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Abstract 

Stem cells are of interest in many research areas due to their ability to self-

renew while also undergoing differentiation to regenerate the tissue it 

occupies (Weiss and Troyer, 2006). Stem cell fate is influenced by many 

different factors, these include stiffness, cell to cell interactions and secreted 

factors among others. The cells reside within unique microenvironments referred 

to as a stem cell niche where these factors are controlled to regulate the 

maintenance and differentiation of the stem cell population (Ferraro, Celso and 

Scadden, 2010). One such niche is that found in the bone marrow which hosts 

populations of haematopoietic stem cells (HSCs), responsible for 

haematopoiesis, and mesenchymal stem cells (MSCs), important for HSC 

regulation along with osteogenic, adipogenic and myogenic potential (Yin and Li, 

2006; Pinho and Frenette, 2019). In this thesis we show the development of 

a model, combining both hydrogels and polymer surfaces, for MSC culture to 

produce a bone marrow like environment in vitro.  

Poly ethylene(glycol) (PEG) is a bioinert and biocompatible material that can be 

used to form hydrogels, for 3-dimensional cell culture (Raeber, Lutolf and 

Hubbell, 2005; Zhu, 2010). Models using hydrogels are becoming increasingly 

popular due to the control established over the physiochemical properties that 

are an important part of the in vivo ECM such as the water content and 

stiffness (Tse and Engler, 2010). These gels have also been developed to include 

bioactive ligands and even full length proteins, that would be found in the ECM, 

increasing cell interactions with the scaffold (Lutolf and Hubbell, 2005; Trujillo 

et al., 2020). In this thesis, we have utilised this PEG hydrogel system to produce 

a 3D scaffold that mimics the properties of the bone marrow stem cell 

niche. This includes tuning the stiffness of the gels to match that of the bone 

marrow and the introduction of fibronectin to enhance biological interactions 

with the gel. The gels were also shown to allow growth factor diffusion and 

retention an important property of the ECM in vivo.   

Poly(ethyl acrylate) (PEA) can be used to induce fibrillogenesis, where on 

contact with the polymer surface the spontaneous formation of fibronectin (FN) 

networks  occurs (Salmerón-Sánchez et al., 2011; Cantini, González-García, et 

al., 2012; Llopis-Hernández et al., 2013). Formation of these protein networks 



ii 

exposes various cryptic domains, hidden in the globular formation, along the 

length of the protein which aid cell adhesion and allow the synergistic 

presentation of growth factors (Llopis-Hernández et al., 2016). In this thesis we 

investigate various methodologies, spin coating, plasma polymerisation, UV 

polymerisation and, surface initiated atomic transfer radical polymerisation, to 

introduce PEA into our model using different techniques to determine the 

success of each method. Once a PEA surface was established the interaction with 

FN was utilised to introduce growth factors into the model relevant to the bone 

marrow niche, BMP-2 and NGF.  

The final model was composed of PEA coated microcarrier polystyrene beads and 

degradable PEG hydrogels with full length FN incorporated. MSCs seeded onto 

the PEA beads were successfully encapsulated within the hydrogels and cultured 

for up to 3 weeks. By combining these two materials, PEG hydrogels and PEA 

surfaces, we can control physiochemical properties of the model progressing 

toward a more accurate in vitro representation of the bone marrow niche.  
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Chapter 1 Introduction  

1.1 Stem Cells 

A stem cell is defined as a cell that is able to self-renew indefinitely while also 

being able to differentiate into more specialised cells and has the ability to 

renew the tissue which it occupies (Weiss and Troyer, 2006). A cell must meet 

all three of these criteria to be classified as a stem cell. The process of self-

renewal occurs through the production of identical daughter cells during cell 

division and allows the maintenance of a of a stem cell population in an 

undifferentiated state (Watt and Hogan, 2000). When differentiation occurs 

progenitor cells may be produced, these are not yet fully committed but are 

more specialised with a lower capacity for self-renewal (Krause et al., 2001). 

Stem cells are often characterised by their potential to differentiate, known as 

cell potency. This is illustrated in Figure 1.1. 

In terms of mammalian development these totipotent and pluripotent cells are 

able to produce the cells to form all three germ layers seen in early embryonic 

development with totipotent cells also able to form the placenta tissue, 

amniotic fluid and cord blood (Spinelli, Guillot and De Coppi, 2014). A common 

test used to determine pluripotency is teratoma formation, this is the cells 

ability to produce a tumour comprising of cells from all three germ layers (Singh 

et al., 2016). A cell becomes multipotent once it commits further reducing its 

potential to a cell lineage within a specific germ layer examples of these are 

mesenchymal stem cell (MSCs) and haematopoietic stem cells (HSCs) (Spinelli, 

Guillot and De Coppi, 2014). These are both of mesoderm origin but cannot 

differentiate into the same cell types. Once cells are further specialised, they 

are referred to as oligopotent or progenitor cells which have the ability to 

produce a few specific cell types for example a myeloid progenitor that may 

produce red blood cells but not white blood cells. It is due to this capacity to 

produce multiple tissues that multi/pluripotent stem cells are widely studied 

within biomedical research (Cleton-Jansen, 2015).  
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Figure 1.1 Stem Cell potency. 
The figure outlines the hierarchy of cell potency and the differentiation ability at each level. 
Totipotent has the ability to produce an entire organism including the placenta etc, Pluripotent is 
are able to produce an entire organism, multipotent cells can still give rise to many cell types but 
are further restricted to a cell lineage within the germ layer, oligopotent can give rise to few 
specialised cell types and unipotent only has the ability to self-renew. Image created using 
BioRender.com. 

 



Chapter 1  3 
 

 

Stem cell fate is not predetermined, there are many different factors that can 

influence cell differentiation (Guilak et al., 2009; Chen et al., 2016). These 

factors, illustrated Figure 1.2, together create a unique microenvironment, 

known as a stem cell niche, which allows the maintenance of a stem cell 

population along with appropriate differentiation (Ferraro, Celso and Scadden, 

2010). Understanding and controlling the effects of each of these factors has a 

vast potential in biomedical research. 

 

Figure 1.2 Factors influencing stem cell fate. 
This diagram highlights the key factors known to have a part in determining cell fate. These include 
interactions with the extracellular matrix and surrounding cells along with physical cues such as 
stiffness and viscosity. Cell metabolism and effects from secreted factors can also impact 
differentiation. Created using BioRender.com. 

 

Previous research has shown that cells can be directed down a specific 

differentiation pathway through the addition of growth factors into the culture, 

through changes in surface stiffness and also through topographical changes on 

culture surfaces (Tsimbouri et al., 2014). Looking at one of these examples, the 

effect of stiffness has been investigated on inducing differentiation showing that 

culturing on stiffer materials, of 25-40 kPa, cells can be driven toward 

osteogenic differentiation whereas a softer culture material, can be used to 

induce adipogenic differentiation (Discher, Janmey and Wang, 2005; Zhang, 
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2012; Zhao et al., 2014; Mao, Shin and Mooney, 2016). It has been shown in the 

literature that differences in the cells ability to form focal adhesions result in 

differentiation; focal adhesions are how cells adhere to and interact with 

surrounding materials resulting in the triggering of signal pathways (Trappmann 

et al., 2012). This is described further in the Integrin binding section. Controlling 

these factors is a key component of tissue engineering where researchers are 

attempting to produce the optimal environments including biochemical signals, 

topographies and mechanical properties for tissue regeneration and in vitro 

modelling (Dalby et al., 2007; Mason, Califano and Reinhart-King, 2012; Mpoyi et 

al., 2016). However, in vitro models generally only consider one or two of the 

factors that contribute to a stem cell niche making them less representative to 

what occurs in vivo.  

1.2 The Bone Marrow Niche 

Bone marrow is found within the cancellous bone in marrow filled cavities 

containing many blood vessels surrounded by bony trabecular struts (Rho, Kuhn-

Spearing and Zioupos, 1998). The bone marrow is formed of a protein rich 

extracellular matrix (ECM) which supports the various cells which reside there 

and play an important role in stem cell maintenance and regulation. In the 

literature there are several ECM components which are known to be important 

within the bone marrow niche with the most abundant being fibronectin, 

collagen I-XI, tenascin, laminin, thrombospondin and elastin (Klamer and 

Voermans, 2014; Domingues et al., 2017). Proteoglycans with large 

glycosaminoglycan side chains are essential for maintaining the structure of the  

ECM (Klamer and Voermans, 2014). The mechanical properties vary throughout 

the bone marrow with a stiffnesses from <3 kPa within the soft marrow regions 

and up to ~40 kPa near the bone surfaces (Choi and Harley, 2017).  

The bone marrow is host to two stem cell populations, mesenchymal stem cells 

(MSCs, also known as mesenchymal stromal cells) and haematopoietic stem cells 

(HSCs). Along with these stem cells other cell types are found within the bone 

marrow that contribute to the unique niche microenvironment which contribute 

to the maintenance and regulation of these stem cells (Pinho and Frenette, 

2019). There are two niches that can be identified within the bone marrow these 
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are known as the endosteal niche and the perivascular niche (Lévesque, Helwani 

and Winkler, 2010; Morrison and Scadden, 2014) (Figure 1.3). 

 

Figure 1.3 The bone marrow niche. 
The bone marrow is referred to as containing two distinct stem cell niches, the endosteal niche at 
the bone interface to the marrow cavity and the perivascular niche found surrounding the 
vasculature within the marrow. These are both represented in the above figure. Created using 
BioRender.com. 

 

Both of the niches contribute to maintaining a population of HSCs within the 

bone marrow for haematopoiesis to take place. As previously mentioned, there 

are many factors of the niche that contribute to the maintenance and regulation 

of the stem cell population including the many cell types present in the niche.  

