
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Rossit, Stephanie (2009) Action and rehabilitation in hemispatial neglect. 
PhD thesis. 
 
 
 
http://theses.gla.ac.uk/820/ 
 
 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



Action and rehabilitation in hemispatial neglect 

 

 

Stéphanie Rossit 

 

 

A thesis submitted in fulfilment of the requirements for the Degree 

of Doctor of Philosophy 

 

 

 

Department of Psychology 

Faculty of Information and Mathematical Sciences 

University of Glasgow 

 

 

 

May, 2009



 2 

Abstract 

 

Milner and Goodale (1995, 2006) propose a model of vision that makes a 

distinction between ‘vision for perception’ and ‘vision for action’. Regarding 

hemispatial neglect, they, somewhat contentiously, hypothesize that this 

disorder is better explained by damage to a high-level representational structure 

that receives input from the ventral visual stream, but not from the dorsal-

stream. Consequently, they postulate that neglect patients should code spatial 

parameters for action veridically. Another strong claim of the model is that the 

dorsal stream’s control of action is designed for dealing with target stimuli in the 

‘here and now’, yet when time is allowed to pass and a reaction has to be made 

on the basis of a visual memory, the ventral stream is required for successful 

performance. One prediction from this is that neglect patients should be able to 

perform immediate actions, but should present specific impairments when the 

action is delayed.  

In Part I of this thesis the pattern of spared and impaired visuomotor 

abilities in patients with neglect, as specifically predicted by the perception and 

action model (Milner & Goodale, 1995, 2006), was investigated. In Chapter 1, 

the performance of patients with and without neglect after right hemisphere 

stroke was compared with that of age-matched controls. Participants were 

asked to point either directly towards targets or halfway between two stimuli 

(gap bisection), both with and without visual feedback during movement. No 

neglect-specific impairment was found in timing, accuracy or reach trajectory 

measures in either pointing or gap bisection. In Chapter 2, I tested whether 
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neglect patients would be unimpaired in immediate pointing, yet show 

inaccurate pointing in a condition where a delay is interposed between the 

presentation of the stimulus and the response signal. Similarly to Chapter 1, it 

was found that neglect patients showed no accuracy impairments when asked 

to perform an immediate action. Conversely, when pointing towards 

remembered leftward locations they presented specific accuracy deficits that 

correlated with neglect severity. Moreover, an initial voxel-based lesion-

symptom analysis further revealed that these deficits were associated with 

damage to occipito-temporal areas which were also mostly damaged in the 

neglect group. 

Furthermore, training of grasping the centre of rods (visuomotor 

feedback training) has been shown to improve neglect (Robertson, Nico & 

Hood, 1997; Harvey et al., 2003). It is postulated that by using the spared 

visuomotor abilities in these patients it is possible to ‘bootstrap’ their perceptual 

deficits through some ‘dorsal-to-ventral recalibration’. Hence, in Part II the 

immediate and long-term effects of visuomotor feedback training were explored 

on neglect conventional measures, as well as in daily life tasks. I found that this 

technique improves neglect symptoms and crucially that these improvements 

were long lasting, as they were present even after 4-months post-training. 

Importantly, I also show that the training effects generalize to the patient’s daily 

lives at follow-up. These findings are very encouraging for the rehabilitation of 

neglect as this condition has been shown to be the best single predictor of poor 

recovery after stroke and very difficult to treat.  
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Part I: Action in hemispatial neglect 

 

General Introduction 

  

Symptomatology and incidence of hemispatial neglect 

Around the world more than 15 million people suffer from a stroke each year 

and hemispatial neglect affects up to 70% of such patients (e.g., Bowen, 

McKenna & Tallis, 1999; Stone et al., 1993). This disorder is classically defined 

as an inability to spontaneously report, respond or orient towards events on the 

contralesional side of space with either eye or limb movements. Moreover, the 

disorder cannot be attributed to sensory (i.e., hemianopia) or motor (i.e., 

hemiplegia) dysfunctions (Heilman, 1979). For example, severe neglect patients 

may behave as if the left side of the world ceased to exist (Mesulam, 1981), 

failing to eat food on the left side of their plate and ignoring people or objects on 

their left. It has been shown that this disorder is more persistent and severe 

amongst right hemisphere damaged patients (e.g., Stone et al., 1992). 

Additionally, it has also been reported that hemispatial neglect is the single best 

predictor of poor functional recovery from stroke and is notoriously difficult to 

rehabilitate (Buxbaum et al., 2004; Gillen, Tennen & McKee, 2005; Katz et al., 

1999).  

Several subtypes of neglect have been described, which are not 

mutually exclusive and may vary from patient to patient (for a recent review see 

Heilman, Watson & Valenstein, 2002; and see Vallar, 1998 for a proposed 

taxonomy). Neglect may affect the contralesional body (personal neglect), 
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contralesional space within reaching distance (peripersonal neglect), or space 

beyond the reaching space (extrapersonal neglect). Spatial neglect may occur 

in all three axes of space (horizontal, vertical, radial) and occur in different 

frames of reference (body-centred, object-centred or environmentally-centred). 

Also, neglect may be accompanied by a number of other associated 

phenomena like anosognosia (denial of symptoms), anosodiaphoria 

(indifference to illness or disability) and extinction of contralesional stimuli. 

Additionally, non-lateralized deficits (e.g., in sustained attention, phasic alerting, 

spatial working memory) may be prominent and have an important influence on 

neglect severity and persistence (Husain & Rorden, 2003). Hence it is not 

surprising that, nowadays, hemispatial neglect is viewed as a complex 

heterogeneous syndrome, and not as a single condition (e.g., Husain & Rorden, 

2003; Milner & McIntosh, 2005; Robertson, 2001). 

 

Anatomy of hemispatial neglect 

Numerous studies have examined the neural basis of neglect in humans, but 

this matter has recently become the subject of much controversy (Marshall et 

al., 2002; Karnath & Himmelbach, 2002). Heilman et al. (1983) were the first to 

conduct an anatomical study using computerized tomography (CT) scans with 

10 neglect patients. It was observed that the overlap of the lesions was located 

in the inferior parietal lobule (IPL; see Figure 1) and temporo-parietal-occipital 

(TPO) junction. In a later study Vallar and Perani (1986), who analysed 16 CT 

scans of neglect patients found that in six patients the lesions were centered in 

the parietal-occipital junction and in eight patients the overlap was in the 

supramarginal gyrus of the IPL. These findings have been replicated by other 
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subsequent investigations (Halligan et al., 2003; Leibovitch et al., 1998, 1999; 

Perenin, 1997; Samuelsson et al., 1997; Vallar, 1993, 2001). However, recently 

the traditional view that neglect is more common after damage at the TPO 

junction has been challenged by a controversial study carried out by Hans-Otto 

Karnath and his research group (Karnath, Ferber & Himmelbach, 2001). These 

authors argued that previous investigations included patients who presented 

concomitant primary defects in their visual field and thus the lesions overlapped 

posteriorly. Karnath, Ferber and Himmelbach (2001) reported that the maximum 

overlap in 25 ‘pure’ left neglect patients (i.e., without concomitant visual field 

deficits) laid in the middle part of the superior temporal gyrus (STG; see Figure 

1) and not in the TPO junction area (when compared to lesions of 25 patients 

without the condition). Moreover, they then compared the lesions of 11 patients 

with both neglect and hemianopia to the ones of four control patients with visual 

field deficits, but without neglect. In line with their hypothesis they found that the 

centre of lesion in these patients was in the IPL involving the TPO junction area 

and that this damage was affected in both neglect and non-neglect patients.  

Mort et al. (2003) criticized Karnath, Ferber and Himmelbach (2001)’s 

approach by arguing that their inclusion of only ‘pure’ neglect patients biased 

the results towards more anterior damage. To that end, they used higher 

resolution lesion mapping methods and compared magnetic resonance imaging 

(MRI) scans of an unselected sample of 35 stroke patients (19 with neglect and 

16 without the condition). They observed that although some of their patients 

presented superior temporal damage, the most critical region associated with 

neglect was located in the angular gyrus, on the lateral surface of the IPL, and 

in the parahipppocampal gyrus. Nonetheless, in a later large-group study 
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Karnath et al. (2004) refuted Mort et al. (2003)’s conclusions. In their study 

Karnath et al. (2004) included a large unselected sample of 140 stroke patients, 

78 with neglect and 62 control patients without the disorder. In agreement with 

their previous study, Karnath et al. (2004) found that the region of maximal 

overlap in neglect patients was located in the right superior temporal cortex, the 

insula and subcortically the putamen and the caudate nucleus.  

 

 

 

Figure 1. Right hemisphere of the human brain, with the different brain areas located 

nearby neglect-associated sites coloured. Abbreviations: SOG-superior occipital gyrus; 

SPL-superior parietal lobe; IPL-inferior parietal lobe (composed of the supramarginal gyrus, 

which surrounds the lateral sulcus, and the angular gyrus, which is inferior to the 

intraparietal sulcus and is located at the end of the superior temporal sulcus); STG-superior 

temporal gyrus. The Brain surface was created with Brainvoyager Brain Tutor free software. 

 

The lack of agreement between these different studies could be due to a 

number of factors such as different proportion and types of neglect patients 

included, and differences in the measures used for neglect diagnosis (e.g., 

Milner & McIntosh, 2005). For example, whereas Karnath et al. (2004) used 

cancellation tasks, Mort et al. (2003) additionally applied line bisection. 

Moreover, very recently Committeri et al. (2007) observed that different forms of 

neglect are associated with different lesion sites in a sample of 52 stroke 
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patients. Whereas personal neglect was associated with lesions in the right IPL, 

neglect within reaching space was associated with lesions including the STG.  

There is no doubt that most neglect patients present extensive brain 

damage affecting more than one brain lobule and this might explain why 

individual patients show different patterns of neglect, depending on the 

distribution of damage. Therefore, further research is necessary to clarify which 

lesion location is most related to each form of neglect. Importantly, nowadays, 

new and free software tools are available to allow a more precise localization of 

damage than ever before (see Rorden & Karnath, 2004 for a review). Previous 

anatomical studies (e.g., Heilman et al., 1983; Vallar & Perani, 1986) used 

paper-and-pencil procedures like the so-called Damasio templates (Damasio & 

Damasio, 1989). At present, the entire lesioned area of an individual can be 

used for a high-resolution analysis in Talairach space (Rorden & Brett, 2001; 

Talairach & Tournoux, 1988), which is also used in functional imaging studies. 

Therefore, in the present experiments I will take advantage of these new lesion-

mapping techniques.  

 

Theories on hemispatial neglect 

Research into hemispatial neglect has expanded vastly over the last 30 years, 

but the causes behind this perplexing syndrome are still largely unknown. Three 

main theoretical hypotheses have been proposed to explain neglect, more 

specifically the directional motor, representational and attentional accounts (see 

Heilman, Watson & Valenstein, 2002 for a review). In brief, the directional motor 

account (e.g., Heilman & Valenstein, 1979) argues that although right 

hemisphere patients with neglect might perceive stimuli to their left, they have a 
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difficulty in initiating eye or limb movements in that direction. In this line, neglect 

patients have been reported to present several forms of ‘action-intention’ 

deficits: a failure to act on the contralesional space (hemispatial akinesia); a 

slowing of movements towards the contralesional space (directional 

hypokinesia); and a reduced ability to sustain an action in or towards the 

contralesional space (directional impersistence). Representational accounts of 

neglect emphasize a deficit in the stored neural representation of space, in that 

many patients with neglect fail to report items that appear on the contralesional 

side of a scene that they imagine (e.g., Bisiach & Luzzatti, 1978). In addition, 

some attentional models argue that neglect patients present an ipsilesional 

attentional bias (e.g., Heilman & Valenstein, 1972; Kinsbourne, 1970; Watson et 

al., 1973, 1974) or are unable to disengage from stimuli in ipsilesional space 

and shift contralaterally (e.g., Posner et al., 1984).  

It is important to note that none of these explanations can fully account 

for the panoply of deficits presented by patients with hemispatial neglect and 

that they may not be mutually exclusive. Moreover, as pointed out by Husain 

and Rorden (2003), only a small number of studies have attempted to localize 

the brain regions responsible for these different deficits. Notably, the focus of 

recent research has been to understand if a particular deficit is indeed neglect-

specific or lesion-location specific, rather than just reporting the presence or 

absence of a single behavioural symptom (e.g., Himmelbach, Karnath & 

Perenin 2007; Husain & Rorden, 2003). In other words, researchers have 

included control patients without neglect to test if these patients also present the 

pathology observed and map the neural basis behind the symptoms. This will 

be the approach that I will use in this thesis. 
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The perception and action model 

More than 20 years ago Ungerleider and Mishkin (1982), stipulated a 

two-pathway model for visual processing in the cerebral cortex. In their pivotal 

paper (Mishkin, Ungerleider & Macko, 1983), the visual discrimination ability of 

monkeys with lesions in the inferotemporal cortex (ITC) was compared with the 

one of animals with damage to the posterior parietal cortex (PPC). Monkeys 

with ITC damage presented a profound impairment in visual pattern recognition 

whilst the ones with PPC damage were impaired in a landmark discrimination 

task. They argued that whilst lesions in the ITC perturbed the ability of the 

animal to perceive objects, lesions in the PPC disturbed their ability to perceive 

spatial relationships between those objects. Furthermore, they suggested the 

existence of a ventral stream projecting from the primary visual cortex (V1) to 

the ITC, and a dorsal stream projecting from V1 to the PPC. According to these 

authors the ventral stream mediates object vision, enabling the monkey to 

identify an object (‘what’ stream), while the dorsal stream mediates spatial 

vision, enabling the monkey to locate the object (‘where’ stream).  

In the past, studies of visual processing were mainly concerned with 

object recognition, and there was little interest in how actions to objects might 

be effected (Goodale & Humphrey, 1998). This fascination with what and how 

we ‘see’ has meant that many other functions of vision have either been ignored 

or been assumed to depend on the same mechanisms that support sight 

(Goodale & Humphrey, 1998). Nowadays, this perspective has been altered and 

there has been a shift towards an understanding of how visual information is 

used to control and access actions to objects, in addition to comprehending 

recognition processes.  
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This shift of interest from perception to action has its roots in an 

influential paper by Goodale and Milner in 1992 and in two subsequent books 

published by these authors (Milner & Goodale, 1995, 2006). Based on evidence 

from neuropsychological observations in humans, as well as 

electrophysiological and behavioural studies in the monkey, they reviewed the 

argument of Ungerleider and Mishkin (1982) by focusing on the outputs the two 

visual streams serve. Rather than emphasizing differences in the visual 

information handled by the two streams, Milner and Goodale (1995, 2006)’s 

account focuses on the difference in the requirements of the output systems 

that each stream of processing serves. While their model also postulates the 

existence of dorsal and ventral streams for the processing of visual information 

in the human brain, it proposes different functions from Ungerleider and Mishkin 

(1982). In particular, the dorsal occipito-parietal stream is thought to process 

visual information dedicated to the guidance of actions (‘how’ stream) and the 

ventral occipital-temporal stream computes visual information for the purpose of 

perceptual tasks (‘what’ stream; see Figure 2). In other words, they suggest that 

the reason there are two visual streams is that each must transform incoming 

visual information for different purposes – ‘vision for perception’ and ‘vision for 

action’.  

According to Milner and Goodale (1995, 2006)’s perception and action 

model, the ventral stream provides the visual contents of our perceptual 

experience and codes information in an abstract form suitable for storage and 

for deploying on cognitive processes like imagining, recognizing, and planning. 

On the other hand, the dorsal stream serves the much more immediate function 
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of guiding our actions from moment-to-moment, and therefore needs to code 

information in a quick, ephemeral and viewer-specific form. 

 

 

Figure 2. Diagram of the dorsal and ventral visual streams (adapted from Milner & Goodale, 

1995, pp. 68). The figure shows the cortical projections on the right hemisphere of the 

human brain (in blue is the occipital lobe, in green the temporal lobe; in yellow the parietal 

lobe and in grey the frontal lobe). Abbreviations: LGNd-lateral geniculate nucleus (pars 

dorsalis); SC-superior colliculus; Pulv-pulvinar; PPC-posterior parietal cortex; ITC-inferior-

temporal cortex. Brain surface was created with Brainvoyager Brain Tutor free software. 

 

In addition, they suggest that the contents of the dorsal stream are 

probably not accessible for cognitive elaboration or conscious monitoring and 

that the on-line control of action requires frequently updated knowledge of the 

stimulus position and motion with respect to the observer. It is suggested that 

the dorsal stream codes the spatial location of objects in egocentric coordinates 

(i.e., with respect to the observer’s eye, head, body or limb) in which the 

absolute sizes of objects are represented. In contrast, they argue that storing 

the position of an object in relation to the observer at one moment would not be 

useful for purposes of recognition or action at a later time. According to them, 

the most reliable form of spatial coding for such longer-term purposes would be 
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one that allows the triangulation with respect to stable landmarks in the 

environment (based on allocentric coordinates), which would depend on ventral 

visual stream processing. In other words, processing within the ventral stream 

allows us to recognise an object, while processing within the dorsal stream 

provides critical information so that we can accurately reach out and grasp it. 

Thus, their model predicts that both streams process information about object 

attributes, such as size, shape, orientation and spatial location, but for different 

purposes. 

To address the question of which functional mechanisms are involved in 

the two visual streams, neuropsychological researchers have studied individuals 

who have sustained brain damage that spares one of these systems but not the 

other, analysing their performance in various ‘perception’ and ‘visuomotor’ 

tasks. Patients with bilateral dorsal stream damage are unable to reach 

accurately towards visual targets that they unequivocally report seeing (e.g., 

Perenin & Vighetto, 1988) a disorder termed optic ataxia. In contrast DF, a 

famous patient with visual form agnosia after bilateral damage to ventral stream 

areas, can reach perfectly to visual targets, but is unable to make accurate 

perceptual judgements (Goodale et al., 1991; Milner, et al., 1991; Milner & 

Goodale. 1995, 2006). Therefore, optic ataxia and visual form agnosia have 

been proposed to constitute a double dissociation, which provides the main 

argument for the anatomical distinction between a ventral and a dorsal visual 

stream and their functional distinction for perception and action. Furthermore, 

the evidence of intact ‘action’ in DF has been used to motivate the shift of 

interest from visual recognition processes towards the understanding of how 

visual information is used to control and access actions to objects. 
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The perception and action hypothesis for hemispatial neglect 

What is compelling about Milner and Goodale’s (1995, 2006) model is that it 

allows specific predictions to be made regarding different aspects of visuomotor 

control and that these in turn should be differentially affected by hemispatial 

neglect.  

The predictions derived from the perception and action model to 

hemispatial neglect are mainly driven by the fact that visual information on the 

neglected side does not reach conscious awareness. As already mentioned, 

according to their model, it is the ventral visual stream that provides the 

contents of our visual awareness. Hence, Milner and Goodale (1995, 2006), 

somewhat contentiously, propose that the perceptual distortions found in 

patients with neglect might reflect a failure in a high-level representational 

structure where the products of the ventral stream processing are integrated 

and made use of. That is hemispatial neglect is a consequence of a disruption 

of an elaboration of ventral visual stream processing, rather than dorsal (Milner, 

1995; Milner, 1998a, b; Milner, 1997).  

Another prediction from their model is that many patients subject to 

distortion of spatial perception should nevertheless code spatial parameters 

veridically when programming goal-directed movements, since that would be 

accomplished by dorsal stream structures, which are presumably spared in 

neglect patients (Milner, 1995; Milner, 1998a,b; Milner, 1997). In agreement with 

these suggestions, some authors have even argued for the existence of a 

double dissociation between optic ataxia and hemispatial neglect (e.g., Perenin 

& Vighetto, 1988; Perenin, 1997). More specifically, it has been suggested that 

the superior part of the PPC including the intraparietal sulcus (damaged in 
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patients with optic ataxia) is involved in short-living, unconscious spatial 

representations required for specific on-line visuomotor computations. On the 

other hand, the lower part of the PPC, as well as the adjacent occipitotemporal 

regions (damaged in neglect patients), is involved in the more enduring and 

conscious representations underlying spatial cognition and complex spatially 

oriented behaviour (Perenin, 1997). Also in line with these hypotheses is that 

the dorsal visual stream terminates superiorly in the posterior parietal cortex 

(Milner & Goodale, 1995, 2006), whilst the neglect-associated lesions overlap 

maximally over superior temporal lobe areas (e.g., Karnath et al., 2004). 

 Furthermore, Milner and Goodale’ (1995, 2006; Milner, 1995; Milner, 

1998a,b; Milner, 1997) suggest that a disruption of spatial allocentric 

representations, after object identification is at the core of the neglect 

symptomatology. Accordingly, given the known properties of both streams, this 

disruption could, more conceivably, be accounted for by visual inputs from the 

ventral stream, as this stream is thought to be the one responsible for allocentric 

coding (Murphy, Carey & Goodale, 1998; Schenk, 2006). In contrast, they claim 

that the visual dorsal stream is relatively spared (Milner, Harvey, & Prichard, 

1998; Milner & Goodale, 1995, 2006) and that consequently patients have fewer 

problems with information coded in purely egocentric coordinates. 

Moreover, another strong claim of the perception and action model is 

that the two streams present different timescales in that while the dorsal visual 

stream is involved in immediate target-directed actions, the ventral stream is 

important for actions towards memorized objects or locations. These 

suggestions are derived from the findings that DF can no longer perform 

accurately when a delay is interposed between viewing and grasping (Goodale, 
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Jakobson & Keillor, 1994) and that optic ataxia improves after a delay (Milner et 

al., 1999). Once again, Milner and Goodale (1995, 2006)’s hypothesis that the 

ventral visual stream takes over when the action is delayed, allows another 

specific prediction to be made regarding hemispatial neglect. That is, whilst 

neglect patients should be able to reach to targets in the ‘here and now’, they 

should nevertheless be impaired when the visuomotor action depends on 

processing carried out by the ventral visual stream (Milner, 1995; Milner & 

Harvey, 2006). In particular, if hemispatial neglect is better explained by ventral 

(rather than dorsal) stream damage (Milner, 1995; Milner, 1998a,b; Milner, 

1997) than one would expect such patients to be impaired in delayed reaching, 

similarly to patient DF. 

 

The action debate in hemispatial neglect 

Harvey, Milner and Roberts (1995) found that neglect patients make rightward 

errors when asked to bisect horizontal lines at their midpoint and present a 

leftward bias in the landmark task (i.e., the patient is asked to judge which end 

of the line is closer to a central landmark). Furthermore, Milner and Harvey 

(1995) and Milner, Harvey and Pritchard (1998) observed that neglect patients 

judge the leftward of two horizontal lines or rectangles on the left hemispace to 

be shorter than two identical stimuli on the right. Similarly, when asked to 

perform manual judgements of size, neglect patients underestimate the size of 

target cylinders when they are placed on their left (e.g., Milner & Harvey, 1995; 

Milner, Harvey, Roberts & Forster, 1993). Based on these observations several 

authors have suggested that many patients with left sided neglect under-

perceive the visual extent of the left side of space (e.g., Harvey, Milner & 
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Roberts, 1995; Milner et al., 1993; Miner & Harvey, 1995; Milner, Harvey and 

Pritchard, 1998; Pritchard et al., 1997). In fact, while the perceptual deficits 

associated with this syndrome have been extensively studied, the motor 

behaviour of these patients has not yet received the equivalent degree of 

attention. In addition, whether or not goal-directed movements of left neglect 

patients are affected by the rightward bias found in ‘perception’ tasks (like line 

bisection) has been controversially discussed for more than a decade.  

Very briefly, it has been found that reaction and movement times 

towards points and objects located in the contralesional hemispace are 

generally increased in patients with hemispatial neglect (Heilman et al., 1985; 

Husain et al., 2000; Mattingley, Bradshaw & Philips, 1992; Mattingley, Philips & 

Bradshaw, 1994; Mattingley et al., 1998b). Moreover, Goodale et al. (1990), 

Harvey, Milner and Roberts (1994) and also Jackson et al. (2000) reported 

rightwardly curved trajectories in the pointing movements of right hemisphere 

lesioned and recovered neglect patients. What is less clear though is whether 

these biases are indeed neglect-specific. Karnath, Dick and Konczak (1997) 

tested acute neglect patients and right hemisphere lesioned patients without 

neglect and found no evidence of a rightward bias in the reach trajectory or the 

terminal accuracy on both patient groups (when compared to healthy controls), 

findings later repeated by Harvey et al. (2002), Himmelbach and Karnath (2003) 

and McIntosh et al. (2002). In fact, Himmelbach and Karnath (2003) argue that 

even patients with severe spatial neglect in the acute stage of their stroke, can 

reach accurately to a target and they can do so in both left and right hemispace.  

Nevertheless, in a recent controversial review Coulthard, Parton and 

Husain (2006) concluded that many patients with hemispatial neglect are 
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impaired when reaching towards the contralesional side of space. Their 

arguments were based on previous findings that such patients take more time to 

initiate and/or complete an action towards the contralesional side of space 

(Heilman et al., 1985; Husain et al., 2000; Mattingley, Bradshaw & Philips, 1992; 

Mattingley, Philips & Bradshaw, 1994; Mattingley et al., 1998b) and/or present 

increased rightward curved trajectories (Goodale et al., 1990; Harvey, Milner & 

Roberts, 1994; Jackson et al., 2000). 

In a later paper, Himmelbach, Karnath and Perenin (2007) strongly 

contested Coulthard, Parton and Husain (2006)’s paper by arguing that the 

studies reviewed contrasted the performance of neglect patients against healthy 

age-matched controls, a comparison that does not clarify whether these biases 

are neglect-specific. They suggest that the critical comparison is between 

patients with and without neglect, as the motor abnormalities observed in 

neglect patients may simply be a consequence of ‘a phenomenon occurring with 

(so far not further identified) brain damage’ (pp. 1980). In other words, the 

presence or absence of such deficits may not depend on the presence of 

neglect, but rather, more generally, on the extent of damage to the visuomotor 

control network. In keeping with this, studies that have included patients without 

neglect after right-hemisphere lesions have failed to find any neglect-specific 

temporal or spatial inaccuracies in reaching or grasping (Harvey et al., 2002; 

Himmelbach & Karnath, 2003; Karnath, Dick & Konczak, 1997; Konczak & 

Karnath, 1998). In a final reply, Coulthard, Parton and Husain (2007) clarified 

their conclusions by agreeing that the reaching deficits observed in neglect may 

not be specific to the condition. 
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Outline of the present experiments 

Therefore, whether the visuomotor behaviour of neglect patients is necessarily 

subject to lateral biases and whether their dorsal visual stream is relatively 

spared is still a matter of debate in the literature. Furthermore, the present 

thesis intends to address the pattern spared and impaired visuomotor abilities in 

patients with hemispatial neglect, as specifically predicted by the perception and 

action model (Milner & Goodale, 1995, 2006). 

It is important to highlight the differences between Milner and Goodale 

(1995, 2006)’s hypotheses of dissociated perceptual and visuomotor processing 

in neglect and earlier suggestions of a dissociation between perceptual and pre-

motor (or motor directional) contributions to neglect. According to the later view 

the perceptual neglect deficits may result from either a spatial bias in the 

processing of sensory inputs or, alternatively, from spatial biases in the 

selection and execution of motor acts and special techniques have been used to 

disentangle these aspects of neglect (see Mattingley & Driver, 1997 for a 

review). In contrast, the perception and action model is concerned with the 

differential processing of visual information for different purposes and this is 

orthogonal to the distinction between perceptual (input) and pre-motor (output) 

neglect. In particular, Milner and Goodale (1995, 2006) suggest that the visual 

processing that gives rise to conscious visual awareness may be independent 

from the neural mechanism that process the same sensory inputs for the 

guidance of automatic goal-directed actions. It is therefore crucial to state from 

the outset of the thesis that my experiments are not concerned with the 

distinction between input and output biases or, in other words, in classifying 

neglect patients in perceptual and pre-motor categories as proposed by 
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Heilman and Valenstein (1979). Instead of pursuing this distinction, I will adopt 

Milner and Goodale’s approach (1995, 2006; Milner & McIntosh, 2002; McIntosh 

et al., 2004b) and investigate whether parallel visual pathways may be 

differentially affected by the perceptual biases that neglect patients frequently 

exhibit. 

In Chapter One I will test the hypothesis that visuomotor control is 

spared in neglect patients by examining their temporal and accuracy 

performance when reaching towards targets on both sides of space and with or 

without visual feedback about the target and hand position during movement. 

Chapter Two will address the specific hypothesis that patients with hemispatial 

neglect suffer from ventral stream-related motor deficits, rather than dorsal. That 

is, I will test the claim that such patients can guide their actions to visible targets 

even if these are placed in left space, yet fail to do so if a delay is introduced 

between stimulus and response. Moreover, in both chapters I will compare the 

performance of neglect patients with that of two control groups, one of healthy 

controls and one of patients without the condition. This will allow testing whether 

the motor abnormalities are neglect-specific or result from damage to the 

visuomotor control network. Furthermore, I will use the recently developed 

voxel-based lesion-symptom analysis (Rorden, Karnath & Bonilla, 2007) to 

conduct an initial exploratory investigation of the lesioned brain areas 

potentially associated with the temporal and spatial visuomotor abnormalities 

observed after right-brain lesions.  
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Chapter 1 

 

 The influence of visual feedback in target-directed reaching 

and gap bisection in patients with hemispatial neglect 

 

Introduction 

 

Everyday we make rapid, goal-directed movements to interact with the 

environment and visual information plays a significant role in the precise and 

efficient control of such actions. A daily example of our dependence on visual 

feedback for reaching accuracy is when we miss the light switch when reaching 

for it in darkness.  

A number of researchers have focused on the extent to which visual 

feedback is required for the accurate control of action. This has been 

investigated using a variety of manipulations that have included withdrawing of 

vision of the limb and/or environment (Prablanc et al., 1979a, b). In healthy 

participants, preventing vision of the hand during movement has been shown to 

cause a reduction in accuracy (e.g., Jakobson & Goodale, 1991; Prablanc et al., 

1979a), produce a greater curvature in the reaching paths (e.g., Sergio & Scott, 

1998) and slowing of the movement time (e.g., Connolly & Goodale, 1999).  

More than a century ago, Woodworth (1899) suggested that the control 

of target-directed movements involves the central planning prior to movement 

initiation and the processing of sensory information to correct errors during 
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execution. Furthermore, many researchers (for review see Jeannerod, 1988) 

have suggested that the acceleration phase, is essentially ballistic, bringing the 

hand to the vicinity of the target and is associated with open loop processing, in 

that there is no opportunity to use on-line sensory feedback. On the other hand, 

the deceleration phase is thought to be more dependent on sensory feedback 

and closed loop processing to allow adjustments of trajectory to hit the target. 

