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CHAPTER 1

INTRODUCT ION

In processes involving pions such as pion-nucleon
scattering, the pion-pion interaction plays a very
important role.1 Similarly, the kaon-pion interaction
should take an important part in processes involving kaons.
In particular, the low energy kaon-nucleon scattering is

(/\fZ)nly determined by the two pion exchange and the hyperon
(A,E;) exchange.2 The two pion exchange is described by
a mechanism suggested by Barshay.3 In conventional field
theoretic language the interaction is said to take place
through the Hamiltonian:
Hur= 4nd (KrK)<p? (1-1)

Attempts are made in this thesis to determine the
low energy kaon-pion scattering amplitude. Since the
interaction involved is strong in nature, the field theoretic
approach runs into divergence difficulties. The programme
based on unitarity, crossing and analyticity to determine
the scattering amplitude is known as the S-matrix theory.
Here, one does not encounter the divergence difficulties
of the field theory and is concerned with only physically
measurable quantities. The S-matrix theory approach is

used in this thesis. A brief historical outline of the



S-matrix theory and its various aspects are described
in this chapter. Since we are mainly concerned with
partial wave dispersion relations various methods available

for solving them are also discussed.

1.1. UNITARITY, CROSSING AND ANALYTICITY:

We consider a scattering process involving the four
particles A, B, C and D with four-momenta Pys Pgs Pg and
Py respectively as schematically represented by Fig. 1l.1.

It is a suitable convention

Fig 1.1,
to take incoming momenta as positive. By pairing the

four particles = two incoming and two outgoing -~ the

following three channels are defined:

T A(P1) +B(b2) —> € (—Fs)+ D(~ka)
T AWPE)+C () B (k) +D k)
MAWME+D () = BER)ACER)

Besides describing the process shown above, each channel
also describes the PCT equivalent anti-particle process;
as for example, channel I also describes the process
'a‘(ps) +D(ky) — A’(—p,,)+E('&) which is obtained from
the particle process by changing the signs of all the

four momenta. Whenever a particle is switched from incoming



to outgoing it is to be replaced by the corresponding

antiparticle and vice versa.

The four-momentum Py is connected to the mass of the

corresponding particle by:

P> = M’ ¢-2)

Three scaler invariants can be defined from these four-
momenta ; |

S = (P1tb)’ = (Psthi)? ¢-3a)

w = (P+8)’= (P+ps)? (1-3b)

t = (P+p)’= (B +ks)2 (4 3c)

It is easy to verify that s is positive time-like in
channel I and is the square of the centre of mass energy
there; and so are u and t in channels II and III respectively.
While in each channel the remaining two variables are
negative of the momentum transfer squared between the initial
and the final states in the centre of mass system. So
each variable plays the double role of energy in one channel
and momentum transfer in the remaining channels. Conser-
vation of four momenta impoifs the constraint:

Stutt = > md (t-4)
on the three scalar invaria;;s, so only two out of the
three are independent. This is as expected, because a
two body scattering amplitude depends on two variables -~

the energy and the scattering angle. The later is a function



of the momentum transfer. In each channel, the suitable
variables will be the centre of mass energy squared and
the cosine of the scattering angle in the same system.
Taking channel I as an example, the physical region
is defined by s> S,,, ~1<(s36<+1 ; where S is the
lowest physically possible value of the centre of mass
energy squared, which is, of course, equal to the larger
one of the two quantities (Mmi4m2)2 and (Mz+ma)?. 6 is
the scattering angle in the centre of mass system, Similarly,
the physical regions for channels II and III can be defined.
In the space of the variables s, u and t these three
physical regions are separated from each other by entirely

unphysical regions.

S-matrix: A scattering process is described by the S-matrix
which is an unitary operator mapping a set of incoming
states on to a set of outgoing states. The ]:;ﬁatrix is
defined by:

S = 4 +1T @-5)

Taking the matrix element between the final state f and
the initial state i of both sides of the above equation;
Spi= <§1s D> = iy +i$|Thip
Sgi + { (2mA8¥(p-p ) Ti -¢)

where a factor (2x)4 $¥(P;-b;) has been taken out in the



definition of the matrix element 1}( . This takes into
account the conservation of four-momenta. [g; , in
general, depends on the spins and isotopic spins of the
particles taking part in the scattering process. It is
always possible by taking out suitable kinematical, spin
and isotopic-spin factors to express T}; in terms of
one or more scalar amplitudes. The number of amplitudes
depends on the spin and isotopic-spin complications. 1In
this chapter all such complications are ignored and so

we are concerned with only one scalar amplitude. This is

written as A . The differential cross section is connected
to A by
2 td
ae = K \4A } Q‘"7)
a5

where k is a kinematical factor.

Lorentz invariance: Any reasonable theory of elementary

particles is expected to be invariant under Lorentz-
transformations. In our case it is guaranteed by taking /\
to be a function of only scalar invariants. Since we are
considering two body scattering process, A is a function
of two variables. Any two of the set {s, u, t} of
scalar invariants may be chosen. Which pair, will depend
on the channel under consideration. But when referred to

in general, A will be written as A (S,u,t) .



Alhat
Unitarity: Conservation of total probability requires  the

S-matrix is unitary, that is;

§"'§ = sst -1 s)

~ o~ ~

In terms of the j[ operator this becomes:

T-T7 = CI"I (a-a)
Then taking the matrix-element between £ and i of both
sides and after introducing a complete set of states
S |h><h‘ =1 between I+ and I on the right hand side
J;e finally obtains;

I T&i e Q’—?’%ﬂf Ty,; 8(9)( pc-—Pn) g10)

The left hand side is obtained by using: Tg, ""T;r* = 209 I4;
p; and p, are the four-momenta of the initial and the
intermediate states respectively. The summation over n

includes all possible physical intermediate states allowed

by conservation laws. Equation (1.10) may be rewritten as:

QMT% = Lz_g-ﬁzp‘g‘j{d“’ne("m)s(R"*-YW})}
% £9(3 b= bi) Ty Toi @-11)

where the summation zz is over the number and types of
particles in the inte:mediate state. The product E? runs
over all the particles in the set p. The integrations over
the four-momenta give the phase-space factor.

The unitarity condition is a general feature of every

quantum mechanical theory.



Crossing: It has already been seen that Fig. 1l.1l. describes
three different channels; each channel in turn corresponds
to two reactions: the particle and the PCT equivalent
anti-particle reaction. The postulate of crossing states
that the same invariant amplitude - in our case A(Snbt)—
taken as a function of the scalar kinematical invariants
and continued to the appropriate values of these variables
represents the actual scattering amplitude for all the
three channels.

In perturbation theory diagrams of all orders are
found to satisfy this postulate. There it is known as
"Substitution law,"4 and is stated as follows: no matter
how the external lines of a given Feynman diagram are
oriented the contribution of the diagram is the same.
Crossing conditions are also found to be satisfied in the
axiomatic field theory under suitable conditions. But
there does not seem to be a way of proving it on the basis
of the S-matrix theory. It is taken to be a postulate.

Since the physical regions of the three channels are
mutually exclusive crossing conditions will be of no use
unless the scattering amplitude has enough analytical
properties to allow analytic continuation from one physical

region to another.

Analyticity: The analytical properties of the scattering




amplitude in the kinematical variables have been subjected
to extensive investigations since the early fifties. The
forward scattering amplitude, which is a function of only
the energy variable was the first to be investigated. Gell-
Mann, Goldberger and Thirring5 showed the amplitude for
the scattering of photons in the forward direction to be
analytic in the upper-half energy plane. Then Goldberger6
was able to extend this proof of the analytical properties
to the scattering of particles with mass. The next step
was to derive similar results for non-forward directions.
Hetiristic derivations were given independently by various
groups.
Such analytical properties in the energy variable
are due to the imposing of the restriction of the "Principle
of microscopic causality" on the scattering amplitudes.
This states'that no signal can propagate with a speed
greater than that of light in vacuo. In field theoretic
language this means that the commutator (anticommutator)
of boson (fermion) fields at two points separated by space
like distance vanishes. Use of the above principle through
the Jost-Lehmann-Dyson representation8 far the vacuum
expectation values of the commutators (anticommutators)
forms the basis for the proofs of the analytical properties.
Rigorous proofs of analytical properties of the

scattering amplitudes in the energy variable were obtained



for the forward scattering by Symanzik9 and for the non-
forward scattering by Bogoliubov, Medvedey and Polivanov}0
Bremermann, Oehme and Taylor11 and Lehmannlz. These proofs
for the non~-forward scattering amplitudes were valid
provided the momentum transfer was less than a certain
maximum and the masses of the particles satisfied certain
inequalities. |

To illustrate, how the analytical properties can
be used to extract physical knowledge about the scattering
process, the case of the forward scattering is considered.
Forward direction corresponds to t = O, when s is the
centre of mass energy squared. The scattering amplitude
A(s,o), where the zero stands for t is analytic in the
entire s-plane except for branch points and branch cuts
on the real axis. If there exists any single particle
state having the same quantum numbers as the initial state,
there will be a pole at s = m2, where m is the mass of
the particle. Two cuts, both of them along the real axis,
to +c¢0 and the other from s, to -0

1 2
will account for all the branch points and cuts. Sq is

one taken from s

greater than s, unless the scattering process involves

2
massless particles. So there is a gap on the real axis
between the two cuts. A closed contour is drawn by going
round the above two cuts and a circle of radius R, when

R—= o¢9 . Application of the Cauchy's theorem on complex



variables yields a representation for the scattering

amplitude at any point inside the closed contour. If
A(S,o)-%bo as S — o0 the contribution from the large

circle of radius R vanishes. In the case when A(S,0)>sSN as
S ~> o0 by considering A(S;o)/gN' where N~ N instead

of A(S,O) the contributions from the large circle can

be made to vanish. To avoid complications, it is assumed

that there is no single particle state and A(S,0)—=> 0O as

S o0 « Then the representation is given by:

S2
A(s,0) = Sd / &“A(S’o) +%st'___,_____82ﬁ(s 0) 112)

where the property of real analyticity:

Als,0) = A*(s*,0) 13)
has been used to express the discontinuities across the cuts
in terms of the imaginary parts of the amplitude. The
property of real analyticity is due to the fact that tle
amplitude A(S,o)is real on the real axis between the two cuts.

Crossing relations allow us to write g'mA(S,O) in
the second integral in Equation (1.12) in terms of &mn A(S,O)
for s > s, that is, in terms of physical values. The
unitarity condition Eqn (1.10) in the case of the forward
scattering gives the optical theorem, which states that
3W\A(&CO is proportional to the total cross-section. By
allowing s to approach the right hand cut ($4€ S +o0) ,

that is, by putting s = 9+i¢ when € = © the real part



of A(5,0) on the right hand cut is obtained as a
principal value integral over 3N\A(SKD. Here use has

been made of:

4 4 e )
_— /e 4-14
g'—g *ie P g (RS S) -14)

In a scattering experiment, the total cross sections

are usually measured precisely. Thus, the analytical
properties of the scattering amplitude through the
representation Equation (1.12) determines the real part of
the amplitude in terms of the total cross sections;
Anderson, Davidon and Kruse13 used Eqn (1.12) in the case

of pion-nucleon scattering in the forward direction to

test the validity of the analytic properties against experi-
mental results. The agreement was fairly good.

A representation of the type of Egqn (1.12) is commonly
known as dispersion relation, The origin of this name is
in the investigation of the analytic properties of the
scattering amplitude in the classical dispersion theory
of light by Kramers14 and Kronig15 in 1926-27.

Using dispersion relations for A(S,0) and for the deri-
vatives of A($,t) with respect to t in the forward
direction in the case of pion-nucleon sgattering Chew,
Goldberger, Low and Nambu16 obtained approximate expressions
for the individual partial waves. On the right hand side,
only the dominant contributions to ¥m A(S,0) such as,

the contribution from the 3/2, 3/2 resonance in the pion-
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nucleon system, were kept. Thus the phase shifts for

the lower partial waves in the low energy region were
approximately determined. Among various applications

of the single dispersion relations in the energy variable

to the problems of pion-nucleon scattering17, photo;
production,18 decay processeslg, processes involving

strange particleszo, etc. worth mentioning are the
determination of the pion-nucleon coupling constant21

and the removal of the Fermi-Yang ambiguity for pion-nucleon
phase shifts.zz

Lehmann12 in his proof of the single dispersion
relations was also able to show that the scattering amplitude
is analytic in a limited region in the Cos © - plane around
the physical values of Cos © with the energy kept fixed.
This analyticity is far from being enough to enable one to
write useful dispersion relations in the momentum transfer
for fixed energy.

In 1958, Mandelstam23 wrote down a representation for
the two body scattering aqplitude by considering it to be
analytic in the two variables: the energy and the momentum
transfer, except for cuts along certain hyperplanes. 1In
a subsequent paper24 he proved that the fourth order diagrams

in the perturbation theory do satisfy such a representation.

This led to the postulate of the principle of maximal

analyticity2®, which states that the scattering amplitude



A(S,ut) is analytic in the variables s, u and t except
for singularities demanded by unitarity. Since there
are three channels, three different sets of singularities
will appear in the scattering amplitude. Each set comes
from the unitarity condition in the channel concerned.
Single particle states, stable or unstable, give rise
to poles in the S-matrix theory. These poles are to be
inserted into the S:hatrix at the start of the process of
determining the singularities demanded by unitarity. All
one particle states having the same quantum numbers as
the initial state of a certain scattering amplifude give
rise to poles in that amplitude. In the S-matrix theory
particles are classified as unstable or stable by the
existence or non-existence of a decay threshold below the
mass of the particle. When a pole is initially inserted
into the S-matrix its parameters are arbitrary. If it is
possible to determine these parameters through the require;
ments of self;consistency then the particle represented by
the pole is said to be a bound state. When the parameters
are truly arbitrary the particle is called "Elementary".
We now examine the unitarity condition; Egn (1.11)
to find out how it gives rise to singularities. When the
energy on the real positive axis has been increased to an
extent to make a new intermediate state, consisting of two

or more particles, physically possible an additional con-
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tribution, which was identically zero before, is added to

the right hand side. This gives a branch point on the
positive real axis at this energy. As the energy increases,
more and more massive intermediate states bécome physically
possible giving rise to more.and more branch points. These
are known as normal threshold singularities.

The normal thresholds may be introduced in T}:— and

Thy on the right hand side of Eqn (1.11) to produce more

singularities. These additional singularities can be fed
back into the integrand to produce more. Continuing this
iteration procedure all possible singularities of the
scattering amplitude will be obtained, and it is postulated il
there are no further singularities of the scattering
amplitude.

Polkinghorne26 has shown that the set of singularities
obtained by iterating the unitarity condition is the same
as the set obtained by considering all orders of perturbation
theory. This allows us to use the Landau - Cutkosky27 rules,
first obtained for singularities in perturbation theory,
to locate the singularities demanded by unitarity. The
singularities of the simple diagrams drawn in Fig. 1.2 are
as follows. Diagram (a) gives a pole in the scattering
amplitude at < — wm?* ; diagram (b) produces a branch
point on the positive real axis at S = (M4+tmy)2 ; while

diagram (c) gives rise to singularities on the positive
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{kl\’\ b'_7 A, "’\3"
) ‘M“} _c\
AN/ /T
]:1'8 1.2

real axes in both s and t variables. The singularxities
lie on a curve in the s-t plane., This curve is asymptotic
to the normal thresholds obtained by contracting out the
lines my and mg Oor m, and m,, and gives the boundary of
the contribution to the double spectral function of the
Mandelstam representation from this diagram. In the case
of diagram (c) the asymptotes are + —= unﬁmu)Land
S = (my+mzg)>

The locations of the singularities obtained fronm
unitarity depend only on the masses of the particles in
the physical intermediate state except in the case of weakly
bound systems. Then a type of singularities appear which
do not correspond to the mass of any physical intermediate
state. These are called anomalous threshold singmlarities.28
Since these may be obtained from the normal case by con-
tinuing in the masses of the particles, they too, arxrise out
of the unitarity condition.

In the case of the two body scattering amplitude the

singularities obtained from unitarity allow us to write



down a representation for the scattering amplitude known
after Mahdelstam. Such a representation breaks down when
anomalous thrwsholds appear. Many attemptsz9 were made to
prove Mandelstam representation for all orders of per;
turbation theory. Proofs exist only for diagrams up to
the sixth order. We discuss the Mandelstam representation
in the next section.

The unitarity condition couples the two body scattering
amplitude with many particle systems. So, unless many -
particle systems are known even the two body process cannot
be determined completely. At the moment there is no general
method of treating the many particle systems. At a particular
energy only limited number of intermediate states are
physically possible by energy conservation., The multi-
particle states come into the picture away from the low
energy region. It may be expected by making the energy
appreciably low that the two body scattering process is
isolated enough from the rest of the world for any calculation
considering only the lowest intermediate states to make

any sense.

1.2, MANDELSTAM REPRESENTATION:

A two body scattering amplitude having no anomalous
threshold singularities allow this representation. Single

particle states give rise to poles in the respective



variables. Diagrams like Fig. 1.2(b) give singularities

in one variable, that is, the single spectral terms. While
the fourth (Fig. 1.2(c)) and higher order diagrams give

the double spectral terms. The boundaries of the double
spectral functions are determined by the fourth order

diagrams. The representation then takes the form:

Felb
A(S/\A)t) = POLQS +—4.,—\. gdsi 5_{:’) 4 ,(dM) Pz(\/t) &rt t)
1 SO\S’OU’ Arz (s, t!) +1_§§ de'du! _Anrlsiw)
T2 (s'-s)-t) n (&'-s)(W-W
4 Cp! sl ey
+7€2§SM A (w—u)(t'-t) 115 )

All possible subtractions have been ignored. Taking the

discontinuities in s, u and t:
J Ais(st) 2\ dad qu(S,lA')

1 / A‘).3(‘A/t)

N </~

Az (Wi k) = Pz (t)

where Ay, A, and A3 are the discontinuities in s, u and t
respectively. Using these discontinuities the Mandelstam
representation may be rewritten in any one of the following
three forms:-~

Fixed s:

A (S\wb) = POLQ_S 4+ 4 ‘(A / P«(S) gdvl' A2 (s U, 5 -s-ut)

w— W

/ -S- L .
Jf—T jdk/ AS(SUE‘_{- t)i’.) (110’)




- O -

Fixed u: o NP
Als,ut) = poles +—%§o\u’ 2““) 4+ A Sds JICA:
Az(E-u-t,u, t) 41-20
R (1-20)
Fixed t: , ) g oy
p ('t. X ! 1S)E—S
Alsw ) = poles + %Sdk’_g%-r A gds 2=
) A (i—u—t,u',{—) 1-21
~+-%.de 2ut—u (1-21)

where we have used: sS+4+t = éamil =2

The single dispersion relations studied before
Mandelstam representation were of the type fixed t. 1In
the forward direction when't = O the discontinuities A4
and Az are entirely in the physical regions of channels
I and II respectively. Later on, in our application of
dispersion relations to the problem of kaon-pion scattering
this type of single dispersion relations will be found to
be very useful.

The Mandelstam representation gives the locations of
the singularities. If one can devige a procedure to
calculate the discontinuties across all the cuts, then the
scattering amplitude will be completely known. The pole
parameters corresponding to a single particle may possibly
be determined by self;consistency requirements or may
remain as arbitrary paraméters. Similar is the case with
subtraction constants. The masses of various particles may

well have to be taken as arbitrary parameters. It has



been hoped in the S-matrix theory that one will be able
to determine everything in terms of only one parameter,
possibly the mass of one particle to fix the scale. But
such a hope has been far from realization. All calculations
so far done have been done in a number of limited regions
of the S-matrix with own set of parameters in each case.

