 90 GHz. Eye amplitude of 0.87mV 

and a SNR of 16.1 dB. Eye contour at BER of 10-12shown in purple outline. 

6.4 W-band measurements 

The demodulation capability of the fabricated RTD detector was assessed in the W-

band frequency range as part of a data transmission experiment with an RTD based 

source similar to the one described in [31]. In order to minimise the complexity of the 

testing setup, which required on-wafer probing at the receiver end, a waveguide 
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packaged RTD source was used as the Tx sub-system. A picture of the prototype 

packaged RTD W-band oscillator is shown in Fig. 6.21. The rectangular WR-10 

waveguide inner dimensions are 2.54 mm x 1.27 mm. 

 

Figure 6.21 Pictures of the packaged RTD oscillator integrated in a WR-10 

rectangular waveguide, used as a Tx sub-system in data transmission experiment. 

The oscillation frequency of the source was found to be 84.5 GHz [36], when measured 

using an external W-band mixer (Keysight 11970W) in order to down-convert the high 

order frequencies to the measurement range of the Keysight E4448 spectrum analyser. 

The output power was measured at approximately -7 dBm, measured directly using an 

Erickson PM5 power meter. 

 

Figure 6.22 Block diagram of experimental setup, using a packaged RTD source. 

The complete experimental setup is presented in the block-diagram schematic in Fig. 

6.22. The output port of the packaged RTD source was connected directly to a 

matching rectangular waveguide WR-10 probe (Cascade Microtech infinity probe: 

i110-T-GSG-100-BT), which provided the input signal to the on-wafer detector 

circuit. The oscillator on the transmitter side was powered through the DC-port of a 

bias-tee network, while the baseband modulating signal was fed through the RF port 
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from an Anritsu pulse pattern generator MP1763B. The output of the detector was 

measured using a coplanar probe (ACP40-GSG-100), which also provided the 

operating bias point of the RTD. The recovered baseband signal at the AC port of the 

bias-tee network was amplified by an LNA (Mini-circuits ZX60-83LN12) with a 

typical gain of 22 dB and 8 GHz bandwidth and captured on an Agilent high-speed 

digital communication analyser (86100C Infiniium DCA-J). 

The relatively high generated signal power present at the input of the detector was 

considered when setting the operating point of the RTD, as to not enter the NDR 

region. This, however, would translate into an overall decrease in system responsivity, 

due to the fact that the RTD operating point will be slightly shifted towards the lower 

linear region. The detector responsivity in relation to input signal power was simulated 

for the above described carrier frequency at 1 Gbps data rate and is illustrated in Fig. 

6.23, without the amplifier stage.  

 

Figure 6.23 Simulated detector output signal amplitude for various input signal 

power at 84 GHz. Saturation behaviour observed above -10 dBm. 

The maximum achievable responsivity was computed at 800 V/W at -30 dBm (1 μW) 

input power, with the device biased at Vbias = 2.945 V. A saturation behaviour of the 

RTD can be observed to highly impact the amplitude of the detected signal above -10 

dBm (100 μW), for which the corresponding device bias voltage was decreased at Vbias 

= 2.93 V in simulation. 
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For the initial measurement, the original baseband signal was generated as an 

alternating ‘0-1’ bit pattern with a data rate of 1.5 Gbps and an amplitude of 250 mV, 

used to switch the operating point of the source RTD between the NDR region (‘on-

state’) to the first PDR region (‘off-state’) in order to reproduce an OOK modulation 

scheme. The simulated performance of the detector under the presented experimental 

conditions (i.e. input signal and modelled LNA characteristics) is shown as the 

generated density plot in Fig. 6.24, with an eye amplitude of 94.64 mV and a SNR of 

25.35 dB.  

 

Figure 6.24 Simulated 1.5 Gbps eye diagram at 84 GHz. Eye amplitude of 94.64 mV 

and a SNR of 25.35 dB. 

As a comparison, the recovered demodulated signal, captured by the digital 

communication analyser, is presented in the form of the measured eye-diagram in Fig. 

6.25, with an eye amplitude of 83.94 mV and a SNR of 21.3 dB. Overall, good 

agreement between simulation and experimental data can thus be observed from the 

perspective of the demodulated baseband signal, which validates the design procedure. 

The minor difference in SNR can be primarily attributed to impedance mismatches 

between the detector circuit and measurement equipment (i.e. cables and connectors). 

This effectively could lead to undesired reflections of some harmonics, which appear 

as distortions in the square-wave output signal in the form of ‘ringing’ and ‘shoulder’ 

artefacts resulting in closure of the observed eye pattern [37]. Other potential causes 

that could lead to the observed variation could be related to the different measurement 
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setup used between the circuit characterisation procedure and data transmission 

experiment (i.e. variation in parasitics), as well as various noise factors (i.e. thermal 

noise component) that were not included in simulation. 

