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Abstract

We present an order structure for tiling substitution systems of the plane. The order struc-
ture gives rise to a space filling curve which is defined over an iterative system akin to the
given tiling substitution. We use this space filling curve to define a label set on the original
tiles, inducing a new tiling with a factor map to the original. On the other hand, our new
tiling also defines an almost one-to-one factor map to a one-dimensional tiling obtained
from ‘flattening’ the space filling curve. We view this as a way of reducing dimension,
giving new insights on 2-dimensional substitution tilings using symbolic dynamics.
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Chapter 1

Introduction

A tiling is a covering of an n-dimensional Euclidean space Rn, for some n ∈ Z+, with a
countable non-overlapping collection of pieces called tiles. A tile is a subset of Rn that is
homeomorphic to the closed unit ball. In order to distinguish translations of identical tiles
we add labels to them. In this project we only consider tilings of Rn for n ∈ {1, 2}, which
consist of finitely many different types of tiles up to translation called prototiles. A tiling
is said to be aperiodic if it lacks translational symmetry. One important class of aperiodic
tilings are the substitution tilings. A substitution tiling is a tiling formed by a substitution
rule; a map which expands each tile by a fixed scaling number greater than 1 and divides
them into smaller pieces, each of which is a congruent copy of a prototile. An example of
a substitution rule is given in Figure 1.1. The substitution rule ω is defined over two unit
squares with different colour labels; white and gray. Both white and gray unit squares
are expanded by a scaling factor λ = 2. They are substituted into a collection of four
unit squares as shown in the figure. This substitution rule is called the 2-dimensional
Thue-Morse substitution rule (2DTM substitution rule in short).

ω ω

Figure 1.1: 2-dimensional Thue-Morse substitution rule

Let p denote the white tile. Applying the substitution rule ω twice to it, we obtain a
patch ω2(p). The substituted patch is shown in the middle patch of Figure 1.2. Substi-
tuting every tile in the middle patch twice (again) leads to the rightmost patch in Figure
1.2. The middle patch in the figure is contained in the centre of the rightmost patch in the
figure. Therefore, we get a nested sequence of patches by continuing substituting the tiles
twice ad infinitum. The generated patches expand in every direction, at every step. They

converge to a collection which covers the whole plane, defining a tiling T =
∞⋃
n=1

ω2·n(p).

1
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We call a tiling constructed in this way self-similar because ω2(T ) = T . This tiling T is
called 2-dimensional Thue-Morse tiling (2DTM in short).

ω2ω2

Figure 1.2: A self-similar construction of 2DTM

A space filling curve is a continuous surjection from the unit interval to a subset of
the plane with a positive Jordan content. Space filling curves are usually generated by
iterative systems, analogous to the substitution rules of two dimensional tilings. One of
the most famous example of a space filling curve was given by David Hilbert in [12]. Since
Hilbert’s curve fills the whole unit square, it is illustrated by the curves converging to it
through an iterative system. These curves are referred as approximant curves. The first
three approximant curves are demonstrated in Figure 1.3. The first approximant curve is

Figure 1.3: Approximant curves of Hilbert’s space filling curve.

iterated to a curve which is formed by concatenation of 4 curves, each of which is a scaled
isometric copy of the first approximant curve. The second approximant curve is substituted
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to the third approximant curve in the same fashion. This process continues to infinity.
The sequence of approximant curves converges to a curve which fills the unit square. More
precisely, let γn : [0, 1] 7→ [0, 1] × [0, 1] for n ∈ Z+ denote the n-th approximant curve,
the first three of which are demonstrated in Figure 1.3. We have that lim

n→∞
γn(x) exists

for all x ∈ [0, 1]. Moreover, γ : [0, 1] 7→ [0, 1] × [0, 1] defined by γ(x) = lim
n→∞

γn(x) is a
(well-defined) space filling curve, called Hilbert’s space filling curve. The iteration process
that leads to Hilbert’s space filling curve in Figure 1.3 is called Hilbert’s iteration system.

Hilbert’s iteration system induces a substitution rule ωH whenever an expansion factor
λ = 2 is applied in each of its steps. The substitution rule is depicted in Figure 1.4. There
exists a tiling TH that is formed by this substitution, through the same method as in the
construction of T for the 2DTM tiling. It is called Hilbert’s substitution tiling. A patch of
it is demonstrated in Figure 1.5. The tiling TH consists of square tiles with unit area. The
tiles carry curve labels such that they can be concatenated to produce a curve D. Since
TH is constructed as a limit of nested sequence of patches that expand in every direction
to cover the whole plane, the curve D can be written as a limit of nested sequence of

curves that expand in every direction. That is, D =
∞⋃
k=1

Ck where Ck are curves so that

Cj ⊆ Cj+1 for all j ∈ Z+. The topology on D is the subspace topology induced by the
tiling topology. The curves Ck are nothing but the expanded versions of approximant
curves of the Hilbert’s space filling curve.

Figure 1.4: The substitution rule ωH .

The curve D is relatively dense in the plane; i.e. there exists R > 0 such that every
2-dimensional ball with radius R intersects with D. The construction steps of D and
γ are akin in the sense that the curves Ck are expanded versions of approximants of γ.
In general, all space filling curves considered in this thesis are associated with relatively
dense curves in the same fashion. Therefore, throughout the thesis we refer to space filling
curves as continuous images either from the unit interval or from the real line. While the
former indicates a compact region of the plane as a proper space filling curve, the latter
indicates an unbounded subset of the plane as an associated relatively dense curve.
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Figure 1.5: A patch of Hilbert’s substitution tiling.

Both substitution tilings T and TH consist of square tiles with unit area. While the
labels of T are colours, the labels of TH are directed curves which can be concatenated to
form the relatively dense curve D. One fundamental difference between T and TH is the
order structure between their tiles. There is no obvious order structure defined between
the tiles of T . On the other hand, the curve D induces a total order between the tiles of
TH . For any t1, t2 ∈ TH , define t1 . t2 if t1 is visited by D before t2. Since every tile of
TH is visited exactly once by D, this is a well defined total order. Moreover, this order
structure induces a 1-dimensional tiling. In particular, flattening the curve D defines a
1-dimensional substitution tiling VH . The substitution rule σH of VH can be read from
Figure 1.4. If the four square tiles on the top of Figure 1.4 are labelled as a, b, c, d from
left to right respectively, then the substitution rule σH is the following:

σH(a) = d, a, a, b, σH(b) = c, b, b, a, σH(c) = b, c, c, d, σH(d) = a, d, d, c.

One dimensional substitution tilings can be investigated using symbolic dynamics,
which has been a focus of research going back almost 100 years. The goal of this project
is to define machinery that provides new insights for studying 2-dimensional substitu-
tion tilings from the 1-dimensional symbolic dynamics point of view. We propose a
method which portrays 2-dimensional substitution tilings as 1-dimensional substitution
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tilings through the lens of space filling curves. We explain the process by depicting the
2DTM substitution tiling as the doubled 1-dimensional Thue-Morse (doubled-1DTM) sub-
stitution tiling through the lens of Hilbert’s space filling curve, where the doubled-1DTM
substitution tiling is defined with the following substitution rule σ:

σ(a) = a, b, a, b, σ(b) = b, a, b, a.

The main idea is to mimic the total order structure of TH on the tiling T . More
precisely, consider the substitution rule ω′ shown in Figure 1.6. This substitution rule
defines a tiling T ′ of the plane via the usual method. This tiling can be viewed as a
decorated version of T with the relatively dense curve D attached as a decoration. In
particular, if the curve labels are omitted, then T ′ becomes T , and if the colour labels are
omitted then T ′ becomes TH . We illustrate a patch of T , TH and T ′ in Figure 1.7, from left
to right respectively. If the segments of D are relabelled according to the correspondence

ω′ ω′ ω′ ω′

ω′ ω′ ω′ ω′

Figure 1.6: The substitution rule ω′.

Figure 1.7: A patch of the tilings T, TH and T ′, from left to right respectively.

shown in Figure 1.8, then flattening the curve D defines a 1-dimensional substitution tiling
V ′. The substitution rule σ′ of V ′ can be read from Figure 1.6 using the labels shown in
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Figure 1.8 as follows:

σ′(a) = d, e, a, f, σ′(b) = c, f, b, e, σ′(c) = b, g, c, h, σ′(d) = a, h, d, g,

σ′(e) = h, a, e, b, σ′(f) = g, b, f, a, σ′(g) = f, c, g, d, σ′(h) = e, d, h, c.

a b c d e f g h

Figure 1.8: The correspondence between tiles

The tiling T ′ can be described by placing the tiling TH ‘over’ the tiling T . By the same
token, the tiling V ′ can be described by placing the tiling VH ‘over’ the tiling V , where V
is the doubled-1DTM tiling. More precisely, define the maps φ1, φ2 : {a, b, c, d, e, f, g} 7→
{a, b, c, d, e, f, g} by the following relations:

φ1(a) = φ1(e) = a, φ1(b) = φ1(f) = b, φ1(c) = φ1(g) = c, φ1(d) = φ1(h) = d,

φ2(a) = φ2(b) = φ2(c) = φ2(d) = a, φ2(e) = φ2(f) = φ2(g) = φ2(h) = b.

The maps φ1 and φ2 modify the labels of the tiles given in Figure 1.8 such that φ1 forgets
the colour labels of the tiles and φ2 forgets the curve labels of the tiles. We get that
σH = φ1 ◦ σ′ and σ = φ2 ◦ σ′. That is, if we forget the colour labels, then T ′ becomes TH
and V ′ becomes VH . Similarly, if we forget the curve labels, then T ′ becomes T and V ′

becomes V .
We view the method above as a way of dimension reduction. The fundamental ingre-

dient for making this technique possible is the existence of such a relatively dense curve,
which induces a (decorated) 2-dimensional substitution tiling when it is attached to a
given tiling of the plane, and a 1-dimensional substitution tiling when it is flattened. In
general, it is not obvious whether there exists such a relatively dense curve for any given
substitution tiling of the plane. We refer to the problem as the existence problem. We
provide an affirmative answer to the problem through an algorithm called the travelling
algorithm, by regarding tiles as neighbourhoods and curves visiting them as a traveller
visiting the neighbourhoods.

The travelling algorithm starts with any given 2-dimensional substitution rule which
induces a tiling satisfying generic conditions. We decorate each tile with either a sin-
gle curve or a pair of non-crossing curves. These curves are completely contained inside
the tiles and have end points at the vertices of the tiles. The algorithm defines a sub-
stitution for each decorated tile, whenever the substitutions of the tiles form sufficiently



CHAPTER 1. INTRODUCTION 7

large patches. Since the substitutions of tiles can be constructed as large as possible, by
applying the substitution rule enough times, our largeness criteria is assured.

The substitution structure induced by the algorithm can be described as follows. Pic-
ture the tiles as neighbourhoods and their associated substitutions as cities. The given
substitution rule defines a correspondence between the neighbourhoods and cities, such
that every point in a neighbourhood corresponds to a point in the associated city. Suppose
we want to define a decorated tile by attaching a simple curve decoration et to a tile t
so that et has end points A and B. This decorated tile is thought of as a map with a
traveller moving through the neighbourhoods of t, from point A to point B. The travel-
ling algorithm finds a path in the associated city, whenever the city is divided into enough
neighbourhoods, for the traveller to move from the point A′ to the point B′ so that it visits
every neighbourhood in the city at least once and at most twice, where A′, B′ are the cor-
responding points of A and B in the city. Since the traveller visits every neighbourhood at
least once and at most twice, each visited neighbourhood corresponds to a decorated tile,
where the decoration is induced according to the movements of the traveller. This process
characterises a substitution structure for the decorated version of t, with the decoration
et. A similar argument is applied when et is not a single curve but a pair of non-crossing
curves, by interpreting the two non-crossing curves as two travellers whose paths do not
cross each other. This construction defines a substitution for every decorated tile. The
generated substitution rule is the key to compose a relatively dense curve in the plane.
In particular, when the decorated substitution is applied ad infinitum, the cities are fit
together in the same way neighbourhoods inside the cities fit together. Consequently, the
traveller algorithm induces a relatively dense curve in the plane, which visits every tile of
the given tiling at least once and at most twice.

We interpret the constructed relatively dense curves as order systems for tilings of the
plane. In particular, if a relatively dense curve visits every tile of a given 2-dimensional
tiling exactly once, then we can assign a total order between the tiles of the tiling, according
to which tile is visited first. On the other hand, if at least one tile is visited twice, then we
define a total order using curve labels as follows. If a tile t is visited twice, then we define
two pairs [t, e1] and [t, e2] corresponding to the tile t, where e1 and e2 are two simple curves
associated with the double-visit of the tile t. We identify every other singly visited tile
with a pair [u, e] where e corresponds to the single-visit of u. Let [x, α], [y, β] be any given
pairs where x, y are tiles and α, β are curves associated with the visits of the tiles x, y,
respectively. We define [x, α] . [y, β] if α comes before β, according to the given relatively
dense curve. This defines a total order between the pairs, which is the main ingredient to
construct a 1-dimensional tiling. For that reason we view the travelling algorithm as an
order system either over the tiles or over the corresponding pairs.
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e1

e2

e

tile t tile u

Figure 1.9: The total order between the pairs is demonstrated over the two tile patch
{t, u}. The total order over {t, u} is defined as [t, e1] . [u, e] . [t, e2].

The key argument of this thesis is the details of the travelling algorithm. These details
are explained in three sections in Chapter 3. At the end of Chapter 3, we also provide a
relation between the travelling algorithm and the Hamiltonian path problem. In Section
3.1, we explain the algorithm for a special class of patches called circle patches (See
Definition 3.1.1). This is the simplest version of the algorithm. In particular, using the
relation at the end of the chapter, the algorithm for circle patches provides an answer to
the Hamiltonian path problem for complete and finite graphs. In Section 3.2, we expand
the algorithm over a larger class of patches called cyclic patches (See Definition 3.2.1).
We define composition of tilings and patches, where we expose a special composition
method called circle composition (Section 3.2.1). A circle composition of a patch replaces
a circle subpatch with a single tile. We prove in this section that every cyclic patch can
be transformed into a circle patch, after finitely many circle composition steps. These
circle composition steps are the main ingredients which makes the methods in Section 3.1
applicable for cyclic patches. In the final section we generalise the algorithm to any patch
that is formed by a substitution rule defined over convex shapes of the plane. The final
version of the algorithm implies that any given 2-dimensional substitution tiling satisfying
mild conditions generates a decorated substitution tiling of the plane, which also satisfies
the same assumptions. Lastly, at the end of the chapter, we relate the travelling algorithm
and the Hamiltonian path problem. We show that the algorithm provides an answer to
the Hamiltonian path problem for special cases with strong assumptions.

The outline of the thesis is as follows. We provide the basics of tilings in Chapter
2. The material in this chapter is classical, except for a new algorithm, which we call
the primitive core algorithm. The primitive core algorithm returns a primitive substitu-
tion from any given non-primitive one. In Chapter 3, we explain the gory details of the
travelling algorithm. This algorithm provides a relatively dense curve for any given 2-
dimensional substitution tiling satisfying mild conditions. The generated relatively dense
curve induces an order structure between the tiles of the given tiling. In Chapter 4, we
flatten the constructed relatively dense curve in order to form a 1-dimensional substitution
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tiling. We also establish a factor map between the associated (discrete) tiling dynamical
systems of the two generated tilings; the decorated 2-dimensional substitution tiling and
the 1-dimensional substitution tiling. We further show that this map is almost one-to-one;
i.e. one-to-one over a dense subset of its domain. In the final chapter we describe how
the travelling algorithm generates space filling curves. We also provide several examples
of how the technique is applied to the known substitution tilings of the plane.



Chapter 2

Tiling Theory

The material in this chapter splits into two sections. The material in Section 2.1 is
standard, which can be found in the survey textbook [28] and/or the references therein.
On the other hand, Section 2.2 is a contribution to the tiling literature, up to the author’s
knowledge. It is dedicated to the primitive core algorithm. This algorithm returns a
primitive substitution from any given substitution.

2.1 Preliminary Definitions and Results

A tile consists of a compact subset of Rd, denoted by supp t, and a label l(t) that distinguish
identical sets. For a given tile t and x ∈ Rd we define a new tile t + x by the relations
supp (t + x) = supp (t) + x and l(t + x) = l(t). A partial tiling is a collection of non-
overlapping tiles. We define the support of a partial tiling T as the union of supports of
its component tiles. A patch P is a partial tiling with a compact and simply connected
support in Rd. A tiling T is a partial tiling with supp T = Rd. If T = {tn} is a tiling and
x ∈ Rd, then T + x is a tiling with the collection {tn + x}.

A prototile set P of a tiling T consists of tiles such that for all t ∈ T there exists a
unique p ∈ P so that t = p + x for some x ∈ Rd. Elements of P will be called prototiles
of the tiling T . We denote by P∗ the set of all patches generated by P .

For each prototile p ∈ P we fix a point x(p) such that x(p) ∈ int (supp p). The point
x(p) is called the puncture of p. We extend the punctures of prototiles to every tile in a
tiling. More precisely, if t ∈ T and t = p + x for some p ∈ P and x ∈ Rd, then we say
x(p) + x is the puncture of the tile t and is denoted by x(t).

For a given tiling T and a (fixed) prototile set P , we define punctured tiling Tp as the
same collection of tiles of T where each tile has puncture x(t) induced from P .

10
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Tiling Spaces

Let T be a tiling and B(x,R) be the Euclidean ball of radius R around x ∈ Rd. We denote
the collection of tiles whose support intersect with the ball B(x,R) by

T uB(x,R) := {t ∈ T : supp t ∩B(x,R) 6= ∅}.

Lemma 2.1.1 ([26], Lemma 2.7). Let U, V be two tilings.

d(U, V ) = inf

{√
2

2
, ε : ∃x ∈ Rd so that |x| < ε and (U − x) uB(0, 1/ε) = V uB(0, 1/ε)

}

defines a metric on tilings in Rd.

We call d in Lemma 2.1.1 the tiling metric. Since every iteration of a tiling T is also
a tiling, d defines a metric space on the translation orbit T + Rd of T . From there, we
can define two complete spaces; the continuous hull and the discrete hull of a tiling. The
continuous hull of a tiling T is the completion of all translations of T in the tiling metric.
It is denoted by Ω(T ). We have Ω(T ) = T + Rd, where the completion is taken with
respect to the tiling metric. The punctured hull of a tiling T (with punctures induced by a
fixed prototile set P) is the collection of tilings in Ω(T ) that has a puncture at the origin.
It is denoted by Ωp(T ). We have that Ωp(T ) = {A ∈ Ω(T ) : ∃a ∈ A with x(a) = 0}.
Completeness of Ωp(T ) follows by the following lemma.

Lemma 2.1.2. Let T be a tiling and let Ω(T ) be its continuous hull. Then its punctured
hull Ωp(T ) (with punctures induced by a fixed prototile set P) is a closed subspace of Ω(T ).

Proof. Suppose {An} is a sequence of tilings in Ωp(T ) which converges to a tiling A ∈ Ω(T ).
There exists N ∈ Z+ such that every tiling An for n ≥ N must contain the same tile a
which has the puncture at the origin. Because An converges to A, we must have a ∈ A
and x(a) = 0 (the puncture of tile a in the tiling A). Hence, A ∈ Ωp(T ).

For any given tiling T , elements of Ω(T ) and Ωp(T ) can be identified by examining the
patches of T . In particular, we have the following lemma and theorem.

Lemma 2.1.3. Let T be any given tiling of Rd for some d ∈ Z+. Then A ∈ Ω(T ) if and
only if A is a tiling of Rd such that A = lim

n→∞
(T + xn) where {xn} is a Cauchy sequence

in Rd.

Proof. It is enough to prove that A is a tiling of Rd whenever A = lim
n→∞

(T + xn) for some

sequence {xn} in Rd.
Assume that the sequence {T + xn} converges in Ω(T ). Because Ω(T ) is complete,

{T + xn} is a Cauchy sequence. For each ε > 0, there exists N ∈ Z+ such that d(T +
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xn, T + xm) < ε whenever n,m ≥ N . Then, T + xn and T + xn+1 match around the origin
up to some wiggle for each n ∈ Z+. Define Pn = (T + xn) u B(0, n) for n ∈ Z+, and
define {yn} to be a sequence of real numbers such that Pn + yn ⊆ Pn+1 for n ∈ Z+. Such
a sequence {yn} exists since T + xn and T + xn+1 match around the origin up to some
wiggle for each n ∈ Z+. Therefore, {Pn + yn} is a nested sequence of increasing patches
such that A′ =

⋃
n

(Pn + yn) defines a tiling. Because the limit is unique, A′ = A, and A is

a tiling of Rd.

Theorem 2.1.4. For any given tiling T , we have A ∈ Ω(T ) if and only if every patch of
A appears in T .

Proof. Suppose A ∈ Ω(T ) is a tiling in the continuous hull of T and P is a patch appearing
in A. There exists x ∈ Rd such that P appears around the origin in the tiling A+ x. Let
R > 0 be sufficiently large enough so that supp P ⊆ B(0, R). Because A+ x ∈ Ω(T ), for
any given ε > 0, there exists a tiling T +y such that d(A+x, T +y) < ε. Choose ε0 < 1/R.
Then T + y contains the patch P around the origin. That is, P appears in T + y. Thus,
P appears in T .

Conversely, define the patch PR = A u B(0, R) for R > 0. We have that PR appears
in A. By the assumption it also appears in T . Then there exists xR ∈ Rd such that
(T + xR) uB(0, R) = PR. Hence, A = lim

R→∞
(T + xR) and A ∈ Ω(T ).

Substitution Tilings

Definition 2.1.5. Let P be a finite set of tiles and let P∗ denote all partial tilings
generated by the tiles in P . A substitution rule ω∗ with a scaling factor λ > 1 is a map
from P to P∗ such that ω∗(p) is a patch with supp ω∗(p) = λ · supp p for all p ∈ P .

We can extend the substitution rules defined on prototiles to tiles. More precisely, we
can extend ω∗ to P + Rd by defining ω∗ : P + Rd 7→ P∗ as ω∗(p+ x) := ω∗(p) + λx.

Definition 2.1.6. A substitution rule ω∗ is said to be primitive if there exists n ∈ N such
that for any pair p, q ∈ P , (ω∗)n(p) contains a translate of q.

Construction of a tiling from a primitive substitution

It is a commonly used result that any primitive substitution rule gives rise to a tiling. We
present the details of this process.

Let ω∗ : P 7→ P∗ be a given primitive substitution rule. For p ∈ P there exists
n ∈ N such that (ω∗)n(p) contains a translate of p. Assume without loss of generality n is
sufficiently large so that a copy of p completely contained in int

(
supp (ω∗)n(p)

)
. Denote

the copy of p as p+x. we have, p+x ∈ (ω∗)n(p) and supp (p+x) ⊆ int
(

supp (ω∗)n(p)
)
. Let
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z = x
λn−1

∈ Rd. Then, x = λnz−z and p+(λnz−z) ∈ (ω)n(p). Thus, p−z ∈ (ω∗)n(p−z).
We arrive at the following "increasing" nested sequence of patches:

{p− z} ⊆ (ω∗)n(p− z) ⊆ (ω∗)2n(p− z) ⊆ (ω∗)3n(p− z) . . .

Because p+ x is contained in (ω∗)n(p), p− z+ x is contained inside of (ω∗)n(p− z). That
is, supports of those patches form a nested (increasing) sequence of sets whose union has
support which covers Rd. Hence, T =

⋃
k∈N

(ω∗)kn(p− z) is a tiling. The tiling T generated

by a primitive substitution rule as in above is called a primitive substitution tiling.

Lemma 2.1.7. The map ω : Ω(T ) 7→ Ω(T ) defined by ω({tn}n) :=
⋃
n

ω∗(tn) is a (well-

defined) continuous map.

Proof. The image of a tiling under ω is a tiling. Moreover, if P is a patch appearing in the
collection

⋃
n

ω∗(tn), then P is contained in (ω∗)N(p) for sufficiently large N and for any

prototile p ∈ P (using primitivity). Therefore, P appears in T . That is,
⋃
n

ω∗(tn) ∈ Ω(T )

and ω is well defined.
Moreover, if U and V match around the origin up to some wiggle then the substituted

tilings ω(U), ω(V ) also match around the origin, up to some wiggle. More precisely, if
d(U, V ) < ε, then d(ω(U), ω(V )) < λ ·ε, where λ is the expansion factor of the substitution
ω. Hence, ω is a continuous map.

The map ω will be called the substitution map for the primitive substitution tiling T ,
whereas ω∗ will be called the substitution rule for the tiling T . From now on, we will
denote both functions by ω for simplicity.

Observe that the tiling T constructed previous to Lemma 2.1.7 satisfies ωn(T ) = T .
That is, T is a fixed point for the substitution ωn. In particular, we have the following
lemma.

Lemma 2.1.8. Let ω be a primitive substitution rule and let T be a tiling generated by ω.
Then there exits N ∈ Z+ such that ωN(T ) = T

Proof. Because ω is primitive, T can be written as
∞⋃
k=1

ωk·N(p − z) for some z ∈ Rd and

N ∈ Z+. Since ωk·N(p− z) ⊆ ω(k+1)·N(p− z) for each k ∈ Z+, we get ωN(T ) = T .

Definition 2.1.9. Two patches P and P ′ are said to be equivalent if there exists x ∈ Rd

such that P = P ′ + x. That is, the two patches P and P ′ are said to be equivalent if for
all p ∈ P there exists unique p′ ∈ P ′ with p = p′ + x. We denote equivalent patches as
P ∼ P ′.

This is an equivalence relation.
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Definition 2.1.10 (FLC). We say a tiling T has finite local complexity (FLC in short) if
the set {(T + x) uB(0, R) : x ∈ Rd} is finite up to equivalence for any given R > 0.

FLC is commonly accepted to be a standard assumption being made in the theory of
tilings, due to the following lemma.

Lemma 2.1.11. A tiling T has FLC iff Ω(T ) is compact.

Proof. Suppose T has FLC and {Ak}k ⊆ Ω(T ) is an infinite sequence of tilings in Ω(T ).
For any fixed R > 0, The set {Ak u B(0, R)}k has a finite size (up to equivalence), and
the patch Ak uB(0, R) appears in T by Theorem 2.1.4.

Let {Ak u B(0, R)}/ ∼ = {P1, . . . , Ps} for some s ∈ Z+. For any given fixed R > 0,
consider the collections of tilings C0

i = {Ak : AkuB(0, R) = Pi} for i = 1, . . . , s. We have

{Ak}k =
s⋃
i=1

C0
i . There exists i0 ∈ {1, . . . , s} such that C0

i0
has infinite cardinality. Choose

B0 ∈ C0
i0
. The set {Ak u B(0, 2R) : Ak ∈ C0

i0
} has a finite size (up to equivalence). Let

{AkuB(0, 2R) : Ak ∈ C0
i0
}/ ∼= {P 1

1 , . . . , P
1
s1
} and C1

i = {Ak ∈ C0
i0

: AkuB(0, 2R) = P 1
i }

for i ∈ {1, . . . , s1}. There exists i1 ∈ {1, . . . , s1} so that C1
i1
has infinitely many elements.

Choose B1 ∈ C1
i1
. Continuing this process, we obtain a subsequence Bn, which is a Cauchy

sequence. We get that Bn is a convergent subsequence for the given infinite sequence of
tilings {Ak}k. Hence, Ω(T ) is (sequentially) compact.

The converse implication follows by a similar argument. If T does not have FLC, then
there exists R > 0 such that there are infinitely many different (up to equivalence) patches
with radius R. For each patch choose a tiling that contains the chosen patch around its
origin. This is an infinite collection of tilings which does not converge to any tiling in
Ω(T ).

Lemma 2.1.11 implies that (Ω(T ),Rd) is a dynamical system for any given tiling T .

Definition 2.1.12. A tiling T is called aperiodic if

T + x = T ⇐⇒ x = 0.

A tiling T is called strongly aperiodic if for all T ′ ∈ Ω(T )

T ′ + x = T ′ ⇐⇒ x = 0.

Definition 2.1.13 (Repetitive). A tiling T of Rd is said to be repetitive if for any patch
P there exists R > 0 such that a copy of P is contained in the patch T u B(x,R) for all
x ∈ Rd.

Lemma 2.1.14. Let T be a repetitive tiling. Then for any T ′ ∈ Ω(T ) we have Ω(T ) =

Ω(T ′).
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Proof. Suppose T ′ is a given tiling in Ω(T ) such that T ′ = lim
k
Ak for some sequence

{Ak}k ⊆ Ω(T ). For any x ∈ Rd, T ′ + x = lim
k

(Ak + x). Thus, T ′ + Rd ⊆ Ω(T ) and
Ω(T ′) ⊆ Ω(T ). Conversely, suppose A ∈ Ω(T ) and T is repetitive. Let P be a patch in
A which also appears in T . Because T is repetitive, there exists R > 0 so that B(x,R)

contains a copy of P for any given x ∈ Rd. Define P ′ = T ′ u B(y, 3R) for some y ∈ Rd.
We have that P ′ is a patch in T ′ and T ′ ∈ Ω(T ). Therefore, P ′ appears in T . Because
P ′ contains a ball of radius R, P ′ contains a copy of P . Hence, P appears in T ′ and
Ω(T ′) = Ω(T ).

Definition 2.1.15. A substitution tiling T with a substitution map ω is called recognisable
if ω is invertible. A substitution rule ω is called recognisable if it only admits recognisable
substitution tilings.

Theorem 2.1.16. Suppose T is a recognisable primitive substitution tiling with FLC.
Then

(1) T is strongly aperiodic.
(2) ω : Ω(T ) 7→ Ω(T ) is a homeomorphism.
(3) T is repetitive.
(4) Ωp(T ) is homeomorphic to the Cantor set.

Proof. Suppose ω is a given primitive substitution rule with an expansion factor λ over a
finite collection of prototiles P . Suppose further T is a recognisable primitive substitution
tiling with FLC and is generated by the substitution rule ω.

(1) Let A ∈ Ω(T ) and x ∈ Rd be given. There exists a sufficiently large integer n ∈ Z+

such that some ball of diameter λ−n||x|| is contained in every prototile in P . Let
t ∈ ω−n(A) be any tile in the tiling ω−n(A). The interiors of t and t + λ−nx has
to overlap because of the choice of n. Therefore, ω−n(A) 6= ω−n(A + x). Since the
substitution map ω is injective, T is strongly aperiodic.

(2) Continuity of ω follows by the fact that d(ω(T ), ω(T ′)) < λε whenever d(T, T ′) < ε.
Because T is a primitive substitution tiling, there existsN ∈ N such that ωN(T ) = T ,
by Lemma 2.1.8. Therefore, T ∈ Ran ω. Similarly, ωN(T + λ−Nx) = T + x implies
that T + Rd ⊆ Ran ω. Since ω is continuous and Ω(T ) is compact, Ran ω is closed.
That is, Ω(T ) = T + Rd ⊆ Ran ω. We get that ω is a continuous bijection. Hence,
ω is a homeomorphism since Ω(T ) is compact.

(3) Let P be a given patch in T which appears in ωk(p0) for some p0 ∈ P(T ) and
sufficiently large k ∈ Z+. Because T is a primitive substitution tiling, there exists
N ∈ N such that for any p, q ∈ P(T ), ωN(q) contains a translate of p. So, a
copy of p is contained in ωk+N(p) for all p ∈ P(T ). We proved in (ii) that ω is a
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homeomorphism. Therefore, there exists a unique T ′ ∈ Ω(T ) such that ωk+N(T ′) =

T . Choose R′ = max
p∈P(T )

(
diam supp ωk+N(p)

)
. For R = 3 · R′, B(x,R) contains a

copy of P for every x ∈ Rd. Hence, T is repetitive.

(4) Recall that a metric space X is homeomorphic to the Cantor set if and only if X
is compact, totally disconnected and has no isolated points. We have that Ω(T ) is
compact by Lemma 2.1.11 and Ωp(T ) is closed by Lemma 2.1.2. Thus, Ωp(T ) is
compact.

Let Ap ∈ Ωp(T ) be a given punctured tiling. We have that T is repetitive. So, for any
given ε > 0, there exists x ∈ Rd such that d(A+x,A) < ε and Ap+x ∈ Ωp(T ). We get
that T is strongly aperiodic, by (1). Therefore, A+ x 6= A and 0 < d(A+ x,A) < ε.
The choice of ε was arbitrary. Thus, Ωp(T ) contains no isolated points.

Let T1, T2 ∈ Ωp(T ) be any given distinct pair of tilings. There exists R > 0 such
that T1 u B(0, R) 6= T2 u B(0, R). We get T1 /∈ U = {A ∈ Ωp(T ) : A u B(0, R) =

T2 u B(0, R)}. Notice that U is closed. For a given tiling B ∈ U , choose ε0 < 1
2R

.
Then C u B(0, R) = B u B(0, R) = T2 u B(0, R) for any tiling C with d(C,B) < ε.
Such a tiling C exists since Ωp(T ) do not contain any isolated points. Therefore,
C ∈ U whenever d(C,B) < ε. That is, U is open. We get T2 ∈ U , T1 /∈ U and U is
a clopen set. Thus, Ωp(T ) is totally disconnected.

Hence, Ωp(T ) is homeomorphic to the Cantor set.

Corollary 2.1.17. Let T be a given recognisable primitive substitution tiling with FLC.
Then there exists k ∈ Z+ and a prototile set P so that ωk : Ωp(T ) 7→ Ωp(T ) is a homeo-
morphism, where the punctured tilings in Ωp(T ) have punctures induced by P.

Proof. By primitivitiy of the substitution, there exists k ∈ Z+ such that ωk(p) contains a
copy of p inside its patch, for each p ∈ P . That is, for each p ∈ P , there exists xd ∈ Rd

such that p + xd ∈ ωk(p) and supp (p + x) ⊆ int (supp ωk(p)). For each p ∈ P there
exists a fixed point ap ∈ supp (p + xd) such that ap stay invariant under the substitution
ωk. Puncture the point ap for the tile p + xd, for each p ∈ P . This defines a (punctured)
prototile set and a punctured hull Ωp(T ) of T . We have ωk(A) ∈ Ωp(T ) for each punctured
tiling A ∈ Ωp(T ). Hence the corollary follows by (2) in Theorem 2.1.16.

Finally we provide the notion of equivalence in tilings and tiling spaces, from the
textbooks [3] and [28], respectively.

Definition 2.1.18. A tiling T ′ is locally derivable from a tiling T if there is a unique set of
local rules to obtain T ′ from T . More precisely, if there exists R > 0 such that, whenever
x, y ∈ Rd and satisfy that T u B(x,R) = T u B(y,R) + (y − x), then T u B(x, 1) =

T uB(y, 1) + (y − x). If both T and T ′ are locally derivable from each other then we say
T and T ′ are mutually locally derivable (MLD in short).
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Definition 2.1.19. Two tiling spaces Ω(T ) and Ω(T ′) are called mutullay locally derivable
(MLD in short) if there exists a topological conjugacy f : Ω(T ) 7→ Ω(T ′) and R > 0 such
that, whenever x ∈ Rd and satisfies that T1, T2 ∈ Ω(T ) agree on B(x,R), then f(T1), f(T2)

agree on B(x, 1).

