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CHAPTER I

INTRODUCTION

In processes involving pions such as pion-nucleon 
scattering, the pion-pion interaction plays a very

should take an important part in processes involving kaons. 
In particular, the low energy kaon-nucleon scattering is 
mainly determined by the two pion exchange and the hyperon

theoretic language the interaction is said to take place 
through the Hamiltonian;

Attempts are made in this thesis to determine the 
low energy kaon-pion scattering amplitude. Since the 
interaction involved is strong in nature, the field theoret 
approach runs into divergence difficulties. The programme 
based on unitarity, crossing and analyticity to determine 
the scattering amplitude is known as the S-matrix theory. 
Here, one does not encounter the divergence difficulties 
of the field theory and is concerned with only physically 
measurable quantities. The S-matrix theory approach is 
used in this thesis. A brief historical outline of the

important role.'*' Similarly, the kaon-pion interaction

2exchange. The two pion exchange is described by
3a mechanism suggested by Barshay. In conventional field

(ii)



S-matrix theory and its various aspects are described 
in this chapter. Since we are mainly concerned with 
partial wave dispersion relations various methods available 
for solving them are also discussed,

1.1. UNITARITY, CROSSING AND ANALYTICITY:
We consider a scattering process involving the four 

particles A, B, C and D with four-momenta p^, Pg, P3 and 
p^ respectively as schematically represented by Fig. 1.1.
It is a suitable convention

to take incoming momenta as positive. By pairing the
four particles - two incoming and two outgoing - the
following three channels are defined:

I A (£4) + B  Upa.) C (rfe)'t-

H  A (h) +  c t h ) -> B (~h) •+£ (-fc*)
111 A OPi) + D (Jpq} —  ̂8 -4-CC-̂ )

Besides describing the process shown above, each channel
also describes the PCT equivalent anti-particle process;
as for example, channel I also describes the process 
C ( P S ) •+ D A  which is obtained from

the particle process by changing the signs of all the 
four momenta. Whenever a particle is switched from incoming



to outgoing it is to be replaced by the corresponding 
antiparticle and vice versa.

The four-momentum p^ is connected to the mass of the 
corresponding particle by;

P> =  0 - 2 0

Three scaler invariants can be defined from these four-
momenta ;

s =■ U?1 +  t’z)'2 =  das + fe»J'2
u =  tP-I + l̂ s f -  (fe+P-*}4 (1- 3t)
■fc =  (lf,1 + fe)2 =  ( f t + f i s ) 2- (/I-3c)

It is easy to verify that s is positive time-like in 
channel I and is the square of the centre of mass energy 
there; and so are u and t in channels II and III respectively. 
While in each channel the remaining two variables are 
negative of the momentum transfer squared between the initial 
and the final states in the centre of mass system. So 
each variable plays the double role of energy in one channel 
and momentum transfer in the remaining channels. Conser
vation of four momenta imposes the constraint:

4
S + u + P  =. (1-4 )

L=1
on the three scalar invariants, so only two out of the 
three are independent. This is as expected, because a 
two body scattering amplitude depends on two variables - 
the energy and the scattering angle. The lafter is a function



of the momentum transfer. In each channel, the suitable 
variables will be the centre of mass energy squared and 
the cosine of the scattering angle in the same system.

Taking channel I as an example, the physical region 
is defined by 5  ̂  S+*, — 1^ ; where S + * is the
lowest physically possible value of the centre of mass 
energy squared, which is, of course, equal to the larger 
one of the two quantities (r'M-nviaO'2'and (Ws-hvmJ2 „ 0  is
the scattering angle in the centre of mass system. Similarly, 
the physical regions for channels II and III can be defined.
In the space of the variables s, u and t these three
physical regions are separated from each other by entirely
unphysical regions.

S-matrix: A scattering process is described by the S-matrix
which is an unitary operator mapping a set of incoming 
states on to a set of outgoing states. The X “matrix is 
defined by-

S =  1 -i- l T  G '5 )/V ^
Taking the matrix element between the final state f and 
the initial state i of both sides of the above equation;

5 * ( = < - f | s | i >  =  < J U >  + i < 4  U H >
=: $ii +  )Tfi (3-6 )

where a factor ~ P l ) has been taken out in the



definition of the matrix element "ffi . This takes into 
account the conservation of four-momenta. Tji , in 
general, depends on the spins and isotopic spins of the 
particles taking part in the scattering process. It is 
always possible by taking out suitable kinematical, spin 
and isotopic-spin factors to express T a  in terms of 
one or more scalar amplitudes. The number of amplitudes 
depends on the spin and isotopic-spin complications. In 
this chapter all such complications are ignored and so 
we are concerned with only one scalar amplitude. This is 
written as A • The differential cross section is connected
t° A by; i .9 , _\

—  k  A  (?' " 0
an. 1

where k is a kinematical factor.

Lorentz invariance: Any reasonable theory of elementary
particles is expected to be invariant under Lorentz- 
transformations. In our case it is guaranteed by taking A 
to be a function of only scalar invariants. Since we are
considering two body scattering process, A is a function
of two variables. Any two of the set |s, u, tj> of 
scalar invariants may be chosen. Which pair, will depend 
on the channel under consideration. But when referred to
in general, A will be written as



ArKccf"Unitarity: Conservation of total probability requiresAthe 
S-matrix is unitary, that is;

s+s =  S S + -  1 (IS)
In terms of the X  operator this becomes:

x - l + =  i l ’ T  C-i)^ ^ /V
Then taking the matrix-element between f and i of both 
sides and after introducing a complete set of states 
2  | ~ 1 between and T  on the right hand side
Y\
one finally obtains;

V » T fi =
^  Y\

The left hand side is obtained by using: — X  * ~
p^ and pn are the four-momenta of the initial and the 
intermediate states respectively. The summation over n 
includes all possible physical intermediate states allowed 
by conservation laws. Equation (1.10) may be rewritten as:

x h) Tj* T,i (vi'i)

where the summation ^  is over the number and types of
)p _

particles in the intermediate state. The product | ) runsn
over all the particles in the set p. The integrations over 
the four-momenta give the phase-space factor.

The unitarity condition is a general feature of every 
quantum mechanical theory.



Crossing: It has already been seen that Fig. 1.1. describes
three different channels; each channel in turn corresponds 
to two reactions: the particle and the PCT equivalent 
anti-particle reaction. The postulate of crossing states 
that the same invariant amplitude - in our case 
taken as a function of the scalar kinematical invariants 
and continued to the appropriate values of these variables 
represents the actual scattering amplitude for all the 
three channels.

In perturbation theory diagrams of all orders are
found to satisfy this postulate. There it is known as

4Substitution law," and is stated as follows: no matter 
how the external lines of a given Feynman diagram are 
oriented the contribution of the diagram is the same. 
Crossing conditions are also found to be satisfied in the 
axiomatic field theory under suitable conditions. But 
there does not seem to be a way of proving it on the basis 
of the S-matrix theory. It is taken to be a postulate.

Since the physical regions of the three channels are 
mutually exclusive crossing conditions will be of no use 
unless the scattering amplitude has enough analytical 
properties to allow analytic continuation from one physical 
region to another.

Analyticity: The analytical properties of the scattering



amplitude in the kinematical variables have been subjected
to extensive investigations since the early fifties. The
forward scattering amplitude, which is a function of only
the energy variable was the first to be investigated. Gell-

5Mann, Goldberger and Thirring showed the amplitude for 
the scattering of photons in the forward direction to be

0
analytic in the upper-half energy plane. Then Goldberger
was able to extend this proof of the analytical properties
to the scattering of particles with mass. The next step
was to derive similar results for non-forward directions.
Hettristic derivations were given independently by various 

7groups.
Such analytical properties in the energy variable 

are due to the imposing of the restriction of the "Principle 
of microscopic causality" on the scattering amplitudes.
This states that no signal can propagate with a speed 
greater than that of light in vacuo. In field theoretic 
language this means that the commutator (anticommutator) 
of boson (fermion) fields at two points separated by space 
like distance vanishes. Use of the above principle through

gthe Jost-Lehmann-Dyson representation fcr the vacuum 
expectation values of the commutators (anticommutators) 
forms the basis for the proofs of the analytical properties.

Rigorous proofs of analytical properties of the 
scattering amplitudes in the energy variable were obtained



9for the forward scattering by Symanzik and for the non
forward scattering by Bogoliubov, Medvedev and Polivanov^

11 12 Bremermann, Oehme and Taylor and Lehmann . These proofs
for the non-forward scattering amplitudes were valid
provided the momentum transfer was less than a certain
maximum and the masses of the particles satisfied certain
inequalities.

To illustrate, how the analytical properties can
be used to extract physical knowledge about the scattering
process, the case of the forward scattering is considered.
Forward direction corresponds to t = 0, when s is the
centre of mass energy squared. The scattering amplitude
A fS/0 ) o where the zero stands for t is analytic in the
entire s-plane except for branch points and branch cuts
on the real axis. If there exists any single particle
state having the same quantum numbers as the initial state,

2there will be a pole at s = m , where m is the mass of 
the particle. Two cuts, both of them along the real axis, 
one taken from s^ to +oo and the other from s^ to - 
will account for all the branch points and cuts. s^ is 
greater than S£ unless the scattering process involves 
massless particles. So there is a gap on the real axis 
between the two cuts. A closed contour is drawn by going 
round the above two cuts and a circle of radius R, when 
R — > 0 0  • Application of the Cauchy’s theorem on complex



variables yields a representation for the scattering 
amplitude at any point inside the closed contour. If

A (s,o) ->o as S —^ oo the contribution from the large 
circle of radius R vanishes. In the case when A (£/0)-^S^ as 
£ o o by considering ACSjO)/^' where instead

of A^SyO) the contributions from the large circle can 
be made to vanish. To avoid complications, it is assumed 
that there is no single particle state and A(S/0 )->O as 
g _> oo . Then the representation is given by:

a(s,o) =  ± U s '  v y y i  +  ±  Q

si
where the property of real analyticity:

AfS, 0) =  A*(S*,C>) 
has been used to express the discontinuities across the cuts 
in terms of the imaginary parts of the amplitude. The 
property of real analyticity is due to the fact that the 
amplitude AtS^O^is real on the real axis between the two cuts.

Crossing relations allow us to write &™A(S,0) in 
the second integral in Equation (1.12) in terms of SvnAfeyOj 
for s ̂  s^ that is, in terms of physical values. The 
unitarity condition Eqn (1.10) in the case of the forward 
scattering gives the optical theorem, which states that

A ( S / 6 ) is proportional to the total cross-section. By 
allowing s to approach the right hand cut + o o ) ,
that is, by putting s == S+lt when 6 - ^ 0  the real part



of A(s,o) on the right hand cut is obtained as a 
principal value integral over Here use has
been made of:

5^  J T  -  p -5Ps (1 H J

In a scattering experiment, the total cross sections
are usually measured precisely. Thus, the analytical
properties of the scattering amplitude through the
representation Equation (1.12) determines the real part of
the amplitude in terms of the total cross sections:

13Anderson, Davidon and Kruse used Eqn (1.12) in the case 
of pion-nucleon scattering in the forward direction to 
test the validity of the analytic properties against experi
mental results. The agreement was fairly good.

A representation of the type of Eqn (1.12) is commonly 
known as dispersion relation. The origin of this name is 
in the investigation of the analytic properties of the 
scattering amplitude in the classical dispersion theory 
of light by Kramers^ and Kronig^ in 1926-27.

Using dispersion relations for and for the deri
vatives of Afe, fcj with respect to t in the forward
direction in the case of pion-nucleon scattering Chew,

16Goldberger, Low and Nambu obtained approximate expressions 
for the individual partial waves. On the right hand side, 
only the dominant contributions to %rvi 0 ) such as,
the contribution from the 3/2, 3/2 resonance in the pion-



nucleon system, were kept. Thus the phase shifts for
the lower partial waves in the low energy region were
approximately determined. Among various applications
of the single dispersion relations in the energy variable

17to the problems of pion-nucleon scattering , photo-
production,^ decay processes'^, processes involving

20strange particles , etc. worth mentioning are the
21determination of the pion-nucleon coupling constant

and the removal of the Fermi-Yang ambiguity for pion-nucleon
phase shifts.^

12Lehmann in his proof of the single dispersion 
relations was also able to show that the scattering amplitude 
is analytic in a limited region in the Cos 0 - plane around 
the physical values of Cos 0 with the energy kept fixed.
This analyticity is far from being enough to enable one to 
write useful dispersion relations in the momentum transfer 
for fixed energy.

23In 1958, Mandelstam wrote down a representation for
the two body scattering amplitude by considering it to be
analytic in the two variables: the energy and the momentum
transfer, except for cuts along certain hyperplanes. In

24a subsequent paper he proved that the fourth order diagrams
in the perturbation theory do satisfy such a representation.

This led to the postulate of the principle of maximal 
25analyticity , which states that the scattering amplitude



is analytic in the variables s, u and t except 
for singularities demanded by unitarity. Since there 
are three channels, three different sets of singularities 
will appear in the scattering amplitude. Each set comes 
from the unitarity condition in the channel concerned.

Single particle states, stable or unstable, give rise 
to poles in the S-matrix theory. These poles are to be 
inserted into the S-matrix at the start of the process of 
determining the singularities demanded by unitarity. All 
one particle states having the same quantum numbers as 
the initial state of a certain scattering amplitude give 
rise to poles in that amplitude. In the S-matrix theory 
particles are classified as unstable or stable by the 
existence or non-existence of a decay threshold below the 
mass of the particle. When a pole is initially inserted 
into the S-matrix its parameters are arbitrary. If it is 
possible to determine these parameters through the require 
ments of self-consistency then the particle represented by 
the pole is said to be a bound state. When the parameters 
are truly arbitrary the particle is called "Elementary”.

We now examine the unitarity condition, Eqn (1.11) 
to find out how it gives rise to singularities. When the 
energy on the real positive axis has been increased to an 
extent to make a new intermediate state, consisting of two 
or more particles, physically possible an additional con-



tribution, which was identically zero before, is added to 

the right hand side. This gives a branch point on the 
positive real axis at this energy. As the energy increases, 
more and more massive intermediate states become physically 
possible giving rise to more and more branch points. These 
are known as normal threshold singularities.

__ 3frThe normal thresholds may be introduced in and
TTu on the right hand side of Eqn (1.11) to produce more 

singularities. These additional singularities can be fed 
back into the integrand to produce more. Continuing this 
iteration procedure all possible singularities of the 
scattering amplitude will be obtained, and it is postulated fad 
there are no further singularities of the scattering 
amplitude.

26Polkinghorne has shown that the set of singularities
obtained by iterating the unitarity condition is the same
as the set obtained by considering all orders of perturbation

27theory. This allows us to use the Landau - Cutkosky rules, 
first obtained for singularities in perturbation theory, 
to locate the singularities demanded by unitarity. The 
singularities of the simple diagrams drawn in Fig. 1.2 are 
as follows. Diagram (a) gives a pole in the scattering 
amplitude at S ~  ; diagram (b) produces a branch
point on the positive real axis at S =  (in ̂ 4-1̂ ) 2 ; while 
diagram (c) gives rise to singularities on the positive
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/

[*) IM
real axes in both s and t variables. The singularities 
lie on a curve in the s-t plane. This curve is asymptotic 
to the normal thresholds obtained by contracting out the 
lines m^ and or m2 and m^, and gives the boundary of
the contribution to the double spectral function of the 
Mandelstam representation from this diagram. In th«e case 
of diagram (c) the asymptotes are *fc —  (YV̂ -HTOsĵ ancl

S - (WM-t-ims)2''
The locations of the singularities obtained from

unitarity depend only on the masses of the particles in 
the physical intermediate state except in the case of weakly 
bound systems. Then a type of singularities appear which 
do not correspond to the mass of any physical intermediate 
state. These are called anomalous threshold singularities. ^  

Since these may be obtained from the normal case by con
tinuing in the masses of the particles, they too, arise out 
of the unitarity condition.

In the case of the two body scattering amplitude the 
singularities obtained from unitarity allow us to write



down a representation for the scattering amplitude known
after Mandelstam. Such a representation breaks down when

29anomalous thrwsholds appear. Many attempts were !made to 
prove Mandelstam representation for all orders of per
turbation theory. Proofs exist only for diagrams up to 
the sixth order. We discuss the Mandelstam representation 
in the next section.

The unitarity condition couples the two body scattering 
amplitude with many particle systems. So, unless many - 
particle systems are known even the two body process cannot 
be determined completely. At the moment there is no general 
method of treating the many particle systems. At a particular 
energy only limited number of intermediate states are 
physically possible by energy conservation. The multi
particle states come into the picture away from the low 
energy region. It may be expected by making the energy 
appreciably low that the two body scattering process is 
isolated enough from the rest of the world for any calculation 
considering only the lowest intermediate states to make 
any sense.

1.2. MANDELSTAM REPRESENTATION;
A two body scattering amplitude having no anomalous 

threshold singularities allow this representation. Single 
particle states give rise to poles in the respective



variables. Diagrams like Fig. 1.2(b) give singularities 
in one variable, that is, the single spectral terms. While 
the fourth (Fig, 1.2(c)) and higher order diagrams give 
the double spectral terms. The boundaries of the double 
spectral functions are determined by the fourth order 
diagrams. The representation then takes the form;

All possible subtractions have been ignored. Taking the 
discontinuities in s, u and t:

respectively. Using these discontinuities the Mandelstam 
representation may be rewritten in any one of the following 
three forms:- 
Fixed s:

where Ai> Ax and A3 are the discontinuities in s, u and t



Fixed u:

Fixed t:
A Is,vii t )  -  P « ^s +  4r

J_ f ,.,> (1 21 )
7T J I/'- U.

where we have used: t-1
The single dispersion relations studied before 

Mandelstam representation were of the type fixed t. In 
the forward direction when t = 0 the discontinuities Ai 
and are entirely in the physical regions of channels
I and II respectively. Later on, in our application of 
dispersion relations to the problem of kaon-pion scattering 
this type of single dispersion relations will be found to 
be very useful.

