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Abstract

Modern science has been progressively moving towards the study of increas-

ingly complex structures, investigating not only their individual components

but also their interactions, dependencies and co-existence as a whole. This

thesis is concerned with optimal experimental design methodology for the

study of such phenomena.

A decision-theoretic framework for optimal experimental design is adopted in

this thesis. The employed methods operate based on an optimality criterion,

quantifying the benefit incurred from each alternative experimental design —

commonly known as the expected utility. An analytical expression is, in most

studies of interest, not available for this quantity and so estimation techniques

are typically required for its evaluation.

Currently, existing estimation methods fail to adequately address issues aris-

ing in optimal design problems within a modern scientific framework. This

is predominantly attributed to the considerable computational cost incurred

by consideration of mathematical models sophisticated enough to adequately

capture the complexity of the studied structures. In face of this restriction,

researchers often resort to consideration of rather simplistic models, hindering

the progress towards a more realistic representation and better understanding

of such systems.

Efficient methodology for evaluation of the expected utility constitutes the

first main contribution of this thesis. The presented approach adopts a

flexible, non-parametric framework combined with variational approximation

techniques that translate the initial evaluation problem to an alternative, more

tractable problem, solution of which is achieved through more efficient and

computationally inexpensive procedures. A problem shift is thus achieved



under which, estimation of the expected utility is accomplished through its

corresponding dual problem. This alternative representation is shown to in-

cur considerable computational gains compared to traditionally adopted ap-

proaches without compromising the quality of the produced estimates.

The proposed estimator paves the way to an autonomous, comprehensive

framework for the optimal study of complex phenomena within a realistic

time frame, currently posing an ongoing challenge. Establishment of such a

setup composes the second main contribution of this thesis. The proposed

framework attempts to emulate a typical research scheme of closed-loop data

collection, knowledge update and optimal decision making which, combined

with instrument control software, facilitates modern scientific studies under

minimal human input. The class of Bayesian optimisation algorithms is finally

considered, allowing for truly optimal decision making during the established

procedure. This class of algorithms, although particularly well-suited to op-

timal experimental design problems, has been given little consideration in

the relevant literature. Their integration to the proposed framework, thus,

constitutes an additional contribution of this thesis.

Application of the adopted experimental design framework is examined in

three increasingly challenging case studies, addressing a broad range of issues

typically encountered in optimal design problems. The first study explores

the optimal experimental design for a model discrimination problem adopting

a set of simpler, polynomial models. An initial assessment of the proposed

estimator and a comparison with the currently adopted methodology is per-

formed, under a setup where application of the latter is not hindered by

the incurred computational complexity. The subsequent two cases represent

real-life problems of optimal experimental design for model inference in Sys-

tems Biology and Spectroscopy, employing models under which, traditionally

adopted methods can become from highly inefficient to intractable and thus

alternative approaches are needed for the study of such phenomena.
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Chapter 1

Introduction

Decision making underlies any action faced with uncertainty. Due to the inherent com-

plexity of modern phenomena, it can, nevertheless, be a challenging and unintuitive task.

The work presented in this thesis aims to establish a comprehensive framework for the sci-

entific study of such systems, ensuring optimal decision making under uncertainty. Focus

is placed on studies where observation of the examined phenomenon is achieved through

experiments. Additional challenges arise under this setup as dependence of the employed

procedures on time and resource intensive tasks often places limitations on their conduct.

Optimal decision making while adhering to the imposed restrictions, commonly referred

to as optimal design, is a predominant topic of study in this thesis.

A modern direction towards a more complex, systematic view of studied phenom-

ena has been appearing in numerous scientific disciplines such as Biology (Klipp et al.,

2016), Ecology (Ricklefs et al., 1993), Physics (Pickup et al., 2005). This approach is

thought to be key for better understanding and analysing such intricate, dynamic sys-

tems. Conveyance of these structures relies on highly sophisticated mathematical models,

inducing computationally intensive procedures that, often obstruct the optimal design of

experiments under traditionally adopted methodologies due to the incurred, unrealistic

waiting times (Drovandi and Pettitt, 2013; Overstall et al., 2019). As a result, current

studies are often limited to suboptimal experimental designs (Ryan et al., 2014; Ryan,

2003) or to consideration of rather simplistic models that do not adequately capture the

behaviour of the examined system (Long et al., 2013; Overstall et al., 2017). Such issues

1



1. Introduction

are more closely considered in the subsequent chapters, outlining the need for a more

efficient experimental design framework that allows the truly optimal study of modern

scientific systems. Accomplishing this task is essential to progressing our understanding

of natural phenomena.

The work presented in this thesis aims to advance existing experimental design method-

ology towards the truly optimal study of natural phenomena through the following main

contributions:

- development of efficient estimation methodology for evaluation of the expected

utility, an optimality criterion that constitutes a vital component of the adopted

decision-theoretic framework. Estimation of this quantity is typically necessary,

however, traditionally adopted methodology has been shown to become highly in-

efficient under the targeted class of problems (Ryan et al., 2016). The proposed

approach attempts to overcome these issues through a combination of variational

approximation and non-parametric techniques, providing a highly efficient and com-

putationally tractable estimator that — unlike existing methodology — does not

rely on cumbersome and computationally demanding procedures. The presented

methodology constitutes a novel contribution to the research field of optimal exper-

imental design as the proposed estimator has never been considered in this context

before. The significant advancement incurred from its employment has the poten-

tial to transform modern scientific research, allowing the truly optimal study of

natural phenomena through experiments within realistic timelines.

- Establishment of a comprehensive framework for optimal experimental design on the

basis of the proposed efficient estimator. The adopted setup provides an automated,

closed-loop process composed of the stages typically employed in a research study:

data collection, knowledge update and decision making. At each new cycle of the

proposed procedure, experimental data obtained up to that point are incorporated

into the study, guiding future decisions. This setup allows the full exploitation

and most efficient allocation of experimental resources as the produced data serve

two purposes: 1) answering different research questions of interest such as model

inference or prediction tasks as per their initially intended use. 2) In addition,

2



1. Introduction

already obtained data can be incorporated into the study during the knowledge

update stage of the adopted procedure and thus facilitate better-informed optimal

decisions regarding subsequent experiments. The proposed sequential and adaptive

process poses a further contribution of this thesis towards the development of a

truly optimal experimental design framework for the study of natural phenomena.

- Integration of efficient optimisation procedures, through the class of Bayesian opti-

misation algorithms, for maximisation of the expected utility over the experimental

design space in order to identify the set of optimal experimental conditions. Al-

though similar work exists in the literature, Bayesian optimisation algorithms have

only been considered to a very small extent within the optimal experimental design

literature despite their remarkable suitability to this class of problems. In addition,

this class of optimisation algorithms has never been considered within the adopted

sequential, adaptive framework and in conjunction with the proposed variational

estimator. Unlike alternative optimisation procedures, Bayesian optimisation pro-

vides a highly efficient setup, accomplishing a systematic and timely search of the

design space, producing truly optimal solutions. On the contrary, an incomplete

search is likely to induce suboptimal experimental designs, having failed to consider

a sufficiently broad range of possible options.

The following outline is adopted: Chapter 2 provides an introduction to the compo-

nents and formulation of a decision problem, introducing notions such as the utility and

expected utility of a particular decision. Optimal experimental design problems are sub-

sequently presented from a decision-theoretic perspective and are particularly examined

in the context of model discrimination problems.

A review of currently adopted methodologies for the solution of optimal design prob-

lems is presented in Chapter 3 and common, associated challenges. Particular focus is

placed on issues arising in studies of complex phenomena due to their reliance on compu-

tationally demanding mathematical models. The inability of existing methods to tackle

ongoing challenges and the need for more efficient approaches, better-suited to optimal

experimental design problems under this setup are outlined.

This problem is further considered in Chapter 5, wherein a novel estimation method,

3



1. Introduction

addressing ongoing issues, is proposed. The adopted estimator is highly efficient and

reliant on less computationally intensive procedures than traditionally adopted methods,

without compromising the quality of the produced estimates. The presented approach

has not been previously considered in the context of optimal experimental design.

The proposed estimator paves the way to a fully automated optimal experimental de-

sign framework for the scientific study of natural phenomena within realistic time scales,

an endeavour that had been previously hindered by the challenges associated with cur-

rently adopted methodologies. The considered framework is examined in Chapter 6,

establishing a closed-loop setup of data collection, knowledge update and optimal de-

cision making for the study of modern phenomena through experiments that requires

minimal input from the researcher. As review of a considerably large collection of po-

tential decisions may, often, be required for optimal decision making, the efficient class

of Bayesian optimisation algorithms and its integration to experimental design problems

are also presented therein.

Chapter 7 proceeds to examine implementation of the considered methodologies for

optimal experimental design on a commonly employed benchmark study of model dis-

crimination. Simple polynomial models are adopted in this study, allowing an initial

assessment of the competing estimators on a case example where an arbitrarily accu-

rate representation of the true estimated value can be established. This comparison is

typically not possible under more complex models.

Optimal experimental design for model inference in Systems Biology is subsequently

considered in Chapter 8. Description of the observed system relies on sophisticated and

therefore, computationally demanding models. This case study constitutes an initial case

example under which, traditionally adopted methods typically fail. The improvement

incurred from implementation of the proposed approach in comparison with the existing

methodology is explored. The proposed estimation method is subsequently exploited to

establish a sequential and adaptive framework, providing an efficient and fully automated

setup for the study of biochemical systems.

Application of the proposed framework to another real-life problem is considered in

Chapter 9, studying the kinetics of fluorescent molecules in heterogeneous environments.

The studied problem represents a case example in which the computational cost of tradi-

4



1. Introduction

tionally adopted methods is prohibitive and allows assessment of the examined method-

ology on a high dimensional output space.

The thesis concludes with a summary and a brief discussion on possible directions of

future work in Chapter 10.

5



Chapter 2

Background

This chapter provides an introduction to optimal experiment design from a decision-

theoretic perspective and sets the foundation for the methodological work presented in

this thesis.

2.1 Introduction to decision theory

The complexity of modern phenomena presents future decisions with numerous possi-

bilities. The challenge of discriminating among potential decisions under uncertainty

introduced by factors that are unknown but, nonetheless, impact the observed outcome

forms a decision problem.

Decision problems appear in many forms: they may describe a resource allocation

task, the treatment assignments in clinical trials or the experimental conditions entailing

the study of natural phenomena. This section provides an introduction to the fundamen-

tal ideas involved in the formulation and solution of a decision problem: Section 2.1.1

examines the individual elements composing a decision problem, Section 2.1.2 presents

an optimality criterion for comparison of potential outcomes while a criterion quantifying

the benefit associated with a particular decision is established in Sections 2.1.3 and 2.1.4.

6



2. Background

2.1.1 Decision problems

Regardless of the system under study, consideration of a decision problem relies on inter-

pretation of potential outcomes along the lines of an assumed underlying structure. Such

assumptions are often expressed in the form of a mathematical model f (⋅ ∣ θ,d) where θ

and d represent parameters determining the behaviour of the system.

The distinction between parameters θ and d reflects their distinct nature. The set

of model parameters θ is introduced to address the uncertainty around different as-

pects of the studied system and includes factors that may impact its behaviour but are

beyond ones control. On the other hand, d refers to the controllable factors which can be

viewed as a collection of potential decisions associated with different observed outputs.

Particularly, considering the previously examined example in which an observed system

is studied through experiments, model parameters θ may refer to unknown factors such

as the interactions between the system components while d to controllable elements, for

instance the temperature under which a system is observed.

In light of an observed phenomenon captured in the form of dataset y, f (y ∣ θ,d)
quantifies the degree to which these observations agree with ones imposed assumptions.

In a statistical context, evaluation of f (y ∣ θ,d) is often referred to as the likelihood of

observing dataset y under the assumed structure f and parameters θ and d.

The following key components thus form the basis of any decision problem:

- an observed dataset y ∈ Y ,

- model f (y ∣ θ,d) parametrised by θ ∈ Θ,

- a decision d ∈ D.

Each decision d and choice of model parameters θ are associated with a distinct

output y and so from a decision-theoretic perspective, each potential scenario (θ,y,d)
can be viewed as a unique event e from the event space E ⊆ Θ ×Y ×D.

In its simplest form, an optimal decision problem seeks to identify the decision d

that instigates the most beneficial event e. This decision is considered as the optimal one

and will be denoted by d∗. Under uncertainty, a decision d may, however, be mapped to

numerous possible parameters θ ∈ Θ and thus multiple potential outcomes y ∈ Y . The

7



2. Background

problem is, in this case, restated to define d∗ as the decision that is, on average, associated

with the most beneficial events e = (θ,y,d). A formal expression of this formulation is

established in Section 2.1.3, however a global optimality criterion enabling quantification

and thus comparison of the benefit incurred from potential events is essential for this

definition and, therefore, introduced in the following section.

2.1.2 Optimality assessment

Assumption of an optimal decision d∗ implies the existence of an ordering between po-

tential events, establishing that: in light of two events e = (θ,y,d) and e′ = (θ′,y′,d′),
decision d under model parameters θ and observed data y is more beneficial than decision

d′ under θ′ and resulting y′ in the context of the problem under study. This statement

will be symbolically represented by relation ≻ and so the representation d ≻ d′ indicates

that decision d incurs higher benefit over decision d′. Under the assumed order, the

optimal decision is such that fulfils:

d∗ ⪰ d, for all d ∈ D . (2.1)

Establishing an order among potential decisions requires the consideration of multiple

contributing factors and so comparison of different alternatives is a complex and often

unintuitive procedure. The problem is simplified with the definition of a global criterion,

often referred to as the utility function u, that quantifies this ranking through the

relationship:

d ⪰ d′ ⇐⇒ u(e) ≥ u(e′) . (2.2)

In other words, the more beneficial the decision of a particular event e is, the higher its

corresponding utility u(e) will be too.

Relationship (2.2) maps each decision d to only one event e thus failing to address

the presence of uncertainty in most decision problems. This issue is formally addressed

in Sections 2.1.3 and 2.1.4. Definition of the utility function is subjective and relies of the

decision-maker’s interpretation of the ‘benefit’ and the targeted objective as illustrated

in Section 2.2.3.
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2.1.3 Expected utility from a Bayesian perspective

The previously introduced utility function is essential to the formulation of optimal de-

cision problems, establishing a ranking between potential events, incurred by their cor-

responding decisions. However, model parameters are unknown factors of a decision

problem with each potential realisation of θ leading to a distinct event e. As a result,

a decision may in reality be linked to numerous potential events. The optimal decision,

under this setup, is defined as the decision associated with the events incurring the high-

est average benefit. This section formalises this convention by introducing the idea of

the expected utility in a Bayesian context. This criterion is briefly explored in Section

2.1.4 from a frequentist viewpoint.

In a Bayesian framework, uncertainty over θ is captured by an assumed distribution

with corresponding density function p(θ) that reflects the decision-maker’s prior beliefs

over the possible values of parameter vector θ. The assumed distribution is subjective,

often decided based on previous information and expert knowledge without relying on

observation of y and is referred to as the prior distribution.

Similarly, the distribution over Θ×Y corresponding to a particular decision d is known

as the joint distribution, denoted by P and has a corresponding probability density

function (p.d.f.) p(θ,y,d).
In summary, assessing the average benefit incurred from a decision d relies on consid-

eration of the following characteristics associated with each potential event (θ,y,d):

- the utility u(θ,y,d) of the event,

- the probability p(θ,y,d) of its occurrence.

A summary of this process is subsequently obtained in the form of the expected utility

of each decision d:

U(d) = E [u (θ,y,d)]

= ∫ u (θ,y,d)p (θ,y,d) d (θ,y)

= ∫ u (θ,y,d) f (y ∣ θ,d)p(θ) d (θ,y) . (2.3)
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While the term p(θ) is technically chosen to reflect the choice of d, it is generally

assumed that the prior assumptions are the same for each case. However, if there is

evidence to support the contrary, then expression p(θ ∣ d) should be used instead.

It may also be, in some cases, sensible to assume that not all events occur at the same

cost. This is often addressed with the use of a cost function c (θ,y,d) quantifying the

resources required for observation of event (θ,y,d). Expression (2.3) can in such cases

be modified accordingly and so the expected utility takes the following form:

U(d) = E [u (θ,y,d) − c (θ,y,d)] .

Henceforth, the cost function will be omitted unless there are reasons to believe that the

cost among different events varies. In any case, the optimal decision will be chosen as

the one incurring the highest utility over D or:

d∗ = arg max
D

U(d) . (2.4)

Decision-making may often be achieved in more than one stages where newly obtained

information is used to assist in future decisions taking the form of an iterative procedure.

These are often referred to as adaptive or sequential designs. After observation of

the system, new data can be incorporated through the likelihood into the posterior

distribution of θ via Bayes’ theorem:

p(θ ∣ y,d) = f(y ∣ θ,d)p(θ)
p(y ∣ d) . (2.5)

The posterior distribution represents ones updated beliefs in light of new knowledge.

The term p(y ∣ d) will be referred to as the marginal likelihood of y and provides a

summary of the likelihood of y averaged over Θ:

p(y ∣ d) = ∫ f(y ∣ θ,d)p(θ)dθ . (2.6)

Consideration of a prior distribution over θ has been much criticised in the sense that

choice of it is subjective and construction of the prior is artificial rather than naturally
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appearing in a problem. As Robert (2007) stresses on these claims, incorporating prior

probabilities into a problem under study intends to summarise the current knowledge

one has (or does not have) about the parameters rather than to implicitly state that

the parameters have been generated from the prior distribution. It is also important to

consider that in a decision-theoretic framework one is often dealing with problems under

uncertainty and so subjective thinking is the only tool available until more information

becomes known. In fact, the ability to incorporate ones informed views and logical

reasoning seems like a natural process in any real-life decision-making problem. Most

importantly, choice of the utility function is itself subjective and relies on the decision-

maker’s critical thinking and interpretation of the problem under study. More specifically,

as Jaynes (2003) and numerous other authors demonstrate, choice of the prior can have

as much of an effect in the resulting optimal decision as that of a utility function and so

considering the idea of prior distributions arbitrary and invalid should motivate one to

reject decision theory altogether.

Although these arguments are well-known among the scientific community, many

researchers appear sceptical towards the Bayesian viewpoint and prefer alternative ap-

proaches. The frequentist approach is briefly considered in Section 2.1.4.

2.1.4 Expected utility from a frequentist perspective

In Section 2.1.3, uncertainty over E was addressed, in a Bayesian context, by assigning

a prior distribution to the unknown parameters and marginalising the utility over the

corresponding space to obtain the expected utility of a particular decision d. In a fre-

quentist framework, rather than considering a range of possible values for θ, one ‘optimal’

value θ∗ is used instead. Optimality is defined in terms of the likelihood function and

so, θ∗ = arg max
Θ

f (y ∣ θ,d). The optimal θ∗ is commonly referred to as the Maximum

Likelihood Estimate (MLE). Under this setup, the expected utility finds expression in:

U(d) = ∫ u (θ∗,y,d) f (y ∣ θ∗,d)dy , (2.7)

Considering expressions (2.3) and (2.7), two possible interpretations of the expected

utility arise respectively:
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- from a Bayesian viewpoint, it expresses the weighted average of the utility function

over space Y , averaged over all possible values of θ,

- from a frequentist viewpoint, the expected utility represents the weighted average

of the utility function over space Y , evaluated at one particular value of θ that is

considered as the optimal one.

As opposed to the Bayesian framework, a frequentist approach operates under the

assumption of a ‘true’ value of θ which, therefore, attempts to find. The expected utility

can in that sense be conceived as the benefit of making a decision d repeatedly under the

true value θ∗. As a result, θ∗ in expression (2.7) is fixed and there is no longer a need

for marginalisation over the space Θ.

Contrarily, as previously discussed in Section 2.1.3, definition of the expected utility

from a Bayesian standpoint treats θ as an unknown quantity and quantifies the uncer-

tainty around its potential values by imposing a prior distribution on them. A value of

θ associated with an observation y that agrees with the assumed underlying structure

f will be assigned a higher probability and similarly a value generating predictions that

appear unlikely under f will be assigned a lower probability. When making a decision

both values will be, nonetheless, taken into account with their corresponding probability

acting as a weight on the amount of influence each value of θ should have in reaching a

decision. However, when adopting a frequentist approach, the average utility expresses

the utility function evaluated over different noisy versions of a ‘true’ dataset y weighed

by the frequency with which each version is observed.

As briefly discussed in the subsequent Chapter 3, optimal experimental design within

a frequentist framework is, in its current state, restrictive and difficult to generalise to a

broad class of problems, particularly those targeted in this thesis. On the contrary, the

preferred Bayesian methods offer a particularly flexible and efficient setup for addressing

such cases, as further demonstrated in the remaining of this thesis.
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2.1.5 Existence of the expected utility as a decision-theoretic

criterion

This section presents an axiomatic framework, ensuring the existence of the utility func-

tion along the lines of Section 2.1.2. The examined framework regulates the decision

space, imposing a strict ordering among potential decisions. As property (2.2) would

be meaningless without the existence of such an order, this framework is essential for

guaranteeing the validity of the utility function as a decision-theoretic criterion and as a

consequence, of the expected utility U(d) under any of the two specifications examined

in Sections 2.1.3 and 2.1.4.

Two different approaches are examined in this section: the ordering conditions estab-

lished by Abraham Wald (Wald, 1950) and a more general framework laid by Frederic

Bohnenblust, Lloyd Shapley and Seymour Sherman and later extended by David Black-

well in Blackwell (1953). The two approaches were independently developed during the

same time. Although there is a significant overlap between the two views both explore

areas not covered by their alternatives. The work presented in this thesis borrows el-

ements from both frameworks: while Wald’s system is predominantly followed, certain

desirable intrinsic properties induced from Blackwell’s interpretation are integrated too.

Wald’s framework Wald’s approach establishes an imposed ordering among possible

events, expressed by Conditions 1-4. Such a setup guarantees the existence of U(d) as

an optimality criterion, as subsequently stated in Definition 1.

Under the assumption of the distinct events e, e′, e′′ ∈ E with associated decisions

d,d′,d′′ ∈ D and distributions P, P ′, P ′′ respectively, conditions 1-2 ensure the existence

of a strict ordering among any two decisions thus imposing a clear distinction between

them.

Condition 1. Exactly one of the following three relations must hold: d ≺ d′, d = d′,
d ≻ d′.

Condition 2. If d ⪯ d′ and d′ ⪯ d′′, then d′ ⪯ d′′.

Condition 3 ensures that when an order is established between two decisions d and

d′, then this order is not affected in light of a new, unrelated decision d′′.
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Condition 3. d ≺ d′, if and only if, ad + (1 − a)d′′ ≺ ad′ + (1 − a)d′′, for any a ∈ (0,1).

Lastly, Condition 4 suggests that no ordering can be so extreme that it remains

unaffected by any transformation applied to it. In other words no event can have such

low (or high) utility that no matter how great an incentive (or hindrance) one assigns to

it, it is still considered of the lowest (or highest) benefit.

Condition 4. If d ⪯ d′ ⪯ d′′, then there exist a ∈ (0,1) and b ∈ (0,1) such that: bd+ (1−
b)d′′ ⪯ d′ ⪯ ad + (1 − a)d′′.

The following definition emerges from the fulfilment of Conditions 1-4:

Definition 1. (DeGroot, 1970) Let d and d′ be two decisions with associated parameter

spaces Θ ×Y, Θ′ ×Y ′ and distributions P,P ′ respectively. it will be said that, decision d

is preferred over decision d′, or d ⪰ d′, if, and only if, U(d) ≥ U(d′).

Definition 1 indicates that, the relationship between alternative decisions is fully cap-

tured by their corresponding expected utilities.

Bohnenblust, Shapley and Sherman’s framework A more general framework was

developed independently by Bohnenblust, Shapley and Sherman in an unpublished work

and was further developed by Blackwell (1953). The methodology focuses on ranking

of experiments and underlies but is not limited to Wald’s decision-theoretic approach.

Bohnenblust et. al. use the loss incurred by the occurrence of a particular event as

their ranking metric. A direct correspondence between loss and utility functions is es-

tablished by defining the loss as the negative utility. Under Wald’s decision-theoretic

framework, optimality is, in that case, achieved when the minimum expected loss is

attained. Bohnenblust, Shapley and Sherman propose that:

Definition 2. (Bohnenblust, Shapley and Sherman, unpublished work) Decision d with

corresponding space (Θ,Y) is more informative than decision d′ with corresponding

space (Θ′,Y ′), if for every (θ′,y′) ∈ (Θ′,Y ′) incurring loss l(θ′,y′,d′) there exists a

vector (θ,y) ∈ (Θ,Y) such that l(θ,y,d) = l(θ′,y′,d′). Relationship
(BSS)
> will be used to

denote that one decision is more informative than another under the given definition and

so the previous sentence can be restated as: d
(BSS)
> d′.
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In a continuation of this work, Blackwell poses the question of sufficiency of the

benefit incurred from a particular decision d in order to deem occurrence of decision d′

non-important.

An illustration of ‘sufficiency’ from a Bayesian perspective is provided in the following

example: when considering an estimation problem a decision d is sufficient if for every

a priori distribution of parameters, the a posteriori distribution under d is the same as

under the union of every possible decision d ∈ D. In other words, decision d captures

as much information as would have been provided by every potential d ∈ D. Blackwell

(1951) further proves that d
(BSS)
> d′ implies that d

(B)
> d′, where relationship

(B)
> represents an

ordering under Blackwell’s extended framework.

The following result arising from Blackwell’s axiomatic framework will play an impor-

tant role in laying the foundation for the proposed methodology presented in Chapter 6.

Blackwell (1953) shows that, sufficiency of a decision d can be translated in terms of the

variability present in the corresponding distribution. Particularly, d is sufficient for deci-

sion d′ when the corresponding distribution P is more variable than P ′. Variability of a

distribution is reflected through (2.3), with Blackwell introducing the additional assump-

tion of a convex utility function. The idea behind this is that, as convex functions obtain

larger values over extreme regions, the resulting expected utility U(d) = E [ϕ (θ,y,d)]
acts as a measure of dispersion of distribution P . Certain choices of ϕ result to a well-

known dispersion measure known as the f−divergence (Ali and Silvey, 1966). Under

this setup, decision d inholding lower f−divergence compared to decision d′ implies that

there exists a set of prior distributions such that d
(BSS)
> d′ and therefore d

(B)
> d′. In addition,

convexity of ϕ ensures that the returned optimal point will be global rather than local.

The idea of using f−divergences as interpretations of the expected utility is revisited in

Chapter 5.

2.2 Introduction to experimental design

This section introduces a class of decision problems concerned with the optimal design

of experiments. Section 2.2.1 focuses on the individual components of an experimental

design problem while Section 2.2.2 examines its connection to decision problems and
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employs the previously introduced formulation to tackle them. In Section 2.2.4 focus is

placed on optimal experimental design targeting model discrimination problems.

