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«Considerate la vostra semenza:

fatti non foste viver come bruti,

ma per seguir virtute e canoscenza. »

“Consider where you come from:

you were not made to live as brutes,

but to pursue virtue and knowledge.”

—Inferno, Canto XXVI, v.118-120, Dante

‘Tell me one last thing,’ said Harry. ‘Is this real? Or has it all been happening

inside my head?’

Dumbledore beamed at him, and his voice sounded loud and strong in Harry’s

ears even though the bright mist was descending again, obscuring his �gure.

‘Of course it is happening inside your head, Harry, but why on earth should

that mean that it is not real?’

—Harry Potter and the Deathly Hallows, J.K. Rowling



Abstract

Arti�cial spin ices are arrays of nano-scale magnetic islands correlated by the interactions of

their associated macrospins. They have proven an excellent playground in which to study

phase transitions and non-equilibrium phenomena. Originally envisaged as a two-dimensional

analogue to the frustrated rare-earth pyrochlores, they are now seen in their own right as promis-

ing candidates for a wide range of applications, including nanomagnetic computation and

magnonics. At the same time, the capability of tuning their behaviour—whether by means

of the constituent material, the fabrication pattern, or the application of external stimuli—

enables the realisation of unusual aspects of statistical physics.

This thesis comprises a combined numerical and experimental study of arti�cial spin ice.

The aims are twofold. First, it seeks to address how magnetic order and defect textures are

in�uenced by the choice of lattice geometry. Second, it considers one route towards making

arti�cial spin ice con�gurable via a coupling to a site-speci�c exchange bias.

In the initial segment of this thesis, the recently studied pinwheel form of arti�cial spin

ice is described. This is created by rotating each island in the square lattice about 45° through

its centre. The rotation angle of the islands acts as a proxy for a mechanism to vary the in-

teractions between spins. A transition between antiferromagnetism in the square lattice and

ferromagnetism in the pinwheel lattice is predicted. The phase diagram and critical exponents

of the transition are obtained numerically.

The nature of this transition is con�rmed experimentally using in-situ Lorentz transmis-

sion electron microscopy on thermally annealed cobalt arrays. Varying degrees of thermali-

sation are observed across the samples, as well as an apparent change in the nature of the

defects: from one-dimensional strings in square ice to two-dimensional vortex-like structures

for geometries similar to pinwheel. The numerical scaling of these quantities is consistent with

that predicted by the Kibble-Zurek mechanism.

Finally, a two-dimensional hybrid arti�cial spin ice is outlined. In this, exchange bias is

inserted at speci�c sites to constrain the magnetisation dynamics of individual islands. By

examining correlations, a model for the in�uence of this pinning is constructed. As the density

of constrained spins is varied, di�erent magnetic textures are observed following a simulated

�eld demagnetisation. These simulations show good agreement with results obtained experi-

mentally. In this manner, local control over individual islands provides a route to tuning the

global response of the array, thus making the system con�gurable. This is an essential step

towards device-based applications.



Taken together, these results illustrate the interplay between topology and magnetic order

in arti�cial spin structures, and enable the exploration of critical phenomena in frozen and

glassy systems. The �ndings presented here demonstrate conclusively that arti�cial spin ice

is an excellent test bed with which to probe out-of-equilibrium dynamics. They will also

underpin its potential use in �elds which are reliant on adressing speci�c microstates, such

as neuromorphic computing.
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1
Introduction

Arti�cial spin ices (ASIs) are arrays of strongly correlated sub-micron magnetic islands in which

the individual elements are coupled through their magnetostatic interactions [8]. These ar-

rays were originally envisaged as a two-dimensional (2D) analogue of the magnetic frustration

present in bulk rare-earth pyrochlores [8]. The aspect ratio of these elements is usually chosen

so that they behave as single magnetic domains, which can be described by means of an Ising-

like variable. The long-range dipolar �eld between islands mixes spin and spatial degrees of

freedom. As a result, the ordering within arrays is strongly dependent on the exact arrange-

ment and orientation of the islands [9, 10]. By tailoring interactions locally, it is possible to

obtain experimentally tractable mesoscopic counterparts to atomistic systems [11].

While ASI systems were �rst conceived in 2006, Ising-like systems made of magnetic is-

lands have been studied extensively over the course of several decades [12], and continue to

merit attention for the unusual ordering they manifest [13, 14, 15]. In recent years, advances in

precision lithography have enabled the �eld of arti�cial spin ice to encompass a wider family of

Hamiltonians, including Potts-like [16, 17] and dipolar XY [18, 19, 20] models. The individual

microstates of these systems can be interrogated using magnetic microscopy (e.g. magnetic

1



1. Introduction 2

force microscopy [21], photo-emission electron microscopy [22, 23] or Lorentz transmission

electron microscopy [24, 25, 26, 2]). These methods allow us to examine the response to

external stimuli such as applied �eld [27, 28], electrical current [29, 30] or temperature [23, 2].

ASIs thus provide us with new platforms in which to examine aspects of physics otherwise not

directly observable. These include glassiness [31]; charge fragmentation [32]; and topologically-

induced textures such as magnetic ‘monopoles’ [33, 22, 34], Dirac strings [35], and mesocopic

domain walls [28].

Broadly speaking, this thesis sets out to address two questions:

1. How does the topology of the lattice in�uence both the magnetic ordering and the

defect structures that form during a thermal annealing?

2. Can we use local magnetic �elds to make arti�cial spin ice con�gurable?

In tackling these topics, our discussion will draw on aspects of critical phenomena and non-

equilibrium physics to classify phase transitions in these systems. The �ndings, which we

report here, are an essential prerequisite to understanding fully the collective behaviour of

arti�cial spin ice lattices. This will help to lay the groundwork for uses in novel computer

hardware, including in logic devices [36, 37] and in neuromorphic computing [38], for which

an understanding of the inter-element interactions is crucial to tuning the response of the

system. In this context, ensuring that the individual microstates in arti�cial spin ice can be

addressed in a reproducible fashion is currently the matter of active research [39, 40, 41].

1.1 | Thesis overview

The thesis is structured as follows.

Chapter 2 serves as a primer for the topics in magnetism and arti�cial spin ice that we sub-

sequently explore in this thesis. We give a heuristic account of the origin of atomic magnetism

from which we develop the energy terms relevant to a study of ferromagnetic materials. Finite

di�erence micromagnetic simulations are described. These are used throughout this thesis

to extract physically reasonable values for parameters. A brief literature review of arti�cial

spin ice is provided.
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Chapter 3 discusses phase transitions in magnetic systems and the use of Monte Carlo

techniques as a way to simulate them. We illustrate our points by applying them to the 2D

Ising model, which is often taken as a limiting case to describe short-range interactions within

arti�cial spin ices. We outline the �nite-size scaling ansatz, which is useful in obtaining the crit-

ical exponents of second-order phase transitions, and describe replica exchange Monte Carlo.

Chapter 4 describes the experimental techniques used in this study to fabricate and, subse-

quently, to capture images of the magnetic con�guration of arti�cial spin ice arrays. The fun-

damentals of focused electron beam induced deposition are explained. This method allows for

the rapid prototyping of 2D structures, such as those as we investigate. Transmission electron

microscopy, with a particular focus on the Fresnel mode of Lorentz microscopy, is introduced.

Chapter 5 is the �rst results chapter. In this chapter, we outline a recently studied form of

arti�cial spin ice, the pinwheel lattice. This geometry is formed by rotating every island in the

classic square arti�cial spin ice through 45° about its centre. This island rotation angle de�nes

a continuum of geometries. We discuss the e�ect of this rotation on the dipolar interaction

between islands, and show that it leads to a weakening of the stronger �rst-nearest-neighbour

couplings which dominate the square lattice. Using equilibrium Monte Carlo simulations, we

predict a transition in ground state spin ordering between antiferromagnetism in the square

lattice to ferromagnetism in the pinwheel lattice. Finally, we consider low-energy con�gu-

rations of the pinwheel ice, and draw an analogy with the structures that form in continu-

ous magnetic media.

Chapter 6 con�rms this transition in ordering experimentally by using in-situ Lorentz

transmission electron microscopy on thermally annealed cobalt samples. We discuss how to

interpret experimental Fresnel images of ASI arrays and how to extract from them a measure-

ment of the correlations. In probing this transition, we examine how di�erent tiling patterns

approach equilibrium. We �nd that relaxation timescales are set indirectly through island

rotation angle. As a result, we observe varying amounts of ground state magnetic texture,

re�ecting the extent to which arrays have been thermalised. This acts as a springboard to a

discussion of non-equilibrium phenomena and, in particular, the Kibble Zurek mechanism

of defect formation. We characterise defect textures in the two phases and show numerically

that they scale with the exponent appropriate to the 2D Ising universality class.
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Chapter 7 takes a di�erent approach. Rather than considering a change to the geometry

of the lattice, we couple islands in the classic square ice to site-speci�c external �elds. These

are supplied via an exchange bias layer applied to certain islands. By varying the density of

spins pinned in this way, we gain a degree of control over local correlations. We estimate

relaxation timescales in the presence of this pinning, and show that these in�uence ordering

processes. We simulate a �eld-driven demagnetisation and compare the results with those

obtained experimentally by our collaborators. Finally, we show that the pinning e�ectively

tunes critical phenomena in these systems.

Chapter 8 summarises the conclusions of this thesis and advances a plan for future re-

search.



2
Magnetism

2.1 | Introduction

This chapter is divided into two parts. The �rst outlines aspects of fundamental magnetism

necessary for the analysis of arti�cial spin ice (ASI). The second presents a summary of key

results in ASI that we will use frequently in later chapters.

The chapter is structured as follows. Sec. 2.2 de�nes the magnetic moment and describes

the origin of atomic magnetism. We highlight the link between magnetism and angular mo-

mentum, and use this to justify the di�erential equations which govern magnetic materials in

Sec. 2.3. The continuum approximation—central to micromagnetism—is outlined in Sec. 2.4

along with a discussion of the relevant energy terms. In Sec. 2.5, a brief literature review of ASI

. This focuses on placing the �eld of study in context, and on those systems which show un-

usual phase transitions. The chapter concludes in Sec. 2.6 by describing how micromagnetic

simulations provide a route to model accurately the behaviour of ASIs. This chapter is entirely

review material.

5
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Figure 2.1: De�nition of the magnetic moment in terms of elementary current loops. The circulating

current, I , encloses a surface, A, and gives rise to a moment, µ. The direction of the unit normal, n̂,

and, hence, the net moment is determined by the ‘right-hand-rule’ for conventional current.

2.2 | Magnetic moments

The central quantity of magnetism is the magnetic moment, µ [42]. In classical electromag-

netism, this is conventionally de�ned with respect to a loop of wire. Given a current, I , circulat-

ing around an in�nitesimal loop of area, dS, the in�nitesimal magnetic moment, dµ, is given

by

dµ = I dS. (2.1)

The di�erential vector, dS = dS n̂, is de�ned such that n̂ is a unit vector perpendicular to the

plane of the loop, and with a sense uniquely determined by the direction of conventional cur-

rent. For an extended current distribution, i.e. a loop of �nite size, we calculate the magnetic

moment by summing the in�nitesimal moments so that

µ =
∫
A

dµ =
∫
I(r) dS, (2.2)

where A is the surface enclosed by I as in Fig. 2.1.

2.2.1 Origin of atomic magnetism

Equation (2.2) provides a heuristic explanation for the origin of atomic magnetic moments.

The orbital motion of an electron of charge−e and massme around the nucleus gives rise to
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Figure 2.2: Origin of classical atomic magnetism. An electron (�lled circle) orbiting an atomic nucleus

(hashed circle) possesses an angular momentum, L. The orbit de�nes a circle of radius, r, and gives rise

to a magnetic moment, µ. The negative charge of the electron ensures that L and µ are antiparallel.

an orbital angular momentum, L. By de�nition, this angular momentum is

L ≡ r× p

= mevr êz,
(2.3)

where v is the velocity of the orbiting electron; r its position vector with respect to the atomic

nucleus; and êz a unit vector perpendicular to the plane of motion as shown in Fig. 2.2. The

orbiting electron gives rise to a current I = −e/T where T = 2πr/v is the period. The

electron sweeps out a circle of radius r = |r|. The magnetic moment of the electron is then

µ = I A

= −e
2me

L

= −µB
~

L,

(2.4)

where in the last line we have used the de�nition of the magneton, µB ≡ e~/(2me).
1

By

eq. (2.4), the magnetic moment of a classical electron is proportional in magnitude—but ori-

entated antiparallel—to its orbital angular momentum.

In reality, the total angular momentum of an electron, J, also contains a contribution from

its intrinsic angular momentum: the spin, S. Namely we have the vector sum,

J = L + S. (2.5)

1
The Bohr magneton, 1µB = 9.274009994(57) × 10−24

J T
−1

with dimensions [L][A]2, corresponds

to the magnetic moment of a 1s electron in hydrogen [43].
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We de�ne the gyromagnetic ratio, γ, as the constant of proportionality between the magnetic

moment of the electron and its total angular momentum so that

µ = −γ J. (2.6)

In many transition metals, the orbital angular momentum is quenched, i.e. L = 0, and the

magnetic moment is determined principally by the intrinsic angular momentum (in e�ect,

orbital e�ects can be neglected).
2

In terms of magnetic moments and spins then, “to speak

of one is to speak of the other” [45] and the notation µ for S (or even m) is interchangeable.

The converse example, orbital magnets (materials which are magnetic by dint of non-zero L),

have been recently demonstrated in bilayer graphene whereby one layer is twisted with respect

to the other [46].

In passing, we note that the gyromagnetic ratio of an isolated electron is given by

γe = 1.76× 1011
rad s

−1
T
−1, (2.7)

based on the value given in Ref. [43]. Relation (2.6) is a general result: magnetic moments are

associated with angular momenta. This has been experimentally demonstrated by both the

Einstein–de Haas e�ect [47] (in which introducing a net magnetic moment causes rotation)

and the Barnett e�ect (in which rotation induces a magnetic moment) [48].

2.2.2 Bohr-van Leeuwen theorem

Equation (2.6) was based on purely classical arguments. That it holds true quantum mechan-

ically is just serendipity [49]. In any case, such reasoning will only take us so far: the Bohr-

van Leeuwen theorem [50, 51] demonstrates that magnetic moments cannot exist in thermal

equilibrium at least with respect to the distributions of classical statistical mechanics. Any true

treatment of magnetism must therefore be explicitly quantum.

2
In an isolated atom, the projection of L onto an arbitrary axis results in an eigenvalue m` which is a good

quantum number. In a crystal however, this is no longer the case as the potential is not necessarily rotationally

invariant. This can couple states which have di�erent m` [44]. The resulting crystal wavefunctions are linear

superpositions of the eigenfunctions for the isolated atom, ψ`. These are generally of the form ψm`
± ψ−m`

which have overallm` = 0.
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Figure 2.3: Bohr-van Leeuwen theorem and skipping orbits. A magnetic �eld, B, is applied to a

material. Electrons move in cyclotron orbits. The net clockwise circulation of the bulk orbits (blue) is

cancelled by the net anticlockwise circulation of the incomplete skipping orbits at the sample boundary

(red).

This seems counter-intuitive. When a magnetic �eld is applied to a material, electrons

perform cyclotron orbits with a radius,

r = mev

eB
, (2.8)

as in Fig. 2.3. As these orbits are all in the same sense, we would naively expect the material to

acquire a net moment. Indeed, electrons in the bulk do possess an overall circulation (shown

anticlockwise in Fig. 2.3). However, electron near the boundary of the material cannot perform

complete loops; instead, they are scattered elastically from the sample surface in skipping orbits.

These skipping orbits have a net clockwise circulation which exactly cancels the opposite cir-

culation from the bulk. As a result, the material has no moment.

2.3 | Torque

In this section, we discuss the form of the di�erential equation governing the motion of mag-

netic moments. In the Heisenberg picture of Quantum Mechanics, the time dependence of a

physical system is folded into the operators while the state vectors—the kets—remain constant

in time [52]. A general operator, Â(t), in the Heisenberg picture evolves according to

d

dt
Â(t) = 1

i~
[
Â(t),H

]
+
(
∂Â

∂t

)
H
, (2.9)
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whereH is the Hamiltonian of the system. The components of the angular momentum op-

erator, Ĵ, satisfy the canonical commutation relations,

[Ĵi, Ĵj] = iεijkĴk, (2.10)

where εijk is the Levi-Civita symbol.
3

In applying these relations to eq. (2.9), it can be shown that the components of Ĵ satisfy

the cross product

d

dt
Ĵ = Ĵ× ∂H

∂Ĵ
. (2.11)

Dropping the ‘hat’ notation, and making a change of variables through µ = −γ J allow us

to rewrite this in terms of the magnetic moment,

d

dt
µ = γµ× ∂H

∂µ
, (2.12)

where the partial derivative of the Hamiltonian with respect to µ is itself a vector with compo-

nents ∂H/∂µα for α ∈ {x, y, z}. We de�ne this quantity as the e�ective �eld, He�, through

He� = − 1
µ0

∂H
∂µ

, (2.13)

where µ0 is the permeability of free space. This allows us to rewrite eq. (2.12) as

d

dt
µ = −µ0γ µ×He�. (2.14)

By analogy with classical physics, we recognise eq. (2.14) as a torque equation for the magnetic

moment. Indeed, in some instances, it su�ces to treat the magnetic moment as a purely

classical vector which precesses around the direction of the e�ective �eld as in Fig. 2.4. It

also follows that

µ · dµ

dt
= 1

2
d

dt
|µ2| = 0, (2.15)

and so the torque equation preserves the length of the magnetic moment.

3
The Levi-Civita tensor is the fully antisymmetric tensor, de�ned in three dimensions according to

εijk =


+1 if (i, j, k) is an even permutation of (1, 2, 3)

−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 otherwise

.
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Figure 2.4: Precession of magnetic moments in a magnetic �eld. An electron with total angular

momentum, J, and magnetic moment, µ = −γ J, precesses around the direction of an applied �eld, H,

with angular frequency, ω. The magnetic �eld is aligned along the z−axis and the magnetic moment

traces out a cone of semi-angle θ.

Equation (2.14) represents the dynamics of a single magnetic moment. In general, we

are interested in the behaviour of materials containing many magnetic moments, say, 1023
or

more. To this end, we de�ne an ensemble quantity, the magnetisation, which is the density of

magnetic moments in some volume element, dV , of a magnetic body:

M(r) =
∑
i µi

dV
, (2.16)

where the sums runs over all the moments in the volume element.

In the (unphysical) limit of an in�nitesimal volume containing a still substantial number

of magnetic moments, we may replace the discrete sum in eq. (2.16) by a smooth function of

position and time: M = M(r, t). This is the essence of micromagnetism: the true coarse-

grained nature of atomistic magnetic moments is replaced by a continuum approximation. In

this sense, the pre�x micro- is a misnomer. Rather, the usefulness in taking M(r, t) depends

on assuming a macroscopic model of slowly varying atomistic moments.
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Table 2.1: Example saturation quantities, MS and BS for materials considered in this thesis. The

saturation �eld is related to the saturation magnetisation through BS = µ0MS . Values taken from

[55]

MS [kAm
−1

] BS [T]

Fe 1714 2.15

Co 1422 1.78

Ni 484 0.61

Ni80Fe20 860 1.08

Given that the torque equation, eq. (2.14), preserves norms, we immediately conclude

that the magnitude of the magnetisation �eld is everywhere constant and does not change in

time. We call this magnitude the nn magnetisation of a material: MS = Ms ≡ |M|. For

arrays of arti�cial spin ice,MS is most often measured by saturating the sample in an external

magnetic �eld using vibrating sample magnetometry [53, 54]. Table 2.1 lists typical values for

the saturation magnetisation for materials considered in this thesis; an equivalent quantity,

the saturation �eld,Bs = µ0MS , is also given. It is often convenient to rescale any dynamical

equation for M in terms of a unit-length vector �eld m(r, t) by M = MS m.

Further, suppose that the e�ective �eld is rigorously re-de�ned as the functional derivative

of the Hamiltonian with respect to the magnetisation,

He� = − 1
µ0

(
δH[m]
δt

)
. (2.17)

Then, the precession equation becomes simply

d

dt
m = −γ m×He�, (2.18)

provided the gyromagnetic ratio is also rescaled through µ0γ → γ. We describe the terms of

the energy functional, H[m], more fully in Sec. 2.4 onwards.

2.3.1 Landau-Lifshitz-Gilbert equation

Equation (2.18) is pathological for a true physical system as it neglects damping. In particular,

it suggests that the magnetisation precesses around the direction of the applied �eld but never
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(a) (b) (c)

Figure 2.5: Decomposing the magnetisation dynamics of the LLG equation. (a) Undamped preces-

sional motion of m around the e�ective magnetic �eld, H
e�

(c.f. Fig. 2.4). (b) A frictional force related

to the velocity of the magnetisation promotes alignment with H
e�

. (c) The full LLG equation combines

motion from both (a) and (b): m continues to precess but eventually aligns with e�ective �eld.

aligns with it. In reality, the kinetic energy of m and its associated angular momentum are

dissipated into the crystal lattice through both direct (e.g. phonons) and indirect (spin waves)

means [56].

To model this, Landau and Lifshitz introduced a phenomenological term to remove energy

from the system. Their di�erential equation—the Landau-Lifshitz (LL) equation [57]—is

written

d m
dt

= −γ m×He� − λm×
(

m×He�

)
, (2.19)

such that λ is a damping parameter with dimensions of frequency. Gilbert proposed a further

modi�cation [58] to the right-hand side; namely that

d m
dt

= −γ m×He� + αm× d m
dt
. (2.20)

In this form, the dissipation arises from a frictional force related to the ‘velocity’ of the mag-

netisation, d m/ dt. This friction is weighted by the Gilbert damping constant, α. Equation

(2.20) is called the Landau-Lifshitz-Gilbert (LLG) equation and is the standard equation used

in numerical packages to model the dynamics of magnetisation [Sec. 2.6]. For a single moment

it describes damped precession in which the moment spirals and eventually aligns with the
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direction of the e�ective �eld, as shown in Fig. 2.5. The LL and LLG equations are not in fact

independent; it is simple to show that the rescaling,

γ 7−→ γ

1 + α2 , λ 7−→ γα

(1 + α2) , (2.21)

transforms (2.19) into (2.20) precisely.

2.3.2 Types of magnetic order

Materials can be classi�ed according to their magnetic ordering and, by extension, according to

their response to an applied �eld. The susceptibility,χ, relates the magnetisation of a magnetic

material to the applied �eld through

M = χH. (2.22)

In a somewhat simpli�ed picture, a ferromagnet is a material in which the spins spontaneously

align along a preferred direction in the absence of an applied �eld, while an antiferromagnet is

a material in which neighbouring spins anti-align under the same conditions [left and middle

panels of Fig. 2.6(a), respectively]. Materials in which the spins are randomly orientated [right

panel, Fig. 2.6(a)] can be grouped by the sign of their susceptibility as either paramagnetic

(χ > 0) or diamagnetic (χ < 0).

The Curie-Weiss law governs the temperature dependence of the susceptibility above the

ordering temperature of a material. This critical, ordering temperature for a ferromagnet

is called the Curie temperature, TC ; while its counterpart for an antiferromagnet is called

the Néel temperature, TN . The behaviour of the inverse susceptibility, 1/χ, is shown for a

ferromagnet, antiferromagnet, and paramagnet in Fig. 2.6(b).

A typical phase diagram for a ferromagnet is given in Fig. 2.6(c). Below the Curie tempera-

ture, the material exhibits a spontaneous magnetisation. The low temperature behaviour of M

is governed by the Bloch law, which predicts a power-law dependence of T 3/2
[44]. Near to

TC , the magnetisation vanishes according to (1 − T/TC)1/2
. We discuss this e�ect in more

detail in Chapter 3.

There are other types of spontaneous magnetic ordering, including ferrimagnets, and vari-

ants of the above, including canted antiferromagnets, but this thesis will mainly consider the

transition between antiferromagnetism and ferromagnetism.
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Ferromagnet Antiferromagnet Paramagnet

AFMAFM

PMPM

FMFM

(a)

(b) (c)

PM

Figure 2.6: Classes of magnetic order. (a) L-R: a ferromagnet (in which neighbouring spins are

aligned); an antiferromagnetic (in which neighbouring spins are antiparallel); and a paramagnet (in

which no spontaneous magnetic order exists). (b) Schematic of inverse susceptibility, 1/χ, against tem-

perature, T , for the materials in (a). The critical temperatures for a ferromagnet and antiferromagnet

are called the Curie temperature, TC , and the Néel temperature, TN , respectively. (c) Phase diagram of

a ferromagnet. Above TC , thermal �uctuations are su�cient to destroy magnetic order and the system

is paramagnetic. Low and near-TC expansions ofm(T ) are indicated.

2.4 | Energy functional

The Hamiltonian of a generic magnetic material can be written as the volume integral of the

magnetic (free) energy density, w(r), such that

H[m] =
∫
V

d
3 rw(r). (2.23)

Finding the ground state—or, equilibrium—con�guration for a magnetic system thus reduces

to solving a variational problem:

δ

(∫
V

d
3 rw(r)

)
= 0.4 (2.24)

4
C.f. Feynman in [49]: “Let us show you something interesting that we have recently discovered: All of the

laws of physics can be contained in one equation. That equation is U = 0. What a simple equation! Of course, it

is necessary to know what the symbol means. U is a physical quantity which we will call the ‘unworldliness’ of

the situation."



2. Magnetism 16

We can write the total energy as the sum of several terms,

H = Eexch. + EZeeman + Edip. + Eanis...., (2.25)

where the individual contributions arise from the exchange, Zeeman, demagnetising and aniso-

tropic interactions, respectively. This is not an exhaustive list, but these are the most important

contributions to encapsulate the essential physics of most arti�cial spin ices. We now examine

these terms in turn.

2.4.1 Exchange Energy

The exchange energy has its origins in the antisymmetry of electron wavefunctions under par-

ticle interchange. Dirac [59] and Heisenberg [60] independently showed that an appropriate

exchange Hamiltonian for two spins is

− J si · sj, (2.26)

where the sign of the exchange constant, J , promotes either ferromagnetic (J > 0, all spins

aligned) or antiferromagnetic (J < 0, neighbouring spins anti-aligned) order. Van Vleck

subsequently generalised this result to more complicated atomic orbitals [61].

The Pauli exclusion principle requires that the overall wavefunction of fermions must be

antisymmetric. It follows then that the symmetry of the spin con�guration necessarily restricts

the allowed spatial con�gurations for such a system (and vice versa).
5

Since di�erent spatial

con�gurations have di�erent Coulomb energies (as they depend on the distribution of charged

particles), this implies that spin con�gurations can be linked with electrostatic energy terms.

As the magnitude of the exchange energy is set by Coulombic repulsion, we typically have

J ∼ e2

4πε0a
∼ 0.1 eV, (2.27)

5
Of course, this assumes that the total wavefunction of the system, Ψ, can be written as the product of orbital

and spin wavefunctions. For example, for a two-electron system, we would have

Ψ = φ(r1, r2)⊗ χ(s1, s2),

provided the spin-orbit coupling is small. Antisymmetry of one part under exchange then implies symmetry of

the other.
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assuming a realistic value, a = 5 Å, for the lattice constant. This is equivalent to a temperature

of approximately 1150 K.

For an extended lattice of spins, we can rewrite the exchange Hamiltonian in terms of the

angle between neighbouring spins, si and sj . Writing φij for this angle, we obtain

Eexch = | s|2
∑
〈i,j〉
Jijφ2

ij. (2.28)

Here, the energy is measured with respect to a reference state in which all spins are aligned. For

small angles, this expression can be expanded as a Taylor series about a given lattice point [62].

Then, in the limit of a continuous material (as in micromagnetism), we can re-express this

exchange contribution as

Eexch = A
∫
V

d
3 r
(
∇m

)2
, (2.29)

such that the exchange sti�ness, A, is the bulk analogue of the exchange constant, J . This

approximation is valid so long as the magnetisation is slowly changing in space or, equivalently,

so long as the angle between neighbouring spins changes gradually.

2.4.2 Zeeman energy

A magnetic moment, µ, placed in a magnetic induction, B, acquires a potential energy,

− µ · B. (2.30)

This energy is minimised when the moment aligns parallel with the direction of the �eld. For

a continuum description in terms of the unit-magnetisation, m, we integrate over the volume

of the sample so that

EZeeman = −µ0MS

∫
V

d
3 r m · B. (2.31)

This represents the Zeeman coupling between the magnetisation vector �eld and the applied

�eld. Clearly, in a multi-domain material, the application of B favours the growth of those do-

mains aligned with the external �eld and the shrinkage of those opposed to the direction of the

�eld.
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2.4.3 Dipolar energy

Each magnetic moment is a source of dipolar �elds and couples to every other moment in

a material through magnetostatic interactions. For the speci�c case of two point magnetic

dipoles, si and sj , at positions ri and rj , the coupling is

Edip

i,j = µ0

4π

[
si · sj
r3
ij

− 3(si · rij)(sj · rij)
r5
ij

]
, (2.32)

where rij = rj− ri is the relative separation. For a discrete system ofN spins, the dipolar �eld

acting on spin i as a result of the other (N − 1) spins is

Hdip

i = − 1
µ0

∂

∂ si
Edip

= 1
4π

N∑
j 6=i

[
sj
r3
ij

− 3(sj · rij) rij
r5
ij

]
.

(2.33)

Assuming two spins of moment s ∼ µB , separated by 1 Å, the typical order of magnitude

for this interaction is µ2
B/(4πr3) ∼ 60 µeV or, equivalently, 1 K. In general, most magnetic

materials order at higher temperatures (1043 K for iron, 1100 for cobalt [44]) and so the dipolar

interaction alone is insu�cient to explain their behaviour. As we shall discuss, some rare-earth

materials, such as the pyrochlore holmium titanate, are dipolar-ordered and so their magnetism

emerges at millikelvin temperatures [63]. Similarly, arti�cial spin ices are magnetostatically-

coupled and so the dipolar interaction is the dominant one between islands.

The e�ect of the dipolar interaction is noticeable on macroscopic length scales. Here,

the competition between exchange and magnetostatic interactions is responsible for magnetic

domain formation. In the absence of an applied �eld, bulk samples of a magnetic material tend

to be demagnetised, i.e. they exhibit no net magnetisation. This occurs because their internal

structure admits, on average, a collection of randomly orientated magnetic domains. To see

this, we translate eq. (2.32) into the continuum approximation. Ampére’s Law in di�erential

form states that for a magnetic �eld, H, a current density, J, and an electric �eld, E,

∇×H = µ0

(
J + ε0

∂ E
∂t

)
. (2.34)
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In the absence of free and displacement currents, eq. (2.34) simpli�es to∇ × H = 0. The

magnetic �eld is thus conservative and can be written as the gradient of some scalar poten-

tial, φM , so that

H = −∇φM . (2.35)

In this scenario, the magnetic �eld is often referred to as the demagnetising �eld, Hd

6
. The

constitutive relation for magnetic materials, B = µ0(H + M), together with Gauss’s Law for

the magnetic induction, ∇ · B = 0, allow us to write

∇ ·Hd = −∇ ·M = ∇2φM . (2.36)

By analogy with electrostatics, sources and sinks of the magnetisation act as pseudo charges

for the demagnetising �eld. Equation (2.36) is valid inside the magnetic material. In vacuum,

M = 0, and there is no distinction between the magnetic �eld and the magnetic induction.

There, the di�erential equation becomes simply

∇2φM = 0, (2.37)

which is Laplace’s equation. Maxwell’s equations require that the components of H parallel

and B perpendicular to an interface are continuous. These enforce matching conditions for

the scalar potential and its �rst derivative. Without loss of generality, we can state these for

the potential inside and outside the sample as

φin

M = φout

M and (∇φout

M −∇φin

M) · n̂ = M · n̂, (2.38)

where n̂ is the local unit normal to the surface [62].

Using the method of Green’s functions and requiring that φM is “well behaved” for r →

∞, the general solution to eq. (2.36), subject to the boundary conditions, is

φM(r) = 1
4π

(
−
∫
V

∇′ ·M
| r− r′|

dV ′ +
∫
S

M · d S′

| r− r′|

)
, (2.39)

where the integrations are carried out over the volume of the ferromagnetic body, V , and its

surface, S , de�ned through the outward normal n̂, respectively. The demagnetising �eld is

6
‘De-’ because its e�ect is to oppose the magnetisation that gives rise to it. As magnetostatic �elds are long-

range, it exists also outside a magnetic material where it is often referred to as the stray �eld.
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found through application of eq. (2.35). Evaluating this solution for φM is not trivial, except

in highly symmetric situations. We can give a physical interpretation to its form, however.

The �rst term is analogous to the integral of a volume charge density, ρM = −∇ ·M, while

the second term is similar to the integral of a surface charge density, σM = M · n̂. For a

continuous body, the magnetostatic energy is then

Edip. = −µ0

2

∫
all space

H2
d

dV (2.40)

= −µ0

2

∫
V

Hd ·M dV, (2.41)

from which it is clear that the energy is minimised by reducing the distribution of pseudo-

magnetic charges. This explains the propensity for magnetic materials to form domains.

2.4.4 Anisotropy Energy

The exchange Hamiltonian, as expressed in eq. (2.26), is completely isotropic, which is to say

the energy is independent of the direction of spontaneous magnetisation. In reality, there may

exist certain preferred directions for m which are energetically more favourable. We refer to

this as the anisotropy energy. We will distinguish between two cases: magnetocrystalline and

shape anisotropy.

2.4.4.1 Magnetocrystalline anisotropy. Magnetocrystalline anisotropy arises from the spin-

orbit coupling of electrons in the lattice and acts to lower the energy of certain crystallographic

directions.
7

In such a case, it is energetically more favourable for m to lie along these easy axes.

This contribution is (non-trivially) dependent on the symmetry group of the crystal lattice,

and the shapes of the allowed atomic orbitals. The simplest case—observed in e.g. hexagonal

and cubic structures—is that of uniaxial anisotropy. We de�ne a certain unit direction, n̂, to

develop an energy term of the form

Ea =
∫
V
−K

(
m · n̂

)2
d

3 r, (2.42)

where K > 0, an energy-density, is the anisotropy constant. It is clear that increasing the

component of m along n̂ lowers the energy of the state.

7
The spin-orbit coupling appears as a term proportional to L · S in the crystal Hamiltonian.
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Spherical nano-particle(a)

+ + + + + +

− − − − − − 

− 

(b)

m

+ 
+ 

+ 
− 
− 

m
m

Hard axis orientation Easy axis orientation

Hd
Hd

Stadium-shaped isand
Sphere radius, r

Figure 2.7: Shape anisotropy for spherical nano-particles and stadium-shaped single domain islands.

(a) For su�ciently small radii, the symmetry of a sphere implies there is no preferred direction for

magnetisation. As the radius is increased, the magnetostatic charge can be minimised by forming a

�ux closure state. (b) For stadium-shaped islands, like in ASI, the in-plane short axis is an e�ective hard

axis. This re�ects the build-up of magnetic charge, indicated by the blue and red symbols.

2.4.4.2 Shape anisotropy. By contrast to magnetocrystalline anisotropy, shape anisotropy

is a consequence of magnetostatic interactions. It is determined by the physical, macro-scale

dimensions of a sample rather than its crystal structure. For example, the rotational symmetry

of a perfect sphere implies there is no a priori direction along which all moments would spon-

taneously align as shown in Fig. 2.7(a).
8

Were the sphere elongated along a certain direction,

this long axis would become an e�ective easy axis as in Fig. 2.7(b). This re�ects the build-up of

magnetic charges—north and south pseudo-poles—which appear on the surface of the sample.

The charge density, which acts as the sources and sinks of the demagnetising �eld, is minimised

when the magnetisation lies along the ‘long’ axis. This energy term is particularly important

for small elongated magnetic elements such as those used in arti�cial spin ice arrays. In fact,

as we discuss later, it sets the largest energy scale of the problem—far greater than even the

dipolar interactions between islands.