The Mandelstam representation gives the locations of 
the singularities. If one can device a procedure to 
calculate the discontinuties across all the cuts, then the 
scattering amplitude will be completely known. The pole 
parameters corresponding to a single particle may possibly 
be determined by self-consistency requirements or may 
remain as arbitrary parameters. Similar is the case with 
subtraction constants. The masses of various particles may 
well have to be taken as arbitrary parameters. It has

(1 ■ 10 )



been hoped in the S-matrix theory that one will be able 
to determine everything in terms of only one parameter, 
possibly the mass of one particle to fix the scale. But 
such a hope has been far from realization. All calculations 
so far done have been done in a number of limited regions 
of the S-matrix with own set of parameters in each case.

The scattering amplitude may be expanded in
terms of individual partial waves in any one of the 
three channels using Legendre polynomials. The case of 
channel I is considered in the following discussion. The 
expansion may be written down as:

where is the 1th partial wave amplitude which is
a function of only one variable s. Using the inverted form 
of Eqn (1.22):

individual partial wave amplitudes may be projected out of 
the Mandelstam representation. Then the analytic structures 
of these partial waves may be obtained. In the next chapter, 
it will be shown in detail how this is done for the kaon- 
pion system. For the present need, it is just sufficient to 
mention that in the general case the following singularities 
appear: a cut extending from the lowest threshold to infinity

A(S,C*s&) =  + At(s) (1-22)
1 ^ 0



along the positive real axis known as the physical or 
the right hand cut, and one or more cuts which may or may 
not lie entirely on the real axis and extending to infinity 
along the negative direction. The later set of cuts is 
known as the unphysical or the left hand cut. The unitarity 
condition when expressed in terms of partial wave amplitudes 
allows us to write A^ [ s )  as:

A j » =  Singt (1-2-4)
where k is a kinematical factor which goes to a constant 
as s and is the 1th partial wave phase shift.
This shows that tends to a constant as s approaches
infinity, then the following partial wave dispersion 
relation may be written down:

where one subtraction has been made at s = sQ and 
The discontinuities AAJ^) across the left hand cut may 
be obtained in terms of f\^ and A3 by using the fixed 
s dispersion relation Eqn (1.19). Both and At, are
known if the double spectral functions are known. 
Alternatively A 2. and A 3 may expressed in terms of 
channel II and III partial wave amplitudes by continuation 
using the Legendre polynomial expansion. Such a continuation 
is valid only in, the nearby regions of the left hand cut.



The double spectral functions need not be known in this 
case. In the next section we shall discuss the various 
methods of solving the partial wave dispersion relations.

Among the various contributions to the double spectral 
functions there will be some from diagrams having elastic 
intermediate states in one of the three channels. These 
contributions are referred to as the elastic double spectral 
functions. The regions of such contributions appear as 
fringes along the boundaries of the double spectral functions. 
Iterative procedure may be designed to calculate these

30contributions. This is known as the strip approximation.
The numberical calculations are very much involved. This
method was applied to the problem of pion-pion scattering

31by Bransden and Moffat and Bransden, Burke, Moorhouse 
32and Morgan . Application has also been made to the problem

33of pion-nucleon scattering.
34Froissart studied the asymptotic behaviour of a two 

body scattering amplitude involving scalar particles and 
satisfying the Mandelstam representation. He found the 
scattering amplitude to be bounded by

C o n s t . s Xv\zs
at the forward and backward angles, and by

C/vvst.
at any other fixed angle. This imposes a very serious 
restriction on the number of arbitrary subtractions in the



Mandelstam representation. Subtraction terms in the variable 
t are, in general, of the form W  • When
s is very large, behaves as s^. So, sub
traction terms with JL> 1  violates the Froissart bounds.
Froissart also showed that cancellations do not occur 
between the different terms of this type of subtraction 
constants or between these terms and the double spectral 
functions. Applying this argument to all three variables, 
the number of independent subtractions allowed in each case 
is only two.

A stable particle is represented by a pole on the
physical sheet in the form;

r ~L tCflS&s)
“  '  M 2" — S

when jL > 1, this term violates the Froissart bound. 
Similarly, resonant partial waves with £>1 will also be 
in trouble.

35In potential scattering, it has been shown by Regge 
that the scattering amplitude is meromorphic in the complex 
angular momentum plane when Rel is within a certain range of 
values. The poles are not fixed. They start on the real 
axis and move to the right with increasing energy. At a 
certain value of the energy(at the threshold of the process) 
a particular pole moves into the upperhalf plane still 
continuing its rightward motion. Then ultimately when the 
energy has been increased to a certain value it turns back



and starts moving left. Such poles are known as Regge
poles. Whenever a Regge pole crosses, during its rightward
motion, an integral value of Rel it gives rise to a bound
state or a resonance depending on whether the pole is on
the real axis or in the upper half plane.

The idea of the Regge poles has been extended to
3 6relativistic S-matrix theory by various people. There,

of course, like the other postulates of the theory no
rigorous proof exists for the occurrence of such poles.
In field theory Regge poles appear in the sum over an infinite

37set of ladder diagrams.
By putting Regge poles into the S-matrix theory the

divergence troubles with stable or unstable particles for
1 can be avoided. At first, Regge poles seemed to be

satisfactory in explaining the high energy behaviour of
scattering cross sections. Later experiments on irp and pp
scattering cast some doubt on such an explanation. Moving
Regge cuts may have to be brought into the picture. Then,

38certain theoretical investigations suggesting the existence 
of such moving cuts in the complex 1-plane have introduced 
serious complications. In short it may be stated that the 
Regge poles cannot explain the high energy scattering properly.

We leave the general discussion on the S-matrix theory 
at this point after making one remark. Although the partial 
wave dispersion relations follow straightforwardly from the
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Mandelstam representation, their existence may be proved
39independently on the basis of the perturbation theory .

This allows us to have a bit more faith in them.

1.3. METHODS OF SOLVING THE PARTIAL WAVE DISPERSION RELATIONS 
In this section, various methods of solving the partial 

wave dispersion relations are discussed. The drawbacks of 
each method are also mentioned.
(i) N/D METHOD;

Here, the partial wave amplitude is written down as:
Aits) =  N t( s ) / p j s )

Where NclO ^as only the left hand cut and D f̂s) has 
got only the right hand cut. The discontinuities of 
and D̂ (>) across the cuts are given by:

D, 0 ) =  ^  ( rrrj V , s  ̂  ^  ri&kf h^  ,
' oui. 0  a7 j

W  M ?) —  AAi(s) Dt(s) -fnr S O VX fKt h j i r  M
~  cJi. (H-2 8 ;

Normalizing Pc(s)^ 1 at s - so, the following dispersion 
relations for Nil?>) and may be written down:

M - (X, +  S"S° (jk; D<.(s'x>_. (j-2 ^ )Nils) _ a.t + Ts'-S)ls'-S7T
L

Dils)- >| ^  (L3 0 )
* i is'-s)(*'-*>)



by the unitarity condition for the partial wave amplitudes,
Eqn (1.24). Substituting Eqn (1.29) in Eqn (1.30) one
obtains a Fredholm equation for . The existence

40of solutions for such an equation depends critically on
the behaviour of A\̂ (sJ as S # /\ A L /̂ ) is
normally calculated by using the crossing conditions to
express it in terms of channels II and III physical amplitudes.
As has already been pointed out that such a procedure involves
a continuation using the Legendre polynomial expansion which
is valid only in a limited region of the left hand cut. When
a particle with spin equal to or greater than one is exchanged
in channel I, Zi A e i t h e r  tends to a large constant
or blows up as 5  —> • Under this circumstance any
solution to the partial wave dispersion relations using
the above method of continuation either will not exist or
will make no sense. A cut off may be introduced to avoid the
troublesome region. In the case of N/D method with a cut off,
the solutions are strongly dependent on the position of the

41cut off. Chew and Mandelstam obtained such solutions for 
the pion-pion scattering. The cut off introduced an extra 
parameter into the pion-pion system.

Various simple approximations of the N/D equations can 
be made by replacing the left hand cut by a set of poles and 
calculating their parameters by the requirements of self-



42consistency . All these approximations are very crude
in nature and have limited applications. Another class of

43approximations, commonly known as "Bootstrap calculations," 
may be devised by neglecting everything but the contributions 
from certain one-particle exchange terms on the left hand 
cut. Each exchange term has two parameters, the coupling 
constant and the mass of the particle exchanged. Most of 
these parameters may be determined by the requirements of 
self-consistency. As for example, if the particle exchanged 
can also appear in the direct channel, then equating Re]^/£):rQ 
at the position of the mass of the particle and A- [s) 
to the coupling constant the parameters may be determined 
self-consistently. In general, the numerical results of 
such a crude calculation disagrees badly with experimental 
results. The iteration is done only to the first order, 
when i on the left hand cut. Any attempt to go

44beyond this makes the solution blow up. Recently, Gervais
extended this method to include the two particle exchange
terms in certain approximations. The numerical results show
slight improvements.

The solutions obtained for the N/D equation are not
unique. Introducing zeros in (.&) arbitrarily, poles may

45be generated in • These are known as CDD poles
The parameters of these poles are entirely arbitrary. Such 
poles are taken to represent the elementary particles of the



theory. The Froissart bounds restrict these poles to 
the total angular momentum states 0 , i and 1 .

46(ii) VARIATIONAL METHOD OF HAMILTON AND DONNACHIE :
Let us consider the quantity;

9 (.l0  —  Ac(s)/ (S-So)^2 d-31)

where sq is the lower limit of the right hand integral in 
Eqn (1.25). Then ignoring possible subtractions the following 
dispersion relation may be written down;

This type of inverted dispersion relation was first obtained

on the physical cut Hamilton and Donnachie developed a
variational method using Eqns (1.25) and (1.32) together.
Various parameters are calculated by varying them to make
the solutions of the above dispersion relations satisfy
unitarity as closely as possible. Good agreements are
obtained in the applications to the problem of pion-pion

48scattering in the T = 1 J = 1 state by Oades and to the
3 3problem of pion-nucleon scattering in the ^  state by

46Hamilton and Donnachie.
A serious drawback of this method is that the approximate 

nature of on the physical cut has to be known in
advance. Only resonant states can be dealt with fairly simply.

Wx AclS) 
\T-s-s0

47by Gilbert. Assuming suitable parametric form for AtfeJ



(iii) INVERSE AMPLITUDE METHOD:
In this method, instead of dealing with the amplitude 

its inverse V AltO is considered. To make the 
illustration showing how the method works very simple the 
following assumptions are made. It is not necessary for all 
of them to be true in a practical application. The partial 
wave amplitude Acts) is assumed to have the physical cut 
So^ 4-cO and a simple left hand cut — S ̂  along
the real axis. It is assumed that there is no complex 
zero of A<Â ) and that it goes to a constant at s^ and sq . 

All possible subtractions are ignored. Then the following 
dispersion relation can be written down

a;’ m  =  x  p  +  x  C *

-1The imaginary part W\ At (sj on the right hand cut is 
given by unitarity* It is purely a kinematical factor
for elastic scattering. Then the contribution from the 
right hand cut is known analytically. On the left hand cut
W  h i Cs) is expressed in terms of 5vv\A<Js) as follows:

------- (1-54)
A l t s . +  All*)]^ ^

where R c A t ^ )  is obtained from the dispersion relation 
Eqn (1.33) using

O  A] (s)] x-t- A i1 ( 1 - 3 5  J



%v\Aii3) in Eqn (1.34) can be obtained by using crossing 
in terms of physical quantities in channels II and III.
It is evident from Eqn (1.34) that if blows up
as S j i*1611 V \  At Cs) O  as s — — o O  .
This effectively produces a cutoff in the dispersion relation.

49Moffat first wrote down the inverse amplitude dis
persion relations for the pion-pion scattering. Then

50Bransden and Moffat obtained numerical solutions to the 
problem by an iterative process based on the closed set 
formed by equations (1.33) - (1.35) and the crossing relations 
for the pion-pion system. The S-wave amplitudes have one 
subtraction each. The P-wave amplitude, which has just one 
total isotopic spin state, 1 = 1  has two parameters. The 
S-wave constants are related to the coupling constant of the 
pion-pion system, which is defined to be the value of rRe. 
scattering amplitude at the symmetry point s = u = t = 4 / 3 .
The two P-wave parameters are obtained in terms of the S-waves 
using the derivative conditions at the symmetry point. Thus 
the iterative procedure gave solutions of the coupled S and 
P waves in the pion-pion scattering dependent on only one 
arbitrary parameter, the pion-pion coupling constant. The 
solutions have the P-wave resonance, called the xho meson.
The position and the width of the resonance depended very 
much on the S—wave amplitudes. The low energy solutions were 
insensitive to the distant regions of the left hand cut as



expected. Crossing was satisfied in the nearby portion of 
the left hand cut.

Later on, we shall use the inverse amplitude method to 
determine the S-waves in the kaon-pion scattering. It 
will be found to be much more complicated than the pion- 
pion case.



CHAPTER II

THE ANALYTICAL PROPERTIES OF THE KAON-PION SCATTERING AMPLITUDE

In this chapter we discuss the analytical properties of 
the kaon-pion scattering amplitude. The kinematics and various 
other details of the scattering amplitudes for all the three 
channels are given in section I. The Mandelstam representation 
is written down in the next section. Section III is devoted

Ato the derivation ofAanalytical properties of the partial wave 
amplitudes for kaon-pion scattering. The discontinuities 
across the cuts are also obtained in this section.

2.1. KINEMATICS:
Fig. 2.1. represents schematically the kaon-pion scattering 

and the crossed processes. The three scalar invariants, which

may be formed from the four-momenta p^, Pg, P3 and p^ are as 
follows*:



s -  (h+)p2.)a =  0 ?s+ & ) 1

u ~  =  0^ + t%)a

t - m-trW)2- (fcHrfo)1 fe.-1c)

s, u and t are the energy variables in the following 
three channels

I n I&,«<)-* kiipo -? A (-k,£)+K (-la,)

II IV (Ps./i) +  K(fe) 7U~»V0 + K(-fo)

HL TV (Pi,o<) ■+ TV^/) K (~M + K(-lp4)

respectively. Both channels I and II describe the kaon-pion 
scattering and can be obtained from each other by inter
changing the two pions. While channel III describes the 
annihilation-creation process J\ K KX • Conservation 
of four-momenta requires that

s  +  U.+ fc =. lYvf-v It*1 =  x  2 )

This reduces the number of independent variables from three 
to two. In each channel we shall use the square of the 
centre-of-mass energy and the cosine of the scattering angle 
in the same system as the two independent variables. The 
relations between these variables and s, u and t are as follows

* We have chosen the units so that h = c !=|i = l, where |jl is 
the mass of the pion. The metric chosen is such that the 
scalar product is defined by A B = AQB0 - A,. B. The mass 
of a kaon is denoted by m.



Channel I:
Let

P i  P i  - P i  —  p i  —
f V  rv( r J

2when k is the square of the momentum in the centre of 
mass system. Then

S t=. dt 2. 1/ (2 ^ )

t -  -  x K ^ i i - C n e - )  Q - z b )

\x — I — S + ateHl - k>s&) (3 -  'S c )

where the cosine of the scattering angle, 60$ O' is defined by

C « e  =  --  l? - 0

From Eqn, (2,3a) it is clear that S is a double valued
function of K2 and so the k - plane is two-sheeted. The (+)ve
sign in the above mentioned equation corresponds to the
physical sheet, because then for S (yvn-H*)2-
By s, this value on the physical sheet will be meant unless

2otherwise stated, k may be expressed in terms of s as 
follows:

—  LS -tvn+rrOls - O'-Ni) (2-5 )

The physical region for channel I is defined by:

s ̂  c > w — 1$ Ccse^+i-

Channel II:

The variables are all similar to those of channel I



and can be obtained from the later by interchanging s and u. 
A bar is placed on K*’ and G>s& like ^  and Cos§~ to denote 
channel II quantities* Then

u  — Vv̂ -v ̂  -V- ZR2 2. i i y ^ - \ r Y A L )  (2.' )

{ :  —  —  2 K Z ( 1 - C c s e )  6 b )
S — 2 -w. + 2Rz(1 - ^  ® ) (?-6cJ

  [u, - jvn-vtMpO* (2.* )
4u,

The physical region is now defined by

U ^  lw\ + H 2 OjvJi -1 ^ C o s O ^ - t ' L

Channel III:
Let

where p and q are the kaon and the pion momenta respectively 
in the centre of mass system* Then

s -  - +  2_ ^ 6oSCp (2 -7a )

U. _  2. ^  (2-7b)

t 4(^-VriJ (2. 7 c )

Qjs d) is defined by



The physical region is given by
{ ;  0 ^ 4  — 1 ^ doscf ^-hl.

We can write down the S-matrix for the process described 
by channel I as follows:

—  S f a  "+ 1 ha ) T̂ »c< (-2-7)

where the isotopic spin indices oC and for the pions 
are used to denote the initial and the final states res
pectively. )(V is connected to the invariant scattering
amplitude A(V by

"T — __  121________ A/w (2-10 J

Aft* will be taken to be a function of s, u and t to 
guarantee relativistic invariance and it is related to the 
differential cross section for kaon-pion scattering by.

iJL -  ±  ( A^(.s,u,b)la (2 -1 1 )

Using the unitarity condition, Eqn (1.10), one gets the 
optical theorem:

a «  £- 1 = 0

A,where denotes the forward scattering amplitude in
channel I.