The scattering amplitude A(s,w,t) may be expanded in
terms of individual partial waves in any one of the
three channels using Legendre polynomials. The case of
channel I is considered in the following discussion. The
éxpansion may be written dgyn as:

A(S, Ces6) —_:QZ (e+1) P (Cos6) Als) (1-22)
=0

where A((¢) is the 1lth partial wave amplitude which is
a function of only one variable s. Using the inverted form

E .22)
of Eqn (1.22) A

Auls) = 4 \dGse P(Gso)Als,Coso) 1-23)
4

individual partial wave amplitudes may be projected out of
the Mandelstam representation. Then the analytic structures
of these partial waves may be obtained. 1In the next chapter,
it will be shown in detail how this is done for the kaon-
pion system. For the present need, it is just sufficient to
mention that in the general case the following singularities

appear: a cut extending from the lowest threshold to infinity



along the positive real axis known as the physical or
the right hand cut, and one or more cuts which may or may
not lie entirely on the real axis and extending to infinity
along the negative direction. The later set of cuts is
known as the unphysical or the left hand cut. The unitarity
condition when expressed in terms of partial wave amplitudes
allows us to write Al(%) as:

ALls)=  we'™ Sin§, (1-24)
where k is a kinematical factor which goes to a constant
as & —= +=2 and 5@; is the 1th partial wave phase shift.
This shows that A{U?) tends to a constant as s approaches
infinity, then the fdllowing partial wave dispersion

relation may be written down:
. S |_ImAUY) gl sl AMLS)
Ads) = G+ =% J'—@'-.‘S)(S'-So) TR (s’—s)(s’-so)ds
« C  (4-25)
where one subtraction has been made at s = So and Q, = /h[&ﬂ

The discontinuities AAL(s) across the left hand cut may

be obtained in terms of AQ_ and A3 by using the fixed

s dispersion relation Eqn (1.19). Both A2. and AZ are
known if the double spectral functions are known,
Alternatively AZ. and /¥3 may be expressed in terms of
channel II and III partial wave amplitudes by continuation
using the Legendre polynomial expansion. Such a continuation

is valid only in the nearby regions of the left hand cut.
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The double spectral functions need not be known in this
case. In the next section we shall discuss the various
methods of solving the partial wave dispersion relations.

Among the various contributions to the double spectral
functions there will be some from diagrams having elastic
intermediate states in one of the three channels. These
contributions are referred to as the elastic double spectral
functions. The regions of such contributions appear as
fringes along the boundaries of the double spectral functions.
Iterative procedure may be designed to calculate these
contributions. This is known as the strip approximation.
The num#erical calculations are very much involved. This
method was applied to the problem of pion-pion scattering
by Bransden and Moffat31 and Bransden, Burke, Moorhouse
and MorganSz. Application has alsd been made to the problem
of pion-nucleon scattering.33

FroissartS4 studied the asymptotic behaviour of a two
body scattering amplitude involving scalar particles and
satisfying the Mandelstam representation. He found the
scattering amplitude to be bounded by

Const. s In®s
at the forward and backward angles, and by
(msk. S4fnP g

at any other fixed angle. This imposes a very serious

restriction on the number of arbitrary subtractions in the
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Mandelstam representation. Subtraction terms in the variable
t are, in general, of the form P (Gs6()f(lt) . When
s is very large, P ((6¢) behaves as st. So, sub-
traction terms with L > 1 violates the Froissart bounds.
Froissart also showed that cancellations do not occur
between the different terms of this type of subtraction
constants or between these terms and the double spectral
functions. Applying this argument to all three variables,
the number of independent subtractions allowed in each case
is only two.

A stable particle is represented by a pole on the

physical sheet in the form;

2 P (Gs6s)
1 wmE— S

when £>1, this term violates the Froissart bound.
Similarly, resonant partial waves with £ >1 will also be
in trouble.

In potential scattering, it has been shown by Regge35
that the scattering amplitude is meromorphic in the complex
angular momentum plane when Rel is within a certain range of
values. The poles are not fixed. They start on the real
axis and move to the right with increasing energy. At a
certain value of the energy(at the threshold of the process)
a particular pole moves into the upperhalf plane still
continuing its rightward motion. Then ultimately when the

energy has been increased to a certain value it turns back



and starts moving left. Such poles are known as Regge
poles. Whenever a Regge pole crosses, during its rightward
motion, an integral value of Rel it gives fise to a bound
state or a resonance depending on whether the pole is on
the real axis or in the upper half plane.

The idea of the Regge poles has been extended to
relativistic S-matrix theory by various people.36 There,
of course, like the other postulates of the theory no
rigorous proof exists for the occurrence of such poles.
In field theory Regge poles appear in the sum over an infinite
set of ladder diagrams.37

By putting Regge poles into the S-matrix theory the
divergence troubles with stable or unstable particles for

£ > 1 can be avoided. At first, Regge poles seemed to be

satisfactory in explaining the high energy behaviour of
scattering cross sections. Later experiments on wp and pp
scattering cast some doubt on such an explanation. Moving
Regge cuts may have to be brought into the picture. Then,
certain theoretical investigations38 suggesting the existence
of such moving cuts in the complex l-plane have introduced
serious complications. In short it may be stated that the
Regge poles cannot explain the high energy scattering properly.

We leave the general discussion on the S-matrix theory

at this point after making one remark. Although the partial

wave dispersion relations follow straightforwardly from the
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Mandelstam representation, their existence may be proved
independently on the basis of the perturbation theorysg.

This allows us to have a bit more faith in them.

1.3. METHODS OF SOLVING THE PARTIAL WAVE DISPERSION RELATIONS.

In this section, various methods of solving the partial
wave dispersion relations are discussed. The drawbacks of
each method are also mentioned.

(i) N/D METHOD:

Here, the partial wave amplitude is written down as:
4-26
Alsy = N2)/Dls) (1-2¢)
Where N.(s) has got only the left hand cut and Dy(s) has
got only the right hand cut. The discontinuities of NLGJ

and D (s) across the cuts are given by:

I D () = Bl i ) Nuls) —Fm’savutﬁc vight hand

¢ A’d)) L L17)

AALS) Dls) 4“ S o the Ledt havd
(28 )

Normalizing [%js):: 1 at s = so, the following dispersion

B N(S)

I

relations for N((5) and D;(S) may be written down:

— S-S ) AAUs) Dls?) .
Nils) = et ngg (s’-s) (s"-S0) 0-29)

Di18) = A So\s’ B"‘(A(s'))N (s') Q-BO)

& )($ So)



The imaginary part of 1/AL(.S) on the physical cut is given
by the unitarity condition for the partial wave amplitudes,
Eqn (1.24). Substituting Eqn (1.29) in Eqn (1.30) one
obtains a Fredholm equation for [)((S) . The existence
of solutions40 for such an equation depends critically on
the behaviour of /) AL(S) as S—=> —=0., AAL(S) is
normally calculated by using the crossing conditions to
express it in terms of channels II and IIXI physical amplitudes.
As has already been pointed out that such a procedure involves
a continuation using the Legendre polynomial expansion which
is valid only in a limited region of the left hand cut. When
a particle with spin equal to or greater than one is exchanged
in channel I, é}AdS)either tends to a large constant
or blows up as S —> —=0. Under this circumstance any
solution to the partial wave dispersion relations using
the above method of continuation either will not exist or
will make no sense. A cut off may be introduced to avoid the
troublesome region. In the case of N/D method with a cut off,
the solutions are strongly dependent on the position of the
cut off. Chew and Mandelstam41 obtained such solutions for
the pion-pion scattering. The cut off introduced an extra
parameter into the pion-pion system.

Various simple approximations of the N/D equations can
be made by replacing the left hand cut by a set of poles and

calculating their parameters by the requirements of self-
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consistency ™, All these approximations are very crude

in nature and have limited applications. Another class of
approximations,43 commonly known as "Bootstrap calculations,"
may be devised by neglecting everything but the contributions
from certain one-particle éxchange terms on the left hand
cut. Each exchange term has two parameters, the coupling
constant and the mass of the particle exchanged. Most of
these parameters may be determined by the requirements of
self-éonsistency. As for example, if the particle exchanged
can also appear in the direct channel, then equating R)z)%{s):o
at the position of the mass of the particle and j%g‘gﬁt£59
to the coupling constant the parameters may be determined
self-consistently. In general, the numerical results of
such a crude calculation disagrees badly with experimental
results. The iteration is done only to the first order,
when D, (s)=1 on the left hand cut. Any attempt to go
beyond this makes the solution blow up. Recently, Gerva.is44
extended this method to include the two particle exchange
terms in certain approximations. The numerical results show
slight improvements.

The solutions obtained for the N/D equation are not
unique. Introducing zeros in t&l&)arbitrarily, poles may
be generated in AL(SJ . These are known as CDD poles45.
The parameters of these poles are entirely arbitrary. Such

poles are taken to represent the elementary partiqles of the



theory. The Froissart bounds restrict these poles to

the total angular momentum states O, %-and 1.

(ii) VARIATIONAL METHOD OF HAMILTON AND DONNACHIE46:

Let us consider the quantity:

%Uﬁ) = AL(S)/(S' So)'yz

where So is the lower limit of the right hand integral in

(1:31)

Eqn (1.25). Then ignoring possible subtractions the following

dispersion relation may be written down:;

WAds) _ 4 p gy ReA) 1 S”‘S‘/ £AUS)
"‘s__so [4Y 2, LS 'S)VS"'SO n / (S-S)\fso“si @'32)

This type of inverted dispersion relation was first obtained
by Gilbert.47 Assuming suitable parametric form for A((S)
on the physical cut Hamilton and Donnachie developed a
variational method using Eqns (1.25) and (1.32) together.
Various parameters are calculated by varying them to make
the solutions of the above dispersion relations satisfy
unitarity as closely as possible. Good agreements are
obtained in the applications to the problem of pion-pion
scattering in the T = 1 J = 1 state by Oades48 and to the
problem of pion-nucleon scattering in the %, g-state by
Hamilton and Donnachie.46

A serious drawback of this method is that the approximate
nature of A((S) on the physical cut has to be known in

advance., Only resonant states can be dealt with fairly simply.



(iii) INVERSE AMPLITUDE METHOD:

In this method, instead of dealing with the amplitude
A(ls) its inverse Y/ Alls)  is considered. To make the
illustration showing how the method works very simple the
following assumptions are made. It is not necessary for all
of them to be true in a practical application. The partial
wave amplitude AdS)is assumed to have the physical cut
Se& S +o00 and a simple left hand cut —ecog< S <59 along
the real axis. It is assumed that there is no complex
zero of ALV5) and that it goes to a constant at Sq and So°
All possible subtractions are ignored. Then the following
dispersion relation can be written down. ‘~
Al(s) = .;;f:g/ WA +—‘ﬁgczs' (<)
$/—8 $'— S Q,33)

SO —_o0

The imaginary part ¥m Aﬂ(s) on the right hand cut is
given by the unitarity. It is purely a kinematical factor
for elastic scattering. Then the contribution from the
right hand cut is known analytically. On the left hand cut

-1
%VtAL(S) is expressed in terms of &ﬂfhlS) as follows:

-1 o Y k()
s;fV\AL (S) [ ERQAL(S)31+L%¥A A((S)]Z di})

where RC,AL(S) is obtained from the dispersion relation

Egqn (1.33) using

1
Re A () = Roft (5) .
«ft) [Re A )]+ [hmp )T (435)
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YAls) in Eqn (1.34) can be obtained by using crossing
in terms of physical quantities in channels II and III.
It is evident from Eqn (1.34) that if $wA(S) Dblows up
as < -—> —x , then %Aﬂ (s) =0 as S —> —od) .
This effectively produces a cutoff in the dispersion relation.

Moffat49 first wrote down the inverse émplitude dis-

rersion relations for the pion-pion scattering. Then
Bransden and Moffat50 obtained numerical solutions to the
problem by an iterative process based on the closed set
formed by equations (1.33) - (1.35) and the crossing relations
for the pion-pion system. ‘The S-wave amplitudes have one
subtraction each. The P-wave amplitude, which has just one
total isotopic spin state, I = 1 has two parameters. The
S-wave constants are related to the coupling constant of the
pion-pion system, which is defined to be the value of Ihe
scattering amplitude at the symmetry point s = u =t = 4/3.
The two P-wave parameters are obtained in terms of the S-waves
using the derivative conditions at the symmetry point. Thus
the iterative procedure gave solutions of the coupled S and
P waves in the pion-pion scattering dependent on only one
arbitrary parameter, the pion-pion coupling constant. The
solutions have the P-wave resonance, called the yho meson.
The position and the width of the resonance depended very
much on the S=wave amplitudes. The low energy solutions were

insensitive to the distant regions of the left hand cut as



expected. Crossing was satisfied in the nearby portion of
the left hand cut.

Later on, we shall use the inverse amplitude method to
determine the S-waves in the kaon-pion scattering. It
will be found to be much more complicated than the pion-

pion case.



CHAPTER I1

THE ANALYTICAL PROPERTIES OF THE KAON-PION SCATTERING AMPLITUDE

In this chapter we discuss the analytical properties of
the kaon-pion scattering amplitude. The kinematics and various
other details of the scattering amplitudes for all the three
channels are given in section I. The Mandelstam representation
is written down in the next section. Section III is devoted
to the derivation of:g%alytical properties of the partial wave
amplitudes for kaon-pion scattering. The discontinuities

across the cuts are also obtained in this section.

2.1. KINEMATICS:

Fig. 2.1. represents schematically the kaon-pion scattering

and the crossed processes. The three scalar invariants, which

FWg 2-1.

may be formed from the four—momenta'pl, Pys; Pg and p, are as

follows*:



S = (P +p)" = (b5 ths)? (21a)
W= (Pr4pa)> = (P2t8)? (2-1v)

L= (Ptbs) = (Patipa)? @ 1¢)

s, u and t are the energy variables in the following

three channels

L (pyet) + Kipy) = I (b3, 2) +K k)

——

Bow (Ps,p) ¥ K(P) > NEPR) +K(Pa)
T ® (Pr,t) + R(Pefp) > KEPR) 4 Ki-ba)

respectively. Both channels I and II describe the kaon-pion
scattering and can be obtained from each other by inter-
changing the two pions. While channel III describes the
annihilation-creation process ?YN'—E\(E" « Conservation

of four-momenta requires that

S+Urt = a2 =5 @2)

This reduces the number of independent variables from three
to two. In each channel we shall use the square of the
centre-of-mass energy and the cosine of the scattering angle
in the same system as the two independent variables. The

relations between these variables and s, u and t are as follows

* We have chosen the units so that h = ¢ = p = 1, where p is
the mass of the pion. The metric chosen is such that the
scalar product is defined by A B = AOBo - A. B. The mass
of a kaon is denoted by m.



Channel I:

Let

when k2 is the square of the momentum in the centre of

mass system. Then

S — Pt 42r? & 2 [ (REem) (RE:41*)  (2-3¢)
£ = -2f1-(n ) ‘ @ 3b)
W = T—5 +oKr*(1—Gso) (2-3¢)

where the cosine of the scattering angle, (056 - is defined by

Gso = B iz (2:4)

From Eqn. (2.3a) it is clear that S is a double valued
function of K and so the k- plane is two-sheeted. The (+)ve
sign in the above mentioned equation corresponds to the
physical sheet, because then g*>¢0 for S > (Mmtp)2

By s, this value on the physical sheet will be meant unless
otherwise stated. k2 may be expressed in terms of s as

follows:

2 —_ 2
K — L$.0n+iifs (m-p)2]) 25)

The physical region for channel I is defined by:

S = (mar)? omd —1< (s < +1 .

Channel II:

The variables are all similar to those of channel I



- J)x -

and can be obtained from the laffer by interchanging s and u.

A bar is placed on K> and (es@& 1like R* and (osG& to denote

channel II quantities. Then

W = w4 2R? & 2V (@) (R2rr)  (2:4d)

t = —2R(1- (08 ) - ¢b)

¢ —= S —uw +2rR*(1—CsE) @-¢<)

2% — U — M4z Tu — =] (2-64d)
AW

The physical region is now defined by

W = (M) amd -1 < o <t

Channel III:

Let

E!z:: E?I:: Cb2 ) fﬁltz f?%:: ™

where p and q are the kaon and the pion momenta respectively

in the centre of mass system. Then

S = —-P 9% x2pqlsqg

W = —p-q>— 2pqbsq
£ = a(Pamt)z q(a™=2)

(vs ¢ is defined by

P q.
CS ] - =~
=g 2

@7a)
2 7b )
(2:7¢)

2-%)
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The physical region is given by

E>am* owd 1< s <+1

We can write down the S-matrix for the process described

by channel I as follows:

Seu = Spu+ 1S9 p) T @)

where the isotopic spin indices « and ﬁB for the pions
are used to denote the initial and the final states res-
pectively. T@xis connected to the invariant scattering

amplitude Apd by

—_ &R A‘ (2’10)
—V}d (16P54 Foz Psz P(J‘})Vl =t

Aﬁx will be taken to be a function of s, u and t to
guarantee relativistic invariance and it is related to the

differential cross section for kaon-pion scattering by.

2
%% = A | Amls,wb)l (2-11)

Using the unitarity condition, Eqn (1.10), one gets the

optical theorem:
I L Wy (2-12)
Ght = KVEBM o

where Aad,denotes the forward scattering amplitude in
channel I.

Crossing requires that the same scattering amplitude



A (s,w,¥) continued to appropriate values of the variables
describe all the three channels. We denote
Als, k) = A(3,0L56) in dunnel T
A ,ut) = A (W sE) n chamnd 1L 2:13)

——

Al = B (&, s @) in charmed L

In the kaon isotopic-spin space the scattering amplitude

for channel I, A@x may be written as:

A{s,,( = SMA&) + 4 L7, AS) 2-14)

where pﬁﬂ and Akﬂ are the symmetric and the anti-symmetric
parts respectively. There can be two eigen-states of the
total isotopic spin, T=%, and T=73/2 for the kaon-pion system.
The scattering amplitudes for these eigen-states are related
to AY¥) and AY) by (see appendix I):
A = A¥) 4+ 2a®) @-15)
pr =AM — AC) (2-16)
A special case of crossing arises when the two pions
are interchanged, that is when channels I and II are switched.
Both these channels describe kaon-pion scattering. From Eqgn
(2.14) one finds that A) is symmetric under the exchange of

the pions, while AY) is anti-symmetric. Then we have

AR (s wit) = 2 A9 (s, €) @-17)

where s and u are interchanged, because the interchange of



the pions means that s <> u. Eqn (2.17) is known as the

Mcrossing symmetry" and is a very severe restriction on the
scattering amplitudes. Using Eqn (2.15) and (2.16) the

“erossing symmetry' condition can be written as:

AL (s, (0s6) — Sokrp AT (U,0sB)  (21%)
II

where the crossing matrix CXII'is given by

-Y3 A4/3
170 — (2-19)
2/3 Y3

In channel III the eigen-states of total isotopic-
spin states are I = O and I = 1. Since two pions in the
state of total isotopic-spin state I = O is symmetric under
the interchange of the two pions, the scattering amplitude
in channel III with I = O is proportional to Aeﬁ . Similarly
the state of two pions with I = 1 is antisymmetric under the
exchange of the pions so the scattering amplitude in this
state is proportional to A&’ . The constants of pro-

portionality are determined in appendix I. Then

R® = Vg A®) (2-20)
B' = 2 A%) (2-21)
Expressing Aﬁ)and. Ab)in terms of amplitudes in the

eigen-states of total isotopic-~spin in channel I we have

RI(k, s ) = 2P AT(s,Gsb)  @22)
II



The crossing matrix ﬁit‘ is given by

Ve/3 2VE/3

Pror = @23)
2/3 -2/3

Egqn (2.22) may be inverted to give

AY(s,s8) = Z ¥1p BI’(E)Coch) | Q-24)
II
where
ﬂ/\lr-e 1
Yip = 2.25)
We Y2 (

Egns (2.18), (2.22) and (2.24) will be very useful later
on.
In channel I, the scattering amplitude AI(%CUSG)

may be expanded in a series of Legendre polynomials

AT (s, s6) = 2 ) P o)Al ) (2-2¢)
{=o

Reversing Eqn (2.26) the partial wave amplitude AE(S) may

be expressed in terms of Al(S;Qse) as follows:

1
ALI(S) = -%—g‘dCoSGP(,(COSG) AI(S)COSQ) @'27)
-1

The unitarity condition, Eqn (1.11) when expressed in terms

d
of the partial wave amplitudes takes a very simple diagonalize

form (appendix II):
Y Alls) = —V‘is EROIHEY (228 )



I N
where RL (S) is the coefficient of inelasticity defined

by

Qf () = qlfot (s) /6;;4(3) (‘2-2°|)

when the scattering is completely elastic R{(S) — 1 .
In the case of the kaon-pion scattering, the amplitude
is purely elastic in the region (mM+MPL S (IN+3IH)2

From the unitarity condition, Eqn (2.28) it follows
that:

I ~

ALI (S) — %"QtéLSMSt (2:30)

-—

l— .
where O, is the phase shift, which is real in the
elastic region and becomes complex when the scattering is

inelastic. The unitarity condition, Eqn (2.28) can be

=1
rewritten in terms of the inverse amplitude Af(é) as
follows:
=1
1 —_ K T :
o Al(s) = - K pT(s) (231)

This is a very useful form of the unitarity condition,
because when the scattering is fully elastic 9m AE(S) is
just a kinematical factor. Eqn (2.31) will be used in
chapter IV in the inverse amplitude formulation for solving
the partial wave dispersion relations.