1.2.1 Cells in the Niche 

Along with the two stem cell types, MSCs and HSCs, there are a diverse range of 

cell types found within the bone marrow niche (Calvi et al., 2003; Méndez-

Ferrer, T. V Michurina, et al., 2010). The endosteal niche contains osteoblastic 

cells which can influence the niche due to its location at the bone surface to the 

marrow cavity. Various cytokines, for example stem cell factor (SCF) and 

Thrombopoietin (TPO) among others, that are secreted by osteoblasts have been 

associated with the expansion of haematopoietic progenitors (Taichman, Reilly 

and Emerson, 1996).The perivascular niche, however, is found in contact with 

Osteoblast

MSC

HSC

CAR cell

Osteoclast

Blood vessel

Marrow

Bo
ne

Nestin+

Nestin+
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the endothelial cells that vasculature of the marrow is composed of. This is 

important to the niche as endothelial cells have been shown to secrete cytokines 

that are important for the regulation of HSCs (Zhang et al., 2003; Kunisaki, 

Bruns, Scheiermann, Ahmed, Pinho, Zhang, Mizoguchi, Wei, Lucas, Ito, Jessica C 

Mar, et al., 2013). C-X-C motif chemokine 12 (CXCL12) abundant reticular (CAR) 

cells, as their name suggests, have been shown to have high expression of 

CXCL12 and also SCF proteins that are linked to HSC maintenance (Ding and 

Morrison, 2013).  

1.2.2 Mesenchymal Stem Cells 

MSCs are one of the two stem cell types found in the bone marrow and are 

named due to their differentiation potential into cells of mesoderm origin 

(Caplan, 1991). The differentiation capabilities of MSCs are illustrated in Figure 

1.4 below. The bone marrow niche is important for the maintenance and 

regulation of MSC fate (Shi and Gronthos, 2003). Even as one of the most 

common used stem cell sources, only 0.001-0.01% of the total cells present in 

the bone marrow are MSCs (Hanley et al., 2013).  

Primitive MSCs can be obtained from umbilical cord blood and cord tissue known 

as Whartons jelly however sources for these tissues are limited and include 

foetuses use of which come under ethical debate (Wang et al., 2004; Petrini, 

2010). It is therefore easier to isolate MSCs from adult tissues, including the 

bone marrow and also adipose tissue (Tsai et al., 2004; Kern et al., 2006). The 

in vivo precursors to MSCs were identified as pericytes, a cell type found in 

vascularised tissues that can display MSC characteristics in vitro (Crisan et al., 

2008). Due to variations in isolation techniques and source tissues it is important 

to have a guide for the classification of MSCs. For classification the presence of 

cell markers CD73, CD90, CD105 and Stro1 with the absence of some others such 

as CD34, CD45 and more can be used along with the differentiation capabilities 
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and the ability to adhere to general tissue culture plastic (Dominici et al., 2006; 

Psaltis et al., 2010). 

 

Figure 1.4. The different cell fates of a mesenchymal stem cell. 
This figure highlights the differentiation capabilities of mesenchymal stem cells MSCs are formed 
from perivascular progenitor cells and retain the ability to differentiate into various cell types within 
the mesoderm germ layer. These include myocytes, adipocyte, osteoblasts and chondrocytes the 
path which the cell takes will depend on various influencing factors. 

 

Due to their differentiation capabilities MSCs are widely used for research into 

bone regeneration therapies (Kraus and Kirker-Head, 2006; Jimi et al., 2012; 

Cheng et al., 2019). Along with being a source of connective tissue cells MSCs 

play other regulatory roles within the body. These roles include immune 

response regulation and more specifically to the bone marrow microenvironment 

the regulation of HSCs (Aggarwal and Pittenger, 2005; Ball et al., 2007). These 

regulatory functions are controlled by the secretion of a number of cytokines 

and growth factors by the MSCs, over 100 have been reported in normal 

conditions (Woon Park et al., 2009). Secreted factors are a key component of 

the stem cell niche important for regulating the function and differentiation of 

stem cells (Figure 1.2). 

Mesenchymal Stem Cell

Perivascular Progenitor Cell

Myocyte
Adipocyte Osteoblast Chondrocyte

Pericytes
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1.2.3 Haematopoietic Stem Cells 

During early development HSCs are found in the foetal liver and spleen then in 

adulthood they are located within the bone marrow (Wang and Wagers, 2011).  

HSCs can be split into 2 populations within the bone marrow niches, long term 

renewing (LT HSCs) generally found in the endosteal niche and short term 

renewing (ST HSCs) in the perivascular niche (Guerrouahen, Al-Hijji and Tabrizi, 

2011). LT HSCs maintain the HSC population within the bone marrow while ST 

HSC are responsible for the production of all our blood cells (Figure 1.5) through 

a process known as haematopoiesis (Sieburg et al., 2006). This process occurs 

within the bone marrow niche and can be influenced by various factors within 

the niche, the mature blood cells produced through haematopoiesis then go on 

to operate a diverse range of functions such as transport, clotting and 

immunological roles (Orkin and Zon, 2008). The process of haematopoiesis has to 

be continuous and dynamic for the maintenance of life day to day and through 

trauma. The supply of blood cells is dependent on the differentiation of HSCs, 

despite this continuous vast and important production of cells, they are only 

present in small numbers comprising of < 0.005% of total cells found in the bone 

marrow (Kiel et al., 2005; Rodriguez-Fraticelli et al., 2018). 

Due to the role HSCs play in the body they are currently used in therapies to 

treat leukaemia and AIDS (Aversa et al., 2005; DiGiusto et al., 2010). Because of 

the therapeutic potential for HSCs a lot of research has been carried out on the 

expansion and culture of these cells in vitro (Antonchuk, Sauvageau and 

Humphries, 2002; Krosl et al., 2003; Zhang et al., 2006). While progress has 

been made in improving HSC culture and expansion in vitro, it is still extremely 

difficult to expand primitive HSCs which retain their full differentiation 

capabilities. To help achieve this further studies are focused on mimicking the in 

vivo niche microenvironment through using 3D culture methods and co culture 

with other cells found in the niche, commonly MSCs (Dellatore, Garcia and 

Miller, 2008; Sharma, Limaye and Kale, 2012). The ability to expand LT HSC 

populations ex vivo would reduce the demand for donors and allow an increase 

in transplant treatments using HSCs. 
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Figure 1.5. The different cell fates of a haematopoietic stem cell. 
This figure shows the various cell types that can be produced by differentiating haematopoietic 
stem cells during haematopoiesis. LT-HSCs will continue maintain the HCS population over time 
while the ST-HSCs will begin differentiating into the many cell type that form our blood. In the first 
stage of differentiation the cells commit to either the myeloid or lymphoid lineage. These progenitor 
cells can then differentiate further down the lineage until they reach a terminal phenotype as seen 
above. 
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1.2.4 Cytokines 

Cytokines are a family of cell signalling molecules that can be peptides, proteins 

or glycoproteins and that are important for the regulation of the immune 

response and cell processes like haematopoiesis (Fossiez et al., 1996; Luster, 

1998). Cytokines can also be known more specifically as chemokines if they have 

chemotactic activities and interleukins if they are produced by and act on 

leukocytes (Zhang and An, 2009). They can be characterised as either autocrine, 

paracrine or endocrine dependent on if the cells they act on also secrete them, 

are nearby or are distant respectively.  

The main cytokines associated with the bone marrow niche that influence HSCs 

are fms like tyrosine kinase 3 (FLT3), stem cell factor (SCF), vascular cell 

adhesion molecule-1 (VCAM-1), thrombopoietin  (TPO), C-X-C motif chemokine 

12 (CXCL12 also known as stromal cell-derived factor 1 or SDF1) and osteopontin 

(OPN). SCF has been shown to cause an increase in HSC self-renewal and is 

secreted by MSCs, osteoblasts and endothelial cells within the bone marrow 

(Calvi et al., 2003; Ding et al., 2012). These three cell types also produce 

CXCL12 (also known as stromal cell derived fact 1 alpha or SDF-1a) which 

increases HSC retention in the bone marrow and self-renewal (Omatsu et al., 

2010; Greenbaum, Y.-M. S. Hsu, et al., 2013). Self-renewal is also increased by 

TPO which is secreted by osteoblasts within the niche (Qian et al., 2007; 

Yoshihara et al., 2007). Osteoblasts are also responsible for the secretion of OPN 

within the niche which maintains population size through preventing apoptosis 

(Stier et al., 2005). VCAM-1 produced by MSCs and endothelial cells is 

responsible for regulating HSC homing and adhesion (Avraham et al., 1993; De 

Ugarte et al., 2003). FLT3 is another cytokine present in the niche which has 

been shown to be important for regulating the process of haematopoiesis (Lyman 

and Jacobsen, 1998; Tsapogas et al., 2017). Many of these factors are commonly 

added to media to supplement the culture of HSCs but this is expensive and also 

wasteful as during media changes most of the added cytokines are washed away. 
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1.3 The Extracellular Matrix 

The non-cellular component of all tissues is known as the extracellular matrix 

(ECM) (Frantz, Stewart and Weaver, 2010). The basic elements of the ECM 

include water, proteins and polysaccharides though the composition is varied in 

different tissues changing the physiochemical properties; for example in bone 

the ECM also has a high mineral content, mostly comprised of hydroxyapatite. 

This non-cellular component also includes growth factors, cytokines and cell 

adhesion molecules that are secreted by cells and immobilised in the matrix. 

The ECM provides a complex 3D network which surrounds cells and contributes 

to regulation of differentiation and viability (Mason, Califano and Reinhart-King, 

2012). Along with functioning as a matrix for cells the ECM also; maintains local 

pH and hydration within tissues; allows for the diffusion of essential nutrients, 

waste and signalling molecules e.g. cytokines; allows degradation and 

remodelling after trauma and during development; and makes available 

receptors for cells and molecules (Mouw, Ou and Weaver, 2014). 

The functionality and differentiation of cells is regulated by the ECM through a 

variety of signals which can be mechanical, chemical or biological. The 

mechanical properties of the matrix such as stiffness and elasticity can influence 

cell behaviour, these properties are dictated by the composition of the ECM 

(Discher, Mooney and Zandstra, 2009; Geiger, Spatz and Bershadsky, 2009). Cell 

behaviour is also regulated by the ECM through the role it plays in cell adhesion 

and cell signalling through integrin receptors (Hynes, 2002; Berrier and Yamada, 

2007). Factors found within the ECM, most notably the protein fibronectin (FN), 

have the ability to present biochemical signals, such as growth factors, which 

can directly control cell function (Martino and Hubbell, 2010; Zhu and Clark, 

2014). By presenting biochemical signals which interact with cell-surface 

receptors, intercellular signal transduction can be induced and gene 

transduction regulated (Frantz, Stewart and Weaver, 2010). All these properties 

of the ECM that influence the cells can themselves be changed through the cells 

ability to remodel the ECM, changing the composition and therefore the effect 

on the surrounding cells and tissues. Due to the many functions of the ECM 

maintaining homeostasis is crucial to the preservation of normal tissue function 

and cell behaviour (Bowers, Banerjee and Baudino, 2010). 
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1.3.1 Composition of the ECM 

Proteins found within the ECM include collagen, FN, elastin, laminin and more. 