However, whether visual feedback is used for actions in a continuous or 

intermittent manner remains a subject of debate in the literature (e.g., 

Desmurget & Grafton, 2000; Saunders & Knill, 2003). 

As discussed in the General Introduction, it is still unclear if patients with 

hemispatial neglect are specifically impaired in their visuomotor abilities when 

compared to right-brain damaged patients without the condition. One particular 

question that has been debated over the last two decades is if neglect patients 

use visual feedback efficiently in the guidance of their actions. To investigate 

this matter researchers have compared the performance of patients in open 

loop conditions, in which no visual feedback is available during movement, with 

conditions in which visual feedback is available throughout the reach (i.e., 

closed loop). 

In a seminal paper Goodale et al. (1990) studied recovered hemispatial 

neglect patients with right hemisphere lesions, but who at the time of testing no 

longer showed evidence of neglect in clinical tests. Nine patients and 13 age-

matched controls were asked to perform a target-directed pointing task and an 

analogue of the line-bisection task, in which they had to place their right index 

finger at the point perceived to be midway between two light emitting diodes 

(LEDS; a task now referred to as gap bisection). Both tasks were performed in 
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closed loop conditions and the reaching trajectories were analysed visually. It 

was found that patients with right hemisphere damage made large rightward 

errors in the gap bisection task, but not when pointing directly at the target. 

Moreover, patients were making large rightward deviations from the outset of 

the reach on both tasks. However, these deviations were corrected in the 

pointing task, so that the final rightward errors were much smaller than those 

observed in the gap bisection task. The authors argued that a detailed analysis 

of reach to point movements can reveal subtle deficits that may not be apparent 

from clinical assessment in patients with unilateral brain lesions. Furthermore, 

they suggest that future experiments should include a condition where vision of 

the moving hand is removed, as perhaps without this information patients might 

fail to make any corrections in the pointing task. 

Indeed that is exactly what Harvey, Milner and Roberts (1994) 

investigated in a later study. They analysed the performance of 12 patients with 

unilateral right hemisphere lesions and 12 with unilateral left hemisphere 

damage (all with no signs of neglect; except two who had recovered from the 

condition) when compared to 12 age-matched controls. Participants were asked 

to perform the same pointing and gap bisection tasks as Goodale et al. (1990) 

but this time with and without visual feedback of the hand whilst reaching. In 

stark contrast with Goodale et al. (1990), Harvey, Milner and Roberts (1994) 

observed that only when no visual feedback was available did the right-

hemisphere damaged patients present rightward trajectory biases and large 

rightward terminal errors on both tasks (albeit more in the gap bisection 

condition). This asymmetry was present regardless of the hand used and was 

consistent across all three target positions (left, center, right). Also, right-brain 
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damaged patients presented overall longer reaction times when compared to 

the healthy control group.  

So why were Goodale et al. (1990)’s patients trajectories curved in 

closed loop and Harvey et al. (1994)’s patients not? Goodale et al. (1990) 

speculated that the deficits in their patients resulted from the presence of subtle 

neglect, but this interpretation is not convincing for Harvey, Milner and Roberts 

(1994)’s data as most patients in their sample never experienced neglect. To 

account for this discrepancy Harvey, Milner and Roberts (1994) argued that the 

ipsilesional deviations documented by Goodale et al. (1990) might reflect fronto-

parietal damage, irrespective of the presence of neglect. In addition, they 

discussed the presence of a premotor bias or a subclinal optic ataxia in their 

patients to account for the rightward bias in open loop reaching.  

To clarify if the observed deficits in closed loop reaches were indeed an 

expression of subtle neglect Karnath, Dick and Konczak (1997) were the first to 

directly compare the performance of five acute neglect patients with five 

patients without neglect after right-brain damage, as well as six healthy controls 

on a simple target-directed pointing task. The task was performed under normal 

room light and in complete darkness to prevent vision of the hand during the 

movement. The authors did not find any deviation of the hand trajectory that 

specifically occurred when patients had neglect. In fact, both patient groups 

presented similar curvatures and end-point errors to healthy controls for all 

target positions and lighting conditions. The only difference was found for 

movement time, in that both patient groups took significantly longer to complete 

their movements when compared to healthy participants. Karnath, Dick and 

Konczak (1997) argued against Goodale et al. (1990) proposing that the failure 
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of neglect patients to explore the contralesional part of space does not induce a 

spatial bias in hand trajectory formation during goal-directed arm movements. 

Furthermore, they suggested that such deviations of pointing movements 

toward the ipsilesional side rather seem characteristic of patients with optic 

ataxia. In a later and complementary study, Konczak and Karnath (1998) 

studied in detail the velocity patterns of pointing movements, in the same 

patients and tasks as Karnath, Dick and Konczak (1997), and observed that 

movement times were longer in both patient groups due to prolonged phases in 

both acceleration and deceleration (in both open and closed loop). In addition, 

the velocity profiles of the neglect patients were not direction-specific. This 

evidence seems to suggest no impairment in using on-line visual feedback for 

the guidance of movement in both patients with and without neglect.  

However, more recently Jackson et al. (2000) found curvature biases in 

three right-brain damaged patients (two of them who presented neglect and one 

recovered patient) in a closed loop reaching task. Their study consisted of three 

target-directed pointing conditions: vision/vision (the target locations were 

defined visually); vision/proprioception (with no visual cues of the targets which 

were defined proprioceptively); and proprioception/proprioception (identical to 

the vision/proprioception trials with the exception that the subjects had no visual 

information about the moving limb). Now, similarly to Goodale et al. (1990), the 

patients only presented rightwardly curved trajectories when visual feedback of 

target and hand were available. However, no biases were found when targets 

were defined proprioceptively, which led the authors to conclude that their 

patient’s misreaching was not due to impairment of motor control per se, but 
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rather to a spatial distortion in the visual representation of space used to plan 

and control movements.  

Harvey et al. (2002) were the first to study the influence of visual 

feedback in the grasping abilities of neglect patients. To do this they compared 

the performance of four right-brain damaged patients with neglect, three without 

the disorder and five healthy controls. Participants were asked to grasp objects, 

located in either right or left space, at near and far distances both under normal 

vision and without visual feedback of the hand and target during movement. The 

authors observed that neither of the two patient groups differed from the healthy 

participants in terms of maximum grip aperture or grip orientation nor the time to 

reach maximum grip aperture. In terms of path trajectory, right-brain damaged 

patients showed the same amount of path curvature in open and closed loop 

conditions, whereas the trajectory of healthy controls proved straighter in the 

closed loop condition. Thus, like in Goodale et al. (1990) and Jackson et al. 

(2000)’s studies the curvature of the patients was increased (relative to healthy 

participants) when movements were made under visual feedback. However, no 

curvature differences could be found between the patients with and without 

neglect. Furthermore, both patients groups proved markedly slower in 

movement time and peak velocity when compared to controls, but again no 

difference was obtained between the two patient groups and this slowness was 

not direction-specific. Finally, whereas the healthy participants spent less time 

decelerating under normal vision, this difference was not present for the 

patients. To account for their results Harvey et al. (2002) suggested that after 

right-brain damage the patients might be less efficient when using visual 

feedback to home in on the target, requiring longer time to decelerate under 
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closed loop conditions and producing more curved trajectories. However, they 

state that this impairment in goal-directed behaviour is not confined to 

hemispatial neglect.  

In another attempt to clarify if patients with right-brain damage present 

increased ipsilesional curvatures Himmelbach and Karnath (2003) analysed the 

terminal accuracy and several hand path curvature measures of target-directed 

movements with room lights turned on and in darkness. They tested 17 patients 

with right hemisphere lesions (six patients with neglect, four patients who had 

already recovered from neglect and seven patients who never showed neglect) 

as well as nine age-matched healthy controls. No systematic bias of terminal 

accuracy or hand path curvature was found that could be specifically attributed 

to neglect. Additionally, these authors found that although there was a higher 

absolute curvature in neglect patients when compared to healthy subjects (but 

when compared not patients without the condition), in the closed loop condition, 

this difference was not direction-specific, in contradiction to the results obtained 

by Jackson et al. (2000). On the basis of their results, the authors suggested 

that spatial neglect is not specifically associated with a systematic bias of goal-

directed hand movements towards the ipsilesional side.  

In sum, the results regarding the influence of visual feedback on the 

visuomotor abilities of neglect patients have been most inconclusive. Whilst 

Goodale et al. (1990) reported that recovered neglect patients, when compared 

to healthy controls, presented large rightward deviations in gap bisection (but 

not pointing) with visual feedback, Harvey, Milner and Roberts (1994) found 

rightward biases in both pointing and gap bisection only for open loop reaches 

(in right hemisphere lesioned patients without neglect). Moreover, Jackson et al. 
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(2000), found large rightward deviations in neglect patients when pointing to 

visually-defined targets, but again others have not replicated this neither for 

target-directed pointing nor object-directed grasping (Harvey et al., 2002; 

Himmelbach & Karnath, 2003; Karnath Dick & Konczak, 1997). Unfortunately, 

the results from these studies cannot be easily compared, as researchers have 

used different patient groups, measures of accuracy and hand path curvature, 

as well as different tasks and lighting conditions.  

Based on this controversy, the present experiment examined the 

visuomotor performance of a significant sample of right hemisphere lesioned 

patients with and without hemispatial neglect, as well as a group of healthy 

subjects, in both pointing and gap bisection, both with and without visual 

feedback. As discussed in the General Introduction, if Milner and Goodale 

(2006) are correct in claiming that the dorsal stream is relatively spared in 

hemispatial neglect, then neglect should not specifically affect pointing in either 

open or closed loop conditions, even when reaches are made towards the left 

side of space.  

Regarding the gap bisection task, one could assume that neglect 

patients should show a rightward bias in this task as these patients typically 

show a bias in line bisection (e.g., Harvey, Milner & Roberts, 1995; Milner & 

Harvey, 1995). However, and in contrast to Goodale et al. (1990)’s claims, this 

hypothesis has been elegantly refuted by McIntosh et al. (2004a). The first 

experiment of McIntosh et al. (2004a) showed that left neglect patients curiously 

present smaller rightward errors in gap bisection when compared to the 

bisection of filled lines. In their second study they assessed the cause of this 

error reduction by applying an explicit coloured cue manipulation to the line and 
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gap bisection tasks. Under these matched cueing conditions they found the 

same level of performance on both line and gap bisection, suggesting that the 

reduction in bisection error is a result of cueing effects. Thus, in the present 

experiment it is predicted that neglect patients will not present a specific bias in 

the gap bisection condition, even those with a rightward error in line bisection. 

Finally, although it is hypothesized that there is no neglect-specific 

impairment in action control, I expect that some patients will present deficits in 

the tasks, especially if their brain damage extends to crucial nodes in the 

visuomotor control network. Therefore, another aim of this study is to clarify the 

neural basis of motor deficits after right-hemisphere damage, a topic also hotly 

debated in the literature. Previous studies (e.g., Bisiach et al., 1990; Tegner & 

Levander, 1991) have reported that frontal and basal ganglia lesions produce 

motor abnormalities in neglect patients, but the mapping methods used did not 

allow a precise localization of the site of damage. Other studies argue instead 

that injury to the right posterior-inferior parietal cortex is associated with 

increased reaction times to left stimuli (Husain et al., 2000; Mattingley et al., 

1998b). In addition, as pointed out by Rorden and Karnath (2004) anatomical 

conclusions drawn without a comparison to a control group of patients who also 

suffer from a brain lesion, but do not show the pathological behaviour, may 

simply reflect brain injury. The recent development of voxel-based lesion-

symptom analysis (Rorden, Karnath & Bonilla, 2007) thus provided a unique 

opportunity to conduct an initial exploratory investigation of the lesioned brain 

areas in right-brain damaged patients potentially associated with temporal and 

spatial visuomotor abnormalities.  
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Method 

 

Participants 

Eleven patients with left hemispatial neglect after right hemisphere damage 

participated in the study (RH+; mean age 66.8, SD 7.7). Nine patients with right 

hemisphere damage without neglect (RH-; mean age 67.2, SD 7.8) and 10 

healthy participants (mean age 71.0, SD 4.8) served as control groups. The 

groups were age-matched and all participants were right-handed (Annett, 1967). 

The healthy participants had normal or correct-to normal visual acuity. On 

average patients took part in the experiment eight months after stroke onset and 

there were no differences in onset times between the two patient groups.  

Patients were included in the RH+ group if they scored below the cut-off 

on the conventional sub-tests of the BIT (Behavioural Inattention Test; Wilson, 

Cockburn & Halligan, 1987) or presented a significant rightward bisection error 

(Harvey, Milner & Roberts, 1995) or were impaired in a lateralized manner in the 

sub-test B of the Balloons test (Edgeworth, Robertson & McMillan, 1998). 

Patient MMG was included in the neglect group despite scoring above the cut-

off on the neglect assessment measures, because she showed typical signs of 

neglect as reported by family members and therapists/clinical staff (e.g., 

bumping into objects on the left). Importantly, none of the RH- patients ever 

showed signs of neglect on these tests.  

Hemianopia and extinction were formally assessed using computerized 

perimetry and extinction tests (adapted from Walker et al., 1991), on a laptop 

with a 285 by 214mm screen with stimuli at a viewing distance of 60cm 
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approximately. On both tasks a central fixation cross appeared for 1000ms and 

was extinguished 100ms before the target was presented, leaving a blank 

screen on to which targets were displayed for 100ms. For the perimetry task, a 

black stimulus (circle with 2mm of diameter) appeared on one of 36 possible 

positions on a white background. The distance between the stimuli was fixed 

(6.5˚ in x-axis and 4.8˚ in the y-axis). Patients were first asked to fixate on the 

central cross and after fixation offset they were asked to press a key when they 

detected target appearance. A total of 106 trials (including 10 practise and 24 

catch trials) were presented, two per target position. In the extinction test, 

squared stimuli (black 2 x 2mm) were presented on a white background, 

unilaterally to either the left or the right of the screen or simultaneously on both 

sides (located at 2.9˚ or 5.7˚ from the centre of the screen). Patients were asked 

to report the number of squares they detected (i.e., left, right, both or none). A 

total of 70 trials (including 7 practise and 10 catch trials) were presented, 10 for 

each condition and eccentricity. In neglect patients AB, DF, FH and NF 

extinction could not be assessed in a meaningful way as these patients were 

unable to report the presence of a single leftward stimulus. Demographic and 

clinical data of all patients are presented in Table 1. 

In addition, to assess the general cognitive status the following sub-tests 

of the Wechsler Adult Intelligence Scale - Revised (WAIS-R; Wechsler, 1981) 

were administered to all patients: picture completion, vocabulary, block design, 

information, digit span and object assembly. An analysis of variance with group 

(RH+ and RH-) as the between factor was performed on the scaled scores of 

each sub-test. This revealed that neglect patients were significantly impaired on 

all performance sub-tests when compared to RH- patients, [block design: F(1,18) 
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= 19.15, p < .001; picture completion: F(1,19) = 10.34, p < .01; object assembly: 

F(1,17) = 20.98, p < .001]. This finding is almost certainly due to reduced 

processing of information on the left of the stimulus displays. No differences 

between the two groups were obtained for information, digit span and 

vocabulary scaled scores.  

Ethical approval was granted by the South Glasgow University Hospitals 

Trust and the study was carried out according to the Declaration of Helsinki. All 

participants gave their informed consent prior to participation in the study and 

were reimbursed for their travel expenses.  
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Stimuli and procedure 

Targets were white circles (diameter 7mm) projected (HITACHI CP-X345 

Multimedia LCD Projector, refresh rate of 60Hz) onto a horizontal Perspex box 

(77cm width/ 97cm length/ 30cm height) via a reflection mirror (3mm thick, 60 x 

60cm). The box was placed on top of a wooden table at which the subjects were 

comfortably seated (see Figure 3). The target surface was 77cm wide and 49cm 

long. Targets were visible only when illuminated and no tactile information of 

their locations was available. The central target was located 40cm in front of the 

start trigger and aligned with the centre of the box. At the start of each trial, the 

participant’s right index finger rested on the start trigger, aligned with the 

subject’s sagittal midline. Eye movements were unrestricted. The room was 

slightly darkened so that the targets were clearly visible when illuminated.  

 

   

Figure 3 – Front and side views of the reaching platform. 
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The design was adapted from Goodale et al. (1990). In the pointing 

condition, the target appearance was triggered by press of the start trigger. 

Participants were asked to press the start trigger for 1000ms after which a tone 

(800Hz for 500ms) cued the subjects to initiate the movement. The target 

remained visible until the end of the trial and participants were instructed to 

point to the target as quickly and as accurately as possible. In this condition, 

subjects were presented with three targets illuminated one at a time located at -

10cm (left hemispace), 0cm (central) and 10cm (right hemispace). In the gap 

bisection condition, on pressing the start trigger two identical circles were 

presented simultaneously for 1000 ms after which a tone (800Hz) cued the 

subject to point midway between these two circles as quickly and accurately as 

possible. In this case the two circles were presented simultaneously at three 

different positions, either in left (-15 and -5cm), centrally (-5 and 5cm) or right 

hemispace (5 and 15cm). The dots varied randomly in location from trial to trial 

although the distance between them was fixed (10cm). Note that the true 

midpoints in the gap bisection task were identical to the locations of the targets 

used in the pointing task (-10, 0 and 10cm) and all movements were made with 

the right arm and hand. 

As in Harvey, Milner and Roberts (1994), all participants reached under 

closed loop conditions first, yet the order of the bisection and pointing tasks was 

counterbalanced across participants. In the closed loop condition the room light 

permitted full vision of the arm and hand during the movement. In the open loop 

condition, subjects wore shutter glasses (PLATO Model S-3, Translucent 

Technologies Inc., Toronto, Canada), which prevented vision of the arm, hand 

and target during movement as the shutters closed as soon as the start trigger 
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was released (e.g., Harvey et al., 2002). These manipulations resulted in four 

blocks of trials: closed loop pointing; closed loop gap bisection; open loop 

pointing; and open loop gap bisection. Each block contained six practise trials (2 

for each target position) and 36 experimental trials (12 for each target). 

Calibration coordinates were obtained at the end of the each session, by 

continuous illumination of each target, one by one, allowing the subjects to 

adjust their terminal fingertip position until they felt they had perfectly occluded 

the target. There were three calibration trials per target (-10, 0, 10cm) and three 

for the start position.  

Pointing responses were recorded by sampling the position of a 

magnetic marker, attached to the tip of the right index finger, at a rate of 108HZ, 

using an electro-magnetic motion analysis system (Minibird, Ascension 

Technology Inc., Burlington, USA). The start trigger, the shutter glasses, the on-

line recordings and the stimuli presentation were simultaneously controlled and 

timed by a PC, by means of a Virtual Instrument generated with LabView 

software (National Instruments, Newbury, UK). 

 

Behavioural analysis 

Data obtained from the recordings were analysed off-line. The start and end of 

each movement were defined by a velocity-based criterion of 40mm/s and 

50mm/s respectively. First, a trial-by-trial analysis was performed to exclude any 

trials in which participants did not follow the instructions (i.e., did not wait for the 

beep to start moving, did not home in on target). A mixed analysis of variance 

was performed on the number of trials analysed with group (healthy controls, 

RH- and RH+) as between factor and task (pointing, gap bisection) and visual 
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feedback (open loop and closed loop) as within factors. This revealed no effects 

of group or task or an interaction between group and task or visual feedback. 

However, the effect of visual feedback was significant [F(1,27) = 16.86, p < .001] 

in that open loop trials were more error prone (in pointing open loop 7.9% of 

collected trials were excluded and in gap bisection open loop 7.7% were 

excluded), when compared to closed loop reaches (only 1.5% of trials were 

excluded in both closed loop pointing and gap bisection). 

The terminal accuracy variables were absolute and signed angular error, 

relative to the ideal reach either to the target (pointing) or to the location midway 

between the two targets (gap bisection). The absolute angular error was defined 

as the unsigned constant angular error relative to the ideal reach. This angular 

error was calculated for each trial based on the subtraction of each participant’s 

movement angle by the ideal reach angle. The ideal angles were obtained from 

individual calibration coordinates of x and y positions at the start trigger and at 

the different target positions. In addition, the directionality of this angular error in 

terms of right and leftward (-) deviations from the ideal reach angle was also 

computed. 

To analyse the movement trajectory the cumulative hand path curvature 

index was computed (e.g. Himmelbach & Karnath, 2003). First, the mean x 

coordinates for each 1mm y coordinate were obtained for each subject, per 

target position and condition. Secondly, the deviations in the x-axis of the 

subject’s trajectory from a perfectly straight trajectory to the target were also 

computed. This was obtained individually for each participant based on the 

calibration coordinates. Finally, the deviations of the trajectories at each y data 

point were added up using the sign to denote the direction of curvature. This 
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cumulative value was then divided by the distance between movement start and 

end in the y-axis, providing a sensitive measure of systematic direction-specific 

changes. Finally, reaction and movement times were also analysed. 

 

Lesion analysis 

Lesion data were available for all twenty patients (11 MRI scans and 9 CT 

scans; MRI scans could not be obtained for all patients due to clinical 

constraints). The extent and location of each patient’s lesion was visualized and 

defined using the MRICRO software package (Rorden & Brett, 2000; 

www.mricro.com). For each patient, the area of damage was determined by 

inspection of the digital brain image, slice by slice, by a clinical neurologist, who 

was blind to the design, group assignment and purpose of the experiment. 

Lesions were drawn on 11 axial slices of a T1-weighted template, 

corresponding to the Talairach z coordinates of -24, -16, -8, 0, 8, 16, 24, 32, 40, 

50, 60mm using the identical or closest matching transverse slices for each 

patient.  

In Figure 4A and B the overlap of the reconstructed lesions for the RH+ 

and RH- patients is presented. However, the lesions overlaps of neglect and 

non-neglect patients (Fig 4A and 4B) do not differentiate between loci of lesion 

associated with neglect and those areas most likely to be damaged by vascular 

insult. Thus, it is important to subtract the lesions of neglect patients by lesions 

of patients without the condition. The power of this subtraction technique is that 

common lesions that are damaged with equal incidence in both groups 

(presumably due to the vulnerability of this region) are not highlighted (Karnath 

et al., 2004). 
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Figure 4 - Lesion overlap map summarising the degree of involvement for each voxel in the 

lesions of neglect patients (N = 11; A) and patients without neglect (N = 9; B); the range of 

colour scale derives from the absolute number of patient lesions involved in each voxel. (C) 

Lesions of neglect patients minus those of RH- control patients; the range of the colour 

indicates the percentage of areas mostly damaged in patients with neglect. 

   

The regions that were mostly damaged in patients with neglect are 

presented on Figure 4C. The foci that were maximally damaged in patients with 

neglect (71%) were located in the gray matter of the superior temporal gyrus 

(Talairach coordinates: 47, -10, 0), the insula gray matter (Talairach 

coordinates: 43, -7, 0) and its surrounding white matter (Talairach coordinates: 

45, -8, 0) and the white matter nearby the claustrum (Talairach coordinates: 37, 
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-8, 0). Consistent with previous studies, the lesions of neglect patients were 

significantly larger in volume than those of the non-neglect group [F(1,19) = 14.03, 

p = .001, see Table 1]. 

Finally similarly to recent papers (e.g., Sarri et al., 2009), whenever a 

behavioural impairment was observed, the voxel-based lesion-symptom 

mapping statistical approach was implemented using MRICROn software 

(Rorden, Karnath & Bonilla, 2007; www.sph.sc.edu/comd/rorden/mricron/). This 

analysis was performed with voxel-based maps of the Brunner-Munzel non-

parametric statistic (BM; Brunner & Munzel, 2000; Rorden, Bonilla & Nichols, 

2007). The BM test is a rank order test which relates lesioned voxels to 

behavioural performance in a continuous fashion without pre-categorizing 

patients into RH- or RH+ groups. Thus it takes the behavioural data from all 

patients and asks which voxels, when lesioned, are associated with that 

behavioural characteristic. Therefore, this test provides a relatively assumption-

free measure of whether or not damage at each voxel is associated with a 

particular deficit (Rorden, Bonilla & Nichols, 2007). For each voxel, patients are 

divided into two groups according to whether they did or did not have a lesion 

affecting that voxel and the behavioural scores are compared for these two 

groups (damaged/non-damaged). The BM statistic tests if the difference in 

behaviour between the two groups is significant and thus provides a Z score for 

each voxel. Multiple comparisons were controlled by using the false discovery 

rate (FDR; p < .05). 

Throughout this thesis, the voxel x-, y-, and z- Talairach-space 

coordinates (in mm; Talairach & Tournoux, 1988) are reported for significant 

results that survived FDR thresholding. For each significant brain area, the 
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voxel position which obtained the highest (peak) Z score, within the BM range, 

is presented. 

 

Results 

 

Means for each participant were computed per condition for each variable and 

target position. All variables were analysed with a 3 x 2 x 2 x 3 mixed analysis of 

variance with group (healthy, RH- and RH+) as a between-factor and visual 

feedback (closed loop, open loop), task (pointing, gap bisection) and target (left, 

centre and right) as within-subject effects. Post-hoc comparisons were made 

with the Bonferroni adjustment (p < .05).  

 

Terminal accuracy  

The descriptive statistics for absolute angular error per visual feedback, target 

and group are presented for the pointing and gap bisection tasks in Tables 2 

and 3 respectively. The analysis of variance on absolute angular error revealed 

a significant main effect of target [F(2,54) = 8.51, p = .001] and pairwise 

comparisons showed that overall participants were less accurate in their 

leftward reaches when compared to centred (mean difference = 0.4˚, p < .01) 

and rightward reaches (mean difference = 0.5˚, p = .01). No differences in 

accuracy were found between centred and rightward reaches. The main effect 

of visual feedback was also significant [F(1,27) = 97.47, p < .001], in that overall 

participants were less accurate when reaching without visual feedback during 
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movement. The main effect of task was not significant and participants were 

similarly accurate in gap bisection and pointing. 

 

Table 2 - Means and standard errors (in parenthesis) of absolute angular error (in degrees) 

for the pointing condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 0.5 (0.0) 0.4 (0.0) 0.4 (0.0) 2.2 (0.4) 2.0 (0.5) 2.3 (0.6)

RH- 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 4.5 (0.9) 2.7 (0.6) 2.1 (0.3)

RH+ 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 3.6 (0.5) 2.6 (0.5) 2.6 (0.5)

Pointing open loopPointing closed loop

Target

 

 

Table 3 - Means and standard errors (in parenthesis) of absolute angular error (in degrees) 

for the gap bisection condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 0.6 (0.1) 0.7 (0.1) 0.6 (0.1) 2.2 (0.4) 1.8 (0.3) 2.4 (0.3)

RH- 0.6 (0.1) 0.6 (0.1) 0.7 (0.1) 3.8 (0.6) 2.3 (0.4) 2.2 (0.4)

RH+ 0.9 (0.1) 0.7 (0.1) 0.8 (0.1) 3.8 (0.4) 3.6 (0.5) 2.6 (0.4)

Gap bisection closed loop Gap bisection open loop

Target

 

 

In addition, there was significant interaction between target and visual 

feedback [F(2,54) = 9.00, p < .001] and post-hoc tests demonstrated that only in 

the open loop condition were participants less accurate in their leftward reaches 

when compared to centred (mean difference = 0.8˚, p < .001) and rightward 

reaches (mean difference = 1.0˚, p < .001). In contrast, in the closed loop 

condition there was no difference in the reaching accuracy between target 

positions. 
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Figure 5 - Mean directional angular error (in degrees) in the open loop pointing and gap 

bisection per group and target position. Error bars represent standard errors. 

 

The main effects of group and condition were not significant and the 

interactions between group and visual feedback and group and task were also 

not significant. However, there was a significant interaction between group and 

target [F(2,54) = 3.15, p < .05] which was further qualified by the group, visual 

feedback and target interaction [F(2,54) = 3.69, p = .01]. Pairwise comparisons 

revealed that only for leftward targets, and only in the open loop condition, were 
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RH- patients less accurate when compared to healthy controls (mean difference 

= 1.9˚, p < .05). Interestingly, neglect patients (RH+) were as accurate as the 

healthy or RH- control groups (mean difference = 1.5˚ and -0.4˚ respectively). In 

terms of directionality, as can be seen in Figure 5, the signed angular errors of 

the patients without neglect in response to left stimuli were overshoots.  

To investigate which brain areas were critically associated with the 

reduced accuracy in the open loop pointing and gap bisection towards the left, 

the voxel-based lesion analysis was performed on the mean absolute angular 

error for both tasks for the leftward reaches. As can be seen in Figure 6, this 

revealed that several cortical and subcortical areas were significantly associated 

with the impaired open loop reaching (Z > 2.16, p < .05; BM range = -6.96, 

6.88). The lesion mainly associated with poor accuracy was located 

subcortically in the lentiform nucleus [peak Z = 6.88 (21, -9, 0)].  

 

 

Figure 6 - Voxel-based lesion statistical map (in axial and sagittal view) revealing the right-

brain damaged areas significantly associated with increased terminal error in leftward open 

loop pointing and gap bisection. The legend (and coloured areas) represents the range of Z 

scores that survived FDR threshold of p < .05. 
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Cortically, several occipito-parietal-frontal areas were associated with 

this deficit: the occipito-parietal white matter near the precuneus [peak Z = 3.46 

(19, -58, 32; 26, -42, 40)], the inferior parietal lobe gray [peak Z = 3.46 (42, -29, 

40)] and surrounding white matter [peak Z = 3.46 (32, -52, 40)], the parietal 

white matter near the post-central gyrus [peak Z = 3.46 (31, -32, 40)] and the 

pre-central gyrus gray matter [peak Z = 2.41 (60, -12, 32)]. Importantly, lesion 

volume did not significantly correlate with poor accuracy. 

 

Hand path curvature (HPC) 

On Figure 7 and 8, the mean trajectories of the index finger in the x by y plane 

were reconstructed for the pointing and gap bisection tasks (respectively) per 

visual feedback, condition and group. Although overall the trajectories seem 

more variable in the open loop condition, no differences are apparent between 

the groups.  