Crossing requires that the same scattering amplitude



A c o n t i n u e d  to appropriate values of the variables
describe all the three channels. We denote

■=. A  Cose-) ivs c ir ju n n e X I

A “EE. A  (M; CoS 0  ) iv\ chjkMWtX il (5-1^3

A- (£, U) t) =  B Oj  C a z d f ) iv> cL a m y \*A 111

In the kaon isotopic-spin space the scattering amplitude 
for channel I, Aft** may be written as:

Ap* =  -t- t L i V t O  A fc‘) (2-14)

where A*> and are the symmetric and the anti-symmetric 
parts respectively. There can be two eigen-states of the 
total isotopic spin, X-Vz and X — 3/2 for the kaon-pion system. 
The scattering amplitudes for these eigen-states are related
to and by (see appendix I):

A1/i —  +  1 At-) (2-15J
A %  -  (2-16)

A special case of crossing arises when the two pions 
are interchanged, that is when channels I and II are switched. 
Both these channels describe kaon-pion scattering. From Eqn 
(2.14) one finds that A ^  is symmetric under the exchange of 
the pions, while  ̂ is anti-symmetric. Then we have

A^Cs.u.V) =  ±  Al±)(w,s,t) (2-1?)

where s and u are interchanged, because the interchange of



the pions means that s <—> u. Eqn (2.17) is known as the 
“crossing symmetry" and is a very severe restriction on the 
scattering amplitudes. Using Eqn (2.15) and (2.16) the 
"crossing symmetry" condition can be written as:

A x C^Cai&) —  (2-1S)

where the crossing matrix ĉ ii/ is given by

i _ V 3 A / 3  \ >>ix'ir1 —  ( I (2-i“l)
2/3 V3

In channel III the eigen-states of total isotopic- 
spin states are I *= 0 and I - 1. Since two pions in the 
state of total isotopic-spin state I = 0 is symmetric under 
the interchange of the two pions, the scattering amplitude 
in channel III with I *= 0 is proportional to • Similarly
the state of two pions with I = 1 is antisymmetric under the 
exchange of the pions so the scattering amplitude in this 
state is proportional to . The constants of pro
portionality are determined in appendix I. Then

6° = U  Ae+) (2-2o)
- 2. (2-21)

Expressing A^ and in terms of amplitudes in the
eigen-states of total isotopic-spin in channel I we have

) =  Z ^ rr/A I'(S,Cos0) (2 22)



The crossing matrix is given by
t f Z / 3  1 ^ 1/3

hv - I „  I e - 2 3 JVs - Vs
Eqn (2.22) may be inverted to give

Ax(S,Cos&) -  Z  (2 24)
1'

where

W 6 ' 72
(2 2 5 )

Eqns (2.18), (2.22) and (2.24) will be very useful later 
on.

In channel I, the scattering amplitude A1 G)s ̂ )  

may be expanded in a series of Legendre polynomials

Â CS, Grse) Z  Ca-M) P{[Uid)Afts) (2 26j)
t ~ 0

Reversing Eqn (2.26) the partial wave amplitude At(s) may
be expressed in terms of CoSQ-) as follows:

-M
Aj’Xs) = ^ l )

The unitarity condition, Eqn (1.11) when expressed in terms
dof the partial wave amplitudes takes a very simple diagonalize 

form (appendix II):
W>Af(s) =  —  iA^s)!1 R^(s) (2-28J



where R l ($) is the coefficient of inelasticity defined
by

R * U )  Gilt & (?'2V

when the scattering is completely elastic Rc1 (s) —  1_ -
In the case of the kaon-pion scattering, the amplitude 
is purely elastic in the region ^ +

From the unitarity condition, Eqn (2.28) it follows
that:

A t (£>) =  ^••€,'̂’('Sin§^ ( 2 - 3 6 )

where is the phase shift, which is real in the
elastic region and becomes complex when the scattering is 
inelastic. The unitarity condition, Eqn (2.28) can be

i1 .rewritten in terms of the inverse amplitude A \. ^ ) as 
follows:

9hoA*\s) =r --K-gfls) (2-31 )

This is a very useful form of the unitarity condition, 
because when the scattering is fully elastic At (S) is
just a kinematical factor. Eqn (2.31) will be used in 
chapter IV in the inverse amplitude formulation for solving 
the partial wave dispersion relations.

In channel III, we make the following partial wave 
expansion: oo

-  £  ( u + 1) ( ) *  R  ) sj It) (i-32)
L~o



The reverse of this is. ^

B <* (t> =  p( ̂ ) B H h 0 , s % 3 5 j

The interchange s u means that CoS£p —Cos<jp . Then
the "crossing symmetry" condition, Eqn (2.17) when applied 
to channel III gives

Cosop) =  ±  (2 -mJ

Making partial wave expansions of both sides, we have

£ l U +  1 K K / D  C C o S d ? ) t i t > l t : )  =  0

Lro 12-3S)

where, the relation (— 60S (p J —  FJ. [ C t S d p ^  has
been used. Since the summation over 1 forms a complete set, 
each term of the sum can be equated to zero separately.
Then it follows that.

g> T  i t )  n n  0  f a r  £  o A d

[ ( r j “  0 - f a r  Jl Z a/ c/ vu-

because 0  ̂and are proportional to £>^and 0 ^  respectively.
Thus "crossing symmetry" reduces the number of amplitudes 
in a particular eigen-state of angular momentum in channel 
III from two to one. Since the two pion are in the initial 
state, "crossing symmetry" is just the Pauli exclusion 
principle.

Retaining only the two-pion intermediate state in the 
unitarity condition, Eqn (1.11) we have



~  ^ - B ^ l b ) A f T b )  (2-36J

where /fy Ur) Pi°n~Pi°n scattering amplitude and this
can be written down as:

Ailnr(t) =  .e11? W st« s ) "  ( i . - s y )

Since I 0 i s  real, S f l O should have the same phase as 
t \ L L t j in the two pion approximation for the unitarity 
condition. Then

B-i1 it; -  6 cx(i-j q - z z )

where is a real quantity. This is the "Final state
51theorem" . Eqn (2.38) is exactly true only in the region

• Now the physical region in channel III
. 52starts at t  — 4 ^  • But Mandelstam has shown that the unitarity 

condition can be extended to the region tr ̂
We can find a very suitable point at which

S —  w. ^  S 0 , &oe —  C m e  -  C a d ? =  o

— 2-l2o

where Sq is given by
S0 — C2 3^J

From the condition of "crossing symmetry", Eqn (2.17) it 

immediately follows that

A e,(s^s*,t0; c  ^



So, at this point,referred from now on as the symmetry point 
the two isotopic spin states in channels I and II are equal 
to each other

A % (So, oj 1=  (2-41)

Since is proportional to we have also.
81 0 ) —  O  (2-4 2)

Differentiating both sides of Eqn (2.18) with respect to s and 
6&S& at the symmetry point various derivative conditions for 

^ ( s )  may be obtained. In appendix III, the first derivative 
conditions are deduced. They are

e f t  ~  2 ^ 8  +

 ̂tr S S—So
X Iwhere &, ir. Ai [ $ • ) are the values of the P-wave scattering 

amplitudes at the symmetry point.
Similarly from Eqn (2.24) we obtain the following first

derivative conditions (see appendix III):

--031
s=s°

4  A I ~  - 031 4 B 4 W I  __ . 0 ^ 5 7
4  S S -Sft t; lr 0

Many such conditions can be written down by evaluating the
higher derivatives. But they will depend on higher partial
waves to a greater extent.

2.2. THE MANDELSTAM REPRESENTATION:
The singularities of the variables s, u and



t demanded by the unitarity conditions for the three channels 
may be obtained by studying the allowed diagrams for the 
scattering process. Conservation of G-parity will forbid 
even number of pions in the intermediate states for the 
kaon-pion scattering and odd number of pions in the intermediate 
states for the process T \ 7 \ ^  K K  . With the Hamiltonian 
given by Eqn (1.1), the possible lower order diagrams are 
drawn in Fig. 2.2 and Fig. 2.3.

Lb)
T" ig 2 ■ 2 . C (\£/i h c U a ^  UTOrnS

(?) U?)

Rft 2-Z Box di(KQr4/rv\£



— *±*± —

Solid lines represent kaons and dotted lines represent pions.

In S-matrix theory this corresponds to an arbitrary constant, 
which is defined to be the coupling constant. This may be 
taken to be the value of the scattering amplitude at a 
particular point, which may conveniently be taken to be the 
symmetry point in our case. Diagram (a) together with unitarity 
leads to the "chain diagrams" as drawn in diagrams (b) and (c) 
of Fig. 2.2. The chain diagrams have singularities in only 
one variable and so give rise to the single spectral terms.

The diagrams of Fig. 2.3, commonly known as box diagrams 
give rise to the double spectral terms. Diagrams (a) - (d) 
give the outer most boundaries of the double spectral functions. 
These boundaries will be obtained in appendix IV.

The Mandelstam representation will mainly be used to 
determine the analytical properties of the partial wave 
amplitudes. Subtraction constants and single spectral terms 
£0* doAalter in any way these analytical properties. So the 
representation written without subtractions and single spectral 
terms will serve our purpose. This is as follows:

Diagram (a) of Fig. 2.2 corresponds to the Tv (Kt«) term.



The boundaries of the double spectral functions as obtained
in appendix IV are.

Ftfr

JT [_t -1 &KL3L2 — ( A ^ S  — o

Q>) Fcrr A?x(S,uj
T V S - ( v n - » - n O C M - t v « + 3 H 3 ( ? - = m j

& )  f '- v r

The boundaries are the same as At3 (s> v  and can 
obtained from them by replacing s by u.

From the representation given by Eqn (2.47) the dis
continuities in the variables s, u and t may be obtained.
They are as follows:

With these discontinuities we can write down the single
variable dispersion relations:

fixaJ S ! r°0 u ., /*>r 0*

_  JL U  U'~ 7T
Cno-H*i2'

oor
-  j_ las'
-  7\ J

^  ( 2 - S 3  )
Ffxe^ u : ^

4^ ( 2 - M )



Cm ft)
These single dispersion relations, strictly speaking are not 
valid without any subtractions. The fixed t type will be 
used later on to obtain a sum rule for kaon-pion scattering 
and to determine certain set of parameters for 
amplitudes. Necessary subtractions will be made there. For 
the present need the single dispersion relations written 
in the above form will serve the purpose.

The application of crossing symmetry, Eqn (2.17) to 
the representation, Eqn (2.47) gives;

/ \ n C * >  y) =  ^  & ' 5 7 )

Putting this conditions in Eqns (2.50) - (2.52) we get
Af;Cs,u,u —  ±  (z-zz)

U, •=
In the next section we shall derive the analytic

properties of the kaon-pion partial wave scattering amplitude
and obtain the discontinuities across the various cuts. The 
case of /r/V ICl< partial wave amplitudes will be taken up 
in chapter III.

2.3. ANALYTIC PROPERTIES OF THE PARTIAL WAVE AMPLITUDES FOR 
CHANNEL I:
The fixed s dispersion relation is used to determine



the analytic properties of the partial wave amplitudes for 
kaon-pion scattering. The 1th partial wave is projected 
out from Eqn (2.53) by using Eqn (2.27) as follows:

X?(s) -

=  ±  ]a>c pti*) I ±  f a

-1 (m-|-wx_c>0

vV-^4-S - V & W - X )

+  -L U I (2.-^0J
TT /* t' + 2.kH'I-X-) I J
4 ^  J

where we have written x for CosO and used Eqn (2.3b) and 
(2.3c) to express u and t in terms of s and x. The singularities 
of A?<») arise from two different sources. Firstly, any 
singularity of A ^  and will also appear in [ s )

Secondly, the vanishing of the denominators in Eqn (2.60) will 
give rise to singularities in Af'te) .

The singularities of  ̂ and ^3  ̂ are obtained by
examining Eqns (2.51) and (2.52). The first denominators, 
in both of these equations give rise to a series of branch 
points on the real s axis. The first branch point appears at
<; — and corresponds to the physical threshold for

kaon-pion scattering. The next branch point is at s 0 + 3 ^  
the first inelastic threshold and the next one at S — (Vvi-t!5twJx
and so on. There if? no branch points at S — (nn-M f f a

etc., because the conservation of (5-parity forbids the even 
number of pions in channel I. A branch cut taken along the 
real axis in the range S -|-©o will account for all



these branch points. This cut is known as the physical cut 
or the right hand cut, because it involves only the physical 
partial wave amplitudes for kaon-pion scattering. The 
second denominators in both of the two equations (2.51) and 
(2.52) give rise to singularities which cancel each other.

The singularities arising from the vanishing of the 
denominators in Eqn (2.60) can be obtained as follows. Both 
of the denominators are of the form a + bx. There are two 
situations which may give rise to singularities: (i) a = 0
and b = 0, and (ii) a ^ 0 and b ^ 0. For the first denominator 
(u ' x ) ^  condition (i) may be satisfied only at 

one point given by and £ — . This
gives a branch point at S r  (Jrw— h)2" • The second denominator 

[ k f •VSLRM'I — X)) cannot satisfy condition (i) since
The simplest way of determining the singularities arising 
from condition (ii) is to interchange the order of integrations 
in Eqn (2.60) and to perform the x-integration. Then we 
have

where the Legendre polynomial of the second kind is defined
by.



-1
It is well known that is analytic in the a-plane
except for logarithmic branch points at a « + 1. The cut
may suitably be taken along the real axis from -1 to +1 .
Then the Q-function in the first term of Eqn (2,61) gives 
rise to the following singularities. The first branch point 
at rr -\-l corresponds to 5 —  'Z —  w/ . The physical

I 2.threshold ? \A gives a branch point in s plane at
c> [ m — The next branch point in uf at
will give a branch point at <; m  (w-th) (\na-7r-) and so on.
When U1 — ^ s approaches -—  . The second branch

. f yŷ~ Ujl ) 2.point of Q (_(A) corresponds to S r  ~—
The physical threshold, U1 (m-H*j^gives the branch point 
^ n  IVy\ —  ̂  X1' and the first inelastic threshold 5 \a!  :n (wn-sM7" 

gives a branch point at S —  )2/ and so on.
As we approach the upper limit of uf-integration s tends to 
zero. So a branch cut on the real axis from S —  (bo — h)2" to 
C, —  —  o O  will take into account all the singularities 
coming from the first term of Eqn (2.61).

For the second term in Eqn (2.61) the branch point 
CL ̂  +  -1 corresponds to —  q . But since k !

it can only be satisfied when —  ± o O  . This happens
when and Szi— oO . So the second term in Eqn (2.61)



gives rise to branch points at S and £ — — &O f°r all
values of t* corresponding to d s  4-1 . The branch point 

(L ~  — 1 corresponds to t/ —  —  . Solving for s
we have   i

S  —  rvp'-t-K1"— dr l/LV-A = 3 (2.-^3//

when t<4 Vv\v, s is complex and is real for *fc/—  A t ^ 2'  and
t f ^  A  . We first consider the latter case. The

branch point { !  zz gives a branch point in s at S ~ ~ [ yy? ^ ) A J

Taking the lower sign in the above equation it is found that 
as t/ —^ A r  ^  7 ' S goes to ,—  <=>0 . The upper sign
corresponds to 5 ^  Cu as ^  ^ -f- c*D . Then the higher
branch points in tf give rise to branch points in s at 
the values of s tending to —  cO with (/—■p’-hoO for the 
lower sign and at the values of s tending to 0 from the 
negative side with t/ The point gives a
branch point at ^  Vv\ —  ̂  . We write s = when

. Where >C —  and \ }  =

Then evaluating (S |2 —  y ^ ~ w e  find that
ISl2- -rrr

2 2This is the equation of a circle of radius (m - |i ) with
centre at the origin. Then all the branch points in t1 for

give rise to branch points in s lying on a 
2 2circle of radius (m - [i ) corresponding to the branch 

point a = - 1 of . As for example, the branch
point \ j  :r_ gives branch points in the s-plane at



s (wi*"— "7t°0 -±l l \ j ^ \g^(jV~— 4 ^ )  So finally, the branch 
cuts taken along the circle |&) — yyvx— b1" and along— 
on the real axis in the s-plane will account for all the 
singularities coming from the second term in Eqn (2.61).

Collecting all the singularities together we get the 
following analytical structure of A^fe) in the s-plane:

(i) The right hand cut: (yv\ + H ^  -t-oo
(ii) The left hand cut: ^  ^  [yy\

(iii) The circle cut: ( <>) :r-
The unitarity condition, Eqn (2.30) shows that
constant as S ^  So, a once subtracted dispersion
relation may be written down for

A f ( s )  =  n j -  -|_ { j L %/ — ^  A-f
m   ̂ t  J ts '-s )om-tr)1-

(£Ttr j (s'-s) L b ' - U )

A t Cs')
—oO

Ca X cI sl

where a subtraction is made at s - s^ and ( \ f ~  is the 1th 
partial wave subtraction constant with isotopic spin I. The 
discontinuities across the cuts on the real axis equal the 
imaginary part as a consequence of the real analyticity pro
perty



That is
« ^ 3 U-Hfc) — ~  ^A{"(s3 (2i - Q L )

when s is on the real axis. Z ^ i  A f f e ) is the discontinuity
across the circle cut given by:

AA?(s) =  A f ( S f n ) J  (Z-̂ V
where $0KJ. and are the values of s just outside and
inside of the circle cut respectively.

The discontinuity across the right hand cut is given 
by the unitarity condition, Eqn (2.28). The discontinuities 
across the other cuts may be obtained by examining Eqn (2.61).

The discontinuity across the cut — 1-f of
is given by:

We first determine the discontinuity across the left hand 
cut for contributions from channel II, that is for the first 
term in Eqn (2.61). Since the discontinuity is defined by 
going from S-Hf to $ — 16 on the real axis, the argument

S-h if and $ — C-G respectively. Then by examining the 
coefficient of it in the above equation for the range of 
u f - integration which gives for a fixed s it

of the 6^ — function is examined.
We have

where &(S-trl£r) and 0 ^ [ S ~ i ( r )  are the arguments of at



is found that:
(X[S:blf) —  (X L*\ tokw 6 ^  £ $  (\vi-h)x

ZZ (X zfc I Y\ î kê v S < 0

where fy is positive and goes to zero as £ o  • Now 
using Eqn (2.68) one can easily find out the discontinuity 
across the left hand cut for the first term of Eqn (2.61). 
It is as follows:

r  s
uiihs) =  jAf;(syu'A-s-u'j

^"5 uke/v\ Vw-p)2-
(< 1 -1 0  )X-.S 7

-  ^ C w p *  h + ^ 0 - ) & ? ' ( % « ' A - ^ ' )

i .  (-2-71J

where a bar is placed on ^A^(s^) to indicate that it is 
the contribution from channel II.