The most abundant of these proteins in mammals is collagen, with 28 different 

collagen molecules, making up a quarter of the total protein mass (Hynes, 2009). 

Within the body collagen is mostly located in the skin and bones. The hierarchial 

structure of collagen fibres contribute to the mechanical properties of the ECM 

(Brinckmann, 2005). Laminins are glycoproteins that represent a family of 

sixteen heterotrimeric isoforms (Rhodes and Simons, 2007; Aumailley, 2013). 

Laminins are mostly found within the basement membrane and although some 

isoforms can form aggregates, they tend to function as bridges between 

molecules. Laminins also have been shown to play a role in adhesion and have 

signalling functions (Gagnoux-Palacios et al., 2001). Elastins are the most 

abundant ECM protein found within the major arteries, comprising up to 50% of 

dry weight, though they are also present in other blood vessel and the skin. 

Elastins are essential due to the elastic properties they introduce to tissues 

allowing them to return to their original form after deformation. These 

hydrophobic proteins are essential to blood vessels and other tissues as they 

have the ability to momentarily stretch (Eble and Niland, 2009). 

These proteins are found embedded in the water and polysaccharide element of 

the ECM which forms a highly hydrated gel-like matrix made up of long linear 

chains of carbohydrates known as glycosaminoglycans (GAGs). The negative 

charge of this matrix creates osmotic pressure through the attraction of cations 

this then leads to a swelling pressure within the matrix which enables it to 

withstand compressive forces (Mouw, Ou and Weaver, 2014). These GAGs are 

able to covalently bind to proteins within the ECM producing proteoglycans 

which have multiple functions within the ECM. Proteoglycans contribute to many 

of the ECM functions outlined previously such as forming the matrix around cells 

and regulating the diffusion of molecules. They also have the ability to 

immobilise secreted molecules this, along with regulation of diffusion, produces 

a reservoir within the ECM of these molecules. Proteoglycans can also protect 

against proteolysis, further enhance the presentation of molecules to cell 

surface receptors and also sterically block protein activity (Frantz, Stewart and 

Weaver, 2010; Mouw, Ou and Weaver, 2014; Lindahl et al., 2017). 
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The ECM is dynamic allowing for change in the composition and function over 

time, an example of this is mammary ECM changes due to reproductive state 

(Schedin et al., 2004). This dynamic behaviour is essential for the normal 

function of various tissues though it can also contribute to disease when there is 

a disruption to the normal ECM (Cox and Erler, 2011). Variations in the 

composition are driven by the cells and the surrounding microenvironments to 

produce the ideal environment for the tissue it occupies. It is important to 

understand the components of the ECM and their various functions within tissues 

if the role they play in disease is to be investigated. 

There are many recent studies which aim to produce in vitro models that can 

mimic in vivo conditions including the ECM which will allow research into normal 

and/or diseased cell behaviour (Romano et al., 2011). It is important to be able 

to mimic this environment in vitro as previous studies have noted that without 

ECM support cell viability and in vivo like phenotype is lost. Studies have shown 

that through the introduction of ECM proteins to in vitro cultures some of the 

physical and chemical functions seen in vivo can be maintained influencing cell 

behaviours such as adhesion and spreading (Vandenburgh’, Karlisch and Farr, 

1988; El-Ghannam, Starr and Jones, 1998). Within in vitro models polymer 

scaffolds and/or hydrogels are commonly used to create a 3D environment acting 

as an ECM for cells (Han and Gouma, 2006; Tibbitt and Anseth, 2009). 

1.4 Fibronectin 

FN is a glycoprotein found in the ECM that is essential for embryogenesis and 

also wound healing. FN consists of two subunits, each approximately 240 kDa in 

size, that are linked through two disulphide bonds forming a homodimer. Each of 

these subunits consists of three types of functional domains that repeat along its 

length, these are; 12 type I, 2 type II and 15 or 17 type III varying between 

plasma and cellular FN respectively (Zollinger and Smith, 2017). An outline of 

the FN structure including the organisation of these domains is shown in Figure 

1.6 below. 
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Figure 1.6 Diagrammatic representation of the structure of fibronectin and its domains. 
This figure outlines the structure of cellular FN, plasma FN lacks the A and B variable domains 
shown in yellow. The other binding domains are represented by the different units type I domains 
are red diamonds, type II domains blue squares and type III domains green pentagons. Domains 
that themselves interact with FN are represented with a white asterix (*). Other key interactions are 
also denoted within the figure. Adapted from (Pankov and Yamada, 2002) using BioRender.com.  

 

1.4.1 Fibrillogenesis 

FN exists naturally in two conformations, globular and fibrillar as shown in Figure 

1.7. Plasma FN is soluble and found in the globular conformation circulating the 

blood where it enhances clotting and healing. The majority of FN, however, is 

found in the ECM in a fibrillar conformation (Pankov and Yamada, 2002). The 

fibrillar conformation is achieved through the self-association of FN molecules, 

when in this fibrillar conformation further organisation occurs leading to the 

formation of networks, this process is referred to as fibrillogenesis. Within the 

ECM fibrillogenesis is a cell mediated process which allows cells to produce a FN 

rich local environment to surround themselves (Hynes, 1999). Cell mediated 

fibrillogenesis occurs through a single cell binding multiple a5b1 integrins with 

the RGD and PHSRN domains (FNIII9-10) producing high local concentrations of FN 

leading to self-association and fibrillogenesis. The conformation of the molecule 

directly impacts the availability of different functional domains this is due to 

hidden domains resulting from the folding of the molecule while in a globular 

conformation. 
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Figure 1.7 Conformation of Fibronectin. 
The figure above shows a diagrammatical representation of the two conformations, globular and 
fibrillar, in which the glycoprotein FN is found naturally within the body. In the fibrillar conformation 
the FN is able to bind to other FN molecules leading to the formation of a network. Domains are 
represented in various colours matching those in Figure 1.6. Created using BioRender.com. 

 

Though naturally the process of fibrillogenesis is mediated by cells as previously 

outlined there are several cell free methods that have been found to induce this 

process; these can be chemical, physical or material driven (Vartio, 1986; 

Ulmer, Geiger and Spatz, 2008; Cantini, González-García, et al., 2012). 

Chemical methods aim to disrupt or to denature FN in the globular conformation 

leading to self-assembly. Treatment of globular FN using reducing agents for 

example dithiothreitol (DTT) has been shown to induce non-covalent assembly of 

FN networks through the decoupling of disulphide stabilised globular domains 

(Williams et al., 1983). DTT has also shown the ability to induce the 

intramolecular bonding of FN when used alongside strong oxidants (Vartio, 1986; 

Sakai, Fujii and Hayashi, 1994). Guanidine is another chemical that has been 

used as a denaturant in order to drive the formation of FN fibrils through 

disruption of the FN in the globular conformation (Cantini, González-García, et 

al., 2012; Llopis-Hernández et al., 2015). Physical methods such as the 

application of mechanical tension have shown the ability to allow fibrillogenesis 

through the unfolding of globular FN molecules (Brown, Blunn and Ejim, 1994; 

Zhong et al., 1998; Ulmer, Geiger and Spatz, 2008). Mechanical disruption has 

been achieved through extreme differences in hydrophobicity or domain 

separation of lipid bilayers exposing the cryptic binding domains required for 

self-assembly through physical elongation (Baneyx and Vogel, 1999; Ulmer, 

Geiger and Spatz, 2008). Material driven fibrillogenesis has been shown through 

Globular 

Fibrillar 
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use of various materials in the literature including PEA and polyalkyl acrylates 

(Vanterpool et al., 2014; Bathawab et al., 2016). 

1.4.2 Integrin binding 

Biochemical and physical cues are used by cells to sense their immediate 

environment producing signals that can regulate function, differentiation and 

viability, signal transduction is instigated by cell adhesion receptors or integrins. 

Integrins are transmembrane proteins with a heterodimeric structure which 

allow the translation of external cues to intracellular signals through integrin 

interactions with the ECM and intracellular proteins such as actin (Figure 1.8) 

(Schwartz, 2010).  

 

Figure 1.8 The basic structure of an integrin. 
The basic regions of integrins are highlighted within the figure above along with binding abilities of 
different regions with the cytoplasmic tails binding with intracellular proteins and the globular end 
binding with ECM proteins. The subunits, alpha and beta, are variable changing the binding 
abilities of different integrins. Intracellular side is pink and extracellular side green. Created using 
BioRender.com. 

 

When high concentrations of cell binding domains are found clustered, as seen 

with RGD in a FN network, a build-up of integrins occurs and triggers the 

formation of structures known as focal adhesions (Takagi and Springer, 2002; 

Calderwood, 2004). These focal adhesions, formed from clusters of integrins, 

Cytoplasm

ECM
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link intracellular actin filaments to the extracellular environment. Integrins are 

responsible for a vast array of specific cellular binding conformations possibly 

through the different compositions of the a and b glycoproteins from which 

integrins are formed. Each of these glycoproteins is formed of cytoplasmic tails 

which bind to intracellular proteins, such as cytoskeletal or signalling proteins, 

an elongated stalk which is able to traverse the cellular membrane and globular 

ligand binding domains that interact with components of the ECM (Xiong et al., 

2001; Calderwood et al., 2003; Lau et al., 2009). 

The ECM protein FN has been shown to possess domains with the sequences that 

correspond to a multitude of integrin receptor families, such as RGD (Plow et 

al., 2000). The PHSRN synergy domain at FNIII9 promotes cell binding to the RGD 

domain located at FNIII10 (Figure 1.6) through interactions with the integrin a5 

subunit although this synergistic binding is not required it does enhance cell 

binding (Redick et al., 2000). This synergistic interaction between the a5b1 

integrin can only occur when FN is in the fibrillar conformation and the binding 

sites are exposed (Bachman et al., 2015). This recognition, by a5b1 integrin, of 

the RGD and PHSRN domains leads to the mechano-transduction of forces from 

the ECM into the cell resulting in changes or maintenance of cell phenotype and 

function. 

