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Abstract 
 

In this thesis, the nature of asynchronous and synchronous torques in a split-phase induction 

machine is investigated and quantified. 

The equivalent circuit for this type of machine is derived using the rotating field theory. It is 

extended to include harmonic effects. Using this model, winding harmonics and permeance 

harmonics may be calculated independently of each other so that the model can be used to 

analyse asynchronous torques from winding harmonics as well as synchronous torques from 

permeance harmonics. These are calculated separately. The asynchronous torques appear as 

perturbations in the steady-state torque-speed curve while the synchronous torques only 

appear at specific speeds. The synchronous torques are superimposed onto the torque-speed 

curves to model both effects together. 

The model predictions are compared against test results using purpose-built experimental 

machines together with production machines. These have varying rotor bar number and skew. 

Different methods are used to assess the synchronous torques. It is found that measuring 

synchronous locking torque is not a straightforward matter; however, reasonable agreement is 

found between calculation and measurement. 

The work highlights the need for the correct choice of stator and rotor slot numbers together 

with the effect skew has on reducing the synchronous and asynchronous locking torques. 
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List of symbols 
 

Below, a list of expressions found in the main thesis is given. It is split into "variables" and 

"indices" since in most cases these exist in many combinations of each other. For example, 

the variable irfF means "Magnetomotive Force of the Forward Rotor Current" 

SI units and standard nomenclature used throughout. 

Variables 
 
Symbol Unit Description 

B T Flux density 

E, e V Electromotive force 

f Hz Frequency 

F A Magnetomotive force 

FL N Lorentz force 

H A/m Field intensity 

I, i A Current 

Lstk m Stack length 

L H Inductance 

lg m Radial air gap length corrected by Carter's coefficient 

lmech m Radial air gap length as difference in rotor and stator bore radii 

N ... Total winding number 

N̂  ... Winding amplitude 

Nb , Nr ... Number of rotor bars 

Ns ... Number of stator slots 

nb ... Number of pole pairs of the flux density created by interaction 

of general harmonic magnetising MMF and permeance  

P H / m2 Permeance coefficient (relevant for 2D analysis) 

Perm H Permeance (relevant for 3D analysis) 

p ... Number of pole pairs of a general harmonic magnetising MMF 

R Ω Resistance 

r m Air gap mid-radius 

s ... Slip, relative difference in rotor and synchronous speeds 

T Nm Torque 

x ... Number of pole pairs of a general harmonic permeance 
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X Ω Reactance 

y ... The multiplum of rotor speed with which a general harmonic 

permeance wave rotates 

α rad 1. General integration angle  

2. Angle of a rotor bar pitch 

β ... Winding ratio 

γ rad Phase angle of main and auxiliary flux densities of same 

rotational direction 

θ rad General angle variable 

φ rad Phase angle of impedance 

Ф Wb Magnetic flux 

ν Rad Angle of rotor skew 

ω Rad/s Radian frequency 

Ψ Wb Flux linkage 

 

Indices 
Index Description 

a Auxiliary 

b Backward 

B Flux density 

f Forward 

g (Air) Gap 

I ,i Current 

m 1. Main 

2. Magnetising (e.g. magnetising reactance) 

3. mth harmonic 

n nth harmonic 

nb Harmonic order = nb 

p Harmonic order = p 

r Rotor 

s Stator 
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Chapter 1 

Introduction 
 

Although it was invented more than 100 years ago, the vast majority of electrical motors used 

in industrial and domestic applications worldwide are of the induction motor type [1]. These 

are in power ratings from a few tens of watts to several megawatts. The traditional 

advantages of this type of machine are its mechanical and thermal ruggedness as well as its 

ability to operate directly from an AC supply. Although it is being increasingly outperformed 

by permanent magnet motors in various areas, particularly in terms of energy consumption, 

the performance of the induction motor has been steadily improving, and it still offers a cost-

effective alternative to the permanent magnet motor in areas such as pumps, fans, 

compressors and also in home appliances, particularly in the single-phase or split-phase 

configuration, the latter being a motor which runs from a single-phase supply, but which 

features two spatially separated windings and often featuring an auxiliary impedance. For 

example, the company Danfoss Compressors GmbH, Germany, has an annual production 

volume of around 11 million piston compressors for domestic and light commercial 

refrigeration, each featuring an electric motor. Around 90% of this volume uses the split-

phase induction motor. Although the permanent magnet motor is also gaining volume in this 

field, the production of induction motors will not decrease for the foreseeable future. 

Particularly in the ASEAN area, where living standards are rapidly increasing, domestic 

appliances using induction motors are expecting to see great growth rates. 

However, the manufacturing competition in this field is very harsh. Moreover, the direct 

material prices of such materials as steel and copper increase rapidly. Therefore the 

manufacturer needs to consider the motor design at a very high level of detail in order to 

make the best possible use of the material, and to achieve the desired operating performance 

in the most rational way. 

 

As will be investigated in this thesis, the physical distribution of the windings in an induction 

motor may cause considerable harmonic field effects, which, when not considered carefully, 

may cause undesired performance characteristics in terms of losses and starting capabilities. 

These are known as asynchronous torque dips.  

Moreover, the choice of the combination of stator slots and rotor slots may result in 

additional harmonic effects, being generated from slot permeance harmonics, which manifest 

themselves as torque pulsations and, for certain speeds, synchronous locking torques which 
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tend to keep the rotor at this certain speed and therefore may impair the starting abilities of 

the motor. 

The traditional revolving field theory for describing a single-phase motor was introduced by 

Morrill [2]. This method assumes ideally distributed windings and no slotting effects. Even 

so, description of such a machine is very mathematical [3], [4], [5]. A certain amount of 

literature is dedicated to the motor operating in tapped-winding configuration, e.g. [6], [7], 

however, very little is dedicated to harmonic torques in general and synchronous torques in 

particular. As for asynchronous torques, [8] introduced a model of a 3-phase induction 

machine with the principal winding harmonics present in a general design. The literature on 

the single phase motor is much less, but [9] showed a similar model, although limited to the 

pure single phase machine. The split-phase machine, which contains a main and auxiliary 

winding and is much more complex than both the 3-phase and single-phase machine in terms 

of number of parameters, is even more sparsely described. [10] introduced the equivalent 

circuit of a split-phase machine with superimposed winding harmonics. Recently, [11] 

described the winding harmonics using an impedance matrix method, and a similar method 

was proposed by [12]. Very recent work, published shortly before completion of this thesis, 

considers modification of the classical equivalent circuits (i.e. the revolving field model, 

symmetrical components model and the cross-field model) to include winding harmonics 

[13]. 

 

Regarding synchronous locking torques, some general considerations were first done by Kron 

[14]. The concept of introducing permeance harmonics was further carried out in [15] , [16] 

and [17] and at a more detailed level in [18], which is also used in [19] for a sensorless speed 

estimation. Using transient finite element analysis, [20] quantified the phenomenon for a 

given machine. [21] – [23] brought forward some general considerations relating to harmonic 

effects, but did not provide any quantitative calculations. [24] and [25] described how such 

synchronous torques can be measured. However, it all focuses on 3-phase machines, which 

are, at least when operating in balanced conditions, simpler to describe than the split-phase 

motor. On single-phase machines, very little appear to have been published. 

 

The aim of this thesis is to describe and quantify the above mentioned harmonic phenomena 

in a split-phase induction motor, and to develop a model which considers them in detail. 

Quantitative calculations will be shown and compared against measured data to evaluate the 

precision of the results. 

 



 1. Introduction 

12 

The approach taken in this thesis will be to describe the idealised single-phase machine and 

extend this analysis to cover the phenomena related to winding and permeance harmonics in 

order to describe them qualitatively as well as assess them quantitatively. 

Chapter 2 will develop a model for the machine from first principles using rotating field 

theory and simple application of Maxwell’s equations to establish an equivalent circuit, from 

which EMFs and currents and, subsequently, torques can be calculated. 

In Chapter 3, spatial winding harmonics are introduced and the theory is developed to 

illustrate how they generate asynchronous torques. 

Chapter 4 describes the effects of stator and rotor slot permeance while in Chapter 5 the 

theory developed in the previous chapters is brought together to develop a method for 

calculating the synchronous torque spikes and dips.  

Throughout these theory chapters example simulations are used to illustrate the points 

developed. However, deeper evaluation of the simulation techniques is carried out in Chapter 

6 and the results are verified experimentally. The work is assessed and discussed in Chapter 7 

with brief additional conclusions and suggestions for further work put forward in Chapter 8. 
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Chapter 2 

Fundamental theory of the idealised machine 
 

Although the aim of this work is to extend the basic theory regarding single-phase induction 

motors, it is worthwhile to investigate the fundamental theory concerning this type of 

machine. This is in order to present the nomenclature and foundation for modelling, which 

will be used at a later stage, as well as serve as a reference chapter. 

Throughout this thesis, revolving field theory is used as the modelling approach. However, 

other approaches, such as the cross-field or symmetrical components, as described by [26], 

may be equally suited for the task. 

 In this chapter, the origin of the rotating field components and induction are described, and 

the classical equivalent circuit for the single-phase squirrel cage induction motor is derived. 

2.1. Rotating MMF 

In the following derivation, a stator with a 2-pole sinusoidal winding distribution is 

considered. The total number of turns is N where the "winding amplitude" N̂  is N/2. The 

number of conductors at a given angle θ is described by 

( ) ( )sin
2
NN θ θ=          (2.1)  

This means that a radial path through the stator is surrounded by a number of conductors 

described by 

( ) ( )cossurroundN Nθ θ=         (2.2) 

If this winding is excited by a sine-varying current, a surface MMF will be created on the 

stator, which pulsates in time and is sinusoidally graduated in space so that 

( ) ( ) ( )

( ) ( )( )

, cos cos

cos cos
2

F t N I t
NI t t

θ θ ω

ω θ ω θ

= ⋅

= − + +
      (2.3) 

This represents two rotating MMF components which are of equal magnitude but rotate in 

opposite directions at angular velocity ω, i.e.: 

( ) ( ) ( ) ( ), cos , , cos
2 2f b

NI NIF t t F t tθ ω θ θ ω θ= − = +     (2.4) 

The rotational speed is determined by ω, the supply voltage frequency, and the number of 

poles. That means the stator winding can be divided into two parts: one which creates the 
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forward rotating field and one which creates the backwards rotating field. These are 

connected in series so that the current through the two windings is the same; the winding 

number of each winding is half the total winding number.  

2.2. Induction 
Here, the induction of the fundamental flux density component in the fundamental winding 

distribution is considered. The winding distribution is described in space by (2.1). Similarly, 

the fundamental component of air gap flux density can also be described in time and space by 

( ) ( ), cosB t B tθ ω θ= −         (2.5) 

To find the induced voltage in the winding, the flux linking the coils at a given spatial 

displacement is considered and then integrated this over the whole pole pitch. Hence, at a 

given displacement α, the induced voltage is, from Faraday’s law, 

( )( ) ( ) ,stk
dE N rL B t d
dt

α

α

α α θ θ
−

= − ⋅ ∫        (2.6) 

Inserting (2.1) and (2.5) into this yields: 

( )

( )
2

( ) sin( ) ,
2

sin( ) 2 cos( ) sin( )
2
sin ( ) sin( )

stk

stk

stk

N dE r L B t d
dt

N d r L B t
dt

N B r L t

α

α

α α θ θ

α ω α

α ω ω

−

= − ⋅

= − ⋅ − −

=

∫

      (2.7) 

The total voltage is then found by integrating (2.7) with respect to α from 0 to π. 

0

2

0

0

( ) ( , )

sin( ) sin ( )

sin(2 )sin( )
2 4

sin( )
2

stk

stk

stk

E t E t d

N B r L t d

N B r L t
m

N B r L t

π

π

π

α α

ω ω α α

α αω ω

ω π ω

=

=

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫

∫
      (2.8) 

It should be emphasized that in (2.8), as well as in the previous analysis, N/2 is the "winding 

amplitude" of the winding, i.e. the number of turns of the full pitch coils. (The total number 

of turns is N). 

Equation (2.8), which is a sine function of time, shows that the induced voltage phasor lags 

the flux density phasor, (2.5), which is a cosine function of time. This would be relevant for 

generator action, where any induced current would be driven by this induced voltage, which 

would thus generate power. When the energy flow is reversed, the current is driven into this 
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induced voltage by an external voltage source, and the induced voltage would thus consume 

power, as would be the case in a motor (active power) or a passive coil (reactive power). In 

such cases, the so-called “sink” conversion should be applied, in which case the induced 

voltage would have to lead the magnetic field. 

Therefore, the “sink” convention of (2.8) is 

 

( ) sin( )
2

stkN B r LE t tω π ω= −        (2.9) 

2.3. The induced rotor current 

It was stated earlier that there are forward and backward rotating flux density waves in the 

air-gap. Here, the induced EMFs and the resultant currents in the rotor are found. There are 

several derivations in standard texts; the method put forward here for determining the rotor 

current is based on induction principles. It will be shown later that space-harmonic 

components of air-gap flux density also exist in the rotor; however, for simplicity, these are 

ignored at this stage. 

 

Induced current in a solid conducting cylinder 

It is assumed that the rotor is made of two concentric cylinders. The inner cylinder is made of 

iron with a very high value of relative permeability, while the outer cylinder is made of a 

conducting material such as aluminium or copper. Fig. 2.1 shows this rotor. 

 
Fig. 2.1 Machine co-ordinate representation 

 

This means that as well as space harmonics, MMFs and any slotting effects in the rotor are 

also neglected at this stage. It is described in more detail in Section 3.5. 

 

 

r 

Lstk 

θ 

Iron 

Conductor 
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Forward currents 

The forward revolving flux densities can be described by 

( , ) cos( )f fB t B tθ ω θ= −
�

        (2.10) 

If the rotor is rotating in the positive direction (i.e. anti-clockwise as in fig. 2.2) at speed  

ω' = (1−s) ω, the relative rotational speed of the air gap flux density with respect to the rotor 

is ω − ω' = s ω. The flux through an infinitesimal surface area of the rotor, defined by angle 

dθ, is then 

( ) ( ), cosf stk ft r L B s t dθ ω θ θΦ = −
�

       (2.11) 

This rotating flux wave gives rise to a circulating current at angle θ along the rotor surface 

area defined by dθ. The current is driven by an induced voltage, acting along this path. This 

means, at angle θ, the current is driven by voltage e(θ), acting along the length of the stack. 

But a similar voltage e(θ+dθ) drives a current opposite i(θ), as shown in Fig. 2.2. 

 
Fig. 2.2 Air-gap electric field representation 

 

By Maxwell's 4th law: 

( , ) ( , )

( , ) ( , )

f stk

f stk

e t B t r L d
t

e t d B t d r L d
t

θ θ θ

θ θ θ θ θ

−∂
=
∂
−∂

+ = +
∂

      (2.12) 

The resulting voltage along the length of the rotor stack is the difference between the two.  

If the direction out of the paper plane is chosen as positive, the resulting voltage becomes 

( , ) ( , ) ( , ) ( , )rese t d e t e t d de tθ θ θ θ θ θ= − + = −      (2.13) 

Inserting (2.12), the resulting voltage in the rotor conductor is 

( ) ( ),,
( , ) f

res stk

B te t
e t r L

t
θθ

θ
θ θ

∂−∂ ∂
= =

∂ ∂ ∂
      (2.14) 

The current at angle θ in the conducting path defined by dθ is driven by the resulting voltage 

and limited by the impedance, which is likewise defined by the area of the path:  

θ 

e(t,θ) 

e(t,θ+dθ) 
de(t,θ) 

i(t,θ) 

i(t,θ+dθ) 

ω' 

dθ 
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( ) ( ) ( )

( ) ( ) ( )

, ,
,

,, 1,

res res
f

fres
f stk

e t e t d
i t d

Z Z
d

B te t
i t r L

Z Z t

θ θ θ
θ θ

θ
θθ

θ
θ

= =

∂∂
= =

∂ ∂

     (2.15) 

Using complex notation, in which: 

,j js
t

ω
θ
∂ ∂

→ − →
∂ ∂

        (2.16) 

- then (2.15) becomes 

1 1( )f f stk stk fI j s j B r L s r L B
Z Z

ω ω= − =       (2.17) 

From (2.17), the forward rotor current distribution is determined from the rotor impedance 

and the flux density. If the rotor impedance is purely resistive, the current distribution is in 

phase with the flux density distribution. Since the positive direction for the current is out of 

the paper plane, this will produce torque in the positive (CCW) direction according to the 

Lorentz force: 

stkF L I B= ⋅ ×           (2.18) 

Z  is the rotor impedance. Since Z  may contain an inductive part, it will cause the current 

distribution to lag the flux density by an angle φ, which is given by: 

( )
( )

Im
arctan

Re
Z
Z

ϕ
⎛ ⎞

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

         (2.19) 

Rewriting (2.17), the forward rotor current distribution becomes, in time and space 

( ) ( )1, cosf stk fi t s r L B t
Z

θ ω ω θ ϕ= − −       (2.20) 

 

Backwards currents 

Similarly, current distributions set up by the backwards revolving flux wave will also exist in 

the rotor. The backwards revolving flux density wave can be expressed as 

( ) ( ), cosb bB t B tθ ω θ= +         (2.21) 

The relative speed of the rotor with respect to the backwards field is (1−s)ω + ω = (2−s)ω. 

Using the same approach as in the previous section, the backwards rotating current 

distribution with respect to the stator must be: 

( ) ( )1, (2 ) cosb stk bi t s r L B t
Z

θ ω ω θ ϕ= − + +      (2.22) 
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This current distribution rotates at negative synchronous speed. This means, that for a motor 

operating at any slip other than one (standstill), two different current components, at different 

frequencies, namely sω/2π and (2−s)ω/2π, will flow in the rotor. 

 

The rotor impedance 

In (2.15), Z /dθ is the impedance of the path defined by the angle dθ. This impedance can be 

expressed in terms of a measurable/calculable impedance of a section of the rotor, defined by 

the angle α. This impedance Z α is the parallel impedance of a large number of Z /dθ sections 

so that 

0

1 1d d d
Z Z Z Z

Z Z

α

α

α

θ θ θ

α

⎛ ⎞= + + ⋅⋅⋅ = ⇒⎜ ⎟
⎝ ⎠

=

∫        (2.23) 

While this is valid for the resistive part of the impedance, it is likewise assumed that the rotor 

slot inductance can be calculated in a "per-angle" fashion. 

2.4. The equivalent circuit diagram 

As stated in Section 2.3, when assuming two counter-rotating, sinusoidal-distributed flux 

density waves in the air-gap of a machine with a conducting rotor and rotating at angular 

velocity (1−s)ω, the rotor current distribution induced by the forward field is: 

( ) ( )1, ,fr stk fmi t s L B t
Z

θ ω θ=         (2.24) 

Likewise, the rotor current distribution induced by the backward field: 

( ) ( ) ( )1, 2 ,br stk bmi t s L B t
Z

θ ω θ= −        (2.25) 

In this section, the rotor current, stator current and air gap flux density are linked together. 

In Section 2.1, a single pulsating MMF can be resolved into two equal, but oppositely 

rotating MMFs of half magnitude. This can be thought of as two series-connected windings, 

each having half the total number of turns in series, and each creating a forward and 

backwards rotating MMF. In this section the forwards and backwards components are 

therefore considered separately. 

 

The forward revolving circuit 

Fig. 2.3 shows a section of the rotor, air gap and stator for the forward-revolving wave. 
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Fig. 2.3 Closed loop used for Ampere’s Law application 

 

The path shown in Fig. 2.3 is the closed path at which Maxwell's 3rd law (Àmpere's Law) 

applies. If the outward radial field direction is treated as positive: 

( ) ( ) ( ) ( ), , , ( )f f g fr fs sH t H t d l i t N i t dθ θ θ θ θ θ⎡ ⎤ ⎡ ⎤− + = +⎣ ⎦ ⎣ ⎦     

 (2.26) 

Expressing this as a differential, (2.26) becomes 

( ) ( ) ( )( ), 1 , ( )f
fr fs s

g

H t
i t N i t

l
θ

θ θ
θ

∂
− = +

∂
      (2.27) 

Translation from field intensity H to flux density B is done by introducing μ0, the 

permeability of vacuum. The iron is considered infinitely permeable. The rotor current 

distribution ifr(t,θ) is expressed in terms of the air gap flux density from (2.20). Therefore, 

from (2.27): 

( ) ( ) ( )0, 1 , ( )f
stk f fs s

g

B t
s r L B t N i t

l Z
θ μ ω θ θ

θ
∂ ⎛ ⎞− = +⎜ ⎟∂ ⎝ ⎠

    (2.28) 

This is an expression which is time and space dependant. For simplicity, complex notation is 

used. Since all functions are sine and cosine, these general rules apply: 

,j j
t

ω
θ
∂ ∂

→ − →
∂ ∂

        (2.29) 

Using the notation as described in (2.29), and utilising the stator winding amplitude N/2, 

further divided by 2 since only the forward rotating part of the field is considered here, (2.28) 

becomes 

0 1
4f stk f s

g

jNjB s r L B I
l Z
μ ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
       (2.30) 

The j in front of the winding term N/4 indicates where the peak of the winding number 

occurs, as shown in Fig. 2.4. 

dθ 

lg 

Rotor 

Stator 

θ 
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Fig. 2.4 Winding concentration round stator surface 

 

Solving for Bf, the following expression is obtained: 

0

0

4
1

f s

g stk
g

Nj
B I

l j s r L
l Z

μ

μ ω

= ⋅
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

       (2.31) 

This is an expression for the forward rotating magnetic flux density in the air-gap. This 

revolving flux density wave induces a voltage Ef into the stator winding, determined by, from 

(2.9) 

 
2f stk f
NE j r L Bωπ=         (2.32) 

Note, that in this case, N/2 is the winding amplitude of the complete stator winding. Inserting 

(2.31):  

0

0

4
2 1

f stk s

g stk
g

NjNE j r L I

l j s r L
l Z

μ
ωπ

μ ω

= ⋅
⎡ ⎤⎛ ⎞

−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (2.33) 

At this stage, it is worthwhile considering the rotor impedance Z  in more detail. Inserting the 

expression from (2.23), it consists of a resistive and an inductive component. Since the 

current in the rotor is at slip frequency, the rotor impedance is 

Z Z R j sXα α αα α α= = +         (2.34) 

Inserting this in (2.33) and rearranging yields 

Re 

Im 
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2

0

0

2

0

0

2
4

1

1
2 2

1

stk

f s

g stk
g

stk

s

g stk
g

Nr L
E I

l j s r L
l R j s X

Nr L
I

l j r LRl j X
s

α α

α
α

ωπ μ

μ ω
α α

ωπ μ

μ ωα α

⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+
⎢ ⎥⎝ ⎠⎣ ⎦

     (2.35) 

The rotor impedance term of (2.35) is expanded with π so that 
2

0

0

1
2 2stk

f s

g stk
g

Nr L
E I

l j r LRl j X
s

α
α

ωπ μ

μ π ωαπ α π

⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+
⎢ ⎥⎝ ⎠⎣ ⎦

     (2.36) 

The numerator and denominator of (2.36) are multiplied with the term j[(απRα/s)+jαπXα ] 

where 
2

0

0

1
2 2stk r

f s

g r stk
g

RNj r L j X
sE I

Rl j X j r L
s l

α

α

απωπ μ απ

απ μα π π ω

⎛ ⎞⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= ⋅
⎡ ⎤⎛ ⎞⎛ ⎞− + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

    (2.37) 

Rearranging (2.37) and multiplying numerator and denominator with the term (N/2)2/2 yields 
2 2

0

2 2
0

1 1
2 2 2 2

1 1
2 2 2 2

stk

g
f s

stk

g

r L RN Nj j X
l s

E I
R r LN Nj X j

s l

α
α

α
α

ωπ μ απ απ

απ μ π ωαπ

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= ⋅
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

   (2.38) 

This is the form of a parallel impedance, i.e. (2.38) can be rewritten as 

' '
||

2 2

r
r

m
f s

R jXjX sE I

⎡ ⎤+⎢ ⎥
= ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

        (2.39) 

where  
2

0 2stk

m
g

Nr L
X

l

ωπ μ ⎛ ⎞
⎜ ⎟
⎝ ⎠=         (2.40) 

and 



 2. Fundamental theory of the idealised machine 

22 

2 2' , '
2 2

r
r

RR N NX X
s s

α
α

απ απ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (2.41) 

with Rα and Xα being the resistance and leakage inductance of a rotor section, determined by 

angle α.  

 

The backwards revolving circuit 

The analysis in the previous section concentrates on the air gap flux density wave which is 

rotating in the forwards direction (i.e. in the direction of the rotor).  The analysis can be more 

or less repeated for the backwards rotating flux density, with the exception that 

, ,j j d j
t

ω θ
θ
∂ ∂

→ → →−
∂ ∂ ∫       (2.42) 

Using this notation in the previous section, the induced EMF in the stator winding by the 

backwards rotating field component is determined from 

' '
2||

2 2

r
r

m
b s

R jXjX sE I

⎡ ⎤+⎢ ⎥−= ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

       (2.43) 

with R'r and X'r as given by (2.41). 

 

The equivalent circuit diagram 

Equations (2.39) and (2.43) are expressions for the voltages induced into the stator winding 

by the forward and backwards rotating flux density waves. The total induced voltage must be 

the vector sum of the two. In both cases the EMF is determined by the stator current Is. 

Observing that the current is limited partly by the EMF and partly by the stator resistance and 

leakage inductance, the equivalent circuit diagram of the single-phase machine can be 

represented as Fig. 2.5. 
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Fig. 2.5 Equivalent circuit of single phase machine considering sinusoidal winding 

 

This is how the classical revolving fields equivalent circuit was introduced in [2] 

2.5. Location of current distributions 

This section studies the current distribution of the rotor and stator in space. These 

distributions use the phasor diagram technique shown by Miller in [28] and extended to cover 

both forward and backwards rotating components. 

The visualization of the current distribution phasor starts with the forward air gap flux 

density. This is plotted in Fig. 2.6 as fB . This is generated by a (fictitious) MMF, this is the 

magnetizing current, imfF , which is in phase with fB . 

In Section 2.3 it was shown that the rotor current distribution is shifted from the air gap flux 

density by an angle φ, which is determined by the rotor impedance. However, the impedance 

itself is determined by the slip.  At low slip, when the rotor impedance is mostly resistive, and 

relatively high, the spatial displacement between flux density and current distribution (angle 

φ) is small. The rotor MMF is shifted by 90° (lagging) from the current itself, and plotted in 

Fig. 2.6 as irfF . Since imfF  is the resulting MMF, it requires that the rotor MMF is balanced 

by the stator. This balancing MMF is shown as 'irfF  in Fig. 2.6. Therefore, the resulting 

stator MMF isfF  consists of two parts: a magnetizing MMF and a rotor balancing MMF. 

jXs Rs 

jXm 
 2 

jX'r 
 2 

R'r 
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 2 
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These two MMFs are set up by the stator current, and it is these that are represented in the 

equivalent circuit diagram. The rotor MMF itself is not "seen" in the equivalent circuit 

diagram. 

The phasor diagram for the backwards revolving circuit is derived from the starting point of 

the stator MMF isbF  since this must be of equal magnitude but opposite angle as the forward 

stator MMF. At low per-unit slip, the backwards slip (2−s) is high so that the rotor impedance 

is low and significantly inductive. Therefore, the rotor MMF is only a little smaller than the 

stator MMF, and only leading this by a small angle. From this, the remaining phasors are 

deduced in a similar manner to the forward circuit, and the result is given in Fig. 2.7. 