When 0  ('w-H2', A ' L - S ' V i J  is entirely in the
physical region of channel II, that is: U1 >> (m-{-K1x and
O rso z 1 is in the range — 1 ̂  6rs b  ̂  -V- i , Then the use of
crossing symmetry gives:

A£>(sy,2-s-u'j =  ±^A^<V,0-S6) C2'72)
For 5 0 ? 6g3 0- ̂  1 the equality applying only when
the value of u* is at the upper limit of Eqn (2.71). But 
we shall still def ine K̂ l-Srtf) thro ugh Eqn (2.72). %v\ G&B j
can then be expressed in terms of physical partial wave
amplitudes At^(V) ^y analytic continuation using



the Legendre polynomial expansion in C o s@ . The 
boundaries of the double spectral functions determine the 
region in which such an expansion is convergent. In 
appendix IV it has been shown that the Legendre polynomial 
expansion for Eqn (2.71) is convergent only up to S CC -27 
Combining Eqn (2.70) and (2.71) and using Eqn (2.18) we 
have ^ c(s) f

Z-S

t'-.o
where

2 *  ' (2-73)

C(S) — Jun ô . s $ (yvi-r)1
—  (K\ + r)a 2 < o

Similarly examining the second term in Eqn ( 2.61) it is
found that when s is on the left hand cut the argument of 
in the second term becomes;

a ( s i ; f e )  =  a

that ls fcts±(t) =  a ± > n  ^  .

^  i t "! loki/w •— c>ci <. S ^  '—(m/I )

Then the contribution of channel III to the discontinuity 
on the left hand cut is given by: —

W f V )  =  - e t s + v v ) ^ ) ^
/ /

< |  m '+()
t=° S < 0  !?'»)



where we have used:

=- B^t, Cos4 )  & 1 5 )

then expressed in terms of isotopic spin 
states by using Eqn (2.24) and expanded in Legendre polynomial 
series in G f t t f • Appendix IV shows that this expansion 
is convergent only up to S £ — 2,7

l*<dbOn the circle cut, one can write S —  V  ̂  where
Y  z l is ihe radius of the circle. S can also be

written in the form:
S±(5\) =r XTV-t-hn’-t-t̂ di XI l/ Cl-70-

where Tv =  \C ^ and the (+)ve and the (-)ve sign corresponds 
to the upper and the lower half of the circle respectively.
It is easy to see that S0Jtr and '̂«*\ corresponds to 
TV -V- and yV — respectively. Then

) -  &  + ltS,'nC^ ^

That is
Cl ( s v^) —  0V ^  tti “-'ppx/T K-szĴL to

=r &. dr. <5n fKt A>w€,r ffe urc&_.

Then the discontinuity across the circle cut becomes;— ̂\7 \ oo

(2 7g;



Where the (+)ve sign corresponds to the upper half and the 
(-)ve sign to the lower half of the circle respectively.
As shown in appendix IV, the Legendre polynomial expansion

is convergent everywhere on the circle
cut.

The discontinuities Eqns (2.73),(2.74) and (2.78) may 
also be derived by examining Eqns (2.18) and (2.24).

In the next chapter we shall discuss the partial wave 
amplitudes for channel III.



CHAPTER III

JT7YKK PARTIAL WAVE AMPLITUDES

It has been seen in the last chapter that a knowledge
of the partial wave scattering amplitudes for Ki< is
necessary in the determination of the kaon-pion scattering
amplitudes. This chapter is devoted to the formulation of
an approximate method of solving the S and P waves of 7vrr-> KVC
process in the low energy regions. Section I gives the
analytical properties of the partial wave amplitudes. The
discontinuities across the cuts are also obtained. In the

53next section the Omnes method has been used to obtain 
approximate solutions for the S and P waves.

3.1. ANALYTICAL PROPERTIES OF THE PARTIAL WAVE AMPLITUDES 
FOR CHANNEL III 
The fixed t dispersion relation is used to determine 

the analytical properties of the partial wave amplitudes, 
Utilizing Eqn (2.33) to project out the 1th partial wave from 
Eqn (2.55) we have

.+1 r .&)

7T J
— 1 o-n+r)1-

+  (3 1 J
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where Grŝj) is written as x and s and u are expressed in
terms of t and x with the help of Eqns (2.7a) and (2.7b).
From crossing symmetry it follows that

—  ±  & 2 )

The replacing the integration variable uf in the second 
integral of Eqn (3.1) by s1 one gets

lif’O) -  \  ^ - )t pt(x’) -L jds' tr)

  ̂  i   1 - ------------1 (33 )s' •+ p'Vvz - 2.|^2t <! 4  +  2.|3t,xJ
As in the case of kaon-pion scattering amplitudes the 
singularities arise from two different sources. Firstly, 
the absorptive parts a V  and a V  in Eqn (3.1) have 
singularities which may be obtained by examining Eqns (2.50) 
and (2.51). The denominator in both of these
equations gives rise to branch points in at
t ~ tr —  and so on. A branch cut taken along the
real axis in the range A will cover all these branch 
points. The other denominators in Eqns (2.50) and (2.51) 
give rise to singularities which cancel out each other. 
Secondly, the vanishing of the denominators in Eqn (3.1) 
give rise to singularities of Lkr) . These can be
obtained by examining Eqn (3.3). The singularities are of 
end point type, that is they appear when X  ~  + 1.



The first denominator can vanish at X  *=- 4-1. for
sT inside the range of the second integration of Eqn (3.3), 
that is for S/ ^  (bv+t*')2 . This occurs at fc m rjJ
At the end point X  ̂  — 1 the first denominator cannot 
vanish as shown below. This denominator at X  —  is:

s' - e —  s' -+ ̂ —tvP— 4;

For s’ inside the integration limits, that is for £ (vn-t-b)2 
the combination ^ 2. "t i i f (4̂ tr) is always greater than 
zero, whatever be the value of t. So, the denominator 
cannot vanish at Xcz — 1 for For the second
denominator the points -\r 1. and X — — 1 interchange
roles and give rise to the same set of singularities as the 
first denominator. The physical threshold, S/ m  
thus gives rise to a branch point at fc n  O  • The
next inelastic threshold gives a branch point at

so on. Higher and
higher thresholds in s1 give rise to branch points in the 
t plane on the negative real axis further and further from 
the origin. A branch cut taken along the real axis from 

0 to — ©0 will cover all these branch points.
The denominator does not give rise to any singularities.
This can be shown as follows. Since tk) is non zero
only for even 1 values and ^1 )̂ is non zero only for odd
1 values, the (+) sign between the two denominators in Eqn 
(3.3) can be replaced by (-1) • Then the x-integratlon



is performed after interchanging the order of the 
integrations. This gives

O+t^ fe'4)
To obtain the above equation we have used ~
for the second denominator. Now the term vanishes
at Jo ~ 0 and °\j ~ O . So whenever we approach one
of these two points.

CL —  S/-LpM-4^ ;

This allows the expansion of in a power series in
a as follows:

t-1 ' ,+  cw)w-t) I
a < H + 3 )  J x

(3-5)
/a /IThe leading term behaves like and this cancels

out the denominator in Eqn (3.4). The other terms approach 
zero faster than the denominator. Thus the denominator 

in Eqn (3.3) gives rise to no singularity.
Then ^as ‘t̂ie following singularities in the t-plane

(i) Physical or the right hand cut: ^
(ii) The left hand cut: —  <>o ^  b  ^  O  

Ignoring all possible subtractions, the following 
dispersion relation can be written down for

6nt) =
4 ^  J - --oO { 3 - i )



where the real analyticity property:

has been used to express the discontinuities across the cuts 
in terms of the imaginary parts of the amplitudes. That 
is

&  h

The discontinuity across the physical cut is given by 
the unitarity condition, which in the two pion approximation 
is:

where Af^^r) is the pion-pion scattering amplitude in the 
1th partial wave with total isotopic spin I. [ i r j is
connected to by B i  and Bj -  2  .

The discontinuity across the left hand cut may be 
obtained by examining Eqn (3.4). It comes from the dis
continuity of across the branch cut taken along

—  1 ^  ^  *Vl- where -- ^ ■~ ^ L—
This is given by

=  ~ i K P L[<t) (3 -1 0 )

The sign of the discontinuity on the left hand cut is 
decided by the imaginary part a(t) picks up when we put



—  —

n k  ±  [ &  . It is given by

a(t±ct) = a ± f t

where
(3_ =: ^*--1/4 =  \/ 1/4

one can easily find that the coefficient of t£ is 
positive for all values of s1 in the range S/ S.

which gives —  ̂ ^  + 1  for a fixed t. Then <X(G±i'*=) —  ̂  — l'*l
using Eqn (3.10) in Eqn (3.4) the discontinuity across the 
left hand cut is found to be given by:

w e f t * )  = .  -  p. (

On the right hand side of this equation we put;
(3-12J

where

is not exactly the imaginary part of the 
scattering amplitude in channel I, because 0 0 6  is not 
in the physical region. Examining Eqn (3.11) it can be 
seen that for values of s* in the range of the integration, 

- 1 j the equality sign applies only when s* is at 
the upper limit of the integration. Then



has to be analytically continued to express it 
in terms of physical amplitudes by expanding in a Legendre 
polynomial series in GrsO . This expansion is convergent 
only in a limited region of the 1-plane, In appendix IV 
it has been shown that this region extends only up to

on “the left hand cut. Lastly, expressing all the 
amplitudes in terms of respective eigenstates of total 
isotopic spin one gets:

It is to be noted that Eqn (3.14) can also be obtained from

by projecting out the 1th partial wave and calculating the

When t approaches the limiting point of the left hand 
cut at {7 the integration over sT in Eqn (3.14) collapses. 
Because, when £7—^  Q  we have

GXJ> j

x ̂  (24/ 4-1) P̂i ( ̂ (3-Hj

where the crossing matrix is given by

BxO j ksd? ) -  7  a_ ,A x'Cs,Cne; t - u ;

discontinuity across the left hand cut in the t-plane.



So the upper limit approaches the lower limit as t goes 
to zero. Now very near the threshold in channel I:

-~r CjwsWf'
3  US'- { W ) ' 3 U + * O v , s h J r .

Examining the Legendre polynomial series expansion on the 
right hand side of Eqn (3.14) it is found that the s-wave 
term behaves like L3' — (Vv\4-t')£] ^ • ^or other terms 
goes to zero faster than the above quantity. Now if we 
express P*/ (toe-) in terms of Co & , a term
appears which when combined with the behaviour of

r )produces a term behaving like > but there
/ - , 6 'will also be a factor (Jtj with it. So only the s-wave

in the Legendre polynomial is leading when t approaches zero. 
The argument of —  approaches a constant in
the above limit of t. Then we have ^

/ tvv\-H*PLl —  4^rJ

Cwv-Vt)̂
£  C-t)A

1- ^Thus it) goes to zero as (r-€) when t approaches
the origin along the left hand cut. This behaviour will have
some important consequences in the next section.

3.2. APPROXIMATE SOLUTIONS FOR S AND P WAVE AMPLITUDES;
The unitarity condition in the two pion approximation, 

Eqn (3.9) shows that bas the same phase as the pion-
pion scattering amplitude for 4^-^ One can define



the quantity Bj (t) D?" (Jr) where D<7 has the phase 
1 on the right hand cut. Then Ctr)

will have the singularities in the t-plane;
(i) A cut on the positive t-axis: 16^^. t ̂  4-°£>

(ii) The left hand cut of (t) : — &o fc ̂  O
By making the assumption that four-pion and other higher 
mass intermediate states have small contributions unless t 
is very large, the lower limit of cut (i) may be raised 
quite a bit from k  ^  4 6 f*2 . On the left hand cut the
Legendre polynomial expansion in Eqn (3.14) is convergent 
only up to t ̂  . So it is not justified to use
this equation to calculate the discontinuity further beyond 

k  tri — 3 2 - .  Since we are mainly interested in the low 
energy region on the right hand cut, say in the range

*d 6 it will not be a very bad approximation to
j ^cut off the left hand cut at-fcn-32-h and replace the neglected 

portion from to k z z -— o£> by two poles at fixed
positions on the real axis. The prescription giving these 
pole positions will be discussed shortly. The residues may 
be determined by comparison with kaon-pion scattering ampli
tude in the forward direction. We then write down the dis- 
persior



for the S and P waves. The right hand cut is neglected, 
because the contribution of this may be expected to be 
i i fro be fairly small in the low energy region.
The effect of neglecting this cut, as well as the effects 
of ignoring necessary subtractions may be expected to be

T Tabsorbed in the parameters and ^

TThe lS for pion-pion scattering are determined
as follows:
(i) 1 = 0 1 = 0  AMPLITUDE:

Experimental results indicate that there is a peak
in the cross sections for this amplitude in the low energy
region. The phase shift is expected to rise up to about
30° near t = 5. This is the well known ABC anomaly. There
seems to be some evidence of the existence of a resonance

54called the g — meson at a slightly higher energy. The
mechanism producing such an s-wave resonance very near the
threshold is not very clearly understood. Since the ABC
anomaly seems to be well confirmed we shall consider only

46this. Hamilton et al have already given an approximate 
solution for this amplitude by replacing the entire left 
hand cut by a pole, which reproduces the experimental result 
quite well. We shall use this method. It is outlined 
here for the sake of completeness. The s-wave amplitude we 
are considering may be written as:

A„“tt) =  n ; w / d ; i o

where has the left hand cut — and



has the right hand cut A ^ for the pion-pion scattering 
amplitude. The following dispersions can be written down 
immediately:

Noau) =  -4 ^  M y w a ' j  q . 2 0 )

— CxO

00

Kit) =  1 (?I11
4r

where one subtraction is made in at t- t0 and Do°(tj
is normalized by taking . The elastic unitarity

-1
condition for %v\ f \ Q (tj;

3 ^  flf(t) =  - ( B  p - n j

is used on the right hand cut.
Hamilton replaces the discontinuity on the left hand 

cut by a delta function contribution, — 7vP^(^+t)
Then after choosing to - — t$ we have

W i t )  =  t-Tc. fe'23^
Substituting Eqn (3.23) in (3.21) the final expression for 

Dott) is obtained.

T\0 1 / \ a t-t-ts 1 rit ^ ^  (2-2-4 )Do t ( r ) -  A  w  )< * * V e (fc'-fcKt'-th)* y

The integration can be performed analytically. The



derivation is given in appendix V. Then we have: 
For t <; -oc>

\
b4t̂>Re D<J t t ) — 1-4- ,

V

If Ts 2. -f 2-bs bs Cb-H)

For - o o c  t < 0

2- _ J  fe-H yfEj. -V\Jte-H
btfe+4) V ts '2-

•2.

12-27 J

The phase shift may be obtained by using:
SoO) —  ■J* ™ 1 K ^ )Re J>o‘ It;

If the following choice:
ts ̂  1 1 ̂  Oyv^A P  —  6 0

is made, then the phase shift is found to reach the 
maximum of about 30° at t ~7'Q * After that it falls off
slowly.
(ii) 1 = 1 T = 1 AMPLITUDE:

This amplitude has got the well known resonance called 
the p •*— meson at the energy of about 750 MeV. The half



width is roughly about 50 MeV. We choose the following 
form for D| (frj n   _ ,

T>i tt) =  _  i y ( t - 4 ) (3-2n )

where and l"jo are the position and the reduced width
of the meson respectively.

The pole positions t^ and t^ are determined by a process
55first used by Balaz . The neglected portion of the left

hand cut is -32

Substituting one gets . ^ ^ 5

/^I ((-)_ _ i- f e  (3-31J
0

Then approximating;
Y\

1__  ^  ^  6»i(n )
1 - t X b  ~  1 -V- Vt J tr

we have  ̂ pi
'“I i

A f  it) =  i  ( ? 3 3 )
I - 1

where

o

and t v —
The case with n = 2 is chosen for the present need. Then 
^(x) and 6 2X30 are equations to straight lines:



6 12(x ) —  .*-Xa X - (3-35)'z Xa-Xj. 3 3t2_ Xl ^ '
The pole positions t^ and t2 are determined by obtaining the

Abest fit between the right hand side of Eqn (3.32) and y — 
for the values of t in the range t 5‘Ot̂ 1. A numerical
calculation shows that t|^46> and t2̂ 2 . 0 0  gives a reasonably 
good fit for t in the range mentioned above. Eqn (3.33) is 
rewritten as:

—  t  +ti +  t-Mr, '

To determine the residues and the fixed t
dispersion relation is used. For the amplitude one
subtraction is necessary. A very suitable point of subtraction 
is £ b (jpA-q̂ and because at this point,

Aw  (S, Gp &  )  = -  A W ( ^ +I'I,J 1) =  <|-31 )

where rr 4* CL 0 ^ 7'  J is a combination of the s-wave
scattering lengths defined by &o = /\̂  (£ :=r Eqn (3.37)
is a consequence of the threshold behaviour for A i [ s )  •

Then we have ^

A w(s,u,n =  a?' +  4f r s' u  Aw « s - S-i,t)

+  S*— Cwi-tF)1- ~  &'zs)

where the third and the fourth denominators are the subtraction 
terms for the first and the second integral in Eqn (2.52)



respectively. Crossing symmetry has been used to express
in terms of and then h  \  ^ is

equated to the imaginary part of the scattering amplitude 
for kaon-pion scattering. When {: ”  O this is fully 
justified because /\ a j is then exactly the imaginary
part of the forward scattering amplitude. Now, the s-wave

l

amplitude B/> may ke projected out from Eqn (3.38) as
follows:

s ' —

We evaluate Eqn (3.39) and its first derivative with 
respect to t at J ^ z i O  • Retaining only the S and P waves of 

one obtains: ^

7V J 
(m+pj1'

1
s'- (tw-tp-)1 S'-

OO
(3-40)

t-o
xw^e-Cs'tw+bit)Ls,_ilv''

^  At+I/s' I -f —  \ (  —  +  pt+ 3 otti A ̂ ( J j 4^^ / {̂ vi-rhV ̂

s - wr-K1 4-



where we have used Bott) —  \ f £

For the A  ̂ amplitude there is no need for a 
subtraction in the fixed t dispersion relation. Because A ~A-A^ 
and Pomeranchuk1s theorem^ states that A*̂ 2- at high
energies. So A^ 0 S-> Then one can write

cO . .