1.4.3 Growth Factor Binding 

Growth factors are proteins involved in cell signalling that can regulate various 

functions including the proliferation, migration and differentiation of cells 

(Friedman, 2012). The FN domains FNIII12-14 (Figure 1.6) have been shown to bind 

and present growth factors within the ECM (Martino and Hubbell, 2010). These 

growth factor binding domains are found close to the integrin binding RGD 

domain at FNIII10, synergy between these domains has been shown to enhance 

viability and cellular interactions (Hynes, 2002; Lin et al., 2011; Rodrigues et 

al., 2013; Donnelly et al., 2018).  This is particularly important for certain 

growth factors, such as vascular endothelial growth factor (VEGF) which requires 

integrin binding proximal to growth factor binding, like that present on FN, to 

fully activate the growth factor (Borges, Jan and Ruoslahti, 2000). Growth factor 

binding occurs through the regions which possess heparin binding domains which 

many growth factors, for example those in the fibroblast growth factor (FGF) 
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and transforming growth factor (TGF) families, bind to through their affinity to 

heparin and heparin sulfate (Pankov and Yamada, 2002; Wijelath et al., 2006; 

Martino and Hubbell, 2010). This type of growth factor binding to ECM proteins 

has been shown to facilitate similar signal transduction pathways to integrin 

binding (Hynes, 2002; Lin et al., 2011). 

With this ability of ECM proteins to bind growth factors a reservoir of soluble 

growth factors can be formed producing local growth factor gradients and 

allowing controlled release through degradation (Hynes, 2002; Zhu and Clark, 

2014). Research has shown that growth factors that are bound are more 

favourably presented to cells when compared to those in solution (Kuhl and 

Griffith-Cima, 1996; Llopis-Hernández et al., 2016). Studies have also shown that 

when growth factors are bound to the ECM and held as solid-phase ligands they 

can induce cellular signals that differ from those induced by the same growth 

factor in a soluble state (Mohammadi, Olsen and Goetz, 2005; Zhu and Clark, 

2014). Through this binding, it has been shown, prolonged cellular signalling can 

be achieved in some cases when the growth factors are prevented from being 

internalised by the cells on contact and instead interact with the cell surface 

(Platt et al., 2009; Zhu and Clark, 2014). 

1.5 Biomaterials 

A biomaterial is generally defined as any substance that contacts tissue or 

biological fluid (Peppas and Langer, 1994; Langer and Tirrell, 2004). The 

development of biomaterials has allowed further investigation into the 

biochemical and biophysical cues that influence cell function and behaviour, 

such as topography and growth factor presence (Discher, Mooney and Zandstra, 

2009; Murphy, McDevitt and Engler, 2014; Turner and Dalby, 2014). Biomaterials 

have been utilised for many research areas including tissue engineering, drug 

delivery, medical imaging, medical implants, regenerative medicine and in vitro 

modelling (Khandare and Minko, 2006; Mitragotri and Lahann, 2009; O’Brien, 

2011; Pradhan et al., 2016). When used for in vitro modelling biomaterials are 

commonly designed to mimic one or more of the properties of the native ECM in 

which cells are encapsulated to produce an in vivo like microenvironment 

(Anselme, 2000; Engel et al., 2008).  
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When a biomaterial is similar in architecture, composition and/or other 

properties to an in vivo material they can be described as biomimetic materials 

(Caliari and Burdick, 2016). Biomaterials used for mimicking hard tissues such as 

bone are commonly metallic or ceramic materials like titanium or bioactive glass 

(El-Rashidy et al., 2017; Pobloth et al., 2018). Where the tissue being studied is 

softer it is more common to use polymer materials to produce scaffolds and/or 

hydrogels (Berkovitch, Yelin and Seliktar, 2015; Rose et al., 2017; Qian et al., 

2018). As suggested biomaterials can be made from a wide range of materials to 

fulfil a host of different functions such as joint replacement implants, 3D 

scaffolds for tissue engineering and in vitro modelling (Kasemo, 1983; Burdick 

and Anseth, 2002; Sodunke et al., 2007; Jana, Cooper and Zhang, 2013; Yuan et 

al., 2014). 

 

1.5.1 Biomaterials in tissue engineering  

Biomaterials are commonly used to aid in vivo tissue regeneration as cellular or 

mechanical support scaffolds (O’Brien, 2011). Biomaterials can influence cell 

adhesion, differentiation and function through mechanical forces, surface 

topography and biochemical signalling (Mason, Califano and Reinhart-King, 2012; 

Anderson et al., 2016). Differences in the physical properties of a material, such 

as stiffness, can change the application for which it can be utilised as a 

biomaterial, from polymer gels to mimic soft tissues to stiffer polymer scaffolds 

for use in bone regeneration (Lesný et al., 2002; Kretlow and Mikos, 2007). 

Biodegradability is another property that is important to consider when choosing 

a biomaterial. Depending on the application degradability can be beneficial or 

detrimental to the function; for example, biomaterials used to enhance 

regeneration need to be biodegradable to allow cell remodelling and eventual 

removal from the body. However, other uses such as joint replacements require 

the materials to be non-degradable and maintain their integrity overtime. For in 

vitro modelling biodegradable material can be used to encourage cell mobility 

and remodelling; though to maintain a long-term model it must not breakdown 

fully overtime, it can therefore be beneficial to use partially degradable models. 

As changes in the physical properties can alter the cell response to a material 

choosing appropriate materials for the application is extremely important. 
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Modifications to established biomaterials are common to tune the desired 

properties. 

The chemical properties of a biomaterial can be altered to fit the desired 

application through the addition of biological factors or controlled chemical 

reactions (Khan, Tanaka and Ahmad, 2015). Interactions between biomaterials 

and cells can be improved through chemical modifications to alter the surface 

chemistry of a material which has been shown to modulate these interactions 

(Curran, Chen and Hunt, 2005, 2006; Benoit et al., 2008; Phillips et al., 2010). 

Care must be taken when considering surface modifications as it is possible to 

change surface properties beyond those intended which can negatively impact 

the biomaterials function. Studies have also shown that changes in topography at 

a nanoscale level on biomaterial surfaces can influence cell fate (Dalby et al., 

2007; Tsimbouri et al., 2014). This occurs through producing differences in 

cellular adhesion which leads to changes in the biochemical signalling pathways 

resulting in alterations in the cell phenotype (Dalby, Gadegaard and Oreffo, 

2014). 

Biomaterials not only interact with cells but can also be used for protein 

adsorption which can in turn enhance cellular interaction and biological 

functionality. For example, there are some material surfaces that have the 

ability to induce fibrillogenesis simply upon the adsorption of FN, this is due to 

the ability of specific surface chemistries to disrupt the globular conformation, 

similarly to the other non-cellular methodologies; this is referred to as material 

driven fibrillogenesis (Salmerón-Sánchez et al., 2011; Cantini, González-García, 

et al., 2012; Llopis-Hernández et al., 2016). The elongation of FN molecules has 

been shown to occur when FN is adsorbed onto surfaces which are hydrophilic or 

negatively charged (Nelea and Kaartinen, 2010). An example of a surface which 

favours the adsorption of FN in an elongated conformation, leading to the 

formation of fibrils, is the polymer poly(ethyl acrylate) (PEA) (Salmerón-Sánchez 

et al., 2011). This process is thought to occur due to interactions between the 

functional side chains of PEA and hydrophobic regions of the FN molecules, along 

with physical disruption to the globular conformation resulting from the net 

negative charge of the polymer ultimately allowing the self-association of the FN 

producing fibrils (Cantini, González-García, et al., 2012). This phenomenon of 
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material driven fibrillogenesis can be utilised in the development of biomaterial 

surfaces to enhance cell interaction. 

Cellular adhesion is one of the single most important interactions that must be 

achieved and understood for a biomaterial to be effective. Adhesion is essential 

for the regulation and maintenance of cells as well as being an important 

component of cell communication making it a vital property of biomaterials 

(Khalili and Ahmad, 2015). The addition of proteins to a material such as the FN 

network described is known as surface funtionalisation and improves cellular 

adhesion and interactions with the material surface. However, once adhesion is 

achieved this then drives signalling pathways, cell function and phenotype it is 

therefore important to fully understand the cell-material interface. It is due to 

these interactions that biomaterial have become so popular with a vast potential 

in various areas of research and future therapies/treatments. 

1.5.2 Biomaterials in bone marrow niche models 

The bone marrow niche is a growing research topic due to increased interest for 

stem cell therapies. Many past models produced focussed on the use of a 

monolayer of stromal cells with HSCs introduced in suspension within the media 

(Dexter, 1982; Jing et al., 2010). Despite seeing success with the use of 

biomaterials in 2D cultures to mimic various ECM properties, focus has moved to 

3D modelling to better reproduce the in vivo environment. A common feature of 

3D bone marrow niche models is the use of collagen type I gels which is believed 

to mimic the elastic properties of the bone marrow (Leisten et al., 2012; 

Gattazzo, Urciuolo and Bonaldo, 2014). Though gels are popular for producing 3D 

models other materials have been used to create scaffolds for successful 3D 

culture of HSCs such as electrospun nanofiber scaffolds (Chua et al., 2007). Also 

the immobilisation of the ECM protein FN onto nanofiber surfaces has been 

shown to be effective in enhancing HSC culture (Feng et al., 2006). Many niche 

models have demonstrated the importance of close proximity of HSCs to MSCs, 

highlighting the necessity for both cells types to maintain a viable population 

within the model (Jing et al., 2010). The use of microcarriers allows the 

encapsulation of MSC into hydrogels alongside HSCs allowing for this desired 

close proximity, with the microcarriers mimicking the endosteal surface and 

hydrogels representing the surrounding soft marrow as seen in vivo (Figure 1.3). 
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During in vitro culture MSCs begin to differentiate and/or lose the ability to self-

renew as they reach a higher passage. As MSCs are an important cell type within 

the niche, models aim to maintain an undifferentiated HSC supporting 

phenotype for example nestin positive population (Cook et al., 2012). However, 

osteoblasts are also important in the niche, secreting various factors that are 

key to HSC maintenance, therefore some osteogenic differentiation to also 

produce a population of osteoblasts within models can be beneficial (Lévesque, 

Helwani and Winkler, 2010). Biomaterials have been used to enhance osteogenic 

differentiation through immobilising bone morphogenic protein 2 (BMP-2) in 

close proximity to cell or integrin binding domains to produce synergistic 

signalling (He, Ma and Jabbari, 2008; Llopis-Hernández et al., 2016). Research in 

osteogenic differentiation is mainly focussed on bone regeneration but this 

concept can be used within niche models to produce multiple cell types from a 

single source.  