 
 Fig. 2.6 Forward MMF phasors   Fig. 2.7 Backward MMF phasors 

 

2.6. Force and torque 

Figs. 2.6 and 2.7 explain how torque is created in a single phase machine: at slips smaller 

than 1, the forward flux density is greater than the backward flux density, and the rotor 

forward MMF, though smaller in magnitude than the backward rotor MMF, is in a better 

spatial position to produce force. In this section an expression for the machine torque is 

derived. 

From Fig. 2.6, the forward flux density and rotor current distribution (not MMF) is displaced 

at an angle φ with respect to each other. If in a standard Cartesian coordinate system with x 

being from origo to right, y upwards and z outwards, the current and the flux density are 

orthogonal in the (x, z) plane, the Lorenz force acting on a small segment of the rotor will be 

( ) ( )cos cosf stk rf f rfdF L I t B t dω θ ϕ ω θ θ= − − −      (2.44) 

Note that the flux density Bfr is the flux density at the rotor bars, which is greater than the air 

gap flux density Bf. The total rotor force is then found by integrating (2.44) around the rotor 

circumference where 

fB

irfF

imfF

'irfF

isfF

bB  

irbF

'irbF
isbF

ω −ω 

imbF  
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( ) ( )

( )

2

0

cos cos

cos

f stk rf f rf

stk rf rf f

F L I t B t d

L I B

π

ω θ ϕ ω θ θ

ϕ π

= − − −

= −

∫      (2.45) 

And the rotor torque is 

( )cosf stk rf rf f rT L I B rϕ π=        (2.46) 

This can be translated to air-gap values. The air-gap flux is equal to the flux at the rotor 

conductor, so (2.46) becomes 

( )cosf stk rf f fT L I B rϕ π=        (2.47) 

Expressing the torque in terms of equivalent circuit parameters, (2.47) can be rewritten using 

(2.32) so that 

( )cos

2

f f rf
ET I
N

ϕ
ω

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

        (2.48) 

From Fig. 2.6 it can be seen that that the rotor MMF is of equal magnitude but opposite angle 

to the referred rotor MMF, i.e., irfF  = 'irfF− . In terms of the current, this means: 

0

sin( ) 2Irf rf rfF I d I
π

θ θ= =∫         (2.49) 

and 

'
0

' sin( ) '
4 2I rf rf rf
N NF I d I

π

θ θ= =∫        (2.50) 

so that 

' '
4 4rf rf rf rf
N NI I I I= − ⇒ =        (2.51) 

It should be emphasized that the rotor current and induced voltage are expressed in terms of 

their amplitude, i.e. peak value. Inserting (2.51) and rewriting in terms of RMS values, (2.48) 

becomes 

( ) ( )2
cos ' 2 cos '

2
f rms f rms

f f fr rms f fr rms

E E
T I Iϕ ϕ

ω ω
= =     (2.52) 

with angle φf  equal to the phase angle of the forward rotor impedance Zr, but also the phase 

angle of I'fr and Ef. Similarly, the backwards torque is 

( )cos 'b rms
b b br rms

E
T Iϕ

ω
=         (2.53) 
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The shaft power is then equal to 

( )   'shaft f bP T Tω= −          (2.54) 

 

Pulsating torque 

Equations (2.53) and (2.54) are expressed in terms of the RMS values of EMF and (referred) 

rotor current. This means that they have no time or space dependency, and since the 

difference between the two is the resulting torque, this appears to be constant in time. 

However, (2.53) and (2.54) describe the interaction of the forward and backward flux density 

and current respectively. Other torque components exist due to the interaction of the forward 

field with the backward current and vice versa. 

The force due to the forward rotating rotor current distribution and the backwards rotating 

flux density on an infinitesimal element of the rotor is 

( ) ( )cosIfrBbr stk fr f brdF L I t B t dω θ ϕ ω θ θ= − − +      (2.55) 

Integrating over the entire rotor circumference, the corresponding torque can be expressed as 

( )cos 2IfrBb stk fr b fT L I B r tπ ω ϕ= −        (2.56) 

And similarly: 

( )cos 2IbrBf stk br f bT L I B r tπ ω ϕ= −        (2.57) 

The sum of (2.56) and (2.57) gives the shaft torque its pulsating behaviour. This makes the 

shaft torque pulsate at twice line frequency, but since this component produces no average 

torque, (2.54) is sufficient to calculate the machine output. 

 

2.7. The auxiliary winding 

An inherent shortcoming of the single-phase motor is that since the forward and backward 

circuits are identical at standstill, the forward and backward torques will be identical and no 

net starting torque is produced.   

When introducing an auxiliary winding, the performance of the resulting split-phase motor 

resembles that of a polyphase machine. 

 

The split-phase equivalent circuit 

An equivalent circuit derivation similar to Section 2.4 is possible; this includes the auxiliary 

winding, which leads the main winding in space by π/2, i.e., the phasor is displaced 

mechanically by −j relative to the main winding. This is shown in Fig. 2.8. 
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Fig. 2.8 Main and auxiliary winding spatial relationship 

 

Starting with Maxwell's 3rd law, the process of coupling the stator and rotor circuits is 

repeated, but this time taking the auxiliary winding into account. Therefore 

0 1
4 4

m a
f stk f m a

g

jN NjB s r L B I I
l Z
μ ω⎛ ⎞= + +⎜ ⎟

⎝ ⎠
     (2.58) 

where Nm and Na are the total winding turns of the (sinusoidal) main and auxiliary winding, 

and mI  and aI  representing the main and auxiliary current phasors. 

Solving for fB , (2.58) becomes 

0 0

0

4 4
1

m a
m a

f

g stk
g

N Nj I I
B

l j s r L
l Z

μ μ

μ ω

− −
=

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

       (2.59) 

The induced voltage in the main and auxiliary winding from this flux density is, from (2.32): 

,
2 2

m a
fm stk f fa stk f

N NE j r L B E j j r L Bωπ ωπ= =     (2.60) 

Here, it is useful to introduce the winding ratio β, which is defined by 

a

m

N
N

β =           (2.61) 

Using the winding ratio, (2.60) becomes, for the main winding: 

00

0 0

2 42 4
1 1

a am m
stkstk

fm m a

g stk g stk
g g

N NN N j r Lj r L j
E I I

l j s r L l j s r L
l lZ Z

ωπ μωπ μ β

μ μω ω

= +
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

   (2.62) 

This can be translated into circuit parameters using the same approach as in (2.34) to (2.39): 

' '' '
|| ||

2 2 2 2

rm ra
rm ra

mm ma
fm m a

R RjX jXjX jXjs sE I I
β

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥−
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   (2.63) 
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Similarly, for the auxiliary winding: 

0 0

0 0

2 4 2 4
1 1

a a m m
stk stk

fa a m

g stk g stk
g g

N N N Nr L r L j
E I I

l j s r L l j s r L
l lZ Z

βωπ μ ωπ μ

μ μω ω

− −
= +

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

   (2.64) 

which, when expressed in circuit parameters, becomes 

' '' '
|| ||

2 2 2 2

ra rm
ra rm

ma mm
fa a m

R RjX jXjX jXs sE I j Iβ

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥
= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   (2.65) 

The equations (2.62) to (2.65) show that the voltage in the main and auxiliary windings due 

to the forward component of the flux density contain components of current and impedance 

both from its own winding and the other winding, i.e., it can be interpreted as a pure 

impedance and an induced voltage. 

This derivation can be repeated for the backwards component of flux density with similar 

results; however, since the rotation is opposite, the phases of the induced voltages from the 

other winding are shifted π. From this, the split-phase equivalent circuit diagram can be 

derived. 

 

Forward and backward rotating fields 

Introducing the auxiliary winding results in 2 pairs of forwards and backwards rotating 

components in the air-gap. The symmetry line of these are orthogonal to each other as shown 

in Fig. 2.9. 

 
Fig. 2.9 Forwards and backwards MMF components for main and auxiliary currents 

 

By correct magnitude matching and phase alignment, the forward components will add 

directly and the backwards components cancel each other. With this, the drawbacks related to 

the backwards rotating fields disappear completely: losses in backward circuit and torque 

pulsations. 

fmF

bmF

faFbaF
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Force and torque 

The forward force created in the split-phase motor is found identically to (2.52) with the 

exception that there are contributions from both windings. As shown previously, the forward 

flux density is the vector sum of the main and auxiliary flux densities, spatially displaced by 

angle γf. Hence 

( ) ( ) ( )
( ) ( ) ( )

cos cos cos

cos( cos cos

f stk rfm f rfm rfa f

stk rfa f f rfm rfa f

dF L I t B t B t d

L I t B t B t d

ω θ ϕ ω θ ω θ γ θ

ω θ γ ϕ ω θ ω θ γ θ

⎡ ⎤= − − − + − + +⎣ ⎦
⎡ ⎤+ − + − − + − +⎣ ⎦

 (2.66) 

where φf is the (identical) angle of the rotor impedances of the main and auxiliary circuits.  

The total rotor torque is found by integrating (2.66) over the rotor circumference and 

including the rotor radius: 

( ) ( )

( )

( ) ( )( )
( ) ( )( )

2 2

0 0

2

0

cos cos 2 2
2

cos
2

cos cos

cos cos

stk rfm rfm
f f f

stk rfm rfa
f f

stk rfm rfm f rfa f f

stk rfa rfm f f rfa f

r L I B
T d t d

r L I B
d

r L I B B

r L I B B

π π

π

ϕ θ ω θ ϕ θ

ϕ γ θ

π ϕ ϕ γ

π ϕ γ ϕ

⎡ ⎤
= − + − − +⎢ ⎥

⎣ ⎦
⎡ ⎤

+ − − + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

= − + − − +

+ − + + −

∫ ∫

∫    (2.67) 

γf is the spatial angle between the forward revolving flux densities set up by the main and the 

auxiliary winding. But it is also the angle between the two components of induced voltage in 

each winding, as shown by Fig. 2.10, where, the induced voltages lead the respective flux 

densities. 

 
Fig. 2.10 Main and auxiliary winding air-gap flux and electric field phasors 

 

Equation (2.67) is expressed in terms of induced voltages instead of flux densities, and 

referred rotor current instead of "direct" or "true" rotor current; analogous to (2.50) to (2.53) 

where 
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( ) ( )

( ) ( )

1

cos cos '
2 2

cos cos '
2 2

fafm
f f f f rfm

fa fm
f f f rfa

EE
T I

E E
I
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ω ω
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ω ω
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⎣ ⎦
⎡ ⎤

+ − + − +⎢ ⎥
⎣ ⎦

     (2.68) 

This is expressed in terms of peak values. The same expression in phasor notation (RMS 

values) becomes 

* *Re ' Re '
j

fafm fa fm
f rfm rfa

EE E j E
T I Iβ β

ω ω ω ω

−⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠

    (2.69) 

The backwards torque can be expressed in a similar way so that 

* *Re ' Re '
j

babm ba bm
b rbm rba

EE E j ET I Iβ β
ω ω ω ω

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤−
= + + +⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠

   (2.70) 

As mentioned in Section 2.6, (2.69) and (2.70) are time-constant values. For the pure single-

phase machine, the shaft torque will have an oscillating component at double line frequency, 

due to the interaction of forward and backwards flux densities and rotor current distributions. 

However, in the special case where the motor is perfectly balanced, these oscillating 

components disappear, making the shaft torque perfectly constant in time. 
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Chapter 3 

The influence of winding harmonics 
 

In the previous chapter, only the fundamental MMF is considered. Since a winding is 

distributed in a finite number of slots, and may not be exactly sine wound, it will be in the 

form of a spatial harmonic series, the magnitudes of which can be investigated 

mathematically. 

These harmonics series of order m will have m times as many poles as the fundamental 

winding. In this chapter, their impact on the motor performance is investigated. 

Since the equivalent circuit is a convenient way of determining the motor properties, the 

equivalent circuit diagram derived in Chapter 2 will be extended to include winding 

harmonics. Symmetrical main and auxiliary winding are assumed, which means that even-

order harmonics are eliminated due to half-wave symmetry. Some motor configurations can 

result in even-order harmonics being generated due to tapped-winding connection during 

starting, as described in [7], however, the following analysis considers odd winding 

harmonics only. 

3.1. Properties of the harmonic MMF 

In the following, some basic properties of the general winding of harmonic order m are 

derived. They will be referred to at a later stage. 

 

Synchronous speed of the mth harmonic MMF 

From (2.1) in Chapter 2, the mth harmonic MMF can be expressed as 

( ) ( ) ( )

( ) ( )( )

, , cos cos

cos cos
2

m

m

F t m N m I t
N I t m t m

forward backward

θ θ ω

ω θ ω θ

=

= − + +      (3.1) 

The synchronous speed of the forward MMF is determined by the time it takes for the mth 

harmonic MMF to complete one mechanical cycle, i.e.: 

ωt  = mθ  for θ  = 2π 

which gives 

2 1 2
sm

sm

mt
f m

π π ωω
ω ω

= = = ⇒ =        (3.2) 
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Winding amplitude of the mth harmonic winding 

Since the harmonic MMF is given by (3.1), Nm is the total winding number of one pole pitch. 

The (fictious) winding amplitude ˆ
mN of this winding is found from 

( ) ( )
/

/

0
0

ˆˆ sin cos

ˆ
2

m
mm

m m

m
m

NN N m d m
m

mNN

π
π

θ θ θ⎡ ⎤= = − ⇒⎣ ⎦

=

∫
     (3.3) 

3.2. Induction, windings and fluxes of different harmonic order 

This section investigates the influence of harmonic windings and fluxes. Therefore, it is 

necessary to investigate the effects of flux densities and winding distributions of different 

harmonic order. 

This is similar to the approach described in Chapter 2 - but in this case the winding and the 

flux density is not necessarily of the same harmonic order. 

The mth harmonic winding can be described by (3.3) where 

( ) ( )sin
2

m
m

mNN mθ θ=         (3.4) 

Similarly, the nth harmonic component of air gap flux density can be described by 

( ) ( ), cosn nB t B t nθ ω θ= −         (3.5) 

From (2.6): 

( ) ( )( )
( ) ( )( ) , ,

2
m

mn stk n

mN dE m r L B t d
dt

α

α

α α θ θ
−

= − ∫      (3.6) 

Inserting (3.4) and (3.5) yields 

( )( ) ( )( ) sin( ) cos
2

2sin( ) cos( ) sin( )
2

sin( )sin( ) sin( )

m
mn stk n

m n
stk

n stk
m

mN dE m r L B t n d
dt

mN Bdm r L t n
dt n

B r LmN m n t
n

α

α

α α ω θ θ

α ω α

ωα α ω

−

= − −

−
= −

=

∫

    (3.7) 

 

The total voltage is found by integrating (3.7) with respect to α from 0 to π: 

( ) ( )
0

0

( ) ( , )

sin( ) sin( ) sin( )

mn mn

m n stk

E t E t d

m N B r L t m n d
n

π

π

α α

ω ω α α α

=

=

∫

∫
    (3.8) 
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Using the trigonometric identity sin(A) sin(B) = ½[cos(A−B) − cos(A+B)], (3.8) becomes 

[ ]( ) [ ]( )

[ ]( ) [ ]( )

( )
0 0

0 0

( ) sin( ) cos cos
2

sin sin
sin( )

2

mn m n stk

m n stk

mE t N B r L t m n d m n d
n

m n m nm N B r L t
n m n m n

π π

π π

ω ω α α α α

α α
ω ω

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤− +⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥− +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∫ ∫
 (3.9) 

Since m and n are whole numbers, both m−n and m+n will be whole numbers, in which case 

E(mn)(t) = 0  for m ≠ n         (3.10) 

This shows that only windings and fluxes of equal harmonic order induce voltages. In this 

case, for harmonic order m, (3.8) reduces to 

( ) ( )
0

2

0

0

( ) ( , )

sin( ) sin ( )

sin(2 )sin( )
2 4

sin( )
2

m m

m m stk

m m stk

m m stk

E t E t d

N B r L t m d

mN B r L t
m

N B r L t

π

π

π

α α

ω ω α α

α αω ω

ω ω

=

=

⎡ ⎤= −⎢ ⎥⎣ ⎦

=

∫

∫
     (3.11) 

Again it should be emphasized that in (3.11) Nm is the harmonic winding number of the 

harmonic winding. The winding amplitude of this winding is described by (3.3). 

3.3. Equivalent circuit including winding harmonics 

Below, an approach similar to that described in Section 2.4 will be used to include winding 

harmonics in the equivalent circuit. 

 

Harmonic forward rotor current distributions 

The harmonic MMFs set up flux density waves in the air-gap which induce rotor EMFs and  

generate rotor currents similar to the fundamental. However, there are dissimilarities in terms 

of relative speeds. When the rotor rotates at slip speed ω' = (1–s)ω, the fundamental flux 

density wave will rotate with speed sω relative to the rotor. However the mth harmonic flux 

density will rotate at synchronous speed ωsm = ω/m relative to the stator. This will rotate with 

a speed relative to the rotor. This speed is given by: 

( ) 1' 1 1sm s s
m m
ωω ω ω ω⎛ ⎞− = − − = − +⎜ ⎟

⎝ ⎠
      (3.12) 

where ω is the radian frequency of the voltage supply. Therefore, Section 2.4 can be repeated 

by applying the following substitutions: 
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1 1s s
m

→ − +          (3.13) 

mθ θ→           (3.14) 

As a consequence of (3.13) and (3.14), in complex notation, this means that 

1 1 ,j s jm
t m

ω
θ

∂ ∂⎡ ⎤→ − + → −⎢ ⎥∂ ∂⎣ ⎦
     (3.15) 

and the induced rotor current distribution due to the mth harmonic forward revolving flux 

density wave is 

[ ]1 1 11 ( ) 1f f stk stk fI j s jm B r L m sm r L B
Z m Z

ω ω⎡ ⎤= − + − = − +⎢ ⎥⎣ ⎦
   (3.16) 

The frequency of the current is (1 – m + sm)ω relative to the rotor. 

 

Harmonic backward rotor current distributions 

As mentioned previously, the backwards MMF and subsequent backward-rotating flux 

density wave are also present. The speed of those relative to the rotor is 

( ) 1' 1 1sm s s
m m
ωω ω ω ω⎛ ⎞+ = + − = + −⎜ ⎟

⎝ ⎠
      (3.17) 

Following a similar approach, the induced rotor current distribution due to the mth harmonic 

backward-revolving flux density is  

[ ]1 1 11 ( ) 1b b stk stk bI j s jm B r L m sm r L B
Z m Z

ω ω⎡ ⎤= + − − = + −⎢ ⎥⎣ ⎦
   (3.18) 

The space-harmonic rotor impedance 

In Section 2.4 the "per angle" rotor impedance was derived. Here, the mth harmonic current 

distribution is considered. Compared to the fundamental, this means that only 1/m of the 

conducting area is available to carry the current for one pole pitch of the rotor current as 

illustrated in Fig. 3.1, which shows a linearised  rotor section. 

 

Fig. 3.1 MMF distribution with 3rd harmonic 

Fundamental current distribution 
3rd harmonic current distribution 

mα
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Mathematically, this means that for the mth harmonic current distribution, the total rotor 

circumference will have the angular length of 2mπ. An absolute angular section of the rotor β 

will have a length corresponding to mα. Hence, the infinitesimal impedance of a rotor section 

dθ can be derived in a similar way to (2.23) by modifying the expression for the harmonic 

order, i.e.: 

0

1 1md d d
Z Z Z Z

Z Z m

α

α

α

θ θ θ

α

⎛ ⎞= + + ⋅⋅⋅ = ⇒⎜ ⎟
⎝ ⎠

=

∫       (3.19) 

 

Derivation of the equivalent circuit including winding harmonics 

In order to evaluate the effects of the winding harmonics, the theory derived from Maxwell's 

3rd law in Section 2.4 for the forward-revolving components is repeated. This includes the 

effect of the mth harmonic. Only the mth harmonic is considered, but this covers all the 

winding harmonics in consideration. 

From (2.28): 

( ) ( ) [ ] ( )

( )( )

0
, 1 1, 1 ,

( ) ( )

f
stk f stk fm

g

fs fsm s

B t
s r L B t m sm r L B t

l Z Z

N N i t

θ μ ω θ ω θ
θ

θ θ

∂ ⎡− = + − +⎢∂ ⎣

⎤+ + ⎦

  (3.20) 

The left-hand side of (3.20) is expanded using (3.15) so that (3.20) becomes, in phasor 

notation: 

[ ] ( )0 1 1 1f fm stk f stk fm m s
g

jB jmB s r L B m sm r L B N N I
l Z Z
μ ω ω⎡ ⎤+ = + − + + +⎢ ⎥⎣ ⎦

 (3.21) 

This is a single equation with two unknown phasors fB  and fmB . It is split into two separate 

equations (3.22) and (3.23) since they have different spatial frequency (space harmonic) and 

therefore can not affect each other. When solved separately: 

0 1
4f stk f s

g

jNjB s r L B I
l Z
μ ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
       (3.22) 

[ ]0 1 1
4

m
fm stk fm s

g

jmNjmB m sm r L B I
l Z
μ ω⎛ ⎞= − + +⎜ ⎟

⎝ ⎠
    (3.23) 

where (3.22) is identical to (2.58) while (3.23) is similar but contains modification for the 

harmonic order and the slip. However, in (3.23) fmB  can be expressed according to (2.58) 

when substituting j with jm and s with [1−m+sm]; in which case (3.23) becomes  
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[ ]

0

0

4
1 1

m

fm s

g stk
g
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B I

l jm m sm r L
l Z

μ

μ ω

=
⎡ ⎤⎛ ⎞

− − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (3.24) 

From (3.11): 

2
m

fm stk fm
NE j r L Bωπ=         (3.25) 

which, when (3.24) is inserted with a slight modification to the denominator, gives 

[ ]

0

0
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2 1 1

m
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stk
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m Nj
lNE j r L I

jm m sm r L
l Z
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ωπ
μ ω

=
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− − +⎜ ⎟⎜ ⎟
⎝ ⎠

    (3.26) 

Inserting Z = m α Rα + j m α (1− m+sm) Xα from (2.19) and expanding the impedance ratio 

with π, (3.26) becomes 
2

0

0

1
2 2

1

stk m

g
f s

stk
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r L m N
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−

+
− +

     (3.27) 

The numerator and denominator is expanded with the impedance expression so that 
2

0

0

1
2 2 1

1

stk m

g
f s

stk

g

r L m N m R j X
l m sm

E I
m R r Ljm j m X
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    (3.28) 

Rearranging and expanding with -½ j(Nm/2)2 yields 
2 22
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2 22
2 0

1 1
2 2 1 2 2

1 1
1 2 2 2 2

stk m m

g
f s

m stk m
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m R N r L Njm X j

m sm l

α
α

α
α

μ ωπ απ απ

α π μ ωπαπ

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + ⎝ ⎠ ⎝ ⎠⎝ ⎠

  (3.29) 

By inspection, (3.29) is seen to consist of a parallel impedance network, i.e.: 

' '
1||

2 2

rm
rm

mm
fm s

R jXjX m smE I

⎡ ⎤+⎢ ⎥− += ⎢ ⎥
⎢ ⎥
⎣ ⎦

      (3.30) 

where 
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2

0 2
m

mm
g

Nr L
X

l

ωπ μ ⎛ ⎞
⎜ ⎟
⎝ ⎠=         (3.31) 

and 
2 22

2' , '
1 1 2 2

rm m m
r

R m R N NX m X
m sm m sm

α
α

απ απ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟− + − + ⎝ ⎠ ⎝ ⎠
   (3.32)  

with Rα and Xα being the resistance and leakage reactance of a rotor section determined by 

angle α. Nm is the total winding number of one pole pitch, i.e. mNm/2 is the winding amplitude 

of the mth harmonic winding. Similarly, for the backwards MMF: 

' '
1||

2 2

rm
rm

mm
bm s

R jXjX m smE I

⎡ ⎤+⎢ ⎥+ −= ⎢ ⎥
⎢ ⎥
⎣ ⎦

      (3.33) 

with R'rm and X'rm obtained from (3.32). 

In terms of the equivalent circuit, the sum of all EMFs and the voltage drop across the stator 

resistance and leakage reactance equals the supply voltage. Hence, when considering winding 

harmonics, this can be thought of as a series connection of harmonic “motors” as shown in 

Fig. 3.2. 
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Fig. 3.2 Equivalent circuit including MMF harmonics 
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Force and torque 

In a similar manner to Section 2.6, the force acting on an infinitesimal section of the rotor is 

( ) ( )cos cosfm stk rfm fm rfmdF L I t m B t m dω θ ϕ ω θ θ= − − −     (3.34) 

The total rotor force is found by integrating (3.34) over the entire rotor circumference 

( ) ( )

( )

2

0

cos cos

cos

fm stk rfm fm rfm

stk rfm rfm fm

F L I t m B t m d

L I B

π

ω θ ϕ ω θ θ

ϕ π

= − − −

= −

∫     (3.35) 

And the rotor torque is 

Tfm = Lstk Irfm Brfm cos(φfm)π rr        (3.36) 

This can be translated into air-gap values, since the air-gap flux is equal to the flux at the 

rotor conductor, so (3.36) becomes 

Tfm =Lstk Irfm Bfm cos(φfm) π r        (3.37) 

Expressing the torque in terms of equivalent circuit parameters, (3.37) can be rewritten using 

(3.25): 

 ( )cos

2

fm
fm fm rfm

m

E
T IN ϕ

ω
=          (3.38) 

From Fig. 2.5 it can be seen that that the rotor MMF is of equal magnitude but opposite angle 

to the referred rotor MMF, i.e. irfF  = 'irfF− . This is also true for the harmonic MMFs.  As a 

consequence, since the true rotor MMF is 

( )
/

0

2
sin

m
rfm

Irfm rfm

I
F I m d

m

π

θ θ= =∫        (3.39) 

and the referred rotor MMF is 

( )
/

'
0

' sin '
4 2

m

I rfm rfm rfm
mN NF I m d I

π

θ θ= =∫       (3.40) 

This means that the relationship between the true and referred rotor current distribution is 

' '
4 4rfm rf rfm rfm
N NI m I I m I= − ⇒ =       (3.41) 

It should be emphasized that the rotor current and induced voltage are expressed in terms of 

their amplitude, i.e., the peak value.  

Inserting (3.41) and rewriting in terms of RMS values, (3.38) becomes 

( ) ( )2
cos ' 2 cos '

2
fm rms fm rms

fm fm frm rms fm fr rms

E E
T m I m Iϕ ϕ

ω ω
= =    (3.42) 
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φfm is the angle between the flux density and rotor current distribution, which is equal to the 

angle of the rotor impedance. 

 

Influence of the auxiliary winding 

The auxiliary winding modifies the single-phase equivalent circuit shown in Fig. 2.4. A 

number of voltage sources, representing the flux waves, are produced by the auxiliary 

winding. These flux waves set up voltages in the two windings, which differ in magnitude 

(and are determined by the winding ratio) and in phase by the mechanical displacement 

between the two. This is also the case for the harmonic fluxes. Considering the spatial 

displacement between harmonics of the main and the auxiliary winding yields: 

Nm,main(θ) = Nm,main sin (m θ)        (3.43) 

Nm,aux(θ) = Nm,aux sin (m (θ + π/2))  = Nm,aux sin (m θ + m π/2)   (3.44) 

This shows that for m = 1, 5, 9, 13... the mth harmonic auxiliary winding will lead the main 

winding by π/2 or j, whereas for m = 3, 7, 11, 15...the mth harmonic auxiliary winding will lag 

the main winding by π/2 or j. This is illustrated in Fig. 3.3 below for m = 3: If the 3rd 

harmonic amplitudes of main and auxiliary windings have the same sign, the 3rd harmonic 

auxiliary winding will lag the main winding. If they have different signs, the auxiliary will 

lead the main. The different sign could originate from a different distribution of the main and 

auxiliary windings. The latter is illustrated in Fig. 3.4. 