-  xjcis'^ - s t u }
Nrlv

where crossing symmetry is used and has been equated
to Vw A1-̂ for channel I. Projecting out the P-wave 
amplitude ) from the above equation:

oo

B f O )  =  \

1-

Then evaluating Eqn (3.43) and its first derivative with 
respect to t at t ~ 0  we have in the same approximation as 
in the case of Eqns (3.40 and (3.41):

8\Lo) —  Us'

«^  W ^  (■<+  -  A  <?^j



—  I o —

^ ft*/1)
t-0

'nj^s/
O+r)2'

b r t f t o ' l s t h

3(VvniM-̂J -5- i, v-
wT0 / 4Mh \ _

k wv (1 "f J ^

+  3<Wx | ■+ +

t  IT ( 1 - 4Kr
s. - t»V\+K)0 - (1= w^r2- 4M t

(^•45)

Eqns (3.40), (3.41), (3.44) and (3.45) may be used to determine
T (I L

o l e  and re for ® and p waves in "terms of the forward
scattering amplitudes for channel I. Eqn (3.18) and its 
first derivative at b ^  O are evaluated as follows:

bho) D*(o) =  i -  U *  . + t A1
fcr

fc— 6> -32r^

(s-^O

tI 2_ t:
( 3  4 7 )

where in both the integrals the upper limit z ^ O  does not 
give rise to any trouble because of the behaviour of (t1/
as 0 given by Eqn (3.17). Then defining

t(iA
- 3 ^



t~o - l r , (3-4^
We get after solving Eqns (3.46) and (3.47) for 0(1 and

h L

<  =  ( X  + l ^ t r J  (?-S°)

^  =  -  e S ;  CX;C+ (-3 S 1 j

Thus we have in our hands an approximate method of obtaining 
the solutions to S and P waves for 7Y7\ |<K in the low
energy region. The solutions depend on the kaon-pion scattering 
to a great extent. Numerical results are discussed in chapter 
V .



CHAPTER IV

INVERSE AMPLITUDE DISPERSION RELATIONS FOR 
KAON PION PARTIAL WAVE AMPLITUDES

In this chapter we attempt to solve the partial wave
dispersion relations for the kaon-pion scattering using

50the inverse amplitude method of Bransden and Moffat* In 
section I the behaviours of at the physical
threshold, S [YwtH2- and at the crossed threshold, S -(m-M2 
are discussed. These have very significant consequences in 
the inverse amplitude method. The dispersion relation for 
Ails) is written down in section II. An unsuccessful 

attempt to solve the coupled S and P wave dispersion relations 
is also discussed very briefly in this section. The third 
and the last section gives a formulation for the S-wave 
amplitudes in which the high-energy contributions on the 
unphysical cuts from channels II and III are suppressed.

4.1. THE BEHAVIOUR OF AT THE PHYSICAL THRESHOLD.
s —  (m-t-r p  AND AT THE CROSSED THRESHOLD, S =  (W\-r)2:

The Mandelstam representation may be used to obtain 
the behaviour of Ail^) a't the physical threshold, S =.(̂ 1-b)2- 
Projecting at the 1th partial wave amplitude -for channel I 
from the fixed S dispersion relation, Eqn (2.53) one gets:



CmO

r  ■ ■ ■ - X-u'-S
AfVs) -  - ±  Aa/ A f U s ,  u's-s-u'J ^ $ < ( 1  + ^

(K'-ih)2'oO
+  _L f<JU-' (n-igj) (4-1)

when s approaches (wv+H7- , K 2" goes to zero. So the
arguments of both the Q L - functions blow up in this 
limit. This allows the following power series expansion 
of for s very near the threshold:

S , M  -  , ' f "  ? 1-1 f 1 I W - ’XUz.) -? _  ( ,
W  1 +  ilUV!) ^  J L  V

An examination of the arguments of the 6^— functions in 
Eqn (4.1) shows that both terms give a behaviour for
A l (s) as s approaches the physical threshold. The above 
behaviour is for the real part of the amplitudes. By 
putting this in the unitarity condition:

u a i ^ )  =  - J § . | ^ ( s ) r s 5  @ - 3 J

4£+lwe get the behaviour of k  for the imaginary part
near the physical threshold.

The Mandelstam representation cannot be used «to
T"obtain the behaviour of A i t ^ )  cr°ssed threshold^

5 n  Because at that point the first denominator
of the fixed s-dispersion relation, Eqn (2.53) vanishes 
at Uf •+- ̂ ^  The crossing relation

& )  ~  A 1 (4-4)



can be used to investigate this. The 1th partial wave 
amplitude, A i f e )  may projected out from the above
equation:

A f ( s )  •= |
-1 " .

where GnQ- has been written as x and
u cr 2  - S  +2/^(4'*) (4-£)

as§ =  i +  ^  =  1 -  <6-i)

  2_l£ and \Z are defined in terms of s and u respectively by 
Eqns (2.5) and (2.6d). When 0<;S§ is
entirely in the physical region, that is u. ̂  P- and
—1 ̂  1 Then Eqn (4.5) becomes;

°° j/.
A^(s) =  4- U xPjx) 2. O-^+l) AC’(<4 jL y 2- J r ' t-o

-1

When we allow s to approach (w\— from the left, u 
is found to approach (vw for all values of x. The

■j i
threshold behaviour of / { L> allows the following power
series expansion in ĵ 2" ;

A j o )  —  | b f ! ' ■ •_}
+i { k4I'+1c,V+ R4t'+5a,V^ - - j

Now ĵ 7- may be expanded in a power series in x for
u very near by using first Eqn (2.6d) to express
it in terms of u and then Eqn (4.6). The expansion is:

A
A x P<_(>0 (u ,Cd £ )
\ t r



-1
+  311- k.

Using Eqn (4.9) in Eqn (4.8) we have
At is) -  ptl>c)[([af' + 1 CR.cfy + ̂ '+-a}

)| [ + K̂ b,r’+ - - J  4-i'Li<5ciS:,+ K'yf+"0|

4- .si 3(1 - k4<af 4-(<C bfV- jj

+  Z | 5  (i _ ^ ) 5 _ 3(1 -  ̂  ' "J

The behaviours of the real and the imaginary parts of 
are treated separately. For the real part the following 
property of the Legendre polynomials:

■H
U x P J * ) / —  0 I \ Y\<H (4-12)

implies that all contributions to in Eqn (4.11)
come from only the terms on the right hand side having a 
power of x greater or equal to 1. A close examination reveals 
that all terms involving the power x11 have also a factor k^n.
This shows that the leading term in near the

~)0crossed threshold behaves as kr
The case of the imaginary parts is very interesting.

The leading term comes from the s-wave on the right hand side.



Retaining only the first order term in K in Eqn (4.10) 
we have

Then it follows that;

u  ( s )  =  ±.
-1 (4-14)

This gives the behaviour of % i  ) at the crossed threshold 
as follows:

r

where Co" is related to the s-wave scattering length & 0 

It is quite surprising that the real part has the same 1-fold 
zero at the crossed threshold as at the physical threshold. 
While the imaginary part has a behaviour independent of the 
value of (L

From Eqn (4.11) a very interesting and important result 
may be written down for the s-wave amplitudes

x ;
Xwhere \ ) Q is written for the amplitude, A 0 [ $ ) at the

crossed threshold, (Jv\~tA-)2'* The above result will be very 
much useful in section III in the formulation of the s-wave 
dispersion relations.



»u -

4.2. INVERSE AMPLITUDE DISPERSION RELATIONS FOR A H ^ )  :

Let us define:

6f(s.) =  V  Air(s)  (4-1?)
From the unitarity condition for the partial wave amplitudes 
it follows that goes to a constant as .
Assuming this constant is non zero, also goes to a
constant at infinity. The inverse amplitude, shares
with Ai'L$>) all the singularities the latter has got. In 
addition, any complex zero of A f a ) will give rise to more 
singularities of 6> ^L $ )  • It is assumed that no such com
plex zeros exist at least in the nearby region of the complex

i

s-plane. In the next chapter it is shown that such an assump
tion may well be wrong. Then, with the above assumptions 6  f a )  

has the following singularities:
(i) The physical cut: S ^
(ii) The left hand cut: — (vh-tj2-
(iii) The circle cut: [<~>\ —

Since 6 1̂̂ ) goes to a constant at infinity, a once 
subtracted dispersion relation can be written down for it 
by applying Cauchy’s theorem to the contour drawn in Fig. 4.1. 
Then we have oot T I i c _c f J f  ft)

Oi+ri*-
o-Y u

—<2-0
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r

+  ^ 22-/U
'd  s/ 6 cX(sU) ^  r 6 cJ^j

<*'- S) ̂ '"Soj ^  2JTt J (S’-Sjfc'-Sa)
P

^ o l k  Sj j k °  (& < / ^L../Sy M l # )6^>0 znn \ CS-S) (s/-So) 'CM * /<S '

Where the integral with a suffix C is over the circle cut.
The integration variable on this cut is zz
where (S| z: yv̂ — K'2' . and  ̂»Vi are defined by =(lsl±eM 1̂

f n

with > O • The last two terms come from the 
small circles of radius f> around the point s~ and
of radius <£? around the point s ẑ  (W\~r/̂  It is shown in 
appendix VI that:

f  izii U i  6?Ul;-  =  - (S-S.JZ
m i  J L i - S}(£-So) n-o -

and r

d A ZS? ds' -  M  ii- ( A z O  )
<S^?0 2_fTl J So) <£"Vi ^  '

C & a a uJUbfdl S i r A A ^ r  Cr i^ ri b -fvTYH L M

These are the consequences of the behaviour of Af (s) 
at the physical and the crossed thresholds.

We now define

-  k/<‘K

o6f jt_
6-^0 ^ L 6f([lsl-frjt'<*,l _ 67(01 + 0 ^ / 1  = M#s),-1 (d-Z3 J

Then the inverse amplitude dispersion relation becomes



U £i

6 / ( s )  =  -+ o  w j  ( s ys 0 ) -f R LT
<.-1 „-,n ' ('

(4-24)n -o

where x

U*(5,s.) =  - T r P f T ? ^  ^
Ow-H-)1-
r0*-riv ,.1/̂ n

N > »  =  - ^ p  ^ s' 0  ;oO

c

where the letter P in front of all the integrals means that 
we should take the principal value when the denominator 
may vanish, otherwise it should be ignored.

r^fs) —  Fc1 (̂ j &

—  R/(s) 4^  -S><; Ov-ri2-
—  Hi is) -f̂  (S| = tvl2--^
—  6) <5ft\</«w\se£The subtraction constants X L in Eqn (4.24) are the 

values of at tlie point S —  So . This may be chosen
to be the symmetry point.

On the right hand cut the discontinuity is given 
by the unitarity condition;

Ft1^) =  ^  R f c )  (4-z^j



where Rl’Is) is the coefficient of inelasticity. When 
the scattering is elastic R̂ (s>) ■= 1. and Lj'(SySo) can
be determined analytically.

On the left hand cut the discontinuity may be 
written down as follows:

K^Cs) —  -— -----------_  (4-3 oj
A/(sQ +F3m A((^Q2_

can be calculated from crossing by using Eqns 
(2.73) and (2.74) in terms of physical quantities in channels 
II and III. The real part, is calculated from the
dispersion relation, Eqn (4.24) through

e « A lI(s)=  - ________________  ( a - 3 \ )

On the circle cut we may write
/\/( S±J =  x [ ( s  )  - ±  i A A (  ( s )  Q ^ 2- )

C H $ ± ) =  X L(s)Airf(s) (4-S3)

where S — IS | and ‘S + —  [ |S| ± 6 J £' . The (+)ve
sign corresponding to the outside and the (-)ve sign 
corresponding to the inside of the circle. Every quantity 
occurring in the above two equations is complex. From 
Eqn (4.32) and the definition of 6 ^ 1 $ )  we have



Fx^y^+RA/VtHsff 
can be calculated by using Eqn (2.78) in terms of

physical quantities in channel III. may be
obtained from the dispersion relation, Eqn (4.24) by using
Eqn (4.33):

x/(s) =  +A f(5 .)]

2- L ' 6 1 M

(4-S5J

where
=: T Lr -i-L/tS/S») +  N/CsA) -(-Ft (sY°)

-(s-so£ (434 Jnn — o

Examining Eqn (2.78) we can find the following property
of ; T t ,  \ -7 \

A A t O )  =  —  (s ) (4-3 ?)

Using this and the property of real analyticity for Al~(̂ 0 
[in fact the above equation follows from the real analyticity 
of At Is) ] one gets

f ^ ( s )  =  -  h j - ( s *  J (4 -3 8 - J

This also follows, straightforwardly, from the real analyticity 
property of * Then defining the variable A  ~  teA



on the circle cut by
S ± [ ? \ )  —  2^V -t dr 2 1 \ j  )

)
where the (+)ve and the (-)ve sign refer to the upper and»

the lower half of the circle respectively, we can write

We now describe very briefly the programme used 
unsuccessfully for solving the coupled S and P waves. The 
iterative procedure is practically the same as that for 
the S-wave case discussed in detail in the next chapter.
So nothing is said here about it.

The S-wave amplitudes involve one parameter, the 
subtraction constant for each isotopic spin state. The 
behaviour at the physical threshold does not give rise to 
any parameter in this case. While, for the P-wave there 
are two parameters for each isotopic spin state, the sub
traction constant and one constant for the threshold 
behaviour. Then we have

where

—

S + I M

s-ivww



where
c f  =

The symmetry point is chosen to be the subtraction 
point. Then, assuming the effect of D and higher waves to 
be small we have

constant of the theory and is taken to be an arbitrary 
parameter in the solutions.

The P-wave parameters may be determined as follows.

from fixed t dispersion relations written in a particular 
form given in appendix VII.

Thus, an iterative method may be set up to solve the 
coupled S and P wave dispersion relations in terms of only one 
arbitrary parameter. This iterative scheme is a very 
complicated one involving the amplitudes which
are determined in terms of \<7\ amplitudes. It was

where 7\ — — ) ^° ) is defined to be the coupling

Since CoS0 —  &  at the symmetry point, we have

3 > 6 ^ 0

The threshhold behaviour of gives

W  (_  ...  ^

The derivatives with respect to £<50 & are calculated
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programmed on the digital computer IBM7090. Only stable
solution that could be obtained was the familiar S dominant

57solution first obtained by Chew and Mandelstam in the 
case of the pion-pion scattering. Otherwise, the iterative 
scheme was very unstable giving no solution at all. Fig. 4.2 
show that S-dominant solution for 7\ — — A O  There is no 
isotopic spin splitting of the solutions.

4.3. THE S-WAVE INVERSE AMPLITUDE DISPERSION RELATIONS:
Let us examine Eqns (2.74) and (2.75) giving the 

contributions of channel II and III respectively to the 
imaginary parts on the left hand cut. For the crossed kaon-pio]A
contribution the upper limit of integration over is

Eqn (2.74). This goes to infinity as s 
approaches zero from the right. Thus very high energy 
kaon-pion scattering contributes to tte when
s is quite near the origin. Similarly, in Eqn (2.75) the 
higher limit is — A # 2' in the integration. Now

— oo as S — 0~ . This brings in very high energy
1<K amplitudes. The following table shows the values 

of these upper limits and K  for various values of s 
around the origin:



s
+ 2.0 
+ 1.0 
+ .5 
+ *1 
— • 1 
-
- 5
-  10

Upper limit of 
crossed kir 

u*

70.5
140.99
281.98
1409.9

Upper limit of 
channel III 

tf

1437.73
169.74
60.9
51.84

K*

11.2
28.56
63.68
345.56
359.4
42.43
15.24
12.96

(In terms of iV/t̂  l 8eV ^  52.5)
Eqn (4.30) shows that when is large the

discontinuity of the inverse amplitude, is small.
The high energy regions of channel II, which is, of course, 
kaon-pion scattering and of channel III are not known at 
all. If the low-energy solutions for these are extended to 
the high energy region there will be very large errors in 
the contributions to (S>) on the left hand cut near
the origin through Eqn (2.74) and (2.75). Calculated this 
way around the origin is found to be quite large.
This makes '(S>) quite small in this region. With this
in mind the s-wave dispersion relations in the formulation 
given in the last section were solved. On the left hand cut



the contributions of P-wave kaon-pion amplitudes were 
kept in the K* approximation. The region around 
the origin was found not to be fully suppressed. Such a 
solution cannot be relied on. The above table also shows 
the behaviour of near the origin. Then, instead
of considering Gats') > if we consider the
region around the origin may be expected to be fully 
suppressed. The application of Cauchy1s theorem to the 
contour drawn in Fig. 4.1 gives the following dispersion 
relation:

4 S
+ li(s) +  «(s)

+  1??(=.)-
where ^

\ -  J ^ P  Us' °̂L{S>I) - ( 4 - 4 7 )L0 (s) —  A V ] YPPltS-S)  ̂ J

J-
^  7T

U)
tvw-r)

P ds7
—  ctO

p Us'Jc

KoX(s'J (4-4 SrJ
y y p y y y

l ? J k )  =  _ j e P U s ' .  M * Y  , (4 4 1 )
c

The first and the second term in Eqn (4.46) come from the
integration round the circles of radius p around S =
and of radius <S around S ̂  (Vvv-r)x respectively. Since

C ^ (s) goes to a constant at both the physical and the 
crossed thresholds and goes to zero, these contributions
are non zero. As shown in appendix VI these contributions 
are:



\J \J

i L  le"2- ( j  I — v r1- s-lw-rJ7- yi *
&  r a - r  T ? S i W >  - K — T- fe!-s»;

r

M  j y  X  6 : L « )  _   rr ^ i r L X 1 ^'5 1 3
6 -?0 2 n i J  K- I^ c /_ C /)  s - O m - H 7- ^

The letter P in front of the integrals in Eqns (4.47) - 
(4.49) has the same significance as before. In Eqn (4.47) 

k^s1) goes to zero at s^l^+rFand F̂ fs.')̂  k(s') for sX>(*vi+rĴ  
Similarly for Eqn (4.48) at the point (ro-r)2'; goes
to zero and ko~̂ ) behaves as KUs') . It is shown in 
appendix VI that these behaviours do not give rise to 
any difficulty.