1.6 Poly (ethyl acrylate) 

PEA is a hydrophobic acrylic ester polymer which has been shown to be biostable 

under in vivo conditions such as physiological temperatures. PEA is composed of 

repeating ethyl acrylate monomer units; properties include a tensile strength of 

0.23 MPa and a glass transition temperature of -23 °C. These properties along 

with the polymer’s ability to induce fibrillogenesis give PEA potential in 

biomedical engineering. The structural formula for PEA is represented in Figure 

1.9. 

 

Figure 1.9 Structural formula of Poly (ethyl acrylate). 
The figure above shows the structural chemical formula for a single unit of the polymer PEA. The 
polymer can vary in length and as shown is formed with a hydrocarbon back bone. 

 

O CH3O

n
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1.6.1 PEA and Fibronectin 

The interaction between PEA and the ECM protein FN has been utilised for 

biomedical purposes. This is due to the induction of fibrillogenesis caused by 

contact with the polymer surface producing FN networks as seen in vivo 

(Salmerón-Sánchez et al., 2011; Cantini, González-García, et al., 2012; Llopis-

Hernández et al., 2013; Vanterpool et al., 2014; Sprott et al., 2019). The 

organisation of FN into networks when coated onto the polymer surface 

facilitates cellular adhesion and focal adhesion formation. This organisation of 

FN molecules occurs due to the process of material driven fibrillogenesis induced 

due to the composition and mobility of the functional groups present in the 

polymer which promote unfolding. This unfolding of the FN molecules, seen in 

Figure 1.7, leads to the exposure of various cryptic binding domains allowing 

cellular and growth factor binding (Bathawab et al., 2016; Llopis-Hernández et 

al., 2016; Moulisová et al., 2017). This interaction makes PEA a useful material 

for use in biomedical engineering applications however its use is restricted due 

to its non-biodegradable nature (Sprott et al., 2019). 

Despite being non-biodegradable PEA has been successfully used for in vivo 

tissue regeneration applications by producing thin coatings, in the nanometres, 

that can be applied to biodegradable substrates allowing eventual removal from 

the body (Cheng et al., 2019). It is important that these thin coatings must 

retain the ability to induce fibrillogenesis when in contact with FN while also 

allowing the degradation of the coated material. Various techniques have been 

developed to incorporate thin layers of PEA on to surfaces including spin coating, 

plasma polymerisation and surface initiated atomic transfer radical 

polymerisation (SI-ATRP) (Llopis-Hernández et al., 2015, 2016; Cheng et al., 

2019; Sprott et al., 2019). These techniques have been shown to retain the 

functionality of PEA providing additional functionality to the underlying 

material.  

This interaction has been utilised for research into critical bone defect 

regeneration by our group showing that by using plasma polymerisation to treat 

decellularised bone chips with PEA, the favourable presentation of growth 

factors, BMP-2 in this study, by FN networks allows for use of an ultra-low dose 

when compared to previous studies while still promoting bone regeneration 
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(Cheng et al., 2019). Studies have also shown that control over the FN 

conformation, and therefore the activity, can allow manipulation of the 

phenotype of various cell types through changes in adhesion (Donnelly et al., 

2018). Primarily having been used for bone regeneration studies PEA also has 

potential in other biomedical engineering applications and research. Developing 

the coating techniques and exploring other ways to utilise this polymer-protein 

interaction could aid understanding of in vivo processes and development of new 

treatments.  

1.7 Hydrogels 

A hydrogel is a material which consists of a solid hydrophilic network with the 

ability to immobilise water, this gives it a continuous solid and liquid phase 

(Ahmed, 2015). The network is commonly made up of polymer chains held 

together by covalent bonds or self-assembled aggregated fibres held together by 

non-covalent intermolecular forces. Hydrogels are becoming more popular as a 

biomaterial that can be used for applications such as wound dressings, implants, 

drug delivery systems and tissue scaffolds (Fu and Kao, 2011). These materials 

create a 3-dimensional (3D) scaffold (Figure 1.10) that can be used for culturing 

cells in a 3D network as opposed to 2D culture methods. 

3D culture methods are becoming particularly important as research is pushing 

toward animal free research models which require accurate in vitro culture 

conditions. Hydrogels have various properties which make them good for use in 

tissue engineering including high water content, biocompatibility, mass transport 

of oxygen, nutrients and waste products, and the ability to control mechanical 

and/or chemical properties of the gels (Khetan and Burdick, 2009; Hoffman, 

2012; Caliari and Burdick, 2016). Hydrogels can be classified based on their 

crosslinking method, electrical properties, physical characteristics or their origin 

from natural or synthetic sources.  
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Figure 1.10. A hydrogel with a diagrammatic representation of the network of fibres. 
The figure above shows a PEG based hydrogel (Photo) with a diagrammatic representation of the 
internal structure produced, this comprises of a network of 4-arm PEG molecules joined using 
crosslinker molecules. 

 

1.7.1 Properties of Hydrogels 

Hydrogels can be used in 3D systems to produce microenvironments for cells 

with specific mechanical properties. These include stiffness, material stiffening 

or softening which can be controlled through modulation of the linear elasticity, 

viscoelasticity and spatiotemporal properties of the hydrogel (Huebsch et al., 

2010; Chaudhuri et al., 2015, 2016; Doyle et al., 2015). Cells cultured within 

hydrogels respond to their surrounding stiffness with changes in morphology, 

spreading, migration and differentiation (Boontheekul et al., 2007; Her et al., 

2013; Charras and Sahai, 2014). One study showed that by encapsulating MSCs 

within alginate gels produced over a wide range of stiffnesses (2.5 - 110 kPa) 

that lower stiffnesses could result in adipogenesis (2.5 – 5 kPa) whereas 

osteogenesis occurred in higher stiffness gels (11 – 30 kPa) (Huebsch et al., 

2010). Hydrogel stiffness can be controlled through the modulation of polymer 

molecular weight, polymer concentration or the crosslinker density. In order to 

receive signals from their surroundings cells must be able to attach to the 

hydrogel matrix. It is therefore essential that the cells are able to adhere: 

Hydrogel

Crosslinker

Fibres
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studies have shown that the introduction of peptides into gels allows for cell 

adhesion (Burdick and Anseth, 2002; Zhu et al., 2009).  

Most hydrogels, like soft tissues, are viscoelastic which makes them ideal for 

mimicking the in vivo microenvironment of soft tissues. Viscoelastic materials 

are defined as materials which show both viscous and elastic properties, viscous 

properties are shown through the viscosity or loss modulus of a material while 

the elasticity is characterised through stiffness or the storage modulus. Various 

studies have shown the importance of the viscoelastic properties of the 

microenvironment on cell spreading, proliferation and differentiation (Chaudhuri 

et al., 2015, 2016). Similar to the stiffness the viscoelastic properties can also 

be controlled through hydrogel composition, component concentration, 

molecular weight and crosslinking. 

Degradation properties have been utilised within biomedical engineering for drug 

delivery systems and control of cell motility. Degradation in vivo is essential for 

the maintenance of tissue homeostasis and in the remodelling of the ECM (Page-

McCaw, Ewald and Werb, 2007). Cells can remodel their microenvironment 

through the secretion of proteases that target enzyme sensitive macromolecules 

within the ECM. Through the feedback cells receive from this remodelled 

environment degradation influences the cells behaviour. Degradation is 

therefore an important factor to consider when choosing the appropriate 

hydrogel for your application and it is essential to ensure any by products 

produced during degradation are biocompatible. Hydrogels used for in vivo 

applications may benefit from higher degradability which matches the 

degradation properties to the native tissues. For in vitro modelling however, if 

the model is to maintained long term a non-degradable hydrogel would be more 

beneficial. Degradation of hydrogels can vary depending on the source material, 

crosslinking and the environmental conditions. Degradability of hydrogels can be 

controlled by introducing  enzyme sensitive peptides as degradable crosslinkers 

into non-degradible PEG-based hydrogels (Phelps et al., 2012). 

1.7.2 Naturally Derived Hydrogels  

Natural hydrogels can also be described as promoting hydrogels, this is due to 

the biological components of these gels promoting cellular functions as the 
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matrix interacts directly with the cells (Tibbitt and Anseth, 2009). Materials 

from both animal and plant sources can be used to develop natural hydrogels. 

Decellularised ECM is a common naturally derived hydrogel which has been 

obtained from many tissue sources including the heart, blood vessels and 

diaphragm (Ott et al., 2008; Quint et al., 2011; Gubareva et al., 2016; Yu et al., 

2016). The use of decellularization benefits from the maintenance of 

architecture and composition from the origin tissue (Yu et al., 2016). Using 

decellularized tissues have produced promising results but have issues with 

batch to batch variation which is common in naturally derived materials. The 

ability to produce this material is also donor dependent which is not a consistent 

reliable source.  

Hydrogels can also be produced from individual components of natural tissues 

such as proteins or polysaccharides. Protein based hydrogels can be produced 

from a single component or a mixture examples include collagen, gelatin, elastin 

and fibrin (Nakatsu et al., 2003; Mason et al., 2013; Stratesteffen et al., 2017). 

These materials are widely used in bioengineering due to their biocompatibility, 

bioactivity, structure and formation in physiological conditions. These gels again 

suffer from batch to batch variation as well as a lack of tunability and 

uncontrollable degradation. Polysaccharide based hydrogels include alginate, 

chitosan and hyaluronic acid which are suitable for biological use due to their 

biocompatibility and formation in mild conditions (Rowley and Mooney, 2002; 

Jana, Cooper and Zhang, 2013; Jha et al., 2016). A benefit to polysaccharide 

based hydrogels over protein based it that they are usually less immunogenic 

along with better control over physical properties. However, unlike protein 

based gels they have to be modified to increase bioactivity as they lack adhesion 

ligands and are not biodegradable (Rowley and Mooney, 2002; Jha et al., 2016). 