 

 
Fig. 3.3 Main and auxiliary MMFs with 3rd harmonics 
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θ 

Aux 
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Fig. 3.4 Different main and auxiliary winding distributions 

 

In a similar manner to Section 2.7, the equivalent circuit diagram of the split phase motor is 

as depicted in Fig. 3.5. 

    
Fig. 3.5 Main and auxiliary equivalent circuits 

Aux 

Main 

N(θ) 

θ 
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The impedance shown in the auxiliary circuit aZ  represents the auxiliary impedance for 

starting and/or running - i.e. a resistive or capacitive impedance. 

3.4. Force and torque calculations 

For the fundamental torque, the mth harmonic torque arises from the interaction of the mth 

harmonic flux density at the rotor bars and the mth harmonic rotor current distribution where 

( ) ( )
( ) ( )

cos( ) cos cos

cos( ) cos cos

fm stk rfMm fm rfMm rfAm fm

stk rfAm fm fm rfMm rfAm fm

dF L I t m B t m B t m d

L I t m B t m B t m d

ω θ ϕ ω θ ω θ γ θ

ω θ γ ϕ ω θ ω θ γ θ

⎡ ⎤= − − − + − +⎣ ⎦
⎡ ⎤+ − + − − + − +⎣ ⎦

 

(3.45) 

From (2.66), the corresponding torque can be expressed as 

( ) ( )
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2 2

0 0

2

0
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2
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r stk rfMm rfMm
fm fm f

r stk rfAm rfAm
f f

r L I B
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r L I B
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= − + − − +⎢ ⎥

⎣ ⎦
⎡ ⎤

+ − − + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

∫ ∫

∫
  (3.46) 

This is expressed in terms of the flux density at the rotor conductor Br and the corresponding 

mean radius of this rotor conductor rr. This can be described by means of air-gap values 

directly, i.e., (3.46) becomes, by simplification: 

( )
( )

cos( ) cos( )

cos( ) cos( )

fm g stk rfMm fMm f rfAm f f

g stk rfAm fMm f f rfAm f

T r L I B B

r L I B B

π ϕ ϕ γ

π ϕ γ ϕ

= − + − −

+ − + + −
    (3.47) 

This is identical to (2.66) which means that the torque can be described in terms of equivalent 

circuit parameters, corrected for the harmonic order, according to (3.42): 

* *Re ' Re 'm

j
fAmfMm fAm m fMm

fm rfMm rfAm

mEmE mE j mE
T I Iβ β

ω ω ω ω

−⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟= + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠

 (3.48) 

The backwards torque can be expressed in a similar way, i.e.: 

* *Re ' Re 'm

j
bAmbMm bAm m bMm

bm rbMm rbAm

mEmE mE j mET I Iβ β
ω ω ω ω

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤−
⎜ ⎟= + + +⎢ ⎥ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠

 (3.49) 

 

Components of torque 

The resulting average torque of the machine will consist of contributions from harmonics of 

both forward and backwards rotating fields and current distributions where 

Tavg = Tf1 + Tf3 + Tf5 + ... − Tb1− Tb3− Tb5− ...     (3.50) 
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This is illustrated in Fig. 3.6 which shows the fundamental and harmonic torques vs. speed 

for an arbitrary machine. For each harmonic order, the blue graph is resulting torque, the 

green is forwards (positive) torque and red is (negative) backwards torque. As can be seen, 

when the speed exceeds approximately 100 rad/s, which corresponds to the synchronous 

speed of the 3rd harmonic, only the fundamental forwards component produce positive torque. 

All other components will produce braking torque. The resulting torque curve of the machine 

is affected, since it displays asynchronous torque dips near the synchronous speeds of the 

respective harmonics. 
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Fig. 3.6 Simulation results from example machine 

 

Torque pulsations 

In Section 2.7 the net torque is shown to be produced by the interaction of forward rotor 

current distribution with forward flux density as well as backward rotor current distribution 

with backward flux density. This is also the case for the harmonic components, since current 

distributions and flux densities of different harmonic order produce no average torque. 

However, the harmonic components give rise to new sets of pulsating torques, as various 

rotor current distributions and flux densities move past each other. A detailed study of this 

will not be performed here, it is only emphasized that average torque will be produced only 

by components of rotor current and flux density of the same harmonic order and same 

rotational direction. 
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3.5. Rotor MMF harmonics 

In the previous analysis, the rotor circuit has been assumed consisting of a conducting 

cylinder and so reacts uniformly to any field imposed on it from the stator. However, having 

the rotor circuit confined in slots results in new sets of harmonic fields.  

 

Induction in discrete rotor circuit 

In the following, the voltage distribution of a rotor containing N bars is derived when excited 

by a sinusoidal rotating flux density with m pairs of poles as described by 

( ) ( )ˆ, cosm mB t B t mθ ω θ= −         (3.51) 

This results in a pulsating flux through the loop spanned by conductors n1 and n2 given by 

( ) ( ) ( )
2

1 2

1

2

2

2 1 2 1

ˆ, cos

ˆ2 ( ) ( )sin cos

n
N

m stkm n n
n

N

m stk

t B r L t m d

B r L m n n n n mt
m N N

π

π

Φ θ ω θ θ

π πω

→ = −

− +⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
  (3.52) 

The resulting induced voltage in this loop is 

( ) ( )
1 2

2 1 2 1
ˆ2 ( ) ( ), sin sinm stk

m n n
B r L m n n n n me t t
m N N

ω π πθ ω→

− +⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (3.53) 

The voltage induced into the nth bar is due to contributions of flux linkages through every 

loop containing the nth bar. These flux linkages link the nth bar and the adjacent bars of 

successively longer spans, as illustrated in Fig. 3.7. This shows a fictitious 6 bar rotor circuit. 

 

 
Fig. 3.7 EMFs induced to rotor bars 

 

The voltage of the nth bar is therefore a sum of contributions from all the loop combinations 

in which the nth bar is a part. This summation should be divided by 2, since the bar voltage is 

assumed to be half of the loop voltage. Hence 

0 2π 
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( )
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2 1
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=
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As discussed in Section 2.3, the current in the nth bar will be similar and determined by the 

bar impedance bZ : 

( )
1

2 1

2 1 2 1
ˆ ( ) ( ), sin sin

bN n
m stk

n
n nb

B r L m n n n n mi t t
m Z N N

ω π πθ ω
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=

− +⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑    (3.55) 

Since bZ  is determined by, amongst other things, the cross-sectional area of the bar, the bar 

impedance will increase proportionally with the number of bars if the bar depth and the bar 

pitch (or bar width/bar tooth ratio) are constant. 

The rotor MMF in a given direction is given by the total bar currents, summed over an angle 

corresponding to π/m so that 
/

( ) ( )
m

mf i d
θ π

θ

θ θ θ
+

= ∫          (3.56) 

For an ideal sinusoidal current distribution, the peak MMF will be equal to twice the current 

amplitude. For a slotted rotor with a finite number of bars Nb, the MMF will vary discretely, 

as given by 

1

1

2 2( ) ( )
bNn

n n b

f n i n
N
π

+

=

= ∑          (3.57) 

Figs. 3.8 and 3.9 show the induced rotor MMF (in arbitrary but comparable values) of two 

rotors with 16 and 30 bars. Note, that although the bar voltages (blue curves) increase with 

number of bars, the bar currents (red curves) are limited to the same values by the increased 

bar impedances. This results in MMFs (black curves) whose peak and fundamental values are 

similar, but whose harmonic content differ. 
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Fig. 3.8 a) Induced voltage, b) current, c) MMF and d) MMF spectrum for rotor with 16 bars 
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Fig. 3.9 a) Induced voltage, b) current, c) MMF and d) MMF spectrum for rotor with 30 bars 

 

It is clearly seen that the principal bar harmonics of order nNb±1 are present. However, the 

finite number of bars will affect the spectra for the higher harmonics. Fig. 3.10 shows the 

spectra of the MMFs for the 16 slot rotor. These are for the same flux density amplitude but 

with harmonic order m = 1, 5, 9 and 15. 
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Fig. 3.10 Spectra of rotor MMFs with 16 bar rotor 

 

It can be observed that for magnitudes of MMF of the same order, the exciting flux density 

decreases by a factor of 1/m2. This is consistent with the theory regarding the equivalent 

circuit, as described by (3.32). 

These simulation results also illustrate that the induced spectra vary with the harmonic order 

m of the exciting field. As the order increases, the order of the nearest super harmonic 

becomes gradually lower, and eventually, a sub harmonic will be present. For the 9th 

harmonic field, a sub harmonic MMF of order 7 is induced. More generally, as well as 

 
m = 1 
 
 
 
 
 
 
 
 
m = 5 
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inducing super harmonics, the flux density of order Nb/2 +1 creates sub harmonic MMFs, and 

the harmonic of order Nb–1 creates a sub harmonic of order 1. 

To incorporate the rotor bar harmonics into the motor simulation, the referred rotor 

impedances can be modified. In order to do this a cross-coupling factor for each harmonic 

can be multiplied with the harmonic rotor impedance that it affects. It is obvious that the 

lower the number of rotor bars, the more pronounced this phenomenon becomes. 

For the example in Fig. 3.10, the 15th harmonic field is seen to increase the fundamental rotor 

MMF by some 7 % if the amplitude of the 15th harmonic field is equal to that of the 

fundamental field. 

Given the rapidly decreasing nature of the super harmonic flux densities, the impact of the (in 

this case) 15th harmonic field of the fundamental MMF is negligible. This means that, 

although the impact is somewhat greater on the higher harmonics, in the modelling performed 

here, the cross coupling effect is ignored altogether to simplify the simulation process. When 

operating with very few rotor bars, e.g., 10 or fewer, it would have to be implemented in 

order to correctly estimate the fundamental and harmonic rotor MMF. However, few 

induction motors have such few bars. 

3.6. Model implementation and evaluation 

The split-phase induction machine equivalent circuit given in Fig. 3.5 can be analysed using 

classical circuit analysis in order to obtain values for the currents flowing in any branch of the 

circuit. When analysed as a system of mesh equations using Kirchoff's Voltage Law, the 

corresponding set of equations can be solved using linear algebra. This produces an 

impedance matrix. The model can be implemented using any software capable of handling 

linear algebra and complex numbers. In this case, The MathWorks MATLAB® was used. Fig. 

3.11 shows the central part of the coding where the impedance matrix is defined and the 

circuit current equation matrix is solved. 
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Fig. 3.11 Representation of impedance matrix in MATLAB 

 

In order to obtain realistic results, the values of the various circuit parameters must be 

accurately estimated. In Appendix 1, the derivation of every circuit parameter is described. 

 

Model evaluation 

When implementing the model as shown in Fig. 3.11, the steady-state behaviour of any split-

phase motor can be predicted. In order to asses the level of accuracy, a number of different 

motors were simulated and their performance characteristics were compared with 

measurements. Two 2-pole motors were used with one having more harmonic winding 

content than the other. Both machines have 24 slots and the winding layouts for the first six 

slots are shown in Table 3.1. Further details of the two motors can be found in Appendix 3. 

For the 115V motor, the auxiliary winding contains bifilar windings in slots 1 and 2. This 

means that some of the turns are wound oppositely to the rest of the winding, which reduces 

the net winding number. This is done to increase resistance for auxiliary winding, and for two 

reasons: to have sufficient starting torque and to limit the starting current, without having to 

add an additional in-line resistance with the auxiliary winding. 

Both motors are calculated in run mode.
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↓ Motor        Slot No. → 1 2 3 4 5 6 

220V Motor: 

Main winding 

Aux winding 

 

0 

85 

 

46 

85 

 

76 

79 

 

100 

65 

 

118 

0 

 

118 

0 

115V Motor: 

Main winding 

Aux winding (net) 

Aux winding (abs) 

 

0 

25 

40 

 

0 

25 

40 

 

33 

31 

31 

 

53 

0 

0 

 

55 

0 

0 

 

55 

0 

0 

 
Table 3.1 Machine winding layouts 

 

1. 220V 50Hz RSCR motor 

Fig. 3.12 shows the measured (red) and simulated (blue) torque vs. speed in the entire speed 

range, whereas fig. 3.13 shows the current and efficiency vs. load torque in the operating 

range. 

 This is a resistor-start capacitor-run (RSCR) machine so that there is a resistor in series with 

the auxiliary when starting which is switched out when running close to full-load speed, 

when a run capacitor is switched into the auxiliary circuit. 

The simulated pull-out torque appears to be correctly estimated although the speed at which it 

occurs is a little too high. This could be because the rotor resistance is slightly 

underestimated. The line current simulation is close to the measured, whereas it appears from 

the efficiency curves that the copper losses are underestimated, resulting in discrepancy 

between simulated and measured efficiency at high load. This is consistent with the torque 

curves. The iron loss, which dominates at light load, appears to be correctly estimated, since 

the calculated efficiency agrees well to the measured one.  

The stator windings are quasi-sine wound over 5 out of 6 slots for a quarter winding, 

resulting in relatively small MMF harmonics. Hence the resulting torque curve is seen to 

contain practically no harmonic influence during run-up. 
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Fig. 3.12 Comparison of measured (red) and simulated (blue) torque for 220 V motor 
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Fig. 3.13 Comparison of measured (red) and simulated (blue) values for 220 V motor 
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2. 115V 60Hz RSIR motor 

This machine is a resistor-start induction-run (RSIR) motor. This means that when the motor 

approaches full-load speed, the auxiliary winding is switched out and it runs as a single phase 

machine. 

Fig. 3.14 shows the measured (red) and simulated (blue) torque vs. speed in the entire speed 

range, whereas fig. 3.15 shows the current and efficiency vs. load torque in the operating 

range. 

The winding is distributed in 4 out of 6 slots for a quarter winding and contains significantly 

more space harmonics than the previous example. The influence of the winding harmonics is 

seen in the torque vs. speed curve, where the harmonic torque dips due to the 3rd and 5th 

harmonics are clearly visible. The harmonic torque dips seem to be correctly estimated by the 

simulation. The simulated machine efficiency is a few points higher than the measured and 

could be due to an underestimation of the iron losses. As with the previous example, the 

slightly higher pull-out torque and speed could indicate an underestimated rotor resistance. 

It should be noted, that the modelled performance shown in Figs. 3.12 to 3.15 are obtained 

with the direct use of the machine geometry and material properties without any adjustment 

factors. In practice, some adjustment is nearly always necessary, due to imperfections in 

production, in particular in the rotor casting, but also in terms of machining tolerances, etc. 

Tuning a few of the parameters in the simulated curves shown here would improve the 

predicted motor performance further. 
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Fig. 3.14 Comparison of measured (red) and simulated (blue) torque for 115 V motor 
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Fig. 3.15 Comparison of measured (red) and simulated (blue) values for 115 V motor 
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Chapter 4 

Stator and rotor permeance 
 

So far, the air-gap has been assumed to be ideal, being treated as the gap between two smooth 

concentric cylinders. The existence of slots on both stator and rotor surfaces, however, 

introduces harmonic effects in the motor performance. This is partly due to the discrete 

location of conductors in the slots, which gives rise to harmonic asynchronous torques 

already described in Chapter 3, and partly by introducing harmonics in the air gap permeance 

(as described in this chapter). 

4.1. Air-gap length harmonics 

F.W. Carter described a relationship between the mechanical air-gap and the equivalent air 

gap which takes stator and rotor slots into account [29], [30]. This is an adjustment of the 

mechanical constant value. Here, the air-gap as seen by the electromagnetic field is 

investigated in a little more detail. 

In order to asses the variation of the air-gap magnetic field, a 2D finite element model is 

created which has an actual stator geometry but assumes a non-slotted rotor. This is shown in 

Fig. 4.1. The red slots carry a uniform current density of opposite magnitude, whereas the 

grey slots carry no current. Hence, a quasi-square wave MMF is created. 

 
Fig. 4.1 2D finite element analysis of machine with smooth rotor 
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A static analysis of this model results in an air gap flux density versus angle for a single tooth 

pitch as given in Fig. 4.2. 

 

 

 

 

 

 

 

                

 
Fig. 4.2 Radial component of air gap flux density distribution from finite element analysis 

 

From this flux density variation, the radial air gap length can be extracted from Ámpere’s law 

using this expression 

( ) ( )
0

2
μθθ

θ θ
= totI

g
Fe g

Il
B

         (4.1) 

The angles θI and θFe are defined in Fig. 4.1 and the ratio takes into account the concentration 

of flux due to the slotting, since the angular span of the MMF is larger than the span of the 

flux due to the slot openings. 

Extracting the corresponding air-gap length from Fig. 4.2 and performing a harmonic analysis 

of the resulting function results in a spectrum of harmonic air-gap lengths as given by Fig. 

4.3.  

θ [°] 

Brad  [T] 

Tooth Tooth Slot 
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Fig. 4.3 Harmonic air-gap lengths 

 

For the following analysis, it is necessary to express the air-gap length variation 

mathematically. From Fig. 4.2, a suitable approximation is indicated by the dotted blue line in 

Fig. 4.4. 

 

 
Fig. 4.4 Air gap length approximation 

 

A suitable mathematic expression over the span 0 < x < SO is 

( ) ⎟
⎠
⎞

⎜
⎝
⎛+= x

SO
llxf smech

πsin        (4.2) 

And for SO ≤ x ≤ 2πr/Ns: 

( ) mechlxf =          (4.3) 

2πr/Ns 

lmech 

0 SO x 

ls 
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where lmech is the mechanical air-gap and ls is  the effective air gap as determined using the 

Carter factor. This actually corresponds to a constant term, i.e., the zero order harmonic of 

Fig. 4.3. 

Performing a Fourier analysis of the periodic function described by (4.2) and (4.3) will result 

in a spectrum which can be directly compared with the one in Fig. 4.3 (as obtained from the 

finite element analysis). Any general magnitude deviation can be accounted for by 

multiplying the harmonic lengths with a correction factor. In Fig. 4.5, blue graph shows the 

spectrum of the series defined by (4.2) and (4.3) directly, whereas the red graph shows the 

same spectrum, but where the harmonic coefficients have been multiplied with by a factor of 

1.3.  
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Fig. 4.5 Comparison of harmonic air-gap lengths with adjustments (blue is the original 

harmonic magnitude and red multiplies the harmonic lengths by a factor of 1.3)  
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It is seen that the corrected spectrum (red graph) is in good agreement with the reference 

spectrum in Fig. 4.3. Therefore, the mathematical functions in (4.2) and (4.3) for describing 

the air-gap length variation will be used in the following analysis, though this may not be the 

case with different geometry. 

Generally, it can be observed from the spectra that both even and odd harmonics are present. 

For the lower harmonics the magnitudes are significant.  

Since the spectra show the length variation over one tooth pitch, the fundamental value 

corresponds to the Ns
th harmonic when observing the entire air-gap where Ns is the number of 

stator slots. Hence, for the entire air-gap, the order of the harmonic is Ns times higher than 

shown in Fig 4.5. 

4.2. Air-gap permeance 

The reluctance variation of the air-gap is proportional to the air-gap length. The permeance is 

proportional to the inverse of the reluctance – a detailed definition is carried out in Section 

5.2. It will have a spectrum similar to that of the reluctance, as shown in Fig. 4.5. This 

spectrum is for an air-gap section corresponding to one tooth pitch. For an air-gap around the 

whole motor air-gap circumference, the harmonic series has a fundamental of order Ns (the 

number of stator slots) rather that unity. This is shown in Fig. 4.6, which shows the air-gap 

permeance coefficient (a two-dimensional term proportional with the 3-dimensional 

permeance) and the corresponding spectrum for an air-gap with 24 slots. 
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Fig. 4.6 Air-gap permeance coefficient with harmonic decomposition  
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A similar spectrum will exist for the rotor, with a fundamental corresponding to the number 

of bar slots, and the fundamental and harmonics will rotate with the rotor itself. 

4.3. Representation of permeance harmonics 

In the following derivation, the combined effects of stator and rotor permeance are described 

analytically. The approach developed by [15] is used and extended. The total air-gap 

reluctance is a series connection of independent reluctance terms,. However, for the total air-

gap permeance, or, in this case, the permeance coefficient, the inversion process means that 

the stator slot, rotor slot and average permeance coefficient terms may be described by a 

parallel connection of individual permeance coefficients, i.e.,: 
1

1 1 1
−

⎛ ⎞
= + +⎜ ⎟⎜ ⎟
⎝ ⎠

=
+ +

r s g

r s g

s g r g r s

P
P P P

P P P
P P P P P P

        (4.4) 

This type of air-gap harmonic inversion was also studied by [17] and[18]. By substitution, 

and for the moment ignoring higher slot harmonics: 

( )0 cos θ= +s s ms sP P P mN         (4.5) 

and 

( )0 cos θ ω= + −r r mr r rP P P mN t        (4.6) 

Therefore the resulting air-gap permeance coefficient will be 
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 (4.7) 

Both the numerator and denominator of (4.7) contain contributions of constant and time-

space-varying permeance coefficient terms. For the denominator, however, the time-space-

varying permeance coefficient terms are small compared to the constant terms and are 

therefore ignored in the following analysis. Hence, the combined-effect air-gap permeance 

coefficient can be written as 



 4. Stator and rotor permeance 

61 
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The terms belonging to the stator are fixed in space, whereas the rotor terms will rotate with 

rotor speed. This gives rise to several terms of permeance coefficients where 
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The combined-effects terms can be rewritten using the general formula  

cos A cos B = 0.5 cos(A–B) + 0.5 cos(A+B) so that   
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  (4.10) 

where m and n are stator and rotor slot harmonics. Altogether, the total air-gap permeance 

coefficient can be written using the following five terms:  
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  (4.11) 

 

The permeance will behave identically but includes consideration of the axial dimension, 

whereas only the cross-sectional geometry has been considered so far. The correlation 

between permeance and permeance coefficient will be investigated further in section 5.2. 

(4.11) is identical to the derivations of other authors, e.g. [18], although (4.11) includes the 

higher slot harmonics. The first term corresponds to the average air-gap permeance, 

calculated using the Carter factor. This is the only term which has a non-zero mean value. 

The second and third terms correspond to stator and rotor slot harmonics. These will have 

mNS and nNR pole-pairs. The fourth and fifth terms contain combinations of the stator and 
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rotor harmonic permeances. These are permeance waves consisting of waves of |mNS + nNR| 

pole pairs for the fourth term and |mNS – nNR| pole pairs for the fifth term.  

 

Rotational speed of harmonic permeance waves 

The rotational speed of the various harmonics will vary. The permeance harmonics related to 

the stator, i.e. the second term of (4.11), will be stationary, i.e. their rotational speed will be 0. 

For the other terms of (4.11), the rotational speed can be determined by the time it takes for 

them to complete a full mechanical cycle, i.e. 

2θ π=  for 1 2π
ω

= =
p

t
f

        (4.12) 

So, for the general permeance coefficient term  

( ) ( ), cosθ θ ω= −gen x rP t P x y t        (4.13) 

the rotational speed can be found by substituting θ with 2π and t with 2π/ωp and equating 0. 

Therefore 

ω ω=p r
y
x

          (4.14) 

For the rotor permeance harmonics of order n, the rotational speed will be 

ω ω ω= =R
p r r

R

nN
nN

         (4.15) 

For the combined-effect permeance of order m and n together, the rotational speed will be 

1ω ω−
=

−
R

p r
S R

nN
mN nN

         (4.16) 

and 

2ω ω=
+

R
p r

S R

nN
mN nN

         (4.17) 

ωp1 will rotate in the forwards direction, i.e., in the same direction of the rotor, for mNS < 

nNR, and in the backwards direction for mNS > nNR; whereas ωp2 will rotate in the forwards 

direction for either slot combination. 

4.4. Skewing 

Most small induction motors have rotor skew. This reduces the effects of MMF harmonics 

and also slotting. Appendix 1 shows how skewing of the rotor bars affects the R/X ratio of the 

rotor circuit. The normal degree of skew is usually somewhere between one rotor slot and one 

stator slot. When skewing the rotor bar through a certain angle, the rotor permeance variation 
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is affected. This is investigated in more detail here. Fig. 4.7 shows a linearised view of a 

stator placed axially above a skewed rotor. 

 

 
 

Fig. 4.7 Skew representation 

 

It is shown in Fig. 4.3 how the varying air gap length can be decomposed in a series of 

harmonics. When averaging over the rotor stack length Lstk, the harmonic mean gap lengths 

can be represented by   
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(4.18) 

where lg0 is the mechanical (constant) gap length and lm is the amplitude of the mth harmonic 

gap length. For constant value of lg, the varying term must vanish, i.e.: 
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       (4.19) 

where 0 is not a valid value since it would mean that the denominator of (4.18) would also 

become 0. Hence, the smallest value of skewing resulting in zero mth harmonic permeance 

variation can be found from 

Lstk dL 

dθ 

νabs 

θ 

Stator 

Rotor 
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( ) 2tan abs
r stk

r
mN L

πν =          (4.20) 

Hence, skewing the rotor stack by one rotor slot eliminates the fundamental as well as all 

other slot harmonics due to the periodicity of (4.19); this gives 

( ) ( )2tan 1 , 2 , 3 ...abs
r stk

r
mN L

πν =        (4.21) 

In Fig. 4.8, an illustration of the fundamental, 2nd and 3rd harmonic amplitude for the mean 

air-gap length variation plotted against skewing angle is shown. The rotor has 18 slots, the 

rotor stack length is 41 mm and radius is 31.2 mm. 
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Fig. 4.8 Harmonic amplitudes of air-gap lengths versus skew angle  

 

It appears that the higher the order of the harmonic, the smaller the required skew angle 

which is required to eliminate the harmonic. The smallest skew angle eliminating all 

fundamental and harmonic variation is  

2 31.2arctan 0.17 rad 9.8
28 41
πν ×⎛ ⎞= = = °⎜ ⎟×⎝ ⎠

      (4.22) 

For a rotor with the given dimensions, this corresponds to one rotor slot. This would mean 

that in (4.6), the rotor permeance would become a constant value, effectively eliminating the 

third, fourth and fifth terms in (4.11). The remaining permeance variation would be due to the 

stator only. 

This is somewhat in contradiction to the findings in the literature. In [15], it is stated that "It 

appears at first glance that skewing the rotor one stator slot pitch should completely eliminate 

locking."  Skewing the rotor through one stator slot pitch eliminates MMFs of harmonic order 
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Ns. For a balanced 3-phase machine, this represents the major MMF harmonics, including the 

5th, 7th, 11th and so on. For single-phase machines, however, all uneven harmonics are 

present. Reference [17] considers an example of a 4-pole motor with 24 stator and 28 rotor 

slots and it finds that the optimal skew angle to be between 2π/18 and 2π/13. This angle is 

considerably larger than the angle corresponding to either one stator or one rotor slot skew. 
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Chapter 5 

Synchronous locking torques 
 

In the previous chapter, the various harmonic air-gap fields due to the air-gap permeance 

variation were considered and a harmonic representation developed. Here, an analysis is 

developed that considers the way the permeance harmonics interact with the various 

harmonic rotor MMFs to create torque. 