In terms of the cumulative hand path curvature index, the analysis of 

variance revealed a main effect of target [F(2,54) = 9.59, p < .001]. Pairwise 

comparisons revealed that reaches were straighter towards the central position 

when compared to rightward and leftward reaches (p < .001). No differences in 

curvature were obtained between leftward and rightward reaches and there was 

also no main effect of visual feedback. The main effect of task was also 

significant [F(1,27) = 4.19, p = .05], in that the reaching paths were more curved in 

the pointing condition when compared to the gap bisection. Both these effects 

were further qualified by significant interactions between target and visual 

feedback [F(2,54) = 11.26, p < .001], target and task [F(2,54) = 11.75, p < .001] and 

target, task and visual feedback [F(2,54) = 10.92, p < .001]. A breakdown of these 
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interactions revealed that leftward and centred closed loop pointing trajectories 

were more curved than leftward and centred gap bisections (mean difference 

leftward = 5.6mm , p < .001; mean difference centre = 2.1mm, p = < .01), 

whereas no difference was observed for rightward reaches. Moreover, in open 

loop no curvature differences were observed between target positions or task.  
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Figure 7 – Mean reaching trajectories (in the x-y plane) of the RH+ patients (red line), the 

RH- patients (blue line) and the healthy controls (green line) in target-directed pointing in 

closed and open loop per target position (represented in the y-axis in mm).  
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Gap bisection closed loop
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Figure 8 – Mean reaching trajectories (in the x-y plane) of the RH+ patients (red line), the 

RH- patients (blue line) and the healthy controls (green line) in gap bisection in closed and 

open loop per target position (represented in the y-axis). 

 

These observations indicate that the participant’s hand paths were 

straighter when they bisected the space between two LEDs (in left and centred 

positions), when compared to when they had to point towards a single target. 

Moreover, this advantage for gap bisection was only present when visual 

feedback was available. It is important to note however that the analysis on 

terminal accuracy revealed that participants were less accurate in open loop 

reaching when compared to closed loop. Thus, although participants presented 

high pointing curvatures in closed loop for some target positions, the availability 

of visual feedback might have allowed them to correct their hand path so that 
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their terminal errors were much smaller in the closed loop condition, when 

compared to their accuracy when no visual feedback was available. 

Moreover, there was no significant main effect of group. Thus, right-brain 

damaged patients with or without neglect did not show increased curvatures 

when compared to the healthy subjects, even when the target was presented in 

left space (see Tables 4 and 5 for descriptive statistics of HPC). In addition, as 

for the terminal accuracy analysis, RH+ patients’ reaches were not significantly 

more curved than the ones of RH-. 

 

Table 4 - Means and standard errors (in parenthesis) of cumulative HPC index (in mm) for 

the pointing condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 13.3 (2.7) 9.1 (2.1) 9.9 (1.9) 12.2 (3.7) 9.2 (3.5) 15.0 (4.6)

RH- 15.0 (1.7) 4.0 (1.8) 4.8 (2.7) 0.9 (3.9) 0.0 (1.2) 7.7 (2.2)

RH+ 20.8 (2.4) 9.8 (2.1) 12.4 (1.5) 9.2 (3.5) 5.7 (4.5) 10.6 (4.4)

Pointing closed loop Pointing open loop

Target

 

 

Table 5 - Means and standard errors (in parenthesis) of cumulative HPC index (in mm) for 

the gap bisection condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 10.7 (2.8) 8.5 (1.9) 14.0 (2.3) 9.5 (4.1) 10.1 (2.8) 14.7 (4.7)

RH- 9.9 (1.4) 1.7 (1.3) 5.5 (2.4) 5.0 (3.5) 1.5 (3.1) 7.2 (2.6)

RH+ 11.7 (2.6) 6.3 (2.0) 12.3 (2.0) 8.3 (5.1) 2.7 (4.7) 10.4 (3.9)

Gap bisection closed loop Gap bisection open loop

Target

 

 

Reaction Time 

In Table 6 and 7, the descriptive statistics for the reaction times of the pointing 

and gap bisection conditions are presented respectively. This time, the analysis 
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of variance did not reveal any main effect of target, task or visual feedback and 

the interaction between these factors was also not significant. Although there 

was no main effect of group, the interaction between group and target was 

significant [F(2,54) = 4.46, p < .01]. Pairwise comparisons revealed that only for 

leftward reaches neglect patients had increased reaction times when compared 

to healthy controls (mean difference = 126ms, p < .05), yet were no different 

from patients without neglect (mean difference = 38ms).  

 

Table 6 - Means and standard errors (in parenthesis) of reaction time (in ms) for the 

pointing condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 301 (58) 314 (54) 308 (55) 271 (19) 275 (15) 293 (21)

RH- 319 (25) 295 (24) 285 (21) 400 (32) 415 (43) 409 (23)

RH+ 460 (79) 399 (84) 370 (65) 391 (28) 384 (24) 377 (18)

Pointing closed loop Pointing open loop

Target

 

 

Table 7 - Means and standard errors (in parenthesis) of reaction time (in ms) for the gap 

bisection condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 286 (44) 313 (50) 297 (45) 270 (20) 286 (22) 293 (22)

RH- 329 (38) 323 (32) 325 (38) 429 (24) 410 (30) 434 (37)

RH+ 394 (60) 338 (35) 350 (40) 386 (27) 380 (28) 361 (28)

Gap bisection closed loop Gap bisection open loop

Target

 

 

To investigate if this increase in latency was related to neglect severity, 

Pearson correlation analyses were run between the BIT, the bisection errors, 

the lateralised index of the Balloons test and the mean reaction times for 



 65 

leftward reaches for all right-brain damaged patients. However no significant 

correlations were found. Furthermore, the correlation analysis between the 

mean reaction times for leftward reaches and the percentage of stimuli detected 

on the left side of the screen in the computerized perimetry test or the 

percentage of bilateral stimuli detected on the extinction task was also not 

significant. These observations suggest that the increased reaction time for 

leftward reaches was not significantly associated with the presence of neglect or 

hemianopia or extinction.   

Once more to investigate which brain areas were critically associated 

with the increased reaction times for leftward reaches, the voxel-based lesion 

analysis was implemented (see Figure 9). Several cortical and subcortical brain 

areas were significantly associated with the increased times for leftward 

movement initiation (Z > 2.00, p < .05; BM range = -4.14, 12.73). The most 

strongly associated voxels were located around the parietal-occipital fissure, 

affecting white matter regions near the precuneus [peak Z = 12.73 (16, -56, 32)] 

and superior occipital gyrus [Z = 3.13 (34, -73, 24)], the inferior parietal lobe 

[peak Z = 12.73 (62, -38, 32)] and the frontal white matter near the posterior 

cingulate gyrus [peak Z = 12.73 (21, -34, 32)]. In addition, this deficit was also 

associated with damage to the middle and superior temporal gyri [peak Z = 6.53 

(59, -45, 0; 61, -59, 16) and surrounding white matter [peak Z = 6.53 (47, -70, 

16); peak Z = 3.85 (50, -32, 16)]. Subcortically, the statistical map revealed that 

lesions in the white matter surrounding the lentiform nucleus [peak Z = 6.53 (32, 

-3, 0)], the caudate [peak Z = 4.25 (35, -15, -8)] and nearby white matter [peak 

Z = 4.25 (35, -17, -8)], the white matter close to the claustrum  [Z = 4.25 (33, -
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12, -8)] and the thalamus [Z = 4.25 (23, -16, 8)] were also associated with this 

deficit.  

To a lesser extent, damage to the white matter near the inferior temporal 

gyrus [Z = 3.16 (64, -50, -16)] and to the gray and white matter areas at the 

border between fusiform gyrus [Z = 3.16 (34, -75, -16)] and the temporal lobe [Z 

= 3.16 (52, -66, -16)] were also related with this impairment. Finally, also 

associated with this, were lesions in the inferior frontal gyrus gray [Z = 2.42 (57, 

42, 8)] and surrounding white matter [Z = 2.42 (50, 29, 0)].  

Again lesion volume did not significantly correlate with increased leftward 

reaction times. 

 

 
Figure 9 - Voxel-based lesion statistical map (in axial and sagittal view) revealing the right-

brain damaged areas significantly associated with increased reaction time to initiate a 

movement towards a leftward location. The legend (and coloured areas) represents the 

range of Z scores that survived FDR threshold of p < .05. 

 

Movement time 

There was a significant main effect of side [F(2,54) = 101.82, p < .001], and post-

hoc tests revealed that participants presented a gradient increase in movement 
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time from rightward, to centre and leftward targets (p < .001 for all 

comparisons). The effect of visual feedback [F(1,27) = 49.44, p < .001] was also 

significant, in that participants took longer to complete their movements without 

visual feedback of their hand and target during movement, when compared to 

the closed loop condition. Finally, there were no effects of task or group, and 

neither patient group took longer to complete their movements when compared 

to healthy controls, for all target positions (see Table 8 and 9 for movement time 

descriptive statistics). 

 

Table 8 - Means and standard errors (in parenthesis) of movement time (in ms) for the 

pointing condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 613 (33) 576 (32) 563 (36) 725 (46) 700 (47) 679 (50)

RH- 652 (22) 615 (23) 608 (22) 810 (40) 767 (38) 729 (38)

RH+ 725 (34) 664 (30) 652 (26) 801 (47) 756 (48) 710 (43)

Pointing closed loop Pointing open loop

Target

 

 

Table 9 - Means and standard errors (in parenthesis) of movement time (in ms) for the gap 

bisection condition per group, visual feedback and target position. 

 

Group Left Centre Right Left Centre Right

Healthy controls 650 (41) 611 (36) 589 (39) 733 (54) 705 (51) 672 (53)

RH- 692 (26) 648 (28) 633 (24) 861 (43) 781 (36) 763 (43)

RH+ 727 (39) 684 (39) 654 (32) 814 (50) 753 (51) 728 (56)

Gap bisection closed loop Gap bisection open loop

Target
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Discussion 

 

The current study aimed to clarify whether, compared to right hemisphere 

lesioned patients without neglect, patients with hemispatial neglect were 

impaired, when reaching towards the contralesional side of space with or 

without visual feedback of the hand and target position. Furthermore, 

computerized lesion-mapping techniques were used to further identify the set of 

brain regions potentially related to the motor abnormalities observed after 

lesions in the right hemisphere.  

 

No evidence for neglect-specific deficits in reaching after right-

hemisphere lesions 

As expected, no neglect-specific impairment was found on either reaching or 

gap bisection, even when movements were made without visual feedback, and 

even when stimuli were presented on the left side of space. In fact, only the 

patients without neglect were less accurate than the healthy controls in open 

loop reaches towards the left side of space. These findings are in agreement 

with Harvey, Milner and Roberts (1994). However, in terms of directionality no 

rightward biases in the terminal errors were found, as these patients presented 

overshoot errors with respect to the ideal reach for both open loop tasks (see 

Figure 5).  

In addition, and as reported by Karnath, Dick and Konczak (1997), 

neither patient group differed from healthy controls in terms of the hand path 

curvature. In particular for gap bisection, this finding is remarkable since eight 
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out of the 11 neglect patients presented a significant rightward bias for line 

bisection (see Table 1). However, the current data agree with McIntosh et al. 

(2004a)’s findings that the advantage for gap bisections over line bisection is 

deemed to result from cueing effects. This could also explain the observation 

that my participants presented less curved trajectories in gap bisection when 

compared to when they had to point to a single LED.  

In a similar vein, Robertson, Nico and Hod (1995) found that the 

rightward errors made by left neglect patients when pointing to the centre of a 

horizontal rod decreased when the instruction was to pick up the rod at its 

middle, a finding later replicated by Robertson, Nico and Hod (1997). 

Interestingly, Edwards and Humphreys (1999) reported that in one neglect 

patient the improvement found in the grasping task, when compared to the 

pointing task, only occurred when on-line visual feedback was available and that 

the decrease in the rightward error only emerged late in the movement 

trajectory. In line with this, I also found that for all participants the advantage of 

gap bisection over pointing in terms of HPC was only present when visual 

feedback was available.  

The present data is also consistent with the dissociation reported by 

Pritchard et al. (1997). They found that though a neglect patient systematically 

underestimated the size of objects presented on the left (relative to those 

presented on the right), she was able to reach out and grasp the same objects 

with ease. In later studies, McIntosh et al. (2002) showed that a wider sample of 

neglect patients could perfectly grasp leftward objects and Harvey et al. (2002) 

also found no neglect-specific impairment for grasping in open loop.  
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In keeping with this, it is well established that neglect patients do not 

show the gross misreaching to visual targets that is observed in patients with 

optic ataxia. Lesions in these patients were classically assigned to the parietal 

lobes, including the intraparietal sulcus and inferior and/or superior parietal 

lobules (Perenin & Vighetto, 1988). Karnath and Perenin (2005) recently used 

lesion subtraction analysis to clarify the parietal foci involved by contrasting the 

lesions in patients with parietal damage with optic ataxia against lesions in 

parietal patients without the condition. They found that optic ataxia was 

commonly associated with lesions in the precuneus, in the superior-occipital 

gyrus near the parieto-occipital junction and in the superior parietal lobe. 

Indeed, these areas are thought to be part of the dorsal stream (for a review see 

Culham, Cavina-Pratesi & Singhal, 2006; Culham & Valyer, 2006; Milner & 

Goodale, 2006). In patients with left neglect, the site of maximum lesion overlap 

is usually located in the right inferior parietal lobe (Mort et al., 2003) or the 

superior temporal cortex (Karnath, Ferber & Himmelbach 2001; Karnath et al., 

2004), which might suggest that visual dorsal stream is relatively spared in 

neglect (Milner & Goodale, 1995, 2006).  

Moreover, it has also been suggested that neglect patients are 

unimpaired in reaching due to the existence of a double dissociation within the 

PPC: while more superior regions seem to be involved in rapid on-line 

visuomotor control, more inferior areas, like the ones damaged in neglect, seem 

to subserve longer-lasting, explicit multimodal representations (e.g., 

Himmelbach et al., 2007). In line with these claims, other studies have further 

demonstrated that neglect patients are also able to avoid obstacles on the 

neglected side whilst reaching (McIntosh et al., 2004b; Milner & McIntosh, 
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2003), a finding that contrasts with the observation that patients with optic ataxia 

are impaired in such tasks (Schindler et al., 2004). 

Regarding latency, patients with neglect demonstrated increased 

reaction times towards contralesional stimuli when compared to healthy 

controls, but were no different from patients without neglect. This observation 

again suggests that this deficit is not specific to neglect and in fact this latency 

increase did not correlate with neglect severity. Furthermore, I also did not find 

an increase in movement time after right-brain damage, as both patient groups 

did not even differ from healthy controls. A number of studies have already 

shown that there are no neglect-specific impairments in reaching (Himmelbach 

& Karnath, 2003; Konczak et al., 1999; Konczak & Karnath, 1998) and that is 

exactly what was replicated here for both open and closed loop pointing and 

gap bisection.  

Nonetheless the present findings contradict those of Mattingley et al. 

(1992, 1994, 1998a, 1998b), who found increased latencies specific to neglect. 

However, I would argue that display complexity might explain the observed 

differences: in Mattingley et al.’s tasks, displays containing competing stimuli 

were used and so, the increased latencies observed for neglect patients may be 

a result of impaired stimulus selection rather than a deficit in motor planning and 

execution.  

Alternatively, the finding that neglect patients were not specifically 

impaired in reaching could be related to the auditory tone which cued the 

subjects to start the movement. This might have increased the patient’s 

alertness and ameliorate their spatial bias. Indeed, nonspatial warning sounds 

have been shown to improve the perception of visual events on the left side of 
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space relative to right events in neglect patients (e.g., Robertson et al., 1998). 

However, in Himmelbach and Karnath (2003)’s study no auditory cue was used 

to cue movement start and still no neglect-specific differences were observed in 

reaching performance.  

In addition, another possibility could be that wearing the shutter goggles 

could have cued the patients about the type of trial that was about to unfold. 

However, Jakobson and Goodale (1991) have showed that if open and closed 

loop trials are randomly interleaved rather than blocked healthy participants 

treat all trials as open-loop trials. Blocking the trials thus allows the visuomotor 

system to anticipate the reliable presence (or absence) of visual feedback and, 

thus, to program the reach accordingly (Connolly & Goodale, 1999). 

 

Motor deficits after right-hemisphere damage 

Interestingly, right-hemisphere damaged patients (irrespective of neglect) 

presented increased reaction times for all leftward reaches as well as reduced 

accuracy in open loop leftward reaching. It has been suggested that in darkness 

the motor system cannot rely on visual feedback and is presumably operating in 

an open-loop mode, which requires that large parts of the trajectory reflect the 

motor plan designed before execution (Harvey, Milner & Roberts, 1994). Thus 

the present findings indicate that the early motor planning and/or programming 

processes (i.e., target selection and/or target localization and/or computation of 

the motor command), are frequently impaired after right hemisphere damage. 

However, I would argue that once the coordinates of a specific target have been 

acquired, the subsequent execution of the reach is functional, as no 

abnormalities were observed in the closed loop condition.  
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Moreover, the finding that RH- were only impaired in accuracy when no 

visual feedback was available suggests that this group used visual feedback to 

normalize spatial accuracy and that on-line correction is relatively spared after 

right-brain damage. Conversely, it also indicates that this group of patients are 

more dependent on visual feedback than healthy controls. Alternatively, since 

participants have to hold the target location in the mind during the open loop 

phase, errors in this condition could be simply related to a deficit in spatial 

working memory. This has previously been demonstrated for neglect patients 

and even right hemisphere patients without neglect, who perform worse than 

healthy controls (Malhotra et al., 2004, 2005; Vuilleumier et al., 2007).  

Target location is usually determined from visual information, but the 

sense of hand position can be localized in space through both vision and 

proprioception. The present study did not separate the effects of preventing 

visual feedback about limb position from preventing vision of target position. 

Thus it is impossible to know what type of information the patients are 

particularly dependent on for their end-point accuracy. Also relevant would have 

been to manipulate the timing at which visual feedback is available (e.g., no 

feedback, feedback during either the first or last portion of the trajectory, 

feedback during the entire trajectory) as this would reveal when the presence of 

visual information is crucial for optimizing the reaching accuracy of right-brain 

damaged patients.  

Contribution of visual information to the on-line control of arm 

movements has also been studied using the so-called double-step paradigm, 

where the target is displaced at movement onset. In young adults, a target 

location change at the outset of a pointing movement elicits a fast on-line 
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correction to accurately reach the target without requiring the programming of a 

new motor output (e.g., Goodale, Pélisson & Prablanc, 1986). Interestingly, fast 

corrections in response to target displacements have been found not to require 

awareness of the location shift and under certain circumstances participants are 

even unaware of their own limb modifications (e.g., Pélisson et al., 1986). 

Recently, it has also been shown that these corrections are so fast that they can 

prevail in spite of an instructed stop response and this is taken as evidence for a 

strong ‘automatic pilot’ of the hand, believed to be mediated by neural structures 

of the PPC  (Pisella et al., 2000; Gréa et al., 2002).  

Farnè et al. (2003) studied seven patients with right-brain lesions (four 

with neglect) in a double-step grasping task. They found that while their 

performance was close to that of healthy controls in the right side of space, they 

did not show positional tuning of grip formation, nor fast corrections of their 

movements when acting in the left hemispace. Importantly, and in agreement 

with the present data, this impairment was not specific to neglect. The small 

number of patients included in Farnè et al. (2003)‘s investigation did not allow a 

precise location of the damage associated with these deficits, albeit six out of 

the seven patients had frontal lobe damage. Haaland et al. (2004) studied 

double-step reaching with and without visual feedback of the arm in 17 left and 

15 right hemisphere lesioned patients. It was observed that left hemisphere 

damaged patients presented increased latencies and trajectory deficits. On the 

other hand, in accordance with the present findings, they found that the final 

error of the right-brain damaged patients was greater in the open loop condition 

and when the target location was perturbed. Thus, these studies indicate that 

although neglect patients are also not specifically impaired when performing on-
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line corrections in response to target jumps, some right-brain damaged patients 

might present impairments in this ability. As a result, future studies could 

combine lesion-symptom mapping to assess the neural basis of deficits in on-

line corrections in patients with right hemisphere lesions. 

 

Brain regions potentially associated with motor deficits 

The present findings suggest that both right-hemisphere lesioned patients with 

and without neglect might be impaired when reaching towards the left side of 

space. What remains to be clarified is the anatomical basis of these deficits. 

While a more refined anatomical study would require a larger number of 

patients, here an initial exploration of this matter via voxel-based lesion-

symptom analysis was performed.  

The lesion subtraction analysis revealed that areas in the superior 

temporal gyrus, insula and claustrum were most frequently damaged in the 

neglect group. What is remarkable is that none of these areas were associated 

with the reduced accuracy for open loop reaches, which is in line with the claim 

that this deficit is not neglect-specific. Instead, the accuracy impairment was 

associated with damage to the basal ganglia (lentiform nucleus), the occipito-

parietal areas near the precuneus and the parietal-frontal areas located in the 

inferior parietal lobe and post- and pre-central gyri. Similarly, increased reaction 

times to the leftward targets were also associated with damage near the 

lentiform nucleus, to parieto-occipital areas near the superior occipital gyrus and 

precuneus and parietal-frontal areas (inferior parietal lobe, posterior cingulate 

and inferior frontal gyrus). 
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Of potential interest is the robustly highlighted basal ganglia region as it 

corroborates previous findings that lesions in this area are related to the motor 

aspects of neglect (Bisiach et al., 1990; Tegner & Levander, 1991). Moreover, in 

a recent anatomical study Sapir et al. (2007) investigated the neural basis of 

directional hypokinesia in 29 neglect patients. Patients were classified as having 

directional hypokinesia when they showed slowing in the ability to detect 

contralesional targets when reaching in a leftward direction, compared with a 

rightward direction. In the six patients who showed the motor bias Sapir et al. 

(2007) found that the maximum lesion overlap was in the lentiform nucleus 

(putamen), the claustrum, followed by the white matter in the pre-central gyrus, 

the inferior frontal gyrus, the frontal operculum and the anterior insula. Like 

Sapir et al. (2007) I also found that increased reaction times were associated 

with damage to the basal ganglia and inferior frontal gyrus. 

Another cluster of voxels that was strongly associated with the motor 

abnormalities was located in the vicinity of the parietal-occipital fissure involving 

the white matter near the superior occipital gyrus and precuneus. This 

observation supports the neural underpinnings of optic ataxia (Karnath & 

Perenin, 2005). Although, the parietal-occipital voxels reported here are located 

more inferiorly than the ones reported in this previous study, the present data 

would suggest that areas surrounding the parietal-occipital fissure are involved 

in the visuomotor computations for reaching.  

In line with these suggestions, several neuroimaging studies (e.g., 

Astafiev et al., 2003; Connolly, Anderson & Goodale, 2003; Prado et al., 2005),  

with healthy individuals, have provided evidence that parieto-occipital areas 

mediate the mechanisms involved in action planning and control. Indeed, 
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Connolly, Anderson and Goodale (2003) found activation in a region located 

along the medial surface of the superior aspect of the parietal cortex in the 

precuneus that responded preferentially when subjects planned to point rather 

than make a saccade to a remembered location. They argued that this region 

appears homologous with the monkey parietal reach region, coding the 

visuomotor intention to make an arm movement to a particular location. In a 

more recent fMRI experiment, Culham et al. (2008a) investigated the role of the 

superior parietal occipital cortex (SPOC; which includes the superior end of the 

parieto-occipital sulcus as well as regions in the cuneus and precuneus) in 

reaching. Interestingly, the anterior intraparietal sulcus was actived for to the 

grasping component regardless of whether a reach was required, but the SPOC 

was much more activated when actions were executed toward an object 

requiring arm extension. In the second study they found that the SPOC showed 

preferential activation for objects within a reachable space, when compared to a 

condition where the object was in a position beyond the reach. In the final 

experiment they observed that SPOC activation was modulated by gaze 

distance and argued that this area might provide the dorsal visual stream with 

information about object distance important to guide the reach towards a target.  

Several transcranial magnetic stimulation (TMS) studies have also 

implicated PPC areas in feed-forward planning and feedback control. For 

instance, in Desmuget et al. (1999)’s study participants were asked to ‘look and 

point’ with their right hand to peripheral visual targets that jumped in some trials 

and single TMS pulses were applied over the left PPC. They found that when 

TMS was applied subjects were still able to correctly reach to the stationary 

target, but were unable to correct the aiming trajectory in the jumping target 
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trials. Importantly, when, subjects used their left hand and were stimulated on 

the left PPC no effect of TMS was observed, which suggests that TMS did not 

perturb target localization. Desmuget et al. (1999) suggested that left PPC 

seems responsible for updating the motor plan on the basis of visual feedback, 

in that it mediates the estimation of hand position, the computation of the motor 

error and the corrective signal. In a later sudy, Vesia et al. (2008) applied single-

pulse TMS over the dorsal-lateral PPC (a site over a part of the angular gyrus 

and close to the posterior part of the IPS) while varying visual feedback of the 

hand (full vision; final vision; initial and final vision; middle and final vision). They 

found that left parietal stimulation significantly increased end-point variability, 

whereas right parietal stimulation produced a significant leftward shift in both 

visual fields. However, these effects were only observed in the final vision of 

hand condition. In line with Desmurget et al. (1999), they argued that TMS over 

the PPC does not disrupt the internal representation of the visual reach goal, 

but rather the reach vector (target location – hand position) or the sense of initial 

hand position that is used to calculate this vector. 

Thus, there is growing evidence in the literature that areas in the PPC 

cortex play an important role in both the planning and on-line control of visually-

guided reaching. Indeed, very recently Blangero et al. (2009) conducted a meta-

analysis on 15 fMRI studies in reaching and found four bilateral foci of activation 

in the vicinity of the intraparietal sulcus: parieto-occipital junction, precuneus, 

middle part of the intraparietal sulcus and anterior part of the intraparietal 

sulcus. In line with this, I found that damage to occipito-parietal voxels in the 

vicinity of the precuneus and inferior parietal lesions were related to increased 

latencies needed to initiate the reach and to a higher dependence on visual 
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feedback whilst reaching (as evidenced by increased terminal errors in open 

loop).  

Nevertheless, not only PPC lesions were involved with the motor deficits 

observed here. In particular, I also found that damage to parieto-frontal areas 

located in the post- and pre-central gyrus were associated with poor accuracy in 

open loop reaching and that lesions to areas near the posterior cingulate gyrus 

were related with increased reaction time to leftward targets. In line with these 

observations, Astafiev et al. (2003) also found that pointing (but not looking or 

attending) preparation selectively activated a fronto-parietal brain network 

involving the anterior cingulate cortex, the inferior and superior parietal lobe, the 

precuneus, the dorsal pre-central gyrus (i.e., dorsal premotor area) and the 

posterior superior temporal sulcus. Also in line with the fronto-parietal areas 

reported here, is the study by Beurze et al. (2007). They found activation in the 

posterior parietal cortex (intraparietal sulcus), premotor cortex, the medial 

frontal cortex (anterior cingulate and superior frontal sulci) and the insular frontal 

cortex in a task that involved the integrative processing of target and arm 

information to establish the reach plan. Beurze et al. (2007) concluded that the 

posterior parietal cortex and the dorsal premotor cortex are involved in the 

computations necessary for reach planning in that they specify both the spatial 

location of a target and the effector selected for a forthcoming action. 

In addition, damage to the thalamus was also implicated in increased 

reaction time, which is in line with anatomical studies that report the existence of 

several neural pathways which run through the thalamus to anterior cortical 

areas and play a role in action generation and monitoring (see Sommer, 2003 

for a review). Interestingly, Paus (2001) reviewed evidence which suggests that 
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an important source of input to the cingulate cortex comes from the thalamic 

nuclei, which might mediate the arousal-related changes in cingulate cortex 

activity. Perhaps this might be related to the finding that neither lesions to the 

cingulate or the thalamus were related to the errors in open loop and were only 

associated with increased reaction times. 

One surprising finding was that damage to temporal areas (superior, 

middle and inferior temporal gyri) was also associated with increased reaction 

time. One might argue that because the hotspot of damage in the neglect 

patients is also in the superior temporal gyrus than this might indicate that this 

deficit is neglect-specific. Indeed, damage to the claustrum was also associated 

with increased reaction time. However, the behavioral analysis would disagree 

with this view point, as the increased reaction time did not correlate with neglect 

severity and neglect patients were not significantly different from RH- controls. 

Instead, I would propose that damage to the superior temporal areas alone may 

not be the single cause of the increased reaction time, as some patients without 

neglect may also present increased reaction times to leftward targets. In 

addition, it has been suggested that the occipital lobe has direct connections 

with the frontal lobe through a white matter tract (the inferior fronto-occipital 

fasciculus; IFOF), which runs deeply in the temporal lobe (see Doricchi et al., 

2008 for a review). Urbanski et al. (2008) recently employed diffusion tensor 

imaging tractography in four stroke patients with right hemisphere lesions (two 

with neglect) and found that in the neglect patients it was not possible to track 

the IFOF in the right hemisphere. These findings led the authors to suggest that 

lesions in this particular white matter tract may contribute to neglect by impairing 

top-down modulation of visual areas from frontal cortex or the transmission of 



 81 

visual input to frontal areas important for arousal. Thus, the association between 

temporal damage and increased reaction time in the present study could 

represent the effect of disconnection rather than temporal damage per se. 

 It is important to note that I do not claim that damage to one of these 

regions alone is responsible for visuomotor deficits after right-brain damage. 

Instead it is proposed that these deficits are not a consequence of damage to 

neglect-associated areas alone, but result from additional lesions to key nodes 

of the visuomotor control network. In particular, the consistent association of 

reaction time and terminal error deficits with damage to the basal ganglia nuclei, 

occipital-parietal areas and parieto-frontal lobe regions suggests that these are 

the critical regions for the reaching deficits after right-brain damage. In line with 

this view, it has been found that basal ganglia lesions associated with neglect 

cause abnormal perfusion of the superior temporal gyrus, inferior parietal lobe 

and inferior frontal gyrus (Hillis et al., 2005; Karnath et al., 2005). Furthermore, it 

is well established that the PPC has critical white matter connections to the 

frontal lobe, the cerebellum and the basal ganglia (e.g., Rizzolatti & Luppino, 

2001) and that it is well positioned to receive both visual and somatosensory 

input and to send output to premotor and motor areas in the frontal cortex. 