 

Figure 6.25 Measured eye-diagram of demodulated 1.5 Gbps signal. Eye amplitude 

of 83.94 mV and SNR of 21.3 dB. 

The final acquired eye-diagram measurement is presented in Fig. 6.26 for a higher data 

rate of 4 Gbps under the same experimental conditions, with an eye amplitude of 72.63 

mV and SNR of 14.16 dB. A degradation in the signal-to-noise ratio compared to the 

previous measurement can be observed. 

 

Figure 6.26 Measured eye-diagram of demodulated 4 Gbps signal. Eye amplitude of 

72.63 mV and SNR of 14.16 dB. 
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6.5 Detector sensitivity measurements 

The circuit’s input reflection coefficient (S11), acquired as part of the measured S-

parameters from the fabricated detector (Fig. 6.27) indicates that the highest detector 

responsivity can potentially be achieved within the Ka frequency band (26.5 – 40 

GHz). For this purpose, a detector sensitivity analysis [38] was conducted by 

experimentally assessing the frequency dependent responsivity in the specified 

frequency band, using a synthesised swept signal generator (Anritsu 68007B) in a 

wired configuration. The frequency of the continuously tunable wave was varied 

between 26.5 and 40 GHz, while modulated using a low frequency pulse generator, 

with a pulse width of 2.5 ms and a period of 5 ms.  

 

Figure 6.27 Measured S-parameters of fabricated detector circuit, with the RTD 

biased around the peak current region at 2.95V. 

Due to the internal configuration of the source modulating circuit, the baseband signal 

was observed present in the RF spectrum, as exemplified in Fig. 6.28 (signal amplitude 

and frequency chosen for clear illustration of the spectrum). 

In order to maintain the integrity of the detected data (i.e. original baseband signal 

propagating through the system and overlapping in frequency with the demodulated 

signal), a high-pass filter (Mini-Circuits ZHSS-8G+), with a cut-off frequency of 8 

GHz, was introduced between the source and detector.  
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Figure 6.28 RF spectrum of a 6 MHz central frequency AM wave, showing the 0.5 

MHz original baseband signal. 

The input power was set at -25 dBm and was calibrated using the spectrum analyser 

for each independent reading to account for potential losses associated with cables and 

connectors up to the detector input probe. The demodulated signal amplitude was 

measured using a Keysight high-speed oscilloscope InfiniiVision MSOX6004A, with 

a 20 GS/s sampling rate, at the AC port of the required bias tee. The complete 

measurement setup is shown in the block diagram in Fig. 6.29. 

 

Figure 6.29 Block diagram of Ka-band sensitivity measurement setup, using a 

modulated continuous wave signal generator. 

The measurements were acquired using a 50 Ω load, to ensure optimal impedance 

matching between the detector output and oscilloscope input. High load impedance 

measurements were not conducted using this setup due to the capacitive nature (14 pF) 



Chapter 6. RTD-based detector 

166 

of the 1 MΩ oscilloscope input impedance option, in order to avoid distortion in the 

form of ‘ringing’ artefacts in the detected signal. 

The detector responsivity was computed using the calibrated signal input power and 

the measured detected pulse amplitude [38]. The impedance mismatch between the 

device and source was considered using Eqn. 6.13, in terms of the actual absorbed 

power by the detector [39], based on the measured S11 parameter. 

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦 =
𝑉𝑎𝑚𝑝

𝑃𝑖𝑛(1 − |𝑆11|2)
 (6.13) 

The probe insertion losses were also factored in, in the specified frequency range, as 

quoted by the manufacturer [40]. The detector responsivity as a function of frequency 

is plotted in Fig 6.30, with an observed maximum value of 4 kV/W at 38 GHz. 

 

Figure 6.30 Measured (black) and corrected (red) detector responsivity as a function 

of carrier frequency for a 50 Ω load. 

Another important figure of merit is the noise equivalent power (NEP), which is a 

measure of the noise level generated by the detector. This is primarily used to identify 

the minimum power that can be detected and is defined as the signal power that gives 

a signal-to-noise ratio of one in a one hertz bandwidth. This quantity was estimated 

using Eqn. 6.14, where NSD is the detector noise spectral density: 
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   𝑁𝐸𝑃 =  
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦

𝑁𝑆𝐷
 (6.14) 

The NSD of the detector was measured using the band-noise function of the spectrum 

analyser, with a set noise integration bandwidth of 1 MHz, to be around -130 dBm/Hz. 

Using the above equation for the peak responsivity the computed minimum NEP of 

the detector was calculated at 16.74 pV/Hz. 

For comparison purposes with commercially available Schottky diode detectors (Table 

6.3), the responsivity for a purely resistive load impedance of 1 MΩ was calculated 

with an estimated mismatch loss of 37 dB in detected power, using Eqn. 6.15. 

   𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑙𝑜𝑠𝑠 = −10 log (1 − (
𝑍0 − 𝑍𝐿

𝑍0 + 𝑍𝐿
)

2

) (6.15) 

The high load impedance estimation indicates a detected signal amplitude increase of 

approximately 10 dB, which translates to a peak responsivity of around 13 kV/W. 

Table 6.3. Summary of Ka-band detector performances. 

Ref. Detector Responsivity (kV/W) 

[41] Fairview Microwave FMMT3005 1 

[42] Krytar 203AK 0.5 

[43] ELVA-1 ZBD-28 3.5 

[44] Keysight 8474E 0.4 

[45] Spacek-Labs DKa-2 2.8 

[46] Pacific Millimeter Products KaD 1 

[47] Millitech DET-28 1.6 

[48] Farran WDP-28 1 

- This work 9.5 – 13.38 
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The highest sensitivity, in the context of a square-law detector operating within the Ka 

frequency band, was reported in [13] for a triple-barrier RTD. The quoted (corrected) 

responsivity for the particular detector is 30 kV/W at 30 GHz (measured responsivity 

approx. 2 kV/W), for a set input power of -30 dBm. However, it is to be noted that the 

process of achieving this value is dependent upon successful impedance matching 

between the source and detector and has yet to be experimentally demonstrated in the 

specified frequency range. 

Lastly, based on the displayed responsivity performance, the presented detector was 

also investigated as part of a Ka-band RTD Tx/Rx wireless data transmission link, 

reported in [49], over an antenna separation distance of 15 cm. The adopted 

modulation scheme was similar to the one described in section 6.4 for which an error 

free transmission was achieved up to 2.4 Gbps, limited by the RTD source, with a 

computed responsivity of approximately 2.2 kV/W. The complete experimental setup 

of the wireless data-link is given in Appendix D. 

6.6 Summary and discussions 

In this chapter, the detection capability of RTDs, operating as square-law devices was 

described. The model for the 20 × 20 µm2 RTD device used in the detector was derived 

from that extracted from S-parameter measurements of a 10 × 10 µm2 device. The 

model was further implemented in a commercial circuit simulator and was used in the 

design of an RTD-based detector.  

Furthermore, the detector performance under various data transmission configurations 

(i.e. different modulation schemes and data rates) was also simulated. The simulations 

compared well with experimentally derived data using RTD based transmitters and the 

RTD detector in the W-band, in waveguide connection configuration and in the Ka-

band, in a wireless configuration [49] where data rates of up to 4 Gbps and 2 Gbps, 

respectively, with good signal-to-noise ratios were achieved.  

Finally, a sensitivity analysis of the RTD detector within the Ka frequency band was 

conducted and indicated a superior responsivity when compared to commercially 

available Schottky diode detectors, which proves their feasibility of this technology 

for next generation wireless transmission systems.  
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Chapter 7. Conclusion and future work 

7.1 Conclusion 

The resonant tunnelling diode (RTD), which relies on the quantum mechanical 

tunnelling transport mechanism, is considered a promising solution for compact 

terahertz applications operating at room temperature, due to its large bandwidth, high-

speed switching capabilities, simple circuitry and low power consumption [1]. The 

adaptability of this device has been demonstrated primarily in the context of high-

frequency sources, i.e. oscillators with fundamental frequencies around 2 THz [2] by 

exploiting its large negative differential resistance region (NDR) and high sensitivity 

detectors [3] based on its highly non-linear current-voltage characteristics, in both 

wireless communication [4] and imaging systems [5]. 

Although intense on-going research has been devoted to the realisation of such 

applications in the THz frequency range, the specific circuit design methodologies and 

optimization procedures have yet to be fully established. This is primarily due to the 

lack of accurate models for the high-frequency behaviour of the devices. Various RTD 

small-signal equivalent circuit models have been extensively researched and proposed 

based on theoretical approaches, however their limited experimental demonstration, 

typically within narrow frequency ranges(up to 20-30 GHz), has most often put in 

question their validity. Furthermore, studies related to device high-frequency 

characterisation have often been hindered by the presence of bias parasitic oscillations 

within the NDR region, which is typically the key bias range exploited in the 

successful realisation of RTD-based circuits. The purpose of this PhD was to 

investigate an experimental approach to characterise RTD devices, especially the NDR 

region under a stable operating regime, to develop a procedure for accurate extraction 

of their small-signal equivalent circuit parameters and investigate their frequency 

dependence, with the ultimate goal of investigating the design procedures of RTD-

based integrated circuits (ICs). 
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The key results achieved within this project can be summarised as follows: 

1. A universal on-wafer bond-pad and shunt resistor de-embedding technique has 

been developed in order to accurately investigate the high-frequency behaviour 

of stabilised RTD devices. The novel method can be generically adapted to 

allow different pad geometries and stabilising networks, without limitation to 

device sizing and operating frequency, by relying on the use of measured data 

from a single auxiliary dummy-test structure. The proposed method has been 

demonstrated with the aid of S-parameter measurements up to 110 GHz and 

has been validated by comparative measurements between two identical 

devices, with different extrinsic circuitry (i.e. with and without the stabilising 

resistor network) for which the de-embedding procedure has been employed. 

