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Abstract 

Metabolomics is the study of the metabolites, small molecules produced during the 

metabolism. Metabolite levels mirror the health status of an individual and therefore have 

enormous potential in medical point-of-care (POC) applications. POC platforms are 

miniaturised and portable systems integrating all steps from sample collection to result of a 

medical test. POC devices offer the possibility to reduce the diagnostic costs, shorten the 

testing time, and, ultimately, save lives for several applications. The glucose meter, arguably 

the most successful example of metabolomics POC platform, has already demonstrated the 

dramatic impact that such platforms can have on the society. Nevertheless, other relevant 

metabolomic tests are still relegated to centralised laboratories and bulky equipment.  

In this work, a metabolomics POC platform for multi-metabolite quantification was 

developed. The platform aims to untap metabolomics for the general population. As case 

studies, the platform was designed and evaluated for prostate cancer and ischemic stroke. 

For prostate cancer, new affordable diagnostic tools to be used in conjunction with the 

current clinical standard have are needed to reduce the medical costs due to overdiagnosis 

and increase the survival rate. Thus, a novel potential metabolic test based on L-type amino 

acids (LAA) profile, glutamate, choline, and sarcosine blood concentrations was developed.  

For ischemic stroke, where the portable and rapid test can make a difference between life 

and death, lactate and creatinine blood levels were chosen as potential biomarkers. All the 

target metabolites were quantified using an optical method (colorimetry).  

The platform is composed of three units: the cartridge, the reader, and the graphical user 

interface (GUI). The cartridge is the core of the platform. It integrates a CMOS 16x16 array 

of photodiodes, capillary microfluidics, and biological receptors onto the same ceramic 

package. To measure multiple metabolites, a novel method involving a combination of 

replica moulding and injection moulding was developed for the monolithic integration of 

microfluidics onto integrated chips.  

The reader is composed of a custom PCB and a microcontroller board. It is used for 

addressing, data digitisation and data transfer to the GUI. The GUI - a software running on 

a portable electronic device - is used for interfacing the system, visualise, acquire, process, 

and store the data.  

The analysis of the microfluidic structures showed successful integration. The selection of 

the specific chemistry for detecting the analytes of interest was demonstrated to be suitable 
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for the performance of the sensors. Quick and reliably capillary flow of human plasma, 

serum and blood was demonstrated.  

On-chip quantification of the target metabolites was demonstrated in diluted human serum 

and human plasma. Calibration curves, kinetics parameter and other relevant metrics were 

determined. For all the metabolites, the limits of detection were lower than the physiological 

range, demonstrating the capability of the platform to be used in the target applications.   

Multi-metabolite testing capability was also demonstrated using commercially and clinically 

sourced human plasma. For multiplexed assays, reagents were preloaded in the microfluidic 

channel and lyophilised. Lyophilisation also improved the shelf-life of the reagents. 

Alternative configurations, involving the use of paper microfluidics, integration of passive 

blood filter and use of whole blood, were investigated.  

The chracterisation of the platform culminated with a clinical evaluation for both the target 

applications. The same platform with minimal modification of the cartridge was able to 

provide clinically relevant information for both the distinct applications, highlighting the 

versatility of the platform for POC determination of metabolic biomarkers.  

For prostate cancer, the platform was used for the quantification of the potential metabolic 

biomarker in 10 healthy samples and 16 patients affected by prostate cancer. LAA, glutamate 

and choline average concentrations were elevated in the cancer group with respect to the 

control group and were therefore regarded as metabolic biomarkers in this population. 

Metabolomic profiles were used to train a classifier algorithm, which improved the 

performance of the current clinical blood test, for this population.  

For ischemic stroke, lactate determination was performed in clinically sourced samples. 

Clinical evaluation for ischemic stroke was performed using 10 samples from people 

diagnosed with ischemic stroke. Results showed that the developed platform provided 

comparable results with an NHS-based gold standard method in this population. This 

comparison demonstrated the potential of the platform for its on-the-spot use.  

The developed platform has the potential to lead the way to a new generation of low-cost 

and rapid POC devices for the early and improved diagnosis of deadly diseases. 
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1 Chapter 1: Introduction to the Research Project  1 

  Motivations 2 

Point-of-care (POC) technology refers to all the miniaturised, portable, automatised devices 3 

capable of providing healthcare close to or near the patient [1]. In practice, POC platforms 4 

are portable diagnostic devices that can be operated by the general population in any 5 

location, including home, ambulance, hospitals, critical care facilities and remote locations.  6 

POC testing is a new emerging healthcare model. Nowadays, the most commonly used 7 

approach for testing in healthcare throughout the world is the centralised laboratory [1]. 8 

Typically, samples are collected by trained personnel from various locations, including 9 

general practice surgeries and hospitals. Samples are then transferred to a laboratory where 10 

they are analysed by trained personnel. Results are then communicated to the patient.  11 

The use of POC devices simplifies the process of sample testing by providing an on-the-spot 12 

sample-to-answer test in a few minutes.  POC provides results rapidly thereby saving time 13 

that would be spent with samples being transferred to the laboratory. There is no need to 14 

wait for a trained personal to run the tests and thus the results do not need to be transmitted 15 

and collected. POC platforms can therefore reduce the response of a test from hours/days to 16 

minutes [2]. Table 1.1 illustrates the two different processes in healthcare testing.  17 

The rapidity and portability of POC testing might be more advantageous than laboratory 18 

testing in specific applications. The rapidity of POC testing can make a difference between 19 

life-or-death for applications requiring immediate availability of diagnostic data, such as 20 

sudden and acute medical conditions [2]. For instance, sepsis survival rate improves by 7.6% 21 

per hour of earlier diagnosis [3]. For acute cardiovascular events, such as ischemic stroke, 22 

early intervention within the so-called golden period (1-2 hours after the event) improves 23 

the survival rate by 80% [4]. 24 

Table 1.1 Comparison of of traditional testing vs POC testing. 25 

 Traditional testing Poin-of-care testing 

Sample collection 

Sample is collected by trained personnel 

in specilised facilities, including general 

practice, hospital, clinic, critical care. 

Sample is collected by the user/carer 

anywhere, including home, ambulance, 

remote locations.  

Analysis 

Sample is analysed in a laboratory by 

trained personnel. Sample processing 

might be required. 

Sample can be analysed anywhere by 

the user/carer. Minimal sample 

processing might be required.  

Duration  From sample to answer in hours/days. From sample to answer in minutes. 

 26 
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The portability of POC platforms has the potential to improve healthcare quality in rural and 27 

remote areas [1]. Testing infectious diseases in resource-poor locations, for instance, has the 28 

potential to save many lives by providing clinical information for conditions otherwise 29 

undiagnosed [1].   30 

The need for rapid, adaptable and low-cost POC testing platform providing reliable and 31 

quick results have been outlined in pandemic scenarios [5]. The recent Covid-19 pandemic 32 

required population-wide strategies, including mass-testing and contact tracing, both 33 

potentially deliverable using POC technologies and challenging to implement when adopting 34 

centralised testing [5].  35 

POC technology has the potential to reduce medical costs in some applications. For instance, 36 

in the case of prostate cancer (PCa), the widely used prostate-specific antigen (PSA) test, the 37 

current standard blood test for diagnosis, has been found to be unreliable. Fewer than one in 38 

three men with an elevated PSA will have PCa [6][7]. The high number of misdiagnosis due 39 

to PSA unreability can lead to unnecessary medical procedures (e.g. digital rectal 40 

examination, biopsy, etc). Besides being painful, invasive, and having the potential to cause 41 

complications, PSA downstream tests can be expensive [8], accounting for more than 70% 42 

of the medical costs associated with PCa screening. The adoption of a new blood test for 43 

PCa, supplementary to the PSA test, has the potential to reduce misdiagnosis, hence costs, 44 

and improve quality of health [9]. Candidate metabolic biomarkers have been identified for 45 

PCa. POC technology has the potential to enable detection of those candidate metabolomics 46 

biomarkers at a lower cost with respect to the equipment traditionally used for these analyses.   47 

Besides PCa, candidate metabolic markers have been identified for a variety of diseases. 48 

With its unique capability of describing the phenotype of the individual [10], [11], 49 

metabolomics -  the study of the molecules produced by cells during the metabolism - is 50 

considered to have enormous potential in POC testing [12], [13]. While the study of 51 

metabolites is widely exploited in pharmacology [14], metabolomics for diagnostics and 52 

screening is very much research laboratory-based, mainly because the equipment 53 

traditionally employed for metabolomics is bulky and expensive [12], [15].  54 

Metabolomics POC platforms have already demonstrated a dramatic social impact with 55 

handheld glucose meters forging 85% of the overall POC market [16]. To date, POC testing 56 

devices share a noteworthy market of approximately $21 billion [16]. It is projected that this 57 

market will keep growing in the next years, reaching an estimated value of $36 billion by 58 

2025 [16]. North America market may witness the highest growth until 2024, although major 59 
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market growth is expected also in Europe, India, and Asia [16]. Currently, the market is 60 

dominated by a small number of well-established companies, including Roche, Abbott, 61 

Siemens,  GE Healthcare and Medtronic [16].  62 

Several limitations and challenges are slowing down the process of widespread of 63 

diagnostics POC devices in the market. The main challenges for the development of 64 

commercial POC platforms are discussed in the following.  65 

Accuracy vs. Application. When a medical test is performed, the outcome typically yields 66 

to a positive (i.e. abnormal) or negative (i.e. normal) result with respect to a certain disease. 67 

Ideally, the test should be able to provide a certain and reliable result, with no false positive 68 

or negative. However, in practice this is not the case. Thus, the performance of the test is 69 

usually quantified by the diagnostic (or clinical) sensitivity, specificity, and accuracy (see 70 

Figure 1.1). The diagnostic sensitivity, also referred to as true positive rate (TPR), is the 71 

portion of positive samples correctly classified as positives [17] [18]. The diagnostic 72 

specificity, also known as true negative rate (TNR), is the portion of negative samples 73 

correctly classified as negatives [17] [18]. The diagnostic accuracy is the ratio between the 74 

sum of the true positive and negatives over the entire population [17].  75 

The diagnostic capability mainly depends on two factors: the analytical performance of the 76 

sensor and the target analyte. Laboratory equipment has typically higher analytical 77 

performance than POC devices. This is because POC devices are more inclined to errors, 78 

interferences, outliers and device-to-device variability than laboratory equipment because 79 

they are operated in a variety of settings [2]. POC platform also uses unprocessed and readily 80 

available specimens (i.e. finger-prick blood, saliva, etc) and techquines aiming at reducing 81 

the cost of the test. Nevertheless, the POC platform must be capable of delivering 82 

satisfactory diagnostic performance with respect to the application.  83 

 84 

 85 

Figure 1.1 Schematic illustration of diagnostic specificity, sensitivity, and accuracy. 86 
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Multi-analyte platform. The demand for multi-analyte POC platforms with accuracy 87 

suitable for providing clinically relevant information is another relevant challenge in the 88 

field of commercial POC testing [1], [2]. Running multiple simultaneous tests can be 89 

required for many assays which are unreliable without control measurements. Multi-analyte 90 

platforms can also test a panel of biomarkers, enabling the use of classification algorithm 91 

and improving the accuracy of the test by performing additional supporting measurements 92 

[2]. Lastly, multi-analyte POC platforms are desirable because they avoid the need for 93 

manufacturing, use and disposal of several devices [1].   94 

System integration. POC platforms are composed of different subsystems which need to be 95 

integrated. Subsystems also include sensors and biological reagents. Although both 96 

electronics and biology can rely on robust methods and procedures, their integration for a 97 

commercial purpose is still quite challenging. The procedures used for surface 98 

functionalisation is usually strongly dependent on the application. Recipes are usually tuned 99 

by experimental studies and empirical observation [19]. These limitations are particularly 100 

problematic for multi-analyte platforms, where multiple functionalisations of different 101 

sensing areas are required [20]. In this case, the procedures involved in the fabrication of the 102 

device must avoid crosstalk between different reaction zones [20].  103 

Typically, reagents are biological molecules and it is fundamental to preserve their activity 104 

against non-ideal conditions of temperature, pH, humidity and time [2]. This might require 105 

strategies for the compensation of any sample-to-sample, test-to-test and device-to-device 106 

variability, loss in activity of the reagents, environmental conditions, external noise, 107 

transient effects and any other source of variability [2]. Furthermore, the POC should work 108 

with no or minimal sample pre-processing [2]. 109 

Cost of the platform. The trade-off between the cost of the platform and its frequency of 110 

use is another main challenge. The POC platform is required to be affordable by the final 111 

user but the affordability is related to its frequency of use. For instance, moder commercial 112 

glucose meters cost about £30, with a cost per test as low as £0.50. Glucose meters are used 113 

very frequently by the user (more than once a day), hence the very low cost. However, 114 

platforms used less frequently have an increased cost on the market. Typically, the reduction 115 

of the selling price can be achieved by employing appropriate mass-production strategies. 116 

However, the challenges illustrated above can require strategies which are not suitable for 117 

mass-manufacturing [21]. This discussion is addressed in detail in Paragraph 2.6.3.  118 

 119 
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  Aims and Objectives 120 

This research project is part of the ‘Multicorder project’ [22], [23], aimed at developing a 121 

broad-spectrum sensor platform by integrating several biosensors on a single device to sense 122 

the personal metabolome. The Multicorder project aims at developing a personal 123 

metabolome machine for precision healthcare. It is supported by the UK Engineering and 124 

Physical Sciences Research Council, with Professor David Cumming as the head of the 125 

project. Within the Multicorder project, many integrated sensing chips have been developed 126 

using the complementary metal-oxide–semiconductor (CMOS) technology.  127 

In this frame, my PhD project consisted of developing and testing a POC platform for the 128 

quantification of metabolic biomarkers. The target metabolic biomarkers were detected 129 

using a colorimetric approach and were selected for two case studies: PCa and ischemic 130 

stroke. The former application aims to demonstrate the potential of a metabolomics based 131 

POC platform in a context where new diagnostic tools can improve the current clinical 132 

practice in terms of medical costs and survival rate. The latter application aims to show the 133 

potential of the device as a rapid diagnostic tool that can make a difference between life or 134 

death. The two case studies are intended as a proof-of-concept. The platform has the 135 

versatility and capability of adapting to a wide range of biological assays with no or minimal 136 

modifications. For the development of the platform, a CMOS chip developed within the 137 

Multicorder project, was employed. The CMOS chip integrates a 16x16 array of multi-138 

sensor elements. Each element integrates a photodiode, a single-photon avalanche diode 139 

(SPAD) and an ion-sensitive field-effect transistor (ISFET). Only the photodiodes were used 140 

in this work. The specific objectives of this PhD project and the contributions for each of the 141 

completed task within the project are shown in Table 1.2. 142 

 143 

Table 1.2 Table of contributions for this PhD project. 144 

Chapter Task / Activity Main investigators 

2, 3 
Identification of a potential metabolic 

biomarker panel for prostate cancer  

- Valerio F. Annese (literature survey) 

- Prof. Rob Jones2 (discussion/validation) 

2, 3 
Identification of a potential metabolic 

biomarker panel for ischemic stroke  

- Valerio F. Annese (literature survey) 

- Dr Samadhan Patil1 (discussion/validation) 

3 Design of the CMOS chip 

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

- Dr James Beeley1 

3 Fabrication of the CMOS chip Outsourced (Austriamicrosystems) 

3 Development of the reader (hardware) 

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

- Dr Claudio Accarino1 



6 

 

 

 

3 Development of the reader (software) - Valerio F. Annese 

3 
Development of the graphic user 

interface 
- Valerio F. Annese 

3 
Enzymatic reactions modelling and 

simulations  
- Valerio F. Annese 

3 Embedded Platform testing  - Valerio F. Annese 

4 Microfluidics design and modelling  - Valerio F. Annese 

4 
Integration of capillary microfluidics 

on the CMOS chip 
- Valerio F. Annese 

4 Packaging for multiplexed wet assays  - Valerio F. Annese 

4 
Characterisation of the microfluidic 

structures  
- Valerio F. Annese 

4 
Spectral characterisation of the 

photodiode array  

- Valerio F. Annese  

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

4 Characterisation of the cartridge  - Valerio F. Annese 

4 
Characterisation of sample flow in the 

microfluidic system  
- Valerio F. Annese 

5 Development of the experimental setup  - Valerio F. Annese 

5 Assay formulations - Well established in the literature 

5 Assay optimisations for this platform - Valerio F. Annese 

5 

Characterisation of the platform when 

measuring PCa-related metabolites in 

diluted serum  

- Valerio F. Annese 

5 

Characterisation of the platform when 

measuring ischemic stroke-related 

metabolites in diluted serum 

- Valerio F. Annese 

5 Quantification of the test duration - Valerio F. Annese 

5 
Reagents printing for microchannel 

functionalisation 
- Valerio F. Annese 

5 
Reagents lyophilisation for 

microchannel functionalisation 
- Valerio F. Annese 

5 
Quantification of the reagents shelf-life 

after lyophilisation 
- Valerio F. Annese 

5 Multiplexed assays in human plasma  - Valerio F. Annese 

5 
Multiplexed assays with paper 

microfluidics (2 metabolites) 

- Dr Chunxiao Hu1 (designed the work and 

performed experiments) 

- Dr Srinivas Velugotla1 (developed the paper 

strips) 

- Valerio F. Annese (developed and applied 

functionalisation method of the paper strips) 

5 Whole blood experiments  - Valerio F. Annese 

6 Optimisation for clinical evaluation - Valerio F. Annese 

6 Clinical evaluation with PCa samples  - Valerio F. Annese 

6 
Clinical evaluation with ischemic 

stroke samples   
- Valerio F. Annese 

6 Multiplexed assays with PCa samples  - Valerio F. Annese 
 Affiliation at the time of completion of the task:  

1Microsystem Technology Group, James Watt School of Engineering, University of Glasgow.  
2 Institute of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer 

Centre, Glasgow.  

 145 
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  Platform Requirements 146 

This project aims to develop and characterise a portable metabolomics-on-chip platform for 147 

ischemic stroke and PCa.  This raises the question: which are the requirements of the 148 

platform? This paragraph addresses this question with initial qualitative considerations. 149 

Quantitative requirements are then set in the next chapter, alongside the identification of 150 

strategies necessary to meet the criteria. Table 1.3 summarises the requirements of the 151 

platform developed in this research project. 152 

The general requirements of a POC platform have been illustrated by the World Health 153 

Organisation [1], [13]. A POC test is required to be Affordable, Sensitive, Specific, User-154 

friendly, Rapid & Robust, Equipment-free, Delivered [1]. Those specifications are generally 155 

referred to as ASSURED requirements [1]. In addition to the ASSURED requirements, there 156 

are two requirements specific to this research project: versatility and multi-analyte 157 

capabilities.  158 

Affordability means that the platform must have a cost suitable for the general population. 159 

As already mentioned, the affordability of the platform depends on its frequency of use. We 160 

can assume that a platform designed for daily use should have a lower cost than a platform 161 

used, for instance, once a month. Evidence of this assumption is also provided by the cost of 162 

the POC platforms on the market.  163 

Sensitivity and specificity are considered top-priority requirements [1]. The level of clinical 164 

sensitivity and specificity depend on the application. However, sensitivity and specificity 165 

levels similar (or better) than the current clinical standard are expected.  166 

User-friendliness. The POC platform is required to be user-friendly, meaning that a member 167 

of the general population should be able to use it with a minimal set of instructions without 168 

any previous training.  The user-friendly requirement implies that the platform must be easy 169 

to use, intuitive and largely automatised.  170 

Rapidity & Robustness. The POC platform is required to provide a rapid result. By 171 

comparison with the POC devices currently on the market, we can assume that the test must 172 

have a duration in the order of minutes.  173 

The POC platform is required to be robust. The platform must have strategies in place to 174 

standardise the measurement and provide reliable and replicable results against device-to-175 

device and sample-to-sample variability. The platform should also recognise when a test is 176 
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invalid and have strategies in place to ‘fail safely’, for example by notifying the user that the 177 

result is not trustworthy.  178 

Equipment-free. The POC platform is required to be equipment-free, meaning that the 179 

platform must be capable of running the test without any external equipment required.  180 

The World Health Organisation also illustrates that the platform must be delivered, meaning 181 

that it must be possible to safely transport and ship the platform to the final user.  182 

Versatility. This work is part of a larger vision and employs a sensor platform which 183 

integrates additional sensors. Although the metabolomic biomarkers targeted in this work 184 

needs to be specific to address the case studies, the developed methods and procedure must 185 

apply to a larger variety of detection methods and biomarkers.  186 

Multi-analyte testing. The platform also requires to be capable of multi-analyte testing. 187 

Multi-analyte testing means that the platform must have the potential to perform multiple 188 

measurements (involving different biomarkers or/and control measurements) within a single 189 

test routine.  190 

 191 

Table 1.3 Requirements of the platform.  192 

Requirement Definition 

Affordability1 
The platform and the single test must have a cost suitable for the general 

population (depending on its frequency of use).  

Sensitivity1 The platform must have the capability of providing clinically relevant 

measurement (high true positive rate). 

Specificity1 
The platform must be specific for a determined application (high true negative 

rate). 

User-friendly1 
The general population must be capable of operating the platform with a 

minimal set of instructions.  

Rapid1 The platform must provide the result in minutes. 

Robust1 

The platform must have solutions in place to standardise the measurement 

against device-to-device and sample-to-sample variability. The platform 

should also be capable of failing safely. 

Equipment-free1 
No external equipment must be necessary to run the test. The platform should 

be portable, ideally handheld. 

Delivered1 The platform must be suitable for transport and shipping.  

Multi-analyte 

capability2 

The platform must be capable of measuring multiple metabolic biomarkers at 

the same time.  

Versatility2 
The platform should be capable of accommodating several applications with 

minimal modifications.  

1 Requirement outlined by the World Health Organization. 
2 Requirement for this specific project.  
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  Thesis Outline 193 

The present thesis work is divided into seven chapters. A flow chart of the research project 194 

in Figure 1.2 guides the reader through the thesis. A brief description of the following 195 

chapters is also provided below. 196 

 Chapter 2 sets the quantitative requirements of the platform. This is achieved by discussing 197 

relevant scientific literature and devices on the market. The literature review mainly focuses 198 

on five topics, namely enzyme-based biosensors, integrated optical sensors, microfluidics, 199 

metabolomics and POC systems.  200 

Chapter 3 describes the development of the embedded platform. All the units composing 201 

the platform are singularly analysed, reporting the design and the development stages.  202 

Chapter 4 presents the development and characterisation of microfluidics. It illustrates the 203 

properties of the developed microfluidics, the spectral properties of the colorimetric reagents 204 

and the characterisation of the sensor array. 205 

Chapter 5 illustrate results related to the quantification of the proposed metabolic 206 

biomarkers for both PCa and ischemic stroke in diluted serum using the developed platform. 207 

This chapter also demonstrates the capabilities of the platform for simultaneous multi-208 

metabolite quantification.  209 

Chapter 6 presents the clinical evaluation of the platform. Results related to the 210 

quantification of the proposed metabolic biomarkers for both PCa and ischemic stroke in 211 

clinically sourced samples of human plasma are presented.   212 

Chapter 7 concludes this research work by summarising the main findings and discussing 213 

potential future work.  214 
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 215 

Figure 1.2 Flow chart of the research project.  216 
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2 Chapter 2: Application Background 217 

  Introduction  218 

This chapter aims to set quantitative requirements for the platform. Strategies necessary to 219 

address the requirements are also discussed. This is done by providing theoretical knowledge 220 

and discussing the relevant state of the art. Table 2.1 recapitulates the objectives and the 221 

requirements of this work for ease of reading. 222 

Five main topics are analysed in this chapter. The first theme herein discussed is biosensors. 223 

The section is mainly oriented to integrated enzyme-based optical biosensors. The second 224 

topic discussed, integrated optical sensors, illustrates the complementary metal-oxide-225 

semiconductor (CMOS) technology, and provides theoretical knowledge on optical sensors. 226 

The third theme examined in this chapter is microfluidics. Theoretical knowledge is provided 227 

in this chapter. The state of the art and the discussion about its integration with the integrated 228 

circuit is discussed in Chapter 4. The fourth aspect herein covered is metabolomics, with a 229 

special focus on the case studies of this platform, i.e. PCa and ischemic stroke. The final 230 

aspect herein discussed is POC platforms for healthcare. Both experimental and commercial 231 

POC apparatuses are discussed, presenting challenges, limitations, and successful examples 232 

of the technology. 233 

 234 

Table 2.1 Summary of objectives, applications, and requirements of the platform.  235 

Requirement Definition 

Objective Development and characterisation of a metabolomics-on-CMOS platform 

Applications - Ischemic stroke  

- Prostate cancer  

Requirements  

- Affordability 

- Sensitivity 

- Specificity   

- User friendly 

- Rapid 

- Robust 

- Equipment-free 

- Delivered  

- Multi-analyte capability 

- Versatility  
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  Biosensors  236 

A biosensor is a device that couples one or more molecular recognition elements (biological 237 

receptors or reagents) with a transducer to convert a biological response into an electric 238 

signal [24]–[26]. A biosensor usually aims to detect or quantify a target substance, namely 239 

the analyte, typically restrained into a sample. The reasons for their rapid evolution since the 240 

development of the first biosensor by Clark and Lyon in 1962 [27], include the wide range 241 

of applications, including defence, healthcare, security, pharmaceuticals, food safety and 242 

quality, environmental monitoring [28], and their higher performance if compared to 243 

traditional bulky instrumentation regarding specificity, sensitivity, cost, rapidity, 244 

multiplicity and portability [28]. As shown in Figure 2.1, a biosensor can be usually divided 245 

into the following essential elements [28]:  246 

• the bioreceptors, the biological elements that specifically recognise the target analyte;  247 

• the transducer, the system capable of converting the physical changes accompanying the 248 

interaction between analyte and bioreceptor into a measurable electric signal; 249 

• the front-end, an electrical circuit responsible for signal conditioning (amplification, 250 

filtering, digitisation) and reading.  251 

The elements mentioned above are mutually connected. The target analyte depends on the 252 

application. Nucleic acids, proteins, metabolites, ions, antigens, pollutants are just a few 253 

examples of the potential target analyte.  Accordingly, the bioreceptor is selected for 254 

interacting with the analyte with a high degree of selectivity and specificity. Examples of 255 

bioreceptors are enzymes, antibodies, nucleic acids,  proteins, aptamers [29]. The transducer 256 

is selected for detecting the modification in chemical, biological or physical properties of 257 

the sample or the environment induced by its interaction with the organic reagents. Finally, 258 

the front-end depends on the specific application and the selected transducer. 259 

 260 

Figure 2.1 Schematisation of a generic biosensor. Reproduced and modified from [30]. 261 
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2.2.1. Enzyme-based biosensors  262 

The use of biomolecules rather than synthesised molecules as bioreceptor is becoming a 263 

priority in modern biotechnology [31]. There are several advantages when using 264 

biomolecules. They are usually easier to obtain than synthetic molecules [32], exhibit high 265 

specificity and selectivity of binding [28] and can be labelled by fluorescent probes [32]. 266 

Knowledge and procedures for biomolecules manipulation are also well-established [32]. 267 

Among all types of bio-molecules, enzymes have found widespread use in biosensors 268 

because of their inherent specificity, selectivity and catalytic properties [33].  269 

Enzymes are folded chains of amino acids which catalyse specific reactions transforming a 270 

substrate into a product by lowering the activation energy of the reaction. This is achieved 271 

by inducing transition states with lower free energy, as shown in Figure 2.2 [24], [34]. 272 

The model of ‘the lock and the key” provides an intuitive explanation of the high selectivity 273 

of enzymes [35]. Enzyme and substrate might be conceptualised with complementary 274 

geometric shapes that fit precisely into one another. Today, this model has been overcome 275 

due to some limitations but intuitively describes the specificity of the binding [36]. 276 

According to the Michaelis-Menten theory [24], [34], which illustrates the kinetics of 277 

enzyme action, the reaction sequence can be described as: 278 

E + S  

k+1
→ 

k−1
← 

  ES 
k+2
→   P (2.1) 

Where E is the enzyme, S is the substrate, ES is the bound complex, P is the product, k+1, k-1 279 

and k+2 are the rate constants (typically k+1 > k-1, k+2) [24]. By calculating the rate equations 280 

of the reaction, applying the boundary conditions and after mathematical manipulations 281 

reported in [24], it is possible to derive the Michaelis-Menten equation (Figure 2.3): 282 

 283 
Figure 2.2 Due to the introduction of transition states (S1, S2, S3), the catalysed reaction has 284 

lower activation energy than the one of the uncatalysed reaction (ΔE2<ΔE1). Reproduced 285 

and modified from [24].  286 
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 287 
Figure 2.3 Reaction rate vs substrate concentration (Michaelis-Menten model) [24]. 288 

 289 

d[P]

dt
=  v =  k+2 [ES] =  

k+2 [S][E]0
[S] + Km

= 
Vmax [S]

[S] + Km
= 

Vmax 

1 + 
Km

[S]

 
(2.2) 

Km = 
k−1 + k+2

k+1
 ≈  

k−1
k+1

 ( when k+2 ≫ k−1 ) (2.3) 

Where v is the rate of the reaction, [X] denotes the concentration of X, [E]0 is the initial 290 

concentration of the enzyme, Vmax is the maximum rate of reaction (occurring when the 291 

substrate completely saturates the enzyme), and Km is the Michaelis constant (typical values 292 

10-1:10-5 M) defined in Equation (2.3).   293 

There are two general approaches to enzymatic substrate estimation: end-point analysis or 294 

rate measurement analysis [37]. The end-point method compares the condition of the sample 295 

or the environment before and after the chemical reaction is completed.  296 

Differently, the rate measurement analysis employs the Michaelis-Menten equation. By 297 

monitoring the initial rate of the reaction vo by an appropriate transduction method with 298 

known Vmax, Km and [E]0, it is possible to calculate the initial concertation of the substrate 299 

[S]0 as: 300 

[S]0 = 
v0 Km  

Vmax − v0  
 (2.4) 

This estimation method is usually quicker than the alternative approach based on the reaction 301 

endpoint because it is required only to monitor the first part of the reaction.  302 

There are mainly two types of biosensors: electrochemical and physical [38]. 303 

Electrochemical biosensors detect alterations of the charge distribution of the sample or 304 

environment [38].  Amperometric, potentiometric, impedimetric and voltametric are the 305 

most common electrochemical biosensors. pH biosensing usually performed thoroughly 306 

integrated pH sensors such as the ion-sensitive field-effect transistors (ISFET), are also a 307 
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widespread electrochemical sensing technique [2]. Among electrochemical detection 308 

methods, amperometric is probably the most commonly used approach [39].  309 

Amperometric sensors generate a current flow proportional to the concentration of the 310 

analyte [39]. This class of biosensors use a catalytic electrode, classically platinum, for the 311 

oxidation of specific chemical species (e.g. hydrogen peroxide or NADH) generated 312 

alongside an enzymatic reaction [40]. The electrode where the oxidation takes places is 313 

called the working electrode (anode). The potential of the working electrode is kept constant 314 

with respect to a reference electrode for the oxidation of the desired species, hydrogen 315 

peroxide in this example. Generated electrons from the oxidation of the target species create 316 

a detectable current and are usually recombined on the counter electrode (cathode), 317 

classically made of silver/silver chloride (Ag/AgCl).  318 

Physical biosensors detect modifications of the physical properties or condition of the 319 

sample or environment [38]. Calorimetric, mechanical, and optical biosensors are the most 320 

common physical biosensors. Calorimetric biosensors detect heat exchange accompanying 321 

the reaction of the analyte with the bioreceptors. Mechanical biosensors usually detect mass 322 

modifications of the biological component after the interaction with the bioreceptors. Optical 323 

biosensors usually employ a light sensor which detects a variation of the optical properties 324 

of the sample or the environment. They can mainly be divided into three categories according 325 

to the principle of operation: bioluminescence, fluorescence, and absorbance [38].  326 

Bioluminescent biosensors use specific bioreceptors (e.g. luciferase) selected to produce 327 

photons when interacting with the substrate. The light production mechanism involves 328 

biochemical reactions relying on the oxidation of the substrate [41]. When the light-329 

producing reactions are chemical (inorganic reagents, e.g. luminol), this phenomenon is 330 

usually referred to as chemiluminescence [41]. The setup of a generic bioluminescence-331 

based biosensor is described in Figure 2.4(a). The interaction of the bioreceptors and the 332 

analyte within the sample produces the generation of photons, usually with a wavelength 333 

λlum in the visible or near-infrared range [41]. Light production is omnidirectional. Produced 334 

photons can be sensed by an optical sensor typically operated in a dark environment.  335 

Fluorescent biosensors use specific bioreceptors (e.g. fluorophore) selected to produce a 336 

change in the fluorescence properties when interacting with the target analyte. Fluorescence 337 

is the emission of light that occurs after the absorption of light that is typically of shorter 338 

wavelength [42]. The setup of a generic fluorescence-based biosensor is described in Figure 339 

2.4(b). Unlike bioluminescence, fluorescence requires incident excitation radiation. 340 
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Figure 2.4 Working principle of (a) bioluminescence-based biosensors, (b) fluorescence-341 

based biosensors and (c) absorbance-based biosensors.  342 

 343 

A light source emitting excitation light with a wavelength λex is used to illuminate the sample. 344 

Due to the reaction between analyte and bioreceptors within the sample, photons with a 345 

wavelength λem are omnidirectionally emitted. The emitted photons can be sensed using an 346 

optical sensor, typically preceded by an optical filter cancelling out the excitation light.  347 

Absorbance-based biosensors use bioreceptors to produce a change in the light absorbance  348 

of the sample when interacting with the target analyte [39]. Since the change in the 349 

absorbance property of the sample is usually measured only for a selected range of 350 

wavelengths, absorbance-based biosensors are also referred to as colorimetric.  351 

The setup of a generic colorimetric biosensor is described in Figure 2.4(c). A fixed 352 

wavelength is shone on the sample under test. The wavelength is typically selected to be a 353 

compromise between the responsivity of the detector and the peak absorption of the light-354 

absorbing species in the visible range. Light transmitted thorough the sample is then 355 

monitored with an optical sensor during the chemical reaction. The intensity of the incident 356 

light is kept constant and usually in a linear region of the optical sensor dynamic range. 357 

 358 

2.2.2. Discussion on the detection methods 359 

Electrochemical and optical biosensors have shown comparable performance [43]. 360 

However, when considering integrated solutions for multi-analyte sensing, there are some 361 

aspects to be considered.  To date, mass-produced optical sensors have good performance at 362 

affordable costs, mainly driven by the consumer electronics industry. Arrays of optical 363 

sensors with variegated dimensions (e.g. camera and imagers) can be easily manufactured. 364 

 
(a) (b) (c) 
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Related bio-chemistry accompanying the optical transduction is also robust and well-365 

established [43]. Platforms utilising optical modalities also have a great deal of potential for 366 

customisation due to the large numbers of probe molecules available [43]. The main issue 367 

related to optical biosensors is the necessity of samples pre-processing such as blood pre-368 

filtration since red cells and other large molecules can create noise and artefacts [43].  369 

Electrochemical platforms, such as amperometric devices, are less convenient to miniaturise. 370 

First, the selection of the metals used for the electrodes is crucial [44]. Some of the metals 371 

to be used in amperometric sensing are incompatible with standard manufacturing processes 372 

and need to be deposited after fabrication in cleanroom facilities [45]. The consequent need 373 

for additional fabrication steps, which can also be purchased as service, can lead to an 374 

increased cost of the platform. Additionally, the working principle of amperometric sensors 375 

creates challenges when designing an array of amperometric sensors for multiple assays due 376 

to potential interferences related to other chemical species nearby of the potential window 377 

used for the oxidation of the target compound [45].  378 

With reference to the requirements of this platform outlined in Table 1.3, the electrochemical 379 

methods have a lower multi-analyte capability than the optical methods. For this reason, an 380 

optical detection mechanism was selected for the developed platform. Among the optical 381 

detection methods, a colorimetric approach has been adopted in this work. The reasons 382 

leading to this selection are illustrated in the following discussion (summary in Table 2.2). 383 

For its ease-of-use bioluminescence is an excellent candidate to achieve non-invasive live-384 

cell imaging. The absence of a light source simplifies the required setup and also eliminates 385 

the risk of photobleaching, which is the permanent photochemical modification of a probe 386 

molecule due to light exposure [46]. Photobleaching is an intrinsic property of the receptors 387 

and it is usually preponderant when exposing the dye probe to wavelength in the range 360–388 

440nm [42], [47]. It also depends on the intensity of the light source, on the duration of the 389 

exposure and the concentration of the receptors [47]. 390 

However, bioluminescence suffers from its low-brightness nature largely caused by the slow 391 

turnover of bioreagents and the omnidirectionality of light production [42]. Bioluminescence 392 

intensity is strictly limited by the number of substrate molecules being catalysed by the 393 

bioluminescent protein [46]. To increase the chance to sense the produced light, 394 

bioluminescence is usually used over samples with macroscopic volume and detected with 395 

high-performance optical transducers. Furthermore, optical transducers are typically 396 

operated with long exposure times, which limit the spatiotemporal resolution of the 397 
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measurement [41]. Bioluminescence is therefore not adequate for this PhD project as the 398 

platform requires small sample volumes (in the µL scale). The adequate temporal resolution 399 

of the measurement is also needed for a correct estimation of the reaction rate.  400 

One major advantage of fluorescent probes with respect to bioluminescence is that they can 401 

be brighter than bioluminescent proteins [46]. The intensity of the emitted light can also be 402 

increased by increasing the excitation light intensity. The difference between the exciting 403 

and emitted wavelengths makes these biosensors highly specific and suitable for the 404 

quantification of very low concentration of analytes [42].  405 

Nonetheless, photobleaching is a limiting factor for fluorescence measurements [42]. On one 406 

hand, this is because the wavelength of the light excitation source is typically in the range of 407 

wavelength where photobleaching is more preponderant [42]. On the other hand, this is due 408 

to the use of high-intensity excitation light [47].  The use of a high-intensity excitation light 409 

also requires the use of an optical filter with a high rejection coefficient. The necessity of a 410 

high-performance optical filter makes fluorescent biosensor expensive, especially in the case 411 

of miniaturised platforms. Fluorescence is not adequate for this project as the cartridge needs 412 

to be affordable, ideally disposable. The integration of an optical filter for fluorescence 413 

biosensing would increase the cost of the cartridge. Also, the necessity of a filter between 414 

the sample and sensor would implicitly undermine the usage of other sensors on the cartridge 415 

(ISFET). A fluorescence approach is therefore incompatible with the versatility requirement. 416 

Colorimetry is easy to operate, affordable and suitable for multi-metabolite sensing. 417 

Colorimetric sensors have lower selectivity when compared to bioluminescent and 418 

fluorescent biosensors. This is because any impurity within the sample can affect the light 419 

absorbance and interfere with the sensing. Colorimetric sensors are also not suitable for 420 

sensing analytes with a low concentration (in the range of pM, nM). Photobleaching is also 421 

an issue for colorimetric sensors [48]. However, this might be minimised by using 422 

wavelength where the effect is less evident (e.g. > 450 nm) , a light source with irradiance 423 

intensities in the range of tens of µW/cm2 and limiting the duration of the light exposure to 424 

a few minutes [47].  Colorimetry is the most promising approach for the target applications 425 

as it is a trade-off among all the requirements. The target analytes of this platform have a 426 

blood concentration in the µM to mM range (this is discussed in the metabolomics section 427 

of this chapter), which is suitable for colorimetric detection. The platform is also required to 428 

be affordable and easy to operate. For these reasons, the colorimetric method is the most 429 

suitable for this project and it was adopted for the development of this platform. 430 
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Table 2.2. Comparison of different optical detection methods. The suitability of the detection 431 

methods against the requirements of this project was scored (low, medium, high) and 432 

justified. Scores were assumed by literature investigation and only apply for this project. 433 

Requirement Bioluminescence Fluorescence Colorimetry 

Affordability High (Easiest setup) 
Low (Light source and 

expensive filter required) 

Medium (Light source 

required but no filter) 

Sensitivity Low (Light glow has 

low intensity) 

High (Suitable for nM to 

mM concentrations) 

Medium (Suitable for µM to 

mM concentrations) 

Specificity High (Detection method is very specific) 
Medium (Impurities might 

affect the measurement) 

User-friendly High (The user only requires inserting the sample, regardless of the detection method) 

Rapid High (The initial reaction rate can be used to estimate substrate concentration) 

Robust High (Controls tests can be run to increase the reliability of test) 

Equipment-free High (The setup of the test can be integrated into a single equipment-free platform) 

Delivered 
Medium (All the detection methods employ biological reagents which might require 

particular care when transported) 

Multi-analyte 

capability 

Medium (Lateral 

crosstalk might be an 

issue. Large sample 

volume also required) 

Medium (Lateral crosstalk 

might be an issue. The 

necessity of the filter 

complicates the monolithic 

integration) 

High (Lateral crosstalk is 

lower - light is mostly 

unidirectional) 

Versatility 

High (Electrochemical 

sensors on the platform 

can be used) 

Medium (Electrochemical 

sensors on the platform 

cannot be used) 

High  (Electrochemical 

sensors on the platform can 

be used) 

 434 

2.2.3. Colorimetric biosensors 435 

Since colorimetry was adopted in this work, a more detailed description of colorimetric 436 

biosensors is proposed in this paragraph. 437 

The working principle of colorimetric sensors can be dived in two simultaneous phenomena: 438 

enzymatic reaction and reaction transduction [40]. The enzymatic reaction stage groups all 439 

the chemical reactions taking place. The most commonly employed enzymes belong to the 440 

oxidation and dehydrogenase classes [40]. For example, let us consider integrated enzyme-441 

based biosensors for the determination of glucose. Today, glucose meters are the most 442 

popular portable quantitative platform employed in healthcare [2]. Glucose meters are 443 

mainly based on Glucose Oxidase (GOx), commonly employed in both amperometric and 444 

colorimetric biosensors [40]. GOx has a very high glucose selectivity, is easy to obtain, low-445 

cost and very stable to pH, temperature and storing-time [40]. In the presence of water and 446 

oxygen, glucose reacts with GOx, producing gluconic acid and hydrogen peroxide [49]: 447 

Glucose  + 𝐻2𝑂 + 𝑂2  
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝑂𝑥𝑖𝑑𝑎𝑠𝑒 (𝐺𝑂𝑥) 
→                  𝐺𝑙𝑢𝑐𝑜𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 + 𝐻2𝑂2   (2.5) 

Cofactors (e.g. flavin adenine dinucleotide), can be used in combination with GOx. At this 448 

stage, there might be different strategies for the reaction transduction [40].  449 
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Absorbance biosensors employ an additional reaction step introduced to interact with 450 

hydrogen peroxide and produce light-absorbing species. O-dianisidine and the system 451 

phenol/4-aminoantypirine (4AAP ) are two well-established probes [49]. They are both 452 

oxidised by hydrogen peroxide in the presence of a catalysing enzyme, namely peroxidase 453 

(HRP), as reported in the following [49]: 454 

𝑜 − 𝑑ianisidine (reduced)  + 𝐻2𝑂2  
𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐻𝑅𝑃) 
→             𝑜 − 𝑑ianisidine (oxidised) + 𝐻2𝑂 (2.6) 

𝑃ℎ𝑒𝑛𝑜𝑙 + 4 − 𝐴𝐴𝑃 + 𝐻2𝑂2     
𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐻𝑅𝑃)
→             𝑄𝑢𝑖𝑛𝑜𝑛𝑒 − 𝑖𝑚𝑖𝑛𝑒 + 2𝐻2𝑂   (2.7) 

Both oxidised o-dianisidine and quinone-imine have higher extinction coefficient than the 455 

initial solution, resulting in a higher absorbance around 450 - 500 nm. At this stage, an 456 

optical sensor can be used as a transducer to monitor the variation of the absorbance. Beyond 457 

the example of glucose, similar chemistries based on oxidation enzymes can be used to 458 

measure different analytes. 459 

Colorimetric bioassays employ the Beer-Lambert law which states that the optical 460 

absorbance A of a solution depends on the concentration of the light-absorbing species [P], 461 

its extinction coefficient 𝜀 and the optical length h [50] :  462 

ε ∙ h ∙ [P] = A = − log T =  − log
I

I0
  (2.8) 

Where T is light transmittance, I is the transmitted light and Io is the incident light. Figure 463 

2.5 illustrates the Beer-Lambert law. The absorbance is directly proportional to the 464 

concentration of the light-absorbing species. Hence, a high concentration of analyte (in the 465 

order of µM) is required in order to create a detectable signal. Usually, ɛ, h and [P] are 466 

measured in Lcm-1mol-1, cm and molL-1, respectively. During the reaction, the absorbance 467 

changes and its profile can be referred to as a(t).  The quantities ɛ and h are usually constant; 468 

thus, a(t) is proportional to the concentration profile of the light-absorbing species, referred 469 

to as [p(t)]. By differentiating the time-domain Beer-Lambert equation and plugging-in 470 

Michaelis-Menten equation (2.2), the following relation can be demonstrated:  471 

a(t) = ε ∙ h ∙ [p(t)] →  
da(t)

dt
 =  ε ∙ h ∙

d[p(t)]

dt
=  ε ∙ h ∙  

Vmax 

1 + 
Km

[S]

 
(2.9) 

where the notation mentioned above has been preserved. Beer-Lambert law is limited by the 472 

phenomenon of photobleaching for high concentrations of the light-absorbing species and 473 

high light intensities.  474 

 475 
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(a) (b) 

Figure 2.5 (a) Setup for colorimetric measurement. (b) Illustration of  Beer-Lambert law.  476 

 477 

2.2.4. Integration of the bioreceptors 478 

Many approaches for the integration of the bioreceptor with the sensor have been developed. 479 

Currently, immobilisation and lyophilisation are the most commonly used approaches [51]. 480 

Reagent immobilisation defines a set of procedures aiming to link the reagent to a substrate 481 

[51]. Reagent immobilisation has shown several advantages with respect to the reagent in a 482 

liquid state, including higher stability, easier shipment, easier process control, multi-enzyme 483 

processes, convenient handling, reusability [51].  484 

Immobilisation methods can be dived into physical methods and chemical methods. Physical 485 

methods include reagent entrapment, absorption and microencapsulation [51]. Reagent 486 

entrapment involves the cross-link of the reagent with a polymer (e.g. alginate) [51]. 487 

Differently, reagent absorption methods allow the non-covalent link of the reagent with a 488 

substrate. This can be achieved by hydrophobic interactions, hydrogen bonding and Van der 489 

Waals forces [51]. Microencapsulation refers to the encasement of the reagent in semi-490 

permeable polymer membranes with variable micrometric porosity. On the other hand, 491 

chemical methods include covalent attachment, cross-link, ionic binding and conjugation by 492 

affinity ligands [51]. A detailed description of protocol and techniques for enzyme 493 

immobilisation is reported in [51].  494 

Reagent lyophilisation is also a widespread technique, especially in commercial devices [2]. 495 

Lyophilisation, also known as freeze-drying, is a process in which water is removed from a 496 

product by direct sublimation. Freeze-drying is today a well-established technique, vastly 497 

employed by pharmaceutical industries to preserve drugs. Freeze-drying improves the 498 

stability of the biological sample over temperature, pH and time [52], [53]. The sublimation 499 

of the water content is obtained by controlling the temperature and pressure of the sample 500 
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[54]. Usually, this is performed following a cycle, such as the one shown in Figure 2.6(a). 501 

Typically, the compounds to be freeze-dried are initially in a liquid state (state A in Figure 502 

2.6(a)).  The process of lyophilisation starts with freezing the solution (state B). The freezing 503 

temperature depends on the specific composition of the solution (typical value: -50oC 504 

to -80oC). A low freezing temperature ensures that almost all the water content is in the solid 505 

state. Subsequently, the pressure of the chamber is reduced to 1-2 mPa through vacuum 506 

pumping (state C). The sublimation typically takes place partially during the permanence in 507 

state C and during the slow transition from state C to D, during which the temperature is 508 

gradually brought to room temperature. Figure 2.6 (b) shows an example of the product of 509 

the freeze-drying process of a glucose oxidase based solution [55]. 510 

Timings, temperatures and pressure are usually selected according to the application [54]. 511 

Cryoprotective compounds, such as glycerol or sugars, can be used to optimise the process 512 

[54]. Freeze-dried enzymes have similar properties to immobilised ones [51]. However, 513 

there is no physical attachment of the molecules to the surface, so, once solubilised in the 514 

appropriate media, the reagent resembles its liquid form and does not allow reusability [51]. 515 

Thus, this technique has been used in conjunction with microstructures [53], [56]. Once 516 

lyophilised into the microstructure, the bioreceptor is confined and trapped in the physical 517 

structure [53], [56]. The reagents are then rehydrated by the sample itself once introduced 518 

[52], [53], [56]. 519 

 520 

Figure 2.6 (a) Working principle of the freeze-drying process. (b) Freeze-dried solution 521 

containing glucose oxidase. Reproduced from [55].  522 

 523 

  524 

  

(a) (b) 
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2.2.5. Biosensors metrics  525 

The performance of a biosensor is usually assessed by a set of parameters. The main metrics 526 

are illustrated in Table 2.3. Other metrics have also been standardised but are omitted in this 527 

review since unnecessary for the comprehension of this work. Additional readings in [49], 528 

[57]–[60] are suggested for a comprehensive description.  529 

 530 

Table 2.3 Main biosensor metrics.  531 

Metric Definition Relation Eq. 

Linear Range  

It defines the range where the output of the sensor 

(y) shows a linear behaviour i.e. it is proportional to 

the substrate (x) by a constant (S) and has an offset 

(c) [57]. 

y = S ⋅ x + c (2.10) 

Analytical 

Sensitivity (S)1 

It quantifies the enhancement of the output signal 

(Δy) when increasing the quantity to be measured by 

a certain level (Δx) [37]. 
S =

∆y

∆𝑥
 (2.11) 

Analytical 

Selectivity1 

It is defined as the ratio of the desired product formed 

to the undesired product formed expressed in moles 

[37].  

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑚𝑜𝑙𝑒𝑠)

𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑚𝑜𝑙𝑒𝑠)
 (2.12) 

Baseline (c) 
It defines the offset c of the calibration curve [37]. It 

is also referred to as blank measurement or control.  
c = (y −  S ⋅ x)𝑥=0 (2.13) 

Absolute error (e) 
It is the absolute difference between the test result 

(xi) and the true value to be measured (X) [60].  
e = |X − x𝑖| (2.14) 

Relative error (e%) 
It is the relative difference between the test result (xi) 

and the true value to be measured (X) [60]. e% =
|X − x𝑖|

𝑋
 ⋅ 100 (2.15) 

Root mean square 

error (RMSE) 

It is the square root of the mean of the square of all 

of the errors [61]. σ = √
∑ 𝑒𝑖

2
𝑖 

𝑁
 (2.16) 

Sum of squares 

error (SSE) 

It is the sum of the squared differences between each 

observation and its mean (µ) [62].  
𝑆𝑆𝐸 =  ∑(x𝑖 − µ)2

𝑖 

 (2.17) 

Precision (σ) 

It defines the closeness of agreement between 

independent results obtained by applying the 

experimental procedure under stipulated conditions. 

A measure of precision is the standard deviation (σ) 

over N repeated measurements (xi) [60]. 

σ = √
∑ (x𝑖 − µ)2𝑖 

𝑁
 (2.18) 

Resolution (R) 

It is defined as the smallest change in the 

concentration of an analyte required to bring a change 

in the biosensor response and therefore it is expressed 

in molarity [57].  

R =
σ𝑐𝑡𝑟𝑙
S

 (2.19) 

Analytical 

Accuracy (acc.) 1 

It is the closeness of agreement between a test result 

and the true value. It is calculated as the average 

error (absolute or relative) over N measurements. 

acc = (
∑ |X − x𝑖|𝑖

𝑁
) (2.20) 

Limit of detection 

(LOD) 

It defines the minimum detectable concentration by 

the biosensors. It is calculated as the sum of the 

mean (µctrl) and 3.3 times the standard deviation 

(σctrl) of the control measurements [58]. 

LOD = µctrl + 3.3σctrl (2.21) 

Limit of 

quantification 

(LOQ) 

It defines the minimum quantifiable concentration by 

the biosensors. It is calculated as the sum of the 

mean and 10 times the standard deviation of the 

control measurements [58].  

LOD = µctrl + 10σctrl (2.22) 

Correlation 

coefficient (R) 

It measures the linear correlation between two sets of 

variables x and y. It has a value between -1 and 1 

[63] 

𝑅(𝑥, 𝑦) =
𝐶𝑜𝑣(𝑥, 𝑦)

σ𝑥
2  σ𝑦

2  (2.23) 

1 Analytical sensitivity, specificity and accuracy express different concepts than the diagnostic (or clinical) sensitivity, 

specificity and accuracy of the test, already defined in Chapter 1.  
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  Integrated Optical Sensors  532 

A colorimetric approach was selected for this platform. Thus, a light source and optical 533 

sensors are required to measure the absorbance change of the sample accompanying the 534 

enzymatic reaction. Typically, colorimetric probes show light absorbance change in the 535 

visible spectrum. Regarding the portability requirement of this platform, a commercial light-536 

emitting-diode (LED) was used as the light source in this work. Therefore, the required 537 

optical sensor must be capable of measuring light with intensity in the order of µW to mW 538 

(typical light intensities for commercial LEDs [64]) and wavelengths in the visible range.  539 

 540 

2.3.1. CMOS technology  541 

In this work, the integration of optical sensors onto the same substrate was achieved using 542 

the complementary metal-oxide-semiconductor (CMOS) technology. CMOS is today’s 543 

leading manufacturing process for the fabrication of integrated circuits. Developed for the 544 

first time in the 60s by C. Sah. and F. Wanlass (Fairchild Semiconductor), in fifty years 545 

CMOS technology was adopted for the fabrication of 99% of integrated circuits [65]–[67].  546 

CMOS technology has the capability of integrating sensors, including optical sensors, with 547 

read-out electronics on the same silicon chip.  548 

Read-out circuitry developed in CMOS technology mostly use a combination of metal-549 

oxide-semiconductor field-effect transistors (MOSFET) in different configurations to 550 

perform signal conditioning, including biasing, amplification and switching operations. 551 

The most important property of semiconductors is that their conductivity can be varied over 552 

a vast range by adding regulated quantities of impurity atoms into the semiconductor crystal 553 

[65]. This process is generally referred to as doping. To increase the concentration of free 554 

electrons, silicon can be doped with an element with a valence of 5, such as phosphorus [65]. 555 

The resulting material is an n-type semiconductor. Similarly, to increase the concentration 556 

of holes, silicon can be doped with an element with a valence of 3, such as boron [65]. The 557 

resulting material is a p-type semiconductor. A single silicon crystal can be doped differently 558 

in different regions. 559 

Figure 2.7 shows a schematic cross-section of an NMOS and a PMOS, fabricated with a 560 

CMOS process. The process usually starts with a polished single crystal silicon wafer, doped 561 

with p-type impurities (p-type substrate is assumed in this description). N-wells are then 562 

fabricated on the substrate.  563 
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 564 

Figure 2.7 Cross-section of two transistors in a CMOS gate. The figures assume the use of 565 

a p-type substrate and an n-well process. The schematic is a simplified version of the device 566 

and does not include all the material layers. Dimensions are not in scale. Well implants are 567 

expected to have rounded edges. Reproduced and modified from [65]. 568 

 569 

For this aim, a SiO2 layer is grown onto the substrate and selectively etched over desired 570 

areas. Donor atoms (n-type impurities) are subsequentially implanted in the desired exposed 571 

areas.  The silicon dioxide layer is then removed after the implant is completed. Similar 572 

lithographic steps are employed for the fabrication of a high resistance polycrystalline silicon 573 

(polysilicon) gate separated from the substrate by a thin silicon dioxide layer. Aluminium 574 

metal contacts are also used to interconnect bulk, source, drain and gate with other structures. 575 

At the end of the process, passivation layers (typically silicon nitride and polyimide) are 576 

used to protect the structure. Passivation layers are etched over the pads to enable wire-577 

bonding connections to external instrumentation.  578 

CMOS-based systems have been used for both digital and analogue applications. In the 579 

digital world, CMOS technology is in use for microprocessors and memories, for example. 580 

Antennas, sensors, signal processing circuitry (filtering, amplification, etc.) have been 581 

implemented with the same technology. Besides being scalable, reliable and low-cost, there 582 

are also technological advantages of CMOS-based chips, including its immunity against 583 

noise and low static power consumption [65]. 584 

 585 

2.3.2. Photodetectors 586 

Optical detectors are devices capable of converting optical radiation into a detectable electric 587 

signal and have been successfully integrated with CMOS technology. There are many ways 588 

of interaction of electromagnetic radiation with material [68]. However, typically there are 589 

two main categories of photodetectors: thermal and photonic [68]. There are also further 590 
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classes of photodetectors which are widely described in the literature [68]. In thermal 591 

photodetectors, the absorption of light causes an increase in the device temperature with the 592 

consequent variation of a temperature-dependent physical parameter (e.g. the electrical 593 

conductivity) [68]. Whereas, in photonic detectors, photons interact directly with the 594 

electrons in a material [68].  595 

The photon detection process can be further divided into internal and external [68]. In 596 

detectors exploiting an internal photonic effect, photo-excited carrier (electron or hole) 597 

remains within the sample. On the other hand, in sensors utilising an external photonic effect, 598 

also known as the photoemissive effect, the incident photon causes the emission of an 599 

electron from the surface of the absorbing material [68]. The capability of internal photonic 600 

detectors of handling electrons within the device makes them usually the first choice for 601 

integrated systems. This was also the case for this project. The diagram in Figure 2.8 602 

summarises the main categories of photodetectors.  603 

The photoelectric effect requires a minimum of photon energy to be triggered. If the energy 604 

of the incident photons is greater than the band-gap energy of the semiconductor, each 605 

absorbed photon can produce an electron-hole pair. The photon energy E is given by: 606 

E = h ʋ = h
c

λ
 (2.24) 

Where h is the Planck constant, υ is the optical wave frequency, c is the light speed, and λ is 607 

the wavelength. Therefore, the photonic detectors have a maximum wavelength, beyond 608 

which they cannot operate.  609 

Photodiodes are one of the most commonly used internal photonic detectors and have also 610 

been employed in this project. The principle of operation of a photodiode is based on a p-n 611 

junction. A p-n junction is formed on the same silicon crystal by creating two adjacent 612 

regions doped with p-type and n-type impurities. [65]. At the interface, due to the rapid 613 

recombination of diffused carriers from the n to the p region and vice versa, a depletion 614 

region is established [65]. 615 

 616 

Figure 2.8 Main photodetectors categories. 617 
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In the depletion region, there is no free charge carrier, and an electric field is created, called 618 

built-in potential [65]. The built-in potential opposes the diffusion of holes into the n region 619 

and vice versa, acting as a potential barrier [65]. 620 

Photodiodes are p-n junctions and can be operated in both photoconductive and photovoltaic 621 

mode [68]. The photoconductive mode involves reverse biasing of the p-n junction, as shown 622 

in Figure 2.9. In this mode, when the junction is illuminated (for example, from the p-side), 623 

the photons absorbed in the depletion region can statistically produce electron-holes pairs. 624 

The generated carriers are separated, under the action of the electric field generated by the 625 

reverse bias: the electrons move towards the n zone and the holes toward the region p. Light 626 

can also be absorbed outside the depletion region and the carriers generated outside the 627 

depletion region are separated by diffusion. The diffusion current is a limiting factor in the 628 

response speed of the p-n photodiode, and it can be reduced by widening the depletion 629 

region. The extension of the depletion region can be controlled by tailoring structure 630 

conformation, doping concentrations, and the biasing.  631 

Photodiodes operated in photovoltaic mode do not have any applied bias. The photocurrent 632 

generation is such as the one presented for the photoconductive mode, but the extension of 633 

the depletion region is exclusively due to the built-in-potential.  634 

 635 

 636 

Figure 2.9 Schematic representation of a photodiode in photoconductive mode. Dimensions 637 

are not in scale. Vr: bias voltage; Ec: conduction band; Ev: valence band; Eg: energy gap 638 

(for undoped silicon Eg = 1.14eV); Ef: Fermi level; q: elementary charge. Reproduced and 639 

modified from [68]. 640 

 641 
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The equivalent circuit of a silicon photodiode is shown in Figure 2.10 [69][70]. The model 642 

is composed of an ideal current source, an ideal diode (D1), a capacitor (Cj), and two resistors 643 

(Rsh and Rs) connected as in the figure. The diode represents the p-n junction. Cj and Rsh 644 

represent the junction capacitance and resistance, respectively. Although an ideal photodiode 645 

should have an infinite Rsh, actual value ranges from 10 to 1000 MΩ  [70]. Rs represents the 646 

resistance due to the connections. The ideal current source represents the contribution of the 647 

photogenerated current Ip. Ip is proportional to the incident optical Pi and the responsivity of 648 

the optical detector Rs: 649 

Ip = RsPi  (2.25) 

Using the above equivalent circuit, the output current (Io) is given by the following equation 650 

[70]: 651 

I0 =  I𝑝 − I𝑑 − I𝑅𝑠ℎ    (2.26) 

If IRsh is negligible, the above equation can be rewritten as [69]: 652 

I0 = RsPi − I𝑠(e
𝑞𝑉𝑑
𝑘𝑇 − 1)    

(2.27) 

Where the first addend of the second member is given by equation (2.25) and the second 653 

addend is the diode equation. In the diode equation, Is represents the saturation current of the 654 

diode, Vd is the voltage across the diode, q is the elementary charge (~ 1.6·10-19C), k is the 655 

Boltzmann constant, T is the temperature in Kelvin.  656 

Figure 2.11 illustrates the photodiode characteristic [69]. In dark conditions (Pi = 0), the 657 

photodiode characteristic is similar to the curve of a diode (see curve 1) [69]. However, when 658 

the photodiode is illuminated (Pi > 0), the characteristic function shifts downwards (see curve 659 

2). Increasing the light intensity produces a further shift of the characteristic (see curve 3) 660 

[69].  661 

 662 

Figure 2.10 Photodiode equivalent circuit. Reproduced and modified from [69]. 663 
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 664 
Figure 2.11 Photodiode characteristic I-V curves. Voc: open-circuit voltage. Isc: short circuit 665 

current. Reproduced and modified from [69].  666 

 667 

A photodiode is subject to various noise sources that degrade its performance. Noise sources 668 

place a limit on the ability of subsequent detection electronics to detect small signals from 669 

the photodiode [71], [72]. 670 

Specifically, the current flowing in a photodiode can be mainly divided into three 671 

components: the photogenerated current Ip, the background current, and the dark current. 672 