2.5 | Arti�cial spin ice

In this section, we present a brief review of some relevant topics from the �eld of arti�cial

spin ice. This section is not intended to be exhaustive, and there exist many comprehensive

8
That moments do align in such a circumstance is an example of spontaneous symmetry-breaking.
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(a) Square lattice (b) Triangular lattice

Figure 2.8: Frustration in lattice spin systems. An antiferromagnetic exchange,J s1 · s2, withJ > 0

on (a) square and (b) triangular lattices. Each lattice point is associated with a single magnetic moment.

(a) The antiferromagnetic interaction can be completely satis�ed on the square lattice to give the Néel

ground state. (b) In contrast, the triangular plaquette is frustrated: one pair of neighbours remain

aligned even in the ground state.

reviews of the �eld, including those by Nisoli et al. [64], by Heyderman and Stamps [65], and,

most recently, by Skjærvø et al. [66].

2.5.1 Frustration

Arti�cial spin ices are examples of geometrically frustrated systems. Considered the “unifying

theme” of complexity in the physical sciences [67], frustration refers to the inability of a system

to satisfy competing interactions. In general, it leads to a large degeneracy in ground states.

In a magnetic context, the prototypical example of a frustrated system is a two-dimensional

antiferromagnet on a triangular lattice. This has a Hamiltonian of the form,

H = J
∑
〈i,j〉

si · sj, (2.43)

where si = ±1 is the spin at site i, and J > 0 is a coupling constant which promotes

antiparallel alignment between immediate neighbours. Arranging spins on a square lattice

can be done by inspection, such that the Néel ground state is realised [Fig. 2.8(a)]. As Wannier

demonstrated however, this is not the case on a triangular plaquette for which one bond is

always left unsatis�ed [Fig. 2.8(b)] [68]. Since the system can, in principle, select any of the

degenerate ground states, it retains a residual entropy down to absolute zero.

A similar e�ect was noted originally in water-ice. There, the tetrahedral arrangement of

ice molecules promotes the formation of a ground state in which two hydrogen ions sit close
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and two hydrogen ions sit far from each oxygen centre. There are six possible permutations

of their locations, which results in six degenerate ground states. This two-in-two-out ice-rule

was �rst postulated by Bernal and Fowler [69], and then applied by Pauling [70] to calculate a

value for the residual entropy which gave good agreement with experiment [71].

Following on from work of Anderson in spinels [72], it was noted that the frustration in

water ice could be mapped onto a ferromagnnetic class of rare earth pyrochlores. These are

tetrahedral lattices populated by magnetic ions (such as Ho
3+

in the case of holmium titanate,

Ho2Ti2O7) in which a strong crystal �eld ensures that the moments from the ions act like

Ising variables. This mimics the e�ect of the incommensurate bonding distances in water ice.

Ramirez et al. �rst measured the residual entropy of these materials [73], while Castelnovo et al.

predicted that excitations should behave similarly to emergent magnetic monopoles [74]. In

this scheme, a monopole and anti-monopole pair are connected by a chain of reversed spins,

akin to the �ux tube predicted by Dirac [75].

2.5.2 Projecting frustration into the plane

Observing the exact microstate of water-ice or bulk spin ice materials is not possible within the

current limitations of experimentation. To circumvent this, Wang et al. [8] created a planar

analogue, composed of a regular arrangement of single domain magnetic islands which are

coupled through their magnetostatic interactions. This arti�cial square spin ice is formed by

two interleaved sublattices of stadium-shaped islands, and can be obtained by projecting the

pyrochlore lattice along the (001) direction. Those points where four islands abut are termed

vertices. As each island can point in one of two bi-stable orientations, there are 24
distinct

vertices. In an approach now standard in the �eld, these are sorted into four types, T1-T4,

of increasing dipolar energy, as in Fig. 2.9. Types, T1 and T2, are ‘two-in-two-out’ ice-rule

vertices and are the lowest in energy. For these states, two moments in each vertex point in

towards the centre, and two moments point out from the centre. By �ipping a single spin, a

T3 vertex is obtained, with charge ±2Q. The highest energy vertices, T4, are ‘four-in/four-

out’ states, with charge±4Q. Types T2 and T3 are considered ferromagnetic vertices as they

carry a net moment.
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These islands, �rst fabricated by Wang et al., were too thick to be thermally active at least

within the limits of experimentally accessible temperatures. That is, the energy barrier sep-

arating the two, stable orientations of a single island was many orders of magnitude greater

than thermal energy at room temperature. In such a situation, the observed array con�gura-

tions do not accord with the Boltzmann distribution, though an e�ective temperature can

still be developed [76].

To probe the low energy states of their arrays, Wang et al. subjected them to a rotating

�eld demagnetisation protocol. This involves applying a rotating in-plane magnetic �eld with

a magnitude which is stepped down over time. Such protocols have been extensively applied

to the study of continuous magnetic media (for example, in the analysis of rock samples [77])

for which the aim is to �ush remanent magnetisation from the sample. Initially, when the �eld

magnitude is large, the magnetisation simply tracks the applied �eld. As the �eld magnitude

is decreased however, domains with a coercivity higher than the current �eld value freeze out.

In granular materials, vibro-�uidisation is used to drive the system to a low-energy state such

as in the case of assemblies of closed packed dice [78].

Wang et al. found a preference for ice-rule vertices in strongly coupled systems following

the demagnetisation protocol. Correlations were only short-ranged, however. The ground

state order in the square lattice was shown to be composed of a chequerboard pattern of

alternating T1 vertices (�rst discussed in Ref. [8] and subsequently observed by Morgan et al.

in Ref. [79]). Around the same time, Tanaka et al. published work on a honeycomb network

which also obeyed a form of ice-rule [21].

Since then, the �eld of arti�cial spin ice has grown to include other lattice geometries,

which give rise to aspects of statistical physics beyond the ice rule. By projecting the pyrochlore

lattice along the (111) direction, the kagome lattice is obtained. This o�ers a rich phase di-

agram, whereby the system transitions from the high temperature paramagnetic phase to a

disordered ice phase, then to a charge-ordered phase, before �nally settling in a long-range

ordered chiral state as the temperature is lowered [80, 81]. These results were indirectly con-

�rmed by observing a critical slowing down in relaxation timescales using low energy muon

spectroscopy [82], although the low temperature phases have yet to be directly observed [66].
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2-in-2-out 3-in-1-out/3-out-1-in

(a)

(b) 4-in/4-out

Figure 2.9: The sixteen vertices in square ice in terms of their (a) spin con�guration, represented

by the black arrows; and (b) magnetic charge, Q, in terms of North and South poles (red and blue

dots, respectively). Vertices are represented by coloured squares. A consistent colour coding is used

throughout this work. This allows for discrimination when arrays are displayed as vertex maps. All

vertices within a given type are degenerate. For T2 and T3, the net moment and magnitude are indicated

by the white arrow. Types are sorted L-R in terms of increasing dipolar energy—see Chapter 5 Sec. 5.4.

Morrison et al. outlined a scheme for designing new, extensively degenerate arti�cial spin

ice lattices based on site-speci�c decimation of the classic square geometry [83]. Some of these

ideas were realised in the form of the shakti and Santa Fe lattices, both of which exhibit non-

trivial kinetics [84]. Similarly, quasicrystal-like patterns made of both isolated islands [85]

and connected nanowires [86, 87, 88] have been fabricated. These host spatially varying mag-

netic frustration.

2.5.3 Applications of arti�cial spin ice

Beyond a�ording us this opportunity to study fundamental aspects of condensed matter physics,

there have been some recent proposals to explore the potential uses of arti�cial spin ice in

in computer systems. Somewhat arbitrarily, these can be split into magnonic applications

(where spin waves are manipulated by the magnetic state of the system [89]) or device-based
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applications (where the ASI itself acts as the hardware with which to perform computational

operations [90]).

In conventional computing, the central processing unit (CPU)—ordinarily, a metal-oxide-

semiconductor integrated circuit—executes instructions, A physically-separate memory unit

stores both those instructions and any data, input or output, required for the program. Since

CPU and memory are not collocated, they are normally connected via a data bus. This is

an elegant and e�cient design solution but the �nite bandwidth for data transfer between

CPU and memory necessarily limits the speed with which instructions can be executed on

large amounts of data. This is referred to as the von Neumann bottleneck.

Bio-inspired neuromorphic computation o�ers a possible solution to this problem by cre-

ating arti�cial analogues of neurons and synapses [38, 91]. Just as in the brain, these compo-

nents would both compute and store information. Initial examples have been demonstrated

using spintronic nano-oscillators, which have been trained to recognise vowel sounds [92].

Previous research has shown that arti�cial spin arrays exhibit memory e�ects when cycled

through minor �eld loops [93] while Jensen et al. have noted the similarity of the network

structure of arti�cial spin ice to that envisaged by neuromorphic computing [94]. In fact, this

analogy can be made exact: Hop�eld showed that neural networks can be mapped onto spin

glass models [95] (a relevant example for arti�cial spin ice, the Ising model, is introduced in

Chapter 3). Arti�cial spin ice would appear therefore to o�er one possible route to realising

this form of computation.

Two stumbling blocks remain, however. The �rst refers to our current inability to set

the exact con�guration of the system, though recent work using stray �elds and magnetic

force microscopy may provide a solution [41]. Meanwhile, a solution to the second problem

would require a reliable mechanism to adjust the interactions between nanomagnets on-the-�y.

That is, once an arti�cial spin ice array has been fabricated, the magnitude of the interactions

between elements is de�ned completely. Neuromorphic computing requires some way of

adjusting the weights between arti�cial neurons so as to carry out operations.
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2.6 | Micromagnetic simulations of arti�cial spin

ice

The most accurate way of modelling arti�cial spin ice would be to solve the LLG equation,

eq. (2.20), directly with the appropriate boundary conditions. However, this is a non-linear

partial di�erential equation for which analytical solutions cannot be found except in simple

cases. Those situations which are exactly soluble often depend on linearising m around some

preferred direction, or on assuming a spatially-uniform e�ective �eld. This necessarily restricts

the geometries that can be tackled and, consequently, the LLG equation is solved numerically.

Wysin et al. attempt this for arti�cial spin ice by approximating the islands as point dipoles

and introducing a stochastic �eld [96] through an approach called Langevin dynamics. A

more accurate method—one in which the true physical extent of the islands is captured—is to

use micromagnetic simulations. These solve the LLG equation approximately through either

a �nite di�erence, or a �nite element scheme, although these approaches are limited to a small

systems and short timescales [4].

This thesis makes use of two open-source �nite di�erence software packages: oommf [97]

and Mumax3 [98]. In the �nite di�erence approach, the simulation universe is divided into

equally-sized cuboidal cells. A piece of material (an island within an array, for example) can

then be described as an aggregate of some number of cells. A single magnetic moment is

assigned to the centre of each cell. It is assumed that the magnetisation takes this value every-

where inside the boundary of the cell. The LLG equation is solved numerically by re-expressing

derivatives as quotients through a suitable numerical approximation. For example, Mumax3

uses the Runge-Kutta-Fehlberg method (RK4/5) for calculating the dynamical evolution of

m, while energy minima are located using the RK2/3 method [99].

Assuming a uniform magnetisation within each cuboid, the exchange length sets an upper

bound on the cell size through

lex =
√

2A
µ0M2

S

, (2.44)
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Figure 2.10: E�ect of decreasing cell size in micromagnetic simulations of a single domain magnetic

island. (a) A single domain magnetic island of length 300 nm, width 100 nm, and thickness 3 nm, is

simulated in one of its bi-stable con�gurations. The parameters used are those appropriate to cobalt

[Chapter 6]. The islands approximate better the shapes commonly used in experiment as the cell size

is decreased. The cell size is indicated in white. (b) Below the exchange length, marked by the dashed

vertical line, the magnetostatic and exchange energies continue to change with cell size [blue and red,

respectively].

which gives the approximate distance for which short-range exchange phenomena dominate

over magnetostatic interactions. Using the material parameters we report for cobalt in Chap-

ter 6, we obtain lex ≈ 4.46 nm.

The downside to using �nite di�erence schemes is that they struggle to approximate curved

interfaces [Fig. 2.10(a)]. This introduces local change to the anisotropy direction at edges,

re�ecting an accumulation of magnetic charge. For the simulations we report in this thesis,

the structures were smoothed by sub-sampling (EdgeSmooth = 8 in Mumax3) and o�set

by half a cell to give a gradated edge. Further, the long axis of islands was aligned with the

simulation grid to ensure that the staircase e�ect was only present on the semi-circular ends.

The change in energy of a typical single domain magnetic island as a function of cell size is

shown in Fig. 2.10(b).

Micromagnetic simulations o�er the most complete way of capturing the behaviour of

arti�cial spin ices as they are capable of modelling the extended nature of individual islands

and their �eld distribution. Realistic values of quantities, such as the energy barrier to reversal,

can thus be estimated. Furthermore, they also provide dynamical information with a direct
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correspondence to real timescales. By way of contrast, we will introduce the concept of a

dipolar-coupled Ising model in Chapter 3. However, this model has no in-built dynamics and

so we must justify how our choice of time evolution is appropriate for a given system (see, for

example, the discussion in Chapter 7).

2.7 | Summary

This chapter has provided a brief introduction to nanomagnetism and the �eld of arti�cial

spin ice. We outlined the relevant energy terms, and discussed how the islands in arti�cial spin

ice are coupled through long-range magnetostatic interactions. By arranging the nanomagnets

in various patterns, di�erent magnetic textures can be engineered—this forms the central idea

of this thesis. As we justify in Chapter 5, the inter-island dipolar interactions drive the phase

behaviour of the system as a whole. In contrast, the shape anisotropy of a single presents the

largest energy scale and thus control the approach to equilibrium. This a�ects the results we

present in Chapters 6 and 7 (on annealing with temperature and �eld, respectively).



3
Numerical methods to capture phase

transitions in arti�cial spin ices

3.1 | Introduction

Many physical systems lack exact solutions. Sometimes, the equations governing them can

be written down. Often, they cannot. Even when they can be described mathematically, a

solution may prove intractable when dealing with just a few particles never mind a realistic

number. One reason for this is the exponential increase in the number of microstates as more

degrees of freedom are added to a system. For example, an arti�cial spin array with just 256

islands possesses 2256 ≈ 1078
con�gurations—almost exactly the Eddington number, NEdd,

an early estimate for the number of protons in the universe [100].

To surmount these di�culties, we turn to numerical methods. This chapter will explain

the rationale behind applying Monte Carlo techniques to arti�cial spin ices. These allow

relatively large systems to be simulated and, hence, they bridge the gap between what is possible

in micromagnetism and what is measurable in experiment. In the remainder of this thesis,

30
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Monte Carlo methods will be combined with �nite di�erence simulations of the Landau-

Lifshitz-Gilbert equation, as discussed in Chapter 2. This will allow us to predict the response

of arti�cial spin ices to both temperature and external magnetic �elds.

This chapter is structured as follows: Sec. 3.2 reviews topics from statistical mechanics, in-

cluding partition functions, ensembles averages, and thermodynamic variables. Sec. 3.3 brie�y

treats the concept of phase transitions, and critical exponents. Sec. 3.4 discusses the Ising

model, perhaps the simplest lattice model in physics and a limiting case for arti�cial spin ices.

Sec. 3.5 introduces Markov Chain Monte Carlo methods and the Metropolis Hastings-algorithm,

before applying them to the two-dimensional (2D) Ising model in Sec. 3.6. Finally, in Sec. 3.7,

replica exchange Monte Carlo, also known as parallel tempering, is introduced. This technique

is useful for studying disordered and highly frustrated systems such as those we consider in

Chapters 5 and 7.

In essence, this chapter is review material. However, the illustrative examples were gener-

ated in JIsing, a Julia simulation package developed as part of this thesis. Documentation

and installation instructions for this package are available in an online repository [7].

3.2 | Statistical Mechanics

In this section, we present a brief review of Statistical Mechanics. This section draws heavily

on the presentations found in [101, 102, 103, 104]. We have noted the impossibility of solving

Hamiltonians for a realistic number of particles. Instead, we obtain quantitative information

about a system by considering macroscopic properties which emerge from the underlying mi-

crostates. The relationship between these two viewpoints is governed by the ergodic hypothesis1
,

which states that all accessible microstates are equally likely given su�cient time. For our

purposes, this means that ensemble averages and time averages are identical, with their results

being what we perceive as thermodynamic properties.

1
Also referred to as the averaging postulate [102].
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3.2.1 Statistical ensembles and partition functions

Throughout this thesis, we will often refer to ensembles. First introduced by Gibbs [105], these

are collections of identical systems which operate under the same Hamiltonian (as opposed to,

say, an ensemble of constituent particles within a given system). By the ergodicity postulate,

averages over these ensembles are exactly equivalent to the averages when a single system is

allowed to evolve in time. Partition functions provide a route to connect the microscopic

description of physical systems with their bulk thermodynamics through means of ensem-

ble averages. We distinguish between three types of statistical ensemble and their associated

partition functions:

3.2.1.1 The micro-canonical ensemble. The micro-canonical ensemble is the set of microstates

with �xed particle number, N , volume, V , and energy, E. The probability that a state, |n〉,

with energy, En belongs to the micro-canonical ensemble is

P(n) = δ(E − En), (3.1)

where δ is the Dirac delta function
2
. The micro-canonical partition function, z, is simply the

number of microstates, degenerate by de�nition, in the set:

z(N, V,E) =
∫ ∏

i

dpi dqi δ(E −H({pi, qi})), (3.2)

where the integration is performed over phase space. The micro-canonical ensemble describes

systems which have reached equilibrium.

3.2.1.2 The canonical ensemble. The canonical ensemble is the set of microstates of a system

in contact with a heat bath at a constant temperature, T . Microstates in this ensemble no

longer all have the same energy, but do have the same particle number, volume and temper-

ature. The thermal reservoir is to be considered both large enough that its supply of heat is

inexhaustible, and small enough so as not to perturb directly the energy levels of the system.

2
The Dirac delta function, δ(x), is de�ned through the sifting property,∫ ∞

−∞
dxf(x)δ

(
x− a

)
= f(a),

for a function, f .
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Its sole function is maintaining the system in thermal equilibrium; otherwise we can ignore

it. It can be shown that the relevant probability distribution is the Boltzmann-Gibbs distribu-

tion [101] so that the probability that the system is in state |n〉 with energy En is

P(n) ∝ e−βEn , (3.3)

where β ≡ 1/(kBT ) is the inverse thermodynamic temperature.
3

The canonical partition

function, Z , acts as the normalisation constraint for these probabilities, namely,

Z(N, V, T ) =
∫ ∏

i

dpi dqi exp
(
−
H({pi, qi})

kbT

)
=
∑
n

e−En/kBT ,
(3.4)

where in the second line we have re-expressed the integral in an alternative form as a sum

over discrete states. The appropriate thermodynamic potential for the canonical ensemble

is the free energy,

F = −kBT log(Z). (3.5)

In fact, it can be shown that thermal equilibrium demands that F is at a minimum, which is

simply a restatement of the Second Law of Thermodynamics [102]. For the majority of this

thesis, we will work in the canonical ensemble and look at ways of sampling the free energy.

3.2.1.3 The grand canonical ensemble. For completeness, the grand canonical ensemble

is the generalisation of the canonical ensemble where systems are free to exchange conserved

quantities beyond simply heat. Often this discussion is framed in terms of exchanging particles,

N , but equally well applies to any conserved quantity e.g. electric charge. Conservation of a

given quantity necessitates the introduction of an associated chemical potential, µ. A system

in the grand canonical ensemble then sits at a �xed µ and T i.e. in chemical and thermal

equilibrium. The probability that a system is in state |n〉 is

P(n) ∝ e−β(En−µNn), (3.6)

3
After the 2019 rede�nition of the SI base units [106], the Boltzmann constant is de�ned exactly as

kB = 1.38064852 × 10−23
m

2
kg s
−2

K
−1

, with dimensions [M ][L]2[T ]−2[K]−1
. Throughout this

thesis, we will use natural units in which kB = 1 or, equivalently, in which kB is folded into the dimensions of

derived quantities. In this scheme, temperature, energy, and even magnetic �elds can have the same units.
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with the grand canonical partition function being

Z(T, µ, V ) =
∫ ∏

i

dpi dqi exp
[
−
H({pi, qi})

kbT

]

=
∑
n

e−(En−µNn)/kBT .

(3.7)

The generalisation of eq. (3.5) is the grand canonical Landau potential:

Φ = −kBT log(Z)

= F − µN,
(3.8)

which is the Legendre transform of F . We will return obliquely to the grand canonical en-

semble in Chapter 7, where we couple ASI lattices to external disorder (which, in e�ect, acts

as sources of chemical potential).

Knowledge of the appropriate partition function is su�cient to describe a system com-

pletely. Indeed, all thermodynamic quantities can be obtained from it by di�erentiation with

respect to a suitable parameter. For this reason, it is sometimes called the generating functional

of statistical mechanics [52]. We illustrate this point with some examples.

3.2.2 Thermal averages

Working in the canonical ensemble, the expectation value of an observable,O, is

〈O〉 =
∑
n

One−βEn , (3.9)

whereOn is the value of that the observable takes in the state |n〉. In a notation more directly

applicable to the energy spectrum of arti�cial spin ices, we write expectation values as discrete

‘sums-over-states’. We apply eq. (3.9) to derive three key quantities.

3.2.2.1 Internal energy. The internal energy of the system, U ≡ 〈E〉. is the sum of the

energies of each state weighted according to their Boltzmann probabilities, namely

U = 1
Z

∑
n

Ene−βEn

= − ∂

∂β
log(Z).

(3.10)
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3.2.2.2 Heat Capacity. The heat capacity at constant volume,CV , is the derivative of eq. (3.10)

with respect to T :

CV =
(
∂U

∂T

)
V

= 1
kBT 2

∂2

∂β2 log(Z).
(3.11)

Alternatively, we can re-express CV in terms of �uctuations. The mean-square �uctuation

about 〈E〉 is de�ned through

(∆E)2 = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2. (3.12)

The second moment of the energy, 〈E2〉, can be calculated from the partition function via

〈E2〉 = 1
Z

∑
n

E2
n e−βEn = 1

Z

∂2

∂β2Z. (3.13)

Combining eqs. (3.12) and (3.13) gives

CV = 〈E
2〉 − 〈E〉2

kBT 2 , (3.14)

which is a remarkable result. Fluctuations are outwith the purview of classical thermodynam-

ics and yet eq. (3.14) connects them directly to the macroscopic response of the system to tem-

perature.

3.2.2.3 Susceptibilities. Eq. (3.14) is a particular case of a more general result: response func-

tions can be expressed in terms of �uctuations. The susceptibility ofO with respect to a �eld

h, written χO, is de�ned via

χO = lim
h→0

∂

∂h
〈O〉

= β
(
〈O2〉 − 〈O〉2

)
,

(3.15)

which is called the linear response theorem [107]. The most useful application for our pur-

poses is the magnetic susceptibility, χ, which depends on �uctuations in the magnetisation,

M = ∑
i si, through

χ = 〈M
2〉 − 〈M〉2

kBT
. (3.16)
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However, we will also consider susceptibilities relating number densities to temperature [Chap-

ter 5] and to �eld [Chapter 7].

As a �nal comment, we have de�ned U ,CV , and χ in an extensive manner, i.e. they grow

with system size. Where appropriate however, we will tend to display results intensively, i.e.

scaled per island.

3.3 | Phase transitions and critical exponents

Much of this thesis will be devoted to probing phase transitions in arti�cial spin ices. Generally,

systems are said to exist in phases, which are characterised by uniformities in their behaviour.

Phase transitions demarcate the boundary between phases; sharp discontinuities in observ-

ables can occur as they are crossed. Crossing the critical line is usually achieved by varying

the temperature, though there also exist phase transitions which are caused by changes in

�eld [108], pressure [109], or disorder [110]. In fact, there is even a class of quantum phase

transitions, which persist at 0 K provided a suitable detuning parameter is altered [111].

Conventionally, phase transitions are associated with spontaneously broken symmetries.

In this framework, a high symmetry, disordered phase gives way to a low symmetry, ordered

one as the phase transition is traversed. A famous example is the Higgs mechanism in which the

broken symmetry of the vacuum potential gives rise to mass [112, 113, 114]. The idea of symmetry

breaking suggests it would be useful to de�ne an order parameter. This is some function of

variables that appear in the Hamiltonian, and is zero in the disordered phase and non-zero

elsewhere. In Chapter 2, we described the order parameter for a ferromagnet, which is the

magnetisation, 〈M〉. This is non-zero below the Curie temperature as the spins are aligned,

but vanishes as the spins become randomly orientated at high temperatures. As a ferromag-

net becomes ordered, the ensemble of spins spontaneously breaks rotational symmetry and

chooses a preferred direction along which to point.

In an attempt to classify phase transitions, Ehrenfest considered discontinuities in deriva-

tives of the Gibbs free energy,G [115]. According to this scheme, a phase transition is of ordern

ifn is the smallest di�erential ofGwhich exhibits a discontinuity. First order transitions, such

as that between liquid-water and ice [116], are associated with a latent heat. For the most part,
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Figure 3.1: Ehrenfest classi�cation of phase transitions. (a) First order phase transition, in which the

�rst derivative of G exhibits a discontinuity. (b) Second order phase transition, in which a kink in the

�rst derivative ofG corresponds to a discontinuity in its second derivative. (c) Phase transitions are only

de�ned in the thermodynamic limit (L =∞); otherwise the sharp nature of the transition is smeared

out by �nite-size-e�ects.

we will study second order, magnetic transitions (compare Figs. 3.1(a) and (b)). Goldenfeld

refers to these as continuous phase transitions [117], because the Ehrenfest classi�cation fails

to capture the fact that thermodynamic variables diverge at a second order transition rather

than exhibit a simple discontinuity. To some extent, this nomenclature has been partially

adopted in arti�cial spin ice [118].

Finally, we note that phase transitions are properly de�ned only in the thermodynamic

limit of in�nite systems [119]. This follows from the requirement that the free energy density

remain �nite [117]. In the thermodynamic limit, systems self-average and the e�ect of �uc-

tuations decreases under all conditions except at the critical temperature. For our purposes,

this means we must consider arti�cial spin ice arrays with a large number of islands. In a

�nite system, phase transitions are smeared out and discontinuities are not observed, as in

Fig. 3.1(c). This also shifts slightly the position of the critical temperature with respect to

that of the in�nite lattice.

3.3.1 Universality

It turns out that disparate physical systems can exhibit the same form of behaviour near to their

respective phase transition. As an example, Ref. [120] notes the similarity among avalanches

in plate tectonics, in the unfurling of crumpled paper [121, 122], and in magnetic systems [123],
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where it is known as Barkhausen noise [124]. This phenomenon is referred to as universality,

and is captured by de�ning a set of critical exponents. These exponents describe how thermody-

namic observables scale in the vicinity of a phase transition. For example, the Bloch law, which

describes how the spontaneous magnetisation of a ferromagnetic changes with temperature,

has a functional form,

M(T ) ∝
(

1− T

TC

)β
, (3.17)

near to the Curie temperature, TC . In this context, β is called the critical exponent of the

magnetisation. Critical exponents are experimentally accessible quantities; for example, neu-

tron scattering experiments performed on the antiferromagnet MnF2 measure its associated

exponent β = 0.335 ± 0.001 [125]. This is precisely the same exponent that governs the

transition in density between a liquid and a gas [117], even though there is little similarity

between these two systems at �rst sight. A set of critical exponents de�nes a universality class;

systems with the same critical exponents are said to belong to the same universality class.

Typically, critical exponents are determined by the dimensions of the space in which the sys-

tem resides, and the symmetry and range of its interactions [103]. This is not quite the complete

picture, as there can exist a continuum of varying exponents in situations where the interaction

is long-ranged [126], or in spin glasses which possess so-called fractal dimensions [127].

For a given system, it is convenient to de�ne a reduced temperature, t̃ = (T −TC)/TC , in

terms of the critical temperature, TC . This quantity represents how far the system is from the

phase transition. Around TC , it is assumed that a generic observable, O, can be expanded

in powers of t̃ according to

O(t̃) = Aλt̃
λ
∞∑
i=0

ait̃
i, (3.18)

where t̃λ is known as the leading order contribution, and Aλ and {ai} are constants. Then,

the critical exponent, λ, is de�ned by the limit

λ ≡ lim
t̃→0

lnO(t̃)
ln t̃ , (3.19)

as in Ref. [128]. A positive (negative) critical exponent corresponds to the observable tend-

ing to zero (diverging). For the most part, we will not obsess over the rigorous de�nition of
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Table 3.1: Summary of common critical exponents for magnetic systems. The spatial dimension is

denoted d. The correlation function, correlation length and correlation time will be described in

Sec. 3.6. After Binney [129].

Exponent Related quantity De�nition Restrictions

α Heat capacity CV ∼ t−α T → Tc, B = 0

β Magnetisation m ∼ tβ T → T−c , B = 0

γ Susceptibility χ ∼ t−γ T → Tc, B = 0

δ Critical isotherm m ∼ B1/δ T = Tc, B → 0

η Correlation function G ∼ 1/rd−2+η T = Tc, B = 0

ν Correlation length ξ ∼ t−ν T = TC , B = 0

z Correlation time τ ∼ ξ−νz —

critical exponents, su�ce that they exist; that they can be measured both experimentally and

numerically; and that estimating them tells us something fundamental about the nature of our

arti�cial spin ice. Some of the critical exponents that we will calculate for our arrays are given

in Table 3.1, along with conditions for measuring them.

3.4 | The Ising Model

The Ising model is perhaps the simplest lattice model in Statistical Mechanics. Originally

proposed by Lenz to his doctoral student, Ising, it involves a lattice of N sites, indexed by i.

Associated with each site, there is a single two-state degree of freedom, si, which conventionally

takes values in {−1,+1}. In analogy with magnetic moments, these values represent spin up

(si = +1, ↑) and spin down states (si = −1, ↓). The restriction to two states mimics strong

uniaxial anisotropy, which is a good approximation for many materials. A given con�guration

is speci�ed uniquely by the set of numbers, {si}.

The Ising Hamiltonian is written

H = J
∑
〈ij〉

sisj −
∑
i

Bisi. (3.20)
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The �rst term represents a coupling, of strength J , between spins in the lattice, where the

notation, 〈ij〉, indicates that only nearest neighbour pairs are counted. This is a very simple

form of exchange interaction (c.f. with the exchange integral of Chapter 2, Sec. 2.4.1) but

di�ers from the Heisenberg model in being purely classical. The Ising interaction can be

generalised to include di�erent coupling constants and classes of neighbouring spins.

The second term is the Zeeman coupling to external �elds; in the most general case, these

�elds may be site-speci�c so that Bi is the external �eld at site i. We will explore site-speci�c

local �elds in the context of arti�cial spin ice in Chapter 7 but this term is omitted in what fol-

lows.

The one-dimensional case was solved by Ising [130]. It exhibits a second order phase tran-

sition at T = 0. The two-dimensional case was solved �rst by Onsager [131]
4
, who found that

it exhibited an order-disorder transition at a critical temperature, TC , de�ned through

kBTC = 2J
ln(1 +

√
2)
≈ 2.269J , (3.21)

and that the speci�c heat diverges logarithmically. The exact solution for the magnetisation

and speci�c heat are shown in Fig. 3.2 for the case J = 1. In both panels, the critical temper-

ature is indicated by the dashed vertical line. The three-dimensional Ising model remains un-

solved.

The Ising model is ubiquitous across physics as it either directly describes many systems

or acts as a limiting case. For example, square arti�cial spin ice has been approximated as an

e�ective Ising model with nearest-neighbour interactions [134, 96, 13]. In solving any Ising-like

model, computational techniques such as Monte Carlo methods are almost invariably neces-

sary.

4
Sethna describes the solution as a tour-de-force but “bewilderingly complicated” [132]. In a letter to Casimir,

Pauli stated that nothing much of interest had happened in physics during World War II save for Onsager’s

solution of the 2D Ising model [133].
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Figure 3.2: Onsager (exact) solution for (a) magnetisation,m, and (b) heat capacity, cV , as a function

of temperature, T , in the 2D Ising model. The heat capacity exhibits a logarithmic singularity at Tc

(dashed line).

3.5 | Monte Carlo methods

Monte Carlo methods provide ways of approximating integrals by drawing random samples

from carefully chosen probability distributions. In this respect, they are examples of stochastic

processes. Rather than the partition function itself, we are usually interested in calculating the

expectation value of an observable as in eq. (3.9). However, approximating 〈O〉 by sampling

just some subset of the microstates without a priori knowledge of the probability distribution

can easily lead to incorrect results. For example, suppose that probability distribution is peaked

around a particular state, say, the ground state of the system. Only the value of the observable

in that state will contribute to the expectation value of eq. (3.9); other states will not. In systems

with a large number of microstates, randomly choosing a representative sample of states—so-

called simple sampling—is unlikely to yield physically meaningful results.

The essence of the Monte Carlo approach is to choose a subset of states which do con-

tribute strongly to this average; that is, to estimate 〈O〉 from a small number of important

terms rather than from every microstate. For obvious reasons, this is referred to as importance

sampling. To achieve this, we introduce the concept of a Markov Chain.
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3.5.1 Markov Chain

Let us write s(t) to specify the con�guration of our system at time, t. For our purposes, a

con�guration bookkeeps the orientation of every spin (whether in a 2D Ising lattice or ASI

array). A Monte Carlo simulation proposes a small random change to s(t) in order to generate

a trial con�guration, strial. This trial con�guration is then accepted or rejected according to

some rule—the cost function. If the trial con�guration is accepted, then s(t+1) = strial. If the

trial con�guration is rejected, then s(t+1) = s(t). This process is repeated to generate a chain

of states which span a passage of Monte Carlo time. We emphasise that Monte Carlo time does

not represent the true passage of time, though the two can be related in certain situations—an

idea to which we will return in Chapter 7. The directed set
5

of con�gurations,

. . . s(t− 2)→ s(t− 1)→ s(t)→ s(t+ 1)→ s(t+ 2) . . . , (3.22)

is known as a Markov chain provided that the probability of accepting the trial state depends

only on the current state. Processes which forget their initial conditions are called Markovian.

The probability that a state appears is always non-zero in the Boltzmann distribution. Markov

chains approximating the Boltzmann distribution are thus capable of visiting any point in the

phase space of a Hamiltonian provided they are run for long enough, i.e. they are ergodic.

By �nding a rule that generates successive con�gurations in accordance with the Boltzmann

distribution, good estimates for expectation values can be obtained. The most widely-used

example is the Metropolis-Hastings algorithm.

3.5.2 Metropolis-Hastings Algorithm

“The purpose of this paper is to describe a general method, suitable for fast elec-

tronic computing machines, of calculating the properties of any substance which

may be considered as composed of interacting individual molecules.” [135]

The Metropolis Algorithm was developed at Los Alamos National Laboratory as a collabora-

tion between Nicholas Metropolis, and the Rosenbluth and Teller families [136, 135, 137]. In

5
Actually, a directed graph.
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1970, it was extended by Hastings to cover more general cases [138]. The resulting algorithm—

the Metropolis-Hastings (MH) algorithm—generates a Markov chain based on the energy dif-

ference between the current and trial states. The algorithm is non-deterministic; that is, mul-

tiple runs will generate di�erent Markov chains. The time evolution is described by a master

equation,

∂

∂t
Ps(t) =

∑
s′ 6=s

[
Ts′→sPs′(t)− Ts→s′Ps(t)

]
, (3.23)

where Ps(t) is the probability that the system is in con�guration s at time t, and Ts′→s is the

transition rate from s′ to s. The �rst term within the sum describes all processes which reach

s and the second term all processes which leave s. As t → ∞, we want the probabilities to

approach the Boltzmann distribution. In equilibrium, ∂Pi/∂t vanishes and we obtain the

principle of detailed balance,

Ts′→sP
eq

s′ = Ts→s′P eq

s , (3.24)

which states that the �ow into and out of s exactly balance. In equilibrium, it follows that

the ratio of the transition probabilities must be a function of the change in energy between

the con�gurations, ∆E = Es − Es′ , i.e.,

Ts→s′
Ts′→s

= exp
(
− Es − Es′

kbT

)
= exp

(
− ∆E
kbT

)
. (3.25)

In principle, any choice of transition rate which satis�es eq. (3.25) is acceptable. The MH

choice takes the form

Ts→s′ =


1
τ0

exp(−∆E/kBT ) if ∆E > 0

1
τ0

if ∆E < 0,
(3.26)

where τ0 is the time required to move between con�gurations (in e�ect, the time to �ip a spin).