Using elastic unitarity the integration in Eqn (4.47) 
may be performed. The derivations for S on various cuts 
are given in appendix V. Using the variable Ulz S Qn
the real axis we have.

On the right hand cut for which L/0 -V0 0

I 1lLd) -  _ - L  ^ - 4 ^  t ,  U) -  (4 -5 2 .)
L o  1 ; 27T U) 2 .m r

On the left hand cut for which —  >=o $  ^

______ 1 L ,  (4 -5 5 j

i xOn the circle cut I—o is complex. Using the
variable we have

Rt lX (* ) -  -

& - S * )



, rx fc-ssj
The subtraction constants and are rela-teci

1" Xto the scattering length OC^ and the value of A o fe) ats-lm-rF"
written as V) 0 respectively, as follows:

j =  ( 4 S i j
m p  a . }

'1£ 0 =  -  C fr-jf-jL . 0 -5 7 jn,r b?» I 1Now may be expressed in terms of C(0 by using
Eqn (4.16). The scattering lengths (Cq2̂  an(* can
be written as follows

=  CL*> +  Z t t >  14-58)

o f -  - - -  - < t ~ > (4-̂.)
The fixed t dispersion relation for A ^ ( S i U / t )  when 

written down without any subtraction is;

Evaluating this equation at the point A^(S;Wjb) we get 
an expression for a^”^

ft1--' =  X  h H l ^ ,  1 ) j^jjr tf - < 0

where the index 1 stands for CtfOO which is equal to unity 
for t -  0  . The above sum rule is a very convergent one
and allows us to express ( X ! and in terms of



one parameter . Thus we have the S-wave dispersion
relations dependent on only one parameter. The iteration 
procedure and the numerical solutions are discussed in 
the next chapter.



CHAPTER V

NUMERICAL SOLUTIONS FOR THE S-WAVE DISPERSION RELATIONS

In this chapter we discuss the numerical solutions 
obtained for the S-wave inverse amplitude dispersion 
relations. The iteration procedure is discussed in section I. 
All the equations required here have already been given in 
the last three chapters, but for convenience most of them 
are rewritten in suitable forms as required. The results of 
the numerical calculations done for various values of ao
are given in section II. Section III gives a discussion of
the results and on the problem in general.

5.1. ITERATION SCHEME:
It is useful to write down in the beginning all the 

variables used in the numerical calculations. In channel I, 
on the real axis we define W r  S -  Vn — K*" . Then the left 
and the right hand cuts become — eo<̂  and + o<d
respectively. Since the cuts extend up to infinity the 
following transformations are made

On the right hand cut: so that when U)

one has 1 : ^ 0

On the left hand cut: x s o  that when — ^
one has O < ^ 1

In the numerical calculations 49 equidistant points are taken



in both x and z variables in the interval 0 to + 1. But 
in writing down equations s and w corresponding to these mesh 
points are used as required for convenience. On the circle 
cut we use the variable defined by S n  (Yvv-̂ \) 33
mesh points are used here. In terms of dp> one has

In k TT-̂ Ki< channel 33 mesh points are taken in t on 
the left hand cut f or —324^^ a . On the right hand cut 
for the P wave the variable t is used, while for the S wave 
the variable ^ ~ A Y y t  is used. 49 equidistant points in
y and t are taken for SO The choice of y as the
variable in the S wave has the effect: of concentrating more 
points in the low energy region.

The contributions from p  and ABC to the D-functions 
can be calculated by using Eqns (3.25) - (3.27) and (3.29).
The kaon-pion amplitudes contribute to the discontinuities 
across the left hand cuts of channels I and II and to the 
fixed t dispersion relations. We retain only the S wave 
and the \C contributions. The S waves arise during 
iteration. The contributions are to be input as data
and are given below. Using a Breit Wigner formula for

=  i m r a r v W  <-5  ̂
we have 1̂ ,5S  TV*



where is the reduced width defined by
Z^E being the full width of half maximum in energy, 
is the value of the momentum variable k at the resonance 
position Sy • The experimental results £y — frfr0 =60 M*v

give Sr =- A * \ } — A 2. and —  V 7  In the sharp resonance
approximation, Eqn (5.2) becomes

% A  k ^ l s ) —  7V FJ,* tCS(s-Sy)
The various contributions can be written down as follows. 
On the left hand cut of channel III (See Eqn (3.14)):

(1+ j-r 1 - h r
2_

-  7T nu tt ? (1+ m )  for (r & - 4 ^

O ofhe/r w ^ J
The the fixed t dispersion relations determining the 

residues of the Balaz poles in channel III (See Eqns (3.40), 
(3.41), (3.44) and (3.45)); ^

— [_ W,»_4wvfv + u ^ l , ^
bJkUo) = ^ 2j (5-6)

^  i^fC1 + M  l b  + i T v ^ J Jt-o
_  fi. .  +  ^  ,rvx̂t



To the sum rule, Eqn (4.61)
=  nK* ^ ° )

And finally on the left hand cut of channel I:
CC$>)

X ,  =  _  A ,  ^  (1+ K } ( * ' )

*'s L5-11J
Uske/rd r vo.

c(s) —  ^ L d t ' o < S ̂
nr (m-H*)1' Jj&f S <C O

f \ v̂  ( s ) is given by Eqn (5.2). Here the delta function
approximation is not used, because it is better to have
WiAoic*(^) as a smooth function for the inverse amplitude

formulation.
We now describe a typical iteration cycle where all 

the quantities required are either given by a previous cycle 
or input as data. How the iteration is started initially 
is discussed later on.

An iteration cycle is commenced with the calculations 
of the 7\K —>> K K  amplitudes. Using obtained in
the previous cycle or input as data one can calculate the 
following contributions.

On the left hand cut (Eqn (3.14)):

V, R° It) ^ _  ( 4 \  2 ^  A^-)j ( & n )

a t )

j. b 1 cn - f a  f u t t w -9*
a t )

, I .c Lt j =



The contributions to the fixed t dispersion relations 
(Eqns (3.40), (3.41), (3.44) and (3.45)) are:

B°os(o) =

014)

j, (S' 15 j

B )sO ) =  0  (  % {8™  A^l*0 Aoi (z ) } ^ M i +  jh. )~ 2 1
«, O' 1 0

A b u w J =  a k *
2(14&2) 3 (|V>1+KM

t  ^  J  ^Al)yy\where &_ -rz —   (this is used when necessary)Z MO
The total contributions are obtained by adding the S wave 

and the «* contributions. The residues of the Balaz poles
can then be calculated by using Eqns (3.48) - (3.51). Finally 
from Eqn (3.18) we evaluate and SmBj 0 ) on the
right hand cut

1
Df It-)

o

t ' - t r  ( 4 (1  t r+^z
L- -32p-

This completes the calculations of the T\ 7\ — VC 
amplitudes. Now the contributions of to kaon-pion
scattering amplitudes may be calculated by using Eqns (2.74) 
and (2.78). We rewrite them for the S waves in the following 
forms•



On the circle cut i

-Va

4AL  (it (_yt ) 3 B>1 Ct) c*n)
l7V 4P 4A ^

V A / V ; W  -  5 ^ ^ w E S ( d t  [ )W,B{0 ) (?>■*>)
A X  ) \-V4 /

4f
On the left hand cut ^

A f V )  -  X ^ B o b(y)
,-yi?v-4K>

— e(w+i^)^_L_  ̂̂  j +V a) ̂  &i It) (5 2'l)

4 I * 1'

In the column vectors the top and the bottom factors 
correspond to L ~ Vz and T ̂  %  states respectively.
This convention is used everywhere. In Eqn (5.21) the lower 
limit of the first term and the upper limit of the second 
term extend beyond t = 50, but we introduce a cut off at 
this point. Since the kaon-pion dispersion relations are 
written in a form to suppress the high energy contributions 
on the left hand cut, this cut off has practically no effect.

Now the contributions of the S wave kaon-pion amplitudes 
on the l£ft hand cut are given by

V  A0\C*) =  - ¥  ̂ ] 4 r - ( U )^  Â z) + ( 1  ) u  A^ }
cO) (5 22)

where
W - . N  _  u k t / Y V



The total discontinuity across the left hand cut is 
obtained by adding the contributions of Eqns (5.11), (5.21) 
and (5.22). The discontinuities of the inverse amplitudes, 

are obtained by iterating the following two 
equations (for future reference we call it loop 1)

k o t * )  =  --------
L&> A h xG  ■+[VA?(*)]2'

Re A*(*) —   ^ ---- (5 24 )

where
R.AfV) =  +  L j w + N / W  + R i W  (ga-)

The constants and are taken from the previous cycle
and L o W  can be calculated from Eqn (4.53). While N o L * 1)  

and (?£(*-) are calculated from and ̂ 1̂ (4") obtained from
either the previous cycle or input data as follows

IT r n mi*Re. Mo 14=)
7\ -K2-

-t Vv\Mo 1^0 - ^ — j [ p ' ^  )

n ^ x) =
J X 1 — X -  ^

O C52-7)
where the singularity in the principal value integral is 
taken out by using the following technique

pj*x T r r  =  p ( L  t. L± - * W  + 4 ^ ) ^ )  ^  C528J/ )  k ~~ z I a^ a .

Once k(7(>i)s are calculated by loop 1 they may be put 
in Eqn (5.27) to obtain new values of N ^ [ x ) ' s  • Then using



these in Eqn (5.25) keeping everything else unchanged loop 1
may be repeated to give new values of K/(x)!5 • This is
repeated a specified number of times (loop 2).

Now we can go to the circle cut and calculate Mj(4)
by iterating the following equations (loop 3)

_  ______ â£(<4*)____  (s-2nj
[Xo3 (^)H2' +|>A‘(e1p).32

, 7 n  (?■*>)t<Ŝ ) J Z -+  ̂ ’

where a AoH X  are given by Eqns (5.19) and (5.20) and
Re^(4-) =  \  (1 - ^ L f o c p ) T sT + 4 (l- ^

+ K«L̂ (4>) +- ReWj(^) +Ref?„I(4>)

+ e-31)
the method of calculating the real and imaginary parts of Eqns 
(5.29) and (5.30) is illustrated as follows. If A,B 
and C are all complex and

C
A - BA +  C ‘t

Th6n,  , c ,cfei>+W 9t»i>  V  A -  ^ cU1>
*** =  S o S i S f  '  U e H ’ + C V D X

where
RtD -  B p ,  U \ )  -  2

XThe constants )f0 and ^>0 are taken from the previous 
iteration as before. LoC^) is given by Eqns (4.54) and 
(4.55). Using KtH^) obtained by loop 1 and loop 2 we 
can calculate on the circle cut:



R o O )  can be obtained from given by the
previous iteration or input data.

R i P f H O  =
n J I CO 4>' —u

1 (5■ ? £ )

%n Rj (4-) =  _ Ai!S± p f,
Cos 4 '̂ - Cds4 = .o l_5 3 d  )

The same technique is used as before to calculate 
the principal value integrals. But now

= ■ °
so there is no logarithmic term. Eqns (5.35) and (5.36) may 
again be evaluated after Mo(.^) ^as been recalculated by 
loop 3. The results are inserted in Eqns (5.31) and (5.32) 
keeping everything else unchanged to start loop 3 again.
This is done a specified number of times (loop 4). When this 
is completed we can go back to Eqn (5.23) and repeat loops 
1 to 4 (loop 5).

Now with the values of kfl31) and Me H 3*) obtained by 
iterating through loops 1 to 5 may be used to calculate 
quantities on the right hand cut as follows



M L i  , __ Z K 2^ )  ( c ty L ---- ---------  (5-37jN 0 (3) 1— 7? ) xkH*) C*1-̂ )
o
it. f  .  ̂ f _ t /. \ VlTrSvxvTF^-S

Po^) -  - - ^
Ŵ B+Z-) 1

t , \ *  ^  " ^ r _ _  I C&ssW  MiO**)+ ^  n » ^  Tv-

n r *tV \ KYZ v"I i ■(— 2. . C ̂  +  I '̂(2.) +  klf,I2') "l"Ro (z)
J|6s U ^ =  CeAHz) =  +45«Ti3bo 6 ^ 3 0(j

— > pKrv&e sVm  ̂t3

=  Cb40/I 

Putting VvAs (z) in the sum rule, Eqn (4.61) one gets
  rn i 2- (V|-> ̂v' 3 )  ~'<̂vn ̂cH."2-) \a o —  ‘**~57 ‘+ 37F J * *  ^ 3 ^  —£>The first term is the )(̂  contribution. Then using Eqns 

(4.16) and (4.56) - (4.59) the constants Y'j*' and So 
may be recalculated. At this point we go back to Eqn (5.22) 
and recalculate the contributions of the S-wave amplitudes 
on the left hand cut. After that loops 1 to 5 are repeated. 
When this is done a number of times (loop 6) one goes back 
to Eqn (5.12) to recalculate the KK amplitudes with the 
new values of %v\ • This outermost loop (loop 7)
is repeated until convergence is achieved.

When the iteration is started for the very first time 
the S-waves are approximated by

W  AoC2-) —  (5 4 2.)



For a particular value of c f f l from Eqn (5.41) we can obtain 
( X ^  and O ^ 1' by using Eqns (5.42), (4.58) and (4.59).

The K K  K K * amplitudes are calculated using Eqn (5.42) in 
Eqns (5.12) - (5.17). Then Eqn (5.22) can be calculated.

and (4.56) - (4.59). We put N o — O and calculate

both. Since the scattering amplitude is real on the real 
axis between ^K^these zeros will appear as poles in
the inverse amplitudes. In our numerical calculations we 
avoid such zeros. A possible way of dealing with them is 
discussed in section III. The results of the numerical 
calculations are given in the next section.

The constants 'Jfj*'' and are evaluated using Eqns (4.16)

and from loops 1 and 3. Once ^  [ > t ) and Mo03?)

are known the usual iteration cycle can be started. 
Eqn (4.16) when written in full is

y/Examining the above equation it is found that if ^  and

(5-43)

are both of the same sign and I then (\^ and
are of opposite signs. This means that 

has a zero on the real axis between ♦ A]gain
when and C $ 2' are of opposite signs zeros may appear
under suitable conditions in either or or in
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5.2. RESULTS OF THE NUMERICAL CALCULATIONS:
The numerical calculations were performed on the

Elliott 803 computer at the computing laboratory, the
University of Durham. If one wants to avoid the above
mentioned zeros of the scattering amplitudes, the values 

t+)of &0 close to zero cannot be investigated. Because in
Vi 5/0this case (Xq and <V are of opposite signs due to the 

rather large splitting introduced by (C* through Eqn (5.41) 
(the contribution of K *  to do ̂ is about +.15)

For negative values of du 7 (negative enough to give the
Vsame sign for (X\ t and ) rapidly convergent solutions

are found. When the solution for a particular value of cl̂  
is obtained it is used as input for the next run. With such 
an input the numbers of circuits made around the various 
loops to achieve convergence in a typical case are as follows: 
loops 1 - 5, 2 circuits each; loop 6 - 3  circuits and finally 
loop 7 - 4  circuits. The time required on the machine for 
this is about six hours. The description of the results 
starts with the /V7V — K\<. amplitudes.
(i) I ~ Q >  1 - 0  AMPLITUDE;

Fig. 5.1 shows the phase shifts we used to calculate 
. The kl* contributions on the left hand cut 

provide a strong repulsion, while the S-wave l̂7T contributions 
are attractive. Fig. 5.2 gives the discontinuity on the 
left hand cut for -31 t  ^  0  • Since contribution
is obtained in a delta function approximation it starts at



-fc ^-'16'? . The magnitudes of the contributions
are many times larger than those of the S-waves. The
following table shows the values of the residues of the
Balaz poles and p>0 for various values of .

< £ '
y 0O<0 u g ' ft'

-.35 77.29 -377.66 65.76 -298.18
-.50 61.91 -352.76 51.08 -274.49

I • a O 51.54 -338.6 41.29 -259.30
-1.25 -21.89 -325.16 -22.35 -158.21
-1.5 -51-75 -329.59 -46.83 -119.33

,()/where cx̂  and P0 are the values of the residues when only 
the K* contributions andB^N'^^are retained. The imaginary 
parts of BoOO on the right hand cut is plotted in Fig. 5.4 
for CL^c^s — - £>0 and -1.25. The values are negative and have a 
peak at t ^  5. The proportion of the S-wave contributions 
increases with increasing values of At
only about 10% of the total contribution at tc? 5 comes from 
the S-wave WX amplitudes.
(ii) I - 1 )  I  ~  L  AMPLITUDE:

In this case the effects of the S-wave amplitudes for 
7tK scattering are practically zero. Fig. 5.3 gives Gm L ^ )  

on the left hand cut for O. jn this nearby
portion both the S-waves and the K contributions are



repulsive. An examination of Eqn (5.5) shows that 
changes sign at t 4-2! ^  — 5^4 . So there are
short range attractions coming from |<*\ Now the
residues cxY and absorb the effects of neglecting
the cut ^ 4 ,̂ the portion t  < -32.r̂  of the left hand 
cut and any possible subtractions. These residues are given 
in the following table:

o ( ' 0*," P','/
-.35 CO • 00 to 2.13 3.89 1.47
-.50 CO • <1 00 2.28 3.89 1.47
-.60 3.75 2.39 3.89 1.47
-1.25 3,70 3.29 3.89 1.47
-1.50 3.67 3.48 3.89 1.47

I / /7 \ / ♦where and p are obtained by retaining only the K
contributions. Since o^1 and p j are both positive they 
give positive contributions to % A Q \ L k ) given by Eqn (5.18).
The integral gives negative contributions. Fig. 5.5 shows

on the right hand cut. There is a very narrow peak 
at the position of p  and is positive indicating
that the contributions of the pole terms in Eqn (5.18) are 
more important than the integral.