Thus, even a small lesion in a location where several antero-posterior 

connections traverse, might be sufficient to disrupt the visuomotor modules in 

both frontal and parietal cortices (Bartolomeo, Thiebaut de Schotten & Doricchi, 

2007). Future work with a larger group of patients will be required to corroborate 

and refine the present findings.  
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Conclusion 

The current study shows that neglect per se does not produce impairments 

either in planning or execution of actions, which is in line with the proposal that 

the dorsal visual stream for on-line visuomotor control is relatively spared in 

these patients (Milner & Goodale, 1995, 2006). Moreover, I showed that motor 

deficits do emerge after right-hemisphere damage, but irrespectively of the 

presence of neglect. Voxel-based lesion-symptom analysis revealed that such 

deficits are associated with damage to the basal ganglia as well as to occipital-

parietal and frontal areas, structures that are often associated with but not 

critical for hemispatial neglect (Karnath et al., 2004; Mort et al., 2003). Thus, 

these results confirm the current view that neglect is not a single condition, but a 

complex syndrome of multiple deficits, which vary depending on the specific 

networks damaged (Husain & Nachev, 2007). 

 In the following chapter I will examine the possibility that there are 

different forms of actions (on-line and off-line) and that neglect might only affect 

actions thought to depend on off-line processing presumably carried out by the 

ventral visual stream (Goodale, Westwood & Milner, 2004; Milner, 1995; Milner 

& Harvey, 2006; Milner & Goodale, 2006). In particular, the next chapter will 

examine the performance of neglect patients in delayed actions when compared 

to immediate actions. 
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Chapter 2 
 

 Immediate and delayed reaching in patients with hemispatial 

neglect 

 

Introduction 

 

As reviewed in the General Introduction, Milner and Goodale (1992, 1995, 2006, 

2008) proposed a model of vision that made a distinction between ‘vision for 

perception’ and ‘vision for action’ outlining, a new way of looking at the 

functional organization of the visual ventral and dorsal streams. Nonetheless, 

according to their model not all actions depend exclusively on the visuomotor 

modules of the dorsal stream, as another key assumption of this model is that 

the two visual streams operate under different time constraints and frames of 

reference. 

The visual world around us is quite unstable, in that the object and 

observer locations may change quite rapidly. Milner and Goodale (1995, 2006) 

propose that in order to ensure accuracy, the action system must provide 

constantly updated visual information about the target object in coordinates 

relative to the observer (i.e., in an egocentric frame of reference). Consequently, 

they suggest that the dorsal stream uses on-line computations so that retinal 

inputs are transformed at the time the action is about to be executed. So, 

according to these claims, my dorsal stream ensures that the visual input about 

this thesis remains both relevant and accurate, so that I can grab it whilst I am 
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moving to another room. On the other hand, they suggest that the ventral visual 

stream retains information over a much longer period of time and within an 

allocentric (i.e., scene based) frame of reference. They argue that it does so to 

allow object characteristics to be maintained and thereby aiding object 

recognition across different timings, contexts and viewing conditions. That is, 

my ventral stream will allow me to recognize this thesis many months, even 

years, after I have submitted it. 

If this temporal dissociation between the two streams exists then 

movements directed to memorized objects (termed delayed actions) might be 

expected to look rather different from movements directed to objects that remain 

visible. Indeed, in an early study, Elliot and Madalena (1987) found that healthy 

subjects exhibited greater errors in their movement amplitude after 2s period of 

vision occlusion prior to movement initiation. In a similar vein, Gnadt, Bracewell 

and Anderson (1991) also showed that saccades towards a present target are 

quite different from saccades towards remembered targets in both humans and 

monkeys. 

In a pivotal paper, Goodale, Jakobson and Keillor (1994) carried out a 

series of experiments to investigate the differences in the visual control of 

pantomimed and natural grasping movements. In their first experiment they 

asked healthy participants to perform immediate grasps or 2s delayed grasps 

towards one of 3 objects. In addition, they also investigated a third condition in 

which immediate and delayed trials were randomized rather than blocked. As 

expected, they found that delayed actions reached lower peak velocities, tended 

to last longer and were less accurate when compared to immediate grasps, 

regardless of the expectation of the subject about the trial type that was about to 
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unfold. Goodale, Jakobson and Keillor (1994) hypothesized that the visuomotor 

modules operate in real time, but the stored information during delayed actions 

must depend on another system that represents object locations for long 

periods of time. In addition, they speculated that this system might be the same 

as the perceptual system presumed to mediate object recognition. 

To test the hypothesis that the ventral stream might mediate 

pantomimed actions, Goodale, Jakobson and Keillor (1994) further investigated 

visual form agnosia patient DF, whose ventral stream shape-processing system 

is destroyed (James et al., 2003). She was asked to perform both immediate 

and 2s delayed grasping movements when compared to 10 age-matched 

controls. It was found that although DF fails to discriminate between the objects 

in perceptual testing (Goodale et al., 1991), when she reaches out to pick up 

these objects her hand preshapes in-flight in a manner that reflects normal 

sensitivity to their dimensions. However, when a delay is imposed between 

object viewing and movement initiation, all evidence of anticipatory hand 

shaping disappears in DF. The authors argued that DF has lost all information 

about object size needed to preshape her hand in-flight in the delayed condition 

as she has no ‘percept’ of the object in the first place and thus cannot fall back 

on the stored information that was available to normal controls. In other words, 

they suggest that the visuomotor mechanisms responsible for the control of 

actions towards visible objects do not appear to retain (in memory) information 

about the target object or the grasping movement it affords. Visual memory for 

object features instead appears to depend on the perceptual mechanisms that 

reside in the ventral stream. 
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In agreement with Goodale, Jakobson and Keillor (1994)’s findings, it 

was also later reported that when asked to point to targets in real time DF’s 

accuracy is excellent, however when a 10s delay is introduced, she makes 

errors twice as large as those of three age-matched control participants (Milner, 

Dijkerman & Carey, 1999). Although, Goodale, Jakobson and Keillor (1994)’s 

hypothesis is attractive it is nevertheless based on a single dissociation. Patient 

DF performed normally on the immediate pointing task and very poorly in the 

delayed task, but such a pattern could simply reflect task difficulty, which is 

presumably greater in delayed than immediate actions. On the other hand, if 

their hypothesis is correct it should be possible to observe the converse pattern 

of results in patients with damage to the immediate visuomotor system of the 

dorsal visual stream. 

Indeed, that is exactly what Milner et al. (1999) investigated in a later 

study. They compared the performance in immediate versus delayed reaching 

in a patient with optic ataxia to that of three age-matched controls. They studied 

patient AT who suffered from bilateral parietal damage extending to the upper 

part of the occipital lobes and slightly to the medial part of the right premotor 

cortex. At the time of testing this patient presented severe optic ataxia for 

targets in her peripheral visual field. In the immediate condition participants 

were asked to point to one of the presented LEDs after a viewing period of 2s 

while maintaining fixation on a central light. In the delayed condition, the LED 

was presented for 2s, but participants had to wait for a tone presented 5s later 

before pointing to the remembered target location. Paradoxically, but according 

to their predictions, they found that their patient showed significantly smaller 

terminal errors and decreased latencies in the delayed condition when 
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compared to immediate reaches. These results are even more astonishing 

when compared to the performance of healthy controls, who performed worse in 

the delayed condition. The authors suggested that the improvement of AT with 

delay reflects the sparing of her temporal lobes. This sparing could partially 

compensate for her parietal damage by retaining information about relative 

locations of the target with respect to the fixation point, thus enabling improved 

pointing under delayed conditions. Milner et al. (1999) argued that there are two 

systems for spatial representation in the brain specialized for two broadly 

different purposes: one is dedicated to the immediate guidance of actions in 

space, uses spatial information coded in egocentric coordinates and is located 

in the superior parietal lobe; the other one is designed for the longer-term 

coding of spatial relationships for perceptual and cognitive purposes and may lie 

in a more inferior (parieto-temporal) location in the brain. Furthermore, they 

suggest that this later system could operate allocentrically in the delay task by 

computing target location relative to the fixation point and may receive 

information about spatial relationships through occipito-temporal visual areas. 

Importantly, these results have been further replicated with other optic 

ataxic patients. Milner et al. (2001) studied patient IG, who suffered from 

bilateral occipito-parietal infarction and who, like AT, was impaired in immediate 

pointing towards peripheral targets. In a first session, Milner et al. (2001) asked 

IG to perform perceptual matching (i.e., manual size estimate), delayed 

pantomime grasping (i.e., pretend to grasp an object they had seen 5s earlier) 

and delayed real grasping (i.e., a condition in which the object remained present 

before and after the delay; equivalent to immediate grasping). They found that 

IG was within the normal range in the perceptual matching task, but failed to 
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perform delayed real grasps towards the same objects. However, and in line 

with previous results reviewed above, her grasping performance improved in the 

5s delay condition (i.e, delayed pantomime), when compared to an immediate 

task. Furthermore, after practise IG became able to scale her handgrip when 

grasping a real target object that she had previewed earlier, presumably by 

using a pantomiming strategy. In a second experiment, they investigated which 

sources of visual information IG was using during delayed real grasping by 

elegantly interposing catch trials in which the object was changed during the 5s 

delay period. Indeed, they found that she was using a memory-based route to 

bypass her on-line visuomotor deficits. In particular, she was opening her hand 

widely when the wide object had been previewed, even when reaching out to 

grasp the narrow object. This pattern of results was not observed in healthy 

participants as they just grip scaled according to the object that was facing 

them, regardless of the object that had been seen previously. Milner et al. 

(2001) argued that their results indicate that networks independent of the dorsal 

visual stream can provide off-line visuomotor guidance. 

Revol et al. (2003) also found an accuracy improvement in a delayed 

reaching task with an optic ataxic patient (OK) who had posterior parietal 

damage in the right hemisphere. In addition, Rossetti et al. (2005) set out to 

investigate both IG and AT in immediate, delayed and delayed real pointing 

tasks. They also included some incongruent trials in delayed real pointing by 

changing the target’s location during the delay. They replicated their previous 

results (Milner et al., 2001), in that the patients’ performance improved in 

delayed conditions. In addition, they again found that in the delayed real 

pointing incongruent trials, patients initiated their movements towards the 
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previously viewed target location rather than the one facing them. They argued 

that optic ataxic patients relied on off-line processing to remedy their impaired 

access to on-line visual information. 

Taken as a whole, the findings with healthy and brain damaged patients 

agree with Milner and Goodale (1995, 2006)’s idea that when time is allowed to 

pass and a reaction has to be made on the basis of a visual memory, the ventral 

stream is required for successful performance. In this case, visuomotor control 

in the sense of the guidance of an action to a target, visible at the moment the 

response is required, is replaced by ‘perceptual control’ dependent upon a 

memory trace of the target delivered by the perceptual mechanisms in the 

ventral visual stream and then used to guide behaviour. In sum, based on this 

dissociation of temporal characteristics between the two streams, it is argued 

that there are two modes of control for object-directed action: an on-line mode 

that depends on the visuomotor networks of the dorsal stream and an off-line 

mode that depends, at least in part, on the perceptual mechanisms in the 

ventral stream (for a review see Goodale, Westwood & Milner, 2004). 

Returning to the syndrome of hemispatial neglect and the purpose of this 

thesis, Milner and Goodale (1995, 2006) speculate that a disruption of spatial 

allocentric representations is at the core of neglect symptomatology. 

Accordingly, given the known properties of both streams, this disruption could 

be more conceivably accounted for by damage to an area that receives inputs 

from the ventral visual stream, as this stream is thought to be the one 

responsible for allocentric coding (e.g., Murphy, Carey & Goodale, 1998; 

Schenk, 2006). In contrast, they claim that the visual dorsal stream is relatively 

spared and that consequently patients have fewer problems with information 
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coded in purely egocentric coordinates. Indeed, in the previous chapter I have 

shown that on-line visuomotor control is not specifically impaired in patients with 

hemispatial neglect. However, as it has been suggested that there are different 

modes of action control then one might expect that these may also be 

differentially impaired in neglect (e.g., Milner & Harvey, 2006). In fact it has 

been hypothesized that neglect will only affect actions which tap into perceptual 

representations processed and stored by the ventral visual stream (Milner & 

Goodale, 1995, 2006; Milner & Harvey, 2006). More specifically, it is predicted 

(Milner & Harvey, 2006) that neglect should affect motor tasks where a choice 

of actions has to be made, or where an action is used to express a perceptual 

judgement or input (as in action pantomiming). 

Thus, the present study was designed to further test these hypotheses 

using the immediate versus delayed paradigm previously used with visual form 

agnosia and optic ataxic patients. To do this, two groups of right hemisphere 

lesioned patients, one with and one without the presence of hemispatial neglect, 

as well as a group of healthy subjects were asked to perform both immediate 

and delayed pointing. According to the perception and action model and 

Chapter 1’s findings, it is predicted that neglect patients should not be 

specifically impaired in immediate pointing even towards the left side of space. 

Conversely, it is hypothesized that these patients will show inaccurate pointing 

in the delayed condition, in particular in left space. 

It has been previously shown that neglect patients present an 

impairment of spatial working memory, which during exploration for visual 

targets (as in cancellation tasks) may cause the patients to revisit previously 

detected targets (even on the right side of space) and treat them as if they have 
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not been seen before (Husain et al., 2001; Wojciulik et al., 2001). Pisella, 

Berberovic and Mattingley (2004) have reported non-lateralized working 

memory deficits in judgments of spatial locations, but not for colour or shape, in 

right parietal patients (but not in patients whom the parietal lobe was spared). 

They concluded that the parietal cortex is crucially involved in updating ad 

maintaining spatial representations across saccades. Malhotra et al. (2005) 

tested both patients with and without neglect in a vertical spatial working 

memory task, which did not require memory for sequence nor manual 

responses. They found that neglect patients were less able to recall spatial 

locations than right hemisphere patients without the condition, but importantly 

they were unimpaired in a verbal working memory span. In addition, this spatial 

working memory deficit correlated with neglect severity (as measured by 

cancellation tasks) and was associated with damage to the white matter of the 

parietal lobe and insula. They argued that spatial working memory deficits can 

occur when patients (with or without neglect) have damage to those regions. 

Thus, based on these findings it is expected that poor performance in the 

delayed pointing task will be related to poor visuospatial working memory 

performance, as participants must be using visuospatial working memory to 

bridge the temporal gap between perception and action. 

Finally, and as in the previous chapter, I used the recently developed 

voxel-based lesion-symptom analysis (Rorden, Karnath, & Bonilla, 2007) to 

conduct an initial exploratory investigation of the lesioned right-hemisphere 

areas potentially associated with the motor impairments. In line with Milner and 

Goodale’s (1995, 2006) proposal I expect that the possible neglect-specific 

impairments in delayed reaching will be associated with damage to areas in the 
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superior temporal or inferior parietal cortex. On the other hand, if non-neglect-

specific impairments are observed in immediate pointing, based on the 

anatomical findings of the previous chapter I predict that more anterior or sub-

cortical damage will be related to this. In other words, this impairment should 

not be driven solely by neglect-specific damage. 

 

Method 

 

Participants 

Eleven patients with hemispatial neglect (RH+; mean age 66.5, SD 7.9) and 10 

control patients without neglect (RH-; mean age 68.8, SD 7.7) after right-

hemisphere damage as well as 10 aged-matched healthy participants (mean 

age 72.1, SD 4.2) took part in this study. On average, patients participated in 

the experiment eight months after stroke onset and there were no differences in 

onset times between the two patient groups.  

Inclusion criteria, neglect measures and neuropsychological assessment 

were the same as in Chapter 1. However, in addition to the neglect measures, 

spatial working memory was also assessed with the perceptual version of the 

vertical computerized test of spatial working memory developed and kindly 

provided by Malhotra et al. (2005). In brief, patients were asked to make yes/no 

verbal responses about whether the locations were equal between two sets of 

vertical sequences of spatial locations separated by 1s delay. Three patients 

(two RH+ and one RH-) could not follow the instructions in the practice trials so 

no score could be generated. The patients’ demographic and clinical data are 
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presented in Tables 10 and 11. Note that the majority of patients tested in this 

study were also tested in the previous study and this is highlighted in the 

Tables. 

Similarly to the previous chapter, an analyses of variance with group 

(RH+ and RH-) as the between factor was performed on the scaled score of 

each sub-test of the WAIS-R (Wechsler, 1981). In line with the previous chapter, 

this revealed that neglect patients were significantly impaired on all performance 

sub-tests when compared to RH- patients, [block design: F(1,19) = 24.93; p < 

.001; picture completion: F(1,20) = 15.39, p = .001; object assembly: F(1, 18) = 

29.97, p < .001]. No differences between the 2 groups were obtained for 

information, digit span and vocabulary scaled scores.  
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Stimuli and Procedure 

The apparatus, stimuli presentation and recording procedure were the same 

as the one used in the previous chapter. However in this experiment the 

targets were located at –12, -8 and -4cm (left hemispace) and 4, 8, 12cm 

(right hemispace) with respect to the central target (0cm). The central target 

was again located 40cm in front of the start trigger, aligned with the centre of 

the box. At the start of each trial, the right index finger of the subject rested 

on the start trigger, aligned with the subject’s sagittal midline. Pointing was 

made in closed loop mode, i.e. with full vision of the hand during movement 

and participants’ eye movements were unrestricted. 

The paradigm was adapted from Milner et al. (1999). In the 

immediate pointing condition, subjects pressed the start trigger for 2s after 

which a tone (800HZ for 500ms) cued the subjects to initiate the movement. 

In this condition the target remained visible until the end of the trial and 

subjects were instructed to point to the target as quickly and as accurately 

as possible. In the delayed pointing condition, on pressing the start trigger 

the target was again illuminated for 2s, but participants had to refrain from 

pointing for a further 5s. Following this delay period, the auditory signal 

(800Hz for 500ms) cued the participants to point to the remembered location 

and they were instructed to point as quickly and accurately as possible ‘as if 

the target was still there’. The two conditions (immediate and delayed) were 

given in separate blocks and block order was counterbalanced across 

participants. Each block contained 14 practise trials (2 for each target 

position) and 84 experimental trials (12 for each target) with target positions 

randomised.  
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Behavioural analysis 

Data obtained from the recordings were analysed off-line. As in the previous 

experiment, start and end of the movement were defined by a velocity-based 

criterion of 40 mm/s and 50 mm/s respectively.  

First, a trial-by-trial analysis was performed to exclude trials in which 

participants did not follow instructions (i.e., failing to move, move towards the 

target before the 5s delay period or pulling back without homing in on 

target). A mixed analysis of variance was performed on the number of trials 

analysed with group (healthy controls, RH- and RH+) as between factor and 

condition (immediate, delayed) as within factor. This revealed a main effect 

of condition [F(1, 28) = 12.30, p < .01] in that participants’ reaches were more 

prone to error in the delayed condition when compared to the immediate 

condition. In addition, there was also an effect of group [F(2, 28) = 16.56, p < 

.001], which was further qualified by an interaction between group and 

condition [F(2, 28) = 9.94, p = .001]. Post-hoc comparisons showed that 

neglect patients had significantly fewer trials in the delayed (but not in the 

immediate) condition than RH- or healthy controls (p < .001). In particular, in 

the neglect group 14% of the trials were excluded from subsequent analysis, 

whereas only less than 1% of trials were excluded in the healthy and RH- 

control groups. Most frequently neglect patients failed to initiate a movement 

when cued to do so (10%). Interestingly, of the trials in which neglect 

patients did not move, 45% were in response to leftward targets, 14% to 

centred targets, but also 41% in response to rightward targets. 

The dependent variables were absolute and signed angular error, 

reaction time and movement time. Unfortunately, reaction time could not be 

analysed for delayed pointing trials as on many of the trials participants 
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gently lifted their finger from the start trigger before or during the delay 

period (however without moving towards the target), resulting in a noisy 

measurement.  

 

Lesion analysis  

Lesion data was available for all 21 patients (12 MRI scans and 9 CT scans). 

The extent and location of each patient’s lesion was visualized and defined 

using the MRICRO software package (Rorden & Brett, 2000) in the same 

manner as in Chapter 1.  

In Figure 10A and 10B the overlap of the reconstructed lesions in the 

RH+ and RH- patients is presented. The subtraction analysis (see Figure 

10C) revealed the following foci as being mostly damaged in the neglect 

group (82%): superior temporal gyrus gray matter (47, -10, 0) and its 

surrounding white matter (46, -11, 0), the insula white matter (45, -12, 0) and 

the white matter nearby the claustrum (37, -8, 0). In addition, the lesions of 

RH+ patients were significantly larger in volume than those of the RH- group 

(F(1,20) = 16.77, p = .001, see Table 10).  

Finally, as in Chapter 1, whenever behavioural deficits were 

observed, the voxel-based lesion-mapping statistical approach was 

performed using MRICROn software (Rorden, Karnath & Bonilla, 2007).   

 



 99 

 

Figure 10 - Lesion overlap map summarising the degree of involvement for each voxel 

in the lesions of neglect patients (N = 11; A) and patients without neglect (N = 10; B); 

the range of the colour scale derives from the absolute number of patient lesions 

involved in each voxel. (C) Lesions of neglect patients minus those of RH- control 

patients; the range of colour indicates the percentage of areas mostly damaged in 

patients with neglect.  

 

Results 

 

Means for each participant were computed per condition for each variable 

and target position. Data for each target position was collapsed across 

sides: left (-12, -8, -4), centre (0) and right (+4, +8, +12). Reaction time for 

the immediate condition was analysed with a 3 x 3 mixed analysis of 

variance with group (healthy controls, RH- and RH+) as the between-subject 
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factor and target (left, centre, right) as the within subject factor. The 

remaining variables were analysed with a 3 x 2 x 3 mixed analysis of 

variance. Group was analysed as a between-factor and condition 

(immediate, delay) and target (left, centre right) as within-subject effects. 

Post-hoc comparisons were made with the Bonferroni adjustment (p < .05).  

 

Terminal accuracy 

The descriptive statistics for the absolute angular error per condition, target 

and group are presented in Table 12. There was a main effect of side [F(2,56) 

= 3.15, p = .05] in that participants made higher errors to the leftward when 

compared to the rightward targets (mean difference = 0.2°, p < .05). No 

difference in accuracy was found between centred reaches and the reaches 

made to the other target positions. Furthermore, there was a main effect of 

condition [F(1,28) = 51.51, p < .001], in that movements towards remembered 

locations were less accurate than immediate movements.  

Also, there was a main effect of group [F(2,28) = 7.35, p < .01], which 

was further qualified by significant interactions between group and side [F(2, 

56) = 2.69, p < .05], group and condition [F(2, 28) = 5.54, p < .01] and group, 

condition and side [F(2, 28) = 2.50, p < .05]. Post-hoc comparisons revealed 

that RH+ patients presented pathologically increased absolute angular errors 

when compared to both healthy controls (mean difference = 1.5°, p = .001) 

and patients without neglect (mean difference = 1.2°, p < .01), only in the 

delayed condition, and solely when the target was presented on the left side 

of space. No difference between the groups was observed for the immediate 

condition for all target locations. These observations suggest that the 

impairment in delayed reaching is specific to neglect, as patients without the 
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condition were as accurate as healthy participants (mean difference = 0.2°). 

Furthermore, it also indicates that this inaccuracy is direction-specific as no 

significant impairments were observed when the targets were presented in 

the centre or on the right side of space. 

 

Table 12 – Means and standard errors (in parenthesis) of the absolute angular error (in 

degrees) per group, condition and target position. 

 

Group Left Centre Right Left Centre Right

Heatlthy controls 0.5 (0.1) 0.5 (0.1) 0.5 (0.0) 1.0 (0.1) 0.9 (0.1) 1.1 (0.2)

RH- 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 1.2 (0.1) 1.1 (0.2) 0.9 (0.1)

RH+ 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 2.4 (0.4) 1.7 (0.3) 1.7 (0.3)

Immediate pointing Delayed Pointing

Target

 

 

To investigate if this decrease in accuracy in the delayed condition 

was related to neglect severity, Pearson correlation analyses were run 

between the BIT, the bisection errors, the lateralised index of the Balloons 

test and the mean absolute error for leftward delayed reaches for all right-

brain damaged patients. Interestingly, a significant negative correlation was 

found between the absolute angular error for leftward targets and the BIT 

score (r = -0.84, N = 21, p < .001), in that larger error was correlated with 

poor BIT performance. Moreover, there was also a significant positive 

correlation between bisection error and movement accuracy to leftward 

remembered locations (r = 0.77, N = 21, p < .001). That is, higher bisection 

errors were correlated with higher end-point errors to the leftward target 

location. However, the correlation between the terminal error and the 

Balloons test score was not significant.  

In addition, I also ran correlation analysis between the mean absolute 

angular error for left sided delayed reaches, the percentage of stimuli 
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detected on the left side of the screen in the computerized perimetry test and 

the percentage of bilateral stimuli detected on the extinction test. This 

revealed a significant negative correlation in that the worse the 

performances on the perimetry test (r = -0.78, N = 21, p < .001) and on the 

extinction test (r = -0.53, N = 21, p < .01), the bigger the error in the delayed 

pointing to leftward targets. Thus these observations indicate that the 

terminal accuracy impairment found here is related to both the severity of 

neglect and/or hemianopia and/or extinction.  

Furthermore, correlations between the patients’ overall scores on the 

spatial working memory task and also on their scores for spatial working 

memory of a single location and the mean absolute angular error for leftward 

delayed reaches were run, but this was surprisingly not significant. This 

indicates that there seems to be no relation between the ability to remember 

target locations in a sequence, for perceptual purposes, and the accuracy of 

movements towards remembered locations. Thus errors of delayed 

movements are associated with neglect severity, but not with spatial working 

memory problems per se. 

 In terms of directionality, as can be seen in Figure 11 the signed 

angular errors of the patients with neglect were overshoots in respect to left 

sided targets. 
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Figure 11 - Mean directional angular error (in degrees) in the immediate and delayed 

conditions per group and target position. Error bars represent standard errors. 

 

To investigate which brain areas were critically associated with the 

reduced accuracy for the delayed leftward reaches the voxel-based lesion 

analysis was conducted on the mean absolute angular error. This revealed 

that several cortical and subcortical areas were significantly associated with 

the increased absolute angular error for leftward delayed reaching (Z > 2.06, 

p < .05; BM range = -3.82, 15.08; see Figure 12). Poor accuracy was 

strongly associated with lesions located in several occipito-temporal areas: 

the white matter near the transverse temporal gyrus [peak Z = 15.08 (34, -

35, 8)], the middle temporal gyrus gray [peak Z = 6.27 (65, 0, -8)] and 

surrounding white matter [peak Z = 15.08 (70, -42, 0)], the superior temporal 

gyrus gray [Z = 13.43 (64, -26, 0)] and nearby white matter [peak Z = 4.40 

(48, -47, 16)], the temporal lobe white matter near the caudate [Z = 15.08 

(33, -33, 8)], the middle occipital gyrus gray matter [peak Z = 15.08 (44, -83, 

8)] and the fusiform gyrus gray matter [peak Z = 8.22 (24, -68, -8)].  
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To a lesser extent, the following lesion locations were also related to 

inaccurate delayed reaching: the occipital lobe white matter near the 

precuneus [peak Z = 6.81 (28, -73, 16)], the posterior cingulate gray matter 

[peak Z = 6.81 (28, -65, 16)], the white matter in the vicinity of the inferior 

temporal gyrus [Z = 6.27 (61, -61, -8)], the parahippocampal gyrus gray 

matter [peak Z = 6.27 (32, -37, -8)] and nearby white matter [peak Z = 6.27 

(28, -36, -8)], the thalamus [Z = 6.27 (18, -32, 8)], the white matter 

surrounding the lingual gyrus  [Z = 6.26 (24, -81, -8)] and the inferior parietal 

lobe white matter [peak Z = 4.40 (59, -39, 50)]. Importantly, lesion volume 

did not correlate with poor accuracy. 

 

 

Figure 12 - Voxel-based lesion statistical map (in axial and sagittal view) revealing the 

right-brain damaged areas significantly associated with increased terminal error in 

leftward delayed pointing. The legend (and coloured areas) represents the range of Z 

scores that survived FDR threshold of p < .05. 

 

Reaction time  

In Table 13, the descriptive statistics for reaction time in the immediate 

condition are presented. The analysis of variance did not reveal any 

significant effects of group or target nor an interaction between the main 

factors. Neglect patients did not take significantly longer to initiate their 
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movements when compared to healthy controls (mean difference = 94.6ms) 

or RH- patients (mean difference = 39.6ms). 

 

Table 13 – Means and standard errors (in parenthesis) of reaction time (in ms) for the 

immediate condition separately per group and target position. 

 

Group Left Centre Right

Heatlthy controls 297 (19) 313 (28) 281 (18)

RH- 365 (31) 347 (23) 344 (25)

RH+ 397 (31) 379 (53) 399 (50)

Immediate pointing

Target

 

 

Movement time 

In Table 14, the descriptive statistics for movement time are presented per 

group and target position. There was a main effect of condition [F(1,28) = 

136.96, p < .001] in that all participants took significantly longer to perform 

movements in the delayed condition when compared to the immediate 

condition.  

 

Table 14 – Means and standard errors (in parenthesis) of movement time (in ms) per 

group, condition and target position. 

 

Group Left Centre Right Left Centre Right

Heatlthy controls 612 (29) 575 (32) 564 (29) 748 (30) 713 (26) 702 (32)

RH- 658 (22) 622 (23) 621 (23) 866 (30) 827 (35) 805 (34)

RH+ 692 (23) 649 (27) 649 (23) 874 (26) 825 (23) 812 (25)

Immediate pointing Delayed Pointing

Target

 

 

There was also a main effect of target [F(2,56) = 95.64, p < .001]. 

Pairwise comparisons showed that all participants presented significantly 

longer movement times to leftward than to centred or rightward targets (p < 
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.001). Fastest movement times were obtained when movements were made 

to right-sided targets, when compared to centred or leftward targets (p = .01 

and p < .001, respectively).  

Additionally there was a main effect of group [F(2,28) = 4.74, p < .05]. 

Pairwise comparisons showed that overall neglect patients were significantly 

slower than healthy controls (mean difference = 97.7ms, p < .05), but were 

not slower than RH- patients (mean difference = 16.9ms). RH- patients were 

not significantly slower than healthy controls. The interactions between 

group and task and/or side were not significant. This data indicates that the 

increase in movement time in neglect patients is not specific to the disorder, 

as RH+ patients had similar movement times to RH- patients. In line with 

this, no significant correlation was found between neglect or hemianopia or 

extinction severity and the overall movement time. 