The three components can be considered additive. Ip is generated by the absorbed light and 673 

is the desired output of the device. The background current is the undesired current due to 674 

background radiation absorbed by the device. Therefore, this component depends on the 675 

environment where the sensor operates. The dark current is undesired current observed even 676 

in the absence of incident radiation.  677 

There are many adding phenomena contributing to the dark current. Because of the 678 

stochastic nature of the mechanism generating noise, noise sources are usually described 679 

with statistical values such as power spectral density and root mean square value [73]. In the 680 

absence of electrical bias, the absolute minimum internal noise is the thermal noise, also 681 

known as Johnson noise or Nyquist noise [68]. Thermal noise is found in all resistive 682 

materials, including semiconductors, and depends on temperature, resistance, and the 683 

operating bandwidth of the device [65].  With the same notation illustrated above, the root 684 

mean square of current fluctuation due to thermal noise (ith,rms) is given by the following 685 

equation: 686 

𝑖𝑡ℎ,𝑟𝑚𝑠 = √
4𝑘𝑇𝛥𝑓

𝑅𝐿
 (2.28) 

Where Δf is the operating bandwidth of the device and RL is the load of the photodiode [74].  687 



30 

 

 

 

Any other form of internal noise, usually depending on the bias, is referred to as excess noise 688 

[68]. In general, a bias voltage across the photodetector increases excess noise. Shot noise 689 

and flicker noise are the two main causes of excess noise [68]. Shot noise is related to the 690 

discrete nature of the electric charge. The root mean square of the current fluctuation due to 691 

shot noise (ish, rms) is given by: 692 

𝑖𝑠ℎ,𝑟𝑚𝑠 = √2𝑞𝐼𝑎𝑣𝑔𝛥𝑓 (2.29) 

Where the same notation as above are maintained and Iavg represent the average signal 693 

current flowing in the diode [71]. As shown in Figure 2.11, a saturation current (Is) is 694 

expected under reverse bias and in dark condition. The saturation current is due to the 695 

diffusion of minority carriers. The saturation current of the device and depends on the 696 

conformation of the p-n junction, including doping levels and extension of the depletion 697 

region. Typical values of the saturation current are in the order of nA [75]. A mathematical 698 

model of the saturation current is illustrated in [75].  699 

Flicker noise is associated with the presence of potential barriers at the contacts, interior, or 700 

surface of the semiconductor. Flicker noise is also known as 1/f noise due to its spectral 701 

density, being less evident at a higher frequency. The root mean square current due to flicker 702 

noise can be approximated by the following empirical equation:           703 

𝑖1
𝑓
,𝑟𝑚𝑠

(𝑓) =  √
𝐾 𝐼𝑑

𝛽𝛥𝑓

𝑓𝛾
 (2.30) 

 Where Id is the diode current, K, γ and β the empirical device coefficients depending on the 704 

fabrication process and doping profile,  f is the operating frequency [76], [77].  705 

All the above mechanism illustrated above are independent and contribute to the noise floor 706 

of the photodiode. The resulting root mean square current (in, rms) can be expressed as:  707 

 𝑖𝑛,𝑟𝑚𝑠 ≈  √𝑖𝑡ℎ,𝑟𝑚𝑠
2 + 𝑖𝑠ℎ,𝑟𝑚𝑠

2
+ 𝑖1

𝑓
,𝑟𝑚𝑠

2 (2.31) 

Therefore, while at low frequencies flicker noise dominates the power spectral density, 708 

broadband noise mechanisms prevail at a higher frequency. There are also additional sources 709 

of dark noise for photodiodes, including, generation-recombination (g-r) noise, leakage 710 

current and impact ionisation current [71]. A detailed discussion about dark current 711 

contributors can be found in [71], [78].  712 

In the last decades, photodiodes experienced a profound revolution. Improved materials and 713 

architectures allowed the development of new types of photodiodes for specific 714 
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applications [79]. The photodiode material is usually selected in accordance with the 715 

operation wavelength. Silicon photodiodes are a common choice in application with an 716 

operating wavelength in the visible range [79]. Silicon photodiodes, widely fabricated with 717 

the CMOS technology, have been used for several applications, including imaging and 718 

biosensing.  719 

In imaging applications, an array of photodiodes is typically used. A CMOS image sensor 720 

array is typically formed by the sensor array, row and column selectors, analogue signal 721 

processors timing and control [80]. The sensor array is a grid of sensors, each capable of 722 

producing a photogenerated current [81]. Each element of the array (usually referred to as a 723 

pixel) also integrates readout electronics. Pixel circuits are mainly divided into active pixels 724 

or passive pixels. A review on pixel circuits for imaging is reported in [80]. The readout 725 

method has an important influence on sensor performance [80]. Typically, the output of each 726 

pixel is usually addressed by row and column selectors [80]. To date, CMOS image sensors 727 

have been used for a varied range of applications, including vision systems, space, 728 

automotive, medical applications [80].  729 

Photodiodes used for biosensing are typically coupled with biological receptors for the 730 

optical detection of the target analyte. Photodiodes have successfully been employed for the 731 

development of bioluminescent [82], fluorescent [83] and colorimetric sensing [84]. The 732 

review illustrated in Paragraph 2.6.1 includes several additional examples of the use of 733 

photodiodes for biosensing.  734 

 735 

2.3.3. Photodetectors metrics 736 

A set of metrics, here briefly discussed, are currently used for comparing different devices.  737 

Quantum efficiency (η) is defined as the number of carriers generated per incident photon. 738 

Formally, η can be expressed as [72]: 739 

η =  

IP
q
Pi
hυ

 (2.32) 

However, it is more practical to express the quantum efficiency as the ratio between the 740 

optical power Pa absorbed by the material and the incident optical power Pi [68]: 741 

η =  
Pa
Pi

 (2.33) 

This expression can also be expressed as a function of the transmitted power Pt [68]: 742 



32 

 

 

 

Pa = Pi − Pt = Pi − Pie
−αw →  η =  1 − e−αw (2.34) 

Where α is the light absorption coefficient of the material and w is the depth of the substrate. 743 

The wavelength λc corresponding to α = 0 and consequently η = 0 is called cut-off 744 

wavelength: the device is unresponsive for any λ > λc.  745 

Responsivity (Rs), which has also been previously introduced, is defined as the ratio between 746 

the output current of the device and the incident light power determined in the linear region 747 

of response. Formally, Rs can be defined as [72]: 748 

Rs = 
Ip

Pi
 (2.35) 

If the detector has a voltage output rather than a current, responsivity can be defined as the 749 

ratio of output voltage and optical power. This leads to units of V/W. If a photodiode is 750 

combined with some detector electronics generating a voltage output, the output voltage is 751 

the photocurrent times the trans-impedance of the electronics. Responsivity also depends on 752 

the wavelength of the incident light and is related to quantum efficiency as follows [72]: 753 

η =  
hυ

q 
Rs (2.36) 

Dynamic range quantifies the working range of the sensor considering the power of the 754 

incident light [85].  755 

Spectral range quantifies the working range of the sensor considering the wavelength of the 756 

incident light [85]. 757 

Gain is the ratio between the output current of the device and the photogenerated current 758 

inside the device [72]. In some photodetectors, such as p-n junctions, the maximum possible 759 

gain is 1. In other devices, where a carrier multiplication effect is in place (such as avalanche 760 

photodiodes), the gain can be higher than one.  761 

Noise equivalent power (NEP) is defined as the amount of light required to produce a signal 762 

to noise ratio (SNR) equal to 1 [72]. NEP depends on the light wavelength. 763 

Detectivity (D*) provides a representation of the noise level in a photodetector independently 764 

by its active area A and is formally defined as [72]: 765 

D∗ = 
√A

NEP
 (2.37) 

Dark current, as previously introduced, defined as the electrical noise detectable in the 766 

absence of light [72].  767 
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Other metrics have also been standardised but are omitted in this review, since unnecessary 768 

for the comprehension of this work. Additional readings in  [68], [71], [72] are suggested for 769 

a full description.  770 

 771 

2.3.4. Other photodetectors 772 

Besides photoconductors and photodiodes, many other photodetectors have been 773 

successfully developed [68]. It is beyond the scope of this work to thoroughly review all the 774 

implemented photodetectors. However, the most commonly used photodetectors are briefly 775 

described, and their advantages and disadvantages are discussed.  776 

Photodiodes are an attractive choice for all those applications aiming to miniaturisation, low-777 

cost and easy usage. However, they have no amplification effect, and their gain is usually 778 

lower than 1.  779 

For use requiring high sensitivity, avalanche photodiodes (APD) are a common choice [68], 780 

[71], [72]. APD are photodiodes (p-n or p-i-n junctions) with an internal mechanism of signal 781 

amplification through an avalanche process. They are typically biased at a large reverse 782 

voltage (see Figure 2.12(a)). The high electric field in the depletion region accelerates the 783 

photo-generated carriers which generate secondary electron-hole pairs through impact 784 

ionisation. Thus, the output of the device is the primary photocurrent multiplied by a factor 785 

M. The photocurrent multiplication has a random nature, and this introduces additional 786 

sources of noise. Every electron-hole pair is generated in a random location, so they do not 787 

experience the same multiplication. Also, the multiplication effect amplifies both 788 

background and dark current. More sophisticated APD structures have been proposed to 789 

optimise the device metrics. However, APD manufacture requires very uniform doping 790 

profiles, more complex designs, and a large reverse bias, usually resulting in higher 791 

fabrication complexity and costs.  792 

An APD operated in the ‘Geiger mode’ is known as a single-photon avalanche diode (SPAD) 793 

[86]. SPADs are p-n junctions operated with a reverse bias voltage largely above the 794 

breakdown voltage of the device (point 1 in Figure 2.12(b)). Due to the multiplication 795 

mechanism, a single initial photogenerated carrier can trigger a self-sustaining avalanche 796 

due to impact ionisation effects. Thus, a single photon can initiate a large internal current 797 

flow. The avalanche can be quenched by reducing the bias voltage (see point 3 in Figure 798 

2.12(b)). At this biasing point, the avalanche is no longer self-sustained and is quenched 799 

[87]. Quenching circuits are typically used to decrease the voltage across the diode.  800 
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SPADs are usually employed in high-speed applications and are a common choice for 801 

detecting low light intensity (for instance lower than 1 nWcm-2 at 550 nm) [85]. They are 802 

also a popular choice in applications requiring high responsivity and high quantum 803 

efficiency [85], [86]. Although they share similar limitations with APDs, SPADs currently 804 

suffer from poor sensitivity due to noise and low fill-factors.  805 

Although photodiodes, APDs and SPADs are all based on p-n junctions, they have structural 806 

differences designed to optimise their performance in their respective operation modality. A 807 

review illustrating the structural differences of these devices can be found in [87].  808 

Photomultipliers tubes (PMTs) are also among the most-sensitive photodetectors for the 809 

visible light [72].  However, they are challenging to miniaturise; therefore, due to their high 810 

operating voltages, fragility, size and cost, there are many challenges to be addressed for 811 

their integration [72].  812 

Charge-coupled devices (CCDs) are probably the biggest competitor of CMOS technology 813 

for image sensing applications [72]. A CCD is an array of metal-insulator-semiconductor or 814 

metal-oxide-semiconductor which can detect, store and transfer photogenerated charge. 815 

CCDs have high spatial resolution, low noise and high sensitivity [80]. 816 

However, CMOS outstands CCDs in terms of speed, integration capabilities, lower power 817 

consumption and capability of random access to single pixels [80], [88]. CMOS sensors and 818 

CCDs have comparable fabrication costs. However, CMOS usually requires a less complex 819 

read-out electronic, which can result in a less-expensive system [80], [88], [89].  820 

 821 

  

(a) (b) 

Figure 2.12. (a) Avalanche region showed in the photodiode characteristic I-V curves. 822 

Reproduced and modified form [69]. (b) Operating principle of the Geiger mode. 823 

Reproduced and modified from [87].  824 
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 Metabolomics 825 

One of the most promising fields of application of lab-on-chip platforms is metabolomics. 826 

Metabolomics is the study of the relative variation of the collection of small molecules 827 

(<1500 Da), known as metabolites, produced by cells during the metabolism [90]. The 828 

increasing interest in metabolomics is related to its capability of describing the phenotype 829 

and providing a ‘functional readout of the physiological health of an organism’ [11]. 830 

Metabolomics, together with the probably more well-known genomics, transcriptomics, and 831 

proteomics, belongs to the omics sciences. Omics studies aim to identify, characterise, and 832 

quantify all biological molecules that are involved in the structure, function, and dynamics 833 

of a cell, tissue, or organism [91]. More precisely, genomics studies the structure, function, 834 

evolution and mapping of nucleic acids and aims at the characterisation and quantification 835 

of genes that guide the development of proteins with the aid of enzymes and messenger 836 

molecules [91]. Transcriptomics is the study of the collection of all messenger RNA 837 

molecules in a single cell, tissue, or organism [91]. Proteomics is the science that studies the 838 

sum of all cell, tissue or organism proteins as related to their biochemical properties and 839 

functional roles, as well as their modifications during the life of the organism [91].  840 

Metabolomics is affected by both genetic and environmental factors and, therefore, can 841 

bridge the gap between genotype and phenotype [11]. Metabolomics and other omics 842 

sciences are complementary, and their integration is a promising research challenge [92]. 843 

The study of the metabolome is also considered to be more promising than other omics 844 

science. This is because, unlike other omics studies, metabolic pathways are highly 845 

conservative in mammalian species meaning that studies carried out on laboratory animals 846 

can be easily related to humans [92]. An analysis of metabolomics can be carried out on a 847 

variety of biological fluids and tissue types and can use a variety of different platforms of 848 

technologies [91]. Currently, more than 114,000 metabolites have been detected and 849 

quantified in human fluids, tissues or organs in different concentrations [90]. Among the 850 

human fluids, blood metabolome is probably the most attractive one because of its intrinsic 851 

physiological stability and collection convenience [90]. Blood is made up of two 852 

components: a cellular component (red/white cells and platelets) suspended into a liquid 853 

component, namely plasma [90]. Plasma can be obtained from blood by centrifugation or 854 

filtration. The serum is also a body fluid obtainable by removing the clotting agents from 855 

plasma. 856 
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 857 

Figure 2.13 Metabolomics reflects the phenotype of an organism. Modified from [93]. 858 

 859 

Blood, plasma and serum contain a variety of organic and inorganic substances such as 860 

proteins and peptides, nutrients, electrolytes, organic wastes and a variety of other small 861 

molecules suspended or dissolved [90]. The biological composition of plasma and serum is 862 

very similar and includes more than 4200 metabolites [90]. Unknown metabolites, expected 863 

to be discovered in support of metabolic pathways still not completely understood, are 864 

referred to as metabolic dark matter [94].  865 

Four different conceptual approaches are widely adopted: target analysis, metabolite 866 

profiling, metabolomics, and metabolic fingerprinting [11]. Target analysis and metabolite 867 

profiling aim to quantify, respectively, a small set of known metabolites and a larger set of 868 

compounds (both identified and unknown) using a single analytical technique [11]. 869 

Differently, metabolomics employs complementary methodologies to quantify as many 870 

metabolites as possible. Finally, metabolic fingerprinting looks for a specific metabolite in 871 

a large sample population by comparing specific features.  872 

Due to the huge diversity of chemical structures, there is no single technology available to 873 

analyse the entire metabolome [90]. Although over the past two decades several techniques 874 

have been employed for metabolic profiling [90], nuclear magnetic resonance (NMR) and 875 

spectroscopy and mass spectrometry (MS) are the traditionally used approaches for 876 

metabolomics profiling [14], [94], [95]. NMR spectroscopy quantifies analyses based on 877 

their response to a radio-frequency excitation [90]. Differently, MS quantifies analyte based 878 

on their mass-to-charge ratio (m/z) by transforming the analyte molecules into a charged 879 

(ionised) state, with subsequent ion analysis and any fragment ions formed during the 880 

ionisation process [96]. There are several types of MS, depending on the technique for 881 

ionisation and ion analysis [96]. The most used MS techniques in metabolomics are gas 882 
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chromatography MS (GC-MS) and liquid chromatography MS (LC-MS). GC-MS provides 883 

molecules separation basing on their volatility at several temperatures. Differently, LC-MS 884 

provides separation depending on the solubility of the molecule in various solvents (e.g. 885 

water, methanol, acetonitrile, isopropyl alcohol, and hexane) [96].  Each technique has 886 

advantage and disadvantages when compared to the others, as summarised in Table 2.4. For 887 

additional details about the techniques mentioned above, [95]–[98] are suggested. 888 

Nevertheless, they are often complementary since some analytes are solely quantifiable with 889 

a single technique. N. Psychogios et al. in [90] estimated that NMR is capable of quantifying 890 

only 1.2% of the human serum metabolome. Several MS techniques, all together, can instead 891 

obtain data on 84% of the serum metabolome [90]. Among the MS techniques, the authors 892 

in [90] suggest using LC-MS for human serum metabolomics. Metabolomics has been 893 

applied to a vast variety of applications: human and animal health, biomarker discovery, 894 

pharmacometabolomics, environmental monitoring are just some of them [14].  895 

It is a shared vision that metabolomics has a large and still partially untapped potential in 896 

healthcare, where the large metabolome information can be combined by machine learning 897 

and classification algorithms [11], [14], [92], [93]. Currently, metabolomics is exploited 898 

mainly for pharmacology. The best-selling drugs on the market today act on the metabolic 899 

pathway by enzyme, inhibitors or any other suitable mean [14]. There is evidence that 900 

metabolomics can potentially be employed for the diagnosis and monitoring of the most 901 

deadly diseases, including cancer, cardiovascular diseases (CVD) and dementia [12]. In line 902 

with the aim of the present project, a focus is provided for metabolomics applied to PCa and 903 

ischemic stroke. 904 

 905 

Table 2.4 Comparison of most commonly used techniques for metabolomics [14]. 906 

 NMR GC-MS LC-MS 

Start-up cost  > $1 million > $150k > $300k 

Quantitative ✓ ✓ ✓ 

Destructive  x ✓ ✓ 

Limit of detection (LOD) 5 µM 0.5 µM 0.5 nM 

Test time (per sample) 5 min 20-40 min 20-40 min 

Sample volume  0.1 – 0.5 mL 0.1 – 0.2 mL 10 – 100 µL 

Automated  Fully Partially Partially 

Organic molecules  ✓ (most of them) ✓ (most of them) ✓ (most of them) 

Inorganic molecules  x ✓ (some of them) ✓ (some of them) 

Novel compounds identification  ✓ x x 
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2.4.1. Metabolomics for cancer 907 

One in two people will develop cancer at some point in their lifetime [13], [99]. The World 908 

Health Organization estimates more than 18 million cases of cancer and more than 9.5 909 

million cancer-related deaths worldwide, only in 2018 [13]. Although frequency and survival 910 

rate are considerably variable with the cancer type, there is consistent evidence that patients 911 

diagnosed at an early stage are more likely to survive [13], [99]. For some cancer types, 912 

screening programs have already dramatically improved the survival rate. In the UK, the 913 

NHS cervical and bowel cancer screening programs have reduced mortality by 70% and 914 

15%, respectively [100], [101]. However, there are other types of cancer where the scientific 915 

community is in desperate need of new criteria and tools [7].  916 

Metabolomics has a largely untapped potential in the field of oncology [14], [102]. Cancer 917 

cells have a different metabolism than healthy ones [103]. The altered metabolism of cancer 918 

cells, together with their accelerated metabolism and the parallel angiogenesis, produce 919 

substantial and detectable modifications in the entire human metabolism [104]. Cancer-920 

related metabolites accumulate in human body fluids [105], and their altered levels act as 921 

indicators or biomarkers to diagnose or monitor the disease [14], [105]. It has been 922 

demonstrated in the scientific literature that the use of a panel of metabolites rather than a 923 

single biomarker has the potential to perform better than the current clinical standard [106]. 924 

Leichtle et al. [107], for instance, have developed a multi metabolomics marker model which 925 

was superior to the conventional tumour marker CA 19-9 in differentiating between 926 

pancreatic cancer, pancreatitis, and healthy controls.  Similar results have also been achieved 927 

for breast cancer [106]. Besides, Wang et al. [108] have demonstrated that it is possible not 928 

only to diagnose but also to monitor oesophageal cancer stage by quantifying 12 metabolites 929 

in tissue. 930 

The main metabolic difference in cancer cells is how they use glucose to produce energy 931 

[103]. Cancer cells usually proliferate from one aberrant cell to more than 2⋅109 cells per 932 

cm3 and modify their metabolic pathways to sustain their proliferative capacity [109]. In 933 

cells, energy is usually stored using a series of ‘building’ (anabolic) processes and released 934 

through a series of ‘breaking-down’ (catabolic) mechanisms. In the presence of O2 (aerobic 935 

conditions), healthy human cells transform glucose into energy under the form of adenosine 936 

triphosphate (ATP). This process is carried out through a series of biological processes, 937 

including the Krebs cycle (TCA) and the oxidative phosphorylation (OXPHOS), producing 938 

residual CO2 and water. Usually, this process provides 36 ATP molecules per glucose 939 
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molecule processed [103]. In the absence of oxygen (anaerobic or hypoxic conditions), 940 

energy is obtained from different processes leading to the production of lactate, which is 941 

later released outside the cell as a reaction residue. In parallel, glucose is also used for the 942 

pentose phosphate pathway (PPP), which influences DNA replication [110].  943 

Glutamine metabolism – the second most used nutrient after glucose – is also used to provide 944 

energy after being converted in glutamate through the glutaminolysis cycle [110]. TCA and 945 

OXPHOS are also related to the synthesis of fatty acids, primarily through the production of 946 

citrate-related Acetyl-CoA. 947 

 In cancer cells, the standard mechanisms mentioned above are altered [103], [109], [110]. 948 

Even in the presence of oxygen, glucose is mainly converted to lactate for energy production 949 

[110]. This mechanism is usually referred to as the Warburg effect [103]. The process is less 950 

efficient when compared to the normal cycle since it only produces 4 ATP molecules per 951 

glucose molecule [103]. The consequent increase in lactate secretion has been linked to the 952 

capability of the cancer cell to accelerate the generation of new blood vessels (angiogenesis) 953 

[110]. On the one hand, angiogenesis helps cancer cells to receive increased levels of 954 

nutrients. On the other, it provides an easy way for aberrant cells to invade new tissues and 955 

create metastasis [110]. Aiming to compensate for the glucose-related ATP production, 956 

glutamine intake is also increased in cancer cells. Glutamine is converted into glutamate 957 

which, when in excess, is also released by the cell [110]. The upregulated glutamine-958 

glutamate cycle also boosts fatty acid synthesis [110]. Increased synthesis of nucleic acids 959 

and fatty acids has been linked to cell proliferation [110]. Metabolic differences related to 960 

energy production and usage from glucose and glutamine are schematically represented in 961 

Figure 2.14. Additional metabolic modifications have been discovered in cancer cells and 962 

reviewed in the literature [103], [109], [110]. Among them, cancer cells take advantage of 963 

ample supply of amino-acids, especially in the L-type form, vastly more abundant in humans 964 

with respect to D-type amino acids [111]. The progression of cancer is associated with 965 

increases in L-amino acids (LAA) uptake by cancer cells, also obtained by modifying the 966 

specific transporters [112]. Choline metabolism is another well-established modified 967 

pathway [113]. In many cancer types, the increase of choline and choline-related metabolites 968 

have been related to a modification in choline-related enzymes and transporters [113]. 969 

Understanding cancer metabolism led to the development of specific drugs acting on critical 970 

metabolic pathways proven essential for cancer cells [109], [114]. 971 

 972 
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 973 

Figure 2.14 Schematic representation of metabolic differences between a normal cell (left) 974 

and a cancer cell (right). Bold arrows indicate an upregulated pathway. Reproduced and 975 

modified from [110]. 976 

 977 

Statins such as Simvastatin and Atorvastatin, for instance, act on the metabolic pathways for 978 

fatty acid synthesis [109]. Methotrexate, another anticancer approved agent, operates on the 979 

nucleic acid synthesis [114]. L-asparaginase is also an approved anticancer agent used in 980 

clinical practice to treat leukaemia by acting on asparagine metabolism [115]. Alongside the 981 

approved drugs, an increasing number of compounds are in clinical and pre-clinical trial 982 

stages [114]. A detailed review of cancer metabolism for therapeutic purposes has been 983 

published by U.E. Martinez-Outschoorn et al. [114].  984 

Understanding cancer metabolism also provided essential knowledge for cancer diagnosis 985 

and monitoring. Several metabolites have been linked to cancer. Currently, a selection of 986 

marked metabolites is being used in clinical testing for imaging purposes [116]. Positron 987 

Emission Tomography scanning is used to image cancer after the intake of labelled 988 

metabolites such as, for example, Fludeoxyglucose, C-acetate, C-choline, F-choline, C-989 

pyruvate [116]. Labelled metabolites are usually stable isotope and are selected because 990 

expected to accumulate more in cancer cells due to their upregulated intake [116]. 991 

Table 2.5 presents a review of metabolites linked to cancer. Interestingly, there is some 992 

crossover between the metabolic profiles. The set of the most recurrent metabolites, 993 

independently by the sample, have been summarised in Table 2.5.  Confirming what 994 

previously described, the table highlights a set of metabolites crucial for cancer cells such as 995 

glucose/lactate, glutamine/glutamate, amino acids, and choline/choline-derived metabolites.  996 

 997 
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Table 2.5 Cancer-related metabolites documented in the scientific literature. 998 

Cancer Sample Metabolites 

Breast 

Serum* 

2-hydroyglutarate [104], acetoacetate [117], beta-alanine [104], choline [118], 

fatty acid [119], glucose [120], glutamate [104], [117], glutamine [104], glycerol 

[117], glycerophosphocholine [118], histidine [117], [120], linoleic acid [119], 

lipids [120], mannose [117], n-acetyl glycoprotein [117], palmitic acid [119], 

phenylalanine [117], phosphocholine [118], pyruvate [117], steriatic acid [119], 

xanthine [104] 

Tissue** 

acetoacetate [121], histidine [121], glycerol [121], mannose [121], phenylalanine 

[121], pyruvate [121], linoleic acid [122], glutamate [121], glutamine [122], 

myoinositol [106], phosphoethanolamine [106], taurine [106], asparagine [115], 

[123], isoleucine [122], threonine [122] 

Urine 
4-hydrolyphenylacetate [124], 5-hydrixyindoleacetic acid [124], homovanillate 

[124], urea [124] 

 

Colorectal 

Serum* 

2-Hydroxybutyrate [102], alanine [125], arginine [106], aspartic acid [102], [125], 

choline [126], cystamine [102], cysteine [106], fatty acid [106], glucose [106], 

glycin [126], glycine [125], histidine [125], inositol [126], isoleucine  [125], 

kynurenine [102], lactate  [126], leucine  [126], lysine [125], methionine  [125], 

oleamide  [106], phenylalanine  [126], phosphocholine  [126], pyruvate  [127], 

sarcosine [125], taurine [126], threonine [126], tryoptophan [127], [128], tyrosine 

[125], [127], ultralong fatty acids [129], uridine [127], valine [125] 

Tissue** 

2-aminobutyrate [130], 2-Hydroxybutyrate [130], 2-oxobutyrate [130], 5-

Hydroxytryptamine [130], arginine [130], betaine [130], fatty acid [131], [132], 

glutamic acid [130], glutamine [131], [132], indoxyl [130], lactate [127], linoleic 

acid [130], N1-acetylspermidine [130], N-acetyl-5-hydroxytryptamine [130], 

nicotinic acid [130], proline [126], [130], symmetric dimethylarginine [130], 

threonine [130], uracil [130], urea [131]–[133], xanthine [130] 

 

Pancreatic 

 

Serum* 

3,6-dihydroxy-5-cholan-24-oic acid [107], 3-hydrolybuterate [106], 3-

hydrolyisovalerate [106], 3-Hydroxybutyrate [134], [135], 3-hydroxyisovalerate 

[134], acetone [134], [136], alanine [137], arachidonic acid [138], arachidyl 

carnitine [139], butanoic acid [138], chenodeoxycholic acid [139], choline [137], 

citrate [136], creatine [134]–[136], cysteine [138], ethanol [134], formate [134], 

[136], glucose [134], [137], glutamate [134], glutamine [134], [138], glycerol 

[134], glycerol 2-phosphate [137], glycerol 3-phosphate [137], Glycholic acid 

[107], glycodeoxycholic acid [107], hydroxybutyrate [136], hypoxanthine [138], 

isoleucine [135], lactate [135], linoleic acid [137], lipids [136], lysine [138], 

malate [137], mannose [134], medium-chain acylcarnitines [140], myoinositol 

[137], N-acetyl glycoprotein [136], N-methylalanine [138], oleoyl carnitine [107], 

phenanthrenol [138], phenylalanine [134], [138], phosphatidylcholine [106], 

proline [134], quinaldic acid [139], sitosterol [139], tauro(ursodeoxy)cholic acid 

[138], tetradecanal oleamide [139], triglycerides [135], trimethylamine-N-Oxide 

[135], tyrosine [138] 

Tissue** 

Alanine [108], arachidonic acid [141], asparagine [108], choline [108], citrate 

[142], fatty acid [142], glutamic acid [108], glutamine [141], 

glycerophosphocholine [143], ketones [142], lactate [108], leucine [108], lysine 

[141], lysophosphatidylcholine [144], N-methylalanine [141], phenylalanine  

[141], phosphatidylcholine [144], phosphocholine [143], sphingolipid [142], 

sphingomyelin [144],  taurine [108], tauro(ursodeoxy)cholic acid [141], valine 

[108] 

Ovarian, 

uterus, cervix 

Serum* 
2-Piperidinone [105], glycin [106], lysophosphatidylcholine [105], pyrimidine 

[106], tryoptophan [105] 

Urine 

1-methylguanine [145], histidine [146], ketones [147], lactate [147], 

methylxanthine [145], mucin [146], N4-acetylcytidine [146], Nucleotide [146], 

proline [145], pseudouridine [146], pyridylacetic acid [145], succinic acid [146], 

theophylline [145], tryptophan [105], urate-3-ribonucleoside [146], uric acid 

[145], urocanic acid [145] 
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Prostate 

 

Serum* 

Alanine [148], [149], androsterone sulfate [150], arachidonoyl amine [150], 

arginine [148], [151], cholesterol [150], choline [152], citrate [148], [153], 

creatinine [154], [155], cysteine [150], dimethylheptanoyl carnitine [150], fatty 

acid [148], formate [150], glucose [151], glutamate [148], [150], glycine [150], 

isolithocholic acid [150], leucine [150], lysine [150], [151], phenylalanine [151], 

[156] phosphocholine [150], proline [148], testosterone sulfate [150] 

Tissue** 

Alanine [156], arginine [157], asparagine [156], cholesterol [150], [157], [158], 

choline [150], [156], [159], citrate [150], cysteine [157], fatty acid [150], 

glutamate [150], glutamine [150], glycerol [150], [156], glycine [150], [159], 

lactate [150], [156], lactate [160], [161] leucine [71], myoinositol [156], 

phenylalanine [150], phosphocholine [150], [156], proline [150], [156], 

pyrimidine [150], [156] 

Urine 
Alanine [156], choline, [156], citrate [156], creatinine [150], cysteine [150], fatty 

acid [150], glycerol [150], lactate [156], phosphocholine [156], pyrimidine [150] 

Oesophageal 

 

Serum* 

adenosine monophosphate [162], NAD [162], acetoacetate [106], acetone [106], 

asparagine [157], aspartate [106], beta-hydrolybutyrate  [163], citrate [163], 

creatine [106], cysteine [106], glucose [162], glutamate [106], glutamine [163], 

histidine [106], lactate [106], lactic acid [163], LDL [106], leucine [106], linoleic 

acid [163], lysine [163], methionine [163], myristic acid [163], phenylalanine 

[164], tryptophan [163], tyrosine [163], valine [163], VLDL [106], 

Tissue** 
Acylcarnitines [165], carnitine [165], fatty acid [165], lysophosphatidylcholine 

[165] 

Lung 

 

Serum* 

6-diaminopimelate [166], cholesteryl acetate [166], choline [167], fatty acid 

[167], [168], glutamine [169], lysophosphatidylcholine [166], [168], N-succinyl-2 

[166], octanoylcarnitine [166], phosphatidylcholine [166], phosphatidylserine 

[166], sphingomyelin [168] 

Tissue** Choline [170], fatty acids [170], glutamine [171] 

Brain 

 

Tissue** 
arachidonic acid [141], glycerophosphocholine [141], lactate [141], 

lysophosphatidylcholine [141], phosphatidylcholine [141] 

CBF*** 
2-aminopimelic acid [172], citric acid [172], isocitric acid [172], methionine 

[172], serine [172], tyrosine [172], valine [172] 

Leukaemia 

 

Serum* 

Acetone [173], alanine [173], arginine [173], cholesterol [173], [174], choline  

[173], creatine  [173], cysteinyl-glycine  [175], formate  [173], glucose  [173], 

glutamate  [175], glycerol [174], histidine [173], lactate [173], [174], leucine 

[173], lysine [173], lysophosphatidylcholine [175], myoinositol [173], 

phenylalanine [173], phosphatidylcholine [175], phosphocholine [174], proline 

[173], pyruvate [174], trimethylamine-N-Oxide [173], tyrosine [173],  

uric acid [174], uridine [174], valine [173] 

Tissue** Asparagine [123], [176], glutathione [177] 

* This group includes blood, serum, or plasma 

** This group includes tissue, cells or locally collected biological fluid (e.g. secretions) 

*** Cerebrospinal fluid  

  999 
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Table 2.6 Summary of metabolic cross-over between the metabolic profiles. 1000 
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asparagine ✓  
✓  

✓ ✓  
✓  

choline ✓ ✓ ✓  
✓  

✓ ✓  

cysteine  
✓ ✓  

✓ ✓  
✓  

fatty acid  
✓ ✓  

✓ ✓ ✓   

glucose ✓ ✓ ✓  
✓ ✓  

✓  

glutamate ✓  
✓  

✓ ✓  
✓  

glutamine ✓ ✓ ✓  
✓ ✓ ✓   

histidine ✓ ✓  
✓  

✓  
✓  

lactate  
✓ ✓ ✓ ✓ ✓  

✓ ✓ 

leucine  
✓ ✓  

✓ ✓  
✓  

lysophosphatidylcholine   
✓ ✓  

✓ ✓ ✓ ✓ 

phenylalanine ✓ ✓ ✓  
✓ ✓  

✓  

phosphocholine ✓ ✓ ✓  
✓   

✓  

proline  
✓ ✓ ✓ ✓   

✓  

tyrosine  
✓ ✓  

✓ ✓  
✓ ✓ 

valine  
✓ ✓  

✓ ✓  
✓ ✓ 

 1001 

2.4.2. Metabolomics for prostate cancer 1002 

PCa has the highest cancer incidence for male subjects in the UK (26 % in 2014), and it is 1003 

expected to rise in the next 15 years, as the population ages [178]. In accordance with other 1004 

cancer types, there is consistent evidence that patients diagnosed at an early stage are more 1005 

likely to survive cancer. PCa patient 5-years survival rate is nearly 100% when the tumour 1006 

is detected in a localised initial stage [178]. The same rate decreased to 34% when the tumour 1007 

is diagnosed in a late metastatic stage [178]. This difference in the survival rate underlines 1008 

the necessity of PCa screening program. Most PCa cases are diagnosed with a prostate-1009 

specific antigen (PSA) blood test, usually in combination with digital rectal examination, 1010 

biopsy and imaging [150]. Once diagnosed, PSA is also used to monitor and assess the 1011 

evolution of the disease [150]. This prediction has been related to the high false-positive rate 1012 

of the PSA test: only less than one in three subjects with increased PSA will have PCa [7]. 1013 

PSA test also misses about 15% of cancers [7]. Currently, a PSA-based screening program 1014 

remains controversial because of the number of false positives. This could unnecessarily 1015 

deteriorate the quality of life of healthy subjects and increase clinical costs without 1016 

significantly reducing mortality [179]. Besides being invasive, digital rectal examination and 1017 

biopsy can even potentially miss cancer due to tumour heterogeneity [150]. As a 1018 
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consequence, several additional biomarkers are now being explored to improve the 1019 

performance of the current clinical procedure [150].  1020 

Metabolomics is being explored to address this necessity [150]. Lohkov et al. [150], for 1021 

instance, have demonstrated that a set of metabolites from plasma can potentially 1022 

discriminate PCa better than PSA. Specifically, in a group of 30 healthy controls and 40 1023 

subjects affected by PCa, they demonstrated that increased levels of carnitine-related 1024 

metabolites discriminated cancer and healthy groups with sensitivity and specificity of 1025 

94.6% and 96.4%, respectively. They performed better than the PSA test, which scored a 1026 

sensitivity of 35% and a specificity of 83.3% on the same samples. In a similar study, Zhang 1027 

et al. [150] also provided a set of metabolites with diagnostic potential comparable to PSA. 1028 

Table 2.7 demonstrates that metabolomics can be applied to PCa in all the stages of the 1029 

disease, from early diagnosis to the stage assessment. Here, the link between PCa and 1030 

metabolites have been broken down to four sub-categories. The first category groups all the 1031 

metabolites which have been linked to PCa risk or recurrence. The second category groups 1032 

all the metabolites which have shown diagnostic capability. This is usually assessed by 1033 

comparing the metabolome of a healthy control group with one of the people recently 1034 

diagnosed with PCa. The third category groups all the metabolites which have shown the 1035 

capability of discriminating a malignant from a benign tumour. This is usually determined 1036 

by comparing the metabolome of people diagnosed with a malignant PCa with subjects 1037 

diagnosed with a benign PCa. The fourth category groups all the metabolites which have 1038 

shown the capability of providing information about cancer stage, including the presence of 1039 

eventual metastasis, usually evaluated by comparing the metabolome of people affected by 1040 

PCa in several stages.  1041 

Among the metabolites relevant to PCa, it is worth highlighting that the serum concentration 1042 

of LAA is typically increased in PCa group, except for alanine and lysine showing a 1043 

decreased level in late-stage cancer. Glutamate and choline, also demonstrate a very close 1044 

link with PCa, being relevant in all the stages of the disease [148], [152]. A correlation 1045 

between sarcosine and PCa is still a controversial topic. At this stage, there are studies both 1046 

approving [150], [156], [157] and disapproving [180] serum sarcosine as a metabolic 1047 

biomarker for PCa. Certainly, this topic requires further study.  1048 

 1049 

 1050 
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Table 2.7 Summary of metabolites which have been linked to PCa in literature, divided 1051 

according to sample type (serum*, tissue**, urine) and cancer stage.  1052 

Metabolite Sample 
Risk or 

recurrence 
Diagnosis Malignancy  Staging 

AlanineLAA 
Serum*  ↔ [149]  ↓ [148] 

Tissue**   ↑ [156]  

Urine   ↑ [156]  

Androsterone 

sulfate 

Serum*  ↑ [150]   

Tissue**     

Urine     

Arachidonoyl 

amine 

Serum*  ↑ [150]   

Tissue**     

Urine     

ArginineLAA 
Serum*   ↑ [151] ↑ [148] 

Tissue**    ↑ [157] 

Urine     

AsparagineLAA 
Serum*     

Tissue**   ↑  [157] ↑ [156] 

Urine     

Carnitine 
Serum*  ↔ [150]   

Tissue**     

Urine     

Cholesterol 
Serum*    ↑ [150] 

Tissue**    ↑[150] 

Urine     

Choline 
Serum* ↑ [152] ↑ [152]   

Tissue**  ↑ [150], [156] ↑ [150], [156] ↑ [150], [157], [159] 

Urine  ↑  [156] ↑ [156]  

Citrate 
Serum* ↔ [148]  ↔ [148] ↓ [148], [181] 

Tissue** ↓ [150] ↓ [150] ↓  [150]  

Urine  ↓ [156]  ↓ [156] 

Creatinine 
Serum* ↑ [154]   ↑ [155] 

Tissue**     

Urine   ↓ [150]  

CysteineLAA 
Serum* ↔ [150]    

Tissue**   ↑  [157]  

Urine ↔ [150]    

Fatty acid 
Serum* ↔ [148]  ↔ [148], [150] ↔ [148] 

Tissue**    ↔[150] 

Urine   ↔ [150]  

Formate 
Serum*   ↔ [150] ↔ [150] 

Tissue**     

Urine     

Glucose 
Serum*   ↑ [151]  

Tissue**     

Urine     

GlutamateLAA 
Serum* ↔ [148] ↑[150], [182] ↑ [148], [151], [182] 

↑ [148], [150], [156], 

[182] 

Tissue**  ↔ [150] ↑ [150] ↑ [156] 

Urine     

GlutamineLAA 

Serum*  ↑ [150]   

Tissue** ↔[150] ↔[150]   

Urine     

Glycerol 
Serum*     

Tissue**  ↑[150], [156] ↔ [150] ↑ [156] 

Urine  ↑ [150], [156]  ↑ [156] 

GlycineLAA 
Serum*  ↑ [150]   

Tissue**   ↑ [150] ↑ [159] 

Urine     

Isolithocholic acid 
Serum*  ↓ [150]   

Tissue**     

Urine     

Lactate 
Serum*  ↑ [160], [161]   

Tissue**  ↑ [150], [156] ↑ [156]  

Urine  ↑ [156] ↑ [156]  

LeucineLAA 
Serum*    ↑ [150] 

Tissue**   ↔ [150] ↑ [156] 

Urine     

LysineLAA 
Serum*  ↔ [150] ↑ [151] ↓ [150] 

Tissue**     

Urine     

Serum*     
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Myoinositol 
Tissue**   ↑  [157] ↑ [150], [156] 

Urine     

PhenylalanineLAA 
Serum*   ↑ [151] ↑ [156] 

Tissue**    ↑ [150] 

Urine     

Phosphocholine 
Serum*  ↔ [150]   

Tissue**  ↑ [150], [156] ↔ [150] ↑ [156] 

Urine  ↑ [156]   

ProlineLAA 
Serum*   ↑ [148] ↑  [148] 

Tissue**  ↑ [150]  ↑ [156] 

Urine     

Pyrimidine 
Serum*     

Tissue**  ↓ [156]   

Urine  ↓ [150], [156]   

Sarcosine 

Serum*  ↑ [149]   

Tissue**  ↑ [150] ↑ [150], [156], [157] 
↑ [150], [156], [159], 

[183] 

Urine   ↑ [150], [156], [157] 
↑ [156], [157], [159], 

[183] 

SerineLAA 
Serum*     

Tissue**    ↓  [157] 

Urine     

Spermine 
Serum*    ↓ [119], [150], [157] 

Tissue** ↓ [150] ↓ [156] ↓ [156] ↓ [119], [150], [157] 

Urine  ↓ [156] ↓ [156]  

TaurineLAA 
Serum*    ↑ [156] 

Tissue**   ↔ [150] ↑ [150] 

Urine     

Tryptophan 
Serum* ↔ [148]  ↔ [148] ↑ [148] 

Tissue**     

Urine     

TyrosineLAA 
Serum*    ↔ [150] 

Tissue**     

Urine     

Urea 
Serum* ↔ [148]  ↔ [148] ↑ [148], [153], [155] 

Tissue**     

Urine     

ValineLAA 
Serum*   ↑ [151] ↑ [150] 

Tissue**  ↓ [156]   

Urine     

Xanthine 
Serum*   ↔ [148] ↑[148], [157] 

Tissue**     

Urine     

Testosterone 

sulfate 

Serum*  ↓ [150]   

Tissue**     

Urine     

 ↑: increased concentration level 

↓: decreased concentration level 

↔: altered concentration level but the trend is not easily reportable 

* This group includes blood, serum, or plasma 

** This group includes tissue, cells or locally collected biological fluid (e.g. secretions) 
LLA Amino acid, mainly present in human blood in its l-type 

 1053 

2.4.3. Metabolomics for cardiovascular diseases 1054 

Globally, CVDs are the leading cause of death, claiming almost 18 million lives each year 1055 

[13]. CVDs group a variety of conditions related to the hearth and blood vessels. CVDs 1056 

might be divided into chronic and acute diseases. Chronic CVDs, including rheumatic heart 1057 

disease, congenital heart disease, coronary heart disease, are long term diseases. Differently, 1058 

acute CVDs include usually severe and immediate failure events. Acute events such as stroke 1059 

and heart attacks are mainly caused by a blockage that prevents blood from flowing correctly 1060 

[13]. Among acute CVDs, ischemic stroke is the second leading cause of death and the third 1061 
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leading cause of disability [184]. Ischemia is the sudden death of brain cells due to lack of 1062 

cell oxygenation [184]. This is usually related to a cardiovascular accident where blood 1063 

vessels are blocked or ruptured [184].  1064 

Metabolomics is a powerful tool also for CVDs [185]. It is well-known that a high lipid 1065 

profile, excess of long-chain amino-acids and high glucose concentration in the blood 1066 

increase the risk of acute CVDs [13], [185]. Therefore, monitoring lipid profile, including 1067 

cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL), is now 1068 

standard practice in the clinical environment to evaluate the risk of acute events [186].  1069 

Lactate also has a clinical significance in acute cardiac patients and is clinically used for 1070 

patient stratification [187]. Authors in [187] suggest that patients with acute CVDs with an 1071 

admission lactate blood level lower than 2 mM usually have a better prognosis. Lactate has 1072 

been strongly related to acute inflammation and also gives account for any hypoxia condition 1073 

[188], [189]. The importance of lactate for critically ill patients is well-known, and today it 1074 

is the clinical practice to monitor lactate levels in intensive care units (ICU) [190]. 1075 

Besides lactate, serum creatinine is a diagnostically significant metabolic marker for acute 1076 

conditions [189]. Creatinine is also clinically used in ICUs for critically ill patients [154], 1077 

[191]. On top of these well-established metabolomic biomarkers for CVDs, several 1078 

additional metabolites have been linked to cardiovascular events and reported in Table 2.8. 1079 

 1080 

Table 2.8 A selection of metabolites and related cardiovascular disease. 1081 

 1082 

 1083 

 1084 

CVD Sample Metabolites 

Risk Serum 
Betaine [192], branched-chain amino acids (BCAA) [185], cholesterol [193],  choline [192], 

HDL [193], LDL [193], TMAO [185], [194], short-chain dicarboxylacylcarnitine (SCDA) [185] 

Heart 

failure  
Serum BCAA [185], acylcarnitines [185], fatty acids [185], glucose [185], ketones [185] 

Myocardial 

infection  
Serum 

Creatine [195], fatty acid [195], glucose [195], glutamate [195], glycerol [195], lactate [195], 

phenylalanine [195], phosphoethanolamine [195], pyrimidine [195], succinate [195], taurine 
[195], triglycerides [195], tyrosine [195] 

Hearth 

attack 
Serum Ceramide [192], cholesterol [192], choline metabolism [192], triacylglycerol [192] 

Ischemic 

stroke  
Serum 

Acetic acid [196], alanine [189], aspartate [189], betaine [196], [197], carnitine [189], choline 

[192], [197], choline-related pathways [189], citric acid [189], [196], creatinine [189], cysteine 
[189], formate [189], free fatty acids [192], glutamate [189], glutamine [189], glycine [189], 

homocysteine [189], lactate [189], [196], phenylalanine [189], proline [189], pyruvate [189], 

pyruvic Acid [196], serine [189], threonine [189], tryptophan [189], [196], tyrosine [189], uric 
acid [189], valine [189], [196] 
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2.4.4. Other metabolomics applications  1085 

There are many other healthcare applications where metabolomics could have a dramatic 1086 

impact. It is beyond the scope of this work to review all the healthcare applications where 1087 

metabolomics shows untapped potential. However, a few more uses are listed here to 1088 

emphasise that metabolomics still has impressive unexploited potential.  1089 

Metabolomics could be employed for Alzheimer’s disease early diagnosis, currently 1090 

affecting more than 5 million people in the US only [198]. A large number of serum 1091 

metabolites, including choline [198], valine [198], carnitine [198], serine [198], have been 1092 

linked to the disease. Serum metabolic profile could serve as an additional tool to increase 1093 

the accuracy of diagnostic, to predict the disease progression [198].  1094 

Metabolomics has also been linked to sepsis [199]. Globally, 31.5 million people develop 1095 

sepsis each year, and this figure is expected to increase as the population ages [200]. Sepsis 1096 

is both the most expensive condition to treat (US$ 24 billion) and the leading cause of death 1097 

in US hospitals, with a fatality rate ranging from 30% to 50%, depending on its severity 1098 

[200]. Early diagnosis is crucial in sepsis, as where survival is reported to decrease by 7.6% 1099 

with every hour of delay in the initiation of therapy [3]. There are many metabolites which 1100 

have been linked to sepsis. Lactate, above all, is currently being used in clinical settings for 1101 

sepsis diagnosis [199], [201]. Also, increased blood levels of 3-hydroxybutyrate [201], 1102 

[202], acetate [201], acetoacetate [201], acylcarnitines [201], citrate [201], glucose [201], 1103 

[202], isobutyrate [202], linoleic acid [201], lysophosphatidylcholine [201], malate [201], 1104 

myoinositol [202], o-acetylcarnitine [202], phenylalanine [202], pyruvate [201], urea [202], 1105 

and decreased blood levels of kynurenine [201], methanol [202], propylene glycol [201], 1106 

ribitol [201], ribonic acid [201], valine [202] have been linked to sepsis.  1107 

On top of all the mentioned applications, metabolomics has also been shown to be relevant 1108 

for other widely spread diseases such as acute coronary syndrome, asthma, cardiovascular 1109 

diseases, hepatitis, Parkinson’s disease, rheumatoid arthritis, exotic diseases, acute renal 1110 

injury [12]. In summary, at present metabolomics is very much research laboratory-based 1111 

and needs to move out of academic laboratories and into the clinic [12], [15].  1112 

 1113 

 1114 
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  Microfluidics 1115 

A single miniaturised and automated diagnostic system made up of multiple integrated 1116 

biosensors, actuators, and electronic interfaces is called lab-on-chip [28], [203]. Lab-on-1117 

chips incorporates numerous laboratory tasks onto a small device and has many advantages 1118 

than standard benchtop equipment. The main benefits of lab-on-chips are the speed of 1119 

analysis, ease of use, low reagent and sample consumption, high-throughput processing and 1120 

high reproducibility due to automation and standardisation [30]. Lab-on-chip devices 1121 

integrate all steps ‘from sample to answer’ and, for this reason, they are promising for 1122 

addressing environmental and medical challenges [31]. A lab-on-chip device is typically 1123 

more complex than a biosensor and it is composed of (i) multiple receptors, (ii) multiple 1124 

transducers, (iii) multiple readouts and a (iv) sample handling system [31]. The previous 1125 

sections have already discussed receptors, transducers, and readouts. Therefore, this section 1126 

is dedicated to the sample handling system.  1127 

Microfluidics is the study of microstructures capable of handling small quantities of fluids. 1128 

Many microfluidic structures have been successfully used for a range of fluidic operation in 1129 

lab-on-chip platforms [204]. Microfluidic channels are microstructures which confine the 1130 

fluid and allow it to move in a controlled path. Microfluidic elements for controlling the flow 1131 

of the fluid in the microchannel have been developed, including pumps (active and passive) 1132 

and valves [205]. Microfluidic mixers are microstructures designed to favour the mixing of 1133 

two different fluids [205]. Microfluidic elements are usually combined to create microfluidic 1134 

networks. Currently, microfluidic networks can reach very high complexity level integrating 1135 

channels, valves, pump and mixers [206]. 1136 

In this work, capillary microchannels with rectangular cross-section were used. No 1137 

microfluidics pump or mixers were employed. Therefore, this paragraph will focus on 1138 

microfluidic theory for capillary and laminar flow regime. Additional resources for an 1139 

overview of microfluidic elements are here suggested [205], [207], [208].  1140 

In microfluidic structures, the flow is primarily laminar, meaning that the behaviour of the 1141 

liquid can be decomposed into a series of infinitesimal layers flowing on top of each other 1142 

without mixing. The Reynolds number (Re) is typically used to define the flow regime in a 1143 

microfluidic structure. The Reynolds number is defined as the following:  1144 

Re =
Inertial Forces

Viscous Forces 
=   

ρul

η
=  

ul

ν
 (2.38) 
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Where ρ is the fluid density (kgm3), u is the velocity of the fluid in the structure (m/s), l is a 1145 

characteristic linear dimension of the structure (m/s), η is the dynamic viscosity of the fluid 1146 

(Pa⋅s), and ν is the kinematic viscosity of the liquid (m2/s) [209]. For a microstructure, l ≈10-6 1147 

so Re < 1. Turbulent flow is present when Re > 4000 while when Re < 2000 the flow is 1148 

laminar.  1149 

The study of the fluid kinematics is usually carried out using the Navier-stokes equation. A 1150 

generic particle with mass m and velocity v is influenced by several independent forces (Fj):  1151 

m
dv

dt
=∑Fj

j

 → V−1m
dv

dt
= V−1∑Fj 

j

→  ρDtv =  ∑fj 

j

 

∑fj  

j

= {
ρδtvx                                   1D Flow
ρ{δtv + (v ⋅  ∇)v}             3D Flow

 

(2.39) 

Where V is the considered volume, f is the force density and Dt is the material time-1152 

derivative defined as [208]: 1153 

Dt = {
δt,  1D Flow 

δt + (v ⋅  ∇), 3D Flow
 (2.40) 

The final form of the Navier-Stokes equation can be calculated by inserting the complete 1154 

expression for the force densities: 1155 

ρδtvx = −δxp +  η(δy
2 + δz

2)vx + fx       1D Flow (2.41) 

ρ{δtv + (v ⋅  ∇)v} =  −∇p + ∇2v + {ρg + ρelE}    3D Flow  (2.42) 

Where, in the second member, the first term is the pressure-gradient force density, the second 1156 

term is the viscous force density, and the third term is the body force density.  1157 

One of the methods for resolving the Naiver-Stokes equation is represented by the Hagen-1158 

Poiseuille equation, valid in static conditions and in a rigid straight structure when a pressure 1159 

gradient Δp (Pa) is applied [208]:  1160 

∆p = Rh Q (2.43) 

Where Rh is the hydraulic resistance (kg/ m4s), and Q is the flow rate (mole of fluid passing 1161 

through a section in a unit of time, m3/s). There is a formal equivalence between the Hagen-1162 

Poiseulle and the 2nd Ohm’s law. The hydraulic resistance depends both on the geometry of 1163 

the structure both on the viscosity of the fluid. Specifically, for rectangular channels with 1164 

height h, length L and depth w the Rh is: 1165 

Rh = 
12ηL

{1 − 0.63 (
h
w)

} h3w
 (2.44) 
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Rh is generally high for microfluidic structures due to height h and the width w having 1166 

micrometric dimensions [208].  1167 

In the absence of externally applied pressure and with channel height and width in the order 1168 

of hundreds of micrometres, the liquid can spontaneously move due to cohesive forces 1169 

within the liquid and adhesive forces between the liquid and its surroundings. This effect is 1170 

commonly referred to as capillary action [210]. With reference to Figure 2.15, the capillary 1171 

pressure gradient (Δp) is related to the property of the fluid and the geometry of the 1172 

microchannel [208]: 1173 

∆p =  γ (
cosϴb + cosϴt

h
+
2cosϴs
w

) (2.45) 

Where ϴ denotes the contact angle of the different materials employed and γ the surface 1174 

tension. According to equation (2.45), when w << h, the capillary pressure gradient depends 1175 

only on w and the microchannel can even be left open [211], [212].   1176 

Under the assumption of laminar, steady-state flow, and in the absence of gravitational 1177 

effects, the position of the advancing liquid l(t) can be obtained by manipulating Equation 1178 

(2.44) and Equation (2.45) [208], [213]: 1179 

l(t) =  h √
Δp

6ηL
(1 − 0.63

h

w
) t (2.46) 

Where Δp is the capillary pressure gradient, Rh is the hydraulic resistance, Q is the flow rate, 1180 

η is the dynamic viscosity, L is the microchannel length. Equation (2.46) can be used as a 1181 

designing equation when developing capillaries.   1182 

Many different methods have been used to fabricate microfluidic structures and integrate 1183 

them with integrated circuits. A review of microfluidic fabrication and integration is reported 1184 

in Chapter 4.  1185 

 1186 

 1187 
Figure 2.15 Schematic representation of a passive rectangular microfluidic channel. 1188 
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  Point-of-care Systems 1189 

By potentially being useful for all the major causes of death [12], [13], metabolomics social 1190 

impact would be impressive if it was untapped for masses through POC platforms [10]. The 1191 

main advantages and challenges of POC systems have already been examined in Chapter 1. 1192 

Particularly, the potential of such technologies for saving lives, time and money have been 1193 

already discussed. The main technological and practical challenges slowing down the 1194 

widespread of these technologies have also been analysed. In this section, a more in-depth 1195 

literature review is proposed for both experimental and commercial POC devices.  1196 

 1197 

2.6.1. Review of POC platforms 1198 

Authors in [1] illustrate the key design components of a POC device which include user 1199 

interface, sample delivery device, reagent storage strategy, reaction cell, sensors to detect 1200 

the measurement reaction, control and communication system, data management storage.  1201 

POC testing has been employed to a variety of samples, including tissue, urine and blood 1202 

[39]. Among them, blood testing is particularly interesting because the concentration of 1203 

specific biomarkers in the blood is directly related to the physiological state of the body. 1204 

Therefore, testing blood is often used for preventions, identification and monitoring for a 1205 

variety of diseases [39]. Blood, especially in a small volume, is also particularly easy to 1206 

obtain for the majority of conditions [39]. 1207 

POC can be qualitative or quantitative [1]. Qualitative POC platforms usually do not provide 1208 

a numerical result [199]. Typically, the output of this platform is only a binary result (i.e. 1209 

positive or negative). Lateral flow assays (LFAs), introduced in 1988, are the most popular 1210 

qualitative POC platforms [2]. LFAs are cellulose-based devices consisting of a strip, a 1211 

sample pad, a reagent pad, and a test line. The sample is introduced at the sample pad. It 1212 

migrates to the reagent pad via capillary forces, where bioreagents conjugated to the target 1213 

analyte are immobilised. The formed antigen/antibody product continues to flow along the 1214 

strip where is subsequently captured by a final biorecognition molecule. The result 1215 

interpretation is usually a visual-coloured indicator. 1216 

There are many advantages of LFAs. The inherent properties of the paper support capillary 1217 

flowing; thus, no pumping or complicated fluidics is required [1]. Also, LFAs only requires 1218 

a small sample volume, no sample pre-processing and the waste can be conveniently 1219 

incinerated [1]. Besides, the device is usually low-cost and can accommodate easy 1220 
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functionalisation techniques. On the other hand, LFAs are challenging to use for multiple 1221 

testing and have low sensitivity [1]. 1222 

Quantitative POC devices aim to provide a numerical measurement of the level of the target 1223 

analyte. LFAs can be extended form qualitative to quantitative by the use of a coupled 1224 

reading instrumentation [1]. However, quantitative POC platforms require sensors [1]. Then, 1225 

it should not be surprising that CMOS technologies and lab-on-chip platforms are vastly 1226 

used for the development of quantitative POC systems [1].  1227 

POC platforms, very often supported by IC, have been used for a variety of healthcare 1228 

applications including genomics, proteomics, and metabolomics. Other applications not 1229 

discussed in this review also include biophysical analysis, cell separation and sorting, 1230 

material and drug delivery, drug testing, and organs-on-chip [214]. Table 2.9 summarises 1231 

the review on POC platforms proposed in this paragraph.  1232 

Genomics POC platforms. POC testing in genomics and transcriptomic targets DNA and 1233 

RNA [2]. Numerous methods have been proposed for detecting and amplifying the presence 1234 

of nucleic acids [2]. The most commonly used process is the polymerase chain reaction 1235 

which creates billions of copies of a DNA sequence by iterative replications [215]. POC 1236 

testing in genomics and transcriptomic is particularly essential for detecting and identifying 1237 

virus, bacteria, fungi, microbes, pathogens [2],  necrotic and aberrant cells [1]. A significant 1238 

challenge remains in integrating blood pre-treatment with DNA and RNA detection in a low-1239 

cost, robust and user-friendly platform [1].  1240 

Proteomics POC platforms. POC testing in proteomics targets proteins, including 1241 

enzymes, antibodies, and hormones [2]. Modern POC devices utilise immunoassay 1242 

technology, which includes antigen-antibody binding [2]. These assays target protein 1243 

biomarkers such as PSA for PCa, troponin I for CVDs, and bacterial and viral infection-1244 

related markers such as HIV, influenza, chlamydia, and hepatitis [2]. Most methods for 1245 

protein analysis are based on the enzyme-linked immunosorbent assay (ELISA) method [1]. 1246 

In traditional ELISA tests, colorimetric, fluorescent readout signals are used to visualise the 1247 

interaction of the target protein to the specific recognition molecule [1]. ELISA analysis 1248 

usually requires several washing steps which creates additional complication when 1249 

designing a POC device [1]. ELISA can be implemented on both LFA-based POC and 1250 

quantitative platforms [1]. LFA-based ELISA test has been demonstrated to be convenient 1251 

to develop [1]. However, work is now under development for creating multiplexed protein 1252 

assays on qualitative platforms [1], [216]. Authors in [216], for instance, propose a CMOS-1253 
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based device able to differentiate between serum samples containing either, neither, or both 1254 

rabbit anti-mouse (RAM) antibodies and/or anti-HIV antibodies using a gold-nanoparticle 1255 

promoted silver enhancement immunoassay. The authors claim that the proposed platform 1256 

is the first step in creating a mass-manufacturable POC tool capable of multi-proteins 1257 

quantification [216]. Several platforms have been developed for PSA detection [217]. 1258 

Electrochemical [218], optical [219], [220], cantilever-based [221] and other suitable 1259 

sensors [221] have also been successfully employed for PSA quantification, recently leading 1260 

to the first FDA approved POC PSA test [181]. Despite the need for new tools and standards 1261 

for PCa, the development of POC remains confined to PSA detection because PSA-based 1262 

functionalisation techniques are very stable and convenient. 1263 

Metabolomics POC platforms. POC platforms for metabolic biomarkers have also been 1264 

developed. The development of POC platforms for metabolomics is mainly driven to the 1265 

cost and bulkiness of the equipment typically used for metabolites quantification. This also 1266 

led to the development of commercial colorimetric and fluorescence assay kit to be used in 1267 

combination with a spectrophotometer [222]. The current panel of metabolites most often 1268 

targeted is wide and include glucose, amino acids, choline, sarcosine, lactate, creatinine, 1269 

cholesterol and triglycerides, [2]. Besides glucose meters, today well-established, the interest 1270 

of the research community is moving towards different metabolites.  1271 

Biosensors for the quantification of amino acids profile, with particular reference to L-types, 1272 

which are more relevant for humans, have been documented in the literature [223]. The 1273 

bioreagents typically include L-amino acids oxidase (LAAOx), which can oxidase any type 1274 

of LAA while producing hydrogen peroxide [49]. Both electrochemical and optical methods 1275 

have been used for the quantification of LAA with a similar performance [223]. Among the 1276 

targeted amino acids, glutamate is one of the most popular, especially for its link to 1277 

neurodegenerative diseases [224]. Glutamate biosensors typically employ glutamate oxidase 1278 

(GlOx) [49]. The interest in the quantification of choline is related to its involvement in 1279 

several diseases [225]. Choline biosensors typically employed the specific enzyme choline 1280 

oxidase (ChOx), which oxidases choline while producing hydrogen peroxide. The produced 1281 

hydrogen peroxide has been used to develop both electrochemical and optical biosensors  1282 

[225]. Similarly, sarcosine oxidase (SaOx) and lactate oxidase (LaOx) have been developed 1283 

[2]. Authors in [226], for instance, employ SaOx for the colorimetric determination of 1284 

sarcosine in the urine. Authors here demonstrate that the developed assay is capable of 1285 

differentiating people with PCa from the healthy group [226]. However, the authors employ 1286 
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a benchtop spectrophotometer to run the experiment, thus no integrated platform has been 1287 

achieved here [226]. Both electrochemical and optical methods have been used for lactate 1288 

sensing [2][227]. Creatinine level is being currently tested for renal deficiencies [2]. The 1289 

chemistry involved in creatinine biosensing is slightly more complicated since it involves 1290 

creatininase (CNN) and creatinase (CTN) to convert creatinine in sarcosine. Sarcosine is 1291 

then measured by employing SaOx [228]. POC platform monitoring lactate, cholesterol, 1292 

triglycerides, and other lipids are getting progressively popular for the management of CVDs 1293 

[2]. 1294 

Authors in [229] demonstrate the use of a CMOS sensor and an LED to provide comparable 1295 

results to a commercial spectrophotometer for the colorimetric determination of bacterial 1296 

concentrations. This work shares a similarity with the work presented in this thesis regarding 1297 

the setup utilised and the colorimetric approach. However, the work in [229] uses a 1298 

commercial CMOS sensor and no microfluidic integration was achieved. Similarly, authors 1299 

in [230] employ a CMOS sensor to quantify H2O2 using a colorimetric approach. However, 1300 

also in this case, there is not monolithically integration and the samples are retained into 1301 

reaction cuvettes. 1302 

Multi-analyte metabolomics POC platforms. Lab-on-chip devices are also being 1303 

developed for quantifying multiple compounds [231]. Authors in [232], for instance, present 1304 

a microfluidic lab-on-chip quantifying human body metabolites, using sub microliter 1305 

droplets as reaction chambers. Authors demonstrate the suitability of the platform for 1306 

glucose, glutamate, and pyruvate individually [232]. The lab-on-chip takes advantage of an 1307 

electrowetting chip which transport and mix the sample and the reaction for the initiation of 1308 

a colorimetric reaction [232]. The reaction takes place in microchannel fabricated by Teflon, 1309 

perylene and glass. Chemistry and working principle developed in this work are very similar 1310 

to the one adopted in this research project. However, the platform is not integrated and a 1311 

single external photodiode is used to monitor the absorbance during the reaction [232].  The 1312 

developed lab-on-chip also does not allow parallel assays [232]. PDMS microfluidic 1313 

channels have been employed on the CMOS-based spectrophotometer system reported in 1314 

[233]. The system was used for the determination of glucose, uric acid, and cholesterol. 1315 

However, PDMS microfluidics is developed onto a glass substrate. The integration of 1316 

microfluidics with the sensor array was not achieved in this work [233]. A more complex 1317 

PMMA-based system has been developed by authors in [234] for the quantification of sorbic 1318 

acid. Also in this case, microfluidic chip and sensors are two physically separated units.  1319 
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Table 2.9 State of the art of IC-based POC platforms. 1320 

Analytes (examples) Common techniques References 

DNA and RNA 

(e.g. from virus, bacteria, fungi, aberrant cells) 

Polymerase chain reaction. 