In channel III, we make the following partial wave

expansion:

B (6, a ) = tg(l{m)(b%){ﬂ(&scﬁ)B‘f(&) @32)



The reverse of this is.

B (k)

+1

Jd@sc@ P lwsd) B Gse)
2-33)

—1

The interchange s <> u means that ()sq@ <= -(vs4 . Then

2[)‘

the "crossing symmetry" condition, Egn (2.17) when applied

to channel III gives:"

B&)(b Q)gq)) e B@')(é,-&;scp) (2-34)

Making partial wave expansions of both sides, we have

fuu CONERE: (—1)*] P (os)BIE)=0
t=o (2-35)

where, the relation |5 (—(,oscp) — (-1)€ M (&Sc@) has
been used. Since the summation over 1 forms a complete set,

each term of the sum can be equated to zero separately.

Then it follows that.

BLOU') =0 fore £ 0dd
B}(E) =0 o 4 enen

because(%fand (gé'are proportional to Ef?and E{Orespectively.
Thus Ycrossing symmetry" reduces the number of amplitudes
in a particular eigen-state of angular momentum in channel
III from two to one. Since the two pion are in the initial
state, Ycrossing symmetry" is just the Pauli exclusion
principle. |

Retaining only the two-pion intermediate state in the

unitarity condition, Eqn (1.11) we have



bBile) = LBTOATT) @3¢

innm
where Altg)is the pion~pion scattering amplitude and this

can be written down as:
‘IK'R

IKR ‘ JE 1§ T IH
ACTE) = g € Sng (237)
Since &w@%lb)is real, B{U-)should have the same phase as

"‘W
A% Hj in the two pion approximation for the unitarity

condition. Then

L CcTHT
BIE) = ((¥) S5 @-=¢)

where (;&é)is a real quantity. This is the "Final state
theorem"sl. Eqn (2.38) is exactly true only in the region

z.uﬁ*s L < 16p* - Now the physical region in channel III
starts at t=4w>., But Mandelstam52 has shown that the unitarity
condition can be extended to the region AqﬁL:; t—sg-énn%

We can find a very suitable point at which

S= w=295, , nho=wo=wd =0
omd £ — ——QJQ&L
where So is given by

S, = —%[m%f_t&"%-z \/E‘f—H*’t_er"’] (2'361)

From the condition of "crossing symmetry", Eqn (2.17) it

immediately follows that

AQ‘)(SO)SOII:o) = O @40)




So, at this point,referred from now on as the symmetry point
the two isotopic spin states in channels I and II are equal

to each other

AV‘(SO,O) = AB/Z(So,O) @'44)

Since Eﬂ(k,&m@D is proportional to A we have also.
o) = ¢ (2-92)
Differentiating both sides of Eqn (2.18) with respect to s and
(656 at the symmetry point various derivative conditions for
AE(S) may be obtained. In appendix III, the first derivative

conditions are deduced. They are

A~ 94 AAHL)| s%ﬁg‘f—fs—)l 2-4s)

S=So $=50
0~ 943 —a——d/“’ s’) + 5 17'0(—0{(_2L R-44 )
S=So o

where CLF:: A1(So) are the values of the P-wave scattering
amplitudes at the symmetry point.
Similarly from Eqn (2.24) we obtain the following first

derivative conditions (see appendix III):

d A%(s) 031 48lt) . | 5
_U_E}'So --034 ._—O‘Ttl b+ 1914 B, (k) Q-a5)
2 A'A/Z(g) \ ~ 034 48, l - 0957 13, U%)@ 45)

a' S S =% Z:l t=to

Many such conditions can be written down by evaluating the
higher derivatives. But they will depend on higher partial

waves to a greater extent.

2.2. THE MANDELSTAM REPRESENTATION:

The singularities of A®)Sut)in the variables s, u and



t demanded by the unitarity conditions for the three channels
may be obtained by studying the allowed diagrams for the
scattering process. Conservation of G-parity will forbid

even number of pions in the intermediate states for the
kaon-pion scattering and odd number of pions in the intermediate
states for the process TMA > KK ., With the Hamiltonian
given by Eqn (1.1), the possible lower order diagrams are

drawn in Fig. 2.2 and Fig. 2.3.

Fig 2-3. Box oﬁoﬂr«/m_g



Solid lines represent kaons and dotted lines represent pions.
Diagram (a) of Fig. 2.2 corresponds to the tx(kfn<)cb$' term.
In S-matrix theory this corresponds to an arbitrary constant,
which is defined to be the coupling constant. This may be
taken to be the value of the scatfering amplitude at a
particular point, which may conveniently be'takén to be the
symme%ry point in our case. Diagram (a) together with unitarity
leads to the "chain diagrams" as drawn in diagrams (b) and (c)
of Fig. 2.2, The chain diagrams have singularities in only

one variable and éo give rise to the single spectral terms.

The diagrams of Fig. 2.3, commonly known as box diagrams
give rise to the double spectral terms. Diagrams (a) - (d)
give the outer most boundaries of the double spectral functions.
These boundaries will be obtained in appendix IV.

The Mandelstam representation will mainly be used to
determine the analytical properties of the partial wave
amplitudes. Subtraction constants and single spectral terms
té'dgrglter in any way these analytical properties. So the
representation written without subtractions and single spectral

terms will serve our purpose. This is as follows:

),
A@«')(g,u) t) = _11‘__1 ggdg’ol{:’ Mzls,E)

s )lb-t)

SINNEY

1 gt A )
+TL§§ASAM (3’..3)(\A'—-V\)

&) 1! L
+ i §M’ Ars 45t (2-47)

e (m'-u)t'—t)
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The boundaries of the double spectral functions as obtained

in appendix IV are.
@) For A,)(S t)
I [b-ap)[S—tmtzspr)i] —Zopdimtpr) =0  €-48a)
I [t -16tQ]S —mpp][S ~tm-t¥] —g4rds =0 (2-48b)
Q’) For Ao % (s,u)
T 18— (i Jlu—~ (mx3e)2] — 161> (mtt) =, (2494)
T [u— (meedls - (masep] = 1687 (07 =0 (2-=95)
€) For AEu)b)

The boundaries are the same as A%?(SAQ and can be
obtained from them by replacing s by u.

From the representation given by Eqn (2.47) the dis-
continuities in the variables s, u and t may be obtained.
They are as follows: = . = . . . o . o

A ) = 4 far AN g fad Aow o)

A (su by = & gds _____u_ml 2 (o) +—”—S<ﬂc’ A,f(u’ 7 @51)

Ag) ut) = ..%_ gdg A'\3 (S’ H o4 ‘(du’ A;: (u,k) - 132)

With these discontinuities we can write down the single

variable dispersion relations:

Fixed s : " .
A¥lc ) = L OW' A (S Ll E'S'“) +3—S0‘*/ el (,S'ZES v,e)
] ) — t
Fixed (W:L gl (2-53)
1X : = . /. @) v u, b
A v, 28wy [ 4Z (2-u-
. A&}(‘SN,&’) — _%_ jdg \ S’:S +4 g(u’ —

(ro+t s> A @Q-54)



Fixed t:

>0 o0
&) s ) &)
/ A1 (S,Z—S—E,E) 4 / A (Z_u‘_k) M’ {—)
AY (swt) = ’% ds < < o | dt = T ,
U’»\H‘)” | (m_,_mz LZ , 5_5.)

These single dispersion relations, strictly speaking are not
valid without any subtractions. The fixed t type will be
used later on to obtain a sum rule for kaon;ﬁion scattering
and to determine certain set of parameters for A > KK
amplitudes. Necessary subtractions will be made there. For
the present need the single dispersion relations.written
in the above form will serve the purpose.

The application of crossing symmetry, Eqn (2.17) to

the representation, Eqn (2.47) gives:
Ay = = ASZ0LY) @52)

A (x, 9) + ASAY) @57)

Putting this conditions in Egns (2.50) - (2.52) we get

|

AV s, b) = =+ AS (u,s, k) (2-5%)
A s ut) = + ASuse) 25%)

In the next section we shall derive the analytic
properties of the kaon-pion partial wave scattering amplitude
and obtain the discontinuities across the various cuts. The
case of MK —> kK< partial wave amplitudes will be taken up

in chapter III.

2.3. ANALYTIC PROPERTIES OF THE PARTIAL WAVE AMPLITUDES FOR
CHANNEL I:

The fixed s dispersion relation is used to determine



the analytic properties of the partial wave amplitudes for
kaon-pion scattering. The 1lth partial wave is projected

out from Eqn (2.53) by using Eqn (2. 27) as follows:
ﬁ%):—&ﬂﬂmm)@w

od

+1
A tt)(sr u',Z”S—u')
= _"_ A PL(}L) { iﬁ go\u’ 2 S 1S AR(-x)
—1 (i)
Att)(g S—s—tt')
dt’ 3 5 "/ Q_éO)
t 42k (1-X)

4r
where we have written x for (0<® and used Eqn (2.3b) and

(2.3c) to express u and t in terms of s and x. The singularities
of ALHS) arise from two dlfferent sources. Firstly, any

A@ﬂ will also appear in A?”(s) .

singularity of AL) and
Secondly, the vanishing of the denominators in Eqn (2.60) will
give rise to singularities in A%H$)
The singularities of A?J and Agj are obtained by

examining Eqns (2.51) and (2.52). The first denominators,
in both of these equations give rise to a series of branch
points on the real s axis. The first branch point appears at

S = (M+w)* and corresponds to the physical threshold for
kaon-pion scattering. The next branch point is at s::(M+3hf
the first inelastic threshold and the next one at Ss::(Wv+SP91
and so on. There Q,r;no branch points at $ = (m+2v)3 (m+4r)>
etc., because the conservation of G-parity forbids the even

number of pions in channel I. A branch cut taken along the

real axis in the range (mH"><S < 4o0Will account for all



these branch points. This cut is known as the physical cut
or the right hand cut, because it involves only the physical
partial wave amplitudes for kaon-pion scattering. The
second denominators in both of the two equations (2.51) and
(2.52) give rise to singularities which céncel each other.
The singularities arising from the vanishing of the

denominators in Eqn (2.60) can be obtained as follows. Both
of the denominators are of the form a + bx. There are two
situations which may give rise to singularities: (i) a =0
and b = 0, and (ii) a # 0 and b # 0. For the first denominator
(uﬂ—2.+g_zwg(¢-x)) condition (i) may be satisfied only at
one point given by (' = (m+p)* and S= (m-t)* . This
gives a branch point at & — (m—p)*> . The second denominator
(&hFZK}M—OQX) cannot satisfy condition (i) since > gpr
The simplest way of determining the singularities arising
from condition (ii) is to interchange the order of integrations

in BEqn (2.60) and to perform the x-integration. Then we

have o
! | ,'2-{:5
A s) = ~_Jﬁjda’ Af)(s,u,z—sm)g—\(l&{(% S
()2
X
4 _47\: Sour )(31 st %‘) @&(4—\—2‘62)
Ap> (2-61)

where the Legendre polynomial of the second kind is defined

by .
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+A

Qula) = L S:Jm fﬁf‘i (262)
It is well known that (,(a) is analytic in the a-plane
except for logarithmic branch points at a = + 1. The cut
may suitably be taken along the real axis from -1 to +1.
Then the Q-function in the first term of Eqn (2.61) gives
rise to the following singularities. The first branch point
at ¢. — +1 corresponds to S = 2 —u/ . The physical

' = (m+k)* gives a branch point in s plane at

threshold , W
S = [m——\**)l The next branch point in u'! at u = (m+zh)*>

will give a branch point at < — (m-t-t“) (m”7|‘*) and so on.

When W —> +oo ¢ approaches =~ — &% . The second branch
L 2
point of &L[a) at a =41 corresponds to S — Lra=t®)

M/
The physical threshold, U = (m+W*gives the branch point

¢ — (M —P)* and the first inelastic threshold , uw = (WH"SN"
gives a branch point at S:(MI-WF/(M +2™)* and so on.
As we approach the upper limit of u'-integration s tends to
zero. So a branch cut on the real axis from < — (m ~H)2 to
¢ — —o® will take into account all the singularities
coming from the first term of Egqn (2.61).

For the second term in Eqn (2.61) the branch point

/
o= +t1 corresponds to {—\je—z — 0 . But since t'=4ap>
it can only be satisfied when R*—= 40 . This happens

when S=¢ and S— _—o) . So the second term in Egn (2.61)
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gives rise to branch points at €< —=(¢0 and ¢ ——o0 for all
values of t! corresponding to ¢ — +21 . The branch point
G — —A1  corresponds to t/ = —4R* | Solving for s

we have

s = M b, & 4 Ea)F-ar) @63)

when 4M< t<4m™, s is complex and is real for t'= <4M* and
tl24h{\” . We first consider the ldter case. The

branch point o am> gives a branch point in s at S=-(m=p2?)
Taking the lower sign in the above equation it is found that
as t—> 40 | , 'S goes to -—=0 . The upper sign
corresponds to S > () as H — + oo . Then the higher
branch points in t' give rise‘to branch points in s at

the values of s tending to — = with (:/——-P-I-OO for the

lower sign and at the values of s tending to O from the
negative side with U —2+=0, The point t’:‘”’*”gives a
branch point at & = mE—H> . We write s = )L-‘k-lé, when

A<t/ <am®™ . Where X = MK th and y= 4 \amv)E-ae)
Then evaluating (5|2 = M 44> we find that

sl = (m=t3)*

This is the equation of a circle of radius (m2 - |.L2) with
centre at the origin. Then all the branch points in t!' for
4\%24 {;/<4m}ﬁ give rise to branch points in s lying on a
circle of radius (m2 - uz) corresponding to the branch
point a = - 1 of | &((a) . As for example, the branch

point t/ = 46&*7’ gives branch points in the s-plane at



S = (m=7t%) x (Yagr>(m—arz) So finally, the branch
cuts taken along the circle \SI = w—t> and along —0< SO
on the real axis in the s-plane will account for all the
singularities coming from the second term in Eqn (2.61).

Collecting all the singularities together we get the

following analytical structure of /ﬂf)(s) in the s-plane:
- - N "_
(1) The right hand cut: (Wm+M)'g S 40
(ii) The left hand cut: —0 < S (M-r)*
(iii) The circle cut: (s| = Wm>—p*

The unitarity condition, Egn (2.30) shows that Af{s)—a
constant as S —> &% So, a once subtracted dispersion

T
relation may be written down for A((S)

T n T /)
$) — I S—So \Jo/ A (s
Al,( ) ab + 'ﬁ’ S (S’—S)(S’—So)
(m—+)*
(-~
+ 5250 4y " GeATls!)
™~ (s'=s) (-Sq )
—cd

Irer
S-S / NAL (S ) ‘
== Sd > IEESICEY)) @—64 )

where a subtraction is made at s = Sq and (1}' is the 1lth
partial wave subtraction constant with isotopic spin I. The
discontinuities across the cuts on the real axis equal the
imaginary part as a consequence of the real analyticity pro-

perty

AT(s) = AP (e*) (2:65)



That is _ .

oéil;o %’[At (s+ie) __Af(saie)] = dmAC(s) @_-éé)
when s is on the real axis. ¢£3ﬁ%f9 is the discontinuity
across the circle cut given by:

M) = A [ AT (S ) - Al(sin) | (2767
where S, } and S are the values of s just outside and
inside of the circle cut respectively.

The discontinuity across the right hand cut.is given
by the unitarity condition, Eqn (2.28). The discontinuities
across the other cuts may be obtained by examining Eqn (2.61).
The discontinuity across the cut-1<a<+1 of &L[a)
is given by:

Qa+ie) — §la-te) = —i KRB (a) (2-6%)
We first determine the discontinuity across the left hand
cut for contributions from channel II, that is for the first
term in Eqn (2.61). Since the discontinuity is defined by
going from <S+4lE& to S —1¢ on the real axis, the argument

of the QL— function is examined.

We have _ (;—uLS)(Qiimﬁrﬂvt]

Qs xie) = & Tt L1+ Aslklz
2x (2:69)

where Q@(S+(¢)and A (S—(¢) are the arguments of Qy at
S+ (& and S—(€ respectively. Then by examining the
coefficient of it in the above equation for the range of

u'! - integration which gives -1< A <+41 for a fixed s it



is found that:
alseic) = & T when 6<sg w2
= a =iy whem S <O
where N is positive and goes to zero as ¢ —> ¢ . Now
using Eqn (2.68) one can easily find out the discontinuity

across the left hand cut for the first term of Eqn (2.61).

It is as follows: 2 )2
S
_i _ ) N
I A((,)(S) = 4R1§0\w P (A+ 2 S )Ag s, W,5-s-u')
=S ir\\hf/\/\ 0 LS (m-1+)%
s-5 (2-70)
— s - &)
— 4@ An’ A (14 ’7\/\\53—) A7 (s, W, s —s-u')
(m+) > (2*70)

&
where a bar is placed on }ﬁth’ké) to indicate that it is
the contribution from channel II.

When O <S & (m-p)*, AZ%)(S,V\',S,—S'\A') is entirely in the

physical region of channel II, that is: u' = (v +1)% and

CO'S_ — Z—-\A"’S . . CO—S A
6 = 1+5z7r1is in the range -1 &6 <+1. Then the use of

crossing symmetry gives:

A (sul, 2 -s-u) = =% AE (W, (635) (272 )

For S <O 6535.51 1 the equality applying only when

?
the value of u'! is at the upper limit of Egn (2.71). But

+ 3 —
we shall still define A%)(S,u',i—sm’)through Eqn (2.72). ?»“A( '(u‘,&ne)
can then be expressed in terms of physical partial wave

amplitudes A%q(uﬁ by analytic continuation using



the Legendre polynomial expansion in (s& . The
boundaries of the double spectral functions determine the
region in which such an expansion is convergent. In
appendix IV it has been shown that the Legendre polynomial
expansion for Eqn (2.71) is convergent only up to S 2 -27

Combining Eqn (2.70) and (2.71) and using Eqn (2.18) we

have _C(s) ,
_ 5 -u'-8
o AL(S) = — g (AW Pt o )%%II/
. z-3 I_¢ T/ )
= 2 -U- A,(Uk‘
xS (! +1) P (A == g A
Eo( ) 2%e? ) (2-73)
where
cle) — Lﬂﬁ%ﬁ)l whon 0L SE (m—1)?