Without loss of generality, we can set τ0 = 1 and rescale as appropriate.

In this thesis, the MH algorithm has been implemented in the context of single-spin-�ip dy-

namics. We summarise this as follows for the Ising model though our comments apply equally

well to arti�cial spin ice. The system is initialised in a random con�guration at temperature, T ,

and with energy, E. A single spin �ip is suggested. The energy di�erence, ∆E, is calculated.

A random number, x, is drawn from the interval [0, 1). The trial move is accepted if x <
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exp(−β∆E), else it is rejected and the con�guration is not updated. The process is repeated.

We de�ne a Monte Carlo step
6

(MCS) as N single spin updates for a lattice of N spins. As a

consequence, this ensures that a Monte Carlo step scales with system size. The chain is run

for an initial burn-in period; this ensures that it reaches equilibrium and that states appear in

accordance with the Boltzmann distribution. Then, observables are sampled after a chosen

number of Monte Carlo steps. The pseudocode for this process is contained in Algorithm 1.

6
Variously, also, a Monte Carlo sweep.
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Algorithm 1 Implementation of the Metropolis-Hastings algorithm for a system at tempera-

ture, T. The Markov Chain is equilibrated for burnSteps MCS. The value of the observable,

O, is then computed by averaging over thermSteps MCS.

1: function Metropolis(T, burnSteps, thermSteps)
2:
3: initialise S # Starting configuration
4: initialise currentE = E(S) # Starting energy
5: initialise O = 0
6:
7: for i=1:burnSteps do # Begin burn-in
8: propose S’
9: compute trialE = E(S’)

10: compute cost = currentE - trialE
11: if rand(0,1) < exp(-cost/T) then
12: S = S’
13: currentE = trialE
14: end if
15: end for
16:
17: for i=1:thermSteps do # Begin averaging
18: propose S’
19: compute trialE = E(S’)
20: compute cost = currentE - trialE
21: if rand(0,1) < exp(-cost/T) then
22: S = S’
23: currentE = trialE
24: end if
25: compute O = O(S) # Compute O in current config.
26: end for
27:
28: return O/thermSteps
29:
30: end function
31:
32: function E(S) # Subroutine: return energy of config S
33: end function
34:
35: function O(S) # Subroutine: return observable in config S
36: end function
37:
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3.6 | Metropolis Hastings algorithm applied to the

2D Ising Model

In this section, we apply the Metropolis Hastings algorithm to the 2D Ising model on a square

lattice. We introduce the concept of spatial and temporal correlations functions, and describe

the �nite-size-scaling technique, which can be used to extract critical exponents. These con-

cepts feature heavily in the results portion of this thesis. More prosaically, this section stands

as a proof-of-concept by reproducing accepted analytic results. The software package used

to generate results in this section, JIsing [7], shares crucial portions of its underlying struc-

ture with the other package used to generate results for ASI systems, JASI [6], which is de-

scribed in Chapter 5.

3.6.1 Thermal averages

In Fig. 3.3, we display thermal averages from Monte Carlo simulations for the internal energy,

heat capacity, magnetisation and magnetic susceptibility as a function of temperature in the

2D Ising model. In general, 104
MCS were su�cient to ensure thermalisation, and observables

were calculated using both 104
and 105

MCS to ensure convergence. Results are averaged

over at least 10 independent runs. Six systems sizes are considered, ranging from L = 8 to

L = 256. For comparison, the Onsager solution for m is shown in Fig. 3.3(c). Agreement

between the numerical results and the exact solution for an in�nite lattice becomes better as

the thermodynamic limit is approached. Similarly, the peaks in cV and χ become sharper and

their locations move towards 2.269J k−1
B for larger system sizes though, of course, there is

no divergence in the simulations.

Typical snapshots of the spin-states of anL = 256 lattice are shown in Fig. 3.4 for tempera-

tures below, on, and above the critical temperature. In these panels, the spin-up and spin-down

states are represented by white and black squares, respectively. Below TC [Fig. 3.4(a)], the

system is in a majority spin-up state (a large domain of white squares). Thermal �uctuations

ensure that there exist some spin-down regions though these tend to be small and, as the system

is cooled further, they evaporate. In this example, the system has spontaneously ordered into
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Figure 3.3: Thermal behaviour of (a) the internal energy, U , (b) the speci�c heat per spin, cV , (c) the

magnetisation, m, and (d) the magnetic susceptibility, χ, in the 2D Ising model. Data obtained from

ten independent MC simulations using the MH algorithm. Error bars have been omitted for clarity. Six

system sizes are considered; colours as in the superscribed legend. The Onsager solution form appears

in black in (c). Quantities are scaled per spin.

the si = +1 state. At T = TC [Fig. 3.4(b)], �uctuations are present across all length scales.

The system cannot yet choose a preferred ground state and domains of both orientations are

present. Above Tc [Fig. 3.4(c)], entropy wins out as kBT � J , so the spins are e�ectively

uncoupled. The panel appears randomised.

Before closing this section, we discuss assigning errors to Monte Carlo observables. There

are many di�erent schemes used to quantify statistical errors taken from a single MC run.

These include the bootstrap and jacknife methods, both of which rely on sampling subsets of

the measurements [139]. In general, the standard deviation is not an appropriate measure of the



3. Numerical methods to capture phase transitions in artificial spin ices 48

(a)

T � Tc

(b)

T ∼ Tc

(c)

T � Tc

si = +1

si = −1

Figure 3.4: Example con�gurations of an L = 256 Ising model at temperatures: (a) T � TC where

the system is more-or-less in the ordered phase; (b) T ∼ TC where clusters are visible across all length

scales; and (c) T � TC in the paramagnetic phase. White (black) squares indicate up (down) spins, as

indicated in the legend to (c).

error in a single run, as successive steps in the Markov chain are not statistically independent.

To circumvent this, throughout this thesis, we perform multiple parallel simulations, each sam-

pled under a di�erent random seed. This generates independent estimates for an observable,

for which the standard deviation is a valid measure of the error. By way of example, we show

the relative error in cV for theL = 256 lattice as averaged over ten independent runs in Fig. 3.5.

At both high and low temperatures, the standard deviation is small and the errors are less than

1%. In the critical region around the phase transition, the relative error increases substantially

and is maximal at TC (denoted by the dashed vertical line). This is not an artefact of the MC

algorithm. Near to the critical point, regions of spins are able to �uctuate over all length scales.

Commensurate with this, there exists large �uctuations in quantities such as the magnetisation

and energy. These critical �uctuations are an innate feature of any system undergoing a phase

transition. There is a related e�ect, critical slowing down, in which the relaxation timescales

become longer near to the phase transition. We explore these phenomena in our discussion

of correlations in the next section.

3.6.2 Spatial and temporal correlations

We can connect the thermal observables of the previous section to experimentally accessible

quantities through the use of correlation functions. These capture the extent to which a spin
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Figure 3.5: Relative error in the heat capacity of theL = 256 Ising model as a function of temperature.

The critical temperature is indicated by the dashed, vertical line. The error,σcV , is taken as the standard

deviation of ten independent measurements of the heat capacity. Far from the critical point, the relative

error is negligible (< 1%). Near to the critical point however, critical �uctuations innate to any second

order phase transition dominate. The e�ect of this is to increase the size of the error by several orders

of magnitude.

a�ects its neighbours. Given two spins, s1 and s2, at positions x and x + r, between times t

and t + τ , a general form for the connected two-point correlation function is

G(r, τ) = 〈s1(x, t) · s2(x + r, t+ τ)〉 − 〈s1(x, t)〉s2(x + r, t+ τ)〉, (3.27)

which is evaluated at a speci�c temperature, T . Correlation functions de�ned in this way o�er

an alternative method to obtaining thermodynamic quantities [139, 140]. For example, it can

be shown that the magnetic susceptibility,χ(T ), is related toG(r) throughχ = 〈G(r, 0)〉/(kBT ).

3.6.2.1 Spatial correlations. The equal-time two-point correlation function is

G(r) = 〈s1(x) · s2(x + r)〉 − 〈s1(x)〉s2(x + r)〉. (3.28)

This drops o� in distance with a formG ∼ exp(−r/ξ), where ξ is the correlation length [141].

This length can be related to the average size of domains in a magnetic system. Exactly on the

critical temperature, eq. (3.28) breaks down to be replaced by

G(r)|TC ∼
1

rd−2+η , (3.29)

where d is the dimensionality of the system and η is a critical exponent (c.f. Table 3.1).
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Figure 3.6: Spatial correlations in the 2D Ising model for a square lattice of size L = 32. (a) The

correlation function,G(r, T ), is plotted on semilogarithmic axes. Faded lines are samples ofG(r) drawn

approximately uniformly from the interval T ∈ [0, 5]J k−1
B . Three temperatures are highlighted

explicitly: above (red), below (blue), and near to (grey) the critical temperature at which correlations

persist. (b) The correlation length, ξ, is extracted from the data in (a) by �nding the point at which

G drops to 1/e as discussed in the text. Error bars represent 1σ when the data is averaged over 10

independent realisations. Note that ξ does not diverge at the phase transition; rather, the �nite size of

the system ensures there is a cut-o�.

As a concrete example, Fig. 3.6(a) displays samples of G(r) for the 2D Ising model drawn

approximately uniformly from the interval T ∈ [0, 5]J k−1
B . Three temperatures are high-

lighted explicitly: below (blue), at (grey) and above (red) TC . Only near to the critical temper-

ature do correlations persist to large r. An estimate for ξ can be made by locating the point

at which G(r) falls to 1/e of its original value. This is shown in Fig. 3.6(b) for the case of an

L = 32 system. As with the thermodynamic observables presented in Sec. 3.6.1, the correlation

length does not diverge but, rather, approaches an upper limit of L/2.

The correlation length is a common �gure-of-merit in analysing the establishment of long-

range ordering in arti�cial spin ices, where it is usually extracted from the magnetic structure

factor [142, 34, 143]. This is the reciprocal space representation of eq. (3.28), and is the form

most readily obtained by scattering processes. We will return to measuring the correlation

length in experimental samples in Chapter 6.
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3.6.2.2 Autocorrelation. Rather than considering spins separated in space, the autocorrela-

tion function measures the probability that a quantity remains correlated in time [144]. For

example, the time-displaced autocorrelation of the magnetisation is given by

CM(t) = 〈m(t) ·m(t′)〉 − 〈m(t)〉2, (3.30)

for times t and t′. As with spatial correlations, this decays away from the critical temperature

according to exp(−t/τ), where the correlation time τ is the temporal analogue of ξ. Among

others, Newman and Barkema [139] de�ne an integrated autocorrelation time, τint, through

τint =
∫ ∞

0
dt CM(t) , (3.31)

which is a measure of the extent to which successive steps in the Markov chain are decorre-

lated, and is additionally useful in assigning uncertainties to observables. Again, we stress that

time in Monte Carlo simulations does not necessarily correspond to real time in the dynam-

ical evolution of a system. In Chapter 7, we will consider further the autocorrelation time,

and use it to justify why introducing local disorder in an array can a�ect physical relaxation

times in real system.

We depict in Fig. 3.7(a) the autocorrelation of the magnetisation, CM(T ), and the energy,

CE(T ), in the 2D Ising model. The integrated autocorrelation times of both quantities show

a pronounced peak near to the phase transition [Fig. 3.7(b)]. This e�ect is referred to as critical

slowing down, and is a consequence of the fact that the dynamics of a system become viscous

around the critical region [145]. In this instance, the choice of Monte Carlo algorithm deter-

mines the exact nature of this slowing, although physical systems also exhibit arrested dynamics

near to a phase transition [146]. The correlation time scales according to τ ∼ ξ−νz , where z

is the dynamic critical exponent. For the Metropolis-Hastings algorithm, the dynamic critical

exponent is approximately 2 [139].

3.6.3 Finite-size scaling

The most common approach to extracting critical exponents from Monte Carlo simulation

is via a �nite-size scaling analysis. In the thermodynamic limit, the correlation length is un-

bounded through ξ ∼ t̃−ν , where t̃ is the reduced temperature. In a �nite lattice however,
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Figure 3.7: Autocorrelation functions in the 2D Ising model for a square lattice of size L = 32,

simulated using the Metropolis-Hastings algorithm. (a) The autocorrelation function for the magneti-

sation [upper panel] and energy [lower panel] with three temperatures highlighted explicitly: above

(red), below (blue), and near to (grey) the critical temperature at which correlations persist. Faded

lines are samples of C(t) drawn approximately uniformly from the interval T ∈ [0, 5]J k−1
b . (b), The

corresponding integrated autocorrelation times form [red, upper curve] andE [blue, lower curve] as a

function of temperature. Both exhibit a peak near to TC , consistent with the e�ects of critical slowing

down. Time is measured in terms of Monte Carlo steps (MCS). Error bars represent 1σ when the data

is averaged over 10 independent realisation

the system size caps ξ. Finite-size scaling interpolates between these two regimes by means of

a scaling ansatz [147, 148]. According to this hypothesis, at TC , variables should behave as

CV ∝ Lα/ν (3.32a)

M ∝ L−β/ν (3.32b)

χ ∝ Lγ/ν , (3.32c)

where α, β, and γ are the critical exponents associated with the speci�c heat, magnetisation,

and magnetic susceptibility, respectively. Logarithmic plots of, say, M(TC) against L should

appear linear. Ratios of critical exponents can then be extracted from the gradient of the
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best-�t line. We demonstrate conclusively the validity of this approach in Fig. 3.8, for the

magnetisation, susceptibility and heat capacity.

Extracting critical exponents from a �nite-size scaling su�ers from several inherent di�-

culties, however. First, the relations in eq. (3.32) only hold for su�ciently large system sizes;

for small L, so-called corrections to scaling introduce non-linearities. This is most obvious

in Fig. 3.8(c) where the data for CV are signi�cantly non-linear below L = 16. This can

be mitigated by �tting only to large L, though there is no hard-and-fast rule as to what con-

stitutes ‘large’ in this context. Second, it requires good estimates of quantities exactly at the

critical temperature. However, this is precisely the point at which critical �uctuations and

critical slowing down make it hard to obtain reliable averages. Third, it requires the critical

temperature be known to a high degree of accuracy. For the systems we consider in this thesis,

TC is not known a priori. Binder showed that a cumulant quantity,

gm = 1− 1
3
〈m4〉
〈m2〉

, (3.33)

provided one such route to determining it accurately [149]. For large enough system sizes,

curves of gm(L, T ) against T cross at a �xed-point, which is exactly the critical temperature.

We illustrate this e�ect in Fig. 3.9(a) for various system sizes of the 2D Ising model. The com-

mon, mutual intersection points are located close to the exact critical temperature as indicated

by the dashed, vertical line in the inset. A widely used method is to �nd the intersection point

using the intersection of ascending pairs of system sizes, i.e. L1/L2,L2/L3 forL1 < L2 < L3.

This is shown in Fig. 3.9(b), from which an average value of the critical temperature can be

obtained: TC = 2.265± 0.013. This is less than 2% away from the accepted value [eq. (3.21)].

We compare the exponents extracted from the �nite-size scaling approach with those of the

exact solution and those obtained from a mean �eld treatment in Table 3.2. The MC estimates

show good agreement with the exact values. We will use the �nite-size scaling technique to

obtain the critical exponents for a class of arti�cial spin systems in Chapter 5.
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Figure 3.8: Finite-size scaling at the critical temperature of the 2D Ising model for (a) the magnetisation,

m, (b) the susceptibility,χ, and (c) the heat capacity, cV . To mitigate corrections to scaling, only system

sizes above L = 16 are used for �tting [approximately, data in the right half of each plot]. The 1-, 2-,

and 3-σ con�dence intervals are shaded around the best-�t. Critical exponents (here, the gradients of

the best-�t lines) are indicated in each case. See Table 3.2 for a summary.
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Figure 3.9: Binder cumulant and estimating the critical temperature from Monte Carlo simulations

of the 2D Ising model. (a) Binder cumulant of the magnetisation, gm = 1 − 〈m4〉/(3〈m2〉2), as a

function of temperature for the 2D Ising model. Inset: the curves mutually intersect in a region about

the critical temperature [dashed, vertical line]. (b) Estimating the critical temperature by �nding the

intersection between ascending pairs of system sizes. As expected, the intersection does not appear to

scale with system size.
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Table 3.2: Summary of critical exponents for the 2D Ising model. From L-R: the exact values given

by the Onsager solution; the exponents predicted by mean �eld theory; and the estimates based on the

Monte Carlo results presented in this chapter. Excellent agreement is noted between the MC results and

those predicted by theory for all variables exceptα. Signi�cantly, �nite-size scaling is more accurate than

mean �eld theory in this case. In general, mean �eld theory proves more reliable in higher dimensions

or, at least, once above the upper critical dimension of the system. In two dimensions, it tends to

overestimate results as it discounts �uctuations.

2D Ising Model

Exact Mean �eld theory Monte Carlo

TC [J k−1
B ] ≈ 2.269 4 2.265± 0.013

α 0 0 0.239± 0.019

β 1/8 1/2 0.122± 0.007

γ 7/4 1 1.738± 0.018

3.7 | Replica exchange—parallel tempering—Monte

Carlo

Many of the ASI lattices we consider in this thesis possess either highly degenerate con�gura-

tions [Chapters 5 and 6] or quenched disorder [Chapter 7]. In such instances, we commonly

encounter metastability, whereby the system becomes trapped in a local potential well that is

not the ground state. These systems possess long relaxation timescales, which make it di�cult

to access their low-energy states both experimentally and numerically. From a Monte Carlo

standpoint, it becomes di�cult both to equilibrate such systems and then to obtain reliable

averages when using the Metropolis-Hastings algorithm.

To circumvent this, we introduce the idea of replica exchange Monte Carlo, which is also

called parallel tempering (PT) [150] . In PT Monte Carlo, M independent replicas of the sys-

tem are simulated at di�erent temperatures in the set {T1, T2...TM}. After performing a �xed

number of MC moves within each replica, swaps between replicas at adjacent temperatures,
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Ti and Ti+1, are proposed. These are accepted with probability,

P(Ei, Ti ↔ Ei+1, Ti+1) = min(1, e∆βi∆Ei), (3.34)

where ∆βi = βi+1 − βi and ∆Ei = Ei+1 − Ei. For a real system, this is equivalent to

repeatedly heating and cooling as a way of using thermal agitation to overcome the energy

barriers associated with metastability.

Fig. 3.10(a) o�ers a cartoon representation of the rationale behind this method. Suppose

that the system becomes trapped in a potential well at a low temperature, indicated by the blue

ball. Thermal �uctuations, kBT , are insu�cient to move the ball into the other low-energy

state. By heating the system however, the free energy landscape becomes smoothed out. This

allows the ball to roll into another minimum at a high temperature, before the system is cooled

back down. In this way, replicas that become jammed in metastable states at low temperatures

(where the autocorrelation time is large), are able to di�use to higher temperatures (where

the autocorrelation time is short) before subsequently �nding their way to the ground state.

These swap moves are equivalent to a guided walk in temperature space [Fig. 3.10(b)], such

that a given replica moves between the temperature extremes according to the MH criterion.

Clearly, the e�ectiveness of this method hinges on the exact choice of temperatures. We discuss

the method of assigning temperatures more fully while considering the results in Chapter 5.

Reaction coordinate
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(a) (b)Free energy
landscape

Figure 3.10: Illustration of replica exchange Monte Carlo. (a) Systems which become trapped in a

potential well at low temperatures [blue line] are able to escape by di�using to higher temperatures

[red line] before eventual cooling. By heating the system, dips in the free energy landscape are smoothed

out. (b) Replicas perform a random walk in temperature space as a function of Monte Carlo time. This

allows them to wander up and down between the extremes of the temperature range.
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3.8 | Summary

This chapter has provided an account of the numerical techniques which will be used to probe

arti�cial spin ices throughout the remainder of this thesis. Monte Carlo methods were intro-

duced; these prove indispensable in calculating observables for situations in which no exact

description of the system can be found. By way of example, we applied them to the 2D Ising

model on the square lattice and recovered the accepted results. We followed this by discussing

correlations and the �nite-size scaling approach. In turn, this led us to consider the role of

critical exponents in characterising phase transitions. Finally we outlined the use of parallel

tempering Monte Carlo to tackle problems associated with the occurence of metastable states

during calculations. This allowed us to discuss the role of correlations, and �nite-size scaling.

In what follows, we return to these topics frequently.



4
Experimental methods

4.1 | Introduction

This chapter presents an outline of the techniques which have been used during the experimen-

tal part of this project to fabricate arti�cial spin ice arrays and to acquire images elucidating

their magnetic con�gurations. In Sec. 4.2, we start by describing brie�y the fundamentals

of electron microscopy and follow this, in Sec. 4.3, with a discussion of Lorentz microscopy.

We concentrate on the Fresnel mode of Lorentz microscopy because it is the principal imag-

ing method used throughout this work. We then proceed to derive an expression for the

contrast in these Fresnel images. From them we can extract the magnetic con�gurations of

arti�cial spin ice arrays to compare with our theoretical predictions. In Sec. 4.4, focused elec-

tron beam induced deposition (FEBID) is introduced. This technique allows for the rapid

prototyping of two- and three-dimensional magnetic structures, such as those which we will

probe in Chapter 6.

58
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4.2 | Electron microscopy

Electron microscopy (EM) has become an indispensable tool in materials science and con-

densed matter physics for dimensions too small to be resolved by conventional optical mi-

croscopy. Excellent spatial discrimination can be combined with, among other things, in-

situ chemical and magnetic studies. One instrument can thus provide access to both real and

reciprocal space, as well as spectroscopic and compositional information. Its versatility forms

the basis of the multi-dimensional electron microscopy paradigm, in which a complete picture

of a material is obtained by combining signals from multiple techniques [151, 152].

The advent of electron microscopy can be traced to the concept of wave-particle dual-

ity. In 1924, de Broglie advanced the revolutionary hypothesis that all massive particles had

a complementary wavelike nature [153].
1

For a particle of momentum, p, the associated de

Broglie wavelength is

λ = h

p
, (4.1)

where h is the quantum of action.
2

Shortly thereafter, the demonstration of electron di�rac-

tion by G. P. Thomson [155] and, separately, by Davisson and Germer [156, 157] con�rmed this

relationship. The �rst electron microscope was constructed in 1932 by Knoll and Ruska [158],

with commercial models available from 1939 [159]. The underlying principles of electron mi-

croscopes remain the same to this day. They comprise a source of electrons which provide the

illumination; an optical system which focuses the illumination onto the sample, collects the

transmitted signal and magni�es it; and a series of detectors which record the output. In this

chapter, we will focus on transmission electron microscopy (TEM), i.e. the situation in which

the electron beam acquires information as it passes through the sample.

1
J. J. Thomson compares this duality to “the struggle between a tiger and a shark, each is supreme in his own

element but helpless in that of the other.” [154]

2
In the SI system [106], the Planck constant is de�ned as h = 6.62607015 × 10−34

Js, with dimensions

[M][L]
2

[T]
−1

.



4. Experimental methods 60

4.2.1 In pursuit of smaller wavelengths

In the framework of Fourier optics, a converging lens is an entity which takes the �eld distri-

bution impinging on its front focal plane and returns the Fourier transform in the back focal

plane [160]. This action can be justi�ed by invoking Huygens’ principle, which states that

every point on a wavefront acts the source of a new set of spherical wavelets. The dynamical

evolution of the wave is de�ned by the mutual interference pattern, which is to say the sum,

of these wavelets. A lens transforms the wavefront incident on the front focal plane into

its Fourier components in the back focal plane. Any imaging system, including an electron

microscope, can be described in terms of at least two lenses.

The Fourier transform of the intensity emitted by a distant point source and collected over

a �nite solid angle is the point spread function; in reality, this manifests itself as a smearing in

which the point is transformed into a disc, called the Airy disc. The radius of the central disc

is given by the Abbe limit,

d = λ

2n sin θ , (4.2)

wheren is the refractive index of the medium and θ is the collection angle. The factorn sin θ is

called the numerical aperture, NA, of the device. Abbe postulated that any image is composed

of an overlapping array of such spots. Resolving an image thus necessitates discriminating

between adjacent Airy discs and so eq. (4.2) sets a fundamental di�raction limit on the perfor-

mance of any imaging system.
3

Assuming a typical wavelength for light in the visible spectrum

of 500 nm and NA = 14
, the di�raction limit is 250 nm, which is well above the length scale

of many features considered in this thesis.

The use of electrons, as opposed to visible light, allows resolution at smaller length scales.

Electrons, accelerated through a voltage V , have a wavelength,

λ = h√
2meeV

(
1 + eV

2mec2

) , (4.3)

3
Equivalently, for image formation, an optical system must collect more than just the central spot in a

di�raction pattern. The di�raction limit is the distance between the unde�ected, zero-order spot, and the �rst

interference maximum—the Rayleigh criterion.

4
In modern light-based optics, values between 1 [161] and 1.5 [162] for the NA are common.
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where c is the speed of light, and me and −e are the mass and charge of the electron, respec-

tively. The accelerating voltage used in this thesis is 200 kV, for which the wavelength of the

electrons is 2.51 pm. At this voltage, electrons move with relativistic speeds (> 0.1c), and

so eq. (4.3) incorporates a correction to their rest mass. In the absence of this correction,

the wavelength is 2.73 pm; we show a comparison between the semi-classical and relativistic

regimes in Fig. 4.1 for accelerating voltages up to 1 MeV.
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Figure 4.1: Comparison between the non-relativistic (red) and relativistic (blue) wavelengths, λ, of

electrons accelerated through a potential di�erence, V . Accelerating voltages which give electrons

speeds of 0.5c and 0.9c are marked explicitly. For the accelerating voltage used in this thesis, 200 kV,

the electrons are travelling at 0.7c.

4.2.2 Electron-sample interactions

An increase in resolution over light-based techniques is not the only advantage conferred by

electron microscopy. At the same time, we can also extract information from the various

ways in which the electrons interact with the sample. For example, electron energy loss spec-

troscopy relies on inelastically scattered electrons to provide information about sample com-

position [163] while this thesis uses the de�ection of electrons by magnetic �elds to map spin

con�gurations in arti�cial spin ice arrays. Electrons incident on a sample can be transmitted or

re�ected [Fig. 4.2(a)], undergoing scattering processes that are either elastic (conserves energy)

or inelastic (does not conserve energy).
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The re�ected signal is the domain of scanning electron microscopy (SEM), which allows

surface imaging and elemental analysis. The most common imaging mode in SEM operates

by collecting secondary electrons. These are electrons which are ejected from conduction or

valence bands in a material through inelastic interactions with the beam electrons. Backscat-

tered electrons are electrons from the incident beam which are re�ected through large angles

as a result of Coulombic repulsion from atomic nuclei. This is referred to as Rutherford

scattering [164]. We will discuss the role of secondary and back-scattered electrons in FEBID

as part of Sec. 4.4.

In TEM, transmitted electrons can be elastically or inelastically scattered. In a quantum-

mechanical description, transmission leads to a modulation of the amplitude and phase of the

incident wavefront as it passes through the sample [Fig. 4.2(b)].

By-products of inelastic processes include x-rays, which may be emitted in either the for-

ward or backward directions. Along with Auger electrons, these can be used for elemental

characterisation [165, 166, 167]. A selection of other processes is included in Fig. 4.2.

4.2.3 Electron source

An electron gun acts as the source of illumination in a TEM. There are two main types of

sources: thermionic emission, and cold �eld emission. In thermionic emission, a sample of

material (e.g. LaB6 or tungsten) is resistively heated to lower the work function such that

electrons are boiled o�. In cold �eld emission guns, a large bias voltage is applied to a tungsten

tip, which has a typical radius of 100 nm. The positive bias creates a strong electric �eld

gradient, which lowers the energy barrier to tunnelling for the electrons. In both cases, emitted

electrons are accelerated to the desired voltage, and brought to an initial focus at the gun

crossover. The size of the spot at crossover determines the spatial coherence of the beam. In

general, cold �eld emission guns can be focused to a smaller crossover than can thermionic

emitters. This makes their use preferred for high resolution, analytical or magnetic imaging in

EM as these depend on coherent illumination [169]. The microscope used in this thesis, the

JEOL ARM200cF TEM, is equipped with a cold �eld emission gun.
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Figure 4.2: Interactions incident between electrons and a material. (a) A distinction is made between

signals which are re�ected and transmitted through the sample [upper and lower halves of the plot,

respectively]. Electronic (electromagnetic) signals are indicated by the straight (curly) arrows. As

discussed later in Sec. 4.4, FEBID relies on secondary and back-scattered electrons. The list of named

processes is by no means comprehensive. (b) In transmission electron microscopy, the amplitude and

phase of the incident electron wave front is modulated through sample interactions. This can be

represented by a sample scattering function, f(r). Panel (b) has been redrawn from [168].

4.2.4 Aberrations

The focusing system in a TEM is composed of electromagnetic lenses. These use magnetic

�elds to alter the trajectory of the electrons, akin to the way in which regions of di�erent

refractive indices bend light in an optical system. Unlike conventional lenses however, their

strength can be adjusted on-the-�y by varying their supply current. Magnetic lenses su�er from

imperfections that degrade their performance and, hence, the resolution of the instrument. At

best, most electron microscopes are aberration-limited to about 50λ [170]. In order of decreas-

ing severity, the three principal sources of error are spherical aberration, chromatic aberration,

and astigmatism. In analogy with optical systems, we can denote electron trajectories by rays

though, as we discussed in Chapter 2, electrons trace helical paths in a magnetic �eld. A perfect

imaging system [Fig. 4.3(a)] maps all rays emanating from a point in the object plane to a single

point in the image plane.

In the case of spherical aberrations, o�-axis electrons are focused more strongly than are
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those travelling close to the optic axis. This is shown in Fig. 4.3(b). This is the electromagnetic

equivalent of the breakdown in the paraxial approximation observed in conventional optical

lenses. Spherical aberrations smear out point-like structures into discs in the image plane,

such that radius of these discs is given by Csβ
3
, where β is the maximum collection angle

of the lens or aperture, and Cs is the coe�cient of spherical aberration. The coe�cient of

spherical aberration in the JEOL ARM200cF is Cs = 0.5 mm. Scherzer proposed a method

of correcting for spherical aberration, which relies on using multipolar lenses to diverge o�-

axis rays back to a single focus [171, 172]. These aberration correctors in the JEOL ARM200cF

reduce the radius of this disc of confusion down to 78 pm.

Chromatic aberration arises from the fact that the illumination electrons are not all of the

same energy. Rather, there is an intrinsic spread in energies, ∆E, and, hence, in wavelength

by application of eq. (4.3). This is shown in Fig. 4.3(c) for ‘fast’ and ‘slow’ electrons [solid

and dashed lines, respectively]. The spread in the beam energy of the JEOL ARM200cF is

0.27 eV. A similar phenomenon is also observed in conventional optical microscopy, in which

the refractive index varies with wavelength. The e�ects of this aberration can be reduced by

using sources which produce monochromatic electrons, or by using a monochromator to

select the energy window.

Finally, astigmatism refers to inhomogeneities in the electromagnetic lenses arising from,

say, microstructural defects in the material of the pole pieces, or imperfections introduced

in fabrication. This can be mitigated by using octupolar magnets, called stigmators, to ap-

ply an opposing �eld. For completenes, we note that this discussion of aberration has been

limited to conventional, objective-on TEM. In Lorentz microscopy, defocusing the set-up to

image a plane above or below that in which the sample sits, is an additional—often desired—

source of aberration.

4.2.5 Operating principles of TEM

Transmission electron microscopes can be operated in two modes: conventional, in which

plane wave illumination is used, or scanning, in which a focussed probe is rastered over the

sample. In this thesis, we use conventional TEM (CTEM). In what follows, we will use the

acronyms TEM and CTEM interchangeably. This method of image formation is illustrated in
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Figure 4.3: Aberrations in electron microscopy. (a) A perfect imaging system. A point in the object

plane is mapped to a point in the image plane by the action of the lens. The collection angle, β, is

marked. (b) A system with spherical aberration. Rays further from the optic axis are bent more, causing

a deviation [solid black] from the ideal spherical wavefront [dashed black]. The radius of the disc of

least confusion is given by
1
2Csβ

3
, where Cs is the coe�cient of spherical aberration. (c) A system

with chromatic aberration. Slow electrons are de�ected more than fast electrons by the electromagnetic

lenses. This re�ects a spread, ∆E, about the mean energy, E0, of the beam. In this case, the radius of

the disc of least confusion is given byCC∆E/E0β.

Fig. 4.4, which mimics approximately the setup of the JEOL ARM200cF TEM. Irrespective

of the mode, a spherical wave is emitted by the electron source and focused to a point at

the gun crossover.

In TEM, the condenser system is composed of the lenses, C1 and C2, which act in concert

with the upper objective lens, O1 [marked explicitly, upper half of Fig. 4.4]. These produce

a collimated beam that is incident on the sample. The C1 lens adjusts the spot size of the

beam, while the C2 lens controls illumination. In the JEOL ARM200cF, the sample is placed

between the upper and lower objective lenses (unlike some other instruments, in which it

sits above the objective). The lower objective lens, O2, collects the Fourier transform of the

transmitted beam in its back focal plane. An objective aperture is inserted here; this determines

the collection angle and serves to improve contrast in the �nal image as it removes scattered

electrons. If the aim is to record the di�raction pattern rather than a real space image, the
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objective aperture is removed and a selected area aperture is inserted into the image plane. In

Lorentz TEM, O1 and O2 are nulled and an objective Lorentz minilens takes their place; this

is shown between the image and back focal planes in Fig. 4.4. This Lorentz lens is situated

further from the sample, and is weaker than either of the main objective lenses. In e�ect, for

Lorentz TEM, the objective is switched o�. The normal �eld in the sample plane, ∼ 2 T, is

reduced to a remanent value< 0.015 T. This �eld can be almost completely nulled yet further

by applying current to the objective lenses. This is discussed more in Sec. 4.3.

This Lorentz lens is situated further from the sample, and is weaker than either of the main

objective lenses. The projector system magni�es the signal on to the detector screen. CTEM

can be used to collect real space images or di�raction patterns. These are selected by setting

the object plane of the intermediate lens to the back focal plane or image plane of the lower

objective, respectively.

4.2.5.1 Principle of image formation. We have previously mentioned that optical systems

are devices which e�ectively carry out Fourier transforms. In this section, we will introduce

the transfer function formalism to make this more concrete; this will aid our discussion of

Fresnel contrast in Sec. 4.3.2.

In CTEM, suppose that the incident electron wavefunction is a plane wave, with uniform

amplitude and phase. Without loss of subsequent generality, we take

ψincident = 1, (4.4)

to represent the incident beam. On transmission through a sample of thickness, t, the am-

plitude and phase of the electrons are modulated by their interactions with the sample. This

can be captured by a multiplicative sample function such that, after transmission, the elec-

tron wavefunction is

ψt(r) = a(r)e−iφ(r), (4.5)

where a(r) and φ(r) are the amplitude and phase shift introduced by the sample. We can

simplify things considerably by setting the amplitude of the transmitted wave to unity. Fur-

ther, if the sample is very thin, it can be treated as a weak-phase object, i.e. φ � 1, and the
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Figure 4.4: Ray diagram for CTEM con�gured in imaging mode. The condenser, objective and

projector systems are marked. The setup approximately mimics that of the JEOL ARM200cF. Right

panel: transfer function formalism. The incident wavefunction is modi�ed by interactions with the

sample to produce the transmitted wavefunction, ψt(r). The image wavefunction, g(r), is the convo-

lution of ψt with the contrast transfer function of the microscope. The detector records the intensity,

I = g∗(r)g(r), of the image wavefunction.
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exponential in eq. (4.5) expanded about zero to give

ψt(r) ≈ 1− iφ(r). (4.6)

As we shall discuss, magnetic thin �lms behave as strong phase objects. The objective trans-

forms the sample function in its object plane into its Fourier representation in the back focal

plane, Ψ(q).
5
. In imaging mode, the projector system magni�es the �eld present in the back

focal plane of the objective. In doing so, it applies an inverse Fourier transform. The image

function, g(r), is the convolution of the transmitted wavefunction with the point spread

function of the microscope, h(r), that is,

g(r) = ψ(r)⊗ h(r− r′)

=
∫

d r′ ψ(r)h(r− r′),
(4.7)

where the notation⊗ represents the convolution operator. The detector records the intensity

of this image function i.e., I = g∗(r)g(r). Equivalently, we can work in terms of reciprocal

space, q, to recast eq. (4.7) as

G(q) = Ψ(q)H(q).6 (4.8)

The quantity, H(q), is called the contrast-transfer-function of the microscope, and describes

how spatial frequencies in the sample are transferred to the image. In doing so, the e�ects of

apertures, illumination conditions, and aberrations are subsumed intoH(q) by writing

H(q) = A(q)E(q)e−iχ(r). (4.9)

Since apertures block spatial frequencies higher than some cut-o�, the aperture function,A(q),

is a low-pass �lter. The envelope function,E(r), describes the spatial and temporal coherence

of the beam. These are controlled by the angular and energetic spread of the electrons, re-

spectively. Coherent aberrations are described by the phasor, e−χ(q)
, for which an approxi-

mate expression,

χ(q) = 2π
λ

(
Cs
λ4 q4

4 −∆f λ
2 q2

2

)
, (4.10)

5
We will use uppercase letters to indicate the Fourier transform of a function

6
We have used the convolution theorem to rewrite the Fourier transform of a convolution in terms of a

product of the individual Fourier representations.
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is given in [169], in terms of the defocus, ∆f . By way of comparison, a perfect microscope in

which no apertures are inserted would possess a contrast transfer function, H(q) = 1, since

it admits all spatial frequencies equally.