2.2.1 Experimental design

In studies of natural phenomena, direct observation of a studied system is often not

possible and so inference based on observations obtained from their different components

through experiments holds an essential part. The obtained knowledge may subsequently

be used to facilitate statistical analysis such as parameter inference, hypothesis testing,

model selection or prediction.

Modern scientific research is often concerned with analysis of complex phenomena

characterised by numerous components and their interactions. Obtaining measurements

from the different components typically relies on experimental procedures that are as-

sociated with numerous limiting conditions such as employment of resource intensive

practices (Ryan, 2003) or adherence to regulatory requirements (Overstall et al., 2019),

placing constraints on the observations available for consideration. Optimal experiment

design methods can thus be employed to optimally allocate the available resources under

these restrictions.

In a setup similar to the decision-theoretic framework of Section 2.1, the set of pa-

rameters consists of controllable and random unknown components. The latter group is

assumed to be beyond the experimenter’s control and are incorporated into the study as

model parameters θ ∈ Θ. On the contrary, the former refers to experimental condi-

tions that are purposely set to specific values, with interest lying on observation of their

impact to the studied phenomenon. Optimal experimental design, thus, seeks the condi-

tion under which the most beneficial impact relative to the studied objective is achieved

while accounting for the uncertainty present through θ. The vector of experimental pa-

rameters will be denoted by δ ∈∆ while the experimental condition incurring the highest

benefit, also referred to as the optimal experimental condition, by δ∗.
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2.2.2 Optimal experimental design as a decision problem

The foundations of the experimental design framework, from a decision-theoretic per-

spective were first laid by Wald (1950) and Schlaifer and Raiffa (1961) and were further

established by the review of Lindley (1972).

Summarising from the previous section, an experiment refers to the process of observ-

ing a produced output related to a particular set of experimental conditions and model

parameters. Each distinct experiment can thus be thought of as an event e = (y,θ,δ).
The output y depends on choice of experimental condition δ and so, selection of a par-

ticular δ poses a decision.

Adopting the decision-theoretic framework of Section 2.1, the benefit incurred from a

particular experiment will be quantified through a utility function u evaluated for each

experiment (θ,y,δ). Finally, to account for the uncertainty over Θ × Y the expected

utility U(δ) in (2.3) is used to assess the optimality of a potential experimental condition

δ.

Unfortunately, analytical evaluation of U(δ) is only possible in simple problems, for

example, those considering conjugate priors and so a considerable part of the relevant

literature is devoted to the problem of efficient expected utility estimation. Chapter 3 ex-

plores available estimation methods as well as challenges involved in existing approaches

while Chapter 5 proposes a new approximation method tailored to model selection prob-

lems that has not been previously considered in the context of experimental design.

2.2.3 Common utility functions

The subjectivity in choice of the utility function and its dependence on ones objectives

has been previously considered in Section 2.1.2. Some examples of utility functions,

commonly used in experiment design are provided below:

- The 0-1 utility is frequently adopted in the context of hypothesis testing. Assum-

ing that the truth for a hypothesised situation is known, the 0-1 utility function

indicates whether, under a particular event e = (θ,y,δ), the favoured hypothe-

sis H(θ,y,δ) represents the true Htrue or not. A mathematical expression of this

17



2. Background

procedure takes the form:

u0−1(θ,y,δ) = I[H(θ,y,δ) =Htrue ], (2.8)

where I represents the indicator function, assigning the value of 1 when Htrue is suc-

cessfully identified and 0 otherwise. The expected utility, thus, effectively represents

the probability of a hypothesis test being successful under a particular experimental

condition δ and is as such sought to be maximised.

- The relative entropy, employed in parameter inference problems quantifies the

additional new information, provided from an observed dataset y. This criterion

was considered by Lindley (1956) for design of experiments and is defined as:

uRE(θ,y,δ) = log
p(θ ∣ y,δ)
p(θ) . (2.9)

Under the assumption of equal costs for observation of each produced output y,

interest lies in maximising the information gain. Notably, the expected utility in-

duced by uRE is equivalent to the Kullback-Leibler divergence between the posterior

and prior distribution of θ. A slightly modified version of this utility function can

be used in prediction problems to quantify the amount of additional information

obtained from observing a new dataset compared the present state.

- A different perspective for parameter inference problems quantifies gain in the form

estimate accuracy in light of a dataset y. The utility quantifying this improvement

is known as the posterior precision, expressed as:

uPP (θ,y,δ) =
1

Var [θ ∣ y,δ] (2.10)

As the variance of the posterior distribution decreases, the higher the utility of the

corresponding experiment will be.
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2.2.4 Optimal experimental design for model discrimination

problems

As demonstrated in Section 2.2.3, treatment of a design problem is highly dependent on

the objective of the study. Atkinson (2008) and numerous other authors have previously

considered the idea of a utility suitable to multiple objectives but it is often shown that

a global design strategy is suboptimal. The scope of this thesis is predominately focused

on model discrimination problems which are employed by the case studies presented in

Chapters 7, 8 and 9. As a consequence, emphasis is henceforth placed on utility functions

and ongoing challenges associated with optimal experimental design in the context of this

class of problems.

Model discrimination refers to the process of constructing some initial hypotheses,

formalised by mathematical models, and assessing their ability to capture the observed

system behaviour. The hypothesis under which the model predictions agree the most

with the actual measurements of the observable components describes more suitably the

studied phenomenon.

Formulation of experimental design problems has, so far, incorporated the following

key components: the observed experimental output y, the unknown experimental pa-

rameters θ and the experimental conditions δ. As multiple models are adopted in model

selection problems, an additional parameter m is included as an indicator of the model

under consideration from a set of competing models M. The probability distribution as-

sociated with each candidate model will be denoted by Pm. This term has been omitted

in previous sections as the consideration of more than one models was not required. The

optimal experimental condition δ∗ is expressed in the form of (2.4) where:

U(δ) = ∑
m∈M

[∫ u (θ,y,δ,m) f (y ∣ θ,δ,m)p(θ) d (θ,y)]p(m) , (2.11)

for a suitable utility function.

In the Bayesian experimental design literature, a common expression of the utility

function for model discrimination problems is the Shannon entropy (Box and Hill,
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1967), defined as:

u (θ,y,δ,m) = ∑
m′∈M,
m′≠m

log
p(y ∣ δ,m)
p(y ∣ δ,m′) p(m

′) , (2.12)

where p(y ∣ δ,m) expresses the marginal likelihood previously introduced in (2.6).

This choice of utility function possesses several desirable properties. The marginal

likelihood ratio in (2.12) is a commonly used criterion in model selection problems,

often referred to as the Bayes’ factor (Kass and Raftery, 1995). The Bayes’ factor

Bδ(m,m′) = p(y∣δ,m)

p(y∣δ,m′) represents the evidence in favour of model m given data y at exper-

imental condition δ. The expected utility can thus be interpreted as the average evidence

provided by the data in support of m when y has actually been generated by model m

(see equation (2.13)). Hence, the highest the evidence in favour of the resulting data, the

more preferable the corresponding experimental condition will be. Interestingly, the cor-

responding expected utility bares meaningful information not only for comparison with

alternative experimental conditions but for the usefulness of the design itself. Following

Jeffreys (1961)’s guidelines, one can conclude not only the optimal condition but how

useful the dataset obtained at this condition is. This is particularly useful for cases when

the design is performed sequentially and early stopping is an option. When considering

the next stage of the design it may be concluded that the data obtained in δ∗, although

optimal, do not offer any significant new information to the study.

Drawbacks are mostly attributed to the computational burden involved in the use of

the Shannon entropy (Ryan et al., 2014) as will be further demonstrated in Chapter 3.

Chapter 5 presents an efficient approximation method that is shown to tackle currently

persisting challenges.

Alternative utilities include the total separation proposed by Roth (1967) that is

defined as the absolute distance between the posterior predictive means of the competing

models. Although this utility offers the desirable characteristic of relatively low compu-

tational requirements, it has a reportedly high chance of generating misleading results

by only extracting information from the mean and thus ignoring the overall shape of the

predictive distributions. For this reason, this alternative will not be considered further

in this thesis.
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Under (2.12), the expected utility of a particular experimental condition takes the

form:

U(δ) = ∑
m∈M

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫

⎡⎢⎢⎢⎢⎢⎢⎣
∑

m′∈M,
m′≠m

log
p(y ∣ δ,m)
p(y ∣ δ,m′) p(m

′)p(y,θ,δ,m)
⎤⎥⎥⎥⎥⎥⎥⎦

d(θ,y)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

p(m)

= ∑
m∈M
∑

m′∈M,
m′≠m

{∫ [log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y,θ,δ,m)]d(θ,y)} p(m′) p(m)

= ∑
m∈M
∑

m′∈M,
m′≠m

{∫ [log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y,θ,δ,m)]d(θ,y)} p(m′) p(m)

= ∑
m∈M
∑

m′∈M,
m′≠m

{∫ log
p(y ∣ δ,m)
p(y ∣ δ,m′) [∫ p(y,θ,δ,m)dθ]dy} p(m′) p(m)

= ∑
m∈M
∑

m′∈M,
m′≠m

{∫ log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y ∣ δ,m)dy} p(m′) p(m)

= ∑
m∈M
∑

m′∈M,
m′≠m

KLδ(m,m′) p(m′) p(m) , (2.13)

where:

KLδ(m,m′) = ∫ log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y ∣m,δ) dy . (2.14)

The term defined in (2.14) represents the Kullback-Leibler (KL) divergence (Kull-

back and Leibler, 1951) between the predictive distributions of the competing models at

experimental condition δ. Intuitively, the larger the discrimination between predictive

distributions the easier the classification of a newly obtained dataset will be.

Consideration of divergence metrics for optimal design is commonly encountered in

the relevant literature. Vanlier et al. (2014) adopt a weighted KL divergence between the

predictive distributions of competing models while Bingham and Chipman (2002) consider

the Hellinger distance instead in a similar setup. The class of estimators proposed in this

thesis is suitable to both choices of utility functions.
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Summary

This chapter provides an introduction to optimal experiment design problems from a

decision-theoretic perspective. Sections 2.1 and 2.2 set the foundations for the formu-

lation of design problems, introducing their individual components: the set of potential

experimental conditions (decisions), a set of models under consideration with their cor-

responding set of model parameters and the resulting output. Optimality assessment of

each experimental condition is subsequently addressed through the notions of the util-

ity function and the expected utility, examined in Sections 2.1.2, 2.1.3 and 2.1.4. The

subjectivity involved in the choice of utility function is discussed in Section 2.1.2 while

alternative options tailored to different objectives are examined in Section 2.2.3. Section

2.2.4 considers the special case of experimental design for studies that employ model

discrimination methods. Such case examples constitute the main interest of this thesis

and will be further considered in Chapters 8 and 9. Utility functions tailored to these

problems are discussed, with particular emphasis on the Shannon entropy and alternative

divergence measures.

The succeeding chapter provides a review on the commonly adopted methodology for

experiment design optimisation focusing on two ongoing challenges: estimation of the

expected utility when an expression for it is not available in closed form and efficient

optimisation of the expected utility over the design space.
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Review of Bayesian optimal

experimental design methods

This chapter provides a review of the most current and commonly adopted methodologies

for tackling experimental design problems and relevant ongoing issues. A brief summary

of the earlier work and the challenges that have since then arisen are initially considered.

Two key problems are identified: the estimation of the expected utility when an analyt-

ical expression is not available and the efficient maximisation of this quantity over the

design space. Throughout this chapter, the presented methodologies are predominantly

discussed from the perspective of model discrimination problems while emphasis is placed

on cases when model evaluations are computationally demanding.

3.1 Early work and key challenges

During the early years of Bayesian experimental design (from Wald’s seminal work in

1950 (Wald, 1950) until the 1980s) implementation of the decision-theoretic approach,

introduced in Chapter 2, targeted mainly simpler problems for which an analytical ex-

pression of the expected utility exists. One of the main contributors to the developed

methodology for these problems was Kiefer (1959). As the frequentist viewpoint was

prevalent in the field at that time, the Bayesian approach was considered by many sim-

ply as an extension of the frequentist case (Pukelsheim, 1980). Eventually, the distinction
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between Bayesian and frequentist methods became evident when interest was extended

to more complex problems with the former adapting flexibly while the latter restricting

to identification of only locally optimal designs. Extension to a wider class of problems

even in a Bayesian setup, nonetheless, entails two main challenges:

1) Evaluation of the expected utility: an analytical expression for the expected

utility is typically not available and so numerical approximation methods are required in-

stead. Shortcomings of currently adopted methods are predominantly attributed to their

computational complexity, their inability to scale up to high dimensions or the restric-

tive assumptions they impose. The majority of the existing work tackles the estimation

problem using Monte-Carlo integration based approaches which are introduced in Sec-

tion 3.2.1. Numerous adaptations have been proposed, however, reportedly, none lowers

the computational burden in such a degree that makes it suitable for consideration of

complex systems similar to those studied in this thesis.

2) Optimisation over the design space: maximisation of the expected utility be-

comes increasingly challenging as the number of designs under consideration grows. Tra-

ditional grid search or random search approaches quickly add up to an infeasible number

of calculations thus becoming highly inefficient, often resulting to highly suboptimal de-

signs.

Currently adopted methods can be divided into three main categories based on the

challenge being targeted: estimation of the expected utility, optimisation over the design

space or both. The most common and relevant methodologies from the former category

are considered in Section 3.2 while the remaining two are discussed in Section 3.3.

3.2 Evaluation of the expected utility

Early work considered relatively simplistic approaches for estimation of the expected util-

ity such as normal approximations to the expected utility through the expected Fisher

information matrix (Atkinson and Donev, 1992; Silvey, 1980). Alternative methods in-

clude discretisation of the prior and consequently averaging over the utility evaluated
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at each distinct point or numerical integration (D’Argenio, 1990; Pronzato and Walter,

1985). However, such approaches have often been shown to either assume an oversim-

plified structure for the studied system or to quickly add up to an infeasible number

of calculations as the dimensionality of the problem increases (Chaloner and Verdinelli,

1995; Ryan, 2003).

The idea of Monte-Carlo estimation is presented in Section 3.2.1 as it is currently

prevalent in the Bayesian experimental design literature. Its implementation for ex-

pected utility estimation is subsequently considered while challenges relevant to model

selection problems are addressed in Section 3.2.2. A brief overview of alternative es-

timation methods is provided in Section 3.2.3 and ongoing challenges associated with

Monte-Carlo methods are discussed in Section 3.2.4.

3.2.1 Monte-Carlo integration

A brief introduction to Monte-Carlo methods and their role in Bayesian experimental

design is provided in this section. The approach is initially presented in its general form

while its application to expected utility estimation is considered subsequently.

Introduction to Monte-Carlo integration Monte-Carlo integration (MCI), first in-

troduced by Metropolis and Ulam (1949), is an estimation method for integrals of the

form:

I = ∫ η(x)dx , (3.1)

where η ∶ X → R represents a function with associated probability distribution P and

corresponding probability density function p.

Under the examined approach, quantity (3.1) can be approximated by the average

of function η evaluated at a large collection of N samples from X that are distributed

according to P , taking the form:

Î ≈ 1

N

N

∑
i=1

η(xi)
p(xi)

. (3.2)

The idea behind estimator (3.2), is that the term Î converges asymptotically to the true
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quantity I, or formally:

lim
N→∞

Î = I . (3.3)

In practice, an approximation of the ratio in expression (3.2) can be achieved by drawing

a sample xi according to P and calculating the corresponding η(xi). The Monte-Carlo

estimate is subsequently obtained by repeating this process N times and averaging over

the resulting evaluations. Due to 3.3, the produced estimates fall arbitrarily close to the

true value for a sufficiently large N . Two main properties of the Monte-Carlo estimator

are noted below:

Property 1. (Unbiased) E [Î] = I

Property 2. (Consistent) Var [Î] N→∞ÐÐÐ→ 0 .

Proofs for Properties 1 and 2 are provided in Appendix A.

Monte-Carlo integration for estimation of the expected utility Monte-Carlo

integration has been commonly employed in optimal experimental design problems for

estimation of the expected utility (Ryan et al., 2016). This section is concerned with

application of Monte-Carlo methods for expected utility estimation in the context of

model discrimination problems, employing the Shannon entropy utility function (2.12).

Under this setup, the expected utility finds expression in (2.13) that, for convenience, is

restated below:

U(δ) = ∑
m∈M

∑
m′∈M,
m′≠m

{∫ log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y ∣ δ,m) dy} p(m′) p(m) .

Along the lines of (3.2), the corresponding Monte-Carlo estimator obtains the form:

Û(δ) = ∑
m∈M

∑
m′∈M,
m′≠m

{ 1

N

N

∑
i=1

[log p(yPm
i ∣ δ,m) − log p(yPm

i ∣ δ,m′)]} p(m′) p(m) , (3.4)

where yPm
i ∼ p(y ∣ δ,m), i = 1, . . . ,N . Samples yPm

i can be acquired through {(θPm
i ,yPm

i )}N
i=1

by disregarding the term θPm
i .

Popularity of Monte-Carlo methods can be attributed to their wide applicability and
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ease of implementation. Application of Monte-Carlo integration to optimal design prob-

lems is, however, often hindered by the considerable computational burden involved in

obtaining sufficiently good approximations (Ryan et al., 2014; Ryan, 2003). Due to Prop-

erty 2, the estimator is only asymptotically unbiased, meaning that a large sample size

N is necessary to achieve unbiasedness in the obtained estimates. Moreover, evaluation

of expression (2.11) of the expected utility, requires further evaluation of another inte-

gral for each of the N samples which may rely on MCI or alternative approximation

methods. Thus, evaluation of U(δ) for only one potential experimental condition δ re-

quires O(cN2) operations for a sufficiently large N and a constant c that accounts for

the multiple models under consideration.

Under expression 3.4 of the expected utility, evaluation of the marginal likelihood

p(yPm
i ∣ δ,m) is required for each yPm

i , i = 1, . . . ,N, m ∈ M, which, often, relies on

additional approximation methods. This issue is addressed in the subsequent Section

3.2.2.

3.2.2 Estimation of the marginal likelihood

An analytical expression of the marginal likelihood is, under most model specifications,

not available. Additional estimation methods are, therefore, required for approximation

of this quantity. In its simplest form, estimation can be achieved through an additional

Monte-Carlo estimator under which, the marginal likelihood, previously defined in (2.6)

and summarised below:

p(yi ∣ δ,m) = ∫ p(yi ∣ θ,δ,m)p(θ)dθ ,

takes the form:

p̂(yi ∣ δ,m) =
M

∑
j=1

p(yi ∣ θj,δ,m) , (3.5)

where {θj}Mj=1 represent samples from the prior distribution of Θ corresponding to model

m. This approach is typically avoided because the prior distribution of model parame-

ters completely disregards the properties of the likelihood surface, extracting the same

amount of information from different samples regardless their corresponding probability
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(Vyshemirsky and Girolami, 2008). As a result, a significantly large sample size M is

required in order to adequately capture the shape of the approximated surface.

A modification addressing this issue considers the same estimator (3.5) with the inner

term being evaluated at samples {θj ∣ yi}Mj=1 instead. Knowledge from the observed data

is, thus, used to draw focus on higher density regions. Unfortunately, this revision comes

at a high computational cost as for each observation yi, evaluation of the corresponding

posterior distribution Θ ∣ yi is required, typically obtained through sampling algorithms.

An alternative class of approaches includes the commonly adopted estimation meth-

ods of annealed importance sampling (Neal, 2001) and thermodynamic integration (Friel

and Pettitt, 2008). In a comparison study of alternative marginal likelihood estimation

methods, Vyshemirsky and Girolami (2008) show that, this class outperforms compet-

ing approaches such as the previously examined Monte-Carlo estimators. An additional

advantage of these estimators is that Sequential Monte Carlo (SMC; Del Moral et al.

(2006)) sampling techniques lend themselves to their implementation as they can be nat-

urally obtained as by-products of SMC algorithms. An introduction to SMC methods is

provided in Appendix B.

Briefly, sampling from the posterior distribution using thermodynamic integration is

achieved by linking the prior and the targeted posterior distribution through a sequence

of S intermediate un-normalised distributions Qb, for 0 ≤ b ≤ 1. Assuming that the

intermediate distributions are fairly close to each other, this setup allows a smoother

transition from the prior to the target distribution which tackles issues arising when

the discrepancy between them is high. An estimate of the marginal likelihood is then

obtained through:

p̂(yi ∣ δ,m) = ∫
1

0

M̃

∑
j=1

p(yi ∣ θj,b,δ,m) db , (3.6)

where {θj,b}M̃j=1 are samples from the intermediate distribution Qb. SMC algorithms lend

themselves to implementation of the examined estimator due to the reliance of both

on samples from the sequence of S intermediate distributions. Once the population of

samples {θj,b}M̃j=1 is available at each stage b of the SMC algorithm it can be further used

for evaluation of the corresponding sum within (3.6).

Estimators of the same class have also been considered in McGree et al. (2012) and
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Drovandi et al. (2013) in the context of Bayesian experimental design. McGree et al.

(2012) report this approach to be computationally intensive and still of order O(cN2),
where N is the number of samples from the predictive distribution of each model m ∈
M, and resort to parallel implementation in order to produce estimates within realistic

timescales. This approach, combined with the Monte-Carlo estimator expressed in (3.4),

is further considered in the case studies examined in Chapters 7 and 8 for evaluation

of the expected utility as a representation of the state-of-the-art of currently employed

methodologies for optimal experimental design.

3.2.3 Approximate methods

An alternative viewpoint is provided by Long et al. (2013) who propose an approximate

approach for evaluation of the marginal likelihood through Laplacian approximations.

This approach completely avoids posterior sampling, thus incurring significant computa-

tional savings, however imposes the assumption of normality which can often be restric-

tive and, potentially, unrealistic. Ryan et al. (2016) report that, Laplace approximations

perform well in practice, particularly when large amounts of data are available, however

suffer from the curse of dimensionality and are, therefore, restricted to only targeting

low-dimensional problems. Given the considerable restrictions this approach imposes, it

will not be considered further in this thesis.

Drovandi and Pettitt (2013) propose another approximate method that employs ap-

proximate Bayesian computation (ABC) techniques to avoid evaluation of the likelihood.

This approach is mainly targeted to intractable likelihood problems which are not en-

countered in this thesis and are thus not of direct interest.

3.2.4 Current challenges

The main shortcoming of Monte-Carlo based approaches lies in their high computational

complexity. As briefly demonstrated in this section, assessing the expected utility for

only one experimental condition δ relies on O(cN2) operations where a sufficiently large

N is required for the estimation bias to be deemed negligible. Each operation involves

model evaluations (accounting for the intermediate stages of the SMC algorithms) which
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is aggravated further in cases that evaluation of the studied models is itself demanding.

Unfortunately, this is often the case in the studies of natural phenomena as highly sophis-

ticated models are typically adopted in order to realistically capture the system behaviour.

In particular, evaluation of a model describing a simple biochemical system, examined in

Chapter 8, requires 1.12 ⋅ 10−4 seconds. As a result, the time required for approximation

of the expected utility corresponding to one experimental condition considering only this

one operation is:

1.12 ⋅ 10−4 s × N2 samples (1002) × intermediate stages (40) × models (2) ≂ 748 min.

This unrealistic time frame discourages any attempt for complete exploration of the design

space, limiting the study to consideration of a small number of designs on a pre-defined

grid which may often be highly suboptimal if the chosen points lie quite far from the

optimal condition. On the contrary, more efficient exploration of the design space can

be achieved through various available optimisation algorithms, establishing a response

adaptive setup under which function evaluations drive better informed future decisions.

Such algorithms will be further considered in Section 3.3 and Chapter 6.

Response adaptive algorithms are further, frequently, incorporated in sequential de-

signs. Under this setup, knowledge obtained from the observed system during previous

stages informs subsequent decisions regarding future experiments, establishing a closed-

loop framework of experimentation, knowledge update and optimal decision making. Un-

fortunately, the long waiting times associated with the current estimation methods, in-

volved in the decision making stage are not well-suited to such an exchange and thus

simpler but potentially suboptimal designs are often considered instead.

Under an even worse scenario, obtaining one evaluation from the models studied in

Chapter 9 requires on average 11.6 seconds and thus estimation of the expected utility

for one experimental condition through Monte-Carlo based methods takes up to 15 hours

using parallel computing. Given the current methodology, optimal experimental design

for the study of such phenomena poses an intractable problem and thus consideration of

more efficient approximation methods is imperative. Indeed, in their recent review on

modern Bayesian methods for optimal design, Ryan et al. (2016) point out the need for

improved methods that will allow consideration of “problems in which the likelihood is

30



3. Related work

intractable or computationally prohibitive to calculate”.

Chapter 5 presents a class of methods that provide highly efficient estimators of the

expected utility through variational approximation techniques. Chapters 8 and 9, pro-

vide a comparison of the proposed estimator with the traditional Monte-Carlo based

approaches for Bayesian experimental design targeted at model selection problems.

3.3 Optimisation over the design space

The preceding section provided an overview of related methodology for evaluation of

the expected utility. Efficient estimation is certainly necessary but, nonetheless, does

not itself solve the overall optimisation problem of (2.4). Optimisation of the expected

utility over the design space ∆ relies on evaluation of it for multiple experimental condi-

tions and subsequently the comparison between them. Unfortunately, evaluation of the

expected utility of numerous conditions on a finely defined grid and subsequent optimi-

sation through deterministic comparison is often intractable. This section is, therefore,

concerned with efficient optimisation methods that inevitably, often, address the estima-

tion challenge too.

3.3.1 Approximation of the utility surface

Müller and Parmigiani (1995) propose approximation of the expected utility surface by

fitting a curve through the observed utility of randomly drawn points according to the

prior distribution. Optimisation over the approximate surface is subsequently achieved

deterministically as summarised in Algorithm 1.

Algorithm 1 Approximation of the expected utility surface through curve fitting (Müller
and Parmigiani, 1995)

1: Select an initial set of experimental conditions δ = {δ1, . . . ,δT}.
2: For each δi, draw a sample (θi,yi) ∼ P and evaluate ui = u (θi,yi,δi).
3: Fit a j-dimensional curve where j is the dimension of each experimental condition δi

through points (ui,δi).
4: Use the obtained curve to evaluate the maximum expected utility deterministically.

For more complex and potentially noisy problems, the authors recommend drawing

multiple samples of (θ,y) for each δ and fitting a curve through the average utility
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instead in order to mitigate the higher levels of error present. Choice of the curve can

vary depending on the complexity of the problem, for example Müller and Parmigiani

(1995) fit a non-linear regression model when optimising the sample size of a binomial

model while Overstall and Woods (2017) use a more flexible Gaussian process (GP;

Rasmussen and Williams (2006)) regression model to target more challenging problems.