1.7.3 Synthetic Hydrogels 

Synthetic hydrogels are also decribed as permissive hydrogels as, unlike naturally 

derived hydrogels, the matrix itself does not interact with or influence the cells 

(Tibbitt and Anseth, 2009). Synthetic polymer hydrogels are formed from 

bioinert monomers or macromers that can be crosslinked through various 

synthetic chemical reactions. Examples of synthetic hydrogels include 

poly(ethylene glycol), poly(acrylamide) and poly(vinyl alcohol) amongst others 
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(Nuttelman et al., 2001; Tse and Engler, 2010; Cruz-Acuña et al., 2017). The 

most notable advantage of the use of synthetic hydrogels over those that are 

naturally derived is the lack of a batch to batch variation. This is possibly 

through finely controlled composition and chemistries during fabrication which 

also allows for custom modifications to alter properties allowing tunability 

during formation. As synthetic hydrogels are bioinert and non-degradable 

modifications can be made to introduce degradable peptides and bioactive 

molecules while retaining control over what is present to influence cells or 

surrounding tissues (Raeber, Lutolf and Hubbell, 2005; Guvendiren and Burdick, 

2013; Kyburz and Anseth, 2015). By using bioinert hydrogels and introducing 

bioactive components, non-specific cell adhesion and protein adsorption can be 

prevented allowing more control of the system and understanding of cell 

behaviour. 

1.7.4 Poly (ethylene glycol) 

PEG is formed of a repeating monomer unit, ethylene glycol, and is a compound 

which is soluble in aqueous media. The molecular weight of PEG can vary 

depending of its use and the properties required from the resulting gel. The 

hydrophilic properties of PEG help to produce structural and physiochemical 

properties similar to those of the ECM (Krsko and Libera, 2005). These 

hydrophilic properties along with a relatively low dispersity index (1.01 – 1.1), 

allowing control over physiochemical properties, make PEG a useful material in 

biomedical engineering applications (Pfister and Morbidelli, 2014).  

PEG is a commonly used synthetic hydrogel which has been shown to be 

biocompatible and bioinert (Krsko and Libera, 2005). PEG gels are commonly 

used to produce 3D microenvironments for studying cell behaviour due to their 

tuneable properties (Lutolf and Hubbell, 2005; Raeber, Lutolf and Hubbell, 

2005). PEG can be modified through the addition of different functional groups, 

for example maleimide, acrylate, thiol, norbornene or amine, allowing for 

variations in gelation methods such as ionic, covalent or physical gelation 

(Phelps et al., 2012; Roberts and Bryant, 2013). Hydrogels which are formed 

chemically through covalent bonds generally present a relatively stable 

structure.  One of the properties that make PEG compatible for biological 

applications, specifically the encapsulation of cells, is the biocompatible 
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crosslinking methods that can be used such as the Michael-type addition reaction 

(Figure 1.11) which occurs instantly in mild physiological conditions when the 

components of the reaction are mixed (Zhu, 2010). 

 

Figure 1.11 Maleimide Michael-type addition reaction 
The figure shows the reaction that occurs when a molecule with the maleimide group reacts with a 
sulfhydryl containing molecule. It is common that these would be modified PEG molecules to 
include the maleimide and sulfhydryl groups. 

Covalent crosslinking can occur through photopolymerisation where gelation is 

initiated in the presence of UV light, due to the speed of the crosslinking this 

method is suitable for encapsulating cells (Zhu et al., 2009). Another method for 

covalent crosslinking is the use of two or more functional components which 

contain complementary reactive groups. There is no need for an initiator in this 

type of reaction as it occurs upon mixing of the multiple components through a 

chemical reaction such as the Michael-type addition reaction (Fu and Kao, 2011). 

These methods are broadly used in research using PEG hydrogels though other 

methods have been developed. 

Research using PEG hydrogels has shown the inclusion of degradable components 

and other bioactive molecules. PEG hydrogels are commonly functionalised with 

the incorporation of RGD and IKVAV, peptides responsible for cell adhesion in 

vivo. This leads to increased interaction between cells and the hydrogel network 

better mimicking the ECM enhancing cell viability and function (Benoit and 

Anseth, 2005; Weber et al., 2007; Salinas and Anseth, 2008; Lin and Anseth, 

2009). PEG hydrogels have been used for both in vitro and in vivo research and 

have shown tunability in their stiffness and swelling properties (Rizzi and 

Hubbell, 2005; Rizzi et al., 2006). PEG which has been functionalised with 
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maleimide produce a fast reaction with thiol groups through a Michael-type 

addition reaction that occurs at physiological pH (Phelps et al., 2012). PEG gels 

have also been shown to possess the capacity to incorporate a whole protein 

through crosslinking to the PEG backbone further increasing bioactivity potential 

(Almany and Seliktar, 2005). PEG hydrogels are already widely used in the world 

of biomedical engineering but continue to have potential through its tuneable 

and modifiable nature.  

1.8 Aims and Objectives 

The aim of this thesis was to engineer an in vitro model that mimics the in vivo 

bone marrow niche. Hydrogels, used to create a 3D environment for the cells, 

were engineered to incorporate the ECM protein FN to encourage cellular 

interactions with the gel. FN was used due to its abundance within the bone 

marrow niche; also, its various domains allow interactions with cells and other 

secreted molecules. The gels were investigated to show they could successfully 

mimic key features of the ECM such as the diffusion of essential molecules. The 

model was designed to mimic stiffness characteristics of the soft bone marrow, 

<3 kPa, through tuning the properties of the PEG hydrogels to match the softer 

marrow tissue and the addition of microbeads which represent the in vivo 

endosteal surface. The stiffer surface of the microbeads was developed for the 

adherence of MSCs in the model, while the gel would provide a 3D network to 

encapsulate HSCs. 

These surfaces were developed to introduce PEA into the model, this was to 

allow greater control over the MSC behaviour and phenotype through the 

introduction of growth factors. Various methods were assessed to find the most 

effective way to introduce PEA to the microbeads including plasma 

polymerisation, UV polymerisation and SI-ATRP. Various techniques were used to 

investigate the success of each method and further to look at the interaction 

with FN to allow the tethering of growth factors.  

NGF and BMP-2 were investigated to assess the maintenance of an MSC 

phenotype which release cytokines known to be important in the bone marrow 

niche for the maintenance of a LT HSC population. BMP-2 was used due to the 

importance of osteogenic cells within the endosteal niche and NGF has been 
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linked to the perivascular niche. There were 2 models developed initially with a 

more 2D approach to help assess the system and a final 3D model to be carried 

forward for HSC culture (Figure 1.12). The 2D model is similar to those used by 

our group in the past (Sweeten, 2019; Donnelly, 2020) where cells were seeded 

onto a PEA coated coverslip followed by the introduction of a gel on top. 

Alternatively, in the final model, maintaining a more 3D environment, cells were 

seeded onto microcarrier beads which were then encapsulated into the gels.  

 

Figure 1.12 Proposed set up for final niche models. 
The figure shows the two proposed models for introducing a PEA surface to the niche models. A - 
shows the use of a PEA coated coverslip onto which MSCs could be seeded with HSCs 
encapsulated in the PEG hydrogel formed on top. B - shows the use of PEA coated microbeads 
that can be encapsulated within the gel. 

 

  

A B
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Chapter 2 General Materials and Methods 

2.1 Materials 

The following materials were used to complete the work outlined in this thesis.  

Table 2.1 List of reagents used in gel formation. 
Reagent Product Provider Further Information 

4-arm PEG-
Maleimide 

4arm-PEG-MAL-
20K-5g 

LaysanBio PEGMAL, 20 kDa 

SH-PEG-SH PSB-613 Creative 
PEGworks 

PEGdiSH, 2 kDa 

Fibronectin 663 YoProteins Human, from plasma 

VPM peptide Custom 
synthesised 

GensScript GCRDVPMSMRGGDRCG 

 

Table 2.2 List of reagents used in microbead preparation for cell culture. 
Reagent Product Provider Further Information 

BMP-2 H4791-10 Sigma Human 

NGF 256-GF-100 R&D Human 

Fibronectin F2006-2 Sigma Human, from plasma 

Microbeads 3772 Corning Untreated 
polystyrene 

microcarriers 

 

Table 2.3 List of cells and cell culture reagents. 
Reagent Product Provider Further 

Information 

Pericytes  Patients Primary cells 

MSCs  Patients Primary cells 
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Dulbecco’s Modified 
Eagle’s Medium 

41965-039 Gibco DMEM 

Iscove’s Modified 
Dulbecco’s Medium 

12440-061 Gibco IMDM 

Penicillin/Streptomycin 15140-122 Gibco P/S 

Foetal Bovine Serum 10500-064 Gibco FBS 

Human Serum H4522-100 Sigma HS 

Bovine Insulin Transferrin  StemCell 
Technologies 

BIT 

 

Table 2.4 List of kits. 
Reagent Product Provider Further Information 

DyLight 488 NHS Ester 46402 ThermoFisher  

ELISA kit Reagent Diluent DY995 R&D  

ELISA kit Substrate DY999 R&D  

ELISA kit Stop Solution DY994 R&D  

LIVE/DEAD® kit Calcein-AM C3099 ThermoFisher  

LIVE/DEAD® kit Ethidium 
homodimer-1 

E1169 ThermoFisher  

BMP2 DuoSet ELISA kit DY355-05 R&D  

NGF DuoSet ELISA kit DY256-05 R&D  

Human CXCL12/SDF-1 
alpha Quantikine ELISA Kit 

DSA00 R&D  

Human Thrombopoietin 
Quantikine ELISA Kit 

DTP00B R&D  
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Table 2.5 List of antibodies and other reagents for immunostaining or in cell western. 
Reagent Product Provider Further 

Information 

Phalloidin Rhodamine   1:200 

Phalloidin 488   1:200 

Cy3 anti mouse 315-165-
003 

Jackson 

ImmunoResearch 

1:200 

Cy3 532 anti rabbit 711-165-
152 

Jackson 

ImmunoResearch 

1:200 

Osteocalcin antibody 
(anti mouse) 

73464 SantaCruz 1:100 

Osteopontin antibody 
(anti mouse) 

21742 SantaCruz 1:100 

Nestin antibody (anti 
mouse) 

23927 SantaCruz 1:100 

Stro1 antibody (anti 
mouse) 

47733 SantaCruz 1:50 

SCF antibody (anti 
rabbit) 

20935 Cell Signaling 
Technologies 

1:50 

Alcam antbody (anti 
rabbit) 

  1:100 

Alexa 488 donkey anti 
mouse 

  1:400 

CellTag 700  LI-COR 1:500 

IRDye conjugated goat 
anti-mouse  

 LI-COR 1:800 

IRDye conjugated goat 
anti-rabbit 

 LI-COR 1:800 

Odyssey blocking buffer  LI-COR  
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Tween20  Sigma  