As for terminal accuracy, to investigate which brain areas were 

critically associated with the overall increased movement time (collapsed 

across tasks and target positions), the voxel-based lesion analysis was 

implemented. This revealed that several regions were significantly 

associated with these increased movement times (Z>1.96, p<0.05; BM 

range=-7.14, 13.43; see Figure 13). The most significantly associated 

lesioned voxels were located in fronto-parietal regions: the anterior cingulate 

gyrus [peak Z=13.43 (14, 14, 32)] and its nearby frontal white matter [peak 

Z=13.43 (12, 12, 40)], the pre-central gyrus [Z=9.20 (58, -19, 40)] and its 

surrounding white matter [peak Z=4.20 (61, -1, 8)] and the post-central gyrus 

gray [Z=13.43 (46, -26, 40)] and nearby white matter [peak Z=4.43 (60, -18, 

50)].  
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To a lesser degree, increased movement time was additionally 

associated with damage to the white matter near the inferior frontal [peak 

Z=6.60 (47, 15, -8)] and the middle frontal gyri [Z=4.95 (33, 34, 8)], the 

inferior parietal lobe white matter [peak Z=4.43 (69, -23, 24)], the superior 

temporal gyrus [peak Z=7.21 (48, 14, -8)] and its surrounding white matter 

[peak Z=5.95 (48, 7, -8)], the white matter near the middle temporal gyrus 

[peak Z=2.69 (70, -4, -16)], the claustrum [peak Z=5.77 (28, 21, 16)] and the 

insula [Z=5.77 (29, 21, 16)]. Again lesion volume did not correlate with 

increased movement time. 

 

 
Figure 13 - Voxel-based lesion statistical map (in axial and sagittal view) revealing the 

right-brain damaged areas significantly associated with increased movement time. The 

legend (and coloured areas) represents the range of Z scores that survived FDR 

threshold of p < .05. 

 

Discussion 

 

The current study aimed to investigate the reaching performance of right 

hemisphere lesioned patients with and without hemispatial neglect as well as 

healthy controls for both immediate and delayed pointing. Furthermore, 
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lesion-symptom analysis was used to perform an initial exploration of the 

neural anatomy behind the motor deficits observed.  

 

Motor deficits after right-brain damage 

As expected no evidence for neglect-specific impairments was found for 

immediate pointing even when targets were presented on the left side of 

space. Regarding endpoint accuracy neglect patients did not even differ 

from healthy control subjects. Indeed the lack of terminal pointing bias in the 

immediate condition is clearly demonstrated in Figure 11. Furthermore, it is 

of interest that, unlike for delayed pointing, where neglect patients 

sporadically failed to initiate a reach altogether, this behaviour was not found 

for immediate pointing. Thus, it seems that when performing an immediate 

reach neglect patients do not ignore leftward targets. In terms of latency, I 

also did not find an increase in reaction time after right-brain damage, as 

both patients groups did not even differ from healthy controls. The only 

difference observed was for movement time, in that neglect patients were 

found to be slower than healthy controls in movement time, on both 

immediate and delayed conditions. Yet no difference was found in 

comparison to the RH- group. In addition, this movement time increase was 

not direction-specific nor did it correlate with neglect severity.  

The findings of no neglect-specific abnormalities in immediate 

reaching agree with the strong claim made by Himmelbach and Karnath 

(2003) that neglect patients can accurately reach to a single target in both 

right and left space. As argued before, these observations are also in line 

with a range of other studies (e.g., Harvey et al., 2002; Himmelbach & 

Karnath, 2003; Konczak & Karnath, 1998; Konczak et al., 1999).  



 109 

Nonetheless, the lack of reaction time differences between neglect 

patients and the other control groups contrasts with numerous other findings 

that have reported specific initiation impairments to leftward targets in 

neglect patients (Mattingley et al., 1992, 1994, 1998a, 1998b). However, as 

argued in the previous chapter, it is likely that task differences come into 

play here. It is possible that neglect patients have no deficit in initiating a 

single immediate reach, yet will show lateralized effects when target 

mapping is more complex either in terms of target competition or off-line 

processing. Unfortunately, the reaction time measure for the delayed 

pointing proved too unreliable to be reported here, but I would predict 

lateralised impairments for this condition.  

As argued by Himmelbach, Karnath and Perenin (2007), the critical 

comparison in reaction and movement times and other kinematic parameters 

is between brain damaged patients with and without neglect. On this basis 

they argue that action control is not affected in neglect. Although the present 

data is in line with this viewpoint, as neglect patients were only impaired in 

movement time when compared to healthy controls, it is important to note 

that there are different types of action control and that these may be 

mediated differently by hemispatial neglect (Milner & Harvey, 2006). 

 

Neglect-specific deficits in delayed reaching 

In fact this point came through clearly in the results of the delayed pointing 

condition, where it was found that neglect patients showed greater endpoint 

errors when reaching to targets in left space. Moreover, this deficit seemed 

to be neglect-specific as patients with the disorder were impaired when 

compared both to healthy and RH- control groups. Additionally, these errors 
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correlated with neglect severity both in terms of the BIT score and the 

bisection errors. All these observations suggest that neglect patients do 

indeed experience problems when a delay is interposed between the 

presentation of a stimulus and the response. However, unlike patient DF, 

who also fails on this task, this impairment is specific to contralesional left 

targets.  

To my knowledge, only one other study has investigated the effects 

of response delay on the motor performance of neglect patients and the 

results seem to agree with the present findings. Schimodozono et al. (2006) 

used a computerized delayed reaching task with a simple reaction time to 

dissociate the processes used to detect the target, from those used to 

initiate a movement and to move towards the target. Their task required a 

memory-guided response to a target location that was cued before a brief 

delay period and they tested 22 neglect patients and 31 patients without 

neglect after right-brain damage, as well as 25 healthy controls. It was found 

that patients with both neglect and hemianopia were slower to detect a 

leftward target and to initiate a movement towards it, compared to when the 

target was on the right side of space. Furthermore, among the patients 

without hemianopia, target detection was longer for the neglect patients than 

the patients without the condition or the healthy group. In addition there was 

no significant difference in the time needed to initiate or complete a reach 

between the groups. The authors argued that patients with neglect present a 

specific deficit in target detection, but not in motor initiation or execution. 

Alternatively, as acknowledged by the authors, the deficits observed could 

be related to the presence of target distracters or the delay (memory) nature 

of the task. In fact, I also found that neglect patients failed to initiate a reach 
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only in the delayed condition. Although end-point accuracy was not 

investigated in detail by Schimodozono et al. (2006)’s study, in line with the 

present data, they observed that the number of positional errors was 

greatest in patients with neglect and hemianopia (66.7%), when compared to 

neglect patients without hemianopia (0%), hemianopic patients without 

neglect (0%), and patients without neglect or hemianopia (16%).  

In terms of directionality, the errors my neglect patients showed 

towards the leftward targets were effectively exaggerated overshoot errors 

(see Figure 11). Although this is surprising in light of the fact that hemispatial 

neglect is essentially defined as atypical rightward orienting, and indeed 

virtually all the patients showed this bias for line bisection, it seems that the 

bias does not necessary translate into pointing or grasping tasks. Indeed, in 

Chapter 1 I also did not find a rightward bias when the patients were asked 

to bisect a gap between two stimuli. It seems that the rightward bias in 

neglect is more pronounced when these patients are required to attend to 

the sizes of objects, but not when reaching or grasping (e.g., Milner & 

Harvey, 1995; Harvey et al., 2002; McIntosh et al., 2002; Pritchard et al., 

1997). Another explanation for the overshoot error would be that the 

presentation of the leftward target (before the delayed reach) acted as an 

attentional cue towards the left side of space and may have caused neglect 

reversal (overextension of the position of the leftward target). In line with this, 

it has been shown that leftward or bilateral cueing reduces (or even 

reverses) rightward errors in neglect patients (e.g., Harvey, Milner & 

Roberts, 1995).  

The behaviour of my neglect patients in the delayed task is similar to 

the one of the visual-form agnosia patient DF (e.g., Milner, Dijkerman, & 
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Carey, 1999) whose ventral visual stream is damaged (James et al., 2003) 

and is in stark contrast to that of optic ataxic patients who improve when 

performing delayed actions (e.g., Milner et al., 1999). Moreover, my 

observation that neglect patients are specifically impaired in delayed 

reaching agrees with the view that this condition only affects actions that tap 

into perceptual representations processed and stored by the ventral visual 

stream (Milner & Harvey, 2006). Patients with hemispatial neglect could 

guide their actions to direct visible targets even when these were placed in 

left space, yet failed to do so when a delay was introduced between stimulus 

and response.  

Nonetheless, it should be noted that recently the evidence that optic 

ataxia improves in delayed tasks has been somewhat weakened. 

Himmelbach and Karnath (2005) examined the pointing accuracy of two 

patients with optic ataxia in four different delay conditions (0, 2, 5 and 10s). 

Patient US had lesions bilaterally in the parietal lobe, in the left inferior 

frontal gyrus, occipito-temporal cortex and small lesions in the post and pre-

central gyrus. Patient GS presented a unilateral lesion in the left medial 

parietal cortex involving the precuneus. It was reported that even after a 

delay these patients were still impaired when compared to healthy controls. 

Moreover, they observed a gradual increase of pointing accuracy as the 

delay duration increased rather than an abrupt switch in performance at a 

specific delay. These observations suggest a gradual change between 

dorsal and ventral control of reaching behaviour and argue against 

Westwood and Goodale (2003)’s real time hypothesis that the dorsal stream 

plays no role whatsoever in delayed actions, and that it is only engaged 

when the target is visible. However, the present study did not manipulate the 
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delay intervals making it impossible to know when neglect patients lost the 

information about target location. 

Furthermore, one might argue that the neglect-specific deficit in the 

delayed task was in the initial coding of the target location. In both the 

immediate and the delayed pointing tasks, patients had an opportunity to 

use visual feedback about hand position to modify their reach; although only 

in the immediate condition could they directly compare the hand position 

with the target position. Moreover, the accuracy impairments in the delayed 

leftward reaching were also worst for the neglect patients who presented 

visual field deficits and extinction, which again might indicate that this deficit 

is related to the coding of target location. However, a larger sample of right 

hemisphere lesioned patients without these concomitant symptoms would be 

necessary to test these observations. 

It would have also been useful to test both delayed and immediate 

movements under open loop conditions. On the other hand, in the previous 

chapter, I have shown that neglect patients are not specifically impaired in 

open loop conditions. In fact the patients without neglect were the ones who 

showed specific impairments when reaching without visual feedback and 

notably here I have found that these patients were unimpaired when tested 

in delayed pointing. This indicates that the impairments reported here for 

delayed reaching cannot be explained simply by the lack of visual 

information about target position. In agreement with this, is also the finding 

that in the immediate condition neglect patients did not ignore leftward 

stimuli, were not slower to initiate their movements and were quite accurate. 

The same was not true for the delayed condition, as in 10% of trials neglect 

patients failed to initiate movements altogether. This would suggest that the 



 114 

deficit found here is probably best explained by a difficulty in maintaining the 

target location in memory or using it for the execution of a delayed reach. In 

fact, the observation that the patients never pointed to the right side of space 

when the targets had been previously viewed on the left indicates that they 

had at least some notion of its initial location. 

Additionally, as outlined in the Introduction, poor performance for the 

left targets in the delay task was expected to relate to poor visuospatial 

working memory and I was surprised to find no correlation. Even scores for 

spatial working memory for mapping a single location, showed no relation 

between the ability to remember these and the accuracy of the delayed 

movements towards the left targets. Although ceiling effects might be a 

distorting influence here, it is clear from single-case analysis that is not the 

case. In particular, the two neglect patients (JH and JS) with the lowest 

memory scores did not show large errors to leftward targets and neither are 

the memory scores of the patients with the largest errors (MJ and DS) 

particularly low (see Table 11).  

One possibility is that the spatial working memory measure and the 

delayed reaching task tapped into different mechanisms. Indeed, in Malhotra 

et al. (2005)’s study spatial working memory deficits correlated with 

cancellation tasks, but not with line bisection errors. The authors argued that 

this observation indicates that spatial working memory deficits affect visual 

search behaviour, but may not influence other components of the neglect 

syndrome. In the present study I found that the errors in the delayed 

condition correlated with line bisection, but not with the Balloons test score. 

This would suggest that for the delayed pointing task what the patients seem 

to have the greatest difficulty with, is the coding of the left target as a long-
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term perceptual representation that can be accessed for the delayed reach. 

Whether they can or cannot remember the location of single or even multiple 

vertical targets amongst distracters does not affect this difficulty. 

Nevertheless, it would have been relevant to assess the spatial working 

memory of patients using a ‘perceptual’ version of the delayed pointing 

condition. In particular, in the future it would be interesting to test the 

patients on a task in which a single target is presented in leftward, centred 

and rightward locations for 2s and then removed for 5s. After this 5s delay a 

second target could be presented in the same or a different position and 

patients would be asked to make a same/different verbal judgement about 

the target positions.  

Alternatively, the impairments in the delayed reaching could be 

related to a deficit in coding the target coordinates in an allocentric frame of 

reference. That is, participants could have used a strategy of coding the 

position of the target with respect to the outline of the reaching platform or 

the start trigger. In other words, the failure of neglect patients to point to a 

remembered location could be related to their missing ability to use an 

allocentric frame of reference. Even so, this would still agree with the 

hypothesis that this deficit is more related to ventral rather than dorsal 

damage, as the ventral stream seems to be the one responsible for this type 

of coding (Milner & Goodale, 1995, 2006). In line with this, patient DF has 

been shown to present deficits in motor tasks that require allocentric coding, 

but not when an egocentric response is required (e.g., Murphy, Carey & 

Goodale, 1998; Schenk, 2006; Carey, Dijkerman & Milner, 2009).  
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Neural basis of visuomotor deficits in neglect patients 

In sum, the behavioural analysis revealed that neglect patients present 

specific increased terminal errors only when performing delayed leftward 

reaches, but are not specifically impaired in terms of movement times. To 

investigate this further, I performed an initial exploration of the anatomy 

behind these motor deficits via lesion-symptom analysis. 

 As expected, damage to the occipito-temporal cortex was robustly 

associated with reduced accuracy in delayed leftward pointing. The lesions 

most strongly associated with this deficit were in the superior and transverse 

temporal gyri and the middle occipital and fusiform gyri. Interestingly, the 

lesion subtraction analysis also revealed that one of the foci mostly 

associated with neglect was located in the superior temporal gyrus, which 

agrees with the claim that this deficit is neglect-specific.  

Moreover, the lesion-symptom mapping data also seem to concur 

with the finding the patient DF, who suffered bilateral damage to the lateral 

occipital complex (LOC, brodmann areas 18 and 19), is impaired in delayed, 

but not immediate actions (Goodale, Jakobson & Keillor, 1994; Milner, 

Dijkerman & Carey, 1999; James et al., 2003). This area is located on the 

lateral surface of the occipito–temporal junction, along with other areas such 

as the posterior fusiform sulcus (Cohen et al., 2009), and is believed to 

mediate object recognition but not object-directed action (e.g., James et al., 

2003; Cavina-Pratesi, Goodale & Culham, 2007). Interestingly, I also found 

that lesions to a cluster of voxels situated in the fusiform and middle occipital 

gyri (Brodmann area 19) and to the lingual gyrus (Brodmann area 18) were 

associated with the deficit in delayed pointing.  
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In keeping with the suggestion that areas in the ventral stream, and 

especially within the LOC, are important for delayed actions are the results 

of an fMRI study with healthy participants presented by Singhal et al. (2006). 

They investigated the activation patterns in the LOC and in the anterior 

intraparietal sulcus (AIP) during three phases of a delayed action paradigm: 

visual stimulus presentation, delay phase and action execution. It was found 

that the LOC was activated during stimuli presentation, but interestingly it 

was again reactivated at the time of the action execution despite the 

absence of a visual stimulus. In addition, during the delay phase no 

activation was found in the LOC. AIP also showed greater activation for both 

the visual presentation and action phases, but in contrast to the LOC, was 

activated during the delay phase. Singhal et al. (2006) suggested that the 

LOC might process high order information about the target object required 

by the dorsal stream in order to complete the action after a delay. They 

further speculate that activity in the LOC may involve the extraction of object 

properties from memory. Indeed, very recently Monaco et al. (2008), 

presented fMRI data that confirms that the LOC is reactivated after a delay, 

but regardless of the sensory modality (vision or touch) and that this 

activation is higher for real actions than imagined actions. This observation 

suggests that the LOC reactivation is not merely due to the mental imagery 

processes, but is likely to reflect a general property of memory-guided 

actions. 

Alternatively, DF’s deficit in delayed pointing could be related to her 

additional lesion in the left medial parieto-occipital cortex rather than LOC 

damage per se (James et al., 2003). Indeed, Goodale et al. (2008) have 

investigated a new patient (MC), who also shows impairments for delayed 
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but not immediate grasping. Like DF this patient has damage to the LOC, 

but also presents additional bilateral occipital and right parietal lesions 

(Culham et al., 2008b), making it difficult to know if the LOC alone is the 

critical area accounting for a dissociation between immediate and delayed 

actions.  

In a very recent experiment, Himmelbach et al. (2009) were the first 

to analyse the brain activation patterns associated with immediately 

executed and delayed reaching movements in a patient with optic ataxia (IG) 

when compared to 16 healthy participants. In healthy subjects, they 

observed higher signal increases for movements to visible targets than for 

delayed movements in the bilateral occipito-parietal junction (POJ), the 

precuneus and the middle occipital and temporal gyri. However, the reverse 

contrast did not reveal any significant differences. In IG they also observed 

indistinguishable activation of intact dorsal occipital (superior occipital cortex) 

and parietal areas (precuneus) adjacent to the patient’s lesions for both 

types of movements. They argued that dorsal visual stream areas are not 

only involved in immediate, but also in delayed reaching. This finding thus 

may explain why even though a delayed movement can ameliorate optic 

ataxia, the motor performance of these patients still remains suboptimal 

when compared to that of healthy controls. 

Thus both the present findings and the neuroimaging evidence 

reviewed here suggest that the LOC is not the only area involved in delayed 

pointing. Alternatively, I would suggest that in conjunction with the LOC 

(damaged in both DF and MC), areas in the superior temporal cortex might 

also play a role in memory-guided actions. Indeed Króliczak et al. (2007) 
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found that pantomimed actions were mediated by right-hemisphere 

activation in the middle temporal gyrus and superior temporal sulcus.  

Remarkably no evidence of frontal involvement was found for 

abnormal delayed reaching, which is in contrast to the results obtained for 

movement time. It was also observed that occipital damage was unrelated to 

the impairments in movement time, but was instead associated with the 

deficits found in delayed reaching. Increased movement times were most 

robustly associated with anterior damage to fronto-parietal areas (anterior 

cingulate, pre and post-central gyri). These observations agree with findings 

that frontal lesions produce motor abnormalities in neglect patients (Bisiach 

et al., 1990; Sapir et al., 2007; Tegner & Levander, 1991). Thus I would 

suggest that the slowing observed in the present study is not a consequence 

of damage to neglect-associated areas alone, but instead results from 

further parieto-frontal lesions to crucial nodes in the visuomotor network or 

possibly from a disconnection between its components (e.g., Bartolomeo, 

Thiebaut de Schotten & Doricchi, 2007).  

 

Conclusion 

Taken together, the present findings further support the hypothesis that 

neglect patients are specifically impaired when performing actions thought to 

depend on processing accomplished by the ventral visual stream, but not the 

dorsal (Milner & Harvey, 2006). Moreover, here I have shown that the 

mediation of such off-line actions may further involve occipito-temporal areas 

located more anterior than LOC regions. In contrast, movement slowing is 

not a direct consequence of neglect, but depends on the extent of damage 

to anterior regions in the frontal lobe. These findings agree with the view that 
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there might be a functional dissociation within the posterior parietal cortex: 

while superior areas (usually damaged in optic ataxia) mediate on-line action 

processes towards visible targets, more inferior areas (like the ones 

damaged in neglect) may control the processes involved in off-line actions 

towards memorized locations. In fact, it has been further proposed that 

parieto-temporal areas, most commonly damaged in neglect patients, may 

be part of a third stream which receives both dorsal and ventral stream 

inputs, but depends for much of its visual content on the ventral stream (e.g., 

Milner, 1995). This last point will be addressed in the General Discussion. 
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General Discussion 

 

The main objective of Part I was to investigate the visuomotor abilities of 

patients with hemispatial neglect after right-hemisphere damage. To achieve 

this, two experiments were carried out to compare their motor abilities to that 

of right-brain damaged patients without the condition as well as healthy 

controls. Here I will first summarize the findings from Chapter 1 and 2 and 

then contrast them. Then I will address their theoretical implications as well 

as discuss methodological issues and suggest future directions. 

 

The importance of visual feedback for reaching after right-hemisphere 

lesions 

Chapter 1 investigated if neglect patients use visual feedback efficiently to 

guide their actions. More specifically, the experiment addressed several 

questions that remained unanswered in the literature: ‘Do neglect patients 

present a rightward bias in gap bisection or pointing and if they do, are these 

impairments specific to the condition?’; ‘Do neglect patients present deficits 

in open or closed loop condition and if they do is this deficit neglect-

specific?’; and ‘If motor deficits exist after right-brain damage what is the 

neural basis behind these?’. It was suggested that the observations from 

previous studies could not be easily compared as different patient groups 

were included and different tasks and measures of performance were 

analysed. To that end, I studied a significant sample of patients with and 

without neglect, as well as a group of healthy controls, in both pointing and 

gap bisection and I also manipulated the availability of visual feedback 

during the reach. Moreover, novel lesion-symptom mapping techniques were 
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implemented to clarify the neural underpinnings behind the motor deficits 

observed.   

 In line with previous findings (e.g., Himmelbach & Karnath, 2003), no 

neglect-specific impairment was found in terms of latency, hand path 

curvature or accuracy for either gap bisection or pointing neither in open nor 

closed loop conditions. However, two observations indicated that patients 

after right-hemisphere strokes might present deficits in action control. First, it 

was observed that neglect patients needed longer to initiate a reach towards 

leftward targets when compared to healthy controls, but were no different 

than patients without the condition. Based on this, I argued that this deficit 

was not neglect-specific. The lesion analysis further indicated that this 

latency increase was most strongly associated with parieto-occipital lesions 

near the precuneus, as well as damage to the inferior parietal lobe and the 

posterior cingulate (see Figure 14). Second, the patients without neglect 

presented increased terminal errors only when reaching in open loop 

towards leftward targets, when compared to both neglect patients and 

healthy controls. This observation strongly suggests that this deficit is not 

neglect-specific and the lesion-symptom analysis indicated that damage to 

the lentiform nucleus was most strongly associated with this impairment (see 

Figure 14). Based on these observations I argued that depending on the site 

of damage some right-brain damaged patients (irrespective of neglect) may 

present increased reaction times or rely heavily on visual feedback for the 

successful execution of their movements. Furthermore, I suggested that my 

neglect patients were not specifically impaired because their damage 

maximally overlapped in the superior temporal gyrus, insula and claustrum 



 123 

(see Figure 14) thus relatively sparing the end-points of the dorsal visual 

stream (Milner & Goodale, 1995, 2006).  

 

 

Figure 14. Summary of the lesion analysis results for the non-neglect-specific impairments in reaction time, 

accuracy in open loop (Chapter 1) and movement time (Chapter 2). For simplicity the areas were mapped in 

the two sagittal slices (Z = 14 and 47), regardless of their x Talairach coordinate, with MRICROn software 

(Rorden, Karnath & Bonilla, 2007). The delineation of superior parietal lobe areas was made according to 

Damasio (2005). 

 

The importance of timing for reaching after right-brain damage 

Chapter 2 was designed to test the specific hypothesis that patients with 

hemispatial neglect will only present deficits in actions which tap into 

perceptual representations processed and stored in the ventral visual 

stream, but not in the dorsal stream (Milner & Harvey, 2006). To do this, I 

compared the performance of RH+ with that of RH- patients and healthy 

participants in immediate versus delayed reaching. This paradigm had been 

previously used to dissociate perception and action related-deficits in visual 

form agnosia and optic ataxia (e.g., Goodale, Jakobson & Keillor, 1994; 



 124 

Milner et al., 1999). Moreover, I again performed the lesion analysis to 

understand the neural underpinnings behind the impairments observed. 

 

 

Figure 15. Summary of the anatomical findings regarding the neglect-specific deficit in delayed pointing 

(Chapter 2). For simplicity the areas were mapped in one sagittal slice (Z = 47), regardless of their x Talairach 

coordinate, with MRICROn software (Rorden, Karnath & Bonilla, 2007). The delineation of lateral occipital 

gyrus areas was made according to Damasio (2005). 

 

As predicted by the perception and action model (Milner & Goodale, 

1995, 2006), neglect patients only presented specific accuracy deficits in the 

delayed condition and only for leftward targets. This poor accuracy was 

highly related to lesions in the temporal lobe, one of the most damaged 

areas in my neglect patients (see Figure 15). In addition, it was observed 

that neglect patients were not specifically impaired in either latency or 

accuracy measures when performing immediate reaches. The only 

difference observed was in terms of movement time, in that neglect patients 

took longer to complete their movements towards all target positions when 

compared to healthy controls, but crucially were not slower than right-brain 

damaged patients without the condition. I argued that this latency deficit was 
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not neglect-specific and indeed the lesion-symptom analysis revealed that 

fronto-parietal lesions located in the anterior cingulate and pre- and post-

central gyri were most strongly associated with the slowness in movement 

time (see Figure 14).  

Based on these findings I concluded that the execution of successful 

delayed actions involves not only the lateral occipital complex (damaged in 

visual form agnosic patients and activated in healthy subjects for this task; 

James et al., 2003; Singhal et al., 2006), but also other occipito-temporal 

areas, in particular in the superior temporal cortex. In addition, I argued that 

the findings in the immediate condition suggest that on-line action control is 

spared in neglect patients, yet if their stroke affects fronto-parietal areas they 

may also be generally slower in the completion of their movements.  

 

Contrasting the two experiments 

The findings of no neglect-specific abnormalities in immediate reaching in 

Chapter 2 are in line with findings reported in Chapter 1, as no neglect-

specific impairment was found there either. Nonetheless the behavioural and 

lesion analysis produced slightly different results. 

Chapter 2’s observation that neglect patients did not even differ from 

healthy controls in terms of reaction time for immediate pointing might seem 

surprising, as in Chapter 1 it was found that patients with neglect presented 

increased reaction times towards contralesional stimuli when compared to 

healthy controls. However, one possibility is that in Chapter 2’s study 

participants had 2s to preview the target position whilst in the first 

experiment they only had 1s. This 1s difference might have given neglect 

patients enough time to find the target and initiate the reach towards it. 
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Regarding movement time, although Chapter 2’s findings are also in line 

with the findings reported in the first Chapter, in the first study neglect 

patients did not even differ from healthy controls in terms of movement time. 

One possibility is that the inclusion of different patients (and thus different 

lesions) might explain these differences. 

 

Table 15 - Summary of the results of the lesion-symptom mapping results obtained in 

Chapter 1 and 2. The Z scores are presented per lobe and particular area for each 

behavioural deficit, with the highest values in bold. 

 

Lobe Area RT Open loop error MT Delayed error

lingual gyrus (-) (-) (-) 6.26

superior occipital gyrus 3.13 (-) (-) (-)
fusiform gyrus 3.16 (-) (-) 8.22

middle occipital gyrus (-) (-) (-) 15.08

in ferior temporal gyrus 3.16 (-) (-) 6.27
middle temporal gyrus 6.53 (-) 2.69 6.27

superior temporal gyrus* 6.53 (-) 7.21 13.43

transverse temporal gyrus (-) (-) (-) 15. 08

parahipoccampal gyrus (-) (-) (-) 6.27
precuneus 12.73 3.46 (-) 6.81

inferior parietal lobe 12.73 3.46 4.43 4.40

post-central gyrus (-) 3.46 13.43 (-)
inferior f rontal gyrus 2.42 (-) 6.60 (-)

pre-central gyrus (-) 2.41 9.20 (-)
middle frontal gyrus (-) (-) 4.95 (-)

posterior cingulate 12.73 (-) (-) (-)
anterior cingulate (-) (-) 13.43 (-)

claustrum* 4.25 (-) 5.77 (-)

insula* (-) (-) 5.77 (-)
thalamus 4.25 (-) (-) 6.27

lentiform nucleus 6.53 6.88 (-) (-)
caudate ta il 4.25 (-) (-) (-)

Occipita l

Sub-lobar

Temporal

Parietal

Frontal

Limbic 

 

* = Area mostly damaged in my neglect patients; RT = Increased reaction time to left targets 

(Chapter 1); Open loop error = inaccuracy in leftward open loop reaching (Chapter 2); MT = 

Movement time increase (Chapter 2); Delayed error = Inaccuracy in delayed leftward reaching 

(Chapter 2); (-) = Area not involved in deficit. 

 

In terms of the anatomical findings, what is remarkable is that neither 

occipital nor temporal lobe lesions were involved for the terminal errors in 

open loop (see Figure 14 and Table 15). Furthermore, whilst lesions to the 

middle occipital and to the superior temporal gyri were strongly related to the 

delayed pathological errors, neither the increase of movement time nor the 
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accuracy deficit in open loop were associated with damage to the occipital 

lobe nor were they strongly related to damage in temporal regions (see 

Table 15). In addition, occipito-temporal lesions were not the strongest 

lesions associated with the increased reaction time. Furthermore, the non-

involvement of the lentiform nucleus in the delayed errors contrasts with its 

involvement with errors in open loop reaching and increased reaction time to 

left targets. The absence of lentiform nucleus participation in Chapter 2 

might seem surprising since five of the RH- patients included suffered 

damage to the basal ganglia (see Table 10).  In fact, I expected this area to 

be involved, at least for increased movement time. Nonetheless, this 

observation points to the different nature behind the deficits in open loop and 

in delayed conditions.  

These observations suggest that occipito-temporal areas seem to be 

markedly involved in encoding and/or retrieval of target locations for 

memory-guided reaching. Second, the data also seems to suggest that 

lesions to these areas seem to be less involved in on-line visuomotor control 

processes (e.g., target localization and on-line updating of sensory 

information whilst reaching). In turn, damage to parieto-frontal areas, as well 

as to the basal ganglia and to the cingulate cortex, are strongly associated 

with longer reaction times to leftward targets, slower movement times and 

higher terminal errors for open loop reaching.   

 

Implications for visuomotor control: spared dorsal visual stream in 

neglect? 