An advantage of this approach is that evaluation of the utility for each given δ is only

required for a small number of samples from Θ×Y unlike the typical Monte-Carlo evalua-

tion. This already incurs considerable computational savings whereas further evaluations

of the utility are no longer necessary once an approximation through the fitted curve is

available.

This approach has been mainly used to tackle low-dimensional problems (Kuo et al.,

1999) as curve fitting may be challenging in higher-dimensional spaces. Moreover, in

cases of a flatter utility surface and especially in the presence of high noise levels, a large

number of utility evaluations may be required regardless. In particular, Overstall and

Woods (2017) state that even by using their proposed approach, finding Bayesian optimal

designs using Monte-Carlo integration is confined to simpler problems and focusing on

parameter estimation with only one assumed model. An extension of this approach is

further considered in Chapter 6.

3.3.2 Approximation of an augmented expected utility surface

through sampling techniques

An alternative class of approaches arose with the work of Müller (1999) who treats ex-

pression (2.11) as an un-normalised probability density function of the form:

h(θ,y,δ,m)∝ u(θ,y,δ,m)p(y ∣ θ,δ,m)p(θ,m) (3.7)

and employ sampling methods to obtain observations from (θ,y,δ) under h. Due to

relationship (3.7), the marginal likelihood of h at point δ will be proportional to the

expected utility at that point. To avoid potential issues such as a flat utility surface or

high error levels the following simulation-annealing inspired modification has also been
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suggested in the relevant literature:

h(θ1, . . . ,θJ ,y1, . . . ,yJ ,δ,m)∝
J

∏
j=1

u(θj,yj,δ,m)p(yj ∣ θj,δ,m)p(θj) , (3.8)

where h(θ1, . . . ,θJ ,y1, . . . ,yJ ,δ) ∝ U(δ)J . U(δ)J represents an augmented expected

utility surface which facilitates identification of its mode.

Algorithm 2 MH algorithm for sampling from the augmented expected utility surface
(Müller, 1999)

1: Select an initial experimental condition δ1.

2: Draw J samples (θj,yj ∣ δ1) ∼ P and evaluate u1 =
J

∏
j=1
u(θj,yj,δ1)p(yj ∣ θj)p(θj).

3: Set i = 1.
Repeat steps 4-8 until convergence:
4: Propose new condition δ∗ ∼ Qδi .
5: Draw J samples (θj,yj ∣ δi) ∼ P and obtain the corresponding product of utilities u∗.
6: Compute the acceptance probability:

a = min{1,
u∗i ⋅ q(δi ∣ δ∗)
ui ⋅ q(δ∗ ∣ δi)

}

7: Set δi+1 = δ∗ and ui+1 = u∗ with probability a, otherwise set δi+1 = δi and ui+1 = ui.
8: i→ i + 1.

Algorithm 2 summarises the process of using a Metropolis-Hastings (MH) MCMC

sampler to approximate the expected utility surface. Function Qδi denotes the probability

distribution of the newly proposed steps while q(⋅ ∣ δi) its corresponding probability

density function at experimental condition δi. The MH algorithm encourages exploration

in areas of δ incurring higher expected utility while preventing visits to regions with

low expected utility. However, practice has shown that at its current state the method

fails to scale up to dimensions higher than 4 while convergence issues have also been

reported (Ryan et al., 2016). To tackle these challenges Amzal et al. (2006) alternatively

employ SMC methods for sampling from the augmented surface instead. This method

is applied to determine the optimal dose of a caffeine treatment to preterm infants with

respiratory issues using a compartmental time series model. Unlike MCMC algorithms,

samples obtained through SMC methods have been proven to converge to the distribution

of interest (Del Moral et al., 2006) thus resolving any potential convergence issues. In

addition, SMC samplers have shown to work well for multimodal surfaces as they enable
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efficient exploration of the space. However this approach is still restricted to lower-

dimensional problems and the high computational cost may hinder the consideration of

highly complex models.

3.3.3 Additional optimisation algorithms

Huan and Marzouk (2013) used standard stochastic optimisation algorithms such as the

Nelder-Mead non-linear simplex to maximise the expected information gain for kinetic

models described by a system of ordinary differential equations. Similarly to approaches

discussed in Sections 3.3.1 and 3.3.2, this class of optimisation algorithms can be used

to locate the global optimum however, unlike MCMC or SMC methods, provide no un-

certainty quantification. To avoid evaluation of the expected utility at each step of the

optimisation algorithm, polynomial chaos surrogate models (Ghanem and Spanos, 2003)

were employed, relying on a set of initial estimations of the expected utility through

Monte-Carlo integration.

3.3.4 Potential extensions

Surface approximation using a model fitted through a small sample of observations from

the expected utility has many appealing properties: unlike grid search methods, opti-

misation is possible based on only a few evaluations of the expected utility and unlike

surface approximation through sampling, sampling is not required thus keeping the com-

putational cost at realistic levels while also avoiding time-consuming parameter tuning.

Lastly, unlike traditional optimisation algorithms, it can be easily adapted to provide

uncertainty quantification in the produced output by employing a probabilistic model for

approximation of the expected utility surface.

Nevertheless, several shortcomings may hinder the optimisation performance of these

methods: the produced optimum may be highly suboptimal if none of the initially chosen

designs fall sufficiently close to the true optimum. Performance of the optimiser is thus

sensitive to the initial design. In addition, further refinement of the approximation is

possible but, again, choice of subsequent designs for observation may be arbitrary. Most

importantly, there is a lack of a systematic and comprehensive framework that could
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potentially increase the efficiency of the optimiser and ensure optimality of the produced

result.

An attempt to address the need for a more autonomous framework is made in Chapter

6 through a class of optimisation algorithms, commonly known as Bayesian Optimisation

(BO; Močkus (1975)). Broadly speaking, BO algorithms can be viewed as an extension of

the curve fitting approaches discussed in Section 3.3.1, however providing a more efficient

and automated framework. The similarity of the two approaches lies predominantly in the

approximation of the target surface through a curve or potentially more flexible models.

BO algorithms extend on the methods of 3.3.1 by establishing a sequence of observing

the unknown function and re-fitting the approximating surface until the optimal design

has been found rather than relying on a deterministic search for it. A more efficient and

comprehensive exploration of the design space is thus possible, ensuring truly optimal

proposed designs.

As will be further discussed in Chapter 6 BO algorithms lend themselves to optimisa-

tion of the expected utility over the design space. Although previously considered in the

Bayesian experiment design literature (Kleinegesse and Gutmann, 2019; von Kügelgen

et al., 2019), this class of methods have not gained enough popularity given its suitability

but also high efficiency and automation compared to currently considered approaches.

Summary

This chapter reviews previous work on optimal experiment design focusing on two key

objectives: 1) estimation of the expected utility (Section 3.2) and 2) optimisation over the

design space (Section 3.3). Issues specific to discrimination problems such as estimation

of the marginal likelihood are also considered (Section 3.2.2) with emphasis on cases when

model evaluation is particularly demanding. Advantages of the considered methods as

well as prevailing challenges are highlighted throughout this chapter.

The succeeding chapters consider methodology for tackling these challenges: Chapter

5 proposes an efficient estimation procedure adopting variational approximation tech-

niques that is shown to reduce the number of required operations substantially compared

to currently adopted methods. Chapter 6 incorporates the proposed estimator into an
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efficient optimisation procedure from the class of Bayesian optimisation algorithms along

the lines of the approximation approaches discussed in Section 3.3.1.
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Chapter 4

Variational approximation methods

This chapter provides a brief overview to variational approximation methods, particularly

focusing on a class of procedures targeted at estimation problems. This class of methods

is subsequently adopted in Chapter 5 for efficient estimation of the expected utility in

the context of experimental design optimisation, tackling the currently prevalent issues,

previously discussed in Chapter 3.

4.1 Overview

Variational methods refer to a class of deterministic approximation procedures that

translate an initial, potentially complex problem into a theoretically simpler and more

tractable one, constituting a generalised expression of the problem at hand. This gen-

eralisation is achieved though the incorporation of additional parameters, known as the

variational parameters (Jordan et al., 1999) which are optimised to approximate the

initial problem of interest as closely as possible. Although variational methods originate

in the field of convex analysis, they have been gaining increasing popularity in recent

years in the machine learning literature where they have been applied to various infer-

ence (Blei et al., 2017) and estimation problems (Nguyen et al., 2010; Ruderman et al.,

2012).

In the former case, variational methods provide an alternative approach to approxi-

mate Bayesian inference, especially in settings that exact sampling methods may be too
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resource intensive (Blei et al., 2017; Titsias, 2009). Briefly, a posterior density of interest

is approximated by an alternative function from a proposed class of potential functions

through an optimisation procedure that aims to minimise the KL divergence between

itself and the exact quantity.

Perhaps less popularly, variational methods have also been employed for estimation

purposes such as that of the Mutual Information criterion (Belghazi et al., 2018; Song

and Ermon, 2019) or of the divergence between two distributions (Nguyen et al., 2010;

Ruderman et al., 2012). The variational methods examined in this thesis belong to the

latter branch. More specifically, a technique that translates the initial evaluation problem

into an alternative optimisation problem is employed for this purpose, commonly known

as the duality principle. The mutual element in this class, enabling this transition, is

the idea of the Fenchel transform which was introduced in Rockafellar (1970) and is

presented in Section 4.2. Optimisation is subsequently performed over an appropriately

chosen class of functions which is briefly introduced in Section 4.3. The approximation

methodology presented in this chapter is subsequently adopted in Chapter 5 for efficient

evaluation of the expected utility.

4.2 Fenchel transform

This section introduces the idea of the Fenchel transform that allows generalisation of

an initial problem through its variational expression. An introduction to the notions of

the inner product and norm is required before proceeding to the definition of the Fenchel

transform and are, therefore, provided in Definitions 3 and 4, respectively. The Fenchel

transform is subsequently presented in Definition 5 .

Definition 3 (Inner product). Let V be a vector space over R. A function ⟨⋅, ⋅⟩ ∶ V×V → R

is said to be an inner product on V if:

1. ⟨a1v + a2v′,v′′⟩ = a1⟨v,v′′⟩ + a2⟨v′,v′′⟩, a1, a2 ∈ R, v,v′,v′′ ∈ V

2. ⟨v,v′⟩ = ⟨v′,v⟩

3. ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0.
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Definition 4 (Norm). The corresponding norm of V can subsequently be defined by the

inner product as: ∥⋅∥ =
√

⟨⋅, ⋅⟩.

Definition 5 (Fenchel transform). Let h ∶ G → [−∞,+∞] be a convex function on a

compact domain G. The conjugate function h∗ ∶ G∗ → [−∞,+∞], where G∗ is also a

compact domain, is defined as:

h∗(g) = sup
χ∈G∗

{⟨χ, g ⟩−h(χ)} for g ∈ G , (4.1)

where ⟨⋅, ⋅⟩ ∶ G ×G∗ → R is the inner product restricted on G ×G∗1. The Fenchel transform

refers to the operation h→ h∗.

Conveniently, the conjugate function h∗(g) finds expression as the supremum of the

family of affine continuous functions of the form {⟨ ⋅, g ⟩−h(⋅)}χ∈G∗ and is as such convex

and lower semi-continuous.

The conjugate function h∗∗ of h∗ is commonly referred to as the biconjugate of h.

An important result, presented in Theorem 1, states that the biconjugate h∗∗ is equal to

h when h is a closed convex function.

Theorem 1 (Fenchel-Moreau theorem;Rockafellar (1970)). The biconjugate function h∗∗

of h∗ is equal to h, if h is convex and closed. If h is proper2, then the property of closeness

is equivalent with h being lower semi-continuous.

Proof. A proof can be found in (Rockafellar, 1970), page 104.

A combination of Theorem 1 and Definition 5 results in the following expression of func-

tion h in terms of its conjugate:

h(χ) = sup
g∈G

{⟨χ, g⟩ − h∗(g)} for χ ∈ G∗ , (4.2)

for every proper and lower semi-continuous convex function h. This dual representation

is the key to deriving the dual expression of the partial utility in Chapter 5. Optimisation

of the dual problem over an appropriately chosen class of functions allows the efficient

estimation of the initial quantity of interest through variational approximation.

1In the special case when G = G∗ = R, < g,χ >= g ⋅ χ.
2In fact, the only closed, improper convex functions are the constant functions −∞ and +∞.
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Example 1 provides guidance on application of the Fenchel transform for the special

case of h ≡ − log.

Example 1. This example demonstrates the application of the Fenchel transform to an

initial estimation problem for function h ≡ − log. Under Definition 4.1, the Fenchel

transform h∗ of function h obtains the form:

h∗ (g) = sup
χ

{χg + log (χ)} . (4.3)

The supremum in (4.3) is subsequently obtained by solving ∂[χg+log(χ)]
∂χ = 0 with respect to

χ, producing:

g + 1

χ
= 0

χ = −1

g
, (4.4)

which, substituted back to the initial term, results in:

h∗ (g) = −1 − log(−g) , g < 0 (4.5)

Using Theorem 1, a variational representation of function h can be formulated as:

h(χ) = sup
g

{χg + 1 + log(−g)} , g < 0. (4.6)

The two alternative problems arising from this expression are: the estimation problem

h(χ) for a given χ and the optimisation problem of function γ(χ, g) = χg + 1 + log(−g).

The optimal element g, maximising γ and henceforth denoted by gopt, can be obtained

in a similar manner as in (4.4), returning gopt = − 1
χ . Figure 4.1 provides a visual rep-

resentation of the Fenchel transform for h ≡ − log. Both problems are depicted therein,

1) function h ≡ − log and, more specifically, its estimation at a given χ (in this example

chosen as 2) and 2) function γ that is sought to be optimised. As demonstrated in Figure

4.1, the solution to the optimisation problem is exactly the same as the solution to the

initial estimation problem (both -0.5).

40



4. Variational approximation methods
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χ

h(
χ)

h(χ)
Est. problem: h(2)
Opt. problem: supg{γ(2,g)}
Solution

Figure 4.1: Illustration of the Fenchel transform for h ≡ − log. The two alternative prob-
lems are showcased therein: function h(χ) and, more specifically, the initial, evaluation
problem h(χ), for χ = 2, marked by a solid black line and a cross respectively. The alter-
native optimisation problem sup

g
{γ(2, g)} is indicated by a dashed black line. A tangent

on the optimum gopt of the induced optimisation problem sup
g

{γ(2, g)}, represented by a

solid grey line, outlines that the solutions to the two problems indeed coincide.

△

Two additional notions are essential for deriving this result and are introduced in

Definition 6 and Theorem 2, presenting the ideas of subgradient function and the infimal

convolution theorem, respectively. The idea of the subgradient (Rockafellar, 1974) effec-

tively constitutes a generalisation of the gradient to functions that are not necessarily

differentiable, a more formal definition is provided in Definition 6. The subgradient exists

under any case as opposed to the gradient that requires the function to be differentiable.

However when that holds, the subgradient and the gradient are represented by exactly

the same vector.

Definition 6 (Subgradient). Function z, is the subgradient of s ∶X → R at point u, if:
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4. Variational approximation methods

s(u′) ≥ s(u) + z(u′ − u) , ∀u′ ∈X (4.7)

The set of all subgradients of s at point u is referred to as the subdifferential of s at u

and will be denoted by ∂s(u).

In general, equality in (4.2) is achieved if and only if the subdifferential contains

an element of G (Rockafellar, 1970). When that is not the case, the solution to the

optimisation problem acts as a lower bound to the solution of the estimation problem

an so, the optimum of the dashed line in Figure 4.1 would appear lower than the solid

grey line. In the case of Example 1 equality is, nevertheless, achieved at the supremum

gopt ∈ G.

Lastly, the infimal convolution theorem, presented in Theorem 2, allows the decompo-

sition of the conjugate of a sum of function to a sum of the conjugates of the individual

functions. This result is essential for the derivation of the partial utility estimator of

Chapter 5.

Theorem 2 (Infimal convolution theorem). For h1, . . . , hn ∶ R→ R convex functions:

(h1 + ⋅ ⋅ ⋅ + hn)∗ (v) = inf
v

{h∗1(v1) + ⋅ ⋅ ⋅ + h∗n(vn) ∣ v1 + ⋅ ⋅ ⋅ + vn = v} (4.8)

Proof. See Rockafellar (1974).

As discussed in the introductory part of this chapter, the adopted class of variational

approximation methods consists of two main steps: the initial part, covered in this section,

establishes a dual representation of the initial, complex problem through the introduction

of variational parameters. During the subsequent step, the variational parameters are

optimised over a class of appropriately chosen class of functions to approximate the

initial problem. Since the two alternative problems are equivalent only when G includes

the supremum (as noted in the preceding paragraphs), care should be taken as for the

function class to be rich enough in order to achieve or at least approximate the supremum

as closely as possible while at the same time keeping the complexity of the optimisation

problem at reasonable levels. The most commonly selected candidates, for this purpose,

are the class of Reproducing Kernel Hilbert spaces (RKHS; Berlinet and Thomas-Agnan
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(2011),Nguyen et al. (2010)) or classes parametrised by neural networks (Belghazi et al.,

2018). The work presented in this thesis focuses on the former, an introduction of which

is provided in the subsequent Section 4.3.

4.3 The class of reproducing kernel Hilbert spaces

Definition 7 (Hilbert space). A Hilbert space H is a complete space equipped with an

inner product.

Definition 8 (Reproducing kernel Hilbert space). An RKHS is a Hilbert space, equipped

with inner product ⟨⋅, ⋅⟩ where a unique kernel function K ∶ V ×V → R exists such that:

• for all v ∈ V, K(⋅, v) ∈H,

• for all v ∈ V and for all h ∈H, h(v) = ⟨h,K(⋅, v)⟩.

The latter attribute expresses the reproducing property of RKHS stating that:

any element h ∈ H evaluated at point v can be expressed as a linear combination of

other elements in H evaluated at this point. It is worth noting that, since H is a space

of functions, h(v) corresponds to a functional with assigned value v and, as opposed to

vector evaluation h, refers to a specific evaluation of h. The mapping of a given v to a

functional in H will be denoted as:

Φ(v) =K(⋅, v)

and so from Definition 8 follows directly that:

K(v, u) = ⟨Φ(v),Φ(u)⟩, for v, u ∈ V . (4.9)

Evaluation h(v) can equivalently be restated as a linear combination as:

h(v) =
n

∑
i=1

hiΦi(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(v)
Φ2(v)
Φ3(v)
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.10)
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Relationship (4.10) essentially deconstructs h(v) into a set of simpler basis functions

Φ1,Φ2, . . . . The basis functions are such that any element in H can be expressed as a

distinct linear combination of them. An illustration of this representation is provided in

Figure 4.2 where the target function follows a Gaussian distribution.

−2 −1 0 1 2

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

v

h
(v

)

Φ1(v)

Φ2(v)

Φ3(v)

Figure 4.2: Illustration of relationship (4.10). The solid black line represents the target
function h(v) which can be expressed as a sum of a finite set of basis functions weighted
by h1, h2, h3, . . . . In this plot, only the first three basis functions Φ1,Φ2,Φ3 are shown.

Summary

This chapter provides an introduction to variational approximation methods targeted

at estimation problems. The presented methodology establishes a dual representation

of the initial, potentially complex problem, resulting in a theoretically simpler, more

tractable problem. In the examined class of methods, this alternative representation is

achieved through the Fenchel transform, introduced in Section 4.2 which further relies

on optimisation over a class of candidate functions in order to approximate the initial

problem at hand as closely as possible. The class of RKHS has been widely considered in
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4. Variational approximation methods

the literature for this purpose due to a number of desirable properties (further discussed

in Chapter 5) and is also adopted in this thesis. A brief introduction to RKHS is provided

in Section 4.3. In Chapter 5, the presented methodology is applied to efficiently solve the

estimation problem of the expected utility for a given experimental condition, overcoming

the currently persisting issues, introduced in Chapter 3.
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Chapter 5

Variational estimation of the

expected utility

This chapter proposes a novel methodology for Bayesian experiment design incorporat-

ing a class of variational approximation methods for efficient estimation of the expected

utility. This approach is shown to overcome issues faced by current methods without

compromising the quality of the resulting estimates. The proposed estimation procedure

is applicable to a broad class of utility functions along the lines of the decision-theoretic

framework of Blackwell (1951), introduced in Chapter 2, including the previously consid-

ered Shannon entropy.

5.1 Outline

The notion of the expected utility and its role in design optimisation was introduced in

Chapter 2 while common estimation methods for evaluation of this quantity and asso-

ciated challenges were discussed in Chapter 3. Motivated by the case studies, consid-

ered in the subsequent Chapters 7, 8 and 9, focus was placed on methodology targeting

model selection problems, particularly involving models with computationally expensive

likelihoods. This setup is frequently integrated in studies of modern, highly complex

phenomena which constitute a focal objective in this thesis. This chapter presents a

novel approximation approach, incorporating the variational approximation methodol-
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5. Variational estimation of the expected utility

ogy of Chapter 4 for evaluation of the expected utility in an effort to address issues that

currently hinder the optimal solution of such problems. The proposed approach paves

the way towards a complete and fully automated framework for the study of modern

phenomena within realistic timelines, presently constituting an ongoing challenge.

Improvement over existing methods is attributed to the following key procedures: 1)

consideration of an alternative representation of the initial, computationally challenging

evaluation problem as a convex optimisation problem through the Fenchel transform,

previously introduced in Chapter 4. This new expression no longer relies on the demand-

ing marginal likelihood approximation, incurring a considerable decrease on the number

of model evaluations required for estimation of the expected utility, thus leading to sub-

stantial computational savings. 2) Adoption of a flexible, non-parametric framework for

estimation of this dual representation through the class of RKHS, previously presented

in Chapter 4, allowing a systematic comparison of predictive distributions against each

other. This approach achieves direct evaluation of the ratio, as opposed to the currently

adopted Monte-Carlo based approach (presented in Chapter 3) that uses the marginal

likelihood as a summary statistic, extracting information from each individual predictive

sample and subsequently using it for comparison between their corresponding distribu-

tions. In subsequent chapters, this approach is shown to be highly inefficient, leading

to considerable waiting times for optimisation of the expected utility. In addition, when

estimation of each ratio term is achieved individually and subsequently substituted into

the ratio for its evaluation, the error caused by the latter step is not taken into account

during the initial step which may lead to less accurate estimates (Sugiyama et al., 2012).

The proposed methodology is applicable to previously considered utility functions

including the Shannon entropy and mutual information but more importantly, extends

to a broader class defined as:

F = {ϕ(p(y ∣ δ,m′)
p(y ∣ δ,m) ) ; ϕ ∶ R→ R, convex and lower semi-continuous} , (5.1)

where the Shannon entropy is obtained under ϕ ≡ − log. This class of functions adheres

to the decision-theoretic framework of Blackwell (1951), introduced in Section 2.1.5, and

thus, the induced expected utilities constitute a valid criterion for experimental design
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5. Variational estimation of the expected utility

optimisation. Under the general representation (5.1) of the utility, the expected utility

of (2.11) finds expression in:

U(δ) = ∑
m,m′∈M

Fϕ;δ(m,m′)p(m′)p(m) , (5.2)

where:

Fϕ;δ(m,m′) = ∫ ϕ(p(y ∣ δ,m′)
p(y ∣ δ,m) )p(y ∣ δ,m) dy . (5.3)

The methodology proposed in this chapter is targeted at evaluation of the term Fϕ;δ(m,m′)
which will be henceforth referred to as the partial utility. Estimation of the ex-

pected utility is thus reduced to summation of the partial utility over all possible pairs

m,m′ ∈M. It is worth noting that, in general, the model ordering should not be ignored

as Fϕ;δ (m,m′) ≠ Fϕ;δ (m′,m).
The methodology examined in this chapter is, more generally, applicable to estimation

of any quantity of the form:

Fϕ = ∫ ϕ(q(y)
p(y))p(y)dy ,

where p (⋅) and q (⋅) are the densities corresponding to two distributions of interest P

and Q respectively. In the particular case of (5.3), P and Q represent the predictive

distributions of the two competing models m and m′. Function class Fϕ, where ϕ convex,

is commonly known as the class of f−divergences introduced by Ali and Silvey (1966) and

frequently serve as information-theoretic metrics in numerous statistical applications such

as independent component analysis (Comon, 1994), classification (Moreno et al., 2004),

asymptotic analysis of hypothesis testing and more. As subsequently shown in Chapter

8, consideration of f−divergences other than the traditionally adopted KL divergence

may incur additional benefits due to certain intrinsic properties such as symmetricity,

boundedness and more.

This chapter introduces an efficient estimation procedure targetting quantities from

the class Fϕ;δ(m,m′) and subsequent evaluation of the expected utility through (5.2). The

following outline is established: Section 5.2 introduces the class of variational approxi-

mation methods and demonstrates derivation of the resulting estimator for evaluation of
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the expected utility within the problems of interest. Algorithmic implementation of the

proposed estimator for expected utility evaluation is provided in 5.3 with application to

cases of commonly employed utility functions shown in Section 5.4. The chapter con-

cludes with a discussion summarising the benefits and shortcomings associated with the

proposed approach and their comparison to currently adopted methods in Section 5.5.

5.2 Estimation of the expected utility

This section presents an application of the variational approximation methodology, intro-

duced in Chapter 4, for efficient evaluation of the expected utility. This class of methods

has not been previously considered in the context of experimental design. The proposed

methodology adopts a generalised version of the estimators considered in Nguyen et al.

(2010) for the evaluation of f−divergences. This approach consists of two key steps: con-

sideration of the dual representation of the initial evaluation problem through the Fenchel

transform, as demonstrated in the following section and subsequent optimisation over an

appropriately chosen class of functions, as shown in Section 5.2.2.

A variational expression of the partial utility expressed in (5.3) is obtained by trans-

forming the ratio evaluation ϕ (p(y∣δ,m
′)

p(y∣δ,m)
) into its dual representation. More specifically,

the alternative expression takes the form of (4.2) of h, for h = ϕ and χ(y) = p(y∣δ,m′)
p(y∣δ,m)

,

leading to a variational representation of the partial utility, as shown in Corollary 1.

Corollary 1 (Dual representation of the partial utility).

Fϕ;δ (m,m′) ≥ sup
g∈G

{∫ g(y)p(y ∣ δ,m′) dy − ∫ ϕ∗ (g (y))p(y ∣ δ,m) dy} (5.4)

= sup
g∈G

{EPm′ [g(y)] − EPm [ϕ∗ (g (y))]} ,

where G represents a class of measurable functions, conjugate to G∗, induced by χ.