Formaldehyde  Fisher Scientific  

Bovine serum albumin  Sigma BSA 

Vectashield mounting 
medium with DAPI 

 Vectorlabs   

 

Table 2.6 List of all other reagents and material used. 
Reagent Product Provider Further Information 

Anhydrous Dimethyl 
Sulfoxide 

276855 Sigma DMSO 

D2O    

Dulbecco’s phosphate 
buffer solution 

14190-094 Gibco DPBS 

Collagenase D 11088858001 Sigma  

Iodoacetamide I1149-5G Sigma IAA 

Dialysis tubes MWCO 10 kDa ThermoFisher Mini-A-Lyzer 

Optimal cutting 
temperature 
compound 

361603E VWR OCT 

Rain-X 80199200 Rain-X  

Tris(2-
carboxethyl)phosphine 

hydrochloride 

75259-5G Sigma TCEP 

Trypan blue T8154 Sigma  

Trypsin-EDTA T4049-100ML Sigma 0.25% 

Urea U5378 Sigma  

Hexane  Sigma anhydrous 
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a-Bromoisobutyryl 
bromide 

 Sigma BIBB 

Pyridine  Sigma Py anhydrous 

Chloroform    

Copper(I) Bromide  Sigma CuBr 

Tris (2-pyridylmethyl) 
amine  

 Sigma TPMA 

Sodium BiSulfite   NaHSO3 

Toluene    

Ethyl Acrylate 
Monomer 

 Sigma EA 

Benzoin  Sigma  

Benzophenone  Sigma BPO 

 

2.2 Methods 

The following section outlines some of the general methods used throughout the 

thesis. Methods which are more specialised to particular chapters are found 

within the chapter methods (Sections 3.2, 4.2 and 5.2). 

2.2.1 Cell Culture 

Culture conditions 

MSCs were isolated from patient bone marrow samples within our lab and 

selected to be Stro1+. Cells were used at a maximum of passage 3 for all 

experiments discussed in this work. Cells were grown to confluency, within a T75 

tissue culture flask, in DMEM with 10% FBS, 2% antibiotics (streptomycin and 

penicillin), 1% sodium pyruvate and 1% non-essential amino acids (100x 

concentrated). For experimental work once seeded in hydrogels or on coverslips 

cells were in DMEM with 2% human serum 2% antibiotics (streptomycin and 
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penicillin), 1% sodium pyruvate and 1% non-essential amino acids (100x 

concentrated). 

Pericytes were adipose derived and supplied in cryovials from the University of 

Edinburgh. Cells were used at passage 4 for cell viability experiments. Cells were 

cultured in DMEM with 10% FBS, 2% antibiotics (streptomycin and penicillin), 1% 

sodium pyruvate and 1% non essential amino acids (100x concentrated). 

Bone marrow HSCs were obtained from CalTag MedSystems in cryovials. Cells 

were used before passage 3 for viability experiments within the model. Cells 

were cultured in IMDM+BIT media with the addition of a cytokine mix containing 

SCF (10 ng/mL), TPO (5 ng/mL) and Flt3 (10 g/mL).   

Cell Seeding 

Specific seeding densities vary and are stated for individual experiments 

throughout the thesis. For experiments seeding cells (MSCs or Pericytes) 

directly into gels the cells were introduced to the solution before mixing with 

crosslinker to allow encapsulation of cells during gelation. When working in 2D 

MSCs were seeded and left to attach overnight before the introduction of a gel 

over the top. For experiments including the microcarrier beads cells were placed 

in an Eppendorf tube with the beads and allowed time to attach, mixing every 

15 minutes to prevent the clumping of beads for 1 hour. This bead/cell mixture 

was then added to the gels as mentioned above before the addition of 

crosslinker allowing encapsulation at the point of gelation. 

2.2.2 Cell Staining  

Viability assays 

To carry out viability tests cells were seeded at various densities in differing 

culture conditions which are stated throughout the results.  

To test viability of the cells in different culture conditions a LIVE/DEAD® kit was 

used with calcein-AM and ethidium homodimer-1 stains to show live and dead 

cells respectively. All media was removed from the culture with care taken not 
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to aspirate any hydrogels where cells were encapsulated within hydrogels. 

Samples were washed twice with PBS to ensure media was completely removed. 

A solution with 4 µM ethidium homodimer-1 and 2 µM calcein AM was made up 

with PBS. The solution was added to each of the samples ensuring full coverage, 

the samples were then incubated at 37 °C for 15 minutes. After incubation the 

staining solution was removed, and samples washed twice with PBS. Samples 

were then left in PBS to prevent drying during imaging which was done 

immediately after staining.  

Imaging was carried out using a ZEISS AxioObserver Z.1 with a 10X objective 

using DsRed (Red) channel for dead cells and GFP (Green) channel for live. The 

resulting images were then analysed using ImageJ software to count the live and 

dead cells allowing the calculation of the viable percentage of cells in each. For 

each image each channel was filtered using the gaussian blur filter with the 

sigma ball radius set at two followed by counting object through the find 

maxima process, those on edges were excluded from all counts. The viability 

was then calculated as a percentage of total cell number (Equation 1). 

Equation 1 Calculation for the viability (%)  

𝑽𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚	(%) = -
𝑳𝒊𝒗𝒆𝒄𝒆𝒍𝒍𝒔

𝑪𝒆𝒍𝒍	𝑵𝒖𝒎𝒃𝒆𝒓𝑻𝒐𝒕𝒂𝒍
: ∗ 𝟏𝟎𝟎 

 

Immunostaining 

Immunostaining was carried out in MCSs after three weeks culture in the final 3D 

model. Before staining at the end of 3 weeks culture cells were fixed in a 

formaldehyde solution (10 mL formaldehyde + 90 mL PBS + 2 g sucrose) for 15 

minutes. 

Before staining all gels were transferred to a fresh 48 well plate removing the 

surrounding media. Primary antibody was added at the appropriate dilution 

(following protocol) and incubated overnight at 4 °C protected from the light. 

The primary antibody was then removed and samples washed 3 times for 5 

minutes in wash buffer (PBS with 0.5% Tween20) on a plate shaker. After the 

final wash buffer was removed the secondary antibody was added along with 

phalloidin, again diluted according to protocol, the plate was then incubated at 
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37 °C for 1 hour protected from the light. After incubation washing was 

repeated. Samples were then transferred to glass bottom petri dishes and 

coated with VECTASHIELD® mounting medium with DAPI and wrapped in foil to 

protect from light until imaging.  

Imaging was performed on a spinning disc confocal microscope. Z stacks were 

gathered to image the microbeads embedded within the hydrogels. These were 

then analysed using ImageJ software by quantifying the fluorescence for the 

marker of interest normalised to DAPI nuclear stain.  

In Cell Western 

In cell western (ICW) was used to analyse cells in the 2D set up. Before staining 

at the end of 3 weeks culture cells were fixed in a formaldehyde fixative 

solution (10 mL formaldehyde + 90 mL PBS + 2 g sucrose) for 15 minutes. Cells 

were then permeabilised in permeabilising buffer (10.3 g sucrose + 0.292 g NaCl 

+ 0.006 g MgCl2 + 0.476 g Hepes + 100 mL PBS at pH 7.2 + 0.5 mL Triton X-100) 

for 4 minutes at 4 °C. Perm buffer was then removed and to block further 

permeabilising a solution of PBS with 1% milk protein was added and left to block 

on a shaker for 1 and a half hours.  

After cells were fixed and permeabilised primary antibody for the marker of 

interest was added and incubated overnight at room temperature. Primary 

antibody was removed after incubation and plate washed 5 times with wash 

buffer for 5 mins on a plate shaker. After removal of the final wash buffer the 

secondary antibody solution with CellTag700 was added and incubated for 1 hour 

on a plate shaker protected from the light. After incubation and plate washed 5 

time with wash buffer for 5 min on a plate shaker. After removal of the final 

wash buffer plates were stored at 4 °C protected from the light and imaged once 

completely dry. Samples were then scanned using a LI-COR Odyssey Sa scanner in 

the 800 nm and 700 nm channels with measurements taken as fluorescent units. 

The final readings were normalised using CellTag700 control readings. 
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2.2.3 Surface Modifications 

Various surface modifications were used to incorporate PEA surfaces into the 

models. Methods to analyse these surfaces are described in Chapter 4. 

Spin coating 

2D experiments were carried out on 12 mm glass coverslips coated in PEA using a 

spin coating method. First glass coverslips were cleaned by placing in 100% 

ethanol and sonicating for 30 minutes, ethanol was drained, and then the 

coverslips were rinsed with more ethanol to ensure the removal of any dirt. 

Once complete, coverslips were transferred to a glass petri dish and placed in 

the oven until fully dried. Coverslips were then prepared for coating. 

Bulk polymers PEA and poly (methyl)acrylate (PMA) were previously prepared, 

within our lab, from monomer solutions via radical polymerisation with 1% 

benzoin photoinitiator. These bulk polymers were dissolved in toluene to form 

solutions that could be used for coating at 4% w/v for PEA and 6% w/v for PMA. 

Coverslips could then be placed on the spin coater (Brewer science, USA), held 

in place by a vacuum, and 100 µl of polymer solution added to the centre. 

Coating took place at 3000 rpm over 30 seconds with an acceleration of 3000 

rpm s-1. Once coated excess toluene was removed by placing in a vacuum oven 

for 2 hours at 60 °C. Before use in cell culture coverslips were sterilised under 

UV for 30 minutes. 

Spin coating was not an option for coating the polystyrene microbeads for the 3D 

model but was used for coating coverslips in a layer of polystyrene in order to 

assess other coating techniques success on polystyrene. The process outlined 

above was followed using a solution of polystyrene in toluene.   

Plasma Polymerisation 

For 3D cell work polystyrene microbeads were coated in PEA through plasma 

polymerisation. Microbeads were weighed and placed into a glass petri dish 

ensuring that they could be spread in a single layer within the dish. This was 

then placed into the plasma chamber (Figure 2.1) and underwent an air plasma 
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cycle for 5 minutes. The monomer vessel was then attached at the inlet and 

monomer plasma polymerisation carried out for 15 minutes at a power of 50 W 

and pressure maintained between 0.2 – 0.25 mbar.  

 

Figure 2.1 Diagram of the basic components of a plasma chamber. 
The figure illustrates the basic components of the chamber including the vacuum pump outlet and 
monomer inlet. The plasma is represented as a purple cloud and is initiated by copper electrode 
which are situated on the outside of the chamber.  