Detection methods: 

electrochemical. 

[1], [2], [215] 

Proteins (e.g. enzymes, antibodies, antigens, 

hormones, etc.) 

Enzyme-linked immunosorbent 

assay (ELISA). Detection methods: 

optical and electrochemical. 

[1], [181], 

[216]–[221] 

Metabolites (e.g. LAA, glutamate, choline, 

sarcosine, lactate, creatinine, etc). 

Enzyme-based assay. Detection 

methods: optical and 

electrochemical. 

[49], [223], 

[232], [233], 

[224]–[231] 

Other biomarkers (e.g. cells) Various [1], [2] 

 1321 

2.6.2. Market Review  1322 

Sensing devices currently on the market for biomedical applications can be mainly divided 1323 

into in-home or in-laboratory based diagnostics. While the market for in-home care 1324 

monitoring has proliferated, the rate of acceptance of the new biosensors for the hospital or 1325 

laboratory-based diagnostics has been comparatively lower [16].  1326 

In-home POC devices are designed to be used by the generic public. This category of devices 1327 

usually requires no or minimal sample pre-treatment, are cheaper, more robust and have a 1328 

higher degree of portability.  In-home POC can also take advantage of personal mobile 1329 

devices such as smartphone or tablet for processing or data storage [235]. LFAs are the most 1330 

commercially available tools for POC in-home testing [199]. Modern portable pregnancy 1331 

tests are probably the widest spread example of LFA [2]. Semi-quantitative PSA lateral flow 1332 

strips are also available on the market to help to diagnose PCa [221], [236]. However, 1333 

glucose biosensors seem to have forged the most significant market share for in-home POC 1334 

platforms [16]. Glucose biosensors account for approximately 85% of the entire biosensors 1335 

market [2]. Most diabetics now regulate their condition at home by self-testing their blood 1336 

with hand-held glucose meters [2]. Typically, two types of glucose sensors are commercially 1337 

available in the market, namely electrochemical and optical. For effective management and 1338 

to record patient history, most modern glucometers now have memory storage and computer 1339 

interfaces so that the patients can keep track of their blood glucose levels over a period of 1340 

time, and the data can then be shared with clinicians to prescribe a better course of medical 1341 

treatment.  1342 

Whatever the working principle, glucose market is so vast that standardisation agencies 1343 

published a set of guidelines for their development. The most commonly cited guideline for 1344 
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glucose meter is from the International Organisation for Standards stating that the relative 1345 

error of the measurement for glucose concentrations < 4.2 mM should be lower than 15% 1346 

(95% confidence interval). The same quantity should be lower than 20% for glucose 1347 

concentrations > 4.2 mM [1]. The Clinical and Laboratory Standard Institute indicates a 1348 

requirement for meter results to be within 12.5% of laboratory results [1]. The Food and 1349 

Drug Administration (FDA) has stipulated a maximum discrepancy of 10% between meter 1350 

results and laboratory analysis [1]. Worryingly, independent studies indicated that not all the 1351 

meters on the market are complainant with these recommendations [237]. 1352 

Cholesterol monitoring devices are also finding new demand world-wide, and this biosensor 1353 

segment is expected to grow at a rate of around 8% over the next five years [16]. There is 1354 

also an increasing instance of disorders due to obesity and hormonal imbalance, creating an 1355 

escalation of cholesterol levels in the blood. 1356 

In-laboratory based diagnostics are designed to be used by trained personnel. This category 1357 

of devices can require sample pre-processing and can be more expensive and less portable 1358 

than the previous class. In-laboratory based diagnostics usually aim to reduce the time 1359 

patients spend in the emergency department and accelerate the clinical decision. They are 1360 

also used for bedside testing or patients with reduced mobility. Acute conditions, such as 1361 

stroke and sepsis, also gain advantages from the quick test provided by POC testing. A 1362 

remarkable example of the category is the i-STAT by Abbott. The i-STAT is a ‘handheld 1363 

blood analyser for with-patient testing aimed at improving the quality, cost, and operational 1364 

efficiency of health’ [238]. The device is very versatile and allows to diagnose acute 1365 

conditions in minutes. The i-STAT cartridges are available for a range of clinical tests, 1366 

including cardiac markers, lactate, coagulation, blood gases, chemistries and electrolytes, 1367 

and haematology [238].  1368 

The most successful commercial POC device capable of DNA sequencing is probably the 1369 

CMOS-based Ion Torrent platform by Thermo Fischer Scientific [239]. The platform uses 1370 

an ISFET sensor array together with the polymerase chain reaction technique [239]. First, 1371 

the genome sequence is divided into millions of fragments, which are attached to beads 1372 

allocated in microwells. Microwells are iteratively washed with solutions containing one of 1373 

the four bases (adenine, cytosine, guanine, and thymine). When a test base attaches to its 1374 

complementary base, hydrogen ions are released and sensed by the pH sensor. By iterating 1375 

the washing step and by repeating the test over millions of pH sensors, it is possible to 1376 

reconstruct the sequence of the molecule under analysis. 1377 
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Figure 2.16 shows devices based on different technologies for biomedical applications, 1378 

including optical, pH, amperometric, electrochemical nano-mechanical and thermal 1379 

sensors [16].  Table 2.10 provides some examples of the currently available biosensors for 1380 

the detection, diagnosis and monitoring of biomedically relevant analytes [16].  1381 

 1382 

2.6.3. Discussion on platform affordability  1383 

Basing on the market review illustrated above, it is now possible to define the requirement 1384 

about the cost of the platform. With reference to Table 2.10, glucose meters have a very low 1385 

cost because they are used very frequently (more than once a day) by people affected by 1386 

diabetes. However, the platform developed in this work target applications where the 1387 

frequency of use is expected to be lower. Other platforms on the market have increased costs 1388 

for both the reader and the test. The cost of the reader for these platforms ranges from £ 250 1389 

to £ 5200, while the cost per test is in the range of £1.5 - £10. For both the target applications 1390 

of this work, we can assume a frequency of usage of once every three months (per patient). 1391 

This is similar to other multi-analyte platforms in the market, such as Accutrend Plus (Cobas-1392 

Roche) and CardioChek PA (PTS diagnostics) – see Table 2.10. 1393 

 1394 

Table 2.10 Examples of commercial POC platforms. Devices information have been 1395 

retrieved from the respective websites of the platforms. Reproduced and modified from [16].  1396 

Device Analyte/test Sensor type 
Assay 

time 

Cost per test 

/reader  

i-stat (Abbott) 
Multiple: (Troponin I, O2, Glucose, 

lactate, pH, Hematocritmany) 
Electrochemical  2-5 min 

T: £ 10 

R: £ 5200 

MiniOn (Nanopore 

technology) 
DNA sequencing Nano-pore - 

T:  n.d. 

R: £1000 

CoagMax (Microvisk) Blood viscosity Micro-cantilever - n.d. 

Contour (Bayer) Glucose 
Electrochemical 

(GDH) 
< 30 s 

T: < £ 0.5 

R: £ 30 

Optimum (Abbott) Glucose 
Electrochemical 

(GDH/NAD) 
< 30 s 

T: < £ 0.5 

R: £ 30 

Accu-check Performa 

(Roche) 
Glucose 

Electrochemical 

(GDH/PQQ) 
< 30 s 

T: < £ 0.5 

R: £ 30 

Accutrend Plus (Cobas-

Roche) 

Tot. Cholesterol 

Triglycerides 

Glucose, Lactate 

Optical 

(absorbance) 
30 s 

T: < £ 1.5 

R: £ 250 

CardioChek PA (PTS 

diagnostics) 

Total cholesterol, HDL, triglycerides, 

glucose, LDL, 

Ketones, Creatinine 

Optical 

(absorbance) 
2 min 

T: £ 7.50 

R: £ 700 

Cholestech LDX (Alere) 

Cholesterol, HDL, glucose, 

triglycerides, LDL, ALT , AST and hs-

CRP 

Optical 

(absorbance) 
5 min 

T: £ 8.50 

R: £ 950 

DCA Vantage (Siemens 

Healthineers) 
HbA, HbF, HbS, HbC, HbE in urine Immunological - 

T: £ 9.11 

R: £ 4000 

In2it (Provalis) HbS and HbD Boronate affinity - 
T: £ 6 

R: £ 1500 

Q-POC (Quantum DX) HPV or Tuberculosis or STI 
Functionalised 

Nanowire FET 
20 min 

T: $ 10 

R: $ 1000 
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 1397 

Figure 2.16 Reproduced and modified from [16]. (a) i-STAT (Abbott), (b) In2it (Provalis), 1398 

(c) coagmax (Microvisk), (d) Q-POC (Quantum Dx), (e) Cholestech (Alere), (f) Optium 1399 

(Abbott), (g) Genome sequencer (Ion torrent), (h) DCA Vantage ( Siemens), (i) Contour 1400 

(Bayer), (j) MiniOn (Nanopore technology), (k) CardioChek PA (PTS diagnostics), (l) 1401 

Prototype from DNA electronics, (m) Accutrend Plus (Cobas-Roche). 1402 

 1403 

Therefore, similar costs requirement can also be set. Specifically, maximum target costs for 1404 

the reader and cartridge were assumed to be £5200 and £10, respectively.  1405 

The cost of the reader can be easily met by using off-the-shelf electrical components. 1406 

However, the maximum target price of the cartridge is a challenging requirement.  This is 1407 

because the disposable cartridge integrates CMOS sensors, biological reagents, and 1408 

microfluidic systems. The requirement can potentially be met when cartridges are mass-1409 

produced but, in this project, cartridges were not mass-produced. However, the methods and 1410 

procedures developed in this project must be suitable for mass-production.  1411 

The cost of the cartridge could be reduced by integrating reusable sensors in the reader rather 1412 

than in the cartridge. However, with reference to the versatility requirement, a reduction of 1413 

the functionalities of the platform is not advised at this stage. It is also worth outlining that 1414 

the platform can be used for many applications, meaning that only one reader can be used 1415 

for several applications. This can produce additional cost savings. 1416 

Thus, the cartridge was developed with integrated CMOS sensors. Optimisation strategies 1417 

aiming to reduce the cost for specific applications can be investigated as part of future works. 1418 
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  Summary of the Chapter 1419 

In conclusion, the quantitative requirements of the POC platform have been discussed and 1420 

set in this chapter. Strategies required to meet the requirements have also been identified. 1421 

Table 2.11 summarises the discussion.  1422 

 1423 

Table 2.11 Summary of the quantitative requirements of the platform. The strategies 1424 

identified to address the requirements are also summarised.  1425 

Requirement  Criterion Strategy 

Affordability  - Reader cost < £52001. 

- Test cost < £101. 

- Use well-established techniques for sensors 

and readout. 

- Use processes suitable for mass-scale 

production (e.g. CMOS, moulding, enzyme 

printing).  

- Use colorimetry  

Sensitivity 

- Ischemic stroke: results comparable 

to NHS standard. 

- PCa: specificity ≥ 0.32 [18]2. 

- Relative error of the measurement 

in the order of 15-20%3. 

- Use well-established detection methods. 

- Optimise the platform to achieve the 

requirement. 

- Evaluate the platform with clinical samples. 

Specificity Develop a biomarker panel specific 

to PCa and ischemic stroke  

- Identify and use multiple biomarkers.  

- Discuss biomarkers with experts.  

- Test the biomarker with clinically sourced 

samples.  

User-friendly 

- Use blood/plasma/serum1,2. 

- Minimal sample pre-processing1,2. 

- Low sample volume (tens of µL)1,2. 

- Plug and play device1. 

- Integrate sensors, fluidics and biological 

reagents. 

- Use blood/serum/plasma. 

- Develop the platform to be used with a small 

volume. 

- Develop an intuitive user interface. 

- Minimise user operations. 

Rapid - Complete test in minutes1. - Estimate substrate from initial reaction rate.  

Robust 

- Compensation of sample-to-sample 

and device-to-device variations. 

- Capable of detecting failure1. 

- Develop a solution to standardise the 

measurement (controls).  

- Develop strategies for the safe failure of the 

platform (e.g. invalidate result). 

Equipment-free 
- No other external equipment 

required for running the test. 

- Embed all the required equipment into the 

platform.  

Delivered 
- Reagents must have shelf-life in the 

order of weeks/months1. 

- Develop established strategies for reagent 

stabilisation and storage (lyophilisation).  

Multi-analyte 

capability 

- Measure 2 or more metabolites at 

the same time1,2. 

- Use multiple sensors (array). 

- Develop a sample handling system 

(microfluidics). 

Versatility 

- Demonstrate multiple biomarker 

detection.  

- Potential use of other sensors.   

- Use custom CMOS chip. 

- Integrate fluidics monolithically.  

- Beware of other possible use of the platform 

(e.g. use ISFET). 

- Demonstrate platform usage with multiple 

biomarkers.  
1 Assumed from market review. 
2 Assumed from the literature review.  
3 Assumed form glucose meters guidelines.  
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3 Chapter 3: Embedded Platform Development   1426 

  Introduction 1427 

The present chapter describes the development of the proposed embedded platform. 1428 

Requirements, simulations, fabrication, and design consideration are also discussed. Table 1429 

3.1 illustrates the contribution to each activity discussed in this chapter.  1430 

The platform is composed of a cartridge, a reader, and a graphical user interface (GUI) – see   1431 

Figure 3.1. The cartridge is the core of the platform. It is meant to be disposable when mass-1432 

produced, but it has been reused in this project due to limited resources. It integrates the 1433 

CMOS chip, passive microfluidics, and on-chip reagents onto a ceramic package. In this 1434 

chapter, the sensing platform is illustrated. Microfluidics and bioreceptors integration is 1435 

illustrated in the next chapter. The cartridge is designed for the colorimetric detection of 1436 

multiple metabolites.  This raises the question of whether the cartridge requires a single 1437 

sensor or more sensors organised into an array format.  1438 

Typically, a biosensor with one transducer provides a single result. An apparatus containing 1439 

multiple sensors can deliver multiple or single results. Image sensors, for example, provide 1440 

multiple readings. Multiple readings can be combined for providing a lower number of 1441 

readings. 1442 

 1443 

Table 3.1 Table of contributions for the activity presented in this chapter. 1444 

Task / Activity presented in Chapter 3 Main investigators 

Identification of a potential metabolic biomarker panel for 

prostate cancer  

- Valerio F. Annese (literature survey) 

- Prof. Rob Jones2 (discussion/validation) 

Identification of a potential metabolic biomarker panel for 

ischemic stroke  

- Valerio F. Annese (literature survey) 

- Dr Samadhan Patil1 (discussion/validation) 

Design of the CMOS chip 

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

- Dr James Beeley1 

Fabrication of the CMOS chip - Outsourced (Austriamicrosystems) 

Development of the reader (hardware) 

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

- Dr Claudio Accarino1 

Development of the reader (software) - Valerio F. Annese 

Development of the graphic user interface for both 

acquisition and data analysis 
- Valerio F. Annese 

Enzymatic reactions modelling and simulations - Valerio F. Annese 

Platform testing   - Valerio F. Annese 

Affiliation at the time of completion of the activity:  
1Microsystem Technology Group, James Watt School of Engineering, University of Glasgow.  
2 Institute of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow.  
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 1445 

Figure 3.1 The overall architecture and components of the developed platform: (a) the 1446 

cartridge, (b) the reader, and (c) the GUI. This is a high-level diagram and it is not in scale.  1447 

 1448 

When combined altogether, data coming from multiple sensors can be used to provide a 1449 

single output. Microstructures, such as microfluidic channels, can provide physical 1450 

separations allowing to confine target reactions in different zones of a sensing area. For 1451 

example, authors in [240] use a microfluidics-based device for simultaneous testing of a 1452 

plurality of separate nucleic acids in a barcode-like layout. Also, authors in [241] disclose 1453 

an apparatus capable of performing test and controls at the same time from the same sample.  1454 

The developed platform uses an array of optical detectors. Similarly to [240] and [241], this 1455 

platform aims to perform multiple simultaneous measurements. Thus, the use of an array of 1456 

optical detectors is the most suitable configuration for this platform. The use of multiple 1457 

independent sensors has also the potential to reduce the fixed-pattern-noise of the array and 1458 

improve the overall SNR of the measurement [242]. 1459 
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The optical detectors used in this work were custom developed. Arguably, the use of a 1460 

commercial camera chip for this project would have also been possible. However, it is worth 1461 

stressing once again that this work is part of a larger vision aiming to develop a multimodal 1462 

platform. As such, the use of a commercial camera chip would have reduced the 1463 

functionalities of the platform to optical detectors only and would have not satisfied the 1464 

versatility requirement. The use of a custom sensing platform enabled the integration of other 1465 

sensors (i.e. ISFET) to be used in conjunction with optical sensors. The use of 1466 

electrochemical and optical sensors at the same time on this platform has been demonstrated 1467 

by other members of my research group [243]. This would not have been possible with a 1468 

commercial camera chip.  1469 

The cartridge connects to the reader through a zero-insertion force (ZIF) socket. The reader 1470 

is composed of a custom printed circuit board (PCB) and a commercial microcontroller 1471 

board. It is employed for sensors addressing and data digitisation. It also handles raw data 1472 

and sends them in real-time to the GUI through USB link.  1473 

The GUI is a software running on a portable electronic device. It allows user interaction as 1474 

well as data visualisation, analysis, and storage. The platform can also take advantage of the 1475 

TCP/IP capability of the portable electronic device for uploading the result of the test onto a 1476 

cloud-based storage platform.  1477 

 1478 

  The Cartridge 1479 

The cartridge integrates the CMOS chip, one or more biorecognition elements and the 1480 

passive microfluidics (illustrated in the next chapter). All the parts are integrated onto a 1481 

ceramic chip package. Figure 3.2 shows a diagram of the cartridge with four microfluidic 1482 

channels.  1483 

 1484 

3.2.1. Target applications 1485 

The platform is meant to be versatile and capable of adapting to a wide range of biological 1486 

assays with no or minimal modifications. However, two case studies have been selected to 1487 

demonstrate the diagnostic capability of the platform.  1488 

The first proposed application of the platform is PCa diagnosis. This application aims to 1489 

demonstrate the potential of POC platforms for early diagnosis of deadly diseases, especially 1490 

for use where the current standard lacks reliability.   1491 
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 1492 
Figure 3.2 Top view (top) and later view (bottom) of the cartridge. Biological reagents have 1493 

been omitted in the schematic for clarity. The diagram is in scale. Further microfluidic 1494 

structures have been analysed and developed in this project.  1495 

 1496 

As introduced in Chapter 2, the current standard alone, PSA blood testing, is not reliable 1497 

enough, and invasive methods are usually used in conjunction with the blood test. In this 1498 

frame, the proposed platform is suggested for the quantification of metabolic biomarkers to 1499 

be used in conjunction with the PSA testing for non-invasive improved diagnosis. Four 1500 

analytes have been selected for this application, namely total LAA, glutamate, choline, and 1501 

sarcosine. The selection of the metabolites panel is based on the literature review presented 1502 

in Chapter 2. Subsequently, the metabolites review has been discussed with a team of cancer 1503 

researchers, led by Prof. Robert Jones, professor of clinical cancer research at the University 1504 

of Glasgow. The team of cancer researchers have recognised that there is merit in the selected 1505 

metabolites panel, although metabolomics is still a relatively unexplored field in PCa. The 1506 
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relation between LAA, glutamate, choline, and sarcosine and PCa are well-known to the 1507 

research community. The correlation between sarcosine and the disease is still controversial, 1508 

and this study can shed light on the contentious matter. The development of such a platform 1509 

has the potential to provide additional information which, together with PSA testing, can 1510 

improve the early diagnosis of PCa.  1511 

The second proposed application of the platform is the diagnosis of ischemic stroke. With 1512 

this application, the aim is to highlight the potential of POC platforms for acute medicine, 1513 

where timing is vital. Two metabolites have been selected for this application, namely 1514 

creatinine and lactate. The selection of the metabolites is based on a similar procedure 1515 

involving literature review and discussions with experts in the field including Dr Samadhan 1516 

Patil, lecturer of medical engineering at the University of York, and Prof Jesse Dawson, 1517 

professor of stroke medicine at the Institute of Cardiovascular & Medical Sciences, 1518 

University of Glasgow.  1519 

In summary, six tests have been selected for this research project, LAA, glutamate, choline, 1520 

sarcosine, lactate, and creatinine. It should be clarified that the total profile of LAA is not a 1521 

single metabolite but, throughout this work, it will be referred to as a metabolite.  1522 

 1523 

3.2.2. Detection strategy for the target metabolites  1524 

All the selected metabolites were detected with a colorimetric approach using specific 1525 

enzymes interacting with the target analytes for producing hydrogen peroxide. The adopted 1526 

enzymatic reactions are reported in the following [49]:  1527 

𝑳𝑨𝑨:                          L − amino acid + 𝐻2𝑂 + 𝑂2  
𝐿−𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐿𝐴𝐴𝑂𝑥)
→                        𝛼 − 𝑜𝑥𝑜 𝑎𝑐𝑖𝑑 + 𝑁𝐻3 + 𝐻2𝑂2   1528 

𝑮𝒍𝒖𝒕𝒂𝒎𝒂𝒕𝒆:           Glutamate  + 𝐻2𝑂 + 𝑂2  
𝐺𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒 𝑂𝑥𝑖𝑑𝑎𝑠𝑒 (𝐺𝑙𝑂𝑥)
→                    2 − 𝑜𝑥𝑜𝑔𝑙𝑢𝑡𝑎𝑟𝑎𝑡𝑒 + 𝑁𝐻3 + 𝐻2𝑂2   1529 

𝑪𝒉𝒐𝒍𝒊𝒏𝒆:                  Choline + 𝐻2𝑂 + 𝑂2  
𝐶ℎ𝑜𝑙𝑖𝑛𝑒 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐶ℎ𝑂𝑥) 
→                  𝑏𝑒𝑡𝑎𝑖𝑛𝑒 + 𝐻2𝑂2   1530 

𝑺𝒂𝒓𝒄𝒐𝒔𝒊𝒏𝒆:             Sarcosine + 𝐻2𝑂 + 𝑂2  
𝑆𝑎𝑟𝑐𝑜𝑠𝑖𝑛𝑒 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝑆𝑎𝑂𝑥)
→                    𝑔𝑙𝑦𝑐𝑖𝑛𝑒 +  𝑓𝑜𝑟𝑚𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 + 𝐻2𝑂2   1531 

𝑳𝒂𝒄𝒕𝒂𝒕𝒆:                  Lactate  + 𝑂2  
𝐿𝑎𝑐𝑡𝑎𝑡𝑒 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐿𝑎𝑂𝑥) 
→                  𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐻2𝑂2   1532 

𝑪𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆:         

{
 
 

 
 Creatinine + 𝐻2𝑂 

𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒𝑠𝑒 (𝐶𝑁𝑁)
→               𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑒

Creatine + 𝐻2𝑂 
𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑎𝑠𝑒 (𝐶𝑇𝑁) 
→             𝑆𝑎𝑟𝑐𝑜𝑠𝑖𝑛𝑒 + 𝑈𝑟𝑒𝑎

Sarcosine + 𝐻2𝑂 + 𝑂2  
𝑆𝑎𝑟𝑐𝑜𝑠𝑖𝑛𝑒 𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝑆𝑎𝑂𝑥)
→                    𝑔𝑙𝑦𝑐𝑖𝑛𝑒 +  𝑓𝑜𝑟𝑚𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒 + 𝐻2𝑂2

 1533 

The produced H2O2 is proportional to the concentration of the analyte of interest. The 1534 

production of H2O2 was monitored by a colorimetric probe which changes its absorbance 1535 

property depending on the H2O2 level. Two different probes were employed, namely 1536 
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o-dianisidine and the system phenol/4-aminoantipyrine (4AAP). The target reaction for 1537 

H2O2 are reported below: 1538 

𝑶 − 𝒅𝒊𝒂𝒏𝒊𝒔𝒊𝒅𝒊𝒏𝒆: 𝑜 − 𝑑ianisidine (reduced) +2𝐻2𝑂2  
𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐻𝑅𝑃) 
→              𝑜 − 𝑑ianisidine (oxidised) + 2𝐻2O   1539 

𝑸𝒖𝒊𝒏𝒐𝒏𝒆 − 𝒊𝒎𝒊𝒏𝒆: 𝑃ℎ𝑒𝑛𝑜𝑙 + 4𝐴𝐴𝑃  + 2𝐻2𝑂2
𝑃𝑒𝑟𝑜𝑥𝑖𝑑𝑎𝑠𝑒 (𝐻𝑅𝑃)
→             𝑄𝑢𝑖𝑛𝑜𝑛𝑒 − 𝑖𝑚𝑖𝑛𝑒 + 2𝐻2O   1540 

Thus, for each selected test, at least two enzymatic reactions are required. However, the ratio 1541 

of the concentration of the enzymes within the same reaction chain can be tuned. In this 1542 

work, an increased level of HRP was adopted. According to the Michaelis-Menten model, 1543 

this ensures that when H2O2 is produced, it is promptly used for the oxidation of the probe. 1544 

Consequently, the reaction rate of the entire reaction chain can be approximated to the slower 1545 

reaction, i.e. the one leading to the production of hydrogen peroxide. There are two main 1546 

parameters to be considered in the selection of the hydrogen peroxide probe, namely the 1547 

extinction coefficient and the wavelength absorbance range. Commercially sourced o-1548 

dianisidine and quinone imine have extinction coefficients of 7.5 mM-1cm-1 and 1549 

12 mM-1cm-1 at 500 nm, respectively [222]. The effective extinction coefficient for this 1550 

platform has been measured and reported in Figure 4.13. Table 3.2 summarises the selected 1551 

panel of metabolites together with their physiological range, the enzymes employable for 1552 

their colorimetric determination, and related kinetics constants.  1553 

 1554 

3.2.3. Simulations of colorimetric reactions 1555 

Method. A Matlab-based model for the simulation of a generic colorimetric assay was 1556 

developed and used for preliminary assessment of the platform requirements. The 1557 

simulations aimed to identify critical parameters in the development of the platform. 1558 

The implemented simulation employed the Michaelis-Menten model and rate-equations to 1559 

simulate the enzymatic-reaction.  1560 

 1561 

Table 3.2 Summary of the target metabolites to be measured by colorimetric method. 1562 

Analyte Physiological range (µM) Application Enzyme Km (mM) [49] 

LAA profile 1700 - 4600 [244] ↑ in PCa LAAOx 0.17 - 116.5  

Glutamate 40 - 150 [244] ↑ in PCa GlOx 0.15 - 10 

Choline 10 - 40 [245] ↑ in PCa ChOx 0.05 - 213 

Sarcosine 0 - 20 [246] ↑ in PCa SaOx 0.01 - 142.3 

Lactate 300 - 2000 [247] ↑ in stroke LaOx 0.039 - 103 

Creatinine 100 - 150 [248] ↑ in stroke 

CNN 

CTN 

SaOx 

0.17 - 350 

0.034 - 53.2 

0.01 - 142.3 
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Beer-Lambert’s law was then applied for estimating light absorbance and light 1563 

transmittance. Michaelis-Menten equation and Beer-Lamber law are reported here for ease 1564 

of reading:  1565 

d[P]

dt
=   

Vmax 

1 + 
Km

[S]

 
(3.1) 

A =  − log T − log
I

I0
=  ε ∙ L ∙ [P]  (3.2) 

Where [P] is the concentration of the product, Vmax is the maximum rate of the reaction, Km 1566 

is the Michaelis-Menten constant, [S] is the concentration of the substrate, A is the light 1567 

absorbance, T is the light transmission, Io is the light intensity from the light source, I is the 1568 

light intensity transmitted from the sample, ɛ is the extinction coefficient, L is the optical 1569 

length (in this work L coincide with the height of the microfluidic channel). Numeric values 1570 

used in the simulations are summarised in Table 3.3.  1571 

The simulation assumed that light with constant power and fixed wavelength is shone onto 1572 

an ideal photodetector (i.e. one with unity quantum efficiency). The wavelength was in the 1573 

absorbance range of the H2O2 probe (i.e. around 500 nm) and adequate for the maximum 1574 

responsivity of the ideal photodetector. The model also did not include any source of noise. 1575 

The implemented Matlab model is reported in Appendix A. 1576 

Results. Figure 3.3 summarises the primary simulated outcomes. The results of the 1577 

simulations led to several design considerations. Primarily, it is clear from Figure 3.3(a) that 1578 

the trend of light transmission over time is not linear. Substrate concentration is the unknown 1579 

parameter that the system aims to quantify. 1580 

Generally, the reaction rate increases with the substrate concentration. As shown in Figure 1581 

3.3(b), the reaction rate is the highest at the beginning of the reaction, and it progressively 1582 

decreases until the end of the reaction. The reaction duration is not known apriori and 1583 

depends on all the platform variables.  1584 

 1585 

Table 3.3 Simulation parameters. 1586 

Parameters Simulation value /range Reference 

[S] 0 – 200 µM Target range – worst case (see Table 3.2) 

Km 3.5 – 9.5 mM Typical values for oxidation enzymes [49] 

Vmax 5 - 30 µMs-1 Typical values for oxidation reactions [49] 

ɛ 4 - 11 mM-1cm-1 Typical values of commercial colorimetric probes [222] 

L 50 - 750 µm Typical heights of microfluidic channels [249] 
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Kinetics constants, namely Km and Vmax, also have a significant impact on the system 1587 

response. Specifically, the reaction rate increases when Km is reduced, or Vmax is increased. 1588 

Km and Vmax typically depend on the selected chemistry and the concentration of the 1589 

individual reagents employed. Generally, Km depends on the specific enzyme and cannot be 1590 

easily modified. However, Vmax can be adjusted by varying the concentration of the enzymes.  1591 

The rate of light transmittance is also higher when increasing the extinction coefficient, 1592 

which depends on the selected light-absorbing species and the working wavelength chosen. 1593 

With all the kinetics variables fixed, the light transmittance trend and the estimated reaction 1594 

rate are also strongly affected by the optical length of the system.  1595 

The following design considerations can be made, based on the results of the simulations: 1596 

• A rate-analysis approach for the estimation of the substrate concentration is viable with 1597 

the adopted chemistry since different levels of the substrate correspond to different initial 1598 

reaction rates. This method was then selected.  1599 

• ε, Km and Vmax have to be tuned when designing the optimal reaction to avoid saturation 1600 

and match the range of the analyte to be measured.  1601 

• Strictly from the reaction point of view, the optical length L has to be maximised to 1602 

ensure the sensor can easily detect the drop in absorbance. However, there is a trade-off 1603 

between maximising L and microfluidic performance, which will be discussed later.  1604 

  1605 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.3 Simulated colorimetric assays. (a) Transmission and (b) reaction rate with 1606 

substrate concentrations sweeping from 0 µM to 200 µM. (c) Km sweep from 3.5 mM to 1607 

9.5 mM. (d) Vmax sweep from 5 µMs-1 to 30 µMs-1. (e) Extinction coefficients sweep from 4 1608 

to 11 mM-1cm-1. (f) Optical length sweep from 50 µm to 750 µm. Simulations parameters are 1609 

shown in Table 3.3  1610 
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3.2.4. The Multicorder chip 1611 

This research project is part of the project Multicorder project. The Multicorder project led 1612 

to the development of several CMOS-based chips for measuring the personal metabolome. 1613 

A particular version of the developed chip herein referred to as the CMOS chip, has been 1614 

employed in this project. The CMOS chip was designed by a group of researchers from the 1615 

Microsystem Technology (MST) group at the University of Glasgow. Dr M.A. Al-Rawhani 1616 

was the principal designer [85].  1617 

The CMOS chip, presented in Figure 3.4(a), is a 16x16 array of multi-sensors elements, 1618 

herein also referred to as pixels or clusters. Each multi-sensor element integrates a 1619 

photodiode, an ISFET and a SPAD. Within the cluster, sensors are aligned in the north-south 1620 

direction, as shown in Figure 3.4(b). The interface electronics can address sensors 1621 

individually or simultaneously [85]. Each cluster has a size of 100×100 μm2. Thus, the whole 1622 

array occupies a total area of approximately 1.6×1.6 mm2, in the centre of the chip. The 1623 

entire chip occupies an area of 3.4x3.6 mm2 (see Figure 3.4(c),(d)). The electronic circuitry 1624 

embedded into the cluster is mainly located on the west side of the sensors. Sixty-four pads 1625 

are equally distributed on the west and east side of the chip. Alignment marks (crosses and 1626 

squares) are symmetrically placed on the north and the south side of the multi-sensor array.  1627 

The CMOS process selected for the design of the chip was the 0.35 μm high voltage process 1628 

with four metal layers (‘H35B4’ technology). The constraints leading to the selection of this 1629 

technology are linked to the presence of SPADs on-chip, requiring a high reverse bias 1630 

voltage. Mainly, the H35B4 process enables the use of a deep n-well that allows the SPADs 1631 

to operate at a high breakdown voltage with minimal interference with other close devices.  1632 

A schematic representation of the cluster manufacture with the selected technology is 1633 

presented in Figure 3.4(e). The schematic representation is not in scale (information about 1634 

layer thickness is confidential), and some design structures have been omitted for the sake 1635 

of clarity. The fabrication of the chip was outsourced to Austriamiscrosystems (a different 1636 

company for manufacturing the CMOS chip might be used in future). After the manufacture, 1637 

bare chips were diced and sent to the MST group.  1638 

The CMOS chip and different iterations of the chip within the same project have been 1639 

employed in related works. The ISFET array of the CMOS chip has been employed to 1640 

quantify on-chip urea [243], [250], and glucose [243], [251]. However, many challenges 1641 

associated with the use of the ISFET arrays had to be addressed by additional post-1642 

fabrication of the chip [252]. 1643 
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 (a) (b)  

 

  

 

 (c) (d)  

 

(e) 

Figure 3.4 (a) Micrograph of the CMOS chip. The multi-sensor array is located at the centre 1644 

of the CMOS chip. 64 pads are equally distributed on the west and the east side of the chip. 1645 

Alignment markers are located on the north and south side of the sensor array. (b) 1646 

Micrograph of a single multi-sensor element of the CMOS chip. Sensors are located on the 1647 

east side of the cluster. Electronic interfaces are mainly located on the west side of the 1648 

cluster. (c), (d) The size of the CMOS chip compared to a ruler and a rice grain. (e) 1649 

Schematic representation of the multi-sensor element fabricated with CMOS technology. 1650 

Schematic is not in scale, and some components are omitted for clarity. Reproduced and 1651 

modified from [85]. PD: photodiode.  1652 
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The SPAD array of the CMOS chip has also been adopted for chemiluminescence 1653 

experiments, leading to the quantification of urate [250]. The fabrication of resonant 1654 

nanostructures enabled the capability of performing local surface plasmon resonance 1655 

experiments [250]. The photodiode array has been used for immunoassays [216]. In [84], by 1656 

fabricating micro-well on top of the active area, the photodiode array was also used to 1657 

simultaneously determine with colorimetric assay choline, xanthine, sarcosine and 1658 

cholesterol. Remarkably, the ISFET and the photodiode arrays have been used to perform 1659 

chemical multiplexing and quantify cholesterol and glucose simultaneously without any 1660 

physical separation [243].  1661 

 1662 

3.2.5. The photodiodes array  1663 

In this project, only photodiodes were employed. Accordingly, this paragraph describes the 1664 

aspects of the CMOS chip relevant to this work. The reasons leading to the use of 1665 

photodiodes are discussed here. According to the strategy previously described, an optical 1666 

sensor must be used. Thus, the use of the ISFET is excluded. Potentially, both SPAD and 1667 

photodiode could have been employed for colorimetric assays. They mainly differ in their 1668 

dynamic range, with the SPAD being able to detect light with lower intensity. However, in 1669 

this application, the device aims to measure the variation in the transmittance of light shown 1670 

onto the device with tuneable initial light intensity. It is more convenient to use high light 1671 

intensity for two reasons. First, high-intensity light creates a more substantial absolute 1672 

transmittance drop. Secondly, the system is more stable to environmental noise. Both factors 1673 

contribute to the increase in SNR. Photodiodes also did not require large reverse bias and 1674 

showed excellent reliability in a real-life scenario.  1675 

The photodiode employed in this project is a p-n junction. As shown in Figure 3.5(a), the n-1676 

layer has a polygonal shape, designed to optimise the area considering both the surrounding 1677 

electronics and the design rules. The total area of the n-layer is approximately 38.4 µm2. The 1678 

n-layer was diffused directly in the p-substrate, thus creating a p-n junction.  1679 

Photodiodes are organised in a 16 x 16 array format, according to the schematic in Figure 1680 

3.5(b). The addressing of the appropriate pixel in the array is performed by using row and 1681 

column addressing signals, rseli and cseli - respectively. 16 rsel signals (rsel1, …, rsel16) and 1682 

16 csel signals (csel1, …, csel16) are provided by two 4x16 decoders, embedded in the CMOS 1683 

chip (addressing block shown in Figure 3.5(b)). Both the decoders are operated using four 1684 

digital control signals, delivered to the CMOS chip by the reader. For each couple of rseli 1685 
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and cseli signals, a single pixel is uniquely addressed.  Each pixel integrates one photodiode 1686 

and its respective readout electronics. The proposed readout method, usually referred to as 1687 

accumulation mode, is provided by three transistors, namely Q1, Q2 and Q3 [71].  1688 

Here the pixel circuit behaviour will be explained. Each of the pixels and their respective 1689 

voltages, as described below for one pixel, are independent. The reading cycle starts with a 1690 

reset pulse (rst = Vdd), bringing the node VD of each pixel to a charged  state by charging the 1691 

parasitic capacitances of transistors Q1 and Q2. When rst = 0 V, Q1 is off, and there is a 1692 

direct path from VD to ground through the photodiode. In the presence of light, the 1693 

photogenerated current flows from VD to ground, consequently discharging the parasitic 1694 

capacitances. The discharge of VD is buffered using a source follower configuration to the 1695 

column read bus (Vout1), when the gate Q3 is selected for the whole row of pixels with an 1696 

external addressing signal (e.g. rsel1). Only one row is activated at a time, using the row 1697 

select (rsel) addressing signal.  1698 

In this implementation, the voltage VD is inversely proportional to the detected light 1699 

intensity. Thus, with reference to Figure 3.5(c), VD1 represents a situation where the detected 1700 

incident light was less intense than for the pixel with VD2. However, to have a more intuitive 1701 

reading, the GUI numerically inverts data so that low values of voltage correspond to low 1702 

light intensity. This is described in detail in the section dedicated to the GUI. The time 1703 

between rst = 0 V and the reading of Vout1 is generally referred to as integration time. 1704 

Integration time must avoid the full discharge of VD. In this implementation, the reset signal 1705 

is a global signal but the readout is designed to give a rolling shutter output, as described in 1706 

the next paragraph. 1707 

The output of the array does not use the bus signals (Vout1, …, Vout16) directly. An additional 1708 

buffer stage was added in order to isolate the internal pixel circuits, raise the offset voltage 1709 

of the output and dedicate only one output pad to connect to external circuitry. The output 1710 

voltage (e.g. Vout1) of the pixel is buffered to the row read line, using a PMOS source follower 1711 

configuration, composed by transistors Q4, Q5, Q6. There is one PMOS source follower block 1712 

for every array column. Only one column is activated at a time, using the column select 1713 

(csel) addressing signals. One current source (Q7) is used for all column select source 1714 

followers. When a row and column select signals are enabled, a buffer path is forged to the 1715 

output of the array, allowing for all the pixels to use the same output node sequentially. The 1716 

output of the sensor array is then digitised using a 12-bit ADC embedded into the reader.  1717 

A comprehensive description of the CMOS chip can be found in [250], [253]. 1718 
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(a) (c) 

 
(b) 

Figure 3.5 (a) Layout of the active area of the photodiode. (b) Schematic of the 16x16 1719 

photodiode sensor array. (c) Time diagram for the operation of a single pixel.  1720 

 1721 

  The Reader  1722 

The reader is composed of a PCB (designed by Dr Claudio Accarino) and a microcontroller 1723 

board. The PCB measured a compact 8.5x7.5 cm. It allowed connecting the cartridge in a 1724 

very user-friendly way by employing a ZIF socket. The PCB was also used for voltage 1725 

supply interface, testing and calibration. The PCB performed all the signal conditioning 1726 

needed to interface the microcontroller board. The microcontroller board was dedicated to 1727 

the addressing of the array, data digitisation and data transmission to the GUI. The USB link 1728 

also provided power for the chip and the Mbed processor.  1729 
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    1730 

(a) (b) 

Figure 3.6 (a) View of the reader in the final configuration, with individual components 1731 

stacked together. (b) Components of the reader (UART module, Microcontroller board and 1732 

PCB) shown individually. 1733 

 1734 

The ST Nucleo F334R8 board, programmed with custom firmware [254], was selected 1735 

because with a total of 51 general-purpose input-output (GPIO) ports was capable of 1736 

accommodating all the required interconnections in an affordable (about £10) and user-1737 

friendly way. It integrates a 32-bit ARM Cortex-M4 microcontroller unit working at a 1738 

maximum frequency of 72 MHz, which can be programmed with the on-board debugger 1739 

[255]. The board also has a 64kb flash memory and a 12kb static random-access memory. 1740 

Among all the capabilities of the board, the onboard 12-bit analogue-to-digital converter 1741 

(ADC) was used for data digitisation. The PCB and the microcontroller board were stacked 1742 

together, as shown in Figure 3.6(a). The communication between reader and GUI was 1743 

achieved through the universal asynchronous receiver/transmitter (UART) communication. 1744 

UART is a widespread standard for serial interfaces. However, the maximum baud rate 1745 

supported by the microcontroller board is 115200. To increase the communication rate, an 1746 

external module, the FT231X module by Sparkfun electronics, was plugged into the PCB. 1747 

The use of the external UART module enabled a higher baud rate of 921600. The PCB board, 1748 

the UART module and the microcontroller board are individually shown in Figure 3.6(b). 1749 

The microcontroller supports the use of custom firmware, which was developed on the 1750 

‘mbed’ online compiler using C++[256]. The full C++ code is reported in Appendix B. 1751 

The firmware begins with an initialisation phase. During this phase, a first-in-first-out 1752 

register is initialised for the UART communication. The register is shared by both the 1753 

transmitter (the UART module in this case) and the receiver (the GUI). The transmitter 1754 

sequentially writes the register. In parallel, the receiver can asynchronously access the 1755 
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register and read binary values sent from the transmitter. During initialisation, GPIOs are 1756 

also defined. Specifically, eight pins are used for chip addressing, four of which are 1757 

dedicated to row selection, whereas the remaining four are for column addressing. One 1758 

analogue input is dedicated to data digitisation. After initialisation, a loop is adopted for 1759 

continuous data acquisition.  1760 

Data reading consists of three steps: reset, integration and reading. In the first step, 1761 

addressing is disabled, and a reset pulse with a 500 µs width is delivered to all the 1762 

photodiodes. The integration time, here set at 20 ms, is a waiting time accordingly to the 1763 

adopted approach, previously described. The integration time has been selected to be much 1764 

higher than the reading time and to provide a frame rate comparable to standard imaging 1765 

techniques, usually providing about 30 frames per second (fps).  1766 

After the integration, a starting frame sequence is first sent to inform the GUI that a frame 1767 

data is about to start. The starting sequence is a double zero encrypted with 32-bits in total. 1768 

It must be pointed out that it was experimentally verified that the digitised output of the 1769 

sensors never reached a perfect zero. Subsequently, the first row is addressed by the four 1770 

digital output pins. The first column address is also delivered to the cartridge: a single pixel 1771 

is then identified. A waiting time of 5 µs is adopted to make sure all the electronic transient 1772 

effects are discharged. The analogue output of the sensor is then read with the embedded 1773 

12-bits ADC of the board. Digitised data is converted into a 16-bits value and sent to the 1774 

GUI. The conversion is necessary since UART communication works using bytes. Once data 1775 

is sent, a new column address is delivered to the cartridge, and further reading is performed.  1776 

When all the columns have been read, a new row address is provided. The process is iterated 1777 

till all the array has been scanned.  1778 

As mentioned in the previous paragraph, pixels in the same column share the same output 1779 

line. Thus, from a data integrity viewpoint, it is safer to read different columns sequentially.  1780 

From a data transfer viewpoint, an entire frame contains 4128 bits (516 bytes). This includes 1781 

32 bits (4 bytes) for the start frame sequence and 4096 bits (512 bytes) of data, where each 1782 

pixel is sent with a 16-bits binary code (2 bytes). Frames are continually sent on the GUI. 1783 

So, the necessity of the starting frame sequence is here demonstrated. Representation of data 1784 

packing is provided in Figure 3.7(a).  1785 

From a timing viewpoint, the time needed from the reader to read and send an entire frame 1786 

is 21.78 ms. The total time is composed of 500 µs for reset, 20 ms for the integration, and 1787 

1.28 ms for the frame reading.  1788 
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(a) 

 

(b) 

Figure 3.7 (a) Representation of data packing for serial transmission. (b) Timing diagram. 1789 

 1790 

The time needed for the reading of a single pixel was approximately 5 µs. A timing diagram 1791 

of data reading is provided in Figure 3.7(b). Altogether, the reader sends about 185,760 bits 1792 

(23.2 kbytes) per second. This means that the approximate size of a 5-minute data recording 1793 

is approximately 55,728,000 bits (6.9 Mbytes). 1794 

 1795 

  The Graphical User Interface (GUI)  1796 

The GUI interface is a software developed using the Matlab-based graphical user interface 1797 

development tool. It was exported as a standalone application and can run on any portable 1798 

device running a Microsoft Windows operating system. In this work, a PC (Dell Optiflex 1799 

7050), a laptop (HP EliteBook 830 G5) and a tablet (HP Pavillion x2) have all been 1800 

successfully employed to host the GUI. A simplified android version of the GUI, currently 1801 

available on the Google App Store, was developed by Bence Nagy but has not been used in 1802 

this work.  1803 

The GUI connected to the reader by USB link. The USB link provided the 5V power supply 1804 

to the microcontroller.  1805 
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 1806 

Figure 3.8 Flow chart of the GUI operation. 1807 

 1808 

In turn, the reader provided the 3.3 V required for the cartridge to work through a linear 1809 

voltage regulator. The GUI received binary data from the reader, and it was employed for 1810 

data collection, visualisation, processing, and analysis. A flow chart of the primary 1811 

operations performed by the GUI is reported in Figure 3.8. The GUI worked in two different 1812 

modalities: data-acquisition mode and data-analysis mode. When working in data 1813 

acquisition mode, the GUI was used in conjunction with the reader and the cartridge to 1814 

collect, represent and save data. This is the modality employed for monitoring colorimetric 1815 

reactions. The data analysis mode was instead used to process data once the experiment was 1816 

completed. Both processing branches are described in the next sections. 1817 

 1818 

3.4.1. Data acquisition  1819 

When working in data acquisition mode, the GUI executes the operation on the left-hand 1820 

side of the flow chart reported in Figure 3.8. A demonstrative screen-print of the GUI 1821 

working in data-acquisition mode is presented in Figure 3.9. Before running the test, the user 1822 

can modify default parameters such as communication port, test duration time, and the frame 1823 

per second to be represented (panel (1) in Figure 3.9). The communication port mainly 1824 

depends on the physical USB port, where the reader has been plugged in. The test duration 1825 

time is the time interval in which the GUI saves data.  1826 
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 1827 

Figure 3.9 GUI in data-acquisition mode. 1) Control panel; 2) Frame visualisation; 1828 

3) Single-pixel representation; 4) Dialog window; 5) Go to data analysis.   1829 

 1830 

In this section, it is also possible to decide how many frames to represent per second. The 1831 

biological reaction is very slow so it might not be necessary to visualise in real-time each 1832 

recorded frame. Data representation takes time and resources so overplotting should be 1833 

minimised. Experiments showed that reducing the number of frames shown in real-time 1834 

increased the recorded frames per second. In other words, the system is faster when no or 1835 

minimal data is presented in real-time. The user expresses the will to start the test by clicking 1836 

on ‘start’. Immediately, the user is prompted with a window where he can graphically select 1837 

four different pixels to be shown in real-time - section (3) in Figure 3.9. After the selection, 1838 

the GUI automatically records for a fixed time-period data coming from the cartridge. The 1839 

user is meant to insert the sample in the cartridge at this stage. Data recording can be stopped 1840 

at any time by selecting ‘stop’. For each recorded frame, a time-label is saved. While 1841 

recording, real-time data is shown. Referring to Figure 3.9, the entire frame is shown in 1842 

section (2), and single-pixel data is instead shown in section (3).  1843 

Once the recording is completed, data is handled for a more convenient subsequent 1844 

processing. First, frames are identified and isolated. The entire recorded data is scanned for 1845 
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the presence of double zeros, the starting frame sequence. Data between the two starting 1846 

sequences are saved as single frames. Frames with an unexpected number of data, due to any 1847 

communication error, are discarded together with their time label. Frames are organised in a 1848 

2D matrix with dimensions 256xM, where M is the number of frames in the recording. Thus, 1849 

each row of the 2D matrix represent data coming from a single pixel over time. Time labels 1850 

are also compressed into 1xM vectors. After frame handling, data needs to be converted into 1851 

the original photodiode voltage value. The software interprets incoming single bytes as 1852 

decimal values. Thus, first, the incoming decimal value is converted back to binary with 8-1853 

bits precision. This represents the most significant byte (MSB) of the reading. The 1854 

subsequent decimal value, which represents the least significant byte (LSB), is also 1855 

converted into a binary string with the same precision and appended to the MSB. The so 1856 

created 16-bits string is now converted into decimal, providing a value in the range 0 - 1857 

216=65536. Data is also flipped for a more intuitive reading, so that a high output 1858 

corresponding to high light intensity. Afterwards, the numerical decimal values are 1859 

converted into a voltage value by employing the following formula: 1860 

Vout [V] =
Vout [dec] ⋅ Vdd

2N − 1
 (3.3) 

Where Vdd is the voltage range of the ADC used (3.3 V in this case), and N the number of 1861 

bits used to digitise the analogue signal (16 in this case).  1862 

At the end of the process, the recording is composed of a 256xM matrix containing the value 1863 

in the range 0 – 3.3 V and a 1xM vector containing time labels in seconds, with M being the 1864 

number of frames in the recording. The process concludes with data storage, eventually onto 1865 

a cloud-shared folder when TCP/IP communication is available.  1866 

The GUI is meant to work in a real-time scenario and, for this reason, must be able to detect 1867 

failures and ‘fail safely’. For this aim, if any communication error occurs (for example the 1868 

cartridge is disconnected while the GUI is recording), an error is reported to the user, and 1869 

only data collected till the error occurs is saved. Data integrity checks, consisting in verifying 1870 

that each frame has the expected number of elements with numerical values included in the 1871 

expected range, are also in place.  1872 

Collected data is now ready to be processed using the GUI in the data analysis mode. To 1873 

switch to this modality, the user can press the ‘data analysis’ button (panel (5) in Figure 3.9). 1874 

Otherwise, the system is ready for a new recording. An extract containing an essential 1875 

section of the Matlab code used for the acquisition of data is reported in Appendix C. 1876 
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3.4.2. Data analysis  1877 

When working in data analysis mode, the GUI executes the operation on the right-hand side 1878 

of the flow chart reported in Figure 3.8. A demonstrative screen-print of the GUI working in 1879 

data-analysis mode is presented in Figure 3.10. The present tool was developed for use by 1880 

several researchers within the MST group and, for this reason, it allows customisation of a 1881 

wide range of settings. First, the user loads the dataset to be analysed (panel (1) in Figure 1882 

3.10). Then, the user specifies how many reaction zones are present on the cartridge and 1883 

defines their geometry by clicking on the dedicated button and following the guided 1884 

procedure. In this project, each microfluidic channel is a reaction zone.  By clicking the start 1885 

button, raw data is averaged in the selected microchannels and plotted as panel (2) in Figure 1886 

3.10. At this stage, the user can analyse the data within the microchannel chosen with the 1887 

user panel (3) always in Figure 3.10, which will be referred to throughout the following text. 1888 

By clicking the ‘process’ button in (3), the user initiates a process leading to the calculation 1889 

of the initial rate of the reaction. Results are then graphically shown in (4) and numerically 1890 

reported in (5). Results can be saved through a dedicated button in panel (6). 1891 

The process leading to the estimation of the initial reaction rate from raw data is described 1892 

in Figure 3.11 and can be divided into three sub-routines, namely data preparation, noise 1893 

reduction and rate calculation.  1894 

In the first processing step, data is prepared for the analysis. The process makes sure data is 1895 

converted into a voltage value; the number and geometry of pixels included in the channel 1896 

to be processed are defined. Also, the starting point of the reaction is defined and validated 1897 

by the user. Usually, this is visible from raw data due to the sudden transmittance variation 1898 

induced by the sample introduction onto the platform, as shown in the next chapter. Data is 1899 

cropped to 5 minutes (300 s) segment starting from the starting point of the reaction, even if 1900 

data is recorded for longer than that. At this stage, eventual unresponsive pixels and pixels 1901 

presenting strong artefacts (e.g. air bubble) are excluded after visual inspection. At the end 1902 

of this process, the data which has been handled is composed of an NxL matrix containing 1903 

the value in the range 0–3.3 V and a 1xM vector containing time labels in seconds and a 1xL 1904 

vector. N is the number of pixels contained in the microfluidic channel after visual 1905 

inspection, L is the number of frames in the 300 s recording.  1906 

In the second stage, data analysis aims to reduce expected noise. The primary noise sources 1907 

in CMOS sensor arrays are temporal noise and fixed pattern noise (FPN) [80].  1908 

 1909 
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 1910 

Figure 3.10 GUI in data-analysis mode. 1) Control panel; 2) Raw data visualisation; 1911 

3) Start processing button for single-channel; 4) Processed data visualisation; 5) Rates 1912 

(mVs-1); 6) Save and go to data-acquisition mode.  1913 

 1914 

 1915 

Figure 3.11. Flow chart of the process adopted for the estimation of the initial reaction rate 1916 

from the raw data.  1917 

 1918 
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Temporal noise is a combination of pixel noise components (thermal, shot and flicker), 1919 

addressing circuit noise, ADC noise. FPN is the variation of the output among pixels when 1920 

the same input is applied. Data is filtered with an 8th order low pass filter to reduce the 1921 

standard deviation of temporal noise. The biological reaction is usually slow, as 1922 

demonstrated in the simulation proposed in the initial section of this chapter. So, a low 1923 

normalised cut-off frequency, namely 0.1, is selected. Precaution is taken to avoid any signal 1924 

distortion at the borders. Next, data is averaged in time (usually 1-second information). 1925 

However, temporal averaging does not affect the FPN. The spatial average reduces the 1926 

standard deviation of the FPN over the entire channel. Pixels offset before the spatial average 1927 

is compensated by aligning the starting point of the reaction to the same reference. Over the 1928 

assumption that both the noise of a single sensor and of the entire array has a Gaussian 1929 

distribution, the averaging process reduces the standard deviation of a factor √(N), where N 1930 

is the number of population in the average [242]. The time vector is similarly averaged. So, 1931 

at the end of the process, two 1x300 vectors are created containing respectively averaged 1932 

data from the channel and time. At this stage, the vector containing data is segmented using 1933 

five different time windows, namely 0–30s, 0–60s, 0–90s, 0–120s, 0–300s. The user can 1934 

introduce an additional time window by custom selection. Consequently, these lead to six 1935 

different vectors containing voltage data with variable length. Those signals can be here 1936 

converted into transmittance and absorbance to undergo the same following processing. Data 1937 

from each vector is fitted using the following double exponential model: 1938 

y = a ⋅ eb⋅x +  c ⋅ ed⋅x (3.4) 

Where the four numerical parameters a, b, c, and d have been optimised using Matlab-based 1939 

tools for the minimisation of the root mean square error (RMSE). The proposed model 1940 

experimentally showed to be the most suitable method for data fitting.  Figure 3.12 shows 1941 

an example of data fitting from experimental data. 1942 

 In the third stage of signal processing, the initial reaction rate is estimated from the fitted 1943 

signals. Reactions rates are calculated by linearisation of the fitted signals in time windows. 1944 

The extracted initial reaction rate is the highest rate calculated onto all the versions of the 1945 

windowed signal. The decomposition of the signal in different time windows allows the 1946 

automatic calculation of the reaction. It is not known apriori which window is the best for 1947 

the calculation of the reaction rate. Thus, the algorithm tries several fixed windows and 1948 

selects the optimal one based on the maximisation of the reaction rate.    1949 

 1950 
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 1951 

Figure 3.12 Example of data fitting according to Equation (3.4). Data from LAA assay in 1952 

diluted serum (LAA concentration: 1mM). The blue markers indicate experimental data 1953 

points. The red line represents the double exponential fitting.  1954 

 1955 

When using the method on voltage, transmittance and absorbance data, the algorithm 1956 

provides rate information in mV/s, %/s, a.u./s, respectively. A per minute-rate can also be 1957 

supplied by multiplying for a factor of 60. When using a device with variable geometry, it 1958 

is convenient to convert the rate in µMs-1 by using the following formula: 1959 

P(t) =
A(t)

ɛ h
=
log10

1
T(t)

ɛ h
=
log10

V(0)
V(t)

ɛ h
 

(3.5) 

Where P(t) is the concentration of the product, A(t) is the absorbance, ɛ is the extinction 1960 

coefficient of the light-absorbing species, h is the microchannel height, T(t) is the 1961 

transmittance, and V(t) is the sensor output in voltage. This representation is convenient 1962 

because normalised to any variation due to the extinction coefficient and the optical length.  1963 

Whatever the measurement units adopted for the rate representation, the initial concentration 1964 

of the substrate can be estimated by using the Michaelis-Menten model or by using a 1965 

previously calculated calibration curve. An extract containing the essential sections of the 1966 

Matlab code used for the data analysis is reported in Appendix D. 1967 

 1968 

  Connectivity 1969 

The connectivity diagram of the platform is shown in Figure 3.13. It should be noted that the 1970 

CMOS chip integrates other sensors besides the one used for this project. However, this 1971 

section only reports the connections required for this project.    1972 
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The CMOS chip connects to the ceramic package by 18 wire bonds. In turn, the ceramic 1973 

package connects to the PCB through a ZIF socket. The same 18 connections are thus routed 1974 

to the PCB. The PCB connects to the microcontroller through 16 bits. The PCB is also 1975 

connected to the UART/USB module thorough 6 additional pins. The UART/USB module 1976 

connects to the portable electronic device via USB. The GUI, running on the portable 1977 

electronic device, handles and saves data.  1978 

Table 3.4 provides a description of the functionalities of the connections. 1979 

 1980 

Table 3.4 Connection list of the platform. 1981 

 No of Pins Type Function 

CMOS chip 

from/to 

Package 

(wire bonds) 

6 Power Biasing and reference voltages 

2 Power ground 

1 Analogue Photodiode data 

1 Analogue Photodiode reset 

4 Digital Column addressing 

4 Digital Row addressing 

18 Total 

Package 

from/to 

PCB 

6 Power Biasing and reference voltages 

2 Power ground 

1 Analogue Photodiode data 

1 Analogue Photodiode reset 

4 Digital Column addressing 

4 Digital Row addressing 

18 Total 

PCB 

from/to 

Controller 

 

4 Power Biasing 

2 Power ground 

1 Analogue Photodiode data 

1 Analogue Photodiode reset 

4 Digital Column addressing 

4 Digital Row addressing 

1 Digital Transmit (TX) 

1 Digital Receive (RX) 

18 Total 

PCB 

from/to 

USB/UART 

module 

1 Power Biasing 

1 Power Ground 

1 Digital Transmit (TX) 

1 Digital Receive (RX) 

1 Digital Data Terminal Ready Control 

1 Digital Clear To Send Control 

6 Total 

 1982 
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 1983 

Figure 3.13 Connectivity diagram of the platform. 1984 

 1985 

  Graphical User Interface Benchmark 1986 

3.6.1. Data acquisition mode 1987 

The GUI in data acquisition mode was tested using a laptop as the portable electronic device 1988 