4.3 | Lorentz microscopy

Lorentz microscopy is an umbrella term that encompasses several magnetic imaging techniques

within electron microscopy. Since its �rst demonstration in 1959 [173], it has proved a versatile

tool for both static and dynamic measurements of magnetic materials, including arti�cial spin

ice [174, 26, 175, 3, 2]. Several distinct modes are possible; these include Fresnel, Foucault,

electron holography, and di�erential phase contrast. Since this thesis uses the Fresnel mode of

Lorentz microscopy, our discussion naturally centres on it though we brie�y describe some

other techniques in Sec. 4.3.3.

Lorentz microscopy can be explained using both a semi-classical argument and a full quan-

tum mechanical framework. In the classical picture, an electron of charge−e with velocity v

moving in a region of magnetic induction B is subject to a Lorentz force via

F = −e v× B, (4.11)

which give rises to circular motion. In passing through a thin, magnetic sample therefore, an

electron will be de�ected by this force. Two further points are worth noting. First, the force

on the electron arises from the magnetic induction rather than the magnetisation, M. As

discussed in Chapter 2, the constitutive equation relates these quantities through the stray

�eld, H, according to

B = µ0(H + M). (4.12)

As a result, only in certain, simple situations can the magnetisation be unambiguously in-

ferred from the de�ection. Second, only those components of B in a plane perpendicular

to the instantaneous direction of motion contribute to the Lorentz force. To illustrate how

this de�ection arises, Fig. 4.5(a) depicts a thin �lm of saturation magnetisation, MS , which is

uniformly magnetised in the y-direction so that M = MS êy using the inscribed coordinate

system. This �lm has thickness, t, as marked. Since∇ ·M = 0 for this system, the magnetic
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induction and the magnetisation are e�ectively the same and we can write B = BS êy in terms

of the saturation �eld, BS = µ0MS . An electron is incident along the sample normal and

de�ected through an angle, β. The momentum transferred to the incident electron by the

Lorentz force is directed along −êx and has magnitude,

px =
∫ t

0
F · d s

= eBSt,

(4.13)

where d s is an in�nitesimal path element along the electron trajectory. Assuming that the

electron stays mainly along the optic axis, the de�ection angle is given by the ratio of the

momenta in the x- and z-directions; that is

β = px
pz

= eBSt

mv
= eλ

h
BSt, (4.14)

where in the �nal step we have used the de Broglie relation, eq. (4.1).
7

For 200 keV electrons,

the prefactor has a value

eλ

h
≈ 606 µrad T

−1
nm
−1. (4.15)

A 3 nm �lm of cobalt with saturation magnetisation,MS = 1.4 MAm
−1

, gives rises to a de�ec-

tion of 3.2 µrad. For comparison, the fcc form of cobalt has a lattice constant, a = 3.54 Å.

The �rst allowed Bragg re�ection is from the (111) plane for which the scattering angle is

6 mrad—more than three orders of magnitude greater than the Lorentz de�ection. Our as-

sumption that the electron stays mainly along the optic axis is thus valid.

In a quantum mechanical approach to this scenario, the phase of the electron wavefunc-

tion is modi�ed by a coupling to the electric potential, V , and the magnetic vector potential,

A.
8

This Aharonov-Bohm phase shift [176] is given by

φ(r) ≡ φe(r) + φm(r) (4.16)

= e

~

(
1
v

∫
P
V (r) ds−

∫
P

A(r) · d s
)
, (4.17)

where we have split the electrostatic, φe, and magnetic, φm, phase contributions explicitly.

The integrations are carried out over the electron path, P ; several such paths are shown in

7
The inclusion of the Planck constant, h, makes clear that is only a semi-classical picture.

8
The magnetic vector potential satis�es B = ∇× A, though this does not uniquely de�ne it.
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Figure 4.5: De�ection of an electron travelling through a region of magnetic induction, B, according

to a semi-classical and quantum-mechanical framework. (a) In the classical picture, the de�ection

arises from the Lorentz force. A value for the de�ection angle, β, can be calculated by considering

the momentum imparted to the electron by the �eld. (b) The Aharaonov-Bohm e�ect explains this

de�ection through a coupling the complex phase of the electron wavefunction to the magnetic vector

potential, A.

Fig. 4.5(b). Considering �rst the magnetic phase contribution, the phase di�erence betweenP1

and P2 is

∆φm = φ1 − φ2

= e

~

∮
A(r) · d s,

(4.18)

where the integral is carried out over the closed loop, P1 − P2. Note that we have chosen to

illustrate this e�ect for a path which does not enter the material—though our comments apply

equally well to any arbitrary closed loop. Applying Stokes’ theorem, this can be rewritten as

a surface integral of the magnetic �ux,

∆φm = e

~

∫
∇× A d S

= e

~

∫
B× êy dS,

(4.19)

in the coordinate system de�ned in Fig. 4.5. The phase shift becomes

∆φm = eBst

~
∆x, (4.20)
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where ∆x = x2 − x1. By taking the gradient of the phase in the plane perpendicular to

motion, the Lorentz de�ection angle is recovered:

β = − λ

2π∇φm, (4.21)

which connects the classical and quantum-mechanical pictures. Remarkably, even paths that

do not enter the region of magnetic induction acquire a phase shift. Ref. [52] presents an

elegant explanation for this based on topology. The wave function for the closed loopP1−P2

is de�ned everywhere in R2
except in the region of magnetic induction. The symmetry group

of electrodynamics is U(1), which is equivalent to the unit circle. Assigning a phase in this

scenario amounts to drawing a circle around a hole; this can be done in two disjoint ways

which cannot be transformed into each other. Akin to skyrmionic systems [177], this de�nes

a topologically protected winding number and, as a result, the phase shift cannot be absorbed

by a change of gauge.

In the case of a constant electric �eld within the sample, the electrostatic phase contri-

bution can be evaluated to give

φe = e

E
V0t, (4.22)

where V0 is the mean inner potential and E is the beam energy. The potential, V0, describes

the average e�ect of electrostatic �elds from atoms in the sample. As a concrete example,

recent measurements of FEBID deposited Co structures give V0 = 21.5 V [178], which

is somewhat lower than the value, 29.45 V, predicted by Stadelmann [179]. Nonetheless, as-

suming this value also holds in a 3 nm thin �lm of Co, we obtain a uniform phase shift of

∼ 0.5 rad at 200 keV.

We emphasise at this point that all branches of Lorentz microscopy are phase imaging

techniques; contrast thus arises through φ, or its derivatives.

4.3.1 The Fresnel mode

As drawn in Fig. 4.4, the sample sits in a plane between the upper and lower objective lenses.

Uncompensated, the �eld in this region is on the order of 1 T—large enough to saturate most

magnetic materials into single domains. While the islands in arti�cial spin ice have strong
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shape anisotropy, previous work on kagome and pinwheel lattices have shown that external

out-of-plane �elds can a�ect in-plane switching characteristics [180, 4]. In Lorentz microscopy,

the objective lens is nulled to ensure a �eld-free environment. This is done by degaussing O1

and O2, and using an objective minilens as the principal focussing lens. Unfortunately, this

has certain disadvantages. By necessity, the objective minilens is further from the sample and

signi�cantly weaker, which leads to a loss in resolution. Further, the coe�cient of spherical

aberration is larger for the minilens—often by several orders of magnitude [181]. Nevertheless,

with suitable aberration correction, 1 nm resolution was proposed by Freitag et al. [181] and

demonstrated conclusively in �eld-free STEM by McVitie et al. [182].

In the Fresnel mode of Lorentz microscopy, de�ections are observed by defocusing the

image plane to select a real object plane below the sample or a virtual object plane above the sam-

ple. These correspond to positive and negative defocus, ∆f , respectively. Electrons de�ected

by neighbouring domains interfere at the positions of domain walls. This leads to alternating

bright interference fringes and dark areas in the case of a multi-domain state [Fig. 4.6]. Since

the Lorentz de�ection angles are small, large values of defocus are required (> 1 mm is com-

mon). This consequently degrades the structural resolution present in the image. Further, the

magnetic contrast becomes non-linear for large ∆f .

4.3.2 Contrast in the Fresnel mode

In this section, we justify the way in which phase information from the transmitted wave

appears in the intensity distribution of a Fresnel micrograph. In the absence of a coherence

envelope and aperture cut-o�, and assuming that the aberration function is slowly varying,

we can expand the transfer function, χ, about q = 0 to give

H(q) = 1− iχ(q), where χ(q) = −π∆fλ q2. (4.23)

The image wavefunction is then

g(r) = F−1{H(q)F{ψt}}

= ψt − iF−1{χ(q)F{ψt}},
(4.24)
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Figure 4.6: Schematic of imaging a multi-domain state using the Fresnel mode of Lorentz microscopy.

Electrons are incident normal to the sample, here along the −êz direction. Three regions of uniform

magnetisation are shown [alternating blue and red], separated by two 180° domain walls [grey]. The

electrons are de�ected by the integrated induction. We show here the case of positive defocus, in which

a plane located ∆f below the sample is imaged. This leads to interference patterns where the de�ections

converge and diverge. The contrast reverses for negative defocus, which images a virtual plane above the

sample.

in terms of the transmitted wavefunction,ψt(r). By expressingψt as a Fourier decomposition,

the image function can be simpli�ed to

g(r) = ψt(r)− i

4πλ∆f∇2ψt(r). (4.25)

The recorded signal is the intensity of g, namely,

I = |ψt|2 + 1
16π2 (λ∆f)2(∇2ψt)2 − 1

4πλ∆f
[
ψ∗t (i∇2ψt) + ψt(i∇2ψt)∗

]
. (4.26)

Using eq. (4.5), we can writeψt(r) as a phasor with amplitude, a(r), and phase, φ(r). Neglect-

ing terms in (∆fλ)2
, the intensity in a Fresnel image can be written as

I = a2 − 1
2πλ∆f

[
a2∇2φ+ 2a∇a · ∇φ

]
+O(∆f 2λ2), (4.27)

which agrees with the result derived in Ref. [183]. The quantity |ψt|2 = a2
is the intensity

distribution of the in-focus image. When ∆f 6= 0, extra contributions arise from those areas
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where the Laplacian of the phase is non-zero, and in regions where there are simultaneous

variations in both the amplitude and phase. Generally, variations in the amplitude, ∇a, can

be associated with changes in the thickness of the material (which ultimately a�ects the trans-

mission of the beam). For a uniform thin �lm, it is usually assumed that ∇a = 0, and so

the intensity becomes

I ≈ a2
(

1− λ

2π∆f∇2φ

)
. (4.28)

Finally, we note that the intensity is linear in ∆f so that the contrast reverses going from

under- to over-focus.

We illustrate this in the context of a single domain magnetic island. Here, variations in

the amplitude are inevitable at the edges. A schematic is shown in Fig. 4.7(a) in which the

magnetisation is orientated as M = Msêy. Given results we report in Chapter 6, a Gaussian

thickness pro�le is used for the island shape, with a full-width-half-maximum of 100 nm and

a height of 3 nm [Fig. 4.7(b)]. In this test, we assume that the amplitude of the incident

wavefront is attenuated by 10% on transmission through the material [Fig. 4.7(c)]. Taking

the material parameters for cobalt (MS = 1.4 MAm
−1

, V0 = 21.5 V) and 200 keV beam

electrons, the phase pro�les and their derivatives are calculated in Fig. 4.7(d)-(f). The magnetic

phase pro�le has been approximated as a sigmoid; the electrostatic phase pro�le has been

calculated according to eq. (4.22). Three components are drawn: that arising from electrostatic

e�ects (φe, blue); that arising from magnetic e�ects (φm, orange); and the total phase (φe+φm,

green). Both the �rst and second derivatives exhibit a de�ned asymmetry, which allow for the

magnetic state to be determined even though the system is single domain. Even considering

di�erent attentuation coe�cients and the full expression involving∇a [Fig. 4.7(g)-(i)], there

still exists an asymmetry in the defocused image arising from the magnetic con�guration. We

will return to this idea in Chapter 6.

4.3.3 Other methods of magnetic imaging

We brie�y summarise the other Lorentz TEM techniques so as to justify our choice of the

Fresnel mode in imaging the magnetic con�guration of arti�cial spin ice arrays.
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Figure 4.7: Simple model for the Fresnel contrast of a single domain magnetic island. (a) Single domain

magnetic island of thickness, t = 3 nm, and width, w = 100 nm. The magnetic induction, B,

is orientated along êy . (b) A Gaussian thickness pro�le for the island, matching those deposited by

FEBID. (c) The incident wave is attenuated on transmission through the islands. (d) Phase pro�les. The

electrostatic component (blue) is calculated as described in the text, based on a mean inner potential,

V0 = 21.5 eV. The magnetic phase (orange) is approximated as a hyperbolic tangent, with saturation

magnetisation, MS = 1.4 MAm
−1

, The total phase pro�le, φm + φe, is shown in green. The �rst

and second derivatives of these phase pro�les are given in (e) and (f), respectively. In each case, the total

phase component exhibits an asymmetry. (g) Di�erent attenutation coe�cients for the amplitude lead

to di�erent (h)∇a pro�les. (i) Nonetheless, there exists still an asymmetry when considering the full

expression for the intensity in a Fresnel image. In all panels, the vertical lines delineate the extent of the

island.
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4.3.3.1 Foucault mode and low-angle di�raction. In Foucault mode, an aperture is placed

in the back focal plane of the objective minilens. This is positioned with the intention of

selecting a particular magnetic de�ection. Only those domains which give rise to a de�ection

passed by the aperture appear bright in the �nal image. Magnetic domains with an opposite

induction have their de�ections blocked and appear dark. Like Fresnel, this is usually not a

quantative technique (though certain modi�cations using a phase shifting aperture can render

it so [184]). There is a related approach, low-angle di�raction, in which the back focal plane

of the objective minilens is imaged directly [185]. Since the Lorentz de�ection angles are small,

this requires a very large camera length (> 100 m). In this technique, the di�raction pattern

stems from scattering across the entirety of the illuminated area and so the information is

quantitative but not spatially resolved.

Related to this, we note that neither a single Lorentz micrograph nor a standard Foucault

image provides quantitative measurement of the magnetostatic phase (unless some simplifying

assumptions are made). Teague [186] and, separately, van Dyck [187] outlined an approach

based on the transport of intensity equation,

∇ ·
(
a∇φ

)
= 2π

λ

∂I

∂z
, (4.29)

from which the total phase can be reconstructed using a series of images taken at di�erent

defoci. From this, the magnetic induction integrated over the thickness of the �lm can be

obtained [188]. This has been applied to various magnetic systems including imaging reversal

processes in square arti�cial spin ice [26].

4.3.3.2 Di�erential phase contrast. Di�erential phase contrast (DPC) is a STEM tech-

nique in which the individual de�ection angles are mapped as a function of probe position

(�rst discussed generally in [189] and subsequently in the context of magnetic specimens in

[190]). From these angles, β(r), the integrated induction is found by application of eq. (4.14).

Since it is a STEM technique, this o�ers higher resolution than Fresnel imaging [191] at the ex-

pense of speed. Care must be taken when analysing DPC on polycrystalline magnetic samples

as di�raction contrast may also arise from grains.
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4.3.3.3 Electron holography. In electron holography, the beam transmitted through the

sample is recombined with a reference beam, which has not interacted with the specimen, in

order to generate an interference pattern. This is performed using a biprism to recombine the

two displaced beams into a hologram. Electron holography was originally proposed by Gabor

as a possible way to surmount lens aberrations [192, 193].

The work reported in this thesis uses the Fresnel mode exclusively. This can be justi�ed

on two counts. First, we do not need to map the integrated induction quantitatively; rather,

we are interested in assigning a macrospin orientation to every island within an arti�cial spin

ice array. Second, Fresnel imaging is a better option for dynamical measurements of transient

processes, especially when combined with the high frame-rate of pixelated detectors such as

the Medipix3 [194, 195].

4.4 | Focused electron beam induced deposition

This section discusses sample fabrication using focused electron beam induced deposition,

with a particular application to writing arti�cial spin ice arrays. Many good review articles exist

in this area, including those by van Dorp [196], by de Teresa et al. [197] and by Huth et al. [198].

4.4.1 Rationale

Broadly speaking, nano-deposition techniques can be separated into top-down and bottom-

up approaches. In the top-down approach, structures are fabricated from a larger block of ma-

terial through an etching or deposition process. Examples of this include electron beam [199],

x-ray [200], or photo-lithography [201]. For the most part, these are con�ned to the plane,

although recent advances in two-photon lithography have allowed nanowire lattices to be re-

alised in three-dimensions through a sca�olding process [202, 203] or via chemical �uid depo-

sition [204]. By contrast, a bottom-up approach refers to constructing aggregate structures

from atomic or molecular components via, say, self-assembly.
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In this vein, focused electron beam induced deposition (FEBID) can be considered a top-

down approach which provides single-step, nano-scale printing—3D printers for the nano-

world, as it were. In FEBID, a volatile precursor gas—composed of the target material bonded,

usually, to some hydrocarbon ligands—is injected into an evacuated chamber. The precursor

molecules are adsorbed onto the substrate surface
9
. There, the molecules di�use and, after

a characteristic residence time, escape. A focused electron beam is rastered across the sur-

face. This cracks the precursor molecules into volatile and non-volatile components. Volatile

components are pumped away, while the non-volatile part adheres to the surface. This is

shown in Fig. 4.8.

Perhaps the �rst—inadvertent—description of FEBID was given in 1934 by Stewart [206],

who observed the build-up of an insulating �lm on surfaces following prolonged electron or

‘canal-ray’
10

bombardment. Even at the time, this was correctly attributed to polymerisation of

residual organic vapours left in the reaction chamber. Ordinarily, this contamination can be

a signi�cant problem in both SEM and TEM imaging as it leads to the continuous growth

of �lms or needles.

Unlike, say, electron beam lithography, FEBID does not require a physical mask or tem-

plate for etching. As such, it is similar to chemical vapour deposition [207], except that disso-

ciation is promoted directly by the action of the beam rather than through heat, and that the

beam trajectory de�nes those areas where deposition is to occur. The dissociation occurs in

the immediate vicinity of the beam and so high-resolution patterns can be fabricated. Previous

work has achieved sub-10 nm structures in an SEM [208]. On smaller length scales, STEM

techniques have been used to realise structures below 1 nm, though reproducibility of the

volume and location of the deposit proves di�cult [209, 210].

4.4.2 Interactions

In EBID, we distinguish between two classes of interaction: those between precursor molecules

and the substrate; and those between precursor molecules and the electron beam.

9
This is referred to in some texts as physisorption [205], which refers to weak surface binding through van der

Waals interactions.

10
That is, positive ions.
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Figure 4.8: Schematic of the FEBID process. (a) An organo-metallic precursor gas is injected into the

chamber. Precursor molecules bind lightly to the substrate surface. A targeted, high-energy electron

beam is used to dissociate the precursor molecules. Deposition of the metal occurs in the area of the

electron beam, while the volatile ligands are removed. (b) Example of serpentine rastering. After one

pass is completed, the process is repeated to build up the deposition.

When the precursor is injected into the chamber, molecules are able to bind to the surface

through weak van der Waals interactions. Di�usion across the surface occurs via thermal

vibrations. After a characteristic residence time, τ , molecules desorb from the surface. Clearly,

a longer residence time increases the probability that precursor molecules can be broken down

by the electron beam and thus increases the yield [211, 212]. At the same time however, it leads

to greater contamination within deposits as residual hydrocarbons also remain on the surface

longer and are incorporated into the structures [212]. The residence time is not an intrinsic

parameter but depends on environmental conditions during each deposition [212] and the

nature of the precursor itself. Utke et al. discuss how the residence time often di�ers from

predictions made by classical transition state theory, but can be estimated for a given set-up

from steady-state deposition measurements [213].

As discussed in Sec. 4.2.2, secondary electrons are generated through inelastic processes

when the incident beam interacts with the substrate. These secondary electrons can be re-

emitted in the backwards direction, and have typical energies < 50 eV. Precursors tend to

possess a peak in their dissociation cross-sections around this energy, though the exact reaction
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mechanism can be quite complicated. Thorman et al. consider four related pathways
11

by

which common precursors are broken down, and discuss the extent to which the di�erent

channels are enabled by electrons of di�erent energies [214]. Irrespective of the pathway, how-

ever, the common factor is the capture of an electron, which then breaks bonds between the

metal and its its ligands.

The set-up used in this thesis is a dual column Helios Plasma Focused Ion Beam instru-

ment, with separate cobalt and iron gas injector systems (in the form of Co2(CO)8 and Fe2(CO)9

precursors). The cobalt precursor, Co2(CO)8, is perhaps the most commonly used magnetic

precursor [197]. It possesses a relatively low spontaneous dissociation temperature, 100°C—

equivalent to about 33 meV [215]. For comparison, secondary electrons typically have ener-

gies less than 50 eV.

4.4.3 Deposition purity and rate

The purity of FEBID-deposited structures varies. In general, incomplete dissociation of the

precursor complex leaves hydrocarbon impurities in the deposition. There are several methods

that attempt to mitigate this, such as increasing the temperature of the reaction vessel [216]. Co

purity greater than 90% has been reported in structures deposited using Co2(CO)8 for both

high [217] and low beam currents [218].

In terms of deposition rates, Fowlkes et al., among others, discriminate between two de-

position regimes: reaction-rate-limited, and mass-transport limited [219]. In the reaction-rate-

limited regime, the deposition rate increases linearly with electron dose. This is the situation

where the �ux of gas molecules is greater than the �ux of secondary electrons available to cause

dissociation. In the mass-transport-limited regime by contrast, the deposition is limited by

two factors: the rate at which precursor molecules are adsorbing onto the surface, and the

rate at which they can di�use to the deposition site. For high electron �ux, the precursor can

become depleted in the centre of patterns. This can lead to a hollowing e�ect [220]. In this

thesis, we are interested in making very thin, planar samples, and so we will work mainly in the

reaction-rate-limited regime. Fig. 4.9 shows the continuum between these two regimes. In the

11
For completeness, these are dissociative electron attachment, neutral dissociation, dissociative ionisation,

and dipolar dissociation.
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Figure 4.9: Growth regimes in FEBID. These vary between (a) reaction-rate-limited, where an increase

in electrons brings about a linear increase in deposition volume and (c) gas limited, where the precursor

can become depleted in the centre of the pattern. Panel (b) forms a sweet-spot between these two

regimes. Curves loosely based on the model given in [219] for a target thickness of 1 nm.

reaction-rate-limited regime, approximately Gaussian pro�les are formed [Fig. 4.9(a)], while

in the mass-limited regime, the pattern becomes thinner towards its centre [Fig. 4.9(c)].

4.4.4 FEBID and arti�cial spin ice

In most studies, arrays of ASI are normally written using conventional electron beam lithogra-

phy. Some recent work has investigated the use of FEBID as a fabrication mechanism, though

it has been limited to individual islands or small clusters. For example, Keller et al. use a het-

eronuclear precursor to produce wire-frame cuboids of alloyed cobalt and iron [221]. Electron

energy loss spectroscopy suggested purities in excess of 80%, and that the deposits consisted

of a bcc Co/Fe phase intermixed with a spinel, with a grain size of about 5 nm [222]. In a

series of studies [223, 224, 225], Pohlit et al. performed magnetometry measurement on single

and multiple cobalt nanoelements, and observed a decrease in coercivity with temperature.

Outwith arti�cial spin ice, FEBID has been used to fabricate various nanowire geometries in

two and three dimensions [226, 227].
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4.4.5 Summary

This chapter has focused on the particular aspects of TEM and FEBID which provide the indis-

pensable experimental underpinning of this thesis. The operating principles of transmission

electron microscopy were described. The Fresnel mode of Lorentz microscopy was outlined.

A simple model for the Fresnel contrast expected for a single domain magnetic island was given.

Applying a similar process to every island within arrays of arti�cial spin ice allows us to probe

the exact microstate. Finally, focused electron beam induced deposition was introduced. We

return to this technique in Chapter 6 in order to fabricate thermally active arti�cial spin ice.



5
Thermal processes in

rotated arti�cial spin ice

5.1 | Introduction

In this chapter, we introduce a new form of arti�cial spin ice (ASI), which is created by ro-

tating the islands in the canonical square ice through an angle, θ. For angles near to 45°, a

highly degenerate system is formed that exhibits ferromagnetism even though not all the spins

are collinear. This stems from the mixing of the spin and spatial degrees of freedom in the

dipolar interaction.

In Sec. 5.2, this new geometry is described; particular attention is paid to the θ = 45°

case, which we refer to as pinwheel ice. In Sec. 5.3, we show that, irrespective of the underlying

model, this rotation leads to a weakening of near-neighbour interactions, a coupling to further-

out spins, and a bunching of energy levels. In Sec. 5.4, the equations underlying the behaviour

of a small system are set out. Feedback-optimised [228, 229] parallel tempering [150] Monte

Carlo is used to extract thermodynamic observables for large arrays. These show an intriguing

84
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phase transition; one driven not by temperature but by the geometrical constraints of the tiling.

These constraints force a ferromagnetic-ordered state for geometries close to the pinwheel

lattice. In Sec. 5.5, the critical exponents are extracted as a function of angle. It is found that

these systems belong to the 2D Ising universality class, up to corrections to scaling. Finally,

in Sec. 5.6, we focus on the ground state con�gurations of pinwheel arrays, and discuss how

array boundary and size provide an e�ective anisotropy by which the macro-domains in the

ferromagnetic state can be tuned.

5.1.1 Attribution

The majority of the work in this chapter can be found in Ref. [1]. Alongside results discussed in

Chapter 7, the �nite-size scaling analysis and comments on the nature of the phase transition

in this chapter form a separate paper, which is in preparation. The pinwheel geometry was

originally conceived by RLS and FSN. RM investigated the behaviour of the critical tempera-

ture with rotation angle, connected it to the transitions envisaged by Landau and Binder [230],

and drew the analogy of pinwheel arrays with naturally occurring ferromagnetic media. The

manuscript was written by RM and me, with comments from the other authors. RLS and

SMcV supervised the work. The remainder of the work reported here is my own.

The results presented in this chapter and, where speci�ed above, in Ref. [1] were gen-

erated using JASI, a Julia simulation package I developed for Monte Carlo simulations of

arti�cial spin ice systems. This package includes support for both Metropolis-Hastings and

parallel tempering algorithms; is extensible to most common ASI lattices; and is well-optimised

for the analysis of large (> 104
spins) systems in parallel on CPUs and, with some caveats,

GPUs. Documentation and installation instructions for this package are available in an on-

line repository [6].

5.2 | A class of geometries

Our base structure, the canonical square ice tiling [Fig. 5.1, left and right columns] is formed

by two interleaved, orthogonal sublattices of uniformly aligned nanomagnets. From this tiling

we obtain a continuum of geometries by rotating each nanomagnet about its centre through
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an angle, θ. We choose the zero of this rotation, θ = 0°, to be square ice, and term the

θ = 45° geometry “pinwheel” ice (variously also “chiral” [180, 231] or “tilted square” [232]

ice). The lattice constant, a, is taken as the distance between second-nearest neighbour islands

as shown. For the case of �nite arrays, di�erent array edges are possible. For θ = 0° square

ice, these are commonly termed ‘open edge’ (i.e. with dangling spins) and ‘closed edge’ (in

which most edge spins have a partial complement of neighbours) [233]. These are shown in

the left and right columns of Fig. 5.1, respectively. For θ = 45° pinwheel ice, we christen the

corresponding terminations ‘diamond edge’ and ‘lucky knot edge’ [Fig. 5.1(a) and (b), middle

column, respectively] [1].
1

As with square ice, it is possible classify four island sub-units—vertices—into types such

that con�gurations within a given type are degenerate. The structures of these vertices are

emphasised in black for square and pinwheel ice in Fig. 5.1. In passing, we note that a pinwheel

vertex does not involve four islands meeting head-on like in square ice and so “unit” would

perhaps be a more appropriate description. As we want to compare types from square to

pinwheel, we simply refer to them all as vertices.

Rotating each island in a vertex changes neither its type nor its ordering so that, say, a T2

vertex carries a net moment irrespective of rotation angle. For any θ then, we are able to provide

an equivalent description in terms of a lattice of interacting vertices [76], rather than the full

ensemble of island spins.
2

As a reminder from Chapter 2, T1 and T4 vertices carry no net

moment. In this regard, they are antiferromagnetic (AFM) vertices, as the island moments

align antiparallel within each sublattice. Since T2 and T3 vertices carry a net moment, we

consider them ferromagnetic (FM) vertices. For any given θ, the ordering within an array may

be characterised in terms of its fractional population of vertex types, ni = ni(θ, T ). The

populations are not independent as they satisfy

〈n1〉+ 〈n2〉+ 〈n3〉+ 〈n4〉 = 1. (5.1)

1
The latter appellation, the ‘lucky knot edge’, stems from its resemblance to a motif found in Chinese art and

handicraft.

2
Nothing is lost in this description. We do not coarse-grain [234] to translate the spin con�guration into the

vertex picture. In fact, a spin con�guration is over-determined by specifying the location and type of each vertex,

as a spin in the bulk of the array belongs to at least two vertices.
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The number and locations of vertices change with rotation angle (compare the red boxes from

L-R in Fig. 5.1), and so populations are always normalised with respect to the total number

of vertices within an array. In Fig. 5.2, we depict the 16 possible pinwheel vertices in terms of

their spin con�guration, net moment, and magnetic charge; an analogous �gure for square

ice appears in Chapter 2, Fig. 2.9.

(a)

(b)

a

a

45

Figure 5.1: A continuum of geometries de�ned by rotation angle. The square ice tiling [left column]

is deformed by rotating each angle about its centre through θ. The θ = 45° case is termed ‘pinwheel’

ice [middle column]. Rotating islands in pinwheel ice through 45° recovers square ice [right column].

Panels (a) and (b) depict two sequences of array rotations with di�erent edge terminations (open and

closed edged in square ice; diamond and lucky knot edge in pinwheel). The lattice constant, a, is taken

as the distance between the centre of second-nearest neighbours. Common Cartesian axes are shown in

each image. The location of vertices are marked in red. Comparing the two square ice patterns, vertex

locations in the θ = 90° are o�set by a/2 in the x- and y-directions to the θ = 0° case.
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Figure 5.2: The sixteen vertices in pinwheel ice in terms of their (a) spin con�guration, represented

by the black arrows; and (b) magnetic charge, Q, in terms of North and South poles (red and blue

dots, respectively). Vertices are represented by coloured squares. A consistent colour coding is used

throughout this work. This allows for discrimination when arrays are displayed as vertex maps. All

vertices within a given type are degenerate. For T2 and T3, the net moment and magnitude are indicated

by the white arrow. Types are sorted L-R in terms of increasing dipolar energy—see Sec. 5.4.

5.3 | Tuning interactions

5.3.1 Modelling spins

In this subsection, we justify the model used to uncover the e�ect of island rotation on order-

ing. In fact, we will return repeatedly to this model throughout the remainder of this thesis.

First, we assume that every island is a single domain, with an associated Ising-like spin. This

re�ects the strong shape anisotropy for the standard ‘stadium-shaped’ island, which constrains

it to point approximately along the long axis. This has been con�rmed experimentally for dif-

ferent island aspect ratios using a variety of techniques including magnetic force microscopy [8,

235, 236], Lorentz transmission electron microscopy [25], and x-ray photoemission electron



5. Thermal processes in rotated artificial spin ice 89

microscopy [237]. The collective behaviour of many such islands is determined by their mutual

interactions, which can be represented in several ways.

5.3.1.1 Point dipole approximation. The simplest is to approximate each island by a point

magnetic dipole located at its centre, such that the system is governed by the Hamiltonian,

Hdip = D
∑
i 6=j

sisj

[
σi · σj

r3
ij

− 3(σi · rij)(σj · rij)
r5
ij

]
, (5.2)

whereD = µ0(MsV )2/(4πa3) provides a characteristic energy scale, and rij = rj − ri is a

vector connecting the position of spin i to spin j. The spin at site i has a magnetic moment,

si = siσi, with si = ±1 the polarity of the spin, and σi a unit vector parallel to the long

axis of island i. The orientation of σi is dependent on the island rotation angle, θ, and the

sublattice to which island i belongs. For example, using the coordinate system indicated in

Fig. 5.1(a), the two sublattices are parallel to the unit directions

1√
2

cos θ

sin θ

 and

1√
2

− cos θ

sin θ

 . (5.3)

Equation (5.2) is valid only in the far �eld, i.e. in situations where the separation of the

islands is much greater than their physical extent. In general, this is not the case in ASI where

islands are placed close together to promote strong coupling. For example, Rougemaille et al.

show that it is necessary to include an extra nearest-neighbour exchange when seeking agree-

ment between experiments on kagome lattices and models based on point magnetic dipoles [238].

This isotropic term re�ects the e�ect of the physical extent of the nanomagnets on the strong

coupling between �rst-nearest-neighbours in the kagome system. Nonetheless, this simple

approach has been shown to accord well with physical results in square ASI, including those

obtained under the application of �eld [8] and temperature [79].

5.3.1.2 Charged dumbbell model. An alternative approach—�rst applied by Castelnovo et

al. in the context of bulk pyrochlores [74]—is to approximate each island of length L as a

charged dumbbell in which monopoles of equal but opposite polarity sit at either end. This

model introduces a free parameter, L/a, which plays the role of an inverse packing fraction:

large L/a means that islands are spaced close together; small L/a means that the islands are
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well separated. In analysis of square ASI, L/a has been shown to broaden the temperature

range over which ice-rule-obeying T1 and T2 vertices form. [239] In the charged dumbbell

picture, the energy of a con�guration is simply the sum of pairwise Coulombic interactions

of magnetic charges, namely

V (rij) =


K qiqj

rij
if i 6= j

ν0q
2
i

2 if i = j,

(5.4)

where the indices now label charges, qi, rather than islands, and K = µ0/4π is the analogue

of the dipolar constant, D. The �nite self-energy, ν0/2, is required to reproduce the correct

nearest-neighbour interaction. We would expect that for L � a, we recover the dipolar

Hamiltonian and, indeed, Ref. [74] demonstrates that eq. (5.4) is functionally the same, up

to small corrections which vanish with r−5
.

5.3.2 The e�ect of island rotation on interaction strengths

We show the energies of nearest-neighbour (1nn), second-nearest-neighbour (2nn) and third-

nearest-neighbour (3nn) pairs as a function of θ for both the point dipole model [Fig. 5.3(a)]

and the charged dumbbell model [Fig. 5.3(b)]. Broadly speaking, interaction energies above

zero correspond to ferromagnetic alignment of pairs, while those below correspond to anti-

ferromagnetic alignment. We take L/a = 2/3 for the charged dumbbell model, consistent

with the experimental sizes used in Chapter 6. The following statements apply equally well

to both approaches.