(en > whan € <0

I

Similarly examining the second term in Eqn ( 2.61) it is
found that when s is on the left hand cut the argument of
in the second term becomes:

. v ST (=)
Q(S -j:l(:) = &k = Le 83%2Kr4

that is @L(g;’cl‘é—) — a ifVl RS — (M=t )LSKOo

S o

P
—

Then the contribution of channel III to the discontinuity

on the left hand cut is given by: —4K>
[ ;
iy N J £ NS ¥
%‘N\A% (S) — F»G(S"\'mifl-t*-l)"émzjd"' PL(/]—‘— lRL)% AL
ar*

(S ) B (S50 ) (p2) B, ()
S0 ken s<o @)
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where we have used

&) )

Yo BEE, Cosap) @75)

+
%WJEL)UUGﬁdvls then expressed in terms of isotopic spin

Coxd Appendix IV shows that this expansion
is convergent only up to S~ —27
On the circle cut, one can write
¥ o=

states by using Eqn (2.24) and expanded in Legendre polynomial
series in

S = YL‘C\) where
is the radius of the circle. S can also be
written in the form

SEM) = 2n+mar > o Viem) (A1) (2-76)

where N = ¥*> and the (+)ve and the (-)ve sign corresponds

to the upper and the lower half of the circle respectively.
It is easy to see that

S,k and Sin  corresponds to
N+ L%Sin4> and

A - —‘—% Sinds

—

respectively. Then
Sowk — —_ . t/ 2-717
That is
N —
e ()

e

G xin on [k A@wmﬂugoélﬁ v .

Then the discontinuity across the circle cut becomes

——

—

— 4\ 0
LhAf(S) = dt/PL(4—¥——~ ):i'xtz EE:(LQ+4)
4 - L 1y,
(P‘U)‘ P (Gi(?i);vb-k‘b )gm By (£)

@7% )
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Where the (+)ve sign corresponds to the upper half and the
(-)ve sign to the lower half of the circle respectively.
As shown in éppendix IV, the Legendre polynomial expansion
of &NVBI!(U)QD¢U is convergent everywhere on the circle
cut.

The discontinuities Eqns (2.73),(2.74) and (2.78) may
also be derived by examining Eqns (2.18) and (2.24).

In the next chapter we shall discuss the partial wave

amplitudes for channel III.
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CHAPTER 111

J'TY > KK PARTIAL WAVE AMPLITUDES

It has been seen in the last chapter that a knowledge
of the partial wave scattering amplitudes for 7R —> KK is
necessary in the determination of the kaon-pion scattering
amplitudes. This chapter is devoted to the formulation of
an approximate method of solving the S and P waves of 7wA-> KK
process in the low energy regions. Section I gives the
analytical properties of the partial wave amplitudes. The
discontinuities across the cuts are also obtained. In the
next section the Omnes53 method has been used to obtain

approximate solutions for the S and P waves.

3.1. ANALYTICAL PROPERTIES OF THE PARTIAL WAVE AMPLITUDES

FOR CHANNEL III

The fixed t dispersion relation is used to determine
the analytical properties of the partial wave amplitudes, Bk“f)
Utilizing Eqn (2.33) to project out the 1th partial wave from

Eqn (2.55) we have

BL b)) = dep(%) A%, u)t)
= @)
(s, 25t ¢)
= SOMPM){ jds S’jHol 2 ppx
9,“0‘(/)5 (ntr)* -(—ﬁl P

o0

4L SAVL’ Agk)(z—m’%)w)t)‘} &1)
Ly ML%P;+W1+2P?X'

(-t )?



- 58 -

Wwhere Cgs4> is written as x and s and u are expressed in
terms of t aml x with the help of Egqns (2.7a) and (2.7b).

From crossing symmetry it follows that

2@)(2—%'~%; u,t) = = A1¢)(M',§’U"E/ €) E2)

The replacing the integration variable u'! in the second
integral of Eqn (3.1) by %J one gets o»
) 4 A N 1 AR (g 54,
—1 (mh)>

e e 1
s 4 prgt-2pyx ¢ 4 prAqt + 2PN

As in the case of kaon-pion scattering amplitudes the
singularities arise from two different sources. Firstly,

the absorptive parts gﬁ and ASP) in Eqn (3.1) have
singularities which may be obtained by examining Eqns (2.50)
and (2.51). The denominator (t'-&) in both of these
equations gives rise to branch points in iB%o(E) at

E= awy E-:; 164> and so on. A branch cut taken along the
real axis in the range'4P}S§E$ﬁao will cover all these branch
points. The other denominators in Eqns (2.50) and (2.51)
give rise to singularities which cancel out each other.
Secondly, the vanishing of the denominators in Eqn (3.1)
give rise to singularities of [g%’(ﬁ) . These can be
obtained by examining Eqn (3.3). The singularities are of

end point type, that is they appear when X — +1 .
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The first denominator can vanish at Y — +1 for

s' inside the range of the second integration of Eqn (3.3),
£s'~(m+r IS~ m-1)?)

that is for < > (m+r)? . This occurs at & = -

S/
At the end point x = —1 the first denominator cannot
vanish as shown below. This denominator at Y = -4 is:

S Pt 2Py = S+ g \lav- g ar-t)

For s!' inside the integration limits, that is for S > (m+t)2

the combination @6_'F%V@M59&H**? is always greater than
zero, whatever be the value of t. So, the denominator

cannot vanish at X = -1 for $'= (m+W? For the second
denominator the points X= +41 and y = —1 interchange
roles and give : rise to the same set of singularities as the
first denominator. The physical threshold, S’ — (Mm+t)?

thus gives rise to a branch point at — O . The

next inelastic threshold gives a branch point at

£ = _ 32 wvtm)m42d) 4.9 and so on. Higher and
(M4 2p)%

higher thresholds in s' give rise to branch points in the
t plane on the negative real axis further and further from
the origin. A branch cut taken along the real axis from

= 0 to %j:>-co will cover all these branch points.
The denominator (P%)(~ does not give rise to any singularities.
This can be shown as follows. Since ISET)(E) is non zero
only for even 1 values and ’BEJLE) is non zero only for odd

1 values, the (i) sign between the two denominators in Eqn

(3.3) can be replaced by (—1)L' . Then the x-integration



is performed after interchanging the order of the

integrations. This gives

oD
+ ) ShpEa?
B = Lm)m}*s’/% e

To obtain the above equation we have used &Jﬁa)::(fU{QLU%)
for the second denominator. Now the term (PﬁOt' vanishes
at b=0 and =0 . So whenever we approach one

of these two points.

o — Sterar 5 4og
2P

This allows the expansion of &Q(a) in a power series in

a as follows:

W L) ~-1 WNUr2) ~2,
Q) = - a { Ly 5y e + }
ot [1( 1435) (2 5 55)

The leading term behaves like (pémf*i- and this cancels
out the denominator in Eqn (3.4). The other terms approach
zero faster than the denominator. Thus the denominator
(pQUe in Eqn (3.3) gives rise to no singularity.
Then BE‘) k) has the following singularities in the t-plane:
(i) Physical or the right hand cut: Ap*< L < 4o0
(ii) The left hand cut: —o0 <ESO
Ignoring all possible subtractions, the following

4
dlspers1on relation can be written down for YSL )Lk)

) = ﬁ%’ B —Sﬂf bt 1)

-t t—t

3¢)



where the real analyticity property:

@) k) = B(’:)*(PG) @7)

has been used to express the discontinuities across the cuts
in terms of the imaginary parts of the amplitudes. That
is

[B@:}Le—t—t() — B (k- Le):] M BE () (38)

6—)0 '.LL

The discontinuity across the physical cut is given by
the unitarity condition, which in the two pion approximation

is:

b B (E) = L BPOATT () &)

where A%MQQ)iS the pion~pion scattering amplitude in the
1th partial wave with total isotopic spin I. fgglﬁﬁ)
connected to BL@) by BLO =Ve6 Bg) and B}Z 2%%—)-
The discontinuity across the left hand cut may be
obtained by examining Eqn (3.4). It comes from the dis-
continuity of ‘QLBK) across the branch cut taken along
/ P 2
—1 < g +A where a:S+b+cl/
2¥9
This is given by
&( (&+[é.) — &((O\—fé—) = ——'C?\'PL(CL) @'10)

The sign of the discontinuity on the left hand cut is

decided by the imaginary part a(t) picks up when we put



—-_—Va -

L=+t x{¢ . It is given by
4p?9,2 (P42 ) (d~p>+q,2)

At xie) = a L€

16p329 3
where
b_ = \} Mg ernd AU- = V w— A
one can easily find that the coefficient of t & is

positive for all values of s' in the range (mtrii<s’< (P4a.)"
which gives —4< & < +1 for a fixed t. Then g(t+ie)=atin
using Egn (3.10) in Eqn (3.4) the discontinuity across the

left hand cut is found to be given by:

) 1 e i P AW 6 t)
@: — / ’2-5- )
b B ) =. - PS z(r)_ov-)mp( e )
(i)

&n)

On the right hand side of this equation we put:

N, z-5-b k) = AE (< ob)  312)

where

t
(v = 1+ S E13)
% A@:){S/, OS)G) is not exactly the imaginary part of the
scattering amplitude in channel I, because (n 6 is not

in the physical region. Examining Egn (3.11) it can be
seen that for values of s!' in the range of the integration,
(rnG< -1, the equality sign applies only when s' is at

the upper limit of the integration. Then



&)
9h\A (#&ﬁﬁ)has to be analytically continued to express it
mK (5,L5) has to be analytically continued to express it

in terms of physical amplitudes by expanding in a Legendre
polynomial series in (ss8 . This expansion is convergent
only in a limited region of the l-plane. In appendix IV

it has been shown that this region extends only up to
%ﬁ:<32_ on the left hand cut. Lastly, expressing all the
amplitudes in terms of respective eigenstates of total

isotopic spin one gets:

el s —pr-q Z A
1 — / _ ’
3 AP (1 5z )AL ) (314)
t'=o

where the crossing matrix ﬁII/ is given by

Vé/z 2VE /3
_ @15)
{SII’ o 2= —%/=

It is to be noted that Eqn (3.14) can also be obtained from
BHk, G5 ) = D P AT ,000)  BL)
Il

by projecting out the 1lth partial wave and calculating the
discontinuity across the left hand cut in the i—plane.

When t approaches the limiting point of the left hand
cut at {;::o the integration over s' in Eqn (3.14) collapses.
Because, when £—> O we have

(h+a-)* = (mtr)2 [ 1~ ﬁ



So the upper 1limit approaches the lower limit as t goes

to zero. Now very near the threshold in channel I:

1, 42/ 1
%VV\A(" (S) y iQ + - Cd’\/&S‘)'lf/‘(\*
o L9 (mtt T 2 sttt

Examining the Legendre polynomial series expansion on the
right hand side of Eqn (3.14) it is found that the s-wave

4 /
term behaves like [s/— (mn-tt)%] 2, For other terms &mﬁi(g)

goes to zero faster than the above quantity. Now if we
: /
express pu (&D(}) in terms of (& , a term U+§§i{

!
appears which when combined with the behaviour of %ﬁxﬂilsi)
Y
produces a term behaving like [ﬁt- Um&{Yi)z , but there

!
will also be a factor (b)e with it. So only the s-wave

in the Legendre polynomial is leading when t approaches zero.
g 4piia)2
2Py
the above limit of t. Then we have £
1 [YV\—H")’L[" ""47;,7(‘] 1
hn B () X lonsh. gds'- (et
()™

3
0 (eash. (FO72 (317)
_ 3
Thus %an{’LE) goes to zero as (:€)A2 when t approaches

The argument of ’Fi) approaches a constant in

the origin along the left hand cut. This behaviour will have

some important consequences in the next section.

3.2. APPROXIMATE SOLUTIONS FOR S AND P WAVE AMPLITUDES:

The unitarity condition in the two pion approximation,
T
Eqn (3.9) shows that ‘BQ(E) has the same phase as the pion-

pion scattering amplitude for AV s t<14r>. One can define



the‘Sﬁﬁﬁtity BE(&)D%(}) where DE(&) has the phase
2 ) on the right hand cut. Then RT(F)D/(t)
will have the singularities in the t—ﬁlane:
(i) A cut on the positive t-axis: 16P*< b +
(ii) The left hand cut of R (k) :-oo <t
By making the assumption that four-pion and other higher
mass intermediate states have small contributions unless t
is very large, the lower limit of cut (i) may be raised
quite a bit from X = 16F?* ., On the left hand cut the
Legendre polynomial expansion in Eqn (3.14) is convergent
only up to t-ﬁ:-agzva' . So it is not justified to use
this equation to calculate the discontinuity further beyond
£ — -22¢* . Since we are mainly interested in the low
energy region on the right hand cut, say in the range
AP B 50+ it will not be a very bad approximation to
cut off the left hand cut at-t::égzhzand replace the neglected
portion from %::szr‘ to b= —o0 by two poles at fixed
positions on the real axis. The prescription giving these
pole positions will be discussed shortly. The residues may
be determined by comparison with kaon;bion scattering ampli-

tude in the forward direction. We then write down the dis-

persion relation: o

WBIHEIDIE) T <E B

T 4 { ! L ¢

B () = ’DTLD{_" gd}“ v_E ThRe BE
4

—Z20> 519)




for the S and P waves. The right hand cut is neglected,

because the contribution of this may be expected to be

fairly small in the low energy region.
The effect of neglecting this cut, as well as the effects
of ignoring necessary subtractions may be expected to be
absorbed in the parameters‘(xf' and ﬁf .

The I)F’s for pion-pion scattering are determined

as follows:

(i) L =01 = 0 AMPLITUDE:

Experimental results indicate that there is a peak
in the cross sections for this amplitude in the low energy
region. The phase shift is expected to rise up to about
30° near t = 5. This is the well known ABC anomaly. There
seems to be some evidence of the existence of a resonance
called the 6’—-meson54 at a slightly higher energy. The
mechanism producing such an s-wave resonance very near the
threshold is not very clearly understood. Since the ABC
anomaly seems to be well confirmed we shall consider only
this. Hamilton et al46 have already given an approximate
solution for this amplitude by replacing the entire left
hand cut by a pole, which reproduces the experimental result
gquite well. We shall use this method. It is outlined
here for the sake of completeness. The s-wave amplitude we
are considering may be written as:

ASlE) = NS (L) / DiE) (3-1)

where N¢(b) has the left hand cut—o0<bgo and DJ(F)



has the right hand cut AN L < 0 for the pion-pion scattering
amplitude. The following dispersions can be written down

immediately:

o]
Np(e) = o v Al (320)

—c0

T e N
O . -\ ! t 4 3
pete) = 1 - s oo [T iy @

ar>

where one subtraction is made in D/ (t) at t= t, and D;(E)

is normalized by taking Cg(t& — 1 . The elastic unitarity

1
condition for %m A (€ )

Yn 18 (1) = _ &4 E22)

t

is used on the right hand cut.
Hamilton replaces the discontinuity on the left hand
cut by a delta function contribution, Im Al (¢)= —Tv M&(E+ks)

Then after choosing tv =-&s we have

I (523
0 e
NSLE) = £ tts )
Substituting Eqn (3.23) in (3.21) the final expression for

Do (E) is obtained.

L)

bt | ¢ €2 X 224

Di(e) = 1- “tr? gdk B (d-E)(H+E)* ¢ )
Ap>

The integration can be performed analytically. The



derivation is given in appendix V. Then we have:

For AW t< +o0

e
RQDo(t)-—""" {H%[rﬂmr‘k

2 [exs faVEAVEH
h&qgw)ﬁ%AJEﬁf] 2&5.‘EJEFZT st4 Jn 3
' - B25)
B Dolb) = — B(k-4) V& E2¢)

For —ec0 £ £ O

JE+\F€%]
DC?LE) 1+-———{b+b§>\j—£ﬂu'_t +J—t \}%Ev\————i—"‘

4 2 [ . VB Vst (227)

2t lete) 2

wl-

The phase shift may be obtained by using:

) = HJant| \[E _ NS (328
>a€) [V Re D¢ () J
If the following choice:

be = 116 ond (7 = 60
is made, then the phase shift is found to reach the
maximum of about 300 at €t~ 7-0. After that it falls off
slowly.

(ii) 1L =1 T = 1 AMPLITUDE:

This amplitude has got the well known resonance called

the (0,_ meson at the energy of about 750 MeV. The half



width is roughly about 50 MeV. We choose the following

form for D, (t)

Db) = et (a2 e E E29)

where ER. and rk are the position and the reduced width

of the (1.meson respectively.
The pole positions t1 and t2 are determined by a process
first used by Balaz55. The neglected portion of the left

hand cut is ~Z2pt

1 i T
1. . ' / S;“B{(_t )D{ (t) 230 .
éL UT) - ?gou’ ' E'—t L )
—_—ed
Substituting XJZ‘P%V one gets‘13425

J B ) DEEEA) (331 )
i+ 2t

pEE) = -4 [
0

Then approximating:

LS Gy 322)

we have Ei. T
Iy — e 333
AL(L)_'L‘H b+ b 655 )
where ‘quzi%A 1( F/ ) I( |
T BT YA)D () /o o
o= -7 )8 T e B3
O

and ti= M/
The case with n = 2 is chosen for the present need. Then

(.(>) and G,(*)are equations to straight lines:



Cop () — XN x4 335
4'2( ) - 2(1-)‘[2) 3‘)")‘-1 L )

The pole positions tl and t2 are determined by obtaining the

best fit between the right hand side of Eqn (3.32) and 3::1;;e
for the values of t in the range 4 k< s501° A numerical

calculation shows that t,~4¢ and t, 2 900 gives a reasonably
good fit for t in the range mentioned above. Eqn (3.33) is

rewritten as:

I
I _ X Bg
A((k) "_ £ 4ty + E+ k2 @-36)

To determine the residues « and Pt the fixed t
dispersion relation is used. For the /\Ho amplitude one
subtraction is necessary. A very suitable point of subtraction

iss<=m+’and £ = O Dbecause at this point,

AN, o) = A eeren 1) =657 @37

where &%": —% (az?——'k ‘)_aé/?—) is a combination of the s-wave
I

scattering lengths defined by (= AE(S :r(wv+vﬁj Eqn (3.37)

is a consequence of the threshold behaviour tQZQ for Af{s) .