The present findings of no neglect-specific deficit in immediate reaching in 

both Chapter 1 and 2 agree with the view that dorsal visual stream is 
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relatively intact in these patients (Milner & Goodale, 1995, 2006). In fact, 

their lesions overlapped maximally in the superior temporal gyrus (Brodmann 

area 22) and not in the inferior parietal lobule. As reviewed in the General 

Introduction, Karnath et al. (2004) examined the neural correlates of spatial 

neglect in 140 right-hemisphere stroke patients and, like in the present 

thesis (although a much smaller number of patients was studied here), they 

found that the maximum area of overlap was positioned in the superior 

temporal gyrus (Brodmann area 22) extending into the insula. Nonetheless, 

other authors have argued that the locus of lesion responsible for neglect is 

located in the inferior parietal lobe (e.g., Mort et al., 2003). However, these 

diverging findings could be due to differences in sample selection and size. 

For example, Mort et al. (2003) only included 19 patients with neglect in their 

sample, potentially leading to inaccurate lesion localization compared to the 

74 neglect patients included in Karnath et al. (2004)’s sample. Indeed, as 

Karnath (2001) pointed out, in the group of 67 neglect patients examined by 

Karnath, Ferber and Himmelbach (2001) and by Samuelsson et al. (1997), 

only three individuals had lesions restricted to the parietal lobe.  

Evidence for the involvement of the superior temporal gyrus in 

neglect also comes from ablation studies in the monkey (Ó Scalaidhe et al., 

1995; Luh, Butter & Buchtel, 1986; Watson et al., 1994). Removal of parts of 

the superior temporal cortex leads to deficits that typically occur in humans 

with neglect. Conversely, ablation of the monkey inferior parietal lobule does 

not cause neglect symptoms, but instead produces misreaching for objects 

and inappropriate orientation of the hand.  

Therefore, the present study agrees with the suggestion that the 

human parietal lobe (but not the temporal) is responsible for the organization 
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and control of target-directed actions such as reaching, grasping and 

saccades (for review see Karnath, 2001). Indeed, the non-neglect-specific 

motor deficits reported here were most strongly associated with lesions in 

parieto-frontal areas, rather than temporal. Mattingley et al. (1998b), have 

also argued that the inferior parietal lobule has a motor role and the present 

findings would agree with this view. In fact, lesioned voxels in the inferior 

parietal lobe were involved in all the deficits and were especially associated 

with increased reaction times to leftward targets. This finding fits well with 

the observation that neglect patients with inferior parietal lobe lesions 

present increased reaction times to leftward targets (e.g., Husain et al., 

2000; Mattingley et al., 1998b). Thus, my observations might help explain 

the diverging findings in the literature and help to solve the debate on the 

influence of neglect on visuomotor control. In particular, I would suggest that 

the previous findings of motor deficits in neglect patients result from the 

extent of their damage to crucial nodes of the visuomotor control network 

(perhaps to the inferior parietal lobe), and not from damage to the superior 

temporal gyrus alone. In other words, these deficits are not a direct 

consequence of hemispatial neglect. 

As can be seen in Figure 14, the areas implicated in the motor 

deficits were located ventrally to the superior parietal lobe. Although, 

superficially, this might be interpreted against Milner and Goodale’s model 

(1995, 2006), it is important to note that the parietal regions reported here 

are in line with the areas involved in optic ataxia. In fact, Karnath and 

Perenin (2005) found optic ataxia to be associated with a lesion overlap that 

affected the lateral and medial parieto-occipital junction (POJ) in both 

hemispheres. At the lateral convexity the centre of lesion overlap in such 
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patients affected the junction between the inferior parietal lobule (IPL), 

superior parietal lobule (SPL), and the superior occipital cortex (Karnath and 

Perenin, 2005). The area of lesion overlap further extended via the 

underlying white matter towards the medial cortical aspect of the hemisphere 

and included the precuneus close to the parieto-occipital sulcus. Moreover, 

the present findings also agree with the suggestion that a region in the 

precuneus, just in front of the parieto-occipital sulcus, could represent the 

human homologue of the parietal reach region in the monkey as it is strongly 

activated during planning and control of reaching movements in healthy 

individuals (Connolly, Anderson & Goodale, 2003; Astafiev et al., 2003; 

Prado et al., 2005).  

Neurophysiological studies in monkeys have also implicated a region 

in the medial intraparietal sulcus and area V6A (between middle occipital 

and precuneus regions) in coding arm movement direction and in the 

transformation of sensory input into reference frames that can be used to 

guide limb action (e.g. Fattori et al., 2001; Galletti et al., 2003). Thus, my 

findings agree with the view that the areas in the posterior parietal cortex 

that play a critical role in on-line control of action, by transforming information 

about the location of objects into the coordinate frames of the effectors 

performing these actions, are relatively spared in neglect (Milner & Goodale, 

1995, 2006).  

The lesion-symptom analysis also helped to pinpoint other cortical 

areas, outside the posterior parietal cortex, that could potentially cause 

motor deficits. In particular, I found that lesions in the post- and pre-central 

gyri, the posterior and anterior cingulate cortex were highly associated with 

the non-neglect-specific motor abnormalities. These observations are in line 



 131 

with fMRI studies in healthy individuals (e.g., Astafiev et al., 2003; Beurze et 

al., 2007) that have consistently found activation in a fronto-parietal network 

(including the cingulate and pre-central cortex) for reaching tasks. 

Nonetheless, one could argue that these regions are also commonly 

associated with neglect. However, a recent study argued that frontal damage 

is not necessary or sufficient to cause neglect (Mort et al., 2003) and 

similarly, the occurrence of neglect after cingulate lesions is very rare. In 

fact, to the best of my knowledge, only two neglect patients with restricted 

cingulate cortex damage have been reported so far (Heilman & Valenstein, 

1972; Klakta, Depper & Marini, 1998). Therefore, I would suggest that 

lesions in both parietal and frontal lobes are associated with motor 

abnormalities, such as increased reaction and movement times, in patients 

with or without neglect. In line with this view, I found that these deficits did 

not correlate with neglect severity nor were they strongly associated with 

damage to the superior temporal gyrus (the location where the lesions of my 

neglect patients maximally overlapped). 

At a sub-cortical level, the strong association of lesions to the 

lentiform nucleus with the high reliance on visual feedback for reaching 

accuracy indicates that this area might have a potential motor role. However, 

the lentiform nucleus has also been shown to be the typical sub-cortical 

structure associated with neglect (Karnath, Himmelbach & Rorden, 2002). In 

addition areas in the superior temporal gyrus have direct connections with 

the basal ganglia (Yeterian & Pandya, 1998). This might suggest that the 

association between lesions in the lentiform nucleus and impairments in 

open loop reaching could be related to hemispatial neglect. However, the 

behavioural analysis would strongly suggest that this is not the case, as the 
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patients without neglect were the ones who were specifically impaired in the 

open loop condition. Indeed, previous studies have found that lesions to the 

basal ganglia are associated with the motor aspects of neglect (for a recent 

review see Fink & Marshall, 2005). Therefore, I would propose that my 

findings agree with the view that the basal ganglia have a primary role in the 

control of motor function. Sommer (2003) reviewed evidence that suggests 

that the basal ganglia pathway, which runs through the thalamus, projects to 

many motor areas including the frontal eye field, supplementary motor area, 

primary motor cortex and pre-motor cortex. Furthermore, the conclusion that 

the basal ganglia plays a role in movement planning and/or control is 

supported by evidence from patients with Parkinson’s disease, in which 

basal ganglia circuits are disrupted and voluntary movements diminish or 

disappear (Sommer, 2003).   

In conclusion, my observations suggest that on-line visuomotor 

control is unaffected by neglect, which agrees with the controversial 

hypothesis that their dorsal visual stream is relatively functional (Milner & 

Goodale, 1995, 2006). However, some right-brain damaged patients may 

present reaching abnormalities if their damage extends to crucial nodes of 

the visuomotor fronto-parietal and cortico-sub-cortical network or causes 

disconnection between its components. 

 

Implications for visuomotor control: a ventral stream related 

impairment in hemispatial neglect? 

In Chapter 2 I found that not only were my neglect patients exclusively 

impaired in leftward delayed reaching, but that this deficit was highly 

associated with superior temporal cortex damage and highly correlated with 
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neglect severity. This observation fits well with David Milner’s proposal that 

the areas damaged in neglect form part of a third stream which receives 

input from both streams, but largely depends on the processing carried out 

in the ventral stream (Milner, 1995, 1997, 1998a,b). Milner’s hypothesis 

(1995, 1997, 1998a,b; Milner & Goodale, 1995, 2006) was based on the 

findings that, in monkeys, the superior temporal cortex receives afferent 

inputs from both the inferior temporal areas as well as from the inferior 

parietal lobe and intraparietal sulcus, thus representing a site for multimodal 

sensory convergence (Baizer, Ungerleider & Desimone, 1991; Bruce 

Desimone & Gross, 1981; Felleman & Van Essen, 1991; Jones & Powell, 

1970; Morel & Bullier, 1990; Rozzi et al., 2006; Seltzer & Pandya, 1994;). 

Moreover, it has also been show that cells in the superior temporal gyrus 

integrate information about form, motion (Oram & Perret, 1996) and spatial 

position of objects (Baker et al., 2000). These findings have lead to the idea 

that the rostral parts of the superior temporal cortex (like the ones damaged 

in my neglect patients) might act as an interface between the dorsal and the 

ventral visual streams (Karnath, 2001; Milner & Goodale, 1995; 2006). 

Initially, it was suggested that the areas damaged in DF were 

responsible for the computations involved in memory-guided actions (e.g., 

Goodale, Jakobosn & Keillor, 1994). My findings would agree with this, as I 

also found that lesions in the middle occipital gyrus were highly (and solely) 

associated with high terminal errors in delayed reaching (see Figure 15 and 

Table 15). However, I have additionally shown that areas in the superior 

temporal lobe may also play a role in this form of action-control. Therefore, I 

would hypothesize that both the LOC (damaged in DF) and the superior 

temporal cortex (mostly damaged in my neglect patients) are responsible for 
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the encoding and/or retrieval of the long-term representations of spatial 

locations. Although the specific role of these areas remains unknown, one 

hypothesis would be that these areas are involved in the encoding and/or 

retrieval of this information and forwarding to parietal areas for the action 

execution. This might explain why although optic ataxia improves with a 

delay, the performance of such patients remains suboptimal when compared 

to that of healthy controls (e.g., Himmelbach & Karnath, 2005). Admittedly 

these suggestions are very hypothetical, but they may provide a theoretical 

basis for future experimental manipulations.  

In a very controversial article, Glover (2004) has strongly argued that 

the functions of the inferior and superior parietal lobe dissociate for action 

planning (target selection and selection of an appropriate motor program) 

and control (action monitoring and adjustment) respectively. In a reply to this 

paper, Goodale and Milner (2004) state that like Glover (2004) they have 

always argued that both the ventral stream and the inferior parietal lobe play 

a role in action planning, but that there is an additional distinction to be made 

between motor planning and motor programming that Glover (2004) 

neglected. In particular, Goodale and Milner (2004) propose that the dorsal 

visual stream is involved in both the motor programming (pre-specification of 

motor parameters) and on-line control, but that the ventral visual stream in 

conjunction with the inferior parietal lobule plays a role in action planning. In 

line with this, Carey, Harvey and Milner (1996) have shown that DF will often 

make errors in selecting the correct part of a knife (e.g., will grasp a knife by 

its serrated edge), despite grasping it with perfect skill. With the present data 

I was not able to dissociate planning from programming mechanisms, but I 

would agree that the inferior parietal lobe certainly plays a role in planning 



 135 

mechanisms, as lesions in this area were most strongly associated with 

increase reaction time to contralesional targets. 

Moreover, the existence of several sub-streams within the dorsal 

stream has also been proposed. More specifically, Rossetti et al. (2006) 

argue that a dorsal-dorsal pathway, including the dorsal part of the parietal 

and pre-motor cortices, is involved in the fast on-line visuomotor 

computations for targets in the ‘here and now’, with optic ataxia as a typical 

disturbance. In addition, they suggest that another stream, which they call 

ventro-dorsal, including ventral areas of the parietal lobe and pre-motor and 

pre-frontal areas, is involved in complex planning and programming relying 

on high representational levels and with hemispatial neglect as a core 

disorder. Moreover, they suggest the existence of a third ventral-prefrontal 

pathway (bypassing parietal areas) that mediates delayed actions, with 

visual form agnosia as core pathology.  

The present findings disagree with Rossetti et al. (2006)’s view, in 

that here I found that patients with neglect are also impaired in delayed 

reaching. Moreover, Karnath et al. (2004), along with the present findings, 

show that the maximum lesion overlap in these patients is not in the inferior 

parietal lobe, but in the superior temporal cortex. On the other hand, I have 

also reviewed evidence from both neuropsychology and neuroimaging that 

suggests that the ‘vision for action’ system includes the precuneus and the 

inferior parietal lobe (Milner & Goodale, 1995, 2006). In fact, my data 

suggests that patients with lesions to the precuneus area and to the inferior 

parietal lobe present slower latencies to start a movement. Although, futures 

studies are needed, I would argue in line with Milner and Goodale (1995, 

2006) that the parietal lobe is mainly involved in the computations necessary 
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for both programming and on-line control of ‘here and now’ actions, whereas 

a third hybrid stream (perhaps from the LOC and/or inferior temporal cortex 

to the superior temporal areas) mediates the computations involved in 

delayed actions. Nonetheless, recent imaging studies (e.g., Himmelbach et 

al., 2009) have indicated that areas in the parietal lobe are activated for 

delayed action execution. Therefore, whether this third stream bypasses the 

parietal lobe deserves consideration in future work. 

In a similar vein, Fogassi and Luppino (2005) suggest that while the 

superior parietal lobe plays a role in the visual guidance of action, the inferior 

parietal lobe plays a role in high-level visuomotor representations that 

contribute, in the right-hemisphere, to the perception of spatial relationships. 

Moreover Rizzolatti and Matelli (2003) also suggest a functional dissociation 

within the PPC. They argue for the existence of a dorsal-dorsal stream, 

similar to the on-line system proposed by Milner and Goodale (1995, 2006), 

but they suggest that the inferior parietal lobe is part of a ventral-dorsal 

stream, which plays a role in both perception and action. They argue that 

while right inferior parietal lobe lesions cause neglect and this area plays a 

role in both perception and action, the left inferior parietal lobe is important 

for action recognition, grasping and object manipulation, with lesions here 

leading to limb apraxia. Returning to my findings in the delay experiment, it 

could be that the proposed hybrid stream includes both the temporal and 

inferior parietal lobules (around the temporo-parietal junction). However, the 

observation that patients with apraxia are able to perform delayed reaching 

would suggest that the left inferior parietal lobe may not be involved on tasks 

that test ventral-dorsal streams interaction (Ietswaart et al., 2001). In line 

with this, I also found that damage to the right inferior parietal lobe was less 
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involved with the deficits in delayed reaching when compared to lesions in 

the superior temporal cortex (see Table 15). 

In sum, I would suggest that my findings are in line with the proposal 

that neglect is more associated with ventral, rather than dorsal visual stream 

damage (Milner & Goodale, 1995, 2006). Nevertheless, the proposal that 

there is a third visual stream ending in the temporal-parietal junction, 

mediating both perception and action, is still in its infancy and needs further 

investigation. 

  

Methodological issues 

The lesion analysis technique used here represents a significant advance in 

brain lesion mapping, yet it also presents inherent limitations that I would like 

to outline. The relatively small sample size included in the present thesis 

could lead to a risk of over-interpreting anatomical findings. Indeed, a larger 

sample like the one of Karnath et al. (2004), which included 140 patients 

collected over 7 years, would have been ideal. Yet, this was obviously 

impossible to achieve in a PhD time limit. Nonetheless, the consistent finding 

across the different comparisons points to relatively reliable results.  

Moreover, the anatomical MRI and CT scans used in the present 

study were primarily done for clinical purposes. Mixing CT and MRI scans is 

not the best approach, as CT images are limited in their spatial resolution. 

What I would have liked to have done is to only include patients who had 

undergone high-resolution imaging, but this would have markedly reduced 

the sample size. Moreover, in ideal conditions the imaging should have been 

done within days of the experiment. In addition, the lesion analysis could 

potentially be biased towards posterior damage as most patients with 
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neglect presented concomitant visual field deficits whereas most of the RH- 

patients had no visual field deficits. Further studies are needed to confirm 

the present results by comparing a group of neglect patients with a non-

neglect group with similar occurrence of hemianopia. 

In addition, a major challenge in any anatomical study of hemispatial 

neglect is that the lesions vary in extent and location between individuals, 

which reduces the power of the analysis. One approach to overcome this 

caveat is to only include patients with restricted lesions, but this leads to a 

reduction on the number of patients and biases the conclusions towards 

identifying small brain systems. Here, I have dealt with this issue by using an 

unselected sample, in terms of lesion location, and also by including patients 

without neglect.  

Furthermore, MRI or CT scans might not necessarily show the full 

functional extent of a lesion, in that areas that appear intact may not be 

functioning ‘normally’ due to the effect of white matter disconnection, 

diaschisis or limited perfusion. Indeed, white matter damage was repeatedly 

implicated with the motor deficits reported here. In a recent study, Karnath, 

Rorden and Ticini (in press) argued that damage to gray matter structures is 

a stronger predictor of neglect than white matter lesions. Future experiments 

using diffusion tensor tractography will be necessary to clarify the possible 

role of fiber tract lesions in reaching deficits. 

 An important caveat is related to the current definitions of hemispatial 

neglect as there are several subtypes of neglect (for a taxonomy consult 

Vallar, 1998) and this has been ignored by researchers in the field. In 

particular, it is important to clarify that throughout this thesis the patients 

were diagnosed with neglect by applying paper and pencil tests in 
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peripersonal space (i.e., cancellation, drawing and line bisection) without 

assessing neglect of far space or personal neglect. Thus it could be argued 

that the neglect patients included here were unimpaired in immediate on-line 

reaching as they presented only with a particular subtype of the condition, 

namely peripersonal neglect. In future experiments, it would be relevant to 

apply tasks that assess personal and extrapersonal neglect in addition to the 

ones used in the present experiments. For example, personal neglect could 

be assessed with the ‘Fluff test’ (i.e., patients are asked to remove post-its 

placed in their body parts) and extrapersonal neglect could be diagnosed 

with a room description task (i.e., patients are asked to describe objects in 

far distances). This would clarify if patients who present personal and/or 

extrapersonal neglect are also not specifically impaired in reaching. Indeed, 

Committeri et al. (2007) observed that patients with personal neglect had 

lesions that maximally overlapped in the inferior parietal lobe, one of the 

regions that was also involved in the reaching deficits reported here. On the 

other hand, patients with peripersonal neglect had lesions in the STG, which 

is in line with the present findings. To further enhance the knowledge on this 

puzzling and severe syndrome researchers need to define more clearly what 

type of patients are included in their studies.  

 

Alternative interpretations and future directions 

An alternative interpretation for the present findings is that the neglect 

patients were unimpaired in immediate reaching because they were using 

their right-hand to perform the movement. It could be that reaching with the 

right-hand depends mainly on the contralateral hemisphere, which is spared 

in my patients. Indeed, I could have asked patients to reach with their left 
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hand, but many of my patients also presented hemiparesis. In addition, I 

could have also tested patients with left-hemisphere lesions, but again 

neglect is less common in such cases. In a similar vein, it has been 

suggested that whilst the right hemisphere plays a role in determining the 

spatial position of a target, the left hemisphere is involved in selecting the 

appropriate motor program and in monitoring the movement (Fisk & 

Goodale, 1988). However, the present data would disagree with this 

simplistic view, as patients with right-hemisphere lesions were shown to be 

impaired in open loop reaching and presented increases in reaction and 

movement times. 

One question that I have been repeatedly asked is why neglect 

patients can reach towards leftward targets, but still ‘bump’ into objects 

located on their left whilst walking? Indeed, one of the neglect patients 

included here (FH) was perfectly able to reach to a leftward target, but when 

she was walking towards the exit she bumped her head against the left side 

of the doorway. One possibility is that the immediate reaching task taps into 

different mechanisms than ‘real-world’ obstacle avoidance. Indeed, walking 

around a crowed room or even through a door is a much harder and 

demanding task than reaching to a single flash of light in a box. Thus, I 

would predict that if several distracters were presented amongst a target, 

this neglect patient (and possibly others to) would have difficulty to perform 

the task.  

Furthermore, lesions in the inferior parietal lobe were consistently 

associated with all the motor deficits reported here. Nonetheless, future 

experiments should try to investigate alternative reasons and ask if this is 

indeed a motor and/or an attention-related impairment. Rizzolatti et al. 
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(1987) put forward the ‘premotor’ theory of attention, which postulates that 

covert shifts of attention and eye movements share common neural circuits 

and that these attentional shifts represent eye movements that are planned, 

but not executed. In other words, the act of shifting one’s attention between 

locations may just represent the intention to act. In addition, Masud Husain 

and his research group (e.g., Husain & Nachev, 2007; Nachev & Husain, 

2006; Singh-Curry & Husain, 2009) defend a view that the right inferior 

parietal lobule does not fit the dorsal-ventral dichotomy and propose that this 

area is important in maintaining attention in the current task goals as well as 

encoding salient events in the environment. They reviewed evidence that 

suggests that this area is a crucial node in a fronto-parietal system involved 

in many non-motor and non-spatial functions, like sustained attention, 

detecting salient or novel events, phasic alerting and switching between 

task-sets. Therefore, the consistent involvement of the inferior parietal lobe 

in the abnormalities found here could also result from the role of this area in 

such tasks. However, very recently, Striemer et al. (2009) showed that 

although both attentional and reaching deficits were present in a patient with 

optic ataxia CF (who suffered bilateral damage in the superior parietal lobe 

and intraparietal sulcus), these deficits did not follow the same pattern. 

Striemer et al. (2009) suggested that their observation that only the reaching 

errors were modulated with target eccentricity (but not the time to detect a 

target in the ataxic field) indicate that attention and visuomotor control 

depend on independent neural mechanisms.  

Chapter 2 indicates that there is a difference between on-line and off-

line control of actions in neglect patients, but this finding requires further 

confirmation. One prospect would be to ask neglect patients to point to the 
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horizontal mirror position of a presented target (i.e., anti-pointing, Carey, 

Hargreaves & Goodale, 1996). Indeed, it has been shown that patient DF 

(Goodale, Jakobson & Keillor, 1994) is impaired when asked to pantomime a 

grasp to a location beside an object. If the hypothesis that solely off-line 

actions are affected by neglect is true, than neglect patients would be 

expected to be inaccurate when anti-pointing, but not when pointing directly 

at the target. Moreover if this proves to be the case, it would show that the 

impairments found here for delayed reaching are not simply due to lack of 

visual information about target location during movement, as for the anti-

pointing task the target remains visible throughout the reach. Also, future 

experiments should test if optic ataxic patients improve with this paradigm, 

similarly to when a delay is interposed between stimulus and response. 

Also, the specific role of the dorsal and ventral stream areas for 

delayed actions remains largely unknown. For example, does the dorsal 

stream activity for delayed actions, found in neuroimaging studies, reflect the 

storage of information and/or the planning of the movement based on the 

ventral stream input? The two visual streams model provides no specific 

prediction for the participation of ventral structures during the different 

phases of delayed movements (encoding, retention, execution). It would be 

very useful to overlap the areas damaged in DF and MC with the areas 

found here for the pathological overshoot errors in delayed pointing. 

Similarly, the study of the brain activation patterns of MC, DF and of neglect 

patients, when performing delayed actions should provide more clues 

towards understanding the neural basis of such movements. Moreover, 

imaging neglect patients would allow testing if their dorsal visual stream is 

activated in these patients for immediate actions. Finally another avenue 
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would be to deliver TMS pulses over parietal, temporal and the LOC regions 

at different phases of the delayed action (encoding, retention and execution). 

This would clarify the particular role of these areas in the healthy brain.  

Finally, one important question to ask is if I could use the spared 

reaching abilities in neglect patients to improve their awareness of the 

contralesional side of space? This will be fully addressed in Part II of this 

thesis, where I report the immediate and long-term effects of visuomotor 

feedback training in patients with hemispatial neglect. 
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Part II: Rehabilitating hemispatial neglect 

 

Introduction 

 

In the UK someone has a stroke every five minutes (The Stroke Association) 

and hemispatial neglect affects up to 70% of stroke patients (e.g., Bowen, 

McKenna & Tallis, 1999; Stone et al., 1993). Moreover the presence of 

hemispatial neglect is the single best predictor of poor functional recovery 

from stroke in everyday life (Buxbaum et al., 2004; Gillen, Tennen & McKee, 

2005; Katz et al., 1999) and it induces a considerable burden on the patients 

and their families (Barrett et al., 2006). For example, neglect patients fail to 

navigate correctly, bump into objects on the left side of space and as a result 

often injure themselves. Moreover neglect also causes a substantial burden 

to the NHS. The Stroke Association estimates that the direct cost of stroke to 

the NHS is £2.8 billion and to the wider economy is £1.8 billion. In addition, 

there are about 70,000 stroke survivors in Scotland, many of whom require 

long term support from their unpaid carers (The Stroke Association Scotland 

Office). These numbers are alarming and consequently, in the last century, 

via systematic application of cognitive neuroscience, investigators have tried 

to create rehabilitation methods to improve the recovery of patients suffering 

from hemispatial neglect. A brief review of the most studied techniques to 

date is presented below. 

 

Different methods to treat neglect: a brief review 

One of the most commonly used interventions to ameliorate neglect 

symptoms is visual scanning training (e.g. Lawson, 1962). This method is 
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based on the findings that neglect patients fail to explore the left hemispace 

and are abnormally oriented toward the right hemispace. Its objective is to 

facilitate neglect recovery by left sided cueing techniques, such as a red line 

located on the left side of a page. Improvements after scanning training have 

been found in reading and writing, cancellation tasks and activities of daily 

living (e.g., Antonnucci et al., 1995; Piccardi et al., 2006; Pizzamiglio et al., 

1992). In addition, Pizzamiglio et al. (1992) reported that the improvements 

obtained after visual scanning training remained at least five months after 

the end of the training, although no control group was included in this study. 

An alternative approach is trunk rotation therapy (e.g., Karnath, 

Schenkel & Fischer, 1991), in which patients are simply trained to rotate their 

torsos to the contralesional side in relation to their head position. Karnath, 

Schenkel and Fischer (1991) showed that when the patients’ head, trunk 

and visual fields were aligned with the middle of a projection screen they 

presented longer saccadic reaction times in the left visual field than in the 

right visual field. However, increased saccadic reaction time to left stimuli 

could be compensated for by rotating the patient’s trunk leftwards (while the 

head and eyes were centred with the middle of the projection display). Wiart 

et al. (1997) conducted a randomized control trial to test a training procedure 

that combined scanning training with trunk rotation and found significant 

improvements in neglect assessment measures and activities of daily 

function which were maintained one month after treatment.  

Vibration of the neck muscles, obtained by transcutaneous electrical 

stimulation, has also been shown to transiently improve visual detection and 

exploration of the left side of space, cancellation and visual straight ahead 

judgement (e.g., Karnath, 1994; Karnath, Christ & Hartje, 1993; Schindler et 
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al., 2002; Schindler & Kerkhoff, 2004). In addition, Schindler et al. (2002) 

conducted a crossover study, comparing the improvements after visual 

scanning training with the effects of combining visual scanning training with 

neck muscle vibration. They found that the combined treatment had 

relatively long-lasting (2 months) effects in visual straight ahead pointing, 

reading, cancellation, tactile exploration and self care, when compared to 

visual scanning training alone. It has been suggested that both neck muscle 

vibration and trunk rotation may improve neglect by manipulating the 

position of the egocentric frame of reference (e.g., Karnath, Schenkel & 

Fischer, 1991). Though there are some experimental data to support these 

methods, many authors have argued that trunk rotation and, specially, visual 

scanning training require patients to be aware of their difficulty in order to 

compensate actively for their rightward orientation bias, which a lot of them 

find difficult in everyday life (e.g., Harvey et al., 2003). Furthermore in a 

systematic review by Luauté et al. (2006a), it was concluded that the long-

term benefits of these approaches remain unclear as their effects, when 

applied in isolation, are usually transitory.  

Other rehabilitation studies have investigated the impact of sensory 

stimulation techniques on neglect symptoms, such as caloric and optokinetic 

stimulations. Caloric stimulation is based on the observations that if cold 

water is placed into the left external ear canal the vestibular-ocular reflex 

induces a slow phase of nystagmus toward the stimulated ear (Rubens, 

1985). Immediate positive effects after vestibular stimulation have been 

observed in cancellation tasks, personal neglect and anosognosia (e.g., 

Cappa et al., 1987; Rode et al., 1998; Rubens, 1985; Vallar et al., 1990). 

However, the effects of this form of treatment are usually transitory lasting no 
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more than 10-15 minutes (Rode et al., 1998) and the technique is somewhat 

unpleasant (Rorsman, Magnusson & Johansson, 1999). Additionally, Pierce 

and Buxbaum (2002) argued that since most studies involve acute patients 

the potential benefits of this treatment in chronic neglect remains to be 

investigated. Optokinetic stimulation involves the presentation of a leftward 

moving background on a computer screen, which originates a slow eye 

movement to the left creating the illusion that stimuli are being displaced 

rightwards. This type of stimulation has been shown to immediately improve 

line bisection, visual straight ahead pointing, size estimation and reading 

(e.g., Bisiach et al., 1996; Karnath, 1996; Kerkhoff et al., 1999, 2006; 

Pizzamiglio et al., 1990; Vallar et al., 1993). In addition, Kerkhoff et al. 

(2006) have reported that after 2-week post-training positive effects 

remained on line bisection, cancellation and reading. In addition, these 

authors reported that the treatment was more effective than visual scanning 

training. Although this rehabilitation approach is less unpleasant and simpler 

than caloric stimulation its effects remain controversial. In particular, 

Pizzamiglio et al. (2004) found no immediate or long-term improvements on 

BIT tests in a randomized control trial where optokinetic stimulation and 

visual scanning training were combined.   

Another technique put forward to treat neglect is limb activation 

training (LAT). LAT consists in asking patients to make (even small) 

movements with the contralesional limb towards the contralesional side of 

space. It is based on the idea that using the contralesional limb improves 

perception of the affected side by activating the premotor circuits of the 

lesioned hemisphere. LAT has been found to produce improvements on 

classical neglect measures (e.g., BIT and line bisection), left sided motor 
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function, daily life activities and to reduce hospital stay (e.g., Karla et al., 

1997; Samuel et al., 2000; Robertson & North, 1992, 1993, 1994; 

Robertson, Hogg, & McMillan, 1998; Robertson, North & Geggie, 1992; 

Robertson et al., 2002). In addition, the effects of LAT on left sided motor 

function have been found to last even after 2 years post-training (Robertson 

et al., 2002). Brunila et al. (2002) examined the effect of combining LAT with 

visual scanning training and found improvements in reading, letter 

cancellation and in copying a complex figure, which were well maintained 3 

weeks post-training. Nonetheless, Luauté et al. (2006a) argued that the 

short or long-lasting functional impact of LAT remains to be shown in a 

randomized control study as neither Robertson et al. (2002), nor Karla et al. 