Square ASI is a system dominated principally by nearest-neighbour interactions: the 1nn

interaction is maximal at θ = 0° and decreases to zero at θ = 45°. A similar behaviour is

observed for 2nn pairs, which reduce in magnitude around θ = 45°. In contrast, the 3nn

interaction increases with rotation angle and peaks at θ = 45°. Indeed, for pinwheel ice, the

strongest interaction is that between 3nn pairs although all couplings remain of comparable

size within a radius of approximately 4a.

We explain these two limiting cases heuristically in Fig. 5.3(c). Favourable, low-energy

con�gurations are those in which pairs tend to align ‘head-to-tail’. In doing so, their stray �eld

reinforces the magnetic structure or, equivalently, closes �ux loops. For square ice, assigning
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favourable con�gurations within a vertex can be done by inspection. It is impossible, however,

to de�ne favourable and unfavourable alignments for adjacent islands in pinwheel spin ice.

All four con�gurations for a two-island T-shape are degenerate.

Excellent agreement is observed between the dipolar and charged dumbbell models. This

is expected: previous work has shown that these models agree on the qualitative ordering of

energy levels in ASI [76]. In passing, we note that it is possible to estimate interaction energies

within a full micromagnetic framework by, e.g., simulating isolated pairs of 1nn islands and

accounting suitably for their self-energy. This produces behaviour similar to that described in

Fig. 5.3(a,b) and is discussed in detail in the supplementary to [1]. As proof, Fig. 5.4 depicts

the evolution of the nearest-neighbour couplings with angle for islands of dimension 300 nm

× 100 nm× 3 nm, as calculated using Mumax3 [98]. Typical material parameters for cobalt

are assumed: MS = 1.4 MAm
−1

, with an exchange constant, Aex = 21 pJm
−1

. The Gilbert

damping constant, α, was set to 0.5 to hasten convergence.

Broadly speaking, the curves match those in Fig. 5.3, although the micromagnetic simu-

lations predict that square ice is even more strongly coupled than either the point dipole or

charged dumbbell models would suggest. The di�erence arises primarily from the fact that

micromagnetism simulates the true physical extent of the islands. In this framework, the local

magnetic moment within each island does not lie perfectly parallel everywhere to the long axis.

As discussed in Chapter 2, there exists a competition between the exchange and magnetostatic

energies. The magnetisation at either end of an island is able to cant so as to minimise the

build-up of magnetic surface charge. In turn, this adjusts the stray �eld distribution, which

couples neighbouring islands. We will return to these ideas in Chapters. 6 and 7.

Nonetheless, the key point is that the relative change in strength of various classes of cou-

pling occurs irrespective of the model. All suggest that for angles around 45° further-out pairs

of neighbours interact more strongly than nearby ones—a re�ection of the relative separation

of magnetic charges. It should be noted that while we treat θ as a continuous variable in this

analysis, islands are not free to rotate. Once a geometry has been fabricated, the interactions

are determined completely.

To summarise: in square ice, the interactions are ‘front-loaded’ with nearby pairs of islands

interacting more strongly. In pinwheel ice, the nearest-neighbour interaction is completely
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suppressed and there exists a gap in the interaction spectrum. The energetics for θ = 45°

is determined by spins which are well-separated, peaking at 3nn though any non-zero inter-

actions tend to be of a similar size. In this sense, each island in pinwheel ice ‘sees’ out to

a more distant magnetic horizon compared with square ice. The angle, θ, acts as a proxy

for controlling interactions between classes of neighbouring spins, and weakens the nearest-

neighbour couplings which dominate the square lattice.

Both charged dumbbells and point dipole prove satisfactory at capturing the key behaviour

of this island rotation. From now on, we will tend to model our islands as point dipoles and

compare the results with those obtained from micromagnetic simulations of smaller, simpler

lattices.
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Figure 5.3: Interaction energy as a function of θ for 1nn, 2nn, and 3nn pairs in (a) the point

dipole model, and (b) the charged dumbbell picture. Coupling energies above zero are indicative

of ferromagnetic alignment of pairs; those below promote antiferromagnetic alignment of pairs. As

the rotation angle is increased from 0°, we see a weakening the of near-neighbour interactions and

a strengthening of the coupling to further-out neighbours. This is observed under both approaches.

(c) De�ning favourable and unfavourable spin alignments within a vertex is simple in square ice [left

panel], but the two island T-shape is four-fold degenerate in pinwheel spin ice [right panel].
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Figure 5.4: Interaction energy as a function of θ for 1nn, 2nn, and 3nn pairs calculated using

Mumax3. The simulated dimensions of the nanomagnets match those used in Chapter 6. Typical

material parameters for cobalt are assumed.

5.4 | Thermal processes

5.4.1 A single vertex

First, let us consider the e�ect of rotating each island in a single vertex. As we shall see, this

shows qualitatively the same behaviour as larger arrays and has the advantage that exact calcu-

lations are tractable. Working within the dipole approximation, it is easy enough to show that

the energy, Ei, of a vertex of type, Ti, depends on θ through

E1(θ) = D
8
√

2
[√

2 + 3(
√

2− 8) cos 2θ
]

; (5.5a)

E2(θ) = D
8
√

2
[
−
√

2(1 + 3 cos 2θ)
]

; (5.5b)

E3(θ) = 0 ; (5.5c)

E4(θ) = D
8
√

2
[√

2 + 3(
√

2 + 8) cos 2θ
]
. (5.5d)

These are depicted in Fig. 5.5(a). For angles near to 0°, the ground state is an antiferromagnetic

T1 vertex. In an asymmetric region about 45° however, the lowest energy state is a ferromag-



5. Thermal processes in rotated artificial spin ice 95

netic T2 vertex. For a single vertex, this region of ferromagnetism corresponds approximately

to θ ∈ [39.4°, 47.5°]. 3
In square ice, the types possess four, well-separated energy levels

whereas, for geometries similar to pinwheel, the energy levels are nearly degenerate—relatively

speaking. This follows from the observation that at θ = 45°, all interactions within a region

of extent 4a are of a similar magnitude.

Given the limited number of con�gurations, it is possible to construct an analytic expres-

sion for the partition function and, hence, for every thermodynamic variable. In Fig. 5.5(b),

we choose to show the residual entropy,

S0 = lim
T→0

∂F

∂T
, (5.6)

where F = −kBT logZ is the free energy. That this quantity is never zero is the hallmark of

a frustrated system (which, by de�nition, has multiple ground states). Further, we note that

the residual entropy is discontinuous: it jumps at those critical angles which mark the onset

of ferromagnetic ordering. This suggests some form of phase—or, rather, vertex—coexistence

through which the system supports both ferromagnetic and antiferromagnetic ordering.

5.4.2 Monte Carlo simulations

As discussed in Chapter 3, phase transitions are de�ned in the thermodynamic limit and so we

now consider larger arrays to show that this preference for ferromagnetic T2 ordering near to

45° is not a �nite-size artefact. To do this, we implement parallel tempering (PT) Monte Carlo

(MC) [150] to obtain expectation values for the Hamiltonian given in eq. (5.2).

5.4.2.1 E�cient selection of temperatures for parallel tempering Monte Carlo. As a

reminder: in PT Monte Carlo, M independent replicas of the system are simulated at di�er-

ent temperatures in the set {T1, T2...TM}. After performing a �xed number of MC moves

3
Actually, we can show that the lower and upper critical angles are exactly

1
2 arccos

[
−

√
2

3(∓4 +
√

2)

]
.
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Figure 5.5: (a) Energy levels of a single vertex are plotted as a function of rotation angle, θ. Between

39.4° and 47.5°, the lowest energy state is T2-ordered. (b) Discontinuities in the residual entropy,

S0, suggest there is AFM/FM phase coexistence at these critical angles. In general, the entropy is

proportional to ln Ω, where Ω is the number of microstates. The number of ground states is indicated

explicitly.

within each replica, swaps between replicas at adjacent temperatures, Ti and Ti+1, are pro-

posed. These are accepted with probability,

P(Ei, Ti ↔ Ei+1, Ti+1) = min(1, e∆βi∆Ei), (5.7)

where ∆βi = βi+1 − βi and ∆Ei = Ei+1 −Ei. In this way, replicas that become jammed in

metastable states at low temperatures (where the autocorrelation time is large), are able to dif-

fuse to higher temperatures (where the autocorrelation time is short) in order to surmount any

barriers in the free energy. This has proved an e�ective method to thermalise highly frustrated

systems including arti�cial spin ices [240, 241] and spin glasses [242].

Clearly, the e�ectiveness of PT hinges somewhat on the choice of temperature set. Choos-

ing too large a range may require more CPU time than is available. Similarly, choosing too large

a di�erence, ∆βi, may mean that replicas are seldom exchanged. Conventionally, a set is chosen

such that the acceptance probability, eq. (5.7), is independent of the temperature and large

enough that swaps are frequent (acceptance rates of 23% appear a common benchmark [243]).

For our purposes, an acceptable temperature set for a PT simulation is one which samples a

given temperature range �nely enough so as to discriminate phase transitions while returning

results in a computationally feasible time.
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In this chapter (and subsequently), we implement the feedback-optimised method of Katz-

graber et al. (discussed �rst in [228] and re�ned further in [229]). This is based on minimising

the average Monte Carlo time that replicas take to complete a round trip in temperature space,

i.e. the average number of steps required for a replica to return to its starting point, having

visited both extremes in between. By performing initial trial runs, the fraction of replicas that

di�use from the minimum temperature,Tmin, to the maximum temperature,Tmax is measured.

This fraction de�nes a steady state current, J , created at Tmin and destroyed at Tmax. The

optimal temperature points are found by constructing a probability density about J subject

to the constraint that the round-trip time is minimised. In reality, this is an iterative process

whereby the optimised temperature set of the previous iteration acts as the starting set of the

next. Usually, 10 or so iterations are su�cient to ensure convergence.

We make some adjustments to this procedure. These are explained in detail within JASI [6]

but we summarise them as follows. Firstly, we sample relevant thermodynamic variables as

well as J to construct the probability density for the optimal temperature set. Ensuring that

replica swaps are accepted is equivalent to requiring su�cient overlap between the density of

states at neighbouring temperatures. The di�erence in temperature between adjacent replicas

should thus satisfy

Ti+1 − Ti ∼
TiCV√
N
, (5.8)

where CV is the extensive heat capacity, and N is the number of spins in the system. Where

the heat capacity diverges—near to a phase boundary for example—the acceptance probability,

eq. (5.7), naturally goes to zero. By directly sampling thermodynamic variables as part of our

optimisation procedure, we can concentrate temperature points close to bottlenecks such as

phase transitions. This ensures good discrimination of observables in the vicinity of critical

points. There are existing methods which compensate for the functional behaviour of the

speci�c heat in this way, including those put forward by Kofke [244], by Rathore et al. [245],

and by Predescu [246, 247]. We combine these approaches with that of [228] to generate

our hybrid method.
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5.4.2.2 Ewald summation. It is common to perform Monte Carlo simulation using peri-

odic boundary conditions (PBC). This is of particular important for systems with long-range

interactions. It is possible to introduce an arbitrary cut-o� beyond which interactions are

ignored [248]. These provide good estimates for situations in which the interactions die o�

quicker than r−3
as in the Lennard-Jones potential [249]. However, previous work has shown

that this approach is more severe for the dipolar interaction as it amounts to introducing a shell

of pseudo-charges at the cut-o� [250] and leads to a greater truncation error for ferromagnetic

systems compared with antiferromagnetic ones [251].

Using PBC, a given spin interacts not just with other spins in the array but with periodic

images thereof [Fig. 5.6]. Unless otherwise stated, the full dipolar sum in eq. (5.2) is imple-

mented. To accommodate the long-range nature of the dipolar interaction, we use Ewald

summation [252].
4

This splits the slowly convergent dipolar term into two quickly convergent

parts, evaluated separately in real and reciprocal space. A fuller account is given by Landau

and Binder in [254].

5.4.2.3 Parameters. We consider system sizes ranging from 16 to 10000 islands (2×2 to 50×

50 in terms of vertices, respectively). The upper limit is determined both by the necessity for

speed, and by available computer memory. A lattice of N spins contains N2
separate dipolar

interactions. Supposing that each interaction is pre-calculated and stored in double-precision

�oating-point format [255], the 10000-spin lattice requires 1 Gb of memory per CPU.

A single Monte Carlo step (MCS) was taken to beN single spin �ips followed by a sequence

of PT replica swaps. That is, replicas are swapped according to the Metropolis-Hastings crite-

rion after each conventional Monte Carlo sweep. For the �nite-size scaling, the maximum

system size considered is 3600 spins (a lattice of 30 × 30 vertices). In general, 104
MCS were

su�cient to ensure thermalisation and observables were calculated using both 104
and 105

MCS to ensure convergence. Results are averaged over at least 10 independent runs; where

error bars appear, they re�ect one standard deviation in the data. For quantities obtained

directly from the MC simulation, these errors are usually negligible (� 1%). This re�ects

4
Unlike PT, this is not a new technique. One of its �rst uses was to calculate the mean inner potential in ionic

crystals [253].
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Figure 5.6: Lattice arrangement used to implement periodic boundary conditions in Monte Carlo.

The real system is located in the centre, and identical images are tiled around. The interaction of a

trial spin (white with black outline) with another (solid black) re�ects both the real interaction in the

physical system, and interactions with its images in the periodic copies.

the good statistical decorrelation in the Markov Chain that can be achieved with parallel tem-

pering. As ever, larger systems can be treated and better statistics obtained given su�cient

computational outlay.

5.4.3 Thermal processes

In Fig. 5.7(a), we depict the speci�c heat per spin, cV , as a function of temperature for various

angles, including 0° square and 45° pinwheel. The data is taken from simulations of a 50× 50

vertex lattice (10000 spins). The speci�c heat capacity per spin,

cV = 1
N

〈E2〉 − 〈E〉2

kBT
, (5.9)

exhibits a peak for all angles. As with the Ising model (compare to Chapter 3, Sec. 3.6), the

temperature at which this peak occurs, TC , marks the onset of ordering. Considering just the
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square geometry, a peak is observed at approximately 7.2 D k−1
B

5
, consistent with the results

obtained by Silva et al. [256]. In this case, the twofold-degenerate ground state is antiferromag-

netic as it is composed of a chequerboard pattern of T1 vertices (not shown here, but discussed

�rst in [8] and experimentally con�rmed in [79]). By contrast, for angles close to the pinwheel

geometry, a ferromagnetic ground state is attained. This FM ground state is fourfold degener-

ate, re�ecting the four distinct T2 vertices. That is, the system transitions from the two-in-two

ice rule state at θ = 0° to a system in which the spins in both sublattices are aligned parallel to

each other. We discuss further the predicted structure of this FM ground state in Sec. 5.6.

The speci�c heat is a useful measure as its de�nition, eq. (5.9), can be applied to all geome-

tries. Another quantity of interest is the conventional order parameter for magnetic systems,

the magnetisation m. Its response function, the susceptibility, χ, is de�ned through

χ = 1
N

〈m2〉 − 〈m〉2

kBT
. (5.10)

There are several ways however in which to de�ne m, based on counting particular subsets

of spins. In Fig. 5.7(b,c), we show χ for two of these: the staggered magnetisation and the

sublattice magnetisation. The de�nitions of these quantities are given in the respective insets

for the case of an open edge 3 × 3 vertex square array. In the staggered picture, the array

is modelled as a quadrapartite lattice (such that each island in a vertex belongs to a separate

staggered sublattice). In the sublattice picture, the array is modelled as a bipartite lattice (such

that two islands in each vertex belong to a sublattice). The staggered picture is the relevant

one to describe the antiferromagnetic ordering within square ice. This is because the spins in

each individual sublattice align antiparallel in square ice. The staggered susceptibility curves

[Fig. 5.7(b)] exhibit peaks similarly to those for the speci�c heat. All arrays, irrespective of

rotation angle, develop a net moment and a corresponding susceptibility within their staggered

sublattices. However, only those arrays which possess ferromagnetic ground states show peaks

in the sublattice susceptibility [Fig. 5.7(c)]. For angles outwith this ferromagnetic region, the

net magnetisation is zero within a sublattice and so its susceptibility also vanishes. Arrays in

the ferromagnetic region develop an overall magnetisation. This shows the same behaviour as

the magnetisation within a sublattice, as expected.

5
The dipolar constant,D, has units of energy. In this reduced scheme then, temperature has units ofD k−1

B .
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Figure 5.7: Thermal averages for (a) the speci�c heat capacity, (b) the susceptibility within a staggered

sublattice and (c) the susceptibility within a sublattice. Data taken from 10 independent simulations

of a 50 × 50 vertex array (10000 spins). The insets to (b) and (c) de�ne a staggered sublattice and a

sublattice for an open edge square array. For all angles, the speci�c heat and the staggered susceptibility

are peaked at the critical temperature. This re�ects the fact that all geometries develop a net moment

at least within their staggered sublattices. Only those geometries that order ferromagnetically show a

non-zero sublattice susceptibility.
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Figure 5.8: Upper (red squares) and lower (blue circles) critical angles, θc, are plotted as a function of

system size, L. These angles demarcate the angular region for which FM ordering is preferred. Inset:

same data but against L−1
. Fitting straight lines (shown in black with shaded 3-σ uncertainties) and

extrapolating to �nd their y-intercept, we obtain an estimate for the critical angles for an in�nite system:

(34.38± 0.06)° and (55.99± 0.04)° for the upper and lower cases, respectively. For comparison, the

exact values for a single isolated vertex are indicated by the un�lled markers (c.f. Section 5.4.1).

We make some further remarks. First, the transition to a dipolar-ordered ferromagnetic

ground state is dependent on system size. This is quanti�ed in Fig. 5.8, where we plot the

upper and lower critical angles, θc, as a function of system size, L. These angles de�ne the

boundaries between which geometries adopt FM ordering (or, equivalently, for which geome-

tries exhibit a peak in their sublattice susceptibility). The resolution in angle is 0.25°. By

plotting θc against L−1
, the data fall on two universal curves. Fitting straight lines to these

and extrapolating to �nd the y-intercept, we obtain an estimate for the critical angles for an

in�nite system: (34.38±0.06)° and (55.99±0.04)° for the upper and lower cases, respectively.

The critical angles are approximately symmetrical about the θ = 45° pinwheel geometry and

correspond roughly to the region in which the 1nn interaction is no longer dominant (as

shown in Fig. 5.3(a)). For system sizes above L = 10, the critical angle is within 0.5° of the

thermodynamic limit.

Second, it is clear that the location and width of the peaks in cV and χ depend on the

rotation angle, θ. Thus we seek a method of accurately determining the critical temperature,

TC , for each geometry. This can be done quite e�ectively by considering the fourth-order
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Figure 5.9: Binder cumulant for the magnetisation of a single staggered sublattice for (a) θ = 0◦, (b)

θ = 34.5◦, and (c) θ = 45◦. In each case, three system sizes are shown: L = 5, 10, 20. The insets

to (a) and (c) show that the curves pairwise intersect in a small region . The negative behaviour for the

L = 10 system is the hallmark of a �rst order transition. Error bars are less than the linewidths.

Binder cumulant,

gm = 1− 1
3
〈m4〉
〈m2〉2

, (5.11)

and determining the intersection point for di�erent lattice sizes (c.f. Chapt. 3, Sec. 3.6). In

Fig. 5.9, we show examples of gm for three angles—0°, square ice; 45°, pinwheel ice; and at

the critical angle, θc = 34.5°—as calculated using the staggered magnetisation. These show

a monotonic drop-o� from 1/3 at T = 0, characteristic of a continuous (i.e. second-order)

phase transition. The exception is the θ = 34.5°,L = 10 case for which gm is negative around

the critical temperature. This suggests that the transition is �rst order on the critical angle [257,

258], though alighting exactly on θc(L) within the framework of a simulation is di�cult.

As the spins are rotated from 0°, the critical temperature moves towards lower values until

θC = 34.38°, at which point it begins to increase. The phase diagram summarising this

behaviour is shown in Fig. 5.10 and comprises three distinct regions. First, for all rotation

angles, the system is paramagnetic (PM) above the critical line. Second, below the critical line

and for geometries with θ ∈ [0°, 34.38°] ∪ [55.99°, 90°], the system has an antiferromagnetic

ground state, composed of T1 vertices. Third, below the critical line and in the narrow region

centred on 45°, the system is ferromagnetically ordered such that the ground state composed of

T2 vertices. In summary, as θ is increased from 0°, the system transitions from a two-in-two-out
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Figure 5.10: Phase diagram of TC(θ), showing regions of paramagnetism (PM), antiferromagnetism

(AFM), and ferromagnetism (FM). The critical temperatures were obtained using the intersection

points of the Binder cumulant for di�erent lattice sizes. Inset: a focus on the [30°, 60°] region for which

the analysis is repeated with a variable cut-o� in the dipolar interaction.

T1-vertex state to a two-in-two-out T2-vertex state at 45°—in e�ect, exchanging one ice-rule

con�guration for another. In doing so, the arrays develops an overall moment: a transition

in magnetic ordering. This change in vertex populations suggests assigning a two-component

order parameter, (n1, n2) to describe this transition.
6

We will return to this idea in Chapter 6.

The phase diagram resembles those envisaged by Landau and Binder for model Ising sys-

tems coupled out to 3nn neighbours [230] with some di�erences. In particular, the ‘cusps’

observed at θ = θC do not occur at zero temperature unlike those in Ref. [230]. This arises

from the contributions of neighbours beyond 1nnpairs. We justify this in the inset to Fig. 5.10,

where we repeat the analysis for a range of di�erent cut-o�s in the dipolar interaction. For

1nn neighbours, the interaction at θ = 45° pinwheel vanishes by symmetry and the critical

temperature is zero (consider the two island T-junction shown in Fig. 5.3). Otherwise, the

e�ect of neighbours beyond 1nn is to move the critical line away from Tc = 0, and towards

the result obtained when using the full dipolar sum.

6
The choice of order parameter is not unique for a magnetic system. Previous work in ASI has de�ned a

relevant order parameter by, for example, a phasor quantity [259], the extent of magnetic charge-crystallisation

in the array [34], the magnetic structure factor [260], or through a scheme based on vertex moments [96].
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5.5 | Finite-size scaling

To complete our discussion of the nature of this ordering transition with island rotation, we

conduct a �nite-size scaling analysis to identify the critical exponents. Coherent x-ray scat-

tering provides quantitative evidence that square ASI belongs to the 2D Ising universality

class [118]. It is not a priori obvious that this holds true for all angles. In general, critical

exponents depend on the symmetry and dimension of the system, and the range of its inter-

actions [103]. Here, the dimension and symmetry are una�ected: both square and pinwheel

lattices exhibit C4 symmetry, for example. However, the e�ective range of interactions—at

least, in terms of which couplings are dominant—does shift markedly.

To assess this, we examine how the heat capacity, staggered magnetisation, and staggered

susceptibility scale at the critical point, Tc. The associated exponents to these quantities are

commonly denoted α, β, and γ, respectively. Example scaling curves are shown in Fig. 5.11

for four angles: square, pinwheel, and two near θC . In each case, the critical exponent (i.e.,

the gradient of the best-�t straight line) is marked. Linear behaviour is observed for both the

square and pinwheel lattices, consistent with the scaling hypothesis. Those arrays near the

critical angle exhibit anomalous behaviour, however. This is a consequence of the fact that

not all system sizes share a common θC . For example, for θ = 34.5°, the L = 10 and L = 9

systems order into ferromagnetic and antiferromagnetic ground states respectively. This leads

to discontinuities in the scaling curves.

We show the evolution of these critical exponents over the range [0°, 45°] in Fig. 5.12. The

critical exponent, ν, associated with the scaling of the correlation length, ξ, is also given. The

correlation length is extracted by �tting exp(−r/ξ) to measurements of the connected two-

point correlation function,

G(r) = 〈si · sj〉 − 〈si〉 · 〈sj〉.7 (5.12)

For the most part, these critical exponents show good agreement with those of the 2D Ising uni-

versality class for all angles except around θC [Fig. 5.12(b,c)]. The exponent associated with the

7
Unlike the other critical exponents which can be extracted directly from the PT Monte Carlo, determining

ξ requires a two-step process. As a result, its error has likely been underestimated in Fig. 5.12.
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speci�c heat, α, is consistently higher than the predicted value, namely αIsing = 0. This arises

because �nite-size corrections to the heat capacity remain signi�cant for larger lattices than

they do form or for χ; a similar e�ect was noted for the 2D Ising model in Chapt. 3, Sec. 3.6.

We will use this result—that all geometries belong to the 2D Ising universality class—when

discussing non-equilibrium phenomena in Chapter 6.
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(a)

(b)

(c)

(d)

Figure 5.11: Finite size scaling at the critical temperature for rotation angles: (a) θ = 0°, (b) θ =

34.5°, (c) θ = 34.75°, and (d) θ = 45°. From L-R, observables are the staggered magnetisation, the

susceptibility, and the heat capacity. To mitigate corrections to scaling, only system sizes aboveL = 14

are used for �tting (roughly, data in the right third of each plot). The 1-, 2-, and 3-σ con�dence intervals

are shaded around the best-�t. The estimate for the critical exponent is marked on each plot. Not all

system sizes share the same ordering near to the critical angles. This leads to cusps in the scaling curves;

these are indicated with a blue arrow.
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Figure 5.12: Critical exponents as a function of rotation angle. Exponents considered are those

associated with (a) the heat capacity, α, (b) the magnetisation, β, (c) the staggered susceptibility, γ,

and (d) the correlation length, ν. In each panel, the red line gives the exact value for the 2D Ising

model exponent, while the blue band shows the range over which θc changes [Fig. 5.8] and for which,

consequently, the scaling hypothesis no longer holds. For interest, 105
CPU hours (∼ 11 years) were

required to generate the data for this �gure.
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5.6 | Pinwheel states

In this section, we focus on the predicted con�gurations exhibited by the θ = 45° pinwheel

geometry (though our comments apply equally well to any lattice in the ferromagnetic region).

In the presence of periodic boundary conditions, both diamond edge and lucky knot edge

arrays form single domains, composed of a uniform tiling of T2 vertices. This is shown in

Fig. 5.13(a) and (c), respectively, in terms of the spin con�guration [upper panel] and vertex

maps [lower panel]. For �nite systems (i.e., those without periodic boundary conditions),

macro-structures are formed. These are similar to the Landau �ux closure patterns found in

soft-ferromagnetic media with cubic anisotropy [261, 262] and prove energetically favourable

over the uniformly magnetised state once the array is of su�cient size. For both terminations,

L = 3 is the minimum edge length at which such a closure domain can be supported. Even

though these con�gurations host T3 and T4 vertices—which are, in principle, higher in energy

than a T2 vertex at θ = 45°—they minimise stray �eld and compensate magnetic charge at

the boundaries. In analogy with the Bloch point observed in magnetic thin �lms, T1 and T4

vertices act as the core of these closure structures, while the net moments of ferromagnetic

T2 and T3 vertices circulate around: in e�ect, a constrained XY model. This behaviour is

manifestly not observed in 0° square ice where the minimum energy con�guration of any

�nite-size array and, indeed, in the thermodynamic limit is always a chequerboard pattern

of alternating T1 vertices.

Finally, we emphasise the role that aspect ratio and system size have on the emergent con�g-

urations that form in �nite-size pinwheel arrays. Rectangular arrays—such as those shown in

Fig. 5.14—possess an e�ective uniaxial anisotropy like that found in elongated ferromagnetic

nanobars [184]. The vertex maps in Fig. 5.14 are taken from independent thermalisations (i.e.,

started under di�erent random seeds) of diamond and lucky knot edge arrays with a 1:4 aspect

ratio and containing 400 spins. For the diamond edge case in Fig. 5.14(a), an elongated �ux

closure structure is formed. This houses the ASI-equivalent of 90°- and 180°-Néel domain

walls. As with their continuous-�lm counterparts, the net vertex moment rotates in the plane

of the array as an ASI Néel domain wall is traversed. In thin-�lm systems, the width of a
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Néel domain wall is

δNéel = π

√
A

K
+ 2A
µ0M2

S

, (5.13)

whereA andK are the exchange and anisotropy constants, respectively [44]. In the pinwheel

lattice, the predicted domain walls are thin, just one vertex wide. For ASI in general, the largest

energy scale is set by the coercive �eld of the individual islands—far larger even than the dipolar

coupling between nanomagnets. The best natural comparison for these systems then would

be to ferromagnetic materials with high coercivity (K → ∞) in which domain walls are of

the order of the exchange length.

At the same time, a separate thermalisation can achieve a state with similar energy but in

which more closure structures are packed [Fig. 5.14(b)]. In general, as the number of spins

is increased in the system, it becomes possible to support more closure structures. This is

consistent with the behaviour of thin �lm systems where, for example, increasing the lateral di-

mensions of the �lm increases the likelihood of �nding multiple closure patterns [263]. As ever,

the formation of these mesoscopic domain walls is governed by a competition among com-

peting interactions. In continuous media, the relevant contributions are often the exchange,

the anisotropy and the magnetostatic energies. In such cases, the system forms domains so

as to lower its total magnetostatic energy at the expense of not all spins remaining collinear

(c.f. the discussion of shape anisotropy in Chapter 2, Fig. 2.7). In the pinwheel system, this

competition is between the uncompensated charges at the boundaries of the array and the

energetic cost of forming high-energy T3 vertex walls in the bulk. In Fig. 5.14(c) and (d), we

show two independent simulations of the lucky knot edge for the 1:4 aspect ratio. These show

a zig-zag pattern of domains, and a structure similar to a cross-tie wall. In this case, only 90°

vertex domains walls appear to form.

To summarise: increasing the array size or changing the aspect ratio facilitates a greater

number of domains. The type of closure structure supported is dependent on the array edge,

and analogues of �ux closure patterns and cross-tie walls are observed.
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T1 T2 T3 T4

Figure 5.13: Typical spin con�gurations [upper row] and vertex maps [lower row] for diamond and

lucky knot edge pinwheel arrays with and without periodic boundary conditions. (a,c) In the presence

of PBC, a uniformly magnetised state is obtained. This is composed of a uniform tiling of one of the

four possible T2 vertices. (b,d) In the case of �nite-size arrays, closure structures are obtained. The rôle

of the Bloch point is played by a T4 vertex. These closure structures minimise the stray �eld. The spins

are coloured according to the colour wheel in (d). The vertices are coloured as given in the key. The

vertex moment (magnitude and direction) is shown using arrows for FM vertices.
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Figure 5.14: Vertex maps of (a,b) diamond edge and (c,d) lucky-knot edge arrays with 1:4 aspect ratio.

For the diamond edge array, we observe an elongated �ux closure structure (with both 90° and 180°

vertex domain walls) and an equivalent structure which supports several closure domains. For the lucky

knot edge, a zig-zag pattern and a cross-tie wall structure are obtained. Data taken from independent

thermalisations of a 400-spin array. The vertices are coloured as given in the key. The vertex moment

(magnitude and direction) is shown using arrows for FM vertices.
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5.7 | Summary

This chapter has outlined a new continuum of arti�cial spin ice geometries, which is generated

by rotating the islands in the canonical square ice about an angle, θ. The point dipole model

was justi�ed before it was used to show that this rotation weakens the nearest-neighbour in-

teractions which dominate the square lattice. We will return to this minimal model in later

chapters. As the rotation angle approaches 45°, a highly degenerate system is created in which

all couplings are of similar magnitude. We call the θ = 45° case pinwheel ice. This rotation

leads to a transition in spin ordering from antiferromagnetism in the square lattice to ferromag-

netism in the pinwheel lattice. This is an unusual form of phase transition, one mediated by

the dipolar interaction and driven by a geometrical parameter rather than simply temperature.

The transition is second order everywhere except at the critical angles where it appears �rst-

order. Extensive �nite-size scaling analysis shows that this class of geometries belongs to the

Ising universality class although a de�nitive classi�cation near to the critical angle proves di�-

cult. Finally, we considered low-energy states of the pinwheel lattice. Here, the ferromagnetic

T2 and T3 vertices play the role of meta-spins. We term this e�ect apparent [1] or macro-

ferromagnetism [3]. Similar structures to those seen in continuous ferromagnetic media are

identi�ed, including �ux closure patterns and cross-tie walls. These can be controlled by the

array boundary and aspect ratio.

We now turn to con�rming this transition with experiment.
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Ice rules made manifold: thermalisation and

defects in 2D arti�cial spin ice

6.1 | Introduction

This chapter explores the nature of the predicted transition in ordering between square and

pinwheel ice experimentally. Using Lorentz transmission electron microscopy (LTEM) on

thermally annealed cobalt arrays, we show a preference for ferromagnetism in pinwheel ice,

con�rming the numerical study presented in Chapter 5. Beyond this, we �nd that the rotation

angle indirectly controls the degree to which arrays are thermalised: some lattices, like square,

quickly settle into a steady-state while others, like pinwheel, never reach equilibrium and are

only in the early stages of forming ground-state clusters. This �nding leads onto a discussion

of how arti�cial spin systems approach equilibrium.

The structure of this chapter is as follows: Sec. 6.2 presents an overview of the experiment,

including sample fabrication using focused electron-beam-induced deposition (FEBID), the

annealing protocol, and the process by which the magnetisation was extracted from Fresnel

114



6. Ice rules made manifold: thermalisation and defects in 2D artificial spin ice 115

images. Sec. 6.3 discusses the experimental results in terms of vertex populations and corre-

lations, and concludes that there is a transition to a short-ranged ferromagnetic (FM) phase

for geometries near to pinwheel ice. As a corollary, an approximate ice manifold is recovered.

In Sec. 6.4, the correlation length is extracted from the experimental data. We show that

quenching inevitably occurs during annealing because the relaxation timescales, controlled

indirectly by the island rotation angle, θ, are vastly di�erent. In Sec. 6.5, we show that this

change in timescales leads to an apparent change in the nature of the defects supported: from

one-dimensional (1D) strings in square ice to two-dimensional (2D) vortex-like structures in

pinwheel ice. Using parallel tempering Monte Carlo, we show that the numerical scaling of

these quantities agrees with that predicted by the Kibble-Zurek mechanism of defect forma-

tion for the 2D Ising universality class.

6.1.1 Attribution

The majority of the work in this chapter can be found in Ref. [2]. This chapter presents an

expanded account of the paper but contains a greater emphasis on the experimental technique

(including sample deposition, processing of Fresnel contrast in ASI, and a comparison with

simulation); measurements of the two-point correlator and correlation length; and a more

complete characterisation of the excitations in FM-like arrays. Although these topics may

not appear in [2] (or appear only in passing or in the supplementary), they lend additional

support to its conclusions.

Y.L. and I optimised the deposition process and performed atomic force microscopy on

the samples while the data analysis was done by me. The results are presented in Appendix A.

With the assistance of G.W.P., I performed the TEM heating experiments. I wrote the Python

scripts which processed the Fresnel images. Monte Carlo simulations were produced by the

Julia package, JASI [6], that I developed. I wrote the manuscript; all authors o�ered feedback.

R.L.S. and S.McV. supervised the project.
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Geometry
(a)

Vertex type In-focus Fresnel
(c) (e) (g)

(2) (4)

(8) (2)

(2) (4)

(8) (2)

(b) (d) (f) (h)

Figure 6.1: The open-edge square geometry in (a) is transformed into the diamond-edge pinwheel

lattice on rotation of each island by 45° about its centre. A reminder of the four vertex types for (c)

θ = 0° square and (d) θ = 45° pinwheel ice. The degeneracy of each type is indicated in brackets. The

colour coding for type accords with that used in Chapter 5. (e), (f) In-focus TEM images of FEBID

arrays for these two angles; dimensions indicated in the inset to (e) are the same as those in (f) and,

indeed, for all fabricated arrays. (g), (h) Fresnel images (raw in greyscale, Fourier-�ltered in colour for

emphasis) obtained after annealing for square and pinwheel ice. The asymmetry in contrast across the

long axis of each island (dark edge compared with light edge) allows for the macrospin direction to be

identi�ed. By translating the spin con�guration into the vertex picture, the type of ordering supported

by an array can be identi�ed. Adapted, with changes, from Ref. [2].