The MLD notion of tilings and tiling spaces are equivalent in the sense that two tilings
T, T ′ are MLD if and only if the tiling spaces Ω(T ),Ω(T ′) are MLD (through a topological
conjugation f). In fact, if T and T ′ are MLD, then, by defining f(T ) = T ′ over the orbit
T +Rd, we get a uniformly continuous map f defined on T +Rd (See [28, P: 9] for details).
Then f can be continuously extended to Ω(T ). Therefore MLD relation of Ω(T ) and Ω(T ′)

can be acquired. Conversely, if Ω(T ) and Ω(T ′) are MLD (through a topological conjugacy
f), then the tilings A ∈ Ω(T ) and f(A) ∈ Ω(T ′) are MLD.

It should be noted that the notion MLD in tilings (or tiling spaces) implies the existence
of a topological conjugacy between tiling spaces. However, the converse is not always true
(for example [7], [21], [22]).

2.2 Primitive Core Algorithm

In this section we construct an algorithm which generates a primitive substitution from
any given substitution. The generated substitution is a power of the given one. Moreover,
it is defined over a (possibly) smaller collection.

The function f in the following lemma can be interpreted as a choice function over a
finite set of prototiles. On the other hand, the functions g and h in the following lem-
mas/corollaries can be interpreted as functions recording the distinct prototiles appearing
in the substitution of prototiles and substitution of patches, respectively.

Lemma 2.2.1. Suppose f : S 7→ S is a map defined on a finite set S = {a1, a2, . . . , an}
for n ∈ Z+. Then there exist aj ∈ S and m ∈ Z+ such that fm(aj) = (aj).

Proof. The pigeonhole principle implies {fk(a1)}n+1
k=1 must have at least one multiple entry;

say f r(a1) = f s(a1) for some r, s ∈ {1, . . . , n+ 1} with r < s. Hence, the pair aj = f r(a1)

and m = s− r satisfy the conclusion.

Lemma 2.2.2. Let h : S∗ 7→ S∗ be a map defined on the set of all subsets of the finite set
S such that

(i) There exists a ∈ S with a ∈ h({a}),

(ii) If A ⊆ B ⊆ S then h(A) ⊆ h(B).

Then we have the following:

(1) hn({a}) ⊆ hn+1({a}) for all n = 0, 1, . . . ,
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(2) There exists N ∈ Z+ such that hn({a}) = hN({a}) for all n ≥ N . Moreover,
(hN({a}))∗ is invariant under hN .

Proof. (1) directly follows by the assumptions (i) and (ii). As for (2), {hk({a})}∞k=1 is an
increasing sequence of subsets of S, by (1). It converges since the power set of S is a finite
set. Thus, there exists N ∈ Z+ such that hn({a}) = hN({a}) for all n ≥ N . Moreover,
for all U ⊆ hN({a}) we have hN ·s(U) ⊆ hN ·(s+1)({a}) for each s ∈ Z+, by the assumption
(ii). Hence, (hN({a}))∗ is invariant under hN .

Corollary 2.2.3. Let g : S 7→ S∗ be a map defined on a finite set S such that there
exists a ∈ S with a ∈ g(a). Suppose further that h : S∗ 7→ S∗ is a map defined by
h(A) =

⋃
x∈A

g(x) for A ⊆ S. Then there exist N ∈ Z+ such that hn({a}) = hN({a}) for

all n ≥ N . Moreover, (hN({a}))∗ is invariant under hN .

Proof. We have that h satisfies the conditions (i) and (ii) of Lemma 2.2.2, by construction.
Hence, the result follows by Lemma 2.2.2.

Lemma 2.2.4. Let g : S 7→ S∗ be a map defined on a finite set S such that there exists
a ∈ S with g(a) = S. Assume further, h : S∗ 7→ S∗ is defined by h(A) =

⋃
x∈A

g(x) for

A ⊆ S. Then (exactly) one of the following holds:

(1) There exists n ∈ Z+ such that hn({x}) = S for all x ∈ S.

(2) There exists b ∈ S\{a} such that a /∈ hs({b}) for all s ∈ Z+.

Proof. Suppose without loss of generality that S contains at least two elements. Assume
to the contrary that either both (1) and (2) hold, or both (1) and (2) do not hold. Observe
that if (2) holds, then (1) cannot hold. Since (1) and (2) cannot be true at the same time,
both (1) and (2) must not hold. Then, for all c ∈ S\{a}, there exists sc ∈ Z+ such
that a ∈ hsc({c}) where h satisfies the condition (ii) of Lemma 2.2.2 by construction.
Therefore, for all c ∈ S\{a}, there exists sc ∈ Z+ such that S = h({a}) ⊆ hsc+1({c}).
That is, for each c ∈ S\{a}, there exists sc ∈ Z+ such that hsc+1({c}) = S. Choose n to
be the maximum of all such sc + 1; i.e. n = max

c∈S\{a}
(sc + 1). Then hn({x}) = S for all

x ∈ S, a contradiction.

Lemma 2.2.5. Let g : S 7→ S∗ be a map defined on a finite set S such that there exists
a ∈ S with g(a) = S, and h : S∗ 7→ S∗ be a map defined by h(A) =

⋃
x∈A

g(x) for A ⊆ S.

Assume further, there exists b ∈ S\{a} such that a /∈ hs({b}) for all s ∈ Z+. Then
W = {x ∈ S : a /∈ hs(x) for all s ∈ Z+} = S\{x ∈ S : a ∈ hs(x) for somes ∈ Z+} is a
non-empty subset of S such that W ∗ is invariant under h.
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Proof. We have W 6= ∅ since b ∈ W . It is enough to show that h(W ) ⊆ W . For any
x ∈ W , we have a /∈ hs({x}) for every s ∈ Z+. Therefore, a /∈

⋃
x∈W

hs({x}) = hs(W ) for all

s ∈ Z+. Let y ∈ h(W ) be given. Then hs({y}) ⊆ hs+1(W ) for all s ∈ Z+, by construction
of h. Because a /∈ hs+1(W ) for all s ∈ Z+, a /∈ hs({y}) for all s ∈ Z+. That is, y ∈ W and
h(W ) ⊆ W .

Finally, we are ready to define an algorithm that finds a primitive substitution from a
non-primitive one. We first sketch the algorithm in steps, before justifying its aspects in
Proposition 2.2.6.

The Primitive Core Algorithm Suppose we are given a collection of prototiles P0 and
a substitution ω0 defined on P0. We apply the following steps 1 to 3 for each j = 0, 1, 2, . . .

consecutively and claim the algorithm terminates at a primitive substitution in finite time.
Step 1 : Find p ∈ Pj such that a translate of p appears in ωnj

j (p) for some nj ∈ Z+.
Step 2 : Find mj ∈ Z+ such that the collection I(p) of all prototiles in P0 that appear

in ω
nj ·mj

j (p) is invariant under the substitution ω
nj ·mj

j (in the sense that ωnj ·mj

j (x) only
consists of translates of prototiles in I(p), for each x ∈ I(p)), and every prototile in I(p)

appears in the patch ωnj ·mj

j (p).
Step 3 : Check if ωnj ·mj

j |I(p) is primitive on I(p). If not, go to Step 1 with the collection
Pj+1 = I(p)\{x ∈ I(p) : p ∈ ω

nj ·mk·s
j (x) for some s ∈ Z+} with substitution ωj+1 :=

ω
nj ·mj

j |Pj+1
.

To see the algorithm terminates in finite time note that Pj+1 6= ∅ and Pj+1 $ Pj.

Proposition 2.2.6. Every substitution ω : P 7→ P? over a finite prototile set P admits a
primitive substitution ω′ : A 7→ A∗, which is a restriction of the substitution ωn to A for
some n ∈ Z+ and A ⊆ P. Moreover, Ωω′ ⊆ Ωω where Ωω′ ,Ωω are collection of tilings that
are generated by the substitutions ω′, ω, respectively. In particular, if the substitution ω is
recognisable then so is ω′.

Proof. Suppose ω is a non-primitive substitution defined on a finite prototile set P with
an expansion factor λ. For each prototile p ∈ P choose a prototile q that appears in ω(p).
This defines a map f : P 7→ P such that f(p) = q for p ∈ P .

To see that there is always a solution to Step 1, by Lemma 2.2.1 , there exist n ∈ Z+

and a prototile p0 ∈ P such that fn(p0) = p0. That is, p0 appears in the n supertile
ωn(p0).

We now claim there is always a solution to Step 2. Indeed, because p0 + x0 ∈ ωn(p0)

for some x0 ∈ R2, we have (ωn·s(p0) + λn·s · x0) ⊆ ωn·(s+1)(p0) for all s ∈ Z+. Define
I(p0) = {q ∈ P : q+xq ∈ ωn·s(p0) for some xq ∈ R2 and s ∈ Z+} and g to be a map from
P to the subsets of P (subsets of P is different from our notation of P∗, which may contain
duplicate prototiles, whereas the subsets of P cannot) such that g(p) is the collection of
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prototiles in P whose copies appear in the patch ωn(p) for p ∈ P . p0 ∈ g(p0) since
p0 + x0 ∈ ωn(p0). Therefore, the map h defined on the subsets of P by h(A) :=

⋃
x∈A

g(x)

for A ⊆ P satisfy the following, by Corollary 2.2.3:

∃m ∈ Z+ so that (hm({p0}))∗ is invariant under hm and hs({p0}) = hm({p0}) ∀s ≥ m.

Notice that hs({p}) records the prototiles appearing in the patch ωn·s(p) for p ∈ P and
s ∈ Z+. Consequently, I(p0) is nothing but hm({p0}), by the correlation of h and ωn.
Thus, I(p0) is invariant under the map ωn·m (in the sense that ωn·m(x) only consists of
translates of prototiles in I(p0), for each x ∈ I(p0)) and ωn·m(p0) contains a copy of every
prototile in I(p0), proving our claim that Step 2 has a solution.

Lastly, we show Step 3 either terminates or produces a new prototile set Pj+1. Since
I(p0) is invariant under the map ωn·m, ω′ = ωn·m|I(p0) is a well-defined substitution de-
fined on I(p0). If ω′ is not a primitive substitution on I(p0), then there must exists a
prototile p1 ∈ I(p0) such that ωn·m·s(p1) does not contain a copy of p0 for each s ∈ Z+, by
Lemma 2.2.4. Hence, by Lemma 2.2.5, the collection P ′ = I(p0)\{x ∈ I(p0) : p0 + y0 ∈
ωn·m·s(x) for some y0 ∈ R2 and s ∈ Z+} is invariant under ω′. Therefore, ω′|P ′ defines a
substitution rule on the (sub)collection P ′. Note that ∅ 6= P ′ $ P , by Lemma 2.2.5. We
construct a substitution ω′ on a proper subcollection P ′ of P .

Hence, applying the same argument above whenever ω′ is not a primitive substitu-
tion on P ′, we construct smaller and smaller subcollections, and thereby form a primi-
tive substitution eventually, which is a power of the given substitution over a restricted
(sub)collection.

For the last part, note that every k-supertile with respect to the substitution ω′ for
k ∈ Z+ is a k · n-supertile with respect to the substitution ω. Thus, Ωω′ ⊆ Ωω where
Ωω′ ,Ωω are set of tilings that are generated by the substitutions ω, ω′, respectively.

Remark 2.2.7. The inclusion Ωω′ ⊆ Ωω in Proposition 2.2.6 can be strict. In particular,
let ω be the substitution defined over {0, 1, A,B} as follows:

ω(0) = 0, 1, ω(1) = 1, 0, ω(A) = A,B, ω(B) = B,A.

We can induce two primitive substitutions µ, ν from ω using the primitive core algorithm
such that µ is defined on {0, 1}, ν is defined on {A,B} and

µ(0) = 0, 1, µ(1) = 1, 0, ν(A) = A,B, ν(B) = B,A.

Observe that Ωµ $ Ωω and Ων $ Ωω.



Chapter 3

The Travelling Algorithm

Our goal in this chapter is to define over travelling algorithm in detail to produce a
decorated substitution rule from any given 2-dimensional substitution rule in the plane.
Our method of construction will guarantee that the new decorated substitution rule forms
relatively dense curves, which are akin to space filling curves. The generated relatively
dense curve is the primary ingredient for producing 1-dimensional tilings, which will be
discussed in Chapter 4.

The algorithm will be explained in three sections. The first two sections are devoted
to constructing the algorithm in special cases. In the first section, we study the algorithm
for a special class of patches called circle patches (See Definition 3.1.1). These patches are
of special interest to us, as they lie at the centre of the travelling algorithm. In the second
section, we investigate the algorithm for a larger class, called cyclic patches (See Definition
3.2.1). In this section, we explain composition of tilings and patches, where we expose a
special composition method called circle composition (Section 3.2.1). Circle compositions
of a patch return a reformed version of the given patch. It turns out that these circle
composition systems form iterative structures. These iterative structures transform any
given cyclic patch into a single tile patch. The transformation procedure is what is needed
to generalise the results in the first section. In the third section, we finalise the travelling
algorithm for any given patch satisfying mild conditions. Lastly, we examine the relations
between the travelling algorithm and the Hamiltonian path problem.

The travelling algorithm induces an order structure for any given patch Q. In particu-
lar, depending on which tile (or which pair [u, e] where e is a curve that corresponds to a
visit of u) is visited by the traveller first, we can define an order system between the tiles
of Q, as explained with an example in the introduction. For that reason, throughout the
chapter, we refer to the travelling algorithm applied for a patch Q as the order structure
of Q. In words, we think of the travelling algorithm as an order system.

21
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Preliminary Definitions

In this section we provide preliminary definitions. We explain decorations, decorated tiles
and decorated patches. Order structures for patches are defined through decorations.

Definition 3.0.1. Let T ′ be a collection of tiles such that supp T ′ is bounded and
int (supp T ′) has n simply connected components for some n ∈ Z+. Then there is a
unique sequence of mutually disjoint patches P1, . . . , Pn so that P1 ∪ · · · ∪ Pn = T ′. We
call Pi’s the components of T ′.

Definition 3.0.2. The vertex set of a patch is the collection of all vertices of tiles inside
the patch. A vertex of a patch is called an exterior vertex if it intersects the boundary
of the patch. It is called an interior vertex otherwise. Similarly, the edge set of a patch
is the collection of all edges of tiles contained in the patch. An edge of a patch is called
an exterior edge if it is completely contained in the boundary of the patch. It is called an
interior edge if it does not intersect with the boundary of the patch. An edge is called a
slice edge if it is not an exterior edge and both its end points are exterior vertices.

Definition 3.0.3. A tile t of a patch Q is called a slice tile if int (supp (Q\{t})) is discon-
nected. It is called a non-slice tile otherwise. Similarly, a subpatch S of a patch Q is called
a slice subpatch of Q if int (supp (Q\S)) is disconnected. It is called a non-slice subpatch
of Q otherwise.

Decorations

We define decorations for tiles/patches through curves that move in between common
vertices of tiles.

Definition 3.0.4. An n-curve is a union of n mutually disjoint simple curves. The corre-
sponding disjoint simple curves are called components of the given n-curve. A decoration
for a prototile p is an n-curve ep such that n = 1 or 2 and ep ∩ ∂supp p ⊆ Vp. We call ep
a simple decoration for p if ep is a simple curve (n = 1).

Definition 3.0.5. Suppose P is a given finite set of prototiles. Let p ∈ P be a prototile and
ep a decoration for p. Then the prototile pd with supp pd = supp p and l(pd) = (l(p), ep)

where l(p) is the label set for p and l(pd) is the label set for pd, is called a decorated copy
of p. The decoration ep is called the decoration of pd.

Similarly, if t = p + x is a translation of a prototile p, then the tile td = pd + x where
pd is a decorated copy of p, is called a decorated copy of t. The decoration et = ep + x,
where ep is the decoration of pd, is called the decoration of td or is called a decoration of
t.
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Figure 3.1: Examples of decorated tiles

Remark 3.0.6. Notice that if pd is a decorated copy of a prototile p such that it has a label
set l(pd) = (l(p), ep), then we call ep a decoration for p or the decoration of pd. Similarly,
td = pd + x is a decorated copy of a tile t = p+ x with label l(td) = l(pd) = (l(p), ep). We
call et = ep + x a decoration for t or the decoration of td.

By the same token, we define decorated supertiles and decorations for supertiles as
well. In order to be able to do that we first define corners of supertiles, which are the
images of the vertices of the prototiles under the corresponding substitution rule.

Definition 3.0.7. Suppose P is a finite collection of prototiles and ω is a substitution
rule defined on P with an expansion factor λ. If p ∈ P and Vp is the set of vertices of p,
then the collection {λk · x : x ∈ Vp} is called the set of corners of the k-supertile ωk(p)
for k ∈ Z+.

A

B C

D E

F G

H
2 · A

2 ·B 2 · C

2 ·D 2 · E

2 · F 2 ·G

2 ·H

p q

Figure 3.2: Corners of 1-supertiles of 2DTM are shown. 2 · A, 2 · B, 2 · C and 2 ·D are
the corners of the 1-supertile ω(p) whereas 2 · E, 2 · F, 2 ·G and 2 ·H are the corners of
the 1-supertile ω(q).

Definition 3.0.8. Assume that P is a finite collection of prototiles and ω is a substitution
rule defined on P with an expansion factor λ. Suppose further, p ∈ P , k ∈ Z+, ep is a
decoration for p and C is a subset of supp ωk(p) satisfying the following:

(1) If ep is a simple decoration with end points A,B so that s(ep) = A and r(ep) = B,
then C is a simple curve with end points λk · A, λk · B such that s(C) = λk · A and
r(C) = λk · B. If ep is a 2-curve decoration with components e1

p, e
2
p so that s(e1

p) = A,
r(e1

p) = B, s(e2
p) = C and r(e2

p) = D, then C = C1∪C2 such that C1, C2 are curves with end
points λk ·A, λk ·B and λk ·C, λk ·D, respectively, so that s(C1) = λk ·A, r(C1) = λk ·B,
s(C2) = λk · C and r(C2) = λk ·D.

(2) If t ∈ ωk(p) with t = q+x for some q ∈ P and x ∈ R2, then C ∩ int (supp t) = eq+x

for some decoration eq for q.
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(3) If C is a curve, then C does not have any crossing points. If C = C1 ∪ C2 where
C1, C2 are curves as in (1), then C1 and C2 are non-crossing curves and they do not contain
any crossing points (in themselves).

Then C is called a decoration for the supertile ωk(p). It is called a simple decoration
for the supertile ωk(p) if, in addition, C is a curve (i.e. ep is a simple decoration), and
called a non-simple decoration for ωk(p) otherwise.

If Q = ωk(p) is a k-supertile and C is a decoration for Q, then we can generate a
decorated copy Qd for Q, just like for prototiles, using the curve C. In particular, C
induces decorations for each t ∈ ωk(p). For t ∈ ωk(p), define td to be a decorated copy of
t with the decoration et = C ∩ int (supp t). Then the collection Qd of all such decorated
tiles is called a decorated copy of Q = ωk(p) and C is called the decoration of Qd. As in
the case of prototiles, we call C a decoration for Q = ωk(p) or the decoration of Qd.

Figure 3.3: A 1-supertile of 2DTM and a decorated copy of it are shown. The decoration
on the decorated supertile is the first iteration of Hilbert’s Space-Filling Curve.

An Order Structure by Decorations

Order structures in patches are defined through the decoration curves of tiles in patches.
For a patch to admit an order structure through a curve, the patch must contain distinct
exterior vertices satisfying some conditions.

Definition 3.0.9. Suppose Q is a collection of tiles constructed by translations of pro-
totiles of a finite prototile set P and A,B are given distinct exterior vertices of Q. We say
(A,B) is a valid pair for Q if there is a curve CA,B such that

(1) CA,B is a concatenation of simple curves with s(CA,B) = A and r(CA,B) = B,
(2) If t ∈ Q with t = p+x for some p ∈ P and x ∈ R2, then CA,B ∩ int (supp t) = ep+x

for some decoration ep of p,
(3) CA,B does not contain any crossing points.
If, in addition, the decorations et = CA,B ∩ int (supp t) for t ∈ Q are all simple curves,

then (A,B) is called a simple valid pair. It is called a non-simple valid pair otherwise.

Figure 3.4 shows an example of a non-simple valid pair and a simple valid pair. The
patch Q shown on the left of the figure has exterior vertices A,B,C,D,E, F . We have
that (A,E) is a simple valid pair for Q by the curve demonstrated in the rightmost patch
in the figure. On the other hand, (A,B) is a non-simple valid pair for Q since the only
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curve CA,B with end points A,B and satisfies the conditions in the Definition 3.0.9 is the
one illustrated in the middle patch in the figure. Notice also that there is no curve CC,F

with end points C,F which makes (C,F ) a valid pair for Q. That is, (C,F ) is not a valid
pair for Q.

A

B C D

EF A

B

A E

Figure 3.4: Examples of a non-simple valid pair and a simple valid pair

3.1 Circle Patches

In this section we explain the order system for a special category of patches called circle
patches. Circle patches are analogous to complete graphs in the graph theory (See the
discussion at the end of Section 3.3.1).

Definition 3.1.1. A patch Q is called a circle patch if there exists an interior vertex X
of Q that belongs to every tile in Q and every tile in Q has an edge completely contained
in ∂supp Q. We call the vertex X the centre of Q and denote Q as OX for simplicity.

The leftmost patch Q1 = {t1, t2, t3, t4} in Figure 3.5 is an example of a circle patch
whereas the patches Q3 = {v1, v2, v3, v4} and Q4 = {w1, w2, w3} in the Figure are not circle
patches since v3 and w3 do not have edges over the boundaries ∂supp Q3 and ∂supp Q4,
respectively. On the other hand, the collection Q2 = {u1, u2, u3} in the Figure does not
satisfy our definition of a patch since int (supp Q2) is not simply connected.

t1

t2 t3

t4

u1

u2 u3

v1 v2

v3

v4 w1 w2w3

Figure 3.5

Definition 3.1.2. Let Q be a circle patch and let γ ⊆ ∂supp Q be an arc over the
boundary ∂supp Q with end points A,B where A,B ∈ VQ. Then there exists a unique
subpatch S of Q such that every tile t in S has an edge completely contained in γ. We
call S the subpatch generated by γ.



CHAPTER 3. THE TRAVELLING ALGORITHM 26

For example, the patch Q on the left of Figure 3.6 is a circle path with centre X. The
bold arc represents the arc γ with end points A,B where A,B are exterior points of Q.
The subpatch generated by γ is demonstrated on the right of the figure.

A B

X

A B

X

Figure 3.6

3.1.1 Properties of Circle Patches

As circle patches contain a common interior vertex, every tile is connected with every
other. This connectedness of circle patches reveals many significant properties that can be
used to construct an order system. Before explaining the order systems for circle patches,
we provide an analysis of their geometric framework.

Lemma 3.1.3. Let Q be a circle patch with centre X and S $ Q be a subpatch of Q.
Then X is an exterior vertex of S such that every tile of S contains X as a vertex.

Proof. Every tile of S contains the centre of Q since Q is a circle patch. As S $ Q, let t
be a tile in Q\S. The centre X is a vertex of t. So, there are edges e1, e2 of t such that
X ∈ ei for i = 1, 2. Because t /∈ S, e1 and e2 have to be exterior edges of S. Therefore, X
is an exterior vertex of S.

Lemma 3.1.4. Circle patches do not contain slice tiles or slice edges.

Proof. Let Q be a circle patch with centre X and let t be a tile in Q. By Lemma 3.1.3, X is
an exterior vertex of the subpatch Q\{t}. Because Q\{t} is a subpatch, int(supp Q\{t})
is connected. That is, t is not a slice tile. Similarly, if e is an edge in Q belonging to a tile
te ∈ Q, then e is not a slice edge since int(supp Q\{te}) is connected.

Lemma 3.1.5. Let Q be a circle patch with centre X and S be a subpatch of Q. Then
every tile of S contains an edge which is completely contained over the boundary of supp S.

Proof. Since Q is a circle patch, every tile in Q has at least one edge that is contained in
∂supp Q. Since S ⊆ Q, any tile in S also has an edge over the boundary supp Q. This is
also on the boundary of supp S.

The following lemma is an essential argument for several proofs throughout this chap-
ter. It is the only result we provide in this section that is not only valid for circle patches.
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Lemma 3.1.6. Let Q be a patch (not necessarily a circle patch), let A,B be exterior
vertices of Q and let γ ⊆ ∂supp Q be a simple curve with end points at A and B. Suppose
further for each tile t ∈ Q, γt = γ ∩ ∂supp t is a non-trivial arc with (distinct) end points
Xt, Yt. Then (A,B) is a valid pair for Q. Moreover, (A,B) is a simple valid pair for Q if
and only if, in addition, there are distinct tiles tA, tB ∈ Q such that A ∈ VtA and B ∈ VtB .

Proof. Suppose Q is a given patch, A,B are exterior vertices of Q and γ is an arc with end
points at A and B satisfying the assumptions in the lemma. Let Ψ = {x1, . . . , xm} denote
the set of shared exterior vertices of Q that are lying over the open arc γ\{A,B}. Assume
further without loss of generality that x1, . . . , xm are located over γ such that there are
arcs γ1, . . . , γm+1 ⊆ γ so that γ1 has end points A and x1, γi has end points xi and xi+1 for
each i ∈ {1, . . . ,m − 1}, and γm+1 has end points xm and B, as demonstrated in Figure
3.7.

A x1 x2 xm B

Figure 3.7: Locations of x1, . . . , xm over γ

Since x1, . . . , xm are the shared exterior vertices of Q lying in γ\{A,B}, we have two
cases; either |Q| = m or |Q| = m+ 1, as illustrated in Figure 3.8 with examples. Observe
that the former can only happen if there is a unique tile of Q that contains both vertices
A and B, as shown on the right of Figure 3.8, and the latter can only happen if there are
two distinct tiles of Q containing the vertices A and B, respectively, as shown on the left
of Figure 3.8.

A Bx1 x2 x3

t1 t2 t3 t4

A′ B′

u1 = u4

u2 u3

x′1

x′2

x′3

Figure 3.8: Q = {t1, t2, t3, t4} and Q′ = {u1, u2, u3} are illustrated with arcs γ, γ′ over
their boundaries, respectively. γ and γ′ are the bold arcs as demonstrated, respectively.

Suppose first |Q| = m + 1 and Q = {t1, . . . , tm+1} so that {A, x1} ⊆ Vt1 , {B, xm} ⊆
Vtm+1 and {xi−1, xi} ⊆ Vti for i ∈ {2, . . . ,m}. Set x0 = A and xm+1 = B. Define
ei ⊆ supp ti so that s(ei) = xi−1 and r(ei) = xi for i ∈ {1, . . . ,m+ 1}.

Then we can define a curve CA,B which is the concatenation of m + 1 simple curves
{ei}m+1

i=1 defined above. CA,B has end points at A and B. Thus, (A,B) is a valid pair for
Q. Moreover, it is a simple valid pair, by construction, since A and B belong to different
tiles.
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A Bx1 x2 x3

t1 t2 t3 t4

Figure 3.9: Illustration of the process for a patch Q = {t1, t2, t3, t4}. Ψ = {x1, x2, x3} and
γ is the bold arc over the boundary ∂supp Q with end points A and B.

Assume now |Q| = m and Q = {t1, . . . , tm} so that {A,B, x1, xm} ⊆ Vt1 and
{xi−1, xi} ⊆ Vti for i ∈ {2, . . . ,m− 1}. Define the following:

(1) e1 ⊆ supp t1 is a 2-curve with components e1
1, e

2
1 so that s(e1

1) = A, r(e1
1) = x1 and

s(e2
1) = xm, r(e2

1) = B.
(2) ei ⊆ supp ti is a simple curve so that s(ei) = xi−1 and r(ei) = xi for i ∈ {2, . . . ,m−

1}.

A B

t1

t2 t3
x1

x2

x3

Figure 3.10: Illustration of the process for a patch Q = {t1, t2, t3}. Ψ = {x1, x2, x3} and γ
is the bold arc over the boundary ∂supp Q with end points A and B.

Then we can define a curve CA,B which is the concatenation of m + 1 simple curves
e1, e2, . . . , em−1, e

1
1, e

2
1 defined above. CA,B has end points at A and B. Thus, (A,B) is a

valid pair for Q. Moreover, it is not a simple valid pair, by construction, since A and B
belong to a same tile.

Lemma 3.1.7. Let Q be a circle patch and S ⊆ Q be a (non-empty) subpatch of Q. If
A,B are distinct isolated vertices of S that belong to the same tile uAB ∈ S, then (A,B)

is a valid pair for S.

Proof. Because A,B are isolated vertices of Q that belong to the same tile in S (or in
Q), there exists an arc γ with end points A,B such that γ ⊆ ∂supp uAB and γ do not
contain any shared exterior vertices of Q. Define γ′ to be an arc with end points A,B such
that γ′ ∩ γ = {A,B} and γ′ ∪ γ = ∂supp S. Then every tile in S has an edge completely
contained in γ′ by construction. Hence, (A,B) is a valid pair for S by Lemma 3.1.6.
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Lemma 3.1.8. Let Q be a circle patch with centre X and let A be a shared exterior vertex
of Q. Then every tile t with A ∈ Vt contains an edge et such that A ∈ et and et ⊆ ∂supp Q.
In particular, for every shared exterior vertex of Q, there are exactly two tiles containing
the vertex.

Proof. Assume to the contrary. Let t ∈ Q be a tile such that A ∈ Vt and every edge et of
t with A ∈ Vt satisfies et $ ∂supp Q.

Because A is a shared exterior vertex of Q, there are two (distinct) tiles t1, t2 ∈ Q

such that there exist edges eti ∈ Eti for i = 1, 2, so that A ∈ eti and eti ⊆ ∂supp Q for
i = 1, 2. Let t ∈ Q be a tile such that A ∈ Vt and every edge et of t with A ∈ Vt satisfies
et $ ∂supp Q. Since Q is a circle patch, t must contain an edge e0 such that e0 ⊆ ∂supp Q.
Then supp Q\supp t must separate tiles t1 and t2 as supp t contains both the vertex A
and the edge e0 that does not intersect with A. This is a contradiction. Hence, if a tile
contains a shared exterior vertex of Q, then it must also have an edge over the boundary
which contains the vertex as an end point.

A

t

e0

Figure 3.11: t is a slice tile since it has an exterior edge e0 and an exterior vertex A so
that A /∈ e0.

Since every tile in a circle patch has an edge completely contained in the boundary of
the circle patch, every tile contains at least two shared exterior vertices of the circle patch.
Moreover, every tile in the circle patch must contain at most two shared exterior vertices
of the circle patch, since otherwise it would contradict the non-existence of slice tiles.
Therefore, every tile in a circle patch must contain exactly two shared exterior vertices of
a circle patch. In particular, using this fact, tiles in circle patches can be identified with
topological triangles. For example, if a tile t of a circle patch Q with centre X, contains the
shared exterior vertices M,N of Q, then there exists a topological triangle with vertices
M,N,X that covers the area supp t, as shown in Figure 3.12.

Using the shared exterior vertices of a circle patch, we define the concept of neighbour
tiles for circle patches. Two tiles in a circle patch are said to be neighbour tiles if they have
a shared exterior vertex of the circle patch. Similarly, a tile t is said to be a neighbour of
a tile u if they have a common shared exterior vertex of the circle patch. Every tile in a
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M

N

X
M

N

X

tt
M

N

X

Figure 3.12: Tile t can be identified with the topological triangle with vertices M,N,X.

circle patch, therefore, has exactly two ‘edge-neighbours’; i.e, there are exactly two tiles
that share a common edge with the given tile.

t
M

N

X

Figure 3.13: Neighbours of t are illustrated with dashed area.

3.1.2 An Order Structure on Circle Patches

We are now ready to define an order structure for circle patches.

Lemma 3.1.9. For any given circle patch Q with centre X and distinct exterior vertices
A,B, there are two connected arcs c1, c2 over the boundary of supp Q such that c1 ∩
c2 ⊆ {A,B}, and there are two subpatches Q1, Q2 generated by c1, c2, respectively, so that
Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Q.

Proof. Let Q be a circle patch with a centre X and let A,B be distinct exterior vertices
of Q. We have four cases:

(1) Both A and B are shared exterior vertices of Q,

(2) A is an isolated vertex of Q whereas B is a shared exterior vertex of Q,

(3) Both A and B are isolated vertices of Q and belong to the same tile in Q,

(4) Both A and B are isolated vertices of Q and they belong to different tiles in Q.
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A BA BA B A

B

Figure 3.14: Examples of cases (1)− (4) in the proof of Lemma 3.1.9

Case (1): We can define two arcs c1, c2 with end points A,B by connecting the vertices
A and B over the boundary of supp Q in two different orientations as is shown in the
middle patch of Figure 3.15. Let tA, tB ∈ Q be (not necessarily distinct) tiles containing
A and B respectively so that tA and tB both contain an edge over c1. Such tiles exist
as A 6= B and A,B are shared exterior vertices of Q. Recalling that X is a centre
vertex, notice that since A and B are shared exterior vertices of Q, we can define two
arcs eA and eB with end points A,X and B,X, respectively so that eA ∩ ∂supp Q = {A},
eB ∩ ∂supp Q = {B}, eA ⊆ ∂supp tA and eB ⊆ ∂supp tB as is shown in the rightmost
patch of Figure 3.15. Then eA ∪ eB is an arc with end points A,B and separates supp Q

as shown in the rightmost patch of Figure 3.15. So, if a tile of Q has an edge completely
contained in c1, then it cannot have another edge completely contained in c2, and vice
versa. Define Qi to be the subpatch generated by ci for i = 1, 2. Then Q1 and Q2 are
disjoint, since tiles of Q can have edge over only one of c1 or c2. Moreover, Q1 ∪Q2 = Q

as we have c1 ∪ c2 = ∂supp Q. Therefore, c1, c2 and Q1, Q2 satisfy the conclusion.

XXX

A BA B A BtA tB

c2

c1

eA eB

Figure 3.15: c1 is the bold arc whereas c2 is the dashed arc in the middle patch. c1 and
c2 are arcs over the boundary with end points A and B. eA and eB are bold arcs with
end point pairs A,X and B,X, respectively, as shown in the rightmost patch. eA ∪ eB
separates support of the patch in the rightmost patch.

Case (2): Let A be an isolated exterior vertex of Q and B a shared exterior vertex
of Q. Pick an exterior vertex C such that C 6= B, and A and C belong to a same tile
in Q. Applying Case (1) for the shared exterior vertices B and C, we get arcs d1, d2 and
subpatches Q1, Q2 such that d1 ∩ d2 = {B,C}, d1 ∪ d2 = ∂supp Q and Qi is the set of
tiles in Q that has an edge completely contained in di for i = 1, 2 so that Q1 ∩Q2 = ∅ and
Q1 ∪Q2 = Q. Assume without loss of generality A ∈ d1. Define c1 ⊆ d1 to be the subarc
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of d1 with end points A,B and c2 = d2. Then we have

Q1 = {t ∈ Q : t contains an edge that completely sits in c1}.

Moreover, c1 ∩ c2 = {B}. Thus, c1, c2 and Q1, Q2 satisfy the conclusion, as demonstrated
in Figure 3.16.