2. From the acquired de-embedded data of a stabilised RTD throughout the entire 

bias range, a novel quasi-analytical sequential small-signal equivalent 

parameter extraction procedure was developed. This approach, enabled by the 

high-frequency measurements, permitted the precise extraction and 

differentiation of key device parameters, within specific spectral ranges. The 

computed goodness-of-fit of the measured S-parameter data, based on the 

extracted values revealed an accuracy above 97% across the entire device bias 

range, which validates the accuracy of the proposed method. It is believed that 

the developed high-frequency modelling procedure will provide a strong 

foundation for further advancement and optimisation of RTD technology. 

3. The scalability of the obtained equivalent circuit model parameters was 

demonstrated in the case of a larger active area RTD device, which together 

with the measured I-V characteristics, was used to develop an accurate non-

linear device model. The model was implemented in a SPICE software package 

and enabled the design of an RTD square-law demodulator for high-speed data 

transfer systems. The detector performance was validated experimentally in the 

W-band and in the Ka-band in data-link experiments and achieved data rates 

of up to 4 Gbps. In addition, a sensitivity analysis of the detector within the 

Ka-band demonstrated a superior performance, in terms of determined 

responsivity (peak corrected responsivity 13.38 kV/W) when compared to 

traditional Schottky diode detectors. 
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The achieved results, in particular the characterisation and modelling of the active 

RTD, will enable the reliable design, simulation and optimisation of RTD based 

circuits for THz applications, and therefore facilitate their transition towards the 

industrial and consumer marketplace. 

7.2 Future work 

7.2.1 RTD-based detector  

The performance of the realised RTD-based detector was analysed based mainly on a 

sensitivity analysis performed within the Ka-band and simulations at higher 

frequencies. However, the full extent of the simulated demodulation capabilities, in 

relation to maximum carrier frequency and data rate, have not been experimentally 

demonstrated due to various factors, such as imposed modulation limitation on the 

transmitter side (Ka-band) and unavailability of suitable high-frequency sources. 

There is therefore scope for more detailed and advanced work in the future. 

The on-wafer demonstration of the detector circuit has placed numerous constraints 

regarding the successful establishment of a wireless testing environment, by requiring 

a total number of two probe stations (four probes required in total for both Tx and Rx 

on-wafer systems). This led to restrictions on component choices and the actual 

experimental setup due to space limitations. Waveguide packaging of the detector 

would afford more flexibility in the characterisation and should be considered in future 

experiments. 

Further future work could include the design of advanced detector circuits for 

operation at higher carrier frequencies such as the J-band (220 – 325 GHz) where 

developments of wireless communications technologies is currently of great interest. 

7.2.2 High data-rate wireless links 

For the purpose of demonstrating the transmission and detection capability of RTDs 

in the presented wireless data link within this work, a simple modulation scheme, 

based on an on-off keying (OOK) method was adopted. This simple modulation 

scheme is however characterised by highly inefficient use of bandwidth in the case of 

ultra-high data-rate transmissions [6], while also imposing severe limitations on the 
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design of the RTD Tx circuit, e.g. in the case of the used Ka-band oscillator, the 

required biasing network restricts the circuit response time.  

In order to meet the increasing demands for higher data-rates, upwards of tens of Gbps 

and match the requirements of the emerging 5G and future 6G infrastructures, high-

order modulation schemes, such as quadrature amplitude modulation (16QAM, 

64QAM and 256QAM formats used in standard 5G systems) need to be considered to 

efficiently increase the data throughput. 

Currently, multi-Gbps data-rate systems, which employ such complex modulation 

schemes, have been commercially employed in the mm-wave bands, and more recently 

demonstrated up to 10 Gbps in the E-band, which offers a total combined bandwidth 

of 10 GHz (between 71 – 76 GHz and 81 – 86 GHz). In order to enable the future up-

scale of high data-rate links, it is foreseen that the primary interest will target frequency 

ranges above 100 GHz, more precisely within the D-band (131 – 174.8 GHz), where 

28 GHz of available bandwidth available within three sub-bands (141 – 148.5, 151.5 

– 164 and 167–174.8 GHz) are currently being investigated for designation by 

international regulatory bodies [7]. 

As RTD-based sources have been demonstrated with state of the art output powers 

ranging from 1 mW in the J-band [8] to 2 mW in the W-band [9], it is believed that 

this technology is suitable to meet and overcome the imposed requirements of the 

upcoming high data-rate links, operating around 150 GHz. Furthermore, as previously 

stated, in order to achieve targeted data-rates upwards of 10 Gbps, the modulation of 

the sourced carrier signal needs to be accomplished on the RF side of the RTD 

oscillator, as required by the high-order QAM scheme. For the purpose of this direct 

carrier modulation scheme a vector modulator [10], based on directional couplers, with 

tuneable reflection terminations implementation can be adopted. 