(HP Elitebook 840). The sampling time for data acquisition was analysed over twenty 1989 

independent measurements, each with a 5-minute duration. The probability density function 1990 

of the sampling time was obtained by calculating the derivative of the time vectors, counting 1991 

the recurrence into defined bins, and dividing by the total number of samples (around 260k 1992 

in this analysis). The obtained probability density function is reported in Figure 3.14(a). The 1993 

average and standard deviation of the sampling time was 27.4±9.7 ms. When converted into 1994 

frame per seconds (fps), the average fps was 36.5±9.5 fps. However, the probability density 1995 

function seems composed of two different components which might be approximated with 1996 

Gaussian distributions. The right Gaussian behaviour was attributed to the additional time 1997 

required for graphic representation of the samples. Signal integrity was analysed to detect 1998 

any systematic source of noise in the platform. The spectra of the data from different 1999 

independent recordings with a fixed optical power were analysed. Figure 3.14(b) shows one 2000 

spectrum of an entire recording from one randomly selected pixel. Harmonics at 4, 8 and 12 2001 

Hz appeared to be systematically introduced in the system. 2002 



87 

 

 

 

  

(a) (b) 

Figure 3.14 (a) Probability density function of the sampling time. The analysis was obtained 2003 

from 20 different measurements, each with a 5-minute duration. The total number of samples 2004 

was around 260k. (b) Spectrum of the recordings. 2005 

 2006 

3.6.2. Data processing mode 2007 

The GUI in data analysis mode was also tested. The signal processing algorithm was tested 2008 

on computer-generated signals with the same characteristics as the expected experimental 2009 

ones. The synthetic recording simulated a reaction with a constant reaction rate. The 2010 

synthetic dataset had 256 pixels, a 5-minute and sampled at 36.5 fps. The presence of 2011 

microfluidic channels and the spike in the signal output due to sample introduction was also 2012 

emulated. White Gaussian noise was added to the synthetic signals to mimic a real-life 2013 

scenario. A synthetic dataset was obtained by sweeping the reaction rate and the SNR. To 2014 

simplify the study, the reaction rate was kept constant for each synthetic signal. Figure 2015 

3.15(a) shows a set of synthetic signals with different SNR levels. The developed algorithm 2016 

was used to estimate the reaction rate throughout the dataset. The results were then compared 2017 

with the true rate. Figure 3.15(b) goes through all the main processing steps leading to the 2018 

final reaction rate estimation for a single microchannel, as already described in Chapter 3. 2019 

Data from all the available pixels in the channel were filtered and averaged. An additional 2020 

time averaging step was employed to average all the samples within a one-second time 2021 

window, reducing the fps to 1. The resulting curve was used to produce a double exponential 2022 

fitted curve. 2023 
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         (a)           (b) 

  

                  (c)                   (d) 

Figure 3.15 (a) Testing synthetic signals with different level of SNR. Constant reaction rate: 2024 

2 mVs-1. (b) Data from 48 synthetic pixels was used (SNR=20). Data was first filtered and 2025 

averaged from the reaction starting point (blue line). Data was then fit to a double 2026 

exponential model (red curve) used for rate, transmittance, and absorbance evaluation. (c) 2027 

Relative error of the reaction rate determination with different levels of noise. Testing 2028 

signals had a fixed rate of 2 mVs-1 but different additive noise levels. (d) Estimated reaction 2029 

rate vs. true reaction rate with reaction rate sweeping in the expected region from 0.001 2030 

mVs-1 to 4 mVs-1. Noise was kept constant to SNR = 30.  2031 

 2032 

The resulting curve was finally used to calculate rates, absorbance, and transmittance. Figure 2033 

3.15(c) quantifies the effect of the noise magnitude when calculating the reaction rate. The 2034 

estimation of the reaction rate by the algorithm showed a negligible error when the SNR is 2035 

higher than 30.  The performance of the algorithm gradually degraded when the SNR was 2036 

decreased. The degradation of the performance was verified by increased values of both error 2037 

and standard deviation. The performance of the algorithm was no longer acceptable with 2038 
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SNR ≤ 3. Figure 3.15(d) shows the reliability of the algorithm in the evaluation of different 2039 

reaction rates with SNR = 30. The algorithm showed excellent capability in reconstructing 2040 

the reaction rate, even for reaction rate as small as 0.001 mVs-1. The performance of the 2041 

reconstruction algorithm was not affected by the speed of the reaction, when the level of 2042 

noise was in the acceptable range.  2043 

 2044 

  Summary of the Chapter 2045 

• The platform is composed of three units: the cartridge, the reader, and the GUI. 2046 

• The cartridge is composed of three sub-units: the CMOS chip, the microfluidics and the 2047 

bioreagents.  2048 

• The CMOS chip, developed within the Multicorder project from the MST group, 2049 

University of Glasgow, integrates a 16x16 array of multi-sensing elements which 2050 

comprise photodiodes. The integration of the CMOS chip with microfluidics and 2051 

bioreceptors is discussed in the next chapters.  2052 

• The platform was designed for the quantification of four potential metabolic biomarkers 2053 

for PCa (LAA, glutamate, choline and sarcosine) and two potential metabolic biomarkers 2054 

for ischemic stroke (lactate and creatinine) using a colorimetric approach. Reagents were 2055 

selected accordingly. 2056 

• The reader, composed of a custom PCB and a microcontroller board, was used for sensor 2057 

addressing and data digitisation. The cartridge slots into the reader thought a dedicated 2058 

user-friendly socket.  2059 

• The GUI, a custom software running on a portable electronic device such as a laptop, is 2060 

dedicated for data acquisition and processing. Data processing focused on estimating the 2061 

initial rate of the reaction, which is related to the concentration of the target analyte by 2062 

the Michaelis-Menten model.  2063 

• Reader and GUI were tested. The average fps was 36.5±9.5 fps, with variations due to 2064 

real-time graphic representation settings. The algorithm performing the rate estimations 2065 

was also tested using a synthetical dataset with different SNRs. The algorithm could 2066 

reconstruct the synthetic reaction rate with a negligible error when SNR ≥ 30. The 2067 

reduction of the SNR degraded the performance of the algorithm. Noise levels producing 2068 

SNR ≤ 3 were considered unacceptable.  2069 
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4 Chapter 4: Microfluidic System 2070 

  Introduction  2071 

The integration of microfluidics and ICs is a major challenge for point-of-care devices [257], 2072 

[258]. In this work, microfluidics is required to address the specification of multi-analyte 2073 

testing (see Table 2.11). The microfluidics integration with the CMOS chip is required to be 2074 

monolithic to address the versatility requirement. Specifically, although they were not used 2075 

in this work, the CMOS chip also integrates an ISFET array, which requires to be directly 2076 

exposed to the solution to be analysed. Therefore, microfluidics is required to be integrated 2077 

in such a way that the sensor array is in contact with the sample. Monolithic integration is 2078 

also required for application aiming to detect a weak signal [259]. The integration eliminates 2079 

any superfluous signal path, which can additionally deteriorate the signal quality and 2080 

introduce additional noise [259]. Monolithic integration also reduces parasitic capacities and 2081 

minimises the footprint associated with sensing [259].   2082 

The present chapter illustrates the design, manufacturing, and characterisation of the 2083 

microfluidic system. The chapter begins discussing the relevant state of the art on 2084 

microfluidics manufacturing and integration. The design of the passive microfluidic system 2085 

is then illustrated through prototypal fabrication and simulations. Subsequently, the 2086 

fabrication of the microfluidic system and the CMOS chip is described. Analysis and 2087 

characterisation of the manufactured cartridge conclude the chapter.  Table 4.1 illustrates the 2088 

contribution to each activity discussed in this chapter.  2089 

 2090 

Table 4.1 Table of contributions for the activity presented in this chapter. 2091 

Task / Activity presented in Chapter 4 Main investigators 

Microfluidics design and modelling - Valerio F. Annese 

Integration of capillary microfluidics on the CMOS chip - Valerio F. Annese 

Packaging for multiplexed wet assays - Valerio F. Annese 

Characterisation of the microfluidic structures - Valerio F. Annese 

Spectral characterisation of the photodiode array 

- Valerio F. Annese  

- Dr Mohammed Al-Rahawani1 

- Dr Christos Giankulovitch1 

Characterisation of the cartridge  - Valerio F. Annese 

Characterisation of sample flow in the microfluidic system   - Valerio F. Annese 

Affiliation at the time of completion of the activity:  
1Microsystem Technology Group, James Watt School of Engineering, University of Glasgow.  
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  Microfluidic Fabrication Techniques  2092 

The most commonly used techniques for microfluidics fabrication can be grouped into two 2093 

categories: direct fabrication and moulding [206], [260] (see Figure 4.1). Further methods 2094 

have been employed for the fabrication of microfluidics devices but not included in this 2095 

discussion. Additional reading in [260], [261] is suggested for a more detailed review.  2096 

Direct fabrication. Direct fabrication groups all the method used to manufacture 2097 

microfluidics directly on top of the substrate. There are two main techniques used for direct 2098 

fabrication, namely micromachining and printing.  2099 

Surface micromachining refers to all the techniques allowing to fabricate microscale and 2100 

nanoscale structures by sequential deposition and removal of structural layers on a substrate. 2101 

Photolithography is probably the most commonly used method for micromachined 2102 

microfluidics [262]. Other lithographic technique, such as e-beam lithography, are also 2103 

commonly used [262]. Micromachined devices fabricated with the lithographic method are 2104 

generally referred to as surface micromachined. The use of photoresist is widespread for 2105 

surface micromachined devices [262]. SU-8 is probably the most commonly used photoresist 2106 

for surface micromachined microfluidic devices [260]. SU-8 is a common negative 2107 

photoresist performing high resolution, durability and capacity for high aspect ratio 2108 

structures [260]. Micromachined microfluidics device can also be fabricated using etching 2109 

techniques. This category of devices is usually referred to as bulk micromachined [257], 2110 

[263]. This fabrication usually involves etching steps aiming to remove material from a bulk 2111 

substrate, such as a silicon wafer [263].  2112 

 2113 

 2114 

Figure 4.1 Main methods used for the manufacturing of microfluidic systems. 2115 
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Several materials can be used as substrates, including silicon [262], glass slides [262], 2116 

polymers for micromachined devices [264]. The resolution of micromachined microfluidics 2117 

depends on the technique used for its fabrication [260], [262], [263]. The fabrication of 2118 

microfluidic structure with photolithography is typically in the order of a few micrometres. 2119 

However, micromachined structures suffer the need for cleanroom facilities. Materials and 2120 

methods employed for the fabrication of these devices are sometimes costly and time-2121 

consuming.  2122 

Printed microfluidics refers to all the techniques allowing the direct deposition or removal 2123 

of material from a substrate. Popular writing techniques include laser ablation and 3D 2124 

printing [260]. Laser ablation is used for the direct remotion of material from the substrate. 2125 

Microfluidics devices fabricated by stacking independently cut layers bonded together are 2126 

generally referret to as laminated devices [260]. A wide range of material has been used as 2127 

a substrate for direct fabrication, including paper (for chromatography strips) [199], glass 2128 

slides, polymers (e.g. PMMA, polycarbonate) and tapes [260]. In this category, the depth of 2129 

the microfluidic channel can be tuned by controlled the thicknesses of the layers. The layers 2130 

composing the laminated structure are typically bonded by thermal or adhesive bonding. 2131 

Laminated devices offer several advantages, including rapid and straightforward process 2132 

steps, no need for cleanroom facilities, low-cost, versatility and scalability [260]. The main 2133 

disadvantages of this technique are the difficulty in aligning the individual layers and the 2134 

lower resolution when compared to alternative methods [260]. Laser-cut laminated 2135 

microfluidic devices typically offer a resolution of tens of micrometres [260]. Recently 3D 2136 

printed microfluidic devices are also getting progressively popular thanks to their low-cost 2137 

and rapid fabrication times [265]. Printing also usually does not require cleanroom facilities.  2138 

Moulding fabrication. Moulding fabrication refers to all the method that can be used to 2139 

manufacture microfluidics by mean of a mould. The mould can be fabricated in many ways, 2140 

including all the methods illustrated for direct fabrication [260]. The resolution of the device 2141 

usually depends on the technique adopted for mould fabrication [260]. Arguably, 2142 

photolithography is the most commonly used method for mould fabrication. [260].  2143 

Moulded devices can be further divided into three categories: replica moulding, injection 2144 

moulding and hot embossing [260].  They all have an initial stage of mould manufacturing 2145 

[260]. Microfluidic devices fabricated by replica moulding employ a liquid polymer to be 2146 

poured into the mould and subsequentially cured. The cured polymer is then peeled from the 2147 

mould and bonded onto a glass slide or a substrate [260]. This process is also generally 2148 
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referred to as soft lithography [260]. Among the polymers employed for the fabrication of 2149 

replica moulded devices, Polydimethylsiloxane (PDMS) is probably the most popular [260]. 2150 

PDMS is a polymer structure with the repeating monomer units of SiO(CH3)2. It exhibits 2151 

some advantages with respect to other materials used for microfluidic (e.g. PMMA, 2152 

Polycaprolactone) [257]. PDMS is transparent from 240 nm to 1100 nm, elastic, permeable 2153 

to oxygen and easy to use and to manipulate. When freshly plasma-oxidised, it can be sealed 2154 

to itself and other materials without any adhesive layer. Under the exposure to oxygen 2155 

plasma, the methyl groups Si-CH3 on PDMS surfaces are attacked by reactive oxygen 2156 

radicals and substituted by unstable silanol groups Si-OH which can permanently attach to 2157 

the ionic group on different plasma-oxidised substrates [266]. This property enables PDMS 2158 

bonding directly on the target substrate without any intermediate adhesive layer. PDMS 2159 

functionalisation techniques are also robust and well-known [214], [257], [267]–[273]. 2160 

Injection moulded microfluidic devices are fabricated by injecting a melted thermoplastic ( 2161 

liquid form) into the mould [260]. Usually two halves of the mould are used to create a cavity 2162 

[260]. Once the thermoplastic is cooled, the cast is removed from the mould [260]. Similarly, 2163 

in microfluidic devices fabricated using hot embossing moulding, a thermoplastic film is 2164 

shaped onto the mould by applying pressure and heat [260].  2165 

Moulded microfluidic devices share similar limitations to direct writing methods. Expensive 2166 

and time-consuming methods might be required for the fabrication of the mould. However, 2167 

moulding is more suitable for large scale production. The mould can be reused many times. 2168 

Furthermore, the mould can also produce more than one pattern in the same processing steps. 2169 

These advantages yield to time and costs reduction when producing a high number of 2170 

devices. Evidence of this is shown by large scale use of moulding processing in commercial 2171 

devices [260]. Direct writing techniques are instead typically used for prototyping or small 2172 

scale production [260].  2173 

The platform developed in this work is meant to be affordable and suitable for large scale 2174 

production. Accordingly, a moulding process was adopted. A comparison between three 2175 

widely adopted fabrication techniques for microfluidic systems (i.e. photolithography, 2176 

printing and moulding) is shown in Table 4.2. 2177 

 2178 

 2179 

 2180 
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Table 4.2 Comparison between widely adopted fabrication techniques for microfluidic 2181 

systems.  2182 

 Photolithography Printing Moulding 

Resolution  µm tens of µm 

Down to µm scale 

(depending on the 

technique used for the 

fabrication of the mould) 

Time to 

manufacture 

- From hours to days 

- Several fabrications steps 

- Cleanroom facility needed 

- From minutes to 

hours 

- Largely automatised 

- One device is 

fabricated at one time 

- No cleanroom facility 

needed  

- Minutes1 

- Several devices are 

fabricated at one time 

- Can be automatised 

- No cleanroom facility 

needed1 

Adaptability 

- Wide range of substrates 

and structural materials 

- Channels have a 

rectangular cross-section 

- Wide range of 

substrates and 

structural materials 

- 3D structures 

- Highly customisable 

- Wide range of substrates 

and structural materials 

- Network topology 

depends on the technique 

used for the fabrication of 

the mould 

Cost per device High Low Low2 

Suitable for 

large scale 

production 

No (expensive and slow 

process) 

No (slow process, 

lower resolution) 
Yes 

1 After mould fabrication  
2 When manufacturing a large number of devices  

  2183 

  Microfluidic integration with CMOS technology  2184 

Integrated platforms are significantly complicated to implement [259]. Generally, printed 2185 

devices are very difficult to monolithically integrate due to alignment problems [260][263]. 2186 

Recently, printing techniques have been used to print structural materials, such as SU-8, on 2187 

top of a CMOS device to achieve monolithic integration [274]. For instance, authors in [274] 2188 

demonstrated the integration of a CMOS device with microfluidics through direct writing. 2189 

In this work, an organic ink is firstly deposited on top of the CMOS chip [274]. 2190 

Subsequently, an optically clear epoxy resin is used to encapsulate the ink filaments and the 2191 

CMOS device [274]. Finally, the ink filaments are extracted by applying heat and pressure, 2192 

leaving epoxy-based microchannels on top of the CMOS chip [274]. 2193 

Micromachined devices have higher integration capability compared to printing methods 2194 

[263].  A CMOS chip can be employed as a substrate and monolithically integrate the 2195 

fluidics on top of the device [263]. In [275], for instance, the authors demonstrate a CMOS 2196 

compatible microfluidic technology by integrating a microfluidic network on top of optical 2197 

biosensor devices. In [275], the microfluidics is integrated by using SU-8 in a 2198 
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photolithography process. A polymer slab is finally bonded onto the SU-8 microstructure to 2199 

enclose the microchannel [275].  2200 

Integration of microfluidic networks fabricated with moulding techniques has also been 2201 

reported in the literature. Authors in [276], for instance, adopt soft lithography to integrate a 2202 

CMOS chip and microfluidic in a flexible package.  2203 

There are mainly three challenges to be addressed when integrating CMOS chip with 2204 

microfluidics: size compatibility, process compatibility and economic considerations [203]. 2205 

Size compatibility. The CMOS chip price is proportional to its area, so designers usually 2206 

try to minimise the area [277]. Although fluidic channels have a compatible size with CMOS 2207 

elements, fluidic input/output (I/O) ports need to be large enough (in the order of hundreds 2208 

of micrometres) to allow practical operation. Increasing the area of CMOS to accommodate 2209 

fluidic I/O in the design phase is possible. However, this typically requires an additional area 2210 

which yields to an increased cost of the chip.  The increase of the cost cannot be acceptable 2211 

with the respect to the affordability requirement. Furthermore, when the photoresist is 2212 

applied by spin-coating on a millimetric area, surface tension creates an unwanted thicker 2213 

‘edge bead’ around the perimeter of the IC [259]. On millimetre-scale ICs, the bead can 2214 

occupy the majority of the area and can pose a significant problem [259].  2215 

Size compatibility can be addressed by planarization [203]. Planarization allows integrating 2216 

the CMOS chip into a larger substrate. Typically, fluidic I/O are incorporated onto the larger 2217 

substrate rather than onto the CMOS chip [203]. This technique has the potential to avoid 2218 

increasing the area of the CMOS chip for microfluidic constraints which, in turn, would 2219 

increase the cost of the CMOS chip. Notably, authors in [278]–[280] employ planarization 2220 

before integrating the microfluidic network on top of the CMOS platform. 2221 

Process compatibility. This includes the necessity of a set of processes which demand new 2222 

practical solutions [203].  Chip packaging is probably the most prominent complication to 2223 

be overcome [203]. CMOS chips are usually connected to a chip package to be operated, 2224 

and flip-chip bonding and wire-bonding are probably the two most reliable techniques for 2225 

metallic interconnections [203]. Interconnects also require insulation and encapsulation 2226 

[203]. Unlike traditional electronic packaging, fluidic packaging has not been standardised 2227 

by industry [259]. Thus, the approach to accommodate fluidics on CMOS is either to modify 2228 

a pre-existing standard package or develop a custom package [259]. If wire-bonding is used 2229 

for packaging, the fluidic network must avoid the bond-pads [259]. Consequently, the area 2230 

the microfluidics network can occupy is largely decreased, and the geometry also 2231 
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constrained. Passivation of the wire-bonds can also be challenging in these conditions [259]. 2232 

Remarkably, authors overcome the problem of wire bonds and metal interconnects by using 2233 

liquid metal interconnects [276]. Thus, in [276] microfluidics ensures both sample handling 2234 

and electrical connections. However, the approach has practical limitations and not easily 2235 

repeatable. Alternative techniques have also been adopted in literature, such as screen-2236 

printing and additive manufacturing [203].  2237 

Material selection also poses a challenge to be addressed. Employed materials must be inert 2238 

during the biological reaction and must not interfere [259]. The development of a reliable 2239 

sterilisation and cleaning method is also essential [259]. The use of materials such as PDMS 2240 

and SU-8, which deteriorates over 200oC, reduces the maximum temperature to which the 2241 

platform can be exposed [259]. Furthermore, the wettability of materials needs also to be 2242 

considered for the optimal flow and reduction of the evaporation [259]. Further 2243 

complications about process compatibility also come from the topology of the IC, the 2244 

alignment and functionalisation [203], [259].  2245 

Economic considerations. Microfluidics integration requires additional fabrication steps. 2246 

However, CMOS-based microfluidic systems can be justified only when the production cost 2247 

of the integrated system is low [203]. Consequently, this excludes several solutions which 2248 

are not economically viable.  2249 

 2250 

Monolithic integration with CMOS has the potential to minimise the crosstalk between 2251 

adjacent channels for multi-analyte measurements [259]. However, it is worth noting that 2252 

although microfluidics can be fabricated on top of CMOS chips, sensors are still separated 2253 

by the microfluidic channels due to the presence of passivation layers (see Figure 4.2). The 2254 

separation between a microchannel and sensor is typically in the order of 10µm. Therefore, 2255 

for optical measurements (i.e. colorimetric detection) photons transmitted through the 2256 

microfluidic channels need to pass through several material interfaces before reaching the 2257 

sensor. Transmitted photons can experience reflection, diffraction, and resonance effects 2258 

before reaching the sensor. These unwanted optical effects can be a source of noise and 2259 

contribute to crosstalk between adjacent sensors. Adequate separation between different 2260 

channels might be effective in reducing the crosstalk. Table 4.3 discusses some of the 2261 

integration works reported in the literature, underlining materials and techniques employed. 2262 

[257], [261], [281] are suggested for an extensive review on the field.  2263 

 2264 
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 2265 

Figure 4.2 Diagram illustrating the separation between CMOS-based optical sensors and 2266 

microfluidic channels for colorimetric detection. Transmitted photons pass through several 2267 

layers of materials before reaching the sensor. This can cause unwanted optical effects, 2268 

leading to sensor-to-sensor crosstalk.  2269 

 2270 

Table 4.3 Integration of ICs with microfluidics. 2271 

Target 

Substrate 
Channels 

Intermediate 

layer 
Distance (1) Material Technique Ref. 

CMOS 

chip 
n.d. Yes (ONO) 300 µm 

SU-8, 

glass 

Micromachining 

(planarization, 

photolithography) 

[278] 

IC and 

flexible 

PCB 

n.d. Yes (PDMS) 120 µm glass 
Micromachining 

(laser engrave) 
[282] 

CMOS and 

flexible 

PCB 

4 
Yes 

(Polyimide) 
85 µm PDMS 

Replica moulding and 

adhesive bonding 
[283] 

CMOS 

chip 
n.d. 

Yes 

(photoresist) 
1.8 µm PMMA 

Micromachining 

(planarization, laser 

engrave) 

[279] 

IC chip 1 No 0 PDMS 
Replica moulding and 

plasma bonding 
[284] 

CMOS 

chip 
1 No 0 Epoxy Direct writing [274] 

CMOS 

chip 
n.d. No 0 SU-8 

Micromachining 

(photolithography) 

and plasma bonding 

[275] 

CMOS 

chip 
1 No 0 

SU-8, 

PDMS 

Micromachining 

(planarization, 

photolithography) 

and plasma bonding 

[280] 

CMOS 

chip 
n.d. No 0 PDMS 

Replica moulding and 

encapsulation 
[276] 

(1) Distance between the sample and the external passivation layer of the IC.  
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  Microfluidics Design 2272 

The process leading to the fabrication of microfluidic system can be divided into three 2273 

stages: (i) design considerations, (ii) preliminary active microfluidics development and (iii) 2274 

passive microfluidics development. The manufacturinghas been subjected to a trial-and-2275 

error process for continuous optimisation and different stages of design, development, and 2276 

testing.  2277 

 2278 

4.4.1. Design considerations  2279 

For the integration of microfluidics with the CMOS sensor array, several design 2280 

specifications were considered.   2281 

Distance to the sensor array. The microfluidics was required to be in direct contact with 2282 

the sensor to avoid any additional signal path which can decrease the SNR. As anticipated 2283 

in the introduction, this design strategy was chosen for two reasons: monolithic integration 2284 

addresses the versatility requirement of the platform and eliminates any superfluous signal 2285 

path, which can introduce additional noise [259]. 2286 

Manufacture technique. Soft lithography and micromachining were selected as 2287 

employable technique. This choice was made mainly for three reasons: (i) availability of the 2288 

bare chip to be processed, (ii) access to the cleanroom facility of the James Watt 2289 

Nanofabrication Centre (JWNC) at the University of Glasgow, (iii) availability of well-2290 

established procedure for microfluidics fabrication in the literature. The selection of the 2291 

manufacturing technique implicitly also contains the selection of the material to be 2292 

employed, such as Polydimethylsiloxane (PDMS) and photoresists.  2293 

Number of fluidic channels. The optimal number of channels was four, so that all the 2294 

metabolomics marker identified for PCa can be simultaneously measured. The maximum 2295 

number of microchannels which can realistically be manufactured is 16, with each column 2296 

of the sensor array hosting a single microfluidic channel. Identical microchannel geometry 2297 

was also required.   2298 

Geometry. According to the selected manufacture technique, microchannels were 2299 

developed with a rectangular section. Thus, designing parameters were microchannel width 2300 

w, height h and length L. The active area exposed to the liquid is to be maximised to extract 2301 

as much significant data as possible from the chip. However, the contact area between fluidic 2302 
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walls and chip also needs to be optimised to ensure proper adhesion. The maximisation of 2303 

both active and contact areas are thus opposite design requirements. 2304 

Fluidic inputs and outputs (I/Os). Ideally, the microfluidic network should have only one 2305 

fluidic input and multiple fluidic outputs. For preliminary active microfluidics, I/Os were in 2306 

the form of a hole where a needle was inserted. For passive microfluidics, a single sample 2307 

input was required. Fluidic outputs for the passive microfluidics were in the form of an 2308 

aperture/ventilation.  2309 

Constraints. The chip required to be wire-bonded onto a chip package. The fluidics had to 2310 

avoid areas dedicated to wires. Pads are 100 µm wide and located on the west and east sides 2311 

of the chip. A tolerance gap of 200 µm was needed to ensure proper wire-bonding of the 2312 

CMOS chip. The location of the pad limited the orientation of the microchannel that had to 2313 

have its length L parallel to the north-south direction. Additionally, the wire-bonds required 2314 

encapsulation to ensure electrical insulation and mechanical strength.  2315 

Eventually, the process for the fabrication and integration of microfluidics on the CMOS 2316 

chip had to consider real-life scenario constraints, including economic and usability 2317 

considerations.  2318 

 2319 

4.4.2. Preliminary active microfluidics 2320 

The initial active microfluidics development aimed to (i) verify the suitability of the selected 2321 

manufacture techniques; (ii) determine critical dimensions for the development of the 2322 

passive microfluidics; (iii) develop knowledge and practical experience needed for the 2323 

development of passive microfluidics.  2324 

Twenty-four different networks with several channels ranging from 1 to 6 were designed 2325 

with software Tanner L-Edit from Mentor Graphics, and fabricated using soft-lithography 2326 

(see Figure 4.3). Networks had different microchannel width and different I/O 2327 

configurations. A custom figure of merit (FoM) was identified for comparing various 2328 

networks. The FoM was defined as the mathematical average between normalised active 2329 

area (Aact), normalised contact area (Acon) and normalised liquid volume per channel (Vchn), 2330 

according to the following equation: 2331 

FoM =
1

3
 (A𝑎𝑐𝑡 + A𝑐𝑜𝑛 + 𝑉𝑐ℎ𝑛) (4.1) 

Aact represents the area exposed to the liquid sample normalised by the total active area; Aact 2332 

represents the area covered by microfluidic walls therefore not exposed to the liquid sample 2333 
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normalised by the total active area; Vchn represent the volume of the channel normalised to 2334 

the maximum achievable volume (i.e. the volume of a single channel covering the entire 2335 

active area).  2336 

The fabrication of the PDMS active microfluidics was performed at the JWNC. It employed 2337 

a photolithographic process for the manufacturing of a mould and soft lithography for the 2338 

manufacture of the PDMS structure. Figure 4.3(a)-(d) presents the full set of designs for 2 2339 

and 4 channels networks. Figure 4.3(e) shows that by reducing the number of channels, the 2340 

FoM gradually reduces meaning that bonding strength and employed sensing area are both 2341 

reduced. The measurements of the moulds by contact profilometer (Veeco Dektak) and 2342 

optical profiler confirmed that: 2343 

 Channels were successfully patterned on the silicon wafer. 2344 

 The achievable depth of the microchannels was approximately 130 µm when using a 2345 

single layer of SU-8 onto a silicon wafer. 2346 

 The profile of the mould was smooth and flat, particularly crucial for high bonding 2347 

strength.  2348 

For testing the flow in the microfluidic structures, PDMS structures were bonded to glass 2349 

and silicon substrates. Testing structure bonded onto the glass substrate are reported in 2350 

Figure 4.4. The flow in the whole set of designs was tested using coloured dyes to emulate 2351 

the presence of samples. The entire collection of designs was successfully bonded to the 2352 

substrate. The flow was forced into the channels with a syringe pump and a 300 µm needle. 2353 

The whole set of designs performed physical separation of the flow without any detectable 2354 

leakage.  2355 

After testing on the glass slide, the PDMS structures were then flip-chip bonded onto the 2356 

CMOS chip after exposure to oxygen plasma. PDMS active microfluidic structures bonded 2357 

onto the CMOS are reported in Figure 4.5.  2358 

  2359 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.3 Design of an active microfluidic network by using the (a) CMOS CHIP layout 2360 

and (b) overlapping it with the fluidics 2nd four-channel layout  (b) Comparison of all the 2-2361 

channel active microfluidic networks designed and fabricated. (c) Comparison of all the 4-2362 

channel active microfluidic networks designed and fabricated. (d) Comparison of the active 2363 

area, contact area, volume/channel and FoM for different active networks. 2364 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 4.4 Experimental results on solution confinement in PDMS active microchannels, 2365 

tested with blue and red dye. (a) 2 microchannels with microwells. (b) 2 straight 2366 

microchannels. (c) The 2-microchannel design was capable of confining solution in only one 2367 

channel. (d) Two parallel microchannels with 100 µm fluidic wall were enough to confine 2368 

two different solutions with no apparent leakage. (e) 4-channel active microfluidic network. 2369 

(f) 4-channel active microfluidic network with straight channels filled with testing dye. (g) 2370 

4-channel active microfluidic network was capable of confining different solutions. (h) 6-2371 

channel active microfluidic network with straight channels filled with testing dye. 2372 

 2373 

 

 

 
(a)  (b) 

   
(c) (d) (e) 

Figure 4.5. (a), (b) Active microfluidic network with two microfluidic channels bonded onto 2374 

the CMOS chip. (c) Bonding pads are left exposed. (d) Detail of the fluidic I/O. (e) The liquid 2375 

was confined in the microfluidic channel also when bonded onto the CMOS chip.  2376 
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The preliminary active microfluidics development and testing allowed to gather information 2377 

relevant to the manufacture of the passive microstructure. Specifically: 2378 

 Photolithography and soft lithography were able to produce microstructures with 2379 

dimension suitable for the application.  2380 

 100 µm wide walls could provide physical separation of two parallel channels. The 2381 

absence of crosstalk was preliminarily demonstrated by visual inspection when flowing 2382 

two different dyes into two adjacent channels. 2383 

 Active fluidic I/Os was not a viable solution. I/O management for the 4-channels network 2384 

was difficult, for the 6-channels network was very challenging, due to their high density. 2385 

Additionally, a syringe pump was required, which is not ideal in a real-life scenario. 2386 

Another issue with external pumping also was the formation of air bubbles.  2387 

 No capillary action was detected when the sample was introduced using vertical via 2388 

holes.  However, the capillary effect was observed when I/Os were on the side of the 2389 

structure (the same plane of the substrate).  2390 

 Microfluidics could have been extended on the north and south side of the CMOS chip 2391 

using a planarization step.  2392 

 2393 

4.4.3. Passive Microfluidics 2394 

Although active fluidic was successful in confining multiple solutions on the CMOS chip, 2395 

the use of syringes and pumps was not adequate for the application when considering real-2396 

life constraints. It was then necessary to adapt the active microfluidics to work passively.  2397 

The main problem related to fluidic I/O management was the compatibility with the wire-2398 

bonds encapsulation. The encapsulation step was necessary for the proper functioning of the 2399 

device. However, despite numerous approaches, the epoxy resin used in the encapsulation 2400 

step kept leaking into the passive fluidics because of its capillary effect. After several 2401 

attempts, it was decided to change the approach entirely and, instead, take advantage of this 2402 

effect. Therefore, epoxy resin was used as structural material moulded by the PDMS 2403 

microstructure. Besides being compatible with the chip packaging, the functionalisation of 2404 

the epoxy resin also enables planarization without adding any processing step. The detailed 2405 

procedure for the fabrication of passive microfluidics is reported in Paragraph 4.5.  2406 
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The maximisation of the capillary effect was achieved by optimising dimensions and 2407 

materials employed. Passive fluidics design was mainly based on theoretical equations, 2408 

already discussed in the chapter, and reported here again for convenience: 2409 

∆p =  γ (
cosϴb+cosϴt

h
+

2cosϴs

w
) = Rh Q = 

12ηL

{1−0.63(
h

w
)}h3w

 Q (4.2) 

l(t) =  h √
Δp

6ηL
(1 − 0.63

h

w
) t (4.3) 

Where Δp is the pressure gradient, ϴ denotes the contact angle of the different materials 2410 

employed, γ the surface tension, h and w denote the height and the width of the channel, Rh 2411 

is the hydraulic resistance (kg/m4s), Q is the flow rate (m3/s), η is the dynamic viscosity of 2412 

the fluid, L is the total length of the channel, l(t) defines the position of the advancing 2413 

meniscus in the channel. 2414 

Equations (4.2) and (4.3) highlight that there are three main aspects to be evaluated, namely 2415 

(i) liquid properties, (ii) geometry of the network, (iii) materials adopted. 2416 

Liquid properties. The two main parameters of interest are dynamic viscosity (η) and 2417 

surface tension (γ) of the liquid sample. The platform is meant to work with blood or 2418 

processed blood, such as plasma or serum. Blood and derived human samples have different 2419 

fluidic characteristics. Fluidic characteristics relevant to the present work have been 2420 

summarised in Table 4.4  2421 

Geometry of the microchannel. When designing a single straight microchannel with 2422 

rectangular cross-section, there are mainly three parameters to be considered, i.e. width w, 2423 

height h, and length L of the channel. The minimum width w of the channel can be set to 2424 

correspond to the pixel size of the CMOS chip: 100 µm. The maximum channel width 2425 

depends on how many channels are laid on the top of the sensor array. According to the 2426 

proposed application where multiple metabolites are meant to be measured simultaneously, 2427 

a fluidic network containing four identical channels is adequate for this work. In this case, 2428 

the maximum width for a microfluidic channel was 300 µm. Minimum width of w = 100 µm 2429 

was dedicated to fluidics wall on the sensing area. According to the Beer-Lambert law, it is 2430 

essential to maximise the height h of the microchannel. But increasing h yields to a reduction 2431 

of the capillary pressure, as reported in Equation (4.2). h is also linked to w since a structure 2432 

with high aspect ratio could easily collapse. A target height between 100 µm and 300 µm 2433 

was thus chosen to keep the height to width ratio (h/w) below 3. As previously mentioned, 2434 

the area of the CMOS chip is 3.6x3.4 mm, and the pads are 100 µm wide and located on the 2435 
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west and east sides of the chip. A tolerance gap of 200 µm was adopted in accordance with 2436 

the tolerances of the wire-bonding equipment used. Thus, the maximum width of the entire 2437 

microfluidic network was set to 2.9 mm. The minimum length L of the microchannel is the 2438 

length of the active area, i.e. 1.6 mm. Thanks to planarization techniques, the length of the 2439 

microchannel can be increased (in the north and south side of the chip). A great extension of 2440 

the length of the channel, however, is undesirable since it would cause an increase in fluidic 2441 

resistance and a decrease of the flow rate in turn. The length of the microchannel was thus 2442 

set to 4 mm. The microchannel covered the CMOS chip completely (3.4 mm) with 0.3 mm 2443 

tolerance on each side for convenient handling of the sample.  2444 

Materials. Aiming to maximise the capillary pressure reported in Equation (4.2), 2445 

hydrophobic and hydrophilic materials can both be employed, as long as their contact angle 2446 

is as far as possible from 90°. A custom setup for contact angle measurements was utilised 2447 

for estimating the wettability of untreated PDMS, PVA-modified PDMS according to the 2448 

recipe in [285], epoxy resin and the CMOS chip. Measured and assumed contact angles 2449 

values used for the simulations are reported in Table 4.4. Appendix E describes the 2450 

procedure for contact angle measurements.  2451 

Simulations. Designing equations, fluid properties, geometric constraints and wettability 2452 

properties of the adopted materials have been used to simulate the behaviour of fluidic 2453 

structures and to verify capillary action. Simulations analysed the behaviour of the 2454 

microstructure when using different specimens (i.e. water, serum, plasma, blood), and when 2455 

modifying its width, height, and top contact angle. The custom Matlab model developed to 2456 

simulate the capillary effect in a single channel with a rectangular section together with a 2457 

more detailed description of the results is reported in Appendix F. Simulations indicated that 2458 

a microfluidic channel manufactured with w = 300 µm, h = 300 µm, L = 4 mm, θb = 78.2°, 2459 

θs = 98.4°, and θt = 32.5° minimised the time required for the liquid to cover the sensing area 2460 

entirely. In these conditions, the estimated time required for water, serum, plasma, and blood 2461 

to reach and cover the sensing area are 1.7s, 10.6s, 18.1s, and 23.3s, respectively. Figure 4.6 2462 

provides a comparison of flowing simulations for different liquids into the optimised 2463 

structure.   2464 

 2465 

 2466 

 2467 

 2468 
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Table 4.4 Simulation parameters. 2469 

Fluid Properties 

Liquid Dynamic Viscosity (η) [mPa/s] Surface tension (γ ) [N/m] 

Water 0.84 [286] 0.073 [286] 

Serum 1.4 [287] 0.050 [288] 

Plasma 1.7 [287] 0.045 [288] 

Whole Blood 2.4 [287] 0.056 [289] 

Geometry constraints 

Variable Min Max 

w 100 µm 300 µm (4-channel network) 

h ↓ to increase Δp ↑ to increase absorbance 

L 1.6 mm (active area) none 

Materials 

Material Static water contact angle Behaviour 

PDMS (θt) 
100° - 110°[285] 

107° (measured) 
Slightly hydrophobic 

Plasma treated PDMS (θt) < 10° (temporarily) [285] Super hydrophilic 

PVA-coated PDMS (θt) 
20°  - 40° (permanent) [285] 

32.5° (measured) 
Hydrophilic 

Epoxy resin (θs) 
75°-100° [290] 

98.4° (measured) 
Slightly hydrophobic/hydrophilic 

CMOS Chip (θb) 78.2° (measured) Slightly hydrophilic 

   

   

 2470 

(a) (b) 

Figure 4.6 (a) Time required for the sample to cover the sensing area (i.e. filling time) 2471 

against microchannel height and top contact angle, assuming blood flow. Other simulation 2472 

parameters: w = 300 µm, θs = 98.4°, θb = 78.2°, L = 4 mm. (b) Simulations of water, serum, 2473 

plasma, and blood flowing into the optimised microstructure.  2474 

 2475 

Fluidic Input/output. Having identified the optimised geometry, fluidic I/Os were defined. 2476 

Experimental studies on the active microfluidics demonstrated that capillary effect was 2477 

observed only when the fluidic I/Os of the network were on the same plane of the 2478 

microchannel. No capillary action was observed when fluidic I/Os were fabricated in the 2479 
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form of holes running perpendicularly to the plane of the microchannel. Fluidic I/Os were 2480 

located on the north and south side of the chip, on the epoxy planarized area and designed 2481 

as microwells, to which microchannels were connected. Besides the numerically optimised 2482 

microchannels, several passive microfluidic patterns were designed and fabricated with 2483 

channels ranging from 2 to 16 and different configurations for fluidic I/O. The design of the 2484 

passive patterns was also performed using the Tanner L-EDIT tool from Mentor Graphics. 2485 

Among all produced patterns, the most successful designs are the ones reported in Figure 2486 

4.7. It must be highlighted that the length L of the microchannel corresponds to the length 2487 

of the PVA-modified PDMS slab to be bonded onto the epoxy structure. The designs 2488 

reported in Figure 4.7(a) and (b) have a single common input and a common output. 2489 

Differently, the design in Figure 4.7(c) has independent fluidic I/O. The designed photomask 2490 

for passive microfluidics, shown in Figure 4.7(d), included a multitude of patterns to be 2491 

manufactured altogether onto a 4 inches silicon wafer. 2492 

 2493 

 2494 

  
(a) (b) 

 

 
(c) (d) 

Figure 4.7. Designs of (a) passive 2-channel network, and (b), (c) passive 4-channel 2495 

networks. (d) The photomask designed for the fabrication of passive microfluidics included 2496 

many patterns with different configurations.  2497 

 2498 
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  Microfluidics Fabrication  2499 

The development of the microfluidics on top of the CMOS chip was achieved with the 2500 

combination of replica and injection moulding. The integration was carried out through the 2501 

following processing stages: (i) SU-8 mould fabrication, (ii) PDMS mould fabrication, (iii) 2502 

wire-bonding, (iv) epoxy encapsulation, and (v) channel enclosure.  2503 

First, a PDMS microstructure was fabricated from a SU-8 mould through replica moulding. 2504 

The PDMS microstructure was then temporarily bonded onto the CMOS chip. CMOS chip 2505 

and PDMS structure were subsequently bonded onto the chip package, and the CMOS chip 2506 

was wire bonded. Next, the wire-bonded microstructure was encapsulated with black 2507 

biomedical epoxy. The liquid epoxy, on the one hand, encapsulated the wire-bonds, and, on 2508 

the other hand, filled the microchannels provided by the PDMS microstructure. Once cured, 2509 

the PDMS microstructure was removed, leaving the epoxy microchannels exposed. Epoxy 2510 

microchannels were sealed with a planar slab of PVA-coated PDMS.  2511 

The recipe was modified over time to increase the height of the microfluidic channel. In 2512 

early attempts, a single SU-8 layer was spun onto the silicon wafer, resulting in a 2513 

microchannel with an approximate expected height of 130 µm [291]. A double SU-8 layer 2514 

was therefore adopted to bring the expected microchannel height to 260 µm [291]. 2515 

Throughout the present work, it is clearly stated if the recipe employed a single or double 2516 

SU-8 layer. The main process steps leading to the integration of the microfluidics on-chip 2517 

are discussed in the next sub-sections and summarised in Figure 4.8. 2518 

SU-8 mould fabrication. The fabrication of the SU-8 mould was performed using a 2519 

photolithographic process in the JWNC, University of Glasgow. A silicon wafer was cleaned 2520 

with standard procedures, soaking it while sonicated in the following succession of solvents: 2521 

isopropyl alcohol (IPA), acetone, and finally deionised (DI) water for rinsing. A 10-minute 2522 

dehydration step at 90oC in a convection oven under standard atmosphere followed, and 2523 

immediately before spinning the sample was oxidised under oxygen plasma for 2 minutes in 2524 

an ET340 PlasmaFab oxygen barrel asher with an RF power of 120W. Plasma exposure just 2525 

before spinning was effective in providing a more uniform photoresist coat. The photoresist 2526 

adopted in this work is the negative resist SU-8 3050. For a negative photoresist, the area of 2527 

the photoresist exposed to UV light becomes insoluble to the developer. The selected is 2528 

widely used for MEMS fabrication and is suitable for applications in which high film 2529 

thickness is needed [291]. 2530 
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 2531 

 2532 

Figure 4.8 (a) Spin-coating of SU-8 3050 onto a silicon wafer. (b) Photolithography process. 2533 

(c) Development and final SU-8 microstructure. (d) Silanisation of the surface of the mould. 2534 

(e) Cast of PDMS onto the mould. (f) Curing of PDMS and removal of the mould. (g) 2535 

Temporary bond of the PDMS microstructure onto the CMOS chip. (h) Permanent mounting 2536 

of the chip on the chip package. (i) Wire-bonding of the chip. (j) Fabrication of epoxy 2537 

channels through injection moulding, with epoxy also encapsulating the wire bonds. (k) 2538 

Removal of the PDMS microstructure. (l) PVA-coating of a PDMS slab. (m) Bonding of the 2539 

PVA-coated PDMS slab onto the epoxy microstructure. (n) Loading of the bioreceptors into 2540 

the microchannels.  2541 

 2542 

SU-8 3050 was spin-coated on the wafer for 30s at 1000 rpm and sequentially baked for 2543 

1min at 65oC, 90min at 90oC and 1min at 65oC on a vacuum hotplate. A second SU-8 3050 2544 

was spin-coated and baked with the same recipe on the top of the first SU-8 layer. The second 2545 

layer aims to increase the total height of the SU-8 film. A slower spin speed (e.g. 500 rpm) 2546 

resulted in an unacceptably non-uniform surface, and therefore this option was excluded. 2547 

Subsequently, the substrate with the double SU-8 layer was exposed twice to UV using a 2548 

Karl Suss MA6 photolithography mask aligner for 70s each time. A 15s wait time between 2549 

the two exposures was used to avoid overheating of the photoresist. The sample and the 2550 

photomask were in hard contact. After the exposure, the sample was baked for 2min at 65oC, 2551 

10min at 90oC and 2min at 65oC on a vacuum hotplate. Following exposure, the pattern was 2552 

developed using EC solvent (development time 28 min) and rinsed with IPA. The mould 2553 

fabrication is concluded by hard baking the wafer for 30min at180oC in a convection oven 2554 

under standard atmosphere. 2555 
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PDMS mould fabrication. The SU-8 mould was silanised by exposure for 30 mins to 2556 

Trichloro (1H,1H,2H,2H-perfluorooctyl) silane into a vacuum chamber. The silanisation 2557 

process aided with the subsequent removal of PDMS from the mould itself. The wafer was 2558 

subsequently placed into a petri dish, and 25 g of a mixture of PDMS and curing agent (1:14 2559 

weight ratio) was poured onto the mould and degassed for 1 hour into a vacuum chamber to 2560 

remove air bubbles. The process continued with PDMS curing by baking the sample for 2h 2561 

at 70oC. When cured, the PDMS was released from the SU-8 mould, placed on a clean 2562 

substrate, and cut with a sharp knife. The PDMS mould was then temporarily bonded to the 2563 

CMOS chip using a flip-chip bonder.  2564 

Flip-chip bonding was performed in the cleanroom facility of the JWNC using the ‘flip-chip 2565 

placement system model 850’ by Semiconductor Equipment Corporation. For flip-chip 2566 

bonding, the CMOS chip was placed on the movable stage of the tool and held in place by a 2567 

vacuum system. The PDMS mould was flipped and secured by a vacuum system to the tip 2568 

of the bonder, located above the stage. A movable camera, together with a beam splitter, 2569 

situated between the stage and the tip, provided the user with an overlapped picture of both 2570 

the substrates to be bonded. Light intensity, focus and other optical parameters were tuned 2571 

to improve the quality of the provided image. The stage was moved in the x, y and z 2572 

directions to align the CMOS chip with the PDMS mould. The alignment marks on both the 2573 

chip and the PDMS microstructure enabled alignment with a tolerance of tens of µm that is 2574 

negligible for this work. Once the alignment was achieved, the camera was removed, and 2575 

the tip was brought in contact with the stage. The bonding strength was increased by heating 2576 

both the stage and the tip for 10min at 90oC under a constant pressure of 5 psi. Subsequently, 2577 

the vacuum systems were disabled, and the tip raised, leaving the chip and the flipped mould 2578 

structure bonded together. The PDMS was not exposed to any plasma, and there was no 2579 

adhesive coating on the CMOS chip. Thus, the bonding was only temporary, and the PDMS 2580 

mould could be easily peeled off from the chip. The use of PDMS in a weight ratio of 1:14 2581 

with the curing agent showed better adherence to the CMOS chip with respect to the more 2582 

commonly used 1:10 ratio [292].  2583 

Wire bonding and packaging. The CMOS chip with the PDMS microstructure was bonded 2584 

to a ceramic pin grid array (CPGA) package with 120 pins purchased from Europractice 2585 

[293]. This was achieved by using the EPO-TEK H74 epoxy from Epoxy Technology Inc 2586 

[294]. The overall size of the selected CPGA package was 3.3x3.3 cm, with an 8.3×8.3 mm 2587 

cavity accommodating the structure to be wire-bonded.  2588 
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Wire bonding was performed in the cleanroom facility of Glasgow Laboratory for Advanced 2589 

Detector Development (School of Physics and Astronomy, University of Glasgow) using the 2590 

Hesse and Knipps Bondjet 710). The detailed procedure for wire bonding and packing has 2591 

been reported in Appendix G.  2592 

Epoxy microfluidics. The microchannels fabrication was performed using injection 2593 

moulding. Initially, a mixture of black epoxy resin (302-3M 1LB by Epoxy Technology Inc.) 2594 

and curing agent (weight ratio 1: 45) was flown into the PDMS microstructure [295]. Epoxy 2595 

was also used for the encapsulation of the wire bonds. It provided both mechanical strength 2596 

and electrical insulation to the device. The epoxy resin was then cured for 48 hours at room 2597 

temperature. After curing, the PDMS structure was removed from the CMOS chip. As 2598 

previously mentioned, the geometry of the wire bonding diagram allowed taking advantage 2599 

of the absence of wire bonds at the north and south side by extending the microchannels in 2600 

those directions. Once cured, the epoxy planarized the surface and created more available 2601 

space for sample handling and delivery. For PVA-coating and channel enclosure, a plain 2602 

slab of PDMS was cut with a sharp knife (5mm x 3mm), cleaned and exposed to oxygen 2603 

plasma for 1min at 80 W in an ET340 PlasmaFab oxygen barrel asher. After the plasma 2604 

oxidation, PDMS was immersed in the PVA solution (1 wt%) [285]. The PVA-modified 2605 

PDMS slab can be permanently bonded to the epoxy microstructure by plasma activation. 2606 

For the PDMS permanent bond, both PDMS and epoxy microchannel were exposed to O2 2607 

plasma at 80W for 45s and baked after being brought in contact for 15 min at 90oC. A figure 2608 

of the cartridge at this stage is reported in Figure 4.9.  2609 

 2610 

 2611 

Figure 4.9 Cartridge with four microchannels on top of the CMOS chip (left) and close-up 2612 

of the cartridge (right). The top PDMS lid on the right figure was removed.  2613 

 2614 
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  Microchannel Functionalisation  2615 

As introduced in Chapter 2, there are many ways of coupling a biorecognition element 2616 

together with a sensor for biosensing purposes. In this work, two different approaches were 2617 

adopted, namely off-chip mixing and lyophilisation. Off-chip mixing was utilised for 2618 

multiple independent assays on the same metabolite. Lyophilisation was used for 2619 

multiplexed assays. The reasons leading to this approach are discussed here.  2620 

Off-chip mixing means that the bioreagents in the liquid state are mixed with the sample 2621 

immediately before performing the test. Thus, both sample and bioreagents are introduced 2622 

in the system at the same time. This approach is commonly used in both experimental and 2623 

commercial POC devices currently available [296]. There are two major drawbacks for this 2624 

method: firstly, off-chip processing is acceptable for in-laboratory based POC devices, but 2625 

should be minimised for in-home POC platforms; secondly, since the passive microfluidics 2626 

network has only one fluidic input, the same mixture flows in all the identical channels. 2627 

Thus, this method is suitable for simultaneously repeated measurements but does not support 2628 

analyte multiplexing.  2629 

Both limitations can be overcome with lyophilisation. Among the different techniques 2630 

available for receptors integration, lyophilisation has been selected because it is versatile, 2631 

well-demonstrated and potentially suitable for mass production. Freeze-drying can improve 2632 

the stability of the biological sample over temperature, pH and time. When freeze-dried 2633 

inside the microfluidic channels, the bioreceptor is confined, trapped in a solid and dry state 2634 

into the microstructure. The reagents are then re-hydrated by the sample itself once 2635 

introduced. In this project, enzymatic solutions were deposited into the microchannel. The 2636 

deposition was performed by pipetting (when the dimension of the microchannel was large 2637 

enough) or by drop-on-demand inkjet printing using the Jetlab II by Microfab. The sample 2638 

was then lyophilised using the Lyotrap by LTE scientific. The procedure mentioned above 2639 

has been performed on both open and enclosed channels, i.e. both before and after the PDMS 2640 

bonding to enclose the channels. Quicker freeze-drying was recorded when the reagents were 2641 

loaded before the enclosure of the channels. However, since the chip was routinely re-used, 2642 

the bio-reactive solutions were also introduced after the channel enclosure using syringes. 2643 

Freeze drying of reagents in enclosed channels proved to be just as effective as the same 2644 

process on open channels since the same set of results was produced on both cases. 2645 

Bioreceptors lyophilisation overcomes the limitation of off-chip mixing. Reagents are 2646 



113 

 

 

 

already available on-chip. Thus, no additional sample pre-processing step is needed. 2647 

Additionally, a different reaction mix can be deposited/inserted into the different 2648 

microchannel, and multiplexed assays can be simultaneously performed. However, there 2649 

was a drawback of lyophilisation: the CMOS chip became unresponsive after 3 – 4 freeze-2650 

drying cycles, probably because of the thermal and mechanical shock. This is not a problem 2651 

for a CMOS-based disposable cartridge. However, in this project, the number of chips and 2652 

resources were limited, and it was not possible to use such a large amount of CMOS chips. 2653 

Thus, as initially mentioned, off-chip mixing was adopted for multiple independent assays 2654 

on the same metabolite. Lyophilisation was instead used for multiplexed assays. A detailed 2655 

description of the printing and lyophilisation of bioreceptor is provided in Chapter 5.  2656 

 2657 

  Fabrication Results  2658 

Figure 4.10 demonstrates the main manufacturing steps of the cartridge. A set of SU-8 2659 

patterns were fabricated altogether on a silicon wafer, as shown in Figure 4.10(a). The height 2660 

of the microchannel was related to the SU-8 layer thickness. The SU-8 microstructures were 2661 

used as a mould for the fabrication of PDMS microstructures. PDMS microstructures were 2662 

then temporarily bonded on top of the CMOS chip. The misalignment of the flip-chip 2663 

bonding process, evaluated over three different samples, was estimated to be, on average, 2664 

less than 50 µm on both the axis, an example is shown in Figure 4.10(e). The misalignment 2665 

did not appear to be systematic and therefore could not be compensated. However, the 2666 

precision of the method adopted was suitable for the feature size of interest and did not affect 2667 

the proper functioning of the device. Consequently, epoxy resin was flown into the PDMS 2668 

structure, which was subsequently removed, leaving the epoxy microstructure on the CMOS 2669 

chip, forming the microchannels as originally fabricated on the SU-8 resist layer. As shown 2670 

in Figure 4.10(f) and (g), the adopted manufacturing method allowed to effectively fabricate 2671 

a relatively planar microstructure surface and provided an additional off-chip area for fluidic 2672 

inputs and outputs, forming a uniform rigid structure that encapsulated the CMOS chip. The 2673 

final step was to cover microchannels with a flat PDMS lid, cut to measure, and create 2674 

microfluidic channels on-chip.  2675 

Figure 4.11(a) quantifies the flatness degree for the planarized surface. Measurements were 2676 

performed in the cleanroom facility of the JWNC, University of Glasgow, using the Contour 2677 

GT-X 3D Optical Profiler by Bruker. The top PDMS lid of the microfluidic channels had 2678 
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been removed to accommodate the optical measurement. The epoxy surface area converged 2679 

with the CMOS chip with an average slope of 0.007 µm/µm. The slight incline of the epoxy 2680 

surface region is negligible when compared to the CMOS chip surface, shown in Figure 4.11 2681 

(a) and (b). The inhomogeneous surface of the chip is derived from the CMOS 2682 

manufacturing of different layers by the foundry. The surface profile of the chip is 2683 

particularly uneven on the active area, where the device’s top metal layer density is higher. 2684 

Another factor that contributes to the uneven surface is that this chip also exhibits openings 2685 

on the passivation/polymer layer above the ISFETs. The inhomogeneities of the surface of 2686 

the chip led to peaks of the height of 13 µm.  2687 

Figure 4.11(c) shows the result from a surface measurement of a cartridge using the 2688 

aforementioned optical equipment. Four identical microfluidic channels traversed the 2689 

CMOS chip from the north to the south side, crossing the sensing area of the chip. Apart 2690 

from creating channels, the casted epoxy was also used to form lateral walls that encapsulate 2691 

pads and wire-bonds, providing both mechanical strength and resistance to aqueous 2692 

environments. As expected, the top of the epoxy walls appeared smooth and flat, especially 2693 

when compared to the CMOS chip surface. The smoothness and flatness of the epoxy walls 2694 

were fundamental for achieving a robust bonding strength with the PDMS top lid. 2695 

A section of the cartridge of interest is reported in Figure 4.11 (d). The heights and widths 2696 

of the manufactured microchannels were, on average, 291.95±6.44 µm and 2697 

300.87±0.86 µm, respectively. The profile of a single microfluidic wall is shown in Figure 2698 

4.11(e). The trench had a deep slope of approximately 929 µm/µm. The length of the channel 2699 

was, on average, 4.0±0.1 mm. The manufactured patterns showed features that were 2700 

expected, and the resulting microfluidic channels were compliant to the design 2701 

specifications. In addition to the analysed microfluidic design, further patterns and recipes 2702 

were manufactured. On this note, it is also relevant to report the height of microfluidic 2703 

channels achieved using a single layer of SU-8. Expectedly, the height of the microchannels 2704 

reached with only one SU-8 layer was lower. More precisely, the average height of 2705 

137.14±3.1 µm was measured. Figure 4.11 (f) reports the section of a microfluidic network 2706 

composed of two channels with reduced height. For this pattern, the width of the 2707 

microchannels was, on average, 693.65±3.3 µm.  2708 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

(g) 

Figure 4.10 (a) Silicon wafer patterned with SU-8 microstructures. (b) Two identical PDMS 2709 

microstructure for microchannel fabrication. (c) PDMS microstructure was temporarily 2710 

placed onto the CMOS. (d) Close-up of the PDMS microstructure on-chip. (e) PDMS and 2711 

CMOS chip misalignment. (f) A 2-microchannel microfluidic network on chip (top PDMS 2712 

lid removed). (g) A 4-microchannel microfluidic system on chip (top PDMS lid removed). 2713 

Multiple micrographs have been merged to produce this figure.  2714 
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           (a)       (b) 

  

(c)           (d) 

  

        (e)            (f) 

Figure 4.11 (a) Surface analysis of the flat epoxy area encapsulating the CMOS chip. (b) 2715 

Surface measurement of the CMOS chip with an optical profiler. (c) Optical profile of a 4-2716 

microchannel pattern fabricated on the chip. (d) Cross-section of a 4-microchannel pattern 2717 

fabricated on-chip. (e) Close up of a microfluidic wall measured using optical profiling. (f) 2718 

Cross-section of a 2-microchannel pattern made on-chip using an alternative recipe 2719 

involving only one SU-8 layer.  2720 
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Mechanical strength of the microfluidic structure was quantified using two methods, namely 2721 

shear testing and pull testing. Shear testing was carried using the DAGE 4000HS bond tester 2722 

in the cleanroom facility of the Glasgow Laboratory for Advanced Detector Development 2723 

(School of Physics and Astronomy, University of Glasgow) with the help of the staff. Testing 2724 

was performed on seven dummy structures (PDMS structure bonded to a 3.4x3.4 mm silicon 2725 

substrate with a 500 nm coating of silicon nitride to emulate the surface characteristic of the 2726 

CMOS chip). An increasing lateral force was applied to the PDMS top lid using a piston 2727 

while the structure was held still. Consequently, the PDMS structure was stressed, deformed, 2728 

and then peeled off from the substrate (the test was destructive). The maximum shear force 2729 

that the structures tolerated before permanently getting damaged was evaluated by analysing 2730 

the force diagram.  2731 

Results are reported in Figure 4.12(a). The shear test showed that the bonding could tolerate 2732 

a maximum lateral force of 576±190.2 g (applied on a surface circa 2.9x2 mm wide). 2733 

However, the surface of the CMOS chip is not as flat as one of the testing devices, so it is 2734 

expected that the final device can tolerate a lower shear force.  2735 

Pull tests were performed over two cartridges. The tested cartridges had been extensively 2736 

used for other biological experiments before the pull testing. Thus, the bonding strength 2737 

might have deteriorated. Pull testing was carried out in the electronics testing laboratory, 2738 

Rankine Building University of Glasgow. The cartridges under test were glued onto a custom 2739 

weight holder. The weights in the holder were progressively increased. For each newly 2740 

introduced weight, the cartridge was lifted for 10 seconds by the PDMS block with tweezers. 2741 

The total lifted weight was recorder before lifting using a precision scale. For both samples, 2742 

PDMS damage started when applying a force around 70 g. Results for the pull testing are 2743 

reported in Figure 4.12(b).  2744 

  

(a) (b) 

Figure 4.12 (a) Results of the shear testing. (b) Results of the pull testing. 2745 
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  Spectral Analysis   2746 

Preliminary optical testing was performed using the micro-spectrometer ffTA-1 from Foster 2747 

and Freeman. Spectrophotometric analysis was performed on three aspects of the platform, 2748 

namely the colorimetric reagents, the material used for microfluidic and the type of human 2749 

specimen to be tested with the platform. Dedicated test samples were fabricated to study the 2750 

perform transmission mode analysis. The test devices were manufactured with the same 2751 

materials and methods presented in the previous chapter, but a glass slide was used as a 2752 

substrate instead of the CMOS chip. The height of the test microchannels was, on average, 2753 