Now we discuss the results obtained for the S-wave kaon- 
pion amplitudes. The values of the substraction constants are 
listed in the following table.
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-  107 -

d o ) A
& r 3/- So*-

LOCO•1 -68.92 3.04 -12.16 8.58
-.50 -24.73 2.45 -9.29 5.06

i • O -.7.25 2.17 -8.04 3.97
-1.25 -5.56 1.29 -4.35 1.62
-1.5 -4.46 1.11 -3.68 1.33

-  'I
The real parts of the inverse amplitude ; QslAc" ($>) —  
are plotted in Fig. 5,6 and the phase shifts o i ^  are drawn 
in Fig. 5.7. The behaviours of indicate that Ao'(s) can
be very well approximated by effective range formulae.
The phase shifts are negative for both L ̂  Vx and I“%_ states, 
the state much more repulsive than the state.
A close examination of the equations giving the discontinuities 
across the left hand cut and the circle cut (Eqns (5.11)
(5.19) - (5.21) and (5.22)) reveal the following behaviours 
of various contributions.

On the L.H.C*
to H-Vz 
repulsive 
attractive

Contribution of 
S wave lc k  } L~ Vz, 
S wave K K j X -

r = 3/2. 
attractive 
attractive

K *

and ABC lumped 
together

sion
Long range attraction Long range repulsion 
and short range repul- and short range

attraction
Long range attract
ion and short range 
repulsion

Long range repulsion 
and short range 
attraction

These contributions start at S = 0. By long range we mean 
the contributions from the nearer regions and by short range



from further away regions.

On the circle cut
ABC repulsion repulsion

e repulsion attraction

It is to be noticed that the ABC contributions will 
be attractive for large positive values of
The longest range force comes from ABC contributions because 
the front of the circle cut is nearest to the physical 
region. Since the high energy regions are suppressed in 
our formulation the contributions of the short range forces 
are absorbed in the subtraction constants. The long range 
part of the left hand cut3 O ̂  s ̂  (Vn-H^and the front of 
the circle (ABC contribution) account for the variations 
in c/0 in the low energy region. We have plotted 
in Fig. 5.8. In both the isotopic spin states there is a 
sharp peak corresponding to the K* contributions on the left 
hand cut. The region around the origin is very well suppressed 
Cutting off the left hand cut anywhere beyond the origin has 
practically no effect in the low energy solutions. It is 
also possible be using

to calculate the imaginary part of the scattering amplitude 
for 0 s (m — • For consistency this should agree

(5.22)). The agreement is reasonably good for both I = 1/2 
and I - 3/2 states in the nearby regions for all values of

with calculated from crossing (Eqns (5.11) and



( X ^  and becomes slightly better with the increase of
1 Fig. 5.9 shows the case of ' £>0 • We

see that the agreement is quite good up to £ 4  S  •
The discontinuities of the inverse amplitudes across 

the circle cut are shown in Figs (5.10) and (5.11)
for A? — - *60 . The real part has a very large peak near 
the front part of the circle in the 1 = 1 / 2  state. The peak 
in the 1 = 3 / 2  state occurs a bit further away. The 
imaginary parts in both 1= 1 / 2  and 1 = 3 / 2  states have 
peaks beyond • Similar to the case of the left
hand cut, we can obtain the discontinuities of the scattering 
amplitudes across the circle cut from the dispersion relations 
by using

- - - u  <m s )

For consistency this should agree with obtained from
Eqns (5.19) and (5.20). For the I = 1/2 state the agreement 
is good only for the front of the circle. Whereas, for the 
I = 3/2 state very good agreement is found for the entire 
circle cut. The case of I = 1/2 states improves a bit with 
the increase of . Figs 5.12 and 5.13 give the
results when

The region 0 entirely in the crossed
physical region, so it may be expected that the real part

y  v

of the amplitude, Aa[SJ given by the dispersion relation 
in this region should agree with that obtained from the



crossing relation
(2* A^O) —  R ^ Y m  , ̂ s § )  C?'44J

-1 owhen S is very near the crossed threshold £ ̂  only the
S-waves are important on the right hand side of the
above equation. Eqn (5.46) has been calculated for S near
the crossed threshold by retaining only the S-wave on
the right hand side Fig. 5.14 shows the results for Ck^V— — %C>

The agreement is reasonably good.
KfLastly, of the symmetry point one has A  =■ ^

Assuming D and higher waves to be small it follows that 
h f r b * )  ~  PtoH$°) . This is found to be approximately 

satisfied only for 0Lo '60
For positive values of C i o the front of the circle 

cut is attractive in both I = 1/2 and I = 3/2 states. In 
the state I = 1/2 the net effect of this and the attractive 
long range force coming from the exchange of ^  enhances 
A^(s) in the low energy region. As a result at a certain 

stage of the iteration process C K j j ^ becomes greater 
than 4&o and thus a zero appears in the scattering 
amplitude • The iteration process starts oscillating
violently and it is not possible to obtain a stable solution.

5.3. DISCUSSION OF THE RESULTS AND CONCLUSIONS:
In this thesis we have managed to obtain the low 

energy solutions for the S-wave kaon-pion scattering 
amplitudes depending on only one parameter. This is chosen 
to be the combination, (X Q of the scattering



- Ill -

lengths. The solutions for the values of in the
range -.35 to -1.5 were obtained. They satisfy crossing 
resonably well. The region — <Xo <0 cannot be 
investigated, because of the zeros appearing in the scattering

U-lamplitudes. The region was not investigated due
to lack of machine time.

The numerical solutions give no clear evidence 
that a particular value of 6Lo"̂ is preferable to the rest, 
except that Aro&<>) when —‘6 0  • The agreement between
the discontinuities of the scattering amplitudes obtained 
from the inverse amplitude dispersion relations and from

fj-ithe crossing relations improve slightly as <Xq is made 
more negative. When the magnitude of is quite large
the contributions of the S-wave amplitudes on the left hand 
cut become comparable with other contributions* The above 
improvement in agreement may be due to this. So finally, 
it may be concluded from our numerical results that solutions 
for the S-wave scattering amplitudes exist for negative 
values of with a very slight preference for ' 40

If the physical solutions lie clear of the regions 
where zeros of the scattering amplitude may develop, we 
need not bother at all about these zeros. If this is not 
true the zeros should be taken into account. One possible 
way of dealing with these zeros on the real axis is suggested 
here. The position of a particular zero on the real axis in the 
scattering amplitude gives the position of the corresponding



pole in the inverse amplitude. The scattering amplitudes
are real on the real axis between the left and theiright
cuts. So the slope of the amplitude at the position of
the zero gives the residue of the pole. Assuming that the
scattering amplitude involving such a zero for o < s<î -̂ xis
well behaved in this region, the pole parameters for the
inverse amplitude may be calculated in a particular cycle
from the position of the zero and the slope at the position
of the zero for the scattering amplitude given by the
previous cycle. Such a calculation would require a big
machine and it is not possible to predict beforehand
whether it would give convergent solutions.

Although we could not find stable solutions for positive
values of it is hoped that a more involved iteration
scheme may yield convergent solutions. One needs a bigger
and a faster machine to perform such calculations. In
the intermediate stages of our unstable iteration process
there is evidence of a peak in the amplitude, in the
low energy region. Whether this would rejviodn in the final
convergent solution, if obtainable, is impossible to tell
beforehand. It is worth mentioning at this point that there

58are some experimental evidences of the existence of a
l y /resonance at 730 MeV, commonly called the K. or the K

meson. The isotopic spin state of this is I = 1/2. Initially,
it was thought to be a P wave resonance. Recent investi- 

59gations suggest that it is probably an S wave resonance.



The width is only of the order of 10 MeV.
Here, we did not make any attempt to calculate the 

P-wave amplitudes in the low energy region. The 1 = 1 / 2
v/,state contains the K resonance at 880 MeV, If this

amplitude is considered, the exchange of l<̂  on the left hand
cut produces a repulsive force. The exchange of the ^  meson
may produce attractive force strong enough to generate the
resonance if the product of the coupling constants for the

and the^fTA vertices has a negative sign and has got 
60a magnitude , which is many times larger than that obtained

61from other considerations. Then the alternative is 
to consider the multichannel problem. Bootstrap calculations

62 gghave been performed by Diu et al and Capps by coupling 
the 1<7T and the K  ̂  channels. The could be bootstraped
quite easily in this case, but the results are not very much 
satisfactory. The inclusion of contributions from other 
intermediate states including the two particle continum 
seems to be necessary. The other P wave amplitude with 1= 3 / 2  
may be expected to be small in the low energy region.

The first calculations of the S wave amplitudes for the
64 65scattering were performed by Lee and Lee and Cho . They

\Ldid not put in any contributions for the exchange of the K 
resonance and so the solutions are similar to our S dominant 
solutions.

In KT)? scattering the nearest singularities on the 
left hand cut come from the process in the 0 )  L — G



state. This later process, in turn, depends on both K/T
and a7V scatterings. The pion-pion scattering in the
state 1 — 0 , give the phases of the process

66mentioned above. Martin and Spearman tried to fit the 
experimental results of scattering by parametrization
of the dispersion relations. They expressed the 7T7T-> KK 
amplitude in terms of one parameter, the combination

3 (^+2^ jof the KtT S wave scattering lengths.
To obtain this the contributions coming from the exchange of 

and the [<7\" system in the S wave were retained on 
the left hand cut of the TVTT^ K K  amplitude. For the S-wave 
amplitude of t<TV scattering they used

^ A 0J (s) =

The pion-pion scattering amplitude in the state I — 0,^— 0 
was put in the one pole approximation given by Hamilton et 
al, which is used in our calculations. For the best fit to 
the experimental results it was found by them that
the S wave amplitudes for the kaon-pion scattering should be 
repulsive in the low energy region. The value of C\o 
suggested by Martin and Spearman is

—  - - s o  ± -14

This is remarkably close to the value slightly preferred by 
our calculations.

67Martin and Vick attempted to calculate the kaon-pion



scattering amplitudes by using parametric forms for the 
dispersion relations. Only the nearby portions of the 
unphysical cuts were retained, the rest was replaced by one 
or two poles. No attempts were made to generate the K* 
resonance. The experimental results for it were used to 
reduce the number of free parameters. They determined the 
TV ft « K  amplitudes using the same method as we have
done. Sum rules were used to cut down the number of free 
parameters. The remaining free parameters were determined 
by minimization. They found that the short range poles gave 
appreciably large contributions, comparable to those coming 
from the nearby portions of the various cuts. The solutions 
for the S wave amplitudes indicate a negative and small

I = 3/2 was found to very small.
Finally, we may conclude that our calculations have 

shown that the low energy kaon-pion scattering problem can 
be solved in terms of one parameter, which was chosen in

accurately from some other source, the low energy region of 
the kaon-pion system would be known.

value (practically zero) for the P wave, in the state

our case A  & )to be GLo . If this parameter can be obtained
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APPENDIX I

EIGEN-STATES OF TOTAL ISOTOPIC SPIN

The scattering amplitude may be written in
terms of a symmetric part, and an antisymmetric part

in the kaon isotopic spin space as follows

C M  J

The projection operators for the eigenstates of total 
isotopic spin ?T — V i } ̂ 2. may be obtained in the following 
way. The operator I^X /2. I has the eigen values
I/2'— 3-nd izl3- from which it follows

f'T.T) —  T and (/XT) —  — 2. . Then the projection
~  ~  T C - V x

that ̂ 
operators areD Z+tX ft - (J.z)

i \  - -----   3--- h ' H -  3  ;
We have

<Pl I T

So < P l P v , h >  ^  rfi,r" /3 r̂ '3 ^

</ I ^  Cl- 4)
According to our definition of the projection operators

A a - =  5 A X< P |

=  +  a S4 C w - ^ )  ( r '5 ^



The above equation may be rewritten as
A __ , A%  2.Sfr« - -i D M q
/\(* —  A  3 ------ +ft 3  t I i j

Comparing this with Eqn (1.1) we find
A = 4 (A,'4 + A a3/i j !i 7i
am =  4(AV̂ -Asi) <£■*;

Expressing /V^ in terms of a l±) one gets

_  A w _  A <.-; (I-10J

For channel III we may write

X~o, 1 Vzt- /

where j and k denotes the states of [<̂ and p  
respectively, P^~ is the projection operator for the
eigenstate of total isotopic spin state I and is defined

p * =Xl^r*ci<)><pO l,i*| (i-12-)
i-z

where (K) and (P>) denote kaon and pion states respectively. 
From the matrix element

by using Eqn (1,12) one gets
T- nl —  K  (TA4 )



r Iz (J
where jp is the pion-pion isotopic spin projection
operator and is given by

o _ X

It easily follows that

)° _  'I 
d Z

Then
< i k | A | ^ > ^  A 0 ^  + A ’ K v E a  CI  I7J

Comparing with Eqn (1.1) it follows after writing B for the 
scattering amplitude in channel III that



APPENDIX II

UNITARITY CONDITION FOR PARTIAL WAVE AMPLITUDES

We consider the case of channel I. Retaining only 
the two particle intermediate state consisting of a pion 
of four momentum 1°̂  and a kaon of four momentum jp^ in 
the unitarity condition, Eqn (1.11) one gets

j c W k  S L l= £ -X J S ( f t - X j  6[hs)61 hi)

h - P z - )  ^LL'1)

Both A i and A n i describe kaon-pion scattering. For
the process the scattering angle &■*[ is defined by
C e o b y  -  Y> - Y $ /  | K M  and f or the process -f -5> the
scattering angle Q is defined by Go —  ¥ $  )&/iHs 1%-]

For conv44hence the vector f a is taken along the
positive z axis and the vector \?z, in the yz plane. The
angle between the plane containing the vectors fa and
and the plane-yz is defined to be^. Then the various
vectors are

-  K ( £ ,0, 1 }rs/
£3 -  K 0)SinG, O s £  ) p3

Ye —  k  ( 5 m  Si*"16 iGss.^ Cp?Gi)rv

Then
CoS 6 —  ~IPs M  ( I I - 2 J

The integration in Eqn (II. 1) can be performed
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by using the delta function £41 ( ̂ 5 ft — ft ""ft) . Then
j c-vv

the d p 0 c$ A may be performed with the help of the delta 
function, S'[^5^ — )  This leads to

J ,___ (IL.3)U>We/r<L ]f>o S -\rYdC ■=- \fe , Po5 —  V k \ f t L'
and we have used 44-5 —  1C.mdt<A01 cftft . Changing the
variable of integration from R to and
using

A *  —  j J ( 4 \[KXx)

the integration over the variable K  may be performed with 
the help of the delta function. Because the argument of the
delta function can be written as follows: =
jfc^ —  4 \j 4̂ tx J Then expressing AyC in terms of
isotopic spin states:

U  A ^ S y C a d )  = -  2 ^  fsiKB|4d,^4=> Ax" k
(iL - 4 j

Now we project out the 1th partial wave amplitude 
and expand f \ "  and A  on the right hand side in terms of 
partial wave amplitudes^ ^

hf-(s) —  -i- JS -i- Cgd© \44> 2  cuVi X 2̂ 4(AM hl (.=■ j _  4 k  2_ j J J ((
o

nc.P(i (l65&i) P(/-( Ga&z,) A i> ' (s) AL> (ft) 

where the integration over (ft has been replaced by one
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over C o S & \  • C t f S b z may be expressed in terms of
an(* by using Eqn (II.2). Then we have

P Ln ( O i s B C s s e , -+Sin6S)AeiGis4») —  P(|, ( C o ^ Q )  P(„ O sdi)

^  ^ 2  l ' ' ) U P A 6546 )Pr ^ ' )

The second term does not contribute, because
I K

M-1 - (X-Aj

( <5(4 OsS M  ep O  Q-I
*̂0

The orthonormality property of the Legendre polynomial gives 
the final expression

I t s )  =  4 |  | A c1 (s))i

Inclusion of other intermediate states gives positive 
contributions, so we can write

in the general case. This gives the form
V A t f s . )  =  | A f t ) f  R i f t )  ClT-ft

The unitarity condition in the two pion approximation, 
Eqn (2.36) may be obtained exactly in the same way.
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APPENDIX III

THE DERIVATIVE CONDITIONS

We obtain the first derivative conditions for Eqn 
(2.18) by differentiating with respect to s and C o s  Q at
the symmetry point. It is done as follows:

t/v d (>u 2, A l ' ( u , t e § ) ^(os&^AI(u,Clo&)
=  +~~lTs

^A1 Cs,Ces6-)

S—So 
6" x-o

^  Va .
\yt —So 

C62>& — 6

 ̂O n  6
c J V Z  tX'lJ

We have

M
2 is„Os£x°

S xs0 L
^A^(U)OsO) ^Cos-0 [ iA j (asp)

> \a  ^rCosB ^ Cos &14  ̂c
— O

O n -2)
Cc><>6-6

S-S0s-So Ccs& -6 =_ A(Sa-a)

^ Cos6
 ̂s
SxSo 035 " o

L < -
KHi-6b3&)

_ _  _  ±  d k 2
\Cq~ Xts, 4

s-s6Os6 ~ o
^~So

_L 4k2- <4 4  s >s
SxS* Go B - o

—  _  ft 4X| f , . l 1 Cs.l-(<*̂ )B(5sJwtf)" \ ? t cTs ' L AJ = -ft— ^ -------S —Su ^  <6S/'
~  B ( )

—  ^.Sfr = c  (SagJ
4k
OsGC, -c . ~^Ccs&-O —

QS2><*
-bo 
— o

c) CdSO ^ r

S-SoCesGxo

>65S6 L^Q3sG- s-
Ctok)Approximat ingCto kt z. C>

k. J -  1 -2=4^Us" —  — fK

S >_$u CdS(̂“ o
s-s.