Such systems have been previously demonstrated at microwave frequencies with the 

use of transistor devices in cold configuration acting as the variable resistive elements 

(i.e. GaAs HBTs [11], MHEMTs [12] and MESFETs [13]). At mmWaves and 

terahertz frequencies, PIN diodes could represent a more appropriate solution, due to 

their high-speed switching capabilities, wide resistance tuning range and their 

processing and material suitability with the described RTD devices in this thesis [14]. 
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A potential epitaxial layer structure, which integrates the two active components is 

shown in Fig. 7.1, where the PIN diode layers are grown on top of the RTD 

heterostructure. This capability would thus enable the monolithic integration of the 

modulator circuit with the transmitter, highly reducing chip size and associated 

fabrication costs. 

 

Figure 7.1 Epi-layer structure of RTD and PIN diode. 

 

Figure 7.2 Circuit topology of a vector modulator using directional couplers enabled 

by PIN diode controls. 
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In terms of the specific realisation of the integrated direct carrier modulation system, 

a potential implementation is illustrated using the schematic diagram in Fig. 7.2, where 

the sourced signal from the RTD oscillator (present at the input port) is split between 

two orthogonal channels, using a quadrature coupler, with further biphase balanced 

amplitude modulators assigned to each individual signal line [15]. Based on this 

technique, the output signal is generated by an in-phase power combiner, with a 

specific amplitude and phase, determined by the biasing conditions of the individual 

pairs of control PIN diode elements. Considering the determined on (0.8 V) and off 

states (0 V) states of the PIN diodes described in section 4.4, the operation of the 

modulators can be summarised using Table 7.1. 

Table 7.1 Summary of modulator operation 

State 
Control 

Signal 1 (V) 

Control 

Signal 1 (V) 

Control 

Signal 1 (V) 

Control 

Signal 1 (V) 

Phase shift 

(degrees) 

On 0.8 0 0.8 0 0 

On 0.8 0 0 0.8 90 

On 0 0.8 0 0.8 180 

On 0 0.8 0.8 0 270 

Off 0 0 0 0 - 

Off 0.8 0.8 0.8 0.8 - 
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Appendix A. Fabrication process 

Sample cleaning 

1. Ultrasonic bath in acetone 3 minutes 

2. Ultrasonic bath in methanol 3 minutes 

3. Ultrasonic bath in isopropyl alcohol 3 minutes 

4. Rinse in de-ionised water 

5. Dry sample using pressurised nitrogen (N2) 

Top contact metal 

1. Spin-coating with S1805 at 4000 rpm for 30 seconds 

2. Soft bake sample at 115° C for 60 seconds using a hotplate 

3. UV exposure using MA6 for 2.4 seconds 

4. Develop resist using a solution of Microposit developer concentrate and water 

(MDC:H2O – 1:1) for 50 seconds. 

5. Rinse in de-ionised water 

6. Dry sample using pressurised N2  

7. Ash sample at 120 W for 2 minutes 

8. Deposit ohmic contact (Ti/Pd/Au – 20/30/150 nm) using Plasys IV 

9. Excess metal lift-off using SVC-14 resist stripper in hot bath (50° C) for several 

hours 

10. Rinse in de-ionised water 

11. Dry sample using pressurised N2  

Etch into InGaAs to define top mesa 

1. Spin-coating with S1805 at 4000 rpm for 30 seconds 

2. Soft bake sample at 115° C for 60 seconds using a hotplate 

3. UV exposure using MA6 for 2.4 seconds 

4. Develop resist using a solution of Microposit developer concentrate and water 

(MDC:H2O – 1:1) for 50 seconds. 

5. Rinse in de-ionised water 

6. Dry sample using pressurised N2  
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7. Etch InGaAs down to bottom contact layer using a solution of 

H3PO4:H2O2:H2O – 1:1:38 , with an etch rate of approximately 100 nm/min 

8. Rinse in de-ionised water 

9. Measure obtained etch depth using the DektakXT stylus profiler 

10. Remove resist coating using acetone for 30 seconds 

Bottom contact metal 

1. Same processing steps as for the top contact 

Etch to the semi-insulating InP substrate 

1. Spin-coating with S1805 at 4000 rpm for 30 seconds 

2. Soft bake sample at 115° C for 60 seconds using a hotplate 

3. UV exposure using MA6 for 2.4 seconds 

4. Develop resist using a solution of Microposit developer concentrate and water 

(MDC:H2O – 1:1) for 50 seconds. 