Proof. The Fenchel transform is applied to evaluation ϕ(p(y∣δ,m
′)

p(y∣δ,m)
), producing the follow-

ing representation:

ϕ(p(y ∣ δ,m′)
p(y ∣ δ,m) ) = sup

g∈G
{g(y)p(y ∣ δ,m′)

p(y ∣ δ,m) − ϕ∗ (g(y))} . (5.5)
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Integration over Y to obtain Fϕ;δ (m,m′) combined with a few additional operations lead

to expression (5.4) as demonstrated below:

Fϕ;δ (m,m′) ≥ ∫ sup
g∈G

{g(y)p(y ∣ δ,m′)
p(y ∣ δ,m) − ϕ∗ (g(y))}p(y ∣ δ,m) dy

= sup
g∈G

{∫ [g(y)p(y ∣ δ,m′)
p(y ∣ δ,m) − ϕ∗ (g(y))]p(y ∣ δ,m) dy}

= sup
g∈G

{∫ g(y)p(y ∣ δ,m′) − ϕ∗ (g(y))p(y ∣ δ,m) dy}

= sup
g∈G

{∫ g(y)p(y ∣ δ,m′) dy − ∫ ϕ∗ (g (y))p(y ∣ δ,m) dy} ,

where the exchange between supremum and integral in the second line of equations is a

valid operation because of continuity of the function within. The inequality, appearing in

the first line of equations accounts for cases when the supremum over G is not attained

and thus, the returned optimal value serves as a lower bound to quantity Fϕ;δ (m,m′).
The conditions under which, equality in the induced relationship holds are discussed in

the succeeding paragraphs.

The variational representation of (5.4) expresses the partial utility for any convex ϕ

of models m and m′ as the maximum difference between the expected values of function

g and its conjugate dual ϕ∗(g) with respect to the compared predictive distributions Pm

and Pm′ respectively. An important aspect of this new expression is that estimation of

the partial utility does no longer rely on evaluation of the probability density functions of

competing models, deeming the proposed methods particularly suitable to models with

intractable or computationally demanding likelihoods.

The significance of the result expressed in (5.4) lies in the incurred problem shift: from

the computationally challenging evaluation of the expected utility into an optimisation

problem over a convex set. Provided that equality in (5.4) holds, the value attained from

optimisation of the left hand side (LHS) term provides the answer to the initial evaluation

problem in the right hand side. When, however, that is not the case the LHS will act

as a lower bound of the quantity of interest. Expression (5.6) states the condition under

which equivalence of the alternative problems holds.
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Equality in (5.4) is achieved if and only if there exists a function gopt ∈ G such that:

ϕ(s(y)) ≥ ϕ (χ(y)) + gopt(y) (s(y) − χ(y)) , ∀s ∈ R (5.6)

Proof. Under the assumption of existence of a function gopt such that (5.6) holds, the

following holds true:

ϕ(s(y)) ≥ ϕ (χ(y)) + gopt(y) (s(y) − χ(y)) ⇒

ϕ(s(y)) ≥ ϕ (χ(y)) + gopt(y)s(y) − gopt(y)χ(y) ⇒

ϕ(s(y)) − gopt(y)s(y) ≥ ϕ (χ(y)) − gopt(y)χ(y) ⇒

gopt(y)s(y) − ϕ(s(y)) ≤ gopt(y)χ(y) − ϕ (χ(y)) ⇒

sup
s

{gopt(y)s(y) − ϕ(s(y))} ≤ gopt(y)χ(y) − ϕ (χ(y)) ⇒

ϕ∗ (g(y)) ≤ gopt(y)χ(y) − ϕ (χ(y)) ⇒

ϕ (χ(y)) ≤ gopt(y)χ(y) − ϕ∗ (g(y)) , (5.7)

where the definition of the Fenchel transform is used in the derivation of (5.7).

Combining relationships (5.5) and (5.7) the desired outcome is obtained:

ϕ (χ(y)) = gopt(y)χ(y) − ϕ∗ (gopt(y)) ,

proving that under gopt, equality in (5.6) is achieved.

In subsequent sections, choice of class G is performed with fulfilment of condition

(5.6) in mind, deeming full exploitation of the dual representation (5.4) possible. Overall,

care should be taken during this choice to ensure a sufficiently tight bound around the

estimated quantity. Later sections provide examples of function classes that can be chosen

to be rich enough to include gopt while also leading to practical solutions.

Ruderman et al. (2012) propose a slightly modified representation of the lower bound

in (5.4) that is shown to be overall tighter around the optimum. This approach is not

considered further in this thesis for three reasons: 1) both approaches exhibit the same

behaviour at the optimum with Ruderman et al. (2012)’s representation having the po-

tential to achieve tighter bounds elsewhere. Since care is taken to ensure that gopt belongs
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to G and thus the optimum value is attained such an improvement is not of immediate

interest. 2) Empirical results provided therein fail to consistently demonstrate an im-

proved performance of their proposed estimator and lastly, 3) no theoretical properties

of the alternative expression are provided (such as the convergence rate) as opposed to

the estimator proposed in Nguyen et al. (2010).

Functions that fulfil relationship (5.6) are subgradients of ϕ at a given point, as stated

in Definition 6, and so gopt is the subgradient of ϕ at χ(y). Although not of direct interest

in this thesis, it is worth noting that gopt also provides an estimate for the ratio p(y∣δ,m′)
p(y∣δ,m)

.

5.2.1 Empirical estimation of the expected utility

As analytical evaluation of the integrals composing expression (5.4) is typically not pos-

sible, the following estimator is adopted:

F̂ϕ;δ (m,m′) = sup
g∈G

{ 1

N

N

∑
k=1

g(yPm′
k ) − 1

N

N

∑
k=1

ϕ∗ (g (yPm

k )) − ρ
2
I(g)} , (5.8)

where yPm = {yPm

k }N
k=1

and yPm′ = {yPm′
k }

N

k=1
are samples from distributions Pm and Pm′

corresponding to models m and m′ respectively, obtained at experimental condition δ.

An additional penalty term I(g) is introduced in the proposed estimator in order to

maintain a trade-off between two desired but conflicting properties of G. On one hand,

G is expected to be sufficiently rich so that it includes gopt (see Section 4.2) while also

not too large so that optimisation is achieved within reasonable timescales. Term I(g)
thus penalises functions with higher complexity while ρ acts as a weight to the imposed

penalty.

5.2.2 Optimisation over the class of reproducing kernel

Hilbert spaces

This section considers the evaluation of the expected utility using the estimator of (5.8)

when the structure of a RKHS is imposed on class G. This choice has been prominently

adopted in such problems (Nguyen et al., 2010; Ruderman et al., 2012) as it provides a

class of functions that is sufficiently rich to include gopt, imposes minimal assumptions on

52



5. Variational estimation of the expected utility

g while the complexity of the functions can be regulated by the norm corresponding to

each RKHS class. In addition, exploitation of the class’s inherent properties results in a

simple optimisation problem relying only on evaluation of the Gramian matrix.

Reconsidering the proposed estimator of (5.8) within the class of RKHS, evaluations

g(yPm′
k ) and ϕ∗ (g (yPm

k )) can be flexibly expressed as inner products using the reproduc-

ing property, similarly to (4.10). More specifically:

g(yPm′
k ) = ⟨g,Φ(yPm′

k )⟩ and ϕ∗ (g (yPm

k )) = ϕ∗ (⟨g,Φ(yPm

k )⟩) . (5.9)

The penalty term I(g), chosen as the induced norm ∥g∥2H regulates the complexity of

function g by penalising less smooth functions that tend to overfit the samples. Expression

(5.8) thus takes the form:

F̂ϕ;δ (m,m′) = sup
g∈G

⎧⎪⎪⎨⎪⎪⎩

1

N

N

∑
k=1

⟨g,Φ(yPm

k )⟩ − 1

N

N

∑
k=1

ϕ∗ (⟨g,Φ(yPm′
k )⟩) − ρ

2
∥g∥2H

⎫⎪⎪⎬⎪⎪⎭
. (5.10)

Proposition 1 provides an expression of (5.10) that is completely independent of map-

ping Φ. Definition of Φ is a common challenge in numerous applications that adopt

kernel methods such as kernel principal component analysis (PCA ;Bishop (2006)) and

kernel support vector machines (SVM; Burges et al. (1999)) and is typically avoided using

property (4.9).

Proposition 1 (Partial utility estimator). An estimator of the partial utility Fϕ;δ (m,m′)
of models m,m′ ∈ M with corresponding distributions Pm and Pm′, can be written as a

sum of elements in the form:

F̂ (m,m′) =
N

∑
k=1

[ãkϕ′(Nãk) −
1

N
ϕ∗ (ϕ′(Nãk))] , (5.11)

where:

ã = arg inf
a={a1...,aN}

⎧⎪⎪⎨⎪⎪⎩

N

∑
k=1

[akϕ′(Nak) −
1

N
ϕ∗ (ϕ′(Nak))] +

1

2ρ

N

∑
k,l=1

akalK(yPm′
k ,y

Pm′
l )

− 1

Nρ

N

∑
k,l=1

alK(yPm

k ,y
Pm′
l ) + 1

2ρN2

N

∑
k,l=1

K(yPm

k ,yPm

l )
⎫⎪⎪⎬⎪⎪⎭
, (5.12)
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ϕ∗ the conjugate and ϕ′ the derivative of function ϕ.

Proof. Defining the following terms:

T1,k(g) = −
1

N
⟨g,Ψ(yPm′

k )⟩

T2,k(g) =
1

N
ϕ∗ (⟨g,Ψ(yPm′

k )⟩)

T3(g) =
ρ

2
∥g∥2 ,

expression (5.10) can be restated as its dual representation through the following opera-

tions:

F̂ (m,m′) = sup
g∈G

{⟨0, g⟩ − (T1,k + T2,k + T3)(g))}

= (T1,k + T2,k + T3)∗ (0) . (5.13)

Application of Theorem 2 decomposes expression (5.13) into individual conjugate

functions and so:

F̂ϕ;δ(m,m′) = inf
v,u

{
N

∑
k=1

T ∗
1,k(vk) +

N

∑
k=1

T ∗
2,k(uk) + T ∗

3 (−
N

∑
k=1

vk −
N

∑
k=1

uk)} . (5.14)

Evaluation of terms T ∗
1 , T

∗
2 and T ∗

3 can be simply achieved through the Fenchel trans-

form, resulting in the following representations, a detailed derivation of which is provided

in Appendix C.1:

T ∗
1,k(vk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, for uk = − 1
NΦ(yPm

k )

+∞, otherwise

(5.15)

T ∗
2,k(uk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

akϕ′(Nak) − 1
Nϕ

∗ (ϕ′(Nak)) , for vk = akΦ(yPm′
k )

+∞, otherwise

(5.16)

T ∗
3 (−

N

∑
k=1

vk −
N

∑
k=1

uk) = 1

2ρ
∥−

N

∑
k=1

vk −
N

∑
k=1

uk∥
2

H
. (5.17)
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Substituting (5.16), (5.15) and (5.17) into (5.14) results in expression:

F̂ϕ;δ(m,m′) =

= inf
v,u

⎧⎪⎪⎨⎪⎪⎩

N

∑
k=1

akϕ
′(Nak) −

1

N
ϕ∗ (ϕ′(Nak)) +

1

2ρ
∥−

N

∑
k=1

akΦ(yPm′
k ) + 1

N

N

∑
k=1

Φ(yPm

k )∥
2

H

⎫⎪⎪⎬⎪⎪⎭

= inf
v,u

⎧⎪⎪⎨⎪⎪⎩

N

∑
k=1

akϕ
′(Nak) −

1

N
ϕ∗ (ϕ′(Nak))+

1

2ρ

⎡⎢⎢⎢⎣

N

∑
k,l=1

akalK(yPm′
k ,y

Pm′
l ) −

N

∑
k=1

ak
N

N

∑
l=1

K(yPm′
k ,yPm

l ) + 1

N2

N

∑
k,l=1

K(yPm

k ,yPm

l )
⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

as required. Derivation of the final line makes use of the relationship ⟨Φ(yPm

k ),Φ(ylP )⟩ =
K (yPm

k ,yPm

l ).

Denoting as ã the vector of points where the infimum is attained and letting ρ → 0,

expression (5.11) follows.

5.2.3 Alternative function classes

Belghazi et al. (2018) consider an alternative class of functions to Section (5.2.2), that

is parametrised by neural networks. Similarly to the class RKHS, their proposed class

imposes no assumptions on the functions within while functions are highly flexible which

allows them to approximate the estimated quantity with arbitrary accuracy. There is

currently no indication to suggest that this alternative class achieves any improvement

over RKHS and comparison of the two approaches is beyond the scope of this thesis, it

was, therefore, not considered further.

5.3 Algorithmic representation

This section demonstrates an algorithmic implementation using the estimator presented

in Proposition 1 for evaluation of the expected utility provided in Algorithm 3.
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5. Variational estimation of the expected utility

Algorithm 3 Estimation of the expected utility of δ through variational methods.

1: Generate predictions yPm = {yPm
1 , . . . ,yPm

N } from Pm for all m ∈ M at experimental

condition δ

2: Obtain the conjugate ϕ∗ and derivative ϕ′ and substitute into (5.12)

3: For m ∈M and m′ ∈M that m ≠m′ do

4: Use a suitable optimization algorithm to optimise â for samples yPm , yPm′

5: Use ã to evaluate F̂ϕ;δ(m,m′) according to (5.11)

6: end for

7: Average over F̂ϕ;δ(m,m′) for all m,m′ ∈ M, m ≠ m′ to obtain an estimate of the

expected utility U(δ) according to (2.3)

The procedure described in Algorithm 3 is expressed in a general form and is applicable

for any choice of ϕ. Section 5.4 clarifies certain steps further by considering a specific

choice of utility function.

5.4 Estimation of the KL divergence

This section considers the application of the proposed methodology for evaluation of the

weighted KL divergence represented by the special case of (2.13) for choice of ϕKL(χ(y)) =
− log(χ(y)) given by expression (2.13). This expression of expected utility results from

definition of the utility as the Shannon entropy. The motivation behind this application

is to further clarify certain steps of Algorithm 3 for a specific case of ϕ that may currently

appear to be quite generic. Steps for which no further clarification is deemed necessary

are omitted.

- Step 2. The conjugate function of ϕKL is derived in Example 1 and given by:

ϕ∗ (g(y)) = −1 − log(−g(y)) , g < 0

while ϕ′ (χ (g(y))) = − 1

χ(g(y)) .

- Steps 4-5. Using the expressions derived in Step 2 and under Proposition 1, the KL
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divergence estimator takes the form:

F̂ϕKL;δ (m,m′) = − 1

N

N

∑
k=1

log(Nak) ,

where:

ã = arg inf
a

⎧⎪⎪⎨⎪⎪⎩
− 1

N

N

∑
k=1

log(Nak) +
1

2ρ

N

∑
k,l=1

akalK (yPm′
k ,y

Pm′
l )

− 1

Nρ

N

∑
k,l=1

alK (yPm

k ,y
Pm′
l ) + 1

2ρN2

N

∑
k,l=1

K (yPm

k ,yPm

l )
⎫⎪⎪⎬⎪⎪⎭
. (5.18)

The optimal vector ã can typically be obtained through simple optimisation rou-

tines as will be further discussed in Chapter 8. An additional example of f−divergence

estimation using the proposed estimator is provided in Appendix C.2 for ϕH(χ(y)) =
2
√

(χ(y)), χ > 0. Choice of this function induces expression of the expected utility

in terms of the Hellinger distance between predictive distributions corresponding to the

competing models under study.

5.5 Discussion

The estimation process proposed in this chapter consists of two key steps. The initial

step, presented in Sections 4.2 and 5.2.1, establishes a variational representation for the

expected utility under the formulation induced by utility functions from the proposed

function class F . Exploitation of this dual expression provides an answer to the initial,

computationally demanding evaluation problem through the solution of a less challenging

optimisation problem. An empirical estimator of the expected utility is thus formulated

as expression (5.8) which no longer relies on evaluation of the marginal likelihood but on a

new function g from a measurable class of functions G. This attribute makes the proposed

approach particularly suited to the problems examined in this thesis where evaluation of

the likelihood is computationally burdensome.

The second step of the estimation procedure relies on a clever choice of function class

G. Section 5.2.2 considers the class of RKHS resulting in a practical expression of the

adopted estimator that relies only on evaluation of the Gram matrix using samples from
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the predictive distributions of the competing models. The expression of each function

evaluation within RKHS through a potentially infinite set of basis functions equips the

resulting estimator with increased flexibility and efficiency, allowing it to extract infor-

mation directly from the provided predictive samples. This property allows direct com-

parison of the competing distributions against each other without relying on an indirect

representation of each considered sample through its corresponding marginal likelihood,

employed by currently adopted Monte-Carlo based approaches. As a result, computa-

tionally challenging marginal likelihood estimation methods are no longer required.

Despite the various benefits incurred from approximation of a quantity of interest

through variational techniques, some noteworthy challenges are also inherited. As shown

in Section 4.2, evaluation of the expected utility is bounded below by its dual problem,

expressed in (5.4). Equality is fulfilled under condition (5.6) in which case, solution

of the corresponding optimisation problem provides the answer to the initial evaluation

problem. In general, solution of the optimisation problem serves as a lower bound thus

representing a worst-case scenario for the expected utility. The question is, therefore,

raised regarding the proximity of the resulting approximation to the true value, often

referred to as the tightness of the bound. In the context of this class of estimation

problems, this issue has been commonly addressed through choice of the class function

G ensuring the inclusion of sufficient options within to achieve approximations that are

sufficiently close to the estimated value. Class functions allowing such conditions are

considered in Section 5.2.2. In the more specific context of optimal experimental design

for studies employing computationally demanding models, the examined issue poses a

lesser challenge compared to those associated with the most commonly adopted Monte-

Carlo based methods. Indeed, as shown in Chapter 3, Monte-Carlo estimators are, in

general, not faced with such challenges as asymptotical convergence is guaranteed by

Property 2. In other words, evaluation of the estimated function on an arbitrarily large

population of N samples from the considered predictive distributions provides an estimate

that is sufficiently close to the true value. However, as demonstrated in Chapters 8 and

6, the computational complexity involved in evaluation of the function of interest on

each predictive sample may lead to corresponding waiting times of the order of hours

and, in cases, days. Given that interest lies on completion of the optimal design study
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5. Variational estimation of the expected utility

within a realistic time frame, consideration of only a limited collection of samples is

possible. Particularly, in the study examined in Chapter 5, restriction to a population

of 50 − 100 predictive samples is necessary for accomplishing this goal. Considering that

this limited population lies far from infinity, Monte-Carlo estimators provide as much of

an approximation as the proposed variational approach, inheriting the exact same issues.

Nevertheless, the role of expected utility in optimal experimental design problems is to

facilitate the comparison of alternative experimental conditions. Even when an exact

value of the expected utility is not available, comparison of potential conditions under

the alternative, worst case scenario is still informative to optimal design studies.

Furthermore, compared to Monte-Carlo based approaches the proposed approach pro-

vides a highly efficient framework for estimation of the expected utility. Using flexible,

non-parametric methods, evaluation of N , computationally demanding marginal likeli-

hood is avoided at the cost of an N -dimensional convex optimisation problem. This

problem shift is shown to incur substantial computational savings as further supported

by empirical comparison in Chapters 7 and 8. The rate of convergence is similar for the

two approaches with order O(N−1/2) (Nguyen et al., 2010; Ryan, 2003).

Summary

This chapter introduces a novel methodology for estimation of the expected utility ad-

dressing challenges that have so far remained unresolved through currently adopted ap-

proaches. The proposed estimator allows consideration of a broad class of utility functions

tailored to model discrimination problems including commonly employed utilities such

as the Shannon entropy as well as other, less frequently considered functions that are

however shown to possess further appealing properties improving the estimation perfor-

mance. Efficacy of the proposed method is attributed to two key components: a dual

representation, established in Section 4.2, allowing consideration of a theoretically simpler

problem in place of the initial challenging evaluation problem. Focus is thus shifted to the

solution of a convex optimisation problem over a class of measurable functions. Choice

of the induced class constitutes the second key component and is considered in Section

5.2.2. A practical implementation of the proposed estimator is provided in Sections 5.3
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and 5.4 including an algorithmic representation for evaluation of expected utility and an

accompanying example of its application for a specific choice of utility function. The

chapter concludes with a discussion reviewing the benefits and shortcomings associated

with the presented methodology as well as the improvement it incurs over the currently

adopted approaches.

The preceding Chapter 3 introduced two ongoing challenges in the experimental design

literature: efficient evaluation of the expected utility is addressed in this chapter while the

succeeding chapter focuses on optimisation of the expected utility over the design space

incorporating the proposed estimator. Overcoming this challenges paves the way towards

the fully automated study of complex phenomena that is also considered in Chapter 6.
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Chapter 6

Sequential and adaptive

experimental design

Methodology for efficient estimation of the expected utility was previously presented in

Chapter 5, tackling one of the prevalent issues present in modern optimal experimental

design problems. This chapter proceeds into considering a comprehensive framework for

optimal experimental design on the basis of the proposed estimator, addressing common

challenges such as expected utility estimation and efficient design optimisation. The

adopted setup aims to deliver a fully automated solution to the study of natural phenom-

ena through experiments, that requires minimal human input.

6.1 Sequential and adaptive designs

The importance of experimental data in modern scientific studies has been frequently

outlined throughout the preceding chapters. Since the phenomena of interest are often

not directly observable, the obtained information is vital for gaining insight into the inner

workings of the studied system. Under the design setup considered so far, experimental

data are used towards answering a particular objective. More specifically, within the class

of problems targeted in this thesis, experimental data are incorporated into the model

inference problem under study, providing evidence in support of one model against its

rivals. Once the process of model selection has been completed, the experimental data
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6. Sequential and adaptive experimental design

are not considered further. Such designs are commonly known as static designs.

Under a more sophisticated setup, already existing experimental data can be incorpo-

rated into the study, further informing future experimental design decisions. A sequential

procedure is, thus, established under which, an update of the current knowledge occurs

upon observation of the newly obtained experimental data, driving subsequent optimal

design decisions. This, in turn, generates new experimental observations, leading to

further updates, followed by proposition of their corresponding optimal designs and so

on. This setup is commonly known as an adaptive design under which, observation of

previous experiments impacts decisions on subsequent experiments.

This closed-loop procedure of data collection, knowledge update and optimal decision-

making provides a fully automated and comprehensive setup for the study of scientific

phenomena. The latter stage is predominantly addressed in this thesis, throughout Chap-

ters 2-5. Knowledge update is, typically, achieved in a Bayesian context under which,

experimental data are incorporated into the study through an update in the assumed

distributions of unknown experimental parameters conditioned on the newly obtained

information. This step can be achieved through the previously discussed SMC algorithm,

provided in Appendix B or any other sampling algorithm when an analytical expression

for the updated form is not available. The stage of data collection falls outwith the scope

of this thesis. However it is worth noting that, availability of modern software, allowing

instrument control for data collection at a selected experimental condition, facilitates

complete process automation for the study of different phenomena through experiments.

An algorithmic representation of the examined procedure is provided in Algorithm

4. Focus in this thesis is placed on sequential designs under which, the most recent

experimental observations are incorporated into decisions regarding only the very next

experiment, an approach known as myopic. A more sophisticated, non-myopic design

looks further than the immediately subsequent experiment and decisions are made ac-

cordingly, however such an approach will not be considered in detail in this thesis.
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Algorithm 4 A fully automated framework for the study of modern phenomena through
experiments

1: while ( stopping conditions are not met ) do

2: Generate samples yPm = {yPm
1 , . . . ,yPm

N } from the prior predictive distributions

for all m ∈M.

Make optimal decision

3: Acquire the optimal design δ∗ given yPm , m ∈M.

4: Set δ∗seq ← {δ∗} during the initial cycle and δ∗seq ← {δ∗seq,δ∗} onwards.

Observe studied system

5: Perform experiment at δ∗ and collect observed data D.

Update current knowledge

6: Acquire the posterior predictive distribution yPm∣D.

7: Set posterior as prior of the next stage θPm → θPm∣D and yPm ← yPm∣D, m ∈M.

8: end while

The efficient variational estimation approach, presented in Chapter 6 is essential for

consideration of this framework within a realistic time frame. As previously discussed, the

inherent complexity of the phenomena studied in this thesis, deem traditionally adopted

optimal experimental design methods highly inefficient. This results in unrealistically

long waiting times between the sequential stages of Algorithm 4. The proposed estimator

is shown to address such issues, enabling an efficient transition from the optimal decision

making stage to knowledge update and experimentation.

The performance of the procedure described in Algorithm 4 is, in addition, highly de-

pendent on maximisation of the expected utility. This common challenge, associated with

most experimental design problems, has been previously discussed in Chapter 3 wherein

existing methodology for addressing such issues was presented. Briefly, two desirable

conditions are targeted: 1) a comprehensive search of the design space, ensuring optimal-

ity of the proposed design. Sub-optimal designs may, alternatively, lead to considerable

information loss and waste of experimental resources. 2) Completion of the optimisation

stage within reasonable time scales. Unfortunately, a comprehensive coverage of ∆ under

an inefficient optimisation approach may lead to significantly long waiting times and so

optimisation methods that achieve a balance between conditions 1 and 2 are necessary.
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Under the sequential and adaptive setup of Algorithm 4, the shape of the targeted

expected utility surface changes with each knowledge update and thus a new search is

necessary at each cycle of the procedure. Challenges associated with inefficient opti-

misation approaches are, therefore, aggravated further under this setup, hindering the

successful completion of the conducted study.

An efficient class of optimisation algorithms, addressing the examined issues is con-

sidered in the succeeding Section 6.2. The presented approach, in combination with the

proposed variational estimator for evaluation of the expected utility are, in Chapters 8

and 9, shown to enable implementation of Algorithm 4 within a realistic time frame,

providing a fully automated and efficient framework for the study of complex phenomena

through experimentation.

6.2 Efficient search of the expected utility surface

Methodology for efficient optimisation of the expected utility is considered in this section.

The presented approach is predominantly targeted to problems with continuous domains

or, more generally, when deterministic comparison of every experimental condition in ∆

is computationally infeasible. The class of Bayesian optimisation algorithms is employed

for that purpose, providing a highly efficient framework which is particularly suited to

problems employing computationally demanding functions. The presented methodology

combined with the expected utility estimation procedure proposed in Chapter 5, provides

a fully automated framework for the study of modern phenomena as demonstrated in this

chapter.

Optimal experimental design finds application in a wide range of disciplines and may

target various objectives (inverse problems, model selection, prediction). In any case, the

question of interest remains unchanged and is summarised by:

δ∗ = arg max
∆

U(δ) , (6.1)

where function U(δ) quantifies the expected utility incurred from a particular design δ

along the lines of the decision-theoretic context of Chapter 2. Although focus has been
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so far drawn in definition and evaluation of the expected utility U(δ), optimisation of it

over ∆, as stated by (6.1), remains unexplored.