(1997) found improvements in functional measures, like the Barthel Index, 

the Catherine Bergego Scale or the behavioural BIT tests. 

Another approach shown to improve neglect symptoms is sustained 

attention training. This technique aims to facilitate spatial awareness via the 

modulation of non-lateralised deficits in sustained attention/arousal 

(Robertson et al., 1997). Usually it consists in training patients (self-

endogenously) to ‘switch up’ their sustained attention system by learning 

and, further, using verbal self-instructions. Improvements using this 

technique in 8 chronic neglect patients have been found on attention 

measures and cancellation tasks, which were maintained for 2 weeks 

(Robertson et al., 1995). In addition, Robertson et al. (1998) found that an 

auditory sound before a visual stimulus improved awareness of the left side 

of space in 8 neglect patients. However Thimm et al. (2006) reported that 

although alertness training improved neglect symptoms, the benefits 

disappeared after four weeks post-training.  
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Many recent studies have also used prism lenses to treat neglect, 

following the work of Rossetti et al. (1998). Prism treatments usually require 

the patients to wear prisms that induce a rightward optical shift of 10-15° and 

point to visual targets. This procedure requires a short adaptation period in 

that the reaching errors are initially shifted rightwards, but pointing repetition 

leads to compensatory leftward corrections. In addition, prism removal leads 

to ‘after-effects’ in that the errors become biased towards the left side of the 

target. One possibility is that prism adaptation alleviates neglect by 

recalibrating the sensory-motor information in the left hemispace, through 

the visual and/or the proprioceptive mismatch the prisms induce (e.g., 

Chokron et al., 2007). Effects of this treatment have been found in classical 

neglect measures (e.g., cancellation), straight ahead pointing, visual 

exploration towards the left side of space, contralesional somatosensory 

perception, reading, wheel-chair driving, postural control and mental 

representation (e.g., Angeli, Benassi & Ladavas, 2004; Farné et al., 2002; 

Frassinetti et al., 2002; Jacquin-Courtois et al., 2008; McIntosh, Rossetti & 

Milner, 2001; Pisella et al., 2002; Rode, Rossetti & Boisson, 2001; Rossetti 

et al., 1998; Sarri et al., 2008; Saevarsson et al., 2009; Serino et al., 2006; 

Tilikete et al., 2001; Vallar et al., 2006). More recently, in a control trial study 

with 13 patients Frassinetti et al. (2002) reported that the benefits of prism 

adaptation lasted for 5 weeks. Although this technique has recently been 

identified as a promising intervention for neglect (e.g., Chokron et al., 2007) 

and some authors have even suggested that it may be the new cure for 

neglect (Mattingley, 2002), it is important to note that not all patients improve 

after wearing prisms or adapt to the prisms (see for example Frassinneti et 

al., 2002; Rosseaux et al., 2006; Sarri et al., 2008). Furthermore, the long-
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term improvements in daily life activities (e.g., wheel-chair driving or 

functional scales) remain to be verified in a randomized control trial.  

Despite many attempts to improve the symptoms of patients suffering 

from hemispatial neglect the long-term potential of these treatments remains 

unclear and their efficacy controversial with effects usually transitory (for 

reviews see Bowen & Wenman, 2002; Chokron et al., 2007; Luauté et al., 

2006a; Pierce & Buxbaum, 2002; Robertson & Manly, 2002; Robertson & 

Halligan, 1999). Bowen, Licoln and Dewey (2002) concluded that the 

positive effect of rehabilitation in neglect patients remains unproven. Several 

reasons are behind the failure of studies to show positive rehabilitation 

effects in neglect. For example, many studies have only assessed treatment 

effects with paper-and-pencil or computerized tasks not assessing the 

functional effects of treatment. This is surprising since rehabilitation is ‘the 

provision of planned experience to foster brain changes leading to improved 

life functioning’ (Robertson, 1999, pp.385). Additionally, researchers have 

used many different assessment protocols, outcome measures and have 

included small sample sizes, which make cross-study comparisons and 

statistical meta-analysis difficult (Bowen, Lincoln & Dewey, 2005). 

Furthermore, at present there is no consensus regarding the best outcome 

measure in either clinical practise or research and as pointed out by Bowen, 

Lincoln and Dewey (2005) there is a clear need for developing new 

functional outcome measures. Nonetheless, some techniques have 

produced, at least, short-term improvements in neglect symptoms and this is 

encouraging for future attempts. In addition, the cost of not treating brain 

damaged patients has a great impact in terms of dependency and lowered 
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quality of life, so the investigation of neglect rehabilitation effectiveness is a 

matter of urgency (Robertson, 2002).  

 

The present study: investigating the effects of visuomotor feedback 

training  

In the present study the immediate and long-term effects of visuomotor 

feedback training in patients with hemispatial neglect were investigated. This 

intervention has its roots in a seminal paper by Robertson, Nico and Hood 

(1995). These authors performed two experiments to evaluate if neglect 

might be adjustable by changing the purpose of the reaching response to 

objects. In a first experiment, 10 neglect patients were asked either to point 

to the centre of a rod with a pencil and, in another condition, to reach for the 

rod with a pincer grip and pick it up so that it would be balanced (see Figure 

16 in the Methods section). They found that the rightward deviation was 

significantly reduced in 9 patients when they reached towards metal rods so 

as to pick them up in the centre, compared to when they were asked to point 

to their centres. In the second experiment, 13 neglect patients were asked to 

point to the centre of a rectangular box with a swivelled lid and then to place 

a coin at the centre of this lid, in a position sufficiently central to prevent the 

lid tilting and the coin falling into the box. The authors observed that 10 

patients showed smaller rightward deviations when placing the coin than 

when just pointing to the centre. They argued that their results indicate that a 

small change in the purpose of an action has a significant effect on neglect. 

In a subsequent study Robertson, Nico and Hood (1997) asked 

neglect patients to point to the centre of a rod (pointing condition) or to grip 

the centre of a rod without lifting it (control condition) and in another 
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condition to repeatedly grip and pick up the rod at its centre until they were 

satisfied that they had found the centre (training). They found that patient’s 

grips were more central in the condition where they were allowed to pick it 

up, when compared to when they only grasped the rod without lifting it. They 

also examined the short-term effects of visuomotor feedback of the 

unbalanced rod in 16 patients with neglect on star cancellation and on the 

line bisection task of the BIT, as well as on the bisection of large lines and 

the rod pointing condition. Interestingly, significant positive effects were 

found on the line bisection task and on the cancellation task of the BIT, up to 

20 minutes post-training. This was not the case for the control condition. 

Surprisingly, no effect was found on the rod pointing or on the bisection of 

the large lines, which are perhaps more intervention-specific tasks. 

Nonetheless, considering that the brief training condition consisted of only 

nine trials it was encouraging that significant effects were found even twenty 

minutes following the intervention.  

Harvey et al. (2003) then examined the extent to which a more 

intensive version of this visuomotor feedback training could produce 

immediate and more enduring improvements in a randomized control trial 

with 14 chronic neglect patients. The intervention group was asked to reach, 

lift and balance rods at their centre whilst patients in the control group 

reached and lifted the right-hand side of the rod. Patients underwent a 3-day 

experimenter-administered practise of rod lifting and then the immediate 

effects were measured with a line bisection task, the landmark test (i.e., the 

patient is asked to judge which end of the line is closer to a central 

landmark) and the real object test (i.e., reach and grasp the centre of three 

household objects). After this experimenter-led intervention patients 
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continued the rod practise in a self-administered manner for a further 2-week 

period (home-based intervention). Effects were measured before and after 

the home-based treatment and again after one month follow-up with a large 

test battery including the BIT, the Balloons test, the elevator and lottery sub-

tests of the test of everyday attention, the ‘Barthel Functional measure of 

activities of daily living’ and the Catherine Bergego Scale. They found 

significant improvements on the landmark task after the 3-day intervention in 

the group that received visuomotor feedback training, but not in the control 

group. Moreover, the intervention group also improved significantly on the 

BIT conventional sub-tests between the end of the training and the 1-month 

follow-up.   

Robertson, Nico and Hood (1995, 1997) suggested that the perceived 

mismatch between the two sensory systems (phenomenological visual 

representation and sense of unbalance and sight of the rod tipping) might 

increase the patient’s awareness of their neglect. In other words, the 

perception-action conflict might act as a cue to scan leftwards by reducing 

anosognosia and thus improving performance in paper and pencil tests. 

However, Harvey et al. (2003) did not find any improvements with the 

Catherine Bergego Scale, which assesses anosognosia in everyday life, 

suggesting that this might not be the case.  

Moreover, Robertson, Nico and Hood (1995, 1997) alternatively 

postulated that by intending to act on an object neglect may be reduced. 

This assumes that motor manipulative responses (pick up the rod at the 

centre) may have access to unique streams of information not available for 

non-motoric judgements (pointing to the perceived centre of a rod). 

Robertson, Nico and Hood (1995, 1997) postulated that the prehensile 
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movements towards objects involved in the training allow ‘leakage’ of 

information about their spatial extent, via an unaffected stream of information 

available for motor-manipulative responses through some type of ‘dorsal-to-

ventral recalibration’ (Robertson, 1999; Milner & Harvey, 2006). In other 

words, by drawing the patients’ attention to the mismatch within the task it 

might be possible to ‘bootstrap’ the patients’ perceptual ability onto better 

visuomotor performance through the intention to act and subsequent 

feedback of this action (Harvey et al., 2003).  

Therefore visuomotor feedback training has theoretical relevance to 

this thesis as it applies the predictions of Milner and Goodale (1995, 2006)’s 

model to neglect rehabilitation. As previously mentioned, according to this 

model it is hypothesized that the dorsal visual stream is relatively functional 

in these patients and that consequently their visuomotor behaviour may be 

unaffected by the condition. In line with this view, in the previous chapters I 

have confirmed that neglect patients are not specifically impaired in target-

directed reaching towards leftward targets (with or without visual feedback) 

and other studies have also found the same pattern in grasping objects on 

the left side of space (e.g., Harvey et al., 2002).  

Thus, the current experiment aims to assess the immediate and long-

term extent to which visuomotor feedback training, initially performed by 

Robertson and colleagues (1995, 1997) and extended by Harvey and 

colleagues (2003) may improve the performance of classic neglect 

measures, but also more ecological tasks. 

As in Harvey et al. (2003)’s study, the intervention group was asked 

to reach, lift and balance rods at the centre, ‘readjusting until satisfied with 

the judged central grip’, whilst the patients in the control group reached and 
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lifted the right-hand side of the rod only. The intervention group therefore 

received proprioceptive, as well as visual feedback, on how well they 

grasped the centre of the rod; however both groups received a comparable 

amount of motor experience of reaching and lifting rods. Participants, having 

mastered the exercise for two days with the experimenter present 

(experimenter-led intervention), embarked on a home-based intervention of 

2 weeks, in which they repeated the training independently (home-based 

intervention). The number of intervention trials and sessions in the present 

study is slightly different from that of Harvey et al. (2003). In particular in 

each of the two experimenter-led sessions, participants performed only 54 

rod-lifting trials. This was done to assess if a shorter number of sessions 

would produce similar improvements to what Harvey et al. (2003) found with 

three sessions of 72 rod-lifting trials each. The home-based intervention was 

identical to the one performed by Harvey et al. (2003).  

Moreover, as the long-term impact of any rehabilitation attempt is 

crucial, the potential effects of visuomotor training feedback were evaluated 

at 4-months follow-up, in contrast to the one-month post-training period 

examined in Harvey et al. (2003)’s study. In addition, as in Harvey et al. 

(2003)’s study, the effects of the programme were measured with the BIT 

conventional sub-tests and the line bisection, landmark and balloons tests. 

However, here I also examined the effects of the training in different 

outcome measures from the ones used by Harvey et al. (2003), in an 

attempt to assess improvements in a more ecological valid manner.  

The impact of any treatment in the daily functioning of patients is a 

crucial factor to determine its relevance. Harvey et al. (2003) did not find any 

effects of visuomotor feedback training on the ‘Barthel functional evaluation 
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index of activities of daily living’ and indeed Bowen and Wenman (2002) 

suggested that this measure is insensitive to rehabilitation outcome. 

Moreover the most commonly used scales (e.g., Barthel Index) focus on the 

physical consequences of the stroke, not assessing other dimensions of 

health-related quality of life, such as social role function. Therefore, the 

present study applied the recently developed Stroke Impact Scale. This 

Scale is a stroke-specific measure of recovery designed for repeated 

administrations to track change over time for both clinical and research 

settings. Importantly, this scale has been shown to be valid, reliable and 

sensitive to change and assesses several domains of daily life functioning 

(Duncan et al., 1999a; 2002; 2003).  

Many patients suffering from neglect may also show a horizontal 

displacement of the sagittal midline to the ipsilesional side (Karnath, 1996). 

This alteration of the egocentric reference can be tested by requiring the 

subject to point straight ahead in the dark and several investigators have 

found the performance of neglect patients to improve on this measure after 

prism adaptation (e.g. Pisella et al., 2002; Rode, Rossetti & Boisson, 2001; 

Sarri et al., 2008). Therefore, a straight ahead pointing task was also applied 

in the present study. 

Moreover, many neglect patients may present neglect of 

extrapersonal space (i.e., space beyond reaching). There are no current 

standardised measures of neglect of far space (Robertson & Halligan, 1999), 

but in previous rehabilitation studies, this symptom has been evaluated 

using a room description task. Frassinetti et al. (2002), designed a room 

description task to evaluate the effects of prism adaptation in far space and 

observed a reduction of left omissions and, more impressively, that this 
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improvement was maintained after 5 weeks post-training. Based on the fact 

that this task has been shown to be sensitive to the training outcomes it was 

also implemented in the present study. 

 

Method 

 

Participants 

The initial aim of this study was to recruit 16 neglect patients (eight in the 

control and eight in the intervention group). Patients were randomly 

allocated to either group, but with an attempt to match for neglect severity, 

as assessed with the BIT conventional sub-tests and the Balloons test. 

However, the sample size ended up uneven between the intervention group 

(N=8) and the control group (N=5) because two patients that were initially 

allocated to the control group did not complete the training (one patient died 

and the other one refused to continue for medical reasons).  

The neglect inclusion criteria were the same as in Part I. After the 

neuropsychological assessment, the neglect patients were allocated to the 

intervention group (mean age 64.0, SD 8.9) or to the control group (mean 

age 65.2, SD 7.8). Patients were told that the study investigated the potential 

of a relatively new rehabilitation technique that may help them to notice 

things around better, especially on their left side. On average, patients 

participated in the study four months after stroke onset and there were no 

differences between the groups in terms of onset times. The groups also did 

not significantly differ in terms of age, cognitive abilities (as assessed with 

the sub-test of the WAIS-R) and neglect severity (i.e., BIT conventional sub-

test scores, the Balloons lateralized index and the mean line bisection error). 
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The patients’ demographic and clinical data are presented in Table 16. 

Although, lesion overlap analysis was not carried out in the present study, 

the location of the damage is reported in Table 16.  

Note that some patients tested in the presented study were also 

tested in the experiments of Part I and this is highlighted in Table 16. 

Patients DS, AM and JK only started the rehabilitation training after Chapter 

1 and 2’s experiments were carried out. However, due to stroke severity and 

mobility issues patients AB, FH, JH and MJ performed the behavioural 

experiments of Part I after taking part in the present rehabilitation study (and 

they still presented neglect see Table 1 and 11).  
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Training stimuli  

Three wooden rods (1.1cm diameter, 0.63g in weight) of 50, 75 and 100cm 

in length were used. Each rod was presented horizontally on a test mat in 

front of the patient, with the middle of the mat in line with the patient’s body 

midline. Additionally, to reduce the possibility that patients reached for rods 

according to a fixed external reference in the background environment, rods 

were presented to the left and right of the body midline with a deviation of 

10cm. The test mat (160cm x 30 cm) indicated the correct rod positions for 

the spatial location of each of them (central, right and left).  

 

Procedure 

After the neuropsychological assessment (see patients section), the patients 

were randomly allocated to either the intervention or control group. If the 

time interval between neuropsychological assessment and baseline was 

longer than eight weeks, the BIT conventional sub-tests, the line bisection 

task and the Balloons test were re-administered in a second session. 

However, if this was not the case only the remaining outcome measures 

were applied. That is, the landmark task, the room description task, the 

straight ahead pointing task and the Stroke Impact Scale (see outcome 

measures section for a description of these measures).  

Following the ‘evaluation’ baseline sessions, the rehabilitation rod 

lifting exercise was introduced and administered by the experimenter in two 

consecutive sessions of approximately 30 minutes each. Participants were 

shown where to place the rehabilitation mat in relation to themselves and 

were told where each rod should be placed in relation to the rod size and 

labelling on the mat in a practise trial. For the intervention group, patients 
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had to reach for the rod with a pincer grip (using the forefinger and the 

thumb) and try to lift it up in its centre so that it would be balanced; if they felt 

that it was not balanced then they could repeat the trial until satisfied (see 

Figure 16). For the control group patients were instructed to reach for the rod 

on its right-hand side with a pincer grip (using the forefinger and the thumb) 

and to lift it up from the mat on that side. Once the trial was completed, 

patients positioned the rod to its original position (top of the mat). In addition, 

both groups were instructed that whilst lifting a rod off the mat they should 

not move it away from the starting position (indicated on the mat). Patients 

used their ipsilesional hand and the order of the rod-lift trials was 

randomized across sessions and patients. 

 

 

Figure 16. Dramatization of the behaviour of a neglect patient during visuomotor 

feedback training. In the top picture the rod is unbalanced as the subject grasped the 

rod to far rightwards from its centre. In the bottom picture the rod is balanced as subject 

correctly grasped it at its centre. 

 

In each experimenter-led session, lifts of each rod and at each 

location were repeated six times creating 54-rod lifts. In the last 

experimenter-led session the following tests were administered: BIT 
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conventional sub-tests, line bisection and landmark tasks and the Balloons 

test.  

After this two-day intervention, the patient repeated the training 

independently at their homes. During this home-based intervention the 

exercise consisted of 72-rod lifts (eight times per rod and location) for each 

of the 10 sessions, carried out over a period of two weeks. To control correct 

execution in the home-based intervention, participants were given a record 

sheet containing the order of trials (for each of the 10 sessions) and were 

required to mark each trial they performed. Furthermore, the experimenter 

monitored performance via regular phone contact to the patients and their 

families.  

At the end of the home-based intervention, to evaluate the 

therapeutic effectiveness of the rehabilitation programme all participants 

were re-assessed with the complete battery of outcome measures, which 

included the BIT conventional sub-tests, the line bisection and landmark 

tasks, the Balloons test, the Stroke Impact Scale, the straight ahead pointing 

task and the room description task. Finally, after 4 months post-training all 

outcome measures were again applied to assess long-term effects. Below 

the experimental sequence is summarized: 

 

Baseline  

Step 1. Neuropsychological assessment and allocation of subjects 

Step 2. Outcome measures: BIT conventional sub-tests, line 

bisection, Balloons test, landmark task, room description task, straight ahead 

pointing, Stroke Impact Scale 
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Experimenter-led intervention  

Step 3. Intervention or Unspecified training (according to allocation) 

with the experimenter present (54-rod lifts) 

Step 4. Intervention or Unspecified training (according to allocation) 

with the experimenter present (54-rod lifts) 

Step 5. Outcome measures: BIT conventional sub-tests, line 

bisection, Balloons test, landmark task 

Home-based intervention  

Step 6. Both control and intervention group repeated the training 

independently for 10 days over a two-week period (72-rod lifts per session). 

Step 7. Outcome measures: BIT conventional sub-tests, line 

bisection, Balloons test, landmark task, room description task, straight ahead 

pointing, Stroke Impact Scale 

Follow-up  

Step 8. Four months after the intervention patients were re-assessed 

with all the outcome measures: BIT conventional sub-tests, line bisection, 

Balloons test, landmark task, room description task, straight ahead pointing, 

Stroke Impact Scale 

 

Outcome measures 

To reduce learning effects the order of the administration of the measures 

was counterbalanced across sessions (baseline, experimenter-led, home-

based, follow-up) and participants. As previously mentioned, in addition to 

the measures used to assess neglect (BIT conventional sub-tests, line 

bisection and Balloons) additional tasks were applied and these are 

described below. 



 164 
 

Landmark task 

This measure was adapted from Harvey, Milner and Roberts (1995). 

Patients were presented with 10 horizontal black lines (20cm x 1mm) that 

were already centrally transacted by a vertical mark (6mm x 1mm), the 

landmark. Four lines had landmarks of 1 and 2mm to the left and right of the 

true centre and the other six were positioned in the true centre. Lines were 

presented on individual sheets of A4 paper and subjects were asked to 

point, with their ipsilesional limb, to the end of the line closer to the 

landmark. Different orders of presentation were applied between sessions 

and participants. The percentage of centred lines reported as being shorter 

on the contralesional side was computed. 

Room description  

For the room description task (adapted from Frassinetti et al., 2002), 14 

objects were positioned in the patient’s living room and along his/her midline 

(seven on the left and seven on the right). The patients sat in the centre of 

the room with their back to one of the walls and were blindfolded until the 

start of the trial. A table was placed in the centre of the room in front of the 

patient with eight objects, four on the left and four on the right (glue tube, 

stapler, pencils and booklets). Additionally, along the left and the right side of 

the room, three objects were positioned on each side (A3 posters, calendar 

and carton boxes). The position of the objects was randomized across 

assessments and patients. Patients were asked to name the new items seen 

in front of them in the room for a period of 2 minutes and the experimenter 

took a note of the number of objects reported on each side.  
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Straight ahead pointing 

In the straight ahead pointing task (adapted from Rode, Rossetti & Boisson, 

2001), patients were blindfolded and sat in front of a horizontal wooden 

board (87cm length and 54cm height). Patients were required to point 

straight ahead from a resting position while their head was kept aligned with 

the body’s sagittal axis by the experimenter. They were instructed about the 

movement itself in that it should be fast, in one go, with the forearm 

extended when hitting the board (located app. 40cm from the patient). Ten 

pointing trials were performed, to obtain a reliable average value. After every 

trial the experimenter registered the horizontal displacement of the pointing 

movement by marking its endpoint on a sheet of paper that covered the 

board. The sheet was attached to the board and contained a line that 

indicated the centre of the board (invisible to the participant as he/she was 

blindfolded), which was aligned with the patient’s body midline and thus 

represented the objective end-point of the body midline. The mean absolute 

displacement from the centre (in degrees) was later computed. 

Stroke Impact Scale  

The UK English version of the Stroke Impact Scale (version 3.0; Duncan et 

al., 1999a,b,c; 2002, 2003) contains 59 items and assesses the following 

eight domains: strength of the contralesional limbs; contralesional hand 

function; mobility; emotion; communication; memory and thinking; social 

participation; activities of daily living/instrumental activities of daily living 

(ADL/IADL). The individual is asked to rate each domain on a scale from one 

to five. In addition, the scale contains a question to assess the individual’s 

global perception of stroke percentage recovery, which ranges from 0 (no 

recovery) to 100 (full recovery). The scoring of the scale was conducted 
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through a database (in Microsoft Access) provided on-line by the Kansas 

University Medical Centre (http://www2.kumc.edu/coa/SIS/SIS_pg2.htm).  

Whenever possible, the Stroke Impact Scale (Proxy version) was 

rated by a family member who lived with the patient. However, the 

experimenter applied the scale to three patients (i.e., JH, MJ and FH), as 

there was no carer available.  

 

Results 

 

The effects of visuomotor feedback training were analysed with a 2 X 4 

mixed analysis of variance with group (intervention versus control) as a 

between factor and phase (baseline, experimenter-led, home-based and 

follow-up) as a within factor separately for the outcome measures (the BIT, 

line bisection, Balloons test and landmark test). The deviation in degrees on 

the straight ahead pointing task, the number of contralesional objects 

omitted on the room description task and the normalized scores obtained for 

each domain of the Stroke Impact Scale were analysed with 2 x 3 ANOVAs. 

Group was analysed as a between factor and phase (baseline, home-based 

and follow-up) as within effect. Pairwise comparisons were performed with 

the Bonferroni adjustment (p < .05). Results are reported for each measure 

separately. 

 

Behavioural Inattention Test 

In Table 17, the descriptive statistics for this measure are presented per 

group and phase. The analysis of variance on the total score of the BIT 

conventional sub-tests revealed no main effect of group. However, there was 
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a main effect of phase [F(3,33) = 8.09, p < .001], in that overall participants 

improved on this measure with time. Pairwise comparisons revealed that the 

BIT scores were significantly lower at baseline, when compared to the 

experimenter-led (mean difference = -18.7, p < .01), home-based (mean 

difference = -22.6, p < .01) and follow-up sessions (mean difference = -21.4, 

p < .05). There was no significant difference between the experimenter-led, 

home-based and follow-up scores.  

 

Table 17 – Means and standard errors (in parenthesis) of the BIT conventional sub-

tests total score per group before the intervention (baseline), after experimenter-led 

intervention (exp-led; 2 sessions), after home-based training (10 sessions) and after 4-

months post-training (follow-up). 

 

Phase Intervention Control

Baseline 96.1 (8.9) 89.4 (22.5)

Exp-led 127.0 (3.4) 96.0 (22.6)

Home-based 135.6 (2.6) 95.0 (22.4)

Follow-up 126 (9.6) 102.4 (24.8)

Group

 

 

Most importantly, the interaction between group and phase [F(3,33) = 

3.71, p < .05] was also significant. Pairwise comparisons revealed that the 

intervention group improved significantly with the training, whilst the control 

group showed no amelioration between assessments (see Figure 17). In 

particular, the intervention group presented higher scores after the 

experimenter-led and home-based training sessions when compared to the 

baseline score (p < .01 and p < .01). In addition, the BIT scores of the 

intervention group increased significantly after the home-based session 

when compared to the experimenter-led session (p < .05). In fact at home-

based assessment, the intervention group had significantly higher scores 
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than the control group (p < .05). No differences between the groups were 

obtained for the baseline, experimenter-led and follow-up sessions. 

Importantly, after 4 months post-training, the BIT score remained 

significantly higher than at baseline in the intervention group only (p < .05). 

In the intervention group, the score at follow-up did not significantly differ 

from the one obtained at the experimenter-led and home-based 

assessments.  

 

 

Figure 17. BIT conventional sub-tests total score (maximum = 146) per group before the 

intervention (baseline), after experimenter-led intervention (exp-led; 2 sessions), after 

home-based training (10 sessions) and after 4-months post-training (follow-up). 

  

Examination of the individual scores of the intervention group 

revealed that all patients markedly improved on the BIT after two rod-lifting 

sessions and continued improving after the 10 home-based sessions (see 

Table 18). At follow-up only two patients (FH and MM), out of the eight 

studied in the intervention group, decreased their performance on the task. 

Curiously these were the most severe neglect patients at baseline (as 

determined by the BIT overall score and by the BIT sub-tests of star 

cancellation and figure and shape copying scores).   
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Table 18. Individual scores of the neglect patients on the BIT conventional sub-tests 

(maximum = 146) per group and phase. 

 

Group Patient Baseline Experimenter-led Home-based Follow-up

AB 104 123 131 129

AK 121 136 142 145

DS 91 130 131 143

FH 72 123 129 103

JH 132 135 138 139

JMA 112 138 146 142

MJ 73 122 142 139

MMU 64 109 126 68

AM 130 133 122 134

AMC 79 88 89 134

JK 141 143 144 143

JR 14 15 13 10

PI 83 101 107 91

Intervention

Control  

 

To investigate this further an analysis of variance was carried out for 

each sub-test separately. Namely a 2 x 4 mixed ANOVA was run on each 

contralesional score of the cancellation tasks (line, letter and star) and on 

the scores obtained in the line bisection, copying and drawing sub-tests. 

This revealed that, although both groups improved over time for all sub-tests 

(for simplicity this is not reported here), only for the star cancellation sub-test 

did the patients of the intervention group improve significantly between 

phases when compared to the control group (see Table 19). That is only for 

this sub-test, the interaction between phase and group was significant [F(3,33) 

= 3.71, p < .05]. Post-hoc tests revealed that, only in the intervention group, 

the number of stars cancelled on the contralesional side of space increased 

from baseline, to experimenter-led (p < .01), home-based (p < .01) and 

follow-up assessments (p < .05). The scores of the intervention group did not 
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differ significantly between the experimenter-led, home-based and follow-up 

assessments. Moreover, the intervention group cancelled significantly more 

stars after the experimenter-led and home-based sessions when compared 

to the control group (p < .05 and p < .01, respectively; see Figure 18). No 

significant differences were observed between the two groups at baseline or 

at follow-up.  

 

Table 19 – Means and standard errors (in parenthesis) of the number of stars cancelled 

on the contralesional side of space (maximum = 27) per group before the intervention 

(baseline), after experimenter-led intervention (exp-led; 2 sessions), after home-based 

training (10 sessions) and after 4-months post-training (follow-up). 

 

Phase Intervention Control

Baseline 11.1 (3.7) 11.8 (4.7)

Exp-led 23.4 (1.0) 12.0 (5.4)

Home-based 25.1 (1.1) 10.6 (4.7)

Follow-up 21.9 (3.3) 17.9 (3.9)

Group

 

 

 

Figure 18. Number of stars cancelled on the contralesional side of space per group 

before the intervention (baseline), after experimenter-led intervention (exp-led; 2 

sessions), after home-based training (10 sessions) and after 4-months post-training 

(follow-up). 
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Again the examination of the individual scores of the intervention 

group revealed that all the patients markedly improved on star cancellation 

after the experimenter-led and home-based sessions (see Table 20). At 

follow-up only two patients (FH and MM), out of the eight included in the 

intervention group, markedly decreased their performance on the task when 

compared to the home-based assessment. 

 

Table 20. Individual contralesional star cancellation scores (maximum = 27) of the 

neglect patients per group and phase. 