5. Rinse in de-ionised water 

6. Dry sample using pressurised N2 

7. Ash sample at 120 W for 2 minutes 

8. Etch remaining InGaAs layers using a solution of H3PO4:H2O2:H2O – 1:1:38, 

with an etch rate of approximately 100 nm/min 

9. Etch InP buffer layer using a solution of HCl:H3PO4 – 1:4 for approximately 

30 seconds 

10. Rinse in de-ionised water 

11. Measure obtained etch depth using the DektakXT stylus profiler, or check the 

exposed layer conductivity 

12. Remove resist coating using acetone for 30 seconds 

Passivation and via opening 

1. Spin-coating with PI-2545 at 8000 rpm for 30 seconds 

2. Soft bake sample at 115° C for 2 minutes using a hotplate 

3. Bake sample for 6 hours in oven at 180° C 

4. Spin-coating with S1805 at 1500 rpm for 30 seconds 

5. Soft bake sample at 115° C for 2 minutes using a hotplate 
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6. UV exposure using MA6 for 2.8 seconds 

7. Develop resist using a solution of Microposit developer concentrate and water 

(MDC:H2O – 1:1) for 75 seconds. 

8. Soft bake sample at 90° C for 10 minutes using a hotplate 

9. Dry etch polyamide using a combination of CF4:O2 gases with flow rates of 5 

and 20 sccm, and a 200W RF power using interferometer end-point detection 

(process time is about 350 seconds) 

13.  Remove resist coating using acetone for 30 minutes 

NiCr thin-film resistor 

1. Spin-coating with S1805 at 4000 rpm for 30 seconds 

2. Soft bake sample at 115° C for 60 seconds using a hotplate 

3. UV exposure using MA6 for 2.4 seconds 

4. Develop resist using a solution of Microposit developer concentrate and water 

(MDC:H2O – 1:1) for 50 seconds. 

5. Rinse in de-ionised water 

6. Dry sample using pressurised N2  

7. Ash sample at 120 W for 2 minutes 

8. Etch into the InP substrate using a solution of HCl:H3PO4 – 1:4 for 

approximately 30 seconds 

9. Deposit NiCr – 30 nm using Plasys IV 

10. Remove resist coating using acetone for 30 seconds 

First bond-pad  

1. Spin-coating with LOR 10A at 6000 rpm for 30 seconds 

2. Soft bake sample at 150° C for 3 minutes using a hotplate 

3. Spin-coating with S1805 at 4000 rpm for 30 seconds 

4. Soft bake sample at 115° C for 2 minutes using a hotplate 

5. UV exposure using MA6 for 2.4 seconds 

6. Develop resist using MF319 for 75 seconds. 

7. Ash sample at 120 W for 2 minutes 

8. Deposit Ti/Au – 20/380 nm using Plasys IV 

9. Remove resist coating using acetone for 30 seconds 
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MIM capacitor 

1. Spin-coating with LOR 3A at 3000 rpm for 30 seconds 

2. Soft bake sample at 150° C for 3 minutes using a hotplate 

3. Spin-coating with S1805 at 4000 rpm for 30 seconds 

4. Soft bake sample at 115° C for 2 minutes using a hotplate 

5. UV exposure using MA6 for 2.4 seconds 

6. Develop resist using MF319 for 75 seconds. 

7. Ash sample at 120 W for 2 minutes 

8. Deposit Si3N4 – 75 nm using ICP-CVD 

9. Remove resist coating using acetone for 30 seconds 

Second bond-pad 

1. Same processing steps as for the first bond-pad 
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Appendix B. TLM measurements 

The metal-semiconductor contact resistance represents an important parameter which 

highly impacts the device performance, especially those operating at high frequencies 

[1]. The resistance would limit the maximum device cut-off frequency lead to large 

losses (I2R or Joule heating), unwanted thermal effects and overall reduced sensitivity 

in the case of detector applications. 

 

Figure B.1 Diagram of a standard TLM test structure (cross-section view) and the 

corresponding 4-probe resistance measurement setup. The metallic contacts are 

fabricated with various separation distances (l1, l2, l3, etc.) 

Ohmic contact resistances were extracted from standard by transmission lime model 

(TLM) measurements [2], of fabricated test structures [3], as illustrated in Fig. B.1. 

The TLM structure comprises a number of identical metal contact pads, deposited on 

the semiconductor interface, with distinct separation distances. The resistance 

characterisation method consists of 4-probe measurement [4][5], in which a constant 

current is applied between each pair of adjacent contacts (i.e. two probes used to supply 

the current through the structure with the remaining pair of probes used to measure the 

resulting voltage). Based on this measurement between each individual pair of 

neighbouring contacts, the total resistance (Rt) can be acquired, which represents the 

sum of the corresponding first and second contact resistance (2 × Rc, assuming 

identical contact resistance) and the semiconductor sheet resistance (Rsh). Rt can thus 

be computed as: 
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 𝑅𝑡 = 2𝑅𝑐 + 𝑅𝑠ℎ

𝑙

𝑤
 (B.1) 

where l is the corresponding separation distance and w is the width of the designed 

separation, defined by the contact size. 