In its simplest form, solution of problem (6.1) can be approached through evaluation

of U(δ) — for every δ ∈ ∆ under a discrete design space or a discretised subset under a

continuous design space — and deterministic identification of the optimal condition δ∗.

However, computation of the expected utility for every possible design quickly becomes

infeasible as the size of designs under consideration increases, despite the computational

improvement incurred by the proposed estimator. In addition, maximisation of the ex-

pected utility over a subset of experimental conditions may lead to highly suboptimal

designs if the considered designs lie sufficiently far from the actual optimal solution.

Commonly adopted approaches, addressing this problem have already been discussed

in Chapter 3. This chapter examines the class of Bayesian optimisation algorithms as an

extension to the previously considered methodology. Although having been previously

employed in design optimisation problems (Kleinegesse and Gutmann, 2019; von Kügel-

gen et al., 2019), Bayesian optimisation algorithms are not as widely adopted in this

context despite their flexibility, efficiency and suitability to such problems.

Section 6.2.1 provides a general introduction to the Bayesian optimisation framework

while its individual components are considered in Sections 6.2.2 and 6.2.3. Section 6.2.4

explores its role within optimal experiment design problems and establishes a complete

and automated framework for studies of phenomena through experimentation.

6.2.1 Bayesian optimisation algorithms

The idea of Bayesian optimisation was introduced by Jonas Močkus in Močkus (1975,

1989), yet have only in recent years gained considerable attention. This can be predom-

inantly attributed to an increase in both need and computational capacity: the former

results from a general interest shift towards the study of more complex structures (Calder

et al., 2006; Overstall and Woods, 2016) that are potentially costly to evaluate and may

produce noisy observations thus requiring highly efficient search procedures. The latter

is associated with the emergence of increasingly powerful computational resources that

deem Bayesian optimisation algorithms executable within reasonable time frames.

Bayesian optimisation algorithms seek to locate the extrema of a particular function
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of interest which will often be referred to as the objective function. As with any

optimisation procedure, a sequence of steps is established during which the current eval-

uations of the objective function guides evaluations in future stages. The efficiency of

Bayesian optimisation algorithms lies in their ability to minimise the required evaluations

by employing an alternative function to serve in its place, also known as the surrogate

function. Observation of this alternative function is typically achieved at a lower com-

putational cost. The surrogate function incorporates observations from the objective

function available up to the most recent optimisation step to improve its approximation

performance and is subsequently used as a simulator of the expensive objective function

in between optimisation steps. In a decision-theoretic setup, an additional optimisation

procedure is introduced in between optimisation steps that locates the optimal set of

points for the objective function to be observed next. Comparison of alternative sets is

possible through an optimality criterion, commonly known as the acquisition function.

Two key components are, therefore, distinguished:

1. the surrogate function acting as a simulator of the objective function. At the ini-

tial step of the algorithm, the surrogate model reflects ones prior beliefs about the

model and is sequentially refined as new observations become available, providing

an increasingly improved approximation to the objective function. New informa-

tion is incorporated through the likelihood function of the surrogate model into its

posterior distribution which is subsequently used as a surrogate model in the suc-

ceeding optimisation step. This aspect attributes Bayesian optimisation algorithms

their data efficiency. Commonly adopted optimisation algorithms, typically rely on

the function evaluation and potentially some additional surface properties of their

current state to inform their subsequent moves. Bayesian optimisation algorithms

extract further information from every function evaluation observed up to that state

thus guiding better informed decisions. Alternative surrogate models are further

examined in Section 6.2.2.

2. The updated surrogate function, treated as the ‘true’ model, is used to inform se-

lection of points at which observation of the objective function during the following

optimisation step incurs the optimal results. Potential sets are ranked through the
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acquisition function along the lines of the previously introduced utility function, al-

though function definitions in the two cases typically differ reflecting their distinct

objectives. Choice of the acquisition function establishes a desired level of trade-off

between exploration and exploitation of the space ensuring both optimality and suf-

ficient coverage of the area. Commonly adopted acquisition functions are presented

in Section 6.2.3.

The two components produce and exchange information in an iterative way, as sum-

marised in Algorithm 5. The following notation is adopted: at optimisation step i, the

surrogate model approximating the expected utility surface is updated given the most

current information Scurrent = {s(x(0)), . . . , s(x(i−1))} where s represents the objective

function and x(i) ∈ X the corresponding query point. The term α(x) will denote evalua-

tion of the acquisition function at point x. The optimisation procedure is repeated until

a pre-defined stopping condition is fulfilled, typically set as a fixed number of steps or as

a bound on the improvement acquired between two consecutive optimisation steps.

Algorithm 5 Bayesian Optimisation

1: Set Scurrent = {s(x(0))} for an initial point x(0) and i← 0.

2: while ( stopping condition is not met ) do

3: Update the surrogate function given data Scurrent.

4: Optimise the acquisition function α to indicate new query points x(i) such that:

x(i) = arg max
X

α(x) (6.2)

and obtain evaluation of objective function s(x(i)).
5: Augment data Scurrent ← {Scurrent, s(x(i))}.

6: Set i← i + 1.

7: end while

8: Acquire the optimal x∗ = arg max
{x(0),...,x(i−1)}

s(x).

Requirements for application of Bayesian optimisation algorithms is minimal as opti-

misation is possible simply based on pointwise (and potentially even noisy) evaluations
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of the objective function and while additional surface properties such as gradient infor-

mation can also be taken into account, their provision is not necessary.

In the context of experimental design problems, interest lies in maximisation of the

expected utility U over the design space ∆ which thus constitutes the objective function.

As evaluation of the expected utility frequently incurs high computational cost as dis-

cussed in Chapter 3, Bayesian optimisation methods constitute an appealing option due

to their efficiency with respect to the required function evaluations. The role of Bayesian

optimisation in experiment design is revisited in Section 6.2.4.

The following sections 6.2.2 and 6.2.3 present commonly adopted surrogate models

and acquisition functions respectively in a more general setup.

6.2.2 Surrogate models

This section provides a closer examination on the function of surrogate models and dis-

cusses commonly adopted choices.

Similarly to the previously considered methodology of Chapter 3, numerous models

can serve as approximations to the expected utility surface. Bayesian optimisation relies

on a probabilistic model which facilitates an update in the assumed distribution once new

information is observed while also quantifying the uncertainty in the provided approx-

imation. Parametric models constitute an appealing choice as they typically impose a

simpler structure and involve less parameter tuning however their limited flexibility may

fail to adequately capture the targeted surface. As a result, considerable focus is placed

on non-parametric approaches (Ginsbourger et al., 2008; Grünewälder et al., 2010) and

more specifically the framework of Gaussian Processes (GP) (Rasmussen and Williams,

2006) which is briefly considered in the succeeding paragraphs.

Gaussian processes Gaussian process models provide a flexible probabilistic frame-

work over an unknown function of interest, following Definition 9.

Definition 9. (Dudley, 2002) Let m ∶ X → R denote any real-valued function and K ∶
X ×X →R a kernel function, as introduced in Chapter 5. A random function f ∶ X →R

is said to be a Gaussian process with mean function m and covariance kernel K, if for
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any finite set x = {x1, . . . ,xn} ⊆ X and n, the random vector f = {f(x1), . . . , f(xn)} fol-

lows a multivariate Normal distribution N (m,K), where m(x) = (m (x1) , . . . ,m (xn))
and K(x,x) = [k(xi,xj)]ni,j=1 = [Cov(f(xi), f(xj))]ni,j=1, where K represents the n × n
variance-covariance matrix while k(xi,xj) individual matrix entries.

Bayesian Optimisation algorithms operate under the assumption of normally dis-

tributed function values s(x) = {s(x1), . . . , s(xn)} given f , posing the following regression

problem:

f ∼N (m,K)

s ∣ f , σ2 ∼N (f , σ21n) ,
(6.3)

where σ2 the error variance associated with observations s and 1n the n × n identity

matrix.

In light of newly observed function evaluations s(x) at x = {x1, . . . ,xn}, the prior

assumption expressed in (6.3) can be updated to incorporate this information. Under

the resulting posterior Gaussian process, f at an arbitrary new point xnew also follows a

Normal distribution with mean m∗ and variance σ∗2 that obtain the form:

m∗(xnew) = m(xnew) + k(xnew,x)T [K(x,x) + σ21n]−1 (s(x) −m(x))

σ∗2(xnew) = k(xnew,xnew) − k(xnew,x)T [K(x,x) + σ21n]−1k(xnew,x) , (6.4)

where k(xnew,x) represents the column-vector of the covariance of xnew with each element

of x.

A collection of samples from the GP prior is depicted in the top plot of Figure 6.1 for

m(x) = 0 for every x and k(xi,xj) = exp (− ∥xi−xj∥
2

2`2 ), where ∥⋅∥ is the Euclidean norm and

` = 1. The solid black line represents the prediction mean m while the grey lines represent

100 samples from the corresponding Gaussian process prior. The posterior GP in light

of a newly observed dataset is subsequently presented in the bottom plot of Figure 6.1

in which the obtained observations are marked with red crosses.
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Figure 6.1: The top plot depicts a collection of 100 samples from the prior GP and the
predictive mean, represented by grey and black solid lines respectively. Given a set of 10
observations, marked with red crosses, the GP can be updated to incorporate the new
information, as shown in the bottom plot.
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6.2.3 Acquisition functions

The idea of an acquisition function resembles the decision-theoretic utility function in-

troduced in Section 5 aiming to quantify the utility of alternative sets of points at which

the objective function is to be observed next. The acquisition function is thus maximised

at each optimisation step as shown in Algorithm 5 with respect to a particular objective

that is imposed through different definitions of the function, potential choices of which

are discussed in succeeding paragraphs. In general, maximisation of the acquisition func-

tion seeks to maintain a desired trade-off between two actions: exploration of the design

space and exploitation of current knowledge. Exploration ensures sufficient coverage of

the design space driving queries towards points where the uncertainty in the surrogate

model is relatively high. On the contrary, exploitation takes advantage of already exist-

ing information and thus motivates moves towards areas closer to the presently observed

optimum.

Differing objectives give rise to a range of possible acquisition functions, a selection of

commonly employed choices are considered in this section. A frequently adopted class of

acquisition functions ranks new query points based on their potential improvement upon

the current situation and are typically referred to as Improvement-based. An intuitive

definition, introduced by Kushner (1964), considers the Probability of Improvement :

αPI (x) = Pr(f(x) > fmax) (6.5)

where fmax refers to the highest prediction observed up to the current stage of the Bayesian

optimisation algorithm. Estimates of quantity 6.5 can be obtained by generating a collec-

tion of samples f(x) from the GP and subsequently summing over evaluations of the 0-1

utility function, as shown in Section 2.2.3, assigning value 1 if f(x) offers an improvement

over fmax and 0 otherwise.

Such choice incurs a considerable amount of information loss indicating only whether

a case was successful or not while disregarding any information about the level of improve-

ment. A modified expression, known as the Expected Improvement, allows for considera-

tion of this information by incorporating the term f(x)− fmax resulting in the alternative
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definition:

αEPI (x) = E [(f(x) − fmax)] (6.6)

= (m(x) − fmax)Φ(z(x)) + σ(x)φ(z(x)) , (6.7)

where z(x) = m(x)−fmax

σ2(x) . Derivation from 6.6 to 6.7 is specific to using a Gaussian process

as a surrogate model where, as shown in Section 6.2.2, the posterior distribution evaluated

at any arbitrary point is normally distributed. Functions Φ and φ refer to the Gaussian

c.d.f. and p.d.f. respectively. The EI incorporates both elements of exploration and

exploitation. The former is encouraged through inclusion of the first term, reflecting the

improvement upon the current maximum prediction, while the latter is captured through

the second term that accounts for the uncertainty in a particular search area.

An alternative class operates under the optimistic policy of considering the best-case

scenario in the face of uncertainty. Due to this property, members of this class are

often called optimistic policies. The acquisition function, commonly known as the Upper

Confidence Bound, is defined as:

αUCB (x) = m(x) + εσ(x) , (6.8)

where ε can be tuned for optimal performance according to the guidelines provided in

Srinivas et al. (2010).

A comparison between alternative options in the context of optimal experiment design

is briefly considered in Chapter 8.

6.2.4 Bayesian optimisation for optimal experimental design

This section explores the function of Bayesian optimisation in experiment design problems

and establishes an automated framework for the study of different phenomena through

experiments which constitutes a central objective of this thesis. Emphasis is particularly

placed on phenomena characterised by highly complex structures that, as a result, require

employment of more sophisticated and thus computationally demanding models. As pre-

viously discussed in preceding chapters, these problems incur numerous challenges when
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employing commonly adopted methodologies. Chapter 5 addressed the issue of evaluat-

ing the benefit associated with potential experimental conditions within a realistic time

frame by proposing a highly efficient estimation procedure. Exploration over the design

space for optimisation of the expected utility is subsequently tackled in this chapter.

Section 6.2.1 provides a general outline of Bayesian optimisation algorithms while

Sections 6.2.2 and 6.2.3 introduce their two key components: the surrogate model and

acquisition function. This section focuses on the specific application of Bayesian optimi-

sation within experimental design and more specifically for optimisation of the expected

utility U over the design space, a summary of which is provided in Algorithm 6. The vari-

ational estimator of Chapter 5 is incorporated in the optimisation procedure for efficient

evaluation of the expected utility at a particular experimental condition δ. In addition,

the flexible probabilistic framework of Gaussian processes is adopted as an approximation

to the expected utility surface.

Algorithm 6 Bayesian optimisation for maximisation of the expected utility over ∆

1: Set scurrent = {U(δ(0))} for an initial design δ(0) and i← 0.

2: while ( stopping condition is not met ) do

3: Obtain the Gaussian process posterior given scurrent following (6.4).

4: Optimise the acquisition function α to indicate new query points δ(i) such that:

δ(i) = arg max
δ
α(δ) (6.9)

and evaluate the corresponding expected utility U(δ(i)) using Algorithm 3.

5: Augment data scurrent ← {scurrent, U(δ(i))}.

6: Set i← i + 1.

7: end while

8: Acquire the optimal δ∗ = arg max
{δ(0),...,δ(i−1)}

U(δ).

Algorithm 6 offers an efficient framework for optimal decision making, constituting a

vital stage of the sequential adaptive procedure proposed in this chapter and summarised

in Algorithm 4. Implementation of Bayesian optimisation algorithms for search of the

expected utility surface in the context of a real-life problem is examined in Chapter 8.
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Summary

This chapter presents a comprehensive and fully automated setup for the study of mod-

ern phenomena, requiring minimal input from the experimenter. The class of Bayesian

optimisation algorithms that are particularly well-suited to addressing optimal experi-

mental design problems is also considered. The presented class can flexibly incorporate

the previously proposed variational estimator, offering a highly efficient setup for opti-

misation of sequential and adaptive designs. Key components of this procedure, namely,

the surrogate model and acquisition function are briefly examined while implementation

of Bayesian optimisation algorithms for maximisation of the expected utility within an

optimal experimental design problem is considered subsequently. Combination of the effi-

cient estimation and Bayesian optimisation frameworks are shown to allow establishment

of an autonomous and efficient setup for the study of highly complex structures expressed

by computationally expensive models within realistic timelines. Its application, initially

to a simple benchmark study of model discrimination followed by real-life studies from

the fields of Systems Biology and Spectroscopy, is further considered in Chapters 7-9.
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Chapter 7

Optimal experimental design for

model discrimination

This chapter explores the application of methodologies, presented in Chapters 2-6, to a

commonly employed benchmark study of model discrimination using experimental data.

Performance of the proposed variational estimator and the traditionally adopted Monte-

Carlo based approach for evaluation of the expected utility is assessed under a setup

where an arbitrarily close representation of the true, estimated value is available. The

chapter concludes with consideration of a sequential design setup on the basis of the

examined estimators, providing a fully automated and efficient solution to the studied

problem.

7.1 Problem setup

This chapter studies the optimal design of experiments targeting a model discrimination

problem, initially considered by Box and Hill (1967). The study employs a collection

of polynomial models, representing alternative hypotheses on an assumed underlying

process, observed through an obtained experimental dataset. This section provides an

introduction to the competing hypotheses and their formulation through statistical mod-

els in a Bayesian setting. As subsequently shown, under this particular model setup

the study benefits from a closed form expression for the marginal likelihood, allowing
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7. Optimal experimental design for model discrimination

a representation of the expected utility that is considered to be arbitrarily close to the

truth. The produced values will in Section 7.2 serve as a ‘gold’ standard for assessing the

performance of the examined estimators.

Due to the simplicity of the adopted models, the studied case is not considered to be

entirely representative of the class of problems targeted in this thesis. This is because

application of standard Monte-Carlo approaches, although still costly, is not hindered

by the issues associated with computationally intensive likelihoods, discussed in Chapter

3. Nevertheless, interest lies on establishing an initial assessment for the performance of

the proposed estimator and a comparison with existing approaches. Unlike the real-life

applications examined in the succeeding Chapters 8 and 9, assessment of the competing

estimators is possible against the ‘true’ approximated value, providing useful insight on

their performance.

7.1.1 Alternative hypotheses

The following four models were considered by Box and Hill (1967) for application of their

examined optimal design methodology:

Model 1: η1(β1, ξ) = β11ξ

Model 2: η2(β2, ξ) = β20 + β21ξ

Model 3: η3(β3, ξ) = β30 + β31ξ + β32ξ2

Model 4: η4(β4, ξ) = β41ξ + β42ξ2 , (7.1)

where βm = (βm0, . . . , βm(κm−1)) expresses the vector of κm parameters associated with

model m = 1,2,3,4. Parameter ξ denotes a controllable model input and is, in this

case study, treated as the experimental condition. Thus the general notation δ and the

case-specific ξ will be, in this chapter, used interchangeably.

An equivalent vector-matrix notation restates the model outputs in (7.1) as:

ηm(βm, ξ) = ΞT
mβm ,

for m = 1,2,3,4, where Ξm is the κm×λ matrix of inputs, corresponding to model m, with
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λ representing the dimensionality of the model output. In the considered study, λ = 1.

7.1.2 Statistical models

Under the assumption of normally distributed observed error, the likelihood of y under

model m and corresponding model parameters θm = (βm, σ2
m) at experimental condition

δ, is formulated as:

f(y ∣m,βm, σ2
m,δ) =N (y; ηm(βm,δ), σ2

m) , (7.2)

where N (⋅ ; ηm, σ2
m) expresses the probability density function corresponding to the

Normal distribution with mean ηm and error variance σ2
m.

The unknown vector of model parameters θm is assigned prior distributions, reflecting

initial beliefs on their values without taking into account any information from observation

of the underlying process under study. The following prior distributions were adopted in

this study:

βm ∣ σ2
m ∼MVN (µm0,Λm0σ

2
m)

σ2
m ∼ IG(am0, bm0) , (7.3)

where MVN represents the multivariate Normal distribution with κm-mean vector µm0

and variance-covariance matrix Λm0σ2
m, with Λm0 being a κm×κm matrix. Parameter σ2

m

is assigned an inverse Gamma distribution, denoted by IG and parametrised by am0, bm0

positive constants. As there was no indication on whether βm ∣ σ2 admits only positive

or negative values, a prior centred around 0 was preferred and thus µm0 = 0. A relatively

wide spread on its potential values was imposed through σ2 in order to account for

multiple potential scenarios, leading to choices of hyperparameters a0 = 3 and b0 = 1 and

Λm0 = 1κm , for 1κm the κm × κm identity matrix.

The particular choice of prior distributions was preferred because of their property of

conjugacy when considering regression models of the form (7.2), providing an analytical

expression of the model parameter posterior distribution and the marginal likelihood.

Availability of a closed form solution allows quick evaluation of the expected utility with-
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out resorting to the computationally intensive approaches, discussed in Chapter 3. Under

this setup, the marginal likelihood, previously defined in (2.6), obtains the following ex-

pression:

p(y ∣ δ,m) = St2am0 (y; ΞT
mµm0,

bm0

am0

(1 +ΞT
mΛm0Ξm)) , (7.4)

where St(⋅; ⋅) represents the probability density function of the Student-t distribution with

2am0 degrees of freedom. Given an observed dataset ỹ, the posterior marginal p(y ∣ ỹ,δ)
follows expression (7.4), parametrised by the posterior hyperparameters µmn,Λmn, amn, bmn

conditioned on dataset ỹ, provided below:

µmn = (Λ−1
m0 +ΞmΞT

m)−1 (Λ−1
m0µm0 +Ξmy)

Λmn = (Λ−1
m0 +ΞmΞT

m)−1

amn = am0 +
1

2

bmn = bm0 +
1

2
[µTm0Λ

−1
m0µm0 + y2 −µTmnΛ−1

mnµmn] .

Expression (7.4) allows convenient evaluation of the expected utility in the context of

model discrimination problems, as demonstrated in the succeeding section. This represen-

tation is further used as a benchmark for comparison of two estimators under examination:

the variational estimator, introduced in Chapter 5 and the commonly adopted Monte-

Carlo based approaches, relying on approximation of the marginal likelihood, discussed

in Chapter 3.

7.2 Evaluation of the expected utility

Following Box and Hill (1967), the set of experimental conditions under consideration

was defined as ∆ = {0,5,10,15}. An initial impression of the model prediction density

plots based on samples from the prior distributions of model parameters and evaluated

for each experimental condition in ∆ is provided in Figure 7.1.
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Figure 7.1: Density plots of model predictions based on samples from the prior dis-
tribution of model parameters associated with the studied experimental conditions in
∆.
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7.2.1 Choice of utility

Following the experimental design framework introduced in Chapters 2 and 5, comparison

of the candidate experimental conditions δ ∈ ∆ required specification of the utility func-

tion, as a measure of optimality in the context of the studied problem. As interest, in this

case study, lay on optimal experimental design for model inference, choice of the utility

function was such that reflected the benefit an experimental condition incurred towards

effective discrimination between the candidate models. The class of utility functions de-

scribed by (5.2) was, therefore, adopted for this case study. The findings presented in this

section were obtained under the particular choice of ϕ(χ) = − log(χ), inducing the most

commonly adopted Shannon entropy, introduced in (2.13) and briefly restated below for

convenience:

U(δ) = ∑
m∈M

∑
m′∈M,
m′≠m

KLδ(m,m′) p(m′) p(m)

= ∑
m∈M

∑
m′∈M,
m′≠m

[∫
Y

log
p(y ∣ δ,m)
p(y ∣ δ,m′)p(y ∣m,δ) dy] p(m′) p(m) ,

where KLδ(m,m′) expresses the KL divergence between the predictive distributions corre-

sponding to models m and m′ at experimental condition δ. Under the induced expression,

evaluation of the expected utility, effectively reduces to that of KLδ(m,m′) for all possible

12 pairs of models. It is worth noting that, as the KL divergence is not symmetric, sepa-

rate evaluations for quantities KLδ(m,m′) and KLδ(m′,m) are required. The candidate

models of set M were considered equiprobable and so the quantity p(m′) ⋅p(m) = 1
4⋅3 = 1

12

for each pair of m,m′ ∈M, where m ≠m′.

7.2.2 Evaluation based on a closed-form expression

Unfortunately, an analytical expression for the KL divergence is not available under the

considered model setup. Efficient estimation can, nevertheless, be achieved through the

closed form representation of the marginal likelihood provided in (7.4). Evaluation relies

on adoption of a Monte-Carlo estimator for approximation of the integral involved in the

expression of KL divergence, previously derived in (3.4). Under (7.4) the corresponding
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Monte-Carlo estimator takes the form:

K̂Lδ(m,m′) = 1

N∗

N∗

∑
i=1

[log p(yPm
i ∣ δ,m) − log p(yPm

i ∣ δ,m′)]

= 1

N∗

N∗

∑
i=1

⎧⎪⎪⎨⎪⎪⎩
log [St2am0 (yPm

i ;Ξmµm0,
bm0

am0

(1 +ΞmΛm0Ξ
T
m))]

− log [St2am′0 (y
Pm
i ;Ξm′µm′0,

bm′0

am′0
(1 +Ξm′Λm′0Ξ

T
m′))]

⎫⎪⎪⎬⎪⎪⎭
, (7.5)

where yPm
i , i = 1, . . . ,N∗ are samples from the predictive distribution corresponding to

model m. Efficient evaluation of the marginal likelihood through its closed form expres-

sion allows consideration of an arbitrarily large population size N∗ from the competing

predictive distributions. As a result and due to Property 2 of Monte-Carlo estimators,

stating its asymptotical convergence to the true value as the number of considered samples

grows to infinity, the obtained estimate will be treated as a sufficiently close represen-

tation of the true value and, therefore, serve as a benchmark for comparison of the two

compared estimators, considered in Sections 7.2.3 and 7.2.4.

7.2.3 Variational approximation

This section examines application of the variational estimator, proposed in Chapter 5, for

evaluation of the expected utility at any given experimental condition δ ∈ ∆. Estimation

of U(δ) is achieved following Algorithm 3 for choice of ϕ(χ) = − log(χ), inducing the

more specific formulation, discussed in Section 5.4. Unlike the traditionally adopted

Monte-Carlo estimators of (7.5), the proposed estimator avoids evaluation of the marginal

likelihood for each sample from the predictive distribution by efficiently comparing the

collections of samples from the competing predictive distributions against each other.

As described in Chapter 5, this is achieved through a dual representation of the initial,

computationally challenging evaluation problem as the optimisation problem, summarised

in Proposition 1. On the contrary, Monte-Carlo methods consider each sample from

the population individually, information from which is extracted through the marginal

likelihood. As discussed in Chapter 3 and further shown in Chapters 8 and 9, application

of Monte-Carlo approaches quickly becomes intractable when evaluation of the marginal
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likelihood is not available in closed form and so, more efficient estimation methods are

required. A comparison of the two methods through empirical results is provided in

Section 7.2.5.

Credible intervals summarising the obtained estimates under alternative sample sizes

compared against the ‘true’ value are shown in Figure 7.2. The structure of the RKHS

class induced by the Gaussian kernel was imposed on function class G. This is potentially

the most commonly adopted choice of kernel assuming fairly smooth functions within the

class, definitions of which takes the form:

K(yi,yj) = exp{−∥yi − yj∥2

s
} , (7.6)

where ∥⋅∥ represents the Euclidean metric in Rλ and s > 0. The term K(yi,yj) is often

interpreted as a similarity measure between yi and yj. Under definition (7.6), parameter

s regulates the assumed spread between them and should be, therefore, chosen within a

range, representative of the overall considered distributions. To this end, s was chosen

as the variance of the joint predictive distribution corresponding to m and m′.