137 µm. For all the measurements, the analyses were performed for wavelengths in the range 2754 

of 400 – 1000 nm with 1 nm step. The calibration was performed using measurements on an 2755 

empty channel and in dark conditions. For each reported spectrum, three measurements were 2756 

recorded and averaged. 2757 

The analysis of the colorimetric agents aimed to quantify the extension coefficients and the 2758 

wavelength range according to the relevant light absorption. The extinction coefficient was 2759 

measured in the microchannels using testing solutions of H2O2. For this analysis H2O2, 2760 

o-dianisidine, phenol, 4AAP and HRP were purchased from Sigma Aldrich. Two different 2761 

solutions with the same total H2O2 concentration of 1 mM were produced. For the first 2762 

solution, 30 µL of 2 mM H2O2, 5 µL of 41 mM o-dianisidine, 10 µL of 10 U/mL of HRP 2763 

and 15 µL of DI water were mixed together. For the second solution, 30 µL of 2 mM H2O2, 2764 

5 µL of 44.5 mM phenol, 5 µL of 10.5 mM 4AAP, 10 µL of 10 U/mL of HRP and 10 µL of 2765 

DI water were mixed together. Both the solutions were incubated for 1 h at room 2766 

temperature. Subsequently, they were introduced into 137 µm high microchannels, and the 2767 

transmittance spectra were recorded. The transmittance spectra were then numerically 2768 

converted into absorbance and, finally, into the extinction coefficients for different 2769 

wavelengths using the Beer-Lambert’s law. The extinction coefficient against the 2770 

wavelength for both the colorimetric methods for H2O2 quantification are reported in Figure 2771 

4.13(a). The trend of o-dianisidine extinction coefficient shows a maximum of 2772 

6.37 mM-1cm-1 at 463 nm. The FWHM for o-dianisidine was 112 nm. The extinction 2773 

coefficient when using phenol/4AAP had a similar trend, with a maximum of 9.54 mM-1cm-2774 

1 at 440 nm and FWHM of 180 nm. For both the colorimetric methods, the results agree with 2775 

the scientific literature [49].  2776 
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The analysis of the materials used for cartridge manufacturing aimed to quantify the related 2777 

transmission losses. Figure 4.13(b) reports the spectra for untreated PDMS, PVA-coated 2778 

PDMS and epoxy microfluidic walls. No liquid was introduced in the microchannel during 2779 

these measurements. Untreated PDMS had a transmittance of 98.85% at 500 nm. At the same 2780 

wavelength, the PVA-coated PDMS had a slightly lower transmittance of 95.29%. Epoxy 2781 

walls also showed light transmittance, although with a highly reduced value. In this case, at 2782 

500 nm the light transmittance of a 137 µm microchannel was approximately 25.28%. 2783 

However, such a low transmittance was acceptable since the epoxy walls only served as 2784 

liquid barriers to form the microfluidic channels and no measurement was performed in those 2785 

areas. 2786 

The analysis of the target human body fluids aimed to quantify the sample-specific 2787 

transmission loss when introduced into a microchannel so that it can then be isolated from 2788 

changes in transmission due to metabolomic reactions. Figure 4.13(c) reports the spectra of 2789 

the human body fluid of interest. When the buffer, tris hydrochloride (Tris HCl), was only 2790 

added in the microchannel, a small increase of transmittance for all the wavelengths of 2791 

interest was measured. The increase of the transmittance is related to the reduced reflection 2792 

with respect to an empty channel. Assuming perpendicular light, according to Snell’s 2793 

equation, the power light reflectivity R of an interface with refractive indexes n1 and n2 is 2794 

given by [297]: 2795 

R = |
n1 − n2
n1 + n2

|
2

 (4.4) 

   

(a) (b) (c) 

Figure 4.13 Measured spectra of different samples introduced into a microchannel. Spectra 2796 

were measured using the micro-spectrometer ffTA-1 from Foster and Freeman. Spectra are 2797 

averaged over three different measurements. Wavelength range: 400 – 1000 nm. Wavelength 2798 

step: 1 nm. The spectra represent: (a) The extinction coefficients of oxidised o-dianisidine 2799 

and phenol/4AAP, (b) transmittance through untreated PDMS, PVA-coated PDMS and the 2800 

epoxy walls, and (c) transmittance through different media and air. 2801 
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Thus, considering PDMS (n1  = 1.4 [298]) and air (n2 ~ 1), R = 0.0278. Differently, when a 2802 

water-based solution is introduced (n2 = 1.33 [299]), R* = 6.39⋅10-4 < R. The expected 2803 

increase of the transmission spectrum is therefore justified.  2804 

Expectedly, the light transmission when introducing human plasma into the microchannel 2805 

decreased to 97.7% at 500 nm. This reduction owes to the different optical properties of the 2806 

samples. This effect is more prominent in whole human blood where light transmittance is 2807 

drastically reduced to 4.2% at 500 nm as there has been no filtering of the thick nature of 2808 

whole blood.  2809 

 2810 

  Sensor Array Characterisation 2811 

4.9.1. Photodiode spectral analysis  2812 

Spectral response of the photodiodes was characterised in collaboration with Dr Mohammed 2813 

Al-Rawhani and Dr Christos Giagkoulovits, in the electronic labs of the Rankine Building, 2814 

University of Glasgow. To test the spectral response of the optical devices, a monochromator 2815 

(DTMS300 from Bentham) was used as the light source and it was attached to an integrating 2816 

optical sphere to ensure uniform light distribution. A calibrated photodiode (DH_Si Silicon 2817 

photodiode from Bentham) was fitted to one exit port to measure the light intensity.  2818 

The CMOS chip was placed at another exit port. The light source was used to measure the 2819 

sensor output at different wavelengths, in the range of 350 – 1000 nm with a 5 nm step. The 2820 

average power level was adjusted to avoid sensor saturation at the peak wavelength. All 2821 

experiments were performed in dark conditions. Data from 25 randomly selected 2822 

photodiodes in the sensor array were collected and averaged. The average voltage output 2823 

was then divided by the recorded reference power to calculate the CMOS photodiode array 2824 

responsivity in V/W.  2825 

Figure 4.14(a) shows the average spectral response of the photodiodes. The responsivity was 2826 

normalised to its maximum, which was 0.25 V/µW at 575 nm. The responsivity graph 2827 

exhibits a second peak at 620 nm. We can, therefore, assume that there was a sensor-to-2828 

sensor variability from the responsivity point-of-view. For each photodiode, we can 2829 

understand the wavelength where the responsivity is maximised is in the range of 565 – 2830 

630 nm. The full width half maximum (FWHM) of the photodiode responsivity was 405 nm. 2831 

When comparing the spectral response of the photodiodes with the absorbance spectrum of 2832 

the H2O2 probe (reported in the previous section), the responsivity peak did not coincide 2833 
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with the absorbance maximum. Thus, the working wavelength of the device was selected to 2834 

be a trade-off of the two spectra. The optimal wavelength was calculated using a custom 2835 

Matlab-based algorithm computing the variation of the platform output when varying the 2836 

wavelength. The model was trained using the experimental spectra of both the photodiode 2837 

responsivity and the absorbance of the H2O2 probes. The experimental H2O2 absorbance 2838 

spectrum and the photodiode responsivity were fit with polynomial (6th order) and a double 2839 

Gaussian model, respectively. The result of the analysis is reported in Figure 4.14(b). 2840 

Accordingly, the optimal working wavelength was 498 nm, and the optimal working range 2841 

was 480 – 520 nm. When confronting these results with commercial LED choices by 2842 

Thorlabs  [64], a 490 nm LED with a 20 nm FWHM was selected. Among all the commercial 2843 

LED available, this device was the most suitable in terms of optical power and required 2844 

power supply (3 mW at 20 mA), wavelength range (480 – 500 nm) and package type [64].  2845 

 2846 

4.9.2. Photodiode output characteristic 2847 

After the working wavelength was selected, the sensor output was characterised at the 2848 

specific wavelength of 490 nm using the selected LED. For this characterisation, a cartridge 2849 

with four microfluidic channels was used.  The platform characterisation was performed in 2850 

dark conditions.  2851 

 2852 

  

(a) (b) 

Figure 4.14 (a) Average spectral response from 25 randomly selected pixels in the sensor 2853 

array. The responsivity was normalised to its maximum. (b) The estimated best response of 2854 

the platform (green) taking into account photodiode responsivity (blue) and absorbance 2855 

spectrum of the H2O2 probe (red). The optimal wavelength was in the range 480 – 520 nm 2856 

with a peak at 498nm. 2857 
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The 490 nm LED from Thorlabs was used as the light source. An optical lens was used 2858 

(AC254-035-A-ML BBAR Coating f = 35mm lens from Thorlabs) to provide collimated 2859 

light. The current supply to the LED was swept across its range. The light intensity was first 2860 

measured with the cartridge in each of its four microchannels. The reference light intensity 2861 

was also measured with a power meter (1936-R power meter with silicon photodetector 818-2862 

SL/DB, Newport) and expressed as irradiance in µWcm-2 [300]. The area of the reference 2863 

photodetector was 1 cm2. The average outputs of pixels enclosed in the microchannels and 2864 

the ones covered by fluidic walls versus the power recorded by the benchtop equipment are 2865 

reported in Figure 4.15. The outputs of the microchannels were obtained by averaging the 2866 

enclosed pixels in time (1000 frames) and space (48 pixels per channel). The output of the 2867 

active area covered by microfluidic structures was obtained by averaging both in time (1000 2868 

frames) and in space (64 pixels in total) the output of the sensors covered by the epoxy walls. 2869 

Reference readings from the power meter were obtained as average over 1000 samples. The 2870 

output signals from the microchannels were almost identical. Considering that a 12-bit ADC 2871 

was used for data digitisation on a dynamic range of 3.3V, data from each pixel had a 2872 

resolution of 0.0504 mV.  2873 

In dark conditions, the average output signal reported for the microchannels was 498.97±22 2874 

mV. LOD and LOQ, according to the IUPAC definition [58], were 571.57mV and 718.97 2875 

mV – respectively. When converted into irradiance using the characteristic, they correspond 2876 

to 0.39 µWcm-2 and 1.9 µWcm-2, in the same order. From 1.9 µWcm-2 to 11.5 µWcm-2, the 2877 

platform showed a linear response. Sensor output signals started saturating at around 2878 

15.6 µWcm-2. Average responsivity values in the linear range were 0.116, 0.116, 0.118 and 2879 

0.119 VµW-1, from channel 1 to channel 4 respectively. Pixels covered by fluidic walls 2880 

showed less sensitivity to light.  There are many factors which can create small fluctuations 2881 

in the output of the microchannels. These include device-to-device variability, fabrication 2882 

impurities, noise and variability in the read-out and biasing circuitry. Since the platform was 2883 

used for rate estimation of enzymatic reactions, sensors drift in dark and condition of 2884 

constant illumination of 9 µWcm-2 were also estimated over 5 minutes measurements. 2885 

Average drifts over triplicates measures within the microchannels were 0.0014±0.001 mVs-2886 

1 and 0.0009±0.001 mVs-1, respectively.  2887 

 2888 



123 

 

 

 

  
(a) 

  
(b) 

Figure 4.15 (a) Sensor output (V) vs irradiance (µWcm-2) at 490nm. Voltage is shown in 2889 

linear (left) and logarithmic scale (right). Irradiance is shown in logarithmic scale. The 2890 

outputs from pixels enclosed in each microchannel were averaged over time (1000 frames) 2891 

and space (48 pixels). The outputs from pixels covered by epoxy microstructure – ‘walls’– 2892 

were similarly averaged over time and space (64 pixels). (b) Responsivity of the 2893 

microchannel vs irradiance at 490nm. Responsivity is shown with linear (left) and 2894 

logarithmic scale (right). Irradiance is shown in logarithmic scale. 2895 

 2896 

4.9.3. Sensor array characterisation 2897 

The improvements of the signal quality when using multiple sensors and oversampling are 2898 

quantified. In this study, the sensor array was illuminated with a constant optical intensity 2899 

of 9 µWcm-2 at 490 nm. To study the behaviour of standard deviation when increasing the 2900 

number of averaged pixels, pixels in a single frame were randomised, and sub-groups of the 2901 

array were averaged. 2902 

Figure 4.16(a) demonstrates that the standard deviation of the measurement is reduced by a 2903 

factor of 1/√N when averaging N different pixels. This analysis is particularly critical when 2904 

considering that the microfluidic channel encloses several pixels. Increasing the number of 2905 
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microfluidic channels decreases the number of pixels enclosed in each microstructure. 2906 

Therefore, it can be assumed that increasing the amount of the microfluidic channels and, 2907 

accordingly, the number of metabolites to be simultaneously tested, degrades the 2908 

performance of the platform. For the implemented 4-channel network, each microchannel 2909 

encloses 48 pixels. This corresponds to an average reduction of the standard deviation of the 2910 

measurement by a factor 6.93.  2911 

Similarly, the trend of the standard deviation when oversampling on the same sensor was 2912 

analysed (time averaging). Figure 4.16(b) shows that the standard deviation reduction can 2913 

also be achieved by averaging multiple measurements from the same sensor. By comparing 2914 

Figure 4.16(a) and Figure 4.16(b), it is possible to conclude that the standard deviation 2915 

related to space averaging is higher than the one obtained with temporal averaging. However, 2916 

time averaging was particularly useful in eliminating high-frequency noise.  2917 

The combined effect of time and space averaging is analysed in Figure 4.16(c). Here, the 2918 

array was divided into sub-groups and their time and space samples were randomised 2919 

altogether.  Then, the random space-time samples were averaged. The graph demonstrates 2920 

that the reduction of the standard deviation is verified regardless of the nature of the sample 2921 

population.  Also, averaging allows the output to converge to its final stable value. In this 2922 

case, the convergence of both standard deviation and mean value was achieved by averaging 2923 

more than 500 samples. Additional averaging does not further increase the performance of 2924 

the system. 2925 

 

 
  

(a) (b) (c) 

Figure 4.16 (a) Relative standard deviation decreases with a 1/√N trend when averaging 2926 

different pixels. (b) Relative standard deviation also decreases likewise when averaging 2927 

different frames (average over time). (c) Averaging in both space and time is effective in 2928 

reducing the standard deviation and reaching a convergence to a stable value. 2929 
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  Capillary Flow Characterisation 2930 

Capillary flow was experimentally verified on test samples and on the cartridge using visual 2931 

inspection. Figure 4.17 reports a proof-of-concept image, composed of a sequence of 2932 

micrographs. In these experiments, recorded with a microscope, the capillary effect when 2933 

introducing water into a microchannel can be observed. After its introduction, water 2934 

travelled from the south to the north side of the device, completely covering the sensing area. 2935 

In this experiment, water covered the sensing area of the CMOS chip in less than 3 seconds. 2936 

The sample flow stopped once the microchannel was filled. Another key information the 2937 

figure shows is that the microstructure was successful in containing the liquid only in the 2938 

microchannel, and there was no evident leakage of introduced samples in adjacent channels.  2939 

The flow rate of the introduced sample was quantified using the sensor array. The frames 2940 

per second rate (approximately 36.5 fps) ensured a temporal resolution of 27.4 ms, suitable 2941 

for the expected flow rate of the sample. It has already been demonstrated that the 2942 

introduction of a liquid sample into the microstructure creates a detectable increase in the 2943 

light transmittance. Raw data reported in Figure 4.18(a) corroborate that the photodiodes 2944 

embedded in the sensor array were capable of detecting the arrival of the advancing 2945 

meniscus. In particular, the photodiodes recorded a voltage spike and a sudden increase of 2946 

transmittance once covered with the inserted liquid. The spike was very pronounced (~ 1.2 2947 

V) and clearly detectable. Pixels enclosed into microchannel and aligned in the perpendicular 2948 

direction with respect to the flow responded with simultaneous voltage spikes, as shown in 2949 

Figure 4.18(b). This demonstrated that the meniscus advanced with a linear front inside the 2950 

microstructure. Pixels enclosed into the microchannel and aligned in the parallel direction 2951 

with respect to the flow, responded with sequential spikes, effectively recording the 2952 

advancement of the meniscus. Figure 4.18(c) shows an example of 16 pixels sequentially 2953 

sensing the arrival of the introduced sample. When the pixels inside the microchannel were 2954 

averaged, a single signal with 16 spikes was typically obtained, as shown in Figure 4.18(d) 2955 

Despite the less pronounced voltage spike, it allowed the quantification of the flow rate from 2956 

a single signal. In the data-analysis phase, the mentioned signal was used to verify the correct 2957 

filling of the microstructure. The above-mentioned data demonstrated that the sensor array 2958 

could detect the liquid flowing on the sensing area. This capability has been used to quantify 2959 

the filling time of the device, i.e. the time required for the sample to completely cover the 2960 

sensing area. In the design stage, several simulations were presented to show the parameter 2961 



126 

 

 

 

optimisation and estimate the expected performance of the device. Ultimately, a conservative 2962 

approach was adopted, and the system was designed to provide a filling time of maximum 2963 

30s when using whole blood as a fluid of interest. By using the aforementioned approach, 2964 

the flow rate, and the filling time of diluted serum (1:10), diluted plasma (1:1) and whole 2965 

blood were quantified over triplicates. Serum and plasma were purchased from Sigma 2966 

Aldrich while whole blood was purchased from Cambridge Bioscience. Plasma and serum 2967 

were diluted in DI water. A cartridge embedding four microfluidic channels with height and 2968 

width of approximately 290 µm and 300 µm, respectively, were employed. For diluted 2969 

serum, the time required for the sample to reach the first and the last pixel (filling time) of 2970 

the array were 2.48±0.06 s and 4.58±0.129 s. The same figures increased to 2.44±0.009 s 2971 

and 7.67±0.005 s, respectively, for diluted plasma (1:1). 2972 

 2973 

 2974 
Figure 4.17 Water flowing into a microchannel fabricated on chip. The sample covered 2975 

completely the sensing area of the CMOS chip in approximately 3 seconds. The micrographs 2976 

also show a leakage-free flow. 2977 

  

 

 

(a) (b) (c) (d) 

Figure 4.18 Raw data from the sensor array when a sample (water) was introduced into a 2978 

microchannel (h~290 µm). (a) Voltage spike induced by the arrival of the meniscus onto a 2979 

photodiode. (b) Advancing meniscus covering sensors aligned in the perpendicular direction 2980 

of the flow simultaneously.  (c) Advancing meniscus covering sensors aligned in the parallel 2981 

direction of the flow sequentially.  (d) When averaging the pixels of a microchannel, the 2982 

advancement of the meniscus over the sensing area produced sequential spikes.  2983 
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Expectedly, the flow was slower when using whole blood. Precisely, in this case, the time 2984 

required for the blood to reach the first and the last pixel of the array were 13.05±5.20 s and 2985 

28.23±11.77 s. The standard deviation of the flow was also higher when using blood, 2986 

suggesting that the results are less repeatable when using this specimen. Experimental data 2987 

were compared with the simulation model used for the design of the device. Simulations 2988 

were repeated with adjusted parameters, including microchannels geometry and contact 2989 

angles. Physical properties of the diluted specimens were assumed using linear regression. 2990 

Experimental data, together with simulations, are represented in Figure 4.19(a). For all the 2991 

analysed specimens, the correlation between experimental and simulated data was high 2992 

(R2 > 0.98). However, the model seemed to be affected by a small bias of 3.36 s against the 2993 

experimental data. The bias was calculated as the average over the absolute measurement 2994 

error, as per definition.The flow in parallel microchannels was also analysed and reported in 2995 

Figure 4.19(b). Regardless of the nature of the sample introduced in the microstructure, the 2996 

flow in the channel was virtually identical. Identical channels were another design 2997 

specification which was therefore met. 2998 

 2999 

  

(a) (b) 

Figure 4.19 The advancement of the meniscus in a four-microchannel cartridge (height ~ 3000 

290µm) was recorded with the sensor array for diluted serum (1:10) diluted plasma (1:1) 3001 

and whole blood. Data is reported as the average ± standard deviation over three replicates 3002 

and over all the microchannels. (a) Data compared to simulations. Simulations were 3003 

adjusted using measured values of with, height, length, and contact angles. Sample 3004 

parameters for diluted samples were assumed using a linear regression. As per design, all 3005 

the introduced liquids completely covered the sensor array in less than 30s on average. (b) 3006 

For all the introduced samples, microchannels had an identical filling time. 3007 

 3008 
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  Summary of the Chapter 3009 

• A passive microfluidics network was integrated on top of the sensing area with no 3010 

intermediate layer using a combination of soft lithography and injection moulding. 3011 

• Bioreceptors were introduced in the fluidics by off-chip mixing or preloaded using 3012 

lyophilisation.  3013 

• The fabrication procedure was suitable for planarization, with a slope of 0.007 µm/µm, 3014 

which was negligible when compared to the roughness of the CMOS chip. The heights 3015 

and widths of the microchannels were, on average, 291.95±6.44 µm and 3016 

300.87±0.86 µm, respectively. Mechanical strength of the structure was also evaluated 3017 

trough shear and pull testing (maximum lateral force: 576±190.2 gr; maximum pulling 3018 

force: 70gr).  3019 

• Optical spectral testing showed that o-dianisidine and phenol/4AAP are both suitable 3020 

H2O2 probes with experimental extinction coefficients of 6.37 mM-1 cm-1 at 463 nm 3021 

(FWHM: 112 nm) and 9.545 mM-1 cm-1 at 440 nm (FWHM: 180 nm). 3022 

• The photodiodes have a maximum responsivity at 575 nm (FWHM: 405nm). 3023 

• The optimized working wavelength, considering H2O2 probes properties, sensors 3024 

responsivity and commercially available LEDs was 490 nm.  3025 

• The sensors at 490 nm had a linear response with optical intensity in the range 3026 

1.9 - 11.5 µWcm-2, showing a responsivity of 0.117±0.001 VµW-1. Averaging 3027 

photodiodes within the same microchannel and averaging oversampled reading from the 3028 

same photodiode were effective in the reduction of the noise: the standard deviation of 3029 

the measurement was reduced by a factor of 1/√N by averaging N different 3030 

measurements.   3031 

• The capillary flow of different samples (i.e. diluted serum, diluted plasma and whole 3032 

blood) was also tested. Visual inspection also demonstrated that the microfluidic was 3033 

successful in providing passive flow and confining the liquid sample. As per the design, 3034 

all the samples covered the active area within 30 seconds after their introduction in the 3035 

fluidic input without any externally applied pressure. The time required for whole blood 3036 

to completely cover the sensing area was 28.23±11.77s (worst-case scenario).  3037 

  3038 
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5 Chapter 5: Metabolomics-on-CMOS 3039 

  Introduction  3040 

The present chapter focuses on biological experiments for the quantification of the six 3041 

metabolites of interest: LAA, glutamate, choline and sarcosine for PCa and lactate and 3042 

creatinine for ischemic stroke. Metabolites are first quantified in diluted human serum 3043 

samples. Subsequently, multiplexed testing is demonstrated in different configurations. 3044 

Procedures for reagents immobilisation are also illustrated. Proof-of-concept experiments 3045 

with whole blood conclude this chapter.  Table 5.1 illustrates the contribution to each activity 3046 

discussed in this chapter.  3047 

 3048 

  Experimental Setup  3049 

The setup for the biological experiments henceforward used is described here. A schematic 3050 

of the experimental setup is shown in Figure 5.1. All the optomechanical components were 3051 

purchased from Thorlabs. The reader of the platform was secured to an optical aluminium 3052 

breadboard using two screws with the ZIF socket facing up. 3053 

 3054 

Table 5.1 Table of contributions for the activity presented in this chapter. 3055 

Task / Activity presented in Chapter 5 Main investigators 

Development of the experimental setup  - Valerio F. Annese 

Assay formulations - Well established in the literature 

Assay optimisations for this platform - Valerio F. Annese 

Characterisation of the platform when measuring PCa-

related metabolites in diluted serum  
- Valerio F. Annese 

Characterisation of the platform when measuring ischemic 

stroke-related metabolites in diluted serum 
- Valerio F. Annese  

Quantification of the test duration - Valerio F. Annese 

Reagents printing for microchannel functionalisation - Valerio F. Annese 

Reagents lyophilisation for microchannel functionalisation - Valerio F. Annese 

Quantification of the reagents shelf-life after lyophilisation - Valerio F. Annese 

Multiplexed assays in human plasma (1 metabolite + 

control) 
- Valerio F. Annese 

Multiplexed assays with paper microfluidics (2 

metabolites) 

- Dr Chunxiao Hu1 (designed the work and 

performed experiments) 

- Dr Srinivas Velugotla1 (developed the 

paper strips) 

- Valerio F. Annese (developed and applied 

functionalisation method of the paper strips) 

Whole blood experiments  - Valerio F. Annese 

Affiliation at the time of completion of the activity:  
1Microsystem Technology Group, James Watt School of Engineering, University of Glasgow.  
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The size of the optical breadboard was 15 x10 x1.2 cm. Exposed microcontroller pins were 3056 

electrically isolated with rubber tape. A cartridge, whose geometry and characteristics are 3057 

specified for each set of experiments, was inserted into the ZIF socket. Accordingly, the 3058 

sensing area of the CMOS chip was parallel to the optical breadboard and facing up.  3059 

An optical post with an approximated height of 30 cm was vertically fixed to the same optical 3060 

breadboard. Two T-junction connectors were mounted onto the vertical post, and two new 3061 

transversal optical posts were fitted into the setup. The top transversal optical post 3062 

accommodated a LED holder. A 3mW LED working at 490 nm (FWHM 20 nm) was 3063 

mounted inside the holder and orientated with the emitting junction facing straight down 3064 

towards the reader. The light source was power supplied by an external power supply (HP 3065 

E3631A). The lower transversal optical post accommodated a lens holder, where an 3066 

achromatic collimating lens (AC254-035-A-ML BBAR Coating f = 35 mm) was mounted. 3067 

The height and the orientation of the two optical posts were adjusted so that the active area 3068 

of the chip could receive perpendicular collimated light. The setup mounted onto the optical 3069 

breadboard was enclosed into a cardboard box, externally coated with a blackout cloth made 3070 

of nylon and polyurethane. The coating was essential to ensure that the experiments were 3071 

performed in a dark environment. Only a small aperture was left open to accommodate 3072 

connection wires and undertake on-chip sample delivery. The enclosing box was internally 3073 

coated with aluminium, to reduce any eventual environmental electrical interference.  The 3074 

reader inside the enclosed dark environment was connected to an external laptop (HP 3075 

EliteBook i7-8650u 16 GB) through a USB cable. A ferrite adapter was used to reduce any 3076 

eventual interference noise affecting data travelling through the USB cable. The Matlab-3077 

based user interface was running on the laptop. During the work, the GUI evolved in several 3078 

different versions. However, the modifications were mainly graphical, therefore did not 3079 

substantially affect the format of the recorded data. The USB link also provided power 3080 

supply to the reader (5V). Data was recorded with an average frame rate of 36.5 fps and a 3081 

resolution of 12-bit. Typically, the duration of a single experiment was 5 minutes 3082 

(approximately 11000 frames).  3083 

 3084 
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 3085 

Figure 5.1 Experimental setup for biological experiments. 3086 

 3087 

  Metabolomics-on-CMOS in Diluted Serum 3088 

The capability of the platform in quantifying the target metabolites was first assessed in 3089 

diluted serum. Human serum was modified with known concentrations of metabolites of 3090 

interest to determine the calibration curves of the platform.  3091 

 3092 

5.3.1. Materials and Methods 3093 

Assay formulation. All the chemicals were purchased from Sigma Aldrich. Dehydrated 3094 

human serum was also obtained from Sigma Aldrich and reconstituted with DI water 3095 

following the recommended protocol. The reconstituted human serum was further diluted 3096 

with additional DI water for a volume ratio of 1:10. All the reagents were prepared using 0.1 3097 

mM Tris HCl buffer (pH 8). Modified serum samples were freshly prepared before each test. 3098 

Biochemical protocols for the preparation of reagents used for diluted serum experiments 3099 

are detailed in Appendix H.  3100 

The formulations of the assays were optimised using a trial-and-error approach. The 3101 

optimisation aimed to create a detectable colour change in the physiological range of the 3102 

target metabolite within a few minutes. The procedure was first performed off-chip. Fine-3103 

tuning was subsequentially performed on-chip. The assay formulation led to the 3104 

determination of desired concentrations for enzymes and reagents. Expectedly, by increasing 3105 

the level of the enzymes in the formulation, the reactions had a higher reaction rate. 3106 

Similarly, the colour change of the solution was more accentuated by increasing the 3107 

concentration of the substrate in the testing solution. Figure 5.2 shows demonstrative 3108 



132 

 

 

 

solutions for the LAA assay. The colour change of the reagents increased when increasing 3109 

the level of the substrate in the test. Similar results were obtained off-chip before running 3110 

the assay on-chip. Assay formulations for metabolites sensing in diluted human serum are 3111 

summarised in Table 5.2 (for PCa) and Table 5.3 (for ischemic stroke).  3112 

 3113 

 3114 
Figure 5.2 Demonstration of the colour changes due to different concentrations of the 3115 

substrate (LAA assay). The picture was taken 30min after the assay was started.  3116 

 3117 

Table 5.2 Assay formulations for PCa-related metabolites sensed in diluted human serum 3118 

using the developed platform.  3119 
 LAA Glutamate Choline Sarcosine 

Cartridge Four parallel and identical microchannels (h ~ 137 µm) 

Microchannel volume 0.158 µL 

Light source LED @ 490nm (3 mW, FWHM = 20 nm) 

Total Volume 50 µL 

Sample Volume 25 µL 

Reagent mix volume 25 µL 

Reagent buffer 0.1 Tris HCl 

1st reaction stage 
LAAOx 

(10µL, 4U/mL) 

GlOx 

(10µL, 4U/mL) 

ChOx 

(10µL, 150U/mL) 

SaOx 

(10µL, 200U/mL) 

2nd reaction stage 
10µL HRP 65.5U/ml 

5µL o-dianisidine 41mM 

10µL HRP 300U/ml 

5µL o-dianisidine 41mM 

Negative control 1st reaction stage was substituted with 10µL of DI water 

 3120 

Table 5.3 Assay formulations for ischemic stroke-related metabolites sensing in diluted 3121 

human serum using the developed platform.  3122 

 Lactate Creatinine 

Cartridge Two parallel and identical microchannels (h ~ 137 µm) 

Microchannel volume 0.316 µL 

Light source LED @ 490nm (3 mW, FWHM = 20 nm) 

Total Volume 60 µL 60 µL 

Sample Volume 30 µL 24 µL 

Reagent mix volume 30 µL 36 µL 

Reagent buffer 10 mM PBS 

1st reaction stage 
LaOx 

(10µL, 4U/mL) 

CNN  (6µL, 200U/mL) 

CTN (6µL, 200U/mL) 

SaOx (6µL, 150U/mL) 

2nd reaction stage 

10 µL HRP 150U/ml 

5µL 4-Aminoantipyrine 10.5 mM 

5µL Phenol 44.5 mM 

6µL HRP 150U/ml 

6µL 4-Aminoantipyrine 10.5 mM 

6µL Phenol 44.5 mM 

Negative control 
1st reaction stage was substituted 

with 10µL of DI water 

CNN was substituted with 6µL of DI 

water 
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Procedure. Experiments were conducted at room temperature in the laboratories of the MST 3123 

group, Rankine Building, University of Glasgow. Metabolites were tested individually. 3124 

Reagents were off-chip mixed with the sample and immediately introduced into the cartridge 3125 

within a few seconds. Sample introduction was achieved by pipetting the total testing volume 3126 

onto the fluidic input. The sample flowed into the microstructure and over the sensing area 3127 

by capillary effect.  A schematic representation of the adopted protocol is shown in Figure 3128 

5.3. Cartridges with four microchannels were used for PCa-related metabolites. Cartridges 3129 

with two microchannels were used for PCa-related ones. In both cases, the height of the 3130 

microchannel was, on average, 137.14±1.1 µm. 3131 

Data handling. For each concentration, the assay was performed in triplicates, herein 3132 

referred to as biological replicates. Since each cartridge had multiple microchannels, each 3133 

biological replicate had several readings, herein indicated as technical replicates. After data 3134 

collection, measurements were offline processed using the developed GUI. Technical 3135 

replicates with unexpected behaviour were excluded. Examples of readings with unexpected 3136 

were:  3137 

• Readings where the rate of the reaction accelerated over time.  3138 

• Readings where transmittance increased over time.   3139 

• Readings where the noise level was excessive with respect to the standard measures. 3140 

• Measurements affected by air bubbles or other strong artefacts.  3141 

• Readings affected by microfluidics failure, including underfilling of the microstructure.  3142 

• Measurements considered outliers.  3143 

Data from technical replicates were independently analysed using the developed GUI, and 3144 

the results were averaged. Thus, for each biological replicate, only one result was obtained. 3145 

The result for each concentration was obtained as the average and standard deviation over 3146 

the biological replicates. 3147 

 3148 

 3149 

Figure 5.3 Protocol adopted for metabolomics experiments in diluted serum. 3150 
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Cartridge reuse. Cartridges were cleaned and re-used. Ten cartridges were used for PCa-3151 

related experiments. Three cartridges were employed for ischemic stroke experiments. A 3152 

cleaning procedure after each measurement was adopted to avoid cross-contamination. The 3153 

cleaning recipe involved subsequent rinse in DI water, IPA, ethanol, and nitrogen blow-dry. 3154 

Cleaning the cartridge with more aggressive solvents, such as piranha, was attempted. 3155 

However, it was avoided because the solvent also etched the epoxy microchannels. Cross-3156 

contamination minimisation was also achieved by optimising the testing sequence. For each 3157 

metabolite, a negative control (control measurement) was first recorded. Then, the 3158 

colorimetric estimation was performed in triplicates.  3159 

 3160 

5.3.2. PCa Metabolites 3161 

Calibration curves for LAA, glutamate, choline and sarcosine in diluted human serum are 3162 

reported in Figure 5.4. The complete characterisation of the platform for the analytes of 3163 

interest is discussed in Table 5.4. An example of raw data for LAA and sarcosine, the tests 3164 

with respectively the highest and lowest physiological ranges, are shown in Figure 5.5. 3165 

Typically, increased concentrations of the substrate created increased transmittance drop, 3166 

measured by a reduction of the voltage output of the photodiodes. Transmittance drop was 3167 

nonlinear and is in line with the Michaelis-Menten model. Other metabolites showed 3168 

analogue behaviours.  3169 

Kinetics constants (Km) were estimated by fitting data to the Michaelis-Menten model. Km 3170 

results for all the metabolites were comparable with the values reported in the literature [49]. 3171 

The discrepancies are related to the different materials, methods, and conditions of the tests. 3172 

For all the metabolites, the fitting of the experimental data with the Michaelis-Menten model 3173 

was satisfactory with R2 values ≥ 0.98.  3174 

A subset of the collected data (low concentrations) was also fitted using a linear model. 3175 

Herein, linear range is defined as the range of measurement reporting R2 ≥ 0.90 when a linear 3176 

fit is performed. Linear ranges were covering the physiological ones. The sensitivity of the 3177 

assays was increased when the physiological range of the target analyte decreased. This was 3178 

expected and reflected the choice of enzyme concentrations in the formulation of the tests 3179 

described previously. Relative standard deviations of the measurement in the linear range 3180 

were in between 12.7% and 19.8%.  3181 

LOD and LOQ were quantified using the respective control. LOD and LOQ expressed in 3182 

mVs-1 were then converted in µM by using the estimated Michaelis-Menten for each 3183 
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metabolite. Thus, LOD for LAA, glutamate, choline and sarcosine were 69.01 µM, 6.86 µM, 3184 

3 µM and 0.26 µM, respectively. Similarly, LOQ values for the metabolites in the same 3185 

order were 218.3 µM, 12.04 µM, 4.22 µM, 2.13 µM. LOD and LOQ results demonstrated 3186 

the suitability of the platform for the measurements in the target range in diluted human 3187 

serum.  3188 

 3189 

Table 5.4 Platform Characterisation in diluted human serum for PCa-related metabolites. 3190 

Vm, c and Km are calculated using the Michaelis-Menten model. Metrics have been defined 3191 

in Table 2.3.  3192 

 LAA Glutamate Choline Sarcosine 

Physiological Range  1.7 – 4.6 mM 40 – 150 µM 10 – 40 µM 0 – 20 µM 

Test Range 0 – 12.5 mM 0 - 800 µM 0 – 500 µM 0 – 500 µM 

Relation with PCa ↑ ↑ ↑ ↑ 

Model 𝑦 =  
𝑉𝑚  · 𝑥

𝐾𝑚 + 𝑥 
+ 𝑐 

Vm (mVs-1) 

(95% coefficient bounds) 

4.70  

(3.68, 5.71) 

4.60   

(3.61, 5.59) 

3.219   

(2.62, 3.82) 

2.874  

(2.297, 3.45) 

c (mVs-1) 

(95% coefficient bounds) 

0.016   

(-0.027, 0.058) 

-0.014 

(-0.115, 0.088) 

-0.029 

  (-0.166, 0.108) 

0.012 

 (-0.123, 0.146) 

Km (µM) 

(95% coefficient bounds) 

18610   

(12280, 24940) 

715.1   

(411.9, 1018) 

197   

(95.77, 298.1) 

172.9   

(70.45, 275.4) 

SSE 0.010 0.0284 0.049 0.059 

RMSE 0.034 0.064 0.091 0.099 

R2 0.997 0.995 0.992 0.989 

Linear Model  Y = S ⋅ x + C 

Linear Range1 0 – 3.5 mM 0 – 300 µM 0 – 100 µM 0 - 100 µM 

Analytical Sensitivity (S) 

(mVs-1mM-1) 

(95% coefficient bounds) 

0.226 

(0.210, 0.243) 

4.72 

  (4.15, 5.30) 

11.79   

(8.77, 14.82) 

11.72 

  (11.0, 12.44) 

C (mVs-1) 

(95% coefficient bounds) 

0.02   

(-0.009, 0.049) 

0.003 

 (-0.317, 0.324) 

7.8 · 10-4   

(-0.143, 0.143) 

0.034   

(0.003, 0.065) 

SSE (linear) 0.004 0.023 0.034 0.003 

RMSE (linear) 0.023 0.062 0.093 0.025 

R2 (linear) 0.993 0.985 0.967 0.997 

Precision2 17.8% 12.7 % 13.4% 19.8% 

LOD (mVs-1) 0.033 0.030 0.019 0.017 

LOQ (mVs-1) 0.070 0.063 0.039 0.047 

LOD (µM)3 69.01 6.86 3.00 0.26 

LOQ (µM)3 218.3 12.04 4.22 2.13 

Resolution (µM)4 24.52 1.03 0.48 0.4 
1 Linear range is defined as the measurement range were the linear model had R2 > 0.9. 
2 Calculated as the average of the relative standard deviation of the measurements in the linear range.  
3 Converted from mVs-1 to µM using the Michaelis-Menten model. 
4  Calculated as the ratio between the standard deviation of the control measurements and the sensitivity in 

the linear range [58]. 

 3193 
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          (a)           (b) 

  
           (c)            (d) 

  
           (e)            (f) 

  
            (g)             (h) 

Figure 5.4 Calibration curves obtained by fitting data with Michaelis-Menten in the 3194 

extended range (left) and with a linear model (right) for (a)(b) LAA, (c)(d) glutamate, (e)(f) 3195 

choline and (g)(h) sarcosine in diluted human serum. Concentrations refer to the total 3196 

reaction volume. 3197 
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(a) (b) 

Figure 5.5 Averaged raw data from single microchannel (blue) and processed data (red) for 3198 

LAA (a) and sarcosine (b).  3199 

 3200 

5.3.3. Ischemic Stroke Metabolites  3201 

Calibration curves for lactate and creatinine in diluted human serum are shown in Figure 5.6 3202 

while the complete characterisation of the platform for the analytes of interest is reported in 3203 

Table 5.5. Like the analysis performed for PCa-related metabolites, Kinetics constants were 3204 

estimated by data fitting to the Michaelis-Menten model. Also for lactate and creatinine, Km 3205 

results are comparable with the values reported in the literature [49]. For both the 3206 

metabolites, the fit with the Michaelis-Menten model was satisfactory with R2 values ≥ 0.96. 3207 

Also in this case, a subset of data points with lower concentrations was fitted using a linear 3208 

model. 3209 

As shown in Table 5.5, the linear range for lactate was smaller than the physiological one. 3210 

This suggests the need for sample dilution when testing lactate. The linear range for 3211 

creatinine was suitable for determination in the physiological range. The average standard 3212 

deviations of the measurement in the linear range for lactate and creatinine were 17.5% and 3213 

25.1%, respectively. LOD and LOQ were also quantified using the respective control 3214 

measurements.  The LOD for expressed in µM for lactate and creatinine were 31.85 µM and 3215 

5.21 µM, respectively. The LOQ for both the metabolites were 64.38 µM and 36.55 µM. 3216 

The performance of the platform in the quantification of lactate and creatinine indicates that 3217 

it is suitable for the determination of the two metabolites in the physiological range. 3218 
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Table 5.5 Platform Characterisation in diluted human serum for ischemic stroke related 3220 

metabolites. Vm, c and km are calculated using the Michaelis-Menten model. Metrics have 3221 

been defined in Table 2.3. 3222 

 3223 

 3224 

 Lactate  Creatinine 

Physiological Range  0.3 – 2.0 mM 100 – 150 µM 

Test Range 0 – 3 mM 0 –2 mM 

Relation with ischemic stroke ↑ ↑ 

Model 𝑦 =  
𝑉𝑚  · 𝑥

𝐾𝑚 + 𝑥 
+ 𝑐 

Vm (mV s-1) 

(95% coefficient bounds) 

3.99 

 (2.90, 5.08) 

1.263   

(0.818, 1.708) 

c (mV s-1) 

(95% coefficient bounds) 

-0.177 

 (-0.954, 0.601) 

0.010   

(-0.086, 0.106) 

Km (µM) 

(95% coefficient bounds) 

362 

(260, 751) 

1085  

(807, 2089) 

SSE 0.360 0.0069 

RMSE 0.300 0.042 

R2 0.967 0.998 

Linear Model  Y = S ⋅ x + C 

Linear Range1 0 – 0.5 mM 0 – 0.5 mM 

Analytical Sensitivity (S) 

(mV s-1 mM-1) 

(95% coefficient bounds) 

5.175   

(2.738, 7.612) 

0.803 

 (0.143, 1.462) 

C (mV s-1) 

(95% coefficient bounds) 

-0.023 

(-0.690, 0.644) 

0.028 

(-0.152, 0.209) 

SSE (linear) 0.090 0.007 

RMSE (linear) 0.212 0.057 

R2 (linear) 0.977 0.932 
 Precision 2 17.5% 25.1% 

LOD (mV s-1) 0.146 0.016 

LOQ (mV s-1) 0.425 0.051 

LOD (µM)3 31.85 5.21 

LOQ (µM)3 64.38 36.55 

Resolution (µM)4 7.92 39.76 

1 Linear range is defined as the measurement range were the linear model had R2> 0.9. 
2 Calculated as the average of the relative standard deviation of the measurements in the linear range. 
3 Converted from mV s-1 to µM using the Michaelis-Menten model.  
4  Ratio between the standard deviation of the control measurements and the sensitivity in the linear range 

[58]. 
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(a) (b) 

  

(c) (d) 

Figure 5.6 Calibration curves obtained by fitting data with Michaelis-Menten in the 3225 

extended range (left) and with a linear model (right) for (a)(b) lactate and (c)(d) creatinine.  3226 

 3227 

5.3.4. Discussion  3228 

The biological experiments in diluted serum showed that the platform is suitable for the 3229 

quantification of  LAA, glutamate, choline, sarcosine, lactate, and creatinine with 3230 

physiological concentrations. Experimental data were in agreement with the Michaelis-3231 

Menten model. All the metabolites, except for lactate, showed a linear response within the 3232 

expected physiological concentration levels. For lactate, it is suggested the use of diluted 3233 

body fluid to take advantage of the linear response of the platform. 3234 

The precision of the measurements, calucalted as the average standard deviations, was in the 3235 

range 12.7 % - 25.1%, that is comparable to the precision of the glucose meters currently on 3236 

the market [237]. LODs and LOQs were lower than the expected physiological levels. 3237 

Additionally, for the selected applications, increased levels of analytes are expected. 3238 
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Therefore, the LOD and LOQ values do not impose any limitation on the selected 3239 

applications. 3240 

The analytical sensitivity of the platform was variable in relation to the metabolite under 3241 

test. Analytical sensitivity ranged from was 0.226 – 11.79 mVs-1mM-1. A correlation was 3242 

identified between the analytical sensitivity and the concentrations of the enzymes used for 3243 

the assays. Assays formulated with a higher level of enzymatic solutions were more sensitive 3244 

towards the lower concentration of the substrate and had a higher sensitivity. However, 3245 

creatinine sensitivity was low despite the high concentrations of the enzymatic solution. In 3246 

this specific case, it is worth underlining that the first reaction stage leading to H2O2 was 3247 

made up of three different enzymatic reactions. Thus, this assay is not easily comparable to 3248 

all the other ones. Creatinine assay was, in fact, expectedly slower than the other tests, where 3249 

only one enzymatic reaction led to H2O2. Despite the decreased sensitivity, creatinine testing 3250 

demonstrated that the platform could also support more complicated enzymatic systems and 3251 

that the suggested metabolites could be considered as a proof-of-concept of the platform.  3252 

Regarding the versatility of the platform, it is should be emphasised that the same hardware 3253 

with no modification was used for the measurements of six different metabolites linked to 3254 

different diseases. This was achieved by minimal modification of the assay formation only. 3255 

Aguably, the platform might be suitable for the quantification of substrates where a 3256 

respective oxidase enzyme exists and a similar chemistry can be deployed. This might 3257 

include the use of up to 350 oxidase enzymes and respective substrate reported in the enzyme 3258 

database BRENDA [49]. Additional substrates could also be quantified using a series of 3259 

multi-step reaction leading to the production of H2O2 (e.g. creatinine assay).  3260 

There were some limitations to these experiments.  Firstly, the sample composition was 3261 

simplified. From a microfluidic point of view, the diluted serum (1:10) ensured a quick and 3262 

reliable filling of the microcavities. Also, the sample was modified with a pure and freshly 3263 

introduced substrate. The high dilution ratio of the serum simplified the composition of the 3264 

sample by decreasing the concentration of both endogenous substrate and interfering 3265 

substance. This scenario simplifies in many ways, the functioning of the platform in a real-3266 

life environment. A thicker whole plasma or blood sample has a much slower flow rate, and 3267 

the filling of the microchannel is, therefore, less repeatable, as experimentally demonstrated 3268 

in the previous chapter. Undiluted samples also contain impurities which degrade the signal 3269 

to noise ratio of the recorded signal, consequently affecting the test result. From an organic 3270 

point of view, an undiluted sample also contains thousands of additional molecules which 3271 
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can potentially interfere with the developed assay. Experiments with clinically source 3272 

undiluted human plasma are illustrated in the next chapter.  3273 

 3274 

5.3.5.  Test Duration 3275 

Some considerations can be done about the time that the platform requires to estimate the 3276 

reaction rate. Only the initial reaction rate is important for the estimation of the substrate 3277 

level. Thus, recording only the first part of the reaction is enough. This raises the question 3278 

about the minimum time required for the platform to estimate the reaction rate. 3279 

Experimentally, it was observed that tests with higher substrate concentrations required a 3280 

shorter test duration. This was expected because the high substrate concentration created a 3281 

rapid transmittance drop and a short recording was enough to determine the initial reaction 3282 

rate. On the contrary, tests with lower substrate concentrations required a longer test duration 3283 

to provide a reliable result. This was also expected since the additional data collected due to 3284 

the increased time duration allowed a better estimation of the reaction rate. However, in a 3285 

real-life scenario the substrate concentration is not known.  3286 

To answer this question, additional data processing was performed. All the biological 3287 

experiments recorded had a duration of 5 minutes. Three recordings from the glutamate 3288 

dataset were used for this analysis. Conservatively, glutamate test with a substrate 3289 

concentration of 50 µM was selected. The duration test of the recordings was gradually 3290 

reduced by 1 second. Recording truncation was purely numerical. For each single shortened 3291 

fragment of data, the reaction rate was calculated and normalised against the reaction rate 3292 

obtained with the 5 minutes test. The results of the analysis are proposed in Figure 5.7(a). It 3293 

shows that when using only 60 seconds of data from the reaction starting point, the algorithm 3294 

was able to calculate the reaction rate with an error < 1% with respect to the full-length 3295 

duration. The error then stabilised to zero for test length longer than 60 seconds. Thus, one 3296 

minute can be considered as the minimum test duration required to the platform for the 3297 

substrate quantification. For a conservative approach, one additional minute can be added to 3298 

the previous amount as a tolerance factor.  3299 

Arguably, evaporation can potentially pose a problem when handling liquid in the microliter 3300 

scale. This raises the question of whether the drying of the sample in the microchannel is 3301 

quick enough to interfere with the assay. To address the question, microchannels were filled 3302 

with water, and sensor data were collected until the full evaporation of the sample. 3303 

Experiments were performed at room temperature. Results are reported in Figure 5.7(b). For 3304 
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all the three channels analysed, no evaporation effect was observed in the first 27 minutes. 3305 

Subsequently, evaporation effects were evident and profoundly affected the signal.  3306 

Precisely, during the evaporation of the sample, the trend of the average signal of the 3307 

microchannel resembled the voltage spikes observed when the channel was filling. This 3308 

showed that the sample inside the microchannel was progressively evaporating, from the 3309 

more external pixels to the internal ones. After approximately 1 hour, the water sample was 3310 

evaporated entirely. This is a crucial figure for reagents loading into the microchannels, 3311 

where drying methods have been employed. Therefore, despite the volume of the sample, 3312 

the confinement of the liquid into the microstructure sensibly increased its evaporation time.  3313 

In summary, we can therefore conclude that a two-minute test duration is adequate for the 3314 

quantification of the metabolites of interest. A test with such duration can be considered 3315 

unaffected by the process of the evaporation of the sample, which started to be evident only 3316 

after 27 minutes. 3317 

 3318 

  
         (a)             (b) 

Figure 5.7 (a) Normalised reaction rate calculated for different test durations. Test duration 3319 

was numerically reduced, and the reaction rate iteratively recalculated. Rate is normalised 3320 

to the rate calculated when using the full-length data (5 minutes). (b) Effects of water 3321 

evaporation on the platform. Evaporation effects start to be relevant after 27 minutes. The 3322 

test, whose duration was 5 minutes, can be considered unaffected by evaporation effects.  3323 
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  Microchannel Functionalisation  3328 

For multiplexed assays, biological reagents need to be preloaded into the different 3329 

microchannels with each channel acting as an individual reaction zone. The present section 3330 

also focuses on the procedures for reagents lyophilisation, is a well-established and versatile 3331 

procedure commonly used in the biotechnology industry for the production and storage of 3332 

commercial products or reagents.  The entrapment of the bioreagents was achieved by two 3333 

processing steps: (i) deposition and (ii) freeze-drying.  3334 

 3335 

5.4.1.  Deposition and Regents Printing  3336 

Bioreagents deposition was mostly achieved by manual pipetting in the microchannel by 3337 

micropipetting under the microscope. However, this method is not suitable for mass-3338 

production. Thus, a scalable approach for the functionalisation of the platform is illustrated 3339 

here. In the following experimental study, the suitability of the printing techniques for the 3340 

deposition of bioreagents on the chip is demonstrated. This was achieved by quantifying 3341 

printing performance when using materials commonly employed in enzyme-based solutions. 3342 

The Jetlab® II piezoelectric drop-on-demand inkjet printer was used in this experimental 3343 

study. The printer was connected by serial ports (RS232 and 2xUSB 2.0) to a desktop 3344 

computer (Advantech PPC-157T, Window 7 Pro, 32bit, Intel® Core Duo Processor, 3345 

2.00GHz, 1GB RAM). By scaling down the orifice size to few micrometres (70 µm used in 3346 

this experimental study), the process of drop ejection becomes very dependent on the 3347 

operating conditions, and the jetting parameters need to be empirically tuned [301]. Here, 3348 

jetting parameters were optimised according to a ‘trial and error’ process based on literature 3349 

references and experimental evidence [301], [302]. The Jetlab II has eleven jetting 3350 

parameters to be tuned, including stimulation wave shape, amplitude and frequency, 3351 

backpressure of the print head, the temperature of the print head. The optimal jetting 3352 

parameters allowed having picolitre droplets with no satellites, almost no solid angle, speed 3353 

lower than 2m/s (to avoid splash) and high repeatability over time. However, for a specific 3354 

ink, the set of parameters could not be unique [301], [302]. Parameter optimisation and 3355 

analysis of the printed droplets was achieved using custom Matlab algorithms performing 3356 

automatic drop recognition and image-processing tools. The radius of each drop, 3357 

deformation and position were quantified. Since the printed droplets were not perfect circles 3358 

for physical reasons, ‘drop radius’ is used to refer to as the radius of a circle approximating 3359 
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the printed drop. The deformation of the drop is the ratio between the effective area of the 3360 

drop and the area of the perfect circle. The automatic drop recognition was performed using 3361 

the Hough circle transform [302], a widely used technique for facial recognition in image 3362 

processing [303].  3363 

The experimental study using 14 different inks and 10 different substrates showed that the 3364 

printing performance depends on the materials employed in the process. The quantification 3365 

of the printing performance in terms of drop deformation and radius broadening using 3366 

different inks on silicon and using DI water on various substrates are presented in Figure 3367 

5.8(a) and (b), respectively. Assuming that the effects of inks and substrates are independent, 3368 

a numerical interpolation shown in Figure 5.8(c) highlights the printing performance for all 3369 

the different combinations of ink and substrate. Demonstrative pictures are shown in Figure 3370 

5.9. Printing performance was also quantified on Polyimide, the outer layer of high-voltage 3371 

0.35 CMOS technology. Specifically, the use of a solution made by PBS buffer and Glycerol 3372 

20% on polyimide showed a radius broadening of 1.96. By delivering several piezo 3373 

stimulations, it was possible to print a desired amount of ink. However, the evaporation of 3374 

the printed droplets was observed to be rapid. Figure 5.10(a) shows the reduction in the 3375 

radius of the droplets over time while printing with different volume of a solution of 3376 

PBS/glycerol 20% printed on silicon. The experimental analysis demonstrated that in the 3377 

first 10 minutes after printing, part of the printed drop spontaneously evaporates (Figure 5.10 3378 

(b)). Expectedly, the evaporation process was dependant on the type of ink used and the 3379 

environmental condition.  3380 

After having demonstrated that bio-printing is capable of depositing patterns with a size 3381 

comparable to the CMOS chip, two different enzymatic solutions (cholesterol oxidase and 3382 

glucose oxidase) were successfully deposited on the top of a CMOS chip. Post fabricated 3383 

microstructure on the CMOS chip also helped improve the printing process performance.  3384 

Figure 5.11 reports some optical microscope images of printed patterns on different 3385 

substrates with and without microchannels. Figure 5.11(a) shows a picture of the Jetlab II 3386 

inkjet printer used in this study. Figure 5.11(b) illustrates the shape and the volume of the 3387 

ejected droplets. Figure 5.11(c) demonstrates that it is possible to print into a microfluidic 3388 

channel 200 µm wide. Figure 5.11(d)-(g) demonstrate that the printing technique provides 3389 

adequate deposition accuracy that can potentially allow the deposition of different inks into 3390 

microstructures. The volume of the droplet can be controlled according to requirement. 3391 

Figure 5.11(g) experimentally demonstrated that inkjet printing could be used for the direct 3392 
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deposition of bio-inks on CMOS. In the pictures, glucose oxidase was printed on the CMOS 3393 

chip. The printing time was less than 20 seconds. Patterning the surface of the chip can help 3394 

improving accuracy.  3395 

 3396 

  
(a) (b) 

 
(c) 

Figure 5.8 (a) Deformation (top) and radius broadening (bottom) of printed droplets using 3397 

14 different inks on a silicon substrate. (b) Deformation (top) and radius broadening 3398 

(bottom) of DI water on ten different substrates, including polyimide, the outer layer of 3399 

standard 0.35 CMOS technology. (c)Radius broadening numerical interpolation for 140 3400 

combinations of ink and substrate. 3401 
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(a) (b) 

  
(c) (d) 

Figure 5.9 (a) DI water printed on NbLiO3 and gold. (b) DI water printed on glass and SiO2. 3402 

(c) Different solutions containing glycerol on SiO2. (d) Array of DI water droplets on silicon. 3403 

  3404 

  
(a) (b) 

Figure 5.10 (a) Evaporation dynamics of a solution of PBS/Glycerol 20% on a silicon 3405 

substrate: Volume vs Radius. (b) Short-term evaporation dynamics: radius vs. time. PBS on 3406 

silicon. Droplet volume was ~180µL.  3407 
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(a) (b) (c) 

  
 

(d) (e) (f) 

   
(g) (h) (i) 

Figure 5.11 (a) Ejection of a picoliter droplet from a 70 µm print head. (b)Printing in a 200 3410 

µm wide open microchannel. (c)-(g) Printing into a SU-8 microstructure with different 3411 

positions and volume. (h) Direct enzyme printing (GOX) in an array format on the 3412 

Multicorder chip. (i) Multi-enzyme printing (GOX and ChOX) into a SU-8 structure 3413 

fabricated on top of the Multicorder chip.  3414 

 3415 

5.4.2.  Freeze-drying 3416 

Lyophilisation was achieved by using a benchtop freeze-dryer - the Lyotrap by LTE 3417 

Scientific in Figure 5.12(a) - with a cylindrical condenser chamber (diameter: 20 cm, depth: 3418 

35 cm). The size of the chamber allowed the parallel processing of multiple cartridges. For 3419 

this model, the minimum temperature that can be reached in the chamber is -85oC, which 3420 

was suitable for this application where reagents are in an aqueous environment. The typical 3421 

drying cycle adopted in this work is shown in Figure 5.12(b). Samples with liquid reagents 3422 

to be lyophilised were loaded into the chamber at room temperature and atmospheric 3423 

pressure. After the Lyotrap was loaded, the top lid of the chamber was closed, and the 3424 

freezing cycle was activated. Typically, the chamber reached a temperature of -77oC in 3425 
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approximately 30 minutes. Once reached a stable temperature, the sample was left in the 3426 

chamber for 1 hour at atmospheric pressure. In this phase, the functionalisation solution is 3427 

expected to freeze rapidly. Subsequently, the chamber was pumped down to pressure 3428 

typically in the range of 0.02 – 0.05 mbar. Generally, the chamber reached the target pressure 3429 

in about 15 - 30 minutes. The sample was left in this condition for 24 hours. After 24 hours, 3430 

the chiller of the unit was switched off, and the temperature of the chamber gradually 3431 

increased. The pressure of the chamber was kept in the same range. After a further 24 hours, 3432 

the temperature of the chamber was proximal to the ambient temperature. The chamber was 3433 

then slowly brought to atmospheric pressure in about a few minutes through a dedicated 3434 

valve. At this phase, the samples were unloaded from the unit and ready to be stored or used 3435 

for testing. Temperature, pressure, and timing of the processing were empirically tuned. The 3436 

temperature and pressure typically depend on the composition of the solution to be 3437 

lyophilised. Timings usually depend on the volume of the solution. 3438 

  
(a) (b) 

  
(c) (d) 

Figure 5.12 (a) The Lyotrap freeze-dryer from LTE Scientific. (b) Typical drying cycle used 3439 

in this work. (c) Reagents required for choline oxidase lyophilised onto a petri-dish 3440 

(stabiliser: 1%glcerol (w:w). (d) Reagents required for choline oxidase lyophilised into 3441 

three PDMS microchannels. One channel was deliberately left unmodified to demonstrate 3442 

channel-specific capabilities.  3443 
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The process of lyophilisation was successful for reagents deposited on both glass substrates 3444 

(e.g. petri dish and well plates) and into microfluidics structures. Figure 5.12(c) shows the 3445 

result of the lyophilisation process into a 385-well plate using reagents for choline assay (i.e. 3446 

ChOx, HRP and o-dianisidine). Successful lyophilisation was also obtained when the 3447 

reagents were inserted into microchannels. As shown in Figure 5.12(d), different 3448 

microchannels were loaded with application-specific reagents. Therefore, the process 3449 

enables multiplexed testing. Reagents were also successfully freeze-dried on the chip. 3450 

However, the process of lyophilisation was found to be affecting the CMOS chip, which 3451 

usually became unresponsive after undergoing this process multiple times. This is not an 3452 

issue for an application where the CMOS chip is meant to be disposable. 3453 

 3454 

5.4.3.  Reagents stability   3455 

The stability of the reagents over a period of time after the lyophilisation was experimentally 3456 

assessed using for the choline reagents as a case study.  3457 

Materials and methods. The activity of the reagents was evaluated by the micro-3458 

spectrometer ffTA-1 from Foster and Freeman using a 384-wells clear plate. Experiments 3459 

were performed in triplicates, and the results of this study are summarised in Figure 5.13. 3460 

First, the initial reaction rate was estimated using reagents in solution (Figure 5.13(a)). The 3461 

reaction rate was measured by mixing 50 µL of a test solution containing 1 mM of choline 3462 

in 0.1 Tris HCl (pH 8) and 50 µL of a reacting solution composed of 20 µL of ChOx 3463 

(150 U/mL), 20 µL of HRP (300 U/mL) and 10 µL of 41 mM o-dianisidine. Subsequently, 3464 

50µL of reacting solutions were freeze-dried into different wells of the 384-wells plate using 3465 

the Lyotrap by LTE scientific. There is evidence in the scientific literature that 3466 

cryoprotectant substances (stabilisers) can increase the stability over time of the lyophilised 3467 

substances [304]. Thus, the reacting solutions were freeze-dried with and without potential 3468 

stabiliser solutions (see Figure 5.13). Four different types of stabiliser solution combinations 3469 

were used: (i) the addition of glycerol with 1% and (ii) 2% w:w ratio, (iii) and (iv) the 3470 

addition of the commercial stabilizers STKES by SunChemicals, in two different 3471 

formulations. The composition of the commercial stabiliser was not known, due to copyright 3472 

reason. However, no interference with the colorimetric reaction was expected, according to 3473 

the company guidelines.  3474 

After the lyophilisation, the stability of the reagent was tested using a solution by mixing 3475 

50µL of a test solution containing 1mM of choline in 0.1 Tris HCl (pH 8) and additional 3476 
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50µL of the buffer. The reagents were tested within 2 hours after the completion of the 3477 

lyophilisation process (storage condition: A) and after seven days storage at 20oC into a 3478 

vacuum-sealed plastic bag under dark conditions (storage condition: B).  3479 

Results. For all the formulations and conditions, the freeze-drying process was observed to 3480 

affecting the activity of the reagents. By observing the results in condition ‘A’, it can be 3481 

assumed that the lyophilisation process created an inherent loss of the activity of the reagent. 3482 