The acquired data, as a result of the complete structure measurement (i.e. total number 

of contact pairs) should indicate a linear variation of the obtained resistance as a 

function of contact separation distance, as shown in Fig. 4.18. 

 

Figure B.2 Illustration of measured total resistance Rt as a function of contact 

separation distance. The equivalent total contact resistance (2 × Rc) and transfer 

length (2 × lT) can be obtained at the intersection of y-axis and x-axis, respectively 

Several key parameters can be obtained by analysing the obtained plot, including the 

value of the total contact resistance (2 × Rc), which is obtained at the intersection of 

the plotted data with the y-axis (i.e. l = 0), and total transfer length (2 × lT), at the 

intersection of with the x-axis (i.e. Rt = 0). The transfer length lT, represents the average 

path distance of the current flow from the metal contact into the semiconductor [1]. 

Furthermore, the slope of the plotted line, based on Eqn. B.1, represents the ratio of 

the semiconductor sheet resistance to the contact pad width (Rsh/w). Finally, the 

specific metal contact resistance can be computed as [1]: 

 𝑐 = 𝑙𝑇
2𝑅𝑠ℎ (B.2) 

An SEM image of a fabricated TLM test structure is shown in Fig. 4.19, realised in 

order to individually characterise the corresponding top and bottom metallisation 
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layers, using the Ti/Pd/Au metal scheme. The contact spacings were l = 1 μm, 2 μm, 

3 μm, 5 μm, 7 μm, 9 μm, 11 μm, 13 μm and 15 μm, respectively, which are known to 

provide easily and accurately measurable resistances. 

 

Figure B.3 SEM image of two fabricated TLM test structures, used to characterise 

the contact resistance of the RTD top and bottom metal contacts. 

The measured total resistances RT for each corresponding contact spacing distance are 

plotted in Fig. B.4, while the extracted contact resistance Rc, transfer length lT, sheet 

resistance Rsh and the specific contact resistance c for the top and bottom metallisation 

layer are shown in Table B.1. 

 

Figure B.4 Measured total resistance Rt as for the top and bottom metallisation layer 

as a function of contact separation distance. 
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Table B.1 Summary of extracted parameters from TLM measurements. 

 Rc (Ω) Rsh (Ω/□) lt  (μm) c (Ωμm2) 

Top contact 0.61 32.8 2.8 256 

Bottom contact 0.46 10.3 6.7 468 

 

The lowest obtained specific contact resistance c = 256 Ωμm2 (top) is approximately 

two orders of magnitude worse than the 0.73 Ωμm2 reported in [6] using the same 

metallisation scheme. The high obtained value can be attributed to the absence of a 

semiconductor de-oxidation process, prior to the metal deposition, due to the 

unavailability of the argon gun feature of the Plassys IV deposition tool at the time of 

the sample processing. However, this factor has been mitigated with the use of large 

active area RTD devices (i.e. > 100 μm2) for which the highest total contact resistance 

of approximately 2.6 Ω was considered acceptable, from the perspective of the targeted 

application and characterisation study presented in this thesis. 
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Appendix C. RTD detector - simulation 

setup 

RTD - SPICE model 

The developed RTD SPICE model is shown in Fig. C.1, where the device I-V 

characteristics are represented by a voltage dependent current source, implemented in 

the ADS software as a symbolically-defined device (SDD). The complete RF large 

signal model also incorporates the device capacitance Cn, the quantum-well 

inductance Lqw and the series resistance Rs, assumed bias independent for the described 

simulations. 

 

Figure C.1 ADS schematic of implemented RTD model (left) and component (right). 

The current equations (in terms of applied voltage) which define the SDD component 

were empirically obtained from the measured device I-V characteristics (with the de-

embedded series resistance Rs) using the Curve Fitting Toolbox (CFTOOL) in 

MATLAB software. Although the primary investigated operating bias range for the 

detector was represented by the non-linear region around the peak-current, the fitting 

procedure was carried in the entire bias range for completion. 

The best fitting for the I-V characteristics shown in Fig. 6.5 was obtained based on a 

Gaussian representation within three operating regions (1st PDR, around the peak-

current region and NDR together with the 2nd PDR region), which takes the form: 
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 𝐼(𝑉) =  ∑ (𝑎𝑘 ∗ exp (− (
𝑉 − 𝑏𝑘

𝑐𝑘
)

2

))

𝑛

𝑘=1

 (1) 

The computed fitting coefficients are summarised in Table C.1. 