An additional parameter determining the behaviour of the estimator is the penalty

weight ρ that is present in the corresponding optimisation problem, as shown in Propo-

sition 1. Choice of the value for ρ was based on findings of Gretton et al. (2007) and

Ruderman et al. (2012) who show that, when ρ = O(N−1) the produced estimates are

bounded away from infinity under a finite vector â. Alternatively the authors claim that,

penalty weights of a smaller order would attribute unnecessarily high significance to the

penalty causing it to dominate over the remaining terms, thus resulting in convergence of

the estimator to a positive constant that is not necessarily the true value. Larger order

penalties would, on the other hand, underestimate the discrepancy between the two dis-

tributions setting the penalty as 0 even when that is not the case. Overall, it was found

that ρ = 1
N and ρ = 0.1

N provided particularly accurate estimates with the latter providing

better estimates in cases when the divergence between the two distributions was higher.

Overall, the estimator was found to perform particularly well when evaluating smaller

divergences both in terms of accuracy and computational time. For instance, estimation

of the expected utility for experimental condition δ = 0 was achieved in less than 10
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Figure 7.2: 95% credible intervals of expected utility estimates obtained through the
proposed estimator using alternative sample sizes from the competing predictive distri-
butions. Consecutive intervals in the top figure represent estimates produced at the exact
same experimental condition, however, a jitter term has been added to values of δ for
clarity. The four bottom plots provide a closer look, showing sets of intervals presented
in the top figure but for each experimental condition individually.
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minutes for a chosen rate of ρ = 1
N and N = 500 samples from the competing distributions.

Larger divergences, for example those observed at δ = 5, 10 required a lower rate of ρ = 0.1
N ,

leading to slower convergence of the estimator and so evaluation of the corresponding

expected utility ranged from 2 to 50 minutes depending on the difficulty of the induced

optimisation problem.

Additional performance measures and their comparison against those obtained through

the Monte-Carlo estimator and the almost closed form solution are provided in 7.2.5.

7.2.4 Monte-Carlo based methods

An alternative evaluation of the expected utility through the traditionally employed

Monte-Carlo approach is examined in this section. The adopted estimator relies on

the Monte-Carlo integral described in the introductory part of this section, however, an

approximation of the marginal likelihood rather than the closed form expression of (7.4)

is used instead. Performance of this alternative estimator is assessed since an analytical

expression for the marginal likelihood is not available in most real-life applications as

those examined in Chapters 8 and 9 and so alternative evaluation methods are required

in such cases.

Following the work of Vyshemirsky and Girolami (2008), estimation of the marginal

likelihood is achieved using the method of thermodynamic integration, discussed in 3.2.2.

Adopting an importance sampling estimator, similar to Drovandi et al. (2013), estimates

of the marginal likelihood result as a by-product of a Sequential Monte-Carlo sampling

algorithm where samples obtained at each of the M intermediate stages are used for

evaluation of the intermediate marginal likelihood, previously described in (3.6). A pop-

ulation of 1000 samples was used for the SMC algorithms as lower sample sizes were

associated with population degeneracy issues while sampling was performed over 100 in-

termediate stages. The tempering schedule regulating the transition between subsequent

intermediate distributions was chosen as:

bi = ( i

M
)
4

, (7.7)

following guidelines provided in Friel and Pettitt (2008) who suggest a relatively dense
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Figure 7.3: Credible intervals (95%) of expected utility estimates obtained through
Monte-Carlo estimation. Estimates resulted from use of alternative sample sizes of pop-
ulations from the competing predictive distributions are shown. Consecutive intervals
represent estimates produced at the exact same experimental condition, however, a jitter
term has been added to values of δ corresponding to alternative sizes for clarity.

allocation of distributions during the initial sampling stages when the information gain

is higher and increasingly scarce distributions thereafter.

A summary of estimates in the form of 95% credible intervals corresponding to alter-

native sizes of samples from the competing predictive distributions is provided in Figure

7.3, including a representation of the true value obtained through 7.5.

Estimation of the marginal likelihood corresponding to one prediction and one model

required 35 seconds on average. As evaluation of the expected utility corresponding to one

experimental condition δ relies on examination of 12 pairs of models on a collection of N

predictions, resulting in a total required time of 5 hours when considering 100 predictive

samples. Unfortunately, as demonstrated in Figure 7.3 such low sample sizes generate

highly biased and inaccurate estimates and thus larger samples need to be considered

with corresponding evaluation times up to 50 hours (for N = 1000). Nevertheless, Monte-

Carlo methods are easily parallelisable which may incur significant gains depending on the
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computational capabilities available. Using a high performance distributed computing

framework, estimation of the expected utility of one experimental condition based a

population of 500 predictive samples was accomplished in less than 1 hour, however, it is

worth noting that, such resources are not commonly accessible.

7.2.5 Comparison study

Further comparison between the alternative estimation methods, considered in Sections

7.2.3 and 7.2.4, is presented in this section. Additional performance criteria, complement-

ing the findings of the preceding section are included in Table 7.1 and Figure 7.4. The

former summarises estimates of the partial utility corresponding to each pair of com-

peting models (m,m′), obtained by reproducing an experiment at condition ξ = 0 ten

times based on a population of 500 prior predictive samples. Estimates are compared

against the assumed true value, obtained through expression 7.1. It is worth noting that,

negative estimates can be attributed to estimation error since the KL divergence admits

only non-negative values.

(m,m’) (1,2) (1,3) (1,4) (2,1)

True 0.0836 0.0836 0 0.1132

f−d 0.0813 (0.0661,0.1082) 0.0853 (0.0721,0.1213) 0.0404 (0.0202,0.0781) 0.0874 (0.0676,0.1286)

MC 0.1034 (0.1025,0.1055) 0.0751 (0.0742,0.0762) 2e-04 (-4e-04 ,9e-04) 0.0352 (0.0324,0.0362)

(m,m’) (2,3) (2,4) (3,1) (3,2)

True 0 0.11324 0.103011 0

f−d 0.018 (0.0076,0.0324) 0.086 (0.0703,0.1469) 0.0944 (0.0736,0.1372) 0.021 (0.0085,0.0509)

MC -0.0278 (-0.0303,-0.0258) 0.0323 (0.0288,0.0342) 0.0799 (0.0786,0.0814) 0.0288 (0.026,0.0305)

(m,m’) (3,4) (4,1) (4,2) (4,3)

True 0.103011 0 0.078875 0.078875

f−d 0.1024 (0.0866,0.1628) 0.0316 (0.0222,0.0444) 0.0959 (0.0649,0.1589) 0.1023 (0.0847,0.1329)

MC 0.0774 (0.0752,0.0793) 1e-04 (-4e-04,6e-04) 0.1143 (0.1135,0.1148) 0.0865 (0.085,0.0886)

Table 7.1: Mean, lower and upper bounds of estimates representing the partial utility
of each pair (m,m′) obtained through 10 replications at experimental condition δ = 0
using a population of 500 samples from the corresponding prior predictive distributions.
Three alternative evaluation methods are considered: Monte-Carlo relying on closed form
expression of the marginal likelihood (True), variational approximation (f−d) and Monte-
Carlo relying on estimation of the marginal likelihood through thermodynamic integration
(MC).)
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Figure 7.3 depicts 95% credible intervals of expected utility estimates obtained through

each of the considered methods based on 1000 samples from each of the competing pre-

dictive distributions. As demonstrated therein, both estimators perform better when the

divergence between distributions is small, potentially due to the low variability in the

sample, allowing estimation by observation of less samples. It is further shown that,

the error in estimates obtained through Monte-Carlo estimation is relatively higher than

those corresponding to the proposed method which can be attributed to an additional

error arising from estimation of the marginal likelihood. Therefore, the former approach,

as also shown in succeeding case studies, requires larger sample sizes to provide estimates

of quality similar to the latter. However, this demand is often hindered by the high

computational cost associated with Monte-Carlo methods, as was shown in the preceding

Section 7.2.4. This problem is aggravated further when models employing computation-

ally demanding likelihoods as will be shown in the subsequent Chapters 8 and 9.

7.3 Sequential and adaptive design

Application of a sequential, response-adaptive setup to the studied model discrimination

problem is considered in this section. The adopted framework, described in Algorithm 4,

establishes a fully autonomous process of data collection, knowledge update and decision

making, leading to more efficient and better-informed designs.

The sequential process, summarised in Figure 7.5, is composed of 4 stages during

which, each experimental condition was allowed to only be considered once. In other

words, once a condition δ ∈ ∆ is identified as the optimal, it is assumed to offer no infor-

mation gain in subsequent stages and thus assigned an expected utility of 03. With respect

to the stopping conditions described in steps 2 and 4 of Algorithm 4, an experimental

budget equal to the number of studied conditions was assumed while designs incurring an

expected utility of 0.5 (following the guidelines of Jeffreys (1961)) were deemed beneficial

enough to encourage further experimentation.

3For the particular definition of utility function, considered in this case study, the value 0 is the
minimum of the induced expected utility.
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Figure 7.4: Credible intervals (95%) of the expected utility estimates corresponding
to the studied experimental conditions of ∆ obtained through the alternative competing
methods. Results are compared against the assumed true value marked with red lines
and symbols.

The process is initiated at stage 0, during which model predictions rely solely on

preliminary information captured through the prior distribution of model parameters.

Evaluation of the expected utility incurred from each considered experimental condition

allows identification of the optimal condition δ∗ for observation of the studied system at

stage 1. Having recorded the experimental dataset D at the stage 1, the prior distribu-

tion is refined to reflect the new knowledge and the updated predictive distributions are

used for determination of the optimal condition for experimentation at the subsequent

stage. In this case study, experimental data were simulated from Model 3. This iterative

procedure continues until either the available experimental resources do not permit fur-

ther experimentation or until the information gain incurred from additional experiments

is deemed insufficient. In this example, an experimental budget of 4 experiments was

assumed causing the process to terminate once this target was reached.

As Figure 7.5 suggests, the information gain from observing the optimal experiment
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is maximised at stage 1 during which the very first experiment of the study is performed.

Subsequent experiments incur decreasing benefit although still informative enough to

justify data collection at these points with the exclusion of the final stage where the

estimated expected utility of the optimal experimental condition was found to be 0.023

and thus, not worthy of consideration.

Unlike non-adaptive designs, each current stage of Algorithm 4 uses the already ob-

served experimental data to inform subsequent decisions. As a consequence, the expected

utility surface changes at each sequential stage in light of the newly observed experimental

data. Maximisation of the expected utility surface is, thus, performed anew at each cy-

cle. An illustration of the expected utility surface, refined to incorporate the information

collected at the data collection stage, is provided in Figure 7.6.

In this case study, a design space, consisting of only 4 experimental conditions was

considered. Maximisation of the expected utility is under such cases feasible simply

through evaluation of the expected utility corresponding to each potential experimental

condition followed by deterministic comparison of the obtained values in order to deter-

mine the maximum. As will be demonstrated in the succeeding Chapter 8, this approach

does not necessarily incur optimal maximisation over a continuous design space when re-

view of a considerable number of potential experimental conditions is required. The class

of Bayesian optimisation algorithms, introduced in Chapter 6, can be employed in such

cases for efficient optimisation of the expected utility. Implementation of this approach

is demonstrated in the succeeding Chapter 8.

89



7. Optimal experimental design for model discrimination

0 5 10 15

−
3
0
0

−
1
0
0

1
0
0

3
0
0

stage 0 ,U( δ *)= 3.08

 

 

0 5 10 15
0

1
0

0
2
0
0

3
0
0

4
0
0

5
0
0

stage 1 ,U( δ *)= 9.17

 

 

0 5 10 15

0
2
0
0

4
0
0

6
0
0 stage 2 ,U( δ *)= 6.38

 

 

M1 M2 M3 M4 δ* obs

0 5 10 15

−
1
0
0

0
1
0
0

3
0
0

5
0
0

stage 3 ,U( δ *)= 0.02

 

 

Figure 7.5: A sequential framework for optimal experimental design. Each subfigure
depicts predictions made with each of the four competing models (y-axis) at each po-
tential experimental condition δ (x-axis). The transition from one subfigure to the next
represents the change in model predictions as new information becomes available at each
stage of the procedure. The coloured lines represent the lower and upper bounds of the
prediction intervals for each model while crosses denote their means calculated at each
experimental condition of ∆.
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Figure 7.6: Sequential update of the expected utility surface in light of newly ob-
served experimental data. Each subfigure corresponds to a distinct stage of the sequential
procedure, depicting the expected utility (y-axis) of each of the potential experimental
conditions δ (x-axis). Once the system is observed at a given experimental condition
δ its expected utility becomes noticeably small, indicating that no further information
collected at this δ will be substantial.

Summary

This chapter presents some initial findings on optimal experimental design through the

proposed methodology and its comparison to the commonly adopted Monte-Carlo ap-
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proach for evaluation of the expected utility in the context of a simple model discrimina-

tion problem. The considered study benefits from availability of a closed form solution

for evaluation of the marginal likelihood thus producing estimates that are assumed to be

arbitrarily close to the true value through Monte-Carlo integration based on a sufficiently

large population of samples from the competing predictive distributions. Comparison of

the produced estimates against this representation of the true value, confirms that both

methods perform particularly well as was demonstrated through various summaries. The

main difference of the two estimation methods lie in their corresponding computational

time with the proposed estimator requiring significantly less time for the conclusion of a

particular study of interest. As previously discussed in Chapter 5, this can be attributed

to the reliance of Monte-Carlo estimation to sampling from the posterior distribution of

model parameters for each of a large collection of samples from the predictive distributions

of the competing models. On the contrary, the variational estimator avoids sampling and

only relies on optimisation of a convex problem over an N−simplex where N expresses

the number of samples from the predictive distributions. The difference between the com-

peting methods becomes more apparent when considering models with computationally

demanding likelihoods, a problem that is examined more closely in Chapters 8 and 9.

Having explored the problem of estimation of the expected utility, a response-adaptive

design for model discrimination was subsequently explored. The proposed sequential

procedure allows full process automation in such studies, establishing a closed-loop setup

of data collection, knowledge update and decision making. This framework is studied

further in the context of the real-life applications, presented in Chapters 8 and 9.
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Chapter 8

Optimal experimental design for the

study of biochemical networks

This chapter explores the application of optimal experimental design for inference in

Systems Biology. As direct observation of the composition and dynamics of biological

systems is typically not possible, analysis through wet lab experiments is often neces-

sary for their study. Unfortunately, the considerable cost and time demand of these

experiments places limiting conditions on their conduct. Optimal experimental design

addresses this class of problems, allowing the study of such phenomena in the most bene-

ficial manner while adhering to imposed limitations. In this chapter, design optimisation

is achieved using a range of methodologies, introduced in Chapters 2-6. Ongoing chal-

lenges, discussed therein, are addressed using the variational approximation approach of

Chapter 5 for efficient evaluation of the expected utility and a comparison with currently

adopted methods is provided in the context of a real-life application. An autonomous

and efficient framework for the study of this problem is subsequently considered on the

basis of the proposed method.

8.1 Experimental design in Systems Biology

Systems Biology is a scientific discipline concerned with the study of biological systems,

encompassing computational and experimental procedures. It provides a natural transi-
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tion from component-level modelling to understanding the functionalities and dynamic

behaviour of cells as parts of a system (Kriete and Eils, 2013). This new representation

is thought to be key for improving current diagnostics and treatments thus transforming

existing medical practices.

Integration of expert knowledge from multiple disciplines is essential for this endeav-

our. Biologists contribute a deeper insight into the unique properties of cells and are

in a position to conduct lab experiments that provide useful information on the studied

biological system. Modellers rely on such observations to form an initial set of hypotheses

and subsequently test them against the obtained knowledge. The process is often cyclical

in the sense that, prior hypotheses are updated in the light of new experimental data

which subsequently guide decisions on future experiments. Completion of this exchange

may be achieved when the limiting conditions are met or if the study can be concluded

with sufficient confidence.

Undoubtedly, experimental data constitute a vital component of this procedure. In

fact, a large collection of publications (Liepe et al., 2012; Vyshemirsky and Girolami,

2008; Wilkinson, 2007) is devoted to performing modelling, inference or prediction tasks

in Systems Biology based on observation of a system through experiments. The method-

ology proposed in Chapters 5 and 6 finds direct application in challenges related to the

experimental design process for data collection.

Planning of experiments often relies on decision making that has an immediate effect

on the subsequent system behaviour. This may concern any controllable conditions such

as the times of observation, the pattern of stimulation or choice of the directly observed

quantities. Certain decisions may instigate behaviours that are more favourable to the

study of a particular objective. Unfortunately, the cost and time requirements involved

in performing an experiment for observation of a biochemical system, often, place lim-

itations on the number of potential conditions that can be investigated. The process

of identifying the most favourable conditions under the imposed restrictions, forms an

optimal experimental design problem along the lines of Chapter 2. Following the nota-

tion introduced therein, external factors controlled by the experimenter will be treated

as the experimental conditions δ while the remaining system components will constitute

the experimental parameters θ. The succeeding Section 8.2 introduces a case example
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of an optimal design problem for discrimination between two artificial models, offering

alternative views to the structure of a particular biochemical network of interest. Sec-

tions 8.3 and 8.4 showcase application of the proposed methodology in order to identify

experimental conditions under which model selection is performed with the highest effi-

ciency. Section 8.5 revisits the sequential process of data collection, knowledge update

and decision making described in previous paragraphs. As shown therein, integration

of the proposed, efficient estimator allows the automation of such an exchange and its

completion within realistic time frames which is, otherwise, not possible using currently

adopted approaches.

8.2 Case study

This section introduces a case study in Systems Biology that seeks to infer the structure

of a biochemical system through model selection using experimental data.

8.2.1 Alternative hypotheses

Models expressing two alternative dynamic structures of an enzymatic activation system

are considered in this study. The competing hypotheses are depicted in Figure 8.1 with

ellipses representing proteins, present in the system and the directed arrows connecting

them denoting the reactions between them. The rates at which reactions occur are

expressed by the kinetic parameters written along the arrows while arrows ending with

a black dot indicate enzymatic behaviour. The examined systems as well as similar

structures and their corresponding representations can be found in Vyshemirsky and

Girolami (2008) and Lawrence et al. (2010).

Hypothesis 1 assumes a simpler behaviour where substrate S is converted into product

P by the action of enzyme E. Hypothesis 2 adopts a similar structure incorporating the

additional component ES as a by-product of the reaction between proteins E and S.

As the dynamic behaviour of biological systems is monitored over time, mathematical

expression for it is typically provided by systems of differential equations (o.d.e.) with

time t acting as an independent variable, the reaction rates {V1,K1,K2,K3} as model

parameters and the concentration of proteins {S,P,E,ES} as dependent variables.
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(a) Hypothesis 1 (b) Hypothesis 2

Figure 8.1: Graphical representation of two competing hypotheses representing alter-
native structures of a biochemical system under study.

The o.d.e. system expressing the structure depicted in Figure 8.1a takes the form:

Model 1:
dS

dt
= −V1 ⋅ S ⋅E

S +K1

+K2 ⋅ P

dP

dt
= V1 ⋅ S ⋅E
S +K1

−K2 ⋅ P

dE

dt
= 0 , (8.1)

where terms S,P and E represent the concentration of the corresponding proteins at a

given time point and V1,K1,K2 denote the kinetic parameters regulating the interactions

between them. In this case study, the initial values of protein concentration were consid-

ered known, however in a different scenario they can be flexibly optimised instead. The

initial values of protein concentration were set to:

S ∣t=0= 1 P ∣t=0= 0 E ∣t=0= 0.01 .

The alternative hypothesis, depicted in Figure 8.1b, finds mathematical expression in
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the following system of o.d.e.s:

Model 2:
dS

dt
= −K1 ⋅ S ⋅E +K2 ⋅ P

dES

dt
=K1 ⋅ S ⋅E −K3 ⋅ES

dP

dt
= −K2 ⋅ P +K3 ⋅ES

dE

dt
= −K1 ⋅ S ⋅E +K3 ⋅ES (8.2)

where S,ES,P,E are concentrations of proteins composing the system and K1,K2,K3

the kinetic parameters. The initial concentration, in this case, was set to:

S ∣t=0= 1 ES ∣t=0= 0 P ∣t=0= 0 E ∣t=0= 0.01 .

An illustration of the system behaviour under the two alternative hypotheses is pro-

vided in Figure 8.2, where the concentration of its components is depicted over time with

t = 0 s marking the time of system activation. The predictions were generated using fixed

choices of initial concentrations and model parameters.
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Figure 8.2: Concentration predictions for the proteins composing the studied system
under Hypothesis 1 (left) and Hypothesis 2 (right) over a time period of 100 seconds.
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Overall, the initial concentrations were assumed to be known and fixed, however, the

kinetic parameters were considered unknown and were as such assigned a prior distribu-

tion in a Bayesian context. The particular form of the prior distributions, adopted for

this case study, is presented in Section 8.2.2 along with a specification for the likelihood

function of a given model prediction under an observed dataset. As a result, time remains

as the only controllable factor impacting the observed output and was thus treated as

the experimental condition δ. The general notation δ and the problem-specific t will

be, throughout this chapter, used interchangeably. The succeeding section discusses the

statistical models employed in this case study in more detail.

8.2.2 Statistical models

Following the notation adopted in previous chapters, the observed dataset will be denoted

by y = {yδ1 , . . . ,yδK}, where yδi represents the protein concentration corresponding to

experimental condition δi, i = 1, . . . ,K. The vector of model parameters θm, in this

context, refers to the kinetic parameters of the system and the observation error variance,

which will be denoted by θ̃m and σ2 respectively. As a result, θm = {θ̃m, σ2}, where

θ̃m1 = {V1,K1,K2} and θ̃m2 = {K1,K2,K3}.

To test the competing hypotheses, the corresponding model outputs are compared

against experimental data. Treating one of the models as the ‘true’ model, simulated

data served, in this case study, as artificial experimental observations, an approach that

has been widely adopted (Mendes et al., 2003; Vyshemirsky and Girolami, 2008) for

testing and comparing methodologies in a controlled environment. In this study, Model 1

was considered as the ‘true’ model and focus was placed on measurements from protein P

at a selection of experimental conditions as this component is present in both competing

models and is sensitive to changes in the model parameters which prevents possible

identifiability issues.

The likelihood function is subsequently employed for this comparison, quantifying the

probability of the assumed model reproducing the observed data. Under the assumption

of normally distributed observation errors, the likelihood of dataset y given model m
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parametrised by the corresponding vector θ̃m is formulated as:

f(y ∣m, θ̃m, σ2,δ) =N (y; odem(θ̃m,δ), σ2) , (8.3)

where odem(θ̃m,δ) expresses the solution of the o.d.e. system, quantifying the concentra-

tion of P at a particular experimental condition δ according to Model m with parameters

θ̃m. A uniform prior distribution (U) was assigned to the model parameters as a rough

range was known for each of them and there was no reason to assume higher probability

for particular values while an inverse Gamma distribution (IG) was assumed for σ2 to

ensure it is always assigned positive values. In summary:

V1 ∼ U(0,20)

K1 ∼ U(0,20)

K2 ∼ U(0,10)

K3 ∼ U(0,10)

σ2 ∼ IG(4,2) . (8.4)

These choices of hyperpriors were found to provide a wide enough coverage of potential

model parameter values. Given that some existing knowledge was incorporated through

the prior distributions they can be considered as weakly informative.

As described in Section 8.1, learning by experimentation is an iterative procedure. In

the initial stage, the predictive distributions are typically chosen to be sufficiently wide

covering a broad range of potential observations. Due to the significant overlap, further

illustrated in Figure 8.3, identification of an optimal experimental condition, incurring

considerable evidence in the context of model discrimination was not possible. The utility

surface corresponding to the predictive distributions depicted therein was found to be

fairly flat with the returned optimum not exceeding the value of 0.1 which, following

(Jeffreys, 1961), is insignificant. Common practices (Silk et al., 2014), in this case, resort

to random selection or rely on expert knowledge for choice of the initial experimental

condition. The information D acquired from the preliminary experiment can be flexibly

incorporated into the study by updating expression (8.3) into the posterior predictive
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Figure 8.3: Predictions corresponding to different values of model parameters sampled
from the prior distribution for the two candidate models.

distribution formulated as:

p(y ∣m,δ,D) = ∫ p(y ∣m,θm, σ2,δ,D)p(θm ∣ D)p(σ2 ∣ D)dσ2dθm . (8.5)

This knowledge is further refined in light of new experimental results at subsequent stages.

At each stage the posterior distribution conditioned on the most current data will serve as

the prior distribution for the subsequent stage. This response-adaptive setup is revisited

in Section 8.5.

Opting for an initial condition where the shift between predictive means appears to

be comparatively high, previous knowledge was simulated from Model 1 at δ = {100}s,

obtaining 3 replicates with added noise in order to reproduce the error present in real-

life scenarios. An expression for the posterior distribution of model parameters was not

available in closed form and so samples from it were obtained using Sequential Monte-

Carlo methods, as described in Appendix B. The posterior density plots are provided in

Figures 8.4 and 8.5 for Models 1 and 2 respectively. These samples were subsequently
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used to generate observations from the posterior predictive distributions of the two models

which are depicted in Figure 8.6. A knowledge update is evident therein, when compared

with the prior predictive distribution of Figure 8.3, as the predictive distributions are

refined to reflect observation of the experimental data (marked by red crosses).
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Figure 8.6: Predictions using samples from the posterior distribution of model parame-
ters under the competing hypotheses. Data summarising previous knowledge are marked
by red crosses.

Subsequent choice of experimental conditions is attainable through the methodology

considered in Chapters 3,5 and 6. Focus is initially placed on efficient evaluation of the

expected utility of candidate designs which is explored in Section 8.3. A comparison of

the proposed methodology and traditionally adopted Monte-Carlo based approaches is

provided in 8.3.1 and 8.3.2 respectively. Exploration of the design space is later considered

in Section 8.4.

8.3 Evaluation of the expected utility

This section explores competing methodologies for evaluation of the expected utility in

the context of the studied model inference problem. This problem is quite representa-

tive of cases when traditionally employed estimation methods become highly inefficient

due to the considerable computational demand involved in obtaining predictions from

the adopted models. More specifically, solution of the corresponding system of o.d.e.s
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requires on average 1.12 ⋅10−4 seconds which, as previously shown in Section 3.2.4, results

in total computational time of approximately 748 minutes for evaluation of the expected

utility of only one potential design using the traditionally adopted Monte-Carlo methods

and a population of 100 samples from each of the competing predictive distributions. As

a result, full search over the continuous design space ∆ = [0,100] s is hindered leading

to consideration of only a limited selection of experimental conditions, thus inducing po-

tentially sub-optimal designs. On a larger scale, consideration of the sequential setup,

described in Section 8.1, would lead to considerable waiting times between the optimisa-

tion and experimentation stage, deeming this exchange problematic.