Then we have

AS(s,uik) = oS’ -Jr'% f()(g ko A€ (554 ¢)

(e
{ 1 1 1
7 — T e - -3
x{%-& * S—-u S —(mtt)?t :&4m4ﬂ% 6.8)
where the third and the fourth denominators are the subtraction

terms for the first and the second integral in Egn (2.52)



respectively. Crossing symmetry has been used to express
A%t)(s,u,l;) in terms of A%’/(SM:%) and then  Aj &) is

equated to the imaginary part of the scattering amplitude

for kaon-pion sc;ttering. When t—o this is fully

justified because A?d is then exactly the imaginary

part of the forward scattering amplitude. Now, the s-wave

amplitude ng(%) may be projected out from Egqn (3.38) as

follows:

oo/ o 4
piE) = af +—}igds B A JCQ)U{Q}%Q"‘“_F g’+\olgl'l%
wtt)*

1 1
TSt s’~(m~r)l} @-gﬁ)

We evaluate Eqn (3.39) and its first derivative with

respect to t at {;—'O Retaining only the S and P waves of
% A&%S’E) one obtains:
8200) = wzad) + % {12 [ 4 3hoATI ]

0 —

(meL
4mb R S S
{’ZWW‘kA(qi-’ (mtvﬁ) s'— (bR S (mn=r)>
o0 @’40)
ets M I -
;%;Bg(k)‘ = _‘% dg’ [%A‘ZJ(S’){%%(A b (A4 )

- (e Slar) T
- 4WF+J[5’LM+PRﬂ[$'4M vl

2 Ziw
+3 %MAH)(S'J{Z:MVE(%*;&R)%( sftwr)*) ]

S A ! 1 J} ]
’—@’&[(g-m + 5-a1)

v P)E— (m-rp) 1o



where we have used R (t) — VZ'BﬁﬂLE)
For the AY) amplitude there is no need for a
subtraction in the fixed t dispersion relation. Because/ﬁ L‘ ﬁ%
i

and Pomeranchuk's theorem°® states that A’* A A7z at high
energies. So AH“%O as S>> +=° Then one can write

- / Cllel < < o ]

A s k) = Jﬁjds S AT(¢, 55 E)E){S,__S S—,-—_—&} (342)
(mntr)™

where crossing symmetry is used and ,AE) has been equated

to %W\Atj for channel 1. Projecting out the P-wave
amplitude Bﬁjtk) from the above equation:
oo
ST S
Byl = L [de ¥ AT(st)

(mtb)>

4 [ daprag™ L _ AP _
)E‘llovuz{ 2 pq, ﬁ“( ™ S 1Py ) 2} 43)

Then evaluating Eqn (3.43) and its first derivative with

respect to t at b — 0 we have in the same approximation as

in the case of Eqns (3.40 and (3.41):

Bl0) = £ 45 {3ma(@) +33maTs)]

(b} >

g pr 4 mtt
xh;ép{ z\rv\\r\t* PM“+ rvwr*)) _2} E44)



o) = % [ [aamtl o] i (14 22 (s-rr)
t-o (Mt |
AMp f B (=) / > P
)
+f3%wa§W€f){'éﬁ‘[1 4—(sﬂ-W*LVI)%;%i-FESEQva]
4\"““ 5 ztmw‘)

@a5)

Eqns (3.40), (3.41), (3.44) and (3.45) may be used to determine
I
& and P for the S and P waves in terms of the forward
scattering amplitudes for channel I. Egn (3.18) and its

first derivative at £ = O are evaluated as follows:
g

BH o) Do) = L (M PBHEIDEL) | <F A
—Z2p e L:1 bz @44)
o
Alntrnoll 4 (g MBre)Dile)  «E BE
M{BLL )DL (HJJ_O— - g& _ oy ¢ _ C"L _ __L—_L;:_
- a (347)

where in both the integrals the upper limit {f::C) does not
give rise to any trouble because of the behaviour of %WJBF(P)

as tL{>C) given by Eqn (3.17). Then defining

| S SwmBLE) DI
Xt = BHODI) — 4 |av B

-32p




(v

We get after solving Eqns (3.46) and (3.47) for CKEE and

(bl

L

Yo = ﬁ{@ft&)Dj&)H __%g;y BB (F) DI (&)
t=o0

2 —
oA = &ﬁb (XLL +£2\((I) @-50)
o= - (W wYE) e

Thus we have in our hands an approximate method of obtaining
the solutions to S and P waves for N?T-51<FZ in the low
energy region. The solutions depend on the kaon-pion scattering

to a great extent. Numerical results are discussed in chapter

V.



CHAPTER IV

INVERSE AMPLITUDE DISPERSION RELATIONS FOR

KAON PION PARTIAL WAVE AMPLITUDES

In this chapter we attempt to solve the partial wave

dispersion relations for the kaon-pion scattering using
50

the inverse amplitude method of Bransden and Moffat. In
section I the behaviours of Agj(s) at the physical
threshold, < — (m+™% and at the crossed threshold, S=(m-p)2

are discussed. These have very significant consequences in
the inverse amplitude method. The dispersion relation for
Af{s) is written down in section II. An unsuccessful
attempt to solve the coupled S and P wave dispersion relations
is also discussed very briefly in this section. The third
and the last section gives a formulation for the S-wave
amplitudes in which the high-energy contributions on the

unphysical cuts from channels II and III are suppressed.

.
4.1. THE BEHAVIOUR OF A{(s) AT THE PHYSICAL THRESHOLD,

S — (™M~+Vv)> AND AT THE CROSSED THRESHOLD, S — (m-t)?:

The Mandelstam representation may be used to obtain
the behaviour of Aﬁlg} at the physical threshold, S=— (mth)?%
Projecting at the 1th partial wave amplitude {or channel I

from the fixed S dispersion relation, Eqn (2.53) one gets:



ol

s-uw-s
sy = “‘jﬁf W A s, uzsu')iz (14——2&@—‘)
(motte)> |
) E) ! /
A [ A (508 fr b (1 ) @)
4

when s approaches (m+W>, K> goes to zero. So the
arguments of both the (QL— functions blow up in this
limit. This allows the following power series expansion

of ( for s very near the threshold:

U \R —H{ (A+1)(tz) -2 }
a) = N A .
&4( ) 2(ﬁﬂ(4+3/2)& tr 2(26+3) a & 2)

An examination of the arguments of the &i—-functions in

Ku' for

Eqn (4.1) shows that both terms give a behaviour
A%(s) as s approaches the physical thr#ishold. The above
behaviour is for the real part of the amplitudes. By

putting this in the unitarity condition:

g 2 :
o) = K| ate)] RE @3)
S) — L= 4
%W\Al(.) %é L L
40+1 .
we get the behaviour of K for the imaginary part

near the physical threshold.

The Mandelstam representation cannot be used to
obtain the behaviour of A%ISQ at the crossed threshold,
S — (Mm—p)" Because at that point the first denominator
of the fixed s-dispersion relation, Eqn (2.53) vanishes

at M'::(hﬂﬁ'ﬁ)t The crossing relation

AT (5, 06) = Zl‘wa-I'(u)Ccs@') 44)



can be used to investigate this. The 1lth partial wave
amplitude, A(I(S) may be projected out from the above

equation: 1

A%(S) — jigdbt PL(X)ZO([I/AII(M,Co’Jg) @}5)
-1 1’

where (s® has been written as x and
U = 5 -5 +2R*(1-x) @¢)
(055 — 1+ KL:"—-E%—?Q “@-7)
R* and R*> are defined in terms of s and u respectively by
Egqns (2.5) and (2.6d). When 0< S<(m— t*) AII((A; 6035) is
entirely in the physical region, that is w > (w+t)* and

1< (b < +1 Then Eqn (4.5) becomes:
+1

AE(S) _ SAXP )Zo(]:L 2 (w'+1) PU(LLOG)A (Vl) @- &)
—1

When we allow s to approach (m=p)* from the left, u
is found to approach (wm +W¥?* for all values of x. The
threshold behaviour of /_\E,’(V\) allows the following power
series expansion in EL :

Aplw) = {m a; + lez""“b 4
i | RIS @AY @)
Now EL may be expanded in a power series in x for

u very near (wm—+W)> by using first Eqn (2.6d) to express

it in terms of u and then Eqn (4.6). The expansion is:



+ . 2 it b 2
TE_ (m—p?) vSZKz + _'\Z _t_g:_s%-% — 1} k*x
2(2-8)*

=2
K Y

2w (-n)Y

Using Eqn (4.9) in Eqn (4.8) we have

A — 4 T — — !
{ (s) - 4 de PL(?L)‘ { [aE' +K? bjl‘\" )+ C[Kc§'+l<3de‘+~]}
= — o1
+3(1— Kll"'h) {[ EZ'C( 4 K‘rbl" o f[KSC,I’ | I<7oht+'-] i
(- 4 ¢ ) KqCI+R110tI+ }
+ _5{-3(4 .(1._:‘)) H[E al +lZ b +- ]+l] |

+,{5( m-x)) S (1 2l H[Kéax L=EE -]
—+ C LE13C51’ + ‘2156Q;j + - ']} @}11)

The behaviours of the real and the imaginary parts of AHS)
are treated separately. For the real part the following

property of the Legendre polynomials:
1

JaU(. P X = 0 If n <L (412)
—1

implies that all contributions to ReAf(S) in Eqn (4.11)

come from only the terms on the right hand side having a

power of x greater or equal to 1l. A close examination reveals
that all terms involving the power'xn have also a factor kzn.
This shows that the leading term in E&aA%(S) near the

crossed threshold behaves as k@t

The case of the imaginary parts is very interesting.

The leading term comes from the s-wave on the right hand side.



Retaining only the first order term in e* in Eqn (4.10)

we have

§
— 22_ hA'l: Y3 1 2 Z 2
= e[ et +%{%:—))2?-”"}“] @13)
Then it follows that.
-+ z’&_(ml_'tﬂ.)z_&l (M ‘,3_) I
S KL () = % W Plvgeae k| =g esr U
(@ 14)

This gives the behaviour of 3h1ﬂfb) at the crossed threshold

as follows:
%Af(s) ~ P\%O(]:I/COI) L‘MS)
1/ ] . 1/
where Cy is related to the s-wave scattering length (g .
It is quite surprising that the real part has the same l-fold
zero at the crossed threshold as at the physical threshold.
While the imaginary part has a behaviour independent of the
value of Q .
From Eqn (4.11) a very interesting and important result

may be written down for the s-wave amplitudes

/
ZOG:J:' &oL @.'14)
Ii

1
where &90 is written for the amplitude, Afis) at the
crossed threshold,g;;_un-h)z. The above result will be very
much useful in section III in the formulation of the s~wave

dispersion relations.



4.2. INVERSE AMPLITUDE DISPERSION RELATIONS FOR AE(s)

Let us define:

Gils) = 1/ Alls) @17)
From the unitarity condition for the partial wave amplitudes
it follows that AE@J goes to a constant as S —>e¢
Assuming this constant is non zero, G{(S) also goes to a
constant at infinity. The inverse amplitude, GSI%) shares
with Af(%) all the singularities the latter has got. 1In
addition, any complex zero of Aﬂ&) will give rise to more
singularities of Qf(s) . It is assumed that no such com-
plex zero§ exist at least in the nearby region of the complex
s-plane. In the next chapter it is shown that such an assump-

tion may well be wrong. Then, with the above assumptions Gf&)

has the following singularities:

(i) The physical cut: (m+¥)'S S < 40
(ii) The left hand cut: —ong S < (w-r)?*
(iii) The circle cut: (s| = m>=r>

T
Since ({8) goes to a constant at infinity, a once
subtracted dispersion relation can be written down for it
by applying Cauchy's theorem to the contour drawn in Fig. 4.1.

Then we have

Gils) = YO + &, 58

’L'ﬂ't

gd 61 (¢ vie) — GE(s-1¢)
(s'=5) (S~ Se)
(1™
() -
. Sd /r Gl -G H(g-e)
+e-?u 21’(1 (s'_g) (S/vSo)

—_—e
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: + =20 e
2l A - 8 (¢'-So) P20 2w ) (s'~¢) (5-So)

= 5 (st
ﬁké%;;%if :R¥E§§;ﬁ§%§b Q?Wg,)

Where the integral with a suffix C is over the circle cut.
The integration variable on this cut is ¢/ = |3fef4>

where (S] —m —p> . S, and Sin  are defined by%&;zﬂﬂiﬂlw>

with & = 0O . The last two terms come from the

small circles of radius P around the point s = (m+)* and
of radius & around the point s — (m-t+/* It is shown in

appendix VI that:

- £-1 n-4{
LA S—-So. § / '6‘:'(%’) = ——(S"SO)Z —-—————-——-—ES—(:;J:HQ @ftl};amwl)
P20 Hn( ) (¢-S ) (¢~Se) nz=o - @19)
e dA S50 fds’ _GHe) U C‘MSJC" (4-20 )
&=20 2wl (5-5) (§-S0) ~ €»0 <&V ,

Conelled by similer rbribuliom frm LB
These are the consequences of the behaviour of llf(s)

at the physical and the crossed thresholds.

We now define

L ($) , (Mtb) L Sg +=0
eau 20 £63 (s ~1€) =6, (S*lé)] ) “@-21)
ey =6t 1 ~ 0LSE (M=Kt
(:50 7 [C (s-te) (s+te{] K (s), E22)
Isl-Je'P) _ o (Dist+edet®) | = M) | s
o f [GQUIR-0¢%) - Gi(Leeae® = M1, ol =i

Then the inverse amplitude dispersion relation becomes



Gols) = Yy + Lt (s, so) 4+ NICs, go)-+ RE (s,50)

— (e- 30)2 [S’“"‘““PJ ?L((Mﬂ*)l) (T s)

(@-24)
where o2 F (s') @25)
, Sy L :
Lolss) = —232p fds ) 75) |
(Tath)™
(&n-r)” 1j.7
_ o, (s’) )26
NLL (S,So) —_ . S;o P SOQS’ m L )
) _ ;M 4-27
S—5So
93(590)3:1 - T ?gde (/-5) (5= S0) Lk )

C

where the letter P in front of all the integrals means that
we should take the principal value when the denomimator
may vanish, otherwise it should be ignored.
I 1y RVRS
TL(S) —  F¢ (g) lemr (mtr) < SK o0

= kl(s) v -0 SSwm-v=

= M(s) Ao sl = wm—p

o O ofher wise Qﬁ—l&/)

The subtraction constants 711 in Eqn (4.24) are the

I .
values of Qw(S) at the point S = So . This may be chosen

to be the symmetry point.

On the right hand cut the discontinuity is given

by the unitarity condition:

FEG) = F= REG) (429)



- 00 -

where R5(5> is the coefficient of inelasticity. When
the scattering is elastic QE{S)'::i and L%(&So) can
be determined analytically.
On the left hand cut the discontinuity may be
written down as follows:
KI(s) — b A1 (5)
[Re AL(SIT® +] ¥ Al(s)]?

430)

' 1

%wa((S) can be calculated from crossing by using Eqns
(2.73) and (2.74) in terms of physical quantities in channels
II and III. The real part, QQA{LS) is calculated from the

dispersion relation, Eqn (4.24) through

P hi(s) = . FeGl) (4-31)
RGHe] ™ + [kits)]*

On the circle cut we may write

AX(ss) = X((s) F(AA(S) @32)
GE(St ) — \(([(S) T{—LMfT (3) (‘433)
where S— (S| €l¢ and Sy = (sl 2€) e'(c\: . The (+)ve

sign corresponding to the outside and the (-)ve sign
corresponding to the inside of the circle. Every quantity
occurring in the above two equations is complex. From

Eqn (4.32) and the definition of GE(S) we have



I r
Wi = o A [ 6E = s ]
— €e%0 o7 [ AL AE(S+)]
B A B (s) @-34)
T [ xie)]r +[aAie]? |
ZN\B(s) can

be calculated by using Egn (2.78) in terms of
physical quantities in channel III. Xf(s) may be

obtained from the dispersion relation, Eqn (4.24) by using
Eqn (4.33):

xils) = L[ AL(S+) + AL(S-)]

] L ]

—Z{GLI(.S‘*') M GS(S-) B
N Es)

[N+ [ ME6))?

(435)
where ) .
i) = ¥l + Ly (8/80) 4 NF(s,8) +RC(8,5¢)

-1 -t
C(omsnyy Bt g naen) @)

n!
n==~o '

Examining Eqn (2.78) we can find the following property
T .
of A)AL (S)

ARE(S) = —AA(sY) 437)

Using this and the property of real analyticity for /QE(S)

‘jn fact the above equation follows from the real analyticity
of A{LS)} one gets

Mi(s) = — Mo(s™) (438 )

This also follows, straightforwardly, from the real analyticity

property of QE(S>. Then defining the variable A\ = KR*



on the circle cut by

S+(n) = 2N MR 21 ()Y
a3)

where the (+)ve and the (-)ve sign refer to the upper and

the lower half of the circle respectively, we can write

RE(s,50) = E(8,5) +EX(s%,50)  @49)
where —p* .
¥ S-So A4 S+ln) _ Me(3+(ﬁ))
tL(S)SO) = - 8 L\/(]\*W\I)6’/\“‘1)(5-\-()\)’5)(3-{»[)\)‘50)
. @-a1)

We now describe very briefly the programme used
unsuccessfully for solving the coupled S and P waves. The
iterative procedure is practically the same as that for
the S-wave case discussed in detail in the next chapter.
So nothing is said here about it.

The S-wave amplitudes involve one parameter, the
subtraction constant for each isotopic spin state. The
behaviour at the physical threshold does not give rise to
any parameter in this case. While, for the P-wave there
are two parameters for each isotopic spin state, the sub-
traction constant and one constant for the threshold

behaviour. Then we have

29} g3 4 LE (55 +NA55) 4 R 55)
i) |~ " ”
O — I

- \L ‘0)1 (S) @-42)

S—So CI
1
S—(wtt)?



where

¢ = gt omarr)

The symmetry point is chosen to be the subtraction
point. Then, assuming the effect of D and higher waves to
be small we have

Xoaa: YA~ — (4-43)

D ~~
+
where N\ = -—A(nguu)h) is defined to be the coupling
constant of the theory and is taken to be an arbitrary
parameter in the solutions.

The P-wave parameters may be determined as follows.

since (o056 = O at the symmetry point, we have

A Mgy~ A2 AT(s (o0
L7 Ailse) = A " )6:50 @'44)

The threshhold behaviour of A{(s)  gives

(M)t {12 l: AL(S)QDQ) @'45)
T owmb Lwer)=S ¢F - 3 0kse

The derivatives with respect to (52 0 are calculated
from fixed t dispersion relations written in a particular
form given in appendix VIL

Thus, an iterative method may be set up to solve the
coupled S and P wave dispersion relations in terms of only one
arbitrary parameter. This iterative scheme is a very
complicated one involving the AN KK amplitudes which

are determined in terms of WX amplitudes. It was
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programmed on the digital computer IBM7090. Only stable

solution that could be obtained was the familiar S dominant
solution first obtained by Chew and Mandelstam57 in the

case of the pion-pion scattering. Otherwise, the iterative
scheme was very unstable giving no solution at all. Fig. 4.2
show that S-dominant solution for A =--40 There is no

isotopic spin splitting of the solutions.

4,3. THE S-WAVE INVERSE AMPLITUDE DISPERSION RELATIONS:

Let us examine Eqns (2.74) and (2.75) giving the
contributions of channel II and III respectively to the
imaginary parts on the left hand cut. For the crossed kaon-pial
contribution the upper limit of integration over u  is
U@>P7V/5 in Eqn (2.74). This goes to infinity as s
approaches zero from the right. Thus very high energy
kaon-pion scattering contributes to the 9%1A5:(S) when
s is quite near the origin. Similarly, in Eqn (2.75) the
higher limit is —4R?* in the H-integration. Now
RE—=> — o0 as S—> O~ ., This brings in very high energy

AR > KK amplitudes. The following table shows the values

of these upper limits and \R* for various values of s

around the origin:



Upper limit of Upper limit of K

crossed KT channel III
S u' t!

+ 2.0 70.5 - 11.2

+ 1.0 140.99 - 28.56
+ . 281.98 - 63.68
+ o1 1409.9 - 345.56
- .1 - 1437.73 | - 359.4

- o1 - 169.74 - 42.43
-5 - 60.9 - 15.24
- 10 - 51.84 -

12.96

(In terms of uﬂt’ 1Rev 2 52.5)

Eqn (4.30) shows that when %m«AgGQ is large the
discontinuity of the inverse amplitude, l<§(5) is small.
The high energy regions of channel II, which is, of course,
kaon-pion scattering and of channel III are not known at
all, If the low-energy solutions for these are extended to
the high energy region there will be very large errors in
the contributions to Ym A (S) on the left hand cut near
the origin through Egn (2.74) and (2.75). Calculated this
way %W\Aﬁ(S) around the origin is found to be quite large.
This makes |<a$) quite small in this region. With this
in mind the s-wave dispersion relations in the formulation

given in the last section were solved. On the left hand cut



the contributions of P-wave kaon-pion amplitudes were
kept in the K* approximation. The region around
the origin was found not to be fully suppressed. Such a
solution cannot be relied on. The above table also shows
the behaviour of R* near the origin. Then, instead
of considering C,é(g) , if we consider Gg:(s)/k" the
region around the origin may be expected to be fully

suppressed. The application of Cauchyt!s theorem to the

contour drawn in Fig. 4.1 gives the following dispersion

relation:
Chis) = Sty st GT L F(s) + Nals)
6
. I .
+ RYs) - Ts) @)
where )
2 Fols')
K / 4-47
Lol = — ,(AS (<) (8-5) (447)
(M)
T ) (4-a¢)
1 . K} / Q -
No(s) =  — ?PJOlS ry<)(s-3)

Ry (s)

\

I
_ 2 p@g _ M) (449)
~ R2(¢) (-3 )
c

The first and the second term in Eqn (4.46) come from the
integration round the circles of radius f) around Sz (Mm+tt)*
and of radius & around S::.UW—Vf'respectively. Since

65;05) goes to a constant at both the physical and the

crossed thresholds and R?’ goes to zero, these contributions

are non zero. As shown in appendix VI these contributions

are;



T
t .I
P

70 2l 1&)(5 $) S —(mtH?* 4
1 T
K l4e Gls) 2 So _ s—(mw)LgO @51)
'90 21 Kl[s)(sf 5) — S —(m—p)r 48

The letter P in front of the integrals in Eqns (4.47)
(4.49) has the same significance as before. In Eqn (4.47)

Ws') goes to zero at <'=(mr)*and F (<) KIl) for s'->(mtr)>
Similarly for Eqn (4.48) at the point ¢'= (m-p)*, R*<) goes
to zero and kf(g) behaves as RI[S) . It is shown in
appendix VI that these behaviours do not give rise to
any difficulty.