, ^ 6 A2(Sto 6 ; -  3/)X5o)= s X



we get from Eqn (III.l)
1+3A

4 s "SfB PTs
, A ~  1+5A d / t o  4  4A&S.; mr.-*)^  J c “+• 7̂ 75 J <b k1- > J

0?y ~ — -- 4Ap?) 4. 1-3A_ dfe>j (nj*. 4 j°1 G> 4s ^ ^ B 4 s 44
The same equations may be obtained from Eqn (III.2).
Putting numerical values we get

C p  K  ) ' ( 4  # s,+  5 - Ka s Is Qir-sJ

(arg

Similarly differentiating Eqn (2.24) with respect 
to S we have

3  Al Cs M & ) rs
where

SxSoo

^  ^ 0a 653$)
-  2 *ir'\*s

d bxfo
x o

-X a s 5 BiSff
X  b C«S(fx 0

I
(JF-7J

Ho |
ft 3 S o OsG xo

Sô -t Yvft-H1—- p / ŝ ) 
2S0V

1 -4 — “I ̂  2.-5̂
2 KftoS “ S 0CcoO-xo

Then approximating

(So+ftnp 0 ^ 3^) ji.

2  A^tSyOofr)2>> dA»x(s)
a s

■ 2 _- 6 rL(r) OsS<))d c

ftg 9^"

4  Ajs) 
" dsft

+  3 ( f t  j  P  B ; ( 4



Putting numerical values one gets

4 Ai(s) ^  _.0-s1d X W  +  f
— 3T§- ~ V-



APPENDIX IV

BOUNDARIES OF THE DOUBLE SPECTRAL FUNCTIONS AND THE 
REGIONS OF CONVERGENCE OF THE LEGENDRE POLYNOMIAL 

EXPANSIONS ON THE LEFT HAND CUTS.

The box diagrams determining the boundaries of the 
double spectral functions for kaon-pion scattering are drawn 
below

s
\/
\

s

& )  ( b ) t) feu

The boundary determined by a particular diagram is decided by 
the masses of the intermediate states. Let us consider the 
general box diagram

Fig CZ ■ 2.
x and y are the independent variables. The masses of the particles 

a, b, c,d, 1 , 2,3 and 4 are denoted by rvv, ) r % V v t ^  \s\l rv̂



respectively. We define
%  -_ Kikj

The four-momentum is defined by
x a T

(d m ;

V2,3 } Vs4 anc* Vl4 are functions of only the internal 
and external masses, while and Y24 depend on the
variables x and y. Application of energy-momentum conservation

V23 ' 
V34 — 
Yl4 —  

Vi3 n

V2.4 —

li1 - (S-3)
2-Y41 V4 2-

—  WcL (P-4 ;

V<\-*r 4- H a —

-f (lY • £ J

d ? - 7 j

wJ' +  Wlq2' —  X, q l & )

The Landau-Cutkosky rules give the following condition for 
the boundary of the double spectral function determined by 
the above box diagram

1 Y13 ^ 4

V12 1 Y2.4
Vl3 V23 1 V54
Vl4 Y24 V54 1

—  O

Diagram (a) of Fig. IV.1 contributes to the double spectral 
functions A (5 we have
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y*3  —  Vs4 —  V m   ̂■ 

i —  t / ^  

*4^ l^+r,)

Then the application of Eqn (IV.9) gives the boundary
£t~<qr]tS —  (w-t-31-p] -  3Zr*0+t) —  o I?'10)

Diagram (b), too contributes to A \ s  and gives the boundary
[ _ b - (tt + rpj - m H s — O CpMl)

Diagrams (c) and (d) contribute to the spectral function
and Eqn (IV,9) gives the boundary

vi—LWv-vsb)̂ / - 1 ̂ Uvn-tb)1 ̂  q (j5M2.j
for diagram (c), while the boundary for diagram (d) is 
obtained by interchanging s and u in the above equation.

A^)The boundaries of A^^ are the same as A 15 and are 
obtained from Eqn (IV.10) and Eqn (IV.11) by replacing s 
by u.

Now we proceed to determine the regions of convergence 
for the Legendre polynomial expansions on the left hand 
cuts. The Neumann*s expansion theorem which states: If

is an analytic function, regular within and on an 
ellipse C with foci at the points of affix + 1, it can 
be expanded as a series of Legendre polynomials

((z) =  Z > V »  Pn £Z)o
which converges uniformly when z  lies within or on a smaller

Y12 —  

Vl3 — 

V2.4 —
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ellipse confocal with C; determines these regions of
convergence.

Let us first consider the expansion on the right hand 
side of Eqn (2.73), lip A(u, Cos 0) is analytic and

vanishing of any one of the two denominators for a particular 
value of u is determined by the boundary of the double 
spectral term concerned. How the boundary determines the 
size of the ellipse inside which the expansion is convergent 
is illustrated below for the case of the first term.

regular in OjSG unless one of the denominators in

vanishes. The nearest singularity in C zsQ coming from the

where is determined by

with
C q v O  -  - +(vn+r)

IA —

Û Vn-t-t-l

which are the boundaries of Al2 • Similarly for the
second term
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CoS< u =  1 +  - 4 ^  (S'-15)

where
C tu)_  3 2 ^  i ^ r )  -

w — CM+sr)2-

6 r

are the boundaries of • Now C & S &  in Syvi A (V j ^ ) is
given by

C o < > 6 =  1 +  - ~£c~ (iY-1^
2-

For S^$ (W-H2, we have — 1 <C6ssG^.+l and so there is 
no trouble in the expansion. For S , so long 
is inside the smallest of the ellipses determined by Eqns 
(IV.14) and (IV.15) for ^  — S the expansion
is convergent. Numerical calculations show that this is 
so for values of s only up to % - 27 • The smallest ellipse 
is given by

Similarly, in Eqn (2.74) 8vw B  LBj> Ccrsd? ) is analytic 
and regular in unless any one of the denominators
in

a . I (\rt ^ S ( S / M l W  | (  I | A i 3 ( S y ^ t )A 5 (S,u,tr)= •jrjls &/--s

( T i M )

vanishes. We have to consider only the first term, since 
the second term gives the point on the opposite side of the 
ellipse.
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There are two cases: 
(j) < 4 w l

that is
. / 2_v\4 Wyw

c~̂ 1 11---- j—-------
-+1 /

IsVWrP^

[ii) t >4W?

t-irSHv̂ -'n 2- V"(.fc/4- r1-) (.V4 - •v' l 7

c5 lt) =

Ct LV)

"52 r-*(M-t:h) _̂tvw+-3t'r
fc-4fl

(VL ■ 1&J

(LV. iStJ

+  p - K ~ r T

On the real axis in the s-plane for $<; Q  . CrS df in
^W\ R>(t,ks<(9 is real and is given by

6 >scP =  (S-.^J
2Ut-/4-rV(-̂ 'Vv̂ )

Numerical calculations show that G r $ d ^ is inside 
the smallest ellipse determined by Eqns (IV.18a,b) for t<: -4KX 
so long s is greater than - 1 7  •

On the circle cut (Eqn (2.78)) Cerŝ P is complex and 
is given by



C t s d )  =  ^  '2l' { K i o )
X  L ^ ±}4)

In this case it is found that dot? is within the smallest 
ellipse determined by Eqn (IV.18a) everywhere on the circle.
So the expansion in Legendre polynomial is convergent for 
all points on the circle cut.

For channel III the expansion involved is one in Cn 0  

for ^  A (Sy on the left hand cut in the t-plane. The
nearest singularity in comes from the vanishing of
any one of the denominators in

AUs,u,b) -  -L fav Ais(.s,u,w
7\ J  c — t-

I b)
U — U-

Q V - Z l J

The smallest ellipses for various boundaries are
6>s6Min-  1 + Cl'tSl  (JZ-2Q.)

with
C 7 /s) ■—

'  ~  S —t V v \ + 5 h )

c * ( s )  =  — +  u  r X-

and
/- ~ ( i y - 2 , 3 )
U s e ^ =  1 +  ------— —  ^  7

with

C, Is)----- —------: + (w+sr)^ 5 —  (vvH-r)5' ^
2—

Cl° tS) —
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It is found by numerical calculation that Grt© in 
the expansion for given by

=  1 +  sfe
is inside the smallest of the ellipses determined by 
Eqns (IV.22) and (IV.23) f or only up to
The smallest ellipse is given by



APPENDIX V

CERTAIN IMPORTANT INTEGRALS

(i) Do" 10 in one pole approximation.

Do°U) ^  1

o O

b 4rh>
p

~ 1 - b-tfe ^

(y-fc) U' + t*)

1 t -t b,

-  1 " T ^ r  ■« jau- { w1-

fc-b b'-+b (V'tb)2
tvM 4-+ b br+̂ - U 2 ts

where
Uz - fc,-4

fc'

b) u
(bg __Û ) Cx ij

The integrations for the three terms may be performed very
easily giving

ZP 1
D0#lt)= 1 + -jrlfĉ  

0) o <  t $ a r“-
2 P  1D°0 ) =  i + — 1¥T5

-— oO ^  b ̂  O
m u J * u L p E i  - c ^ + c ,

\ j ^ r  -tiWi1  ̂ J  4-C2 1 ( V  - 3  J

where
C1 =

c x - ZC'i
Zh> b»lb-b4)

In particular for t = o it follows from (V.2) or (V.3) that
d : « =  i + ( g 4 )

Differentiating Eqn (V.l) we get
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(ii) Lo 0^) on various cuts.
In elastic approximation we have

T x Ur2 ( • I 1 (jr )
Lot10) —  ts J 2 ( 7 + ^ )  kHu)tu'-K) '

where U) x b — W?'— Y7" # Substituting U 1 —  ^ - C  ©) one
gets J ^ 'L

L o M =  tf-s;
o

For Us on the real axis the integration is easily 
performed giving

(£) 10 ̂  2 Vwh-
Lk (hi) ■= 1 to-^-4Wt> ft-.*,)2ir n +Vn'L4r'- 2 * ^  ^  ^

(b) WS-2.1Mb _ _ _ _ _
I 1 ,M  —  _  J _  L  /SJOjI— 0 2-TT Us-y-Vv̂--!-̂^

On the circle cut L^(u) is complex;
/**&■

i X  v ^  f j x m b —  I ^ U 3 6 r s 6  .

U l 10) —  rr ( i V v s r - f i 2 t o  6 s > & ) i  +  (î b>6Db)b'

V \

v̂\ U H  -  _ 3 Z/v I ;— —
~y l> h/i b_O /) IA /,o u(ibib — figw fey) Cofe )*■

where =  2 X  ; Vt W —  2. \/(fe^)(rfeh\f
After changing the variable by using

Got, =  _
j4-— M

one gets ,
r Vt̂

k l o M  =  7t L
1/5? nr \ (* i-v*\) r1- -v -b1-) Gr? 5

(sm j

o
(sr. 15)
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r

J
-b lnL(~^"KO^£

(£•1 4 )

The integrations can be easily performed giving

pe Lo 04 = - _2 X _ ±W f - e  7T

%a |_u (4 - - ̂ rp. 4

+  / m 4 L  Pi + V5=P 

QZ-15")
i f e P - j L  ^  + ^ H a-V -2\ ^  7v I/ -A
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APPENDIX VI

THE THRESHOLD BEHAVIOURS

The threshold behaviours of the partial wave amplitudes 
(both at the physical and the crossed thresholds) have very 
important consequences in the inverse amplitude dispersion 
relations. Firstly, in Eqn (4.18) the integral taken along 
a small circle of radius p  around the physical threshold
£ -=l when p is

L t  s-So (A<j (&) L t s-so , / oM ̂ ) (VI* 1 )
2 - T \ i , 1 2_/n' ^  r \ r , t  * \ t  v  J

eThe threshold behaviour is used to write
0

(s'-sMs'-̂ o) ~  L < S ) « - G , ) L

using the expansions

9.c k ) -  ^ 9 r = a f ^ ' d
r>—  oand

s'-s J t0 (% -
we get after changing the variable by S' =  ^ +/°€l‘<4>

-  Lfc s-So
27T I' 1 ‘ V  cs-ft)"+1 P1

.̂)i -cs":r-^v) o»«-;-  -fs- h~ o
where ^

^ in ls r > ^ 0

t) —  2 7V 'J ft ” 0
has been used. The minus sign is due to the clockwise

j-/A

direction of the contour around the circle with radius p  

(see Fig. 4.1).
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At the crossed threshold, the real part of A t ( S > )  

behaves like K and the imaginary part behaves like K .
So for the inverse amplitude

t _  i _

2the real part behaves like k and the imaginary
part behaves like —  for , while for £ —  0 the

VZ

real part is constant at the crossed threshold and the 
imaginary part behaves as . So it is clear that for
t —  0 the contribution of the integration round the small 

circle <S in Eqn (4.18) is zero. This is also the case 
with the real part for L s > 0 .  For the imaginary part we 
put

uj i IK fM-rj2-
S — So (b—s)̂ 2-

Then the integration round the small circle <5* becomes
- , cfLt ± § 2 (as' __ _ _  Lt fas

O

—  0  4  s

-  Lb ±5s fa$'_£l—  4  s —  J=<s*o 27V ^
■= Lt _ZC^_ Z ^ . 3  J

Now the integration the real axis
+b— <sr b-£

CtS -S o  ( |^/ ^  —  _JJ- S -S a
<3^0 7T J  ̂g/ ~s)/ Sa ) <^Z>0 ^

/

^  (b-S')'L̂ -S)e»0

T
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where we have retained only the relevant contribution to 
te 1) which blows up at — b . It is clear that 

(VI.3) and (VI.4) cancel out each other. This justifies 
the writing of Eqn (4.20).

In the case of the S-wave dispersion relation for
it follows from arguments similar to those 

applied to obtained Eqn (VI.2) that the contributions of 
the small circles of radius and around the
physical and the crossed thresholds respectively to G0 & / k ^  

are y  X
Is  O ^ J  ^T w T *  w -“ ' s - iw-im*-

xMultiplying by £ the first two terms of Eqn (4.46) 
are obtained.

Since both and feWO behaves as k/sj
near the respective threshold similar situations as Eqn 
(VI.4) arise for the integrations on the real axis. The 
integrations around the small circle do not cancel out 
these infinite terms. But now the integrals are multiplied 
by k2' which vanishes at the thresholds and so there is 
no trouble.
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FIXED t DISPERSION RELATIONS

The fixed t dispersion relation for A ^ ( s , \ a^ )  is

1 . 1
s s71"!! (ill • 1 )

We project out the ( ~0 amplitude for channel III from 
Eqn (VII.1.) CXI

A ^ s . m t )  =  ^ 4  Ja s 'L, A w (s',t){ - j t r
(rn+t'-j2

4 Pi/
(l u -z J

Now a partial wave dispersion relation for 3>o (bj may 
written down with a subtraction at the symmetry point

oO °

e »  =  + t j s g w
__

lill-3 J
Using Eqn (3.14) the integral over the left hand cut becomes

/ i Cl *  y-)-b  — Fo
-7\ dJt

J
- c=0

r r

f

S X '

—cO ^

J  i______
1 F = T

A V, (-J

(Mi -4

where

I3-  —  \ftvX- t'/4
Only the S and P waves are retained in Dfw /A 

everywhere. Then the t integration in Eqn (VII.4) can be 
performed after interchanging the order of the integrations.



This gives 0 oO

x U' Gs.' 4 — . k  A*>(z',t') j p H  - r̂ -rt t J  J 2 M / -  y [t-t  e -h ,
Owtri*

oo - 4 ^
= U'{fcAi:V)+3(i+^>fl^4

O-t-LI2- _2 <j 
1

*  I M / - 1  t ' - t  fe' - ^ _

l"wl' _a„ ̂ ' ,  h) ̂  fc, (1+ S J
.her. p i _  ^  _ „p J <]i = £  V  »»<! ™  ^ve used

-41^
, , •( _ L (9 ^(<!i/̂ l02') + (bl'̂ K7-)()7-̂ y;i-

M r  u > - n  " ^  c ^ - r ; ( ^ S ; a
j "" =r _ jL/ r̂ j. 4-K/ "1 (Sihu. _

Pi/ ( + £/4 0 -4 J2 J
Substituting Eqns (VII.3.) and (VII.5) in Eqn (VII.2.) we get

4t*

s'-s s'- U_
(*v\+̂ v

y2l̂ 1/c 1 S! +  ( P . - * ! / , ) 3- )

This can be rewritten as (ET ■ C j

,. L \  -  TV _L. L-(y f,.,_  -71 +  *- - i ¥ - l t 7 Z K

<4^ x

*+- 4r \ d^  \ } " F r  +F i r ] ^ s'^fFs0+si,,}] 
t o + n -  ( y H 7 j

where we used Eqn (VII.6) evaluated at the symmetry point to
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express bo in terms of

- (d s'A  • = .  ■+ "b 1

Onrv+M'
So ‘s'-a0 

/

(iii 4
-  L *  (s', b>) ( 1 +

For the amplitude the fixed t dispersion
relation is eaO

A ^ ( s , M , b )  =  X  G s ' W ^ s ' o j ^ - ^ ]  ® T - l J
j CM+tJv

Projecting out (tj from this one gets

A u (S/M,t) —  3 ^ 6 s 3 ^ B ^ ( t )  -f-~ s',f)
frw+t4

*■ _ 2 , b %  ( S'+fMvbV-l

The following partial wave dispersion relation is written down 
for B 1 } i t )  :

& V U )  =  4-
A r

t'-t-
4f  C*J

Similar considerations as in the case of leads
to cx6

y 7T
C*0

t'-£r

+  Jp - sd - l  (vii-(2j
O-Hd*' J

Taking proper combinations of Eqns (VII.7) and (VII.12)
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+  S ( s - u ; / 1 ) ±  ( ^  J r ^ l M

oo

+  k  U & 7

4h
X l ^  1 ' Sin A 1^, h>]A (s', t; 

“ s'- s" <7- 3

4~

(Wi+b)2'

g ^ , f  % / ) x ’( 3 h )  S n ^ V s ^ h , ;
s'- u (joi ts)

where we have used

o
1

s'-" s S — K, , k e c a x U U ^  Sc, =  L|

Eqn (VII.13) is used to calculate the derivatives with 
respect to Cos O in Eqns (4.44) and (4.45).
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