 

5.1 Harmonic air-gap fields 
Figs. 2.6 and 2.7 show how the fundamental forwards- and backwards-rotating components 

of flux density are calculated from the MMF and air-gap permeance coefficient, although the 

specific term permeance coefficient in not used there; in Chapter 2 only a constant air-gap is 

considered. Here, the various terms of air-gap permeance coefficients are also considered. In 

general: 

resB MMF P= ⋅          (5.1) 

The MMF of order m is itself rotating with rotational speed ± ω/m. The product of the general 

permeance coefficient term as given by (4.13) and the pth forward-rotating harmonic 

component of MMF is 
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B t MMF t p P x y t

MMF P
y t p x y t p x

 (5.2) 

Bearing in mind that y and x have different values as given by the terms in (4.11), i.e.: 

Term 1: y = 0  x = 0 

Term 2:  y = 0  x = mNs 

Term 3:  y = nNr  x = nNr      (5.3) 

Term 4:  y = –nNr x = mNs – nNr 

Term 5:  y = nNr  x = mNs + nNr 

Equation (5.2) is composed of two rotating fields, whose pole-pair number and rotational 

speed are given by 
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1
ω ωω
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=
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= −
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=
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b

r
b

n p x
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p x
     (5.4) 
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For a negative pole-pair number, this corresponds to the reverse direction and ωb1 and ωb2 are 

the rotational speeds of the fields. They create net torque when reacting with rotor MMFs of 

the same pole number when their speeds coincide, i.e., when 

( )1
1

ω ω
ω

+ −
= b

r

p x
y

 with 1
1

ωω = ±b
bn

      (5.5) 

Note that (5.5) takes into account the fact that the rotor may rotate in both directions, i.e. the 

slip can be both smaller than 1 (normal operation) and greater than 1 (reverse rotation). 

For example, the first field component will interact with the forwards-rotating rotor MMF at 

a rotor speed of 

( )
1 0

ω ω
ω

+ −
+= =r f

p x
p x

y
        (5.6) 

and with the backwards-rotating rotor MMF at a rotor speed of 

( )
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ω ω

ωω

−
+ −

−+= =r b

p x
p x

y y
       (5.7) 

Similarly, the interaction of the pth backwards-rotating harmonic MMF with the various 

permeance coefficient terms will result in a field where 
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which is also composed of two rotating fields whose pole-pair number and rotational speed 

are given by 
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with p = harmonic of the MMF under consideration and x and y as given by (5.3). A short 

summary of the process is perhaps appropriate: 

 

1. The forwards- and backwards-rotating magnetizing MMF with p pole-pairs each 

interacts with  the general permeance coefficient term with x pole pairs. (In total, 2 

MMFs per harmonic p) 

2. For each interaction, two counter-rotating flux densities with nb = (p+x) or (p–x)  pole-

pairs are created. (In total, 4 flux densities per harmonic p,m,n) 

3.  The rotational speed of each flux density is determined by the rotor speed. Each  flux 

density may therefore produce average torque with either the forwards- or the 
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backwards-rotating rotor MMF of the same pole number when their speeds coincide, 

i.e., at either positive or negative synchronous speed of the rotor MMF. (In total, 8 

speeds per harmonic p,m,n) 

 

This means that for each harmonic component of winding MMF, stator permeance and rotor 

permeance, 8 components of synchronous locking torque need to be considered.  

 

Current harmonics 

Although not the focus of this project, it should be mentioned that the harmonic components 

of air-gap flux density generated by the permeance coefficient harmonics differ from those 

generated by winding harmonic because the have different rotational speeds. Those 

originating from winding harmonics always rotate with a speed equal to the synchronous 

speed of the harmonic under consideration; however, the flux densities waves originating 

from the permeance harmonics rotate at different speeds, which are partly determined by the 

rotor speed. They will therefore induce voltages into the harmonic windings of same pole-

pair number which have a varying frequency. Consequently, when in the equivalent circuit 

diagram in Fig. 3.5, additional voltage sources of a frequency different from supply 

frequency will exist and give rise to a harmonic series of line currents. In [19], this 

phenomenon is utilised in an attempt to implement a speed control of an asynchronous 

machine by determining the line current spectrum in real-time. 

The harmonic currents create no useful torque and merely contribute to small torque 

pulsations and losses. The harmonic content of the current is generally very low since the 

machine acts as a low-pass filter by being generally inductive. 

 

A note on stator permeance 

Before proceeding further, the standstill stator permeance coefficient, in (5.3), as described in 

term 2, should be investigated. The rotational speed coefficient is 0, which implies it is 

stationary regardless of rotor speed. From (5.4), the rotational speed of the resulting field is 

always  

( ) ( )
orb bp x p x

ω ωω ω= =
± + ± −

       (5.10) 

and this interacts with the rotor MMF of same pole number at all rotor speeds. Hence it 

behaves more like an asynchronous torque, although not entirely so. It is not considered in 

the following analysis. 
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5.2. MMF, permeance and torque 

As is the case with the production of useful machine torque, the synchronous locking torque 

components arise from a combination of MMFs interacting with flux densities of various 

harmonic orders. In order to calculate the magnitude of the torque components, a detailed 

knowledge of the harmonic magnetizing, as well as the rotor MMFs and permeances, are 

required. 

 

Magnetizing MMF of the pth harmonic winding 

It should be underlined, that the MMF in consideration is the resulting MMF, i.e. the 

(fictious) vector sum of the two physical MMFs of stator and rotor. This MMF is in fact 

created by the magnetizing currents of each of the harmonic circuits in the equivalent circuit 

diagram. The magnitude of the forwards-rotating pth harmonic magnetizing (or resulting) 

MMF can be calculated from (2.39) and (2.40) when considering the pth magnetizing 

currents, i.e.  
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   (5.11) 

 

where pN/4 is the winding amplitude of HALF of the pth harmonic winding. It is perhaps 

appropriate to remind of the relations between total pole pitch winding number Np  and 

winding amplitude ˆ
pN = p Np/2 as given by (3.3). mag pI is the rms value of the pth harmonic 

magnetising current.  

(5.11) perhaps requires some explanation. It is necessary to determine the resulting MMF, 

consisting of both main and auxiliary winding contributions. The MMF contains the vector 

sum of the main and auxiliary magnetising currents, the auxiliary component winding 

number is modified using the ratio β (the winding ratio) and its spatial phase is rotated using 

the expression −j /sin(pπ/2). This ensures that the auxiliary winding leads the main winding 
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for p = 1, 5, 9... and lags the main winding for p = 3, 7, 11... The square root of two calculates 

the MMF as a peak value. The expression for the backwards-rotating MMFs is similar but 

contains the expression +j /sin(pπ/2).  

Having established an expression for the resulting MMFs (5.11), the flux density component 

(with p ± x pole-pairs) can be calculated from the permeance coefficients using (5.1). 

Therefore an expression for the actual permeance needs to be developed. 

 

Permeance and permeance coefficient 

The air-gap permeance is commonly defined by the gap cross section divided by gap length 

but in order to obtain a precise expression, particularly for a sinusoidally-varying flux, two 

different expressions of the same flux need to be considered, and by comparing these 

expressions, the permeance is derived. 

Initially, the air-gap flux for one pole pitch from the pth harmonic winding is considered. 

Firstly, this can be expressed by magnetizing MMF and the air-gap permeance Perm so that 
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IN
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π

Φ Ρ
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π

π

= ⋅

= ⋅

= ⋅

∫        (5.12) 

where ˆ
pN is the winding amplitude of the pth harmonic winding. The factor 2/π takes into 

account the sinusoidal distribution of the flux, since it represents the ratio between the areas 

of a sine function and a rectangular function of equal amplitude. 

Secondly, a relationship between the flux linkage and the total flux of one pole pitch of the 

pth harmonic winding must be found. Fig. 5.1 shows a pole pitch of a pth harmonic 

sinusoidally-distributed winding. At an angle θ, the shaded area of the coil is linked by a 

number of flux lines (shown in red). 
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Fig. 5.1 Pole pitch angular definitions 

 

At an angle θ the winding number is 

( ) ( )ˆ sinpN N pθ θ=          (5.13) 

and the total flux is 
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Considering an infinitesimal radial section of width dθ at an angle θ, the flux linkage is 
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From this, the total flux linkage of one pole pitch can be found by integrating over the entire 

pole pitch so that 
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Solving for the pitch flux, and introducing a relationship between flux linkage, current and 

inductance gives 

dθ 

θ 

Φ(θ) 

Φ(θ+d θ) 

2 2 p
π π
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This is obtained from (3.3) and (3.31). Equating (5.12) and (5.17) and solving for Perm yields 
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This expression relates to the flux rather than the flux density, which is required here. 

However, the relationship between permeance and permeance coefficient is the same as that 

between flux and flux density for one pole pitch, therefore: 
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So in order to obtain an expression for the permeance coefficient, the following comparisons 

are made. The flux is given by 

p MMF Perm BΦ α= ⋅ =         (5.20) 

and the flux density is given by 

pB MMF P= ⋅          (5.21) 

Dividing (5.20) with (5.21) yields 
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From which, by combining (5.18) and (5.19): 
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         (5.23) 

where lgap is the amplitude of the harmonic gap lengths and p is the pole-pair number of the 

harmonic flux density. 

 

Rotor MMF calculation 

The rotor MMF can be expressed in terms of its referred value, since only referred currents 

are present in the equivalent circuit diagram. Hence 
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The relationship between the MMF and current distribution amplitude is given by (3.39), i.e.: 

ˆ
2 2 2 sin

2

β

π

⎛ ⎞
⎜ ⎟−
⎜ ⎟= = +

⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

b R n b n main nb b b
R n R n main R n auxb b b

b

n MMF n N j
I I I

n
   (5.25) 

N bn  main is the total winding number of one pole pitch of the nb 
th harmonic winding. 

 

Torque calculation 

From (5.25) and (5.1) the magnitudes of the locking torques can be determined. The 

maximum value of locking torque occurs when the flux density and the current distribution 

are in phase, and the minimum value occurs when they are in anti-phase. The magnitude is 

given by 
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Comparison with a 3-phase motor 

Before proceeding to calculate the actual values of the synchronous locking torques, it is 

worthwhile considering the differences between a split-phase motor and a balanced 3-phase 

motor.  

Generally, in the 3-phase motor fewer winding harmonics exist. Firstly, all winding 

harmonics which are multiples of 3 are not present for a Y- or Δ-connected balanced three 

phase motor. Secondly, at the remaining harmonics (1, 5, 7, 11....) only one of the two 

counter-rotating MMFs are present due to the 3-phase balancing (5th, 11th, etc, rotate 

backwards while the 7th, 13th, etc, rotate forwards). 

For the single phase motor, all winding harmonics of uneven order are present, and for each 

order, both the forward and the backwards rotating component exist. Since the synchronous 
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locking torques are created by the interaction of harmonic magnetizing MMFs, permeance 

components and harmonic rotor MMFs, there are more than twice as many sources for 

synchronous locking torques in the single phase motor compared to the 3 phase motor. Hence 

single-phase motors should be sine wound wherever possible. 

5.3. Calculating synchronous locking torques 

As mentioned in previous sections, there are several independent synchronous locking 

torques which can be calculated for the pth magnetizing MMF. This interacts with each 

permeance coefficient term to create flux density waves of harmonic order nb. The torque 

arises from their interaction with a rotor MMF of the same harmonic order nb. The accurate 

calculation of the torque requires the magnitudes of the various flux densities and MMFs to 

be known. Therefore it is necessary to obtain realistic values for these. 

 

Implementation of model 

To obtain values for the various flux density waves and MMFs, the equivalent circuit which 

includes winding harmonics is used. This also includes 4 separate winding harmonics for 

both the forwards and backwards-rotating waves. This gives a system of 20 equations when 

considering both the main and auxiliary windings. 

The fundamental and third winding harmonic variables are always considered, since these, or 

at least the fundamental, will determine the line current drawn from the supply. The third 

harmonic tends to be the most significant harmonic. 

In addition, the winding harmonics of order p (which are the ones that interacts with the 

permeance harmonic to produce flux) and nb (which is the winding harmonic of the same 

order as the resulting flux) are considered in order to obtain the values needed for torque 

calculation. If p or nb is of an order already present in the equivalent circuit then they are set 

to 5 and 7 respectively. Otherwise, the currents would be wrongly calculated. 

In other words, the fundamental and third harmonic variables are used to bias the equivalent 

circuit, and the two additional harmonic variables are used to calculate the magnitude of 

synchronous locking torques. 

This is illustrated in Fig. 5.2, which shows the sub-circuit representing the 4 forwards-

rotating harmonic windings of the main winding. In the actual circuit, as used and 

implemented for the calculations here, the 4 backwards-rotating windings together with the 

auxiliary circuits are considered. 



 5. Synchronous locking torques 

75 

 
 

 
Fig. 5.2 Harmonic sub-equivalent circuit for main forwards-rotating harmonics 
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As mentioned previously, there are several components of synchronous locking torque that 

need to be considered. The calculation is performed by considering one component at a time, 

in a manner which can be best described in the flowchart in Fig. 5.3. 

 
Fig. 5.3 Calculation flowchart for synchronous locking torque 

Determine the 8 rotor speeds (ωr) at 
which locking occurs 

Determine the number of poles (nb) of 
the resulting flux densities 

Solve the equivalent circuit equations 
Obtain values for pth harmonic 
magnetizing MMF and nb

th harmonic 
rotor MMF

Calculate the value of  
synchronous locking torque. 

For each value of  
harmonic winding MMF (p): 

For each rotor speed (ωr): 

For each permeance term (x,y)*: 

For each rotor permeance harmonic n: 

For each stator permeance harmonic m: 

Create (ωr , T) table 

Accumulate (ωr , T) table 

Accumulate (ωr , T) table 

Accumulate (ωr , T) table 

Accumulate (ωr , T) table 

Accumulate (ωr , T) table *)Additionally, modifications must be made so that term 
3 is only included once per rotor permeance harmonic 
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Calculation example 

An example of the innermost loop calculation, resulting in 8 separate torque components, is 

given in Fig. 5.4 in the upper graph. It appears that many of the components occur at the 

same rotor speeds, so the lower graph shows the accumulated torques at each occurring rotor 

speed. 
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Fig. 5.4 Synchronous torque points – top: individual points; bottom: combined points 

 

In order to clarify the origin of the torques illustrated in Fig. 5.4, they are here treated 

separately. 

The example shown in Fig. 5.3 is for the case of 24 stator slots, 16 rotor slots, fundamental 

magnetising MMF, 24th stator permeance harmonic, 16th rotor permeance harmonic and third 

permeance term. Therefore, from (5.3) 

y = 16    x = 16       (5.27) 

Since the fundamental magnetising MMF is considered then p = 1 and the pole-pair number 

of the resulting fields caused by the forward magnetising MMF are, from (5.4): 

nb1 = 17   nb2 = –15      (5.28) 

with rotational speeds:  

1
16
17

ω ωω +
= r

b   2
16
15

ω ωω −
=

−
r

b      (5.29) 
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These interact with the forwards-rotating rotor MMF of same pole-pair number, i.e., 17 and 

15 pole-pairs respectively, at speeds as given by (5.6) and (5.7), so that 

1 0ω =r f    2 0ω =r f       (5.30) 

They also interact with the backwards-rotating rotor MMF at speeds 

1
2
16
ωω −

=r b    2
2
16
ωω =r b       (5.31) 

Similarly, the backwards-rotating magnetising MMF of order p creates fields with pole-pair 

numbers as given by (5.9): 

nb3 =  –15   nb4 = 17      (5.32) 

with rotational speeds 

3
16
15

ω ωω +
= r

b   4
16
17

ω ωω −
=

−
r

b      (5.33) 

These interact with the forwards-rotating rotor MMF of same pole-pair number at speeds 

3
2
16
ωω −

=r f    4
2
16
ωω =r f       (5.34) 

and with the backwards-rotating rotor MMF at speeds 

3 0ω =r b    4 0ω =r f       (5.35) 

This explains the appearance of the uppermost graph in Fig. 5.3. The torques are calculated 

from the current values, which are determined from the equivalent circuit for each value of 

rotor speed. 

 

Evaluation of stator and rotor slot combinations 

Implementing the algorithms as shown in Fig 5.3 and further adding an outer loop which 

steps through a range of rotor slots for a fixed stator slot number, it is possible to evaluate 

which slot number combinations give rise to the highest and lowest values of synchronous 

locking torque. In the following sections, three motors of approximately the same starting and 

pull-out torque values are considered. They are all modelled in start mode, i.e., with the value 

of auxiliary impedance corresponding to the starting properties of the motor. This is because 

the synchronous locking torques occur during the transient run-up at lower speeds, where the 

motor is accelerating towards operating speed.  

The specifications for the machines are given in Appendix 3. These machines do not have 

any skew in order to emphasise the effects of the winding harmonics on the synchronous and 

asynchronous torques. 
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1. 220V motor designed for optimum efficiency 

This motor is designed for capacitor-run operation. Fig. 5.5 shows the spectra for the main 

and auxiliary windings, indicating very limited harmonic effects, particularly for the main 

winding. Note that in the lower graphs, showing the magnitude of the higher harmonic 

MMFs, the fundamental value has been omitted to clarify the magnitude of the harmonics. 

The fundamental is shown in red in the upper graphs. 
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Fig. 5.5 Winding harmonics - 220 V machine  

 

Fig. 5.6 shows the magnitude of the synchronous locking torque versus rotor speed and rotor 

slot number as a space plot in the upper graph as well as projected plots on the middle and 

lower graphs. The number of stator slots is 24 and the mechanical air-gap is 0.28 mm. 

For clarity, the data values are given by dots instead of bars, which is the normal case for 

plotting discrete values. However, the dot visualisation is more clear when having multiple 

values at the same variable. Moreover, the dots are connected by a line to indicate which 

values belong to the same series. Of course, the lines should not be interpreted as a 

continuous function; they are merely a means for clarifying the identity of the data series. 

For example, the red dots connected by red lines in the middle plot in fig. 5.6 all belong to the 

data series describing a 24 slot rotor. 
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Fig. 5.6 Magnitude and location of synchronous locking torques - 220 V machine 

 

Fig. 5.7 shows the synchronous locking torques superimposed on the steady state torque vs. 

speed curves for 20 rotor slots, which results in limited synchronous locking torque, as well 

as for 24 rotor slots (equal to stator slot number) which results in severe locking at standstill. 

Negative speeds have been included to illustrate that synchronous locking takes place at 

reverse rotation as well. 
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Fig. 5.7 Torque-speed curves of motor with Nr = 20 and 24 slots respectively - 220 V 

machine 
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2. 115V motor designed for low cost and low efficiency  

This motor is a 115V motor designed for single phase operation. Fig. 5.8 shows the spectra of 

the main and auxiliary windings, indicating considerable 3rd and 5th harmonics. 
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Fig. 5.8 Winding harmonics - 115 V machine 

 

Fig. 5.9 shows the magnitude of the synchronous locking torque versus rotor speed and rotor 

slot number as a space plot in the upper graph and as projected plots in the middle and lower 

graphs in a similar manner to the 220 V machine. The number of stator slots is 24 and the 

mechanical air gap is 0.36 mm. 
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Fig. 5.9 Magnitude and location of synchronous locking torques - 115 V machine 

 

Fig. 5.10 shows the synchronous locking torques superimposed on the steady state torque vs. 

speed curves for 18 rotor slots, which results in considerable synchronous locking torque, as 

well as for 24 rotor slots (equal to stator slot number) which results in severe locking at 

standstill. The steady-state torques themselves show considerable asynchronous torque dips. 
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Fig. 5.10 Torque-speed curves of motor with Nr =18 and 24 slots respectively - 115 V 

machine 
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3. A 220V variant of example 1. 

This machine is based on the 220 V machine in example 1 but with a redesigned stator which 

has a less distributed winding. Fig. 5.11 shows the spectra of the main and auxiliary 

windings, indicating considerable 3rd and 5th harmonics in a similar manner to the 115 V 

machine in the previous example.  
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Fig. 5.11 Winding harmonics – modified 220 V machine 

 

Fig. 5.12 shows the magnitude of the synchronous locking torque versus rotor speed and rotor 

slot number with a space plot in the upper graph and projected plots in the middle and lower 

graphs. The number of stator slots is 24 and the mechanical air gap is 0.28 mm. 
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Fig. 5.12 Magnitude and location of synchronous locking torques – modified 220 V machine 

 

Fig. 5.13 shows the synchronous locking torques superimposed on the steady state torque vs. 

speed curves for 20 rotor slots, which results in limited synchronous locking torque, as well 

as for 24 rotor slots (equal to stator slot number) which results in severe locking at standstill. 

Again, these are similar to the previous two examples in terms of the 24 slot rotor.  
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Fig. 5.13 Torque-speed curves of motor with Nr =20 and 24 slots respectively – modified 220 

V machine 
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In general, the number of stator slots is nearly always limited to a certain range of numbers. 

For motors in the hundred W to few kW range, the most common stator slot number is 24 or 

36, being even numbers which are multiples of 3 and thus suited for both single-phase and 3-

phase windings. The number of rotor bars, however, does not have the same restrictions, at 

least for squirrel-cage rotors, where the rotor circuit is one short-circuited winding. But 

specifically regarding synchronous locking torques, care must be taken in the choice of 

number of rotor bars. By considering the results displayed in Figs 5.8 to 5.13, it is possible to 

draw some preliminary conclusions from the modelling of synchronous locking torques 

performed in the foregoing: 

 

1. Winding harmonics increase the magnitude of synchronous locking torque  

This is seen by comparing the graphs of examples 1 and 3. With the same mechanical 

properties, the increased winding harmonics of the motor in example 3 causes the magnitude 

of the synchronous locking torque at all speeds and slot combinations to increase 

 

2. Larger air-gap decrease the magnitude of synchronous locking torque  

By comparing the graphs of examples 2 and 3, it is seen that where example 2 exhibits a 

larger degree of winding harmonic, the greater mechanical air-gap of example 2 causes the 

synchronous locking torques to be relatively lower than for the motor in example 3. 

 

3. Certain slot combinations result in high magnitudes of synchronous locking torque 

While the number of rotor slots resulting in the smallest values of synchronous locking torque 

varies, it is seen that combinations having Nr = Ns or Ns/2 result in large values of locking in 

all cases. Even Nr = 3Ns/2 (in this case 36) results in slightly increased levels when compared 

to adjacent numbers. 

 

4. Optimal slot combination varies 

There appears to be a general tendency for the magnitude of the synchronous locking torque 

to decrease with increasing slot number, owing to the nature of decreasing harmonic field 

magnitudes as the harmonic order increases. Also, as pointed out in section 3.5, the harmonic 

content of rotor MMF will decrease with increasing number of bars.  

However, for practical reasons, it is often desirable to have a relatively low number of rotor 

slots, since this enables a better casting and hence a better conductivity of the rotor. 

Moreover, fewer rotor slots allows a more simple stamping tool with a longer life time 

because of less severe demands to corner radii. 
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Thus, from an academic point of view, it would be desirable to have many rotor bars, 

whereas from a practical point of view, the rotor bars should be few. 

If a low number of rotor slots are desirable, the optimal number may be unique for the 

individual stator with its individual MMF spectrum. In the examples, where a 24 slot stator is 

considered, a rotor slot number of 18 or 20 appear to be the optimal. 

 

These conclusions are thought to be in good agreement with existing literature on the topic, 

although the literature mostly covers 3-phase machines. However, as to the most suitable 

choice of rotor slots when having a 24 slot stator, some divergence exists in the literature. For 

instance, [17] finds an 18 slot rotor to be "very suitable for operation", whereas in [28] it is 

not included in the table of suitable combinations. Moreover, it is exactly the other way 

around for a 16 slot rotor. Reference [28] also stresses the divergence between the work of 

various authors and preferences of different manufacturers. 

5.4. Influence of eccentricity 

So far, the source of synchronous locking torques has been considered as being due to 

permeance harmonics, creating harmonic flux densities in the air-gap which produce torque 

when reacting with rotor MMFs of the same pole-pair number. In this section, it is described 

how air-gap eccentricity and non-alignment contribute to the creation of synchronous locking 

torques. 

Fig. 5.14 shows 4 different cases of air-gap imperfection. The upper left diagram shows rotor 

eccentricity where the geometrical centre of the rotor is shifted by xr with respect to the axis 

of rotation. 

The upper right diagram shows the case were the centre of the stator does not correspond to 

the axis of rotation. The lower left diagram illustrates an example where the rotor axial 

symmetry line is angled with respect to the axis of rotation, and finally, the lower right 

diagram is the case were the stator symmetry line is angled with respect to the axis of 

rotation. 

As illustrated in the figure, the case of rotor non-alignment is similar to one of rotor 

eccentricity, and stator non-alignment corresponds to stator eccentricity. Hence, when 

attempting to describe the cases mathematically, it is sufficient to investigate the two 

situations of rotor and stator eccentricity. 
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Fig. 5.14 Cases of eccentricity 

 

Considering rotor eccentricity, the air-gap length lg at a given angle θ with rotor offset xr can 

be approximated by 

( ) ( ), sinθ θ ω= + −g g nom r rl l x t        (5.36) 

where lg,nom is the nominal, or average, air-gap length. For the case of stator eccentricity xs, 

the air-gap length is independent of rotor speed, i.e.: 

( ) ( ), sinθ θ= +g g nom sl l x         (5.37) 
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In both cases, the air-gap variation results in a corresponding permeance variation as shown 

in Fig. 5.15 for an air-gap of 0.37 mm nominal value, assuming 0.1 mm stator eccentricity.  
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Fig. 5.15 Air gap permeance with eccentricity 

 

The eccentricity is seen to “contaminate” the permeance coefficient spectrum with a 

fundamental value of similar magnitude to the first slot harmonic. In addition, a second 

harmonic permeance term is generated, although with smaller amplitude. By referring to the 

expressions relating to air-gap permeance variation caused by slotting, (5.36) and (5.37) are 

similar to rotor and stator slot permeance harmonics, respectively, although with fundamental 

harmonic; whereas the slot harmonics are of order nNr and mNs respectively. 

However, as a source of synchronous locking torque, it is important to remember that an air-

gap permeance term of uneven harmonic order would interact with harmonic MMFs of 

uneven order and thus create air-gap flux densities of even order. Ideally, for a two-pole 

motor there are no rotor current distributions of even order, and so no synchronous locking 

torque is created. The second order eccentricity harmonic, on the other hand, will be a source 

of synchronous locking torques in a similar manner to the slot harmonics.  

Although the influence of eccentricity is similar to those of slot permeance harmonics, 

eccentricity has not been included in the model. A detailed calculation of the influence of 

eccentricity is not the main scope of this work; however it has been shown that eccentricity 

may impact the values of synchronous locking torque and can be the focus of future work. 
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Chapter 6 

Evaluation of the model 
 

In the previous sections, a model describing and predicting the synchronous locking torques 

was developed. In this section, a comparison of the predicted results is made with finite 

element analysis calculations and measurements on actual motors. 

6.1 Calibration of steady-state model 

Since the magnitudes of the synchronous locking torques are determined from the equivalent 

circuit parameters, in this section a calibration of these parameters is carried out using actual 

motor measurements. The motor under consideration is an RSCR motor for 230V, 50Hz use. 

Figs 6.1 to 6.3 show comparisons between the modelled and measured run torque, line 

current and efficiency, respectively. These were performed at 198 V line voltage, with a line 

impedance of −0 V/A. 
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Fig. 6.1 Torque-speed curve at 198 V for the 230 V motor 
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Line current vs torque
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Fig. 6.2 Current-torque curves for 230 V motor 
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Fig. 6.3 Efficiency-torque curves for 230 V motor 

 

The curves show reasonable agreement. The deviation between measured and calculated 

efficiency as appearing in fig. 6.3, may owe to the fact that the rotor temperature rises during 

the test, which is not taken into account in the model, where the temperatures are fixed. Thus 
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the model may have under predicted the rotor resistance simply by assuming a lower 

temperature than was the case. The deviation in efficiency only corresponds to app. 2-3W.  

 

6.2 Modelling of synchronous locking torque 

Having established a degree of confidence in the calculated parameters of the equivalent 

circuit, the model is used to find the speed and magnitude of the synchronous locking torques 

for this particular machine as a function of the number of rotor slots (assuming that the rotors 

are unskewed) with the same fundamental MMF rotor resistance, i.e., the same amount of 

aluminium and the same total slot area. 