A B

C

B

C

A B

C

d1

d2

c1

c2

Figure 3.16: d1, d2 are arcs over the boundary with end points B,C whereas c1 is an arc
over the boundary with end points A,B and c2 = d2.

Case (3): Suppose A and B are isolated vertices of Q and belong to tA,B ∈ Q. Let
XA,B, YA,B denote the (distinct) shared exterior vertices of Q belonging to tile tA,B. Apply-
ing Case (1) to the shared exterior vertices XA,B, YA,B, we get arcs d1, d2 and subpatches
Q1, Q2 such that d1 ∩ d2 = {XA,B, YA,B}, d1 ∪ d2 = ∂supp Q and Qi is the set of tiles
in Q that has an edge completely contained in di for i = 1, 2 so that Q1 ∩ Q2 = ∅ and
Q1 ∪Q2 = Q. Assume without loss of generality A,B ∈ d1. Define c1 to be the subarc of
d1 with end points A and B and c2 = d2. Because A and B are isolated vertices belonging
to the same tile tA,B, we have

Q1 = {t ∈ Q : t contains an edge that completely sits in d1} = {tA,B}

= {t ∈ Q : t contains an edge that completely sits in c1}.

Moreover, c1 ∩ c2 = ∅. Thus, c1, c2 and Q1, Q2 satisfy the conclusion.

A

B

XA,B

YA,B

d1 d2 c1 c2

A

B

tA,B

XA,B

YA,B

XA,B

YA,B

Figure 3.17: d1, d2 are arcs over the boundary with end points XA,B, YA,B whereas c1 is an
arc over the boundary with end points A,B and c2 = d2.
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Case (4): Suppose A,B are isolated vertices of Q, tA, tB are the distinct tiles containing
A,B respectively and C,D are distinct shared exterior vertices belonging to tA. Applying
Case (2) to the vertices B,C, we get arcs d1, d2 ⊆ ∂supp Q and disjoint subpatches Q1, Q2

so that d1∩d2 = {C} and Q1∪Q2 = Q. In particular, by Case (2), we can assume without
loss of generality d2 is an arc with end points B,C and d1 is an arc with end points C
and the shared exterior vertex of tB that does not belong to d2. The process is illustrated
in Figure 3.18. For the given circle patch on the left of Figure 3.18, d1 and d2 are the
arcs over the boundary of the middle patch in Figure 3.18 with end points C,B′ and C,B
respectively.

A BB

C

B′
d1

d2

B′

c2

c1

C

A B

C

D

tA tB

Figure 3.18: c1 is an arc over the boundary with end points B,C whereas c2 is an arc over
the boundary with end points A,B′.

Define c2 = d2 and c1 to be the subarc of d1 with end points A and the shared
exterior vertex of tB that does not belong to d2. Because A is an isolated vertex of
Q and A and C belong to a same tile in Q, once again, we have Q1 = {t ∈ Q :

t contains an edge completely sits in c1}. Moreover, c1 ∩ c2 = ∅. Thus, c1, c2 and
Q1, Q2 satisfy the conclusion.

Proposition 3.1.10. Suppose Q is a circle patch with centre X and A,B are distinct
exterior vertices of Q. Then (A,B) is a valid pair for Q. In particular, (A,B) is a simple
valid pair of Q if and only if there exist distinct tiles tA, tB of Q such that A ∈ VtA and
B ∈ VtB .

Proof. Let Q be a circle patch with a centre X and distinct exterior vertices A and B. We
have two cases; either there exist two distinct tiles tA, tB containing A and B as a vertex,
respectively, or there exists a unique tile containing both A and B as a vertex.

Assume first that A and B both belong to a same tile and are isolated vertices of Q.
Then there exists an arc γ ⊆ ∂supp Q with end points A,B so that every tile in Q has
an edge completely contained in γ. That is, (A,B) is a non-simple valid pair for Q, by
Lemma 3.1.6, as demonstrated in Figure 3.19.

Suppose now, there exist two distinct tiles tA, tB containing the vertices A and B

respectively. By Lemma 3.1.9, we can define arcs c1, c2 over the boundary of supp Q with
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A

B

Q Q

A

B
γ

Figure 3.19: An example showing (A,B) is a valid pair for Q via the bold arc γ over the
boundary of the right patch, whenever A,B are isolated vertices belonging to same tile.

c1 ∩ c2 ⊆ {A,B} and c1 ∪ c2 = ∂supp Q such that the subpatches

Qi = {t ∈ Q : t contains an edge that completely sits in ci} for i = 1, 2

satisfying Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Q. Assume without loss of generality that A ∈ c1

and B ∈ c2. Define arcs di ⊇ ci for i = 1, 2 such that di ⊆ ∂supp Qi for i = 1, 2 and
d1 has end points at A,X whereas d2 has end points at X,B. The process is illustrated
with an example in Figure 3.20. Applying Lemma 3.1.9 to the circle patch {u1, . . . , u6} on
the left of Figure 3.20, we get arcs c1, c2 as are shown with bold and dashed arcs over the
boundary of the leftmost patch, respectively. We also get subpatches Q1 and Q2 such that
Q1 = {u1, u5, u6} and Q2 = {u2, u3, u4}. We can then define arcs d1 and d2 with end points
A,X and X,B, respectively as are demonstrated over the boundaries of the middle and
right patches in Figure 3.20. It can be readily seen in Figure 3.20 that ci ⊆ di ⊆ ∂supp Qi

for i = 1, 2.

A B

c2

c1

u1

u2
u3

u4

u5
u6

A

X

d1

B
X

d2

Figure 3.20: An example of the process for k = 1. c1 and d1 are illustrated with bold arcs
whereas c2 and d2 are illustrated with dashed arcs.

Every tile in Qi contains an edge completely contained in di since ci ⊆ di for i = 1, 2.
Then (A,X) is a valid pair for Q1 and (X,B) is a valid pair for Q2, by Lemma 3.1.6. In
particular, because every tile contains X as a vertex, X is a shared exterior vertex for Q1

and Q2 whenever they contain more than one tile. That is, (A,X) is a simple valid pair
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for Q1 and (X,B) is a simple valid pair for Q2, by Lemma 3.1.6. Thus, (A,B) is a simple
valid pair for Q = Q1 ∪Q2. Hence, the proposition follows.

Corollary 3.1.11. Let Q be a circle patch, A,B distinct exterior vertices of Q and CA,B

a curve that makes (A,B) a valid pair for Q. Then exactly one of the following holds:
(1) CA,B makes (A,B) a simple valid pair for Q,
(2) There exists a unique tile t ∈ Q containing the vertices A,B such that its decoration

induced by CA,B is a 2-curve. That is, CA,B ∩ int supp t is a 2-curve.

Proof. By Proposition 3.1.10, a valid pair (A,B) for Q is a non-simple valid pair for Q
if and only if A and B are isolated vertices of Q that belong to the same tile. Moreover,
whenever it happens, the tile containing both vertices A and B is visited twice. That is,
its decoration is a 2-curve.

Corollary 3.1.12. For any circle patch Q with a shared exterior vertex A, (A,B) is a
simple valid pair for Q for any B 6= A that is an exterior vertex of Q.

Proof. Since A is a shared exterior vertex, we can find distinct tA, tB ∈ Q such that
A ∈ VtA and B ∈ VtB . Thus (A,B) is a simple valid pair for Q by Proposition 3.1.10.

Using Proposition 3.1.10, we are able to generate order structures in 2-dimensional
tilings satisfying fairly generic conditions. For example, consider the 2DTM tiling. Let
p, q denote the two square prototiles with different labels and let ω denote the substitution
rule (with expansion factor λ = 2) demonstrated in Figure 3.21.

p q

Figure 3.21: 2DTM Substitution Rule

We choose a prototile and a simple curve decoration in a random fashion. For example,
suppose we choose the simple curve decoration ep and the prototile p as shown over the
decorated prototile in the left of Figure 3.22. Then (2 ·A, 2 ·B) is a simple valid pair for the
1-supertile ω(p) by Proposition 3.1.10 since 2 · A and 2 ·B belong to different tiles in the
1-supertile. In fact, the method illustrated in the proof of Proposition 3.1.10 generates the
decoration over the 1-supertile on the right of the Figure 3.22. The decorated 1-supertile
on the right of Figure 3.22 can be regarded as a substitution rule for the decorated prototile
on the left of Figure 3.22. The decoration over the supertile on the right of the Figure
induces decorated tiles which are illustrated in Figure 3.23.

Next, in the same way, we will define substitution rules for the decorated prototiles
in Figure 3.23. Appealing to the same argument above, together with the method in
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A B
2.A 2.B

ep

Figure 3.22: A decorated prototile and supertile

Figure 3.23: Decorated tiles generated from the decorated supertile in the right of
Figure3.22

the proof of Proposition 3.1.10, we get the decorated 1-supertiles in Figure 3.24. These
decorated 1-supertiles, once again, can be regarded as substitution rules for the decorated
prototiles in Figure 3.23, respectively. Continuing this process we get a collection of deco-
rated prototiles which are listed in Figure 3.25 and a (primitive) substitution rule defined
on those prototiles which are illustrated in Figure 3.26 (figure is scaled for illustration
purposes), respectively.

Figure 3.24: Decorated 1-supertiles which can be regarded as substitution rules of the
decorated prototiles in Figure 3.23, respectively

Figure 3.25: Collection of decorated prototiles
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Figure 3.26: Collection of decorated 1-supertiles which can be regarded as substitution
rules of the decorated prototiles in Figure 3.25, respectively. Decorated 1-supertiles are
scaled for illustration purposes.

In fact, under the light of Proposition 3.1.10, we have the following theorem.

Theorem 3.1.13. Suppose P is a given finite collection of tiles (not necessarily convex),
ω is a primitive substitution rule defined on P and T is a recognisable substitution tiling
generated by the substitution rule ω. Assume further, every 1-supertile of T is a circle
patch such that for any given distinct corners A,B of a 1-supertile, there are two different
tiles tA, tB in the 1-supertile patch, containing A and B as a vertex, respectively. Then
there exist a finite collection of decorated prototiles P ′ and a primitive substitution rule ω′

defined on P ′ such that the following holds:

(1) For any p′ ∈ P ′ there exists a unique p ∈ P such that p′ is a decorated copy of p with
label l(p′) = (l(p), ep) for some simple decoration ep for p. That is, every decoration
is a simple curve decoration.

(2) There exists k ∈ Z+ such that if p′ is a decorated copy of p with decoration ep, then

(i) supp ω′(p′) = supp ωk(p),

(ii) ω′(p′) is a decorated copy of ωk(p) with decoration Cλk·A,λk·B which has end
points λk · A, λk · B where A,B are end points of ep and λ is the expansion
factor of ω.

In particular, there exists a recognisable, primitive, self-similar substitution tiling T ′ with
a prototile set P ′ and a substitution rule ω′.

Proof. Let P be a given finite collection of prototiles and let ω be a primitive substitution
defined on P . Choose q ∈ P and a simple decoration eq for q, with end points A,B.
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This generates a decorated prototile q′ with a label set l(q′) = (l(q), eq) and support
supp q′ = supp q. Then Q = ω(q) is a circle patch such that λ · A and λ · B are exterior
points belonging to two different tiles in ω(q). So, (λ · A, λ · B) is a simple valid pair for
the circle patch Q by Proposition 3.1.10. Let C denote a curve that makes (λ · A, λ · B)

a simple valid pair according to the instructions in the proof of Proposition 3.1.10 (recall
that such a curve is not necessarily unique). There exists a decorated copy Q′ of Q with
the decoration C. Tiles in Q′ have decorations induced from C. Moreover, all these induced
decorations are simple decorations since (λ ·A, λ ·B) is a simple valid pair for Q. Record
Q′ to be the substitute of p′.

For each prototile p ∈ P and every simple decoration ep for p, construct the decorated
prototile p′ and the decorated 1-supertile Q′p by the same argument applied for q′ above.
Record each of the generated decorated 1-supertiles Q′p as the substitutions of p′. For
every distinct pair of corners in each 1-supertile of T , there are distinct tiles containing
these vertices respectively. Thus, each of these generated decorated 1-supertiles Q′p (for
p ∈ P) only consist of decorated tiles with simple decorations. That is, for every prototile
p in P and every simple decoration ep on it, we have constructed a decorated 1-supertile
Q′p such that we can regard Q′p as the substitution of p′ and whose tiles contain only simple
decorations. This yields a collection of decorated prototiles S and a substitution rule σ
defined on S such that

S = {p′ : l(p′) = (l(p), ep), supp p′ = supp p for p ∈ P and simple decoration ep}

Notice that S is the set of all prototiles which are decorated copies of prototiles in P
with simple decoration. Therefore, σ and S satisfy (1) and (2) in the theorem, but do
not necessarily define a primitive substitution. However, Proposition 2.2.6 ensures that
there exists P ′ ⊆ S and n ∈ Z+ such that ω′ = σn|S is a primitive substitution over P ′

satisfying the conditions (1) and (2). We can now generate a tiling T ′ from the primitive
substitution ω′ by applying the standard argument explained in Chapter 2. Hence, T ′ is
recognisable, primitive and self-similar substitution tiling by construction.

3.2 Cyclic Patches

Circle patches provide an order structure no matter how we choose end point pairs. In this
section, we will generalise this concept to a new class of patches, namely cyclic patches.
Cyclic patches are patches that lack both slice tiles and slice edges. They are gener-
alisations of circle patches. We show in this section that, after applying finitely many
reformation steps, called circle compositions, every cyclic patch can be transformed into
a circle patch, which can then be transformed into a single tile patch following the same
algorithm. This finite circle composition process generates iterative systems and thereby
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form space filling curves. We will discuss space filling curves that arise in Chapter 5.

Definition 3.2.1. A patch Q with |Q| > 1 is called cyclic if it does not contain any slice
tiles or slice edges. That is, Q is a cyclic patch if the following holds:

(1) ∀t ∈ Q, the subset int(supp Q\{t}) of R2 is connected.
(2) For all edges e of Q, supp Q\e is connected.

The leftmost patch in Figure 3.27 is an example of a cyclic patch. The other two patches
in the Figure are not cyclic patches since they both contain slice tiles. The rightmost patch
also contains slice edges.

Figure 3.27: Examples of cyclic and non-cyclic patches

Lemma 3.2.2. Every circle patch is a cyclic patch.

Proof. Circle patches must contain at least two tiles because of the existence of an interior
vertex, namely the centre of the circle patch. Moreover, circle patches do not contain slice
tiles or edges by Lemma 3.1.4. Hence every circle patch is a cyclic patch.

Remark 3.2.3. Every circle patch is a cyclic patch by Lemma 3.2.2. However, the con-
verse is not true in general. For example, the patch Q = {v1, v2, v3, v4} in Figure 3.28
is a cyclic patch which is not a circle patch since v3 does not contain any edge over the
boundary ∂supp Q. In fact, there is no circle subpatch of Q with centre Y .

Yv1 v2

v3

v4

Figure 3.28: A cyclic patch with centre Y , which is not a circle patch

3.2.1 Compositions of Patches

A tiling T2 is said to be a composition of a given tiling T1 if the tiles of T2 are union of the
tiles of T1. Similarly, we define a patch P2 to be a composition of a given patch P1 if the
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tiles of P2 are a union of tiles from P1. We do not insist that the new tiling T2 is singly
edge-to-edge, so tiles of the new patch P2 do not necessarily meet along one edge. Finally,
we further assume new tiles are not necessarily convex and vertices of new tiles are induced
by the exterior vertices of the patch (or subpatch) generated by the corresponding union
of tiles. An example of patch composition is presented in Figure 3.29. The left patch
in the Figure consists of 4 tiles whereas the patch on the right contains a single tile ω.
Vertices of ω and exterior vertices of the patch on the left coincide as illustrated.

t1 t4

t2 t3

X
ω

Figure 3.29: An example of a composition of a patch

We call the single tile patch on the right of Figure 3.29 a circle composition of the patch
P = {t1, t2, t3, t4} because the patch composed is a circle patch and the composition process
generated a single tile patch. More precisely, a patch Q′ is called a circle composition of
a patch Q by the vertex X if X is an interior vertex of Q, OX is a (circle) subpatch of Q
and Q′ = (Q\OX) ∪ ROX

where ROX
is a single tile patch that is a composition of OX .

For simplicity, we denote the patch Q′ as ΘX(Q).
Figure 3.30 provides an example of a circle composition and a (general) composition

process. The patch Q = {v0, v1, v2, v3, v4} on the left can be composed by the circle
subpatch OX = {v2, v3} of Q as illustrated in the top right patch, or can be composed by
the subpatch S = {v1, v2, v3, v4} of Q as shown in the bottom right patch.

Y

Y

X
v0

v1 v2

v3

v4

v0
v1

v′2

v4

v0 v′1

ΘX

ΘY

Q

ΘX(Q)

Q′

Figure 3.30: Examples for circle composition and (general) composition

Note that circle composition can be applied twice to the patch Q = {v0, v1, v2, v3, v4}
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in Figure 3.30, by the vertices X and Y consecutively. More precisely, because OY =

{v1, v
′
2, v4} is a circle subpatch of ΘX(Q) = {v0, v1, v

′
2, v4}, we can apply circle composi-

tion to ΘX(Q) by the vertex Y . Then we get that ΘY ◦ΘX(Q) is nothing but Q′. In fact,
composing the cyclic patch S = {v1, v2, v3, v4} into a single tile patch {v′1} and composing
circle patches OX and OY (OX as a subcollection in {v1, v2, v3, v4} and OY as a subcollec-
tion in {v1, v

′
2, v4}) consecutively are the same process. The latter is illustrated in Figure

3.31.

S ΘX(S) ΘY ◦ΘX(S)

Y Y

X
v′1

v1 v2

v3

v4

v1

v′2

v4

Figure 3.31: Circle compositions applied to S = {v1, v2, v3, v4} by the vertices X and Y
consecutively.

Composing cyclic patches into circle patches or single tile patches is essentially the goal
of this section. In fact, We will define order structures for cyclic patches through space
filling curves that are generated by iterative circle composition steps.

Remark 3.2.4. For a patch Q with an interior vertex Y , the subcollection of all tiles
in Q that contains the vertex Y is not necessarily a subpatch of Q. For example the
patch Q = {t1, t2, t3, t4} in Figure 3.32 is a patch where Y is an interior vertex of it. The
subcollection of tiles in Q whose support intersects with Y is SY = {t1, t2, t3}. Because
the support of SY is not simply connected, it does not define a subpatch of Q. Therefore,
circle composition by the interior vertex Y of Q is not well defined. In fact, the circle
composition ΘX(Q) for a given patch Q means two things; OX is a well defined circle
subpatch of Q and ΘX(Q) is a circle composition of Q.

Y

t1

t2

t3

t4

Figure 3.32: The subcollection SY = {t1, t3, t4} is not a subpatch of the patch Q =
{t1, t2, t3, t4}.

Lemma 3.2.5. Let Q be a patch with an interior vertex Y so that ΘY (Q) is a (well-defined)
circle composition of Q. Then
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(1) the edge set of ΘY (Q) is a (non-empty) proper subset of the edge set of Q,
(2) the vertex set of ΘY (Q) is a (non-empty) proper subset of the vertex set of Q,
(3) the set of all slice edges of Q and the set of all slice edges of ΘY (Q) coincide.
In particular, ΘY (Q) does not contain the interior vertex Y of Q and also does not

contain edges e ∈ EQ with Y ∈ e.

Proof. (1) and (2) follow by the definition of the circle composition process. (3) follows by
the fact that slice edges cannot contain any interior vertices and so cannot contain Y .

Corollary 3.2.6. If Q is a cyclic patch, X is an interior vertex of Q and ΘX(Q) is a
(well-defined) circle composition of Q with no slice tiles, then ΘX(Q) is a cyclic patch as
well.

Proof. The result follows from conclusion (3) of Lemma 3.2.5

Corollary 3.2.7. Let Q be a patch with no slice edges. If X is an interior vertex of Q
such that OX is a circle subpatch of Q, then ΘX(Q) is a (well-defined) composed patch
with no slice edges.

Proof. The result follows from Lemma 3.2.5.

Corollary 3.2.8. Suppose Q is a patch, S is a subpatch of Q and Q′ is a composition of
Q that is generated by composing S into a single tile. Then S is a non-slice subpatch of
Q if and only if Q′ is a cyclic patch.

Proof. By Lemma 3.2.5, Q′ does not contain any slice edges. Hence Q′ is a cyclic patch if
and only if Q′ does not contain a slice tile.

Circle compositions absorb interior vertices. Indeed, the centre of a circle patch disap-
pears in the generated composed patch, as explained in Lemma 3.2.5. In particular, circle
compositions absorb all the edges that contain the interior vertex of the composed circle
patch. Therefore, considering cyclic patches do not have any slice edges or tiles, it is not a
dazzling result that after finitely many circle compositions, cyclic patches form a single tile
patch. Though, it is not so straightforward to form such a well-defined circle composition
process so that all the composed patches in the middle steps are cyclic, thereby lacking
of slice tiles and edges. This is an essential requirement for defining an order system for
cyclic patches and it will be explained later in Example 3.2.22.

We will prove that for any given cyclic patch there exists a (finite) sequence of well
defined circle compositions that compose the given cyclic patch into a single tile patch. In
fact, we will define an algorithm that composes circle patches in a specific order so that by
backtracking circle compositions at every step, we will be able to define an order system
for cyclic patches. Before exemplifying the algorithm, we define the inverse of the circle
composition process and 2-curve decorations of patches that will be needed for the inverse
process of circle composition steps.
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Definition 3.2.9. Let Q = ΘX(Q′) be a (well-defined) circle composition of Q′ by the
vertex X. Then the patch Q′ is called the circle decomposition of Q and is denoted by
Θ−1
X (Q).

Figure 3.33 shows an example of the process. The circle patch Q with centre X on the
left of the Figure is a circle composition of the patch Q′ on the right of the Figure. The
dashed area on patch Q is decomposed into a circle subpatch Ox′ of Q′. In particular, Q′

is the circle decomposition of Q.

X

Q = ΘX′(Q
′) Q′

X

X ′

Figure 3.33: Q is a circle patch with centre X and Q′ = Θ−1
X′ (Q) is the circle decomposition

of Q by the vertex X ′. Dashed area is decomposed into a circle subpatch OX′ of Q′.

More Decorations

In Section 3.1, we defined an order system for circle patches through valid pairs. If Q
is a circle patch and A,B are chosen distinct exterior vertices of Q such that A ∈ VtA
and B ∈ VtB for some distinct tiles tA, tB ∈ Q, then (A,B) is a simple valid pair of Q
(Proposition 3.1.10). Because (A,B) is a simple valid pair of Q, there exists a curve C
that makes (A,B) a simple valid pair for Q and induces only simple decorations for the
tiles of Q. That is, if the chosen exterior vertices A,B are sufficiently ‘far away’ from each
other, then the order system for circle patches only generates decorated tiles with simple
decorations.

To avoid using 2-curve decorations for circle patches depends on the positions of the
chosen exterior vertices A,B. This essentially follows from the fact that circle patches
have a common interior vertex. Unlike in circle patches, cyclic patches do not necessarily
contain a common interior vertex. Their geometric framework is, in general, more diverse.
For that reason we cannot ensure the same result for cyclic patches. In fact, we cannot
avoid using 2-curve decorations for some cyclic patches even if the chosen exterior vertices
A,B are ‘far away’ from each other. We explain this with two examples. The first patch
Q1 = {tA, tB, u1, u2, u3, u4} on the left of Figure 3.34 contains distinct exterior vertices
A,B. There are unique tiles tA, tB that contain the vertices A,B, respectively. These
tiles share a common edge. Moreover, S = {tA, tB} is a slice subpatch of Q1. Suppose
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we want to define a curve C such that s(C) = A, r(C) = B and C makes (A,B) a simple
valid pair for Q1. Because A and B are isolated vertices of Q1, C must visit tA first and
tB last. After visiting tA, C must visit either u1 and u2 or u3 and u4. In either choice,
in order to visit the other two tiles u3 and u4 or u1 and u2, C must pass through either
tA or tB. For both choices C will induce a 2-curve decoration either for tA or tB. Thus,
such a curve C cannot exits and (A,B) is a non-simple valid pair for Q1. For the second
example, consider the patch Q2 on the right of Figure 3.34. The patch Q2 has distinct
exterior vertices C,D. There is a unique tile tC containing the vertex C whereas there
are two tiles t1D, t2D containing the vertex D. Suppose we want to define a curve C ′ such
that s(C ′) = C, r(C ′) = D and C ′ makes (C,D) a simple valid pair for Q2. Because C is
an isolated vertex, C ′ must start at the tile tC . After visiting the tile tC , C ′ must pass to
either v1 or v2. For either choice, in order to pass to the other tile and end at tiD for some
i = 1, 2, C ′ must double hit (at least) a tile twice. Thus, such a curve C ′ cannot exits and
(C,D) is a non-simple valid pair for Q2.

A

B

tC
v1

v2

D

C
Q1 Q2

tA

tB

t1D

t2D

u3

u4

u1

u2

Figure 3.34: Examples of cyclic patches where (A,B) is a non-simple valid pair

In the first example we have that the tiles containing A and B are ‘too close’ to each
other. In particular, S = {tA, tB} is a slice subpatch of Q1. That is the reason why (A,B)

is a not a simple valid pair for Q1. In the second example we have that the tiles containing
C and D are ‘far away’ from each other. However, the position of the tile tC means that
(C,D) cannot be a simple valid pair for Q2. Thus, unlike in circle patches, the decorations
of cyclic patches are not solely dependent on the positions of the chosen exterior vertices,
but also depends on the geometric locations of its tiles.

Valid pairs in cyclic patches might induce 2-curve decorations for the tiles as explained
above. In order to construct a substitution rule for a decorated prototile collection (as in
Theorem 3.1.13), we must also be able to define a substitution rule for the tiles that have
2-curve decorations. For that, we define 2-curve decorations of patches, that are called
split pairs (Definition 3.2.11).



CHAPTER 3. THE TRAVELLING ALGORITHM 45

Definition 3.2.10. Suppose Q is a patch and u is a tile such that the single tile patch
{u} is a composition of Q. Then we call the pair (Q, u) as a composition pair. It is called
a circle composition pair if Q is a circle patch.

Definition 3.2.11. Let (Q, u) be a composition pair and A,B,C,D be a distinct exterior
vertices of u such that eu is a 2-curve decoration of u with component curves e1

u, e
2
u so that

s(e1
u) = A, r(e1

u) = B and s(e2
u) = C, r(e2

u) = D. If there exist (not necessarily disjoint)
subpatches Q1, Q2 of Q such that

(1) Q1 ∪Q2 = Q,

(2) (A,B) is a valid pair for Q1 and (C,D) is a valid pair for Q2 by some curves CA,B

and CC,D, respectively, so that CA,B and CC,D do not cross each other,

(3) (CA,B ∪ CC,D) ∩ int supp t is a decoration for t, for each t ∈ Q.

Then we say {(A,B), (C,D)} is a split pair for Q.
If (A,B) and (C,D) are simple valid pairs for Q1 and Q2, respectively, and Q1∩Q2 = ∅

then we say {(A,B), (C,D)} is a simple split pair for Q. We say {(A,B), (C,D)} is a non-
simple split pair otherwise.

Note that condition (3) ensures that each tile in the patch has to be visited at most
twice. Note also that, {(A,B), (C,D)} is a simple split pair for Q if and only if every tile
in Q is visited once and only once.

Observe that {(A,B), (C,D)} on the left of Figure 3.35 is an example of a simple split
pair whereas {(A′, B′), (C ′, D′)} on the right of Figure 3.35 is an example of a non-simple
split pair.

A B

CD

A′ B′

C ′D′

Figure 3.35: Examples of simple split pair and non-simple split pair

We study the split order framework for circle patches before delving into the order
systems of cyclic patches.

Proposition 3.2.12. Let (Q, u) be a circle composition pair and let eu be a decoration of
u with component curves e1

u, e
2
u so that s(e1

u) = A, r(e1
u) = B and s(e2

u) = C, r(e2
u) = D.

Then {(A,B), (C,D)} is a split pair for Q if and only if there are (at least) two distinct
tiles t1, t2 of Q such that Vti ∩ {A,B,C,D} 6= ∅ for i = 1, 2.
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Proof. Assume that (Q, u) is a circle composition pair, X is the centre of Q and eu is
a decoration of u with components e1

u, e
2
u so that s(e1

u) = A, r(e1
u) = B and s(e2

u) =

C, r(e2
u) = D. Assume further without loss of generality that A,B,C,D are positioned so

that we can define arcs γ1, γ2, γ3, γ4 ⊆ ∂supp Q such that γ1 ∩ γ2 = {B}, γ2 ∩ γ3 = {C},
γ3 ∩ γ4 = {D}, γ4 ∩ γ1 = {A} and γ1 ∪ γ2 ∪ γ3 ∪ γ4 = ∂supp Q.

A

B

C

D

γ4γ1

γ2 γ3

(=⇒) Suppose first there are no distinct tiles t1, t2 such that Vti ∩{A,B,C,D} 6= ∅ for
i = 1, 2. Then A,B,C,D are all isolated vertices of Q that belong to the same tile t0 of
Q. Because all vertices are isolated vertices, in order to visit every tile in Q, curves must
visit the tile t0 at least three times. Thus, {(A,B), (C,D)} is not a split pair for Q.

A
B

CD

A
B

CD

Figure 3.36: {(A,B), (C,D)} is not a split pair

(⇐=) Suppose now that there are two distinct tiles t1, t2 such that Vti∩{A,B,C,D} 6= ∅
for i = 1, 2. We have two cases:

(i) A and B (or C and D) are isolated vertices of Q that belong to the same tile,
(ii) There exist tiles tA, tB, tC , tD ∈ Q such that tA 6= tB, tC 6= tD and i ∈ Vti for

i ∈ {A,B,C,D}.

A B

CD

A B

CD

Case (i) Case (ii)
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Case (i): Suppose A and B are isolated vertices of Q that belong to a same tile tAB.
Either C or D (or both) must belong to a tile other than tAB. We have two cases in
the light of Proposition 3.1.10; either (C,D) is a simple valid pair for Q, or (C,D) is a
non-simple valid pair for Q. For both cases, the curves that make (C,D) a valid pair for
Q visit the tile tAB once. Define Q1 = {tAB} and Q2 = Q. Then (A,B) is a valid pair
for Q1 and (C,D) is a valid pair for Q2 by Proposition 3.1.10. Moreover, the curves that
makes (A,B) and (C,D) a valid pair for Q1 and Q2, respectively, visit every tile at most
twice and can be arranged to not cross each other. Thus, {(A,B), (C,D)} is a split pair
for Q.

B

A
D

C

B

A

D

C

B

A

D

C

Figure 3.37: Illustration of the proof of Case (i) with some examples

Case (ii): This case has three subcases.

(ii-a) A,B,C,D are all isolated vertices of Q such that there exists a unique tile tBC ∈ Q
containing the vertices B,C and there exists a unique tile tAD ∈ Q that contains the
vertices A,D (i.e, B and C are isolated vertices belonging to a same tile in Q, and
A and D are isolated vertices belonging to a same tile in Q).

(ii-b) B,C are isolated vertices of Q that belong to a same tile tBC ∈ Q, and there are
distinct tiles tA, tD ∈ Q such that A ∈ VtA and D ∈ VtD .

(ii-c) There exist distinct tiles tB, tC ∈ Q such that B ∈ VtB and C ∈ VtC , and there exist
tiles tA, tD ∈ Q such that tA 6= tD, A ∈ VtA and D ∈ VtD

A B

CD

A B

CD

A B

CD

A B

CD

Case-(ii− a) Case-(ii− b) Case-(ii− b)(Symmetric) Case-(ii− c)
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Case (ii-a): Define Q1 to be the subpatch generated by γ1 and Q2 to be the subpatch
generated by γ3. We have that A,D and B,C are isolated vertices belonging to the same
tiles, respectively. Because A and B belong to different tiles, (A,B) is a simple valid
pair for Q1 by Lemma 3.1.6. Similarly, (C,D) is a simple valid pair for Q2, by Lemma
3.1.6 as well. Since A and D, and B and C belong to the same tiles as isolated vertices,
Q1 ∪ Q2 = Q. Moreover, the curves that make (A,B) and (C,D) simple valid pairs
for Q1 and Q2, respectively, can be arranged to be non-crossing each other. Therefore,
{(A,B), (C,D)} is a split pair for Q.

A B

CD

A B

CD

X X

γ1

γ3

Figure 3.38: An example of Case (ii-a)

Case (ii-b): Define Q2 to be a subpatch generated by the arc γ3, as in the Case (ii-a).
By the same reasoning in Case (ii-a), (C,D) is a simple valid pair for Q2. Define further
P1 to be the subpatch generated by γ1 and Q1

1 to be a subpatch as follows:

Q1
1 =

P1 if A is a shared exterior vertex of Q

P1\{tA} if tA is the only tile in Q containing A.

B

C

X

D

B

C

X

D

A
A

Figure 3.39: Q1
1 is highlighted for both cases

Note that Q1
1 6= ∅, since the unique tile tBC containing the vertices B,C belongs to

Q1
1. We have either Q1

1 ∪Q2 = Q or Q1
1 ∪Q2 $ Q.
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Suppose first Q1
1 ∪ Q2 = Q. Then A must be a shared exterior of Q in order that

Q1
1 ∪ Q2 = Q holds. Therefore, (A,B) is a simple valid pair for Q1

1 by Lemma 3.1.6,
because γ1 has end points A,B and every tile in Q1

1 contains an edge which is completely
contained in the curve γ1. We get that (A,B) is a simple valid pair for Q1

1, (C,D) is a
simple valid pair for Q2 and Q1

1 ∪Q2 = Q. Thus, {(A,B), (C,D)} is a split pair for Q.
Suppose now Q1

1 ∪Q2 $ Q. By construction of Q1
1, there is an arc over the boundary

∂supp Q1
1 with end points B and X such that every tile in Q1

1 has an edge completely
contained in it. Existence of such arcs (for both cases) is demonstrated in Figure 3.40 (for
both cases in in Figure 3.39).

B

C

X

D

B

C

X

D

A
A

Figure 3.40: (X,B) is a simple valid pair for Q1
1 (for both cases)

Therefore, (X,B) is a simple valid pair for Q1
1 by Lemma 3.1.6. Define Q2

1 = Q\(Q1
1 ∪

Q2). Q2
1 is non-empty since Q1

1 ∪ Q2 6= Q. In addition, by the construction, there exists
an arc with end points A,X over the boundary ∂supp Q2

1 such that every tile in Q2
1 has

an edge contained in it, as illustrated in Figure 3.42 (for both cases shown in Figure
3.41). In particular, (A,X) is a simple valid pair for Q2

1 by Lemma 3.1.6, because X is
a shared exterior vertex of Q2

1 whenever Q2
1 contains at least two tiles. So, (A,B) is a

simple valid pair for Q1 = Q1
1∪Q2

1. Furthermore, the curves that makes (A,B) and (C,D)

simple valid pairs for Q1 and Q2, respectively, can be arranged to be non-crossing. Thus,
{(A,B), (C,D)} is a split pair for Q.