6.2 | Experimental overview

Fig. 6.1 neatly encapsulates the rationale behind this experiment. We are seeking to probe the

transition in spin ordering predicted by the Monte Carlo results of Chapter 5. To do this,

we fabricate ASI arrays with rotation angles in the range [0°, 90°]. As the patterns possess C4

symmetry, it is su�cient to consider this restricted angular range provided that the individual

arrays are large enough. This ensures that any �nite-size asymmetries around 45° are negligible

(compare the behaviour of the critical angle with system size as given in Chapter 5, Fig. 5.8.)

We choose an array sequence starting with an open-edge θ = 0° square ice array; a reminder is
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shown in Fig. 6.1(a). This is transformed into a diamond-edge pinwheel array on rotation of

the islands through 45° [Fig. 6.1(b)]. The predicted transition in sublattice ordering is indepen-

dent of the exact choice of lattice termination although it does a�ect the exact con�gurations

supported in the FM phase, as we have discussed.

To characterise the ordering present within the arrays, we use the relative populations of

types. An example of each type is shown again for square and pinwheel ice in Fig. 6.1(c,d)

where the number in brackets indicates the degeneracy. The ‘two-in-two-out’ vertices, T1

and T2, are vertices which satisfy the ice-rule. We treat them as indicator species [264]: an

excess of T1 suggests that the array is antiferromagnetic, while an excess of T2 (which has a net

moment) suggests that the array is ferromagnetic. Vertex populations—the number density,

ni, of vertices of type Ti–thus act as a proxy for how close a system is to its ground state. This

approach was pioneered by Wang et al. in [8] for the numbers of ice-rule vertices formed on

AC demagnetisation of square ice arrays, and extended to the notion of e�ective temperature

in [76]. Beyond interacting arrays of nanomagnets, counting vertex types has been applied to

analogues of frustrated systems made from colloidal traps [265] and nanostructured supercon-

ductors [266]. As we shall see, this two-valued order parameter, (n1, n2), is by no means a

perfect �gure of merit. We emphasise two subtleties.

First, two systems that share the same vertex populations are not necessarily contiguous

in phase space. For example, the two equivalent ground states of square ice present the same

vertex population—n1 = 1, all other ni = 0—but require a global spin �ip to connect them.

Moving between these con�gurations, e.g. through some �eld protocol, is di�cult, well nigh

impossible [267]. On the other hand, states that present vastly di�erent vertex populations

can be connected by the application of a single �eld: compare the ease by which the square

ice array in Fig. 6.1(a) can be prepared in a T2- or T3-polarised state by applying a �eld along

the (1, 1) or (1, 0) directions, respectively.

Second, information is unavoidably lost through the aggregate nature of ni (as opposed

to, say, the full spatially-exact ensemble of vertices or spins). For example, Ref. [35] discusses

the propagation of monopolar T3 vertices on a square lattice. At each step, T2 or T3 vertices

are created and destroyed in equal amounts such that the global vertex population does not
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change even though the spin con�guration does. As a result, ni fails adequately to capture

dynamic information.

Nonetheless, we choose populations to characterise the ordering between square and pin-

wheel ice as they are experimentally accessible quantities, at least by means of LTEM.

6.2.1 Sample fabrication using FEBID

Arrays were deposited using focused electron beam induced deposition of the metal-organic

precursor Co2(CO)8 on a dual column Helios Plasma Focused Ion Beam instrument. A de-

scription of this technique is contained in Chapter 4. The arrays were written on ∼ 40 nm

thick electron transparent Si3N4 to allow measurement by TEM. Before Co deposition, car-

bon was sputtered onto the membranes. Similarly, after Co deposition, a thin carbon FEBID

�lm was applied atop. These steps inhibit oxidation of the samples and charging during sub-

sequent TEM measurement.

Signi�cant time was spent optimising sample preparation in terms of both array and de-

position parameters. Samples needed to be thin enough so as to be thermally active within

the accessible temperature window from −150 °C to 250 °C, while still being thick enough

to present su�cient magnetic contrast for LTEM. To date, most thermal studies of ASI are

obtained on samples fabricated using electron beam lithography (for example, according to a

wedge process in [180]) though novel techniques (e.g. using two-photon lithography [203])

have recently been proposed. To the best of our knowledge, this is the �rst demonstration of

in-situ observation of thermally active FEBID magnetic samples of any type, not just ASI.

Insofar as possible, arrays were fabricated under identical conditions to ensure the intrinsic

energy barrier of each island was the same. Resulting di�erences in behaviour would then

re�ect the anisotropic features of the dipolar �eld rather than quenches disorder. The scanning

electron microscope beam current was 0.69 nA; the accelerating voltage was 5 kV; and the half

screen window size was 20.7 µm (magni�cation: 10000×). The working distance was 4 mm.

The deposition time per array was 3 minutes. It was observed that the gas �ux of the precursor

would tend to decrease over the course of a deposition session (∼ 8 hours). In order to account

for this, arrays were deposited in a random order during each deposition session.
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Arrays were deposited from 0° to 90° in steps of 5°. Several arrays were fabricated for

each θ (at least four repetitions; six for those in the range [35°, 45°]; with an extra two for

the θ = 45° pinwheel ice.) Each array covered (10.8µm)
2
, comprising 840 islands (a lattice of

at least 20× 20 vertices). The lateral dimensions of the islands were 300 nm by 100 nm. The

lattice constant, taken as the distance between second-nearest-neighbours, wasa = 450 nm, as

shown in Fig. 6.1(e). Island and array dimensions are similar to those used in other studies [232].

The thickness of the islands over the central portion of each array was measured to be∼ 3 nm

using atomic force microscopy. We present the results these measurements in Appendix A.

Closer to the edges of the array, islands tended to be thicker (∼ 4 nm). This consistent with

the e�ects of gas di�usion [268]. In FEBID, the precursor tends to deplete in the centre of

the pattern whereas, at the edges, it is replenished by migration from surrounding, unexposed

areas. In line with this observation, magnetic contrast was poorer around the boundary of the

array, suggesting lower local cobalt content and a greater deposit of carbon. Our subsequent

processing steps account for this.

6.2.2 Fresnel imaging of arti�cial spin ice

As discussed in Chapter 5, contrast in the Fresnel mode of Lorentz microscopy arises from the

de�ection of the electron beam by the integrated induction of the sample. This is depicted in

Fig. 6.2(a,b) for the two Ising states of a single island. The usual assumptions for an in�nite

thin �lm—that both the magnetisation, M, and the magnetic induction, B, lie in plane and are

uniform throughout the thickness, t, of the islands—apply equally well here. In the classical

picture, the electrons undergo a de�ection through an angle,

β = eλ

h
Byt, (6.1)

where λ is the wavelength of the electrons, and h is Planck’s constant. This de�ection leads

to an asymmetry in the image intensity parallel to the long axis of the island. Since we assume

∇ · M = 0, the magnetisation and the induction are e�ectively the same inside an island

(within a factor ofµ0). The macrospin orientation can be assigned by comparing the intensity

on either side of the long axis. In Fig. 6.2(c), we show the phase contributions accrued by the

electron wavefront on passing through the induction given in panel (b); these are separated
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Figure 6.2: De�ection of electrons through an angle, β, by a single-domain magnetic island with

magnetisation directed: into the page, as in (a); and out of the page, as in (b). In the inscribed

coordinate system, the magnetic induction within the islands is aligned along the∓y-axis, respectively,

with magnitude, By . (c) Contributions to the phase of the electron wavefront are separated into the

electrostatic phase, φe, and the magnetic phase, φm. The Fresnel contrast depends on the magnetic

phase through∇2φm.

into the electric, φe, and the magnetic, φm, contributions (and derivatives thereof). To �rst

order, Fresnel contrast depends on the Laplacian of the magnetostatic phase,∇2φm (see the

discussion in Chapter 4, Sec. 4.3).

In Fig. 6.3, we simulate the magnetisation distribution of a single island, with dimensions

matching those used in experiment. All simulations were performed using the GPU-accelerated

Mumax3 package [98]. The in- and out-of-plane cell sizes were 2 nm and 3 nm, respectively;

the exchange constant was 21.0 pJm
−1

; and the saturation magnetisation was set to 70% that

of bulk Co, consistent with comments we make in Sec. 6.2.3. The chosen cell sizes are below

the exchange length, lex ≈ 4.46 nm, in all directions. To speed up convergence, the damping

parameter, α, was set to 0.5. In Fig. 6.3(b), the magnetic phase, φm, is calculated according

to the algorithm proposed by Mansuripur [269], and subsequently realised by McVitie et

al. [270]. This algorithm provides a complete framework to describe the phase change of

an electron wavefront impinging on an arbitrary magnetic thin �lm. We consider a range of

typical defocus values, ∆f , ranging from 1 mm to 5 mm [Fig. 6.3(c)]. The asymmetry in

contrast is easily observed, even if the structure of the island is blurred for large ∆f . Line



6. Ice rules made manifold: thermalisation and defects in 2D artificial spin ice 121

(a) (b)

(c)

1 mm 2 mm 3 mm 4 mm 5 mm

(d)
-w/2

w/2

Figure 6.3: (a) Simulated magnetisation, m, and stray �eld, B
demag

, for a single island, calculated using

Mumax3. The dimensions match those of the experimental islands, with properties consistent with

70% pure Co. The stray �eld is plotted on a logarithmic scale. The colour wheel inset to (d) represents

the orientations and relative magnitude of the vectors. The island is outlined in black for emphasis. (b)

Magnetic phase contribution,φm, arising from the induction in (a) is shown for the case of an incident,

uniform electron wavefront. (c) A defocus series, in terms of ∆f , for the single island in (a). The

asymmetry in contrast is easily observed, especially at large ∆f where the shape of the island is blurred.

(d) Line traces averaged over the central portion of the islands in (c). The asymmetry (peak-to-trough)

increases with increasing defocus. The dashed lines delineate the extent of the island.

traces over the central portion of each island provide a systematic way of categorising the

orientation [Fig. 6.3(d)].

Fig. 6.4 extends this discussion to sixty-island ASI arrays for bothθ = 0° square ice andθ =

45° pinwheel ice. As before, the dimensions and properties match those of the experimental
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arrays. Four con�gurations are considered from left to right: the T1 ground state of square ice,

a T2-polarised FM state of square ice; T2-polarised FM state of pinwheel ice; and the predicted

flux closure ground state of pinwheel ice for a diamond-edge array [c.f. Chapt. 5, Fig. 5.13].

We draw attention to the T1 ground state of square ice in particular, for which the Fresnel

image forms a chequerboard pattern.

(a) (b) (c) (d)

(e) (f) (g) (h)

(l)(i) (j) (k)

Figure 6.4: Sixty-island arrays in terms of their: magnetisation, m, and stray �eld, B
demag

[top row];

magnetic phase contribution, φm [middle row]; and Fresnel contrast for a typical defocus of ∆f = 5

mm [bottom row]. The island dimensions and properties match those used in the experiment. The

stray �eld is plotted on a logarithmic scale. The colour wheel inset to (d) represents the orientations

and relative magnitude of the vectors. The streamlines, present previously in Fig. 6.3(a), are omitted in

the top row for clarity. From L-R, the arrays considered are: a T1 AFM ground state of 0° square ice; a

T2-polarised FM state of 0° square ice; a T2-polarised FM state of 45° pinwheel ice; and the predicted

closure ground state for 45° diamond-edge pinwheel ice.
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6.2.3 Annealing Protocol

The annealing was carried out in situ in a JEOL ARM200cF TEM equipped with a cold �eld

emission gun operated at 200 kV. The emission current was 14 pA, and a 70 µm condenser

aperture was used. The objective lens was nulled before sample insertion to ensure a �eld-free

environment (≤ 0.1 Oe). This was critical to avoid biasing as the samples were cooled. A

Gatan HC3500 sample holder was used to heat the arrays to 250 °C, so that the macrospin

associated to each island became superparamagnetic. This temperature was maintained for

two hours before the arrays were cooled at a rate of 1.5 °C min
−1

to approximately−10 °C.

Initially, before heating, the islands appeared frozen as the energy barrier to their reversal

was many orders of magnitude greater than the average thermal �uctuations, kBT . Assuming

a model of coherent rotation, the energy barrier is

Eb = KV

= 1
2µ0∆DMsV,

(6.2)

where K is the shape anisotropy constant, thereafter re-expressed in terms of the di�erence

between the components of the demagnetisation tensor
1

along the long and short axis of the

island, ∆D. Far from the critical temperature, the saturation magnetisation is assumed to

follow a Bloch-like dependence with temperature through

MS(T ) = MS(0)
[
1−

(
T

TCurie

) 3
2
]
, (6.3)

whereTCurie is the Curie temperature for the material. By way of comparison,TCurie = 1127 °C

for pure cobalt.

We de�ne the blocking temperature, TB , as the temperature at which the moment reori-

entation is on the order of the measurement time, t, i.e.

TB = KV

kB ln(t/τ0) , (6.4)

1
The demagnetisation tensor, D, relates the magnetisation of a ferromagnetic body to its demagnetisation

�eld, H = −D m. In general, D can be tricky to calculate unless the body of the sample is particularly simple [44].

Its form for ellipsoids is often used to approximate the behaviour of islands in ASI—see, among others, Ref. [271].



6. Ice rules made manifold: thermalisation and defects in 2D artificial spin ice 124

where τ0 is a fundamental attempt rate on the order of 1010
seconds [272]. This blocking tem-

perature can be identi�ed with the critical temperature,TC , described in Chapter 5 though it is

not an exact comparison. Below the blocking temperature, the islands are frozen only within

the duration of the measurement but there may exist a signi�cant probability that they �ip

outwith it. By contrast, the critical temperature is independent of measurement and re�ects

the average spacing between energy levels. Above TB , islands spins are superparamagnetic

and have su�cient energy to overcome the hard-axis energy barrier. Correlations between

neighbouring spins emerge as the system is cooled through TB and the system falls into a

low-energy state. We will return to probing the dynamics of an ASI system as the ordering

transition is traversed in Chapter 7. Su�ce to say here, the e�cacy of the annealing protocol

depends heavily on a number of experimental conditions, including island thickness and shape,

temperature, and duration [273].

Eq. (6.4) provides a way to estimate TB for our samples. Approximating the islands as

ellipsoids, we take ∆D = 0.01 following the method outlined by Osborne [274]. Combined

with a measurement time of 1 second, this givesTB = 802 °C. This is signi�cantly higher than

observed in experiment. Across all samples, the onset of �ipping occurred at around 110 °C

and continued until 250 °C, strongly suggesting that the true energy barrier,Eb, is modi�ed by

the local �eld environment. Recently, this e�ect was quanti�ed for square ice in [275], which

demonstrated that Eb is reduced by approximately 35% and the lifetime of certain states by

up to seven orders of magnitude when interactions are included. Others have similarly found

that eq. (6.4) overestimates TB by an order of magnitude or more [53, 276]. This is often

explained by positing an e�ective activation volume, Ṽ � V , which seeds the reversal at lower

temperatures. Here for example, an activation volume half that of the nominal value would

render a realistic TB . Ferromagnetic resonance simulations provide some support for this.

These have shown that the ends of islands are magnetically softer and, as a consequence, less

Ising-like than the bulk [277]. In addition, micromagnetic simulations performed as part of

this thesis and reported in [4] show that the islands in pinwheel ice reverse through nucleation

of domain-wall textures from endstates rather than by coherent rotation of m.

Perhaps a more useful measure is to calculate the characteristic energy scale in terms of

the dipolar constant, D = µ0(MSV )2/(4πa3), where V is the volume of the island. This
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allows us to estimate an approximate size of the �uctuations. Assuming a saturation magneti-

sation,MS , equal to 70 % that of bulk Co (consistent with the purity obtained under similar

deposition conditions [278, 279]), D = 0.033 eV, corresponding to a temperature of 118

°C—extremely close to the observed onset of �ipping. Were the experiment repeated, it would

be bene�cial to measure the saturation magnetisation explicitly using, say, di�erential phase

contrast techniques combined with thickness pro�les of individual islands.

6.2.4 Processing Fresnel images

After cooling, Fresnel images were taken and analysed with the aid of semi-automatic image

processing to extract the moment direction for each island. A typical work�ow is shown for

a square ice array in Fig. 6.5, but the method is applicable to any island rotation angle. The

data-processing was performed in Python speci�cally by the SciPy [280], Hyperspy [281], and

fpd [282] libraries. Conventional, in-focus TEM images were taken [Fig. 6.5(a)]; these allowed

for the determination of ∆f and the electrostatic phase contrast, and the identi�cation of

larger carbon deposits which spoil the magnetic contrast. Typical defocus values for the Fresnel

images were between 5 mm and 10 mm. Imaging conditions were optimised separately for each

array. A Hough transform was used to �nd the array edges and the image was rotated to align

with the coordinate axes as shown in Fig. 6.5(b). The background was corrected using bilinear

interpolation, and the islands located using a centre-of-mass algorithm. Building on comments

made in Sec. 6.2.1 and taking the thickness pro�les in Appendix A, the Fresnel contrast was

found to be poorer towards the edges of the array. As a result, moments were only assigned to

islands falling within a central, ‘best-contrast’ region [yellow boundary, Fig. 6.5(c)]. Usually,

this encompassed about 70% of the available islands (though varied between 40% and 90%).

Considering only the central portion of each array conferred several advantages. First, it

omitted those topological defects that form at the boundaries where the local �eld environ-

ment is di�erent. Previous LTEM studies of square ASI have shown that string-like disloca-

tions of T2/T3 vertices form at the lattice edge and can easily extend throughout the bulk [175].

Second, islands at the edges tended to be thicker and would, therefore, possess higher blocking

temperatures. Finally, we established in Chapter 5 that the phase diagram of this rotated ASI

was sensitive to the number of neighbours in the dipolar sum. Islands at the edges of the
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array do not have their full complement of neighbouring pairs, and this necessarily restricts the

range of angles for which apparent ferromagnetism is predicted to occur. This procedure thus

mitigates �nite-size e�ects and enables us to probe something approaching the bulk behaviour

of each tiling pattern.
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Figure 6.5: Assigning moment orientations to islands based on experimental Fresnel images. (a)

Bright-�eld TEM image of a typical square ice array. The dark splotches are heavier carbon deposits,

a by-product of the sputtering prior to deposition. (b) Raw Fresnel image of the corresponding

array. A Hough transform is used to identify the lattice boundary, and the image is rotated—here,

counterclockwise by 0.8° as indicated—to align with the inscribed coordinate axes. Cross-correlating

the Fresnel image with the in-focus TEM image in (a) allows carbon deposits to be identi�ed [marked by

black circles]. These can obscure the magnetic contrast from individual islands. (c) The background

is corrected using bilinear interpolation and centre-of-mass algorithm locates each island [islands in

separate sublattices shown in green and purple]. The ‘best-contrast’ boundary is marked in yellow.

Blow-up to (c): a chequerboard pattern is noticeable in the Fresnel contrast, akin to that predicted

in Fig. 6.4(i). (d) Line pro�les are averaged over the central portion of each island; two examples, (i.)

and (ii.) are shown which exhibit opposite asymmetry in edge intensity, i.e. the spins are antiparallel.
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6.3 | Population and correlation results

The results of this analysis are contained in Fig. 6.6 where the change in excess populations

of the four types is shown against rotation angle, θ. Populations are shown with reference

to a perfectly uncorrelated sample following Ref. [8]. In a random con�guration, the four

types appear with frequencies matching their intrinsic multiplicity, that is, in the ratio 1:2:4:1.

For 0° square ice (and its translated θ = 90° sibling), there is a strong excess of T1 vertices—

consistent with the results �rst obtained by Morgan et al. [283]. As the angle of the tiling

pattern is increased from 0° to 90° in steps of 5°, the T1 population decreases and attains its

minimum value at 45° before rising to a maximum once more at 90°. From around 39° to 53°,

FM T2 vertices are in slight excess above AFM T1 vertices [shaded region, Figs. 6.6(a,c,d)]. The

high energy types, T3 and T4, are always suppressed. These results are consistent with those

predicted by the Monte Carlo simulations of Chapter 5.

We make three further comments. First, the ferromagnetic signal is weak: the excess T2

population is only∼ 10% when averaged over all samples. We return to this idea later when

we discuss defect formation in the pinwheel and related geometries as a consequence of in-

complete thermalisation. While arrays near to pinwheel are weakly coupled, we emphasise,

however, that these results and those we subsequently report are not consistent with param-

agnetism. An uncorrelated sample would require, e.g., that the 45° and 50° results be simul-

taneously o� by 3.1σ and 4.5σ. Second, the transition between the two ordering regimes is

gradual rather than abrupt. This suggests the intriguing prospect of observing arrays which

support mixed phases, i.e. containing both AFM and FM regions. Third, the 45° and 50°

results almost satisfy n2 = 2n1, a necessary—but not su�cient—condition for the ice phase.

At these angles, the lattice is e�ectively an ice manifold for which all two-in-two-out vertices are

equally likely. This is not conclusive proof that the ice phase is itself supported. This would

require an improved annealing protocol and interrogation of the resulting correlations—the

existence of pinch points in the magnetic structure would be persuasive. In this sense, usage of

the term ‘ice manifold’ is consistent with that in Ref. [284] where periodic notches are used to

render quasi-degenerate a connected square lattice. Other methods of creating an ice manifold

have relied on introducing a height o�set between sub-lattices [239, 285, 34] or by coupling
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XY mesospins to the square tiling [286]. Here, we realise a planar ice manifold simply by

modifying the orientations of the nano-magnets.

These observations can be explained in terms of pairwise correlations between neighbour-

ing spins. Three classes of neighbours are depicted in Fig. 6.6(b): �rst-nearest-neighbours

(1nn); second-nearest-neighbours which are separated laterally i.e. within the same vertex

(2nn-L); and second-nearest neighbours which are separated in a transverse fashion i.e. in

adjacent vertices (2nn-T ). Wang et al. [8] assigned correlations, Cα, to these neighbours ac-

cording to their point dipolar energy: a pair of islands contribute +1 (−1) if the two moments

are aligned in such a way as to minimise (maximise) Edip. If the dipolar energy of a pair is

zero, it is ignored.

These correlations functions are shown in Fig. 6.6(c). In general, those arrays which ex-

hibit majority T1 populations possess strong 1nn correlations. As with the T1 population

itself, C1nn falls away with rotation angle until 45°. Strongly-coupled 1nn pairs drive the

AFM ordered ground state of square ice, whereas the relative strength of the 2nn correlation

functions for ϑ ∈
[
39°, 53°

]
stabilise T2 formation. For pinwheel ice and similar geometries

in fact, separating the two classes of second-nearest neighbours is a false dichotomy. As such,

a combined second-nearest correlation,

C2nn = C2nn-L + C2nn-T , (6.5)

is a more appropriate �gure of merit. This parameter is plotted against the �rst-nearest-neighbour

correlation, C1nn, in Fig. 6.6(d). Error bars re�ect ±1 standard deviation when the data are

averaged over all samples.

Figure 6.7 displays vertex maps obtained after annealing 0°, 15°, 30°, 35°, 40°, and 45°

tilings. Similar to the mode of presentation in Chapter 5, each vertex is represented by a colour-

coded square. Each panel contains at least 15× 15 vertices, re�ecting the cut made to remove

spins close to the edges of the array. The square ice array [Fig. 6.7(a)] displays long-range

ordered T1-domains. Where the two possible T1 ground states abut, they are separated by

string defects formed by chains of T2 and T3 vertices. For the pinwheel ice case [Fig. 6.7(f)],

the majority of vertices are ferromagnetic but the ordering appears purely short-ranged. A va-

riety of structures is observed, including zig-zag domains, small uniformly magnetised regions
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Figure 6.6: A transition in ground state ordering with rotation angle. (a) The change in excess frac-

tional populations of T1, T2, T3 and T4 vertices with rotation angle, θ. Error bars re�ect±1 standard

deviation when the data is averaged over all samples. (b) The schematic distinguishes between three

classes of near neighbours pairs in square and pinwheel ice: 1nn, 2nn-L, and 2nn-T. (c) Correlations,

Cα for these are calculated as described in the text. (d) For pinwheel ice, there is no di�erence between

2nn-L and 2nn-T neighbours and so a combined 2nn correlation is plotted. This dominates in the

FM phase. For each plot, the dashed, horizontal line refers to the expected statistics for an uncorrelated

sample while the shading highlights the angular region for which there are more FM T2 vertices than

AFM T1 vertices.
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and �ux closure states [marked (i.), (ii.) and (iii.), respectively]. Comparing these panels,we

�nd a gradual transition from AFM T1-dominated arrays to a short-range, incoherent T2/T3-

majority arrays near to θ = 45°.

T1

T2

T3

T4

15° 30°0°

(ii.)

(i.)

(iii.)

45°35° 40°

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Typical annealed con�gurations in terms of vertex type for 0°, 15°, 30°, 35°, 40°, and 45°

tilings (reading left-to-right then top-to-bottom). Each 15×15 con�guration is drawn from the central

‘best contrast’ portion of an experimental array. Each square represents a four-island-vertex in the array

as depicted in bottom left hand corner of each panel. The vertex moment (magnitude and direction)

is shown using arrows for FM vertices. Over the course of this rotation series, we see a breakdown

from large T1 domains in the square ice, to small FM T2/T3 domains in the pinwheel ice. Three such

structures are marked in panel (f): (i.) a zig-zag domain; (ii.) a uniformly magnetised domain and (iii.)

a small �ux-closure structure.
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6.4 | Quench behaviour

6.4.1 On estimating the correlation length

In general, the experimental results appear to con�rm the predicted change in sublattice or-

dering. However, neither aggregate populations nor spatially resolved vertex maps show an

abrupt transition between antiferromagnetism and ferromagnetism. Rather, the long-range

T1 coverage for geometries near to square ice breaks down gradually to be replaced by FM

T2/T3 domains with dimensions spanning only a few lattice constants in pinwheel ice. To

get deeper insight, we attempt a more sophisticated analysis of the correlations based on the

equal time two-point correlation function. This will allow us to extract the typical cluster

size as a function of angle.

A vertex encompasses four islands, all mutually within 1a [Fig. 6.1(e)]. In this sense, it con-

stitutes the smallest cooperative length scale for which AFM and FM ordering can reasonably

be de�ned. To quantify the decrease in correlation length with angle, we calculate

G(r) = 〈si · sj〉, (6.6)

for the ensemble of island moments. This is the disconnected form of the correlation function

in which the thermal average, 〈si〉, is not subtracted. Calculating 〈si〉 over the limited range of

samples with good signal-to-noise proved di�cult. Clearly, the functional form of eq. (6.6)

decouples the two perpendicular sublattices, and o�ers no information on their cross-talk.

Fig. 6.8(a) presents a spatially resolved form of G(r) for square and pinwheel ice [(i.) and

(ii.), respectively]. Square ice shows a strong AFM signal (roughly speaking, alternating red

and blue squares) out to at least 5a. Correlations in the 45° pinwheel tiling decay much faster

though all second nearest neighbours (markers closest to the centre of the pattern) show a

positive correlation, consistent with ferromagnetism.

Plotting the staggered correlator in Fig. 6.8(b), there exists a sharp fall in the correlations

between 0° square ice and 45° pinwheel ice. The noise �oor is taken as 0.05 by inspection of

the long-term behaviour of square ice. We can de�ne an integrated correlation length,

ξint =
∫

dr|G(r)|, (6.7)
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in analogy with the integrated correlation time of Chapter 3, Sect. 3.6. This gives a correlation

length of∼ 16a in square ice but only∼ 4a in pinwheel ice [Fig. 6.8(c)].

6.4.2 Relaxation timescales

We justify this decrease in correlation length with angle by considering the e�ect of inter-

island interactions on the likelihood of �ips. This analysis will show that the rotation angle

determines the timescale needed to establish equilibrium. In general, arrays approach their

ground state by making a number of Ising spin �ips. Each �ip may or may not be energetically

favourable but is driven by some local �uctuation, ∆E, on a scale set by the interactions in the

system and, hence, indirectly by ϑ. Instances of these �uctuations allow the spin to overcome

the intrinsic energy barrier to switching,Eb. For simplicity, we takeEb � ∆E(ϑ), to be the

same for every island and in every geometry. It is common to assume a Néel-Arrhenius law for

the switching behaviour [287] such that the rate, Γ, at which a process occurs is

Γ = 1
τ0

e−β(Eb−∆E). (6.8)

In this, we have approximated the e�ect of the �uctuation through a concommitant reduction

in the size of the barrier. That is, Eb is taken as the energy barrier for an isolated island to

switch. The energy di�erence between the initial and �nal states then acts to adjust slightly

this energy barrier. An analogous e�ect in chemistry, the Bell-Evans-Polanyi principle, relates

the activation energy for a process with its enthalpy of reaction. Some studies weight the e�ect

of the �uctuation by a factor of one half, under the assumption of a symmetric transition

path [23]. Other works do not, and merely provide an estimate for Γ [271]. Comparing rates

in the T1-excess arrays (typi�ed by the 0° case) to that in the T2-excess arrays (typi�ed by the

45° case), we obtain the ratio

Γ0°

Γ45°
= e−β(E

b
−∆E(0°))

e−β(E
b
−∆E(45°)) (6.9)

= eβ(∆E(0°)−∆E(45°)). (6.10)

In arriving at eq. (6.9), we have neglected any angular dependence in the prefactor, τ0. In a

fuller treatment, the attempt frequency would be a�ected by the diminution in interaction

strengths with ϑ. For example, studies using harmonic transition state theory have shown
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Figure 6.8: Behaviour of the two-point correlation function for square and pinwheel ice. (a) Spatially

resolved maps up to 5a ofG(r) = 〈si ·sj〉 for (i.) θ = 0° square ice and (ii.) θ = 45° pinwheel ice. Both

maps are plotted with the same colour scale. AFM correlations i.e., alternating red/blue markers, are

apparent in square ice. Correlations in pinwheel ice are less pronounced though all markers closest to

the origin possess the same positive correlation. (b) The staggered correlators for square and pinwheel

ice are plotted on semilogarithmic axes. Correlations in square ice show the expected trend whereas

those in pinwheel ice decay almost immediately. (c) The integrated correlation length, ξint
, is shown

against angle for θ ∈ [0°, 45°].
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that symmetry reduction can lead to a signifcant decrease in τ when comparing one and two

ring kagome ASI arrays [272]. In fact, when calculating both ∆E and τ in this scheme, the

change in the prefactor can have a larger e�ect on the rate than the reduction in barrier height.

This may be relevant for weakly coupled geometries, such as near to pinwheel ice, where dif-

ferent magnetic con�gurations are almost degenerate, and there exists the likelihood of a re-

turn to the initial state after subsequent spin �ips. Nonetheless, approximating the islands as

point dipoles, the largest interaction strength in square ice (originating from the �rst-nearest-

neighbours, J1nn = 3
√

2D) is six times greater than the largest interaction energy in pinwheel

spin ice (originating from the third-nearest-neighbours, J3nn = D/
√

2). Associating the size

of the �uctuation with the largest interaction term, the ratio of the rates at 250 °C should go

as Γ0°/Γ45° ≈ 10. This estimate suggests that pinwheel ice requires approximately one decade

of time more to undergo the same number of spin �ips as does square ice.

Fig. 6.9 explores this via Monte Carlo (MC) simulations. In Fig. 6.9(a), we show the per-

centage of ground state coverage for square and pinwheel ice as a function of the rate at which

the systems are cooled from the high-temperature Ising paramagnetic phase. The systems are

initialised above their ordering temperatures, and then the temperature is decreased to zero in

a variable number of steps; this acts as a proxy for cooling rate. At each temperature point, one

MC step is performed and the �nal vertex population at T = 0 is recorded. In the limit of

an in�nite number of steps, the arrays should explore all phase space and �nd the true ground

state, equivalent to cooling the systems adiabatically. This approach implicitly assumes that

our systems are not glassy and do not jam in a metastable minimum. The free energy landscape

of a glass tends to have multiple low-energy states separated by activation barriers. In such a

case, relaxation times are large and a system can become stuck in a well which is not the ground

state. We identify the change in temperature per MC step with a cooling rate,R, an approach

compatible with that in Ref. [288]. Pinwheel ice needs to equilibrate for longer to reach a

similar coverage of ground state vertices and thus lags behind square ice by approximately

one decade of steps.

The weak excess in the numbers of T2 vertices in the region [39°, 53°] [Fig. 6.6(a)] then

re�ects the fact that the T2-preference tilings are quenched to a greater extent than T1 tilings

during the same anneal process. Because of these di�erent relaxation timescales (set indirectly
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by the rotation angle), the same annealing protocol will inevitably lead to di�erent amounts

of low-energy vertices. By ‘quenched’, we are not referring to in-built quenched disorder in

our arrays, which manifests itself through a spread in the distribution of coercive �elds. While

it is likely that such disorder makes geometries near to pinwheel harder to thermalise, we refer

to the fact that the anneal protocol, which works for square ice, is not necessarily slow enough

to drive other tilings to low energies. Fig. 6.9(b) demonstrates this by plotting the excess T1

and T2 populations as predicted by MC simulations over the full range of angles for two cases:

perfectly annealed in�nite systems (dashed-dotted line) and a rapid quench (solid line with

markers). These are evaluated at the fast cooling rate marked in Fig. 6.9(a). The perfectly

annealed simulations show an abrupt transition between AFM and FM ordering. On the

other hand, the quenched simulations—which are purposely not allowed to equilibrate at each

temperature step—show excess populations in good agreement with those obtained in the

experiment. In particular, there exists only a weak excess in the number of ground state vertices

in the region [39°, 53°]. The e�ect of this temperature quench is similar but not identical to

that seen in other ASI systems [289], or in Ising and Potts model systems [290], where fast

changes in the heat bath temperature lead to a coarsening of domains and a reduction in the

correlation length.

At this stage, we emphasise the two separate transitions that these geometries exhibit. Firstly,

the ordering within the ground state is controlled by ϑ, i.e. it is a non-thermal transition,

controlled instead by a geometrical parameter. In addition, each tiling undergoes a second-

order phase transition as the blocking temperature is traversed. In the experiment, a cooling

rate of 1.5 °C min
−1

resulted in a non-uniform degree of ordering for di�erent island rota-

tions. This is a consequence of the fact that relaxation times di�er substantially with rotation

angle, and so di�erent arrays drop out of equilibrium at di�erent stages during their cooling.

This critical slowing down arises from the divergence of the relaxation time and correlation

length at the phase boundary [103]. Regions of incommensurate symmetries form, separated

by topological defects. An example occurs when helium-4 is quenched across the super�uid

transition and quantised vortices separate ordered regions [291] Analogously, Zurek proposed

that galaxy formation in the early universe was seeded by cosmic strings [292]. The Kibble-

Zurek mechanism describes the universal scaling laws underpinning the formation of such
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defects with cooling rate. Our experiments allow us to investigate this mechanism for arti�cial

spin ices in a novel way.
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Figure 6.9: Statistics for quenched samples from Monte Carlo simulations. (a) Percentage of ground

state vertices as a function of cooling rate from above Tc for 0° and 45° geometries with periodic

boundary conditions. The dashed vertical line highlights a fast cooling rate which matches well the

populations obtained by our experimental annealing protocol for square and pinwheel ice. In general,

the 45° tiling lags the 0° tiling in ground state coverage. (b) Expected vertex populations from MC

simulations for both quenched (solid) and perfectly annealed (dashed-dotted) cases across the full

angular range, all evaluated at the quench rate marked out in (a). The perfectly annealed samples show

abrupt transitions between AFM and FM ordering. In the quenched case, these transitions are smeared

out, consistent with the experimental populations of Fig. 6.6 [faded lines]. MC simulations performed

for 50× 50 vertex arrays with PBC. The angular FM region is consistent with the results presented in

Chapter 5.

6.5 | Defect formation and the Kibble Zurek mech-

anism

Before exploring the Kibble Zurek mechanism in these arti�cial spin ice geometries, we must

�rst identify what form our defects take in the two phases.
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6.5.1 An apparent transition in defect dimensionality

Ordering proceeds in square ASI by the formation of strings—either excited T2 vertices on a

ground state T1 background [293], or low-energy T1 vertices on a polarised T2 lattice [294].

Both these structures are present in our annealed AFM con�gurations [Fig. 6.7(a)]. For weakly-

coupled geometries such as the pinwheel ice, we observe a melting transition mediated by

the formation of two-dimensional structures, in particular, vortices. These are composed of

nearby vertices, such that the vertex moments circulate around a central core. For angles near

to 45°, the moments in a T4 vertex are arranged similarly to a vortex, while the moments in

a T1 vertex are akin to an anti-vortex. These are thus short-range equivalents of the closure

structures predicted for the array as a whole in Chapter 5.