The motor is modelled in start mode, i.e., with a 25 Ω PTC resistor in parallel with the run 

capacitor. The location (speed) and magnitude of locking torque is shown as a 3D plot as well 

as projected curves in Fig 6.4. 
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Fig. 6.4 Synchronous locking torque characteristics for 230 V motor with varying rotor slot 

number (Nr) 
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Each line colour represents the same speed component of locking torque for each rotor slot 

number. For example, the red one represents torque that occurs at a rotor speed of zero. 

From these results, two combinations are considered interesting: 

• 24 rotor slots (i.e. the same number as stator slots) which results in severe locking, 

particularly at standstill and at negative speed (approximately –27rad/s) 

• 18 slots, which results in a low magnitude of standstill locking when the number of 

rotor slots is smaller than the number of stator slots 

The corresponding steady-state speed and torque are shown in Figs. 6.5 and 6.6, with their 

respective components of synchronous locking torque superimposed. 
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Fig. 6.5 Steady-state torque-speed curve with synchronous locking torques superimposed for 

230 V motor and 24 rotor slots 
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Fig. 6.6 Steady-state torque-speed curve with synchronous locking torques superimposed for 

230 V motor and 18 rotor slots 

 

The nature of synchronous torques is such that they only occur at a certain speed as a 

constant value. At all other speeds, they will oscillate with a mean value of zero. The 

synchronous torque oscillation frequency reduces as the rotor speed closes in on the 

synchronous torque speed.  

6.3 Start-up transients using Finite Element Analysis 

The resulting torque vs. speed curves shown in Figs. 6.5 and 6.6 suggest that the starting 

performance may be impaired by the large locking torques at zero speed, particularly in the 

case of the 24 slot rotor in Fig. 6.5. These tendencies can be verified using two dimensional 

finite element analysis - the axial dimension can be ignored since the rotors are not skewed. 

The geometries for the models are shown in Figs. 6.7 and 6.8 for the 24 and 18 slot rotor 

arrangements. 

 



 6. Evaluation of the model 

97 

  
Fig. 6.7 Finite element model geometry for 24 rotor bar model 

  
Fig. 6.8 Finite element model geometry for18 rotor bar model 

 

The rotor slots are designed in such a way as to maintain constant total rotor slot area, i.e., 

constant rotor resistance. With the same stator, the motor should have same steady-state 

performance. 
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A transient time-stepped finite element analysis was performed in each case, letting the motor 

accelerate from standstill using a 25 Ω resistor as the auxiliary impedance. In the calculation, 

the motor was loaded by a constant shaft torque of 0.2 Nm. Figs. 6.9 and 6.10 show the 

calculated values of the current (green = total, blue = main, red = auxiliary), torque, rotor 

angle for both rotor slot combinations. While the 24 slot rotor exhibits large torque pulsations 

and a reluctance to accelerate, the 18 slot rotor accelerates to an average speed of 

approximately 300 rad/s within 0.07 seconds. 
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Fig. 6.9 Performance produced from transient finite element analysis with 24 bar rotor 



 6. Evaluation of the model 

99 

0 0.05 0.1 0.15 0.2
-15

-10

-5

0

5

10

15
Currents

t [s]

I [
A

]

0 0.05 0.1 0.15 0.2
-5

0

5
Torque

t [s]

T 
[N

m
]

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60
Angle

t [s]

Th
et

a 
[ra

d]

0 0.05 0.1 0.15 0.2
0

100

200

300

400
Speed

t [s]

w
 [r

ad
/s

]

 
Fig. 6.10 Performance produced from transient finite element analysis with 18 bar rotor 

 

As a further comparison, the results from simulations of a 22 slot rotor in combination with a 

24 slot stator (As illustrated in Fig. 6.11) are shown in Fig. 12. This machine exhibits large 

values of synchronous locking torques, although not as severe as for the 24 slot rotor. The 

analysis results in Fig. 6.4 suggest that the locking torques for a 22 slot rotor should be 

somewhere in between those for an 18 and a 24 slot rotor, which was also found to be the 

case in the finite element analysis in Fig. 6.11. 

From Fig. 6.12 it is appears, that the 22 rotor slot motor accelerates to near-synchronous 

speed (316 rad/sec) within 0.17 seconds which is considerably slower and less smooth than 

for the 18 slot rotor counterpart. 
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Fig. 6.11 Finite element model geometry for 22 rotor bar model 
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Fig. 6.12 Performance produced from transient finite element analysis with 22 bar rotor 
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The finite element analysis results appear to be in good agreement with the results obtained 

from the analytical method developed and described previously. However, they do not give 

any quantitative results for the various synchronous locking torques as they appear at 

different speeds. They could be extracted by a procedure described in [31]. Instead, in the 

following section, experimental verification is used to validate the results. 

6.4 Verification by measurements 

In order to verify the simulated results obtained in Figs. 6.5 and 6.6, the two rotors were 

manufactured and tested and compared with a 28 slot reference rotor, which was skewed. A 

detailed description of the tests carried out can be found in Appendix 2. The rotor laminations 

for the two rotors experimental rotors were laser cut from plate steel and the rotors fabricated. 

 

 
Fig. 6.13 Geometry of 18 bar rotor 
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Fig. 6.14 Geometry of 24 bar rotor 

 

It is described in Appendix 2 how both steady-state torque-speed and efficiency curves, as 

well as the magnitudes of synchronous locking torques, were obtained. The resulting steady-

state torque and efficiency were obtained during run mode operation (i.e., with a 3.5 μF 

capacitor in series with the auxiliary) and are shown in Fig. 6.15 and 6.16. The reason for 

using run mode rather than start mode (as in the simulations) was to assess the steady-state 

operation of the machines. The rotors have identical total bar cross section and contain the 

same amount of aluminium. However, the reference rotor is skewed, whereas the test rotors 

are not.  

To compare the results, Fig. 6.15 shows that the unskewed rotors result in a slightly increased 

maximum torque, regardless of bar number, when comparing to the reference rotors. Fig. 

6.16 shows comparable efficiency of the three rotor types; however, the skewed rotor appears 

result in slightly increased efficiency. 
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Fig. 6.15 Comparisons of measured torque for 28, 24 and 18 rotor bar machines  

(5 examples for each) 
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Fig. 6.16 Comparisons of measured efficiency for 28, 24 and 18 rotor bar machines during 

run mode 

 

To obtain further experimental results in start mode a set of deceleration tests were carried 

out. These allowed comparison to the analytical and finite element analyses simulations 

which were put forward earlier. Appendix 2 describes how the deceleration tests were 

performed in order to investigate the locking torques at low speed with the motors in start 

mode, i.e., with a 25 Ω resistor in series with the auxiliary winding.  Figs. 6.17 and 6.18 show 

the deceleration curves for the 18 slot rotor, 24 slot rotor and 28 slot rotor (skewed reference), 

respectively. The yellow boxes illustrate where a locking tendency occurs and the x-axis is in 

rpm. 

For the 18 slot rotor, a locking tendency is seen at around 335 rpm, whereas for the 24 slot 

rotor it occurs at around 240 rpm. Even the 28 slot skewed rotor has a locking torque 

characteristic (although it is quite small) at 220 rpm. 
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Fig. 6.17 Deceleration curve (torque-speed) for 18 rotor bar rotor machine 
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Fig. 6.18 Deceleration curve for 24 rotor bar rotor machine 
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Fig. 6.19 Deceleration curve for 28 rotor bar rotor machine 
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Appendix 2 also describes how the peak-to-peak values of the synchronous locking torques at 

standstill can be found from the band width of the scatter plots of the torque values, obtained 

at slow speed. These scatter plots are shown in Figs. 6.20 to 6.22 for the 18 slot rotor, 24 slot 

rotor and 28 slot rotor (skewed) , respectively. 

It is possible to compare the modelled and measured values of synchronous locking torque 

directly. This is done by obtaining the peak to peak values from Figs. 6.5 and 6.6 and 

comparing them with the ones shown in Figs. 6.17 and 6.18 for the low-speed locking torque, 

and with Figs. 6.20 and 6.21 for the standstill locking torque. 
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Fig. 6.20 Synchronous torques for 18 bar rotor machine 
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Fig. 6.21 Synchronous torques for 24 bar rotor machine 
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Fig. 6.22 Synchronous torques for 28 bar rotor machine 

 

Fig. 6.23 shows the modelled and measured peak-to peak values of the synchronous locking 

vs. the speed at which they occur. Note that the steady-state motor torque has been removed 

to more clearly illustrate the location of the synchronous locking torques. The 28 slot skewed 

rotor is not included in the comparison, since it has not been calculated. 
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Fig. 6.23 Synchronous locking torque comparison for 18 and 24 bar rotor machines 

 

While the speeds of the synchronous locking torque appear to have been correctly modelled 

for both rotors, the magnitudes of the torques are generally under predicted, particularly for 

the 24 slot rotor. Fig. 6.24 shows a plot of the deviations between modelled and measured 

values of synchronous locking torque. However, from the tests described here and also in 
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Appendix 2, it can be concluded that measuring synchronous torque is not straightforward so 

that precise measurements are difficult to obtain.  
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Fig. 6.24 Synchronous locking torque deviation comparison for 18 and 24 bar rotor 

machines 

 

6.5 Discussion of results 

The model appears to correctly identify the speed at which synchronous locking torques 

occur. The calculated magnitudes of the synchronous locking torque are generally under 

predicted, which is, however, expected to a certain degree, since air-gap imperfections in 

form of eccentricity and non-alignment are not considered in the model. Given the 

construction of the motor fixture, which facilitates a single-sided bearing of the rotor, a 

certain degree of eccentricity will certainly have been present during tests. Radial forces 

acting on the rotor during test will tend to amplify this eccentricity, further increasing this 

source of error. Altogether, accurate measurement of the synchronous locking torques is not 

straightforward. Hence, it is reasonable to suggest that in addition to the under-prediction of 

the synchronous locking torques, the motor fixture and measuring techniques may lead to 

higher measured values. The differences between modelled and measured results displayed in 

Fig. 6.24 are therefore high, particularly for the 24 bar rotor at zero speed. This is, however, 

the situation where the largest value of synchronous locking torque occurs, and it would be 

safe to suggest that any measurement imperfections are also mostly pronounced here, leading 

to large deviations between calculated and measured values as clearly illustrated in fig. 6.24. 

 Chapter 8 suggests how the model can be improved further to account for additional sources 

of synchronous locking torques. 
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Chapter 7 

Summary of modelling and results 
 

This chapter serves as a brief overview of the modelling and results obtained in the previous 

chapters. For detailed description of how the modelling was derived, reference should be 

made to the relevant sections.  

7.1 Asynchronous torques from winding harmonics 

If the winding distribution of a machine is not sinusoidal then stator MMF harmonics are 

produced. These harmonics lead to harmonic air-gap flux waves which link the rotor cage, 

inducing EMFs and generating further rotor harmonic MMFs. Because the coils are discretely 

confined in slots, stepwise variations of the stator and rotor MMFs are generated which also 

produce MMF harmonics of a higher order. Analysing each winding harmonic separately and 

modelling an induction motor as a series connection of harmonic fields leads to the 

development of an extended equivalent circuit. In addition, since the main and auxiliary 

windings have different harmonic content, they are treated individually. This is described in 

Chapter 3.  By solving the circuit equations associated with each harmonic circuit, the 

currents and torques due to the forwards- and backwards-rotating harmonic fields can be 

obtained. The net machine torque is obtained by superimposing the harmonic torques. An 

example of a torque vs. speed curve for a 60 Hz motor is shown in fig. 7.1. It appears that this 

machine has considerable 3rd and 5th space harmonic winding content. This model was 

verified experimentally since the red curve shows the measured torque and blue curve shows 

the simulated curve for the same motor. 
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Fig. 7.1 Comparison of simulated and measured torque 
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The estimation of the machine performance requires simulation of the equivalent circuit 

parameters in terms of the fundamental and harmonic components of resistance and 

reactance. This is described in Appendix 1. It should be noted that the simulated torque curve 

in fig. 7.1 is arrived at by direct use of machine geometry using the formulae in Appedndix 1. 

Tuning a few of the parameters, e.g. iron losses and rotor resistivity, would improve 

agreement further. 

7.2 Synchronous locking torques from permeance harmonics 

The slotted stator and the slotted (or effectively slotted rotor due to saturation of the rotor 

bridges) combine to introduce several components of permeance harmonic in the air-gap. 

This is described in Chapter 4. Each permeance harmonic generates additional flux density 

harmonics of higher order in the air-gap. These flux density waves interact with rotor MMFs 

of the same harmonic order to produce torque. Prediction of these torques require knowledge 

of the magnitudes of the magnetising MMFs, permeances and rotor MMFs of various 

harmonic orders. For this purpose, the equivalent circuit described in Chapter 6.1 can be used 

iteratively, keeping the fundamental components constant and solving the harmonic 

components. The total sum of the synchronous locking torques at specific speeds from the 

various harmonic components can finally be obtained. A detailed description of the 

derivation and implementation of this model can be found in Chapter 5. 

Fig. 7.2 shows the magnitudes of the locking torques as well as the speeds at which they 

occur for a particular 24 slot stator with various rotors having from 10 to 36 slots. 

From Fig. 7.2 it is seen that certain slot combinations result in large magnitudes of 

synchronous locking torque, whereas other result in limited magnitudes. In order to evaluate 

the model derived in Chapter 5, a number of test rotors were made, and measurements were 

performed in order to identify the locking torque characteristics. This test is described in 

detail in Appendix 2.  

Fig. 7.3 shows the modelled torque vs. speed curve for a given 50 Hz motor design including 

synchronous locking torques shown in blue; the measured values of synchronous locking 

torques are superimposed and are shown in red. 
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Fig. 7.2 Variation of synchronous locking torque with rotor bar number (Nr) 
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Fig. 7.3 Comparison of simulated and measured torque including synchronous torques  

for an 18 bar rotor 
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As discussed in Section 6.5, the true deviation between measured and simulated values may 

be substantially smaller than indicated in fig. 7.3. A certain degree of stator-rotor eccentricity 

has been present during test; according to Section 5.4 this is a further source of synchronous 

locking. Since the model does not take this into account, the measured values of synchronous 

locking torque are somewhat exaggerated. The certain speeds at which the torques occur, 

however, appear to have been correctly identified. 
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Chapter 8 

Conclusions and suggestions for further work 
 
The results summarised in the previous chapter validate the models developed for the 

prediction of harmonic asynchronous and synchronous torques. While there have been some 

studies addressing asynchronous torques in split-phase machines (e.g., [11]), very little has 

been published on synchronous harmonic torques. Machine manufactures rely on the use of a 

set of preferred stator/rotor slot combinations and rotor skew to reduce them to acceptable 

levels [28]. Also, distributing the windings as sinusoidal as possible reduces magnitude of 

synchronous torques. However, from time-to-time design prototypes are produced that appear 

to exhibit synchronous locking torques. 

While the deviation between modelled and measured steady-state performance is in the 

region of 5 %, even without parameter adjustment or fine tuning and including the 

asynchronous torques, the deviation is much larger for the prediction of the magnitudes of 

synchronous locking torques. The reasons for this were discussed. However, the speeds at 

which the synchronous locking torques occur appear to be correctly predicted. This leads to 

the overall evaluation of the model and it is concluded that the theory is sufficiently detailed 

to predict the effects of asynchronous and synchronous locking torques in a split-phase 

induction motor. 

Further work could be carried out to refine and improve the simulation accuracy and these 

suggestions are described below. 

 

Stator and rotor eccentricity 

Section 5.4 describes how air-gap eccentricity gives rise to additional components of air gap 

permeance harmonics and creates synchronous locking torques in a similar manner to the slot 

permeance waves. Synchronous locking torques due to eccentricity can be predicted and 

quantified in the same way, but require a dedicated approach to further the analysis. It is 

believed that inclusion of eccentricity would increase the magnitudes of synchronous locking 

torques calculated in Chapters 4 and 5. 

 

Magnetic nonlinearity 

The model does not take magnetic nonlinearity and saturation of the steel core into account. 

For the asynchronous torques, this approach can be justified so long as the motor operates at 
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relatively low flux density levels, e.g., in the region of 1.2 T. However, in normal operation, 

this flux level is quite low; and the large line current during starting may cause the leakage 

inductances to saturate, resulting in low-order air gap permeance harmonics due to saturated 

tooth tips. As a consequence, additional components of synchronous locking torque occur, 

particularly at standstill. Skewing of the rotor also leads to increased saturation in the axial 

directions which may well affect the synchronous locking torques. 

 

Rotor cross-coupling 

In the model derived here, the rotor is assumed ideal and its slotting effects are solely 

included in the permeance calculation. However, Section 3.5 describe how a single harmonic 

component of rotating air-gap flux density results in a spectrum of induced rotor current 

distributions. Thus, when considering the rotor current distribution of order nb, it is assumed 

induced by the rotating stator MMF of same pole number. In fact, an additional source would 

be a lower harmonic MMF as shown in Fig. 3.10. 

Allowing for harmonic cross-coupling would affect the magnitudes of the rotor current 

distributions and, consequently, the magnitude of synchronous locking torques. 

 

Parameter accuracy 

When determining the synchronous locking torques, the model is biased by the fundamental 

and third harmonic parameters in the equivalent circuit diagram. The variables relevant to the 

calculation of the synchronous locking torques are likewise determined by the higher-order 

parameters. An accurately predicted value is thus important in order to obtain a precise result. 

While it is relatively easy to assess the parameter estimation based on steady-state 

measurement, the higher order parameters are more difficult to estimate since their influence 

on the steady-state performance is damped by the fundamental and lower order harmonics. It 

is likely that a more rigorous approach of determining the equivalent circuit parameters 

(described in Appendix 1) would result in improved model accuracy. 

Altogether, it seems that the estimation of synchronous locking torques is more sensitive to 

error than asynchronous locking torques due to the required precision of higher-order 

harmonic parameters as well as eccentricity. It can be concluded that the model presented 

here is sufficiently precise, but improvements in the accuracy of the synchronous locking 

torque predictions would be possible if the effects described above were taken into account. 
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Appendix 1 

Equivalent circuit parameters 
 

In order to predict the performance of a given motor design, the parameters of the 

corresponding equivalent circuit are required to be correctly estimated. In the literature, there 

are various approaches for deriving these. Methods and the complexity of these methods 

differ, and in many cases the expressions for the various parameters contain empirical 

corrections, particularly in methods developed before finite element software was available.  

Most of the following derivations are based on [8], [9] and [26]. Reference [32] and [33] put 

forward methods to test the validity of such estimations against measurements. 

In this appendix, expressions for each equivalent circuit parameter are derived. In some cases 

the expression is taken directly from the literature, and in other cases they are derived from 

first principles.  

A1.1. Stator resistance 

Perhaps the simplest parameter of the equivalent circuit is the stator resistance since it is 

determined from the length, wire size and resistivity of the stator coil. It is also the easiest to 

test. However, its estimation does require knowledge of how the coils are wound by the 

winding equipment for correct estimation of the end winding resistance. 

Assuming that each coil loop consists of two straight sections with a certain length plus two 

arc sections each with a length determined by the pitch of the coil and the radius of the slots 

in which the coil is placed, the stator resistance Rs can be determined from 

( )
1

2 2 π
ρ

=

+ +
= ∑

slotsN
i ext i i

s
i wire

N L L p r
R

A
       (A1.1) 

- where ρ is the resistivity of the material, Ni is the number of turns of the coil in the ith slot, L 

is the stator length, Lext is the winding extension in each end of the stack, pi is the pitch of the 

ith slot, and ri is the radius from stator centre to the mid point of the ith slot. 

The stator resistance is temperature dependant since the resistivity varies with temperature T 

so that 
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⎝ ⎠

T TT
T T

        (A1.2) 

where ρ0 is the resistivity and α0 the temperature coefficient at the temperature T0. 

A1.2 Rotor resistance 

In Chapters 1 and 2, the rotor resistance was treated as a differential value, that is, a value 

representing an infinitesimal section of the rotor. Here, the actual resistances are determined. 

Fig. A1.1 shows an angular section of an example a bar of a rotor with a span of mα, m being 

the harmonic order of the induced current distribution in consideration. It consists of two end-

ring sections where the current flows in a circumferential direction and a bar section where 

the current direction is axial.  

 

 
Fig. A1.1 Bar section representation 

 
Therefore, since the effective cross sections are aligned circumferentially for the end-ring 

component and axially for the bar component, they behave differently when analysed over an 

infinitesimal angle dθ. 

From Fig. A1.1, the resistance RBα of an angular section α of the rotor consists of the parallel 

connection of the bar components RBd of an angular segment dθ, i.e.: 
1

0

1|| ||
α

α θ
θ θ α

−
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠
∫…

m
Bd Bd Bd

B
Bd

R R RR d
d d R m

     (A1.3) 

from which 

ro 

ri 

LE 

LB 

mα 

dθ 
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Bd BR m Rαα=           (A1.4) 

For comparison, the end-ring resistance REα of the section α consists of a series connection of 

infinitesimal resistance segments REd, which means that 

E
Ed

RR
m

α

α
=           (A1.5) 

But each end-ring resistance segment itself is a parallel connection of radial segments with 

thickness dr, determined by the inner and outer radii of the end ring. This can be interpreted 

as 

1
1

( 1) ( 1) 1|| ||

1
ln( ) ln( )

α α
α α ρ αρ

ρ α
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   (A1.6) 

in which case, from (A1.5) 

1
ln( ) ln( )

E
Ed

E o i

RR
m L r r

α ρ
α

⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

       (A1.7) 

The total resistance of an angular section dθ is the sum of the bar component and two end 

ring components and is thus 

12 2
( ) ln( ) ln( )
B

d Bd Ed
B E o i

LR R R m
A L r r

ραρ
α

⎛ ⎞
= + = + ⎜ ⎟−⎝ ⎠

    (A1.8) 

where the term AB(α) is the area of the bar section determined by angle α. Often the end-ring 

does not have a rectangular cross section. In this case, equivalent values for ro and ri must be 

used.  

[26] uses power balancing methods to calculate the referred resistance of the rotor. 

A1.3 Magnetizing reactance 

An expression for the magnetizing reactance of the mth harmonic winding is already given in 

(3.31). However, in previous sections, it was assumed that the iron of stator and rotor is 

infinitely permeable. Likewise, additional factors such as the slotting of stator and rotor were 

not considered. When taking these into account, it means that the magnetizing reactance must 

be modified for slotting and for finite (and varying) iron permeability. 
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The effective air-gap 

When both stator and rotor windings are confined to slots which are open then the 

electromagnetic air-gap is no longer the same as the mechanical air-gap. F.W. Carter [29][30] 

performed analysis on how to obtain an equivalent air-gap length when taking slotting into 

account. This used conformal transformations. A suitable expression is given by [26] where 

( )
( )

( )
( )2 2

5 5
,

5 5
λ λ

λ λ
+ +

= =
+ − + −

s sos r sor
s r

s sos sos r sor sor

g x g x
K K

g x x g x x
    (A1.9) 

and the corresponding air-gap correctional factor (Carter factor) is 

Kc = Ks Kr          (A1.10) 

with dimensions as given in Fig. A1.2. 

 

 
Fig. A1.2 Stator and rotor slot geometries 

 

Fig. A1.2 shows an open-slot rotor. In cases where the rotor has closed slots, the Carter factor 

will be very close to unity; but not quite, as a result of tooth tip saturation. 

 

Stator and rotor permeability 

It was assumed earlier that the laminated iron cores of the stator and rotor were infinitely 

permeable, in which case it is effectively the machine air-gap that determines the magnetic 

reluctance and hence the flux density in the machine. This assumption is generally valid as 

long as the flux level results in the main flux paths do not saturate the magnetic steel to a 

great extent. However, the highly nonlinear magnetic behaviour of magnetic steel means that 

the relative permeability gradually reduces towards unity so the iron enters saturation. The 

knee of the steel B/H curve is typically at about 1.7 T. 
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A1.4. Stator leakage reactance 

 

Slot leakage 

The slot leakage reactance is determined by the flux that links the coils in the slot only. 

In most single-phase motors, the slots contain coils from both the main and auxiliary 

windings, so it is necessary to consider the physical location of the windings in the slots. 

However, as will be shown later, there is no mutual coupling between the two windings, if 

they are orthogonal. The following analysis is based on a method given in [8]. 

Fig. A1.3 shows a simplified, rectangular slot, containing coils from two windings, situated in 

the upper (index u) and lower (index l) part of the slot. 

 

 
Fig. A1.3 Rotor slot leakage calculation – required parameters 

 

When determining the slot leakage, it is assumed that the iron is infinitely permeable, and 

that the conductors are evenly distributed within their respective areas. At a given height y, 

the field intensity is, from Ámpere’s Law 

( ) = l
l s

y IH y N
y x

         (A1.11) 

The flux through an infinitely thin area at height y is thus 

0 ( )Φ μ=d H y Ldy          (A1.12) 

L is the axial length of the slot and should not be confused with the symbol for inductance. 

This flux links a number of coils, which is likewise determined from y, i.e.: 

Ψ Φ= l
l

yd N d
y

         (A1.13) 

The total flux linkage is found by integrating (A1.13) with respect to y from 0 to yl 
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Other components of flux linkage exist for the sections yu and ytt, so that 
2

0l stk u
u

s

N IL y
x
μΨ =          (A1.15) 

and 
2

0l stk tt
tt

so

N IL y
x
μΨ =          (A1.16) 

Since, in general, inductance is defined as flux linkage per unit current, this means that the 

total leakage inductance of the lower coil in the slot depicted in Fig. A1.3 will be 

2
0 3

l u tt
l l stk

s s so

y y yL N L
x x x

μ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

       (A1.17) 

Using the same approach for the upper winding, the leakage inductance of the upper coils in 

the same slot will be 

2
0 3

u tt
u u stk

s so

y yL N L
x x

μ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

        (A1.18) 

It appears that the inductance of the upper coil has a component less than that of the lower 

coil. It would seem that the leakage inductance therefore depends on the physical location of 

the windings in the slot. Suppose that the conductors of the upper and lower phase were 

mixed and evenly distributed over the entire slot area - in this case the leakage inductance of 

either coil in the slot would be 

2
, , 0 3

u l tt
u l u l stk

s so

y y yL N L
x x

μ
⎛ ⎞+

= +⎜ ⎟
⎝ ⎠

       (A1.19) 

The expression in parentheses is often referred to as the slot constant, since it is determined 

only by the geometry of the slot and the arrangement of conductors. The slot constant of 

(A1.19) is quite simple due to the simple geometry of a rectangular slot. When the slot shape 

is not rectangular, the slot constant becomes more complicated. In [26], a general expression 

for slot constants for various slot shapes can be found.  

The derivation of the slot constants were performed in a similar manner to the above method. 

Section A1.5, which deals with the rotor slot leakage, shows how much more complex the 

calculation becomes when the shapes differ from the very simple rectangular shape. Even so, 

this method is applicable as long as the slot geometry is relatively simple; however, complex 

slot shapes as found in e.g. double-cage rotors may require a different approach. 
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Leakage in orthogonal split phase windings 

Fig. A1.3 shows a slot containing conductors from more than one phase. Therefore, the 

leakage flux set up by one of the windings links the other winding, thus giving rise to a 

mutual inductance term. However, if the windings are orthogonal and concentric, the mutual 

flux will be eliminated. This is perhaps best shown graphically in Fig. A1.4. 

 

 
Fig. A1.4 Main and auxiliary slot leakage linkage 

 

The red paths illustrate the leakage flux set up by the two coils of the innermost winding. 

These fluxes link the coils in the outermost windings; however the two outermost coils go in 

different directions; therefore the fluxes linking them will be of opposite sign and cancelling 

each other. This means there will be a net zero voltage induced into the outer winding. When 

calculating leakage flux for a split phase motor with orthogonal windings, it suffices to 

analyse the isolated contributions from main and auxiliary windings respectively.  