B

C

X

D

B

C

X

D

A
A

Figure 3.41: Q2
1 is highlighted for both cases whether A is an isolated vertex or not
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B

C

X

D

B

C

X

D

A
A

Figure 3.42: (A,X) is a simple valid pair for Q2
1 for both cases

B

C

X

D

B

C

X

D

A
A

Figure 3.43: An example of Case (ii-b)

Case (ii-c): Define P1 to be the subpatch generated by γ1 ∪ γ4 and define Q1 to be a
patch as follows:

Q1 =

P1 if D is a shared exterior vertex of Q

P1\{tD} if tD is the only tile in Q containing D.

CD

A
B

C
D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.44: Q1 is highlighted for different cases

Similarly, define P2 to be the subpatch generated by γ2 ∪ γ3 and define Q2 to be a
patch as follows:

Q2 =

P2 if B is a shared exterior vertex of Q

P2\{tB} if tB is the only tile in Q containing B.
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CD

A
B

C
D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.45: Q2 is highlighted for different cases

By construction, Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Q. The possible cases for Q1 and Q2 are
shown in Figure 3.46 and illustrated in Figure 3.44 and Figure 3.45.

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

CD

A
B

C
D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.46

We first show that (A,B) is a simple valid pair for Q1. Let uA, uB ∈ Q1 be distinct
tiles in Q1 such that A ∈ VuA and B ∈ VuB (such tiles exists since we are proving Case
(ii)). Let R1 denotes the subpatch generated by γ1. Define a patch S1 as follows:

S1 =

R1 if A is a shared exterior vertex of Q

R1\{uA} if uA is the only tile in Q containing A.

CD

A
B

C
D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.47: S1 is highlighted for the different cases in Figure 3.46

We have that B is an isolated vertex for Q1. Therefore, S1 is a non-empty subset
of Q1 since it contains a tile which has a vertex B and different than uA. Moreover, by
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construction of S1, there is an arc over the boundary ∂supp S1 with end points B and X
such that every tile in S1 has an edge completely contained in it. That is, (X,B) is simple
a valid pair for S1 by Lemma 3.1.6. By the same token, (A,X) is a simple valid pair for
S2 = Q1\S1 as illustrated in Figure 3.49.

CD

A
B

C
D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.48: (X,B) is a simple valid pair for S1

CD
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D

A
B

C
D

A
B

CD

A
B

X X X X

Figure 3.49: (A,X) is a simple valid pair for S2 = Q1\S1

Since S1 and S2 are disjoint, (A,B) is a simple valid pair for Q1. Similarly, (C,D) is
a simple valid pair for Q2. Thus, {(A,B), (C,D)} is a (simple) split pair for Q.

Corollary 3.2.13. Let (Q, u) be a circle composition pair and eu be a decoration of u
with component curves e1

u, e
2
u so that s(e1

u) = A, r(e1
u) = B and s(e2

u) = C, r(e2
u) = D.

Then {(A,B), (C,D)} is a split pair for Q whenever at least one of A,B,C,D is a shared
exterior vertex of Q.

Convexity Assumption

We have not made any assumption about the tiles in circle patches to define an order
system for circle patches. The order system for circle patches only depends on the posi-
tioning of its exterior vertices (Proposition 3.1.10). However, this is not the case for cyclic
patches. The order system of cyclic patches also depends on the geometric permutation
of tiles. We showed two examples in Figure 3.34 such that the geometric locations of tiles
in the patches require 2-curve decorations. In particular, convexity of tiles is an essential
assumption for defining an order system for cyclic patches. Even though the convexity
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assumption of tiles may become non-valid after circle compositions applied to a given
cyclic patch, it affects the combinatorics of the given cyclic patch by avoiding patches as
in Figure 3.50. The patch in the figure has no order structure for any given distinct pair of
exterior vertices. For example, (A,B) is not a valid pair for the patch, because there is no
curve with end points A,B and visiting the tiles at most twice. Furthermore, we show in
Lemma 3.2.14 that convexity also ensures that for any interior vertex X of a given cyclic
patch Q, the collection SX = {t ∈ Q : X ∈ Vt} is a circle subpatch of Q. This is not true
in general without assuming convexity.

A

B

Figure 3.50: (A,B) is not a valid pair.

Lemma 3.2.14. Let Q be a patch whose tiles are convex. Then the subcollection of all
tiles containing the vertex X, for any given interior vertex X of Q, is a circle subpatch of
Q.

Proof. Let SX denotes the subcollection of tiles in Q that contains the vertex X. Assume
without loss of generality, the following holds:

(1) SX = {t1, . . . , tn : n ∈ {3, 4, . . . }},
(2) e1, . . . , en are the only edges in Q such that X ∈ ei for i ∈ {1, . . . , n},
(3) ei ∈ Vti ∩ Vti+1

for i ∈ {1, . . . , n− 1} and en ∈ Vt1 ∩ Vtn .

X X

e1e2

e3

t1

t2 t3

Figure 3.51: Assumptions demonstrated for the case n = 3.

Since supp ti for i = 1, . . . , n are convex, supp SX must be simply connected and every
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tile ti for i = 1, . . . , n must contain an edge over the boundary ∂supp SX . Hence, SX is a
circle subpatch of Q.

Lemma 3.2.15. Let Q be a patch of convex tiles. If tiles of Q do not intersect along a
single edge, then there exists a patch Q′ of convex tiles that is generated by deleting some
of the interior vertices of Q, and its tiles intersect along a single edge.

Proof. Let t1, t2 ∈ Q be tiles that meet along more than one edge. Because both supp t1

and supp t2 are convex sets, ∂supp t1 ∩ ∂supp t2 must be a straight line, which is a union
of edges of Q. Delete all the interior vertices of Q over that line (except the end points of
the line) in order to make the line a single edge that is shared by t1 and t2.

t1

t2
Delete

t1

t2

Figure 3.52: Deleting the vertex in the middle

Apply the same process for each non-singly edge-to-edge neighbour tiles. Then the
generated patch Q′ is the desired patch of convex tiles.

Corollary 3.2.16. With the same notation as in Lemma 3.2.15, suppose u is a tile so
that (Q, u) is a composition pair.

(1) If eu is a simple decoration of u with end points A,B, then (A,B) is a valid pair
for Q whenever it is a valid pair for Q′. Moreover, (A,B) is a simple valid pair for Q
whenever it is a simple valid pair for Q′.

(2) If eu is a 2-curve decoration of u with end point pairs A,B and C,D, then
{(A,B), (C,D)} is a split pair for Q whenever it is a split pair for Q′. Moreover,
{(A,B), (C,D)} is a simple split pair for Q whenever it is a simple split pair for Q′.

Proof. Notice that Q′ consists of same tiles as Q with a smaller vertex set. Hence, any
(valid) decoration on a tile of Q′ is also a decoration on the same tile of Q.

An Example of a Circle Composition Process

Consider the cyclic patch Q on the top left corner of Figure 3.53. We can apply circle
compositions by the vertices X1, X2 and X3 consecutively as illustrated in Figure 3.53.
After three successive circle compositions, we arrive at the single tile patchQ′ = ΘX3◦ΘX2◦
ΘX1(Q). Next, we will reverse the circle composition steps. We will implement the order
structure of circle patches in each (reverse) step. Obviously, (A,B) is a valid pair for the
single tile patch Q′ as illustrated on the lower right corner of Figure 3.54. Applying a circle
decomposition by the vertex X3, we arrive the circle patch Θ−1

X3
(Q′) = ΘX2 ◦ΘX1(Q). We
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have that (A,B) is a valid pair for the circle patch Θ−1
X3

(Q′), by Proposition 3.1.10. A curve
that makes (A,B) a valid pair for Θ−1

X3
(Q′) is demonstrated in the lower left corner of Figure

3.54. Next we circle decompose the shaded tile on the lower left corner of Figure 3.54. The
tile is decomposed into a circle patch with centreX2, in the upper right corner of the figure.
This circle patch has a split pair {(A,A′), (B,B′)}, by Proposition 3.2.12. Therefore, we
can reform the decoration of Θ−1

X3
(Q) and define a decoration for Θ−1

X2
◦ Θ−1

X3
(Q). This

decoration is presented in the upper right corner of the figure. Similarly, the dashed tile
on the top right patch of the figure is decomposed into a circle patch. We apply the order
structure of circle patches one more time. We arrive the decoration shown at the top left
corner of Figure 3.54. This is a typical example of how circle composition/decomposition
gives rise to an order system in cyclic patches by means of defining an order framework
by circle compositions.

B

A

B

A

Q ΘX1(Q)

ΘX2 ◦ΘX1(Q) Q′ = ΘX3 ◦ΘX2 ◦ΘX1(Q)

B

A

B

A

X1 X2 X3 X2 X3

X3

Figure 3.53: An example of a circle composition of a cyclic patch

B

A

B

A

B

A

B

A

X2

A′

B′

Figure 3.54: An example of a circle decomposition process
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3.2.2 Geometry of Cyclic Patches

Both circle patches and cyclic patches lack slice tiles and slice edges. Therefore, they have
a similar property of connectedness of their tiles. However, while tiles of circle patches
are connected by a common interior vertex, tiles of cyclic patches do not necessarily have
a common interior vertex. For that we first examine the combinatorics of cyclic patches.

Lemma 3.2.17. Let Q be a singly edge-to-edge cyclic patch. Then it contains an interior
edge if and only if it is not a circle patch.

Proof. If Q is a circle patch and its tiles meet singly edge-to-edge, then it contains a unique
interior vertex. Thus, it does not contain an interior edge.

If Q is not a circle patch and its tiles meet singly edge-to-edge, then there must exists
at least two interior vertices. Because Q does not contain any slice edges, there must exists
an interior edge of Q.

Lemma 3.2.17 ensures that the set of interior edges of a cyclic patch that is not a circle
patch and whose tiles meet singly edge-to-edge, is non-empty. We will characterise the
geometric structure of cyclic patches through their interior edges.

Definition 3.2.18. For a given patchQ with distinct interior verticesX, Y , we say (X : Y )

is a connected pair of Q, if there exists a finite sequence of interior edges {[ZiZi+1]}ki=1 such

that γ =
k⋃
i=1

[ZiZi+1] is a simple curve with end points X and Y . It is called a disconnected

pair otherwise.

Lemma 3.2.19. A patch Q is a cyclic patch if and only if Q does not contain any slice
edges and (X : Y ) is a connected pair for any distinct interior vertices X, Y of Q.

Proof. Cyclic patches do not contain any slice tiles or edges. Thus, (X : Y ) is a connected
pair for any distinct interior vertices X, Y of a given cyclic patch.

On the other hand, suppose Q is a patch without a slice edge and (X : Y ) is a connected
pair for any distinct interior vertices X, Y of Q. In order for Q to be a non-cyclic patch,
Q must contain a slice tile t that does not contain any slice edges, as in Figure 3.55.

Y Z

Figure 3.55

Since t does not contain any slice edges and is a slice tile of Q, there must exist two
distinct interior vertices Y, Z of Q such that Y, Z ∈ Vt and (Y : Z) is a disconnected pair
of Q, as illustrated in Figure 3.55. This is a contradiction. Hence, Q must be a cyclic
patch.



CHAPTER 3. THE TRAVELLING ALGORITHM 57

Lemma 3.2.20. Suppose Q is a cyclic patch, S is a subpatch of Q and Q′ is a composition
of Q that is constructed by composing S into a single tile. Then S is a slice subpatch of
Q if and only if there exist distinct interior vertices X, Y of Q such that (X : Y ) is a
disconnected pair of Q′.

Proof. We have by Corollary 3.2.8 that S is a slice subpatch of Q if and only if Q′ is
a non-cyclic patch. By Lemma 3.2.5, Q′ cannot contain any slice edges. Therefore, by
Lemma 3.2.19, Q′ is a non-cyclic patch if and only if there exist distinct interior vertices
X, Y of Q such that (X : Y ) is a disconnected pair of Q. Hence, S is a slice subpatch
of Q if and only if there exist distinct interior vertices X, Y of Q such that (X : Y ) is a
disconnected pair of Q′.

Lemma 3.2.21. Let Q be a cyclic patch with an interior vertex X and let ΘX(Q) be a
circle composition of Q with distinct interior vertices Y, Z such that Y 6= X and Z 6= X.
Then (Y : Z) is a disconnected pair of ΘX(Q) if and only if for all arcs γ which are the
union of interior edges of Q, and connect Y and Z in Q, we have X ∈ γ.

Proof. In order for (Y : Z) to be a disconnected pair of ΘX(Q), OX must separate the
vertices Y and Z in the patch Q, by Lemma 3.2.20. Therefore, any arc that is a finite
union of interior edges of Q and connect Y and Z in Q must pass through the vertex X.

For the converse, suppose every arc that is a finite union of interior edges of Q and
connects Y and Z in Q pass through the vertex X. Then (Y : Z) is a disconnected pair
of ΘX(Q) since X /∈ VΘX(Q).

Lemma 3.2.20 and Lemma 3.2.21 identify slice circle patches within cyclic patches. We
will show with an example why detecting slice subpatches that appear in circle composition
steps is crucial.

Example 3.2.22. Consider the cyclic patch on the top left corner of Figure 3.53 (and
Figure 3.56). Apply circle compositions by the vertices X2, X1, X3, respectively, as demon-
strated in Figure 3.56. We apply circle decomposition steps as in Figure 3.54. However,
we fail to create the order structure in one of the middle steps since we generated a slice
tile in the middle of the patch. Again, the step illustrated on the top right corner of Figure
3.57 does not impose an order structure through decorated curves. This is due to the fact
that {(A,A′), (B,B′)} is a non-split pair for the dashed circle subpatch shown in the top
right corner of Figure 3.57.

Note that applying the first circle composition step by the vertex X2 in Figure 3.56
made (X1 : X3) a disconnected pair in the composed patch, since OX2 is a slice subpatch.
Therefore, it is essential that we avoid slice tiles while circle composing cyclic patches.
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Figure 3.56: A false circle composition process
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Figure 3.57: Problem with the middle step on the top right corner

3.2.3 A Circle Composition Algorithm for Cyclic Patches

We define an algorithm to circle compose cyclic patches such that no non-cyclic patch can
be generated in the middle steps. First, we give some basic definitions from graph theory.

A (undirected) graph is a pair consisting of a vertex set and an edge set. All the
graphs we consider are finite (undirected) graphs; i.e. the vertex and edge sets are finite.
A subgraph of a given graph is a pair consisting of a vertex set and an edge set that are
subsets of the vertex and edge sets of the given graph, respectively. A graph is called
connected if any two vertices can be connected through finitely many edges from the edge
set of the graph. A connected graph is called a tree if it does not contain any closed loop.
A subtree of a given tree is a connected subgraph of the given tree. A spanning tree of a
given connected graph is a tree that has the same vertex set of the given connected graph.
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For any graph G = (V,E) with a vertex v ∈ V , the degree of v is the number of edges
in E that intersects with v.

Lemma 3.2.23 ([17], Proposition 4.2.1). A graph is a tree if and only if every pair of
vertices are connected through a unique sequence of edges of the graph.

Lemma 3.2.24 ([17], Proposition 4.2.3). Any tree that has at least one edge contains at
least two vertices of degree 1.

Lemma 3.2.25 ([6], Theorem 4.6). For any given graph G, the following are equivalent:
(1) G is connected,
(2) G contains a spanning tree H.

Let Q be a given cyclic patch which is not a circle patch and let G = (V0, E0) denote
an undirected graph with vertex set V0 and edge set E0 such that V0 is the collection of
interior vertices of Q and E0 is the collection of interior edges of Q. By Lemma 3.2.17,
E0 and V0 are non-empty sets. Moreover, G is a connected graph since any interior vertex
pair of Q is a connected pair of Q, by Lemma 3.2.19. Therefore, there exists a spanning
tree H of G, by Lemma 3.2.25. In fact, we have the following lemma.

Lemma 3.2.26 (Combinatorics of Cyclic Patches). A patch Q is a cyclic patch if and
only if there exists a tree H = (V,E) such that V is the collection of all interior vertices
of Q and E is a collection of interior edges of Q.

Proof. If Q is a cyclic patch, then there exists such a tree by the argument given imme-
diately before the lemma. Conversely, if there is such a tree H whose vertex set is the
collection of all interior vertices of the given patch Q, then Q is a cyclic patch by Lemma
3.2.19.

Corollary 3.2.27. Let Q be any given patch such that supp t ∩ ∂supp Q 6= ∅ for each
t ∈ Q. Then Q is a cyclic patch if and only if there exists a unique tree H = (V,E) such
that V is the collection of all interior vertices of Q and E is a collection of interior edges
of Q.

Proof. Since every tile intersects the boundary of the patch, the graph G = (V,E) where
V is the set of interior vertices of Q and E is the set of interior edges of Q cannot contain
any cycles. So, G is a tree.

The circle composition process of cyclic patches consists of two algorithms. We explain
these two algorithms before delving into details. Suppose Q is a given cyclic patch. We
first apply a sequence of circle compositions to Q until it is eventually composed to a
single tile patch. This circle composition steps are followed through an algorithm called
the tree generator algorithm. The circle composition steps in the tree generator algorithm
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may generate non-cyclic patches in the middle steps of the circle composition process.
Therefore, the circle composition of Q by the tree generator algorithm does not form the
circle composition steps we need. We apply this algorithm to generate a tree from any
given cyclic patch. The tree generator algorithm induces a tree H = (V,E) from the given
cyclic patch Q. Next we reform the circle composition steps in order to prevent non-cyclic
patches occurring in the circle composition steps. This can be done with the help of H.
In fact, H can be regarded as the map of Q. By analysing H, we can detect when a slice
subpatch occurs in a circle composition as well as distinguishing the non-cyclic patches
that may appear in the circle compositions. This second (reformed) circle composition
process is defined by an algorithm called circle composition algorithm.

The Tree Generator Algorithm

We define an algorithm that constructs a tree from a given cyclic patch. This constructed
tree will give the desired order to circle compose the cyclic patch. Note that every cyclic
patch generates a tree by Lemma 3.2.26. However, we are not going to use these trees.
Instead we will construct an algorithm to create a new tree carefully so that a (well-
defined) sequence of circle compositions can be applied to the given cyclic patches. The
result of this (well-defined) sequence of circle compositions will be a single tile patch.
Before explaining the tree generator algorithm, we first prove the following results.

Lemma 3.2.28. Let Q be a patch and X be an interior vertex of Q. Suppose SX denotes
the collection of tiles that contain the vertex X. Then exactly one of the following holds:

(1) supp SX contains a hole.

(2) SX is a subpatch of Q which is not a circle patch.

(3) SX is a circle subpatch of Q.

Proof. We have that X is an interior vertex of Q. Therefore, the proof follows from the
fact that the collection SX is a subpatch if and only if supp SX does not contain any
holes.

The following two lemmas analyse the conclusions (1) and (2) of Lemma 3.2.28, re-
spectively. The reader may find it useful to check Figure 3.58 while reading over Lemma
3.2.29 and check Figure 3.61 while reading over Lemma 3.2.30. We also note that the as-
sumptions in Lemma 3.2.29 and Lemma 3.2.30 are the same, except (3). The assumptions
(3) in these two lemmas refer to the conditions (1) and (2) in Lemma 3.2.28, respectively.

Lemma 3.2.29. Suppose Q is a cyclic patch consisting of convex tiles and t is a tile in Q
that contains an edge e which is completely contained in the boundary ∂supp Q. Suppose
further Q′ is a composition of Q that is generated by finitely many circle composition steps
such that
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(1) Q′ is not a single tile patch,

(2) There exists a subpatch S of Q and a tile t′ of Q′ such that t ∈ S and Q′\{t′} = Q\S,

(3) There exists X ∈ Vt′\∂supp Q′ so that supp SX contains a hole, where SX = {u ∈
Q′ : X ∈ Vu}.

Then, there exists a vertex Y ∈ Vt′\∂supp Q′ so that the following holds:

(1) supp SY is a subpatch of Q′, where SY = {u ∈ Q′ : Y ∈ Vu}.

(2) [Y Z] ∈ EQ for some Z ∈ VS\VQ′ (i.e. Z is an interior vertex of S).

Proof. Let Q be a cyclic patch which consists of convex tiles and let t be a tile in Q

that contains an edge e so that e ⊆ ∂supp Q. Assume further Q′ is a composition of
Q that is generated by finitely many circle composition steps and satisfies the conditions
(1) to (3) in the lemma. Since Q′\{t′} = Q\S, the only possible non-convex tile in Q′ is
t′. Moreover, because SX is not a circle patch, t′ has to be a non-convex tile by Lemma
3.2.14, as illustrated with an example in Figure 3.58.

Q Q′

t′

X X

Figure 3.58: An example of patch Q and Q′ is illustrated, respectively. The patch Q′

is generated from the circle composition steps by the interior vertices of the highlighted
patch on the left. The highlighted patch on the left is the subpatch S and the highlighted
tile on the right is the tile t′ ∈ Q′.

Assume without loss of generality supp SX has a single hole R ⊆ R2. Define arcs γ1, γ2

such that γ1 = ∂R∩∂supp t′ and γ2 = ∂R∩∂supp (SX\{t′}), as illustrated in Figure 3.59.
Then we have that γ1 ∩ γ2 = {a1, a2} for some a1, a2 ∈ VQ and γ1 ∪ γ2 = ∂R. Note that
γ1, γ2 are non-trivial (i.e. neither a singleton nor an empty set). In particular, if γ1 = ∂R,
then supp t′ has the hole R, a contradiction. On the other hand, because SX\{t′} consists
of convex tiles that contain the vertex X, we cannot have γ2 = ∂R as well. Thus, γ1, γ2

are non-trivial.
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γ2

γ1

Figure 3.59: For the patch Q′ in Figure 3.58, the hole R of supp SX is the support of the
highlighted patch on the left. The arcs γ1, γ2 over the boundary ∂R are demonstrated on
the right.

Next we show that there exists a vertex X ′ ∈ γ1\{a1, a2} such that X ′ is a shared
exterior vertex of S. Consider the tiles in S that have an edge e′ so that e′ ⊆ γ1. We must
have that |{u ∈ S : ∃eu ∈ Eu with eu ⊆ γ1}| > 1. That is, γ1 cannot belong to a single
tile in S. This is because of the fact that tiles in S have convex supports. If γ1 belongs to
a single tile u0 in S, then there exists a line L with end points b1, b2 so that L $ supp u0

and b1, b2 ∈ supp u0, as shown in Figure 3.60. Contradicting the fact that u0 ∈ S has
convex support.

u0

L

γ1

Figure 3.60: The arc γ1 highlighted on the left cannot belong to a single convex tile u0 ∈ S,
as demonstrated on the right of the figure.

Since we get |{u ∈ S : ∃eu ∈ Eu with eu ⊆ γ1}| > 1, there exists X ′ ∈ γ1\{a1, a2}
such that X ′ is a shared exterior vertex of S. Thus, X ′ is a vertex over the boundary ∂R
so that [X ′Y ′] ∈ EQ for some Y ′ ∈ VS\Vt′ . Since X ′ ∈ ∂R, we have two cases:

(i) supp SX′ is a subpatch of Q′, where SX′ = {u ∈ Q′ : X ′ ∈ Vu},
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(ii) supp SX′ contains the holes R′1, . . . , R′k for k ∈ Z+ such that
k⋃
i=1

R′i $ R.

For (i) the proof is complete. For (ii), we apply the same argument again, for the
collection SX′ whose holes are strictly smaller than R. Since |Q| < +∞, the process
eventually leads to the case (i). Hence, the proof is complete.

Lemma 3.2.30. Assume that Q is a cyclic patch consisting of convex tiles and t is a tile
in Q that contains an edge e so that e ⊆ ∂supp Q. Suppose further Q′ is a composition of
Q that is generated by finitely many circle composition steps such that

(1) Q′ is not a single tile patch,

(2) There exists a subpatch S of Q and a tile t′ of Q′ such that t ∈ S and Q′\{t′} = Q\S,

(3) There exists X ∈ Vt′\∂supp Q′ so that supp SX is a subpatch of Q′ which is not a
circle patch, where SX = {u ∈ Q′ : X ∈ Vu}.

Then, there exists a vertex Y ∈ Vt′\∂supp Q′ so that the following holds:

(1) supp SY is a circle subpatch of Q′, where SY = {u ∈ Q′ : Y ∈ Vu}.

(2) [Y Z] ∈ EQ for some Z ∈ VS\VQ′.

Proof. Suppose Q is a cyclic patch that consists of convex tiles and t is a tile in Q such
that there exists an edge e ∈ Et with e ⊆ ∂supp Q. Assume further Q′ is a composition
of Q that is generated by finitely many circle composition steps and satisfies conditions
(1) to (3) in the lemma. Since t ∈ S, we have that e ∈ Et′ . Since SX is not a circle patch,
t′ is a non-convex tile by Lemma 3.2.14. Define arcs γ1, γ2 ⊆ ∂supp t′ such that γi has
end points X, ai for i = 1, 2 so that ai ∈ ∂supp SX and a1 6= a2. Such distinct arcs exist
because X is a common interior vertex in SX and t′ contains the edge e.

X

a2

a1

t′

X

a2

a1

t′

γ2

γ1

Figure 3.61: The tile t′ is the only non-convex tile in the collection SX which is a subpatch
of Q′. The patch SX is not a circle patch.
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By the same reasoning as in the proof of Lemma 3.2.29, we have that one (or both) of
the following holds:

(1) |{u ∈ S : ∃eu ∈ Eu with eu ⊆ γ1}| > 1,
(2) |{u ∈ S : ∃eu ∈ Eu with eu ⊆ γ2}| > 1.
Assume without loss of generality that (1) holds. The rest of the proof now follows

from the exact same argument as the one of the proof of Lemma 3.2.29.

Corollary 3.2.31. Let Q be a cyclic patch consisting of convex tiles and let t be a tile in
Q which contains an edge e so that e ⊆ ∂supp Q. Suppose that Q′ is a composition of Q
that is generated by finitely many circle composition steps such that

(1) Q′ is not a single tile patch,

(2) there exists a subpatch S of Q and a tile t′ of Q′ such that t ∈ S and Q′\{t′} = Q\S.

Then, there exists a vertex X ∈ Vt′\∂supp Q′ so that the following holds:

(1) supp SX is a circle subpatch of Q′, where SX = {u ∈ Q′ : X ∈ Vu}.

(2) [XY ] ∈ EQ for some Y ∈ VS\VQ′.

Proof. The proof follows by Lemma 3.2.28, Lemma 3.2.29 and Lemma 3.2.30.

Finally we are ready to explain the tree generator algorithm.
The Tree Generator Algorithm :

Assume that Q is a cyclic patch consisting of convex tiles and t is a tile in Q such that
there exists e ∈ Et with e ⊆ ∂supp Q. Assume further that G = (V,E) is the empty graph
(i.e. V = E = ∅). Apply the following steps until Q composed into a single tile patch.

Step − 0 : Define W = {X1, . . . , Xn} for n ∈ Z+ to be the collection vertices of
t which are interior vertices of Q. Suppose without loss of generality [XiXi+1] for i ∈
{1, . . . , n − 1} is an edge of Q. Apply circle compositions by the vertices X1, . . . , Xn,
consecutively. Simultaneously, add the vertices X1, . . . , Xn to the vertex set V of G, and
the edges [X1X2], . . . , [Xn−1Xn] to the edge set E of G. Denote the composed patch as Q′

and the composed tile as t′. Check whether Q′ is a single tile patch. If it is a single tile
patch, then terminate the algorithm. The desired tree is the graph G = (V,E). If Q′ is
not a single tile patch, then move to the next step.

Step − 1 : Find a vertex X such that circle composition by X is well defined and
[XX ′] is an edge of Q where X ′ is a vertex so that X ′ ∈ VS\Vt′ . Such a vertex exists
by Corollary 3.2.31. Simultaneously, add the vertex X to the vertex set V and the edge
[XX ′] to the edge set E.

Step − 2 : Check whether the generated patch is a single tile patch. If it is not a
single tile patch, then go back to Step - 1. If it is a single tile patch, then terminate the
algorithm. The desired tree is the graph G = (V,E).

The algorithm terminates in finite time.
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Corollary 3.2.32. Assume that Q is a cyclic patch consisting of convex tiles and G =

(V,E) is a graph that is generated by the tree generator algorithm from the patch Q. Then
G is a tree.

Proof. We have that G = (V,E) is connected by construction. Suppose now X1, . . . , Xn

for n ∈ Z+ is a collection of interior vertices of Q such that the edges {[XiXi+1]}ni=1

forms a cycle (of edges), with the convention that Xn+1 = X1. Assume further that
{X1, . . . , Xn} ⊆ V . We will show that {[XiXi+1]}ni=1 $ E. Assume without loss of
generality X1, . . . , Xn are composed by the order X1, X2, . . . , Xn. We first circle compose
by the vertices X1 and X2. We add X1 and X2 into the vertex set V whereas we add the
edge [X1X2] to the edge set E. However, becauseX1 ∈ [XnX1], the edge [XnX1] disappears
in the composed patch. Since we didn’t add the edge [XnX1] into E and it does not exist in
the composed patch, we will never add [XnX1] into E. Thus, {[XiXi+1]}ni=1 $ E. Hence,
G cannot contain any cycle, and is a tree.

Next we illustrate the tree generator algorithm with an example.

Example 3.2.33. Consider the cyclic patch Q and the tile t ∈ Q given in Figure 3.62.
By Step - 0 of the algorithm, we first apply circle composition by the vertex X1. Then
move to Step - 1. We apply Step - 1 to the suitable vertices until we end up a single tile
patch. For that, we apply circle compositions by the vertices X2 and X3 consecutively,
since [X1X2] is the only interior edge of Q with X2 ∈ [X1X2] and [X2X3] is the only
interior edge of Q (after [X1X2] is composed) with X2 ∈ [X2X3]. The tree we form from
these initial steps consists of the vertices X1, X2, X3 and the edges [X1X2], [X2X3]. After
that we arrive two options; either circle compose by the vertex X4 or circle compose by
the vertex X6. Subsequently, regardless of which option we pick, we get other choices to
make as well. Continuing circle compositions according to the instructions in Step - 1 in
the tree generator algorithm, we arrive a tree. This tree is not unique due to the choices
we can make during the process. There are several possible trees that can be generated.
We provide all the trees that is generated by the tree algorithm which start with X1 in
Figure 3.63 for illustration.

t

X4 X5

X1 X2 X3 X7X6

Figure 3.62: A cyclic patch Q and a tile t ∈ Q.
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X1 X2 X3 X6 X7

X4

X5

X1 X2 X3 X6 X7

X5

X1 X2 X3 X6 X7

X4 X5

X1 X2 X3 X4 X5 X6 X7

Figure 3.63

Suppose we choose the tree on the top left of Figure 3.63. Denote the chosen tree of the
cyclic patch Q by H = (V,E). We have that X1 is a vertex of degree 1 (in H). If we apply
a circle composition by the vertex X1, then we get a composed patch Q′ = ΘX1(Q) and a
subtree H ′ = (V ′, E ′) ⊆ H which corresponds to the cyclic patch Q′, as shown on the right
side of Figure 3.64. Notice that we can deduce Q′ is a cyclic patch by looking at the tree
H ′, with the help of Lemma 3.2.19. Therefore, we know how the circle composition steps
proceed by looking at a tree of a cyclic patch. Finally, we initialised the tree generator
algorithm for t ∈ Q in Figure 3.62. This tile t was deliberately chosen to contain one of
the corners of Q. The importance of the choice of t will be explained in Remark 3.2.36
(and will become completely apparent after Corollary 3.2.41).

X4 X5

X2 X3 X7X6

X4 X5

X2 X3 X7X6X1

H = (V,E) H ′ = (V ′, E ′)

Q Q′ = ΘX1(Q)

X1 X2 X3 X6 X7

X4

X5

X2 X3 X6 X7

X4

X5

Figure 3.64
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The Circle Composition Algorithm

Theorem 3.2.34 (Circle Compositions of Cyclic Patches). For any given cyclic patch Q
that consists of convex tiles, there is a finite sequence of interior vertices X1, . . . , Xn (for
n ∈ Z+) of Q such that ΘXn ◦ · · · ◦ΘX1(Q) is a single tile patch and ΘXi

◦ · · · ◦ΘX1(Q) is
a cyclic patch for any i = 1, . . . , n− 1.

The proof of this theorem is given by the following circle composition algorithm. The
algorithm ensures that every cyclic patch that consists of convex tiles can be composed into
a circle patch, after a finite sequence of circle compositions. Moreover, all the composed
patches appearing in the (middle) composition process are cyclic patches.

The Circle Composition Algorithm :

Suppose Q is a given cyclic patch which is not a circle patch and consists of convex
tiles. Suppose further G = (V,E) is the tree formed by the tree generator algorithm from
Q. Apply the following steps to the pair (Q,G) until Q eventually composes into a circle
patch.

Step − 1 : Identify the vertices in G that are of degree 1. There are at least two such
vertices by Lemma 3.2.24. Let X be a such vertex.

Step − 2 : Apply circle composition by the vertex X. Let G′ = (V ′, E ′) be a subtree
of G = (V,E) such that V ′ = V \{X} and E ′ is the subcollection of edges in E which do
not intersect with the vertex X. Note that ΘX(Q) is a cyclic patch by Lemma 3.2.19.

X

Compose by X

Figure 3.65: An example of a circle composition explained in Step - 2

Step − 3 : Check whether ΘX(Q) is a circle patch. If it is a circle patch, then
terminate the algorithm. Otherwise, go back to Step - 1 with the pair (ΘX(Q), G′).

The algorithm terminates in a finite time. It terminates when we arrive at a circle
patch. Therefore, after one more circle composition, we arrive a single tile patch. Hence,
the proof of the Theorem 3.2.34 follows.

We will explain the circle composition algorithm with an example. In order to provide
more variety in terms of examples, we use a different cyclic patch than given in Figure
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3.62. Consider the patch Q and a tree generated by Q in Figure 3.66. We first check the
vertices of degree 1 in the tree in Figure 3.66. There are three such vertices; A1, A6 and
A8. Suppose we choose the vertex A8. This is Step - 1 of the algorithm. We apply the
circle composition by the vertex A8. This process generates a (composed) cyclic patch and
a subtree that corresponds to the cyclic patch generated. The generated cyclic patch and
the subtree are illustrated in Figure 3.67.

A1

A2
A3

A4

A5

A6

A7

A8

t

Q

A1 A2 A3 A4 A5 A6

A7

A8

Figure 3.66: A cyclic patch Q and a tree generated by Q

A1

A2
A3

A4

A5

A6

A7

t

ΘA8(Q)

A1 A2 A3 A4 A5 A6

A7

Figure 3.67: Patch ΘY3(Q) and the tree corresponds to ΘY3(Q)

Next we move to Step - 3. We check whether ΘA8(Q) is a circle patch. Because it
is not a circle patch we go back to Step - 1. Then we identify the vertices of degree 1
in the tree in Figure 3.67. There are three such vertices; A7, A1 and A6. Suppose we
choose the vertex A7. This is Step - 1 of the algorithm. Next we apply circle composition
by the vertex A7. We arrive the cyclic patch and the tree in Figure 3.68. We continue
to apply circle compositions by the vertices A6, A5, A4, A3, respectively. The generated
composed cyclic patch after these steps is a circle patch with centre A1. The algorithm
terminates. Moreover, after applying a circle composition by the vertex A1 we arrive a
single tile patch.
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A1

A2
A3

A4

A5

A6

t

ΘA7 ◦ΘA8(Q)

A1 A2 A3 A4 A5 A6

Figure 3.68: Patch ΘY2 ◦ΘY3(Q) and the tree corresponds to ΘY3(Q)

Definition 3.2.35. A graph G is called a path graph if every vertex of G is of degree at
most two.