Using elastic unitarity the integration in Eqn (4.47)

may be performed. The derivations for S on various cuts
are given in appendix V. Using the variable W= S -wm-[* on
the real axis we have.

On the right hand cut for which wmpr WL +=0

s 1654W{Lﬂm uy—”w — AWV @152)

W) = — _—
Lo (0) 2K W Mg 2me

On the left hand cut for which — oo < W L-2ml

VoAb oy =W + \/w —4W (4-53)

I 4
L() (US) - = 21 (/\)—f'YV\-L—‘—Vl 2my

. T
On the circle cut Lo is complex. Using the

variable )\ we have

Re LT N) = = WJK{WWW MpsTya - F

(454




I 2n N VA g —-1 2
Y Li0) = — N\ .'7\;\%’(]/\,\ 2 + 1/%;? )wh

(=) "™
1 1 @ 55)
The subtraction constants ‘(o and go are related

T 1
to the scattering length ao and the value of Ao (S) _ats:(m—r)z

1
written as bo respectively, as follows:
2
Yl — (M +) 1 a-5¢
1 -
S, — — Lw-v= A @-57)
m bl

T
Now b; may be expressed in terms of Qo by using
Eqn (4.16). The scattering lengths OLOL and 0(75/7’ can

be written as follows

A -
o= a4 2a) (4-5%)
= @ — ) (+57)
The fixed t dispersion relation for AY) (S,M,JC) when
written down without any subtraction is;
i . 1 1
A(—)(SMIL’) = -;_r— goqsl%m A’L )(3/)2'5/'{"){:}{5’-5 _S’—'UL§ (466)
()™
Evaluating this equation at the point A(‘,(S,M,(i) we get
(-)

an expression for

_ 3, 4- ¢4
o) }M%A( 1) g @)

()
where the index 1 stands for (&8 which is equal to unity

for £ =— © . The above sum rule is a very convergent one

A
and allows us to express él and Qf/"/ in terms of



one parameter Sﬁ . Thus we have the S-wave dispersion

relations dependent on only one parameter. The iteration
procedure and the numerical solutions are discussed in

the next chapter.
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CHAPTER V

NUMERICAL SOLUTIONS FOR THE S-WAVE DISPERSION RELATIONS

In this chapter we discuss the numerical solutions
obtained for the S-wave inverse amplitude dispersion
relations. The iteration procedure is discussed in section I.
All the equations required here have already been given in
the last three chapters, but for convenience most of them
are rewritten in suitable forms as required. The results of
the numerical calculations done for various values of ao(+)

are given in section II. Section III gives a discussion of

the results and on the problem in general.

5.1. ITERATION SCHEME:

It is useful to write down in the beginning all the
variables used in the numerical calculations. In channel I,
on the real axis we define W= S - —Fr" . Then the left
and the right hand cuts become —c0< WS-2Mtand omph €W g + 00
respectively., Since the cuts extend up to infinity the
following transformations are made

On the right hand cut: 2 — 2wt/ so that when 2mp LW <+=v

one has 12220
On the left hand cut: X—-2mp/w so that when —e=2 £ W<22m|
one has 0<2H< 1

In the numerical calculations 49 equidistant points are taken



in both x and z variables in the interval O to + 1. But

in writing down equations s and w corresponding to these mesh
points are used as required for convenience. On the circle
cut we use the variable C#’ defined by S = (m=) e#¢> 33

mesh points are used here. In terms of 4> one has

A= TG - and D) O) = MHSInGs

In %7 KK channel 33 mesh points are taken in t on
the left hand cut for—-32M¢ tg£0 . On the right hand cut
for the P wave the variable t is used, while for the S wave
the variable Y =4/t is used. 49 equidistant points in
y and t are taken for 4pr*< t<50H*., The choice of y as the
variable in the S wave has the effeckt: of concentrating more
Apoints in the low ehefgy'regidn;

The contributions from f) and ABC to the D-functions
can be calculated by using Eqns (3.25) - (3.27) and (3.29).
The kaon-pion amplitudes contribute to the discontinuities
across the left hand cuts of channels I and II and to the
fixed t dispersion relations. We retain only the S wave
and the kf* contributions. The S waves arise during
iteration. The K*’ contributions are to be input as data

and are given below. Using a Breit Wigner formula for

v, K?' ‘—,K*
6) = 51
A" ( (S(“S) ——fe [S—(W"H' )’j T‘Kx— V%? ( )
h .
we have K‘S T—,K*

=
52
(5¢-S ) 3 ﬂ(:eL ‘ZL ( )

Yu NE(S) =




Sy
where rl* is the reduced width defined by (e = 14345E' ’

AAE being the full width of half maximum in energy.

is the value of the momentum variable k at the resonance

position <, . The experimental results Ey= §§0Mev AE =50 Mev

give S, = 44, e =42 and e = A-7 In the sharp resonance

a pproximation, Eqn (5.2) becomes '
ets) = 7 Nk §(s-54) (53)

The various contributions can be written down as follows.

On the left hand cut of channel III (See Egn (3.14))

e Blal) = - LR (14 5 ) o s

- 0 otherwise @4)

| - _ : o esab
%m 34 KO* (k) = — e Ry if(;'i:f)s {4+ 2\« ) APn t< 4!21
(55)

The the fixed t dispersion relations determinlng the

= O olherwise

residues of the Balaz poles in channel III (See Eqns (3.40),

(3.41), (3.44) and (3.45)): 1w

Bl = 17 et { g2 ) - i) 69
f}ngml%g\;a = Ve Mol { [ (S ) (s 20y

Sl et th’m—]i G0)

Pigs (0) = %‘5{1{ lmrp""( s f:\ifw "Zj (5“&)

Foi] = T (D e R ) e )

(= 3&“’1*‘?)& 5 9)



To the sum rule, Eqn (4.61)
=) m .
Qk* = rl*—g;- (510)

And finally on the left hand cut of channel I:
c()

b Ao (8) = 2 (a5 (7)) (1+ E555) I M)
-3 QD'”J

c(s) = (&iéyﬁq oy 0 <SS (M-t

= (m+k) v s<oO
QW\A?[S) is given by Eqn (5.2). Here the delta function

mkum

approximation is not used, because it is better to have
§W1A§K*(s) as a smooth function for the inverse amplitude

formulation.

We now describe a typical iteration cycle where all
the quantities required are either given by a previous cycle
6r ihput as data;b ﬁow theritérétionvis Sfafted initialiy
is discussed later on.

An iteration cycle is commenced with the calculations
of the NA—> KK amplitudes. Using %wnAi(s) obtained in
the previous cycle or input as data one can calculate the
following contributions.

On the left hand cut (Eqn (3.14)):

R = - [ 2 st 23 K} G

L&)z Ve b
o ane(a ) Y A%(I)B 513
¥a Bl ) = — |5 S TEmE {SMA (z) B &13)
clt)

4P Y-t



The contributions to the fixed t dispersion relations
(Eqns (3.40), (3.41), (3.44) and (3.45)) are:
A
A 2z
Bo:lo) = veaP + L& | dz [y phx) rodm ) {1t 55

e,
L __1%1-_3-3 (514 )
BQSU)J:OZ Ao & Séz_ {3 te)+ z%mA(,’LLz)H;,ﬁJ,?fm +E
) _ zfazi} (515)
Bisle) = 24 (e fanbo - @ H S b b )2
g, . (5:1¢)
A, 3 >
aﬁa}s(kﬂ = ﬁtug%{hAé )%AA(Z)}IL(HEJ%‘J;_)MM,—_E)
tzo b
2{1+4a2) Z (M —
. 1—-22 ~_W_)j Lb"Y)
where (o i;:;' (this is used when necessary)

The total contributions are obtained by adding the S wave
and the K* contributions. The residues of the Balaz poles
can then be calculated by using Eqns (3.48) - (3.51). Finally
from Eqn (3.18) we evaluate %vaﬁ[E) and QWIB:(E) on:: the

right hand cut

o
;BB D) I el
Q‘“‘B (&) = 3‘“{‘)1& H_ Jdt t'—t L * it T Exh

g2
615)

This completes the calculations of the nrK—> KK
amplitudes. Now the contributions of Sﬁlgitk) to kaon-pion
scattering amplitudes may be calculated by using Eqns (2.74)
and (2.78). We rewrite them for the S waves in the following

forms.



- TJO -

On the circle cut 4

: {1y A
ReAAL ) = m"gdg %L%MBC’(B)

ZYn
~4N 1 ,
o it (3 [0 wBit) C
AN 3
ae? _an »
Y AA(D) = L_____ngk (;’ )%MB}(E) (520)
— /4
ar-
On the left hand cut 1
o) = —eonm) fh gdg L3nBily)
.J\/R'L
- % 1
Cefwia) g m (5; ) (04 ) FBILE) (521)

ar® Loy L < — (V1)

In the column vectors the top and the bottom factors
correspond to T1=%, and T = 3, states respectively.
This convention is used everywhere. In Egqn (5.21) the lower
limit of the first term and the upper limit of the second
term extend beyond t = 50, but we introduce a cut off at
this point. Since the kaon-pion dispersion relations are
written in a form to suppress the high energy contributions
on the left hand cut, this cut off has practically no effect.

Now the contributions of the S wave kaon-pion amplitudes

on the 1#ft hand cut are given by

w
o oo 00 = = e é;{(”;_)w:(z) +(f)w§€@)§
C(n) @‘22)
where

c(n) = axr—i thon # <11

o
— 1 khenn 0L N < Ve




The total discontinuity across the left hand cut is
obtained by adding the contributions of Eqns (5.11), (5.21)
and (5.22). The discontinuities of the inverse amplitudes,

kI(x)'s are obtained by iterating the following two

equations (for future reference we call it loop 1)

I
Kf(x — by (1) LEZB)
) TRe AT ]I AS(0))?
=
Re Ay(2) = Refs () (524)

[ReAY'60) I+ [k (1))

where
it A= I 44t I
ReAy (1) = 4—————(“ T Yo dmey % 4 Ly 00+ N0 R0 (525)
The constants .K}' and go are taken from the previous cycle
and [ }[n) can be calculated from Eqn (4.53). While Ng ()
and RI(x) are calculated from KI(x) and M,(<)obtained from

either the previous cycle or input data as follows

R () = ~‘<"5d¢1—{ww)u 9 %M R(f
_ompklan) Q524)
oo - A .
) 4 M I#) 2 e
: S~ Ku}n) A g =%
NOI(.X) = - xﬁh)Pga(X} WX (Bt;u -ZK ) ;‘- %T
o (527)

where the singularity in the principal value integral is
taken out by using the following technique

S 30y b -
PSAX )L-(j;, p— Pgdx _f_(____@ —t—‘(LZ)le b-2 GS'ZSJ
a

a

Once K{(t)'s are calculated by loop 1 they may be put

in Eqn (5.27) to obtain new values of Ng(x)g . Then using



- eaedh A

these in Eqn (5.25) keeping everything else unchanged loop 1
may be repeated to give new values of Kabdﬁ . This is
repeated a specified number of times (loop 2).

Now we can go to the circle cut and calculate Mi*)

by iterating the following equations (loop 3)

Mold) = [xd ()] +LoAd(#)]?
I.
Xo (4) = CE(a) (5:30)

L ]* ~+ [mi+)]*
where [;A§P¥X5are given by Eqns (5 19) and (5.20) and
(e ‘ M+P Sl
ReGol) = 4 (1 - ww-r Gs.da)
+Re T () + Re Ny (q>) + Re reo (¢) &31)

Yoo 65 (%) = (dm=r gl g 4G YSings £ 3 L] (%) + 30N ()
+ %‘W\ Rl (.q’) @32-)

(5.29) and (5.30) is illustrated as follows. If A,B
and C are all complex and
C
A= o5
Then
¢ —
ep  Rec RoD¥hachaD g 4 = B Qz? Eec&nbl
= (ReDDT 4 DI (Re DJ* + [3aDJ

where

= (e et - d =B Bl D =2 (Re Bon B+ ReChmC)

T L
The constants ‘Kﬁ’ and gu are taken from the previous
T
iteration as before. L_o(4ﬁ is given by Eqns (4.54) and
(4.55). Using KZIt) obtained by loop 1 and loop 2 we

.
can calculate Ng(#) on the circle cut:



T, v\ A I, e+ x :
Re N, (P) = ~ 710‘% Ke (1) m:z« ) (A -RY) @ *3)
1
1 — AV )Y Ko 524)
ey (F) = ™~ PK Mk (4 &) (A —k*)

p}{??) can be obtained from Mil<h) given by the

previous iteration or input data.

R R ) = 2o (g | ReME) ST RWE S
4 M) (535)
x n/ _
14d) . SmMi)
Yo R (&) = _l\éi}ﬁ’ipgé@’ ﬁ%m;«,cb —
™ es! —Cosk
o (:,3@)

'The.same»technique‘is'uSed.aé béforé fo caléulate

the principal value integrals. But now
R 1 —
& g = ©

so there is no logarithmic term. Eqns (5.35) and (5.36) may
again be evaluated after Iw%(¢ﬂ has been recalculated by
loop 3. The results are inserted in Egqns (5.31) and (5.32)
keeping everything else unchanged to start loop 3 again.
This is done a specified number of times (loop 4). When this
is completed we can go back to Eqn (5.23) and repeat loops
1 to 4 (loop 5).

Now with the values of K{l*) and M5(4>) obtained by
iterating through loops 1 to 5 may be used to calculate

quantities on the right hand cut as follows



o e N o

1
I
zﬁi@_gdn | kb (5-37)

N, () = =% 3 Kn) (L +2)
O
-
] N Lia) Vnted) CA-kd)
Ré’ {2) — __‘TSY_, gAC‘?%{QQ M(}(q"’) A —RY |
 mp{atZ) _
o o N+ x K 2&
+ %Mf(@*"g\‘:%ii"} 63)
AT _ A2 1l i—2 LI(z)+Ns l(z) tRele)
T-Qsico(ot = ReA;(z) = 4z1) K 4(Az+1) g t ) 639
AL = phace smits
_V&_
% A (R) = - (540

(Rol) + £

Putting‘%nA%@Q in the sum rule, Eqn (4.61) one gets

i I/,
~} %V\A’?’ 2-)'9‘”\/'\ ¢z .
05 = Tt 4 2 (dz 2ACBITIMANE) (5.49)

The flrst term is the }(* contrlbutlon. Then u81ng Eqns

(4.16) and (4. 56) - (4 59) the constants K’l | and S
may be recalculated. At this point we go back to Ean (5.22)
and recalculate the ceontributions of the S-wave amplitudes
on the left hand cut. After that loops 1 to 5 are repeated.
When this is done a number of times (loop 6) one goes back
to Eqn (5.12) to recalculate the fA—>kK amplitudes with the
new values of %N\A}(Z) . This outermost loop (loop 7)
is repeated until convergence is achieved.

Whgn the iteration is started for the very first time

the S-waves are approximated by

Yo A (2) = =[a8]” (542)



For a particular value of ch? from Eqn (5.41) we can obtain
ay> and A;> by using Eqns (5.42), (4.58) and (4.59).
The A — KK amplitudes are calculated using Eqn (5.42) in
Eqns (5.12) - (5.17). Then Eqn (5.22) can be calculated.
The constants "Kf’ and S&? are evaluated using Eqns (4.16)
and (4.56) - (4.59). We put N§Z?QFZZO and calculate
kIt) and MOI(C\’) from loops 1 and 3. Once kg(») and M (<)
are known the usual iteration cycle can be started.

Eqn (4.16) when written in full is

1) 1 .V
b, —302 + -%—a?z
— (5-43)
bSL o A 53
’ 20 +Lal
Examining the above equation it is found that if aﬁi and

aos/a, are both of the same sign andl&},’?fl>4(df’4 then q&’z and
b%L} are of opposife signs. This means that.l Agiﬁ;)- -
has a zero on the real axis between (m-r1? < S (mtt)*> . Again
when adﬁ and <i%l are of opposite signs zeros may appear
under suitable conditions in either A%EJ or A?fS) or in
both. Since the scattering amplitude is real on the real
axis between(Mwnzgsgmﬂﬁthese zeros will appear as poles in
the inverse amplitudes. In our numerical calculations we
avoid such zeros. A possible way of dealing with them is
discussed in section III. The results of the numerical

calculations are given in the next section.
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5.2, RESULTS OF THE NUMERICAL CALCULATIONS:

The numerical calculations were performed on the
Elliott 803 computer at the computing laboratory, the
University of Durham. If one wants to avoid the above
mentioned zeros of the scattering amplitudes, the values
of ng close to zero cannot be investigated. Because in

%

this case A4y~ and a?& are of opposite signs due to the
rather large splitting introduced by K* through Eqn (5.41)
(the contribution of K¥ to af’ is about +.15)

For negative values of 0§ﬂ (negative enough to give the
same sign for cﬂ? and Q?i ) rapidly convergent solutions
are found. When the solution for a particular value of a%®
is obtained it is used as input for the next run. With such
an input the numbers of circuits made around the various
loops td achieve convergenée in a typical case are as follows:
loops 1 - 5, 2 circuits each loop 6 - 3 circuits and finally
loop 7 - 4 circuits. The time required on the machine for
this is about six hours. The description of the results

starts with the AKRK-—>K¥ amplitudes.

(i) I=0, L= O AMPLITUDE:

Fig. 5.1 shows the phase shifts we used to calculate
D¢(E) . The kK* contributions on the left hand cut
provide a strong repulsion, while the S-wave KW contributions
are attractive. 'Fig. 5.2 gives the discontinuity on the
left hand cut for -z2v <k O . Since K* contribution

is obtained in a delta function approximation it starts at



£ ~~-16¥% . The magnitudes of the k¥ contributions
are many times larger than those of the S-waves. The

following table shows the values of the residues of the

Balaz poles o{, and ﬁ;p for various values of £+) .
oy’ o P <! o'

-.35 77.29 -377.66 65.76 -298.18

-.90 61.91 -352.76 51.08 -274.49

~-.60 51.54 -338.6 41.29 -259.30

-1.25 -21.89 -325.16 -22.35 -158.21

-1.5 -51-75 -329.59 -46.83 -119.33

O/O/
where ab and{%) are the values of the residues when only

the K* contributions andﬁéw=ﬁﬁu

are retained. The imaginary
parts of BY(L)on the right hand cut is plotted in Fig. 5.4
for q§Ye~ ¢0 and -1.25. The values are negative and have a
peak at t 22 5. The proportion of the S-wave contributions
increases with increasing values of \aﬁﬂq'. At at”::—~'éo
only about 10% of the total contribution at t— 5 comes from

the S-wave X% amplitudes.
(ii) T[=1,U=41 AMPLITUDE:

In this case the effects of the S-wave amplitudes for
!
7K scattering are practically zero. Fig. 5.3 gives %“[%[&)
on the left hand cut for —32M€t< O, 1In this nearby

portion both the S-waves and the K* contributions are



repulsive. An examination of Eqn (5.5) shows that
changes sign at &£ = 2Sy+2 X —54 ., So there are
short range attractions coming from 1<*ﬂ Now the
residues 04‘ and {%' absorb the effects of neglecting
the cut ¢ t<4-0, the portion-o0g t<-320 of the left hand

cut and any possible subtractions. These residues are given

in the following table:

N
-.35 3.83 2.13 3.89 1.47
-.50 3.78 2,28 3.89 1.47
~-.60 3.75 2.39 3.89 1.47

~-1.25 3.70 3.29 3.89 1.47
-1.50 3.67 3.48 3.89 1.47

where dq/ and (%M are obtained by retaining only the K*
contributions. Since c{J and ﬁf are both positive they
give positive contributions to 9%13:(5) given by Eqn (5.18).
The integral gives negative contributions. Fig. 5.5 shows
%wﬂ%f(k) on the right hand cut. There is a very narrow peak
at the position of p and %N\E&}(E) is positive indicating
that the contributions of the pole terms in Eqn (5.18) are
more important than the integral.