 

End-turn leakage 

According to the literature, in particular [8] and [26], end-turn inductance is subject to a high 

degree of uncertainty, since the end turns generate magnetic fields with a complex shape in 

three dimensions. A generally well-proven expression for end-turn leakage is given in [26] 

and it is repeated here: 

1

π⎛ ⎞
= ⎜ ⎟

⎝ ⎠
e

end x
D ACTX K
S P

        (A1.20) 

where Kx = 2 π f (C kw)2 10-8, De = diameter of mid-slots, ACT = weighted average coil throw, 

S1 = number of slots and P = number of poles. 
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Note that the terminology in [26] uses winding factors to describe the fundamental winding 

component - this terminology is not quite identical here, where harmonic winding amplitudes 

are used. Further, [26] works with imperial units whereas SI-units are used here. Translating 

(A1.20) to the terminology and unit system used here and introducing an expression for the 

weighted average coil throw gives 
1 / 4

1

2 1
0

1

1 2( 1)
2

2

πμ =

⎛ ⎞− − −⎜ ⎟
⎝ ⎠=

∑
S

s
se

e

SN s
DL N NS P

      (A1.21) 

where N is the total winding number of the winding. 

A1.5 Rotor leakage reactance 

 
Rotor slot leakage reactance 

The rotor slot leakage inductance approach used in Section A1.4.1 is repeated here but it 

should be noted that here the winding number is unity. It is assumed that the current density J 

is evenly distributed over the entire slot area, thus ignoring any deep bar effect that may 

occur. This is quite valid for the small machines studied in this work. Treating the slot as a 

rectangular shape would be an over-simplification. Instead it is assumed to consist of two 

trapezoidal shapes as depicted in Fig. A1.4. 

 

 
 

Fig. A1.4 Rotor bar co-ordinates 

 

In order to calculate the slot parameters, it is necessary to establish a connection between the 

slot width x as a function of the height at which it is measured. A similar connection must be 
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made for the slot area. At a given height y from the slot bottom, which is taken as reference, 

the width of the slot is 

( ) ( ), 0

( ),

= + − ≤ ≤

−
= + − ≤ ≤ +

b m b b
b

b
m t m b b t

t

yx y x x x y y
y
y yx x x y y y y

y

     (A1.22) 

and the area of the slot section is 

( ) ( ( )), 0
2

( ( )),
2

= + ≤ ≤

−
= + ≤ ≤ +

b b

b
m b b t

yA y x x y y y

y y x x y y y y y
      (A1.23) 

If the total current in the slot is I, the current density J is obtained from 

2
( ) ( )

= =
+ + + +b t b b m t m t

I IJ
A A y x x y x x

      (A1.24) 

As previously shown, the inductance is calculated from Ámpere’s law. When calculating the 

inductance, the slot in Fig. A1.4 is considered separately for the bottom slot section and top 

slot section. For the bottom section, the inductance is determined solely from the current 

density in the bottom section; whereas for the top section, it is determined by the current 

density in the top section PLUS a constant contribution from the bottom section. 

That is, for the bottom section, assuming homogeneous current density, at a given height y: 

0 ( )( )( ) ( )
( ) ( )

μ
= ⇒ =b b

J A yJ A yH y B y
x y x y

      (A1.25) 

At height y, the flux through an infinitesimal section of height dy is 

( )b stkd B y L dyΦ =          (A1.26) 

since the winding number is unity over the entire slot, dΦ = dΨ in which case 

0

0 0

( )( )
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t by y

b stk b stk
J A yL B y dy L dy

x y
μΨ = =∫ ∫       (A1.27) 

Inserting expressions for x(y) and A(y) yields, when separating the integrals: 
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From [34], mathematically, this reduces to  
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It should be noted how much more complex the slot factor becomes when changing the 

geometry from rectangular to trapezoid. In fact, only the y2/2 term represents the rectangular 

section - the rest is a correction for the trapezoidal shape. 

For the top section, the approach is similar, but there is an additional constant contribution 

from the bottom section, which means 
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( )0

0

( )
( )

( )

b t t

b

y y y
b

t stk t stk
y

J A y A
L B y dy L dy

x y
μ

Ψ
+ +

= =∫ ∫      (A1.31) 

Inserting expressions for x(y), A(y) and Ab yields 
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In a similar manner to (A1.28), (A1.32) is split into separate integrals, i.e. 

( )

( )

( )

( )

2

0
0 0 0

2 2
t t t

by y ym b b m
b

t stk

m t m m t m
t t

y yx x x xyL J y dy dy dyy yx x x x x x
y y

Ψ μ

⎛ ⎞
−⎜ ⎟+

⎜ ⎟= − +
⎜ ⎟+ − + −⎜ ⎟
⎝ ⎠

∫ ∫ ∫   (A1.33) 

The solution of (A1.33) is similar to (A1.29) but contains an additional expression for the 

bottom part, therefore: 
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(A1.34) 

Finally, there is a leakage inductance contribution due to the geometry above the rotor slot. 

This may be either open or closed. If the rotor slots are open, the inductance is defined 

similarly to (A1.16) where 

0 0r stk ttr stk ttr
ttr

sor sor

JA L y IL y
x x
μ μΨ = =        (A1.35) 

from which it follows that 
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L yL
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μ

=          (A1.36) 

If the slot is closed, the assumption that the iron part has infinite permeability will cause the 

inductance of this bridge section to be infinitely large. However, the bridge quickly saturates, 

causing the incremental relative permeability to be unity.  

Therefore, the expression for the bridge section of the closed section will be similar to 

(A1.36), i.e. 

0stk br
br

br

L yL
x
μ

=          (A1.37) 

in which case the height of the bridge ybr and the length of the bridge xbr are equivalent 

values. The bridge is often treated as a constant voltage source in the equivalent circuit [28]. 

Altogether, the (un-referred) rotor slot inductance is the sum of the expressions (A1.29), 

(A1.34) (when calculating the equivalent inductance) and (A1.37). Hence 
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 (A1.38) 

It can be seen that the resulting expression is made up of four terms that are added together. 

The first two are the self-inductances of the bottom and top slot sections respectively, the 

third is the mutual inductance between the bottom section and the top section, and the fourth 

is the bridge (or slot opening) component. 

  

End ring leakage reactance  

Estimation of the end-ring inductances require analysis of magnetic fields acting in three 

dimensions. An analytical approach is therefore very complex although it is possible to use 

two dimensional methods [35]. 

Instead, an expression for the un-referred end-ring inductance is derived which is based upon 

the expression for the stator end windings. This is possible because of the fact that the stator 

has uniform conductor current density, but varying winding number, whereas the rotor has 

varying conductor current density but uniform winding number. Thus, the ampere-turns have 

a similar distribution in the stator end-windings and rotor end-rings when analysed radially. 

Therefore an expression for the un-referred end ring reactance is  
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         (A1.39) 

A1.6. Differential leakage components 

The term differential leakage relates to the fact that a flux linking either or both the stator 

windings and the rotor cage may exist, even though this flux does not induce any net voltage 

in the other conductor set and thus is not a part of the magnetizing reactance (i.e. it is a 

leakage inductance rather than a mutual inductance). In [26], several components of the 

leakage inductance when combined are referred to as the differential leakage, these are belt, 

zig-zag and skew reactances - these expressions are purely empirical.  

In general terms, Ámpere’s Law can be applied to any closed path encircling a net ampere-

turn winding; and this may therefore describe either a magnetizing or a leakage reactance. In 

the following sections, an attempted is made to derive expressions for the belt and the zig-zag 

reactance from Ampere's Law. Thus, the general concept of differential reactance is 

abandoned since is it split up into its separate components. This may be subject to discussion, 

however comparison between modelled and measured motor performance has shown to give 

reasonable agreement when using the expressions derived in the following sections in a 

similar manner to [8]. 

  

Stator belt leakage reactance 

Belt leakage is due to the flux created by the phase belt of a winding. It can be compared to 

the slot leakage, but consists of contribution from several slots as shown in Fig. A1.5. The 

flux paths are shown in the figure. 

 
Fig. A1.5 Belt leakage flux paths 

 

Neglecting the flux crossing through the slots themselves, and therefore only considering the 

flux crossing the slot openings, the flux linkage of the innermost group is shown in Fig. A1.5 

(together with the other belt leakage fluxes). The belt leakage flux due to the two slots which 

contain N1 conductors each is 

N1 N1 N2 N2 N3 N3 ytt 

xso 
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When considering the additional groups spanning further slots, successively more conductors 

are linked, until the outermost slots in the phase belt are reached. Hence, an expression for 

the total belt leakage inductance can be described by a summation: 
2

0
1

1

2
2

2

S

s stk ttS
s

b
s so

N L y
L

sx

μ
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
∑

∑        (A1.41) 

where S is the number of slots in HALF a phase belt. The first factor 2 is used to cover both 

phase belts of a 2-pole winding. 

It could be argued that similar leakage flux paths exist for coil groups away from the 

symmetry line, e.g. the right side group consisting of N1 and N2 or N1, N2 and N3. However, it 

could likewise be argued that the contributions from these coil groups are cancelled by 

symmetry. However, the non-symmetric groups are not considered here.  

 

Zig zag leakage 

Zig-zag leakage inductance is similar to belt leakage, but here the leakage flux crosses back 

and forth between rotor and stator surfaces in a zig-zag fashion as shown in Fig. A1.6. 

 
Fig. A1.6 Zig-zag leakage flux paths 

 

When determining the zig-zag leakage inductance, the reluctance of the magnetic path from 

stator tooth across the air gap to the rotor and back to the adjacent tooth needs to be found. 

Here, it is necessary to consider two positions of rotor teeth, as these can be both overlapping 

and non-overlapping the stator tooth pair in consideration. The following derivation is similar 

to the one described in [26]. 

 

N1 N1 N2 N2 N3 N3 
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Fig. A1.7 Stator-rotor slot relative overlaps 

 

Using the dimensions given in Fig. A1.2, and the further parameters shown in Fig. A1.7, the 

overlapping lengths x1 and x2 are 

1 2( ) , ( ) ,
2 2 2 2

= − − = − + − < <sos sos sos sos
r r

x x x xx x w x x x w x x    (A1.42) 
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This reluctance has a mean value  
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which is a standard integral that simplifies to 
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In the case were an underlying rotor tooth is overlapping the gap between to stator teeth, as 

shown in Fig. A1.8, the overlapping lengths x1 and x2 are 

x1 x2

Rotor slot 
centre line 

Stator slot 
centre line 

x
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Fig. A1.8 Stator-rotor alternative co-ordinates 

 

In this interval, the reluctance is 
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and outside this interval, the reluctance is infinity. Therefore, in order to obtain the total 

equivalent reluctance between two stator teeth then a parallel combination of reluctances is 

used which consists of a constant R1 (representing the non-overlapping position) and the 

periodic reluctance R2 which only occurs in the interval as given by (A1.46). This is depicted 

in Fig. A1.9. 

 

 
Fig. A1.9 Reluctance variation 
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The mathematically correct approach would be to find, by integration, the resulting "product 

divided by sum" expression over the entire interval. However, given the uncertainties and 

simplifications in the geometry, this is probably not worthwhile. 

Instead, the value of R 2 which represents the case where the centre of a rotor tooth is aligned 

with the centre of a stator tooth (a symmetric overlap) is calculated; this represents the value 

of R2 in the whole interval wr − xsos. In this interval, the equivalent reluctance is the parallel 

reluctance combination of R 1 and R 2 while outside the interval it is equal to R 1. 

The total equivalent reluctance is then the weighted average of the two. Therefore the value 

of R 2 representing a symmetric overlap is, from (A1.47): 
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and the parallel reluctance in the interval wr − xsos is 
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and finally, the equivalent reluctance between to adjacent stator teeth is 
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As stated initially in this section, zig-zag leakage is similar to belt leakage; the difference 

being the reluctance of their respective air-gaps. When comparing with expression (A1.41), it 

is noted that the expression ...Lstk ytt / xsos... is the permeance, or the inverse of the reluctance, 

of the slot opening geometry. Hence, an expression for zig-zag leakage inductance can be 

found by inserting the equivalent reluctance (A1.50) in (A1.41), i.e.: 
1 2

0

1
4 μ

=

=
ℜ∑

S
s

zz
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Belt and zig-zag leakage also occur in the rotor with similar expressions to those derived in 

the above. 

 

The skew factor 

As investigated in Chapter 4, the slot harmonic effects are reduced by skewing the rotor by a 

certain angle over its length. This will cause the induced voltage in the rotor to be phase 
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shifted with respect to the field that sets it up, as well as affecting its magnitude. Skewing 

also affects rotor impedance since the bars become longer and their cross sections smaller. In 

addition, part of the developed electromagnetic torque is transferred into an axial force 

component. All these effects will be investigated in the following sections. Fig. A1.10 shows 

a rotor bar which is skewed at a certain angle ν. 

 
Fig. A1.10 Bar skew representation 

 

In the following analysis, the induced voltage due to the mth harmonic field component is 

investigated in order to investigate the impact of skewing on the equivalent circuit 

parameters. If the skew is assumed uniformly distributed over the axial length of the rotor, 

the induced voltage in a bar section of length dl, axially situated at distance l from either end 

of the rotor, is 
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which means that the voltage induced into one bar is 
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  (A1.53) 

  skew factor           skew angle 

This expression is similar to the ones found in [8] and [9]. 

Hence, skewing reduces the magnitude of the induced rotor voltage, and displaces the rotor 

MMF relative to the air-gap flux density from which it was generated. In order to implement 

this in the calculations, the rotor impedance magnitude and argument are modified: 

Lstk 

ν 

l 

νabs 
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Only modifications to the rotor circuit are necessary, since the induced stator voltage remains 

the same as when the stator is not skewed. It is true that the magnitude of the air-gap flux 

density is affected by skewing, but since the air gap flux density is influenced by the rotor 

reactance, this is inherently accounted for. Furthermore, skewing affects the pure "per angle" 

reactance through dimension distortion, making the bars longer and narrower. This can be 

taken into account when calculating the absolute skew angle, as shown in Fig. 9.9. Where it is 

often common practice to have a fixed value of skew angle, e.g., corresponding to a stator 

tooth pitch, the absolute skew angle varies with the stack length. It can be calculated from 
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         (A1.55) 

where r is the rotor radius and Lstk the length of the rotor stack. Therefore the effective bar 

area orthogonal to the bar current has been distorted by a factor cos(νabs), and its length has 

increased by a factor 1/cos(νabs). The bar components of the original unskewed impedance 

Zunsk must be modified by 

( )
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Likewise, since the current is no longer orthogonal to the flux density, an axial force arises. 

This means that part of the output torque is being replaced by an axial force, which, when the 

rotor is fixed in axial direction, performs no work and therefore has an efficiency of 0. Its 

magnitude can be calculated from the rotational torque,  

sin( )r
a abs

TF
r

ν=         (A1.57) 

where Tr may be any component of rotational torque. 

Equations (A1.56) and (A1.57) indicate that for a rotor with a given radius and skew angle 

(measured in slot pitches), the impact is greater for shorter rotor stack length. 

A further undesired effect of rotor skewing may be the promotion of inter-bar rotor currents 

as described in [36] 

 

A1.7. Iron losses 

Correct estimation of the iron losses requires an accurate knowledge of flux density in the 

main sections of the motor as well as loss data for the steel. This section aims to derive 

expressions for the iron losses in the equivalent circuit. The method was derived as part of 



 Appendix 1: Equivalent circuit parameters 
 

139 

this project. However, a later literature survey revealed a similar approach which was 

described in [27]. The method described here is limited to the consideration of the 

fundamental flux density wave only. While this is a simplification, it should be stressed that 

iron loss estimation is not a main focus of this work. Superposition of the iron losses from 

harmonic flux densities waves is a tempting approach to include; this would, however, 

require the loss properties of the steel losses to be linear, which is not the case, as pointed out 

in the discussion section of [37].  

 

Epstein measurements versus motor characteristics 

The most common way of obtaining loss parameters for given steel samples is the Epstein 

square measurement, where a frame of steel sheets is sinusiodally magnetized at a specific 

frequency and peak flux density, typically 50 Hz and 1.5 T respectively. From this 

measurement the specific loss, in watts per kilogram, is obtained. 

It should be underlined that in the Epstein square measurement every portion of the frame 

experiences the same instantaneous flux density and the magnitude of which varies 

sinusoidally over time. In a motor, the instantaneous flux density in the steel varies with 

position relative to the stator MMFs. If perfectly rotating MMfs are assumed (producing a 

single rotating flux wave), and the stator exerts a high degree of rotation symmetry (i.e., in a 

balanced 3-phase machine), the situation is similar to that of the Epstein measurement, 

although the peak flux density varies sinusoidally both in space and time. In this case, each 

infinitesimal section of the stator experiences a flux density which varies sinusoidally in time 

in a similar manner to the Epstein measurement. Therefore, for a balanced polyphase 

machine, the iron losses can easily be estimated when the flux density in the main flux paths 

are predicted with the iron losses slit into tooth losses and yoke losses [28]. 

However, in a single-phase motor, balanced operation can not be assumed due to the presence 

of backwards-rotating fields, which will distort the locus of the rotating MMF from a circle 

into an ellipse so that the peak flux density in the teeth and yoke has to be considered around 

the whole motor. 

 

The Steinmetz equation 

From [28] a model for obtaining iron the specific losses at a certain frequency and flux 

density is the Steinmetz equation which is defined as 
2 2= +n

h ep C f B C f B          (A1.58) 

with  
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where Pbase are the measured specific iron losses at th base values of peak flux density and 

frequency, typically 1.5 T and 50 Hz respectively. Also h is the ratio of hysteresis losses to 

total losses and n is an empirical constant of value 1.6 – 1.8. 

 

Ellipsoid magnetisation 

For any operating point of a split-phase or single-phase machine, the magnetisation is 

determined by the forwards- and backwards-rotating fields, each of which is a constant-value 

field. When moving past each other, the resulting flux density will, at certain positions in the 

stator, be the sum of their values; and at other positions it will be the difference. As a result, 

an infinitesimal section of the stator will experience a flux density that oscillates in time - and 

the amplitude of which varies with position. This is shown in Fig. A1.11 for the fundamental 

field components. 

 

 
Fig. A1.11 Effects of elliptical air gap flux rotation 

 

If the harmonic field components are taken into account as well, a series of higher harmonic 

ripples will be superimposed on to the oscillation as shown in Fig. A1.11. These will 

complicate the iron loss calculation greatly.  

When calculating the iron losses, it is therefore necessary to predict the locus of the resulting 

ellipse. If the stator geometry is assumed symmetrical (i.e., round), the orientation of the 

ellipse is not important. From (2.32), the forwards-rotating flux density can be expressed by 

the main winding terms where 
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Likewise, the backwards flux density is 
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where both the forwards- and backwards-rotating field components are the resulting fields set 

up  bothby main and auxiliary components. Since the peak flux density is used in the 

Steinmetz equation, (A1.60) and (A1.61) must be multiplied by √2.  

As mentioned earlier, the minimum and maximum absolute values of the flux density are 

determined form the difference and the sum of the forwards- and backwards-rotating field 

components, respectively. These are 
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An expression for the amplitude variation over the entire stator is therefore 
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The index g indicates that these field values exist in the air-gap. When moving into the teeth 

and yoke regions, modifications will be necessary, since 1) the field will be discretised in the 

finite number of teeth, and 2) the flux density will change direction from radial to 

circumferential. 

 

Stator teeth losses 

Since the stator is slotted, the teeth will have to carry all the air-gap flux. In the following 

description, the amplitude of the oscillating flux density in each tooth will be derived together 

with the iron losses in each tooth. As a consequence of electromagnetic unbalance and the 

fact that tooth lengths may vary in some machines, the loss per tooth is not identical 

throughout the stator, as indicated in Fig. A1.12. However, here, it is assumed that the stator 

teeth are identical - otherwise the orientation of the ellipsoidal magnetization locus would 

have to be determined relative to the teeth lengths. 

Fig. A1.12 Effect of stator slotting on elliptical air gap flux 

 

2π θ

Amplitude of Bg 
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In the following derivation, the ath tooth is considered. The flux density in the ath tooth is 
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 (A1.64) 

From the Steinmetz equation (A1.59), the specific iron losses (in Watts per kilogram) in the 

ath tooth is  
2 2= +n

ta h ta e taP C f B C f B         (A1.65) 

and since the tooth flux density is assumed uniform, the tooth loss for the ath tooth is 

,ta ta fe t t avg stkW P w h Lρ=         (A1.66) 

Finally, the total stator tooth losses may be found by summing (A1.66) for all the teeth: 

, ,
1

sn

ta tot ta fe t t avg stk
a

W P w h Lρ
=

=∑         (A1.67) 

It should be noted that (A1.67) assumes rectangular teeth of width wt and radial "height" hta, 

the latter of which may vary in some machines. The tooth tips can be analysed in a similar 

way, however these will experience additional flux density due to the leakage flux, and would 

therefore require extended analysis.  

 

Stator yoke losses 

The air-gap flux, which is sinusoidally distributed, but whose amplitude changes with 

position, is shown in Fig. A1.11. This is also present in the yoke where it changes direction 

from radial to circumferential. The yoke flux fundamental component is time-dependant and 

also sinusoidally distributed, with amplitude that varies with position (in the same way as for 

the air-gap flux). The total air gap flux is 

0

ˆ ˆsin( ) 2g stk g stk grL B d rL B
π

Φ θ θ= =∫        (A1.68) 
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with ˆ ˆ ( )g gB B θ=  as given in (A1.63). This flux must return through the stator yoke, also 

creating a yoke flux density, which is sinusoidally distributed in space and whose amplitude 

is given by 

ˆ ( )2ˆ ( )
g

stk g
sy

sy stk sy

rL B
B

A L l

Φ
θ

θ = =         (A1.69) 

At this stage, it is necessary to make the following assumptions: 1) the cross section of the 

yoke is constant, and 2) the stator outer geometry is approximated to a circle. Otherwise the 

yoke (asymmetric) geometry would have to be orientated relative to the ellipsoidal varying 

air-gap flux density. Although possible, it was found that these inclusions would complicate 

matters greatly. Given these assumptions, the yoke losses are found using Fig. A1.13; where 

an infinitesimal section of the circular yoke is considered. 

 

 
 

Fig. A1.13 Yoke and tooth parameters 

 

The specific iron losses of the area dA are given by (A1.59), i.e.: 
2 2ˆ ˆ( ) ( ) ( )θ θ θ= +n

sy h sy e syP C fB C f B        (A1.70) 

and the corresponding iron loss over the whole section is 
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  (A1.71) 

The total stator yoke losses can be obtained by integrating (A1.71) over the entire stator 

circumference when inserting the expression for ˆ ( )gB θ  as given in (9.65). This can be 

modified using the yoke flux density in (A1.69). Hence 

r 
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lsy,avg 

dθ 
dA 



 Appendix 1: Equivalent circuit parameters 
 

144 

( ) ( )

( ) ( )

2 2
2

, , 2 2

0

min, max,
2 2

2
, ,

max, min,0

ˆ ˆ( ) ( )
2

ˆ ˆ

2
ˆ ˆ2

sin(2 )
2

t avg sy t avg n
sy fe stk h sy e sy

n

g g

n
t avg sy t avg

fe stk h n
g gsy

fe

r l l r l
W L C f B C f B d

B B
r l l r l rL C f d

B Bl

π

π

ρ θ θ θ

ρ θ
θ

ρ

⎡ ⎤+ + − +
⎢ ⎥ ⎡ ⎤= +⎣ ⎦⎢ ⎥
⎣ ⎦

⎡ ⎤+
⎢ ⎥⎡ ⎤+ + − + ⎢ ⎥⎢ ⎥= +⎢ ⎥⎛ ⎞⎢ ⎥ −⎢ ⎥+⎣ ⎦ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+

∫

∫

( ) ( )

2

min, max,
2 2

22 2
, ,

2
max, min,0

ˆ ˆ

2
ˆ ˆ2

sin(2 )
2

g g

t avg sy t avg
stk e

g gsy

B B
r l l r l f rL C d

B Bl

π

θ
θ

⎡ ⎤+
⎢ ⎥⎡ ⎤+ + − + ⎢ ⎥⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥ −⎢ ⎥+⎣ ⎦ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

           (A1.72) 

There is no standard integral solution to (A1.72) but use of mathematical software Wolfram 

Research Mathematica® shows that (A1.72) has an exact solution containing four hyper 

geometric functions. Given the assumptions already made, an exact mathematical solution to 

(A1.72) is not considered worthwhile. Instead the integrals are solved discretely in a fixed 

number of steps, i.e.: 
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           (A1.73) 

where K is the number of steps. The greater the value of K, the smaller the discretization error 

becomes. The sum of (A1.67) and (A1.73) gives a value for the stator iron losses due to the 

fundamental field components which link stator and rotor.  

 

Rotor losses 

For the normal operating range of a motor, the rotor iron losses are far lower than for the 

stator losses for two obvious reasons: 1) The forward revolving flux density rotates at a very 
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low frequency of only a few Hz with respect to the rotor, 2) The backward rotating flux 

density, although at almost twice line frequency, is small in magnitude. 

However, during acceleration and at standstill, the rotor losses are substantial and therefore 

need to be analysed. 

The approach applied to the derivation of stator teeth and yoke losses may be repeated; 

however a simplification must be made: the rotor rotates at (1−s)ω, which means that the  

ellipsoidal magnetization locus actually rotates relative to the rotor at sω. This means that 

every small section of the rotor experiences the flux density corresponding to the maximum 

value of stator MMF, which is the numerical sum of the forward and backward MMF.  

However, the variation of the flux density is not sinusoidal, since it contains a second-order 

harmonic, which is not taken into account in the Steinmetz equation. Here, the 2nd order 

component is ignored and only the fundamental is considered. In this case (A1.67) and 

(A1.72) can be modified for rotor use. Assuming constant flux density over a section of air-

gap corresponding to the width of a rotor tooth, the maximum rotor tooth flux density is 
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 (A1.74) 

The corresponding specific iron loss becomes 
2 2 2(1 ) (1 )= − + −n

tr h ta e taP C s f B C s f B       (A1.75) 

from which the total rotor teeth loss is 

tr tr tr fe tr tr stkW n P w h Lρ=         (A1.76) 

Similarly, from (A1.73) the rotor yoke losses can be found when modifying for the slip 

frequency, i.e.: 
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           (A1.77) 

 

Leakage flux losses 

The losses described previously all relate to the main flux, i.e., the flux that crosses the air-

gap and flows into the teeth and yokes of stator and rotor. Other components of flux exist, 

these being the leakage fluxes. The nature of leakage flux is complex; and the resulting losses 

even more so. Here, a simplified approach is nevertheless carried out.  

The leakage flux losses in this section are assumed to be the total leakage inductance minus 

the end winding components. The total leakage losses are the sum of main and auxiliary 

winding leakage losses and these are added to the main field losses to give the total iron loss 

in the machine. This is a somewhat coarse simplification since the iron losses are due to the 

combination for the main and leakage fields together rather than consideration of different 

terms individually. Since the iron loss is generally a power-function of the amplitude, 

superposition is therefore thought to underestimate the true loss. However, it nevertheless 

represents the general tendency of the iron loss over the operating range. Fig. A1.14 shows 

the distribution of the leakage flux in the stator yoke.  

 

 
Fig. A1.14 Stator leakage flux distribution 
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The peak value of leakage flux and therefore the leakage flux density are sought. Since 

inductance is defined as the flux linkage per unit current the yoke flux due to the axial 

components of leakage inductance can be obtained from 
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from which it follows that 
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From (A1.59) the specific iron losses in the yoke are therefore:  
2 2( ) ( ) ( )θ θ θ= +n

L h L e LP C f B C f B        (A1.81) 

and the infinitesimal iron losses of yoke section dθ are 
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The total stator yoke leakage loss is the integral of dWL. Like (A1.72) there is no simple 

solution to this integral, which is therefore solved discretely, so 
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           (A1.83) 

where I, LL, Lend and N are the components of the winding under consideration. 