Remark 3.2.36. The tree generator algorithm starts with a tile t such that t has an edge
which is completely contained over the boundary of the cyclic patch Q. In particular,
Step - 0 of the tree algorithm are the circle compositions by the vertices X1, . . . , Xn

for n ∈ Z+ where {Xi : i = 1, . . . , n} is the collection of interior vertices of Q that
belong to t. Simultaneously, we add the vertices X1, . . . , Xn to the vertex set and the
edges [X1X2], . . . , [Xn−1Xn] to the edge set. This initial step generates a path graph
H ′ = (V ′, E ′) such that V ′ = {Xi : i = 1, . . . , n} and E ′ = {[XiXi+1] : i = 1, . . . , n− 1}.
Therefore, every tree H, which is formed from the tree generated algorithm starting with
the tile t, must satisfy that H ′ ⊆ H. This construction assures that we can modify Step -
2 of the circle composition algorithm (i.e. circle composing by a vertex of degree 1) such
that the tree H first reduces to the subtree H ′ during the circle composition process. For
example, for the cyclic patch Q and tile t given in Figure 3.66, we have that H ′ = (V ′, E ′)

where V ′ = {A1, A2, A3, A4}. Notice that A1 is a vertex of degree 1 for the tree in Figure
3.66. Even though it is a vertex of degree 1, we do not choose A1 to be circle composed.
Instead we choose A8 to start with. After applying circle compositions by the vertices
A8, A7, A6, A5, the tree we started in Figure 3.66 reduces to the path graph H ′. Finally,
we can keep circle composing by the vertices A4, A3, A2, A1, consecutively, in order to arrive
a single tile patch. By doing so, we forced the circle composition process to end with the
step that circle compose by the vertex X1. This final circle composition step is important
because it will be the first circle decomposition step when we start circle decomposing
the generated single tile patch. The details of why the first circle decomposition step is
significant will be explained after Corollary 3.2.41.
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3.2.4 Order Structure by Iterative Circle Decomposition Systems

Circle compositions of cyclic patches form an iterative structure. This iterative structure
composes a cyclic patch into a single tile patch in finite steps. Taking the inverse of the
circle compositions, we get an iterative system of circle decompositions. We show that
these circle decomposition steps will define the desired order system for cyclic patches.

Lemma 3.2.37 and Proposition 3.2.38 are the main ingredient of how to implement the
order structure of circle patches within the circle decomposition process.

Lemma 3.2.37 (Reforming the Curves in Decomposition Steps). Let Q be a patch and S
be a subpatch of Q. Define a composition Q′ of Q by composing S into a single tile u ∈ Q′.
Then the following holds:

(1) If (A,B) is a valid pair for Q′ via some curve C such that the decoration eu of u
induced by C has end points M,N so that (M,N) is a valid pair for S, then (A,B) is a
valid pair for Q as well.

(2) If (A,B) is a valid pair for Q′ via some curve C such that the decoration eu of u
induced by C has end point pairs M,N and M ′, N ′ so that {(M,N), (M ′, N ′)} is a split
pair for S, then (A,B) is a valid pair for Q as well.

(3) If {(A,B), (C,D)} is a split pair for Q′ via some curves C1, C2 such that the dec-
oration eu of u induced by C1 ∪ C2 has end points M,N so that (M,N) is a valid pair for
S, then {(A,B), (C,D)} is a split pair for Q as well.

(4) If {(A,B), (C,D)} is a split pair for Q′ via some curves C1, C2 such that the
decoration eu of u induced by C1 ∪ C2 has end point pairs M,N and M ′, N ′ so that
{(M,N), (M ′, N ′)} is a split pair for S, then {(A,B), (C,D)} is a split pair for Q as
well.

Proof. We will only prove (1). The rest of the cases can be proven in a similar fashion. Let
CM,N denote the curve that makes (M,N) a valid pair for S. Define C ′ = (C\eu) ∪ CM,N .
Because CM,N makes (M,N) a valid pair for S, C ′ makes (A,B) a valid pair for Q.

We illustrate the idea in Lemma 3.2.37 with an example. Consider the circle patch Q,
the leftmost patch of Figure 3.69. We have that (A,B) is a valid pair for Q, by a curve
C illustrated in the third patch from the left of the figure. Then C induces a decoration
eu for the tile u, which has end points M,N , as shown in the figure. The patch Q on the
rightmost of the figure has (A,B) as a valid pair. This is because of the fact that the tile
u in Q′ decomposes into a circle subpatch S of Q such that (M,N) is a valid pair for S.
Hence, we can replace the decoration eu of u, which has end points M,N as demonstrated
on the third patch from the left of the figure, with a decoration over the circle subpatch
S of Q, as shown on the rightmost patch of the figure. This is the main idea of circle
decomposition process.
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Figure 3.69

The following proposition ensures that if we apply the circle composition process in
a specific order, then we can define an order system for cyclic patches with the help of
Lemma 3.2.37.

Proposition 3.2.38. Suppose Q is a patch with interior vertices X, Y such that ΘX(Q)

is a circle patch with centre Y , and (X : Y ) is a connected pair for Q (demonstrated in
Figure 3.70). Then

(1) Q is a cyclic patch,
(2) If (A,B) is a valid pair for ΘX(Q), then it is a valid pair for Q.
(3) If {(A,B), (C,D)} is a split pair for ΘX(Q), then it is a split pair for Q.

Y

X
Y

ΘX(Q)Q

Figure 3.70: OX is a circle subpatch of a patch Q such that ΘX(Q) is a circle patch with
centre Y

Before giving the proof of the proposition, we will make some simplifications about
the possible 2-curve decorations that we use to decorate the tiles. The order system of
circle patches are defined by Proposition 3.1.10 and Proposition 3.2.12. Recall that we
form valid/split pairs for circle patches through curves, which are not uniquely defined
for most of the cases. For example, given the exterior vertices A,B given in the leftmost
patch of Figure 3.71, we can construct two curves that make (A,B) a valid pair for the
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circle patch Q, which are illustrated in the middle and rightmost patch of the figure.
Both of these curves are defined according to the instructions in the proof of Proposition
3.2.12. So, there is not a unique curve that makes (A,B) a valid pair. Due to these
(non-unique) choices, we can pick whichever curve we prefer to implement, or even reform
the constructed curves with simple modifications in the decorations. This is the main idea
of why the simplification process is applicable.

A

B

A

B

A

B

Figure 3.71: Different choices to make (A,B) a valid pair

Proposition 3.2.39. [Simplification of 2-Curve Decorations] Let Q be a circle patch with
centre X, (Q, u) be a circle composition pair and eu be a decoration of u.

(1) If eu is a simple decoration of u with end points A,B, then there exists a curve C
that makes (A,B) a valid pair for Q such that for each t ∈ Q, C ∩ int (supp t) is either a
simple curve or X ∈ C ∩ int (supp t). That is, the decoration of t is either a simple curve
or it hits the centre X.

(2) If eu is a 2-curve decoration of u with end point pairs A,B and C,D, then there
exists curves C1, C2 that make {(A,B), (C,D)} a split pair for Q such that for each t ∈ Q,
(C1 ∪ C2) ∩ int (supp t) is either a simple curve or X ∈ (C1 ∪ C2) ∩ int (supp t). That is,
the decoration of t is either a simple curve or it hits the centre X.

Proof. Let Q be a circle patch with centre X and u be a tile so that (Q, u) is a circle
composition pair.

(1) Assume that eu is a decoration of u with end points A,B. There exists a curve CA,B

that makes (A,B) a valid pair, by Proposition 3.1.10. If each tile has a simple decoration
induced by CA,B, then define C = CA,B. Otherwise, there exists a unique tile t ∈ Q with
a 2-curve decoration, by Corollary 3.1.11. Suppose t can be identified with a topological
triangle with end pointsM,N,X. The 2-curve decoration et of t must have end point pairs
M,A and N,B, by Proposition 3.1.10, where A,B are isolated vertices of Q belonging to
the tile t. Assume further without loss of generality t1, t2 are neighbour tiles of t such that
N ∈ Vt1 and M ∈ Vt2 , as illustrated in the leftmost patch of Figure 3.72. Then decoration
et1 of t1 has to be a simple curve and have end points N and N ′ so that N ′ 6= X, as shown
in the middle patch of Figure 3.72. Replace the component simple curve of et that has end
points B,N , with a curve that has end points B,X. Replace also the decoration et1 of
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t1 with a curve that has end points X,N ′, as illustrated in the rightmost patch of Figure
3.72. This process generates a (reformed) curve which still makes (A,B) a valid pair for
Q. Moreover, the decoration of t is now set to hit the centre X. Thus, (1) holds.

M

N

A

B

X

t
t1

t2
M

N

A

B

X

N ′

M

N

A

B

X

N ′

Figure 3.72

(2) Let eu be a decoration of u with end point pairs A,B and C,D. By Proposition
3.2.12, there exist curves C1, C2 and subpatches Q1, Q2 such that C1 makes (A,B) a valid
pair for Q1, C2 makes (C,D) a valid pair for Q2, Q1 ∪ Q2 = Q and C1 and C2 are non-
crossing. For each x ∈ Q, denote the decoration induced by C = C1 ∪ C2 as ex. Suppose
t ∈ Q is a tile that can be characterised by a topological triangle with vertices M,N,X

and et is a 2-curve decoration such that X /∈ et. The possible 2-curve decorations et of t
are demonstrated in Figure 3.73.

M

N

X
M

N

X
M

N

X
M

N

X

A

B

A

B

A

B
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Case− (i) Case− (ii) Case− (iii) Case− (iv)

Figure 3.73

The cases (i), (ii), (iii) are directly related with the proof in part (1). In particular,
C1 is a curve in the single tile patch {t} that connects A and B, and makes (A,B) a valid
pair for Q1 = {t}. So, for the cases (i), (ii), (iii), C2 is a curve that makes (C,D) a
valid pair for Q2 = Q. By reforming the decoration of t and also decoration of one of its
neighbour tiles, just like in part (1) (See Figure 3.72), we can reform C2 into a curve C ′2
which still makes (C,D) a valid pair for Q, whereas the decoration induced on t by C ′2 hits
the centre X. Furthermore, the proof of the case (iv) is also similar to part (1). Hence,
every 2-curve decoration of tiles in a circle patch can be reformed to hit the centre of the
given circle patch.

Corollary 3.2.40. One can always assume that every 2-curve decoration appearing in a
circle patch hits the centre vertex.
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Proof. Proof follows by (1) and (2) of Proposition 3.2.39.

Proof of Proposition 3.2.38. Suppose OX is a circle subpatch of a patch Q, (OX , u) is a
circle composition pair, ΘX(Q) is a circle patch with centre Y , u ∈ ΘX(Q) and [XY ] is
an edge (or a finite union of edges) in Q. Then u can be regarded as a topological triangle
with vertices M,N, Y where M,N are shared exterior vertices of Q with M,N ∈ Vu.
Assume further that u1, u2 are neighbour tiles of u such that N ∈ Vu1 and M ∈ Vu2 , as
demonstrated in Figure 3.74.

Y

X
M

N

Y

ΘX(Q)Q

u
u1

u2

Figure 3.74

(1) We have that (X : Y ) is a connected pair for Q. Thus, Q is a cyclic patch, by
Lemma 3.2.19.

(2) Suppose (A,B) is a valid pair for ΘX(Q) by some curve CA,B. Then CA,B induces
a decoration for u, say eu. If eu is a simple curve decoration with end points A′, B′,
then (A′, B′) is valid pair for OX via some curve CA′,B′ by Proposition 3.1.10. Thus, by
replacing the decoration eu in CA,B, with the curve CA′,B′ , we define a curve C which makes
(A,B) a valid pair for Q. Similarly, if eu is a 2-curve decoration for u, then we can assume
without loss of generality that Y ∈ eu, by Proposition 3.2.39. Suppose eu has end point
pairs M ′, N ′ and Y, Y ′. Because Y is a shared exterior vertex of OX , {(M ′, N ′), (Y, Y ′)}
is a split pair for OX , by Corollary 3.2.13. Thus, there exists curves C1, C2 that make
{(M ′, N ′), (Y, Y ′)} a split pair for OX . Replace the decoration eu in CA,B with the curves
C1, C2. Then the generated curve makes (A,B) a valid pair for Q.

(3) The proof of this case is similar with (2). In particular, because Y is a shared
exterior vertex of OX , and the 2-curve decoration that can be defined for eu intersects
with the vertex Y , the same argument in (2) can be applied.

Notice that ΘX(Q) in Proposition 3.2.38 is a circle patch with centre Y , whereas Q is
the circle decomposition of ΘX(Q). Therefore, Proposition 3.2.38 states that if the vertices
we applied circle decompositions are connected pairs, such as X and Y in the proposition,
then the set of valid and split pairs is invariant under the circle decomposition process in
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the sense that valid and split pairs of ΘX(Q) are also valid and split pairs of Q. Similarly,
we can apply the argument in the proposition twice. For example, suppose Q is a given
cyclic patch such that ΘX2 ◦ ΘX1(Q) is a circle patch with centre Y , and (X2 : X1) and
(X1 : Y ) are both connected pairs of Q. Then valid and split pairs of ΘX2 ◦ ΘX1(Q) are
also valid and split pairs of Q. Therefore, by investigating the valid and split pairs of
the circle patch ΘX2 ◦ ΘX1(Q), we can find valid and split pairs for the patch Q. Recall
that the valid and split pairs of circle patches are explicitly defined by Proposition 3.1.10
and Proposition 3.2.12, respectively. Therefore, using these propositions, we generalise
Proposition 3.2.38, with the following corollary.

Corollary 3.2.41. Assume that Q is a cyclic patch which is not a circle patch, and has
interior vertices X1, X2, . . . , Xn for n ∈ {2, 3, . . . } such that Q′ = ΘXn ◦ · · · ◦ΘX1(Q) is a
single tile patch and [XiXi+1] is an edge of Q for each i = 1, . . . , n− 1. Then

(1) ΘXj
◦ · · · ◦ΘX1(Q) is a cyclic patch for each j ∈ {1, . . . , n− 1}.

(2) (A,B) is a valid pair for Q for each distinct exterior vertex pair A,B of Q.

(3) If (Q, u) is a composition pair and eu is a 2-curve decoration with end point pairs A,B
and C,D such that there is no single tile t ∈ Θ−1

Xn
(Q′) so that {A,B,C,D} ∩ Vt 6= ∅

(i.e. there are at least two tiles that intersect with the vertices A,B,C,D), then
{(A,B), (C,D)} is a split pair for Q.

Proof. Let Q′ = ΘXn ◦ · · · ◦ ΘX1(Q) be a single tile patch and let Θ−1
Xn

(Q′) be the first
circle decomposition of Q′, that is a circle patch.

(1) Since Q′ = ΘXn ◦ · · · ◦ ΘX1(Q) is a single tile patch, every tile in Q must intersects
with at least one of the vertices X1, . . . , Xn. Since (Xi : Xi+1) is a connected pair
of Q for each i = 1, . . . , n− 1, we have that ΘXj

◦ · · · ◦ΘX1(Q) is a cyclic patch for
each j ∈ {1, . . . , n− 1}, by Lemma 3.2.19.

(2) (A,B) is valid pair for the circle patch Θ−1
Xn

(Q′), by Proposition 3.1.10. Therefore,
(A,B) is a valid pair for Θ−1

Xn−1
◦ Θ−1

Xn
(Q′) as well, by Proposition 3.2.38. Apply

Proposition 3.2.38 consecutively with the fact that (Xi : Xi+1) is a connected pair of
Q for each i = 1, . . . , n− 1. We get (A,B) is a valid pair for Q = Θ−1

X1
◦ · · · ◦Θ−1

Xn−1
◦

Θ−1
Xn

(Q′) as well.

(3) Since there is no single tile t ∈ Θ−1
Xn

(Q′) so that {A,B,C,D} ∩ Vt 6= ∅, we have that
{(A,B), (C,D)} is a split pair for Θ−1

Xn
(Q′). Hence, by the same argument in (1), it

is also a split pair for Q.

Corollary 3.2.41 states that by investigating the valid and split pairs of the circle patch
Θ−1
Xn

(Q′) (i.e. the first circle decomposed patch of Q′), we can detect the valid and split
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pairs of Q. Therefore, we want the first circle decomposition step to be carefully chosen.
For instance, Figure 3.75 demonstrates two different circle composition processes of the
same cyclic patch which is given on the leftmost of the figure. The top row illustrates the
circle composition steps by the vertices X and Y consecutively, whereas the bottom row
illustrates the circle composition steps by the vertices Y and X consecutively. Suppose
that we applied circle compositions by the vertices X and Y consecutively. Then the
first circle decomposition step generates a circle patch with centre Y . This circle patch is
the patch on the top middle of Figure 3.75. Observe that {(A,B), (C,D)} is not a split
pair for that circle patch since A,B,C,D are all isolated vertices belonging to a same
tile. Therefore, applying circle compositions by the vertices X and Y consecutively is
not a good choice for the circle composition process. Observe also that if we apply circle
compositions by the vertices Y and X consecutively, then the first circle decomposition
step provides a circle patch with centre X. This patch is illustrated in the bottom middle
patch of Figure 3.75. Notice that {(A,B), (C,D)} is a split pair for that circle patch.
Hence, we can conclude by Corollary 3.2.41 that {(A,B), (C,D)} is a split pair for the
cyclic patch given in the figure.

X
Y

Y

X

C D

B

A

Figure 3.75: Two different circle composition steps

Finally, we are ready to prove the main result for cyclic patches.

Theorem 3.2.42. Suppose Q is a cyclic patch consisting of convex tiles and u is a convex
tile so that (Q, u) is a composition pair. Assume further, eu is a 2-curve decoration of u
with end point pairs A,B and C,D. Then the following holds:

(1) (A′, B′) is a valid pair for Q for each distinct exterior vertices A′, B′.

(2) {(A,B), (C,D)} is a split pair for Q if there is no circle subpatch S of Q so that
|VS ∩ {A,B,C,D, }| ≥ 2. That is, {(A,B), (C,D)} is a split pair for Q if every
circle subpatch of Q contains at most one of the vertices A,B,C,D.
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Proof. We will only prove part (2). The proof of part (1) is similar.
Suppose Q is a cyclic patch consisting of convex tiles and u is a convex tile such that

(Q, u) is a composition pair. Suppose further eu is a 2-curve decoration of u with end
point pairs A,B and C,D. Choose a tile t ∈ Q such that A ∈ Vt and t has an edge e ∈ Et
so that e ⊆ ∂supp Q. Apply the tree generator algorithm by the tile t. Let G = (V,E)

denote the tree generated.
Assume first that G is a path graph. Apply the circle composition algorithm such that

t is circle composed in the final circle composition step. This can be done using Remark
3.2.36. Let ΘXm ◦ · · · ◦ ΘX1(Q) for m ∈ Z+ denote this circle composition process. Note
that we have t ∈ Θ−1

Xm
(Q′) by Remark 3.2.36, where Q′ = ΘXm ◦ · · · ◦ ΘX1(Q) is the

generated single tile patch. We have A ∈ Vt. So, we get B /∈ Vt, C /∈ Vt and D /∈ Vt, by
the assumption given in the statement of (2). Therefore, {(A,B), (C,D)} is a split pair for
Θ−1
Xm

(Q′) by Proposition 3.2.12. Thus, {(A,B), (C,D)} is a split pair for Q by Corollary
3.2.41. By the same token, we can also conclude that (A′, B′) is a valid pair for Q for any
given distinct exterior vertices A′, B′ of Q, by Corollary 3.2.41. Thus, the statements (1)

and (2) hold whenever a cyclic patch corresponds to a path graph tree.
Suppose now that G is not a path graph. Let X1, . . . , Xn for n ∈ Z+ denotes the

collection of interior vertices of Q that belong to the tile t. Note that {X1, . . . , Xn} ⊆ G.
There exists a path (sub)graph G′ ⊆ G such that G′ ⊇ {X1, . . . , Xn}. Apply circle
composition steps to the cyclic patch Q such that the generated patch P corresponds to
the path graph G′. That is, apply circle composition steps such that the graph G reduces
to the path graph G′. This can be done using Remark 3.2.36. Notice that P is a cyclic
patch by Lemma 3.2.19. Therefore, by the case we just proved, {(A,B), (C,D)} is a split
pair for P by some decoration CP of P .

G = (V,E) G′ = (V ′, E ′) Gu = (∅, ∅)

Q P {u}

Figure 3.76: P is a composition of Q. The tree that corresponds to P is G′.

Since P is going to be circle decomposed to Q after finitely many steps, there must
exist tiles of P which are going to be (circle) decomposed into subpatches of Q. Assume
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without loss of generality there exists only one tile u0 ∈ P which is going to be (circle)
decomposed into a subpatch Su0 of Q. Notice that Su0 corresponds to the subgraph of G
that does not intersect with either the vertices or the edges of G′. This is because of the
fact that after circle composition applied by the vertices in Su0 , we must arrive the path
graph G′. In particular, Su0 is a cyclic subpatch of Q by Lemma 3.2.19.

G = (V,E) G′ = (V ′, E ′) Gu0

Figure 3.77: An example of G′ and Gu0 where Gu0 denotes the graph corresponding to the
cyclic patch Su0 .

There are two cases; either the graph corresponds to Su0 is a path graph or it is not a
path graph. Suppose without loss of generality that Su0 is a path graph. Assume further
Gu0 = ({Y1, . . . , Ys}, {[YiYi+1] : i ∈ {1, . . . , s− 1}}) denotes the graph corresponds to the
cyclic subpatch Su0 such that s ∈ Z+ and [YsZ] is an edge of G for some vertex Z of G′.

Y2

Y1

Y2

Y1

Z

G = (V,E) G′ = (V ′, E ′) Gu0

Figure 3.78: An example of G′ and Gu0 for s = 2. [Y2Z] is an edge of G and Z is a vertex
of G′.

Let Z1, Z2 be two vertices of G′ such that Z1 is circle composed right before Z and Z2 is
circle composed right after Z. Since we circle compose by the order Z1, Z, Z2, we will circle
decompose by the vertices Z2, Z, Z1, respectively. We illustrate the circle decomposition
hierarchy in Figure 3.79.

Since {(A,B), (C,D)} is a split pair for P by the curve CP , there exists a decoration
eu0 of u0 which is induced by P . The decoration eu0 of u0 induced by CP is either a simple
curve or a 2-curve. If it is a simple curve with end points X,X ′, then (X,X ′) is a valid
pair for Su0 because the corresponding graph for the cyclic patch Su0 is a path graph.
Thus, (A,B) is a valid pair for Q by Lemma 3.2.37. Suppose that eu0 is a 2-curve. Note
that u0 is formed during the circle decomposition step by the vertex Z. That is, u0 is a tile
in a circle (sub)patch with centre Z, as shown in the middle patch of Figure 3.79. Using
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Z2 Z2 Z2

Z Z

Z1

u0

Figure 3.79: The circle decomposition hierarchy between the vertices Z,Z1, Z2. The tile
u0 is formed when we circle decompose by the vertex Z.

Corollary 3.2.40, we can assume without loss of generality that eu0 must intersect with
the centre Z of the circle patch that u0 belongs to whenever eu0 is a 2-curve decoration.
That is, Z ∈ eu0 . Suppose {u0} = ΘYs ◦ · · · ◦ ΘY1(Su0) denotes the circle composition
steps of the cyclic patch Su0 and X,X ′ and Y, Y ′ denote the end point pairs of eu0 so that
{Z} ⊆ {X,X ′, Y, Y ′}.

The circle patch Θ−1
Ys

({u0}) contains the vertex Z as a shared exterior vertex since
[YsZ] is an edge of G, as demonstrated in Figure 3.80. Therefore, {(X,X ′), (Y, Y ′)} is a
split pair for Θ−1

Ys
({u0}) by Proposition 3.2.12. Then {(X,X ′), (Y, Y ′)} is a split pair for

Su0 by Corollary 3.2.41 since the graph Gu0 corresponds to Su0 is a path graph. Hence,
{(A,B), (C,D)} is a split pair for Q by Lemma 3.2.37.

Z1 Z Z2 Z1 Z Z2

u0

Y2

Y1

Figure 3.80: An example of the tile u0 which is circle decomposed to a cyclic patch Su0
such that [Y2Z] is an edge of G and Z is a vertex of G′.

We are now ready to define the order structure for substitution tilings whose k-
supertiles are cyclic patches for some k ∈ Z+.

Theorem 3.2.43. Suppose P is a given finite collection of convex tiles, ω is a primitive
substitution rule defined on P and T is a recognisable substitution tiling generated by the
substitution rule ω. Assume further that every 1-supertile of T is a cyclic patch such
that there is no circle subpatch S containing two distinct corners of the 1-supertile. Then
there exist a finite collection of decorated prototiles P ′ and a primitive substitution rule ω′

defined on P ′ such that the following holds:
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(1) For any p′ ∈ P ′ there exists a unique p ∈ P such that p′ is a decorated copy of p with
label l(p′) = (l(p), ep) for some decoration ep for p.

(2) There exists k ∈ Z+ such that if p′ is a decorated copy of p with decoration ep, then

(i) supp ωd(p
′) = supp ωk(p),

(ii) ω′(p′) is a decorated copy of ωk(p) with decoration C which has end points λk ·
A, λk ·B (or end point pairs λk ·A, λk ·B and λk ·C, λk ·D) where A,B are end
points of ep (or A,B and C,D are end point pairs of ep) and λ is the expansion
factor of ω.

In particular, there exists a recognisable, primitive, self-similar substitution tiling T ′ with
a prototile set P ′ and a substitution rule ω′.

Proof. Let P be a given finite collection of prototiles and ω be a primitive substitution
defined on P . Choose q ∈ P and a simple decoration eq for q, with end points A,B.
This generates a decorated prototile q′ with a label set l(q′) = (l(q), eq) and a support
supp q′ = supp q. Then Q = ω(q) is a cyclic patch such that no circle subpatch of it
contains both vertices λ · A and λ ·B together. We have that (λ · A, λ ·B) is a valid pair
for the cyclic patch Q by Theorem 3.2.42. Let C denotes a curve that makes (λ ·A, λ ·B) a
valid pair. There exists a decorated copy Q′ of Q with the decoration C. Tiles in Q′ have
decorations induced from C. Record Q′ to be the substitute of p′.

For each prototile p ∈ P and every decoration ep for p, construct the decorated prototile
p′ and the decorated 1-supertile Q′p by the same argument applied for q′ above. Record
the generated decorated 1-supertiles Q′p as the substitutions of p′. For every distinct pair
of corners in each 1-supertile of T , there is no circle subpatch containing any two of the
corners. Thus, for every prototile p in P and every decoration ep on it, we can construct a
decorated 1-supertile Q′p such that we can regard Q′p as the substitution of p′. This yields
a collection of decorated prototiles P ′ and a substitution rule ω′ defined on P ′ such that

P ′ = {p′ : l(p′) = (l(p), ep), supp p′ = supp p for p ∈ P and decoration ep of p}

Proposition 2.2.6 assures that there exists P ′ ⊆ P ′ and n ∈ Z+ such that ω′ = ω′n|P ′
is a primitive substitution over P ′ satisfying the conditions (1) and (2). We can now
generate a tiling T ′ from the primitive substitution ω′ by applying the standard argument
explained in Chapter 2. Hence, T ′ is recognisable, primitive and self-similar substitution
tiling.
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3.3 The Algorithm

The travelling algorithm is the generalisation of the algorithms in the previous sections.
Consider the substitution rule given in Figure 3.81. The substitution rule is defined on
equilateral triangles of side length 1 and unit hexagons, with a fixed expansion factor
λ = 3. The (primitive) substitution rule generates a recognisable primitive substitution
tiling. Recognisability can be inferred by detecting the star shapes inside the 1-supertile
hexagons. Observe that every triangle type k-supertile for k ∈ Z+ contains at least one
slice tile. Therefore the arguments in Section 3.2 cannot be applied for this substitution
rule. Though, we use a similar idea of composition for this type of substitutions as well.
We first form a cyclic patch by composing the parts containing the slice tiles, into single
tiles, and then apply the methods in Section 3.2. Lastly, we decompose the tiles that are
composed from slice tiles, and reform the decorations appearing on the tiles into curves
visiting the slice tiles.

Figure 3.81: A substitution rule
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Figure 3.82: A patch of the tiling formed by the substitution rule given in Figure 3.81

Figure 3.83: A 5-supertile formed by the white hexagon prototile in Figure 3.81
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A slice tile t in a patch Q is said to be of degree n if int(supp Q\{t}) has n connected
components. For example, the tile t in the patch on the left of Figure 3.84 is a slice tile
of degree 4. In order to define a decoration with end points A and B, for the patch in
the figure, we have to visit the tile t three times, as demonstrated on the right side of the
figure. Therefore, we cannot define a valid decoration with end points A and B, for the
patch in the figure. For that reason we want to avoid getting slice tiles of degree higher
than 2, in a substitution.

A B A B

t

Figure 3.84: t must be visited at least three times in order to define a decoration from A
to B.

In order to prevent slice tiles of degree more than two to appear in a substitution, we
expand the substitution a sufficient number of times, so that the slice tiles will be pushed
to the corners of the convex patch. This is explained in details in Lemma 3.3.1.

Lemma 3.3.1. For any given substitution rule ω defined over a finite collection of convex
prototile set P, with an expansion factor λ > 1, there exists k ∈ Z+ such that every slice
tile in each n-supertile for n ≥ k has degree 2.

Proof. Suppose that P = {p1, . . . , pm} for m ∈ Z+ denotes a finite collection of convex
prototiles and ω denotes a substitution rule defined over P with an expansion factor
λ > 1. Define d = min

p∈P
{l(e) : l(e) denotes the length of e ∈ Ep} and D = max

p∈P
{l(e) :

l(e) denotes the length of e ∈ Ep}. Let Vj = {vj1, v
j
2, . . . , v

j
mj
} denotes the collection of

vertices of the prototile pj for mj ∈ Z+ and j ∈ {1, . . . ,m}. For each j ∈ {1, . . . ,m} and
i ∈ {1, . . . ,mj} define two points uji,1, u

j
i,2 ∈ ∂supp pj so that d(vji , u

j
i,1) = d(vji , u

j
i,2) = d/2

where d(vji , u
j
i,s) denotes the distance between the points vji and uji,s for s = 1, 2. For

each prototile pj for j ∈ {1, . . . ,m}, define the subset Sj ⊆ supp pj such that Sj is the
convex hull consisting of the vertices {uj1,1, u

j
1,2, u

j
2,1, u

j
2,2, . . . , u

j
mj ,1

, ujmj ,2
}. This process is

illustrated in Figure 3.85 with a triangle prototile example. The shaded area in the figure
represents the convex set Sj. We have that Sj separates supp pj into mj many triangles
for each j = 1, . . . ,m. These triangles consist of the vertices vji , u

j
j,1, u

j
j,2, as demonstrated



CHAPTER 3. THE TRAVELLING ALGORITHM 84

in Figure 3.86. Let Rj
i for j = 1, . . . ,m and i ∈ {1, . . . ,mj} denotes the triangle consisting

of the vertices vji , u
j
j,1, u

j
j,2. Then we have supp pj = Sj ∪

mj⋃
i=1

Rj
i for each j = 1, . . . ,m.

Similarly, we have λs · supp pj = (λs · Sj) ∪
mj⋃
i=1

(
λs ·Rj

i

)
for each s ∈ Z+ and for each

j = 1, . . . ,m.

d/2

d/2

d/2

d/2

d/2d/2

vj1

vj2

vj3

uj1,1

uj1,2

uj2,1 uj2,2

uj3,1

uj3,2

vj2

vj3

Sj

Figure 3.85: An illustration of pj and Sj for the case pj is a triangle with vertices vj1, v
j
2, v

j
3.

Sj is the shaded area.

d/2

d/2

d/2

d/2

d/2d/2

vj1

vj2

vj3

uj1,1

uj1,2

uj2,1 uj2,2

uj3,1

uj3,2

vj2

vj3

Rj
1 Rj

3

Rj
2

Sj

Figure 3.86: Demonstration of Rj
1, R

j
2, R

j
3 for the prototile pj given in Figure 3.85.

Let djs for j ∈ {1, . . . ,m} and s ∈ Z+ denote the minimum distance of a slice edge of
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ωs(pj) that is completely contained in the convex region λs · Sj. More precisely,

djs = min{d(X, Y ) : [XY ] ∩ (λs · ∂Sj) ∩ (∂supp (ωs(pj))) = {X, Y }}

where d(X, Y ) denotes the Euclidean distance between the points X, Y and [XY ] denotes
the line connecting the points X, Y . Choose k ∈ Z+ sufficiently large such that djn ≥ D

for each n ≥ k. We will show that every slice tile in any n-supertile ωn(pj) for n ∈ Z+

and j ∈ {1, . . . ,m} is a slice tile of degree 2.
Note first that every slice tile t in an r-supertile patch ωr(pj) for some r ∈ Z+ and

j ∈ {1, . . . ,m} is of degree 2 whenever supp t ⊆ ((λr · supp pj)\(λr · Sj)). That is, if t
is a slice tile whose support is completely contained in one of the triangle components of
(λr · supp pj)\(λr · Sj), then t is a slice tile of degree 2. This is because of the fact that
supp t is convex and the connected components of (λr · supp pj)\(λr · Sj) are triangles.
Therefore, a slice tile t in an r-supertile patch ωr(pj) for some r ∈ Z+ and j ∈ {1, . . . ,m}
is of degree greater than 2 if one of the following holds:

(i) supp t ⊆ λr · Sj,

(ii) supp t $ λr · Sj and supp t ∩ λr · Sj 6= ∅.

In either case t must contain an edge et so that l(et) ≥ djr where l(et) denotes the length
of the edge et. On the other hand, we have that djn ≥ D for all n ≥ k. That is, the
minimum distance in the region λn ·Sj for each j ∈ {1, . . . ,m} is greater or equal than D.
Therefore, no slice tile of an n-supertile patch can contain an edge et such that l(et) ≥ djn.
Hence, every slice tile in an n-supertile patch ωn(pj) for j ∈ {1, . . . ,m} is a slice tile of
degree 2.

Lemma 3.3.1 ensures that slice tiles can be arranged to be ‘close’ to the corners of the
supertiles. Next, we show that if a substitution is expanded a sufficient number of times,
then no slice tile can intersect with the corners of the supertiles (Lemma 3.3.2).