Now we discuss the results obtained for the S-wave kaon-~
pion amplitudes. The values of the substraction constants are

listed in the following table.
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ad! K:/z, ;/2 \(US/L S f/?__
-.35 -68.92 3.04 -12.16 8.58
~.20 -24.,73 2.45 -9.29 0.06
-.60 -.7.25 2.17 -8.04 3.97

-1.25 -5.56 1.29 -4.35 1.62
-1.5 -4.46 1.11 -3.68 1.33

=1
The real parts of the inverse amplitude, ReAT (s) = 7“5(,0'\7(}

are plotted in Fig. 5.6 and the phase shifts c%f: are drawn
in Fig. 5.7. The behaviours of%%uhﬁfindicate that A.(s) can
be very well approximated by effective range formulae.

The phase shifts are negative for both T =1 and I=%, states.
the state I =%, is much more repulsive than the T=%) state.

A close examination of the equations giving the discontinuities
across the left hand cut and the circle cut (Eqns (5.11)

(5.19) - (5.21) and (5.22)) reveal the following behaviours

of various contributions. |

On the L.H.C.

Contribution of to T=%% T =3/p
S wave kKrx, L=% repulsive attractive
S wave KFK),L=%2 attractive attractive

Long range repulsion
and short range
attraction

Long range attraction
and short range repul-
sion

X

*
and ABC lumped
together

Long range attract-
ion and short range
repulsion

Long range repulsion
and short range
attraction

*

These contributions start at S = O. By long range we mean

the contributions from the nearer regions and by short range
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from further away regions.

On the circle cut
ABC repulsion repulsion

P repulsion attraction

It is to be noticed that the ABC contributions will
be attractive for large positive values of cxéf). ¢
The longest range force comes from ABC contributions because
the front of the circle cut is nearest to the physical
region. Since the high energy regions are suppressed in
our formulation the contributions of the short range forces
are absorbed in the subtraction constants. The long range
part of the left hand cut,0< S < (M-t"and the front of
the circle (ABC contribution) account for the variations
in c(f' in the low energy region. We have plotted KJ{%)/Kl
in Fig. 5.8. In both the isotopic spin states there is a
sharp peak corresponding to the K* contributions on the left
hand cut. The region around the origin is very well suppressed
Cutting off the left hand cut anywhere beyond the origin has
practically no effect in the low energy solutions. It is

also possible be using L( )
IDR /oy — ki 544)

to calculate the imaginary part of the scattering amplitude

for 0 £ s

—_—

(m—m)> . ‘For consistency this should agree
with <%AA$(%) calculated from crossing (Eqns (5.11) and
(5.22)). The agreement is reasonably good for both I = 1/2

and I = 3/2 states in the nearby regions for all values of



S =g

(X%O and becomes slightly better with the increase of

(a¥')  Fig. 5.9 shows the case of aé” — — 40 . Ve
see that the agreement is quite good up to S0 4.5 .

The discontinuities of the inverse amplitudes across

the circle cut Nﬁ%ﬁﬁ) are shown in Figs (5.10) and (5.11)
for a‘;":-'éo . The real pé.rt has a very large peak near
the front part of the circle in the I = 1/2 state. The peak
in the I = 3/2 state occurs a bit further away. The
imaginary parts in both I = 1/2 and I = 3/2 states have
peaks beyond P~€5°, Similar to the case of the left
hand cut, we can obtain the discontinuities of the scattering
amplitudes across the circle cut from the dispersion relations

by using

~DR. Lra
AT () = Mo ()

[GE e+ [ ME () |*

T,.
For consistency this should agree with A A (@) obtained from

645)

Eqns (5.19) and (5.20). For the I = 1/2 state the agreement
is good only for the front of the circle. Whereas, for the
I = 3/2 state very good agreement is found for the entire
circle cut. The case of I = 1/2 states improves a bit with
t he increase of \081\ . Figs 5.12 and 5.13 give the
results when QSH =—"(0 .

The regioncygggxm~ﬂﬁs entirely in the crossed
physical region, so it may be expected that the real part
of the amplitude, /&}(5) given by the dispersion relation

in this region should agree with that obtained from the
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crossing relation

Re As(s) = —‘iﬁcose%_o(w Re A (u, (osB) (54¢)

-1
when 8 is very near the crossed threshold <= UWﬁWLonly the

S-waves are important on the right hand side of the
above equation. Eqn (5.46) has been calculated for S near
the crossed threshold by retaining only the S-wave on
the right hand side Fig. 5.14 shows the results for A% '=—%o6
The agreement is reasonably good.
Lastly, of the symmetry point one has A}VL{S/COS@):A%G/“S"’)

Assuming D and higher waves to be small it follows that

AELCS") = Ai/l(SO) . This is found to be approximately
satisfied only for (Xg)‘f—::—’éo .

+—
For positive values of Cdé)

the front of the circle
cut is attractive in both I = 1/2 and I = 3/2 states. In
the state I = 1/2 the net effect of this and the attractive
long range force coming from the exchange of kf' enhances
A%{S) in the low energy region. As a result at a certain
stage of the iteration procesé ai%/ becomes greater
than 44,> and thus a zero appears in the scattering

4/
amplitude /SJ{S) . The iteration process starts oscillating

violently and it is not possible to obtain a stable solution.

5.3. DISCUSSION OF THE RESULTS AND CONCLUSIONS:

In this thesis we have managed to obtain the low
energy solutions for the S-wave kaon-pion scattering

amplitudes depending on only one parameter. This is chosen

4 1
to be the combination, Q(a )"::13'(%/2“'2/&?2’) of the scattering
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lengths. The solutions for the values of c1§0 in the
range -.35 to -1.5 were obtained. They satisfy crossing
resonably well. The region—«§5k:agkio cannot be
investigated, because of the zeros appearing in the scattering
amplitudes. The region agi<:4{3 was not investigated due
to lack of machine time,

The numericél solutions give no clear evidence
that a particular value of (187 is preferable to the rest,
except that Azl(%): AZZ@O) when aSfo, —606 » The agreement between
the discontinuities of the scattering amplitudes obtained
from the inverse amplitude dispersion relations and from
the crossing relations improve slightly as gﬂ is made
more negative. When the magnitude of Cvgo is quite large
the contributions of the S-wave amplitudes on the left hand
cut become comparable with other contributions, The above
improvement in agreement may be due to this. So finally,
it may be concluded from our numerical results that solutions
for the S-wave scattering amplitudes exist for negative
values of 5137 with a very slight preference for CK?JQQP'QC

If the physical solutions lie clear of the regions
where zeros of the scattering amplitude may develop, we
need not bother at all about these zeros. If this is not
true the zeros should be taken into account. One possible
way of dealing with these zeros on the real axis is suggested

here. The position of a particular zero on the real axis in the

scattering amplitude gives the position of the corresponding
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pole in the inverse amplitude. The scattering amplitudes
are real on the real axis between the left and thewight hawd
cuts. So the slope of the amplitude at the position of

the zero gives the residue of the pole. Assuming that the
scattering amplitude involving such a zero for o<ssiwt™is
well behaved in this region, the pole parameters for the
inverse amplitude may be calculated in a particular cycle
from the position of the zero and the slope at the position
of the zero for the scattering amplitude given by the
previous cycle. Such a calculation would require a big
machine and it is not possible to predict beforehand
whether it would give convergent solutions.

Although we could not find stable solutions for positive
values of aS’ it is hoped that a more involved iteration
scheme may yield convergent solutions. One needs a bigger
and a faster machine to perform such calculations. In
the intermediate stages of our unstable iteration process
there is evidence of a peak in the amplitude, ?%S) in the
low energy region. Whether this would remain in the final
convergent solution, if obtainable, is impossible to tell
beforehand. It is worth mentioning at this point that there
are some experimental evidences58 of the existence of a
resonance at 730 MeV, commonly called the K' or the «
meson. The isotopic spin state of this is I = 1/2, Initially,
it was thought to be a P wave resonance. Recent investi-

. 59 ca .
gations suggest that it is probably an S wave resonance.
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The width is only of the order of 10 MeV.

Here, we did not make any attempt to calculate the
P-wave amplitudes in the low energy region. The I = 1/2
state contains the K* resonance at 880 MeV. If this
amplitude is considered, the exchange of l<* on the left hand
cut produces a repulsive force. The exchange of the /9 meson
may produce attractive force strong enough to generate the
resonance if the product of the coupling constants for the
P KK and the P NN vertices has a negative sign and has got
a magnitudeGo, which is many times larger than that obtained
from other considerations.61 Then the alternative is
to consider the multichannel problem. Bootstrap calculations
have been performed by Diu et al62 and Capps63 by coupling
the KT and the \<V\ channels. The \z*'could be bootstraped
quite easily in this case, but the results are not very much
satisfactory. The inclusion of contributions from other
intermediate states including the two particle continum
seems to be necessary. The other P wave amplitude with I = 3/2
may be expected to be small in the low energy region.

The first calculations of the S wave amplitudes for the
scattering were performed by Lee64 and Lee and Ch065. They
did not put in any contributions for the exchange of the K*'
resonance and so the solutions are similar to our S dominant
solutions.

In Kb scattering the nearest sigfularities on the

left hand cut come from the process AR->K< in the T=0,{=0
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state. This later process, in turn, depends on both KT
and nA~ scatterings. The pion-pion scattering in the
state T=0, { —O give the phases of the process nnw->KK
mentioned above. Martin and Spearman66 tried to fit the
experimental results of kﬁﬁD scattering by parametrization
of the dispersion relations. They expressed the AR —= KK
amplitude in terms of one parameter, the combination
ngi?%(dé+ﬂa?)of the K7 S wave scattering lengths.
To obtain this the contributions coming from the exchange of
IK* and the K7W system in the S wave were retained on
the left hand cut of the ‘ﬁTVJa}(E_ amplitude. For the S-wave

amplitude of K7W scattering they used
I AT 2
%\’V\AO (S) p— LQO (3)] -—%

The pion-pion scattering amplitude in the state J:::O)Q::O
was put in the one pole approximation given by Hamilton et
al, which is used in our calculations. For the best fit to
the K'P  experimental results it was found by them that
the S wave amplitudes for the kaon-pion scattering should be
repulsive in the low energy region. The value of cxg*)
suggested by Martin and Spearman is

at) = —¢o +-14
This is remarkably close to the value slightly preferred by
our calculations.

Martin and Vick67 attempted to calculate the kaon-pion
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scattering amplitudes by using parametric forms for the
dispersion relations. Only the nearby portions of the
unphysical cuts were retained, the rest was replaced by one
or two poles. No attempts were made to generate the K*
resonance. The experimental results for it were used to
reduce the number of free parameters. They determined the
AN - KX amplitudes using the same method as we have
done. Sum rules were used to cut down the number of free
parameters. The remaining free parameters were determined
by minimization. They found that the short range poles gave
appreciably large contributions, comparable to those coming
from the nearby portions of the various cuts. The solutions
for the S wave amplitudes indicate a negative and small
value (practically zero) for Clg@ the P wave, in the state
I = 3/2 was found to very small.

Finally, we may conclude that our calculations have
shown that the low energy kaon-pion scattering problem can
be solved in terms of one parameter, which was chosen in
our case to be CLSE) . If this parameter can be obtained
accurately from some other source, the low energy region of

the kaon-pion system would be known.
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APPENDIX I

EIGEN-STATES OF TOTAL ISOTOPIC SPIN

The scattering amplitude /Aﬁbc may be written in
terms of a symmetric part, Aﬁf) and an antisymmetric part

N E) in the kaon isotopic spin space as follows
_ &) |, 4 &) .
Ao, = AT +4Lm] A 1)

The projection operators for the eigenstates of total
isotopic spin)I-:.%h'ﬁé_ may be obtained in the following
way. The operator Qlyi 4JT)L§;_I?' has the eigen values

T=2(3m) = 22 anaT:L(3+) =3  from which it follows

that (7T)= 4 and (’LI\:)-«/: —2 . Then the projection
-~ 7’2

T-%,

operators are _

. 1 — 2

o, — 2tTL = (T2)
)2 T 3 2
We have . .
Lol TTlety = (™ = fpu= 1

o iRl = us 3]

B\ Vs, ) = Spu— WT/3 (T-4)
Accoraing to our definition of the projection operators
A{%(: %A1<(5| P]Z[O(>

AT hic T (T-5
= A .3“ + A (gmd Z ) )
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The above equation may be rewritten as
- ’ji [s,w]

° @)

Y, Saw + 116,12 o 250
/§¢b<f:: /xt o = U + A

Comparing this with Eqn (1.1) we find

A¥) = L (% +on™) T-7)
_ ¥, 34 RS
AC) _13, (A — A ) @ )
Expressing AVL AS/Z in terms of Lt) one gets
Ar = AY) 4249 @)
/Q$% — /*kH___ /XV‘) (;:-1())

For channel III we may write
T T
CirlAlp> = 2 AR|P “lo?(;,ﬂ)
101 '
where j and k denotes the states of (K and ¥Z

respectively. P%L is the projection operator for the

eigenstate of total isotopic spin state I and is defined

by pT = LT, (<M TIL|  (@12)

g— <

where (K) and denote kaon and pion states respectively.
n

From the matrix element

<jr) P gy = QC Rk X (35

by using Eqn (1.12) one gets T )
r* — ¢ 4
Iy p(b Po(fp L)t

when
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L — 6| T, (M) T, 12|«
2 = §i<a@l < | §149

where SD is the plon-plon isotopic spin projection

operator and is given by

G 1
_P, _ pont —-13—50(,(5, go{(b ) P — %— (SOH/%P;——&WS‘,UP)

o<l oi o[ A3
It easily follows that
1 { 16
0 — - L
P = qzoe g ==lm] )

Then

kAl B = A° & g@d +A Sl (T17)

Comparing with Eqn (I.1l) it follows after writing B for the

scattering amplitude in channel III that

Rt = gAY pt= 2A7 (116 )
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APPENDIX II

UNITARITY CONDITION FOR PARTIAL WAVE AMPLITUDES

We consider the case of channel I. Retaining only
the two particle intermediate state consisting of a pion
of four momentum |5 and a kaon of four momentum Fg in

the unitarity condition, Eqn (1.11) one gets

G ey = .,_;,rgowg@qwé S (P21 ) S(REK) 6 kes) 6lkc)

*8@)(P5+P6—P1”Pa)AYX;;AM (T 1)

Both A;z, and /xni describe kaon-pion scattering. For

the process@—éYlthe scattering angle &4 is defined by

(6364 = f)t;;/ ( P Pg‘ and for the process { >n the

scattering angle @, is defined by (w6, = P5 fe/IPS bs |
For conve@nence the vector fﬁ is taken along the

positive z axis and the vector PS in the yz plane. The

angle between the plane containing the vectors P‘ and kg

and the plane-yz is defined to beaﬁ. Then the various

AZ
vectors are F
\
’El: K(O}O) j——? ’£I01 IE/S
P = g (0,Sin6, (esé) px%;,\ :
~ — (s
E’E j— %(Sl‘h61g|‘h4’) Sih@,&$¢)@99;) \$ : >
' P \\ |
Then \J
_ BB (50, (606 +5n 6,56 (P _

The ¢d4kz integration in Egqn (II.1l) can be performed
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by using the delta function E?U(P5Uf¥1~ﬁ% ”Fi) . Then
lh}r xdncm,
the d p,s, %hay be performed with the help of the delta

function, & (P —t7) This leads to

P by = SKLOWS‘“Q Ao, e & LPoe wﬂé_@s*j‘
choe postc = VB | ps = (KETE

and we have used 0\3\9.5 _- zAk%;nQ,dy, 449 . Changing the
variable of integration from K to (Kamr 4V RrEr and

using

Je — R J(W)fm)
e[ @ + Ve ]

the integration over the variable K may be performed with
the help of the delta function. Because the argument of the
delta function can be written as follows: , — \Ram™ =
s — (Vidkm 4 W‘) Then expressing A;% in terms of
isotopic spin states:
o s 08) = s & [sinoide dab A5, @6 A o0
@-4)

Now we project out the 1lth partial wave amplitude

i* T : o
and expand A and A on the right hand side in terms of

partial wave amplitudes +1 +1 IR
_ AR ga(QDGSdee jdct» > D (1) (1)
WALLS) = g ve g A0 )dPo)dd 2 2

mf(mm)ﬂu(mea} ps)Ats)  (T-5)

where the integration over 6\,\ has been replaced by one
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over (60, . CJSéz may be expressed in terms of

COSGJCGSQj and CGSCF " by using Eqn (II.2). Then we have

P(.((Cose&sée 4SineSine Gosd) = P, (lose) Fullst)

3 2’2 (U'—w) | (-1 (C@ G)P.. ((,m}, &BM4>

(UﬁHm)) U' (\
-6 )
The second term does not contribute, because
LR T7)
Sa(d> (ssmd — O -

The orthonormality property of the Legendre polynomial gives
the final expression
hhi(s) = K |AE)) (T &)
Inclusion of other intermediate states gives positive
contributions, so we can write
Y ht(s) = & [l
in the general case. This gives the form
Gon AL (S) — |A(s)\ ?(S) (@)
The unitarity condition in the two pion approximation,

Egqn (2.36) may be obtained exactly in the same way.
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APPENDIX III

THE DERIVATIVE CONDITIONS

We obtain the first derivative conditions for Eqn

(2.18) by differentiating with respect to s and Cos 0 at

It is done as follows:

the symmetry point.
! -
(esa A (W) (08)

> AT, (36) Zo< J3u 3AY (u, («5) 5
Sy S — I »s pRve N Y
S:Sa \A.:So W=So .—-—T1
Cotzo (B=o S (TR
3 /
éA%S/&fs&)\ s AW B | Slesh AT (u,losh)
BC@GS Z°<I_1:' >as6 WU Ld 2Cosé 3 (psT U_E '2)
:‘oo U:SU
We ha.veu) (nb= Cosg =0
P 1 S S _%_{ < 4w A — s :( — dk> So (w4
B‘i;\so = S |Z2-SHKk(M-G6s6)|| = 14 2;@-\ T T s
Gree ot 25 T2 A (say)
> (os6 KZU u;se) 4
— { — SITS0) 1 dk? 2
35;_3 BSL _‘?""a—f_s %oz atks s%r\_;!
—=>0 S =S —=e -
(w50 so2o el
(SZ - (ri-1) ) zsa)
\eoa',{1_ &:”jbéf 854 ’
=3 (5¢y4)
>
3&)52‘5 — 3(05(-} [HZ S +&K2('\ C@é]) —_ ._2,40 e=Ne (Saé)
Y Cosses‘:,
D06 D sz_(ése) At _
dCosE '§E6[1——_—E?—‘ = | - S = A
w28 $=So 5=5e
Approximating Cosez o
L
Ao (s) AL(S, (36) ~v BAT(Se) = 343

Bc Al(s (.0’59) ~ ——aré_ ) 2(5)6




we get from Eqn (III.1)

1sA  dAS) A& .
A= - :l% 2 E 0148 ddsg) =)

% 2 dhe (9) A—3A AATHS) .
A= A% dg AR Jde m-4)

The same equations may be obtained from Eqn (III.2).