So far the analysis has considered the stator yoke only, however, it is also applicable to the 

rotor yoke. This is done by separating into forwards- and backwards-rotating components and 

modifying for the rotational frequency, i.e., exchanging f with sf and (2−s) f respectively. 
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Equation (A1.83) only represents the yoke leakage losses. Since part of this leakage flux 

flows through the slots, i.e. in air, the teeth leakage losses are smaller and are thus 

disregarded. 

 

Representation of iron losses 

In order to include the iron losses in the motor performance calculated from the equivalent 

circuit it is necessary to include a resistance whose value is determined from the calculated 

iron losses. Since both the main and auxiliary windings contribute to the iron losses it would 

make sense to include a resistance in both circuits, and let each represent the same fraction of 

total iron loss. This is obtained from a ratio of the induced voltages due to each field 

component, i.e.: 
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In order to feed the iron losses through to the stator windings, the iron loss resistances are 

placed in parallel with the magnetizing branch of the respective winding, as illustrated in Fig. 

A1.15 for the main winding circuit: 

 

 
Fig. A1.15 Equivalent circuit including iron loss resistance 

 

When placed here, the power dissipated in the resistance is determined from the magnitude of 

the resulting induced voltage due to all the component of flux densities. Therefore 
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with 

( ) ( ),= − + = − + +main s m sm sm aux s a aux sm smE V I R jX E V I Z R jX   (A1.87) 

Fig. A1.16 show the variation of the different iron loss components over the speed range 

from standstill to near-synchronous speed for an arbitrary machine when using the iron loss 

model developed here. 
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Fig. A1.16 Variation of losses (W) with speed (rad/s) 

 

In Section 3.6, the predicted performances of several machines were put forward. These 

simulations used models whose parameters were calculated using the expressions derived in 

this appendix. These results were compared with actual measurements and reasonable 

correlation was found. 
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Appendix 2 

Quasi-steady-state torque measurement 
 
This appendix describes the tests that were carried out in relation to Section 5.4 

A2.1 Background 

In order to compare the performances of the skewed and unskewed rotors used in Section 5.4, 

two unskewed rotors were fabricated: an 18 slot rotor, which was thought to result in the 

smallest magnitudes of synchronous locking torque, and a 24 slot rotor, thought to result in 

the most severe case of synchronous locking torque. These were tested together with a 28 slot 

rotor skewed by one stator slot. 

 

Test rotors 

Figs. A2.1, A2.2 and A2.3 show the cross sections of the three rotor types. 

 

 
Fig. A2.1 Cross-section of 18 bar rotor (unskewed rotor) 
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Fig. A2.2 Cross-section of 24 bar rotor (unskewed rotor) 

 

 
Fig. A2.3 Cross-section of 28 bar rotor (skewed rotor) 

 

The rotors were so designed so that the total aluminium was constant. It should be noted that 

the given dimensions are cutting dimensions. Final rotor outside diameter was machined 

down to Ø 62.45 mm. The rotor laminations shown in Figs. A2.1 and A2.2 were laser cut 

from plate steel, whereas the rotor shown in Fig. A2.3 is a standard production rotor, which 
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was stamped. All 3 rotor types had identical end rings, shown in Fig. A2.4. Fig. A2.5 

illustrates one of the test rotors, after stacking, casting and machining. For each rotor type, 

five rotors were made, resulting in fifteen rotors. 

 

       
Fig. A2.4 Drawings of rotor axial section for all three rotors 

 

 
Fig. A2.5 Manufactured cast rotor 
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A2.2 Test setup 

The tests were split in four parts: 

1 Efficiency curves over a limited operating range 

 This would display the differences in efficiency obtained at steady-state for the three 

rotor types 

2 Torque-speed curves from synchronous to zero speed (run condition) 

 This would displays the differences in pull-out torque at steady state for the thee rotor 

types 

3  Slow deceleration from 500rpm to 0 rpm (start condition) 

This would indicate the occurrence of any synchronous locking torque at low speed. 

The rate of speed change is relatively small, limiting the influence of inertia. 

4 Continuous logging of torque at <1 rpm 

This would indicate the occurrence of locking torque at zero speed. In practice, for 

safety reasons, this test was carried out at reduced voltage (66 Vrms) and the shaft 

turned slowly by hand, at a fraction of an rpm. By logging data continuously for a 30 

seconds time interval, a scatter plot would indicate the minimum and maximum 

values of torque and thus illustrate the peak-to-peak values of synchronous locking 

torques at standstill.  

The tests were performed at Danfoss Compressors GmbH motor measurement laboratory, 

using a test bench with compensated bearing losses and electronic data logging via a Norma 

D6100 power analyzer. Fig. A2.6 shows the motor test bench and data logging equipment. 

 

 
Fig. A2.6 Motor test facility (Danfoss facility) 
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Some key parameters of the test equipment can be found in table A2.1 

 Force Transducer 
HTM S2 
50N 

Power Analyzer 
Norma D6100 
Wide Band 

Accuracy 0,05% 0,05% 
Band width < 50 Hz DC – 1 MHz (3Mhz claimed) 

Table A2.1 

A2.3 Test results 

In the following sections, the results from the four different tests described in A2.2 are given. 

 

1. Efficiency curves 

Fig. A2.7 shows an average for the five rotors of each type, where efficiency against load 

torque is plotted. 18 slot unskewed variant is red, 24 slot unskewed variant is green and 28 

slot skewed variant is blue. Test conditions were 220 V / 50 Hz and run capacitor of 3.5 μF. 
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Fig. A2.7 Efficiency against torque plot for different rotors (blue – 28 bar rotor, red – 24 bar 

rotor and green – 18 bar rotor) 

 

2. Torque-speed curves 

Fig. A2.8 shows the torque-speed relationship for all fifteen rotors in the test series, plotted in 

the same graph. Each rotor type uses a separate colour: the 18 slot unskewed rotor is red, the 

24 slot unskewed rotor is green and the 28 slot skewed reference rotor is blue. Test conditions 
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were 198 V, 50 Hz and used a run capacitor of 3.5 μF (198 V is commonly used to test pull-

out torque, since this is the lower tolerance voltage of a 220 V supply system). 

 
Fig. A2.8 Torque-speed curves for different rotors 

To
rq

ue
 =

 f(
R

pm
)

0,
00

0,
10

0,
20

0,
30

0,
40

0,
50

0,
60

0,
70

0
60

0
12

00
18

00
24

00
30

00

M
in

-1

P.
Sc

av
en

iu
s 

; T
LX

8,
7K

K4
 ; 

St
at

or
=1

17
L7

26
1-

2 
; U

=1
98

V/
50

H
z 

; R
=0

V/
A 

; T
=8

0°
C

 ; 
C

=3
,5

µF
 ; 

(2
7.

09
.2

00
6)

Nm

To
rq

ue
 [1

17
L2

8N
-R

ef
-1

]
To

rq
ue

 [1
17

L2
8N

-R
ef

-2
]

To
rq

ue
 [1

17
L2

8N
-R

ef
-3

]
To

rq
ue

 [1
17

L2
8N

-R
ef

-4
]

To
rq

ue
 [1

17
L2

8N
-R

ef
-5

]

To
rq

ue
 [1

17
L1

8N
ot

-1
]

To
rq

ue
 [1

17
L1

8N
ot

-2
]

To
rq

ue
 [1

17
L1

8N
ot

-3
]

To
rq

ue
 [1

17
L1

8N
ot

-4
]

To
rq

ue
 [1

17
L1

8N
ot

-5
]

To
rq

ue
 [1

17
L2

4N
ot

-1
]

To
rq

ue
 [1

17
L2

4N
ot

-2
]

To
rq

ue
 [1

17
L2

4N
ot

-3
]

To
rq

ue
 [1

17
L2

4N
ot

-4
]

To
rq

ue
 [1

17
L2

4N
ot

-5
]



 Appendix 2: Quasi-steady-state torque measurement 

156 

 

3. Deceleration at slow rate 

Figs. A2.9, A2.10 and A2.11 show the torque vs. speed plots from 500 to 0 rpm for the 18, 24 

and skewed 28 slot rotors. Five rotors of the same type are plotted in each graph. Test 

conditions were 198 V/50 Hz with an auxiliary resistance of 25 Ω (start condition). 
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Fig. A2.9 Deceleration test for18 bar rotor (500 rpm down to 0 rpm)   
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Fig. A2.10 Deceleration test for24 bar rotor (500 rpm down to 0 rpm)   
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Fig. A2.11 Deceleration test for28 bar rotor (500 rpm down to 0 rpm)   

The “average” torque values, i.e. when ignoring perturbations in figs. A2.9 – A2.11, are seen 

to be not comparable to true steady state values. This is because the test equipment has a pre-

programmed friction toque correction curve, which presupposes a certain acceleration rate. 

Deviations from this acceleration rate results in values being off-set; however, in this case 

only the perturbations and not the mean values themselves are of interest. 

 

4. Torque pulsation at fractional rpm 

Figs. A2.12, A2.13 and A2.14 show the torque values at a sample frequency of 2 Hz by very 

slow manual rotation of the 18, 24 and skewed 28 slot rotors as described in point 4 in A2.2. 

Only one rotor of each type is plotted in each graph. Test conditions are 66 V/50 Hz with an 

auxiliary resistance is 25 Ω (start condition). 
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Fig. A2.12 Synchronous torque measurements for 18 slot machine 
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Fig. A2.13 Synchronous torque measurements for 24 slot machine 

 



 Appendix 2: Quasi-steady-state torque measurement 

159 

28 slots skewed (ref)
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Fig. A2.14 Synchronous torque measurements for 28 slot machine 

 

These values can be scaled to the voltage at which the other measurements were made by 

multiplying with a factor (198 Vrms/66 Vrms)2 = 9. This is valid since the model can be 

assumed linear, due to the low flux density levels of the motor during operation. The iron 

losses would be under predicted, but are not relevant for this analysis, since the iron losses at 

locked rotor is only a very small fraction of the power being absorbed by the machine. Figs. 

A.15 to A.17 show the scatter plots of torque values, rescaled to 198 V. 
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Fig. A2.15 Synchronous torque measurements for 18 slot machine (rescaled to 198 V) 
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Fig. A2.16 Synchronous torque measurements for 24 slot machine (rescaled to 198 V) 
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Fig. A2.17 Synchronous torque measurements for 28 slot machine (rescaled to 198 V) 

 

A2.4 Conclusions 

By inspection of Fig. A2.7 it can be seen that operation with an unskewed rotor does not have 

a beneficial impact on the motor efficiency; whereas it can be seen from Fig. A2.8 that the 

maximum torque is increased by a few percent when the rotor is unskewed. From Fig. A2.8 it 

is also evident that while the 18 (unskewed) slot and 28 (skewed) slot rotors results in broadly 

identical steady-state torque vs. speed graphs, the 24 slot variant deviates significantly from 



 Appendix 2: Quasi-steady-state torque measurement 

161 

these, although the rotor resistances should be the same. Furthermore, at low speed, the 24 

slot rotor causes the motor to exhibit large torque variations. 

When decelerating slowly from 500 to 0 rpm, the 18 slot unskewed rotor exhibits locking 

tendencies at 330 rpm, indicated by the positive and negative deviations from the idealised 

line. The 24 slot rotor exhibits severe pulsations at around 260 rpm. Even the 28 slot skewed 

rotor shows pulsations at around 220 rpm. 

When rotating the rotor slowly at a fraction of an rpm and logging the torque continuously, 

the measurements become confined to within a band, whose height is an indicator for the 

locking torque at standstill.  

The 18 slot unskewed rotor is seen to have approximately ten times larger locking torque at 

standstill when compared to the 28 slot skewed rotor. The locking torque of the 24 slot 

unskewed rotor is much more severe, the magnitude being around ten times larger than that 

of the 18 slot variant. The conclusions are discussed further in Section 6.4. 
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Appendix 3 

Specifications of simulation and test machines 
 

In this appendix a set of data for the motors used in the thesis is put forward for comparing 

measurements and model predictions. They are listed in order of appearance with a reference 

to the section in which they are described. All units are in mm when not otherwise specified. 

 

Section 3.6: 220V, 50 Hz RSCR motor 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56.5  Main winding distribution 
(Quarter winding) 

0-46-76-110-118-
118  

Bore radius 31.52  Main wire diameter 0.65 
Rotor radius 31.23  Aux winding distribution 

(Quarter winding) 
85-85-79-65-0-0 

Shaft radius 8  Aux wire diameter 0.45 
Stator stack length 48.5  Start / Run equipment 25 Ω  /  4 μF 
Rotor stack length 49  Stator number of slots  24 
Axial rotor end ring length 12  Rotor number of slots 28 
Stator tooth width 3.56  Stator slot opening 2,1 
Rotor tooth width 2,9  Rotor bridge depth 0.2 
Stator yoke (eq) 13  Stator slot depth  

(Quarter winding) 
9, 0-11, 6-14, 6- 
15, 7-14, 6-14, 6 

Rotor yoke 11.7  Rotor bar area 2.3 × 10-5 m2 
Steel grade 3.4 W/kg  Rotor skew 1 stator slot pitch 
 
 
Section 3.6 and 7.1: 115V, 60 Hz RSIR motor 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56.5  Main winding distribution 
(Quarter winding) 

0-0-33-53-55-55  

Bore radius 28.02  Main wire diameter 0.82 (equivalent) 
Rotor radius 27.65  Aux winding distribution 

(Quarter winding) 
25-25-31-0-0-0 (net) 
40-40-31-0-0-0 (tot) 

Shaft radius 8.5  Aux wire diameter 0.475 
Stator stack length 40  Start / Run equipment 5 Ω  /  50 kΩ 
Rotor stack length 41  Stator number of slots  24 
Axial rotor end ring length 10  Rotor number of slots 28 
Stator tooth width 3.56  Stator slot opening 1.63 
Rotor tooth width 2.5  Rotor bridge depth 0,2 
Stator yoke (eq) 12.5  Stator slot depth  

(Quarter winding) 
9, 0-11, 6-14, 6- 
15, 7-14, 6-14, 6 

Rotor yoke 10.5  Rotor bar area 1.9 × 10-5 m2 
Steel grade 8.0 W/kg  Rotor skew 1 stator slot pitch 



 Appendix 3: Specifications of simulation and test machines 

163 

Section 5.3: 220V, 50 Hz RSCR motor 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56.5  Main winding distribution 
(Quarter winding) 

0-46-76-110-118-
118  

Bore radius 31.52  Main wire diameter 0.65 
Rotor radius 31.23  Aux winding distribution 

(Quarter winding) 
85-85-79-65-0-0 

Shaft radius 8  Aux wire diameter 0,45 
Stator stack length 48.5  Start / Run equipment 25 Ω  /  4 μF 
Rotor stack length 49  Stator number of slots  24 
Axial rotor end ring length 12  Rotor number of slots [10-12-...-40] 
Stator tooth width 3.56  Stator slot opening 2.1 
Rotor tooth width 2.9  Rotor bridge depth 0.2 
Stator yoke (eq) 13  Stator slot depth  

(Quarter winding) 
9, 0-11, 6-14, 6- 
15, 7-14, 6-14, 6 

Rotor yoke 11.7  Rotor bar area 6.6 × 10-4 m2 /  
[10-12-...-40] 

Steel grade 3.4 W/kg  Rotor skew 0 
 
 
 
Section 5.3: 115V, 60 Hz RSIR motor 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56,5  Main winding distribution 
(Quarter winding) 

0-0-33-53-55-55  

Bore radius 28,02  Main wire diameter 0,82 (eq.) 
Rotor radius 27,65  Aux winding distribution 

(Quarter winding) 
25-25-31-0-0-0 (net) 
40-40-31-0-0-0 (tot) 

Shaft radius 8,5  Aux wire diameter 0,475 
Stator stack length 40  Start / Run equipment 5Ω  /  50kΩ 
Rotor stack length 41  Stator number of slots  24 
Axial rotor end ring length 10  Rotor number of slots [10-12-...-40] 
Stator tooth width 3,56  Stator slot opening 1,63 
Rotor tooth width 2,5  Rotor bridge depth 0,2 
Stator yoke (eq) 12,5  Stator slot depth  

(Quarter winding) 
9,0-11,6-14,6- 
15,7-14,6-14,6 

Rotor yoke 10,5  Rotor bar area 5.3 × 10-4 m2 /  
[10-12-...-40] 

Steel grade 8,0 W/kg  Rotor skew 0 
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Section 5.3: 220V, 50 Hz RSCR motor (variant) 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56.5  Main winding distribution 
(Quarter winding) 

0-0-96-96-126-126 

Bore radius 31.52  Main wire diameter 0.65 
Rotor radius 31.23  Aux winding distribution 

(Quarter winding) 
92-92-70-70-0-0 

Shaft radius 8  Aux wire diameter 0.45 
Stator stack length 48.5  Start / Run equipment 25 Ω  /  4 μF 
Rotor stack length 49  Stator number of slots  24 
Axial rotor end ring length 12  Rotor number of slots [10-12-...-40] 
Stator tooth width 3.56  Stator slot opening 2.1 
Rotor tooth width 2.9  Rotor bridge depth 0.2 
Stator yoke (eq) 13  Stator slot depth  

(Quarter winding) 
9, 0-11, 6-14, 6- 
15, 7-14, 6-14, 6 

Rotor yoke 11.7  Rotor bar area 6.6 × 10-4 m2 /  
[10-12-...-40] 

Steel grade 3.4 W/kg  Rotor skew 0 
 
 
 
Chapter 6 and Section 7.2: 230V, 50 Hz RSCR motor 

Mechanical properties  Winding properties 

Stator outer radius (eq) 56.5  Main winding distribution 
(Quarter winding) 

0-57-96-124-148-
148 

Bore radius 31.52  Main wire diameter 0.56 
Rotor radius 31.22  Aux winding distribution 

(Quarter winding) 
78-72-67-46-0-0 

Shaft radius 7.5  Aux wire diameter 0.45 
Stator stack length 40  Start / Run equipment 25Ω  /  3.5μF 
Rotor stack length 41  Stator number of slots  24 
Axial rotor end ring length 12  Rotor number of slots [10-12-...-40] 
Stator tooth width 3.56  Stator slot opening 2.1 
Rotor tooth width 2.9  Rotor bridge depth 0,2 
Stator yoke (eq) 12.5  Stator slot depth  

(Quarter winding) 
9, 0-11, 6-14, 6- 
15, 7-14, 6-14, 6 

Rotor yoke 11.7  Rotor bar area 6.6 × 10-4 m2 /  
[10-12-...-40] 

Steel grade 3.4 W/kg  Rotor skew 0 
 
 

Section 7.1: 115V, 60 Hz RSIR motor identical to the one in section 3.6 

 

Section 7.2: 230V, 50 Hz RSCR motor identical to the one in chapter 6
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Appendix 4 

Published papers 
 
As part of this research, two papers were published. They are: 
 
 
P. Scavenius Andersen and D. G Dorrell,  

"Modelling of Split-Phase Induction Machine using Rotating Field Theory", International 

Conference on Electrical Machines ICEM 2006, 

September 2-5, Crete, Greece. 

 

 

P. Scavenius Andersen, D. G. Dorrell, N. C. Weihrauch and P. E. Hansen, 

"Analysis of the Synchronous Torques in a Split Phase Induction Motor", 

IEEE Power electronics Drives and systems Conference PEDS,  

December 2007, Bangkok, Thailand. 

 

The papers are given in full in the following pages. 
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Abstract—This paper puts forward an analysis method for a 

split-phase induction motor using surface integrals and an 
equivalent circuit. It can account for forwards and backwards 
rotating air-gap fields as well as MMF harmonics. The algorithm 
is implemented and a set of results obtained to illustrate the 
simulation technique. 
 

Index Terms—Single phase, split phase, induction motor, 
asynchronous torque  

I. INTRODUCTION 
PLIT phase motor analysis (where there is a main winding 
and an auxiliary winding that are orthogonal to each other 

but are not identical) usually assume a sinusoidal winding so 
that only the fundamental forwards and backwards rotating 
MMFs need to be modelled. The usual way to analyze these 
machines uses the cross-field or revolving field techniques. 
These two methods are well documented by Veinott [1]. For a 
two-phase machine the 5th MMF harmonic asynchronous 
torque rotates forwards and the 7th backwards, etc, (whereas 
for a three-phase machine the 5th rotates backwards and the 7th 
rotates forwards), and there may also be a substantial a 3rd 
MMF harmonic asynchronous torque dip [2]. In a split phase 
machine, the phase imbalance leads to both forwards and 
backwards rotating fields for each harmonic. This was 
investigated in [3] using an impedance matrix method; 
however in this paper, a more classical equivalent circuit 
method is used. A machine model will be adopted and results 
will be put forward. 

The effects of the asynchronous torques was addressed 
experimentally in [4]. This illustrated that the winding 
harmonics do have a substantial influence on the torque 
characteristic and hence why manufacturers do strive to 
manufacture machines with sinusoidal, or close to sinusoidal, 
MMF distribution in the stator winding, in which case the 
revolving field analysis, as described in [5], is perfectly valid.  

These machines are essentially single phase machines with 
the main winding directly fed from the supply. The auxiliary 

 
Manuscript received June 30, 2006. This work was supported by Danfoss 

Compressors GmbH and the authors are grateful for their support. 
P. Scavenius Andersen is with Danfoss Compressors GmbH, Motor R&D, 

Mads Clausen Str. 7, D-24939 Flensburg, Germany (email: 
p.scavenius@danfoss.de). 

D. G. Dorrell is with The Department of Electronics and Electrical 
Engineering, University of Glasgow, Glasgow, G12 8LT, UK (e-mail: 
d.dorrell@elec.gla.ac.uk). 

winding, which is usually in quadrature to the main winding 
(though not necessarily so if the slot number is inconvenient 
[6]), and connected in parallel. The auxiliary may also have a 
capacitor or resistor, or combination of the two, connected in 
series with it to produce a phase difference in the main and 
auxiliary winding currents and hence help generate a 
revolving MMF rather than a pulsating MMF. Some split 
phase machines may only use the auxiliary during the starting 
period. It is then switched out at a point somewhere around 75 
% of the synchronous speed. Other machines may keep the 
auxiliary winding connected in circuit during steady-state 
operation. If this is the case, there is still likely to be some sort 
of switching during run up (at about 75 % full speed) because 
the starting and running requirements for the auxiliary 
winding (resistance and/or capacitor) will be very different 
and require different components. The switching can be done 
in several different ways, i.e., using a centrifugal switch or a 
PTC (Positive Temperature Coefficient) thermistor.  

The outcome from this discussion is that the spit phase 
machine is not a straightforward machine to simulate, 
however the literature is still remarkably sparse. This paper 
will outline a study into a model that can be applied generally. 
It uses rotating field theory and equivalent circuits with spatial 
MMF harmonics to describe the machine. These are more 
generally applied to multiphase machines but are equally valid 
here. 

II. ANALYSIS 
The paper will first derive an algorithm and equivalent 

circuit that can be used to simulate the machine. 

A. Winding Distribution and MMF 
First, we have to consider the winding distribution of the 

stator windings. The total numbers of turns in the main and 
auxiliary phases are NM and NA - so that, in terms of the 
distribution around the inner bore of the stator, they can be 
represented as: 

( ) cos( )
2

m
m M
M

N
N θ θ=  (1) 

( ) sin( )
2

m
m A
A

N
N θ θ=  (2) 

where we are considering the fundamental winding harmonic. 
The winding coefficients can be obtained from standard 
winding Fourier decomposition of the winding distribution. If 
the main winding is excited by a sine-varying current, an 
MMF will be created on the stator surface, which pulsates in 
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time and is sinusoidally distributed in space. Considering the 
main MMF to be sinusoidal: 

( )

( , ) cos( ) sin( )
2

sin( ) sin( )
4

MMF rotation = forward + backward waves

M m
S M

M m

N
F t I t

N I
t t

θ θ ω

ω θ ω θ

=

= − + +  (3) 

This represents two rotating components of MMF (in terms of 
ampere-turns). The ampere-turns are of equal magnitude, but 
rotate in opposite directions at the angular velocity ω. This 
means that the stator winding can be split into halves: one 
which creates the forward rotating field and one which creates 
the backwards rotating field. The rotational speed of the rotor 
is determined by ω, the voltage, the slip, the supply frequency 
and the number of poles however the angular velocity of the 
MMF waves is simply a function of the supply frequency and 
pole number, if we replace (3) with a general p pole-pair wave 
and harmonic m: 

( )

( , ) cos( ) sin( )
2

sin( ) sin( )
4

m
M

S m
m

m
M m

m

N
F t mp I t

N I
t mp t mp

θ θ ω

ω θ ω θ

=

= − + +

∑

∑
  (4) 

B. Induced EMF and Magnetizing Reactance 
If we assume an air-gap flux density distribution 

( )( , ) cos( - ) cos( )
2

m
m S
S

B
b t t mp t mpθ ω θ ω θ= − +   (5) 

The air-gap electric field is 
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∫

∫  (6) 

From (6) and (1) the voltage induced in the main winding can 
be found by integrating round half the machine to obtain the 
flux linkage with the winding so that 
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 (7) 

where L is tha axial length and r is the average air-gap radius. 
We can express the air-gap flux density in terms of the current 
where 
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Putting (7) and (8) together leads to an expression for the 
magnetizing reactance where: 

( )
( )

( )
2

2( ) cos
4

m
o M mm

S

rL N I
E t t

g mp

μ πω
ω=  (9) 

It can be seen that the voltage leads the current by 90 elec deg, 
therefore, from (9) we can obtain the main magnetizing 
reactance for the mth harmonic: 
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( )

2

22 2 4
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o MMfm Mb
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g mp

μ πω
= + =  (10) 

The magnetizing reactance from (6), can be seen to be split 
evenly between the forwards-rotating field and the backwards-
rotating field. The auxiliary winding will also have a similar 
reactance Xma. 

C. Rotor Forwards and Backwards Fields and Electric 
Field 
The air-gap fields, with respect to the stator, rotate at 

( )( , ) cos( - ) cos( )
2

m
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B
b t t mp t mpθ ω θ ω θ= − +   (11) 

However, with respect to the rotor, the frequencies are 
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so that 
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The stator electric field in rotor co-ordinates is then 
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D. Rotor-Stator Linkage 
The electric field in (14) will induce an emf into the rotor 

case. If we assume that the rotor has a surface impedance, and 
we consider a thin section dθ, then the electric field induces a 
voltage into the rotor. Therefore the resulting voltage along 
the length of the rotor stack is the difference across the 
element dθ. If the direction out of the paper plane in Fig. 1 is 
chosen positive, the resulting electric field becomes 

( , ) ( , ) ( , )m m m
S S Se t e t d de tθ θ θ θ− + = −   (15) 

Modifying (7), the resulting voltage in the rotor conductor is 
(in terms of the forwards and backward rotating field): 

( , ) ( , )
( , )
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S
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  (16) 
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The current at angle θ in the conducting path defined by dθ is 
driven by the resulting voltage and limited by the impedance, 
which is likewise defined by the area of the path:  

, ,

, ,
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m m
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r m m
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Concentrating on the fundamental forwards-rotating field, and 
moving to phasor notation: 
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and for the backwards-rotating field: 
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This illustrates the linkage between the rotor and the stator. 
Higher harmonics produce a similar linkage. Further 
combination of (18) and (19) with (7) will produce an 
expression for the emf induced in the stator winding due to the 
rotor current. 