Lemma 3.3.2. Let P = {p1, . . . , pm} for m ∈ Z+ be a finite collection of convex tiles and
let ω be a substitution rule defined on P with a fixed expansion factor λ > 1. Suppose
further Vj = {vj1, . . . , vjmj

} denotes the collection of vertices of the prototile pj for mj ∈ Z+

and j ∈ {1, . . . ,m}. Then there exists k ∈ Z+ such that if t is a slice tile in an n-supertile
ωn(pj) for some n ≥ k and j ∈ {1, . . . ,m}, then Vt ∩ {λn · vj1, . . . , λn · vjmj

} = ∅. That is,
the tiles in an n-supertile patch ωn(pj) for some n ≥ k and j ∈ {1, . . . ,m} that intersect
with any of the corners of ωn(pj) are necessarily non-slice tiles.

Proof. Suppose P = {p1, . . . , pm} for m ∈ Z+ is a collection of convex prototiles and
ω is a substitution rule defined on P with an expansion factor λ > 1. Assume further
Vj = {vj1, . . . , vjmj

} denotes the collection of vertices of the prototile pj for mj ∈ Z+
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and j ∈ {1, . . . ,m}. Define d = min
p∈P
{l(e) : l(e) denotes the length of e ∈ Ep} and

D = max
p∈P
{l(e) : l(e) denotes the length of e ∈ Ep}. Choose r ∈ Z+ such that λr · d > D.

Next we will show that k = 2 · r satisfies the conclusion of the lemma.
Suppose that t is a slice tile in an r-supertile ωr(pj) such that λr · vji0 ∈ Vt for some

j ∈ {1, . . . ,m} and i0 ∈ {1, . . . ,mj}. That is, the slice tile t contains a corner of the
supertile ωr(pj). Then t contains a slice edge et with end points vji0 and uji0 such that
uji0 ∈ ∂supp (ωr(pj)). Then the patch ωk(pj) = ω2·r(pj) contains a subpatch ωr(t) which
corresponds to the substitution of t. Moreover, there exists a line L = λr · et which
corresponds to the substitution of the edge et. Since we choose r ∈ Z+ such that λr ·d > D,
the line L cannot belong to a single tile. That is, L cannot be a slice edge in the patch
ωk(pj). This process is illustrated in Figure 3.87. The patch on the left of the figure
represents the patch ωr(pj) for some prototile pj ∈ P . The patch on the right shows how
the tile t is substituted to ωr(t). Observe that the slice edge et for the patch on the left is
substituted to a line that is not a slice edge for the patch on the right of the figure.

t
et

Figure 3.87

Hence, the tiles in an n-supertile patch ωn(pj) for some n ≥ k and j ∈ {1, . . . ,m}, and
intersect with any of the corners of ωn(pj) are necessarily non-slice tiles.

Corollary 3.3.3. Let P = {p1, . . . , pm} for m ∈ Z+ be a finite collection of convex tiles
and let ω be a substitution rule defined on P with a fixed expansion factor λ > 1. Suppose
further Vj = {vj1, . . . , vjmj

} denotes the collection of vertices of the prototile pj for mj ∈ Z+

and j ∈ {1, . . . ,m}. Then there exists k ∈ Z+ such that the following holds:

(1) if t is a tile in an n-supertile ωn(pj) for some n ≥ k and j ∈ {1, . . . ,m}, then
Vt ∩ {λn · vj1, . . . , λn · vjmj

} = ∅.

(2) Every slice tile in each n-supertile for n ≥ k has degree 2.

Proof. The proof follows by Lemma 3.3.1 and Lemma 3.3.2.

Finally, we are ready to group slice tiles appearing in a supertile patch, using Corollary
3.3.3. We showed in Corollary 3.3.3 that if a substitution is expanded sufficiently many
times, then every slice tile is ‘close to’ a corner, though not touching the corner. Therefore,
every slice tile separates the corners of the supertiles in two sets, one of which is a singleton.
In particular, we have the following definition.
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Definition 3.3.4. Suppose Q is a patch satisfying the following:

(i) supp Q is a convex n-gon with vertices X1, . . . , Xn for some n ∈ Z+ (i.e. X1, . . . , Xn

are corners of the convex patch Q),

(ii) Every tile u of Q is convex,

(iii) Every slice tile u′ of Q is a slice tile of degree 2 so that

(iii-a) Vu′ ∩ {X1, . . . , Xn} = ∅,

(iii-b) If S1 and S2 are the two connected components of the collection Q\{u′}, then
|VS1 ∩ {X1, . . . , Xn}| = 1 and |VS2 ∩ {X1, . . . , Xn}| = n− 1.

Then a slice tile t ∈ Q separates the corners of Q into two sets, one of which is a single
vertex {X}. We call t the slice tile around the vertex X.

An example of a slice tile around a vertex is given in Figure 3.88. The slice tile t in
the patch in Figure 3.88 separates the corners of the patch into two parts, one of which is
a single vertex set {X}. Therefore, t is a slice tile around the vertex X. By identifying
slice tiles with the corners of patches that has convex support, we can group the slice tiles
at the same vertices into patches.

t

u
X

Figure 3.88: t is a slice tile around the vertex X.

Definition 3.3.5. Suppose SX denotes the smallest collection of tiles in a given patch Q
such that if SX is composed into a single tile uX , then X ∈ VuX and the composed patch
Q′ = (Q\SX) ∪ {uX} does not contain a slice tile around the vertex X. We call SX the
slice cluster of Q around X.

For example, the patch in Figure 3.88 has a slice cluster SX = {t, u} around the vertex
X. In the next section we will examine the simplest form of slice clusters.
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3.3.1 Strings

In this section we study a special class of patches called strings. Strings are analogous to
path graphs in the graph theory (See the discussion at the end of this chapter).

Definition 3.3.6. A patch Q is called a string if either of the following holds:
(1) Q is a single tile patch, or
(2) Q contains exactly two non-slice tiles, and every tile t of Q has an edge e such that

e ⊆ ∂supp Q.

Figure 3.89: Examples of strings

Lemma 3.3.7. No patch can only consist of slice tiles.

Proof. Assume to the contrary. Let Q be a patch and u1 ∈ Q is a slice tile in Q. There
exists a subpatch Q1 $ Q such that Q1 is one of the connected component patches that u1

separates. Choose a tile u2 in Q1. Because u2 is a slice tile in Q, there exists a subpatch Q2

that u2 separates so that Q2 $ Q1. Continuing the same process leads to a contradiction
since |Q| is finite and can only have finitely many subpatches.

Corollary 3.3.8. Every patch which is not a single tile patch must contain at least two
non-slice tiles.

Proof. LetQ be a patch such that |Q| ≥ 2. Assume to the contrary thatQ contains at most
one non-slice tile. Choose a slice tile u in Q. Since it separates Q, one of the component
patches, which is separated by u, must consists of solely slice tiles. A contradiction, by
Lemma 3.3.7.

Corollary 3.3.9. Every slice tile in a string is of degree 2.

Proof. Assume to the contrary. Suppose u is a slice of degree 3 or more for a string Q.
Then there are at least three disjoint subpatches that u separated. Because Q contains
exactly two non-slice tiles, one of the patches that u separated does not contain a non-slice
tile, which contradicts Lemma 3.3.7.

Lemma 3.3.10. Suppose Q is a string which is not a single tile patch and u is a non-slice
tile of Q. Then we have |{t ∈ Q : ∃e ∈ Eu so that e ∈ Et ∩Eu}| = 1. That is, u can only
have one ‘neighbour tile’ in Q which shares an edge with u.
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Proof. The statement holds for any string consisting two tiles. Suppose Q is a string
consisting of at least three tiles with non-slice tiles u1, u2.

Assume to the contrary. Let t1, t2 ∈ Q such that Eu1 ∩ Eti 6= ∅ and u1 6= ti for each
i = 1, 2. Since u1 6= ti for i = 1, 2, we have one of the following holds:

(i) u2 6= ti for each i = 1, 2,

(ii) u2 = t1 or u2 = t2.

In either case, (at least) one of t1 or t2 must be a slice tile for Q because u1, u2 are the
only non-slice tiles of the string Q. Assume without loss of generality t1 is a slice tile in Q.
We have that t1 is a slice tile of degree 2 by Corollary 3.3.9. Then t1 must separate Q into
two subpatches P1, P2 such that P1 ∪ P2 = Q\{t1} and P1 ∩ P2 = ∅, as shown on the left
side of Figure 3.90. Since t2 and u1 share a common edge, they must belong to the same
connected subpatch, say P1. Moreover, u2 must belong to P2 because P2 cannot contain
only slice tiles by Lemma 3.3.7. Since t2 ∈ P1 and u2 ∈ P2, we get t2 6= u2. Therefore,
t2 a slice tile for Q as well. We have that u, t2 ∈ P1 and t2 is a slice tile of degree 2 in Q
by Corollary 3.3.9. So, t2 separates Q into two subpatches S1, S2 such that S1 $ P1 and
P2 $ S2, as shown on the right side of Figure 3.90.

t1 t2P1 P2 S1 S2

Figure 3.90

Since u1 and t1 share a common edge, u1 and t1 must both belong to S1. On the other
hand, t1 /∈ P1 because Q\{t} = P1 ∪ P2. That is, t1 /∈ S1, a contradiction.

Lemma 3.3.11. Let Q be a string. Then for each slice tile u ∈ Q, there are exactly two
arcs γ1, γ2 ⊆ ∂supp u over the boundary of u such that |γ1∩γ2| ≤ 1 and |γi∩∂supp Q| = 2

for i = 1, 2. That is, u must have exactly two arcs over its boundary that intersect but are
not completely contained within the boundary ∂supp Q.

Proof. Since each slice tile u of Q has degree 2 by Corollary 3.3.9, there exists two sub-
patches S1, S2 that u separates. Define γi = ∂supp Si ∩ ∂supp u for i = 1, 2. Then γ1, γ2

satisfy the desired conditions.

Remark 3.3.12. Taking Lemma 3.3.11 into account, we can identify each slice tile in a
string by either a triangle or a rectangle. In particular, if u is a slice tile in a string Q,
then |Vu ∩ ∂supp Q| = 3 or |Vu ∩ ∂supp Q| = 4, by Lemma 3.3.11.

Lemma 3.3.13. Let Q be a string consisting at least two tiles and u ∈ Q be a non-slice
tile in Q. Then Q\{u} is a string.
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Proof. Suppose Q is a string. If Q consists of two tiles t1, t2 then Q\{ti} is a single tile
for each i = 1, 2.

Suppose Q is a string consisting of at least three tiles. Suppose further u and v denote
the only non-slice tiles in Q. There exists a tile t ∈ Q\{u, v} such that t shares an edge
with u and t is a slice tile of Q. The tile t is unique by Lemma 3.3.10. We have that
Q\{u} is a well defined patch because u is a non-slice tile of Q. Moreover t and u are the
only non-slice tiles in Q\{u}. Thus, Q\{u} is a string.

Lemma 3.3.14. Suppose Q is a string and u is a tile such that supp u and supp Q

intersect along a single common edge; i.e. supp Q ∩ supp u = e for some e ∈ Eu ∩ EQ.
Then Q′ = Q ∪ {u} is a string.

Proof. Since supp Q and supp u intersect along a single common edge e, supp Q′ =

supp (Q ∪ {u}) is simply connected. So, Q′ is a (well-defined) patch and e is a slice
edge of it. Hence, Q′ contains only two non-slice tiles and is a string.

Lemma 3.3.15. For any given circle patch Q and a tile t ∈ Q, the collection Q\{t} is a
string.

Proof. We have that supp Q\{t} is simply connected because every tile contains the centre
of Q. Therefore, Q\{t} is a subpatch of Q. Suppose Q\{t} is not a single tile patch. Since
every tile in a circle patch has exactly two neighbour tiles, every tile in Q\{t} must contain
two neighbour tiles, except the tiles u, u′ ∈ Q which are neighbour tiles of t ∈ Q. These
are the only non-slice tiles in Q\{t}. Hence, Q\{t} is a string.

Orders in Strings

Proposition 3.3.16. Suppose Q is a string consisting of at least two tiles, u is a non-slice
tile in Q and A is an isolated vertex of Q with A ∈ Vu. Then (A,B) is a valid pair for Q
for any vertex B 6= A.

Proof. We will prove the statement by strong induction. Assume first Q = {t1, t2} is a
string consisting of two tiles and A is an isolated vertex of Q with A ∈ Vt1 . Suppose
further X, Y denote the shared exterior vertices of Q and B is a given exterior vertex of
Q such that B 6= A. We have three cases:

(i) B = X (or B = Y ),

(ii) B 6= X, B 6= Y and B ∈ Vt1 ,

(iii) B 6= X, B 6= Y and B ∈ Vt2 .
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If B = X, then define decorations for t1 and t2 with end points A, Y and Y,X,
respectively. Then (A,B) is a (simple) valid pair for Q.

If B 6= X, B 6= Y and B ∈ Vt1 , then define a 2-curve decoration for t1 with end point
pairs A,X and B, Y , and a simple curve decoration for t2 with end points X, Y . Then
(A,B) is a valid pair for Q.

If B 6= X, B 6= Y and B ∈ Vt2 , then define decorations for t1 and t2 with end points
A, Y and Y,B, respectively. Then (A,B) is a (simple) valid pair for Q.

A X

Y

A X

Y

A X

Y
B B

Figure 3.91: The three cases (i)− (iii) are demonstrated from left to right, respectively

Thus the statement holds for every string consisting of two tiles. Suppose the statement
holds for every string consisting of at most n tiles for n ≥ 2. Assume that Q is a string
with |Q| = n+ 1, u is a non-slice tile in Q and A is an isolated vertex of Q with A ∈ Vu.
We have that Q\{u} is a string by Lemma 3.3.13. Let X, Y denote the shared exterior
vertices of Q such that X, Y ∈ VQ\{u}. We have two cases:

(1) X or Y (or both) is an isolated vertex for the string Q\{u},

(2) Both X and Y are shared exterior vertices for the string Q\{u}.

These cases are illustrated in Figure 3.92. The middle string is an example of the case
where Y and X are shared exterior vertices of Q\{u}, the string on the left is an example
of the case where only X is an isolated vertex of Q\{u} and the string on the right is an
example for both X and Y are isolated vertices of Q\{u}. Notice that Case (2) is not
possible since every tile in Q must contain an edge which is completely contained over the
boundary of Q. Therefore, either X or Y (or both) is an isolated vertex for the string
Q\{u}.

X

Y

u

X

Y

u

X

Y

u

Figure 3.92

We have three subcases:

(a) B = X (or B = Y ),
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(b) B 6= X, B 6= Y and B ∈ Vu,

(c) B 6= X, B 6= Y and B /∈ Vu.

X

Y

A X

Y

A X

Y

A

B B

Figure 3.93: Case (a) to (c) are demonstrated from left to right, respectively

If B = X (or B = Y ), then define a decoration for u with end points A and Y (orX). Since
Q\{u} is a string with X being an isolated vertex of it, (X, Y ) is a valid pair for Q\{u},
by the strong induction assumption. Thus, (A,B) is a valid pair for Q, as demonstrated
on the leftmost patch in Figure 3.93.

If B 6= X, B 6= Y and B ∈ Vu, then define a 2-curve decoration for u with end point
pairs A,X and B, Y . Since Q\{u} is a string with X being an isolated vertex of it, (X, Y )

is a valid pair for Q\{u}, by the strong induction assumption. Thus, (A,B) is a valid pair
for Q, as demonstrated on the middle patch in Figure 3.93.

If B 6= X, B 6= Y and B /∈ Vu, then define a decoration for u with end points A and
Y . Once again, because (X, Y ) is a valid pair for Q\{u}, (A,B) is a valid pair for Q, as
demonstrated on the rightmost patch in Figure 3.93.

Corollary 3.3.17. Suppose Q is a string and u, v are the two non-slice tiles of Q. Assume
(Q, t) is a composition pair and et is a decoration of t with end point pairs A,B and
C,D such that A,B,C ∈ Vu and D is an isolated vertex of Q with D ∈ Vv. Then
{(A,B), (C,D)} is a split pair for Q.

Proof. Assume without loss of generality Q have at least two tiles. Then u can have one
neighbour tile in Q by Lemma 3.3.10. Therefore there are exactly two shared exterior
vertices of Q that belong to u. Therefore, one of A,B,C is an isolated vertex of Q.
Suppose further without loss of generality A is an isolated vertex of Q. Define Q1 = {u}
and

Q2 =

Q if C is an isolated exterior vertex of Q

Q\{u} if C is a shared exterior vertex of Q.

We have that Q\{u} and Q are both strings by Lemma 3.3.13. Define also C1 to be
a simple curve that connects A and B in Q1. Then C1 makes (A,B) a valid pair for Q1.
Moreover, there exists a curve C2 that makes (C,D) a valid pair for Q2, by Proposition
3.3.16. Since these curves can be arranged not to cross each other, {(A,B), (C,D)} is a
split pair for Q.
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Remark 3.3.18. The only order structure result we defined for strings are Proposition
3.3.16 and Corollary 3.3.17. The decorations we defined for the tiles in strings, in the proofs
of the proposition and the corollary, have end points at the boundary of the string. That
is, the decorations are not visiting any interior vertices in a string. Therefore, together
with the comments on Remark 3.3.12, we can assume without loss of generality that all
the tiles in a string is either a triangle or a rectangle.

Circle Decompositions in Strings

Lemma 3.3.19. Suppose Q is a string consisting of rectangles and triangles and u1, u2

are two non-slice tiles of Q. Assume further that t is a tile of Q and Q′ is a patch which
is generated by finitely many circle decomposition steps over Q so that there exists a cyclic
subpatch St of Q′ with Q′\St = Q\{t}. That is, Q′ is generated by decomposing the tile t
in Q. Then we have:

(1) If (A,B) is a valid pair for Q for some distinct exterior vertices A,B of Q, then
(A,B) is a valid pair for Q′ as well.

(2) If {(A,B), (C,D)} is a split pair for Q for some distinct exterior vertices A,B,C,D
of Q, then {(A,B), (C,D)} is a split pair for Q′ as well.

Proof. We will only prove (2). The proof of (1) is similar. Suppose {(A,B), (C,D)} is a
split pair for Q by some decoration C. Then C induces a decoration et for t. We have two
cases; either et is a simple decoration with end points M,N or et is a 2-curve decoration
with end point pairs M,M ′ and N,N ′.

Suppose that et is a simple decoration with end points M,N . We have that (M,N) is
a valid pair for the cyclic patch St by (1) of Theorem 3.2.42. Therefore, {(A,B), (C,D)}
is a split pair for Q′ as well, by Lemma 3.2.37.

Suppose now et is a 2-curve decoration with end point pairs M,M ′ and N,N ′. We
define a circle composition process for St, by the circle composition algorithm, such that
{t} = ΘXn ◦ · · · ◦ ΘX1(St) is a single tile patch where X1, . . . , Xn are interior vertices
of St for some n ∈ Z+. Since the tiles of Q are either rectangles or triangles, we have
that Θ−1

Xn
({t}) is a circle patch so that there are (at least) two tiles u1

t , u
2
t ∈ St with

Vuit ∩ {M,N,M ′, N ′} 6= ∅ for i = 1, 2. Therefore, {(M,M ′), (N,N ′)} is a split pair for
Θ−1
Xn

({t}) by Proposition 3.2.12. Thus, {(M,M ′), (N,N ′)} is a split pair for the cyclic
patch St by the same argument applied in the proof of (2) of Theorem 3.2.42. Hence,
{(A,B), (C,D)} is a split pair for Q′ as well, by Lemma 3.2.37.

Corollary 3.3.20. Suppose Q is a string consisting of rectangles and triangles and u1, u2

are the two non-slice tiles of Q. Assume further that Q′ is a patch which is generated by
finitely many circle decomposition steps over Q. Then we have:
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(1) If (A,B) is a valid pair for Q for some distinct exterior vertices A,B of Q, then
(A,B) is a valid pair for Q′ as well.

(2) If {(A,B), (C,D)} is a split pair for Q for some distinct exterior vertices A,B,C,D
of Q, then {(A,B), (C,D)} is a split pair for Q′ as well.

Proof. The proof follows by applying Lemma 3.3.19 for each tile t of Q.

3.3.2 Order Systems for Substitution Tilings

The travelling algorithm provides an order system for any given substitution rule satisfying
mild conditions. We explain this final step by the help of the following theorem.

Theorem 3.3.21. Suppose Q is a patch consisting of convex tiles so that supp Q is convex.
Assume further that {X1, . . . , Xn} for n ∈ Z+ denotes the collection of corners of Q and
for every slice tile t of Q the following holds:

(1) t is a slice tile of degree 2,

(2) Vt ∩ {X1, . . . , Xn} = ∅.

Assume further there is no circle subpatch S of Q that intersects two different slice clusters
of Q. Let u be a tile so that (Q, u) is a composition pair. Then we have that

(1) If eu is a simple decoration with end points A,B, then (A,B) is a valid pair for Q.

(2) If eu is a 2-curve decoration with end point pairs A,B and C,D, then
{(A,B), (C,D)} is a split pair for Q.

Before giving the proof of the theorem we explain a few more results that are related
with the possible decorations of tiles. These are results about simplifications of possible
decorations of tiles and an observation about the decorations defined according to the
proofs we provided in earlier sections. Recall that the only simplification result about
2-curve decorations we proved so far was Proposition 3.2.39 (and Corollary 3.2.40). That
is, if a tile t in a circle patch Q has a 2-curve decoration induced from a decoration C of Q,
then we can assume without loss of generality that the 2-curve decoration of t intersects
with the centre X of Q (Corollary 3.2.40). This is valid for all tiles in the circle patch Q
that have a 2-curve decoration induced from C. For that, we used this result for every tile
that occurs during the circle decomposition steps in the related proofs we provided earlier.
We will provide two more simplification lemmas as well. The simplification lemmas we will
provide now, on the other hand, are defined only for some tiles of a given cyclic patch. That
is, we will only focus on possible decoration of a single tile that we choose. We will focus
on modifying its decoration according to our needs. Therefore, these lemmas we provide
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are defined for local simplification purposes, rather than to the (global) simplification
given in Proposition 3.2.39 (and Corollary 3.2.40). We will explain what we mean by local
purposes with an example. Consider the decoration curves in Figure 3.94. Suppose we
choose the tile t that is shown on the leftmost patch of the figure. Suppose further we
want its decoration to intersects with the centre of the circle patch. The curve in the
middle patch of the figure makes (A,B) a valid pair for the circle patch, and induces a
simple decoration for t with end pointsM,N . Since the decoration of t does not intersects
with X, we redefined the curve in the middle patch, which makes (A,B) a valid pair.
We reform the curve in the middle patch into the curve shown on the rightmost patch in
the figure. The reformed curve still makes (A,B) a valid pair, though the decoration of t
induced by this curve has end points N,X. That is, we reformed the curve in the middle
of the figure, which makes (A,B) a valid pair, such that the (new) simple decoration of
the chosen tile t hits the centre X of the circle patch, as shown over the right side of
the figure. Since we make use of the circle patches during the circle decomposition steps,
we have many possible choices to pick for implementing. Due to these possible different
choices we can make, we are able to define the following simplification lemmas.

A

B

N

M

A

B

N

M

A

B

N

M

t2

t1 t
X

Figure 3.94

The following two lemmas (Lemma 3.3.22 and Lemma 3.3.23) are about simplifications
of possible decorations appearing for some chosen tiles. The next lemma (Lemma 3.3.24)
is, on the other hand, about an observation for the decorations of tiles in a cyclic patch
which are defined according to the instructions in the proofs of earlier results.

Lemma 3.3.22. Suppose Q is a circle patch with centre X, t is a tile in Q and A,B,C,D
are distinct exterior vertices of Q. Suppose further Q has at least three tiles and t is a
topological triangle that has end points M,N,X. Then the following holds:

(1) If there exists a curve C that makes (A,B) a valid pair for Q such that the decoration
et of t, which is induced by C, has end points M,N , then there exists another curve C ′ that
makes (A,B) a valid pair for Q and the decoration e′t of t, which is induced by C ′, has end
points M,X or N,X. That is, the (new) decoration of t hits the centre of the circle patch.
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(2) If there exist curves C1, C2 that make {(A,B), (C,D)} a split pair for Q such that the
decoration et of t, which is induced by C1∪C2, has end pointsM,N , then there exists another
pair of curves C ′1, C ′2 that make {(A,B), (C,D)} a split pair for Q and the decoration e′t of
t, which is induced by C ′1∪C ′2, has end points M,X or N,X. That is, the (new) decoration
of t hits the centre of the circle patch.

Proof. We prove both cases at once. Assume that Q is a circle patch with centre X that
contains at least three tiles. Let t be a tile in Q with neighbour tiles t1, t2 ∈ Q. Suppose t is
a topological triangle that has verticesM,N,X. Suppose further t1 and t2 can be regarded
as topological triangles with vertices M,M ′, X and N,N ′, X, respectively. If t contains a
simple decoration with end points M,N , then t1 contains a decoration intersecting with
M , and t2 contains a decoration intersecting with N . Denote the decorations of t, t1, t2
as et, et1 , et2 , respectively. We have two cases; either one of et1 or et2 do not intersect
with X, or X ∈ et1 ∩ et2 . Notice that the latter case does not occur in Proposition 3.1.10
or Proposition 3.2.12. Therefore, we can assume without loss of generality that et1 has a
simple decoration with end pointsM,M ′. Define a decoration e′t1 for t1 with end pointsM ′

and X, as well as a decoration e′t for t with end points X,N . Then replace the decorations
et1 and et with e′t1 and e′t. The generated curve (or curves) satisfy the conclusions.

Lemma 3.3.23. Suppose Q is a circle patch with centre X and t is a tile in Q which
can be defined as a topological triangle with vertices X,M,N for some shared exterior
vertices M,N of Q. Assume that |Q| > 3 and t has neighbour tiles u1, u2 such that u1

can be defined as a topological triangle with vertices X,M,M ′ and u2 can be defined as a
topological triangle with vertices X,N,N ′ where M ′, N ′ are shared exterior vertices of Q
so that {M ′, N ′} ∩ {M,N} = ∅. Assume further A,B,C,D are distinct exterior vertices
of Q. Then the following holds:

(1) If (A,B) is a valid pair for Q by some curve C1 which is defined according to the
instructions in the proof of Proposition 3.1.10 and e1 is a 2-curve decoration of t
induced by C1. Then e1 cannot have end point pairs X,M and A,N .

(2) If {(A,B), (C,D)} is a split pair for Q by some curve C2 according to the instructions
in the proof of Proposition 3.2.12 and e2 is a 2-curve decoration of t induced by C2

with end point pairs X,M and C,D (C = N or D = N are allowed), then there
exists a another curve C ′2 which makes {(A,B), (C,D)} a split pair for Q such that
the decoration e′2 of t induced from C ′2 is a simple decoration.

Proof. Suppose Q, t are a patch and a tile, respectively, that satisfy the assumptions in
the lemma. Let A,B,C,D are given distinct exterior vertices of Q.

(1) Assume that (A,B) is a valid pair for Q by some curve C1 which induces a 2-curve
decoration e1 for t with end point pairs X,M and A,N . We have that A is an isolated
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vertex of Q that belongs to the tile t, as shown in Figure 3.95. Then B 6= N since e1 has a
simple curve component with end points A and N . Moreover B 6= M , because otherwise
(A,B) would be a simple valid pair for Q, by Proposition 3.1.10. Therefore, B has to
belong to another tile in Q other than t. But then, once again, (A,B) would be a simple
decoration, by Proposition 3.1.10. Hence, no such 2-curve decoration exists.

X

NM

N ′M ′
u1 u2

X

NM

N ′M ′
u1 u2

t

AA

Figure 3.95

(2) We have two further cases; whether the decoration eu1 of u1 is a simple curve or
not.

Suppose first eu1 is a simple decoration of u1. Since the decoration e2 of t has end point
pairs X,M and C,D, we have six possible decorations for u1, which are demonstrated in
Figure 3.96.

X

MM ′

X

MM ′

X

MM ′

X

MM ′

X

MM ′

X

MM ′
M ′′ M ′′

Case (i) Case (ii) Case (iii) Case (iv) Case (v) Case (vi)

Figure 3.96: Possible simple decorations for the tile u1

Case (i) : Let eu1 be a simple decoration with end points M ′,M . Change the deco-
ration of eu1 of u1 into a simple decoration e′u1 with end points M ′ and X and change
the decoration of e2 of t into a simple decoration e′2 with end points C and D. Then the
reformed curves still make {(A,B), (C,D)} a split pair for Q, as illustrated in Figure 3.97.

X

DM ′

M
C

X

DM ′

M
C

Figure 3.97: Illustration of the proof of Case (i).
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Case (ii) : The proof of this case is same with Case (i).
Case (iii) : Let eu1 be a simple decoration with end points M ′ and M ′′, as shown in

Case (iii) in Figure 3.96. Change the decoration eu1 of u1 into a 2-curve decoration e′u1
with end point pairs M ′,M ′′ and X,M . Moreover, change the decoration of e2 of t into
a simple decoration e′2 with end points C and D. Then the reformed curves still make
{(A,B), (C,D)} a split pair for Q, as illustrated in Figure 3.98.

X

D

C

M ′

M
M ′′

X

D

C

M ′

M
M ′′

Figure 3.98: Illustration of the proof of Case (iii). The decorations of the tiles u1 and t
are reformed.

Case (iv) : The proof of this case is same with Case (iii).
Case (v) : Let eu1 be a simple decoration with end pointsM ′ and X, as shown in Case

(v) in Figure 3.96. Denote e2,1, e2,2 to be the simple curve components of e2 such that
e2,1 is the simple curve with end points X,M and e2,2 is the simple curve with end points
C,D.

If eu1 is followed by the curve e2,1, then we change the decoration of u1 into a sim-
ple curve decoration e′u1 with end points M ′′,M and change the decoration e2 into the
simple decoration e2,2, as illustrated in Figure 3.99. Then the reformed curves still make
{(A,B), (C,D)} a split pair for Q.

X

D

C

M ′

M
M ′′

X

D

C

M ′

M
M ′′

Figure 3.99: Illustration of the proof of Case (v) whenever eu1 is followed by e2,1. The
decorations of the tiles u1 and t are reformed.

If eu1 is not followed by the curve e2,1, then we must have N 6= D, M = D and
{M ′′} ⊆ {A,B}, as demonstrated with an example in Figure 3.100. Define a simple
decoration e′2 with end points C and D for the single tile patch {t}. We have that Q\{t}
is a string by Lemma 3.3.15. Moreover, u1 is a non-slice tile for the string Q\{t} and M ′′

is an isolated vertex for Q\{t} which belongs to u1. Since M ′′ = A or M ′′ = B we have
that (A,B) is a valid pair for the string Q\{t}. Thus, {(A,B), (C,D)} is a split pair for
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Q by some decoration C ′ such that C ′ induces a simple curve decoration for t, with end
points C and D, as demonstrated in Figure 3.101.

N

N ′

M ′ N

N ′

M ′

M = D

X

u3

u1

u2

t

A

M ′′ = B
C

D

Figure 3.100: An example for the Case (v) whenever eu1 is not followed by e2,1.

N

N ′

M ′

A

M ′′ = B
C

D

Figure 3.101

Case (vi) : The proof of this case is similar to Case (v).
Suppose now eu1 is a 2-curve decoration. Since e2 is a 2-curve decoration for t with end

point pairs X,M and C,D, the possible 2-curve decorations for u1 are shown in Figure
3.102.

X

MM ′

X

MM ′

M ′′

Case (I) Case (II)

Figure 3.102: Possible 2-curve decorations for the tile u1

We will only prove Case (I). The proof of Case (II) is similar with the proof of Case
(I).
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Case (I) : Let eu1 be a 2-curve decoration with end point pairs M ′, X and M ′′,M , as
shown in Case (I) in Figure 3.102. Denote eu1,1, eu1,2 to be the simple curve components
of eu1 such that eu1,1 is the simple curve with end points M ′, X and eu1,2 is the simple
curve with end points M ′′,M . Denote also e2,1, e2,2 to be the simple curve components
of e2 such that e2,1 is the simple curve with end points X,M and e2,2 is the simple curve
with end points C,D.

Assume first that eu1,1 is followed by the curve e2,1. Change the decoration eu1 of u1

into a simple decoration e′u1 which has end pointsM ′ andM ′′. Change also the decoration
e2 of t into the simple decoration e2,2. Then the reformed curves still make {(A,B), (C,D)}
a split pair for Q, as shown in Figure 3.103.

X

D

C

M ′

M
M ′′

X

D

C

M ′

M
M ′′

Figure 3.103: Illustration of the proof of Case (I) whenever eu1,1 is followed by e2,1. The
decorations of the tiles u1 and t are reformed.

Assume now that eu1,1 is not followed by the curve e2,1. Let u3 be a tile in Q\{u1}
such that M ′ ∈ Vu3 . That is, u3 and t are the neighbour tiles of u1. Suppose eu3 denotes
the decoration of u3 induced by C2. Since both eu1 and e2 - the decorations of u1 and
t, respectively- are 2-curve decorations, we have that eu3 is a simple decoration. This is
because of the fact that no three ‘consecutive’ 2-curve decorated tiles, such as u3, u1, t

in Q, occur in the proof of Proposition 3.2.12. Let eu3 denotes the simple decoration of
u3. Then eu3 is a simple decoration with end points either Y,X or Y,M ′, where Y is
an exterior vertex of Q such that Y 6= {M,N,M ′, N ′, X}, as illustrated in Figure 3.104.
Moreover, eu3 has to be followed by eu1,1, according to the instructions in the proof of
Proposition 3.2.12.

X

M ′Y

X

M ′Y

Case (I-a) Case (I-b)

Figure 3.104: Possible 2-curve decorations for the tile u3

Subcase (I− a) : Suppose eu3 is a simple decoration of u3 with end pointsM ′, Y where
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Y is an exterior vertex of Q such that Y /∈ {M,N,M ′, N ′, X}. Change the decoration
eu3 of u3 into a simple curve decoration eu3 which has end points X and Y . Change the
decoration eu1 of u1 into a simple curve decoration e′u1 which has end points X and M ′′.
Lastly, change the decoration e2 of t into a simple curve decoration e′2 which has end points
C,D. Then the reformed curves make {(A,B), (C,D)} a split pair for Q, as illustrated in
Figure 3.105.

X
Y

M ′ M

N
X

Y

M ′ M

N

Figure 3.105: Illustration of the proof of Case (I-a). The decorations of the tiles u3, u1

and t are reformed. The decorations of u3 (on the right side of the figure) is not followed
by the decoration of u1 (on the right side of the figure), even though they both intersect
with X.

Subcase (I− b) : Suppose eu3 is a simple decoration of u3 with end points X, Y where
Y is an exterior vertex of Q such that Y /∈ {M,N,M ′, N ′, X}. Change the decoration
eu3 of u3 into a simple curve decoration eu3 which has end points Y and M ′. Change the
decoration eu1 of u1 into a simple curve decoration e′u1 which has end points X and M ′′.
Lastly, change the decoration e2 of t into a simple curve decoration e′2 which has end points
C,D. Then the reformed curves make {(A,B), (C,D)} a split pair for Q, as illustrated in
Figure 3.106.

X
Y

M ′ M

N
X

Y

M ′ M

N

Figure 3.106: Illustration of the proof of Case (I-b). The decorations of the tiles u3, u1

and t are reformed. The decorations of u3 (on the right side of the figure) is not followed
by the decoration of u1 (on the right side of the figure).