Among all the formulations, the one with no addictive retained most of the activity when 3483 

tested in storage condition A. However, the loss of activity due to the lyophilisation process 3484 

can be compensated by increasing the enzymatic units and the concentration of the reagents 3485 

to be freeze-dried. The stability of the lyophilised reagents over time is expressed by storage 3486 

condition B. After seven days of storage, the formulation with no addictive reported the most 3487 

significant drop in activity: -76.8%. The formulation containing glycerol improved the 3488 

stability, with approximately a -67% drop for both the conditions. The stability was further 3489 

enhanced using the commercial stabiliser kit, with an average decrease in the activity of -3490 

29% in 7 days. Reagents stored with no vacuum-sealed bag (i.e. exposed to open-air) 3491 

reported inconsistent results due to partial rehydration, due to ambient humidity. Therefore, 3492 

storage under vacuum condition is recommended.  3493 

Discussion. Based on this data, reagent stability can be estimated in different storage 3494 

conditions using the standard model for accelerated ageing (American Society for Testing 3495 

and Materials, standard F1980-02) [305]. The standard for accelerated ageing is based on 3496 

the Arrhenius’ law. Typically, reducing the storage temperature of 10oC increases the shelf 3497 

life of a multiplication factor Q10. Q10 is set to 2 for most of the applications [305]. The shelf-3498 

life is defined as the time required for a property to be lower than a certain threshold [305]. 3499 

For enzymatic stability, such as in this case, we can define the shelf-life of the reagents as 3500 

the storage time producing an enzyme activity decrease more than 10%. The shelf-life 3501 

estimations of the lyophilised reagents for choline assay in different storage conditions are 3502 

summarised in Table 5.6. In summary, the use of stabiliser for the lyophilisation process has 3503 

the potential to increase the shelf-life of the reagents. The best-case-scenario obtained in this 3504 

work is a shelf-life of more than 2 months when freeze-drying the reagents with the 3505 

commercial stabiliser STKES by SunChemicals and storing the sample at -20oC. It is 3506 

expected that the shelf-life of the lyophilised reagents for all the other assays are like the one 3507 

estimated for choline. 3508 

 3509 
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 3510 
Figure 5.13 Assessment of the stability of the reagent after freeze-drying for choline. Storage 3511 

condition: Ref = reference (no lyophilisation); A: freeze-dried reagents tested within 2 hours 3512 

after the completion of the process. B: freeze-dried reagents tested after 7 days of storage at 3513 

20oC in a vacuum-sealed plastic bag and in dark conditions. (a) Reaction in solution. 3514 

Reagents were freeze-dried with (b) no addictive, (c) with 1%, (d) 2% glycerol, (e),(f) with 3515 

two different formulations of the commercial stabiliser STKES by SunChemicals.  3516 

 3517 

Table 5.6. The shelf life of the lyophilised reagents for choline assay. 3518 

 Shelf life (reduction of 10% of reaction rate) in days  

Storage 

temperature (oC) 
No addictive 1% glycerol 2% glycerol 

Commercial 

stabilizer (1) 

Commercial 

stabiliser (2) 

20* 0.92  1.08  1.04  1.7  4.21 

10** 1.83  2.17  2.08  3.41  8.42 

0** 3.67  4.33  4.16  6.83 16.83 

-10** 7.33  8.67  8.33  13.67 33.67 

-20** 14.66   17.33  16.67  27.33 67.33 

* Shelf-life calculation based on the data 

** Shelf-life estimation using accelerated ageing model [305] 

  3519 

  3520 
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  Multiplexed Assays 3521 

5.5.1.  Multiplexed Assays in Human Plasma 3522 

The capability of the platform working with preloaded reagents in the dry state was verified 3523 

with glutamate assay and controls performed simoultaneosuly in human plasma.  3524 

Materials and methods. A cartridge with four microchannels (h ~ 290 µm) was 3525 

functionalised with three channels dedicated to glutamate assay and one channel left for the 3526 

negative control. Accordingly, two solutions were prepared for the microchannel 3527 

functionalisation: a control solution and a glutamate assay solution. The former solution was 3528 

used to functionalise microchannel dedicated to negative control testing. The latter was used 3529 

to functionalise microchannels allocated for metabolite assays. 1 µL of the solution was 3530 

deposited in the respective microchannel. The protocol for solution preparation is reported 3531 

in Appendix I.The deposition was obtained both by pipetting and printing. Same results were 3532 

obtained, regardless of the deposition method. After the deposition, solutions were 3533 

lyophilised. No stabiliser was used during the lyophilisation process. Cartridges were used 3534 

for experiments immediately after the completion of the lyophilisation process. Cleaning 3535 

procedures and setup of the experiment were identical to the one previously described. 3536 

Human plasma was purchased from Sigma Aldrich and reconstituted following the 3537 

manufacturer instructions. It is expected that human plasma had an endogenous 3538 

concentration of glutamate. The sample was then spiked with additional known 3539 

concentrations of glutamate. A volume of 20 µL of the sample was introduced into the 3540 

cartridge with no further dilution. Experiments were performed in triplicates. A schematic 3541 

representation of the adopted protocol is shown in Figure 5.14.  3542 

 3543 

 3544 

Figure 5.14 Protocol adopted for multiplexed assays in human plasma. 3545 
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Results. Results of the experiments are presented in Figure 5.15. Expectedly, channels 3546 

allocated for control measurements provided a minimum measurable signal, with an average 3547 

rate of 0.031±0.03 mVs-1. However, for the channels functionalised with the solution 3548 

containing GlOx, the rate of the reaction, using the same unmodified plasma sample, 3549 

increased of more than 10 folds to 0.394±0.188 mVs-1. Accordingly, rates increased further 3550 

when the plasma sample was spiked with 150 µM and 300 µM, respectively. Excluding the 3551 

measurements on the unmodified plasma sample, data points had high linearity (R2 = 0.977). 3552 

The linearity justified the estimation of the endogenous concentration of the unmodified 3553 

sample using the auto-controlled approach, adopting the two spiked samples as positive 3554 

controls. Thus, the glutamate level was estimated to 108.4 µM. Under this assumption, a 3555 

calibration curve was obtained using a linear model and shown in Figure 5.16(a). The 3556 

sensitivity of the platform (slope of the linear model) in these experiments was 3.3 3557 

mVs-1mM-1. Averaged and filtered data and signal after curve fitting are shown in Figure 3558 

5.16(b).  3559 

 3560 

 3561 
Figure 5.15 Glutamate experiments in undiluted human plasma with preloaded dry reagents. 3562 

(a) All channels were functionalised for control measurements. The introduced sample was 3563 

unmodified plasma. (b)-(d) Channel 1 was functionalised for control measurement, the 3564 

remaining for glutamate assay. The introduced sample was (b)Unmodified plasma; (c) 3565 

plasma spiked with 150 µM of glutamate; (d) plasma spiked with 300 µM of glutamate. 3566 
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(a) (b) 

Figure 5.16 (a) Calibration curve of glutamate assay with preloaded reagents. (b) Average 3567 

and filtered data (blue) and processed data (red) for different samples.  3568 

 3569 

Discussion. It is not possible to directly compare the rates calculated from the lyophilised 3570 

reconstituted reagents on-chip with the rates obtained from wet assays for several reasons 3571 

explained below: 3572 

• Microchannels were functionalised with a different number of units with respect to the 3573 

units used in wet experiments. 3574 

• During the drying process activity loss is expected.  3575 

• Plasma introduced in the platform had no further dilution.  3576 

• The process of rehydration of the reagents could produce systematic modification on the 3577 

light absorbance drop.  3578 

Although a direct comparison is not suitable, there have been several positive outcomes of 3579 

this work. This set of experiments is the first of the multiplexed assays performed on the 3580 

CMOS chip, with 1 channel always dedicated to the control measurement and the others 3581 

performing the actual measurements. An optical inspection confirmed that channels were 3582 

successful in confining the liquid, and no leakage was observed. Nevertheless, crosstalk 3583 

between two adjacent channels is still possible. This is due to optical effects of reflection 3584 

and dispersion taking place in the platform since there are multiple optical interfaces: air-3585 

PDMS, PDMS-sample, sample-passivation layers, passivation layers-doped region. Thus, a 3586 

crosstalk quantification can be computed using the following approach [45]: 3587 

Crosstalk% = 

∑
|rc,i − µc|

|rt,i − µc|
N
i=1

N
 · 100 

(5.1) 
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Where rc,i is the generic rate in the control channel when the adjacent channel is performing 3588 

a metabolite assay, rt,i is the generic rate in the assay channel when the adjacent channel is 3589 

performing a control measurement, µc is the average rate in the control channel when the 3590 

adjacent channel is performing a control measurement, N is the number of averaged 3591 

experiments. Accordingly, average channel-to-channel crosstalk of 2.59±0.8 % was 3592 

quantified in these set of tests.  3593 

From a fluidic point of view, optical inspection showed that the layer of powdered reagents 3594 

within the microchannels promoted a reliable and stable flow.  3595 

In conclusion, these experiments exhibited that this platform could perform simultaneous 3596 

assays for glutamate and related control, using on-chip preloaded reagents. However, the 3597 

loss of activity of the reagent was observed due to the functionalisation process, and the 3598 

additional noise introduced by the reagents’ rehydration has the potential to degrade the 3599 

performance of the platform.  3600 

 3601 

5.5.2.  Paper Microfluidics: An Alternative Approach 3602 

On-chip multiplexed assays have also been demonstrated by using an alternative method 3603 

based on paper-microfluidics. This work has been carried out in collaboration with Dr 3604 

Chunxiao Hu and Dr Srinivas Velugotla [306]. Dr Chunxiao Hu and Dr Srinivas Velugotla 3605 

designed the concept idea and developed prototypal paper microfluidics. I have completed 3606 

the paper-microfluidic manufacturing by appropriate functionalisation. Dr Chunxiao Hu 3607 

performed biological experiments. I also offered technical support to all the phases of the 3608 

processing. The reader and GUI, as developed in this PhD research project, were also 3609 

employed. A detailed report of this work has been published [306]. In this section, an 3610 

overview of the work is presented to demonstrate the versatility of the platform.  3611 

The paper-strip based platform is schematically represented in Figure 5.17(a). 3612 

Functionalised paper microchannels were placed on top of the active area of the CMOS chip. 3613 

Once the sample was introduced on the fluidic input, it flowed through the paper substrate 3614 

due to capillary effect and split into three microchannels were the colorimetric reaction was 3615 

triggered. The platform was designed for the simultaneous colorimetric determination of 3616 

glucose and lactate on cellulose, which is partially permeable to visible light. A CMOS chip 3617 

was glued to a chip carrier and wire bonded. No microfluidics was fabricated on top of the 3618 

CMOS. Reader and GUI were unchanged.  3619 
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Materials and methods. A paper-microfluidics strip to be placed on top of the sensing area 3620 

was separately fabricated. A Grade 1 Cellulose Chromatography Paper (thickness: 0.18 mm; 3621 

water linear flow rate: 130 mm/30 mins) was purchased from GE Healthcare Life Sciences 3622 

to be used as the substrate for the paper microfluidics. The paper microfluidics was 3623 

fabricated using laser micromachining (CO2 laser cutting machine by Laser Micromachining 3624 

Ltd.). Laser micromachining had a few advantages than other commonly used techniques, 3625 

including wax printing and photolithography. It required only a single step of fabrication 3626 

with no need of cleanroom facilities. It was a flexible process with good reproducibility, 3627 

high throughput, and low cost.  The paper strip, as shown in Figure 5.17(b) had a size of 3628 

30 × 2.8 mm.  It was composed of (i) sample pad (ii) detection zone and (iii) absorbent pad. 3629 

The sample pad (length: 5 mm) was used for sample loading. The detection zone (2 × 2 mm) 3630 

had approximately the same size of the active area of the CMOS chip. The absorbent pad 3631 

(length: 4 mm) was in place to absorbed overflowed liquid. Three microfluidic channels 3632 

were fabricated. Lateral channels were 380 µm wide. The central channel, which was used 3633 

for negative control measurements, had a width of 300 µm. Two 280 µm wide gaps between 3634 

the channels prevented crosstalk.  3635 

Two different solution inks containing reagents for the lactate assay and glucose assay were 3636 

printed on the specific paper microfluidic channels using the Jetlab II printer (see Appendix 3637 

J for protocol). The freeze drier (Lyotrap by LTE Scientific) was used to store freeze-dried 3638 

paper strips right after the enzyme printing. No noticeable signal drop was observed after 3639 

two weeks of storage in the fridge at 4 ºC.  3640 

To increase mechanical strength, reduce sample evaporation and reduce contamination, the 3641 

paper strip was sandwiched in two transparent acrylic films (3MTM 9969 Diagnostic 3642 

Microfluidic Adhesive Transfer Medical Tape), as shown in Figure 5.17(c). A laser 3643 

micromachined aperture in the top acrylic film was used for exposing the sample pad. The 3644 

acrylic films provided excellent support to the bare paper strip so that it could be easily 3645 

folded to accommodate the chip surface. Preliminary experiments were performed to prove 3646 

that the acrylic film had no discernible effect on the biological reaction. The paper strip was 3647 

kept in place on top of the CMOS chip by magnet bases. 3648 
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 3649 

Figure 5.17 (a) Schematic of the paper strip based platform. (b) Fabricated paper strip and 3650 

size of the paper microchannels. (c) Encapsulation of the paper strip into acrylic films [306]. 3651 

 3652 

Results. Analyte solutions containing glucose and lactate were measured in a buffer solution 3653 

simultaneously with the photodiode array. The total volume of the solution was 6 µL, which 3654 

was large enough to wet the channels in a relatively short time, but not too large to cause an 3655 

overflow. A preliminary analysis showed that no obvious crosstalk was observed [306]. In 3656 

total, three concentrations of lactate (0.5, 1, 2 mM) and glucose (2.78, 5.55, 11.1 mM) were 3657 

measured. Lateral channels were dedicated to the quantification of lactate and glucose, 3658 

where a signal decrease was observed. The central channel was used as a control channel 3659 

where no signal drop was observed.   3660 

All the three microfluidic channels were wet simultaneously, which gave a good comparison 3661 

of the reactions occurring on the three individual channels. Both enzymatic reactions 3662 

produced a colour change from clear to brownish, which absorbed the green LED light, 3663 

therefore decreasing the amount of light getting to the photodiode and therefore decreasing 3664 

the voltage signal. A new paper-strip was used for each measurement. No washing step of 3665 

 
(a) 

 
 

(b) (c) 
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the chip was required due to the encapsulation of the paper strip. The change in photodiode 3666 

voltage for different channels is plotted Figure 5.18. Initial reaction rates were calculated, 3667 

and calibration curves were obtained  [306].  The Michaelis constant Km values were 3668 

estimated and found to be 33±13 mM for glucose-glucose oxidase and 1655±527 µM for 3669 

lactate-lactate oxidase, respectively. The LOD was 520 µM for glucose and 110 µM for 3670 

lactate. Detailed results have been published in  [306]. 3671 

Discussion. There are three main advantages of using paper strips rather than on-chip 3672 

integrated microfluidics. Firstly, paper strips can be easily disposed of and incinerated. 3673 

Secondly, the use of paper strip implies the re-use of the CMOS chip leading to a lower cost 3674 

per test. Thirdly, an inherent capability of the passive flow of the paper strip dramatically 3675 

simplifies the platform.  3676 

This approach has some limiations. The alignment of the paper strip to the sensing area is, 3677 

in fact, crucial and needs to be supported by an additional mechanical structure in a real-life 3678 

scenario. Also, the paper strips can accommodate a limited number of microfluidic channels 3679 

because laser patterning has a lower resolution than photolithography. Thirdly, the sample 3680 

is not directly integrated onto the sensing area, which can potentially reduce the sensitivity 3681 

towards low concentrations of the substrate. In conclusion, the versatility of the platform 3682 

allows its use in different configurations which can satisfy different application-specific 3683 

requirements.  3684 

 3685 

 3686 
Figure 5.18 Real-time recording of the reactions detected by the three paper channels. Data 3687 

shown is the average over the channel. Lateral channels were functionalised for glucose and 3688 

lactate assays. Central channels were used for blank measurements (control).  3689 
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  Whole Blood Experiments 3691 

In a real-life scenario, sample processing steps need to be minimised or eliminated. This rise 3692 

the question if the developed platform is suitable for metabolite quantification with no or 3693 

integrated sample processing. The use of whole blood in optical measurements it is 3694 

challenging because of the reduction in the light transmission. The spectrum reported in 3695 

Figure 5.19 shows the light transmittance of whole human blood inserted in a microfluidic 3696 

channel (h ~ 290µm) obtained using a micro-spectrometer (ffTA-1 from Foster and 3697 

Freeman). 3698 

The light absorbance is also particularly high in the range of wavelength where the platform 3699 

operates. The light transmission of the whole blood is around 4% at 490 nm. However, a 3700 

sharp increase in the transmission is observed for wavelength higher than 600 nm, with a 3701 

20% transmittance at 800 nm. Besides the low light transmission, the whole blood is also 3702 

viscous and contains many impurities. It is therefore expected a further decrease in the SNR 3703 

for experiments performed in whole blood. To assess the possibility of the use of whole 3704 

blood on the platform, two different strategies have been implemented: (i) direct assay in the 3705 

whole blood and (ii) on-chip blood filtration.  3706 

 3707 

Direct assay on whole blood. Preliminary experimental studies demonstrated that the 3708 

change in absorbance was detectable also in whole blood as the sample, with no pre-3709 

processing. One sample of human blood was purchased from Cambridge bioscience. 3710 

 3711 

 3712 
Figure 5.19 Light transmittance spectrum for whole blood in a microfluidic channel with 3713 

h ~ 290µm. The curve is an average over three measurements.  3714 
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Half of the sample was centrifuged, and plasma was extracted. Both plasma and blood from 3715 

the same sample were spiked with an additional LAA concentration of 3.75 mM. The 3716 

resulting samples were tested using the same protocol adopted for the experiments with 3717 

diluted serum. For the testing in whole blood, the light intensity of the LED was increased 3718 

to keep the working point in the same range as previous experiments.  3719 

Despite the low transmittance, an increase in absorbance was also observed when blood was 3720 

used as the sample under test, as shown in Figure 5.20(a).  When comparing the rate of the 3721 

reaction in blood and plasma from the same sample, a higher initial rate was observed when 3722 

using blood. It is not completely clear the reasons leading to increased rate from this 3723 

preliminary study. Probably, the process of centrifugations filters out compounds that are 3724 

catalysing the reaction. Also, whole blood might contain a higher concentration of free 3725 

oxygen, which also takes part in the colorimetric reaction. However, when considering the 3726 

system noise, the presence of unprocessed blood degraded the quality of the signal (see 3727 

Figure 5.20(b)). High-frequency noise was introduced when using unprocessed blood, with 3728 

peak-to-peak spikes reaching 200 mV. The high-frequency noise was probably related to the 3729 

presence of agglomerates of molecules free to move on the top of the sensors. In conclusion, 3730 

direct assay on whole blood was possible, but additional work is needed to reduce or 3731 

minimise the noise introduced by the impurities in the sample. 3732 

 3733 

Figure 5.20 (a) Processed output for LAA assay in blood and plasma. Both blood and plasma 3734 

were modified with 3.75mM of LAA. (b) Unprocessed data from a single-pixel selected into 3735 

a microchannel. LAA assay in blood and plasma, both modified with 3.75mM. The noise 3736 

level when testing LAA in the blood was substantially higher than when testing LAA in 3737 

plasma. 3738 
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On-chip blood filtration. Integration of a blood filter for on-chip sample preparation has 3740 

the potential to increase the practical use of the platform. Integrating commercially available 3741 

passive blood filters with custom microfluidics platform has already been reported in the 3742 

scientific literature [307], [308]. Thus, several passive commercial blood filters were 3743 

purchased and tested for their integration with the cartridge. Glass fibre blood separator LF1, 3744 

MF1, VF2 and GF/DVA were purchased from GE Healthcare. The Vivid™ plasma 3745 

separation membrane was also obtained from PALL Corporations. Blood filtration devices 3746 

were tested using whole blood commercially sourced from Cambridge Bioscience. The 3747 

blood sample was not subjected to any freezing step since freezing modifies the shape and 3748 

the properties of red cells. All the commercially sourced filters use porous materials (with 3749 

variable porous size) to trap red cells during the passive flow of the sample. Among the 3750 

filters commercially sourced, the glass fibre blood separator LF1 was adopted because it 3751 

provided more reliable results according to the target sample volume (10 – 20 µL). The LF1 3752 

blood separator has a thickness of 247 µm, wicking rate of 35.6 s/4cm, and water absorption 3753 

of 25.3 mg/cm2. Thus, the LF1 glass fibre blood separator was shaped using a laser cutter 3754 

(CO2 laser cutting machine by Laser Micromachining Ltd). A circular pad with a 1 cm 3755 

diameter was used as a sample pad. From the sample pad, a straight 3 mm wide glass fibre 3756 

strip was used to converge the plasma flow in the preferred direction. The strip was also 3757 

patterned with laser-cut perforation to physically reduce the absorbance of the substrate and 3758 

facilitate the flow for plasma. 3759 

Figure 5.21(a) demonstrates the process of blood filtration on the laser-cut device. 15 µL of 3760 

blood inserted on the sample pad and plasma was extracted in the glass fibre strip after a few 3761 

seconds by capillary action. The passive filter was then integrated with a cartridge - see 3762 

Figure 5.21(b). For its integration, part of the epoxy on the side of the CMOS chip was 3763 

removed to create a slot for the insertion of the glass fibre filter. The blood filter was then 3764 

slotted in the cavity in immediate contact with the microfluidic channels - Figure 5.21(c). 3765 

The strategy was successful, and plasma entered the microfluidic channels after separation. 3766 

However, the process was not easily repeatable with many underfilling or no-filling of the 3767 

microchannels recorded. After inspection using a microscope, it was clear that the interface 3768 

between the blood filter and the microchannel is crucial since the plasma was reluctant to 3769 

leave the blood filter. In summary, the strategy of integrating the blood filter with the 3770 

developed cartridge was promising, but the results were difficult to replicate and very 3771 

unreliable, suggesting the need for optimisation.  3772 
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(a) 

 

(b) (c) 

Figure 5.21 (a) Passive blood filtration using the GE glass fibre filter. (b) Integration of the 3773 

filter into the cartridge. (c) Strategy for the integration of the filter. 3774 

 3775 

  Summary of the Chapter 3776 

• The platform was successful in quantifying six target metabolites, namely LAA, 3777 

glutamate, choline, sarcosine, lactate, and creatinine, in diluted human serum (ratio 3778 

1:10). Table 5.7 summarised the main findings.  3779 

• Inkjet printing has the potential to be used for the deposition of enzymatic solutions on 3780 

top of the CMOS and microstructures for the immobilisation of reagents.  3781 

• Lyophilisation was successful in trapping reagents in the solid-state within the 3782 

microchannel. The process also increased the shelf-life of the reagents, estimated to be 3783 

more than 60 days for choline-related chemicals when freeze-dried and stored at -20oC 3784 

in a vacuum-sealed package.  3785 

• The capability of the platform working with preloaded reagents in the dry state was 3786 

verified with glutamate assay in modified human plasma. For all the measurement, one 3787 

channel was used for control measurement, demonstrating that the platform can run 3788 

different assays at the same time. The crosstalk between adjacent channel was quantified 3789 

to be 2.59%.  3790 
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• An alternative approach based on paper microfluidics was also demonstrated to be 3791 

capable of performing three measurements at the same time, i.e. glutamate, negative 3792 

control, and lactate.  3793 

• Preliminary testing demonstrated that the platform could be used for metabolomics 3794 

assays using whole blood by both using it without any processing and by integrating a 3795 

commercial passive blood filter into the cartridge.  3796 

 3797 

Table 5.7 Summary of on-chip metabolites quantification in diluted serum. 3798 

 LAA Glutamate Choline Sarcosine Lactate Creatinine 

Cartridge type 4 microchannels on CMOS 2 microchannels on CMOS  

Microchannel 

height 
h ~ 137.14 µm 

Sample volume 25 µL 30 µL 24 µL 

Application PCa Ischemic stroke 

Physiological 

Range 

1.7 - 4.6 

mM 

40 - 150 

µM 
10 - 40 µM 0 - 20 µM 

0.3 - 2.0 

mM 

100 - 150 

µM 

Test Range 
0 - 12.5 

mM 
0 - 800 µM 0 - 500 µM 0 - 500 µM 0 - 3 mM 0 - 2 mM 

Linear Range 0 - 3.5 mM 0 - 300 µM 0 - 100 µM 0 - 100 µM 0 - 0.5 mM 0 - 0.5 mM 

Linearity (R2) 0.993 0.985 0.967 0.997 0.977 0.932 

Km (µM) 18610 715.1 197 172.9 362 1085 

Analytical 

Sensitivity 

(mVs-1mM-1) 

0.226 4.72 11.79 11.72 5.175 0.803 

LOD (µM) 69.01 6.86 3.00 0.26 31.85 5.21 

LOQ (µM) 218.3 12.04 4.22 2.13 64.38 36.55 

Resolution 

(µM) 
24.52 1.03 0.48 0.4 7.92 39.76 

 3799 

  3800 
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6 Chapter 6: Clinical Evaluation    3801 

  Introduction  3802 

A clinical evaluation of the platform was performed for both prostate cancer and ischemic 3803 

stroke. Multiplexed assays were also demonstrated with clinically source human plasma 3804 

samples. Table 6.1 illustrates the contribution to each activity discussed in this chapter.  3805 

The objective of this evaluation was to determine the analytical accuracy of the device with 3806 

respect to the state of the art using clinically sourced samples. This was achieved by 3807 

comparing results obtained using this platform with results obtained using standard 3808 

measuring methods. Lactate is already a well-established biomarker for ischemic stroke, so 3809 

the diagnostic accuracy of this metabolite is not under analysis. However, the diagnostic 3810 

accuracy of the proposed metabolomic biomarkers for prostate cancer is unknown. As such, 3811 

the secondary objective was to provide a scientific evaluation linking the candidate 3812 

metabolic biomarkers to prostate cancer.  3813 

 3814 

  Platform Optimisation for Clinical Evaluation  3815 

Transitioning from diluted samples to undiluted biological required significant 3816 

modifications of the platform. The main problem encountered was the drastically reduced 3817 

colour change when using o-dianisidine in undiluted samples. The possible explanation to 3818 

this phenomenon was the interference with other substances in the undiluted sample, whose 3819 

concentrations were negligible when heavily diluted. Specifically, the degradation of 3820 

performance was attributed to a specific enzyme naturally present in the blood: catalase. 3821 

 3822 

Table 6.1 Table of contributions for the activity presented in this chapter. 3823 

Task / Activity presented in Chapter 6 Main investigators 

Optimisation for clinical evaluation - Valerio F. Annese 

Clinical evaluation with PCa samples - Valerio F. Annese 

Clinical evaluation with ischemic stroke samples   - Valerio F. Annese 

Multiplexed assays with PCa samples  - Valerio F. Annese 

 3824 
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Blood is structured to be very stable and integrates several substances to preserve its stability, 3825 

including catalase an enzyme which catalyses the decomposition of free hydrogen peroxide 3826 

to water and oxygen [49]. Catalase also has one of the highest turnover numbers among all 3827 

the enzymes and, therefore, it is one of the most efficient catalysts [49]. Therefore, it was 3828 

hypothesised that catalase was interfering with the designed assays by decomposing 3829 

hydrogen peroxide faster than the colorimetric probe. The introduction of a catalase inhibitor 3830 

was initially considered. Among the inhibitors, hydroxylamine was selected, and 3831 

preliminary tests were carried out. Nevertheless, hydroxylamine also appeared to 3832 

undesirably reduce the activity of HRP. Preliminary experiments showed that assays using 3833 

phenol/4AAP instead of o-dianisidine were working correctly. This corroborated the 3834 

hypothesis of catalase interaction, as both phenol and 4AAP are also catalase inhibitors [49].  3835 

Regarding the fluid properties, undiluted samples contained impurities which led to a 3836 

decreased SNR. This was expected because of larger particles free to move on top of optical 3837 

sensors. In addition, higher fluidic density due to undiluted solutions led to higher filling 3838 

times.  3839 

In order to mitigate the above-mentioned challenges, the platform was modified as follows:    3840 

• All experiments were performed using phenol/4AAP as H2O2 probe in substitution to o-3841 

dianisidine. Formulations were modified accordingly.  3842 

• HRP concentration was increased to compensate for potential activity loss due to 3843 

interferences.   3844 

• Channels with increased height (h ~ 290 µm) were employed to speed-up the liquid flow 3845 

and provide more substantial transmittance drop.  3846 

 3847 

  Research Ethics and Data Protection 3848 

Samples were clinically sourced under ethical approved. For cancer samples, the ethical 3849 

approval was issued by the West of Scotland Research Ethics Service with reference number 3850 

10/S0704/18. For ischemic stroke samples, the ethical approval was issued by the West of 3851 

Scotland Research Ethics Service with reference number 17/WS/0252. Ethical approval 3852 

letters are reported in Appendix K. Samples were anonymised and randomised within the 3853 

relative group, in accordance with the General Data Protection Regulation. No personal data 3854 

which could have undermined the anonymity of the sample was requested or recorded. 3855 

Numeric IDs were assigned to the samples.  3856 



166 

 

 

 

  Prostate Cancer Clinical Evaluation 3857 

The POC testing for PCa diagnosis was performed in three stages: calibration, validation, 3858 

and clinical evaluation. In the first stage, calibration curves were obtained using a single 3859 

human plasma sample modified with a known concentration of metabolites of interest. 3860 

Validation was performed by two methods: (i) by testing human plasma samples modified 3861 

with different and unknown levels of analytes of interest (blind validation) and (ii) by 3862 

comparing readings from the platform with commercial methods.  Clinical evaluation for 3863 

PCa was performed on ten samples from healthy men and sixteen samples from people 3864 

affected by PCa.  3865 

 3866 

6.4.1. Materials and Methods 3867 

Reagents. All chemicals required for the assays were purchased from Sigma Aldrich unless 3868 

otherwise specified. Plasma samples for calibration and blind validation were purchased 3869 

from Sigma Aldrich. Ambient temperature and humidity were recorded during the clinical 3870 

testing using the Texas Instrument Module HDC 1080EVM. Assay formulations were 3871 

optimised using a trial-and-error approach. Table 6.2 summarises the main aspects of the 3872 

assay formulations for PCa-related metabolites in clinical samples.  3873 

Non-PCa group. Ten healthy human plasma samples were commercially sourced from 3874 

Cambridge Bioscience. Healthy plasma samples are herein referred to as ‘non-PCa’ and 3875 

constituted the control group. Non-PCa donors were adult males, with diversified ethnicity 3876 

and an average age of 34±10 years. Healthy samples were randomly assigned a numeric ID 3877 

from 1 to 10.  3878 

Table 6.2 Assay formulations. 3879 

 LAA Glutamate Choline Sarcosine 

Cartridge 4 parallel and identical microchannel (h ~ 290 µm) 

Microchannel volume 0.348 µL 

Light source LED @ 490nm (3 mW, FWHM = 20 nm) 

Total Volume 60 µL 

Sample Volume 30 µL 

Reagent mix volume 30 µL 

Reagent buffer DI water 

1st reaction stage 
LAAOx 

(10µL, 10U/mL) 

GlOx 

(10µL, 4U/mL) 

ChOx 

(10µL, 

150U/mL) 

SaOx 

(10µL, 

200U/mL) 

2nd reaction stage 

10µL HRP 300U/ml 

5µL Phenol 44.5mM 

5µL 4AAP  10.5mM 

Negative control 1st reaction stage is substituted wit~10µL of DI water 

Positive control The sample is spiked with a known concentration of the analyte of interest 
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PCa group. Sixteen human plasma samples from people diagnosed with PCa were sourced 3880 

from the Beatson Cancer Institute, Glasgow, UK, under ethical approval, with the 3881 

collaboration with Dr Robert Jones and Prof Jeff Evans. Donors were selected to be adults 3882 

who had already been diagnosed with PCa. Cancer samples constituted the cancer or PCa 3883 

group. PCa samples were randomly assigned a numeric ID from 11 to 26. Protocols for 3884 

sample collection are reported in Appendix L.  3885 

Procedure. The setup used for clinical testing was the same as the one used for experiments 3886 

in diluted serum. Reagents were mixed with the sample off-chip and immediately introduced 3887 

into the cartridge within a couple of seconds. Metabolites were tested individually using the 3888 

cartridge with four microchannels. The concentrations of the target metabolites in plasma 3889 

samples were not known when the experiments were performed. A schematic representation 3890 

of the adopted protocol is shown in Figure 6.1.  3891 

Control measurements. Positive and negative controls were performed. Negative control 3892 

refers to the measurement designed for the quantification of non-specific activity. In this 3893 

case, a reaction was initiated between the sample, HRP and colour-changing reagents 3894 

without substrate-specific enzyme. Thus, a negative control considers the colour change, 3895 

which is not related to the reaction with the specimen under test (non-specific activity). Non-3896 

specific activity is expected due to the intrinsic complexity of the undiluted sample.  3897 

Positive control indicates the measures designed to create a detectable signal. For this 3898 

purpose, the formulation of the positive control includes the addition of a known quantity of 3899 

analyte under test. The presence of positive controls aims to verify that the assay was 3900 

working as intended. 3901 

 3902 

 3903 

Figure 6.1 Protocol adopted for clinical evaluation of the platform. 3904 

 3905 
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Cartridge reuse. Cartridges were cleaned and re-used. Approximately twenty cartridges 3906 

have been used for this set of experiments. Cleaning procedure after every measurement was 3907 

adopted to avoid cross-contamination. Like the experiments performed in diluted serum, the 3908 

cleaning recipe involved subsequent rinse in DI water, IPA, ethanol, and nitrogen blow-dry. 3909 

For the clinical evaluation only, an additional rinsing step with diluted piranha solution was 3910 

used (1:10). Cross-contamination was kept to a minimum by optimising the testing sequence. 3911 

For an individual metabolite, the negative control was first recorded. Then, the colorimetric 3912 

estimation was performed in triplicates, and finally, the measurements for two positive 3913 

controls were carried out.  3914 

Data handling. Tests were performed in triplicates (biological replicates). Since a four-3915 

microchannel cartridge was used, each biological replicate had four readings (technical 3916 

replicates). Data was processed according to the same methods used for diluted serum 3917 

experiments. 3918 

Substrate quantification. The substrate quantification was carried out using two different 3919 

methods. The first method was based on the Michaelis-Menten model and therefore herein 3920 

referred to as ‘model-based estimation’. For this estimation method, Michaelis-Menten 3921 

kinetics parameters extracted during the calibration stage were used to estimate the 3922 

concentration of the analyte of interest according to Michaelis-Menten model - see Eq. (2.4).  3923 

The second method was based on sample-specific control measurements and therefore herein 3924 

referred to as ‘auto-controlled estimation’. In this estimation method, controls were used to 3925 

create a sample-specific calibration. The sample-specific calibration involved the 3926 

determination of (i) baseline and (ii) analytical sensitivity for each sample. The negative 3927 

control was used as a baseline. Let us use rn and rt to indicate the initial reaction rates 3928 

resulting from the negative control and from the actual test, respectively. It was, therefore, 3929 

possible to provide an adjusted initial reaction rate rt* as follows:  3930 

rt
∗ = rt − rn (6.1) 

The sensitivity was estimated using two different positive controls. Herein, positive control 3931 

A and B refer to controls where an additional known substrate concentration [A] and [B], 3932 

respectively, were added to the undiluted sample. The positive controls A and B provided 3933 

the resulting rates ra and rb, respectively. Thus, the additional concentration [A] and [B] and 3934 

the rates ra and rb provided the sample-specific sensitivity of the apparatus according to the 3935 

following formula:  3936 
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S =
rb − ra
[B] − [A]

 with [B] > [A] and rb > ra (6.2) 

A and B were selected so that ra and rb were in the linear range of the apparatus. [A] and [B] 3937 

were chosen by using the calibration curves. The concentration of the analyte under test [T] 3938 

was then estimated using linear regression, as follows: 3939 

[T] =
rt
∗

S
     (6.3) 

Analogously, the sensitivity might also be calculated using the following variants: 3940 

S′ =
rb − rt
[B] − [T]

;  S′′ =
ra − rt
[B] − [T]

 (6.4) 

Typically, S, S’ and S’’ had a similar numerical value. Their average was used for the  3941 

substrate quantification using the auto-controlled method.  3942 

 3943 

6.4.2. Calibration  3944 

A human plasma sample purchased from Sigma Aldrich was modified by adding known 3945 

quantities of analytes of interest. Additional concentration did not consider the unknown 3946 

endogenous level of the substrate of interest in the sample. The endogenous concentration 3947 

was estimated by linearization using the first two points of the characteristic. Thus, 3948 

calibration curves report the total concentration of the substrate in the volume under test. 3949 

Calibration curves for LAA, glutamate, choline and sarcosine in human serum are reported 3950 

in Figure 6.2. The complete characterisation of the platform for the analytes of interest is 3951 

reported in Table 6.3. 3952 

Kinetics constants were estimated by data fitting to the Michaelis-Menten model. Km values 3953 

obtained from the curve for all the metabolites were in line with the values reported in the 3954 

literature [49]. For all the metabolites, fittings to the curve using the Michaelis-Menten 3955 

model were satisfactory with R2 values ≥ 0.97. As in the previous chapter, a subset of the 3956 

collected data was also fitted using a linear model. Linear ranges for the measured 3957 

metabolites were covering the physiological concentration ranges. Average standard 3958 

deviations of the measurement in the linear range were in the span 16% - 20%.  3959 

LOD and LOQ were also quantified over six control biological replicates. Thus, the average 3960 

reaction rate was 0.005±0.0027 mVs-1. Consequently, LOD and LOQ were 0.014 mVs-1 and 3961 

0.032 mVs-1, respectively. LOD and LOQ expressed in mVs-1 were then converted in µM by 3962 

using the estimated Michaelis-Menten for each metabolite. Thus, LOD for LAA, glutamate, 3963 
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choline and sarcosine were 11.1 µM, 1.4 µM, 1.7 µM and 1.4 µM, respectively. Similarly, 3964 

LOQ values for the metabolites in the same order were 25.5 µM, 3.3 µM, 3.9 µM, 3.5 µM. 3965 

LOD and LOQ results demonstrated the suitability of the platform for the measurements in 3966 

the target range.  3967 

 3968 

Table 6.3 Platform characterisation in human plasma for PCa metabolites.  Metrics have 3969 

been defined in Table 2.3.  3970 

 LAA Glutamate Choline Sarcosine 

Physiological Range  1.7 – 4.6 mM 40 – 150 µM  10 – 40 µM  0 – 20 µM 

Test Range 0 – 5.4 mM 0 - 1500 µM 0 – 600 µM 0 – 600 µM 

Relation with PCa ↑ ↑ ↑ ↑ 

Model 𝑦 =  
𝑉𝑚  · 𝑥

𝑘𝑚 + 𝑥 
+ 𝑐 

Vm (mV s-1) 

(95% coefficient bounds) 

3.63  

(2.62, 4.63) 

5.28   

(3.46, 7.10) 

11.34   

(-2.24, 24.93) 

11.03   

(6.97, 15.10) 

c (mV s-1) 

(95% coefficient bounds) 

-0.032   

(-0.280, 0.216) 

-0.087  

 (-0.607, 0.433) 

0.082   

(-0.172, 0.336) 

0.027   

(-0.060, 0.115) 

Km (µM) 

(95% coefficient bounds) 

2866   

(890, 4842) 

529.7   

(1.06, 1058) 

1382   

(-991.1, 3755) 

1209  

 (551.2, 1867) 

SSE 0.022 0.283 0.142 0.020 

RMSE 0.086 0.266 0.169 0.062 

R2 0.994 0.979 0.985 0.998 

Linear Model  Y = S ⋅ x + C 

Linear Range*1 0 - 1500 0 – 320 µM 0 – 120 µM 0 - 120 µM 

Analytitcal Sensitivity (S) 

(mVs-1mM-1) 

(95% coefficient bounds) 

0.83  

(0.824, 0.830) 

6.06  

 (4.08, 8.04) 

9.98 

(6.46, 13.5) 

7.84 

(5.65, 10.03) 

C (mV s-1) 

(95% coefficient bounds) 

0.020 

(0.017, 0.023) 

0.003 

 (-0.317, 0.324) 

0.019   

(-0.177, 0.215) 

0.050 

(-0.059, 0.159) 

SSE (linear) 1.5⋅10-06 0.076 0.054 0.019 

RMSE (linear) 8.6⋅10-04 0.159 0.116 0.070 

R2 (linear) 1.000 0.969 0.939 0.961 

Precision (linear range)2 18.3% 17.2 % 16.4% 19.2% 

Negative control (mV s-1) 3 0.005 ± 0.0027 

LOD (mV s-1) 0.014 

LOQ (mV s-1) 0.032 

LOD (µM)4 11.1 1.4 1.7 1.4 

LOQ (µM)4 25.5 3.3 3.9 3.5 

Resolution (µM)5 3.25 0.45 0.27 0.35 
1 Linear range is defined as the measurement range were the linear model had R2> 0.9. 
2 Calculated as the average of the relative standard deviation of the measurements in the linear range.  
3 Average over 24 measurements.  
4 Converted from mV s-1 to µM using the Michaelis-Menten model. 
5 Calculated as the ratio between the standard deviation of the control measurements and the sensitivity in 

the linear range [58]. 

 3971 



171 

 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 6.2 Calibration curves obtained by fitting data with Michaelis-Menten in the 3972 

extended range (left) and with a linear model (right) for (a)(b) LAA, (c)(d) glutamate, (e)(f) 3973 

choline and (g)(h) sarcosine in human plasma. Concentrations refer to the total reaction 3974 

volume.  3975 
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6.4.3. Blind validation  3976 

Method. A further human plasma sample was purchased from Sigma Aldrich, aliquoted and 3977 

modified with additional amounts of analytes of interest. Modified plasma samples were 3978 

produced by a different member of the MST group, which disclosed the additional 3979 

concentrations only after the testing was completed. Thus, the modified concentration levels 3980 

were unknown while performing the assays. For each blind sample and metabolite, 3981 

measurements were performed in triplicates. Negative control and two positive controls (A 3982 

and B) were also measured. Controls were repeated in triplicates. The additional 3983 

concentrations for positive controls A for LAA, glutamate, choline and sarcosine were 3984 

500 µM, 100 µM, 100 µM, 100 µM, respectively. The additional concentration for the 3985 

positive control B was [B] = 2[A]. The unknown quantity of additional metabolite was 3986 

calculated by performing an additional measurement on the unmodified sample.  3987 

Results. Results are reported in Figure 6.3 and Table 6.4. Relative errors were calculated as 3988 

per definition illustrated in Chapter 2, Paragraph 2.2.5. LAA levels estimated with the auto-3989 

controlled approach had an average relative error of 10%. Data had a high correlation (R2 = 3990 

0.96) with the ideal response, and no relevant bias was observed. A 22.6% error was recorded 3991 

when estimating the same quantities with the approach based on the Michaelis-Menten 3992 

model. The correlation was R2 = 0.96, and a small bias compared to the physiological range 3993 

(620 µM) was observed. 3994 

 Glutamate levels calculated with the auto-controlled method had an average relative error 3995 

of 15.8%. The correlation with the ideal response and the bias of the estimation was 3996 

R2 = 0.92 and 8.63 µM, respectively. When performing the same determination adopting the 3997 

model-based approach, average error, correlation, and bias were 59.6%, R2 = 0.87 3998 

and -113.9 µM, respectively. 3999 

Table 6.4 Characterisation of the blind tests results. 4000 

 LAA Glutamate Choline Sarcosine 

Auto-controlled estimation method 

Average relative error 10.0% 15.8% 18.2% 8.6% 

Correlation coefficient (R2) 0.96 0.92 0.98 0.96 

Bias of the estimation* 0.22 mM 8.63 µM 17.91 µM - 3.65 µM 

Model-based estimation method (Michaelis-Menten) 

Average relative error 22.6 % 59.6% 73.9% 81.4% 

Correlation coefficient 0.96 0.87 0.98 0.96 

Bias of the estimation* 0.62 mM - 113.9 µM -73.61 µM -82.6 µM 

* Calculated as the average of the absolute error.  
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(a) (b) 

  
(c) (d) 

Figure 6.3 Blind validation results when estimating the concentration of the substrate using 4001 

the model-based method (red) and the auto-controlled approach (blue) for (a) LAA, (b) 4002 

glutamate, (c) choline and (d) sarcosine.  4003 

 4004 

For choline, average error, correlation, and bias when using the auto-controlled method were 4005 

18.2%, R2 = 0.98 and 17.91 µM, respectively. When the model-based method was used, the 4006 

average error increased to 73.9%. The correlation remained very high (R2 = 0.98) and the 4007 

bias observed was -73.61 µM. 4008 

For sarcosine, average error, correlation, and bias when using the auto-controlled method 4009 

were 8.6%, R2 = 0.96 and -3.65 µM, respectively. The same quantities were 81.45%, 0.96 4010 

and -82.6 µM when the model based on the Michaelis-Menten equation was used. 4011 

Comparing the two adopted models for substrate quantification, the auto-controlled method 4012 

was more successful in estimating the unknown concentration of analytes for all the 4013 

performed assays.  4014 

Discussion. For LAA, estimation with the auto-controlled and the model-based methods are 4015 

very similar in the linear range. The model-based approach seems to start failing only for 4016 

higher concentrations of LAA. Low sample-to-sample variability was observed for the LAA 4017 
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assay. For glutamate, choline and sarcosine determination, the model-based approach 4018 

provides results with a high correlation with the ideal response. However, they 4019 

systematically provide lower values. Arguably, the sample-to-sample variation was high. 4020 

Specifically, these experiments demonstrate that the calibration curve obtained from one 4021 

human sample might be not satisfactory for a different one. Probably, this is related to the 4022 

composition of the human specimen, which may or may not include molecules interfering 4023 

with the developed assay in several concentrations. This is a common problem for POC 4024 

diagnostics that many variables and specimens can affect the result. On the contrary, for all 4025 

the performed assays, the auto-controlled method provided more reliable results with 4026 

estimation errors which are comparable to the glucose meter devices on the market. The 4027 

increased reliability of the measurement was achieved by using all the controls to calibrate 4028 

the platform on the specific sample. Consequently, the auto-control can compensate for 4029 

several variables, including sample-to-sample variation, cartridge-to-cartridge variation, 4030 

environmental conditions, and ambient interferences. Drawbacks of this approach include 4031 

the need for additional reagents, additional sample volume and further data processing to be 4032 

performed. On this basis, the auto-controlled approach was the adopted approach for clinical 4033 

evaluation.  4034 

 4035 

6.4.4. Clinical evaluation  4036 

Method. Samples from non-PCa and PCa group were tested for the four metabolites of 4037 

interest for PCa diagnosis. The concentration of the metabolites of interest was unknown 4038 

during the experiments. The non-PCa group was tested before the PCa group. Within the 4039 

group, metabolites were measured in the following order: LAA, glutamate, choline, 4040 

sarcosine. For each sample and metabolite, the negative control was first assessed. Then, the 4041 

three biological repeats of the assay were performed. Finally, positive controls A and B were 4042 

performed. The additional concentrations for positive controls A for LAA, glutamate, 4043 

choline and sarcosine were [A] = 500µM, 100µM, 100µM, 100µM, respectively. The 4044 

additional concentration for the positive control B was [B] = 2[A]. To save sample volume, 4045 

the total volume of the reaction was reduced from 60µL to 40µL. The amount of the samples 4046 

and reagents were proportionally reduced by one third. Thus, the total sample volume used 4047 

for each biological replicate was 20 µL. The auto-controlled method was adopted for the 4048 

quantification of the analytes. All the errors are expressed as one standard deviation.  4049 
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Results. Results from the clinical evaluation for both non-PCa and PCa groups are reported 4050 

in Table 6.5. For LAA, the average over the entire dataset, herein referred to as grand 4051 

average, was 2421±952 µM. LAA levels were in the range 1213 - 5421 µM for the entire 4052 

dataset. Non-PCa samples had an LAA average concentration of 1984±527 µM, in the range 4053 

from 1213-3167 µM. PCa samples had, on average, an increased level of LAA. The LAA 4054 

average level in the PCa group was 2694±1052 µM. The range of the measurements in the 4055 

PCa group was 1503-5410 µM. Results obtained were in expected physiological ranges for 4056 

both non-PCa and PCa groups. The ratio between average LAA in the PCa group and the 4057 

non-PCa group was 1.36. The observed average increase in the PCa group was +35.8 %. 4058 

When performing a one-tail t-test with homoscedastic variance, a value of p = 0.03 was 4059 

observed: the increase in the LAA concentration in the PCa group had statistically significant 4060 

variation.  4061 

The grand average glutamate level was 53.7±26.4 µM, with measured values ranging from 4062 

6.3 µM to 149.5 µM. The average non-PCa glutamate level was 40.2±11.2 µM, in the range 4063 

21.9-67.1 µM. PCa samples had, on average, an increased concentration of glutamate. The 4064 

average PCa glutamate concentration was 62.2±29.5 µM. Measurements in the PCa group 4065 

were in the range of 6.3-149.5 µM. Results were compatible with physiological ranges. The 4066 

ratio between average glutamate in the PCa group and the non-PCa group was 1.55. The 4067 

observed average increase in the PCa group was +54.8 %. The glutamate concentration in 4068 

the PCa group had a statistically significant increase (p = 0.02).  4069 

For choline, the grand average of the entire dataset was 11.7±7.0 µM, and the measurements 4070 

were in the range 2.3-36.9 µM. The average non-PCa choline level was 9.0±4.1 µM. The 4071 

range of the non-PCa choline measurements was 2.3-15.4 µM. PCa samples had increased 4072 

concentration of choline, with an average of 13.4±7.9 µM. PCa results for choline were in 4073 

the range of 4.7-36.9 µM. The ratio between average choline in the PCa group and the non-4074 

PCa group was 1.49. The observed average increase in the PCa group was +49.2 %. The t-4075 

test, performed assuming one tail distribution and homoscedastic variance, demonstrated the 4076 

statistically significant difference in the average of the two groups (p = 0.06).  4077 

For sarcosine, clinical evaluation reported a grand average of 10.6±6.0 µM and a range of 4078 

1.7- 27.2 µM. The average non-PCa sarcosine level was 11.5±4.3 µM, and measurements 4079 

were in the range 5.1-18.8 µM. PCa samples had decreased concentration of sarcosine, with 4080 

an average of 10.0±6.8 µM. The range of sarcosine in the PCa group was 1.7-27.2 µM. 4081 

Results were compatible with physiological ranges. The ratio between average choline in the 4082 
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PCa group and the non-PCa group was 0.87. The observed average decrease in the PCa 4083 

group was -13.5 %. The t-test, performed assuming one tail distribution and homoscedastic 4084 

variance, demonstrated that this variation was not statistically significant (p = 0.27).  4085 

Results are presented in Figure 6.4(a) where data has been normalised to the grand average 4086 

of the analyte under test. Figure 6.4(b) shows the difference in the statistics of the two groups 4087 

for the metabolomics panel. LAA, glutamate and choline showed a statistically relevant 4088 

increase in their concentration in the PCa group. Among them, glutamate and choline had, 4089 

respectively, the lowest and the highest p-value. Differently, sarcosine concentration in the 4090 

PCa group was decreased with respect to the control group but differences were not 4091 

considered statistically relevant.  4092 

Figure 6.5 suggests that, when used together, metabolites can potentially identify cancerous 4093 

conditions. Concentrations of LAA, glutamate and choline seem to be capable of dividing 4094 

the two groups in cartesian space. For example, Figure 6.5(b) demonstrate that, for this 4095 

population, it is possible to separate the PCa group from the non-PCa group. Cross-4096 

correlation of the profile of the metabolites is also reported in the figure. There is no relevant 4097 

cross-correlation among different metabolites (highest recorded cross-correlation was 4098 

between LAA and glutamate in the non-PCa group:  R = 0.38). The study suggests that there 4099 

is merit in using the dataset for training a classification model. The research also indicates 4100 

that, for this population, LAA, glutamate and choline could be considered metabolic 4101 

biomarkers for PCa. On the contrary, for this population, sarcosine could not be regarded as 4102 

a metabolic biomarker for PCa. 4103 

  4104 
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Table 6.5 Clinical evaluation results on control (non-PCa) and cancer (PCa) groups. 4105 

Group 
Sample 

ID 

LAA Glutamate Choline Sarcosine 

Avg. µM Std. % Avg. µM Std. % Avg. µM Std. % Avg. µM Std. % 

non-PCa 

 

1 1961 16.2 42.5 16.9 15.4 11.5 15.1 23.5 

2 2493 9.5 67.1 44.7 8.7 34.0 7.5 9.8 

3 1972 29.4 30.7 28.5 2.3 (<LOQ) 78.7 7.0 21.8 

4 3167 10.4 34.2 8.8 10.2 39.9 18.8 38.1 

5 1983 20.8 39.5 14.5 14.8 54.5 7.4 32.2 

6 2187 5.4 47.1 32.0 11.3 36.0 5.1 44.6 

7 1780 15.5 37.6 53.0 3.2 (<LOQ) 32.0 12.4 63.5 

8 1213 13.1 21.9 4.1 9.4 17.5 12.2 45.6 

9 1390 14.4 40.8 8.7 8.4 86.9 13.2 39.5 

10 1693 6.7 40.1 45.0 6.1 9.7 16.4 43.3 

PCa 

11 1736 13.0 75.6 34.9 4.7 10.5 7.7 20.2 

12 2837 6.2 6.3 25.9 19.4 77.2 12.7 33.8 

13 4152 10.2 61.7 91.9 14.3 59.0 22.2 24.1 

14 5410 14.4 62.5 54.2 9.0 18.5 13.6 63.4 

15 4109 5.7 48.7 32.3 16.3 23.6 < 1.4 100.0 

16 3495 15.4 149.5 20.2 12.7 64.8 9.6 16.7 

17 2872 11.7 33.4 17.9 17.2 100.0 5.3 68.5 

18 2528 16.2 33.5 2.3 10.5 72.8 10.2 78.5 

19 1851 18.9 60.3 87.1 8.7 69.5 27.2 63.0 

20 2479 15.2 46.3 13.5 23.5 58.2 < 1.4 100.0 

21 1940 15.3 84.5 47.3 36.9 58.0 4.0 72.4 

22 1789 20.6 73.8 82.8 7.3 35.5 8.0 6.9 

23 2292 13.1 59.4 77.9 9.7 50.2 12.8 41.6 

24 1503 1.0 75.0 13.8 10.2 33.7 11.3 100.0 

25 1947 6.3 68.2 48.3 7.5 39.2 9.6 25.3 

26 2162 6.7 56.0 38.6 6.1 38.8 < 1.4 100.0 

Overall results 

Grand average (µM) 2421 53.7 11.7 10.6 

Grand median (µM) 2072 47.9 10.0 9.9 

Grand std. dev. (µM) 952 26.4 7.0 6.0 

Range (µM) 1213 – 5421 6.3 – 149.5 2.3 – 36.9 1.7 – 27.2 

Avg.envir. Temp. (oC) 27.3 ± 1.0 26.4 ± 1.3 26.3 ± 0.9 25.9 ± 1.2 

Avg.envir hum. (%) 52.6 ± 5.0 49.5 ± 7.8 44.4 ± 9.0 42.2 ± 10.5 

Cross-correlation 

Matrix (R values) 
(

1.00 0.17 0.17 0.05
0.17 1.00 0.08 −0.08
0.17 0.08 1.00 −0.27
0.05 −0.08 −0.27 1.00

) 

non-PCa group 

non-Pca average (µM) 1984 40.2 10.0 11.5 

non-Pca median (µM) 1966 39.8 9.0 12.3 

non-Pca std (µM) 527 11.2 4.1 4.3 

Range (µM) 1213 - 3167 21.9 – 67.1 2.3 – 15.4 5.1 – 18.8 

Cross-correlation 

Matrix (R values) 
(

1.00 0.38 0.17 0.09
0.38 1.00 0.18 −0.32
0.17 0.18 1.00 0.02
0.09 −0.32 0.02 1.00

) 

PCa group 

Pca average  (µM) 2694 62.2 13.4 10.0 

Pca median (µM) 2386 61.0 10.4 9.7 

Pca std. dev. (µM) 1052 29.5 7.9 6.9 

Range (µM) 1503 - 5410 6.3 – 149.5 4.7 - 36.9 1.7 – 27.2 

Cross-correlation 

Matrix (R values) 
(

1.00 −0.02 0.05 0.11
−0.02 1.00 −0.08 0.01
0.05 −0.08 1.00 −0.30
0.11 0.01 −0.30 1.00

) 

Univariate analysis 

Pca/non-Pca (average) 1.36 1.55 1.34 0.87 

Pca/non-Pca (median) 1.21 1.53 1.15 0.79 

t-test (p value) 0.03 0.02 0.06 0.27 



178 

 

 

 

 
       (a) 

 

 
     (b) 

Figure 6.4 (a) Metabolites quantification in non-PCa (samples 1-10) and PCa group 4106 

(samples 11-26). The concentration of the metabolic biomarkers was normalised to the 4107 

grand average. From top to bottom, LAA (red), glutamate (blue), choline (green), sarcosine 4108 

(black) data. (b) Box plots for the non-PCa group vs the PCa group. Blue and red markers 4109 

indicate non-PCa and PCa measurements, respectively. Triangular markers indicate the 4110 

average of the group. Concentrations of LAA, glutamate and choline are statistically 4111 

increased in PCa group. No statistically significant difference was observed for sarcosine.  4112 

0 5 10 15 20 25

Sample ID

0
1
2

0
1
2

0
1
2

0
1
2

N
o
rm

a
lis

e
d
 C

o
n
c
e
n
tr

a
ti
o
n

 

non-PCa PCa

Sarcosine

Choline

Glutamate

LAA



179 

 

 

 

 4113 

xcorr = 1 

 

xcorr = 0.17 

 

xcorr = 0.17 

 

xcorr = 0.05 

 
     (a)      (b)      (c)      (d) 

xcorr = 0.17 

 

xcorr = 1 

 

xcorr = 0.08 

 

xcorr = -0.08 

 
     (e)       (f)      (g)       (h) 

xcorr = 0.17 

 

xcorr = 0.08 

 

xcorr = 1 

 

xcorr = -0.27 

 
      (i)      (j)      (k)       (l) 

xcorr = 0.05 

 

xcorr = -0.08 

 

xcorr = -0.27 

 

xcorr = 1 

 
     (m)      (n)      (o)      (p) 

Figure 6.5 (a)-(p) Scatter plots for all the metabolite combinations. Concentrations are 4114 

normalised to the respective grand average. Blue markers: non-PCa samples. Red markers: 4115 

PCa samples. Cross-correlation values are referred to the overall dataset.  4116 

 4117 
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6.4.5. Validation against standard methods  4118 

Method. LAA, glutamate, choline, and sarcosine concentrations in the non-PCa group were 4119 

independently analysed by Dr Liam Heaney, Lecturer in Bioanalytical Science, School of 4120 

Sport, Exercise and Health Sciences, Loughborough University. Plasma samples were 4121 

shipped under a specific material transfer agreement. All the metabolites were tested using 4122 

commercially available fluorescent plate-based assays following manufacturer instructions 4123 

(product codes: ab65347, ab138883, ab219944, ab65338, Abcam, Cambridge, UK). Choline 4124 

was also analysed by ultra-performance liquid chromatography-tandem mass spectrometry 4125 

(UPLC-MS/MS) using an Acquity liquid chromatography coupled to a Quattro Ultima triple 4126 

quadrupole mass spectrometer (Waters, Wilmslow, UK).  4127 

Results. Results are shown in Figure 6.6. For each sample, metabolite and testing method, 4128 

concentrations were normalised to the group average. All four metabolites had comparable 4129 

results with commercial methods. For this population, the average relative errors of the 4130 

platform when quantifying LAA, glutamate, choline and sarcosine with respect to the 4131 

reference method were 18.5%, 13.81%, 21.37% and 44.4%, respectively. Choline 4132 

comparison, shown in Figure 6.6(e), is particularly interesting because data from the 4133 

developed platform showed higher correlation with MS-MS measurements (R=0.8) rather 4134 

than with data obtained with the commercial fluorescent kit (R=0.5). It is well-known that 4135 

MS-MS provides more accurate results than commercial assay kits. MS-MS analysis for all 4136 

the metabolites was not possible due to limited resources. However, data suggests that 4137 

measurements with the platform might be more accurate than the commercial kit.  4138 

Discussion. There are some factors that might have affected the comparison and should be 4139 

highlighted. Samples tested in the third-party laboratory went through an additional long-4140 

distance shipping process which might have affected the concentration of the metabolites. 4141 

Also, one set of calibration parameters were used for each metabolite using the third-party 4142 

method. Concentrations measured with the developed platform were instead estimated using 4143 

sample-specific calibration parameters. Furthermore, adopted methods used different 4144 

working principles. Authors in [90] warn that serum metabolites measured with different 4145 

approaches might have discrepancies due to chemical interferences and therefore exact 4146 

match is not expected.  4147 

 4148 

 4149 

  4150 
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R = 0.67 

  
    (a)     (b) 

R = 0.83 

  
    (c)      (d) 

R = 0.80 (vs. MS-MS) 

  
     (e)        (f) 

R = 0.67 

  
       (g)        (h) 

Figure 6.6 Normalised metabolite levels measured with this platform compared with  4151 

commercial standard methods for (a),(b) LAA, (c)(d), glutamate, (e)(f) choline (levels were 4152 

measured with fluorescent assay kit used with a benchtop plate reader - solid blue line -  and 4153 

MS-MS - solid black line) and (g)(h) sarcosine.  4154 

0 2 4 6 8 10

Sample ID

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
A

A
 N

o
rm

a
lis

e
d
 C

o
n
c
e
n
tr

a
ti
o
n

This platform

Reference

(Plate-reader)

0.6 0.8 1 1.2 1.4

Reference measurement

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
la

tf
o
rm

 r
e
a
d
in

g

Measurement

Ideal response

0 2 4 6 8 10

Sample ID

0

0.5

1

1.5

2

2.5

G
lu

ta
m

a
te

 N
o
rm

a
lis

e
d
 C

o
n
c
e
n
tr

a
ti
o
n

This platform

Reference

(Plate-reader)

0.6 0.8 1 1.2 1.4 1.6

Reference measurement

0.5

1

1.5

2

2.5

P
la

tf
o
rm

 r
e
a
d
in

g

Measurement

Ideal response

0 2 4 6 8 10

Sample ID

0

0.5

1

1.5

2

2.5

3

C
h
o
lin

e
 N

o
rm

a
lis

e
d
 C

o
n
c
e
n
tr

a
ti
o
n This platform

Reference

(Plate-reader)

Reference

(MS-MS)

0.5 1 1.5

Reference measurement

0

0.5

1

1.5

2

2.5

P
la

tf
o
rm

 r
e
a
d
in

g

Measurement

Ideal response

0 2 4 6 8 10

Sample ID

0

0.5

1

1.5

2

2.5

S
a
rc

o
s
in

e
 N

o
rm

a
lis

e
d
 C

o
n
c
e
n
tr

a
ti
o
n This platform

Reference

(Plate-reader)