Fig. 1 Rotor surface conventions 

E. Rotor Impedance 
In (17), ,

m
f bZ /dθ is the impedance of the path defined by the 

angle dθ. This impedance is hardly measurable; however it 
can be expressed in terms of a measurable/calculable 
impedance of a section of the rotor, defined by the angle α. 
This impedance ( , )

m
f bZα  is the parallel impedance of an 

infinitely large number of ,
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First, considering the resistive component using the 
definitions in Fig. 2: 
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and similarly for leakage (and this will have separate forwards 
and backwards rotating components): 

( , ) ( ) ( )2m m m
r f b bar end ringX X Xα α −= +  (22) 

This will account for the bar and end-ring leakage as well as 
the differential leakage. Skew can also be incorporated at this 
point. 

Fig. 2 Bar and end-ring conventions 

F. Characteristic Voltage Equations 
Using the relationships put forward above, and after some 
manipulation, the main and auxiliary voltage equations can be 
obtained for each harmonic where: 
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and 
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where 
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Similar equations exist for the backwards rotating field and 
also for the higher MMF harmonics. This leads to the familiar 
equations for a parallel combination of the magnetizing 
reactance and rotor impedance. If β1 = 1, i.e., the main and 
auxiliary windings have the same distribution with a 90 elec 
deg spatial phase rotation, then when a mI jI=  (e.g., when it is 
operating as a true 2-phase machine), (23) simplifies to 
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and (24) simplifies to 
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which illustrates a balanced machine. In addition, 
1 1 0Mb AbE E= =  under these conditions which shows that the 

pulsating MMF becomes a rotating MMF.. The voltages can 
be connected in series to obtain the series voltage equation for 
each phase. The voltages for the main and auxiliary windings 
in terms of the fundamental forwards-rotating MMF wave are: 
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Fig.3 Main winding equivalent Circuit 
  

Fig. 4 Auxiliary winding equivalent circuit 
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G. Equivalent Circuit 
Figs. 3 and 4 show the equivalent circuit for the machine. 

These are obtained from equations (28) and (29) when 
implemented for all the forwards and backwards-rotating 
MMF waves. They consist of a main winding circuit and the 
auxiliary winding circuit that are connected in parallel across 
the supply. Additional impedance can be added in series to the 
auxiliary to account for a start or run capacitor and also a start 
resistor. Cross coupling between the circuits is incorporated 
via the voltage controlled voltage sources. The voltage 
sources are set by the magnetizing reactance voltage drops. 
These circuits account for both forwards and backwards air-
gap MMF waves as well as higher harmonics, including the 
3rd harmonics.  This circuit can be programmed to resolve the 
main and auxiliary currents for an applied voltage and slip. 

H. Torque Calculation 
The torque can be obtained from the following equation for 

each winding harmonic: 
11

1 /1 *

1 1
/1 *

Re

Re

m

j
AfMf

Mf Mrf

Af m Mf
Arf

EE
T I

E j E
I

β

ω ω

β
ω ω

−⎛ ⎞⎡ ⎤
⎜ ⎟= +⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤
⎜ ⎟+ +⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (27) 

1

11
1 /1 *

1 1
/1 *1

Re

Re

j
AbMb

Mb Mrb

Ab Mb
Arb

EE
T I

E j E
I

β

ω ω

β
ω ω

−⎛ ⎞⎡ ⎤
⎜ ⎟= +⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤

+ +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (28) 

These equations are for the fundamental forwards and 
backwards rotating mmf torques. Superposition of all the 
MMF torque harmonics lead to the total torque. 

III. SIMULATION AND RESULTS  
The algorithm was tested using a model of a 2-pole split-

phase induction motor. The main machine specification and 
results are given below. To illustrate the harmonic effects then 
the simulation used an unskewed rotor. 

A. Machine Model 
The machine cross section is shown in Fig. 5. The basic 

machine parameters are listed below: 
Airgap-length          0.29 mm 
Rotor Radius          31.2 mm 
Axial length           48.5 mm 
Rated voltage          220 V 
Frequency           50 Hz 
Auxiliary winding series impedance 4 Ω (resistive) 

The main winding has 10 coils while the auxiliary has 8 coils. 
The main winding is shown in Fig. 6. The phase belt coils has 
the coil-turns of: 46, 76, 100, 118, 118, 118, 118, 100, 76, 46. 
The Auxiliary winding is shown in Fig. 7. The phase belt coils 
has the coil-turns of: 55, 79, 85, 85, 85, 85, 79, 55. Additional 
resistance and reactance terms (such as the stator winding 

resistances and leakages and rotor bar and end-ring leakages) 
were obtained from SPEED’s PC-IMD (as are the 
diagrammatical representations in Figs. 5 to 7). 

 
Fig. 5 Machine model cross section 

 
Fig. 6 Main winding layout 

 
Fig. 7 Auxiliary winding layout 

B. Simulation Results 
Figs. 8 to 11 show the torque speed curves obtained from 

the simulation program at rated voltage. 
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Fig. 8 Torque-speed curve - total curve plus fundamental forwards and 
backwards-rotating curves 
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Fig. 9 Torque-speed curve - total 3rd harmonic curve plus 3rd harmonic  
forwards and backwards-rotating curves 
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Fig. 10 Torque-speed curve - total 5th harmonic curve plus 5th harmonic  
forwards and backwards-rotating curves 
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Fig. 11 Torque-speed curve - total 7th harmonic curve plus 7th harmonic  
forwards and backwards-rotating curves 

C. Discussion 
The results in the previous section illustrate that the split 

phase induction motor can be modelled using standard 
rotating-field induction motor theory. The machine modelled 
here is a typical example of such a machine (although with no 
skew). It can be seem that even with a graded winding which 
is close to sinusoidal then asynchronous torques can occur if 
there is no skew.  Unlike a balanced a 3-phase winding, a split 
phase machine can have asynchronous torques of 3rd, 5th, 7th, 
9th, etc, harmonic that rotate in both directions as illustrated 
here as well as in [3]. Care needs to be taken to ensure that a 
winding does not produce one of these harmonics. 

In Fig. 5, it can be seen that the slot sizes are graded so that 
a sinusoidal main winding can be realized without producing 
slots with poor fill factors that leaves the coils lose with poor 
conductive cooling. The auxiliary winding tends to have less 
turns and often fewer coils (if the machine is capacitor-run 
there will still be less than 25 % power flowing into the 
machine via the auxiliary winding). Designing a suitable 
winding with a reasonable distribution, without designing in 
asynchronous torques, is not a trivial matter. Skewing the 
rotor does aid the prevention of the asynchronous torques but 
may not fully suppress them. 

IV. CONCLUSION 
This paper puts forward a rotating-field analysis technique 

for analyzing a split phase induction motor which is generally 
applicable to machines that are capacitor or resistor start and 
possibly capacitor-run if necessary. There is little literature on 
this subject even though designing a suitable winding for good 
operation of these machines is not straightforward. The 
algorithm was applied to a design example to illustrate the 
capability of the method. The paper also illustrates that 
asynchronous torques can exist even in a machine with a good 
winding. 
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Abstract—This paper puts forward a method for 
calculating the synchronous torque dips in a split-phase 
induction machine. First it derives the equivalent circuits so 
that the torque speed/curve can be obtained over a full 
speed range (including asynchronous torque oscillations). 
When the currents are resolved these are used to calculate 
the synchronous torques from a set of interactions between 
the machine MMFs and the slot permeances. This gives the 
synchronous torques (speed and magnitude) which can be 
superimposed onto the torque/speed curve. The method is 
tested experimentally and found to give reasonable results. 
 

Index Terms—Split phase induction motors, 
asynchronous torques, synchronous torques. 

I.  INTRODUCTION 
The split phase motor, where there is a single phase 

main winding and an orthogonal auxiliary winding which 
is connected in parallel with the main winding (often with 
a series resistor or capacitor) is the preferred drive for a 
vast array of water and chemical pumping application as 
well as refrigeration applications, in a range possibly up 
to a few kW. They are cheap and relatively efficient and 
do not require a 3-phase supply. 

Many analysis techniques still assume a sinusoidal 
winding so that only the fundamental forwards and 
backwards rotating MMFs are modelled. The usual ways 
to analyze these machines use the cross-field or revolving 
field techniques. These two methods are well documented 
by Veinott [1]. For a balanced two-phase machine the 5th 
MMF harmonic asynchronous torque rotates forwards 
and the 7th backwards, etc, (whereas for a three-phase 
machine the 5th rotates backwards and the 7th rotates 
forwards) For a split-phase machine, there may also be a 
substantial a 3rd harmonic MMF asynchronous torque dip 
as well as other odd harmonics that rotate both forwards 
and backwards [2]. 

Recently, with the drive for energy efficiency, and also 
design improvement, the operation and simulation of the 
split phase motor has attracted more detailed interest [3]-
[6]. These address the issues of asynchronous torque dips 
as mentioned above and also inter-bar rotor currents. 
Here, we will investigate the issue of synchronous torque 
spikes. 

                                                           
This work is forms part of the PhD studies of Mr Scavenius 
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II.  ANALYSIS 
The analysis builds on the theory put forward in [4] and 
[6]. The permeance waves due to the slotting are 
described in the Appendix. First, it is illustrated how the 
permeance harmonics due to slotting can interact with the 
MMF to produce flux waves of the correct pole number 
to interact with other MMF waves (or iven the souce 
MMF) which rotate at different rotational velocities. At 
certain rotor speeds the MMF and permeance-sourced 
flux waves will rotate at the same speeds to generate 
constant torque. Therefore a synchronous locking torque 
is a pulsating torque where at certain speeds the 
frequency of the oscillation is zero. Then the paper goes 
on to examine explicit cases. 

A.  Interaction of MMF and permeance waves 
The machine MMF will interact with the slot permeance 
coefficient: 

mB F P= ×  (1) 
where the MMF Fm of order m is rotating. Consider a 
general permeance coefficient and a pth harmonic 
forward-rotating component of MMF so that 
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Where, for different MMF and permeance harmonics:  
Term 1:   y = 0    x = 0 
Term 2:   y = 0    x = m Ns 
Term 3:   y = n Nr  x = n Nr 
Term 4:   y = –n Nr x = m Ns – n Nr 
Term 5:   y = nNr   x = m Ns + n Nr 
and the stator slot number is Ns and the rotor slot number 
is Nr. It can be seen that the air-gap has two resulting 
rotating fields in (2) per Term, whose number of pole-
pairs and rotational speeds are given by 
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If the pole-pair number is negative this corresponds to the 
reverse direction. ωf1 and ωf2 are the rotational speeds of 
the fields. They create net torque with rotor MMFs of 
same pole number when their speeds coincide, i.e., when 
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In the same way, the interaction of the pth harmonic 
backwards-rotating MMF with the various permeance 
coefficient terms will result in a field set given by 
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which is also composed of two rotating fields per Term, 
whose number of pole-pairs and rotational speeds are 
given by 
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with p = MMF harmonic under consideration. In 
summary: 
• The forward and backward magnetizing MMF with p 

pole-pairs each interact with the general permeance 
term with x pole pairs. (In total, 2 MMFs per harmonic) 

• For each interaction, two counter rotating flux densities 
with  
nb = (p+x) or (p–x)  (5) 
pole pairs are created. (In total, 4 flux densities per 
harmonic [p,m,n]) 

• The rotational speed of each flux density is determined 
by the rotor speed. Each flux density may produce 
average torque with either the forward or the backward 
rotor MMF of same pole number when their speeds 
coincide, i.e. at either positive or negative synchronous 
speed of the rotor MMF. (8 speeds per harmonic 
[p,m,n]) 

This means, that for each harmonic component of 
winding MMF, eight components of synchronous locking 
torque need to be considered (i.e., Terms 4 and 5 for (2) 
and (4) – Term 2 is the main torque-producing field that 
is un-modulated by the permeance and Terms 2 and 3 
produce field harmonics that are too high to interact and 
produce synchronous torques).  

B.  MMF, permeance and torque 
The synchronous torque components arise as a 

combination of MMFs interacting with flux densities of 
various harmonic orders. In order to calculate the 
magnitude of the torque components a detailed 
knowledge of harmonic magnetization as well as rotor 
MMFs and permeances is required. 

C.  Magnetizing MMF of the pth harmonic winding 
The magnitude of the forward revolving, pth harmonic 
magnetizing (or resulting) MMF can be calculated 
from[6]: 
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where pNp main/4 is the winding amplitude of half of the 
pth harmonic winding. (the total winding number is Np). 
In addition there is the harmonic winding ratio βp, which 
is defined by 
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And the current is solved for the winding harmonics as 
given in [4] (the focus of this paper is the solution of the 
synchronous torques rather than the main torque and 
current components). 

Having established an expression for resulting MMFs, 
the flux density component (with p ± x pole-pairs) can be 
calculated from the permeance. Therefore an expression 
for the actual permeances is needed 

D.  Permeance and permeance coefficient 
The air-gap flux of one pole pitch from the pth harmonic 
winding is considered. Firstly, this can be expressed by 
magnetizing MMF and air-gap permeance Perm as 
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The factor 2/π takes into account the sinusoidal 
distribution of the flux, since it represents the ratio 
between the areas of a sine function and a rectangular 
function with equal amplitude. 
Secondly, a relationship between the flux linkage and the 
total flux of one pole pitch of the pth harmonic winding 
must be found. Fig. 1 shows a pole pitch of a pth 
harmonic, sinusoidally distributed winding. At angle θ, 
the shaded area of the coil is linked by a number of flux 
lines, as shown in red. At angle θ, the linked winding 
number is 
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and the total flux is 
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Fig. 1. Harmonic pitch definition. 



 

( ) ( )sinp pΦ θ Φ θ=  (10) 
Observing a small section with width dθ at angle θ, the 
flux linkage is 
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From this, the total flux linkage of one pole pitch can be 
found by integrating over the entire pole pitch, i.e.: 
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Solving for the pitch flux, and introducing the 
relationship between flux linkage, current and inductance 
gives 

2

0
,

p
stk

p p mag
p

p p p gap

N
r L

X p
I I

N N N l

π μ
Ψ

Φ
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠= = =  (13)   

Solving for Perm yields 
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This expression relates to the flux rather than the flux 
density, which is sought here. Therefore, the relationship 
between permeance and permeance coefficient is the 
same as that between flux and flux density for one pole 
pitch, i.e.: 
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In order to obtain an expression for the permeance 
coefficient, the following comparisons are made. The flux 
is given by 

p F Perm BΦ α= × =  (16) 
and the flux density is given by 

pB F P= ×  (17) 
Dividing (16) by (17) yields 
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from which 
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where lgap is the amplitude of the harmonic gap lengths. 

E.  Rotor MMF calculation 
The rotor MMF is expressed in terms of its referred 
value, since only referred currents are present in the 
equivalent circuit (Fig. 2). Hence 
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Where nb is given by (5). The relationship between MMF 
and current distribution amplitude is given by 
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Where N mainnb  is the total winding number of one pole 
pitch of the nb

th harmonic winding. 

F.  Torque calculation 
From (22) and (1) the magnitudes of the locking torques 
can be determined. The maximum value of locking 
torque occurs when the flux density and the current 
distribution are in phase, and the minimum value occurs 
when they are in anti-phase. The magnitude is given by 

2

0

ˆ ˆsin( ) sin( )

ˆ ˆ

sync p R p p

R p p

T rL I p B p d

rLI B

= ±

= ±

∫
π

θ θ θ

π

 (23) 

G.  Calculation synchronous locking torques 
As mentioned in the previous sections, several 

independent synchronous locking torques can be 
calculated from the pth magnetizing MMF, which 
interacts with each permeance term to create flux density 
of harmonic order nb. The torque arises from the rotor 
MMF of the same harmonic order nb. The magnitude of 
the torque presupposes that the magnitudes of the various 
flux densities and MMFs are known. Hence it is 
necessary to obtain realistic values for these. 

This method can be applied to several methods of 
calculation as a post-processing method of assessing the 
synchronous torques. 



 

III.  SIMULATIONS 
The equivalent circuit including winding harmonics is 
used to simulate the machine. This includes four separate 
winding harmonics of both forward and backwards 
rotation. This gives a system of twenty equations when 
considering both main and auxiliary windings. The 
fundamental and third winding harmonic variables are 
always considered, since these, or at least the 
fundamental, will dictate the line current drawn from the 
supply. In addition, the winding harmonics of order p 
(which is the one that interacts with the permeance 
harmonic to produce flux) and nb (which is the winding 
harmonic of the same order as the resulting flux) are 
considered in order to obtain the values needed for torque 
calculation. This is illustrated in Fig. 2, where the sub-
circuits representing four forward harmonic windings of 
the main winding are shown. In the full circuit used for 
calculation, four backwards windings are also included 
and the auxiliary winding circuit. 

 
 

Fig. 2. Equivalent circuit for the main winding and forwards-rotating 
flux waves (and two backwards-rotating waves together with linkages 

with the auxiliary windings). 

A.  Simulation models 
Several machines with different types of rotor were 

simulated and verified experimentally. In the simulations, 
four machines were investigated. These were a 220 V 50 
Hz machine with 20 and 24 bar rotors (unskewed) and a 
115 V 60 Hz machine with 18 and 24 bar rotors 
(unskewed).  

For experimental verification a set of rotors were 
constructed which had 18 rotor bars (unskewed), 24 rotor 
bars (unskewed) and 28 bar rotors with 1 slot skew. 
These are put forward in Section IV.  

The synchronous locking torques were calculated after 
the solution of the torque-speed curve and solution of the 
main and auxiliary winding currents. These are used to 
obtain the different components of the synchronous 
locking torques which are summed (since several occur at 
the same speed) and superimposed on the torque-speed 
curves. 

B.  220 V machine 20 and 24 bar rotor simulations 
This motor is designed for run capacitor operation. A 

resistor is used in series with the auxiliary during the 
Start mode. The number of stator slots is 24 and the 
mechanical air gap is 0.28 mm. Fig. 3 shows the 
synchronous locking torques superimposed on the steady 
state torque/speed curves for 20 rotor slots, which results 
in limited synchronous locking torque, as well as for 24 
rotor slots (equal to stator slot number) which results in 
severe locking at standstill. 
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Fig. 3. Synchronous torque simulations with 20 rotor bars (top) and 24 

rotor bars (bottom) – 220 V machine (start mode). 



 

C.  115 V machine with 18 and 24 bar rotor simulations 
This motor is a 115 V 60 Hz motor designed for single 

phase run operation. A series resistor is used with the 
auxiliary winding during starting . The number of stator 
slots is 24 and the mechanical air gap is 0.36 mm. Fig. 4 
shows the synchronous locking torques superimposed on 
the steady state torque/speed curves for 18 rotor slots, 
which results in synchronous locking torque, as well as 
for 24 rotor slots (equal to stator slot number) which 
results in severe locking at standstill. The steady-state 
torques themselves show considerable asynchronous 
torque dips. 
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Fig. 4. Synchronous torque simulations with 18 rotor bars (top) and 24 

rotor bars (bottom) – 115 V machine (start mode). 

IV.  EXPERIMENTAL RESULTS – 18, 24 AND 28 BAR ROTOR 
MACHINES 

The simulation technique was verified experimentally as 
shown in Fig. 5. This is for a 230 V 50 Hz machine with 
an 18 rotor bar machine. Five nominally identical 18 bar 
unskewed rotors were constructed for this machine as 
well as five 24 bar unskewed rotors. Five similar 
production machines with 28 bar rotors and skew were 
also tested. Space constraints prevent a full description of 
the methods of testing for synchronous torques and this 
will be reported at a later date. The averages across the 
rotors are shown in the results here. 
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Fig. 5. Synchronous torque simulations for 18 slot experimental 

machine. 
The results of the simulations when compared to the 

measurements are shown for the 18 and 24 bar rotors in 
Fig. 6. It can be seen that there are locking torques at zero 
speed and 27 rad/sec (258 rpm) for the 24 bar rotor and 
35 rad/sec (335 rpm) for the 18 bar rotor. There is 
experimental error in these and the experimental results 
are higher than the simulation predictions. 
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Fig. 6. Synchronous torque simulations and measurements for 18 and 24 

bar rotor machines. 
Deceleration torque/speed tests were carried out on the 

different rotors. Fig. 7 shows the deceleration tests for the 
18 bar rotors from 500 rpm (right) down to 0 rpm. It can 
be seen that there are synchronous torques around 335 
rpm as well as the locking torques at zero speed. Fig. 8 
shows the deceleration tests for the 24 bar rotors. This 
shows the synchronous torques at about 258 rpm (the 
speed axis is 0 to 500 rpm). However the torque is from -
4 Nm to 2 Nm which illustrates the large synchronous 
locking torque at zero speed due to slot cogging. 

 

 
Fig. 7. Deceleration tests for 18 bar rotors – the y axis is torque 0 to 0.8 

Nm and max speed (right) is 500 rpm. 
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Fig. 8. Deceleration tests for 24 bar rotors – the y axis is torque -4 to 2 

Nm and max speed (right) is 500 rpm. 
 

Fig. 9 shows the deceleration test for the production 
machine with 28 skewed bars. It can be seen here that 
both the synchronous locking torque, and the 
characteristic synchronous torque at about 220 rpm are 
much reduced compared to the unskewed rotors, hence 
illustrating the importance of rotor skew. 

 

 
Fig. 9. Deceleration tests for 28 skewed bar rotors – the y axis is torque 

-0 to 0.5 Nm and max speed (right) is 500 rpm. 

V.  CONCLUSIONS 
The paper puts forward an analytical method for 

modelling split phase induction motors that includes the 
calculation of synchronous torque spikes and dips from 
permeance harmonic considerations. This will be an aid 
to motor designers when assessing a design, and in 
particular the stator/rotor slot number combination. The 
methods are verified experimentally using rotors with 
varying bar numbers. 
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APPENDIX 
F.W. Carter described a relationship between the 

mechanical air-gap and the equivalent air gap which takes 
stator and rotor slots into account [7][8]. Here, the air-gap 
as seen by the electromagnetic field is investigated in a 
little more detail. 

A.  Air-gap length harmonics 
In order to asses the variation of the air-gap magnetic 

field, a 2D finite element model is created which has an 
actual stator geometry but assumes a non-slotted rotor. 
This is shown in Fig. A.1. The red slots carry a uniform 
current density of opposite magnitude, whereas the grey 
slots carry no current. Hence, a quasi-square wave MMF 
is created. 

θI 

θFe 

 
Fig. A.1. 2D finite element analysis of machine with smooth rotor- 

definition of θI and θFe 
 
A static analysis of this model results in an air-gap flux 

density versus angle for a single tooth pitch as given in 
Fig. A.2. 

 

 
Fig. A.2. Air-gap flux density from FEA (y-axis is in Tesla) 
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From this flux density variation, the radial air gap 
length can be extracted from Ámpere’s law using 

( ) ( )
0

2
totI

g
Fe g

I
l

B
=

μθ
θ

θ θ
 (A.1) 

The angles θI and θFe are defined in Fig. A.1 and the 
ratio takes into account the concentration of flux due to 
the slotting, since the angular span of the MMF is larger 
than the span of the flux due to the slot openings. 

Extracting the corresponding air-gap length from Fig. 
A.2 and performing a harmonic analysis of the resulting 
function results in a spectrum of harmonic air-gap lengths 
as given by Fig. A.3.  
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Fig. A.3. Harmonic air-gap lengths. 

 
For the analysis, it is necessary to express the air-gap 

length variation mathematically. From Fig. A.2, a 
suitable approximation is indicated by the dotted blue line 
in Fig. A.4. 

 
 
 
 
 
 
 

 
Fig. A.4. Air gap length approximation. 

 
A suitable mathematic expression over the span 0 < x 

< SO is 

( ) sinmech sf x l l x
SO
π⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (A.2) 

And for SO ≤ x ≤ 2πr/Ns: 
( ) mechf x l=  (A.3) 

where lmech is the mechanical air-gap and ls is  the 
effective air-gap as determined using the Carter factor. 
This actually corresponds to a constant term, i.e., the zero 
order harmonic of Fig. A.3. 

Performing a Fourier analysis of the periodic function 
described by (A.2) and (A.3) will result in a spectrum 
which can be directly compared with the one in Fig. A.3 
(as obtained from the finite element analysis). Any 
general magnitude deviation can be accounted for by 
multiplying the harmonic lengths with a correction factor. 
In Fig. A.5, blue graph shows the spectrum of the series 
defined by (A.2) and (A.3) directly, whereas the red 

graph shows the same spectrum, but where the harmonic 
coefficients have been multiplied with by a factor of 1.3.  
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Fig. A.5. Comparison of harmonic air-gap lengths with adjustments 

(blue is the original harmonic magnitude and red multiplies the 
harmonic lengths by a factor of 1.3) 

 
It is seen that the corrected spectrum (red graph) is in 

good agreement with the reference spectrum in Fig. A.3. 
Therefore, the mathematical functions in (A.2) and (A.3) 
for describing the air-gap length variation will be used in 
the following analysis. Generally, it can be observed from 
the spectra that both even and odd harmonics are present. 
For the lower harmonics the magnitudes are significant.  

Since the spectrum shows the length variation over one 
tooth pitch, the fundamental value corresponds to the 
Ns’th harmonic when observing the entire air-gap where 
Ns is the number of stator slots. Hence, for the entire air-
gap, the order of the harmonic is Ns times higher than 
shown in Fig A.5. 

B.  A.2. Air-gap permeance 
The reluctance variation of the air-gap is proportional 

to the air-gap length. The permeance is the inverse of the 
reluctance and it will have a similar spectrum as shown in 
Fig. A.5. This spectrum represents an air-gap section 
corresponding to one tooth pitch. For an air-gap around 
the whole motor air-gap circumference, the harmonic 
series has a fundamental of order Ns (the number of stator 
slots) rather that unity. This is shown in Fig. A.6. This 
shows the air-gap permeance and the corresponding 
spectrum for an air-gap with 24 slots. 
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Fig. A.6. Air-gap permeance with harmonic decomposition 

 
A similar spectrum will exist for the rotor, with a 



 

fundamental corresponding to the number of bar slots, 
and the fundamental and harmonics will rotate with the 
rotor itself. 

C.  Representation of permeance harmonics 
In the following derivation, the combined effects of 

stator and rotor permeance are described analytically. The 
approach developed by [2] is used and extended. The 
total air-gap reluctance is a series connection of 
independent reluctance terms. However, for the total air-
gap permeance, the inversion process means that the 
stator slot, rotor slot and average permeance terms may 
be described by a parallel connection of individual 
permeances, i.e.: 
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This type of air-gap harmonic inversion was also studied 
by Heller and Hamata [9]. By substitution, and for the 
moment ignoring higher slot harmonics: 

( )0 coss s ms sP P P mN= + θ  (A.5) 
and 

( )0 cosr r mr r rP P P mN tθ ω= + −  (A.6) 
Therefore the resulting air-gap permeance will be 
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Both the numerator and denominator of (A.7) contain 
contributions of constant and time-space-varying 
permeance terms. For the denominator, however, the 
time-space-varying permeance terms are small compared 
to the constant terms and are therefore ignored in the 
following analysis. Hence, the combined-effect air-gap 
permeance can be written as 
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The terms belonging to the stator are fixed in space, 
whereas the rotor terms will rotate with rotor speed. This 
gives rise to several terms of permeance where 
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so that   
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where m and n are stator and rotor slot harmonics. 
Altogether, the total air-gap permeance can be 
approximated using the following five terms:  
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 (A.11) 
This includes the higher slot harmonics. The first term 
corresponds to the average air-gap permeance, calculated 
using the Carter factor. This is the only term which has a 
non-zero mean value. The second and third terms 
correspond to stator and rotor slot harmonics. These will 
have mNS and nNR pole-pairs. The fourth and fifth terms 
contain combinations of the stator and rotor harmonic 
permeances. These are permeance waves consisting of 
waves of |mNS + nNR| pole pairs for the fourth term and 
|mNS – nNR| pole pairs for the fifth term.  
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