Lemma 3.3.24. Suppose Q is a cyclic patch consisting of convex tiles and t ∈ Q is a tile
so that t has an edge e with e ⊆ ∂supp Q. If {(A,B), (C,D)} is a split pair for Q by some
curve C, which is defined according to the instructions in the proof of Theorem 3.2.42, such
that C induces a 2-curve decoration dt for the tile t, then we have that dt ∩ ∂supp Q 6= ∅.

Proof. The statement holds for any given circle patch. Suppose Q is a cyclic patch which
is not a circle patch. Assume further {u} = ΘXn ◦ · · · ◦ ΘX1(Q) is a sequence of circle
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composition steps of Q for some n ∈ Z+. Then we have that Q = Θ−1
X1
◦ · · · ◦ Θ−1

Xn
({u})

is sequence of circle decomposition steps of the single tile patch {u}. There exists j ∈
{1, . . . , n} such that t ∈ Θ−1

Xj
◦ · · · ◦ Θ−1

Xn
({u}) and t /∈ Θ−1

Xj+1
◦ · · · ◦ Θ−1

Xn
({u}). That is, t

is formed during the circle decomposition step by the vertex Xj, and not formed in any
earlier steps. The circle decomposition step by the vertex Xj can be illustrated as in
Figure 3.107.

t

Xj+1

Xj

X ′j
X ′′j

Figure 3.107: t is formed during the circle decomposition step by the vertex Xj.

Since t appears during the circle decomposition step by the vertex Xj, it is a tile in
a circle patch which has a centre Xj, as shown in Figure 3.107. Suppose γ = ∂supp t ∩
∂supp Q is the arc that corresponds to the boundary of t which is contained over the
boundary of Q and has end points X ′j, X ′′j . The tile t can be regarded as a topological
triangle with vertices Xj, Xj−1, X ′j. Then we must have dt ∩ γ 6= ∅, by geometric reasons.

Proof of Theorem 3.3.21. We will only prove (1). The proof of (2) is similar. Suppose Q is
a patch satisfying the assumptions given in the theorem. Then we can define slice clusters
for each corner of Q. Assume without loss of generality there is only one slice cluster SX
of Q where X is a corner of Q. By Corollary 3.3.20, we can further assume without loss
of generality that SX is a string. Compose the slice cluster SX of Q into a single tile uX .
The generated composed patch Q′ is a cyclic patch consisting of convex tiles such that no
circle subpatch of it contains two (or more) of its corners.

Q Q′X X

Figure 3.108: Q′ is a cyclic patch and is a composition of Q
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By Theorem 3.2.42, there exists a curve C that makes (A,B) a valid pair for Q′. We
have that C induces a decoration for the tile uX . Next we will decompose the decoration
of uX into a decoration for SX with the same end points, with the help of Lemma 3.2.37.
We have that uX is formed in a circle decomposition step during the circle decomposition
process of {u} (into Q′). Identify uX with a topological triangle with end points M,N, Y ,
where Y is the centre of the circle patch that uX belongs to. Denote the decoration eu of
uX that induces from C. We have two cases; eu is either a simple decoration or a 2-curve
decoration.

M

Y

N

M

Y

N

M

Y

N

X X = A X = A

Figure 3.109: Possible decorations for uX

Suppose first eu is a simple decoration. Using Lemma 3.3.22 we can assume without
loss of generality that eu has end points Y, Y ′ for some Y ′ ∈ VuX . Since Y is an isolated
vertex of SX that belongs to a non-slice tile of SX , we have that (Y, Y ′) is a valid pair for
SX , by Proposition 3.3.16. Thus, (A,B) is a valid pair for Q by Lemma 3.2.37.

Suppose now eu is a 2-curve decoration of uX . Using Lemma 3.3.23 and Lemma 3.3.24
(together with Corollary 3.2.40) the only possible 2-curve decoration uX can have is a
2-curve decoration with end point pairs M,X and Y,N such that X = A (or X = B).
Assume that uX is a 2-curve decoration with end point pairs M,A and N, Y , as shown on
the right of Figure 3.109. Then we have that {(M,A), (N, Y )} is a split pair for SX by
Corollary 3.3.17. Thus, once again, (A,B) is a valid pair for Q by Lemma 3.2.37.

Finally, the following theorem ensures that every substitution tiling satisfying mild
conditions gives rise to a (decorated) substitution tiling whose substitution rule is com-
patible with the given one. In Chapter 4 we will explain in detail what we mean by
compatibility with the given substitution rule.

Theorem 3.3.25. Suppose P is a given finite collection of convex tiles, ω is a primitive
substitution rule defined on P and T is a recognisable substitution tiling generated by the
substitution rule ω. Then there exist a finite collection of decorated prototiles P ′ and a
primitive substitution rule ω′ defined on P ′ such that the following holds:

(1) For any p′ ∈ P ′ there exists a unique p ∈ P such that p′ is a decorated copy of p with
label l(p′) = (l(p), ep) for some decoration ep for p.

(2) There exists k ∈ Z+ such that if p′ is a decorated copy of p with decoration ep, then
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(i) supp ω′(p′) = supp ωk(p),

(ii) ω′(p′) is a decorated copy of ωk(p) with decoration C which has end points λk ·
A, λk ·B (or end point pairs λk ·A, λk ·B and λk ·C, λk ·D) where A,B are end
points of ep (or A,B and C,D are end point pairs of ep) and λ is the expansion
factor of ω.

In particular, there exists a recognisable, primitive, self-similar substitution tiling T ′ with
a prototile set P ′ and a substitution rule ω′.

Proof. The proof follows by Theorem 3.3.21 together with the (same) argument explained
in Theorem 3.2.43.

Remark 3.3.26. The assumptions primitivity, recognisability and FLC in Theorem 3.3.25
are standard in order to construct the associated tiling dynamical systems. The only non-
standard assumption in the theorem is the convexity of tiles which is a sufficient (but not
necessary) condition in order make the desired circle composition steps well defined. On
the other hand, for every 2-dimensional tiling T there exists a dual tiling T ′ whose tiles
are convex [8]. However, T ′ is not necessarily a substitution tiling even if T is. We cannot
make use of T ′ in our construction. Therefore, the convexity assumption in the statement
of Theorem 3.3.25 is needed.

We outline the algorithm based on Theorem 3.3.25 as follows:
The Travelling Algorithm :

Step - 1: Check if there exists k ∈ Z+ such that every k-supertile is a cyclic patch. If
this is the case, apply Theorem 3.2.43 (or even Theorem 3.1.13 if the supertiles are circle
patches). Otherwise move to Step - 2.

Step - 2: Find sufficiently large n ∈ Z+ such that every n-supertile only contains a
cluster of slice tiles a single tile away from a corner.

Step - 3: Compose each slice cluster into a single tile, and apply Theorem 3.2.43.
Step - 4: Decompose the decoration attached to the single tiles, which are formed by

composition of slice clusters, into curves with same end points (or end point pairs) that
visits the tiles in the slice clusters at most twice.

It is worth noting that although we allow tiles to be visited twice, for most of the
known substitution tilings (if not all), there is a travelling algorithm that forms only
simple decorations for the tiles of the tilings.

3.3.3 Relation with the Hamiltonian Path Problem

In the field of graph theory, the Hamiltonian Path Problem is a widely known problem of
finding a path from a given connected graph, that visits every vertex of the graph once.
We show that there is a correlation between Hamiltonian path problem and the travelling
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algorithm for some special cases. In fact, the travelling algorithm finds Hamiltonian paths
for some connected graphs satisfying (strong) conditions (See Theorem 3.3.27 and Theorem
3.3.28).

Let Q be a given patch. Fix an interior point for each tile in Q. The collection of the
fixed points define a vertex set V . For each pair of tiles that share a common vertex in
Q, define an edge connecting their fixed points (vertices). This collection forms an edge
set E. The graph G = (V,E) admits Hamiltonian path whenever Q has exterior vertices
A,B such that (A,B) is a simple valid pair for Q. This is because of the fact that simple
valid pairs visit every tile exactly once, which corresponds visiting all the vertices of the
graph. In particular, we have the following correlations:

patch Q finite connected graph G = (V,E)

tile t ∈ Q vertex v ∈ V
neighbourhood of t edges intersecting with v
circle patches of n tiles complete graphs of n vertices
strings of n rectangle tiles path graphs of n vertices
slice tile of degree n cut vertex of degree n

Theorem 3.3.27. Let Q be a patch and G = (V,E) is a connected finite graph defined as
explained above. Then G admits a Hamiltonian path if there exists exterior vertices A,B
of Q such that (A,B) is a simple valid pair of Q.

Proof. The proof follows by the fact that tiles are visited exactly once.

Theorem 3.3.28. Let Q be a cyclic patch consisting of triangle tiles and G = (V,E) is a
connected finite graph defined as explained above. Then G admits a Hamiltonian path.

Proof. The proof follows by the fact that triangle tiles can only have simple decorations,
and thus can be visited exactly once.



Chapter 4

Dimension Reduction

In this chapter we will use the decorations of tiles and patches, we defined in Chapter 3,
as a source of order structure. We will form one dimensional tilings and one dimensional
(discrete) tiling spaces. First, we construct a map that returns a one dimensional sub-
stitution tiling from any given two dimensional substitution tiling satisfying the standard
conditions. Then we will prove that this map is an almost one-to-one factor map.

Suppose P is a finite collection of convex prototiles, ω is a primitive substitution rule on
P and T is a recognisable self-similar singly edge-to-edge substitution tiling generated by
the substitution rule ω. Applying the travelling algorithm defined in Chapter 3, we get a
prototile set Pd which is a finite collection of decorated prototiles, a primitive substitution
rule ωd which is defined on Pd and a recognisable self-similar singly edge-to-edge substi-
tution tiling Td. In this chapter we will only consider the decorated substitution tiling
Td rather than the (non-decorated) two dimensional tiling T . Therefore, for simplicity,
throughout the chapter we will denote Td,Pd, ωd by T,P , ω, respectively.

Let P be a finite collection of convex decorated prototiles and ω be a primitive substi-
tution rule defined on P . We consider the decorated tilings generated by the pair P , ω and
decorations attached to these tilings. Suppose further that there exists a prototile p ∈ P
which has a simple curve decoration. Then, we can construct a decorated tiling T from the
prototile p, using the primitivity of ω. In particular, by the primitivity of ω, there exists
k ∈ Z+ and x ∈ R2 such that p−x ∈ ωk(p−x) and

(
∂supp ωk(p− x)

)
∩(supp (p− x)) = ∅.

Thus, a tiling T can be defined by T =
∞⋃
i=1

ωk·i(p− x) as illustrated in Figure 4.1.

This generated tiling T has a single relatively dense curve attached to it, because it is
generated by substituting the tile p−x which has a simple decoration attached to it. The
relatively dense curve is formed by the concatenation of all decoration curves appearing in
its tiles. Therefore, it visits every tile of T at least once and at most twice. The generated
relatively dense curve can be used as a source of total order, which will be explained later
in this chapter.

The main idea for defining a one dimensional substitution tiling from a decorated two
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ωk ωk ωk

p− x

ωk(p− x)

ω2·k(p− x)

Figure 4.1: Constructing a tiling T by substituting the tile p− x

dimensional substitution tiling depends on the existence of such relatively dense curves.
If the collection P contains at least one prototile with a simple curve decoration, then we
can construct a tiling that has a single relatively dense curve attached to it, as explained
above. On the other hand, a natural question is, can we construct a tiling with a relatively
dense curve attached to it, if every prototile in P has a 2-curve decoration? Since then
for every supertile of large order, we will have not a single curve but two curves that
visit the tiles in the supertile. Therefore, it is not so obvious whether we can construct a
single relatively dense curve which visits every tile at least once and at most twice. We
prove in Proposition 4.0.2 that such a tiling can always be constructed even if P does not
contain any prototile which has a simple decoration. Before proving the proposition we
first illustrate the idea with an example.

Example 4.0.1. Figure 4.2 shows a substitution rule, where the labels of the prototiles
are 2-curves. The prototile set in the figure consists of two decorated prototiles. Both of
the prototiles have 2-curve decorations and substitute into four square (decorated) tiles.
We will construct a decorated tiling T , and a (single) relatively dense curve D ⊆ R2 such
that D visits every tile in T exactly twice; i.e. D ∩ int(supp t) is a 2-curve for each t ∈ T .

Figure 4.2: A substitution rule

Since every prototile has a 2-curve decoration, every supertile has a decoration con-
sisting of two non-crossing curves. Therefore, if we start with the prototile on the left of
Figure 4.3, then the 2-supertile on the right of the figure contains 2 non-crossing curves
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ω2

A

C

B

D

Figure 4.3: Disconnected decorations of the gray tile, are connected through a decoration
curve of its neighbour tile in right patch of the Figure

that visit the tiles in the 2-supertile. These curves have end points A,B and C,D, re-
spectively, by the geometry of the situation. Moreover, a copy of the prototile on the left
of the figure appears in the 2-supertile patch, as illustrated with the highlighted tile in
the figure. Although the decoration curves of the prototile (which is a supertile of level-0)
in the left of Figure 4.3 are disconnected, the decoration curves of the highlighted tile in
the right patch of the figure are contained in a (connected) curve in the 2-supertile patch.
This is because of the fact that they are being connected by the decoration curve of the
tile right next to the highlighted tile in the 2-supertile patch, as demonstrated in the fig-
ure. Similarly, the 2-supertile patch on the right of Figure 4.3 contains two non-crossing
curves which is a decoration for the 2-supertile patch. These curves visit every tile in the
2-supertile patch exactly twice in total and have end points A,B and C,D, respectively.
Even though these two non-crossing curves in the 2-supertile patch are not connected,
they are contained in a single (connected) curve in the 4-supertile patch as illustrated in
Figure 4.4. That is, the two (disconnected) curves in the 2-supertile patch are contained
in a single curve in the 4-supertile patch. Therefore, by expanding these patches, we get
a nested sequence of patches. Every 2n-supertile for n ∈ Z+ contains two disconnected
curves as a decoration. Both of these curves are contained in one of the decoration curves
of the 2n+2-supertile. Hence, this process generates a decorated tiling that has a single
relatively dense curve attached, which visits every tile exactly twice.

Proposition 4.0.2. Let P denote a finite collection of decorated prototiles and ω denote
a primitive substitution rule defined on P. Suppose further T is a recognisable substitution
tiling with FLC that is generated by P and ω. Then there exists a tiling T ′ ∈ Ω(T ) and
a relatively dense curve D ⊆ R2 such that D ∩ int(supp t) is either a simple curve or a
2-curve for each t ∈ T ′.

Before the proof of the proposition, we prove the following lemma.
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Figure 4.4: Disconnected curves in supertiles are being connected in the bigger supertiles

Lemma 4.0.3. Suppose Q is a patch and A,B,C,D are distinct exterior vertices of Q.
Assume further C is a decoration of Q that makes {(A,B), (C,D)} a split pair for Q such
that C = C1 ∪ C2, where C1, C2 are non-crossing curves with end points A,B and C,D,
respectively. If |Vt ∩ {A,B,C,D}| < 2 for each t ∈ Q, then there exists a tile t0 ∈ Q such
that either (int (supp t0)) ∩ C1 = ∅ or (int (supp t0)) ∩ C2 = ∅. That is, there exists a tile
t0 ∈ Q whose decoration (induced by C) is completely contained either in C1 or C2.

Proof. Suppose that Q is a given patch and A,B,C,D are distinct exterior vertices of
Q. Suppose further |Vt ∩ {A,B,C,D}| < 2 for each t ∈ Q. Let C denote a decoration
of Q that makes {(A,B), (C,D)} a split pair for Q such that C = C1 ∪ C2, where C1, C2

are non-crossing curves with end points A,B and C,D, respectively. The decoration C of
Q induces a decoration et for each tile t ∈ Q. Assume to the contrary that for each tile
t ∈ Q, et ⊆ Ci for i = 1, 2. Since every tile has a 2-curve decoration, each tile is visited
by Ci exactly once for i = 1, 2. Let tA, tB ∈ Q denote the tiles which are visited by C1

first and last, respectively, and let tC , tD ∈ Q denote the tiles which are visited by C2 first
and last, respectively. By the given assumption in the lemma, we have that tA, tB, tC , tD
are distinct tiles in Q. Therefore, after finitely many steps of visiting tA, C1 must visit
tC before visiting tB. On the other hand, C2 is a curve with end points C,D and visits
tA once. Therefore, after visiting tA and tC , C1 cannot visit tB without crossing C2, a
contradiction.

Proof of Proposition 4.0.2. The prototile set P consists of decorated prototiles with either
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simple curve or 2-curve decorations. If there exists a prototile p ∈ P with a simple curve
decoration, then every n-supertile ωn(p) for n ∈ Z+ contains a curve that visits every tile
in the n-supertile at most twice. Thus, one can construct a tiling T ′, using the primitivity
of ω and the prototile p, such that T ′ contains a relatively dense curve D that visits every
tile in T at most twice, as desired.

Suppose now P consists of decorated prototiles whose decorations are solely 2-curves.
Choose a prototile p. Denote the components of its 2-curve decorations with e1, e2. For
each n-supertile ωn(p) for n ∈ Z+ there are two curves Cn

1 , C
n
2 which corresponds to the

substitutions of e1, e2, respectively. Using Lemma 4.0.3, choose a sufficiently large k ∈ Z+

so that the subcollection S = {t ∈ ωk(p) : supp t∩Ck
1 6= ∅}\{t ∈ ωk(p) : supp t∩Ck

2 6= ∅}
is non-empty. That is, choose k ∈ Z+ sufficiently large such that there is a tile in the k-
supertile that only intersects with Ck

1 , and does not intersect with Ck
2 . Choose q ∈ S.

Let m be a sufficiently large positive integer such that ωm(q) contains a copy of p inside.
Such an m exists since ω is a primitive substitution. Then we find a copy of p inside the
k + m-supertile ωk+m(p). Next we will construct a tiling T ′, using the primitivity of ω.
We show that this tiling contains a single relatively dense curve that visits its tiles at most
twice.

Suppose x ∈ R2 such that p+x ∈ ωk+m(p). For simplicity we will set ω′ = ωk+m. Then,
even though the decorations e1 + x, e2 + x of p + x are disconnected, they are contained
in the same connected curve in ω′(p). Similarly, ω′(p) contains two non-crossing curves
Ck+m

1 , Ck+m
2 that are corresponding to the substitutions of the disconnected curves e1, e2,

respectively. Once again, both of these curves are contained in the same (connected) curve
in (ω′)2(p). Therefore, by the same token, all disconnected curves that are concatenation
of decorations of tiles in T , are connected in a sufficiently large supertile of T . Let D
denote the concatenation of decoration curves of the tiles. Then, by the argument above,
the decorations of the tiles in T ′ are being visited by D at least once and at most twice,
as desired.

Remark 4.0.4. For any given finite collection of decorated prototiles and a primitive
substitution rule defined over it, we can construct a tiling which has a single relatively
dense curve attached to it (Proposition 4.0.2). We showed that even though the collection
P consists solely of 2-curve decorated prototiles, we can construct a tiling with a single
relatively dense curve attached to it.

It is also worth noting the other side of the story. Suppose P is a decorated prototile
set of a (decorated) tiling T such that every prototile has a simple decoration on it. Then
there might exist a tiling T ′ ∈ Ω(T ) such that there is no single relatively dense curve D
that can be attached to T , with the property that D ∩ supp t is either a simple curve or
2-curve for each t ∈ T ′. We explain this with an example as well.
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Example 4.0.5. Consider the (Hilbert’s) substitution rule in Figure 4.5 (with the ex-
pansion factor λ = 2). Suppose p is the prototile on the left of the Figure 4.6. Ap-
plying the substitution three times to the prototile p, we arrive at the 3-supertile on
the right of the figure. A copy of p appears in the 3-supertile as highlighted in the
figure. Therefore, there exists a point x ∈ R2 such that p − x ∈ ω3(p − x) and

(∂supp ω3(p− x)) ∩ (supp (p− x)) = ∅. Then T =
∞⋃
i=1

ω3·i(p − x) defines a tiling of

the plane. The prototile set of T consists solely of simple curve decorated prototiles, as
shown in Figure 4.5. Moreover, T is a recognisable primitive substitution tiling (for recog-
nisability, see the explanation in Example 5.2.1 and Example 5.2.2 in Chapter 5). Next
we construct a tiling A ∈ Ω(T ) such that no (single) relatively dense curve D is attached
to A that visits every tile in A at least once and at most twice.

Figure 4.5: Hilbert’s substitution rule

ω3

p

ω3

Figure 4.6: Constructing a Hilbert’s tiling
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ω ωω

P0

P1

P2

Figure 4.7: A sequence of patches generated by the substitution rules in Figure 4.5

Denote the leftmost two tile patch in Figure 4.7 with P0. Define Pi+1 = ω(Pi) for
i ∈ {0, 1, 2, . . . }. These iterative steps define a sequence of patches of the form ωk(P0)

for k = 0, 1, 2, . . . . The sequence is illustrated in Figure 4.7. It can be readily seen from
the figure that a copy of Pi appears in Pi+1 for each i = 0, 1, 2, . . . . More precisely, a
copy of P0 appears in P1, as shown in Figure 4.7. Assume Pn appears in Pn+1 for some
n = 0, 1, 2, . . . . Then Pn+1 = ω(Pn) appears in Pn+2 = ω(Pn+1) as well. Thus, there exists
a sequence of real numbers {xn}∞n=0 such that Pn + xn ⊆ Pn+1 for each n = 0, 1, 2, . . . .

Next we show that a copy of P3·i for i ∈ {0, 1, 2, . . . } appears in T . Indeed, a translate
of P0 appears in ω3(p), as highlighted in Figure 4.8. Then P3 = ω3(P0) appears in ω6(p) =

ω3(ω3(P0)) as well. In particular, by the same token, P3·i = ω3·i(P0) appears in ω3·(i+1)(p)

for i ∈ {0, 1, 2, . . . }. Hence, because T =
⋃

k∈Z+

ω3·k(p−x), a copy of P3·i for i ∈ {0, 1, 2, . . . }

appears in T . Finally, we construct a tiling A as follows. Define An to be a tiling in
Ω(T ) that contains P3·n around its origin for every n ∈ Z+. Because {Pn}n is a nested
(increasing) sequence of patches, An converges to a tiling A in Ω(T ). In fact, A is the
tiling generated by the substitution procedure in Figure 4.7. It can be readily seen from
the iterative system in Figure 4.7 that A does not contain any single relatively dense curve
attached to it, which visits every tile of itself at least once and at most twice.

Lemma 4.0.6. Decorated (substitution) tilings that are constructed according to the trav-
elling algorithm in Chapter 3, are repetitive.

Proof. The proof follows by (3) of Theorem 2.1.16.

Using Proposition 4.0.2 and Lemma 4.0.6, we can assume without loss of generality,
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ω3

p

ω3

Figure 4.8: P0 appears in ω3(p)

our decorated tilings that are constructed according to the machinery in Chapter 3 have
relatively dense curves attached to them, which visit their tiles at least once and at most
twice.

The Flattening Process

Suppose P is a finite collection of convex prototiles, ω is a substitution rule on P and T
is a recognisable self-similar singly edge-to-edge substitution tiling generated through the
process in Chapter 3. Assume without loss of generality that T contains a relatively dense
curve D that is formed by concatenation of decorations of its tiles, and visits its tiles at
most twice. We will construct a one dimensional substitution tiling V which satisfies the
same standard assumptions as T .

Define P1,P2 to be the subcollections of P such that P i consists of prototiles in P
whose decorations are i-curves for i = 1, 2. For each p ∈ P1 we fix a point x(p) to be
punctured such that x(p) ∈ int(supp p) ∩ ep where ep is the single curve decoration of
p. For each q ∈ P2, we choose two fix points x1(q), x2(q) to be punctured such that
xi(q) ∈ int(supp q) ∩ eiq for i = 1, 2, where e1

q, e
2
q are the two components of the 2-curve

decoration eq of q. This defines a lattice Γ ⊆ R2. We construct a discrete tiling space
Ωp(T ) = (T + Γ). From now on T will denote the punctured (decorated) tiling with
punctures induced from Γ.

Suppose further without loss of generality that by looking at the decorations of tiles,
we can recognise the tiles. That is, for p1, p2 ∈ P with decorations ep1 , ep2 , respectively,
ep1 = ep2 if and only if p1 = p2. For example, instead of using the prototile set of
2DTM-Hilbert Substitution tiling in Figure 1.8, we reform the curves in the prototiles as
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demonstrated in Figure 4.9.

a b c d e f g h

Figure 4.9: A different prototile set for 2DTM attached Hilbert

Observe that by just checking the curves on the prototiles in Figure 4.9, we are able
to detect which colour label that prototile has. This is because of the fact that we used
different curve labels for the different coloured unit square tiles.

We define a substitution rule on the curve decorations appearing in the prototiles, as
we did in the 2DTM attached Hilbert curves example in Methodology (see Figure 1.6,
Figure 1.8 and the substitution rule σ defined previous to the Figure 1.8). We first label
the curves with numbers, before constructing the substitution system for the them. Let
W i = {ep : p ∈ P i} for i = 1, 2 be the collection of i-curve decorations appearing in P i

for i = 1, 2. Since we have that |W1| = |P1| and |W2| = 2 · |P2|, there are bijections φ1, φ2

such that φ1 :W1 7→ {1, 2, . . . , |P1|} and φ2 :W2 7→ {|P1|+1, |P1|+2, . . . , |P1|+2 · |P2|}.
Define the bijection φ : W1 ∪ W2 7→ {1, 2, . . . , |P1| + 2 · |P2|} so that φ|Wi = φi for
i = 1, 2. Then φ is the desired number label map for the decoration curves attached in
the prototiles.

1
2

3
4

Figure 4.10: Labelling the curves with numbers

For each ep ∈ W1, define an interval prototile qp whose length equals to the length of
ep, and whose label is the number φ(ep). The puncture x(p), where p ∈ P is the prototile
with the simple curve decoration ep, is over the curve ep. Therefore, the puncture x(p)

of p induces a puncture for qp as well because ep is homeomorphic to the interval qp.
Similarly, for each ep = e1

p ∪ e2
p ∈ W2, define two interval prototiles q1

p, q
2
p whose lengths

equal to the lengths of e1
p, e

2
p, respectively, and whose labels are the numbers φ(e1

p), φ(e2
p),

respectively. Furthermore, q1
p, q

2
p have punctures induced by the punctures over the curves

e1
p, e

2
p, respectively. For each simple curve we constructed an interval prototile. So, this

defines a collection of (punctured) interval prototiles Q and a bijection ψ between the
collection of simple curves in W1 ∪W2 and the prototile set Q.
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1
2

3
4

1 2 3 4

Figure 4.11: Define intervals for each simple curves

We define a substitution rule for the prototiles in Q by concatenating curves in 1-
supertiles. If p ∈ P is a given decorated prototile with a simple decoration ep that has
end points A,B, then ω(p) is a 1-supertile with decoration Cp such that

(1) Cp is a curve with end points λ · A, λ ·B, where λ is the expansion factor of ω,

(2) Cp ∩ int(supp q) is either a simple curve or a 2-curve for each q ∈ ω(p).

Let Cp be the concatenation of the simple curve decorations c1, . . . , cn for some n ∈ Z+.

That is Cp =
n⋃
i=1

ci with s(ei) = r(ei−1) for each i = 2, . . . , n. Record the collection of

intervals {ψ(c1), . . . , ψ(cn)} (in the concatenation order) to be the substitution of qp.

1

2

3

4

4 1 1 2

3 2 2 1

2 3 3 4

1 4 4 3

1
2

3
4

Figure 4.12: Reading the concatenation of curves in order to define a substitution rule



CHAPTER 4. DIMENSION REDUCTION 116

Similarly, if p ∈ P is a given decorated prototile with a 2-curve decoration ep with
component curves e1

p, e
2
p, then ω(p) contains a decoration of two non-crossing curves C1

p , C2
p

such that Cip is a concatenation of the simple curves ci1, . . . , cini
for some ni ∈ Z+ and

i = 1, 2. Then we can record the collection {ψ(ci1), . . . , ψ(cini
)} to be the substitution of

the simple curve eip for i = 1, 2. Thus we formed a substitution rule ωV defined on Q.
This substitution rule is primitive, since ω is primitive.

On the other hand, let D denote the relatively dense curve over T that passes through
its tiles at most twice. Assume that D =

⋃
i∈Z+

di denotes the concatenation of simple curves

that are decorations of tiles in T . Let x(di) for i ∈ Z+ denotes the puncture over the curve
di for i ∈ Z+. Suppose further, without loss of generality, that the origin of R2 belongs
to d0 (i.e. 0 ∈ d0), and s(di) = r(di−1) for each i ∈ Z+. Then we define one dimensional
tiling V = {vi}i∈Z such that vi is an interval whose length equals to the length of di, and
whose label is the number l(vi) = φ(di) for i ∈ Z+. In particular, V is a substitution tiling
with the substitution rule ωV . Recognisability of V follows by the recognisability of T .
Hence, V satisfies the standard conditions.

Tiling T

Tiling V4 1 1 2 1 4 4 3

1-supertile 1-supertile

Figure 4.13: Flattened tiling V can be formed by the substitution rule ωV . V can be
decomposed into 1-supertiles defined by the substitution ωV

Moreover, we can define punctures for V by inducing punctures of the curves di. Be-
cause vi is homeomorphic to di for each i ∈ Z+, there exists x(vi) for each puncture x(di)

of di. Therefore, V can be regarded as a punctured substitution tiling with punctures
induced by the punctures of the curve decorations of tiles of T .

Finally, if A ∈ Ω(T ), then A does not necessarily contain a (single) relatively dense
curve (see Example 4.0.5). However, there always exists a bi-infinite curve DA, which
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passes through its origin. Suppose DA is a such bi-infinite curve passing through the origin,
which is a concatenation of countably many simple curves that are either a decoration of
some tile in A, or a connected component of a 2-curve decoration of some tile in A. In
particular, we can define DA =

⋃
i∈Z

di where di are simple curves that are decorations or a

connected part of some decorations of tiles in A. Therefore, by the same token, one can
construct a one dimensional tiling VA, for any given A ∈ Ω(T ).

A Factor Map Between Discrete Tiling Spaces

We will use the flattening steps in order to construct an almost one-to-one factor map
between discrete tiling spaces.

Theorem 4.0.7. Let T be a decorated punctured two dimensional primitive recognisable
substitution tiling with FLC. Suppose there exists a relatively dense curve D that visits
every tile of T at least once, at most twice, and is formed by concatenation of the decora-
tions of tiles in T . Assume further V is the punctured one dimensional tiling generated by
flattening the relatively dense curve D. Then there exists an almost one-to-one factor map
Φ : Ωp(T ) 7→ Ωp(V ) defined by Φ(A) = VA, where VA is the (punctured) one dimensional
tiling constructed by flattening the bi-infinite curve DA as outlined previous to the theorem.

Proof. We first prove that Φ is a well-defined map. Suppose P is patch which appears in
VA. Since flattening the curve DA forms the tiling VA, there exists a subcurve D′A ⊆ DA
which generates the patch P in the flattening process. Then D′A is contained in a patch
Q that appears in A. Since A ∈ Ωp(T ), Q appears in T as well. Therefore, the flattened
tiling V contains a copy of P because Q contains the curve D′A. Thus, VA ∈ Ωp(V ) by
Theorem 2.1.4.

Q Q

P P Tiling VTiling VA

Tiling A Tiling T

Figure 4.14: Every patch in VA appears in V
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Continuity of Φ follows from the fact that any arc connecting the origin with the
boundary of a (two dimensional) ball with radius R, has length greater or equal than R.
More precisely, for any given ε > 0 and A,B ∈ Ωp(T ), d1(Φ(A),Φ(B)) < ε whenever
d2(A,B) < ε, where di is the i-dimensional ball for i = 1, 2. Thus, Φ is (uniformly)
continuous.

For the surjectivity of Φ, suppose V ′ ∈ Ωp(V ) is given. Define a sequence of patches
{Pn}n such that Pn = V ′uB(0, n) for n ∈ Z+. Then Pn appears in V for each n ∈ Z+, by
Theorem 2.1.4. Therefore, there exists a sequence of (sub)curves {Dn}n such that Dn ⊆ D
and the flattening process of Dn gives rise to the patch Pn in V , for each n ∈ Z+. Define
{Qn}n to be any sequence of patches in T so that Qn contains the curve Dn for n ∈ Z+.
Define further En = {T ′ ∈ Ωp(T ) : T ′ matches with Qn around the origin} to be the
collection of tilings in Ωp(T ) that contains Qn around the origin. We have that En are
non-empty compact sets for each n ∈ Z+. Moreover, since Pn is an increasing sequence
of patches, Dn is a (nested) increasing sequence of curves. Therefore, {Qn}n contains
a subsequence of patches {Qnk

}nk
which is increasing (Qn is not necessarily increasing),

because {Dn}n is increasing to D. Thus, Enk
is a decreasing sequence of non-empty

compact sets. Hence, by Cantor’s intersection theorem,
⋂
nk

Enk
is non-empty, and Φ is

surjective.
The pre-image of V under the map Φ is the singleton {T}, by construction. In fact,

any punctured tiling that is a translation of V has a singleton pre-image. That is, Φ is
one-to-one over the translation orbit of T , which is dense in Ωp(T ) by Lemma 2.1.14 and
Theorem 2.1.16. Hence, Φ is almost one-to-one.

Finally, Φω = ωV Φ holds by construction where ω and ωV denote the substitution map
of T and V , respectively. Hence, Φ is an almost one-to-one factor map.

Φ Φ

1

1

4 1 1 2

Tiling ω(VA)Tiling VA

Tiling A Tiling ω(A)

ω

ω

Figure 4.15: Φ is an almost one-to-one factor map
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The Flattening Map Φ The factor map Φ defined in Theorem 4.0.7 can be regarded
as a flattening map between 2-dimensional and 1-dimensional substitution tilings. Since
1-dimensional tilings induce total orders between their tiles, it is our interest to understand
the flattening map Φ through total order systems.

Let T be a decorated substitution tiling with a relatively dense curve decoration D
attached over it. Suppose further T is primitive, recognisable and has FLC, V is the
1-dimensional substitution tiling generated by flattening the curve D and Φ : Ωp(T ) 7→
Ωp(V ) denote the associated almost one-to-one factor map as defined in Theorem 4.0.7.
For each t ∈ T , denote the decoration of t ∈ T with et. Consider the collection of tiles
T 1, T 2 such that T 1 = {t ∈ T : et is a simple decoration} and T 2 = T\T 1. Define
W 1 = {[t, et] : t ∈ T 1}, W 2 = {[t, e1

t ], [t, e
2
t ] : t ∈ T 2, et = e1

t ∪ e2
t and e1

t ∩ e2
t = ∅} and

W = W 1 ∪W 2. The curve D induces a total order over the pairs in W , as explained in
the introduction. More precisely, for [t1, e1], [t2, e2] ∈ W define [t1, e1] . [t2, e2] whenever
e1 comes before e2, according to the relatively dense curve D. This is a well-defined total
order over the collection W . On the other hand, the punctured tiling V has a natural
total order defined over its tiles. For v1, v2 ∈ V , define v1 - v2 whenever x(v1) ≤ x(v2),
where x(v1), x(v2) ∈ R are punctures of v1, v2, respectively. Next we show that the total
orders . and - are associated with each other through Φ.