Table C.1 Summary of fitting coefficients 

Coefficient 
1st PDR region 

(V < 2.861) 

Peak-current region 

(2.861 < V < 2.906) 

NDR and 2nd PDR region 

(2.906 < V < 5.4) 

n 8 3 8 

a1 0.005408 0.06719 0.1772 

a2 0.007221 0.06378 0.03148 

a3 0.001821 0.005994 0 

a4 0.03451 - 0.09993 

a5 -0.0001167 - 0.01216 

a6 1.042e-05 - 0.006869 

a7 0 - 0 

a8 0.03127 - 0.01151 

b1 2.963 2.851 2.479 

b2 2.877 2.989 3.125 

b3 2.664 2.896 3.191 

b4 2.947 - 6.371 

b5 2.231 - 3.42 

b6 2.175 - 3.564 

b7 2.088 - 5.175 

b8 2.351 - 4.806 

c1 0.1023 0.08259 0.3462 

c2 0.1749 0.06849 0.272 

c3 0.1818 0.02141 0.0001902 

c4 0.7145 - 0.8276 

c5 0.1363 - 0.1622 

c6 0.04871 - 0.09077 

c7 3.193e-05 - 0.0002705 

c18 1.062 - 2.905 
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A comparison between the measured and fitted device I-V characteristics is shown in 

Fig. C.2. 

 

Figure C.2 Measured (black) and fitted (red) RTD device I-V characteristics. 

Simulation setup – OOK modulation scheme 

The described OOK modulation scheme (Fig. 6.19) used for the detector data 

transmission simulations was implemented using a time-domain pseudo-random bit 

sequence source (VtPRBS) and modulated onto a high-frequency carrier generated by 

an AC source component (VtSine). The complete simulation setup is shown in Fig. 

C.3 including the eye probe component used for the presented density plots. 

 

Figure C.3 ADS schematic of the detector setup. 
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Appendix D. RTD wireless transmission 

link 

The high detector responsivity, as indicated in Chapter 6 was demonstrated in an RTD 

based Tx/Rx wireless data transmission link Ka frequency band (26.5 – 40 GHz). The 

experiment presented in this section was conducted jointly with Dr. Andrei Cornescu, 

responsible for the design and development of the high power RTD based source, as 

part of his PhD research project.  

The complete experimental setup is presented in the block diagram schematic in Fig. 

D.1 and in Fig. D.2. The realised RTD circuits (Tx and Rx sub-systems) were operated 

in an on-wafer probing configuration, biased independently from two power supplies. 

The high-frequency AM signal, generated at the Tx side, was transmitted over a 

distance of 15 cm (limited by the available measurement setup space) using a pair of 

matching WR-28 horn antennas (15 dBi gain), connected to the RTD circuits using a 

CPW-to-waveguide transition. No amplification stage was introduced between the 

output of the detector and measurement equipment.  

 

Figure D.1 Block diagram of wireless data transmission setup, using an on-wafer 

RTD source. 

The oscillation frequency at the output of the RTD transmitter was measured at 30 

GHz, with an output power of -8.1 dBm. An attenuation of 19.79 dB was observed in 

the received signal strength (RSS) at the output of the receiver antenna, measured at 

27.89 dBm. The baseband signal was generated using the similar specifications as in 

the W-band experiment in section 6.4.1 (amplitude of 250 mV peak-to-peak), to create 

the OOK modulation scheme. 
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Figure D.2 Picture of wireless data transmission setup. 

The maximum transmitted data rate with the current setup was estimated at 2.6 Gbps, 

primarily limited by the large RC time constant present at the input of the RTD 

oscillator circuit. Considering this major bottleneck, associated with the RTD 

transmitter, a detector with a reduced output low-pass filter cut-off frequency of 6.5 

GHz, (L = 200 pH, Ce = 3 pF) was explored in order to improve the SNR.  

The measured eye diagram of the recovered demodulated signal is presented in Fig. 

D.3, with an eye amplitude of 3.6 mV and a SNR of 19.22 dB, for a 2 Gbps data rate. 

The relatively low AM signal power, present at the input of the detector, enabled the 

device biasing in the highest non-linearity region (current peak), which lead to an 

increased detection sensitivity. The overall detector responsivity, at the specified 

frequency, was calculated at 2.21 kV/W. A bit pattern contour can be observed for a 

measured eye diagram at a data rate close to the cut-off frequency of the output low-

pass filter (6 Gbps), presented in Fig. D.4, however no eye opening was identified by 

the measurement equipment. 

In order to validate the date transmission accuracy, the BER was measured using an 

Anritsu MP1764c error detector. The measured BER as a function of transmitted signal 

data rate is plotted in Fig. D.5, which shows an error free transmission (BER < 10-10) 

up to 2.4 Gbps. Alternative Ka-band RTD based sources and antenna pair selection 

should be investigated in the future, in order to experimentally determine the 

maximum achievable data rate, together with optimal transmission distance. 
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Figure D.3 Measured eye-diagram of demodulated 2 Gbps signal. Eye amplitude of 

3.6 mV and SNR of 19.22 dB. 

 

Figure D.4 Measured eye-diagram of demodulated 6 Gbps signal. No clear eye 

opening was identified. 

 

Figure D.5 Measured BER vs data rate. Error free transmission up to 2.4 GHz. 
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