This section employs the variational method introduced in Chapter 5 to tackle these

challenges and provides a comparison with empirical results obtained from the Monte-

Carlo based approaches. Application of both methodologies relies on samples from the

posterior predictive distributions corresponding to the competing hypotheses, depicted

in Figure 8.6, given preliminary information obtained at δ = {100} s. Observation of

the posterior predictive distributions provides further insight on definition of the class of

utility functions F established in Chapter 5. In summary, F was shown to represent a

class of dissimilarity measures, commonly known as f−divergences that in the context of

model selection, quantify the discrimination between the competing predictive distribu-

tions. A higher utility suggests larger discrimination and thus more confident hypotheses

ranking given a new set of predictions. Considering the specific case depicted in Figure

8.6, classification of a newly observed experimental dataset at δ = {15} s to one of the

competing hypotheses may potentially be achieved with higher confidence compared to

δ = {55} s where there is an almost complete overlap between model predictions and,

so, similar observed measurements are expected under any hypothesis. Two members of

function class F are adopted in this study, inducing expressions of the expected utility

in terms of the KL divergence and Hellinger distance.

Initial evaluation of the expected utility is restricted to the design points {1,5,10,20,60,

80} s. Exploration of such a limited selection of experimental conditions is likely to pro-

vide a sub-optimal solution however interest at this stage focuses solely on the perfor-

mance of the proposed estimator and its comparison to alternative estimation methods

in terms of accuracy and computational time rather than selecting the optimal condition
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which is further considered in Section 8.4.

8.3.1 Variational approximation

Estimates of the expected utility are, in this section, obtained through the variational

approach, described in Algorithm 3. A summary of the obtained estimates is provided in

Figure 8.7 in the form of 95% credibility intervals obtained by replicating each experiment

100 times.

Alternative choices of function ϕ are considered, more specifically, definitions ϕKL(χ) =
− logχ and ϕH(χ) = 2

√
(χ), χ > 0 inducing expressions of the expected utility as

the KL divergence and Hellinger distance respectively. Two main properties can be

exploited from choice of the latter: 1) symmetricity in the divergence, meaning that

F (m,m′) = F (m′,m), thus reducing the number of partial utility approximations further

and 2) restriction of F (m,m′) in the [0,1] interval. As previously observed in Chapter

7, the proposed estimator performs particularly well when estimating smaller divergences

and hence, choice of ϕH ensures that only such values are being targeted.

As illustrated in Figure 8.7, both choices ot utility function produce identical shapes of

the expected utility surface but with different corresponding value ranges. Interpretation

of the expected utility varies among the two examined choices of utility functions. The

expression of weighted KL divergence is always non-negative and can be understood

along the lines of Jeffreys (1961)’s guidelines for the Bayes’ factor, due to the previously

established correspondence shown in Chapter 2. The alternative representation in terms

of Hellinger distances, attains values only within the interval [0,1], deeming the obtained

results also intuitively interpretable.

Summaries were generated for sample sizes of 250, 500 and 1000 from the predictive

distributions under study to demonstrate the improvement in the estimation accuracy

as larger samples are considered. In general, populations of 500 or 1000 should be pre-

ferred as less samples produce considerably noisy estimates and, as a result, significant

overlap between intervals corresponding to the alternative experimental conditions which

hinders their comparison. Conversely, a population of 1000 samples achieves sufficiently

distinctive discrimination between the compared decisions and so consideration of more

predictions does not necessarily justify the additional computational cost incurred by it.
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The RKHS class structure induced by the Gaussian kernel was imposed on func-

tion class G defined by (7.6) with ∥⋅∥ expressing the Euclidean metric in R. A penalty

term inversely analogous of the considered population N was adopted, setting ρ = 1
N for

populations of less than 1000 samples and a slower rate of ρ = 0.1
N , otherwise. A more

comprehensive discussion regarding these choices is provided in Chapter 7.

Similarly to findings from estimation of the expected utility in the model discrimi-

nation problem of Chapter 7, the estimator was found to perform better, both in terms

of accuracy and computational time, at experimental conditions with relatively smaller

expected utilities, such as time points 60 or 80 s. Estimation at these points ranged from

3 to 7 minutes while at the remaining conditions of 5,10 and 20 s, computational times

of up to 30 minutes were observed for populations of 1000 samples from the predictive

distributions. The difference in the observed estimation times can be attributed to the

complexity of the corresponding optimisation problem. Intuitively, learning from sam-

ples with relatively low variability which is subsequently reflected in their low expected

utility, as discussed in more detail in Chapter 2, poses an easier problem than comparing

two noisy samples where, potentially, more sophisticated models (more basis functions in

terms of RKHS) are required to adequately capture such structures.

Given the subset considered in this section, findings suggest that observation of the

system close to time point δ = {10} s incurs the highest benefit as can be observed in

Figure 8.7. Overall, the obtained results confirm the initial impression with points as-

sociated with seemingly larger discrimination between the competing models incurring

higher expected utilities and, conversely, points with significant overlap between predic-

tive distributions being assigned a relatively low expected utility. A comparison with

estimates obtained through the commonly adopted Monte-Carlo based methods as well

as their overall performance is provided in the subsequent section.

8.3.2 Monte-Carlo based methods

Application of Monte-Carlo estimation methods, introduced in Chapter 3, is considered

in this section for evaluation of the expected utility. The adopted approach relies on

Monte-Carlo integration for estimation of the integral over Y involved in evaluation of

the expected utility and subsequently employs thermodynamic integration for estimation
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Figure 8.8: Credible intervals (95%) of estimates obtained through Monte-Carlo and
f−divergence estimation given 500 predictions. Each set corresponds to the same exper-
imental condition, however a jitter term is added to values of the x-axis for clarity.

of the marginal likelihood for each y ∈ Y , as described in Section 3.2.1.

Estimates generated using the studied approach are summarised in Figure 8.8 along

with the previously considered results obtained through f−divergence estimation. The

presented intervals were produced by replicating each experiment 100 times, based on a

collection of 500 samples from each of the considered predictive distributions. The quality

of the obtained estimates appears to be comparable, however the required computational

time differs substantially between the two examined methods. More specifically, estima-

tion of the expected utility of one experimental condition using the proposed variational

approach, requires up to 30 minutes while the alternative Monte-Carlo estimator incurs

a computational time of approximately 2.5 days for the same population of 500 sam-

ples. The considerable difference is attributed to alternative processes involved in the

two estimation methods, a detailed discussion of which has been previously considered

in Chapter 5 and is further examined in Section 8.6 in the context of this particular case

study. Evaluation of the expected utility through Monte-Carlo based methods resorted

108



8. Optimal experimental design for the study of biochemical networks

δ

U
K

L
(δ

)
0

1
2

50

250

500

1 5 10 20 60 80

Figure 8.9: Credible intervals (95%) of estimates obtained through Monte-Carlo based
methods given populations of differing sizes. Although each set corresponds to exactly
the same experimental condition (marked by dashed grey lines), a jitter term is added to
values of the x-axis for clarity.

to use of a High Performance Distributed Computing framework, however, it is worth

noting that, access to such resources is not always possible. In this case, consideration of

smaller sample sizes would be necessary for evaluation of the expected utility within more

realistic time frames. Figure 8.9 summarises estimates of the expected utility obtained

through the examined Monte-Carlo based methods given sample populations of differing

sizes. As illustrated therein, the noise in the obtained estimates increases considerably

with the decrease in sample size. In particular, choice of a population of 50 samples

from each of the predictive distributions, incurs a significant overlap between intervals

corresponding to different candidate experimental conditions, thus hindering the effec-

tive discrimination among them while still incurring a considerable computational time

of ∼ 6.6 hours.

For each choice of sample size, a population of 1000 SMC samples was employed for

marginal likelihood estimation, as it was found to be the minimum size required for a
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‘healthy’ population during the sampling phase. The established sequence of intermediate

distributions connecting the prior and posterior distributions was based on the tempering

schedule described by 7.7.

Overall, results obtained from the two competing methods are in agreement, attribut-

ing time point 10 s the highest utility for model comparison. The performance of both

considered estimators appears to improve for smaller values of the expected utility, for in-

stance those corresponding to 60 or 80 s, which can be attributed to the lower variability

present in the corresponding predictive samples.

Lastly, Figure 8.10 provides a summary of the estimates obtained through Monte-

Carlo estimation using the 0-1 utility function u0−1, introduced in Chapter 2, on a sample

of 500 predictions. This utility is included as an example of a non-convex ϕ under which,

application of the proposed estimation method is not possible. Overall, the obtained es-

timates agree with the results of preceding paragraphs, however, significant information

loss can be observed comparatively. This is attributed to u0−1 capturing simply informa-

tion on whether the correct model was performed successfully at a particular time point,

without any quantification of the corresponding evidence in support of this classification.

δ
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−
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)
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0
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Figure 8.10: Credible intervals (95%) of estimates obtained through nested Monte-Carlo
integration using the 0-1 utility function.

110



8. Optimal experimental design for the study of biochemical networks

8.4 Design optimisation

Sections 8.3.1 and 8.3.2 demonstrate the benefits incurred from use of the proposed

estimator of the expected utility. Interest, in this section, focuses on incorporating the

variational estimator into a Bayesian Optimisation algorithm for maximisation of the

expected utility over the design space, following the methodology that was presented in

Chapter 6. Figure 8.11 provides a summary from implementation of the BO algorithm

for maximisation of the expected utility following the procedure described in Algorithm

??. The predictive mean and credible region of the Gaussian process obtained at the

latest optimisation step are presented therein, incorporating the information from every

observed function evaluation (denoted by red marks). The width of the credible region

reflects the estimation error with the greatest effort being placed in inferring the error at

the optimum. This was found to be at 12 s and is marked by a dashed grey line.
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Figure 8.11: Maximisation of the expected utility surface corresponding to choice ϕKL
using Gaussian process Bayesian optimisation.
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The summarised results were generated under definition of the utility function ϕKL,

previously introduced in Section 8.3.1. A Gaussian process prior with mean vector 0 was

used for this case study and alternative definitions of the previously considered acquisition

functions were explored — the Expected Improvement and Upper Confidence Bound.

Both concluded similar results and so only a summary of the former is provided in Figure

8.11. In order to obtain some insight on the shape of the utility surface in absence of

pre-existing information, initial evaluations of the expected utility were obtained for 10

selected as a Sobol sequence (Sobol’, 1967).

The succeeding section presents an autonomous framework for the study of biochem-

ical systems, incorporating the Bayesian optimisation procedure in combination with the

efficient variational estimator implemented in this section.

8.5 Sequential and adaptive design

This section presents an autonomous and efficient framework for the study of biochemical

networks using experimental data. Incorporating the individual processes explored in

Sections 8.3 and 8.4, a response-adaptive sequence of designs is possible within realistic

timescales. The adopted procedure, described in Algorithm 4, establishes a closed-loop

setup of data collection, knowledge update and decision making which flexibly integrates

new information as it becomes available, leading to efficient and better informed decision

making. A summary of each sequential stage composing this procedure is provided in

Figure 8.12 with each subfigure depicting the predictive distributions of the competing

models given the most recent data at each stage (marked with red crosses) and the optimal

experimental condition for observing the system at the subsequent stage (indicated by a

dashed grey line). All results presented in this section were obtained under choice ϕKL

or, commonly, the Shannon entropy, inducing an expression of the expected utility in

terms of the KL divergence between the prior predictive distributions obtained at each

stage.

At the initial stage (stage 0) estimation of the expected utility relies on predictive

samples corresponding to the prior distributions of model parameters without taking into

account any experimental data. As previously discussed in Section 8.3, availability of no
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Figure 8.12: A sequential and adaptive experimental design for inferring the structure
of a biochemical network given two competing hypotheses. Each subfigure depicts the
predictive distribution corresponding to each of the competing models, at each stage of the
sequential procedure, given the most recent data (red crosses). The optimal experimental
condition δ∗, represented by a dashed grey line, incurs the maximum discrepancy between
predictive distributions.
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preliminary information at the initial stage of the procedure encourages the assumption

of sufficiently broad predictive distributions, accounting for a large number of potential

experimental measurements. Due to the significant overlap of predictive distributions

following this initial assumption, discrimination between the two models is challenging

regardless the time of observation. This was reflected in the obtained expected utility

surface characterised by two main traits: 1) a flat surface, indicating that, there is no

distinct preference among alternative experimental conditions in ∆ and 2) an optimal

expected utility induced by choice of ϕKL of less than 0.1 which, according to Jeffreys

(1961), is not worth considering for experimentation. Since observation of the studied

system was essential for overcoming this limitation, at the initial stage an experimental

condition was selected randomly as δ = {100} s.

Upon observation of the experimental data, obtained at δ, the existing knowledge

was updated to reflect the newly obtained information. This update was incorporated

in the posterior distributions of model parameters in a Bayesian manner which were,

subsequently, used to provide samples from the corresponding predictive distributions.

These served as priors for evaluation of the expected utility at the subsequent stage 1, as

depicted in Figure 8.12. The knowledge update incurred a new expected utility surface

reflecting the utility of future decisions based on the already observed information. The

expected utility surfaces, corresponding to stages 1 and 2 are presented in Figure 8.13.

Approximation of the surface and maximisation over the design space was achieved with

Bayesian optimisation, as described in Section 8.4.

The information provided therein is used to guide decisions on the experimental de-

sign of stages 1 and 2 respectively, following the iterative procedure of Algorithm 4. The

results obtained for stage 1 have already been analysed in Section 8.4. The experimental

data, obtained at the indicated optimal experimental condition δ∗ = 12 s during stage 2

of the sequential process, are shown in Figure 8.12 together with the knowledge update

that followed observation of the new information. The updated predictive distributions

appear fairly similar after observation of the system at experimental conditions {12,100},

deeming discrimination between the candidate models. This initial impression is further

reflected in the corresponding expected utility surface — the flatness of the curve suggests

that, any experimental condition incurs similar expected utility to its alternatives. More
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Figure 8.13: Sequentially updated expected utility surface over ∆ upon observation of
new experimental data at each stage of the adopted design. Each subfigure depicts the
expected utility (y-axis) evaluated for all potential experimental conditions (x-axis) at
each distinct stage of the process. After observation of the system at stage 0, none of the
remaining experimental conditions offers any substantial new information at subsequent
stages, resulting in a flat and close to 0 expected utility surface.

importantly, it can be observed that, no elements in ∆ benefit the study to such a degree

that justifies subsequent experimentation under the proposed condition δ∗ as its corre-

sponding expected utility was found to be only 0.11. Given the considerable cost involved

in the data collection stage, the sequential procedure was completed without observation

of the system at the optimal condition (8 s) and subsequent knowledge update.

Overall, the most substantial information gain was obtained during the second exper-

imental stage. Having observed the system at times 12 and 100 s, further observation

incurred no additional gain worthy of consideration. The optimal sequence of designs is,

thus, concluded as δ∗seq = {12,100}, suggesting observation of the biochemical network

early after it has been triggered and later on, once equilibrium has been reached.
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8.6 Summary and conclusion

This chapter presented application of a range of methodologies, introduced in Chapters

2, 5 and 6, to a real-life problem in Systems Biology. Section 8.1 outlined the need for ex-

perimental design for the optimal study of biochemical systems which was subsequently

achieved in Section 8.3.1 through implementation of the proposed estimator. As dis-

cussed in Chapter 5, this approach induces a class of information-based utility functions,

the properties of which were explored further in this case study. Choice of alternative

utility definitions provided by this class demonstrated that, each choice induces a distinct

f -divergence between predictive distributions which not only provides a natural repre-

sentation of the utility as a measure of separation between models but it also allows for

exploitation of their corresponding properties.

Estimation using the widely adopted Monte-Carlo integration was also considered in

Section 8.3.2 for a comparison. The two methods were found to produce estimates of com-

parable quality given same-sized populations, however the proposed estimator was shown

to be significantly more efficient computationally. The observed improvement can be

predominantly attributed to the increased efficiency of the proposed estimation process

compared to the currently adopted Monte-Carlo based approaches. More specifically,

the variational estimator is extremely data-efficient, employing a vector of potentially

infinite basis functions that compose the class of RKHS which introduce an increased

expressiveness allowing for more information to be extracted from the predictive sam-

ples. Contrarily, traditional Monte-Carlo methods rely on evaluation of the marginal

likelihood, acting as a summary statistic for each individual data point of the predictive

sample. Marginal likelihood estimation requires sampling from the posterior distribution

of model parameters as a closed form expression for it is not available under the models

employed in this chapter. As demonstrated in Section 8.3.2, this process is associated

with extremely high computational cost which, often, compromises the optimal exami-

nation of the studied objective. In addition, although SMC sampling algorithms were

shown to be quite well suited to this purpose with the marginal likelihood resulting as a

by-product of this procedure, they are known to require a considerable amount of tuning

and so their implementation may often be time-consuming. On the contrary, a limited
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number of parameters are involved in the proposed estimator, guidelines for choice of

which are provided in this thesis.

The proposed estimator was, in Section 8.4, flexibly incorporated into the BO algo-

rithm, achieving complete and efficient exploration of the design space. The two proce-

dures were lastly combined in Section 8.5, establishing a closed loop, automated setup

for the study of biochemical systems through optimal experimental design.
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Chapter 9

Optimal experimental design for the

study of fluorescent kinetics

This chapter presents a real-life application of the proposed optimal experimental de-

sign framework to the study of fluorescent kinetics. Observation of such phenomena is

typically possible only via specialised instrumentation that allow specification of numer-

ous factors impacting the observed output. Certain settings may be proven to be more

beneficial for inference in the studied system and so, optimal experimental design is key

to identifying such conditions. The proposed methodology, combined with instrument

control software, provides a fully automated solution to the study of such phenomena,

establishing a closed-loop sequence of experimentation, knowledge update and optimal

decision making, without requiring further human input at any stage. This case study

extends on the previously considered problems by showcasing implementation of the pro-

posed methods given a high-dimensional output space and a higher dimensional design

space.

9.1 Experimental design in Photophysics

This section provides a brief introduction to terminology and processes from fluorescent

spectroscopy that are most relevant to the phenomena examined in this case study.

Fluorescence describes the ability of a substance to absorb and re-emit energy in
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the form of light. Absorption of light causes a change in electron distribution, moving

the molecule to an excited electronic state which then relaxes back to the ground state

via emission of light (Andrews, 2015). Due to this property’s dependence on the local

environment, fluorescent molecules are often used as sensors for numerous biochemical ap-

plications providing information on molecular structures and interactions (Rolinski et al.,

2010). A typical experiment consists of exciting a fluorophore molecule and monitoring

the average length it spends in this state which is commonly referred to as the fluores-

cence decay time. This measure can reveal useful information about surrounding sites

and neighbouring components of the studied system.

A popular instrument for obtaining experimental data of decay measurements adopt

time-correlated singe-photon counting (TCSPC) methods (Alghamdi et al., 2018) that

output a histogram of fluorescence photon arrival counts from successive excitation cycles.

The TCSPC is composed by 1) a light source that is used to excite the system, 2) a black-

box environment where molecule interactions occur and 3) a detector of fluorescence.

The decay time is subsequently inferred on the basis of the emission and detection states.

The system behaviour can be highly sensitive to external factors which can be flexibly

regulated by the experimental equipment (Rolinski et al., 2010). In particular, as the

decay time is known to often be dependent on the emission and detection wavelengths,

optical components allowing the isolation of a desired wavelength are typically placed

between stages 1)-2) and 2)-3). The wavelength distribution of an emission corresponding

to a fixed excitation wavelength will be referred to as the emission spectrum (?).

The fluorescence decay, denoted by I(δ, t) where δ represents the experimental con-

ditions and t the time of measurement, is defined through the individual mechanisms

operating in the system during its excited state (Birch and McLoskey, 2017). Tradition-

ally considered models have so far relied on rather simplifying assumptions that, although

well-suited to simpler systems, fail to generalise to more complex structures, for example,

in cases when higher sample heterogeneity is present. High sensitivity of these systems

on external conditions and intrinsic mechanisms that are yet not entirely understood are

some of the challenges currently faced. This chapter is concerned with the application of

the proposed optimal experiment design methodology in an attempt to study and estab-

lish more realistic models that sufficiently capture the complex behaviour of the examined
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systems.

The particular process under study concerns the interaction between an excited and

an inactive molecule in a heterogeneous environment. This phenomenon is commonly

termed as fluorescence resonance energy transfer (FRET;?) while the interacting

molecules will be referred to as the donor (D) and acceptor (A) molecules respectively. As

FRET is distance dependent, a useful application of this phenomenon allows inference on

the distance between the donor and acceptor molecules currently exploited in numerous

scientific disciplines including medical diagnostics (Knowles et al., 2014), DNA analysis

(Chung et al., 2019) and optical imaging. Similarly to the biochemical systems, considered

in Chapter 8, FRET is only indirectly observed through fluorescence decay measurements.

The role of optimal experimental design to address this issue, enabling the optimal study

of such systems is further considered in Section 9.2.

9.2 Case study

An outline of the studied problem is provided in this section. A collection of hypothe-

ses describing alternative potential dynamics is introduced in 9.2.1 while Section 9.2.3

considers the components and setup of the experiments facilitating their study.

9.2.1 Alternative hypotheses

Following the notation adopted in Chapters 2-8, the experimental dataset y is represented

by a λ-dimensional vector of fluorescence decay measurements over time, the experimen-

tal parameters are summarised by δ = (µ, ν), where µ and ν refer to the excitation

and detection wavelengths, measured in nanometres (nm), and lastly θm expresses the

remaining uncontrolled parameters associated with model m.

Two hypotheses are formed to describe the rate of FRET at a particular time point.

This will be denoted by ki(t), where i = 1,2 refers to the corresponding hypothesis and

finds expression in:

ki(t) = ∫
∞

0
ρi(r)

d

dt
{exp [−(R0

r
)
6 t

τD
]}dr (9.1)
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where r is the distance between the donor and acceptor molecules, τD the lifetime of

the donor molecule in the absence of energy transfer and R0 is the Forster distance,

determined by the spectral overlap of the donor emission and the acceptor absorption.

Hypothesis 1 assumes a Gaussian distribution for r and so:

ρ1(r) =
1√

2πσ2
exp [−(r − r0)2)

2σ2
] , (9.2)

while under Hypothesis 2, r is considered to be uniformly distributed within a ring of

distances bounded by r1, r2, taking the form:

ρ2(r) =
3r2

r32 − r31
, (9.3)

for r1 < r < r2 and 0 otherwise. The rate of FRET is incorporated in the expression of

the fluorescence decay rate I(δ, t) as:

I(δ, t) =Dδ(t) +A1
δ(t) +A2

δ(t) , (9.4)

where:

Dδ(t) =
εD(µ)φDFD(ν)
εD(µ) + εA(µ)

exp [− t

τD
− ∫

t

0
ki(t′)dt′] (9.5)

A1
δ(t) = φAFA(ν)∫

t

0
Dδ(t − z)ki(t − z) exp [− z

τA
]dz (9.6)

A2
δ(t) =

εA(µ)φAFA(ν)
εD(µ) + εA(µ)

exp [− t

τA
] . (9.7)

The terms εD, εA are the extinction coefficients of the donor and acceptor molecules

respectively indicating the strength with which they absorb light at a given wavelength,

φD, φA provide a measure of the efficiency of the fluorescence process and will be referred

to as the quantum yield of D and A respectively. In essence, the quantum yield expresses

the percentage of the photons emitted out of all the photons absorbed. Lastly, quantities

FD and FA express the emission spectrum associated with a particular wavelength.

To account for the delay between the moment that light is first emitted by the source
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and absorbed from the fluorophore as well as the detector’s response to the re-emitted

light, the light pulse from the source or prompt is convolved with I(δ, t) resulting in the

observed decay:

R(δ, t) = p(t)⊗ I(δ, t) , (9.8)

where operation ⊗ describes the convolution between the prompt and fluorescence decay.

9.2.2 Statistical models

As the experimental output is expressed in terms of photon arrival counts over time, a

Poisson model is a reasonable modelling choice and thus:

y ∣ δ ∼ Poisson(R(δ)) , (9.9)

for R(δ) = {R(δ,1), . . . ,R(δ, λ)}.

Data for terms εD, εA, φD, φA, FD, FA,R0 were obtained from public databases while

τD, τA and the parameters involved in ρ1 and ρ2 were considered as the unknown model

parameters. More specifically, θm1 = (τD, τA, r0, σ2) and θm2 = (τD, τA, r1, r2). Prior

distributions were assigned to the unknown model parameters n a Bayesian context:

τD ∼ G(3,2)

τA ∼ G(3,2)

r0 ∼ G(3,2)

σ2 ∼ IG(3,0.1)

r1, r2 ∼ U(0,10), if r1 < r2 and 0 otherwise ,

where the lifetimes τD and τA were assigned a sufficiently wide Gamma (G) distribution

while ensuring positivity in their obtained values and similarly for the distance r0. Based

on prior knowledge suggesting that energy transfer is possible when the distance between

the donor and acceptor is fairly small, a relatively low variance σ2 was assumed and,

thus assigned the stated inverse Gamma (IG) prior. The bounds r1 and r2 were assigned

uniform distributions (U) between 0 and 10 under the condition that r1 < r2, as required
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by (9.3). Similarly to Chapters 7 and 8, one of the two competing models was assumed

to be the ‘true’ model and was used to artificially generate experimental data from the

observed system. In particular, the model expressing Hypothesis 1 was assumed as the

‘true’ model.

9.2.3 Experimental setup

This case study is concerned with experiments performed using a TCSPC instrument to

observe the behaviour of a studied biomolecular system in an heterogeneous environment.

Interest lies in using the obtained output to compare the formed hypotheses attributing

alternative distance distributions in FRET that are expressed by models (9.2) and (9.3).

The considered FRET system was based on the interaction between a yellow fluorescent

protein (YFP) and a cyan fluorescent protein (CFP) as a donor-acceptor pair where

excitation of the donor leads to emission from the acceptor molecule assuming that the

proteins are close enough for energy transfer to occur. FRET can thus be used for

inference of direct protein-protein interaction between YFP and CFP fusion proteins in

living or fixed cells.

As previously discussed in Section 9.1, the purpose of this study is to establish models

that provide a more realistic representation of the complex nature inherent in photo-

physical phenomena. Inevitably, such an expression is reliant on specification of highly

sophisticated models, evaluation of which is, as a result, computationally demanding.

The case study presented in this chapter represents a problem in which the com-

putational demand of models evaluations stretches to such an extend that deem the

traditional optimal experimental design methods intractable, even after resorting to the

use of high performance computing resources. Particularly, generating one prediction

under expression 9.4, requires 11.6 seconds on average. Thus, evaluation of the expected

utility corresponding to one experimental condition under the previously adopted Monte-

Carlo approach based on a population of 50 samples and using a high performance parallel

computing framework, totals to a computational time of approximately 12 days. Optimal

experimental design through Monte-Carlo based methods was, therefore not considered

for the study of this model selection problem. The results presented in the following

Section 9.3, relied solely on evaluation of the expected utility through the proposed vari-
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ational estimator, introduced in Chapter 5. The estimator is further incorporated into a

sequential, response-adaptive framework, establishing a fully automated process for the

study of fluorescent kinetics in different systems.