Putting numerical values we get

o 2-64‘-43:}-(—3) + 596 %Aﬁ‘—s) @r-s)
V .

Similarly differentiating Eqn (2.24) with respect

to S we have

L D RY (o) 3Gs _a_,___,_
2 A (5058 =2 II’XL?—‘ =t + SEE S0 | (@)
B E=bo b= to
(boo les@=o0 Los=0
where
N dK’-\ _ So —mi=t* — £ (say)
ot — > = — 2 - —S&x
2| = 2| -2 k31— Ges6) Ecl i 35x
S~ So ’
(s = o ) ‘{:
Sosg| — 1+ E3E | AR WAIN = F (sy)
25 1 2 P tors
(,0'3(;:2

Then approximating

_ dBIB)
2 AT(s, e b) %ﬁ) ) %Bﬂhuﬁ@)w X

52, BT Gsg) v 3 By (ko)

\N&gz}

APt ”
Sy __._\T%Olgo).(.3< )[:B(h) OH g)
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Putting numerical values one gets

6 ‘1911
dA%(g ~ __'0314—%@ 4 (_m;)B:(a) @-9)
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APPENDIX IV

BOUNDARIES OF THE DOUBLE SPECTRAL FUNCTIONS AND THE

REGIONS OF CONVERGENCE OF THE LEGENDRE POLYNOMIAL

EXPANSIONS ON TﬁE LEFT HAND CUTS.

The box diagrams determining the boundaries of the
double spectral functions for kaon-pion scattering are drawn

below

= —— -

FT@IY-l
The boundary determined by a particular diagram is decided by

the masses of the intermediate states. Let us consider the

general box diagram

\ ) f

P
L —> 1 T4

2
o »

c
0
Y

ng w2

X and y are the independent variables. The masses of the particles

a,b,c,d,1,2,3 and 4 are denoted by r“a,Wm)wL;wa,Wu,Wu)Msﬂmérﬂq
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respectively. We define

o— Kiky (,) = 1,2,3,4 (&-1)
Yij = o (¢)) ) 4,3, )

The four-momentum  ¥{ is defined by
kS = wm? ¥-2)

Y42,Y23,Y24 and ‘14 are functions of only the internal
and external masses, while Y4z and VY24 depend on the

variables x and y. Application of energy-momentum conservation

to each corner separately leads to

\/ _ N(L +M2?' —Mg @3)
12 = 2, My
_ mAtmg —m .4
Yoz = T @)
2 z J—
Yzq = %;f’iﬁ— -5)
z
Vaq — rﬂﬁﬂgxf;—-%ﬁ’ Qi-é)
M4
i3 = MmE4ms-Y @-7)
2MMgz
Vuﬁ:: Mt M — % GI‘g)
2 M Mq

The Landau-Cutkosky rules give the following condition for
the boundary of the double spectral function determined by
the above box diagram

1 i M1z g

y -
iz 4 Yoz, 724 | o (L!'ﬂ‘)
Yiz Yoz A Ys4

Via  Vaq VMza 1

|

Diagram (a) of Fig. IV.1l contributes to the double spectral

. &)
functions AIS we have
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Yin = Yoz = Ysq = Y19 =1.
iz = 4 — *Yapr
AP 4 (mAt)t —S
Yoq —= :
| A (mAt)

Then the application of Eqn (IV.9) gives the boundary

[t-ar)[s —(m+srr] — 3215mir)=0 (Tr10)
Diagram (b), too contributes to ,d%g and gives the boundary

Te-aolls — tntrp) [s —tmet)) —¢ards =0 &NM)
Diagrams (c) and (d) contribute to the spectral function /ﬁ?
and Eqn (IV.9) gives the boundary

[§ _ Lm+r)"j[vx—-LM+5b)ﬂ ~ 44 ()t — o @-’\?_)
for diagram (c), while the boundary for diagram (d) is
obtained by interchanging s and u in the above equation.

The boundaries of Aé;) are the same as Aﬁg and are
obtained from Eqn (IV.10) and Eqn (IV.1l) by replacing s
by u.

Now we proceed to determine the regions of convergence
for the Legendre polynomial expansions on the left hand
cuts. The Neumann's expansion theorem which states: If

g[z) is an analytic function, regular within and on an
ellipse C with foci at the points of affix i 1, it can
be expanded as a series o£JLegendre polynomials
f2) = ZanPn (2)

which converges uniformly when z lies within or on a smaller
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ellipse Cl’ confocal with C; determines these regions of
convergence,

Let us first consider the expansion on the right hand
side of Eqn (2.73). ImA(u, Cos 0) is analytic and

regular in Cﬁ$-é unless one of the denominators in

Aa(s)“)%) = L gds/ A’)ZLS/WU % OW’ Azs(su':é)
W 13)

vanishes. The nearest singularity in C&Sg.coming from the

vanishing of any one of the two denominators for a particular
value of u is determined by the boundary of the double
spectral term concerned. How the boundary determines the
size of the ellipse inside which the expansion is convergent

is illustrated below for the case of the first tefm.

m‘ﬁ?‘"
Cos ..\,

where (o038 ., is determined by

Cos b, = 1 + = MP(:R(M L-14)
A 2K

with

Ci{n) = B MAD” 3 (ar-

U —(m31)*>

Coln) —  _Aerr(matr .

) = Ut T (MPSH
which are the boundaries of A&t) . Similarly for the

second term
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CosB,,= 1+ —21 (w-15)
vhere Czu) = 3212 (mtr) +
T W e AT
Gl = 16;‘;‘ 1 6r
are the boundaries of A%) . Now CosB in dmh(w s8) ;g
given by .
(538 = 1+ Z==2% (&1¢)

For 0< S< (m-t)* we have —1<(ssB<+L and so there is

no trouble in the expansion. For < <O, so long

is inside the smallest of the ellipses determined by Egns
(IV.14) and (IV.15) for (m+r)'<U< 2 —S the expansion
is convergent. Numerical calculations show that this is

so for values of s only up to X-27 . The smallest ellipse

is given by (34 .
Similarly, in Eqn (2.74) hw B LE, Gsq)  is analytic
and regular in CGSCQ unless any one of the denominators
in , )
ps(sue) = A e LEE b fau AnGtd]
< (W-17)

vanishes. We have to consider only the first term, since
the second term gives the point on the opposite side of the

ellipse.
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There are two cases:

(i) 4k <t < am*

Co,, Lb) 46, — (I 18 )
Lo Cp}mr\ - 2\/(&/4ur~’v)(rv\7*—t/4)
that is
2nd teon
/ E
\t +1
ls\')rvnn COS&WH
i) € > Cs o lk) + b — =t @ 185)
Cos Rin™ 2V Vg - ) (Ya—m)
whexe
32 3 (mtt) A4 (mse)
< 4 2 W B2 )2
Colb) = wmar + iij;vL -+ Vq;L+V t16¥1] (-t
On the real axis in the s-plane for §<:Z)) (ss in
QMAYELQJASQ)is real and is given by
(od — EXFrw=t @19)

2V (g —) (Hg~wv)

Numerical calculations show that CKSCP is inside
the smallest ellipse determined by Eqns (IV.18a,b) for 4ritis-ar*
so long s is greater than X —9Q77 .

On the circle cut (Eqn (2.78)) (ssd  is complex and

is given by
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(sod) — zﬂjr’c/?_ 3 2 () (1) (I zO)
20 (ba—t) (- 4a)

In this case it is found that(kﬁCQ is within the smallest
ellipse determined by Egqn (IV.18a) everywhere on the circle.
So the expansion in Legendre polynomial is convergent for
all points on the circle cut.

For channel III the expansion involved is one in CsH 6
for 3w A(S,(ss6) on the left hand cut in the t-plane. The
nearest singularity in CdDQ comes from the vanishing of

any one of the denominators in

Aq(S,M,k) — 4_5&%/ A13(S/VIU) +JﬁJOlM’ A\z(g,\/(',k)
Y

-t - W

(Iv-21)

The smallest ellipses for various boundaries are

G0 = A4 a5l @ 22)
with 22 15 (m )
+ 1 b
_ +ar
G7(8) = S — (3
4
G (S) = “‘;?_ A ALRT
and
T-S—G 6 (5) I_V-Zg
C’ﬁgeh(n - 1+ 2 K2 L )
with
c 16 (mtr)® 2
o‘tS) - < (tr 4+ (m+3t

S — (mASH)*
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It is found by numerical calculation that (536 in
the expansion for #m A(5 (s36) given by
Cox = 1+ §%2i (V- 24)
is inside the smallest of the ellipses determined by
Eqns (IV.22) and (IV.23) for (wr)zgss(b,w-)z only up to tx-32¢r™

The smallest ellipse is given by 6:3 .
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APPENDIX V

CERTAIN IMPORTANT INTEGRALS

(i) Dg(f) in one pole approximation.
We hane 3
pole) = 1 - 5= P*'V = (g u'+fs)z
dr
o /”Ej ‘ 1 i
- 1 - e—_t—(.;‘ﬁjdt £ {t'-t T otk T (Htk)?
4
i

B A =4 1 L Bt i

= ‘T?ET K “1 T w- &2 t E%z -u?
where

4 (t+b)
K = _t'_t‘,i T (‘5*‘* —u)* } 1)

The integrations for the three terms may be performed very

easily giving

@) Ak te0 ¥ —OSESO -
‘/_’+r_’-c]+C} (¥.2)

ﬂ [ N
Dsle) = 1+ eus[
(b) o< bgar>

DolE) = %*ﬁ{pg[(T 'V:}-C£J+C%} ¥ 3)

where
Co = w%\[&—&\,tﬁq
o — { 2.C4q
2T 2k T blkst4)
In particular for t = o it follows from (V.2) or (V.3) that
) 2! 4 3 L+é V3
b)) — _ =2te ¢ .
Di) = 1+ 204 bte 4} (T4)
Differentiating Eqn (V.l) we get
AD"(U‘ 4 _ b Y 5
y “77 & —1-12 + G ( )

S = e e R
t=b

4—Cq} &)
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(ii) L_E(e) on various cuts.

In elastic approximation we have

| 2 (g (mawE A =
Li—(bd) - —‘—'/:—\_' . ﬁ‘d‘/\)zaﬁl +YV1L+"'L) K"Uﬂ'}u&l—lﬁ)) (17)

2my
where = ¢ W=, Substituting W =2mrSecd one
gets T2

s . -2\<’L 1_ —
Lolw= -2 Sde 2 ~losé @-¢)
O

For W on the real axis the integration is easily

performed giving

@) W= 2my

Ll(m): A \}ml_4wr“~jgh\ o — V=4t @-ﬁ)
° 2N et 2mp <

b) Wg-2wmt

Ly — A At ™ N\ i g A v 10
L) = pr e b = (¥ 10)

On the circle cut \_ifu

)
Re L T(w) = -z&jZL
o ™

(&

is complex:

2mp—Rew s 6
11
(2mr — Peto (06)? + Bmlo ()2 &)

%
B L) = _ 2 dp  dslas w1z )
o EMr—ReW (8) &I wlnb)>

where Rolo = 2\ , %nb\} = 2 \/(7\_\_“@)(_}\-‘«1)

After changing the variable by using

L — _ m-SecE
663 P—m Secx
t
one gets Cw§%$
QQLi (W)= _ _N de (A+m‘)r+M[—h-N’)CosE
Vre 1o A (21 ) (6 S

7 (Z13)
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(S'E
. 2V ) A) A MG —I*
T Lo (W) (v—p )% R S ()P + (A1) 'E

4}
T 14)
The integrations can be easily performed giving

{ Ve N s B <) +m}
(¥15)

Ll = -y 4| ik DO ok

ch)

Ly
QQLOU“)—"_M t,,-,r
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APPENDIX VI

THE THRESHOLD BEHAVIOURS

The threshold behaviours of the partial wave amplitudes
(both at the physical and the crossed thresholds) have very
important consequences in the inverse amplitude dispersion
relations. Firétly, in Eqn (4.18) the integral taken along
a small circle of radius P around the physical threshold

S = (mt*#)” when p >0 is

L‘E S- SO dgl G (S’) —_ Le S-—Qo c{ / g{(gl) (El1)
P20 i (S-5)(s'-S2) Peo Tam (9-<) (@-a)t
The threshold behaviour A =k*“ is used to write
L L,
AOL (S) — QCL(S) NI’\U\’(_ o = (M‘?‘f“)l
(d-<)8-Se) T (de) ({-a)L

using the expansions

and

A j? (¢'-a)™
/_ - +4
$'-s N-o < - a)h

we get after changlng the variable by S/':: a—f7oe it
oo N il L G iR b g
_PL:N S‘MDPQKPZ Z A ni (s- a)'“*‘ Pt

N=p M=o

o e o

p——
—

where

SZEB )Qi(ﬂc?’ — o y n s fh*eaarw niE O
() — oW ~:g n—0~0

has been used. The minus sign is due to the clockwise

direction of the contour around the circle with radius P

(see Fig. 4.1).
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At the crossed threshold, the real part of /%f(s)
behaves 1like K?Q and the imaginary part behaves like K.

So for the inverse amplitude

Reblls) — (Fmals)

1
) R AT ()41 % Af(s) [Re AELs )j + f_&m A (%):]
' . 22— 2 . .
the real part behaves like [ and the imaginary

part behaves like —}iq— for { >0 , while for {= O the
real part is constant at the crossed threshold and the
imaginary part behaves as R . 'So it is clear fhat for
L= 0 the contribution of the integration round the small
circle & in Eqn (4.18) is zero. This is also the case

with the real part for L >(O. For the imaginary part we

put |
T : T I
e Q’x (s) . _KL_(Sz — Cc Wilh b= (m—p)2
$—S, - <—So (_b'S)VZ—

Then the integration round the small circle & becomes

L
LE SSo (g _Gel8) —  _ Lk S$5¢ gdg/ c

E>0 27T ) (¢-5)(F-Co) E>0 I (b-<')Y2 (¢'-S)

— O iJ S ?E-b

I
S-S0 ;o -
- Lk ds ——= s = b
j; : g)gi-ff

E>0 2K (b-

— L S-se 20f 7.

= £ 1('0 — QU S )
Now the integration the real axis

+b— b-¢& T
e L
oL S-So /(AS/ kK (s) — Ak 53¢ A C“ _
&0 ™ (5-5)(S"-S») &0 N (b-¢')"2(<-3)
—) — 0

— 0 y s+ b
o, 20T
= -& 5;%;‘ Y2 CZE&;)

§>0
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where we have retained only the relevant contribution to

k&(¢) which blows up at s'= b . It is clear that
(VI.3) and (VI.4) cancel out each other. This justifies
the writing of Eqn (4.20).

In the case of the S-wave dispersion relation for

Gg(%)/lQi’ it follows from arguments similar to those
applied to obtained Eqn (VI.2) that the contributions of
the small circles of radius fj and & around the
physical and the crossed thresholds respectively to CJ%V/RL
are T Sf

L
\(0 a/vx_ﬂ‘
S - (mth)?

2
Multiplying by K the first two terms of Eqn (4.46)

S —(M-H)*

are obtained.

Since both Fﬁ?s} and K%(S) behaves as K(s)
near the respective threshold  similar situations as Eqn
(VI.4) arise for the integrations on the real axis. The
integrations around the small circle do not cancel out
these infinite terms. But now the integrals are multiplied
by K* which vanishes at the thresholds and so there is

no trouble.
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APPENDIX VII

FIXED t DISPERSION RELATIONS

The fixed t dispersion relation for /*”@wut) is

) 1 j /%_ﬂ g P 1 4 CﬂT»})
AT(smt) = 5 |AsdmATEL) -5 T T u

(ot 2

We project out the ({ =0 amplitude for channel III from
Egn (VII.1.)

- 1
A s wmE) = Bg'(t) —k%jds’&n A“’(gae){ T o

(mt) 2
1 4Py T

Now a partial wave dispersion relation for ng”[&) may be

written down with a subtraction at the symmetry p01nt

iy LW L bk [ BRE) L ke St (e
Bo'l6) = b, '+ -—-J (0-e)(e-t " 7 M(t'—%lk"@
iloe -

(-3
Using Eqn (3.14) the integral over the left hand cut becomes )

) G (D,M,)Q—

-t gy M, () ,

JM tr-eiw—h) = — &\ dg Q_p Y 5 a%E
—_— ) — V-

—c) (>

“"{31:;— *gi:g} (ar-4)
b—- p M — Hﬁq bnd Q. = VGI;:E5Z;_

/
Only the S and P waves are retained in &n /§E¥)(S/{’)

where

f
everywhere. Then the k integration in Eqn (VII.4) can be

performed after interchanging the order of the integrations.



L

L A

This glves

__,fovr jdg A e

(-t )2
o0 —4R*

= 1 \dg g {a‘m Ao (s')+3(4+_ﬂs__)&n/4‘*’/s’)}

(% 2y

{ { |
K Ej;:-{ F—¢ tﬂ—h{}
_ 49
- L JC(S., [%mA (sit) LP%F”‘('H T2 o,
(mtt-) —&V\A CS) l"b)m /N (4—)— m)’—)] Q/H 5)
where P 59/4 e and Cl/o = a- rg- and we have used
—AR*
m y B 1 Q,\ (%= Pp?) + (=1 )(p-q)>
ba_(t'-v) S0~ )+ (=t (pey)?

— ECL! { Sinwe. = rf‘
\5’5h (“+ 75 (P-%)’J = 2]
Substituting Eqns (VII.3.) and (VII.5) in Eqn (VII.2.) we get

A, w k) = b+ J:;_Pyjdur, % 25 (1)
n (F-6) - &)

ap>

=4

/ {
4 __/LE fg{&’ [’8"\/\ AH—)(S;E)“{ "¢ +$/ll&}

()

Zl%%o S+ (P, )*
This can be rewritten as (Eif‘él)
t) — t- %\:J ;g
A (S W) t) ’\ ~+ ‘{J Tl{_)o—&m)
4 4 Sdg’ [&MA(‘”@ ){ g }~9m Aﬁ)(s’,&){gélgjs-%ﬂ
Ut @7)

where we used Eqn (VII.6) evaluated at the symmetry point to
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)
o

N = b)) 4L SC[S/[%V\AL’H(S/ h){ =t ! }

express b in terms of /L

(m—rr'l1 .
— &) (o 1 7____4 2To
da ATV (Y, ) 55, 006"' SHbo90)* JC— &)
For the amplitude AL (Sw;ﬂ'the fixed t dispersion

relation is

Al ub) = iJAS'%ﬂA(F)(S'rU{ ?1-5 ~sjwt} @ﬁ)
()™
Projecting out Q) from this one gets -
AH(S,M;{;) — 3&7%&6&@;)(%) —{—?JAS’%M A(—)(g/,{')

(Pt >

i 4 3pqls ¢ titag2
’("{s’té Jou 2?1‘%2’4? 23, QW[HSHPJ’V)) ]}

@10

The following partial wave dispersion relation is written down

for ngjtk) 5
_ ) ) 1 (—) -t — i
W = 4 [y ML Ly R )

W
4> —cx
Similar considerations as in the case of /Adeslu,P) leads
to: -
AD(sut) = EPALP 4. 8O
-t
0o o
AN de 9 A ) 1 Vi
+7‘15 A [S,E) TS T Tw (_\/_”12_)
(mt) >

Taking proper combinations of Eqns (VII.7) and (VII.12)
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. t-b %v i (

Z(s- 1 / &nB;((”)
+ 4u)(%)1 ga()r T

-

o0
I(g M AT
A'Wjas g5 T T =34
(vo+t)>

T!7.7 T’
+ 2 A %MQL(S\/H ~ A (S h)}J (T -13)
T | “

where we have used

A 1

O = s —

&= Uo ) becwae s =y,

Egn (VII.13) is used to calculate the derivatives with

respect to Cos © in Eqns (4.44) and (4.45).
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