0.5 1 1.5

Reference measurement

0.5

1

1.5

2

P
la

tf
o
rm

 r
e
a
d
in

g

Measurement

Ideal response



182 

 

 

 

6.4.6. Classification  4155 

Clinical sensitivity, specificity and accuracy of the platform was quantified by applying 4156 

several well-known classification algorithms to the dataset. The comparison of different 4157 

classification algorithms was performed using a customised Matlab-based script. Matlab 4158 

built-in functions for creating classification models have been used. It was experimentally 4159 

verified that sarcosine data was not relevant for data classification, and therefore it was 4160 

excluded from this analysis.  4161 

Metrics. The following metrics have been adopted: 4162 

• Test outcome is positive/negative if the sample is classified as belonging to the 4163 

PCa/control group. 4164 

• True positives/negatives (TP/TN) are samples correctly classified. 4165 

• False positives (FP) are negative samples wrongly classified as positive.  4166 

• False negatives (FN) are positive samples wrongly classified as negative.  4167 

• Diagnostic (or clinical) sensitivity (Sn), also referred to as true positive rate (TPR), is the 4168 

portion of positive samples correctly classified as positives (see Figure 1.1) [17] [18]. 4169 

• Diagnostic (or clinical) specificity (Sp), also referred to as true negative rate (TNR), is 4170 

the portion of negative samples correctly classified as negatives (see Figure 1.1) [17] [18]. 4171 

• Diagnostic (or clinical) accuracy (Acc.) of the classification is the sum of true positive 4172 

and negatives dived by the entire population (see Figure 1.1) [17].  4173 

• The area under the curve (AUC) is the area under the receiver operating characteristic 4174 

curve (ROC). ROC is a curve created by plotting sensitivity against specificity at various 4175 

threshold settings [17], [309]. The scientific community usually adopts the AUC for 4176 

comparing different classification algorithm [309].  4177 

Methods. Normalised data of LAA, glutamate and choline were used to train several well-4178 

established classification algorithms. Models were trained using a k-fold cross-validation 4179 

approach, which was used to overfitting. In k-fold validation, the dataset was divided into k 4180 

sub-groups. The algorithm was then trained using (k-1) sub-groups. The remaining sub-4181 

group was used for validation. The division in sub-group was random. To avoid variation 4182 

due to the random process of partitioning the dataset, the process was re-iterated for 500 4183 

repetitions where the k sub-groups were randomly re-defined. Considering the population 4184 

size, a k value of 5 was selected.  4185 
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The classifiers were also trained on data processed with the Principal Component Analysis 4186 

(PCA). PCA is a statistical analysis for dimension reduction. It decomposes a dataset with 4187 

N dimension into a new dataset, with the same number of uncorrelated dimensions, called 4188 

components [310]. The components are orthogonal and successively maximise variance 4189 

[310]. The method has been widely used and described in the literature [310]. PCA analysis 4190 

is reported in Figure 6.7. The scores of the PCA analysis are reported in Appendix M.  4191 

Algorithms from four different classification classes were adopted: 4192 

• Decision trees. Decision tree-based algorithms define several flow-chart-like decisions 4193 

to reach an outcome. They can have different degrees of complexity and many structures 4194 

have been proposed in the literature [311]. The more sophisticated algorithm here 4195 

adopted is the random forest algorithm, which groups several decision trees were features 4196 

are randomly selected.  4197 

• Discriminant analysis. Algorithm using discriminant analysis develops a discriminant 4198 

function to distinguish between the classes of interest in the feature space [312].  4199 

• Support Vector Machines (SVMs). SVMs derive the hyperplane that maximises the 4200 

distance between the closest negative and the positives [313]. The points defining the 4201 

borders of the hyperplane are called support vectors. Support vector points are then fitted 4202 

using a kernel function for mathematically define the hyperplane [313]. In this work, 4203 

four different kernel functions have been used, namely linear, quadratic, cubic and 4204 

Gaussian. A detailed theoretical description of the method is reported in [313]. 4205 

 4206 

Figure 6.7 (a),(b),(c) Scatter plots for all the combination of the PCA scores. Blue markers: 4207 

non-PCa scores. Red markers: PCa scores.  4208 

 4209 

   
(a) (b) (c) 
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• k-nearest neighbours (KNN). KNN algorithms use a set of k nearest points in the feature 4210 

space to determine the class of the sample under test using a likelihood approach [314]. 4211 

This class of algorithms can be considered as a voting system based on the closer points 4212 

in the feature space [314]. There are many parameters which can be modified to improve 4213 

the performance of the decision. The main parameters to be considered are the number 4214 

k of nearest point and the type of distance to be used (e.g. Euclidean, correlation, etc.). 4215 

The k nearest point can also be weighted when performing the distance [315]. Additional 4216 

theoretical knowledge about KNN algorithms can be found in the literature [314], [315]. 4217 

Other classifiers and training methods are available. However, it was beyond the scope of 4218 

this work to identify the ultimate method for classifying the population. Thus, only the most 4219 

used algorithms have been trained and validated.  4220 

Results. Results from all the classifiers are reported in Table 6.6. All the classification 4221 

metrics are here reported as the average over 500 iterations. Diagnostic sensitivity and 4222 

specificity were calculated in the point of the ROC curve which was the closest to the ideal 4223 

condition (Sn=Sp=1) [309]. Generally, training the model with the scores of the PCA 4224 

analysis only improved the results for discriminant analysis algorithms.  4225 

The classification algorithm with the highest AUC was the weighted KNN algorithm, with 4226 

an AUC of 0.862. Weighted KNN also showed the highest accuracy: 0.84. The approach 4227 

which showed the highest sensitivity was the Gaussian SVM. In this case, sensitivity was 4228 

0.90. The method performing the highest specificity was the medium KNN algorithm trained 4229 

on PCA scores. In this case, the specificity was 0.83.  4230 

The AUC was here used for selecting the algorithm with the best performance, according to 4231 

standard procedures [309]. Hence, the weighted KNN algorithm was selected as the optimal 4232 

method among the adopted for data classification. Therefore, additional information is here 4233 

provided for the developed weighted KNN algorithm.  4234 

The model was trained using ten neighbours’ samples and evaluating the distance by the 4235 

Euclidean definition. The set of weights followed a squared inverse model. When cross-4236 

validating data with the trained KNN, true positive and the true negative were, on average, 4237 

13.97 and 7.38, respectively. False positive and false negative were, on average, 2.62 and 4238 

2.03. Sensitivity and specificity for this model, as reported in the table, were 0.84 and 0.78, 4239 

respectively. The ROC curve for the KNN model is reported in Figure 6.8.  4240 

 4241 
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Table 6.6 Diagnostic evaluation of the platform using classification and k-fold validation 4242 

for different methods. Bold values highlight the best value obtained within the classification 4243 

group. Values marked with ‘*’ are the best value among all the adopted classification 4244 

methods.  4245 

Method 
PCA disabled PCA enabled 

AUC Acc. Sn Sp AUC Acc. Sn Sp 

 Decision trees 

Fine Tree 0.73 0.80 0.86 0.71 0.73 0.70 0.79 0.54 

Medium Tree 0.74 0.80 0.86 0.72 0.73 0.71 0.80 0.55 

Coarse tree 0.73 0.80 0.86 0.71 0.73 0.70 0.79 0.55 

Boosted tree 0.79 0.81 0.88 0.70 0.79 0.72 0.76 0.66 

Random Forest 0.79 0.81 0.88 0.70 0.79 0.72 0.75 0.68 

 Discriminant analysis algorithms 

Linear 0.76 0.67 0.76 0.53 0.76 0.67 0.76 0.53 

Quadratic 0.75 0.76 0.78 0.73 0.76 0.76 0.78 0.73 

Logistic Regression 0.75 0.70 0.81 0.53 0.76 0.71 0.82 0.54 

 SVMs 

Linear 0.78 0.75 0.87 0.54 0.77 0.73 0.86 0.53 

Quadratic 0.77 0.74 0.72 0.77 0.81 0.75 0.73 0.79 

Cubic 0.74 0.71 0.71 0.73 0.72 0.69 0.65 0.76 

Gaussian  0.82 0.81 0.90* 0.66 0.84 0.79 0.86 0.69 

 KNN algorithms 

Fine  0.78 0.79 0.83 0.73 0.75 0.75 0.77 0.72 

Medium 0.73 0.68 0.66 0.70 0.77 0.69 0.60 0.83* 

Coarse  0.53 0.62 0.25 0.80 0.53 0.62 0.25 0.80 

Cubic 0.77 0.70 0.69 0.73 0.74 0.68 0.61 0.78 

Weighted  0.86* 0.84* 0.84 0.78 0.83 0.81 0.84 0.77 

*Maximum value among all the adopted methods 

 4246 

 4247 

 4248 
Figure 6.8 ROC curve for the weighted KNN algorithm. 4249 
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6.4.7. Discussion 4251 

The clinical study arises a multitude of discussion points. The first consideration to be 4252 

highlighted is that there is merit in using multiple metabolites to create a model for the 4253 

discrimination of PCa. However, the selected metabolites must show a correlation with the 4254 

disease. Sarcosine in plasma did not show relevant correlation with PCa and it was therefore 4255 

concluded that plasma sarcosine was not a metabolic biomarker in this population, 4256 

corroborating the reports in the literature [180]. Differently, LAA, glutamate and choline 4257 

showed significant correlations and were used as features to train a classification model. The 4258 

best classification model here obtained from the AUC viewpoint, was a model based on a 4259 

weighted KNN algorithm. However, there are many other classification approaches which 4260 

might be adopted for this dataset potentially providing improved performance. It is also 4261 

worth stressing that the classification was performed assuming a k-fold validation approach, 4262 

and different results might be achieved with varying values of k. More optimistic results 4263 

were obtained when no validation was performed. However, model training with no 4264 

validation might be affected by overfitting and might not reliable and, as a result, have not 4265 

been reported here. 4266 

Data was also independently analysed by Dr Ronan Daly, data analysis manager at Glasgow 4267 

Polyomics, University of Glasgow. Glasgow Polyomics confirmed the superfluity of 4268 

sarcosine data in the classification and the unnecessity of preliminary PCA analysis and 4269 

verified that there is merit in the selected metabolic biomarkers. Glasgow Polyomics 4270 

suggested the use of a random forest classification algorithm trained using the R packages 4271 

‘randomForest’ and ‘caret’ [316]. The algorithm was set to use 500 trees and try up to three 4272 

metabolites at each split. The model was validated using a leave-p-out cross-validation 4273 

procedure [317], [318]. The resulting cross-validated AUC was 0.8. The ROC showed the 4274 

optimal operational point at a sensitivity of 0.93 and a specificity of 0.70. Glasgow 4275 

Polyomics also suggested an alternative model based on glutamate measurements only, 4276 

which could optimise the sensitivity given a specificity of approximately 0.85.  4277 

It is interesting to compare the diagnostic capability of the selected metabolites with the 4278 

current standard, i.e. PSA testing. Due to ethical reasons, it was not possible to access PSA 4279 

data over the studied population. However, PSA testing has been widely characterised in 4280 

terms of sensitivity and specificity [18]. In clinical practice, PSA sensitivity and specificity 4281 

are 0.32 and 0.87, respectively, for a PSA threshold of 3.1 ng/mL. Sensitivity and specificity 4282 

can be tuned by modifying the PSA cut-off [18], [319]. However, the clinical PSA cut-off is 4283 
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optimised to maximise specificity. This choice is related to the fact that, in order to diagnose 4284 

the highest number of tumours, a relevant number of false positives is acceptable since, in 4285 

these cases, further tests will be in place to confirm or confute the PSA test. Differently, 4286 

people having a false negative result might not immediately undergo further testing, resulting 4287 

in the progression of the disease.  4288 

Based on these considerations, the working point of the classifier can be selected to maintain 4289 

the same specificity level of PSA. Figure 6.9 shows a comparison of the potential working 4290 

points for the classifier of interest, together with the PSA ROC curve obtained from [18].  4291 

The random forest model based on glutamate only has the potential to increase the sensitivity 4292 

of the diagnosis to 0.63 while maintaining the specificity at 0.87. The random forest model 4293 

based on all the metabolic profiles works just as good as PSA testing with a specificity level 4294 

of 0.87. However, this model has the potential to increase the sensitivity to 0.94 when 4295 

reducing the specificity to 0.68. The weighted KNN algorithm has comparable performance 4296 

to the random forest (glutamate only) with specificity 0.86 and sensitivity of 0.64. This 4297 

model also has a working point comparable to the random forest – all metabolites, with 4298 

specificity and sensitivity of 0.68 and 0.95. A trade-off between the two points can also be 4299 

selected, with specificity of 0.78 and specificity of 0.81.  4300 

 4301 

 4302 
Figure 6.9. Comparison of different ROC curves. Weighted KNN ROC, trained and validated 4303 

using a k-fold validation approach within this PhD research work, is shown in blue. Random 4304 

forest algorithms using all the metabolites ana glutamate only, trained and validated by 4305 

Glasgow Polyomics, are shown in red and black, respectively. PSA ROC obtained from [18] 4306 

is shown in green.  4307 
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The weighted KNN algorithm contained both the optimised working points from the random 4308 

forest algorithms and therefore it was selected as the final choice in this analysis. Within this 4309 

algorithm, the working point (0.86, 0.64) is suggested for a real-life scenario. This working 4310 

point improves the performance of the current clinical standard by doubling the sensitivity 4311 

when maintaining the same specificity.  4312 

It might be argued that medications might have affected the concentration of the metabolites. 4313 

It was experimentally verified that, for this population,the treatment did not influence the 4314 

concentration of the metabolites under test. To do this, the PCa group was divided in sub-4315 

groups, according to the ongoing treatment. No statistically relevant correlation was 4316 

identified in the subgroups.  4317 

The proposed metabolic biomarker panel was based on literature review and discussion with 4318 

PCa clinician experts. However, the metabolic panel can be potentially improved by 4319 

including additional or different metabolites. Regardless, it is out of the scope of this work 4320 

to identify the best metabolic panel for PCa, which remains an open medical question. 4321 

Differently, this study aimed to stress that such a platform can assay the metabolites with 4322 

accuracy suitable for the determination of pathological conditions. These findings are 4323 

particularly promising if both diagnostic approaches based on PSA and metabolomics are 4324 

combined.  4325 

In summary, the results from the PCa clinical evaluation reported promising development 4326 

after comparison with the current clinical standard. However, certain limitations of the study 4327 

may not allow generalising the findings at this stage. Considering the finite set of metabolite 4328 

biomarkers, the platform demonstrated its potential for the quantification of multiple 4329 

metabolites with accuracy suitable for diagnostically relevant information.  4330 

 4331 

  Ischemic Stroke Clinical Evaluation  4332 

A clinical evaluation to perform lactate assay on-chip for ischemic stroke stratification was 4333 

performed on ten plasma samples from patients which had been affected by an ischaemic 4334 

stroke event. Target analytes were lactate and creatinine. However, the volume of the clinical 4335 

sample obtained was not enough for performing both the assays. Thus, only lactate 4336 

determination was performed. Results from the clinical evaluation were compared with the 4337 

results obtained from conventional gold standard measurements used in the National Health 4338 

Service (NHS) laboratories.  4339 
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6.5.1. Materials and Methods 4340 

Reagents. Reagents were purchased from Sigma Aldrich. Formulations were optimised 4341 

using a trial-and-error approach. To save sample volume and avoid platform saturation, 4342 

stroke samples were diluted with DI water (ratio 1:4). Calibrators were also used in diluted 4343 

form. Dilution factors were numerically compensated in the data-analysis stage. 4344 

Environmental temperature and humidity were also monitored. Table 6.7 summarises the 4345 

formulations for ischemic stroke clinical evaluation.  4346 

Clinical samples. Ten samples of human plasma from people diagnosed with ischemic 4347 

stroke were sourced from the Queen Elizabeth University Hospital, Glasgow, UK, under 4348 

ethical approval, thanks to the collaboration with Dr Samadhan B. Patil, lecturer in medical 4349 

engineering at the University of York, and Prof Jessie Dawson, professor of stroke medicine 4350 

and consultant stroke physician at the Queen Elizabeth Hospital, Glasgow. Donors were 4351 

adults recently diagnosed ischemic stroke. The approximate available volume, for each 4352 

sample, was 100 µL. A numeric sample IDs from 1 to 10 was randomly assigned to each 4353 

sample. Calibration samples (calibrators) were sourced from the Institute of Cardiovascular 4354 

and Medical Sciences, University of Glasgow. Calibrators were used in diluted form. The 4355 

protocol for sample collection is reported in Appendix L.  4356 

Procedure. The setup used for lactate clinical evaluation was the same as the one used for 4357 

cancer clinical evaluation. Similarly, reagents were mixed with the sample off-chip and 4358 

immediately introduced into the cartridge in a few seconds. Metabolites were tested 4359 

individually, using cartridges with four microchannels. The adopted protocol is the same as 4360 

the one illustrated for PCa and previously shown in Figure 6.1. 4361 

Table 6.7 Assay formulation for ischemic stroke clinical evaluation. 4362 

 Lactate  

Cartridge 4 parallel and identical microchannel (h ~ 290 µm) 

Microchannel volume 0.348 µL 

Light source LED @ 490nm (3 mW, FWHM = 20 nm) 

Total Volume 60 µL 

Sample Volume 6 µL 

DI water 24 µL 

Reagent mix volume 30 µL 

Reagent buffer DI water  

1st reaction stage 10µL LaOx 10 U/ml 

2nd reaction stage 

10µL HRP 300U/ml 

5µL Phenol 44.5mM 

5µL 4AAP  10.5mM 

Negative control 1st reaction stage was substituted with 10µL of DI water 

Positive control The sample was spiked with a known concentration of analyte of interest 
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Data handling. Each measurement had four independent repeats. Measurements were 4363 

performed in biological triplicates, each composed of four technical replicates.  4364 

Cartridge reuse. Cartridges were cleaned and re-used using the same procedure used during 4365 

cancer clinical evaluation. Two cartridges were used for this experiment.  4366 

Substrate quantification. Lactate is routinely measured in the clinical environment. Thus, 4367 

a similar clinical protocol was adopted in this project, which can be divided into two stages: 4368 

calibration and testing. In the clinical environment, calibration is performed every day. The 4369 

calibration procedures consist of testing two commercial calibration solutions with known 4370 

concentrations of lactate, x1 and x2. Let us refer with y1 and y2 to the output of the equipment 4371 

when testing the calibrators. The points on a Cartesian coordinates system (x1, y1) and (x2, 4372 

y2) identify a calibration line, which is usually obtained by a linear fit of the calibrator 4373 

outputs. After calibration, samples were tested in triplicates. Substrate concentration was 4374 

determined by comparing the output with the calibration curve.  4375 

 4376 

6.5.2. Calibration 4377 

Method. Calibration was performed using two commercial calibrator solutions. The 4378 

concentrations of lactate in the calibrators were 440 µM and 2070 µM. Calibrators were also 4379 

used in diluted form.  4380 

Results. Table 6.8 summarises the results of the calibration stage. Figure 6.10(a) shows data 4381 

from a microchannel for both the calibration solutions. The average initial reaction rates over 4382 

the biological triplicates were used to determine a linear calibration curve. The 2-points 4383 

calibration curve is presented in Figure 6.10(b). The concentration reported in the calibration 4384 

curve is the lactate level after dilution. Dilution impact was subsequently compensated using 4385 

the appropriate dilution factor. The calibration curve showed a sensitivity of 6.302 mVs-4386 

1mM-1 and a baseline of 0.1484 mVs-1. Results are summarised in Figure 6.10. The values 4387 

obtained for LOD and LOQ during the PCa clinical evaluation can be assumed to be valid 4388 

also for lactate evaluation. This is a conservative assumption since experiments in diluted 4389 

samples are more likely to provide lower LOD and LOQ. LOD and LOQ were adjusted 4390 

according to the dilution factor and therefore refer to the undiluted sample. LOD and LOQ 4391 

were 206.0 µM and 229.0 µM, respectively.  4392 

 4393 

 4394 
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Table 6.8  Platform Characterisation in human plasma for ischemic stroke metabolites. 4395 

Metrics have been defined in Table 2.3.  4396 

 Lactate  

Physiological Range 300 - 2000 

Relation with stroke ↑ 

Linear Model Y= S ⋅ x + C  

Dilution factor  8 

Analytical Sensitivity (S) (mV s-1 mM-1) 6.302 

C (mV s-1) 0.1484 

Negative control (mV s-1) 1 0.005 ± 0.0027 

LOD (mV s-1) 0.014 

LOQ (mV s-1) 0.032 

LOD (µM) 2 206.0 µM 

LOQ (µM) 2 229.0 µM 

Resolution (µM)3 3.44 µM 

1 From the PCa measurements. The composition of the control measurement remains the same. 
2 Converted using the linear model presented in this table. LOD and LOQ were adjusted according to the 

dilution factor therefore refer to the undiluted sample.  
3  Calculated as the ratio between the standard deviation of the control measurements and the sensitivity in 

the linear range [58]. The resolution was adjusted according to the dilution factor therefore refers to the 

undiluted sample.  

 4397 

  
       (a)       (b) 

Figure 6.10 Calibration data. (a) Output signals from single microchannels for calibrator 1 4398 

and calibrator 2. (b) Linear calibration curve resulting from the 2-points calibration 4399 

procedure. 4400 

 4401 

 4402 

 4403 

 4404 
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6.5.3. Clinical evaluation  4405 

Method. Lactate plasma level of the ischemic stroke samples was assessed using the 4406 

developed platform. Lactate plasma levels in the samples were known during the 4407 

experiments.  4408 

Results. Results are shown in Table 6.9. Concentrations were in the range of 0.40 – 2.52 4409 

mM. The average standard deviation of the measurements was 11.15%. Data normalised to 4410 

the average is represented in Figure 6.11. 4411 

 4412 

Table 6.9 Clinical evaluation results on ischemic stroke group. 4413 

Group Sample ID 
Lactate 

Avg. mM Std. % 

Stroke 

 

1 1.86 7.23 

2 1.73 7.69 

3 1.42 12.38 

4 1.01 10.37 

5 0.40 11.13 

6 1.36 13.27 

7 1.54 14.40 

8 1.07 17.45 

9 2.52 7.51 

10 1.11 10.07 

Ischemic stroke group 

average (mM) 1.40 

median (mM) 1.39 

std. dev. (mM) 0.54 

Range (mM) 0.40 – 2.52 

Avg. environmental. Temp. (oC) 24.7 ± 0.4 

Avg. environmental humidity (%) 34.7 ± 2 

 4414 

 4415 

 4416 
Figure 6.11 Normalised lactate concentrations for ischemic stroke samples 4417 
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6.5.4. Validation against standard method 4418 

Method. Samples were independently tested in the Institute of Cardiovascular and Medical 4419 

Sciences, University of Glasgow, routinely used by NHS, by trained personnel. These 4420 

measurements were performed using the Cobas C 311 analyser form Roche Hitachi. The 4421 

analyser was calibrated with a 2-points linear approach, using the same calibrator solutions. 4422 

Both normalised datasets have been overlapped in Figure 6.12(a).  4423 

Results. The average lactate concentration determined with the gold standard measurement 4424 

was 1.45 mM ± 0.39 mM. When comparing the average of the group obtained with both the 4425 

methods, an average error of 50 µM was observed. The standard deviation of the 4426 

measurements performed with the developed platform was 150 µM. When comparing the 4427 

two datasets normalised to the respective average, a correlation coefficient R = 0.77 was 4428 

observed.  For this population, the average relative error of the platform when quantifying 4429 

lactate with respect to the reference method was 27.8%.  4430 

A linear fitting was performed using the obtained measurement. The linear fit of the platform 4431 

is compared to the ideal response in Figure 6.12(b). The correlation between the linear fitting 4432 

of the platform measurements and the ideal response was R2 > 0.98.  4433 

 4434 

Figure 6.12 (a) Normalised gold standard measurement (blue) overlapped to the normalised 4435 

measurements performed with the proposed platform (red) for lactate levels. (b) Platform 4436 

response (red) compared to ideal response (blue).  4437 

 4438 

 4439 

  
              (a)             (b) 
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6.5.5. Discussion  4440 

Clinical evaluation of ischemic stroke samples underlined the ability of the handheld setup 4441 

to perform the measurements of a clinical biomarker with performance comparable to 4442 

established practice. The handheld platform provided comparable values highlighting its 4443 

potential for its use in resource-limited settings. The device used in the gold standard 4444 

laboratory-based method (Cobas C 311 analyser from Roche Hitachi) is bulky (width: 1338 4445 

mm, depth: 855 mm, height: 1262 mm), heavy (weight: 270 kg), requires to be connected to 4446 

the electric grid (230/400 Volts AC 50 Hz) and can only be operated by trained personnel 4447 

[320]. Laboratory-centric systems also require patient admission into the hospital, sample 4448 

collection, sample testing, result production and communication. These steps inevitably need 4449 

additional time which might be not affordable in situations when the timing is crucial.  4450 

Differently, the platform has the potential to allow on-the-spot patient stratification in 4451 

minutes. Thus, the precision and accuracy of the test might be de-prioritised, in favour of 4452 

readiness of the result. Arguably, there are lactate meters already in the market, which could 4453 

provide similar results. However, devices on the market only enable the determination of a 4454 

single metabolite. This platform can be scaled for the determination of additional markers, 4455 

like in the PCa clinical evaluation. Unfortunately, due to the small available volume, it was 4456 

not possible to perform additional measurements for other metabolites. However, there is 4457 

potential merit in using a panel of markers also for the stroke patients at the risk of other 4458 

complications such as multiple organ failure. As previously mentioned, creatinine is another 4459 

biomarker routinely used to monitor organ functions in ICU. Availability of data on a larger 4460 

marker panel would enable comprehensive analysis of the patients at the higher risk of 4461 

mortality. Clinical evaluation of ischemic stroke samples also has some of the limitations 4462 

already outlined for PCa, including the lack of detailed information about the samples and 4463 

the small size of the population.  4464 

  4465 
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  Multiplexed Assay with Clinical Samples 4466 

Multiplexed assays were performed on two clinical samples from the prostate cancer study.  4467 

This study aimed at demonstrating that the platform can perform simultaneous quantification 4468 

of the proposed biomarker panel.  4469 

Materials and methods. Reagents were preloaded into the microchannels. Since sarcosine 4470 

has been observed not to be a potential biomarker in the analysed population, it was omitted 4471 

from the simultaneous assays. Instead of sarcosine, the remaining channel was used as a 4472 

common negative control. The microchannels were functionalised in the following order 4473 

from left to right: control, choline, glutamate, LAA. This sequence was selected to reduce 4474 

any potential cross-contamination with other measurements. While the control channel was 4475 

susceptible to crosstalk, LAA channel was expected to produce the highest absorbance drop. 4476 

Thus, they were confined to the sides of the cartridge. Choline was expected to provide a 4477 

lower absorbance drop than glutamate, so it was more suitable to be tested adjacently to the 4478 

control. Four different solutions were prepared for drying into the microchannels for (i) 4479 

negative control, (ii) choline assay, (iii) glutamate assay, (iv) LAA assay. The protocol for 4480 

solution preparation is reported in Appendix I. 1 µL of each solution was deposited in the 4481 

respective microchannel. The deposition was achieved by manual pipetting, but printing 4482 

would have also been suitable. After the deposition of the solution, the cartridge was dried 4483 

for 1 hour at room temperature in a vacuum chamber. Dried reagents slightly increased the 4484 

light absorbance of the platform in the steady-state. Consequently, the intensity of the light 4485 

produced by the LED was increased to keep the platform in its operating point.  4486 

Cartridges were used immediately after the drying step. 15 µL of clinically sourced human 4487 

plasma samples were introduced into the cartridge with preloaded reagents without any 4488 

further dilution step. Experiments were conducted in duplicates.  4489 

Results. Figure 6.13 demonstrates that the platform was suitable for measuring multiple 4490 

metabolites simultaneously. Figure 6.13(a) and (c) show average data from each channel 4491 

after processing. Figure 6.13(b) and (d) reports the average initial reaction rates calculated 4492 

in each channel for the two samples under test.  4493 

As already discussed in Paragraph 5.5.1, it is not possible to directly compare the rates 4494 

obtained with dried reagents with the one obtained with reagents in solution due to different 4495 

working conditions. However, dried assays had high correlation with the results obtained in 4496 

the clinical testing for all the metabolites and all the replicates (R2 > 0.91). When comparing 4497 
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rates normalised to the negative control from sample 3 (non-PCa group) with sample 15 4498 

(PCa group) for respective metabolites, rates were consistently higher for the PCa sample, 4499 

corroborating data obtained during the clinical evaluation.  4500 

Discussion. The experiments demonstrated that the platform is suitable for multi-metabolite 4501 

testing with preloaded reagents. Expectedly, higher variability was observed due to the 4502 

reasons discussed in Paragraph 5.5.1. It is worth noticing that the estimation of the potential 4503 

metabolic biomarker for PCa clinical evaluation was performed using positive and negative 4504 

controls. Here, only a model-based substrate estimation can be achieved. An example of on-4505 

chip positive controls is presented in  Figure 6.13(e). Channel 1 was functionalised for the 4506 

negative control, as described above with the substitution of HRP 10 µL by DI water. The 4507 

remaining channels were functionalised for LAA positive control using a solution obtained 4508 

by mixing 6 µL of 25 mM LAA substrate, 4 µL of DI water, 10 µL of 150 U/mL HRP, 5 µL 4509 

of 44.5 mM phenol and 5 µL of 10.5 mM 4AAP (total LAA concentration: 5 mM). 15 µL 4510 

of human plasma was mixed off-chip with 10 µL of LAA (4 U/mL) and immediately 4511 

introduced into the platform. Figure 6.13(e) demonstrates that the platform can perform 4512 

positive controls to extrapolate sample-specific calibration. As expected, the lowest rate was 4513 

detected for the channel functionalised for negative control. The remaining channels 4514 

recorded a considerably high rate due to LAA substrate dried into the microchannels. 4515 

  4516 
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             (a)            (b) 

  
                 (c)              (d) 

 
(e) 

  

Figure 6.13 Simultaneous testing of PCa-related metabolites in clinical samples. (a) Output 4517 

signals from each of the microchannel for sample 3 (non-PCa group). (b) Initial rate 4518 

calculations in each of the microchannel for sample 3 (non -PCa group). (c) Output signals 4519 

from each of the microchannel for sample 15 (PCa group). (d) Initial rate calculations in 4520 

each of the microchannel for sample 15 (PCa group). (e) Simultaneous control 4521 

measurements for LAA assay. Ch. 1 is functionalised for negative control. Ch. 3-4 are 4522 

functionalised for positive control with known quantity of preloaded substrate.  4523 
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  Summary of the Chapter  4525 

• The platform was evaluated using clinical samples for both PCa and ischemic stroke 4526 

aiming to quantify both clinical and analytical performance (see Table 6.10).  4527 

• For PCa, LAA, glutamate, choline and sarcosine were first quantified in undiluted human 4528 

plasma for calibration and validation. Afterwards, the platform was used for the 4529 

quantification of the metabolites panel over 10 healthy men and 16 patients affected by 4530 

PCa. Measurements, which had comparable value with respect to commercially available 4531 

methods, showed increased levels of LAA, glutamate and choline in the PCa group. 4532 

Metabolic profiles were then used to train a weighted KNN algorithm with k-fold 4533 

validation which scored AUC = 0.862. With the same specificity (around 0.86), the 4534 

classifier had higher sensitivity than PSA in this population (0.64 vs 0.32). The 4535 

sensitivity of the weighted KNN algorithm could also be increased to 0.95 when 4536 

specificity was reduced to 0.68. Based on the PCa clinical evaluation, the platform 4537 

demonstrated to potentially be capable of providing metabolic information with 4538 

precision suitable to improve the current clinical standard and address the need for new 4539 

and complementary diagnostic tools.  4540 

• For ischemic stroke, lactate was quantified in diluted human plasma from 10 subjects 4541 

affected by an ischemic stroke. Results were compared with lactate levels measured by 4542 

NHS after admission in the hospital. Measurements with the platform were in the range 4543 

0.4 – 2.52 mM and were comparable with the gold reference (R = 0.77). Gold reference 4544 

measurements were acquired with bulky and expensive equipment. Based on the 4545 

ischemic stroke clinical evaluation, the platform demonstrated to be potentially suitable 4546 

for rapid and on-the-spot testing in acute medical events. 4547 

• Multi-metabolite testing was demonstrated using two clinical samples, respectively from 4548 

the non-PCa and PCa groups. The four channels of the platform were functionalised with 4549 

different reagents allowing to measure, at the same time, negative control, LAA, 4550 

glutamate and choline. Output signals were consistent with measurements performed 4551 

without lyophilising the reagents (R2 > 0.91). 4552 

 4553 

 4554 

 4555 

 4556 
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Table 6.10 Performance of the platform in clinically sourced human plasma. 4557 

Criterion This Platform Reference 

Diagnostic performance for prostate Cancer 

Approach  

LAA, glutamate, choline 

4 microchannels on CMOS 

Microchannel height ~ 290 µm 

PSA is clinically used for PCa 

diagnosis and typically measured with 

laboratory equipment. 

Sensitivity/Specificity  0.95/0.68 or1 0.64/0.86 0.32/0.86 [18] 

Diagnostic performance for Ischemic stroke 

Approach  

Lactate  

4 microchannels on CMOS 

Microchannel height ~ 290 µm 

Lactate is clinically used for ischemic 

stroke stratification and typically 

measured with laboratory equipment 

(e.g., Cobas C 311 analyser).  

Sensitivity/Specificity  
The same biomarker was used. Therefore, clinical capabilities depend on the 

analytical performance of the platform.  

Analytical performance 

Relative error of the 

measurements 

LAA: 18.5%2 

Glutamate: 13.81%2 

Choline: 21.37%3 

Sarcosine: 44.4%2 

Lactate: 27.8%4 

Glucose meters: <15% [16] 

Lactate meter: < 13 % [321] 

LOD  

LAA: 11.1 µM 

Glutamate: 1.4 µM 

Choline: 1.7 µM 

Sarcosine: 1.4 µM 

Lactate: 206.0 µM 

Physiological ranges: 

LAA: 1.7 – 4.6 mM  

Glutamate: 40 – 150 µM 

Choline: 10 – 40 µM 

Sarcosine: 0 – 20 µM  

Lactate: 300 - 2000 µM 

Resolution 

LAA: 3.25 µM 

Glutamate: 0.45 µM 

Choline: 0.27 µM 

Sarcosine: 0.35 µM 

Lactate: 3.44 µM   

Glucose meters: ~ 50 µM [322] 

Lactate meter: ~ 100 µM [323] 

Sample volume 20 µL 
Glucose meters: < 20 µL [16] 

Lactate meters: < 100 µL [324] 

Test duration 2 - 5 min 
Glucose meters: < 30s [16] 

Lactate meters: < 5 min [324] 

Portability Handheld 

- Measurements for PCa and ischemic 

stroke are typically performed in a 

laboratory.  

- Other commercial POC devices (i.e. 

glucose and lactate meters) are 

handheld [16].  

Multi-analyte 

capabilities 

- 6 metabolites in diluted serum and 5 

metabolites in human plasma were 

demonstrated.   

- 4 simultaneous assays were 

demonstrated. 

- The platform was used for 2 

different applications.  

- The platform can supports further 

modalities (e.g. ISFET)  

- Most of the POC devices on the 

market have single metabolite 

capabilities.  

- A small number of POC devices on 

the market have multi-metabolite 

capabilities (e.g. i-stat) [16].  

1 Different operating selected from the ROC can be used. 
2 Average value vs. fluorescent plate-based assays. 
3 Average value vs. ultra-performance liquid chromatography-tandem mass spectrometry. 
4 Average value vs. Cobas C 311 analyser (NHS equipment) 
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7 Chapter 7: Conclusion 4558 

7.1.  Introduction 4559 

Metabolomics POC platforms have vast unexplored potential in modern society. POC testing 4560 

aims at a different healthcare model which diverges from the classic laboratory-based 4561 

approach and favours portable, rapid, on-the-spot, and low-cost testing.  4562 

This thesis illustrated the development of a POC platform used for the diagnosis of PCa and 4563 

ischemic stroke using candidate metabolic biomarkers. The main achievements of this PhD 4564 

research project are: 4565 

• The understanding of the CMOS sensor array chip designed and manufactured within 4566 

the ‘Multicorder project’. The chip was employed as the sensing unit in this project.  4567 

• The development of a cartridge, which integrated on the same ceramic package the 4568 

CMOS chip, passive microfluidics, and biological reagents. Specifically: 4569 

o A novel method for integrating microfluidics on the CMOS chip was conceived, 4570 

developed, and tested.  4571 

o  A versatile method for bioreagents preloading, based on lyophilisation, was 4572 

developed and tested on the chip. 4573 

o A packaging procedure enabling the use of the cartridge in an aqueous environment 4574 

was developed and tested.  4575 

• The development of a reader and a GUI for interfacing with the cartridge.  4576 

• The characterisation of all the units composing the POC platform: the sensor array, the 4577 

microfluidics, the bioreagents, the reader and the GUI.  4578 

• The identification of two case-studies, namely PCa and ischemic stroke. Six potential 4579 

metabolic biomarkers to identify these conditions were selected: LAA, glutamate, 4580 

choline, sarcosine (for PCa), lactate and creatinine (for ischemic stroke). 4581 

• The development of colorimetric enzymatic assays for the on-chip quantification of the 4582 

selected metabolic biomarkers.  4583 

• The characterisation of the platform for the quantification of all the six metabolites in 4584 

diluted human plasma.  4585 

• The development of a scalable strategy for on-chip preloading of reagents involving the 4586 

use of inkjet printing and lyophilisation.  4587 
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• The demonstration of the potential use of the platform for simultaneous multi-metabolite 4588 

testing achieved by preloading different reagents in different microfluidic channels on 4589 

the same chip.  4590 

• The demonstration of alternative platform configurations, involving the use of paper 4591 

microfluidics and on-chip sample processing.  4592 

• The clinical evaluation of the platform for PCa diagnosis on a population composed of 4593 

10 healthy samples and 16 men diagnosed with PCa. 4594 

•  The clinical evaluation of the platform for ischemic stroke stratification on a population 4595 

composed of 10 samples from patients affected by ischemic stroke. 4596 

• The demonstration of multi-analyte capabilities with clinically sourced human plasma.  4597 

The rest of this chapter discusses the main limitations of this research and presents some 4598 

potential future works. 4599 

 4600 

7.2.  Limitations and Future Works 4601 

The limitations of this research project can be grouped into two categories: (i) limitations of 4602 

the platform and (ii) limitations of the clinical studies. Accordingly, the research work has 4603 

the potential for improvement in term of the electronic platform used as well as the biological 4604 

experiments. Future works are here proposed for mitigating the effects of the limitations 4605 

identified.  4606 

 4607 

7.2.1. Technology limitations and future works  4608 

The limitations of the platform from a technology point of view and future works to mitigate 4609 

their effects are discussed here.  4610 

CMOS chip limitations. The CMOS chip had a limited number of sensors. The geometry 4611 

of the sensing platform, especially considering the position of the pads used for wire-bonds, 4612 

limited the number of microchannels and the layout of the microfluidics. The CMOS chip 4613 

had no embedded temperature sensor. The temperature of the sample is a relevant variable 4614 

potentially affecting reagents activity. The design of a new CMOS chip integrating a larger 4615 

sensor array and minimising the use of bonding pads (e.g. using serialised solutions) could 4616 

be used to improve the accuracy of the measurement and/or increase the number of tests 4617 

simultaneously performed on-chip. The integration of an on-chip temperature sensor to 4618 

monitor the temperature of the sample within the microstructure has the potential to enable 4619 
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strategies to compensate for temperature-related effects. The availability of a large area, for 4620 

example by wire-bonding the CMOS chip to a PCB or the use of a different package, 4621 

alongside with the planarization, can allow the implementation of more sophisticated 4622 

microfluidic networks. The optimisation of the GUI, especially by developing software for 4623 

all the major operative systems, would enable the sample-to-answer test with no user 4624 

interaction. The use of wireless technologies, together with miniaturisation strategies, has 4625 

the potential to improve the user-friendliness of the apparatus.  4626 

Assay formualtions. The formulation of the colorimetric assays did not satisfactorily 4627 

investigate the use of cofactors, inhibitors, and stabiliser agents. The lyophilisation process 4628 

was a disruptive process for the CMOS chip, which became unresponsive after a few 4629 

processing cycles. This was a limitation for the reuse of the cartridges since the number of 4630 

available chips was limited.  4631 

Additional works regarding the optimisation of the formulations and aiming to improve the 4632 

shelf life of the reagents as well as the accuracy and precision of the platform are encouraged. 4633 

A potential compensation strategy can, for example, employ the Arrhenius’ law [325], [326]. 4634 

This model could be used to estimate the loss of activity of the reagents due to storage time 4635 

and condition and numerical compensation of the measured rate. The optimisation of the 4636 

formulations used for colorimetric assays can be optimised to enhance stability, reliability, 4637 

and sensitivity of the test. The use of cofactors and inhibitors, for instance, can be used to 4638 

reduce sample-to-sample variability. The use of stabiliser agents can improve the shelf life 4639 

of the reagents preloaded on the chip.  4640 

Sample pre-processing. The platform was mainly tested with processed samples. Although 4641 

a feasibility study was demonstrated, further optimisation of the platform is required to 4642 

reliably use unprocessed samples. A more elaborated microfluidics’ network, integrating, 4643 

for example, capillary pumps or gratings, can be necessary to develop a reliable strategy for 4644 

on-chip blood filtration [327]. Finger-powered pumps can also be a viable solution [328]. 4645 

The use of different H2O2 colorimetric dyes, working at a different wavelength, can also be 4646 

a successful strategy for quantifying metabolites in unprocessed blood. AmplitieTM, for 4647 

instance, is a H2O2 colorimetric probe working at 650 nm and therefore should minimise the 4648 

optical interference of whole blood. 4649 

Target analytes. The class of analytes which measured with the platform was limited to 4650 

substrates which can be converted into H2O2 using specific enzymatic reactions. 4651 
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Future work is also suggested to investigate other capabilities embedded onto the CMOS 4652 

chip. Other researchers of the MST group are parallelly working using different integrated 4653 

capabilities developed during the Multicorder project, including amperometry [45], 4654 

fluorescent sensing [86], SPR [85] and pH sensing [85], [243], [251]. The combination of 4655 

the findings has the potential to lead the way to multi-sensing POC platform [85]. The use 4656 

of different sensing capability can also widen the class of analytes that can be quantified 4657 

with the developed platform. 4658 

Affordability of the platform. In Table 2.11 maximum costs for reader and cartridge were 4659 

set to £5200 and £10 – respectively – after comparison with POC platforms on the market. 4660 

The reader can be manufactured at a cost largely lower than the requirement. The use of 4661 

affordable off-the-shelf components and a simple custom PCB yield to an estimate price in 4662 

the order of hundred pounds. However, the target cost of the cartridge was not met in this 4663 

PhD work because cartridges were not produced in high-volume. This raises the question if 4664 

the cartridge can meet the requirement when mass-produced.  4665 

Fabrication costs for the cartridge can be divided into 4 addends: (1) CMOS chip, (2) fluidics 4666 

and packaging, (3) functionalization and (4) human work and instrumentation costs.  4667 

1. When mass-produced, the cost of CMOS technology can be dramatically reduced. Texas 4668 

Instruments estimates that the cost per die for CMOS 0.35 μm technology can be as low 4669 

as 2.7 £/cm2 [329]. Considering the area of CMOS chip used in this work (12.24 mm2), 4670 

each CMOS chip would cost approximately £0.33 if mass-produced.  4671 

2. The chip could be packed onto a PCB slot (1x2 cm) rather than on a ceramic package. 4672 

Such a PCB slot would cost approximately £0.1 each. For the fabrication of the fluidics, 4673 

a SU-8 fabricated onto a 6-inch wafer would cost about £100. However, this would be 4674 

allocating around 135 patterns which can be re-used at least 10 times. This results in 4675 

£0.08 per pattern. SU-8 mould is used to fabricate a PDMS microstructure. Considering 4676 

the cost of PDMS on the market (1.1 kg = £170) we estimate that each PDMS pattern 4677 

would cost £0.04 per cartridge. Finally, epoxy (302-3M 1LB by Epoxy Technology Inc.) 4678 

was used for the final microstructure and encapsulation. The estimated cost for epoxy is 4679 

£0.1 per cartridge. In summary, the total cost for fluidics and packaging is estimated to 4680 

be around £0.32 per cartridge.  4681 

3. Functionalization costs depend on the assay to be performed. The worst-case scenario is 4682 

a choline assay, where 1 kU of ChOx costs £703 from Sigma. For 1 test, 1 µl of reaction 4683 

solution with 200 U/ml of ChOx was used. This yield to approximately £0.2 per test. If 4684 
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4 tests are run on the same cartridge, reagents for functionalisation will cost £0.8 per 4685 

cartridge.  4686 

4. Human costs and equipment should include the amortization of equipment used for chip 4687 

bonding, SU-8 mould fabrication and functionalisation. It is reasonable to assume a 4688 

+200% cost for this addend. 4689 

In summary, the cost per cartridge when mass-produced is estimated to be £4.35. Retail price 4690 

is likely to have a +100% surcharge. As such, a retail cost of £8.72 can be estimated. This 4691 

figure falls within the cost required for the cartridge.  4692 

The cost of the cartridge depends on the application and could be reduced by simplifying the 4693 

system. For instance, paper-strip based solutions (such as the one demonstrated in paragraph 4694 

5.5.2) can be used to reduce the cost for determined applications. However, based on the 4695 

versatility requirement, the research team believed that a reduction of the functionalities of 4696 

the platform was not advised at the prototypal stage. Optimisations aimed at cost reduction 4697 

will be part of future works.  4698 

 4699 

7.2.2. Limitations and future work of the clinical studies 4700 

The limitations of the platform concerning the biological experiments and future works to 4701 

mitigate their effects are discussed here.  4702 

Population. For both clinical evaluations, the sample population was small. Relevant 4703 

information on clinical samples was also missing ethical reasons.  4704 

Future works are encouraged on a larger population. Availability of data on a larger scale is 4705 

necessary to potentially verify and generalise the findings. Additional details of the 4706 

population, including age, ethnicity, co-morbidities, drug treatment, is necessary to 4707 

understand possible interferences in the study. Larger trials with standardised protocol will 4708 

be needed to confirm the validity of the platform and achieve medical approval. 4709 

Procedure. For both clinical evaluations, when metabolites were individually tested, 4710 

samples were off-chip mixed with the reagent solution. Some commercial POC platforms 4711 

are needing this procedure [296]. However, a pre-processing procedure should be avoided 4712 

for a commercial POC platform for in-home use. Due to limited resources, cartridges were 4713 

reused in this work, adopting appropriate cleaning procedures. However, the degradation of 4714 

performance is possible after multiple tests. The reuse of the cartridges also increased the 4715 

risk of cross-contamination. Appropriate metabolic quenching techniques (i.e. freezing) was 4716 
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necessary. Plasma samples were frozen and contained anticoagulant agents. There is the 4717 

possibility that sample storage and additives might have interfered with the measurements. 4718 

Methods for future works need to be modified to mitigate several limitations of the clinical 4719 

studies at the current state. Clinical studies should also be widened to cartridges with 4720 

preloaded reagents, which would better mimic a real-life scenario. Ideally, a definitive 4721 

disposable cartridge prototype embedding the technological improvement outlined above 4722 

should be employed. The study should also include freshly collected samples, ideally 4723 

seconds after the collection from a fingerpick.  4724 

Prostate Cancer. For PCa, the population of the studies included people with advanced 4725 

disease. The advanced stage of the disease might have exacerbated the concentration of the 4726 

metabolites. Also, healthy and control samples were collected from different institutions. 4727 

Although protocols were in place to ensure the coherence of the study, there is the possibility 4728 

that this introduced systematic errors in the groups.  Furthermore, the performance of the 4729 

classifier was characterised using the measured metabolic profile, which was averaged over 4730 

biological triplicates.  4731 

Additional work is encouraged for improving the results achieved during clinical testing.  4732 

For PCa, a more extensive clinical study also involving third parties laboratory is required 4733 

to: (i) validate or modify the metabolic panel; (ii) validate the classification performance of 4734 

the platform; (iii) consolidate the evidence that the developed platform can provide 4735 

diagnostically relevant information. Accordingly, a more significant number of PCa samples 4736 

and controls are required. Specifically, controls and PCa samples should be collected in the 4737 

same clinic. Controls donors should be selected to have similar age and lifestyle than PCa 4738 

samples. PCa donors should be selected in various stage of the disease. To consolidate the 4739 

suitability of the platform for PCa detection, early-stage donors are particularly needed. 4740 

Detailed information about PSA levels, eventual drug treatments, co-morbidities, ethnicity, 4741 

are required. Validation with high-performance equipment, such as mass spectroscopy, is 4742 

needed to characterise the platform performance. The robusticity of the classifier against 4743 

single measurements needs to be quantified.  4744 

Ischemic stroke. For ischemic stroke, the analysed population included people after hospital 4745 

admission for ischemic stroke. As for PCa clinical testing, the advanced state of the disease 4746 

might have increased the metabolite levels which can potentially be different at an early 4747 

stage. Also, due to limited resources, only one metabolite (i.e. lactate) was quantified in the 4748 

available samples.  4749 
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A larger clinical study also involving third parties laboratories is required to: (i) include 4750 

additional metabolites in the panel, (ii) develop classification algorithms, (iii) consolidate 4751 

the evidence that the platform can provide comparable results with NHS equipment. 4752 

Consistently, a larger number of ischemic stroke samples are required. Control samples 4753 

should be included too. Ischemic stroke samples should be selected in various stages of the 4754 

cardiovascular event. People at high risk of developing ischemic stroke should also be 4755 

analysed. Detailed information about the population would also be necessary. Validation 4756 

with clinical standards, such as the Cobas C 311 analyser form Roche Hitachi, should be 4757 

used to consolidate the performance of the platform. The use of additional metabolites 4758 

alongside lactate and creatinine should also be analysed to develop classification procedure 4759 

leading to a rapid on-the-spot patient stratification in emergency scenarios.  4760 

 4761 

7.2.3. Additional potential applications  4762 

A multitude of potential users can take advantage of the developed platform in a variety of 4763 

scenarios. Prospective users of the platform include the general population, healthcare 4764 

(NHS) staff, insurance groups, pharmacies, drug companies, general practice (GP) surgeries, 4765 

paramedics, private healthcare sector, researchers, care homes, social care, athletics bodies, 4766 

online doctor, wellbeing monitoring, or online physicians.  4767 

The large variety of potential users opens countless opportunities for different 4768 

metabolomics-based applications where the potential of metabolomics has been 4769 

acknowledged. The use of a similar platform could be employed, for example, for the 4770 

diagnosis of other cancer types, other CVDs, sepsis, kidney failure and dementia. Similarly, 4771 

the platform can be used for the monitoring of chronic disease where treatment is already in 4772 

place, for example, haemophilia or arthritis. Applications other than healthcare are also 4773 

equally achievable. For instance, such a platform could be employed for personal wellbeing 4774 

or environmental monitoring. 4775 

All the mentioned potential applications can be accommodated with minimal modification 4776 

of the platform. The use of different reagents within the microfluidics chapter can target 4777 

application-specific analytes. Similar chemistry and procedures (such as printing and 4778 

lyophilisation) can be employed. Apart from the utilisation of different reagents, the platform 4779 

would not require any substantial modification, which makes it ideal for a wide range of 4780 

applications. 4781 

 4782 
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7.2.4. Towards a commercial device 4783 

The findings of this research partially contributed to the foundation of ‘Multicorder DX 4784 

limited’, a University of Glasgow spin-off company [330]. Multicorder DX aims to bring 4785 

technology for rapid and low-cost metabolic biomarkers quantification to the market [330]. 4786 

The start-up, which to date filed three patents, is now in the process of securing new funding 4787 

aiming to develop a commercial product [330]. In this frame, a working prototype of the 4788 

platform was developed. The prototype is shown in Figure 7.1. Cartridges are 4789 

interchangeable, disposable and can be functionalised in different ways to address various 4790 

diseases. For improved storage, cartridges can be vacuum-sealed and labelled. The reader of 4791 

the prototype has been reworked to facilitate the use of the device. A black box encloses 4792 

both the PCB and the microcontroller board, which remain identical to the ones described in 4793 

the dedicated section of Chapter 3. The box of the prototype encapsulates a light-emitting 4794 

diode (LED) operating at 490 nm wavelength, and lenses for colorimetric sensing. The 4795 

system is aligned so that collimated light is shone onto the active area of the cartridge. The 4796 

box also encloses a top lid, which can be closed during the colorimetric assay, to exclude 4797 

interference from ambient visible light when the reaction takes place. The black box 4798 

enclosing the reader has been outsourced from a specialised company. The GUI works the 4799 

same way as described in the dedicated section of this chapter. Only minor modifications of 4800 

the layout have been performed to improve the usability onto a tablet device. The platform 4801 

shown in the figure was not employed for any of the experiments reported in this thesis but 4802 

was used for public and industrial engagements. It has been demonstrated in numerous 4803 

events such as ‘BIOCHIP: International Forum on Biochips & Biochip Solutions’, Berlin 7-4804 

8.5.2019. The prototype provides a demonstration that the platform can be optimised for in-4805 

home use by non-trained users and can potentially become a commercial POC device. The 4806 

presented POC device has the potential to lead the way for a new generation of diagnostic 4807 

tools for low-cost, portable, rapid, and user-friendly disease-related multi-metabolite 4808 

quantification. 4809 

 4810 
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 4811 

Figure 7.1 Working prototype of the platform 4812 

 4813 

  4814 
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Appendix 4815 

A. Matlab Modelling of Colorimetric Reactions 4816 

This appendix illustrates a custom Matlab model for simulating colorimetric reactions. The 4817 

model is based on the Michaelis-Menten model and Beer-Lambert’s law. Model parameters 4818 

have been reported in the thesis (Table 3.3). The model has been modified for performing 4819 

other simulations reported in the thesis.  4820 

 4821 

clear all  4822 
close all 4823 
  4824 
Vm = 0.025;  % Value assumed from the literature in mM/s 4825 
km = 3;   % Value assumed from the literature in mM 4826 
% Initializations  4827 
N = 1000; c = zeros(1,N);  v = zeros(1,N); A = zeros(1,N); perT = zeros(1,N); d = zeros(1,N); t = linspace(0,120,N); 4828 
% Initial substrate concentrations in mM 4829 
concentrations = [0 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.125 0.15 0.2] 4830 
for z = 1:length(concentrations) 4831 
c(1) = concentrations(z);  % Initial concentration of the substrate  4832 
v(1) =  Vm*c(1)/(km+c(1)); % Initial reaction rate 4833 
d(1) = 0;   % Initial concentration of the light absorbing species 4834 
T(1) = 100;  % Initial transmission level 4835 
A(1) = 0;    % Initial absornance level 4836 
ep = 7.5         % @500nm for oxidised o-dionisidine (brown) - use L/mmol cm according to Sigma  4837 
l = 0.5;         % optical length vector in cm 4838 
  4839 
for j = 2:N 4840 
v(j) = Vm*c(j-1)/(km+c(j-1));  % Apply Michaelis-Menten 4841 
c(j) = c(1) - v(j)*t(j);  % Rate equation 4842 
d(j) = d(1) + v(j)*t(j);   % Rate equation 4843 
A(j) = ep*l*d(j);    % Apply Beer-Lambert’s law 4844 
T(j) = 1./10.^A(j);          % Calculate transmittance 4845 
perT(j) = T(j)*100;   % Calculate relative transmittance 4846 
  4847 
if c(j) < 0 || c(j)>c(j-1)  % Break the loop when substrate concentration is zero 4848 
    c(j:N) = c(j-1).*ones(1,N-j+1);  4849 
    v(j:N) = v(j-1).*ones(1,N-j+1);   4850 
    A(j:N) = A(j-1).*ones(1,N-j+1);  4851 
    perT(j:N) = perT(j-1).*ones(1,N-j+1); 4852 
    d(j:N) = d(j-1).*ones(1,N-j+1); 4853 
    break 4854 
end  4855 
  4856 
Absorbance(z,:) = A; Transmittance(z,:) = perT; % Save variables and repeat 4857 
  4858 
end  4859 
  4860 
clearvars -except t Vm km N c v A perT d t concentrations Absorbance Transmittance 4861 
  4862 
end 4863 
  4864 
% Graphic Rapresentation 4865 
figure(); plot(t,Transmittance'); axis('square'); ylim([50 105]); xlim([0.2 120]); xlabel('time (s)'); ylabel('Transmittance 4866 
(%)') 4867 
  4868 
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B. Microcontroller firmware (C++) 4869 

This appendix reports the custom C++ code implemented on the mbed board of the reader.   4870 

 4871 

#include "mbed.h" 4872 
# include "delay.h" 4873 
 4874 
PortOut PDcol(PortB, 0x0f00);  // Define 4 bits for columns addressing                 4875 
PortOut PDrow(PortB, 0x00f0);  // Define 4 bits for row addressing                 4876 
AnalogIn PD(PB_0);   // Define pin for analog input                 4877 
DigitalOut PDrst(PD_2);                  // Define pin for reset signal                                  4878 
Serial pc(PC_4, PC_5);   //Set pin for serial communication (USBTX, USBRX); 4879 
 4880 
int main() 4881 
{ 4882 
int i,j; 4883 
int  PDv; 4884 
pc.baud(921600);      // Set baud rate 4885 
PDrst = 0; 4886 
 4887 
while(1)  4888 
{ 4889 
   PDrst = 1;    // Reset 4890 
   PDcol.write(0); 4891 
   PDrow.write(0); 4892 
   wait(0.000500);   // Pulse width 4893 
   PDrst = 0; 4894 
   PDv = 0;    // Deliver starting frame sequence 4895 
   pc.putc(PDv>>8);   // Send 32 zeros, 8 at a time 4896 
   pc.putc(PDv&0xff);    4897 
   pc.putc(PDv>>8);  4898 
   pc.putc(PDv&0xff); 4899 
 4900 
   wait(0.020000);    // Integration time 4901 
   4902 

 for (i=0; i<16; i++) { 4903 
     4904 

PDrow.write(j<<4); // Address row  4905 
 4906 

for(j=0; j<16; j++) { 4907 
     4908 
                    PDcol.write(j<<4);   // Address column 4909 
                    wait(0.000005);   // wait 4910 
                     PDv = PD.read_u16(); // Read and convert in 16  bits  4911 
                      pc.putc(PDv>>8);   // send first 8 bits (MSB) 4912 
                      pc.putc(PDv&0xff);  // send last 8 bits (LSB) 4913 
            }}}} 4914 
 4915 