9.3 Sequential and adaptive design

The implementation of a fully automated and highly efficient framework is demonstrated

in this section for the study of fluorescent dynamics in heterogeneous environments. The

response-adaptive algorithm summarised in Algorithm 4 was employed for this purpose,

similarly to the previously considered case studies of Chapters 7 and 8.

Under the adopted setup, the observed output y is expressed by a 4096−dimensional

vector representing the photon counts recorded by the TCSPC instrument at each of the

4096 time points. An illustration of the competing model predictions for a collection

of potential experimental conditions is provided in Figure 9.2 where photon counts are

plotted on the logarithmic scale following common practices. As illustrated therein, the

experimental output is highly sensitive to choice of particular experimental conditions

such as the emission and absorption wavelengths which were, therefore, chosen as the

experimental conditions, thus δ = (µ, ν). The work presented in this thesis lays the

foundation for the study of additional conditions that may affect the observed output

such as the system temperature which can be flexibly incorporated in δ.

The donor molecules typically emit at shorter wavelengths that overlap with the

absorption spectrum of the acceptor. The emission and absorption spectra for the YFP

-CFP pair are provided in Figure 9.1 in which an overlap between the donor emission and

acceptor absorption can be observed at the shaded region corresponding to wavelengths

between 450 and 530 nm. Due to this phenomenon, experimental conditions within the

shaded region were considered in this case study.

Similarly to the experimental designs established in the studies of Chapters 7 and 8,

a sequential and response-adaptive framework was adopted, taking full advantage of the

available information at each stage by incorporating it into the study through an update

from the prior to the posterior model parameters to reflect the newly obtained knowl-

edge. The initial stage of the sequential procedure considered predictions corresponding
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Figure 9.1: Absorption and emission spectra for the YFP (D) - CFP (A) pair.

to the prior distributions of model parameters and the expected utility was employed to

quantify the potential benefit of each experimental condition under consideration. Effi-

cient estimation of the expected utility was achieved through the variational estimator

proposed in Chapter 5 for the previously considered choices of ϕKL and ϕH . Similarly

to Chapter 7, the RKHS class structure induced by the Gaussian kernel was imposed

on function class G defined by (7.6) with ∥⋅∥ expressing the Euclidean metric in Rλ. A

sample size of 500 was used for the estimation inducing an inversely analogous penalty

term of ρ = 1
500 .

Observation of the system through the TCSPC instrument was performed during

the subsequent stage at the proposed condition, enabling the update or formulation of

new hypotheses in light of the newly obtained knowledge. Thus, at each stage of the

procedure, the considered hypotheses reflected every system measurement observed up

to that point allowing more effective learning and efficient use of resources. As there

were no particular resource limitations to restrict the number of experiments that could

be considered, experimentation was continued until the information provided from newly
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observed experimental conditions was no longer beneficial.

Prior predictions obtained at stage 0 of the sequential procedure under the competing

hypotheses for a selection of designs is provided in Figure 9.2.

As variables µ and ν are discrete, a grid search over the design space was feasible

which concluded designs δ = (µ, ν) ∈ [400,490] × [440,490] to be the most beneficial for

observation of the studied system at the subsequent stage 1. Among them, the optimal

design was found to be δ∗ = (400,440) nm incurring maximum expected utilities of
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Figure 9.2: Credible intervals (95%) of the prior predictive distributions (y-axis) over
the 4096 observed time points (x-axis) corresponding to Hypotheses 1 (black) and 2 (grey)
generated at a selection of experimental conditions δ = (µ, ν).
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Figure 9.3: Expected utility surface over ∆ based on samples from the prior predictive
distributions of considered models before the observation of experimental data.

UKL(δ∗) = 1.72 and UH(δ∗) = 0.8. The produced expected utility surface induced by

choice of ϕKL is depicted in Figure 9.3.

Similarly to the previously considered case study of Chapter 9, the shape of the

expected utility surface remained the same under the alternative ϕH with the estimates

being restricted on [0,1].
Experimental data collected at condition δ∗ = (400,440) nm during the first stage

of the algorithm are depicted in Figure 9.4. The new information was incorporated to

update the existing knowledge and was reflected by the posterior distribution of model

parameters. The posterior predictive distributions, depicted in Figure 9.5, served as prior

predictive distributions at stage 1 of the sequential procedure, providing samples for eval-

uation of the expected utility corresponding to alternative experimental conditions for

consideration at the following stage 2. The corresponding expected utility surface found
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Figure 9.4: Data obtained for experimental condition δ∗ = (400,440) nm. Photon
counts are plotted on the logarithmic scale.

through estimation of the expected utility using the proposed variational estimator un-

der ϕKL is provided in Figure 9.6. The most beneficial experimental conditions, again,

lay within the subset δ = (µ, ν) ∈ [400,490] × [440,490] with their corresponding ex-

pected utilities being overall higher than the previously produced estimates of stage 0.

In particular, the optimal experimental condition δ∗ = (450,440) nm incurred expected

utilities UKL(δ∗) = 2.85 and UH(δ∗) = 0.84, suggesting a substantial potential gain from

observation of the system at these wavelengths thus encouraging further experimentation.

The sequential procedure continues until the new information provided by the exper-

imental data carry no substantial knowledge for discriminating against the competing

hypotheses. Overall, the knowledge update step at each sequential stage was found as

the most time-consuming one as sampling from the posterior distribution of model pa-

rameters is required in light of the new experimental data. However, under the proposed

variational estimator for evaluation of the expected utility, sampling at each stage needs

to be performed only once for each model in order to generate the corresponding predic-

tive distributions and thus, the procedure can still be completed under reasonable time

128



9. Optimal experimental design for the study of fluorescent kinetics

scales. As previously discussed, posterior sampling from the examined models required

15 hours using SMC methods under a high performance distributed computing frame-

work. At each stage, estimation of the expected utility for all conditions within ∆ ranged

from a few minutes to an hour when considering a collection of 1000, 4096−dimensional

predictions from each model under consideration.
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Figure 9.5: Credible intervals (95%) of the posterior predictive distributions (y-axis)
over the 4096 observed time points (x-axis) corresponding to Hypotheses 1 (black) and 2
(grey) generated at a selection of experimental conditions δ = (µ, ν).
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Figure 9.6: Expected utility surface over ∆ based on samples from the predictive dis-
tributions upon observation of experimental data produced at stage 0.

Summary

This chapter considered a real-life application of the proposed optimal experimental de-

sign methodology for the study of fluorescent kinetics in heterogeneous environments.

Employment of optimal design within this research area is thought to be key for de-

veloping more realistic, and thus more sophisticated, models that adequately capture

the complex nature of such phenomena. Due to the high computational cost required

in evaluation of the considered models, currently adopted Monte-Carlo based methods

are proven to be highly inefficient and thus not suitable for optimal experimental design

under such setups. On the contrary as demonstrated in this chapter, implementation

of the proposed variational estimator allows consideration of a sequential setup under
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which the most recently observed information is incorporated into the study, efficiently

informing subsequent decisions. The established framework, combined with instrument

control software, provides a fully automated solution for the study of such phenomena

within a realistic time frame without relying on any human contribution at any stage.

This process serves as an emulator to a hypothetical physicist studying a model infer-

ence problem describing a photophysical phenomenon. The study initiates with a set

of competing hypotheses which are subsequently tested against obtained experimental

data. The physicist proceeds in updating their knowledge given the observed dataset

and identifies the optimal decision for the continuation of the study based on the most

recent information. This sequential procedure continues until an optimal sequence of

experiments has been established.
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Chapter 10

Conclusion

This thesis focuses on optimal experimental design methodologies for the study of natural

phenomena. The work presented in the preceding chapters can be summarised by the

following main objectives:

- development of a methodological framework for efficient estimation of the expected

utility addressing ongoing challenges,

- integration of efficient optimisation techniques for maximisation of the expected

utility over the design space,

- establishment of a comprehensive and automated framework for the optimal study

of natural phenomena.

Chapter 2 initiates with an overview of the existing and most relevant methodology

along with a discussion on ongoing challenges. Two main issues are outlined: 1) the need

for efficient estimation of the expected utility, particularly under models with computa-

tionally demanding likelihoods, and 2) consideration of an optimisation framework that

achieves a systematic search of the design space within a realistic time frame without

compromising the optimality of the proposed design.

Emphasis is placed on the former as it inevitably appears in optimal experimental

design studies, especially under the targeted class of problems. Adopting an information-

theoretic approach, a class of utility functions is proposed, including commonly employed
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utilities such as the Shannon entropy. Although this choice has been widely considered in

the relevant literature, it is often associated with considerably high computational cost

under traditionally adopted methodology which hinders the optimality of the induced

design. Suboptimal utility functions are therefore often adopted instead which have been

previously shown to fail in adequately capturing the targeted expected utility surface

(Ryan et al., 2016).

The inefficiency of existing approaches within the studied problem class is attributed

to their reliance on two main procedures: 1) evaluation of the partial utility, requiring

estimation of the marginal likelihood ratio of a prediction y for each pair of competing

models and 2) evaluation of the expected utility through Monte-Carlo integration, rely-

ing on evaluation of the partial utility for a considerably large collection of predictions

y. Evaluation of the marginal likelihood is, typically, dependent on computationally de-

manding approximation methods, a problem that is aggravated by the need to perform

this calculation an arbitrarily large number of times.

To overcome existing limitations, an efficient estimator for evaluation of the expected

utility is proposed in Chapter 5. The examined approach establishes a variational rep-

resentation of the expected utility. A problem shift is thus achieved — from the initial,

computationally demanding evaluation problem to a convex optimisation problem that

avoids evaluation of the marginal likelihood altogether. This is accomplished by trans-

forming the initial space induced by the marginal likelihood ratio to its dual function

space which is further shown that, under an RKHS structure, provides a practical yet

optimal solution to the initial expected utility evaluation problem.

Focus, in this thesis, was restricted on the class of RKHS induced by a Gaussian kernel,

however consideration of alternative kernels may, in certain cases, be more suitable to the

problem at hand and are, therefore, a promising research topic. Alternative structures

of the imposed function class, other than the RKHS, may also constitute an interesting

extension of this work. An extensive selection of potential classes is provided in Sugiyama

et al. (2012).

A challenge, generally associated with variational approximation methods, is the in-

crease in the estimator variance with the true estimated value (Poole et al., 2019; Song

and Ermon, 2019). This issue was, in this thesis, addressed through the consideration
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of a bounded optimality criterion, namely choice of a utility function under which the

expected utility is expressed in terms of the bounded Hellinger distance instead of the

traditional, unbounded from above KL divergence. However, alternative approaches such

as the clipped density ratios, proposed by Song and Ermon (2019), or the unnormalised

lower bounds, depending on multiple samples, considered in (Poole et al., 2019), are

perhaps also worth exploring, when greater flexibility in the choice of utility function is

required.

Overall, both the existing and the proposed methodology attempt to accomplish the

exact same objective: quantify the discrimination between the predictive distributions of

the competing models. The substantial improvement incurred from the proposed algo-

rithm, however, lies on its employment of an extremely efficient procedure as opposed to

the traditional Monte-Carlo based methods. In particular, the former operates under a

highly flexible, non-parametric framework, allowing direct comparison of one distribution

against the other. On the contrary, the alternative approach adopts an indirect compar-

ison of the two distributions under which, information from each predictive sample is

extracted through its corresponding marginal likelihood. Subsequent comparison of the

predictive samples is achieved via the associated marginal likelihood estimates, acting as

summary statistics.

Theoretical properties of the proposed estimator are briefly discussed, demonstrating

that this alternative approach to evaluation of the expected utility does not compromise

the quality of the produced estimates compared to the traditionally adopted methods.

Further empirical results are compared at the subsequent Chapters 7, 8 and 9.

The second challenge of efficient expected utility optimisation over the design space is

addressed in Chapter 6. This problem is predominantly associated with studies consid-

ering continuous and potentially, high dimensional design spaces, where a deterministic

comparison of experimental conditions requires an unrealistic number of operations and

alternative methods are suboptimal, failing to adequately explore the optimised surface.

The class of Bayesian optimisation algorithms is introduced in an attempt to address

these ongoing challenges. Despite their remarkable suitability, Bayesian optimisation al-

gorithms have not posed a particularly popular choice in the optimal experimental design

literature.
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As further discussed in Chapter 6, Bayesian optimisation algorithms combined with

the proposed variational estimator set the foundation to a fully automated framework for

the study of modern phenomena under a sequential and response-adaptive setup. The

established procedure poses an attempt to simulate the setup of a typical scientific study,

automating the process of closed-loop data collection, knowledge update and optimal

decision making. Focus in this thesis is restricted to a simpler myopic procedure under

which, optimal decisions are proposed one at a time, followed by experimentation and

expected utility surface update until a new optimal decision is required again. More

sophisticated setups may incur higher benefit, taking into account what lies ahead before

concluding on an optimal decision. A non-myopic approach was not deemed particularly

beneficial to the case studies considered in this thesis and were thus not explored further

in view of the additional complexity incurred by such a setup. This extension may,

however, constitute an interesting topic of future research.

Chapters 7, 8 and 9 are devoted to application of the proposed optimal experimental

design framework to three case studies. Each case study allows exploration of different

aspects of the examined methodology and its comparison against traditionally adopted

approaches.

Chapter 7 considers a simple case study of a model discrimination problem on a set

of polynomial models. Although the employed class of models lies outside the scope

of this thesis, interest in the initial case study was placed on a comparison of the two

competing estimation methods when the true estimated value is known. Under this

setup, findings showed that both estimators perform particularly well based on an equal

number of samples from the predictive distributions under consideration. Although not

yet prohibitive towards the Monte-Carlo based method, an apparent difference in the

respective computational demand of each method exists.

A real-life problem of experimental design for model inference in Systems Biology

is examined in Chapter 8. Alternative hypotheses on the structure of a biochemical

network are represented by mathematical models expressed by systems of ordinary dif-

ferential equations. As a result, considerable computational time is devoted to obtaining

each model prediction, building up to an infeasible length required for expected utility

evaluation on even a fairly small subset of 5 experimental conditions of a continuous the
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design space. Comparison of the competing methodologies is, thus, possible on a small

subset of experimental conditions with the resulting estimates being, overall, in agreement

and both concluding on the same optimal decision. The proposed variational estimator

is subsequently incorporated in a Bayesian optimisation algorithm for an efficient search

over the continuous design space. This procedure is further considered within the general,

sequential design procedure. Thus, at each cycle of the study, Bayesian optimisation is

employed for maximisation of the newly formed expected utility surface, observations

from which are acquired through the proposed estimator. Although such a setup is,

potentially, more welcoming to consideration of Monte-Carlo based methods due to the

reduction in function evaluations achieved by Bayesian optimisation algorithms, it was

found that, the number of predictive samples required for completion of the study within

a realistic time frame produced particularly noisy estimates, hindering their convergence.

It was, therefore, shown that, a trade-off between an acceptable computational time and

optimality of the produced design is not always possible in such studies under the tradi-

tionally adopted Monte-Carlo based method. Lastly, optimal experimental design under

alternative utility functions from the proposed class is explored in that chapter. Par-

ticularly, the examined choices result in alternative expressions of the expected utility

in terms of f−divergences with emphasis being placed on the KL divergence and the

Hellinger distance. The induced expected utilities, thus, inherit different properties —

such as symmetricity, interpretability, boundedness — which may be exploited depending

on the problem under study.

Lastly, application of the examined framework to a model discrimination problem

in Spectroscopy is demonstrated in Chapter 9. This case study examines competing

models, describing alternative behaviours in fluorescence kinetics. The complexity of such

phenomena has previously hindered optimal experimental design efforts for their study,

thus limiting the considered options to rather simplistic models that may not adequately

capture the system behaviour. The proposed estimator is, thus, particularly well-suited

to evaluation of the expected utility under such models as model evaluation is only

required to produce samples from their corresponding predictive distributions. Solution

of a convex optimisation problem, relying only on computation of the associated Gram

matrix, is subsequently employed for estimation of the expected utility. The presented
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problem examines the performance of the variational approximation method on a high

dimensional output space, proving to scale up well without resulting in unreasonably long

waiting times.

Summary

This thesis initiates with a review of the current work and ongoing challenges in optimal

experimental design. Lack of methodologies for efficient estimation of the expected utility,

particularly under computationally demanding models, poses a predominant concern.

In particular, as modern science is progressively concerned with complex phenomena,

the need to incorporate sophisticated models in optimal experimental design studies is

imperative. A variational estimator allowing efficient and timely optimal decision making

under such models is proposed in this thesis, paving the way to a novel experimental

design framework. Application of the proposed framework to a range of problems is

subsequently explored. To provide a comprehensive coverage of potential challenges the

following setups were examined:

- discrimination problems employing more than 2 competing models (Chapter 7),

- continuous design spaces, on which grid search methods for optimisation are pro-

hibitive (Chapter 8),

- increasingly complex and, thus, computationally demanding models (Chapters 8

and 9),

- experimental design problems concerned with optimisation of more than one exper-

imental conditions (Chapter 9),

- high dimensional output space (Chapter 9).

The proposed framework is shown to perform particularly well under each examined

setup, successfully addressing challenges that hinder currently considered methodologies.

The presented work contributes towards the extension of optimal experimental design to

studies of modern phenomena which currently poses an ongoing problem.
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Appendix A

Proofs for Properties 1 and 2 of

Monte-Carlo estimator

Property 1. (Unbiased)

E [Î] = E [ 1

N

N

∑
i=1

η(xi)
p(xi)

]

= 1

N

N

∑
i=1

E [η(xi)
p(xi)

]

= 1

N

N

∑
i=1
∫ [η(x)

p(x)]p(x)dx

= 1

N

N

∑
i=1
∫ [η(x)

p(x)]p(x)dx

= 1

N

N

∑
i=1
∫ η(x)dx = I

(A.1)

Property 2. (Consistent)

Var [Î] = Var [ 1

N

N

∑
i=1

η(xi)
p(xi)

]

= 1

N2

N

∑
i=1

Var [η(xi)
p(xi)

]

= 1

N
Var [η(xi)

p(xi)
] N→∞ÐÐÐ→ 0 . (A.2)
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Sequential Monte Carlo algorithm

Sequential Monte Carlo methods are sampling tools used to approximate a distribution of

interest through a collection of weighted particles. The particles are successively moved

and updated using importance sampling steps according to a sequence of intermediate

distributions π1, . . . , πK that connect an initial, relatively easy to sample from, distri-

bution to the possibly more challenging target distribution. The algorithm, therefore,

consists of K steps and so at step k = 1, . . . ,K, the current population of weighted par-

ticles is updated to approximate distribution πk through a combination of importance

sampling and resampling moves. While transitioning towards the distribution of interest,

intermediate distributions become increasingly difficult to sample from as they start to

look less like the initial flat distribution and more like the target. However, choice of

a dense enough sequence allows for smoother transitions between intermediate distribu-

tions as little change is observed from one stage to the next one. This discrepancy is

accounted for by performing an importance sampling step after each transition. Typi-

cally, and throughout this thesis, the initial distribution is chosen to be the prior which

sequentially leads to the target posterior distribution of a random vector of interest. In

this thesis, the transition between consecutive distributions is regulated by a sequence

β = {β1, . . . , βK} in the following way:

πk = f(y ∣ θ)βkp(θ) , (B.1)
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where 0 = β1 < β1 < ⋅ ⋅ ⋅ < βK−1 < βK = 1. Under this setup, the contribution of the p.d.f.

and therefore the information extracted from dataset y is accounted for gradually rather

than updating the distribution of θ to reflect observation of y at once.

The sampler proceeds through the following steps. It is assumed that at step k

the current population of L particles {θ1k−1, . . . ,θLk−1} and corresponding weights Wk−1 =
{w1

k−1, . . . ,w
L
k−1} converges asymptotically to the intermediate distribution πk−1. Parti-

cles are propagated towards distribution πk through a kernel K and to account for the

discrepancy between the updated population and the targeted distribution πk an impor-

tance sampling step is performed, updating the corresponding weights. The Gaussian

kernel centered around the current particle is a common choice in the literature. The

corresponding weights are in that case updated according to:

wik =
πk(θk)

L

∑
i=1
wik−1N (θk−1, σ2)

. (B.2)

A potentially more efficient choice of kernel is proposed by Del Moral et al. (2006). In

this case, each particle is propagated towards πk through an MCMC kernel Kk(θk−1,θk).
As calculation of the updated weights is, under this setup, deemed intractable, the authors

introduce a sequence of backward Markov kernels Lk such that:

πk(θ0∶k) = πk(θk)
K

∏
l=1

L(θk,θk−1). (B.3)

The weights are then updated by:

wn = wk−1
πk(θk)Lk(θk,θk−1)

πk−1(θk−1)Kk(θk−1,θk)
. (B.4)

Guidance on the optimal choice of Ln is provided by Del Moral et al. (2006). It was

found that choice of the suboptimal kernel:

Ln =
πn(θn−1)Kn(θn−1,θn)

πn(θn)
(B.5)

leads to convenient simplifications and is therefore preferred in this thesis. Under this
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choice, (B.4) takes the form:

wn = wn−1
πn(θn−1)
πn−1(θn−1)

. (B.6)

Equation (B.5) assumes that πn−1 ≈ πn. As πn is often known only up to a normalising

constant Zn where πn = qn
Zn

, the un-normalised weights can be used instead:

wn = wn−1
qn(sn−1)
qn−1(sn−1)

. (B.7)

For the particular choice of backward kernel, the weights Wn are independent of the

obtained population as suggested by equation (B.7).

Degeneracy issues are often encountered after a number of steps in which case only a

few particles are assigned very high weights and therefore represent the whole population.

When such situations arise, an additional resampling step is performed during which

particles are resampled proportionally to their weights and the new draws are assigned

equal weights. The effective sample size (ESS; Kong et al. (1994)) is used as an indicator

for population degeneracy where values below a predefined threshold (typically L/2)

suggest that the variability of the population is below the minimum desired level. The

SMC sampler is summarised in Algorithm 7.

Algorithm 7 SMC

1: Initialisation
Draw sample (θ10, . . . ,θL0 ) from prior p(θ) and assign equal weights 1/L.

2: Sampling
For k = 1, . . . ,K:

Update the weights, wik = wik−1f(y ∣ θik−1)βk−βk−1 .
Resample according to Wk, if ESS < (L/2), and assign weights 1/L to new popu-

lation.
Propagate θik using θik ∼ Kk(θik−1, ⋅).
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Additional material for Chapter 5

C.1 Derivation of terms T ∗
1 , T

∗
2 , T

∗
3 in proof of

Proposition 1

For T∗
1,k(vk):

T ∗
1,k(vk) = sup

z
{⟨z, uk⟩ − T1,k(z)} = sup

z
{⟨z, uk⟩ +

1

N
⟨z,Φ(yPm

k )⟩} (C.1)

Evaluation of the supremum can be achieved by setting the sub-gradient of each term

with respect to z equal to 0 and substitute the output back into the initial expression:

∂ [⟨z, uk⟩ +
1

N
⟨z,Φ(yPm

k )⟩]

∂z
= 0

⇒uk +
1

N
Φ(yPm

k ) = 0

⇒uk = −
1

N
Φ(yPm

k ). (C.2)

We can observe that for uk = −
1

N
Φ(yPm

k ):

T ∗
1,k(uk) = sup

z
{− ⟨z, 1

N
Φ(yPm

k )⟩ + 1

N
⟨z,Φ(yPm

k )⟩} = 0
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and T ∗
1,k(uk) = +∞ otherwise.

For T∗
2,k(uk):

T ∗
2,k(uk) = sup

z
{⟨z, vk⟩ − T2,k(z)} = sup

z
{⟨z, vk⟩ −

1

N
ϕ∗ (⟨z,Φ(yPm′

k )⟩)} . (C.3)

Setting the sub-gradient equal to 0:

∂ [⟨z, vk⟩ −
1

N
ϕ∗ (⟨z,Φ(yPm′

k )⟩)]

∂z
= 0

⇒ vk −
1

N
ϕ∗′ (⟨z,Φ(yPm′

k )⟩)Φ(yPm′
k ) = 0

⇒ vk = akΦ(yPm′
k ) , (C.4)

where:

ak = 1

N
ϕ∗′ (⟨z,Φ(yPm′

k )⟩)

⇒ ⟨z,Φ(yPm′
k )⟩ = Ψ(Nak), (C.5)

for Ψ−1(u) = ϕ∗′(u). From properties of the Fenchel transform for real-valued convex

functions, it turns out that Ψ(u) = ϕ′(u). Therefore, substituting (C.4) and (C.5) back

to (C.3) results in:

T ∗
2,k(vk) = ⟨z, akϕ′(yPm′

k )⟩ − 1

N
φ∗ (ϕ′(Nak))

= akϕ′(Nak) −
1

N
ϕ∗ (ϕ′(Nak)) . (C.6)

If (C.4) does not hold, no maximum is achieved and therefore T ∗
2,k(vk) = +∞.

For T∗
3(u):

T ∗
3 (u) = sup

z
{⟨z, u⟩ − T3(z)} = sup

z
{⟨z, u⟩ − ρ

2
∥z∥2H} . (C.7)

∂ [⟨z, u⟩ − ρ
2 ∥z∥2H]

∂z
= 0
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⇒ u − ρ
z
= 0

⇒ z = u
ρ
. (C.8)

Substituting (C.8) into F3(u, z) produces the following expression:

T ∗
3 (u) = ⟨u

ρ
, u⟩ − ρ

2
∥u
ρ
∥
2

H

= 1

ρ
⟨u,u⟩ − 1

2ρ
∥u∥2H

= 1

2ρ
∥u∥2H , (C.9)

since ⟨u,u⟩ = ∥u∥2H.

C.2 Estimation of the Hellinger distance

Similarly to Section 5.4, transformation ϕH(χ(y)) = 2
√

(χ(y)), χ > 0 inducing the

Hellinger distance between predictive distributions is considered. Under this definition,

expression (5.12) obtains the form:

ã = arg inf
a

⎧⎪⎪⎨⎪⎪⎩
−

N

∑
k=1

2
√
ak√
N

+ 1

2ρ

N

∑
k,l=1

akalK (yPm′
k ,y

Pm′
l )

− 1

Nρ

N

∑
k,l=1

alK (yPm

k ,y
Pm′
l ) + 1

2ρN2

N

∑
k,l=1

K (yPm

k ,yPm

l )
⎫⎪⎪⎬⎪⎪⎭
. (C.10)

Having obtained vector ã, an estimate for the Hellinger distance between distributions

corresponding to competing models m, m′ can be evaluated as:

F̂ϕH ;δ (m,m′) = 1 −
N

∑
k=1

√
âk√
N

. (C.11)

Estimation of the Hellinger distance between predictive distributions for optimal experi-

mental design is considered in Chapters 8 and 9.
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