The map Φ satisfies Φ(T ) = V . In particular, Φ associates every pair [t, et] ∈ W with an
interval v ∈ V . Let ϕ : W 7→ V denote this association map. That is, ϕ : W 7→ V is defined
by ϕ([t, et]) = v where v is the interval corresponding to the pair [t, et] under the map Φ.
Since V is generated by flattening the curve D, we have that for all [t1, e1], [t2, e2] ∈ W ,

[t1, e1] . [t2, e2]⇐⇒ ϕ([t1, e1]) - ϕ([t2, e2]). (0.1)

If we represents the total orders as .: W 7→ Z and -: V 7→ Z, then we have that . is
equivalent to - ◦ϕ. In words, Φ preserves the total order . through the flattening process.

Finally, we explain how the total orders .,- behave under the substitutions ω, µ of
T, V , respectively. We will only show the case for the total order -. The result for the
total order . is similar by (0.1).

Lemma 4.0.8. Suppose V is a 1-dimensional punctured substitution tiling with the sub-
stitution µ and - is the natural total order defined on the tiles of V , as defined above.
Assume further w denote the natural total order defined over the tiles of the 1-dimensional
tiling µ(V ). Let v1, v2 ∈ V be given. Then v1 - v2 if and only if for all u1 ∈ µ(v1) and
u2 ∈ µ(v2) we have u1 w u2.

Proof. The proof follows by the fact that supp (µ(v)) = λµ · supp v for all v ∈ V , where
λµ is the expansion factor of µ.



Chapter 5

Space Filling Curves

Space filling curves are usually generated by substitution structures as outlined in the
introduction. Furthermore, these substitution structures are defined on congruent shapes
that are scaled by a fixed factor in every step. For example, Hilbert’s space filling curve is
formed over a substitution system that is defined upon congruent squares. These squares
are scaled by a half in every iteration, ad infinitum. In this chapter we will form space
filling curves from any given primitive substitution system which is defined over finite
collection of convex tiles.

Hilbert’s recipe of space filling curves based on two ingredients; Cantor’s intersection
theorem and the geometric order structure defined by an iteration process. We will provide
Cantor’s intersection theorem for completeness. Furthermore, we will explain the details
of Hilbert’s geometric construction. Finally, we will show how the travelling algorithm
induces a geometric order structure which satisfies the second ingredient of Hilbert’s recipe
in a more broad way (Theorem 5.1.1).

Theorem 5.0.1 (Cantor’s Intersection Theorem). Assume that {Ak}∞k=1 is a sequence
of non-empty compact subsets of Rn such that Ak ⊇ Ak+1 for each k ∈ Z+. Then the
following holds:

(1)
∞⋂
k=1

Ak 6= ∅,

(2) If, in addition, the diameters of Ak approach to zero, then
∞⋂
k=1

Ak is a singleton.

Proof. For a proof see [2, P:56] or [4, P:88].

120
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5.1 A conventional method for generating space filling

curves

Hilbert’s space filling curve was a milestone to construct space filling curves from geometric
iterative systems. In this section we explain the details of Hilbert’s construction. Moreover,
we will show how the travelling algorithm generalise Hilbert’s construction of space filling
curves.

Define I ij to be the interval
[
j−1
4i−1 ,

j
4i−1

]
for i ∈ Z+ and j ∈ {1, 2, . . . , 4i−1}. Define also

J i
j,k to be the square

[
j−1
2i−1 ,

j
2i−1

]
×
[
k−1
2i−1 ,

k
2i−1

]
for i ∈ Z+ and j, k ∈ {1, 2, . . . , 2i−1}. Figure

5.1 illustrates these sequence of intervals and squares. For example, I2
3 is the interval[

1
2
, 3

4

]
whereas J 2

1,2 is the square
[
0, 1

2

]
×
[

1
2
, 1
]
. Hilbert’s geometric iteration system

shown in Figure 5.2 induces a bijection between the intervals I ij’s and the squares J i
j,k’s.

For instance, I2
3 corresponds to the square J 2

2,2. Denote this bijection by Φ. Let x ∈ [0, 1]

be a given point. For each i ∈ Z+, there exists ni ∈ {1, 2, . . . , 4i−1} such that x ∈ I ini
.

Note that
∞⋂
i=1

I ini
= {x}, by Cantor’s intersection theorem. Moreover,

∞⋂
i=1

Φ(I ini
) = {y} for

some y ∈ [0, 1]× [0, 1], by Cantor’s intersection theorem as well. Therefore, we can define
a function Fh : [0, 1] 7→ [0, 1]× [0, 1] by setting Fh(x) = y where x, y are as defined above.

Surjectivity of Fh follows by the bijectivity of Φ. Next we show that Fh is continuous.
Note first that for any given a, b ∈ I ij for i ∈ Z+ and j ∈ {1, 2, . . . , 4i−1}, we have that
|a− b| < len(I ij) = 1

4i−1 where len(I ij) denotes the length of the interval I ij. Furthermore,
by the construction of Fh, we have that d(Fh(a) − Fh(b)) < diam

(
Φ(I ij)

)
=

√
2

2i−1 where
diam

(
Φ(I ij)

)
denotes the diameter of the square Φ(I ij) and d denotes the Euclidean dis-

tance. Let x ∈ [0, 1] be a given point. Suppose {xn}∞n=1 is a sequence of real numbers
such that xn ∈ [0, 1] for each n ∈ Z+ and xn → x. We will prove that Fh(xn) → Fh(x).
Let ε > 0 be given. Choose i0 ∈ Z+ such that 2

√
2

2i0−1 < ε. Subsequently, choose N ∈ Z+

sufficiently large so that |x− xn| < 1
4i0−1 for each n ≥ N . Let m ≥ N be given. Since we

have |x− xm| < 1
4i0−1 , one of the following holds:

(1) x and xm belong to a same interval I i0j0 for some j0 ∈ {1, 2, . . . , 4i0−1},
(2) x ∈ I i0j0 and xm ∈ I i0j0−1 for some j0 ∈ {1, 2, . . . , 4i0−1 − 1},
(3) xm ∈ I i0j0 and x ∈ I i0j0−1 for some j0 ∈ {1, 2, . . . , 4i0−1 − 1}.
In all cases we get that d (Fh(x)− Fh(xm)) < 2 ·

√
2

2i0−1 < ε where d is the Euclidean
distance. Since m was arbitrary, we arrive that Fh is (sequentially) continuous. The map
Fh is called Hilbert’s space filling curve.

Our travelling algorithm is based on a similar idea of Hilbert’s space filling curve
construction. Hilbert’s space filling curve is formed by a substitution system which is
defined on congruent squares. In addition, the curves in each iteration step passes through
the common edges of tiles. Our travelling algorithm generates iterative systems where
curves are reformed in each level through a (circle) decomposition step and pass through
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Figure 5.1: Illustration of I ij’s and J i
j,k’s.

Figure 5.2: Geometry Behind the Hilbert’s space filling curve
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the vertices of tiles. The only differences we allow are the following:

(a) Curves move between the common vertices of tiles rather than the common edges of
tiles.

(b) Substitution systems are allowed to consists of more than one type of convex shape.

So long as, the diameter of the substituted shapes approaches to zero (as the substitution
is applied ad infinitum), Cantor’s intersection theorem is still applicable. Hence a space
filling curve can be defined through the same argument of Hilbert.

5.1.1 Substitutions to space filling curves

The following theorem ensures that we can generate infinitely many space filling curves
from any given primitive substitution rule defined over finite collection of convex shapes
of the plane.

Theorem 5.1.1. Suppose P is a finite collection of convex tiles and ω is a primitive
substitution rule defined over P with an expansion factor λ > 1. For each p ∈ P, there
exists a space filling curve f : [0, 1] 7→ supp ωN(p) for some N ∈ Z+. In particular, for
every p ∈ P, there exists a sequence of (distinct) space filling curves {fi}i∈Z+ such that fi
maps the unit interval to the set supp

(
ωN ·i(p)

)
for i ∈ Z+.

Proof. Let P = {p1, . . . , pn} for n ∈ Z+ be a finite collection of convex prototiles and let ω
be a primitive substitution rule defined on P with an expansion factor λ > 1. By Corollary
3.3.3, there is an integerN ∈ Z+ sufficiently large enough such that eachN -supertile ωN(p)

for p ∈ P satisfies the following:

(A) If there exists a slice tile in ωN(p), then it has degree 2.

(B) There is no circle subpatch S of ωN(p) such that |S ∩ Vc| > 1, where Vc is the set of
corners of the patch ωN(p).

Thus, each N -supertile satisfies the conditions in Theorem 3.3.21. Therefore, for each
prototile p ∈ P and each decoration ep for p, there exists a decoration CP of ωN(p) such
that

(i) If ep has end points A and B, then Cp makes (λN ·A, λN ·B) a valid pair for ωN(p),

(ii) If ep has end point pairs A,B and C,D, then Cp makes {(λN ·A, λN ·B), (λN ·C, λN ·B)}
a split pair for ωN(p).
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Start with the prototile p1 ∈ P and a simple decoration ep1 for p1, with end points
A,B. Then (λN · A, λN · B) is a valid pair for ωN(p1), by Theorem 3.3.21. Suppose C1 is

a curve that makes (λN · A, λN · B) a valid pair for ωN(p1). Assume further C1 =
k1⋃
j=1

e1
j

where e1
j is a simple curve for each j = 1, . . . , k1 so that

(1) s(e1
j) = X1

j and r(e1
j) = Y 1

j for every j = 1, . . . , k1,
(2) Y 1

j = X1
j+1 for all j = 1, . . . , k1 − 1,

(3) X1
1 = λN · A and Y 1

k1
= λN ·B.

That is, e1
j for j = 1, . . . , k1 is a simple curve component of C1. Define r1

j =
l(e1

j)

l(C1)
for

j = 1, . . . , k1 where l(e1
j) and l(C1) are the lengths of the curves e1

j and C1, respectively.
Partition the unit interval into k1 subintervals of lengths r1

1, . . . , r
1
k1
, respectively. Denote

these subintervals as I1
1 , I1

2 , . . . , I1
k1
, respectively. For each j = 1, . . . , k1, there exists a

tile t1j ∈ ωN(p1) such that e1
j ⊆ supp t1j . Define a map ψ1 : {I1

j : j ∈ {1, . . . , k1}} 7→
{λ−N · supp t1j : t1j ∈ ωN(p1)} such that ψ1(I1

j ) = t1j if e1
j ⊆ supp t1j for j ∈ {1, . . . , k1}.

Note that ψ1 is not necessarily bijective.

ω ψ1

ψ1(I1
1 )

ψ1(I1
2 )

ψ1(I1
3 )

ψ1(I1
4 )I1

1 I1
2 I1

3 I1
4

A

B

2 · A

2 ·B

Figure 5.3: The substitution ωN (for N = 1) is illustrated on the left whereas the map ψ1

induced from ωN is shown on the right.

Next we apply the substitution ωN to each tile appearing in ωN(p). Tiles in ωN(p1)

corresponds to the N -supertiles in the 2N-supertile ω2·N(p1). Each tile in ωN(p1) induces
a decoration from C1. Moreover, these decorations of tiles in ωN(p1) (induced from C1)
correspond to the decorations of N -supertiles in the 2N -supertile ω2·N(p1) by (i) and (ii)

given above. Since C1 is a concatenation of decorations of tiles in ωN(p1), there exists a
curve C2 which is a concatenation of decorations of N -supertiles in ω2·N(p1) such that C2

makes (λ2·N ·A, λ2·N ·B) a valid pair for ω2·N(p1). Suppose C2 =
k2⋃
j=1

e2
j where e2

j is a simple

curve for each j = 1, . . . , k2 so that
(1) s(e2

j) = X2
j and r(e2

j) = Y 2
j for every j = 1, . . . , k2,

(2) Y 2
j = X2

j+1 for all j = 1, . . . , k2 − 1,
(3) X2

1 = λ2·N · A and Y 2
k2

= λ2·N ·B.

That is, e2
j for j = 1, . . . , k2 is a simple curve component of C2. Define r2

j =
l(e2

j)

l(C2)
for

j = 1, . . . , k2 where l(e2
j) and l(C2) are the lengths of the curves e2

j and C2, respectively.
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Figure 5.4: Maps ψ1 and ψ2 are demonstrated.
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Partition the unit interval into k2 subintervals of lengths r2
1, . . . , r

2
k2
, respectively. Denote

these subintervals as I2
1 , I2

2 , . . . , I2
k2
, respectively. For each j = 1, . . . , k2, there exists a

tile t2j ∈ ω2·N(p1) such that e2
j ⊆ supp t2j . Define a map ψ2 : {I2

j : j ∈ {1, . . . , k2}} 7→
{λ−2·N · supp t2j : t2j ∈ ω2·N(p1)} such that ψ2(I2

j ) = t2j if e2
j ⊆ supp t2j for j ∈ {1, . . . , k2}.

Continue the same process ad infinitum. We get a sequence of intervals I ij for i ∈ Z+ and
j ∈ {1, . . . , ki} for some ki ∈ Z+. Define a map ψ over the collection {I ij : i ∈ Z+ and j ∈
{1, . . . , ki} for some ki ∈ Z+} such that ψ|Iij = ψi for each i ∈ Z+ and j ∈ {1, . . . , ki}
where ki ∈ Z+. Then ψ corresponds each interval of the from I ij with a compact region of
the plane. The first two iteration steps that are showing how ψ is defined are demonstrated
with an example in Figure 5.4.

For each i ∈ Z+ define the following:

δi = max
{
rij : j ∈ {1, . . . , ki} for ki ∈ Z+

}
.

δ′i = min
{
rij : j ∈ {1, . . . , ki} for ki ∈ Z+

}
.

εi = max
{

diam
(
ψ(I ij)

)
: j ∈ {1, . . . , ki} for ki ∈ Z+

}
where diam

(
ψ(I ij)

)
denotes the diameter of the compact region

(
ψ(I ij)

)
. Since the sub-

stitution ωN is primitive, both δi and εi are approaching to zero as i tends to infinity.
Let x ∈ [0, 1] be fixed. For each i ∈ Z+ there exists an integer ni ∈ {1, . . . , ki} such

that x ∈ I ini
. Note that

∞⋂
i=1

I ini
= {x}, by Cantor’s intersection theorem. Moreover,

∞⋂
i=1

ψ(I ini
) = {y} for some y ∈ [0, 1]× [0, 1], by Cantor’s intersection theorem as well. This

is because of the fact that the diameters εi approach zero as i tends to infinity. Therefore,
we can define a function F : [0, 1] 7→ λ−N · supp ωN(p1) by setting F (x) = y where x, y
are as defined above.

F is surjective by construction. Next we show that F is continuous. Note first that
for any given a, b ∈ I ij for i ∈ Z+ and j ∈ {1, 2, . . . , ki}, we have that |a − b| < δi.
Furthermore, by the construction of F , we have that d(F (a) − F (b)) < εi. Let x ∈ [0, 1]

be a given point. Suppose {xn}∞n=1 is a sequence of real numbers such that xn ∈ [0, 1] for
each n ∈ Z+ and xn → x. We will prove that F (xn)→ F (x). Let ε > 0 be given. Choose
i0 ∈ Z+ such that 2 · εi0 < ε. Choose also N ∈ Z+ sufficiently large so that |x− xn| < δ′i0
for each n ≥ N . Let m ≥ N be given. Since we have |x− xm| < δ′i0 , one of the following
holds:

(1) x and xm belong to a same interval I i0j0 for some j0 ∈ {1, 2, . . . , ki0},
(2) x ∈ I i0j0 and xm ∈ I i0j0−1 for some j0 ∈ {1, 2, . . . , ki0 − 1},
(3) xm ∈ I i0j0 and x ∈ I i0j0−1 for some j0 ∈ {1, 2, . . . , ki0 − 1}.
In all cases we get that d (F (x)− F (xm)) < 2 ·εi0 < ε. Since m was arbitrary, we arrive

that F is (sequentially) continuous.
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5.1.2 Decorations of decorated tilings

Hilbert’s substitution tiling T given in Example 4.0.5 has a single bi-infinite (relatively
dense) curve attached over it. We showed in Example 4.0.5 that there also exists a deco-
rated tiling A ∈ Ω(T ) that has two bi-infinite curves attached over it (i.e. concatenation of
the decorations of tiles in A form two bi-infinite curves). In this section, we further prove
that for each decorated tiling B ∈ Ω(T ) there are at most 4 bi-infinite curves attached over
it. In particular, we prove the following lemma which states that for any given decorated
substitution tiling U satisfying mild conditions there exists N ∈ Z+ such that each tiling
U ′ ∈ Ω(U) has at most N many bi-infinite curves attached over it.

Lemma 5.1.2. Assume that T is a recognisable primitive substitution tiling that has FLC
and consists of convex tiles. Let NX denote the number of tiles in T that contains the
vertex X ∈ VT (i.e. X is a vertex of a tile in T ). Suppose further Td denote a decorated
version of T which is generated according to the instructions in the proof of Theorem
3.3.25 and contains a single bi-infinite (relatively dense) curve attached over it. Then for
every tiling A ∈ Ω(Td) there are at most 2 · max

X∈VT
NX many bi-infinite curves attached to

A. If, in addition, all decorated tiles of Td have simple decorations, then there are at most
max
X∈VT

NX many bi-infinite curves attached to A.

Proof. Let T denote a recognisable primitive substitution tiling that has FLC and consists
of convex tiles. Assume further Td is a decorated version of T and is generated according
to the instructions in the proof of Theorem 3.3.25. Let NX denote the number of tiles
that contains the vertex X of the tiling T (i.e. X is a vertex of a tile in T ). Since T has
FLC, we have that N = 2 · max

X∈VT
NX ∈ Z+.

Let A ∈ Ω(Td) be given. Choose a vertex Y ∈ VA (i.e. Y is a vertex in A). Define Sn
for n ∈ Z+ to be the collection of n-supertile patches within the tiling A whose support
contains the vertex Y . More precisely, for n ∈ Z+ define Sn = {ωn(t) : ωn(t) ⊆ A and Y ∈
supp ωn(t)}. We have that |Sn| = |{u : u ∈ ω−n(A) and Y ∈ supp u}| ≤ max

X∈VT
NX , for

n ∈ Z+, because Td is recognisable. Define An =
⋃

ωn(t)∈Sn

ωn(t), for n ∈ Z+. Supertiles

are substituted tiles. So, every supertile has at most two curves attached over it as a
decoration. Therefore, there are at most N many curves attached over the patch An as

a decoration, for all n ∈ Z+. We have A =
∞⋃
j=1

Aj and Aj ⊆ Aj+1 for each j ∈ Z+. The

decoration of the patch Aj is contained within the decoration of the patch Aj+1 for each
j ∈ Z+. Hence, A can have at most N many bi-infinite curves attached over it, because

A =
∞⋃
j=1

Aj.

If, in addition, every decorated tile has a simple decoration, then there are at most
max
X∈VT

NX many curves attached over the patch An as a decoration, for each n ∈ Z+. Hence,

the conclusion follows by the same argument.
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Corollary 5.1.3. Let T denote the Hilbert’s substitution tiling defined in Example 4.0.5.
For each tiling B ∈ Ω(T ) there are at most 4 bi-infinite curves attached over it.

Proof. The proof follows by the fact that all tiles are squares with simple decorations.

5.1.3 A false approach to construct space filling curves

Before moving to examples of space filling curves generated by the known substitution
tilings, we explain why Cantor’s intersection theorem is necessary for the geometric con-
struction of space filling curves.

Consider the substitution given in Figure 5.5. The unit square is divided into half
in the first iteration. Subsequently, every rectangle is divided into half in each step as
illustrated in the figure. As before, the curves in the iteration steps corresponds to the
unit interval. For each point in the unit interval, pick a nested sequence of subintervals (one
subinterval from each iteration step) that converges to the chosen point. This sequence of
nested intervals corresponds to a sequence of nested rectangles. Notice that each rectangle
appearing in an iteration step has a diameter 1. That is, diameters of the rectangles do
not shrink to zero, but rather converge to 1. Therefore, we cannot apply the Hilbert’s
argument to construct a space filling curve. More precisely, let x be a given point in
the unit interval. There exists a sequence of subintervals that contain the point x. This
sequence is generated by choosing a subinterval in each iteration step such that chosen
subintervals contain the point x. This sequence of subintervals corresponds a sequence
of nested rectangles. Denote these rectangles by {En}n∈Z+ such that Ek ⊇ Ek+1 for
each k ∈ Z+. We have that

⋂
k∈Z+

Ek 6= ∅ by (1) of Theorem 5.0.1. However, because

their diameters do not approach to zero, we cannot apply (2) of Theorem 5.0.1. In fact, if
(a, b) ∈ [0, 1]×[0, 1] is given such that (a, b) ∈

⋂
k∈Z+

Ek, then we have that (a, b/n) ∈
⋂

k∈Z+

Ek

for every n ∈ Z+. We showed that the intersection
⋂

k∈Z+

Ek is not a unique point unlike in

Hilbert’s construction. Therefore, there is not a unique candidate y that can be assigned
as the image of the point x. Since the intersection is not unique, we can only define a
function by this geometric argument through the axiom of choice. This can be done by
fixing a point in the intersection

⋂
k∈Z+

Ek and assigning it to the image of the point x. But

then, this construction does not assure that a space filling curve can be generated. In
fact, we refer the reader to [19, P: 98-99] for the numeric details of why this geometric
construction can only lead to a discontinuous map, and cannot form a space filling curve.

Figure 5.5: A false geometric construction
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5.2 Examples

In this section, we provide some examples to observe the travelling algorithm.

Example 5.2.1 (Hilbert substitution tiling). Consider the (Hilbert) substitution rule in
Figure 5.6 (with expansion factor λ = 2). By adding extra curve labels to its prototiles as
demonstrated in Figure 5.7, we get an isomorphic prototile set and substitution rule. Note
that curves in Figure 5.7 are aligned to be concatenated in a natural way. This (primitive)
substitution defines a recognisable self-similar primitive substitution tiling of the plane,
and we call it Hilbert substitution tiling.

A B C D

A A

D B A

CB

B A

C

D

D

C

D

C

B

Figure 5.6: Hilbert substitution rule

Figure 5.7: Hilbert substitution rule - with curve labels

Denote the simple curves over the prototiles in the figure as a, b, c, d, from left to right,
respectively. Then, by reading the curves through their concatenation processes in the
1-supertiles, one can define the following one dimensional Hilbert substitution σh:

a 7→ d, a, a, b, b 7→ c, b, b, a, c 7→ b, c, c, d, d 7→ a, d, d, c.

Change the variables in the substitution as: a and c to x, and b and d to y. Then we
get the substitution σ such that σ(x) = y, x, x, y and σ(y) = x, y, y, x. Hence, σ is locally
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derivable from σh. Notice that σ is the substitution of 1DTM applied twice in the reverse
order (i.e. x 7→ y, x and y 7→ x, y).

Example 5.2.2 (Table substitution tiling). Consider the table substitution tiling whose
substitution rule is given in Figure 5.8 (with expansion factor λ = 2). By adding extra
curve labels to its prototiles as demonstrated in Figure 5.9, we get an isomorphic prototile
set and substitution rule. Notice that the curves in Figure 5.8 are concatenated in a natural
way, which we will use to induce an order structure. In particular, we will concatenate
the curves in the 1-supertiles and regard them as substitutions for the label curves in the
prototiles, respectively.

Figure 5.8: Table (tiling) substitution rule

Figure 5.9: Table (tiling) substitution rule - with curve labels

Label the curves in decorations of the prototiles as a, b, c, d, where a is the left simple
curve decoration for the prototile on the left of Figure 5.9, b is the right simple curve
decoration for the prototile on the left of the figure, c is the top simple curve decoration
for the prototile on the right of the figure and d is the bottom simple curve decoration for
the prototile on the right of the figure. Then one can define the following one dimensional
substitution σt:

a 7→ d, a, a, b, b 7→ c, b, b, a, c 7→ b, c, c, d, d 7→ a, d, d, c.

Notice that σt = σh. In particular, the Table substitution tiling is MLD to the (2-
dimensional) Hilbert substitution tiling. The MLD relation is given by Robinson [25], by
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dissecting the domino rectangles into two unit squares and define a substitution rule for
four unit squares as in the Hilbert substitution rule given in in Figure 5.6.

Example 5.2.3 (Check board tiling). Consider the substitution rule given in Figure 5.10.
For illustration purposes, we ‘rounded off’ the curves at the common interior vertices on
the patches in the figure. The substitution rule generates the check board tiling if the
curve labels are replaced with black and white colour labels. The check board tiling is
a periodic tiling and its associated substitution rule is not recognisable. We apply the
dimension reduction technique only for illustration purposes.

Figure 5.10

Label the curves in decorations of the prototiles as a, b, c, d, where a is the top simple
curve decoration for the prototile on the left of Figure 5.10, b is the bottom simple curve
decoration for the prototile on the left of the figure, c is the left simple curve decoration
for the prototile on the right of the figure and d is the right simple curve decoration for
the prototile on the right of the figure. Flattening the curve labels of tiles, according to
the concatenation of curves shown in Figure 5.10, defines the substitution rule σrs:

a 7→ d, a, c, a, b 7→ c, b, d, b, c 7→ c, b, c, a, d 7→ d, a, d, b.

It can be readily seen that σrs = σ2, where σ is the one dimensional Rudin-Shapiro
substitution which is defined as:

σ(A) = D,B, σ(B) = C,A, σ(C) = C,B, σ(D) = D,A.

Example 5.2.4 (2DTM substitution tiling). Consider the substitution rule given in Figure
5.11. Once again, we ‘rounded off’ the curves at the common interior vertices on the
patches in the figure for illustration purposes. If the curve labels are replaced with colour
labels, then the substitution rule is nothing but the 2DTM substitution rule.

Figure 5.11
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Label the curves in decorations of the prototiles as a, b, c, d, where a is the top simple
curve decoration for the prototile on the left of Figure 5.11, b is the bottom simple curve
decoration for the prototile on the left of the figure, c is the left simple curve decoration
for the prototile on the right of the figure and d is the right simple curve decoration for
the prototile on the right of the figure. By the same argument, we generates the following
one dimensional substitution σTM :

a 7→ a, d, a, c, b 7→ b, c, b, d, c 7→ c, b, c, a, d 7→ d, a, d, b.

Observe that the doubled 1DTM substitution σ, which is defined by σ(x) = x, y, x, y and
σ(y) = y, x, y, x, is locally derivable from σTM , by simple change of variables of a, b with
x and c, d with y.

Example 5.2.5 (2DTM with Hilbert curves). We provide the example given in the in-
troduction for completeness. Consider the substitution rule depicted in Figure 5.12. The
substitution rule defines a tiling, which we call two dimensional Thue-Morse-Hilbert tiling
(2DTMH in short).

Figure 5.12

By the same token, we form the following substitution rule σTMH :

σTMH(a) = d, e, a, f, σTMH(b) = c, f, b, e, σTMH(c) = b, g, c, h, σTMH(d) = a, h, d, g,

σTMH(e) = h, a, e, b, σTMH(f) = g, b, f, a, σTMH(g) = f, c, g, d, σTMH(h) = e, d, h, c,

where the correspondence of prototile labels are shown in Figure 5.13.

a b c d e f g h

Figure 5.13: The correspondence between tiles

Notice that if we forget the colour labels, we get the Hilbert substitution rule. In
particular, let φ1 : {a, b, c, d, e, f, g, h} 7→ {A,B,C,D} be a local map defined by φ1(a) =
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φ1(e) = A, φ1(b) = φ1(f) = B, φ1(c) = φ1(g) = C, φ1(d) = φ1(h) = D. Then σTMH(φ1) =

σh. Similarly, if we forget the curve labels, we arrive the 2DTM tiling. More precisely, let
φ2 : {a, b, c, d, e, f, g, h} 7→ {A,B,C,D} be defined by φ2(a) = φ2(d) = A, φ2(b) = φ2(c) =

B, φ2(e) = φ2(h) = D, φ2(f) = φ2(g) = C. Then σTMH(φ2) = σTM . Hence, both σh and
σTM are locally derivable from σTMH .

Figure 5.14: A patch of the 2DTMH tiling

Example 5.2.6 (Peano’s substitution tiling). Consider the (Peano’s) substitution rule
given in Figure 5.15 (with expansion factor λ = 3). We ‘rounded off’ some of the curves
at the intersection points in the figure as before.

Denotes the simple curve decorations over the prototiles on the top of the figure as a, b
from left to right, and the prototiles on the bottom of the figure as c, d, from left to right,
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Figure 5.15: Peano’s substitution rule

respectively. Then one can define the following one dimensional Peano’s substitution σp:

a 7→ a, d, a, c, b, c, a, d, a

b 7→ b, c, b, d, a, d, b, c, b

c 7→ c, b, c, a, d, a, c, b, c

d 7→ d, a, d, b, c, b, d, a, d

It can be readily seen that σp = σ2 where σ is the substitution defined as:

σ(a) = a, d, a, σ(b) = b, c, b, σ(c) = d, a, d σ(d) = c, b, c.

Example 5.2.7 (Square Chair substitution tiling). Start with the substitution rule given
in Figure 5.16. Then change the letter labels to curve labels as shown in Figure 5.17.

A B C D

B

A

A

C

B

A

D

B

C

D

A

C

B

D

D

C

Figure 5.16: Square Chair substitution rule



CHAPTER 5. SPACE FILLING CURVES 135

Figure 5.17: Square Chair substitution rule - with curve labels

Label the curve decorations according to Figure 5.18. The generated one dimensional
substitution σsc is the following:

a 7→ f, a, e, a, e 7→ e, h, e, g,

b 7→ c, b, d, b, f 7→ f, a, f, b,

c 7→ c, b, c, a, g 7→ f, g, e, g,

d 7→ d, g, d, h, h 7→ c, h, d, h.

a

b

c d

g

h

e f

Figure 5.18: Square Chair substitution rule - labels of decorations

Define the map φ : {a, b, c, d, e, f, g, h} 7→ {x, y, z, t} such that φ(a) = φ(g) = x,
φ(b) = φ(h) = y, φ(c) = φ(e) = z and φ(d) = φ(f) = t. Then σsc(φ) is the substitution
defined as

σsc(φ)(x) = t, x, z, x, σsc(φ)(y) = z, y, t, y, σsc(φ)(z) = z, y, z, x, σsc(φ)(t) = t, x, t, y.

Observe that σsc(φ) = σrs, where σrs is the Rudin-Shapiro substitution rule defined in
Example 5.2.3. Hence σrs is locally derivable from σsc.

Example 5.2.8 (Square Chair-Hilbert). Consider the Square-Chair substitution rule with
Hilbert curves attached to them, as illustrated in Figure 5.19. A patch of this tiling is
illustrated in Figure 5.20.
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Figure 5.19: Square Chair Hilbert substitution rule
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Figure 5.20: A patch of Square Chair Tiling with Hilbert Curves

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Figure 5.21: Square Chair - Hilbert substitution - labels of decorations

Label the curve decorations according to Figure 5.21. Then we get the substitution
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σsch:

0 7→ 7, 0, 8, 1 4 7→ 7, 0, 4, 13 8 7→ 11, 12, 8, 1 12 7→ 7, 12, 8, 13

1 7→ 10, 1, 5, 0 5 7→ 6, 1, 5, 12 9 7→ 10, 13, 9, 0 13 7→ 10, 13, 5, 12

2 7→ 9, 2, 6, 3 6 7→ 5, 14, 6, 3 10 7→ 9, 2, 10, 15 14 7→ 9, 14, 6, 15

3 7→ 4, 3, 11, 2 7 7→ 4, 15, 7, 2 11 7→ 8, 3, 11, 14 15 7→ 4, 15, 11, 14

Define the map φ : {0, 1, . . . , 15} 7→ {0, 1, 2, 3} such that φ(4 · x + y) = y for x, y ∈
{0, 1, 2, 3}. Then σsch(φ) = σh. Hence σh is locally derivable from σsch. Observe also that
σsc is not locally derivable from σsch.

Example 5.2.9 (Pinwheel substitution). Consider the Pinwheel substitution rule given
in Figure 5.22. We attached the curve labels to its prototiles, as demonstrated in Figure
5.23. These substitution rules are isomorphic to each other.

Figure 5.22: Pinwheel substitution rule

Figure 5.23: Pinwheel substitution rule - with curve labels
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We construct the one dimensional substitution σpw by the same token. Label decoration
curves over the prototiles as a, b, from left to right, respectively. By reading the curves
through their concatenation processes we get:

σpw(a) = a, b, b, a, a, σpw(b) = b, b, a, a, b.

It should be noted that Pinwheel substitution do not satisfy FLC unless we enlarge the
equivalent class of patches of translations, to translations and rotations, and allow rotations
to be a congruent motion. Therefore, we only labelled the prototiles with two labels in
the flattening process.

Example 5.2.10 (Penrose-Robinson substitution tiling). Start with the Penrose-
Robinson substitution rule shown in the Figure 5.24. Figure 5.25 presents the decorated
versions of the prototiles and Figure 5.26 demonstrates their substitutions (up to scale for
illustration purposes). We do not present an explicit flattened substitution for this dec-
orated substitution, because rotation of the tiles matters and the decorated substitution
therefore consists of 160 prototiles.

Figure 5.24: Penrose-Robinson substitution rule
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Figure 5.25: Penrose-Robinson decorated prototiles

Figure 5.26: Penrose-Robinson decorated substitution rule
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Figure 5.27: A 4th iteration of small white (decorated) triangle

5.3 Conclusion

In this thesis, we propose a new approach to study 2-dimensional substitution tilings
satisfying generic conditions. Our approach can be summarised within 3 steps:

(1) Given a substitution tiling T satisfying mild assumptions, construct a decorated
substitution tiling Td with a relatively dense curve D attached to it.

(2) Form a 1-dimensional substitution tiling V by flattening the curve D.

(3) Generalise this construction between the associated punctured hulls of Td and V by
defining a map Φ : Ωp(T ) 7→ Ωp(V ).

Note that for a decorated tiling Td of a given tiling T , we can retrieve the tiling T by
removing the decoration labels of tiles in Td. This process can be applied for each tiling
in Ωp(Td). That is, there exists a (factor) map Ψ : Ωp(Td) 7→ Ωp(T ) which forgets the
decoration labels of tiles in decorated tilings. Since we also proved that Φ is an almost
one-to-one factor map, we arrive at the following diagram where both Ψ and Φ are almost
one-to-one factor maps.

Ωp(Td)

Ωp(T ) Ωp(V )

Ψ Φ

For any given 2-dimensional tiling T we can construct different 1-dimensional substitu-
tion tilings by forming different space filling curves (or relatively dense curves), whenever T
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satisfies the standard conditions. It is our interest to understand further how the choice of
space filling curves (or relatively dense curves) affects the generated 1-dimensional tilings
as well as how the dynamical or topological properties of T are inherited in V .
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