To quantify the emergence of a vortex regime, we treat the lattice of vertex moments as

a discrete vector �eld, V, and calculate its curl through a �nite di�erence scheme to obtain a

measure of the local circulation at each vertex. As the vertex moments are constrained to lie

in-plane, only the z-component of ∇ × V is non-zero. Wrtiting the vertex moment at the

lattice point (i, j) as V(i,j) = (V (i,j)
x , V (i,j)

y ), the curl is

[∇×V]z = ∂xVy − ∂yVx (6.11)

≈ 1
2a

(
V (i+1,j)
y − V (i−1,j)

y − V (i,j+1)
x + V (i,j−1)

x

)
, (6.12)

in terms of the components of V at neighbouring lattice points. For completeness, an equiv-

alent expression for the divergence, ∇ · V, is

∇ ·V = ∂xVx + ∂yVy (6.13)

≈ 1
2a

(
V (i+1,j)
x − V (i−1,j)

x + V (i,j+1)
y − V (i,j−1)

y

)
. (6.14)

These quantities are tabulated in Fig. 6.10 for selected con�gurations of a 3×3 pinwheel lattice.

This size was chosen as it is the maximum system size that supports a closure state subject to the

experimental correlation length of 4a for pinwheel ice. As expected, the pinwheel analogues of

vortices and anti-vortices are extrema of the curl and divergence, respectively. The vortex state

is the lowest-energy con�guration despite incorporating T4 and T3 vertices. This is unlike
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Figure 6.10: Sixteen-island pinwheel con�gurations with direct analogues to structures seen in mag-

netic thin �lms. Con�gurations are arranged L-R in terms of increasing dipolar energy, and classi�ed

according to their curl and divergence.
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Figure 6.11: Curl maps corresponding to the experimentally obtained vertex con�gurations in Fig. 6.7.

The curl for all tilings is plotted across the same colour scale. Topological defects [(i.) a string in square

ice; (ii.), (iii.) vortices, in pinwheel ice] are highlighted.
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square ice for which the minimum energy con�guration of any array is always a tiling of its

ground state vertices, irrespective of system size.

In Fig. 6.11, we display heat maps of∇×V corresponding to the experimentally-obtained

vertex con�gurations in Fig. 6.7. The curl is plotted on the same scale with the net moment

shown atop FM vertices as before. Comparing arrays with di�erent rotation angles (in e�ect,

moving from (a) to (f)), the curl becomes signi�cantly more pronounced and attains a greater

magnitude at its peak. Instances of topological defects are highlighted for both square and

pinwheel ice; for example, (i.) in Fig. 6.7(a) labels a Dirac string within square ice. In pinwheel

ice, the defects are no longer one-dimensional chains but instead two-dimensional; (ii.) and

(iii.) in Fig. 6.7(f) mark out instances of vortices with a clockwise and counter-clockwise circu-

lation, respectively. In both examples for pinwheel ice, FM T2/T3 vertices surround an inner

core of T1/T4 vertices. These cooperative structures constitute extrema of∇×V.

Integrating ∇ × V over the area of an array then gives a measure of the net circulation.

Typical results from our experimental data are shown in Fig. 6.12(a). The solid line is taken

from experimental data, and the dashed line refers to the mean statistics expected from MC

simulations of quenched �nite-size arrays matching those in the experiment. The shaded re-

gion highlights ±1 standard deviation around this mean. It is evident that there is excellent

agreement between the experimental data and that taken from MC simulations: both show a

clear peak near to θ = 45° when the system acquires a net circulation through its tendency

to form multiple, short-length-scale vortex structures.

This observation is consistent with the idea that the those arrays which have a preference

for forming T2 vertices are dominated by vortices. On its own, however, it is not conclusive

proof of a vortex-dominated melting/freezing transition. To show this, we consider MC sim-

ulations of the two prototypical angles, 0° and 45°, as a function of temperature in Fig. 6.12(b).

Here, we do not quench the systems but quasi-adiabatically increase the temperature from

T = 0 so as to keep the arrays as close to equilibrium as possible. In both cases, the sys-

tems are initialised in their respective ground states. The systems are equilibrated at each

temperature point, with a di�erence between consecutive temperatures of 10−5D/kb, which

is approximately ∼ 4 mK in units appropriate to the dimensions of our islands. For systems

with periodic boundary conditions (PBCs), the integrated curl is no longer an appropriate
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Figure 6.12: Vorticity as a signature of apparent ferromagnetism. (a) For �nite systems, we integrate

the curl over the area of the array as a measure of the net circulation. The shaded region highlights

±1 standard deviation around the mean MC statistics (dashed line) for this integrated curl. Both

the experimental results (�lled markers) and MC statistics for quenched �nite-size arrays support the

hypothesis that these excitations impart a net circulation in the FM phase. Uncorrelated arrays have an

integrated curl of 0 [horizontal, dashed line] due to symmetry. (b) For systems with PBC, we must use

the integrated absolute value of the curl. This is shown against temperature. The vortex phase persists

even when the arrays are heated quasi-adiabatically. There exists a region around t̃ = 0 for which both

square and pinwheel ice rapidly produce curl, but this feature is more pronounced in the FM phase.

�gure of merit as neither tiling acquires a consistent net circulation in the thermodynamic

limit. Instead, we chose the integrated absolute value of the curl. In the paramagnetic limit,

this quantity tends to≈ 1 per vertex.
2

In the low temperature limit, the ground state of square

ice (uniform T1 tiling) and pinwheel ice (uniform T2 tiling) have 〈∑ |∇ × V|〉 = 0. In

Fig. 6.12(b), we plot the evolution of this quantity with temperature. To make a comparison

between square and pinwheel ice, we work in reduced units, t̃ = (T − TC)/TC , in terms of

the appropriate critical temperatures, TC(ϑ), for each tiling.

2
In fact, it can be shown analytically that the two tilings tend to slightly di�erent limits in the paramagnetic

regime:

lim
T→∞

∑
|∇ ×V| =

674+223
√

2
1024 ≈ 0.966 vertex

−1
for ϑ = 0°

15(181+248
√

2)
8192 ≈ 0.974 vertex

−1
for ϑ = 45°.
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Near to the ordering transition at t̃ = 0, both systems show curl varying rapidly as a func-

tion of temperature. However, this feature is more pronounced and the integrated curl attains

a greater magnitude in 45° tiling. As the system melts to a disordered phase, 2D structures—

in particular, vortices—proliferate, spoiling the long-range ordering. We emphasise that this

vortex-mediated regime persists even when the temperature is changed slowly, as in Fig. 6.12(b).

This suggests that these defects play a more general role in establishing magnetic order during

melting and freezing. Furthermore, their existence in MC simulations even when PBCs are

applied implies that they can nucleate anywhere within arrays and do not simply migrate from

edges. Movement of the vortices is observed in MC simulations

6.5.2 Scaling of the defect density in the Kibble Zurek mechanism

The Kibble Zurek mechanism (KZM) is a statement of the expected power law dependence

of the defect density with the speed at which the phase transition is traversed. Attributing the

mechanism to a system undergoing a phase transition relies on the values of the equilibrium

critical exponents, and the scaling behaviour of the correlation length near Tc. For a contin-

uous second order phase transition, the equilibrium correlation length, ξ, and equilibrium

correlation time, τ , diverge as

ξ = (T − TC)−ν ; (6.15)

τ = (T − TC)−zν , (6.16)

where ν is the exponent associated with the correlation length, and z is the dynamic critical

exponent. The KZM describes the dynamics of a system as the critical temperature, TC , is

traversed in time. We de�ne a temperature detuning, ∆T ≡ T − TC , which we assume

can be varied linearly so that

∆T (t) = Rt, (6.17)

at time, t, for some rate, R. Here, we use Monte Carlo steps as a proxy for time, meaning

R has units of T · MCS−1
. Equating the time to the critical point with the relaxation time

yields a timescale,

t∗ = R
−zν

1+zν , (6.18)
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commonly called the freeze-out time. Close to the critical point, there exists a region in which

the order parameter no longer evolves adiabatically. The average correlation length at this

freeze-out time is

ξ(t = t∗) = R
−ν

1+zν . (6.19)

Previously in Chapter 5, we demonstrated that this class of geometries belongs to the 2D

Ising universality class. Assuming then the exponents relevant to that transition (ν = 1, z ≈

2.1665 [295]), the expected value for the KZM exponent is ∼ 0.315.

6.5.3 Numerical evidence of the Kibble Zurek mechanism in ASI

To complete this discussion, Fig. 6.13 examines the correlation length, ξ, as extracted from the

two point correlator, G(r) = 〈si · sj〉, and the defect density, 〈∑ |∇ ×V|〉, as a function of

cooling rate,R, for square and pinwheel ice using MC simulations. We have chosen∇ ×V

as a measure of the defect density as it appears a natural choice to identify the vortices which

form in T2-excess arrays. It is not necessarily as good a measure in the AFM tilings where an-

other quantity—string length, perhaps—would be more appropriate. Note that in the scheme

outlined in eq. (6.11), the curl is based on the sum and di�erence of the components of neigh-

bouring vertex moments. The vertex moments are themselves simply the sum of the island

moments in each vertex. Taking the absolute value introduces products of at most two spin

components—exactly the same as in the two-point correlator. We thus expect 〈∑ |∇ ×V|〉

to scale similarly to the correlation length except with the opposite sign to re�ect its nature

as a density: 〈∑ |∇ × V|〉 ∼ ξ−1
.

The integrated curl in pinwheel ice exhibits a peak [dotted vertical line, Fig. 6.13(b)]. We

relate this feature to the freeze-out behaviour predicted by the KZM. There appears a max-

imum cooling rate beyond which pinwheel ice cannot respond to changes in temperature.

For fast cooling rates, the curl stays close to the high temperature limit, and even vortices

appear frozen out.

We perform a least squares �t to the linear portion of each series in Fig. 6.13 and extract the

exponents (values±1 standard deviation are listed in Table 6.1). All values are close to those

predicted for the 2D Ising universality class. Other universality classes would predict di�erent
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Scaling Exponent

ξ 〈∑ |∇ ×V|〉

ϑ = 0° −0.340± 0.005 0.370± 0.004

ϑ = 45° −0.332± 0.018 0.314± 0.017

Table 6.1: Best �t critical exponents for ξ and 〈
∑
| ∇ × V | 〉 associated with cooling rate, R.

Extracted from the linear portion of each series in Fig. 6.13 for θ = 0° square and θ = 45° pinwheel ice.

Assuming only the KZM and the equilibrium critical exponents of the 2D Ising model, these quantities

are predicted to scale withR as∼ ±0.315. Uncertainties refer to±1 standard deviation in the least

squares �t used.

scaling exponents. For example, it would be natural to draw an analogy between the formation

of vortex structures in the pinwheel tiling and those vortices which depin during a Kosterlitz-

Thouless transition. However, the exponential behaviour of the correlation length even at the

critical point in a Kosterlitz-Thouless transition gives rise to a more complex dependence on

R, i.e. one which is not simply some form of power-law. Further, assuming the asymptotic

values of the critical exponents [296] in this case (an approach which neglects key aspects of

the KZM as applied to the Kosterlitz-Thouless transition [297]) would give an estimate for the

scaling exponent of∼ 0.5. We have thus shown numerically that these geometries appear to

obey the KZM, consistent with the 2D Ising universality class.
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Figure 6.13: Scaling of correlation length and defect density with cooling rate. (a) Correlation length,

ξ, in units of the lattice constant, a, as a function of cooling rate for square and pinwheel ice. Taken

from parallel tempering Monte Carlo simulations of 50 × 50 vertex arrays (10000 spins) with PBC.

(b) As in (a) but for the appropriate defect density, 〈
∑
|∇ ×V|〉. A maximum in the curl density is

observed for pinwheel ice at the rate indicated by the dotted line. This corresponds to a rate above which

the dynamics of the system remain frozen. The linear portion of each series is used for �tting (points

explicitly shown with markers; �ts are shown in black dashed lines). Here, cooling rate is measured in

units of temperature, T , per Monte Carlo step. Adapted from Ref. [2].

6.6 | Discussion

In this chapter, we have probed experimentally the transition in sublattice ordering between

square and pinwheel ice. Using LTEM on thermally annealed Co arrays, we found evidence

of a transition from AFM T1-majority arrays near to square ice to arrays which show a slight

preference for FM T2 ordering near to pinwheel ice. Values of ϑ close to the transition give

rise to competition between phases. In fact, thermalising better those arrays may open up the



6. Ice rules made manifold: thermalisation and defects in 2D artificial spin ice 146

possibility of probing the ice-rule phase in a highly degenerate manifold. Furthermore, arrays

comprising a mixture of tiling patterns—square ice, say, joined to pinwheel ice—would o�er

the opportunity to study phase coexistence at interfaces and, even, engineer an ASI analogue

of exchange bias.

Once more, we stress the relative scarcity of the T2 populations in the FM phase. In ASI,

the largest energy scale is set by the coercive �eld of the individual islands—far larger than even

the dipolar coupling between nanomagnets. In this respect, the best natural comparison for

these systems would be to ferromagnetic materials with high coercivity. Like ASI, these materi-

als form small domains under demagnetisation. Because it is energetically favourable for them

to form, domain walls are relatively numerous and “thin”, much as we observe in pinwheel ice.

For tilings close to the pinwheel geometry, experimental limitations mean we were unable

to wait till the system recovered all the way to its true ground state, if indeed it would. This is a

direct consequence of the change in relaxation timescales as controlled by the array tiling angle.

For comparison, in the work of Gliga et al. [180], thermally active pinwheel arrays are allowed

to relax over some 20 hours from one T2 con�guration to another—one order of magnitude

greater than achievable in our setup. This is almost exactly the increase in cooling time that we

predict would be necessary to achieve a more pronounced excess of T2 vertices.

In concert with this transition in ordering, we observe 2D defect textures in the ferromag-

netic phase. The densities of these within the framework of Monte Carlo simulations appear

consistent with the Kibble-Zurek mechanism at least in terms of the correlation length and

integrated squared curl. However, a systematic investigation of their experimental scaling

with cooling rate over several orders of magnitude for each individual array would provide

conclusive proof. In doing so, identi�cation of all structures—strings, vortices, and domains—

would enable the correct defect density to be calculated for a given tiling pattern.

In conclusion, the work reported in this chapter has allowed us to use arti�cial spin ice

to probe phase transitions and non-equilibrium processes such as defect formation. It has

also laid a foundation for further studies; in particular around the possibility of observing

competing phases in a two-dimensional arti�cial spin system.



7
From local to global: Con�guring arti�cial

spin ice

7.1 | Introduction

So far we have explored the continuum between the square and pinwheel lattice by studying

two related aspects of the underlying physics—critical phenomena and ordering. In this chap-

ter, we change focus and discuss a way in which arti�cial spin ices can be made configurable. We

outline a hybrid system based on the classic square lattice in which site-speci�c exchange bias

�elds are applied to certain islands. These constrain not just their dynamics but the kinetics of

the system as a whole, and provide a pathway connecting local �uctuations to global behaviour.

We study the situation in which the pinning repeats at lengths which are integer multi-

ples of the lattice constant, along one sublattice of the square geometry. In what follows, we

show that varying the pinning density controls equilibration processes and yields insight into

quenched disorder. Further, the pinning period controls the emergence of di�erent magnetic

textures in the ground state, including a striped ferromagnetic phase, and an unconventional

147
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charge-ordered state.

The chapter is structured as follows. In Sec. 7.2, we discuss the set-up of this system, its

rationale and sample fabrication. In Sec. 7.3, the Hamiltonian of the system is reviewed. We

outline how exchange bias is incorporated, and we use micromagnetic simulations to extract

a realistic estimate for the coercive �eld and energy barriers of our islands. In Sec. 7.4, the

e�ect of the pinning on relaxation timescales is investigated. We provide an estimate for the

radius of in�uence that a pinned spin has on its neighbours, and discuss the di�culties of

relating the correlation time obtained from Monte Carlo simulations to a physically meaning-

ful measurement. In Sec. 7.5, a model for �eld-driven spin dynamics is outlined. From this,

we compare con�gurations from a simulated rotating-�eld demagnetisation to those obtained

experimentally by collaborators. Odd and even pinning periodicities are treated separately.

Finally, a simulated thermal annealing [Sec. 7.6] highlights how this hybrid system e�ectively

tunes critical phenomena.

7.1.1 Attribution

Much of this work is currently under review [5]. This work arose as part of a collaboration

among the Krishnan group at the University of Washington, and the Universities of Manitoba

and Glasgow. VMP undertook sample fabrication and subsequent magnetic force microscopy

measurements, along with their processing. I am grateful to VMP and KMK for allowing me

to include typical experimental vertex maps in this chapter for comparison. Where they ap-

pear, these results are acknowledged explicitly in the caption. I performed the micromagnetic

simulations, designed the spin dynamics model, provided the interpretation of the pinning

in terms of relaxation timescales and its e�ect on the ground state order, and investigated

the critical behaviour. The manuscript was written by VMP and myself; all other authors

provided feedback.

The spin dynamics model was originally developed to examine domain wall processes in

pinwheel arti�cial spin ice, and is discussed in Ref. [3]. Routines to implement a variety of �eld

protocols are contained in the software package, JASI [6], which I developed. This model is

by no means unique; many others works in ASI employ a similar approach to simulating �eld-

driven processes. Similarly, extracting the coercive �eld barrier for islands is an extension of
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work reported in Ref. [4]. This work investigated the misalignment between the geometrical

and anisotropy axes in pinwheel lattices.

7.2 | A hybrid arti�cial spin ice

7.2.1 Rationale

Previous studies of ASI have concentrated on understanding the collective behaviour of arrays

of identical moments, with an emphasis on di�erent lattice geometries in order to explore

anisotropic features of the dipolar �eld (inter alia Refs. [8, 298, 22, 84, 180, 16, 2]). Indeed, we

have probed exactly this interplay between the spin and spatial degrees of freedom when we

considered an island rotation angle. From an applied standpoint however, there is growing in-

terest in designing ASI systems in which speci�c microstates can be addressed both with [299]

and without [300] the help of an external magnetic �eld. Beyond interest purely in the physics

involved, this recon�gurability is a necessary step for practical applications in information

storage [301], magnonic crystals [302, 89], and as the architecture for neural networks [94, 303].

As a concrete example, Gartside et al. used a scanning technique they christened “topo-

logical defect-driven magnetic writing” to realise the hitherto unobserved ground state of the

kagome lattice through controlled domain wall nucleation [40, 41]. In a similar vein, adjusting

the shape anisotropy of certain islands (in e�ect, narrowing their width while leaving their

length unchanged) during fabrication has been shown to a�ect avalanche dynamics [304],

increase the probability of reaching chiral states [305], and in�uence the resulting resonance

spectra [306]. However, these e�ects have been limited to relatively small systems, e.g. one-

or two-ring kagome lattices.

In this context, exchange bias provides a route to tuning the properties of large ASI systems

by adjusting the coercivity of individual islands. Exchange bias is an interfacial e�ect that

occurs at the boundary between a ferromagnet and an antiferromagnet [307, 308]. Ferromag-

nets are strongly exchange coupled, but often have little or no intrinsic anisotropy. Antifer-

romagnets, by contrast, have strong anisotropic interactions which make their spin con�gu-

rations particularly stable [309]. In a heterostructure, coupling between these two materials

produces strong exchange interactions and strong anisotropy. This exchange anisotropy is
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uni-directional and so the associated hysteresis loop is not centred on the zero-�eld value but,

rather, shifted o�-axis. The e�ect of this exchange bias is to pin the ferromagnetic layer along

a speci�c direction.

In previous work [310], collaborators at the University of Washington constructed an arti-

�cial square ice in which an exchange bias �eld is applied to all islands within one sublattice.

This is illustrated for a single vertex in Fig. 7.1(a). The exchange bias is orientated parallel to the

long axis of the horizontal islands. In doing so, it e�ectively pins the magnetisation for these

islands and constrains their reversal dynamics. Over the array as a whole, this rearranges the

energies of the sixteen distinct vertices such that a classi�cation into four degenerate types is

no longer possible. In e�ect, the geometric frustration of the square lattice is modi�ed by the

addition of a global, non-frustrated exchange �eld. In varying the lattice constant, Ref. [310]

observed a transition between antiferromagnetism and ferromagnetism in the con�gurations

obtained from a �eld-driven demagnetisation.

In this chapter, we consider a natural extension to this idea. Rather than applying the

exchange bias �eld to every island within a sublattice, we restrict it to certain sites. In particular,

we consider di�erent periodicities, p, in units of the lattice constant, a, within a sublattice.

Varying the periodicity of the exchange bias adjusts the density of constrained spins: a small p

means dense pinning; a high pmeans less dense pinning. This is shown in Fig. 7.1(b,c) for the

case ofp = 2a andp = 4a lattices. Pinned spins are coloured black; all other spins are identical.

We term this hybrid square arti�cial spin ice, written hpa-ASI, as it is a composite of non-

identical islands which have either uniaxial (no pinning, Fe only) and unidirectional anisotropy

(exchange-biased, Fe and IrMn bilayer). As in [310], the exchange bias �eld is orientated along

the long axis of pinned islands.

7.2.2 Sample Fabrication

Sample fabrication was performed by VMP at the University of Washington. An exchange-

biased epitaxial bilayer, composed of 7 nm Fe and 8 nm IrMn, was deposited on MgO sub-

strates using ion beam sputtering. A 2 nm thick layer of Pt was applied to inhibit later oxida-

tion. Epitaxial—as opposed to a polycrystalline—growth helped ensure a uniform direction

for the exchange bias. The direction of the bias was controlled by application of external �eld
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Figure 7.1: A hybrid arti�cial spin ice with site-speci�c bias �elds. Top row: (a) square vertex in which

the two horizontal islands are pinned (solid black). The island dimensions and lattice constant used

in this work are marked. We consider di�erent periodicities of the exchange bias pinning, showing

examples of (b) p = 2a and (c) p = 4a lattices. Middle row: side view of the corresponding lattices.

The arrays are deposited on MgO substrates. Pinned islands are made from an Fe/IrMn bilayer with

thicknesses 7 nm and 8 nm, respectively. The IrMn is etched away from unpinned islands, leaving the

Fe layer intact. A thin layer of Pt inhibits oxidation. Bottom row: schematic showing the magnitude

of the exchange bias as a function of x-position, using the coordinate system indicated in (a). Using

MOKE magnetometry, the magnitude of the exchange bias was measured as 8 mT.

during deposition. Subsequent magneto-optical Kerr e�ect (MOKE) measurements indicated

an o�-axis shift of the hysteresis loop by 8 mT. A two-step lithographic process was used to

fabricate the ASI. First, the sample was patterned into square ice using electron beam lithog-

raphy. The lateral dimensions of the islands were 240 nm by 90 nm, with a lattice constant,

a = 400 nm [annotated explicitly in Fig. 7.1(a)]. In the second stage, ion milling removed

the IrMn layer from most islands, leaving it intact only on the pinned sites. Less than 1 nm

of IrMn was left by this procedure. A full description of this technique is contained in an
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accompanying methods paper [311].

7.3 | Modelling the e�ect of site-speci�c pinning

For this hybrid ice, we assume that the Hamiltonian separates as

H = Hdip +HZeeman +Heb +Hani, (7.1)

where the terms on the right-hand-side represent the dipolar interactions between islands,

their Zeeman coupling to an external �eld, the site-speci�c pinning energy, and their shape

anisotropy, respectively.

As justi�ed in Chapter. 5, we assume that our islands are separated su�ciently to be approx-

imated as point dipoles and Ising-like so that their magnetic moment lies in one of two stable

orientations. The spin at site i has a magnetic moment si = MSV siσi, with si ∈ {−1,+1},

an Ising variable which represents the polarity of the spin and σi, a unit vector parallel to its

in-plane long axis. In this picture, each nanomagnet sits in the dipolar �eld of every other, and

so the mutual interaction energy of a con�guration is

Hdip = D
∑
i 6=j

sisj

[
σi · σj

r3
ij

− 3(σi · rij)(σj · rij)
r5
ij

]
. (7.2)

The second term in eq. (7.1) is the Zeeman energy which couples the magnetisation of

each island to the external �eld, Bext, through

HZeeman = −
∑
i

si · Bext. (7.3)

The exchange bias is incorporated in a similar way by positing an additional e�ective Zeeman

contribution at pinned sites

Heb = −
∑

i, pinned

si · Beb, (7.4)

whereBeb ≈ 60 mT is the magnitude of the pinning �eld. We emphasise that this term applies

only if site i has been pinned. Since exchange bias is an interfacial e�ect mediated by atomic-

scale interactions, the pinning �eld does not extend beyond the island to which it is applied.
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Finally, each moment is constrained to lie parallel to its in-plane long axis, which appears

as a uniaxial anisotropy contribution to the total energy,

Hani = −
∑
i

Ki(si · σi), (7.5)

where Ki > 0 is the anisotropy constant of island i, and the sum runs over all islands in the

array. This can be equivalently restated as each island has a coercive �eld barrier, Bi
c, which

must be overcome before the moment can reverse. We now turn to estimating this energy

barrier for the islands used in experiment.

7.3.1 Estimating energy barriers

We are interested in comparing the results of experimental �eld-driven protocols with simula-

tion. This requires an estimate of the coercive �eld required to switch an island. We make the

following assumptions: the rotation of the magnetisation is coherent (discussed in Chapt. 6,

Sec. 6.2.3); the dimensions are as listed in Sec. 7.2.2, which imply ∆D = 0.025 [274]; and

the saturation magnetisation of iron is MS = 1.7 MAm
−1

[55]. Then, the energy barrier

for an isolated island is

Eb = 1
2µ0∆DMsV ≈ 43 eV, (7.6)

The characteristic scale of the dipolar interactions, given by

D = µ0(MSV )2

4πa3 ≈ 0.6 eV, (7.7)

is signi�cantly weaker.

To obtain a more realistic estimate for Eb, we perform micromagnetic simulations us-

ing the GPU-accelerated Mumax3 package [98]. The island dimensions and lattice constant

match those given in Sec. 7.2.2. The in- and out-of-plane cell sizes were 2 nm and 1 nm,

respectively. The exchange constant was 21.0 pJm
−1

, and the cubic anisotropy of iron was

taken as 48 kJm
−3

, matching the values given in Refs. [55, 310]. The chosen cell sizes are

below the exchange length, lex ≈ 4.34 nm, in all directions. The Gilbert damping parameter,

α, was set to 0.02.
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Fig. 7.2(a) plots the coercive �eld astroid,Bc(α), as a function of the applied �eld angle,α,

as de�ned in the inset. The coercive �eld was determined by the point at which the magneti-

sation reversed along the in-plane long axis of the island. For a broad range of α near to the

direction of the in-plane long axis, the coercive �eld is between 60 mT and 80 mT—almost

exactly the value of the exchange bias used. This suggests that pinned islands have at least

double the switching �eld of their unpinned counterparts. Only when the �eld is applied near

to the hard axis doesBc increase appreciably (> 140 mT). By way of example, Fig. 7.2(b) shows

a hysteresis loop for the horizontal Fe island when the external �eld is applied at an angle of 45°.

The components of the magnetisation parallel (Mx, blue) and perpendicular (My, orange) to

the in-plane long axis, and that along the direction of the applied �eld (Mα, green) are shown.

At the switching �eld, 64.6 mT, the magnetisation along the long-axis of the island reverses.

This switching �eld corresponds to an energy,MSV Bc = 102 eV, and the transition is abrupt.

In Fig. 7.3, we show the time-resolved evolution of the energy, magnetisation and stray

�eld during this sharp reversal. The applied �eld is increased by 25 µT from just below to

just above the coercive �eld and quantities are recorded every picosecond. The reversal occurs

over the course of one nanosecond. The ends of the islands reverse �rst, growing in extent

before a multi-domain con�guration forms at the point of maximum energy. Finally, domains

walls are expelled at the edges of the island, aligning its moment with that of the applied

�eld. These steps are illustrated in Fig. 7.3(i)-(iii), respectively. We estimate the barrier height

as the di�erence in energy between that at the peak and at the onset of reversal, which is

Eb = 52.3 eV as marked.
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Figure 7.2: Coercive �elds and hysteresis loops as a function of applied �eld angle for an isolated Fe

island as taken from micromagnetic simulations. (a) Dependence of the coercive �eld, Bc, on the

applied �eld angle, α. The inset de�nes the orientation of the applied �eld and the simulation grid

with respect to the island geometry. For a broad range of applied �eld angles near to this long axis,

the switching �eld of the island is between 60 mT and 80 mT. (b) Example M -B hysteresis loop

when the �eld is applied at 45°. The switching �eld, Bc = 64.6 mT, is annotated explicitly. Arrows

show the direction of the hysteresis loop. Three components of the magnetisation are drawn: that

parallel to the in-plane long axis (Mx, blue); that parallel to the in-plane short axis (My , orange); and

that in the direction of the applied �eld (Mα, green). (c) Stray �eld and magnetisation con�gurations

corresponding to points marked in the hysteresis loop: (i) at negative saturation; (ii) at reversal; (iii) at

remanence; and (iv) at positive saturation. The stray �eld is plotted on a logarithmic scale. The colour

wheel represents the orientation and relative magnitudes of the vectors. Dimensions and material

parameters match those in experiment.
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Eb = 52.3 eV
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(ii)

(iii)

(iii)
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Figure 7.3: Estimating the energy barrier for an isolated island from micromagnetic simulations. (a)

Evolution of the sum of the magnetostatic and exchange energies during island reversal. The applied

�eld angle is α = 225° (down-loop of α = 45° hysteresis sequence). At t = 0, the �eld was increased

by 25 µT to just above the switching �eld. The energy, magnetisation and stray �eld were recorded

every picosecond during island reversal. As marked, the energy barrier is approximately 52.3 eV. Three

con�gurations are shown: (i) at the start of the reversal, island with a net moment to the right; (ii) at top

of the energy barrier, where an approximate multi-domain state has formed within the island; and (iii)

in equilibrium, post-reversal, where the island macrospin points to the left. The stray �eld is plotted on

a logarithmic scale. The colour wheel represents the orientations and relative magnitudes of the vectors.

7.4 | Engineering relaxation timescales

7.4.1 Pinned spins as source of an e�ective bias �eld

Now, we consider the e�ect that introducing a pinned spin has on neighbouring islands in the

lattice. We will assume that a pinned spin always aligns with its exchange bias �eld, Beb and

so it remains constant. The pinned site e�ectively tilts the local energy landscape by biasing

nearby spins through its dipolar �eld. This assumption—that pinned spins are e�ectively

frozen and do not reverse—is supported by our micromagnetic estimates and con�rmed by

the experimental results which we will report in Sec. 7.5.

Fig. 7.4 illustrates this biasing e�ect by showing the net dipolar �eld from a pinned spin

evaluated at the position of its immediate neighbours. The arrows are scaled and orientated
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Figure 7.4: A pinned spin (central island, black) acts as a source of an e�ective bias �eld on its

neighbours through the dipolar interaction. The arrows indicate the magnitude and direction of this

dipolar �eld, H
dip

, acting on islands out to 3nn. Its magnitude is greatest for nearest neighbours,

although remains a substantial fraction of the exchange bias �eld even out to 3nn.

according to the magnitude and direction of the dipolar �eld, assuming the nominal island

dimensions and parameters. As in previous chapters, we adopt the naming convention of

Wang. et al. [8] and discriminate amongst �rst nearest-neighbours (1nn), second nearest neigh-

bours located in the same vertex (2nn-L), and second nearest neighbours which span adjacent

vertices (2nn-T ). To this, we now also consider third-nearest-neighbours (3nn). The dipolar

�eld from the central pinned spin is greatest for the 1nn neighbours, and remains a substantial

fraction of the exchange bias �eld even out to 3nn. However, it is still well below the coercive

�elds as estimated using micromagnetic simulations.

To quantify the in�uence of this bias �eld, we consider its e�ect on relaxation timescales.

Within the framework of a Metropolis-Hastings Monte Carlo, we can de�ne the time displaced

autocorrelation of a single spin at site i through

Ci(t) =
∫

dt′
(
si(t′)si(t′ + t)− 〈si〉2

)
, (7.8)

where si(t) is the polarity of spin i at time t. Here, time is measured in units of Monte Carlo

steps (MCS). We perform 1000 independent simulations of a 20 × 20 array (1600 spins)

with periodic boundary conditions, in the presence of a single pinned spin at its centre. The

simulations are allowed to equilibrate for 105
MCS, at which point �uctuations in energy are

less than 1%. Then, the dynamical evolution of each spin is recorded for a subsequent 105

MCS and compared with statistics drawn from a reference array which contains no pinning.
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Figure 7.5: In�uence of a pinning site on the autocorrelation of neighbouring spins. (a) Example time

series for si(t) for three cases: a pinned spin [upper panel], a reference spin belonging to an unpinned

array [middle panel], and the �rst nearest neighbour to a pinned spin [bottom panel]. Time is measured

in units of Monte Carlo steps (MCS), and the simulation is carried out at the critical temperature of the

square lattice, TC = 7.2D k−1
B . In our model, the polarity of a pinned spin is not allowed to change

i.e., si(t) = +1 for all t. (b) The autocorrelation, Ci(t), is evaluated at TC for the �rst- and second-

nearest-neighbours to a pinned spin. The autocorrelation function of a reference spin in an unpinned

array appears in grey. Data are averaged over 1000 independent realisations; the standard error is shown

as a shaded region around the mean. The overall e�ect of pinning is to supress �uctuations of nearby

spins.

Representative time series for the polarity are shown in Fig. 7.5(a) for three cases: (i) the pinned

spin, which has a �xed polarity for all time, t; (ii) a generic spin taken from the unpinned

reference array; and (iii) the �rst-nearest neighbour to a pinned spin.

Rather than evaluate the autocorrelation directly via eq. (7.8), it is computationally simpler

to use (fast) Fourier transforms.
1

After [139], it can be shown that Ci(t) = F−1{C̃i(ω)},

where C̃i(ω) is the power spectrum de�ned through

C̃i(ω) = |F−1{si(t)− 〈si〉2}|. (7.9)

In Fig. 7.5(b), we plot Ci(t) evaluated at the critical temperature, 7.2D k−1
B , of the square ice

lattice for the �rst- and second-nearest-neighbours adjacent to a pinning site. For comparison,

1
We will writeF{f}(ω) to indicate the Fourier transform of a generic function, f(t).
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the behaviour of a reference spin belonging to the unpinned lattice is also drawn. The autocor-

relation function for the near-neighbour spins decays faster than for the reference spin, which

suggests that �uctuations are reduced as a consequence of introducing pinning.

In general, we expect Ci(t) to drop o� exponentially in time with a characteristic timescale,

τ , the correlation time [139, 141]. The integrated correlation time is de�ned through

τ i
int

=
∫
Ci(t) dt, (7.10)

as discussed in Chapter 3. For a given spin, τint is a measure of the time required for two

subsequent measurements to be independent or, equivalently, for the spin to forget its starting

state. In hpa-ASI, this timescale depends on the distance, r, between a given spin and the

nearest pinning site i.e., τint = τint(r). Fig. 7.6 explores a comparison between the correlation

timescales in the singly pinned and unpinned arrays. While the autocorrelation time is known

to scale with system size, we are interested in a comparison amongst those spins closest to the

central pinned island (i.e., relatively far from the boundaries), and between the behaviour of

these spins and their counterparts in an unpinned reference array. This explains our choice

of a relatively small lattice in which to simulate this process. We note in passing that that

similar behaviour is observed in a 40×40 vertex lattice, though the exact value of τint di�ers in

accordance with the scaling relation, τint ∼ Lz , whereL is the system size and z is the dynamic

critical exponent [139]. Fig. 7.6(a) makes clear that the introduction of single pinned spin does

not alter the correlation time of bulk quantities, such as the magnetisation, 〈m〉. Both the

singly pinned array and the reference array agree to within statistical errors, and there is no

appreciable movement of the critical temperature. Locally however, correlations are a�ected.

Here, τint is reduced by up to 60% for spins closest to the pinning site [Fig. 7.6(b)].