 4916 

C. Extract of the data acquisition code (Matlab) 4917 

This appendix reports the custom Matlab code for data acquisition.   4918 

 4919 
function pushbutton2_Callback(hObject, eventdata, handles) % RECORDING ROUTINE 4920 
% Tidy up_______________________________________________________ 4921 
axes(handles.axes1); grid on; hold on; cla; axes(handles.axes2); grid on; hold on; cla; 4922 
axes(handles.axes3); grid on; hold on; cla; axes(handles.axes4); grid on; hold on; cla; 4923 
axes(handles.axes5); grid on; hold on; cla; 4924 
set(handles.text7,'String',''); set(handles.text8,'String','');    set(handles.text10,'String',''); 4925 
set(handles.text9,'String',''); 4926 
 4927 
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% Start communication____________________________________________ 4928 
instrreset; set(handles.togglebutton2, 'Value',0); COM =str2num(get(handles.edit2,'String')); 4929 
uno = 'com'; due = num2str(COM); port = strcat(uno,due); 4930 
one_frame = 516; N = 1; buff = one_frame*N;     % in Bytes if PD@16bits 4931 
MSB = (1:2:buff-2); LSB = (2:2:buff-1); clims = [5000 60000]; 4932 
frame = str2num(get(handles.edit1,'String')); 4933 
display_rate = str2num(get(handles.edit3,'String'));    % if 1 display every display_rate 4934 
 4935 
% Test Connection & Select pixel to display____________________________ 4936 
try  4937 
clu = 0; trial = 0; s = serial(port); s.InputBufferSize = 2*buff; 4938 
set(s,'BaudRate',921600);  4939 
fopen(s); %------------------------------------------------------------------------% Open communication 4940 
clear k SS index 4941 
tic; trial = trial +1; flushinput(s); 4942 
clc;  4943 
k = fread(s); %------------------------------------------------------------------------    % Read data 4944 
SS = movsum(k,4); index = find(SS==0); n_flags = length(index);   % Find frame start 4945 

for y = 1:n_flags-1 4946 
clu = (index(y+1)-index(y));      4947 

if clu == one_frame 4948 
frame_start  = index(y); frame_stop = index(y+1); 4949 
break 4950 
end 4951 

end 4952 
if trial == 100     % Try up to 100 times to get a valid frame  4953 
break 4954 
end 4955 
toc 4956 
end 4957 

fclose(s) % ------------------------------------------------------------------------% Close communication 4958 
% If connection is good go ahead, otherwise ‘catch me’ is exectured.  4959 
str1 = 'Connected: Nice to meet you Multicorder Chip!'; 4960 
str2 = 'Choose 4 pixels to be shown during aquisition'; 4961 
new_str = strvcat(str1, str2); 4962 
set(handles.listbox2,'String', new_str); 4963 
 4964 
catch ME       % An error in the communcation occurred. Display error accordingly.      4965 
fclose (s); %------------------------------------------------------------------------% Close communication 4966 
str1 = 'Oooops something went wrong: I was not able to get data!'; 4967 
str2 = 'Check your connection/settings and try again.'; 4968 
new_str = strvcat(str1, str2); set(handles.listbox2,'String', new_str); 4969 
pause()   % Standby for new command  4970 
end  4971 
 4972 
% Test data handling  4973 
try   4974 
primo = k(frame_start+1:frame_stop-2); binarydata = dec2bin(primo,8); 4975 
value = bin2dec([binarydata(MSB,:),binarydata(LSB,:)]); 4976 
value = value*-1+2^16; axes(handles.axes1); cla; grid on; drawnow; 4977 
mat = vec2mat(value,16);   % Plot test frame 4978 
xlim([1,16]); ylim([1,16]); imagesc(mat,clims); colorbar; 4979 
[colomn,row] = ginput(4)   % Select 4 pixels to be displayed 4980 
colomn = round(colomn); row = round(row); clc; 4981 
catch ME  % Error in data handling occurred. Display error accordingly.      4982 
close (s) %------------------------------------------------------------------------% Close communication 4983 
str1 = 'Oooops something went wrong: I was not able to plot data!'; 4984 
str2 = 'Check your connection/settings and try again.'; 4985 
new_str = strvcat(str1, str2); 4986 
set(handles.listbox2,'String', new_str); 4987 
pause() 4988 
end 4989 
 4990 
% Data recording loop_________________________________________________________________ 4991 
% tidy up  4992 
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axes(handles.axes1); cla; colorbar('off'); set(handles.axes1,'visible','off'); set(handles.axes2,'visible','on'); 4993 
set(handles.axes3,'visible','on'); set(handles.axes4,'visible','on'); set(handles.axes5,'visible','on'); 4994 
set(handles.axes1,'visible','on'); axes(handles.axes1); grid on; hold on; cla; axes(handles.axes2); grid on; hold on; cla; 4995 
axes(handles.axes3); grid on; hold on; cla; axes(handles.axes4); grid on; hold on; cla; 4996 
axes(handles.axes5); grid on; hold on; cla; set(handles.text7,'BackgroundColor','white'); 4997 
set(handles.text7,'String',''); set(handles.text8,'BackgroundColor','white'); set(handles.text8,'String',''); 4998 
set(handles.text9,'BackgroundColor','white'); set(handles.text9,'String',''); set(handles.text10,'BackgroundColor','white'); 4999 
set(handles.text10,'String',''); drawnow 5000 
% Initialisations  5001 
try 5002 
t = datetime('now');  Day_month_year = datestr(t); set(handles.text5,'String',Day_month_year ) 5003 
axes(handles.axes1); cla; grid on; xlim([1,16]); ylim([1,16]); colorbar; clear k 5004 
p = NaN; pp = NaN; ppp = NaN; pppp = NaN; 5005 
i_p = 1; i_pp = 1; i_ppp = 1; i_pppp = 1; 5006 
time = ones(1,frame)*NaN; 5007 
ch1 = 16*(row(1)-1)+colomn(1); ch2 = 16*(row(2)-1)+colomn(2); ch3 = 16*(row(3)-1)+colomn(3); ch4 = 16*(row(4)-5008 
1)+colomn(4); 5009 
ad = get(handles.checkbox3, 'Value'); 5010 
s.InputBufferSize = buff;  5011 
fopen(s); %------------------------------------------------------------------------% Open communication 5012 
flushinput(s); 5013 
set(handles.listbox2,'String', 'Recording...'); drawnow; tic; 5014 

for i=1:frame-1 5015 
k((i-1)*buff+1:buff*i) = fread(s);  %---------------------------------------% Read frame 5016 
time(i) = toc; %----------------------------------------------------------------% Save time label frame          5017 

if ad == 1 5018 
         P = sprintf('Progress : %2.1f/100',i/frame*100); set(handles.listbox2,'String',P); drawnow; 5019 
     end 5020 

if get(handles.togglebutton2, 'Value') == 1 break; end 5021 
if (rem(i, display_rate) == 0)&&(ad==0) 5022 
        if get(handles.togglebutton3, 'Value') == 1 5023 
            % Clean the axes 5024 
            axes(handles.axes2); cla; grid on;hold on; axes(handles.axes3); cla; grid on;hold on; 5025 
            axes(handles.axes4); cla; grid on;hold on; axes(handles.axes5); cla; grid on;hold on; 5026 
            axes(handles.axes1); cla; grid on; hold on; set(handles.togglebutton3, 'Value',0); 5027 
        end 5028 
% Manipulate date for plotting 5029 
temp  = k(end-1027:end); 5030 
index = find(movsum(temp,2)==0); 5031 
current_frame = temp(index(1)+1:index(1)+512); 5032 
value = (current_frame(MSB).*2^8+current_frame(LSB))*-1+2^16; 5033 
mat = vec2mat(value,16); i_p = i-display_rate; 5034 
% Plot current frame 5035 
d = value(ch1); dd = value(ch2); ddd = value(ch3); dddd = value(ch4); 5036 
axes(handles.axes2); plot([i_p, i], [p,d], '.-b'); set(handles.text7,'String',d); 5037 
axes(handles.axes3); plot([i_p, i], [pp,dd], '.-r'); set(handles.text8,'String',dd); 5038 
axes(handles.axes4); plot([i_p, i], [ppp,ddd], '.-k'); set(handles.text9,'String',ddd); 5039 
axes(handles.axes5); plot([i_p, i], [pppp,dddd], '.-g'); set(handles.text10,'String',dddd); 5040 
axes(handles.axes1); imagesc(mat,clims); drawnow; 5041 
p = d; pp = dd; ppp = ddd; pppp = dddd; % Save save   5042 

end 5043 
end 5044 
a = toc;     % Total recording time 5045 
fps = i/a;  % Average frame per second 5046 
fclose(s); % ------------------------------------------------------------------------% Close communication 5047 
catch ME % In case of error save automatically and give error 5048 
    uisave;     % ------------------------------------------------------------------------% Save 5049 
    fclose(s); % ------------------------------------------------------------------------% Close communication 5050 
    str1 = 'Oooops something went during the recording!'; 5051 
    str2 = 'You can save anyway your data (not handled).'; 5052 
    new_str = strvcat(str1, str2); 5053 
    set(handles.listbox2,'String', new_str); 5054 
end 5055 
% Confirm recording completed 5056 
str1 = 'Welldone, Recording completed!!'; str2 = 'Averaged frames per second was:'; 5057 
str3 = num2str(fps); str4 = 'Total recording time was (sec):'; 5058 
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str5 = num2str(a); new_str = strvcat(str1, str2,str3, str4,str5); set(handles.listbox2,'String', new_str); 5059 
 5060 
% Data handling __________________________________________________________________ 5061 
%Find flags 5062 
S = movsum(k,2); index = find(S==0); j = 1; 5063 
% Search and exclude invalid frames 5064 
for i = 1:length(index)-1 5065 
     if (index(i+1)-index(i)) == one_frame;  good_index(j) = index(i);  j = j+1; end 5066 
end 5067 
clear index; index = good_index; 5068 
% Extract frames and convert 5069 
for i = 1:length(index)-1 5070 
    frame_rec = k(index(i)+1:index(i)+512); binarydata = dec2bin(frame_rec,8); 5071 
    value = bin2dec([binarydata(MSB,:),binarydata(LSB,:)]); value = value*-1+2^16; data(:,i) = value; 5072 
    clear value frame_rec binarydata 5073 
end 5074 
% Exclude time-lables of invalid frames 5075 
good_time = time(floor(good_index(1:end-1)/514)+1); 5076 
% Plot final data 5077 
axes(handles.axes2); cla; plot(data((16*(row(1)-1)+colomn(1)),:)); axes(handles.axes3); cla; plot(data((16*(row(2)-5078 
1)+colomn(2)),:)); axes(handles.axes4); cla; plot(data((16*(row(3)-1)+colomn(3)),:)); 5079 
axes(handles.axes5); cla; plot(data((16*(row(4)-1)+colomn(4)),:)); 5080 
% Save 5081 
NoC = get(handles.edit4,'String'); Notes = get(handles.edit5,'String'); 5082 
clearvars -except data fps good_time k Day_month_year time NoC Notes 5083 
B = datestr(datetime('now'), 30); yyyy = B(1:4); mm = B(5:6); dd = B(7:8); hh = B (10:11); minu = B (12:13); sec = B 5084 
(14:15); div1 = '-'; div2 = '_'; titolo = horzcat([yyyy, div1, mm,div1, dd, div2, hh, div1, minu, div1, sec]);  5085 
uisave({'data', 'fps', 'good_time', 'k', 'Day_month_year', 'time','titolo','NoC','Notes'},titolo) % ---% Save 5086 
 5087 
 5088 

D. Extract of the data processing Code (Matlab) 5089 

This appendix reports the custom Matlab code for data processing.   5090 

 5091 
% Initialisation_________________________________________________________________ 5092 
Clc; clearvars -except dark eps L data Day_month_year fps good_time NoC Notes titolo; close all;  5093 
seconds = 10; dark = 0.3989; %Volts eps = 10000; %M-1cm-1 L = 0.027; %cm-1 start_after_x_seconds= 10; 5094 
Niir = 8; Fst = 0.05; Fs = fps; % Filter settings SP1 = 0;SP2 = 0;SP3 = 0;SP4 = 0; 5095 
% default structure with 4 channels  5096 
ch1 = 1:16*3; wall1 = 16*3+1:16*4; ch2 = 16*4+1:16*7; wall2 = 16*7+1:16*9; ch3 = 16*9+1:16*12; wall3 = 5097 
16*12+1:16*13; ch4 = 16*13+1:16*16; 5098 
 5099 
% Pixel inspection and exclusion_______________________________________________________ 5100 
pix = 1:256;  data_label = [pix', data]; 5101 
 5102 
% Channel 1 5103 
figure(99); plot(data_label(ch1,:)'); plotedit on; title('channel 1'); xlim = [2,size(data_label,2)]; pause() 5104 
figure(99); a = get(gca,'Children'); ydata = get(a, 'YData'); close all; ch1_default = ch1; clear ch1; 5105 
for i=1:size(ydata,1) 5106 
    temp = ydata{i,1};    ch1(i) = temp(1); 5107 
end 5108 
clear ydata; 5109 
 5110 
% Channel 2 5111 
figure(99); plotedit on; plot(data_label(ch2,:)'); title('channel 2'); xlim = [2,size(data_label,2)]; pause() 5112 
figure(99); a = get(gca,'Children'); ydata = get(a, 'YData'); close all; ch2_default = ch2; clear ch2; 5113 
for i=1:size(ydata,1) 5114 
    temp = ydata{i,1};     ch2(i) = temp(1); 5115 
end 5116 
clear ydata; 5117 
 5118 
% Channel 3 5119 
figure(99); plot(data_label(ch3,:)'); plotedit on; title('channel 3'); xlim = [2,size(data_label,2)]; pause() 5120 
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figure(99); a = get(gca,'Children'); ydata = get(a, 'YData'); close all; ch3_default = ch3; clear ch3; 5121 
for i=1:size(ydata,1) 5122 
    temp = ydata{i,1};    ch3(i) = temp(1); 5123 
end 5124 
clear ydata; 5125 
 5126 
% Channel 4 5127 
figure(99); plot(data_label(ch4,:)'); plotedit on; title('channel 4'); xlim = [2,size(data_label,2)]; pause() 5128 
figure(99); a = get(gca,'Children'); ydata = get(a, 'YData'); close all; ch4_default = ch4; clear ch4; 5129 
for i=1:size(ydata,1) 5130 
    temp = ydata{i,1};    ch4(i) = temp(1); 5131 
end 5132 
clear ydata; 5133 
 5134 
% Pixel map 5135 
map=zeros(1,16*16); map(ch1)=1; map(ch2)=2; map(ch3)=3; map(ch4)=4; 5136 
figure(); imagesc(vec2mat(map,16)); colormap('Jet'); title('Pixel map'); 5137 
% convert and normalize 5138 
data1 = data(ch1,:)*3.3/2^16-dark; data2 = data(ch2,:)*3.3/2^16-dark; 5139 
data3 = data(ch3,:)*3.3/2^16-dark; data4 = data(ch4,:)*3.3/2^16-dark; 5140 
% Spatial average 5141 
medio1 = mean(data1); medio2 = mean(data2);medio3 = mean(data3); medio4 = mean(data4); 5142 
stand1 = std(data1'); stand2 = std(data2'); stand3 = std(data3'); stand4 = std(data4'); 5143 
figure(); plot(good_time, medio1); hold on; plot(good_time, medio2); plot(good_time, medio3); plot(good_time, 5144 
medio4); legend('ch1','ch2','ch3','ch4'); 5145 
 5146 
% Select starting point___________________________________________________________  5147 
% Ch1 5148 
figure(); plot(medio1);hold on; plot(medio1,'or'); title('Channel 1'); zoom on; waitfor(gcf, 'CurrentCharacter', 5149 
char(13));zoom reset; zoom off; [x1,y1] = ginput(1); 5150 
% Ch2 5151 
figure(); plot(medio2);hold on; plot(medio2,'or'); title('Channel 2'); zoom on; waitfor(gcf, 'CurrentCharacter', 5152 
char(13));zoom reset; zoom off; [x2,y2] = ginput(1); 5153 
%Ch3 5154 
figure(); plot(medio3);hold on; plot(medio3,'or'); title('Channel 3'); zoom on; waitfor(gcf, 'CurrentCharacter', 5155 
char(13));zoom reset; zoom off; [x3,y3] = ginput(1); 5156 
%Ch4 5157 
figure(); plot(medio4);hold on; plot(medio4,'or'); title('Channel 4'); zoom on; waitfor(gcf, 'CurrentCharacter', 5158 
char(13));zoom reset; zoom off; [x4,y4] = ginput(1); 5159 
 5160 
% Processing Ch1___________________________________________________________  5161 
% Filtering 5162 
x= round(x1); filt_this  = data1(:,x:end); 5163 
iir = designfilt('lowpassiir','FilterOrder',Niir,'HalfPowerFrequency',Fst,'SampleRate',Fs); 5164 
for j = 1:size(filt_this,1) 5165 

data_filt(j,:) = filtfilt(iir,filt_this(j,:)); 5166 
end 5167 
% Match the initial value 5168 
time = good_time(x:end)-good_time(x); off = mean(data_filt(:,1:250),2); off_mode = mean(off); adj = off - off_mode; 5169 
data_filt = data_filt - repmat(adj,1,size(data_filt,2)); 5170 
SP1 = off_mode;  5171 
% Spatial average 5172 
step = floor(fps*1); medio = mean(data_filt,1);  5173 
%Crop 5174 
temp = find(time>330); try five = temp(1); catch  five = find(medio == medio(end-step)); end 5175 
% Temporal average 5176 
k = 1; 5177 
for j = 1:step:length(medio(1:five)) 5178 
    mediot(k) = mean(medio(1,j:j+step)); timet(k) = mean(time(j:j+step)); k = k + 1; 5179 
end 5180 
% Calculate Rates in defined windows; do not start rate calculation from 0; start from si. This would avoid discrepances 5181 
between average and fitted data at the end point 5182 
si = min(find(timet>start_after_x_seconds)); 5183 
 5184 
% Process over 30 seconds 5185 
window = 30+2*start_after_x_seconds; 5186 
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% Curve fitting 5187 
try end_pointt = find(timet>window); end_point = end_pointt(1); 5188 
catch end_point = find(mediot == mediot(end)); end 5189 
[xData, yData] = prepareCurveData( timet(1:end_point), mediot(1:end_point)); ft = fittype( 'exp2' ); 5190 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); opts.Display = 'Off'; opts.Robust = 'LAR'; 5191 
[fitresult, gof] = fit( xData, yData, ft, opts ); timef_30s = timet(1:end_point); fitted_30s = feval(fitresult, xData); 5192 
% Transmittance, Absorbance 5193 
T_30s = fitted_30s./fitted_30s(1); A_30s = -log10(T_30s); i30 = min(find(timet>(30+si))); 5194 
if isempty(i30) == 1 i30 = -si; end 5195 
% Rates 5196 
index = i30 ;P = polyfit(timet(si:index),mediot(si:index),1); R30 = P(1)*1000; clear P; % On average 5197 
P = polyfit(timef_30s(si:index),fitted_30s(si:index)',1); F30 = P(1)*1000; clear P; % On fitting 5198 
P = polyfit(timet(si:index),T_30s(si:index)',1); T30 = P(1)*1000; clear P; % On Trasmittance 5199 
P = polyfit(timet(si:index),A_30s(si:index)',1); A30 = P(1)*1000; clear P; % On Absorbance 5200 
 5201 
% Process over 60 seconds 5202 
window = 60+2*start_after_x_seconds; 5203 
% Curve fitting 5204 
try end_pointt = find(timet>window); end_point = end_pointt(1); 5205 
catch end_point = find(mediot == mediot(end)); end 5206 
[xData, yData] = prepareCurveData( timet(1:end_point), mediot(1:end_point)); ft = fittype( 'exp2' ); 5207 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); opts.Display = 'Off'; opts.Robust = 'LAR'; 5208 
[fitresult, gof] = fit( xData, yData, ft, opts ); timef_60s = timet(1:end_point); fitted_60s = feval(fitresult, xData); 5209 
% Transmittance, Absorbance 5210 
T_60s = fitted_60s./fitted_60s(1); A_60s = -log10(T_60s);  i60 = min(find(timet>(60+si))); 5211 
if isempty(i60) == 1 i60 = -si; end 5212 
index = i60; P = polyfit(timet(si:index),mediot(si:index),1); R60 = P(1)*1000; clear P; % On average 5213 
P = polyfit(timef_60s(si:index),fitted_60s(si:index)',1); F60 = P(1)*1000; clear P; % On fitting 5214 
P = polyfit(timet(si:index),T_60s(si:index)',1); T60 = P(1)*1000; clear P; % On Trasmittance 5215 
P = polyfit(timet(si:index),A_60s(si:index)',1); A60 = P(1)*1000; clear P; % On Absorbance 5216 
 5217 
% Process over 90 seconds 5218 
window = 90+2*start_after_x_seconds; 5219 
% Curve fitting 5220 
try end_pointt = find(timet>window); end_point = end_pointt(1); 5221 
catch end_point = find(mediot == mediot(end)); end 5222 
[xData, yData] = prepareCurveData( timet(1:end_point), mediot(1:end_point)); ft = fittype( 'exp2' ); 5223 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); opts.Display = 'Off'; opts.Robust = 'LAR'; 5224 
[fitresult, gof] = fit( xData, yData, ft, opts ); timef_90s = timet(1:end_point); fitted_90s = feval(fitresult, xData); 5225 
% Transmittance, Absorbance  5226 
T_90s = fitted_90s./fitted_90s(1); A_90s = -log10(T_90s); i90 = min(find(timet>(90+si))); 5227 
if isempty(i90) == 1 i90 = -si; end 5228 
index = i90; P = polyfit(timet(si:index),mediot(si:index),1); R90 = P(1)*1000; clear P; % On average 5229 
P = polyfit(timef_90s(si:index),fitted_90s(si:index)',1); F90 = P(1)*1000; clear P; % On fitting 5230 
P = polyfit(timet(si:index),T_90s(si:index)',1); T90 = P(1)*1000; clear P; % On Trasmittance 5231 
P = polyfit(timet(si:index),A_90s(si:index)',1); A90 = P(1)*1000; clear P; % On Absorbance 5232 
 5233 
% Process over 120 seconds 5234 
window = 120+2*start_after_x_seconds; 5235 
% Curve fitting 5236 
try end_pointt = find(timet>window); end_point = end_pointt(1); 5237 
catch end_point = find(mediot == mediot(end)); end 5238 
[xData, yData] = prepareCurveData( timet(1:end_point), mediot(1:end_point)); ft = fittype( 'exp2' ); 5239 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); opts.Display = 'Off'; opts.Robust = 'LAR'; 5240 
[fitresult, gof] = fit( xData, yData, ft, opts ); timef_120s = timet(1:end_point); fitted_120s = feval(fitresult, xData); 5241 
% Transmittance, Absorbance 5242 
T_120s = fitted_120s./fitted_120s(1); A_120s = -log10(T_120s); i120 = min(find(timet>(120+si))); 5243 
if isempty(i120) == 1 i120 = -si; end 5244 
index = i120; P = polyfit(timet(si:index),mediot(si:index),1); R120 = P(1)*1000; clear P; % On average 5245 
P = polyfit(timef_120s(si:index),fitted_120s(si:index)',1); F120 = P(1)*1000; clear P; % On fitting 5246 
P = polyfit(timet(si:index),T_120s(si:index)',1); T120 = P(1)*1000; clear P; % On Trasmittance 5247 
P = polyfit(timet(si:index),A_120s(si:index)',1); A120 = P(1)*1000; clear P; % On Absorbance 5248 
 5249 
% Process over 300 seconds 5250 
window = 300+2*start_after_x_seconds; 5251 
% Curve fitting 5252 
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try end_pointt = find(timet>window); end_point = end_pointt(1); 5253 
catch end_point = find(mediot == mediot(end)); end 5254 
[xData, yData] = prepareCurveData( timet(1:end_point), mediot(1:end_point)); ft = fittype( 'exp2' ); 5255 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); opts.Display = 'Off'; opts.Robust = 'LAR'; [fitresult, gof] = fit( 5256 
xData, yData, ft, opts ); timef_300s = timet(1:end_point); fitted_300s = feval(fitresult, xData); 5257 
% Transmittance, Absorbance 5258 
T_300s = fitted_300s./fitted_300s(1); A_300s = -log10(T_300s); i300 = min(find(timet>(120+si))); 5259 
if isempty(i300) == 1 i300 = -si; end 5260 
index = i300; P = polyfit(timet(si:index),mediot(si:index),1); R300 = P(1)*1000; clear P; % On average 5261 
P = polyfit(timef_300s(si:index),fitted_300s(si:index)',1); F300 = P(1)*1000; clear P; % On fitting 5262 
P = polyfit(timet(si:index),T_300s(si:index)',1); T300 = P(1)*1000; clear P; % On Trasmittance 5263 
P = polyfit(timet(si:index),A_300s(si:index)',1); A300 = P(1)*1000; clear P; % On Absorbance 5264 
Rates = [SP1, R30, R60, R90, R120, R300; SP1, F30, F60, F90, F120, F300; SP1, T30, T60, T90, T120, T300; SP1, A30, 5265 
A60, A90, A120, A300]; 5266 
 5267 
%Graphical Representations 5268 
figure(); plot(time, filt_this,'k'); hold on; plot(timet,mediot,'b'); plot(timef_300s,fitted_300s,'g'); 5269 
plot(timef_30s,fitted_30s,'r') legend('Raw pixels', 'blue - Filtered & Averaged', 'Red - Fitted 30s', 'Green - Fitted 5min')  5270 
 5271 
% Save variables and clean 5272 
start1 = x;     %Starting point  5273 
time1 = time;            %Re-scaled time axis 5274 
data_filt1 = data_filt;  %Filtered data 5275 
medio1 = medio;          %Spatial average 5276 
mediot1 = mediot;       %Spatio-temporal average 5277 
timet1 = timet;          % Re-scaled axis for spatio-temporal axis 5278 
T1 = T_300s;                  % Transmittance 5279 
A1 = A_300s;                  % Absorbance 5280 
Rates1=Rates;    5281 
%Line 1 in mV/s; Line 2 in mV/s using fitted data; Line 3 in %/s, Line 4 in absorbance units/s 5282 
fitted1 = fitted_300s;        % Fitted data 5283 
timef1 = timef_300s;           % Time diagram for fitted signal 5284 
clearvars -except dark eps L data Day_month_year fps good_time NoC Notes titolo ... 5285 
    x1 x2 x3 x4 data1 data2 data3 data4 SP1 SP2 SP3 SP4... 5286 
    start1 time1 timet1 data_filt1 medio1 mediot1 T1 A1 Rates1 fitted1 timef1... 5287 
    Niir Fst Fs start_after_x_seconds 5288 
 5289 
% Processing Ch2___________________________________________________________  5290 
x= round(x2); filt_this  = data2(:,x:end); 5291 
{ …} Code is here omitted, been very similar to the one reported for channel 1.  5292 
% Save variables and clean 5293 
start2 = x;             %Starting point 5294 
time2 = time;            %Re-scaled time axis 5295 
data_filt2 = data_filt;  %Filtered data 5296 
medio2 = medio;          %Spatial average 5297 
mediot2 = mediot;        %Spatio-temporal average 5298 
timet2 = timet;          % Re-scaled axis for spatio-temporal axis 5299 
T2 = T_300s;                  % Transmittance 5300 
A2 = A_300s;                  % Absorbance 5301 
Rates2 = Rates;          % Rates 5302 
fitted2 = fitted_300s;        % Fitted data 5303 
timef2 = timef_300s;         % Time diagram for fitted signal 5304 
clearvars -except dark eps L data Day_month_year fps good_time NoC Notes titolo ... 5305 
    x1 x2 x3 x4 data1 data2 data3 data4 SP1 SP2 SP3 SP4... 5306 
    start1 time1 timet1 data_filt1 medio1 mediot1 T1 A1 Rates1 fitted1 timef1... 5307 
    start2 time2 timet2 data_filt2 medio2 mediot2 T2 A2 Rates2 fitted2 timef2... 5308 
    Niir Fst Fs start_after_x_seconds 5309 
 5310 
% Processing Ch3___________________________________________________________  5311 
x= round(x3); filt_this  = data3(:,x:end); 5312 
{ …} Code is here omitted, been very similar to the one reported for channel 1.  5313 
% Save variables and clean 5314 
start3 = x;              %Starting point 5315 
time3 = time;            %Re-scaled time axis 5316 
data_filt3 = data_filt; %Filtered data 5317 
medio3 = medio;         %Spatial average 5318 
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mediot3 = mediot;        %Spatio-temporal average 5319 
timet3 = timet;          % Re-scaled axis for spatio-temporal axis 5320 
T3 = T_300s;                 % Transmittance 5321 
A3 = A_300s;                  % Absorbance 5322 
Rates3 = Rates;          %Rates 5323 
fitted3 = fitted_300s;        % Fitted data 5324 
timef3 = timef_300s;           % Time diagram for fitted signal 5325 
clearvars -except dark eps L data Day_month_year fps good_time NoC Notes titolo ... 5326 
    x1 x2 x3 x4 data1 data2 data3 data4 SP1 SP2 SP3 SP4... 5327 
    start1 time1 timet1 data_filt1 medio1 mediot1 T1 A1 Rates1 fitted1 timef1... 5328 
    start2 time2 timet2 data_filt2 medio2 mediot2 T2 A2 Rates2 fitted2 timef2... 5329 
    start3 time3 timet3 data_filt3 medio3 mediot3 T3 A3 Rates3 fitted3 timef3... 5330 
    Niir Fst Fs start_after_x_seconds 5331 
 5332 
% Processing Ch4___________________________________________________________  5333 
x= round(x4); filt_this  = data4(:,x:end); 5334 
{ …} Code is here omitted, been very similar to the one reported for channel 1.  5335 
% Save variables and clean 5336 
start4 = x;             %Starting point 5337 
time4 = time;            %Re-scaled time axis 5338 
data_filt4 = data_filt;  %Filtered data 5339 
medio4 = medio;          %Spatial average 5340 
mediot4 = mediot;        %Spatio-temporal average 5341 
timet4 = timet;          % Re-scaled axis for spatio-temporal axis 5342 
T4 = T_300s;                  % Transmittance 5343 
A4 = A_300s;                 % Absorbance 5344 
Rates4 = Rates;          % Rates 5345 
fitted4 = fitted_300s;        % Fitted data 5346 
timef4 = timef_300s;           % Time diagram for fitted signal 5347 
clearvars -except dark eps L data Day_month_year fps good_time NoC Notes titolo ... 5348 
    x1 x2 x3 x4 data1 data2 data3 data4 SP1 SP2 SP3 SP4... 5349 
    start1 time1 timet1 data_filt1 medio1 mediot1 T1 A1 Rates1 fitted1 timef1... 5350 
    start2 time2 timet2 data_filt2 medio2 mediot2 T2 A2 Rates2 fitted2 timef2... 5351 
    start3 time3 timet3 data_filt3 medio3 mediot3 T3 A3 Rates3 fitted3 timef3... 5352 
    start4 time4 timet4 data_filt4 medio4 mediot4 T4 A4 Rates4 fitted4 timef4... 5353 
   Niir Fst Fs start_after_x_seconds 5354 
 5355 
% Show and save__________________________________________________________ 5356 
Rates = [Rates1, Rates2, Rates3, Rates4];  5357 
figure(); title('PD Output (mV)'); plot(timef1,fitted1); hold on; plot(timef2,fitted2); plot(timef3,fitted3); 5358 
plot(timef4,fitted4); figure(); title('Transmittance and Absorbance'); yyaxis left; plot(timef1,T1,'b-o'); hold on; 5359 
plot(timef2,T2,'b-v'); plot(timef3,T3,'b-s'); plot(timef4,T4,'b-p'); yyaxis right; plot(timef1,A1,'r-o'); hold on; 5360 
plot(timef2,A2,'r-v') plot(timef3,A3,'r-s'); plot(timef4,A4,'r-p'); uisave;  5361 
 5362 

E. Contact angle measurements  5363 

The capillary pressure within a passive microfluidic channel depends on the cosine of the 5364 

contact angles of the employed materials. The static contact angle θ is one of the 5365 

conventional ways to measure the wettability of a material. It is defined as the angle that 5366 

encompasses a liquid between two interfaces with materials in the solid and vapour phase. 5367 

Figure E.1 (a)-(c) shows static contact angles for hydrophobic (θ > 90°) and hydrophilic (θ 5368 

< 90°) surfaces, as well as the case of θ = 90°. Aiming to maximise the capillary pressure, 5369 

hydrophobic and hydrophilic materials can both be employed, as long as their contact angle 5370 

is as far as possible from 90°.  5371 



218 

 

 

 

PDMS is a slightly hydrophobic material with static water contact angle ranging from 100° 5372 

to 110°, but its wettability can be modified [285]. Exposure of PDMS to oxygen plasma 5373 

gives the material super hydrophilic properties (θ<10°) [285]. Unfortunately, this surface 5374 

modification is only temporary, and the surface recovers its hydrophobic behaviour in a few 5375 

hours [285]. Polyvinyl alcohol (PVA) deposition on PDMS is another method for the surface 5376 

modification of PDMS. Authors in [285] show that PVA-coated PDMS has a permanent 5377 

hydrophilic behaviour with a contact angle in the range 20°- 40° [285]. The recipe reported 5378 

in [285] has been replicated in this PhD research project. Epoxy resin materials have a slight 5379 

hydrophobic/hydrophilic behaviour depending on the recipe [290].  5380 

A custom setup was developed to measure the contact angle of the materials employed in 5381 

the fabrication and is schematically shown in Figure E.1 (d). The experimental setup 5382 

consisted of a digital microscope (Dino-Lite AD4113T-I2V) mounted onto the z-axis, used 5383 

to take micrographs of a 10 µL drop of water deposited onto the surface. A Matlab-based 5384 

script was written to: (i) identify the droplet, (ii) fit the droplet shape with an elliptical model, 5385 

(iii) identify the liquid-solid interface, (iv) calculate the tangent to the ellipse from the 5386 

surface interface, and (v) compute the contact angle. The script used for the determination 5387 

of the contact angle is reported below.  The custom setup for contact angle measurements 5388 

was utilised for estimating the wettability of untreated PDMS, PVA-modified PDMS 5389 

according to the recipe in [285], epoxy resin and the CMOS chip. Figure E.1 (e)-(h) show 5390 

pictures of the measurements conducted with the custom setup. It is interesting noticing that 5391 

the CMOS chip has a slight hydrophilic behaviour, probably related to its irregular surface.  5392 

 5393 

RGB = imread('Z:\Digital microscope\2019_01_10\contact angle\epoxy.jpg'); 5394 
figure(1) 5395 
title('select area of interest') 5396 
imshow(RGB); drawnow; re = getrect; close(figure(1)) 5397 
RGB_cut = RGB(re(2):re(2)+re(4),re(1):re(1)+re(3),1); 5398 
  5399 
clear RGB; RGB = RGB_cut; 5400 
  5401 
figure(1); imshow(RGB); title('Select point 1 of the substrate'); drawnow; 5402 
zoom on; waitfor(gcf, 'CurrentCharacter', char(13)); [xx1,yy1] = ginput(1); close(figure(1)) 5403 
  5404 
figure(1); imshow(RGB); title('Select point 2 of the substrate') ;drawnow; zoom on; waitfor(gcf, 'CurrentCharacter', 5405 
char(13)); [xx2,yy2] = ginput(1); close(figure(1)) 5406 
  5407 
figure(1); imshow(RGB); hold on; coefficients = polyfit([xx1, xx2], [yy1, yy2], 1); a = coefficients (1); 5408 
b = coefficients (2); xx = 1:size(RGB,2); yy = a.*xx+b; hold on; plot(xx,yy,'r','LineWidth',6) 5409 
title('Drop under test and substrate definition'); close(figure(1)) 5410 
  5411 
figure(1); imshow(RGB); drawnow; title('Select multiple points on the edge of the drop') 5412 
zoom on; waitfor(gcf, 'CurrentCharacter', char(13)); poly = getline; close(figure(1)) 5413 
  5414 
 % Ellipse fitting function from Matlab:  5415 
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% https://uk.mathworks.com/matlabcentral/fileexchange/22684-ellipse-fit-direct-method 5416 
A = EllipseDirectFit(poly);% ax^2 + bxy + cy^2 +dx + ey + f = 0 algebraic solution 5417 
% Coordinates conversion function from Matlab:  5418 
% https://uk.mathworks.com/matlabcentral/fileexchange/32105-conversion-of-conics-5419 
parameters?focused=5192019&tab=function  5420 
[G,w] = AtoG(A);  5421 
  5422 
figure(2); xCenter = G(1); yCenter = G(2); xRadius = G(3); yRadius = G(4); angle = 0;  5423 
theta = 0 : 0.01 : 2*pi; x = xRadius * cos(theta) + xCenter; y = yRadius * sin(theta) + yCenter; 5424 
imshow(RGB); drawnow; hold on; plot(x, y, 'LineWidth', 3); hold on; plot(xx,yy,'r','LineWidth',3) 5425 
  5426 
 figure(3); imshow(RGB); hold on; plot(x, y, 'LineWidth', 3); hold on; title('Select intersection'); 5427 
plot(xx,yy,'r','LineWidth',3); zoom on; waitfor(gcf, 'CurrentCharacter', char(13)); 5428 
[px1,py1] = ginput(1); 5429 
[slope, intercept] = tangentEllipse(px1, py1, xCenter, yCenter, xRadius, yRadius, angle) 5430 
tang1 = slope.*xx+ intercept; hold on; title('Tangent Rapresentation'); plot(xx,tang1,'g','LineWidth',3) 5431 
  5432 
m1 = slope; m2 = a; contact_angle_wet = abs(atand((m1-m2)/(1-m1*m2)))  5433 
contact_angle_not_wet = 180 - atand((m1-m2)/(1-m1*m2))  5434 
 5435 

    

(a) (b) (c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure E.1 (a) Contact angle definition. (b) Hydrophobic material. (c) Hydrophilic material. 5436 

(d) Setup for contact angle measurements. (e) Contact angle measurement of untreated 5437 

PDMS. (f) Contact angle measurement of PVA-modified PDMS. (g) Contact angle 5438 

measurement of epoxy resin. (h) Contact angle measurement of the CMOS chip.  5439 

 5440 

https://uk.mathworks.com/matlabcentral/fileexchange/22684-ellipse-fit-direct-method
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F. Matlab Modelling of a Passive Microfluidic Channel with Rectangular Section 5441 

This appendix illustrates a custom Matlab model for simulations of capillary laminar flow 5442 

in a straight rectangular microfluidic channel. The model is based on theoretical equations 5443 

for capillary pressure, fluidic resistance, and flow rate. 5444 

 5445 

clear all 5446 
close all 5447 
  5448 
tsim = 60;        % Simulation time 5449 
N = 10000;        % Simulation points 5450 
t = linspace (0,tsim, N);   % Create simulation time vector from 0 to tsim containing N samples  5451 
% Variables for graphical representation of the results  5452 
Lim1 = t*0+0.3; 5453 
Lim2 = t*0+0.3+(3.4-1.6)/2; 5454 
Lim3 = t*0+0.3+(3.4-1.6)/2+1.6; 5455 
Lim4 = t*0+4-0.3; 5456 
Lim5 = t*0+4; 5457 
  5458 
% Sweeping variables 5459 
testing = [100*10^-6 150*10^-6 200*10^-6 250*10^-6 300*10^-6 350*10^-6] 5460 
testing2 = [0.073 0.050 0.045 0.056] 5461 
for g = 1:length(testing) 5462 
eta = 0.0024;         % Liquid properties (use blood) in [N][s][m]^-2  5463 
alpha =0.056;        % Liquid properties (use blood) in in [N][m]^-1 5464 
% Geometry of single channel with rectangular section  5465 
h = testing(g);  % Height of the microchannel 5466 
w = 300*10^-6;   % Width of the microchannel 5467 
Ltot = 4000*10^-6; % Length of the microchannel 5468 
  5469 
% Materials  5470 
tetab= 78.2;          % Measured contact angle material back (CMOS) 5471 
tetat= 107;           % Measured contact angle material top (PDMS or PVA-coated PDMS) 5472 
tetas= 98.4;          % Measured contact angle material side (Epoxy) 5473 
  5474 
% Calculations 5475 
R(g) = 12*eta*Ltot/((1-0.63*h/w)*h^3*w);        %Fluidic resistance [N][s][m]^-5 5476 
deltap = alpha*((abs(cosd(tetab))+abs(cosd(tetat)))/h + 2*abs(cosd(tetas))/w) % Capillary pressure [N][m]-2 5477 
chi = 12*eta/((1-0.63*h/w)*h^2);             % For convenience [N][m]-2[m]-2[s] 5478 
L(g,:) = 2*deltap/chi*sqrt(t);                % liquid advancement [m] 5479 
Q(g) = abs(deltap)/R(g);                      %Flow rate [m]^3[s]^-1 5480 
 end 5481 
 5482 
% Representation of the results 5483 
figure() 5484 
for g = 1:length(testing)  5485 
plot(t,L(g,:)*10^6, 'LineWidth',3); hold on; ylabel('Liquid advancement (\mum)'); xlabel('Time (s)') 5486 
end 5487 
plot(t,Lim1*10^3,'k-', 'LineWidth',1); hold on; plot(t,Lim2*10^3,'k-', 'LineWidth',1); plot(t,Lim3*10^3, 'k-', 5488 
'LineWidth',1); plot(t,Lim4*10^3, 'k-', 'LineWidth',1); plot(t,Lim5*10^3, 'k-', 'LineWidth',1); axis('square') 5489 
  5490 
figure(); yyaxis left; plot(Q,'o-','LineWidth',3); ylabel('Flow Rate (m^3 s^-^1)'); yyaxis right; plot(R,'o-', 5491 
'LineWidth',3); ylabel('Fluidic Resistance (N s m^-^5)'); axis('square') 5492 
 5493 
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In the simulation, the bottom material of the channel was assumed to be the CMOS chip, the 5494 

sides consisted of epoxy resin, and the top was PDMS. The model thus considered measured 5495 

contact angles of epoxy resin (θs = 98.4°), chip surface (θb = 78.2°), and untreated PDMS 5496 

(θt = 107°) in the first instance. The Matlab-based model was first employed to simulate the 5497 

behaviour of a single microchannel with several liquids. Simulation results proposed in 5498 

Figure F.1(a),(b) model the behaviour of water, serum, plasma and blood flowing into a 5499 

rectangular microchannel with w = 100 µm, h = 100 µm, and L = 4 mm. Water experiences 5500 

an adequate capillary action, covering the entire sensing area in less than 50s. Simulated 5501 

water flow rate is considerably higher than that of serum, plasma, and blood. On the other 5502 

hand, filling times for serum, plasma and blood are too high for the requirements. Thus, 5503 

additional optimisation is required.   5504 

A conservative approach was adopted, so the usage of whole blood was assumed for 5505 

subsequent simulations. The effect of the variation of the microchannel width was 5506 

investigated - see Figure F.1(c),(d). Simulations predict the behaviour of blood flowing into 5507 

a rectangular microchannel with w in the range 100 – 400 µm, h = 100 µm, and L = 4 mm. 5508 

Increasing the width of the microchannel increased the flow rate of the channel, 5509 

consequently decreasing the filling time of the structure. Despite the lower filling time, this 5510 

optimisation step alone is not enough for meeting the requirements of the capillary action. 5511 

As previously mentioned, a maximum w = 300 µm can be adopted for manufacturing a 4-5512 

channel passive fluidic network. The effect of the variation of h when flowing blood was 5513 

then investigated (see Figure F.1(e),(f)). Simulations studied the behaviour of blood flowing 5514 

into a rectangular microchannel with w = 300 µm, h in the range 100 – 350 µm, and 5515 

L = 4 mm. Increasing h led to a decrease in filling time. However, no improvement in the 5516 

filling time was recorded with > 300 µm. The last parameter than was investigated was the 5517 

wettability. PDMS contact angle can be modified by PVA deposition. The effect of the 5518 

variation of the contact angle of the top PDMS when flowing blood in a microchannel with 5519 

w = 300 µm and h = 300 µm was investigated (see Figure F.1(g),(h).). The worst condition 5520 

for capillary action was θt = 90°. Filling time then decreases when increasing the difference 5521 

Δθ with θt0 = 90°, regardless of the hydrophilic or hydrophobic nature of the material. The 5522 

fluidic resistance was not affected by the contact angle of the top PDMS lid.  5523 

The simulations highlighted that the contact angle of the top PDMS lid and the height of the 5524 

microchannel are probably the most effective and convenient design parameters to be 5525 

optimised – see Figure F.1 (i),(j).  5526 
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w=100 µm, h=100 µm, θs=98.4°, 
θt=107°, θb=78.2°, L=4 mm 

w=100 µm, h=100 µm, θs=98.4°, 
θt=107°, θb=78.2°, L=4 mm 

 
h=100 µm, θs=98.4°, θt=107°, 

θb=78.2°, L=4 mm 

(a) (b) (c) 

 
h=100 µm, θs=98.4°, θt=107°, 

θb=78.2°, L=4 mm 

 
w=300 µm, θs=98.4°, θt=107°, 

θb=78.2°, L=4 mm 

 
w=300 µm, θs=98.4°, θt=107°, 

θb=78.2°, L=4 mm 
(d) (e) (f) 

 
w=300 µm, h=300 µm, θs=98.4°, θb=78.2°, L=4 mm 

 
w=300 µm, h=300 µm, θs=98.4°, θb=78.2°, L=4 mm 

(g) (h) 

 
w = 300 µm, θs = 98.4°, θb = 78.2°, L = 4 mm 

 
w = 300 µm, θs = 98.4°, θb = 78.2°, L = 4 mm 

(i) (j) 

Figure F.1 (a) Liquid advancement vs time (vs specimens). (b) Initial flow rate and fluidic 5527 

resistance vs. specimen. (c) Blood advancement vs time (vs w values). (d) Initial flow rate 5528 

and fluidic resistance vs. channel width (blood). (e) Blood advancement vs time (vs h values). 5529 

(f) Initial flow rate and fluidic resistance vs channel height (blood). (g) Blood advancement 5530 

vs time (vs Δθt). (h) Initial flow rate and fluidic resistance vs. top contact angle (blood). (i) 5531 

Time required for the sample to cover the sensing area (i.e. filling time) vs h values vs θt 5532 

(blood). (j) Simulations of water, serum, plasma, and blood flowing into the optimised 5533 

microstructure. 5534 
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G. Wire Bonding and Packaging Protocol  5535 

This appendix illustrates the wire bonding and packaging protocol used for the fabrication 5536 

of the cartridge described within this PhD project. Wire bonding was performed in the 5537 

cleanroom facility of Glasgow Laboratory for Advanced Detector Development (School of 5538 

Physics and Astronomy, University of Glasgow). The Hesse and Knipps Bondjet 710 was 5539 

used for the wire bonding of the CMOS onto a ceramic chip package [331]. The CMOS chip 5540 

was wire bonded onto a Ceramic Pin Grid Array (CPGA) package with 120 pins purchased 5541 

from Europractice [293]. The overall size of the selected CPGA package was 3.3x3.3 cm, 5542 

with an 8.3×8.3 mm cavity accommodating the structure to be wire-bonded. 5543 

The wire-bonding process consisted of three stages: preparation, programming, and bonding. 5544 

Preparation. The CMOS chip with the PDMS mould on top of it was glued in the cavity of 5545 

the CPGA package using the EPO-TEK H74 epoxy from Epoxy Technology Inc [294]. The 5546 

epoxy resin was mixed with the curing agent in a weight ratio 100:3. Approximately 20 µL 5547 

of the prepared solution was placed in the centre of the CPGA cavity and spread, before 5548 

placing the PDMS mould-topped chip onto the epoxy applying slight pressure. The epoxy 5549 

was cured by baking the structure for 5 minutes at 150oC.  5550 

Programming. The structure was secured in the centre of the stage of the Bondjet 710 with 5551 

electrostatic discharge safe tape. The equipment was programmed to automatically perform 5552 

the wire bonding, according to the wire-bonding diagram reported in Figure G.1(c). The first 5553 

step in the programme was the definition of the source (CMOS chip) and destination 5554 

(package) of the bonds. Then reference points, heights and all the parameters summarised in 5555 

Table G.1 were set. After that, the bond paths were defined. 58 pads out of the available 64 5556 

were wire-bonded (test pads were not used). However, only 18 wire bonds are necessary for 5557 

this PhD project. The other connections are needed for other functionalities of the chip not 5558 

used in this work. Bond paths were defined via-software using graphical tools supported by 5559 

the digital microscope. Configurations were saved and reused in similar wire-bonding jobs. 5560 

Bonding. The Bondjet 710 support different bonding modalities. Usually, the full-automatic 5561 

mode has been adopted. However, whenever an error occurred, or a bond failed, it was 5562 

necessary to manually re-define the position of the bond and re-bond the pad in manual 5563 

mode.  5564 

 5565 

 5566 

 5567 
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  5568 

(a) (b) 

  5569 

(c) (d) 

Figure G.1 (a) The Hesse and Knipps Bondjet 710 ultrasonic automatic wire bonder. 5570 

Reproduced and modified from [332]. (b) CPGA with 120 pins. (c) Bonding diagram. (d) 5571 

Exemplative micrograph of a bonding process.  5572 

 5573 

Table G.1. Main parameters used for wire-bonding. 5574 

Parameter Value 

Ultrasonic power 30% (source), 20% (destination) 

Bond force 24 cN (source), 20 cN (destination) 

Start height 1000 µm 

Loop height 250 µm 

Start angle 45o 

Bonding speed 20 % 

Position accuracy 5 µm 

Touch down area 100 µm 

Safety area 80 µm (radius) 

Reference Points 

Source: (1) top left corner of the top left pad; (2) bottom right corner of the 

bottom right pad. 

Destination: (1) top left corner of the top left pad; (2) bottom right corner of 

the bottom right pad. 

Bonding Height Reset every bonding job 

 5575 
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H. Biochemical Protocol for reagents preparation used for diluted serum experiments 5576 

This appendix illustrates the procedure adopted for the metabolomics experiments in diluted 5577 

serum.  5578 

Prostate Cancer Metabolites. All the chemicals were purchased from Sigma Aldrich. 5579 

Dehydrated human serum was also obtained from Sigma Aldrich and reconstituted with DI 5580 

water following the recommended protocol. The reconstituted human serum was further 5581 

diluted in DI water (volume ratio 1:10). All the reagents were prepared using 0.1 mM Tris 5582 

HCl buffer (pH 8). For LAA assay, L-Tryptophan (grade ≥98%) and L-Arginine were used 5583 

to create an LAA solution of 25 mM in buffer. The LAA solution was used to introduce a 5584 

known concentration of LAA into the diluted human serum samples. For the first stage of 5585 

the reaction, LAAOx (L-Amino Acid Oxidase from Crotalus adamanteus) was used to 5586 

prepare a 4 U/mL enzymatic solution. LAAOx has different kinetics variable depending on 5587 

the substrate under test. The average Km for LAAOx over all the substrates is 8.5±7.4 mM 5588 

[49]. For practical and economic reasons, it was not viable to prepare an LAA testing 5589 

solution with all the available LAAs on the market. Thus, tryptophan and arginine have been 5590 

selected because they exhibit low (4.2 mM) and high (12.5 mM) Km, respectively [49]. 5591 

Accordingly, the expected Km of LAAOx when reacting with the prepared LAA testing 5592 

solution can be assumed to be 8.35 mM [49], when the two amino-acids are equally present 5593 

in the solution. Therefore, this was a good approximation for a real-life scenario. For the 5594 

glutamate assay, dehydrated glutamate (L-Glutamic acid monosodium salt monohydrate) 5595 

was dissolved in the buffer to produce a 5 mM glutamate solution, which was used to 5596 

introduce an additional known quantity of metabolite into the diluted serum samples. GlOx 5597 

(L-Glutamate Oxidase from Streptomyces sp.) was prepared with a concentration of 4 U/mL 5598 

to be used for the 1st reaction stage of the glutamate assay. For choline assay, dehydrated 5599 

choline (Choline chloride ≥99%) was dissolved in the buffer for the preparation of a 2.5 mM 5600 

solution to be used for increasing the concentration of choline in the diluted serum samples. 5601 

For the 1st reaction stage of choline assay, ChOx (Choline Oxidase from Alcaligenes sp.)  5602 

was dissolved in buffer with a concentration of 150 U/mL.  For Sarcosine quantification, 5603 

dehydrated sarcosine (sarcosine 98%) was used to prepare two different solutions in buffer 5604 

with concentrations of 0.5 mM and 50 mM. Sarcosine solutions were used to introduce an 5605 

additional known quantity of the metabolite into the serum samples to be tested. For the 1st 5606 

stage of the assay, SaOx (Sarcosine Oxidase from Bacillus sp.) was dissolved in buffer to 5607 

create a 200 U/mL enzymatic solution. For all the assays, o-dianisidine was selected for the 5608 
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2nd stage of the assays. Dehydrated o-dianisidine was used to prepare a 41 mM solution in 5609 

buffer. The enzyme HRP (Peroxidase from horseradish) was also used to catalyse the o-5610 

dianisidine oxidation. Dehydrated HRP was used to prepare two solutions with different 5611 

concentrations of 65.5 U/mL and 300 U/mL. All the chemicals were aliquot and stored in 5612 

appropriate refrigerator units in the laboratories of the MST group, Rankine Building, 5613 

University of Glasgow.  5614 

Ischemic stroke metabolites. All the chemicals were purchased from Sigma Aldrich. 5615 

Dehydrated human serum was also obtained from Sigma Aldrich and diluted with DI water 5616 

(volume ratio of 1:10). Reagents were prepared using a 10 mM PBS (Phosphate-buffered 5617 

saline) buffer (pH 7.4).  5618 

For lactate assay, lactate (Sodium L-lactate ~98%) was used to create a lactate solution of 5619 

10 mM in buffer, which was used to introduce a known concentration of the analyte into the 5620 

diluted human serum samples. For the first stage of the reaction, LaOx (Lactate Oxidase 5621 

from Aerococcus viridans) was used to prepare a 4 U/mL enzymatic solution.  5622 

For creatinine assay, creatinine (Creatinine anhydrous, ≥98%) was used to prepare a testing 5623 

solution in buffer with 5 mM concentration. The first reaction stage of the reaction for 5624 

creatinine quantification is composed of three enzymatic reactions. For the first reaction, 5625 

CNN (Creatininase from Flavobacterium sp.) was used to prepare a 200 U/mL solution. For 5626 

the second reaction, CTN (Creatinase from Actinobacillus sp) was used to develop a solution 5627 

with enzyme concentration of 200 U/mL. For the third reaction stage, SaOx (Sarcosine 5628 

Oxidase from Bacillus sp.) was dissolved in buffer to create a 150 U/mL enzymatic solution. 5629 

All the chemicals were aliquot and stored in appropriate refrigerator units in the laboratories 5630 

of the MST group, Rankine Building, University of Glasgow.  5631 

 5632 

I. Biochemical Protocol for reagents preparation used for microchannel 5633 

functionalisation 5634 

This appendix illustrates the protocol adopted for the preparation of enzymatic solutions for 5635 

dry assays. Four different solutions were prepared to be dried/lyophilised into the 5636 

microchannels:  5637 

1) Solution for negative control: a negative control solution was obtained by mixing 10 µL 5638 

of DI water, 10 µL of 150 U/mL HRP, 5 µL of 44.5 mM phenol and 5 µL of 10.5 mM 5639 

4AAP. Instead of an enzyme solution, DI water was used to make it as a control 5640 

microchannel.  5641 
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2) Solution for choline assay: a solution containing all the reagents required for choline 5642 

testing was obtained by mixing 10 µL of 150 U/mL ChOx, 10 µL of 150 U/mL HRP, 5643 

5 µL of 44.5 mM phenol and 5 µL of 10.5 mM 4AAP.  5644 

3) Solution for glutamate assay: a solution containing all the reagents required for glutamate 5645 

testing was obtained by mixing 10 µL of 4 U/mL GlOx, 10 µL of 150 U/mL HRP, 5 µL 5646 

of 44.5 mM phenol and 5 µL of 10.5 mM 4AAP.  5647 

4) Solution for LAA assay: a solution containing all the reagents required for LAA testing 5648 

was obtained by mixing 10 µL of 10 U/mL LAAOx, 10 µL of 150 U/mL HRP, 5 µL of 5649 

44.5 mM phenol and 5 µL of 10.5 mM 4AAP.  5650 

For the immobilisation of these reagents into the microchannel, 1 µL of each solution was 5651 

deposited in the respective microchannel according to the desired configuration. The 5652 

deposition was achieved by manual pipetting. After the deposition of the solution, the 5653 

cartridge was dried for 1 hour at room temperature in a vacuum chamber. 5654 

 5655 

J. Enzyme printing protocol  5656 

This appendix illustrates the protocol adopted for the functionalisation of paper-strip with 5657 

enzymatic solutions using a printing technique. Two different inks containing reagents for 5658 

the lactate assay and glucose assay were printed on the specific paper microfluidic channels 5659 

using the Jetlab II printer. Reagents were purchased from Sigma Aldrich. The adopted 5660 

patterns were straight line composed of 20 spots with 0.5 mm pitch. The stimulus waveform 5661 

was a negative pulse, tuned for each printing job. The total volume of each printed enzymatic 5662 

solution was approximately 2.5 µL. The ink solution for glucose testing was composed as 5663 

follows: 190 µL 100 mM Triethanolamine buffer at pH 8, 30 µL 600 U/mL peroxidase, 160 5664 

µL 7.89 mM o-dianisidine, and 120 µL 8 U/mL glucose oxidase. The ink solution for lactate 5665 

testing was composed as follows: 210 µL 100 mM Triethanolamine buffer at pH 8, 60 µL 5666 

600 U/mL peroxidase, 120 µL 7.89 mM o-dianisidine, and 100 µL 2 U/mL lactate oxidase.  5667 

 5668 

 5669 

 5670 

 5671 

 5672 
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L. Procedure for clinical sample collection 5687 

This appendix illustrates the protocol for clinical sample collection.  5688 

Control group. Ten samples of human plasma from healthy people were sourced by 5689 

Cambridge Bioscience. Plasma samples of healthy people are herein referred to as ‘non-5690 

PCa’ and constituted the control group. Non-PCa donors were selected to be adult male 5691 

subjects only. The average age of the non-PCa group was 34±10 years. The ethnicity of the 5692 

group was diversified including, European, Asian, and African donors.  Samples were 5693 

already pre-screened for the most common infections, including HIV, syphilis, Hepatitis B, 5694 

Hepatitis C, and all resulted negative. Approximately 10 mL of fresh blood samples were 5695 

collected in various research clinical facilities in England, mixed with 10 mg of dipotassium 5696 

ethylenediaminetetraacetic acid (K2EDTA) anticoagulant, centrifuged and the generated 4 5697 

mL of plasma samples were frozen at –80o. Frozen plasma samples were shipped under dry-5698 

ice. After collection, plasma samples were aliquoted in 200 µL vials and stored at –80o. No 5699 

additional freeze and taw cycles were performed. A table listing details on the non-PCa 5700 

group is reported below. 5701 

Prostate cancer group. Sixteen human plasma samples from people diagnosed with PCa 5702 

were sourced from the Beatson Cancer Institute, Glasgow, UK, under ethical approval, with 5703 

the collaboration with Dr Robert Jones and Prof Jeff Evans. Plasma samples from cancer 5704 

patients herein are referred to as ‘PCa’ samples and constituted the cancer or PCa group. 5705 

Donors were selected to be adults who had already been diagnosed with PCa. However, due 5706 

to ethical reason, detailed information, such as age and ethnicity, about the samples was not 5707 

available. General information about the therapeutic course of the treatment for the patients 5708 

such as the use of drugs was available. All the patients were under similar standard therapy 5709 

involving the administration of triptorelin (or similar), omeprazole/esomeprazole, and 5710 

statins. Approximately 10 mL of blood samples were collected at the Beatson Cancer 5711 

Institute, mixed with 10 mg of K2EDTA anticoagulant, centrifuged, and the resulting plasma 5712 

samples were frozen at –80oC. Samples were collected from the Beatson Cancer Institute 5713 

and transported to Institute of Infection Immunity and Inflammation (III), Glasgow 5714 

Biomedical Research Centre, University of Glasgow, where most of the measurements were 5715 

carried out in dry ice. Afterwards, plasma samples were aliquoted in 200 µL vials and stored 5716 

at –80oC. No additional freeze and thaw cycles were performed except an initial thaw just 5717 

before the testing. Samples were stored and tested in the same facilities as the non-PCa 5718 

group.  5719 
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Ischemic stroke group. Ten samples of human plasma from people diagnosed with 5720 

ischemic stroke were sourced from the Queen Elizabeth University Hospital, Glasgow, UK, 5721 

under ethical approval, thanks to the collaboration with Dr Samadhan B. Patil, lecturer in 5722 

Medical Engineering at the University of York, and Prof Jessie Dawson, Professor of Stroke 5723 

Medicine and Consultant Stroke Physician at The Queen Elizabeth Hospital, Glasgow. 5724 

Donors were selected to be adults recently diagnosed with ischemic stroke. Due to ethical 5725 

reasons, detailed information, such as age and ethnicity, related to patients were not 5726 

available. The approximate available volume, for each sample, was 100 µL. Blood samples 5727 

were collected from the West Glasgow Ambulatory Care Hospital, mixed with 5728 

anticoagulant, centrifuged, and the resulting plasma samples were frozen at –80o. Samples 5729 

were transported from West Glasgow Ambulatory Care Hospital in dry-ice. Afterwards, 5730 

vials were stored into a –80o freezer. No additional freeze and taw cycle was performed 5731 

except premeasurement thawing. Samples were stored and tested in the same facilities as the 5732 

clinical cancer samples. Calibration samples (calibrators) were sourced from the Institute of 5733 

Cardiovascular and Medical Sciences, University of Glasgow. Calibrators were used in 5734 

diluted form. 5735 

 5736 

 5737 

Table L.1 General information of the control group. 5738 

 5739 

 5740 

 5741 

Sample # 1 2 3 4 5 6 7 8 9 10 Average Std 

Collect. date 
18/07/2019  

12:12

18/07/2019  

13:34

18/07/2019  

11:51

18/07/2019  

14:30

18/07/2019  

11:44

18/07/2019  

13:23

18/07/2019  

14:09

18/07/2019 

08:11

18/07/2019  

12:22

18/07/2019  

08:34
- -

Blood Group O RhD Pos O RhD neg A RhD neg O RhD pos O RhD pos A RhD pos A RhD pos B RhD neg 0 RhD pos A RhD pos Various  -

Gender Male Male Male Male Male Male Male Male Male Male Male -

Male 32 22 36 45 20 53 27 29 29 40 33.3 9.8

Ethnicity As ian Bri this/Iri sh Bri this/Iri sh Bri this/Iri sh Black Bri this/Iri sh Bri this/Iri sh Black Black Bri this/Iri sh Various  -

HIV 1&2, p24 Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative -

HBsAg Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative -

HCV Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative -

Syphillis Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative Negative -

WBC (1/L) 6.76E+09 5.04E+09 5.50E+09 5.20E+09 5.29E+09 5.88E+09 5.55E+09 2.44E+09 5.14E+09 5.13E+09 5.19E+09 1.04E+09

RBC (1/L) 4.82E+12 4.25E+12 5.12E+12 4.81E+12 5.45E+12 4.72E+12 4.92E+12 5.65E+12 4.78E+12 5.67E+12 5.019E+12 4.30E+11

HGB (g/L) 148 140 157 142 150 146 143 133 147 160 146.6 7.5

HCT (L/L) 0.425 0.394 0.453 0.422 0.452 0.422 0.425 0.417 0.425 0.482 0.4317 0.0

MCV (fL) 88.2 92.7 88.5 87.7 82.9 89.4 86.4 73.8 88.9 85 86.35 4.9

MCH (pg) 30.7 32.9 30.7 29.5 27.5 30.9 29.1 23.5 30.8 28.2 29.38 2.4

MCHC (g/L) 348 355 347 336 332 346 336 319 346 332 339.7 10.1

PLT (1/L) 3.32E+11 1.41E+11 2.45E+11 2.24E+11 2.9E+11 2.19E+11 2.24E+11 2.12E+11 2.28E+11 2.85E+11 2.4E+11 4.97E+10

RDW (%) 11.4 11.3 12.2 12.6 13.8 13 13.2 12.1 12.1 14.3 12.6 0.9

Neut (1/L) 3.29E+09 3.01E+09 2.88E+09 3.02E+09 2.33E+09 3.15E+09 3.62E+09 8.90E+08 2.69E+09 2.81E+09 2.77E+09 7.07E+08

Lymph (1/L) 2.73E+09 1.10E+09 1.69E+09 1.60E+09 2.09E+09 1.92E+09 1.31E+09 1.20E+09 1.73E+09 1.75E+09 1.71E+09 4.51E+08

Mono (1/L) 5.30E+08 5.20E+08 6.20E+08 4.00E+08 6.60E+08 5.20E+08 4.90E+08 2.70E+08 4.90E+08 4.10E+08 4.91E+08 1.06E+08

EO (1/L) 1.40E+08 3.80E+08 2.80E+08 1.70E+08 1.50E+08 2.40E+08 7.00E+07 5.00E+07 2.10E+08 1.20E+08 1.81E+08 9.47E+07

Baso (1/L) 7.00E+07 3.00E+07 3.00E+07 1.00E+07 6.00E+07 5.00E+07 6.00E+07 3.00E+07 2.00E+07 4.00E+07 4.00E+07 1.84E+07
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M. PCA scores for classification 5742 

This appendix reports the dataset for prostate cancer clinical evaluation (after Principal 5743 

Component Analysis – PCA). 5744 

Table M.1 PCA scores for prostate cancer samples. 5745 

Sample PC 1 (88.33%) PC 2 (7.56%) PC 3 (4.11%) 

1 1.696752 0.37309 -0.08331 

2 1.737893 -0.39242 -0.02927 

3 0.901266 -0.35921 0.295321 

4 1.618211 0.021794 0.50435 

5 1.640694 0.367556 -0.03393 

6 1.58718 0.032493 0.024632 

7 0.977501 -0.36137 0.142953 

8 0.994047 0.268857 -0.00329 

9 1.185934 -0.02453 -0.11917 

10 1.129113 -0.19346 0.033888 

11 1.448242 -0.68844 -0.29005 

12 1.717073 0.973358 0.502618 

13 2.350504 -0.09969 0.469352 

14 2.381458 -0.55839 0.98048 

15 2.307302 0.185646 0.548527 

16 3.053422 -1.14177 -0.61908 

17 1.904028 0.520958 0.277342 

18 1.480935 0.104297 0.291933 

19 1.519043 -0.25816 -0.17274 

20 2.271879 0.821612 -0.10654 

21 3.237712 1.315546 -0.93454 

22 1.575352 -0.49917 -0.30436 

23 1.661074 -0.22037 -0.03577 

24 1.668592 -0.30158 -0.46687 

25 1.56468 -0.43482 -0.19961 

26 1.407768 -0.41207 0.026069 

 5746 

  5747 
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