 

Group Patient Baseline Experimenter-led Home-based Follow-up

AB 17 23 27 27

AK 17 24 26 27

DS 0 23 25 26

FH 0 26 26 17

JH 22 22 27 27

JMA 26 27 27 26

MJ 2 18 25 25

MMU 5 24 18 0

AM 19 23 14 23

AMC 7 4 6 22

JK 26 27 27 27

JR 0 0 0 7

PI 7 6 6 10

Intervention

Control  

 

Line bisection 

As one of the patients presented right neglect (JM), only the absolute errors 

from the true centre (i.e., regardless of sign) were analysed. In Table 21 the 

mean and standard errors are presented for the line bisection absolute error. 

A 2 x 4 Anova showed that there was a main effect of phase [F(3,33) = 6.04, p 

< .01], but pairwise comparisons did not reveal any significant effects. In 



 172 
 

addition, no other effects were significant. This is surprising, as from Table 

21 it seems that the intervention patients’ mean errors decreased from 

baseline to the other phases and at an individual level all the intervention 

patients improved after the two exp-led sessions in their line bisection 

performance. However, there was a trend towards a significant interaction 

between phase and group (p = .08). In particular, post-hoc comparisons 

showed that in the intervention group the bisection errors were smaller after 

the training sessions (experimenter-led and home-based) when compared to 

the baseline performance on this task (mean difference = -34mm, p < .01; 

mean difference = -32.2mm, p < .05, respectively). No significant differences 

between phases were obtained for the control group.  

 

Table 21 – Means and standard errors (in parenthesis) of the absolute line bisection 

errors (in mm) per group before the intervention (baseline), after experimenter-led 

intervention (exp-led; 2 sessions), after home-based training (10 sessions) and after 4-

months post-training (follow-up). 

 

Phase Intervention Control

Baseline 48.8 (10.3) 36.3 (13.4)

Exp-led 15.0 (7.3) 34.0 (16.1)

Home-based 16.6 (8.7) 22.0 (13.5)

Follow-up 19.7 (9.0) 26.2 (13.5)

Group

 

  

Balloons test 

No main effects and no interaction between group and phase were observed 

for the lateralized index score (see Table 22 for descriptive statistics). 

Further ANOVAs were carried out on the number of items cancelled on the 

sub-test A and B of this test and this also did not reveal any significant 

differences between the groups nor significant interactions between group 
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and phase. As not all the patients were impaired at baseline a further 

ANOVA was carried out including only the patients with a marked lateralized 

deficit, but the main effects or the interaction between phase and group were 

also not significant. 

 

Table 22 – Means and standard errors (in parenthesis) of the lateralized index score of 

the Balloons Test per group before the intervention (baseline), after experimenter-led 

intervention (exp-led; 2 sessions), after home-based training (10 sessions) and after 4-

months post-training (follow-up). 

 

Phase Intervention Control

Baseline 25.8 (7.9) 21.0 (10.8)

Exp-led 38.6 (8.5) 23.4 (10.6)

Home-based 44.1 (5.5) 33.1 (9.7)

Follow-up 30.5 (7.1) 29.7 (10.1)

Group

 

 

Landmark task 

No main effects and no interaction between group and phase were observed 

for the proportion of centred lines judged as shorter on the contralesional 

side of space (see Table 23 for descriptive statistics). 

 

Table 23 – Means and standard errors (in parenthesis) of the proportion of centred lines 

judged as shorter in the contralesional side of space per group before the intervention 

(baseline), after experimenter-led intervention (exp-led; 2 sessions), after home-based 

training (10 sessions) and after 4-months post-training (follow-up). 

 

Phase Intervention Control

Baseline 83.3 (11.3) 76.7 (19.4)

Exp-led 75.0 (14.8) 66.7 (19.0)

Home-based 77.1 (15.1) 60.0 (19.4)

Follow-up 85.4 (12.4) 62.1 (17.0)

Group
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Straight ahead pointing 

No main effects and no interaction between group and phase were observed 

for absolute error in straight ahead pointing (see Table 24 for descriptive 

statistics).  

 

Table 24 – Means and standard errors (in parenthesis) of the absolute error (in 

degrees) for the straight ahead pointing task per group before the intervention 

(baseline), after home-based training (total 12 sessions) and after 4-months post-

training (follow-up). 

 

Phase Intervention Control

Baseline 13.2 (5.0) 18.7 (3.4)

Home-based 8.9 (2.3) 11.0 (2.5)

Follow-up 14.2 (2.5) 11.0 (4.9)

Group

 

  

Room Description Task 

No main effects and no interaction between group and phase were observed 

for the number of items reported on the contralesional side of space. 

However, as can be seen from the Table 25, at baseline patients in the 

intervention group only missed one object on the contralesional side of 

space, indicating that they were unimpaired at the task. 

 

Table 25 – Means and standard errors (in parenthesis) of the number of objects omitted 

in the contralesional side of space (maximum = 7) per group before the intervention 

(baseline), after home-based training (total 12 sessions) and after 4-months post-

training (follow-up). 

 

Phase Intervention Control

Baseline 1.3 (0.6) 3.0 (1.3)

Home-based 1.0 (0.6) 2.8 (1.3)

Follow-up 0.9 (0.6) 2.0 (1.3)

Group
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Stroke Impact Scale 

No main effects and no interaction between group and phase were observed 

for the following domains of the scale: strength of contralesional limbs, 

contralesional hand function, memory and thinking, communication, emotion 

and social participation (see Table 26 for descriptive statistics for each of the 

Scale domains). 

There was a main effect of phase for the stroke recovery domain 

[F(2,22) = 5.61, p < .05] but pairwise comparisons were not significant. 

Moreover, the interaction between phase and group was significant for the 

mobility domain [F(2,22) = 4.22, p < .05]. As can be seen on Table 26 it seems 

that the intervention group’s scores increased at follow-up in respect to the 

baseline score however, pairwise comparisons were not significant. A 2 x 2 

Anova was run with group as between factor and phase as within (baseline, 

follow-up) for the mobility domains, but the effect of group or interaction 

between the factors was not significant. 
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Table 26 – Means and standard errors (in parenthesis) for the normalized score of the 

Stroke Impact Scale per domain and per group before the intervention (baseline), after 

home-based training (total 12 sessions) and after 4-months post-training (follow-up). 

 

 

Domain and phase

Strenght of contralesional limbs Intervention Control

Baseline 53.1 (14.1) 34.6 (11.2)

Home-based 43.0 (13.0) 31.3 (5.9)

Follow-up 46.3 (13.9) 23.8 (5.0)

Contralesional hand function Intervention Control

Baseline 41.2 (14.0) 6.0 (3.7)

Home-based 33.8 (16.1) 14.0 (8.7)

Follow-up 44.4 (16.1) 8.3 (8.3)

Memory Intervention Control

Baseline 73.2 (7.5) 47.1 (15.1)

Home-based 69.1 (7.4) 67.8 (10.8

Follow-up 74.3 (6.4) 55.7 (12.1)

Communication Intervention Control

Baseline 89.3 (4.4) 78.6 (7.4)

Home-based 84.7 (6.1) 82.1 (6.6)

Follow-up 87.2 (5.3) 86.6 (9.0)

Emotion Intervention Control

Baseline 61.5 (4.6) 54.9 (9.9)

Home-based 63.5 (5.5) 55.0 (11.9)

Follow-up 59.8 (4.0) 51.6 (10.6)

Social participation Intervention Control

Baseline 56.4 (12.5) 30.2 (10.1)

Home-based 52.4 (12.9) 49.7 (10.7)

Follow-up 44.8 (11.6) 39.0 (17.5)

Stroke recovery Intervention Control

Baseline 45.0 (11.6) 28.0 (3.7)

Home-based 51.3 (10.2) 48.0 (10.2)

Follow-up 60.0 (9.3) 43.0 (13.0)

Mobility Intervention Control

Baseline 51.7 (11.2) 35.5 (9.9)

Home-based 49.6 (12.2) 43.9 (11.8)

Follow-up 60.8 (13.2) 31.1 (7.8)

ADL/IADL Intervention Control

Baseline 50.6 (10.9) 35.7 (6.7)

Home-based 50.9 (10.7) 46.0 (8.7)

Follow-up 58.8 (10.5) 38.2 (9.1)

Group
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In addition, for the ADL/IADL domain there was a significant 

interaction between group and phase [F(2,20) = 4.73, p < .05]. Pairwise 

comparisons revealed that whilst the control group did not differ between 

baseline, home-based and follow-up assessments, the intervention group 

scores were significantly higher at follow-up than before the training (mean 

difference = +8.1, p < .01). No significant differences were obtained between 

baseline and home-based scores in the intervention group (mean difference 

= +0.3). Also, the two groups did not differ at any point in time. These 

observations suggest that the patients who underwent visuomotor feedback 

training were markedly more independent in activities of daily living at 4 

months post-training, whilst the control group remained at a similar level 

between assessments (see Figure 19).  

 

 

Figure 19. Normalized score obtained on the ADL/IADL domain of the Stroke 

Impact Scale per group before the intervention (baseline) and after 4-months post-

training (follow-up). 
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In terms of individual scores on the ADL/IADL domain it was 

observed that all the 8 patients in the intervention group improved at follow-

up (see Table 27). 

To investigate this further a Pearson correlation analysis was ran on 

the percentage of improvement between the baseline and follow-up 

assessments on the ADL/IADL domain and the percentage of improvement 

in the star cancellation and BIT tests, but this was not significant. 

 

Table 27. Individual normalized scores of the neglect patients for the ADL/IADL domain 

of the Stroke Impact Scale per group and phase. 

 

Group Patient Baseline Home-based Follow-up

AB 90 93 95

AK 40 30 50

DS 95 100 100

FH 68 60 80

JH 28 38 38

JMA 28 33 33

MJ 48 35 55

MMU 10 20 20

AM 31 55 28

AMC 33 47 33

JK 53 53 55

JR 15 13 13

PI 48 63 63

Intervention

Control  

 

Discussion 

 

The aim of the present study was to examine the effects of visuomotor 

feedback training in neglect patients when compared to a control group who 

received unspecified training only. In addition, long-lasting effects were 
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examined four months post-training, which constitutes a longer time period 

than the one examined in previous studies (Harvey et al., 2003; Robertson, 

Nico & Hood, 1997). Furthermore, an attempt was made to examine the 

effects in a more ecological manner by including tasks such as the room 

description, straight ahead pointing and the Stroke Impact Scale. 

 

Immediate effects of visuomotor feedback training  

Significant improvements in the patients of the intervention group were found 

on the overall score of the conventional sub-tests of the BIT after only 2-

days of visuomotor feedback training and these improvements markedly 

increased after the 10 home-based sessions (see Figure 17). In fact after 

these 10 training sessions, the intervention group had markedly improved on 

the BIT when compared to the control group and to the baseline and 

experimenter-led assessment sessions. A separate analysis on each sub-

test of this battery revealed that the patients cancelled more items on the left 

side of space after the 2-day training and improved even more after the 10 

home-based sessions (see Figure 18).  

The improvements found here for the BIT diverge from the ones 

obtained by Harvey et al. (2003), who failed to find any short-term effects on 

the BIT and its sub-tests. Nonetheless the present results agree with the 

study by Robertson, Nico and Hood (1997) who also found immediate 

improvements on star cancellation that lasted for 20 minutes after the 

training. One possibility is that the patients tested in Harvey et al. (2003)’s 

trial were significantly1 more chronic (mean of 12 months post-stroke) than 

                                                
1A one-way Anova revealed significant differences between Harvey et al. (2003)’s 
intervention patients’ TO and the ones included in the present study [F(1, 14) = 11.90, p < 
.01]. 
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the ones tested here (mean of 4 months post-stroke). On the other hand, the 

intervention patients tested here were significantly2 more impaired on the 

BIT (mean = 96.1) when compared to the patients included in Harvey et al. 

(2003)’s study (mean BIT = 124). Perhaps this increase in severity at 

baseline left more ‘room’ for improvements. 

In terms of the line bisection errors, similarly to Harvey et al. (2003)’s 

observations, no significant improvements were observed in line bisection in 

the main ANOVA. This result is surprising since this task may be considered 

as the most similar to the training procedure. Nonetheless a trend was 

observed, in that patient’s ipsilesional deviations from the true centre of the 

line were smaller after the 2-day intervention, albeit this was not observed 

after the home-based training or at the follow-up assessment. In line with the 

present observations, Robertson, Nico and Hood (1997) also found a similar 

pattern of results as their significant effects were observed on the measures 

that were considered less training-specific. Regarding the Balloons 

performance no immediate effects were found for this measure either, 

replicating Harvey et al.’s (2003) observation.  

Harvey et al. (2003) found significant effects after the 3-day 

experimenter-led sessions on the landmark test, in that the patients in the 

intervention group made fewer leftward judgements than the control group. 

In the present study I did not find any improvements on this task. However, 

Harvey et al. (2003)’s effect was somewhat small, in that patients made one 

less leftward response after the 3-day training. In addition, the authors did 

not assess if these improvements remained after the home-based 

intervention. On the other hand, in the present study, participants were 

                                                
2A one-way Anova revealed significant differences between Harvey et al. (2003)’s 
intervention patients’ BIT scores and the ones included in the present study [F(1, 14) = 
6.64, p < .05]. 
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asked to point to the side of line that was closer to the landmark (motor 

version), whereas in Harvey et al. (2003)’s study it seems that they were 

asked to judge this verbally (perceptual version). It remains an open 

question if these different task instructions played a role in the null finding in 

the present study. Alternatively, the number of training sessions could also 

account for these discrepant results as in the present study less training was 

provided in the experimenter-led sessions than in Harvey et al. (2003)’s 

study.  

Another possible explanation of the null training effects on landmark 

performance could be that the training might have produced no effect on the 

perceptual distortion present in my neglect patients. In line with this view, 

Harvey and Milner (1997) observed that after one year post-stroke two 

neglect patients showed smaller errors in the line bisection task, but were 

still impaired in the landmark task, when compared to their performance at 

two months post-stroke. Based on these findings, Harvey and Milner (1997) 

suggested that the landmark task could be a more sensitive measure for 

identifying ‘real’ recovery of perceptual deficits. 

In addition, in line with previous findings (e.g. Pisella et al., 2002; 

Rode, Rossetti & Boisson, 2001), at baseline all neglect patients presented a 

significant ipsilesional shift in straight ahead pointing. However, no 

improvements were found on the task between baseline and home-based 

assessments. This result contrasts with the consistent findings that prism 

adaptation ameliorates the rightward deviation in open-loop subjective 

straight ahead pointing (e.g., Sarri et al., 2008). It is likely that, prism 

adaptation has much stronger effects on this measure than visuomotor 

feedback training. Indeed it has been repeatedly shown that 10 degree 
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prisms cause a strong ‘after-effect’, in that the patients straight ahead 

judgements are shifted about 8 to 9 degrees leftwards (see Pisella et al., 

2002; Sarri et al., 2008). Yet, the improvement on this measure after prism 

adaptation is not consistent across patients. For example, Pisella et al. 

(2002) found that whilst in one of the two patients studied (PE) the straight 

ahead judgement was close to normal four hours, and two and four days 

post-training, the other patient (SA, who showed the most severe deviation 

of 14.9 degrees) was still at the same level, as at baseline, in all post-

training assessments. In addition, they observed that patient PE did not 

improve in line bisection whilst patient SA did. Pisella et al. (2002) argued 

that line bisection and straight ahead pointing might depend on separate 

neural mechanisms. Moreover, it has been shown that straight ahead 

pointing abnormalities may not be exclusive to neglect patients and may not 

always correlate with other neglect tests (e.g. Bartolomeu & Chockron, 1999; 

Chokron & Bartolomeu, 1997; Farne, Ponti & Ladavas, 1998). This is not 

surprising given that neglect is now considered a multi-component 

syndrome. 

To investigate whether the subjective straight ahead task taps into 

different neural mechanisms from the usual neglect measures a further 

correlation analysis was performed between the straight ahead pointing error 

and the scores obtained in the neglect diagnostic measures. This revealed 

that, at baseline, the bisection errors significantly correlated with the BIT 

overall scores3 and with the balloons lateralized index score4 whilst the 

errors in the straight ahead pointing task did not correlate with the scores 

obtained in any of these neglect measures. Alternatively, it could be argued 

                                                
3 (N = 13, r = -0.68, p < .05) 
4 (N = 13, r = -0.82, p < .01) 
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that the severe ipsilesional biases in the straight ahead judgement were 

unaffected by visuomotor feedback training. Indeed, my patients were as 

impaired in the present study as patient SA in Pisella et al. (2002)’s study 

and seemed to be more impaired than the patients included in Sarri et al. 

(2008)’s study. In particular, the mean error in Sarri et al. (2008)’s patients 

was 9°, whilst in the present study neglect patients presented an average 

shift of 15.3°.  

It would have been interesting to test the straight ahead pointing 

performance of the patients immediately after each experimenter-led 

session. However, due to patient tiredness this was not possible and thus 

this measure was only repeated after the home-based training (total 12 

sessions). Nonetheless, it is interesting to note that whilst there was a trend 

for improvement in line bisection, no such effect was observed for straight 

ahead pointing, perhaps agreeing with the view that these two tasks depend 

on separate neural mechanisms.  

I also did not find any immediate effects of visuomotor feedback 

training in the room description task. However, it is worth noting that (by 

coincidence) most intervention patients were at ceiling at baseline already. 

Thus future experiments with patients who present extrapersonal neglect are 

needed. In addition, although I hoped to find a generalization of the effects to 

daily life activities (as measured by the Stroke Impact Scale) immediately 

after the training this was not observed. Nonetheless, long-terms 

improvements were observed in this measure and these will be discussed 

below. 
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Long-lasting effects of visuomotor feedback training 

The long-term maintenance of treatment effects is obviously a crucial 

component of any rehabilitation technique and it is well known that this is 

very difficult to obtain in patients with neglect. However, the present study 

provides very promising results in several ways in this respect. 

First, the immediate improvements on the BIT, and on one of its 

cancellation sub-tests, were maintained in the intervention group at follow-up 

assessment. Importantly, the control group did not improve on these scores 

between any of the sessions. These findings are remarkable since the 

follow-up assessment was carried out four months post-training, which, as 

far as I know, is the longest period of time investigated in any neglect 

rehabilitation randomized control trial reported to date. The present findings 

extend the observations of Harvey et al. (2003), who observed 

improvements on the BIT in the intervention group at one-month follow-up. 

Second, and perhaps more important, is the observation that 4 

months post-training, the intervention group markedly ameliorated their 

score on the ADL/IADL domain of the Stroke Impact Scale, whilst the control 

group remained at the same level as at baseline (see Figure 19). The 

ADL/IADL domain of the scale assesses important aspects of the patient’s 

daily routine including eating, dressing, personal hygiene, household tasks, 

shopping, social activities, recreation, family role and the ability to control 

their own life as well as to help others. Thus, the present observations show 

that patients who underwent visuomotor feedback training were more 

functional and independent at follow-up, when compared to their baseline 

performance. The fact that the effect appeared at 4-months post-training, 

and not immediately after the 12 training sessions, could be related to the 
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so-called sleeper effect. As argued in Harvey et al. (2003), such an effect 

has been observed in the rehabilitation literature and may reflect the late 

consolidation of learning after training.  

In line with this view, one possibility would be that the daily life 

improvements of the patients were not so noticeable immediately after 

therapy when compared to the improvements found in paper and pencil 

measures. One could hypothesize that visuomotor feedback training had an 

immediate impact on the patients’ ability to look and find items on the left 

side of the world that gradually gave them more independence in their daily 

lives. This would explain why immediately after the training no improvements 

were found on the scale. However, it has to be noted that no significant 

correlations were found between the improvements on the neglect measures 

(BIT overall score and star cancellation) and the improvements on this 

functional domain, perhaps due to the small sample size (see Stroke Impact 

Scale section of the Results).  

Moreover, the observation that visuomotor feedback training 

ameliorated the daily life of neglect patients has implications not only for the 

significance of this technique, but also shows that the relatively new Stroke 

Impact Scale seems to be sensitive to cognitive rehabilitation effects in 

neglect patients. McDowd et al. (2003) found that poorer attentional 

performance in stroke patients was associated with an increased negative 

impact of stroke on daily functioning as assessed with the Stroke Impact 

Scale. These findings and the present results suggest this scale might be 

sensitive to the impact of neglect in daily life functioning and to rehabilitation 

outcome. In fact, to the best of my knowledge, no previous randomized 

control study has reported such long-lasting improvements in a functional 
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rating scale in neglect rehabilitation studies. It will be interesting to see if 

future studies can replicate the present findings with a larger sample of 

patients, even when using other rehabilitation approaches. Future studies 

could also assess the long-lasting effects of this rehabilitation at different 

time points (e.g., one month, four months and one year). 

In addition, a future avenue would be to assess the impact of 

visuomotor feedback training in other ecological tests, such as wheel-chair 

driving, postural control, walking through doorways. Based on the present 

findings of a trend for an improvement in the mobility domain I would predict 

that, with larger sample size, improvements could be observed here too. In 

addition, as significant improvements were found in cancellation tasks it 

would be interesting to test if these could also be observed in oculomotor 

behaviour (e.g., increase of number of saccades, faster saccadic reaction 

time and higher saccadic amplitude in the contralesional side of space). In 

fact, my initial plan was to assess the immediate effects of the training using 

an eye-tracking visual search task adapted from the Balloons test. However, 

unfortunately this was not achieved because most patients were constrained 

to their homes and some others could not be calibrated in the eye-tracker.  

The findings obtained in the present study are very encouraging for 

future attempts, however there are serious caveats regarding the allocation 

and randomization procedure that need to be addressed in future studies, in 

which an attempt should be made to respect the guidelines of the 

Consolidated Standards of Reporting Trials (CONSORT; Begg et al., 1996). 

First, the present study was carried out by a single experimenter, who 

assessed the patients, assigned them to a treatment group, delivered the 

treatment and assessed its outcome. Ideally a team of ‘blind’ researchers 
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should have been involved in these different stages to prevent a bias in 

estimating the effects of the treatment. More specifically, and according to 

the CONSORT, those administering the treatment and those assessing the 

outcomes should be blinded to group assignment. In addition, the 

randomization procedure was also not in line with the recommendations of 

the CONSORT group. In particular, although the patients were randomly 

allocated to each treatment group an attempt was made to match the groups 

in terms of neglect severity by the single experimenter. A more appropriate 

method would have been to have another researcher randomly allocate the 

patients through the minimization procedure (e.g., Altman & Bland, 2005). 

This randomization method ensures that excellent balance between groups 

is obtained for several prognostic factors even for small samples and is best 

performed with a free and automated software tool (Evans, Royston & Day, 

2004). In fact, unfortunately most studies of neglect treatment do not respect 

the CONSORT guidelines. Therefore, if researchers seriously wish to apply 

cognitive neuroscience findings to aid neglect symptoms they should use 

more rigorous patient allocation methods and blinding designs. These 

methods will allow a more accurate and transparent description of the 

different treatment effects. 

As mentioned in the Introduction, one of the mechanisms proposed to 

explain the improvement of visuomotor feedback training is a ‘dorsal to 

ventral’ recalibration (Milner & Harvey, 2006; Harvey et al., 2003; Robertson, 

Nico and Hood, 1995, 1997; Robertson, 1999). In particular, these authors 

have suggested that spared dorsal stream areas in neglect patients allow 

them to use visual and proprioceptive feedback to bootstrap their perceptual 

experience. Indeed, I have shown in Chapter 1 that patients with neglect 
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(and some of them took part of this rehabilitation trial) use visual feedback 

efficiently in the guidance of their actions. Thus, in the future it will be 

interesting to perform lesion analysis to understand which neglect patients 

benefit from this type of therapy, for example by subtracting the lesions of 

patients who improved by those who did not, or by using statistical analysis 

to test which damaged voxels are associated with reduced improvement in a 

particular task. The number of patients in the present study was relatively 

small as it was not possible to recruit more patients due to time constraints. 

In addition, for this same reason it was also not possible to select the 

patients in terms of unilateral right-hemisphere lesions. Thus it was not 

possible to conduct a meaningful lesion analysis here. 

Interestingly, two patients in the intervention group (FH and MM) did 

not show the maintenance of improvements at follow-up. Although the 

number of trials needed to achieve the rod balancing was not formally 

recorded I recall that these patients needed a high number of lifts for each 

rod. These patients were also the most severe neglect patients included 

here (see Table 16), so perhaps a higher number of training trials would be 

necessary for improvement maintenance. Future attempts using visuomotor 

feedback training should measure adaptation to training, similarly to what is 

done in prism adaptation studies. This could be done, by recording the 

number of trials needed to achieve rod balancing for each rod size and 

location.  

Another possibility is that these patients did not benefit from the 

training at long-term, due to their lesion location. This hypothesis could also 

explain the discrepant findings between the present study and Harvey et al. 

(2003)’s findings. Indeed these authors postulated that if a patient has 
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damage to dorsal stream areas then they might not benefit from the 

intervention. In Chapter 1, I have shown that reaching impairments in open 

loop conditions are not specific to neglect patients but may occur if the 

patient has additional lesions to the lentiform nucleus or parietal-frontal 

areas. Therefore, based on these findings I would hypothesize that the 

ability to use sensory feedback efficiently depends on such areas and if 

patients have damage there they should find the rod balancing procedure 

very difficult and benefit less from the technique. As proposed by Harvey et 

al. (2003), it would have been useful to compare conditions in which the 

patient was asked to point to the centre of the rod (perception) and gripped 

the rod at its middle (action). This would have provided some indication if the 

patients’ vision for action’ system was relatively more spared than their 

‘vision for perception’ stream. Indeed, it is fair to assume that if patients had 

dorsal visual stream damage they would not be able to correctly reach and 

grasp for the rods and/or to use sensory feedback to realize that the rod is 

unbalanced. 

Previously, Robertson, Nico and Hood (1997) found that participant’s 

grips were more central in a condition where they were allowed to pick the 

rod up, when compared to when they only grasped the rod without lifting it. 

Edwards and Humphreys (1999) reported a single-case study of a neglect 

patient (MP) who improved in rod bisection when grasping (when compared 

to pointing) only under visual feedback conditions. When both vision of the 

hand and target were unavailable both pointing and grasping responses 

produced the same amount of rightward bias. The authors suggested that 

the improvement of grasping under visual feedback could be due to on-line 

visuomotor adjustment, which resulted in consequent improved performance 
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in their patient. In other words, they suggest that the vision of the rod tipping 

to the left side was responsible for the improvements caused by visuomotor 

feedback training, whereas the sense of unbalance did not seem to play a 

strong role in this. The application of this paradigm with a larger group of 

patients should reveal more of the mechanisms involved in this type of 

training. Moreover, one could place magnets on the rod to manipulate the 

sense of its weight. This would test if the improvements in grasping the 

centre of a rod depend on the sense of unbalanced weight to the left. In 

addition, this could be further exploited by including a condition in which the 

presence of visual feedback is manipulated.  

Furthermore, it would be interesting to test if visuomotor feedback 

training produces immediate effects on the performance of neglect patients 

in delayed reaching in a similar way as it ameliorates star cancellation and 

even line bisection (Robertson, Nico & Hood, 1997). Indeed, in Chapter 2, I 

have shown that these patients, just like DF, are specifically impaired in 

these off-line tasks and their errors correlate with their performance on the 

BIT and line bisection test. Future experiments should therefore test these 

patients before and after the intervention in delayed leftward reaching. If the 

training ameliorates the performance of patients in this task, this will provide 

further evidence that it improves processes supposedly carried out by the 

ventral visual stream through possible spared mechanisms in the dorsal 

visual stream.  

In a similar vein, it has been suggested that visuomotor feedback 

training and prism adaptation make use of the same sensorimotor processes 

(Harvey et al., 2003). In particular, prism lenses cause a mismatch between 

the proprioceptive sense of arm location and the visual experience of this. 
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Similarly, during visuomotor feedback training there is a mismatch between 

the initial perception of the rod’s length and the unbalanced rod when it is 

lifted. In other words, the patient is initially misguided by his perception of the 

rod (shorter to the contralesional side) and reaches to far ipsilaterally from 

the centre, but then by lifting the rod realizes that he/she was incorrect. 

Similarly to what happens during prism adaptation the patients correct their 

reaches until successful performance is achieved.   

In Sarri et al. (2008)’s study a preliminary lesion subtraction analysis 

was conducted to identify the lesioned voxels in patients that did not show 

improvement on a cancellation task after prism adaptation. Interestingly, the 

authors observed that patients who did not benefit from prisms had lesions 

located in the right intraparietal region and the inferior parietal lobe and 

middle frontal gyrus white matter. This result fits well with the PET study of 

Luauté et al. (2006b), that reported that the PPC was implicated in the 

beneficial effects of prism adaptation in neglect patients and that the patients 

who did not improve suffered lesions in the right infero-posterior parietal 

lobe.  

Furthermore, an fMRI study with healthy subjects found that reaching 

whilst wearing prisms significantly activated the PPC when compared to 

reaches without the prisms (Clower et al., 1996) and this has been recently 

extended by an event-related fMRI study by Luauté et al. (2009). The later 

authors observed that during the earliest phase of prism exposure, the 

anterior intraparietal sulcus was primarily implicated in error detection, 

whereas parieto-occipital sulcus was implicated in error correction. Luauté et 

al. (2009) observed that cerebellum activity progressively increased during 

prism exposure and argued that the observed time course indicates that the 
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cerebellum might promote neural changes in superior temporal cortex, which 

was selectively activated during the later phase of prism exposure and could 

mediate the effects of prism adaptation on cognitive spatial representations. 

Thus it would be interesting to compare the effects of visuomotor feedback 

training and prism adaptation in the same set of patients. Another possible 

avenue would be to conduct an fMRI study to determine the neural basis for 

the effects of visuomotor feedback training in both healthy participants and 

patients.  

 

Conclusion 

Taken altogether, the present findings show that visuomotor feedback 

training improves neglect symptoms and crucially that these improvements 

are long lasting, as they were present 4-months post-training. Importantly, I 

have shown that the training also seems to bring benefits to the patient’s 

daily lives, which were present at follow-up. Notably, the control group did 

not improve with more unspecified training in any of the measures used. 

There is no doubt that a blinded randomized control trial with a larger sample 

of patients will be needed to confirm the present results and that future 

experiments are also needed to understand the neural mechanisms behind 

such improvements. Nonetheless, these findings are very encouraging, as 

based on the report that most neglect recovery occurs in the first three 

weeks (Stone et al., 1992), the patients included here can be classified as 

chronic (4-months post-stroke). Moreover, in contrast with other neglect 

therapies (e.g., prism adaptation), visuomotor feedback training is simple, 

non-evasive, cost-effective, can be conducted solely by the patients with 

almost no supervision, and does not require long periods of training.  
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