Finally, by plotting the variance, 〈s2
i 〉 − 〈si〉2, as a function of temperature and, sepa-

rately, distance from the pinning site [Fig. 7.7(a,b), respectively], we provide an estimate for

the e�ective radius over which �uctuations are a�ected. In Fig. 7.7(b), we choose to evaluate

�uctuations at the critical temperature as the spatial correlation length is largest here. Work-

ing at TC thus provides an upper bound for the in�uence exerted by the pinned site. The

data for the pinned system approaches the uniform value found for the unpinned array at
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T

Figure 7.6: E�ect of introducing a single pinned spin on the integrated correlation time, τint. (a) In-

tegrated correlation time of the staggered sublattice magnetisation, 〈m〉, as a function of temperature

for the singly pinned array (blue) and unpinned reference array (grey). The introduction of the single

pinned island does not a�ect this bulk correlation time as the two cases overlap. (b) Individual spin

correlation times are a�ected. The behaviour of four neighbours to a pinning site is considered; a 1nn

island (blue), a 2nn-L island (orange), a 2nn-T island (green), and a 3nn island (red) are compared to

the correlation time taken from the unpinned array (grey).

r ∼ 6a, demonstrating that the long-range e�ects are to all intents and purposes con�ned

within this radius.

At this stage, we can draw an analogy with the e�ect of impurities in bulk spin ice mate-

rials. Revell et al. consider the situation in which extra magnetic Dy ions are substituted for

non-magnetic Ti ions in the pyrochlore Dy2Ti2O7 [312]. The extra magnetic impurities act

as “stu�ed” spins which adjust both the density of excitations and the relaxational dynam-

ics of the system.

7.4.2 On obtaining physical measures of the timescales

Our analysis of relaxation has been performed solely within the framework of equilibrium

Monte Carlo, where we have quoted results, in particular, in terms of an abstract time unit, the
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Figure 7.7: Estimating the extent to which a pinned spin a�ects �uctuations of its neighbours. The

variance, 〈s2〉 − 〈s〉2, is shown as function of (a) temperature, T , and (b) distance from the central

pinning site, r. In both plots, the data drawn from the unpinned reference array appears in grey.

Monte Carlo step. There is not necessarily a general link between the evolution of a simulated

system in Monte Carlo time and the evolution of a physical system in real time [254] although

a phenomenological rescaling may allow for a comparison in certain situations [313, 314]. The

lack of direct correspondence arises because a Markov chain is a stochastic process, whereas

a real system is governed by a deterministic equation of motion. Often then, τint is seen as a

purely statistical quantity which indicates how well successive con�gurations of the Markov

chain are decorrelated. In this section, we justify how equilibrium Monte Carlo timescales can

be compared with the temporal behaviour of a physical system.

Existing work in spin ice has demonstrated that Monte Carlo timescales match well to ex-

perimentally measured relaxation times when they are appropriately weighted by an activation

barrier [312, 315]. Separately, Nowak et al. have provided an interpretation of Monte Carlo time

in terms of the underlying physical processes [316, 317]. This ‘time-quanti�ed’ method relies

on associating Monte Carlo time with the timescale predicted by Langevin dynamics [318],

and has been applied to magnetic hyperthermia [319], thermally-assisted switching [320], and

magnetoresistance measurements in arrays of dipolar-coupled nanoparticles [321].

In general, the rate, Γ, at which a spin reverses follows a Néel-Arrhenius law,

Γ = 1
τ0

exp
(
− Eb

kBT

)
exp

(
− ∆E
kBT

)
, (7.11)
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where ∆E is the energy di�erence between the initial and �nal states. The quantities τ0 andEb

are an experimentally determined lifetime and energy barrier, respectively. The pre-factor, τ0,

can vary by several orders of magnitude and depends on the island shape and transition [322,

323, 324]. Our analysis of the integrated correlation time sets τ0 and the Boltzmann weight of

the energy barrier to unity, and probes only the initial and �nal states through ∆E. In hpa-

ASI, the bias �eld from a pinned spin produces shifts in the energy barriers of neighbouring

sites. This suppresses correlation times and �uctuations. We can imagine rescaling our sim-

ulated results by an appropriate Boltzmann factor to re�ect the activation energy for a given

transition. Then, the behaviour of τint [Fig. 7.6] should carry over to experiment since the

evolution in both real and Monte Carlo time does depend on the nature of the free energy

landscape i.e., ∆E.

Before closing this section, we note that a kinetic Monte Carlo approach would allow an

absolute quanti�cation of the rates in eq. (7.11). This naturally includes a measure of the time

for thermal �uctuations without any further need for calibration. Even so, both Eb and τ0

are often treated as empirical parameters; for example, Farhan et al. choose plausible values

(Eb = 0.925 eV and τ0 = 1 Gs) to obtain good agreement with experimental relaxation

times in thermally active one- and two-ring kagome lattices [325].

7.5 | Field-driven dynamics

Our samples are too thick to be thermally active and allow for a direct measurement of these

relaxation timescales. Indeed, assuming a 1 s measurement time, their blocking temperature

is ≈ 20000 K—far higher than the Curie or even melting temperature of iron. However,

we can compare our prediction that large, long range correlations arise from pinning to the

non-equilibrium dynamics that occur during �eld-driven processes. The physical basis behind

this idea is illustrated in Fig. 7.8. Rather than relying on thermal �uctuations alone to over-

come the energy barrier to switching [Fig. 7.8(a,b)], the application of an external �eld can

tilt the free energy landscape. When the applied �eld is of similar magnitude to the coercive

�eld, the islands become susceptible to thermal �uctuations [326] and, therefore, individual

macrospins can reverse.
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We now consider an alternating �eld protocol in which a magnetic �eld is rotated in the

plane of the sample and gradually stepped down in magnitude. At the same time, the sense of

rotation is periodically inverted. This situation is depicted in Fig. 7.9. During this magneto-

agitation, quenched disorder plays a similar role to thermal �uctuations. This disorder re�ects

an underlying spread in energy barriers caused by variations introduced during fabrication,

and opens up extra pathways in phase space between nearly degenerate con�gurations [267,

22]. In this sense, pinned islands are examples of structured quenched disorder i.e., they are

sites purposely introduced into the lattice which a�ect locally the dissipative dynamics. Since

they possess a higher coercive �eld (originating from both the exchange bias and their intrinsic

energy barrier), they are expected to freeze at a higher external �eld.

(b) Thermal-agitation (c) Magneto-agitation

Reaction coordinate

Figure 7.8: Driving arti�cial spin ice to a low energy state by thermal- and magneto-agitation. (a) The

bistable magnetic states of a single island are separated by an energy barrier, E
b
� kBT . (b) By

increasing the temperature to T
hot

, the larger thermal �uctuations alone may be su�cient to reverse

the island (c.f. Chapter 6). (c) The barrier can also be surmounted by tilting the energy landscape with

an external �eld, Bext. This reduces E
b

by MSV Bext as shown. In each panel, the vertical axis labels

energy and the horizontal axis is any suitable reaction coordinate (a commonly chosen one is the angle

between the macrospin and the in-plane long axis). Compare the schematic in (c) with that presented

in Fig. 7.3(a).
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Figure 7.9: Alternating �eld protocol used to demagnetisehpa-ASI. The �eld is rotated in plane. After

a given number of revolutions, the magnitude is decreased and the sense of rotation inverted. We expect

pinned magnets to freeze at higher �elds compared with unpinned ones. The coercive �elds marked are

estimates based on the micromagnetic simulations discussed in Sec. 7.3. In reality, quenched disorder

ensures a Gaussian spread in bothBc andB
eb

, as shown in the inset.

7.5.1 Experimental demagnetisation

VMP performed and analysed the results of the experimental demagnetisation. During the

experiment, the samples were rotated at ∼ 1000 revolutions per minute between the poles

of an electromagnet. They were initially saturated with a ∼ 150 mT �eld. The amplitude

of the �eld was then decreased by 8 µTs
−1

, and the polarity switched every 2 seconds. This

form of protocol has previously been shown to be the most e�ective at demagnetising ASI

samples [327], although it is not clearly understood why the polarity switch of the �eld should

a�ect the results. Nisoli speculates that peaks in the rate of change of the external �eld may

be essential [64]. Each demagnetisation took 48 hours. Magnetic force microscopy images

were obtained using an Asylum Research MFP3D, and processed using Python to extract

spin con�gurations.

7.5.2 Simulated demagnetisation

The most accurate way to model the e�ect of this �eld demagnetisation would be to use micro-

magnetic simulations. This would take impractically long for more than a few islands, though
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it does prove useful in obtaining estimates for energy barriers and switching �elds (c.f. Sec. 7.3).

We choose a far simpler approach. Dynamics at zero temperature are implemented accord-

ing to the following condition: a spin, si, is �ipped if the projection of the total �eld along

its long axis—the sum of the external �eld and the dipolar �elds of other spins—exceeds its

coercive �eld i.e.,

(Bext + Bi
dip

) · σ̂i > Bi
c. (7.12)

This “threshold-model” is extensively used in the literature and has been shown to agree well

with experimental results for athermal ASI subjected to a �eld protocol [267, 22]. More recent

work has implemented a modi�ed Stoner-Wohlfarth criterion [328] in place of relation (7.12),

though this produces qualitatively similar behaviour [329]. That this model works so well is

somewhat surprising; insight from micromagnetic simulations suggests that the true magneti-

sation reversal is more complex and often involves the propagation of domain walls within is-

lands.

Note that the switching criterion does not depend on time explicitly. Magnetisation re-

versal within an island occurs quickly (over the course of one nanosecond, as in Fig. 7.3, and

con�rmed experimentally by Refs. [330, 331]). This is far faster than the change in �eld angle

or amplitude, and so it is realistic to expect that the system fully responds to each �eld step

before proceeding to the next.

Based on the micromagnetic simulations presented in Sec. 7.3, we know that the energy

barrier for an isolated island is at least one order of magnitude above the scale of the dipolar

interactions, D. For the rest of this work, we will set Eb = 30D ∼ 24 eV, with a Gaussian

spread of 10%, equivalent to working in the high disorder regime [267]. This is below the

value, 52.3 eV, calculated in Sec. 7.3, though is close to the value used in other studies. The

exact value does not matter greatly provided that it is su�ciently above the magnitude of the

dipolar interactions. In this regime, changing the value of Bc merely changes the �eld value

at which the arrays as a whole switch.

The �eld demagnetization protocols are simulated for di�erent pinning periodicities. The

system is initialised in a random con�guration. At each step, spins are randomly accessed

and �ipped according to criterion (7.12). After a spin has been �ipped, the dipolar �elds are
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updated and the process is repeated until no more spins can be found. The in-plane �eld

direction is incremented by 1° and the process is repeated. After a set number of in-plane

revolutions, the polarity of the �eld is switched, and its magnitude stepped down by ∆B. In

general, two revolutions were su�cient to ensure that the system had reached a steady state

near to the coercive �eld—though this is clearly far less than the number of revolutions used

in the experiment. All results presented in this section are averaged over twenty independent

realizations of the disorder. Error bars re�ect one standard deviation in the statistics. Following

the experiment, the reversal percentage of pinned spins was very low (< 2%). To re�ect

this, in the simulations these spins are assumed to be �xed along the EB direction and no

dynamics were permitted. Di�erent array sizes were simulated with di�erent ramp rates, ∆B.

An array size of 6400 spins (spanning an area of 40 × 40 vertices) is chosen as a standard for

comparing with experiments. Results were checked up to system sizes of 100 × 100 vertices

and no appreciable di�erence was seen. This re�ects the fact that square ice is dominated by

nearest-neighbour dipolar interactions (for example, increasing the system size from L = 40

to L = 100 changes the dipolar energy density by less than 0.5%). Simulating comparatively

small systems thus captures the key physics.

7.5.3 Results

7.5.3.1 Even pinning. Simulated and experimental vertex statistics for the case of even pin-

ning are presented in Fig. 7.10. Filled (open) markers represent the results the simulated (ex-

perimental) protocol. Typical vertex maps from both simulation and experiment are shown

in Fig. 7.11. For the �rst non-trivial even pinning, p = 2a, exchange bias is applied at alternate

sites in one sublattice [Fig. 7.1(b)]. This breaks the degeneracy of the two usual T1 ground

states, one of which is preferentially selected by the choice of pinning centres. This results

in a unique T1 ground state which can be attained based on a �eld protocol alone in both

simulation and experiment [Fig. 7.11(b,e)]. This is comparable to what can be achieved with

a thermal annealing [79]. As the �eld is reduced, pinned islands freeze �rst and these bias the

local energy landscape in such a way that the formation of a particular T1 tiling is selected.

The pinned spins act as nucleation sites for the ground state con�guration and, in particular,

when the pinned sites are spaced at even intervals, low energy regions of T1 vertices are able



7. From local to global: Configuring artificial spin ice 167

to nucleate. These domains are all in-phase, and can grow together coherently. First seen with

p = 4a and evident also for wider spacings, T1 domains of opposite phase begin to appear

in regions between the pinning centres. These lead to di�erent topological defects above the

antiferromagnetic order, including small T2 domain walls and T3 pairs [Fig. 7.11(c,f)] These

structures are also observed in thermal annealing experiments [79, 273].

From our analysis of the �uctuations, the in�uence of a pinned spin extends to about 6a.

Beyond this, we would expect regions more than 6a from a pinning site to behave more like

unpinned square ice, in which the usual quenched disorder acts as nucleation sites. Clearly,

when the T1 domains around such quenched disorder region are out-of-phase, then domain

walls form. For p > 6a, the pinning sites are far enough away that their e�ects become

indistinguishable from random quenched disorder and the vertex statistics tend to the p = 0a

case. This is con�rmed by both experiment and simulation.

7.5.3.2 Odd pinning. Arrays with odd pinning exhibit features distinct from those of the

even case. Population statistics and typical vertex maps are shown in Fig. 7.12 and Fig. 7.13,

respectively. When p = 1a, the islands in one entire sublattice are pinned. Considering just

spins in the other, free, sublattice, the 2nn-L dipolar interaction promotes chains of ferromag-

netically ordered islands, while the 2nn-T interaction ensures that these chains are arranged

antiparallel. In this way, pinning results in a system in which the dominant free interaction

is that between second nearest neighbours. Thus, the highly constrained h1a-ASI hosts a T2-

dominated array with alternating stripes of uniform magnetisation.

In the case of h3a-ASI, the T1 ground states which nucleate at adjacent pinning sites are

out-of-phase. This leads to the formation of an intricate network of T2 domain walls along

with isolated T3 pairs; in e�ect, the pinning elevates the frustration of the square lattice by

ensuring that a complete T1 ground state cannot form. Neither simulated nor experimental

�eld protocols produce a long-ranged ordered state.

As the pinning periodicity is lengthened, the density of topological defects drops as the

available area for in-phase T1 domains expand. For p ≥ 7a, the vertex populations and maps

converge to those of a regular ASI as seen in both experiment and simulation.
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Figure 7.10: Vertex statistics as a function of pinning period, p, for even pinning. Filled and open

symbols represent the results of simulation and experiment, respectively. When p = 2a, a complete

T1 ground state, i.e, 〈n1〉 = 1, is obtained based on �eld-demagnetisation alone. Above p = 6a,

the vertex statistics return to those of the unpinned system. Errorbars are less than the marker width.

Experimental statistics courtesy of VMP.
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Figure 7.11: Typical vertex maps for the case of even pinning using both simulation and experiment

[top and bottom rows, respectively]. For the case of p = 2a, an almost complete T1 ordering is attained

based on a �eld protocol alone. Each square represents a four-island square vertex. Experimental

con�gurations were measured using magnetic force microscopy. Experimental vertex maps courtesy

of VMP.



7. From local to global: Configuring artificial spin ice 169

1 3 5 7 9 11 13 15 17 19

Pinning period, p [a]

0.0

0.2

0.4

0.6

0.8
F

ra
ct

io
n

a
l

p
o

p
u

la
ti

o
n

,
〈n

i〉 (a)

T1

T2

T4T3 ,

Figure 7.12: Vertex statistics as a function of pinning period, p, for odd pinning. Filled and open

symbols represent the results of simulation and experiment respectively. For the highly constrained p =

1a lattice, a transition to T2 ferromagnetism is obtained in both experiment and simulation. Above

p = 5a, the vertex statistics return to those of the unpinned system. Errorbars are less than the marker

width. Experimental con�gurations were measured using magnetic force microscopy. Experimental

vertex maps courtesy of VMP.
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Figure 7.13: Typical vertex maps for the case of odd pinning using both simulation and experiment

[top and bottom rows, respectively]. For p = 1, there is a transition to striped, ferromagnetic phase.

Experimental vertex maps courtesy of VMP.
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7.5.3.3 Discussion. Two concluding paragraphs are apposite.

First, excellent agreement has been obtained between the model and the experiment. The

slight di�erence in population statistics observed in Figs. 7.10 and 7.12 are explicable by noting

that the �eld step in simulations is large compared with that of experiment. Generally, a smaller

the �eld step is better as it ensures that the system spends more time near to the coercive �eld.

This is akin to the e�ect we explored in Chapter 6. In that instance, it was a thermally-driven

phenomenon such that waiting longer in the vicinity of the critical point promoted a better

anneal. We quantify this e�ect in Fig. 7.14, where we show how the �nal vertex populations

scale as a function of the �eld step over two orders of magnitude. The experimental �eld step

is marked. Extrapolating the simulated populations back to the experimental �eld step gives

excellent agreement.
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Figure 7.14: E�ect of changing the �eld step, ∆B, on the vertex populations obtained after a �eld

protocol for (a) no pinning, and (b) p = 4a. The vertical, dashed line gives the experimental �eld

step, presented in units of the dipolar constant, D. It can be rescaled to a �eld value according to

D → D/(MSV ).

Second, the consequences of induced correlations are especially clear for the highest pin-

ning densities (p = 1aorp = 2a). Varying the pinning periodicity thus allows for engineering

vertex populations, and through this, it o�ers control over the resultant global magnetic tex-

ture of an array. As a corrolary, Fig. 7.15 shows the evolution of the four types during the �eld
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protocol (taken from simulation). Changing from p = 0a to p = 1a for example, allows for

population inversion between T1 and T2 vertices.

(a)

T2

T1

T3
T4

T3

T2

T2
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T4

p= 0a p= 1a

p= 2a p= 4a

(b)
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T3
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Figure 7.15: Typical vertex populations for (a) no pinning, (b) p = 1a, (c) p = 2a, (d) p = 3a as a

function of reduced �eld during demagnetisation. Both physical (lower axis) and reduced units (upper

axis) are given. The assumed coercive �eld,D = 30, is indicated by the dashed-dotted line. The system

size isL = 40 (6400 spins). Populations are shown for twenty independent realisations, with the mean

traced in each case by the black line. Oscillations at b ≈ 45D arise from the formation of T3 domain

walls.
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7.6 | Thermal processes

As we have seen, �eld demagnetisation simulations reproduce faithfully the experimental be-

haviour of the hybrid ice. Neither simulation nor experiment, however, establish de�nitively

the true nature of the long-range ordered ground state in the presence of pinning. To answer

this, we use feedback-optimised parallel tempering as described in Chapter 5. Fig. 7.16 displays

the heat capacity curves forhpa-ASI. As reminder, the location of the peak marks the transition

to the ordered phase. For undoped square ice, i.e., h0a-ASI, this peak occurs at TC = 7.2

D k−1
B . Even periodicities of the exchange bias pinning increase the critical temperature while

odd pinning periodicities lower it. For the case of p even, this can be explained by noting that

the pinning reinforces the ground state order; disrupting it requires larger thermal �uctuations.

For the p = 1a, a transition from paramagnetic to a zig-zag ferromagnetic phase is observed

at a much lower temperature. This is due to the reduced coupling strength as the dominant

interaction term is now the second-nearest-coupling. Ground states for the p = 1a and

p = 3a systems are shown in Fig. 7.17. A similar logic also holds for p = 3. Here, the regular T1

order is no longer supported, but rather disrupted by the T3 pairs. Fluctuations are present to

lower temperatures. In this way, local pinning allows for control of global critical quantities.

The h3a-ASI exhibits a ground state with two-fold degeneracy comprising a majority T1

ordering with T3 pairs at alternating pinning sites. During the transition from the disordered

paramagnetic phase to an ordered phase, the system spontaneously adopts one ground state

over the other. The T3 pairs—composed of adjacent vertices with charges,±2—are the mini-

mal excitation above the ground state that satisfy the pinning constraint. In this way, the e�ect

of pinning is qualitatively the same as that observed by Fallon et al. in the case of ion-irradiated

multilayer samples [332]. There, point-like defects that are introduced by a focused ion beam

promote the controlled formation of skyrmions. In our system, a large pinning �eld gives

rise to lattice sites which naturally host magnetically charged defects. We have found that this

occurs in both �eld and thermal annealing. Using pinning as a way to seed monopolar vertices

within the square ice array enables an interesting avenue for future development [35].
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Figure 7.16: Thermal averages for the speci�c heat capacity, cv , for di�erent pinning periodicities, p.

The unpinned, i.e, p = 0a, array is shown by the grey line. The inset shows the movement of the

critical temperature with p. Beyond p = 7a, there is little movement of the critical temperature at

least within the resolution of the simulation. In units appropriate to our arrays, 1D k−1
B ≈ 8000 K,

with a resolution in temperature of≈ 150 K. The data are taken from 10 independent simulations of

a 50× 50 vertex array (10000 spins).

Sp
in

 c
on

fig
ur

at
io

n
Ve

rti
ce

s

T1 T1 T2 T3 T4

p = 1a p = 3a GSI p = 3a GSII(a) (b) (c)

Striped FM phase Charge-ordered state

Figure 7.17: Thermal ground state for the p = 1a and p = 3a arrays in terms of their spin

con�guration [top row] and vertex maps [bottom row]. (a) In the case of the p = 1a system, all spins

within one sublattice are �xed. The remaining spins in the other sublattice order antiferromagnetically.

This leads to a striped ferromagnetic phase. (b,c) Ground states (GS) of the p = 3a admit charge-

ordered monopole/antimonopole pairs at the pinning sites. In this sense, pinning introduces a new

frustration into the lattice.
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7.7 | Summary

We have explored a hybrid arti�cial spin ice, composed of islands with both uniaxial and site-

speci�c unidirectional anisotropy. This variant of ASI exhibits di�erent magnetic textures

according to a controlled periodicity, p, which allows for a degree of con�gurability. Exchange-

bias is used to apply magnetic �elds at local sites of a square ASI. These sites, in turn, narrow

the dynamics in phase space and enable control over the ground state con�guration. This local

pinning o�ers a route to controlling correlations within arrays, allowing for the engineering of

vertex populations. As a corollary, we show that the conventional ground state of square ASI

can be achieved based on a �eld protocol alone forp = 2a—in e�ect, thermal demagnetization

without a thermal bath. Monte Carlo results of thermal annealing of this system, show that

this hybrid system allows for �ne scale tuning of critical phenomena. A variety of magnetic

textures is observed: from a zigzag ferromagnetic phase (p = 1a) to complete T1 ordering

attainable just through an external �eld protocol (p = 2a) to an unconventional ground state

with T3 excited pairs embedded in the antiferromagnetic T1 phase (p = 3a). The pinning

�elds then act as structured disorder which drive di�erences in vertex populations. In fact, pin-

ning sites could even be used to seed high energy magnetically-charged vertices within arrays,

o�ering a means to achieve true con�gurability within a single array. A natural extension to

the present work would be to create a thermally active form of this system in which the pinned

sites remain frozen while the remaining array is dynamic. Such a structure will o�er the op-

portunity of observing intrinsically interesting phenomena, such as the controlled creation of

magnetic monopoles, their dynamics, and phase transitions in the presence of random �elds.



8
Conclusions

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the �rst time.

Four Quartets, Little Gidding, T. S. Eliot

Since the �rst experimental realisation by Wang et al. in 2006 [8], arti�cial spin ices have

proven a fruitful playground in which to explore aspects of low-dimensional magnetism [66].

This thesis is o�ered entirely in that spirit of adventure. Here, we have played with both

the geometry of the underlying lattice and the introduction of structured disorder thereby

enabling us to study phase transitions and non-equilibrium phenomena. Super�cially, this

could be summarised as examining the interesting behaviour that arises when assemblies of

tiny magnets are thrown together. However, the tiny magnets in our arti�cial spin ices were not

just scattered randomly on the substrate. Rather, our aim was guided directly by computation

into areas which would expand the existing work in this �eld. Underpinning this thesis lie the

twin paradigms that have dominated the study of condensed matter for the past half century:

175
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that less is more and that sometimes more is di�erent. The �rst hints at the promise held

by nanoscale physics [333], while the second encapsulates the idea that complex, collective

behaviour can emerge through combining simple building blocks [334].

8.1 | Results

In Chapter 5, we described the pinwheel ice, which is created by rotating the islands in the

canonical square lattice through 45° about their centre. The square and pinwheel geometries

thus stand at either end of a continuum, with the rotation angle of the islands acting as a

proxy for tuning the interactions. In the square lattice, the dominant interaction is an an-

tiferromagnetic coupling between �rst-nearest-neighbours, while the relative degeneracy of

the pinwheel ice is determined by a weaker ferromagnetic interaction among more distant

neighbours. Using equilibrium Monte Carlo simulations, we described an intriguing phase

transition: one controlled not by temperature but by the anisotropic nature of the dipolar

interaction. This promotes a ferromagnetic-ordered state for geometries close to the pinwheel

lattice—an e�ect termed apparent ferromagnetism [1]. The transition is second order every-

where except at the critical angles where it appears �rst-order. Finite-size scaling suggests that

these geometries belong to the two-dimensional Ising universality class. For pinwheel systems,

the array boundary and extent act as an e�ective anisotropy which determines the domain

con�gurations within arrays.

In Chapter 6, we probed the nature of this predicted transition experimentally using in-

situ Lorentz transmission electron microscopy on thermally annealed cobalt samples. Con-

sistent with the numerical results of Chapter 5, a preference for ferromagnetic ordering was

observed in the pinwheel ice. Near to the transition angles, a planar ice-manifold was recovered.

The island rotation angle controls the extent to which the arrays reach equilibrium. This

allowed us to study the formation of defects—strings in the square lattice, vortices in the

pinwheel—across the two phases. These scale numerically in accordance with the Kibble-

Zurek mechanism for defect formation.

In Ref. [132], Sethna provides a framework for classifying phase transitions based on: (i)

identifying the broken symmetry; (ii) de�ning a suitable order parameter; (iii) examining the
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excitations; (iv) investigating the topological defects; and (v) interrogating their dynamics. To-

gether, Chapters 5 and 6 provide an almost complete account of the �rst four of these con-

ditions. In both square and pinwheel ice, as in all disconnected forms of arti�cial spin ice,

the broken symmetry arises from the Ising-like nature of the islands. The vertex populations

provide a suitable order parameter for mapping the transition, and topological defects are

observed in varying densities across the annealed arrays. Only the last of Sethna’s points—a

classi�cation of their dynamics—remains.

In Chapter 7, we outlined a hybrid arti�cial spin ice in which exchange bias is applied to

speci�c sites of the classic square lattice. The e�ect of the bias is to pin the magnetisation

of those islands, which provides a pathway connecting local correlations to global behaviour.

By varying the periodicity of pinning, critical phenomena are e�ectively tuned and di�erent

magnetic textures can be engineered. This degree of recon�gurability is a necessary step for

device-based applications.

8.2 | What’s next?

The results reported in this thesis prepare the ground for many avenues of future research.

Here, we brie�y discuss a selection, including some that are motivated directly by the work

discussed here, and others which, by their very nature, are more speculative.

8.2.1 Short-term

As regards the transition between square and pinwheel ice, what remains to be examined is

the thermally active dynamics across both phases. Only a persistent equipment malfunction

prevented this work from being included here.
1

Initial data in this area has been taken using

samples fabricated using focused electron beam lithography. These show correlated chains of

spin �ips in both square and pinwheel ice. Further work remains however, including repeating

the analysis along the transition angle between ferromagnetism and antiferromagnetism. In

any case, this is a task ideally suited to the use of fast pixelated detectors in electron microscopy.

These o�er frame rates in excess of 100 Hz, and are limited mainly by the available beam

1
A broken heating rod which proved di�cult for the manufacturer to repair because it had become obsolete.
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current [335, 336]. This is at least three orders of magnitude greater than the temporal res-

olution of comparable real-space techniques such as x-ray magnetic circular dichroism [34].

Even using soft x-ray photon correlation spectroscopy, which is limited to reciprocal space

information, most studies on art�cial spin ice appear limited to around 100 ms as a time for

image acquisition [337].

Often in this thesis, we have resorted to determining relaxation timescales via an Arrhenius

law with a constant energy barrier and prefactor. Forward �ux sampling by Desplat et al. has

shown that assuming a constant attempt frequency is not a sound approach in predicting

the retention time of isolated single domain elements [338]. This is because the activation

energy for a process can be provided by the heat bath in multiple ways. As to the energy

barrier itself, Koraltan et al. have found substantial variations for square spin ice, which re�ect

the multiple pathways for reversal [275]. In tandem therefore, a model for the lifetime of

thermally-activated magnetisation processes in arti�cial spin ice would o�er insights into the

inter-island interactions.

In a similar vein, the work in this thesis has highlighted the potential for using arti�cial spin

ice to explore the creation and destruction of long-range order in low dimensional systems.

Existing work in this area is not conclusive [339]. In fact, it is an open question whether

2D systems melt via an intermediate hexatic phase, as was recently observed in skymionic

lattices [340], or whether the transition is purely �rst order [341, 342]. Examining in-situ the

behaviour of arti�cial spin ice as it melts should o�er some insight into this topic.

Finally, probing systems exactly on the critical angle between square and pinwheel ice

would give the possibility of observing a �rst order magnetic phase transition in an arti�cial

spin system. Often, these transitions exhibit complex mixed phases which are still not well

understood [343].

8.2.2 Long-term

There remain several open questions in the �eld of arti�cial spin ice. These span both pure

and applied areas.

This thesis has worked exclusively within the two-dimensional Ising universality class, al-

though there exist many other types of phase transitions. Creating novel lattice geometries
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to host these—whether Kosterlitz-Thouless [18], Potts [17] or even more esoteric cross-over

behaviour [344]—will depend on advances in fabrication using techniques such as focused

electron beam induced deposition. As a concrete example, a natural extension to the work in

Chapter 7 would involve coupling the islands to a truly random �eld to create an arti�cial coun-

terpart of a spin glass. Previous studies in this area have considered tree-like Cayley lattices [345]

or positional disorder in the islands [346] but have not yet observed glassy dynamics.

Similarly, the �exibility of arti�cial spin ice o�ers the possibility of creating analogues to

phenomena observed in bulk crystal. In this vein, inducing frustration at interfaces between

tiling patterns, in bilayers, or in three-dimensional extensions of arti�cial spin ice o�ers ample

scope for investigation. Fig. 8.1 shows examples of these ideas. Combining tiling patterns that

support di�erent phases—square ice, say, joined to pinwheel ice—would o�er the opportunity

to study phase coexistence along edges [347] and perhaps even the possibility of engineering an

analogue of exchange bias. Motivated by recent results in graphene [348, 349, 350], we suggest

a Moiré superlattice composed of two stacked kagome sheets that are twisted with respect to

each other [351]. The e�ect of this twist on both equilibrium properties and the propagation of

magnetically charged vertices merits some investigation, especially in the context of proposed

magneto-resistive applications [352, 353]. Branford et al. showed previously that single sheets

of the kagome ice exhibited an anomalous Hall signal arising from chiral edge modes [354],

for which a similar phenomenon has also been noted in bilayer graphene [355]. Any modi�-

cations that reduce the energy barrier to the propagation of monopoles, or provide control

over reversal branching ratios [356] would prove signi�cant in this respect. Separately, we

envisage probing the spectral response of these systems and of three-dimensional arti�cial spin

ice more generally as a vehicle towards designing recon�gurable magnonic crystals. Coupling

such systems to a low-damping magnetic spacer layer, such as yitrium iron garnet, may allow

spin wave propagation to be directed via the choice of array microstate. Work in these areas

is ongoing [89].

Finally, perhaps the most exciting application lies in the realm of nanomagnetic computa-

tion and neural networks [66, 38], for which arti�cial spin ice could act as non-linear reser-

voir [357]. The initial building blocks of logic gates have been demonstrated [358, 37, 90],

although interfacing them with conventional circuity still proves di�cult. As of yet, there
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Figure 8.1: New horizons for arti�cial spin ice. (a) Phase coexistence at an interface between anti-

ferromagnetic square ice and ferromagnetic pinwheel ice [red and blue regions, respectively]. (b) A

twisted superlattice, composed of stacked sheets of kagome ice, exhibits a unit cell which changes with

mismatch angle. By changing both the mismatch and the interlayer spacing, control over reversal modes

may be possible. (c) A spectral analysis of a three-dimensional form of arti�cial spin ice, in which islands

in one sublattice are raised through a height, h, out of the plane with respect to the other, may prove

useful for probing monopole decon�nement.

exists no practicable method of adjusting interactions—the weights—on-the-�y in an arti-

�cial spin ice array. This necessarily limits their usefulness as elements of a recon�gurable

neural network. However, building on an idea expressed in Ref. [39], localised application of

temperature to reduce the moment of selected islands may prove one such route to writing

microstates directly.

8.3 | Summary

What originally attracted the author to study arti�cial spin ice was the fact that it remains

feasible to combine experiment, theory and modelling. We began this thesis by considering

the behaviour of simple, elemental building blocks. We end by returning to where we started,

now armed with an enhanced understanding of their emergent behaviour, and with a program

for future investigations into arti�cial spin ice that envisages “no end of all our exploring”.
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A
Atomic force microscopy on FEBID ASI

Samples were fabricated using focused electron beam induced deposition (FEBID) of cobalt

(Co) on Si3N4 membranes with conditions as reported in the Chapter 6. Atomic force mi-

croscopy was performed using a Digital Instruments DimensionTM 3100 Scanning Probe

Microscope operated in tapping mode. Measurements were taken by Y. L. and the author.

The author processed the data shown here. Fig. A.1 presents thickness pro�les of length 5 µm

taken across two lines of 7 parallel islands in a typical square ice array. Both pro�les suggest

that islands closer to the centre of the array are thinner by approximately 1 nm, consistent

with the e�ects of gas di�usion during deposition. Fig. A.2 gives thickness pro�les taken across

the central portion of six islands (labelled 1-6), each drawn from a pinwheel ice sample. The

islands are located in di�erent environments: along the edge of the array (1); at corners (2,

3); within the array but still near to an edge (4); and closer to the centre (5, 6). As with the

data in Fig. A.1, islands closer to the central portion of the array are thinner by about 1 nm.

The thickness pro�les of individual islands are Gasusian-shaped, rather than the sharp-edged,

rectangular pro�les common to electron beam lithography. In this respect, they are similar to

the pro�les reported in Ref. [359], except our structures are thinner, by necessit by an order
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A. Atomic force microscopy on FEBID ASI 183

Figure A.1: Thickness pro�les of parallel islands in a typical θ = 0° square spin ice array. (a) Successive

scans of a portion of a FEBID square ice array. The approximate locations of islands within a single

vertex are shown in panel (ii), right hand bottom corner. Thicker carbon deposits—sputtered onto

the membrane prior to Co deposition—create surface roughness. These can dwarf the thickness of the

pattern. (b) Line pro�les through two sequences of seven parallel islands corresponding to the dashed

marks in (a). The thickness decreases from approximately 3 nm to 2 nm closer to the centre of the array.

This �gure appears in the supplementary to Ref. [2].

of magnitude. Localised carbon deposits can dwarf the thickness of particular islands e.g. the

irregular white spots in (ii) of Fig. A.2.



A. Atomic force microscopy on FEBID ASI 184

Figure A.2: Thickness pro�les of speci�c islands in a typical θ = 45° pinwheel spin ice array. (a) Suc-

cessive scans of a portion of a FEBID pinwheel ice array. Six islands located in a variety of positions

are marked in (iii). (b) Thickness pro�les of those six islands taken along their width. (c) Table giving

the average thickness of the islands over their central portion, neglecting the elongated tails common to

FEBID de�ned structures. This �gure appears in the supplementary to Ref. [2].
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