After coating and the chamber was evacuated of any excess monomer the 

microbeads were removed from the chamber. Before any cell culture beads were 

sterilised under UV for 30 minutes. 

Fibronectin and growth factor adsorption 

Coverslips coated in polymer were placed on parafilm within a cell culture hood 

to maintain sterility. FN, from human plasma, was adsorbed in solution during a 

1 hour incubation at room temperature at a concentration of 20 µg/mL. Excess 

solution was removed, and coverslips were washed twice with PBS. Growth 

factors, BMP-2 and neural growth factor (NGF), were then co-adsorbed for 2 

hours at room temperature each at a concentration of 25 ng/mL. This was 

followed by 2 washes with PBS, coverslips were then transferred to a 24 well 

plate ready for use covered in PBS. 

Microbeads coated in PEA were placed in an Eppendorf for adsorption of FN and 

growth factors using a similar protocol as above. Timings and concentrations 

were kept consistent with those used to coat coverslips though for removal of 

solutions and washing the Eppendorf was spun down and liquid carefully 
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removed through pipetting. One additional wash step was introduced to ensure 

removal of FN and growth factor solutions. Once treated microbeads were stored 

in PBS until use. 

UV Polymerisation 

Polystyrene pellets were used in place of microbeads, for ease of handling and 

characterising, to investigate the success of UV polymerisation on a polystyrene 

surface. Glass coverslips coated in polystyrene via spin coating were also coated 

for certain analysis techniques.  

Pellets were placed into glass test tubes and 10 % benzophenone (BPO) in 

ethanol was added to cover the samples. Coverslips were placed in a glass petri 

dish and BPO solution added as a droplet onto the surface. The samples were 

then placed in a UV box and irradiated for 20 minutes with UV light. After this 

any excess BPO solution was removed from the samples and they were washed 

twice in ethanol. The samples were then covered in a 5, 10 or 20% monomer 

solution produced from ethyl acrylate monomer and ethanol. Samples were 

returned to the UV box and irradiated for 30 minutes with UV light. Excess 

monomer solution was then removed, and samples washed twice with ethanol. 

Samples vacuum dried at 60 °C for 2 days to ensure removal of all monomer. 

Samples were then ready to be analysed. Due to the danger of working with 

monomer solutions all work was carried out in a fume hood with the appropriate 

personal protective equipment.  

Surface Initiated – Atomic Transfer Radical Polymerisation 

SI-ATRP was carried out in two stages: bromination (initiator immobilisation) and 

polymerisation. Before beginning the polystyrene pellets were cleaned by 

placing in 100% ethanol and sonicating for 5 minutes, ethanol was drained, and 

then the pellets were rinsed with 70% ethanol to ensure the removal of any dirt. 

Once completed, pellets were transferred to a glass petri dish and placed in the 

oven until fully dried. Each process was carried out in separate reaction vessels 

like that shown in Figure 2.2. Polystyrene pellets were used in place of 

microbeads, for ease of handling and characterising, to investigate the success 
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of SI-ATRP on a polystyrene surface. Glass coverslips coated in polystyrene via 

spin coating were also coated for certain analysis techniques.  

 

Figure 2.2 Reaction vessel used during SI-ATRP. 
The above experimental set up was used for bromination of samples, reaction is occurring when 
photo was taken hence the cloudy appearance of the reaction vessel. A similar set up is used for 
the polymerisation of the samples. The reaction vessel has 3 necks and is clamped to form a 
vacuum seal, the vessel is connected to a condenser and dropper side arms. Reaction vessels 
were placed within a glass water bath on a magnetic stirrer bench heater allowing control of 
temperature and agitation during reaction. A Soxhlet can be seen on the righthand edge of the 
photo, this is used for washing samples after treatment. This was set up with a boiling vessel and 
glass boiling beads along with a collection Soxhlet tube and a Teflon sieve. 

 

For bromination the samples were placed in the bottom of the reaction vessel 

which was then fully sealed and degassed with oxygen free nitrogen gas. The 

reaction vessel was degassed held under a nitrogen atmosphere through the 

reaction. Anhydrous hexane and a-Bromoisobutyryl bromide (BIBB) were added 

to one of the side arms and degassed before being added to reaction vessel to 
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cover the samples. Pyridine was then added to the second side arm, degassed 

and added dropwise into the reaction vessel. The final ratio of reactants was 

10:1:0.4 hexane: BIBB: pyridine. The reaction temperature was maintained at 0 

°C in an ice bath for 2 hours. After this point the reaction was left at room 

temperature for 6 or 24 hours, 2 time points were used to asses effectiveness of 

each, the nitrogen flow was maintained throughout the entire reaction. Once 

finished the samples were removed from the reaction vessel and washed with a 

deionised water and methanol solution 2:1 in a Soxhlet for at least 72 hours 

before vacuum drying. 

A second reaction vessel was set up for the polymerisation step with Copper (I) 

Bromide (CuBr) and Tris(2-pyridylmethyl)amine (TPMA) placed at the bottom of 

the reaction vessel. The brominated samples were then transferred into the 

reaction vessel.  The vessel was fully sealed and degassed producing a nitrogen 

atmosphere as in the previous step again this was maintained throughout the 

reaction. Ethyl acrylate and methanol were then added to the side arm after 

degassing this solution was then added to the reaction vessel submerging the 

samples. An ascorbic acid solution in methanol was then introduced dropwise 

over a period of at least 1 and up to 4 hours. The final ratio for reactants was 

96:0.005:1:0.4 for EA: CuBr: TPMA: AsAc. After 4 hours the polymerisation was 

stopped through flooding the reaction vessel with oxygen. Samples were then 

washed following the same procedure described for bromination.  

2.2.4 Hydrogel formation 

All PEG hydrogels were formed using the Michael-type addition reaction at 

physiological temperature and pH unless otherwise stated. The basic process of 

gelation is shown in Figure 2.3 for gels that do not contain FN the first 3 steps 

are not required and hydrogels were formed by simply mixing a solution of 4-arm 

PEGMAL with a crosslinker solution. FN could be incorporated into the gels 

through the process of PEGylation described in the next section; fibronectin 

PEGylation. The crosslinker was always added last at a molar ration of 1:1 

between maleimide : thiol to achieve full crosslinking. The crosslinker used was 

either non degradable PEG dithiol (PEGSH) or a custom protease degradable 

peptide chain, GCRDVPMSMRGGDRCG (VPM) with cysteine groups at either end. 

Cells and other additives such as growth factors could be mixed with the protein 
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solution to be encapsulated within the gel during gelation. Gelation occurs 

instantly and gels were incubated for 30 minutes at 37 °C to ensure gelation was 

complete. The final volume of the hydrogels unless otherwise stated were 50 µL. 

 

Figure 2.3 Schematic diagram of the process of gel formation. 
The figure shows the basic steps to gel formation including the PEGylation of FN and showing a 
final gel formed through this method. The crosslinker added could be PEG dithiol, VPM or a 
mixture for the two.  

 

Fibronectin PEGylation 

Fibronectin was incorporated into the hydrogels through the process of 

PEGylation, binding 4-arm PEG-Maleimide molecules onto the FN. This process 

was created by our group through modification of a procedure used by Seliktar’s 

group (Almany and Seliktar, 2005; Trujillo et al., 2019). Initially FN was 

denatured incubating for 15 minutes at room temperature in a denaturing buffer 

with 8 M urea, 5 mM TCEP and PBS at a pH of 7.4. 4-arm PEGMAL was then added 

to the denatured FN solution at a molar ration of 4:1 (PEGMAL : FN) and 

incubated at room temperature for 30 minutes. This reaction was stopped by 

increasing the pH slightly to pH 8.5 with 1 M NaOH. Any unreacted cysteines 

were then blocked by alkylation, 14 mM of iodoacetamide was added to the 

mixture and incubated for 2 hours at room temperature. After alkylation the 

solution was dialysed against PBS for 1 hour at room temperature. Nine volumes 

PEGylated FN 
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of cold 100% ethanol was added to the protein solution, mixed and incubated at 

-20 °C overnight. After incubation the solution was centrifuged at 15000 g for 15 

minutes at 4 °C. The supernatant was carefully discarded and the pellet washed 

with cold 90% ethanol before centrifuging for 5 minutes at 15000 g and 4 °C. 

Supernatant was again discarded and the pellets dried. The resulting pellets 

were dissolved in 8 M urea producing a protein concentration of 2.5 mg/mL. This 

was again dialysed against PBS for 1 hour at room temperature. The final 

dialysed protein was then placed into aliquots and stored at -20 °C until use. 

Hydrogel Formulations 

The formulation of the gels was varied for different experiments to assess the 

effects on gel properties and cell viability. The various formulations are outlined 

in the tables below (Table 2.7 and Table 2.8). Unless stated these are the 

formulations used to form all the hydrogels used for this work. 

Table 2.7 Amount of PEGMAL in hydrogels used. 
FNPEG hydrogels 3% FNPEG 5% FNPEG 10% FNPEG 

PEGylated FN (mg/mL) 1 1 1 

PEGMAL (mg/mL) 30 50 100 

PEG only hydrogels 3% PEG 5% PEG 10% PEG 

PEGylated FN (mg/mL) - - - 

PEGMAL (mg/mL) 30 50 100 

 

Table 2.8 Amount of crosslinker used in degradable vs non degradable hydrogels. 
Hydrogels  Non degradable Degradable 

PEGSH (mg/mL) 8.2 6.1 
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VPM (mg/mL) 0 2.1 

 

2.2.5 Growth factor tagging 

Growth factors (NGF, Flt3, TPO, SCF and CXCL12) were fluorescently tagged with 

an amino reactive dye (DyLight 488 NHS Ester) following the protocol provided. 

In summary, the growth factor underwent a buffer exchange against 0.05 M 

sodium borate at pH 8.5 using dialysis membrane tubes (Mini-A-Lyzer, COMW 

10kDa, ThermoFisher) for 2 hours at room temperature. The dye was then added 

to the solution, calculated according to the protocol, and left to react for 1 hour 

at room temperature protected from the light. Any non-reacted dye was 

removed through dialysis against PBS for 3 hours exchanging the PBS after every 

hour. The final product was aliquoted and stored at -20°C until required. These 

could then be used to investigate growth factor release and diffusion.  

2.2.6 Statistical analysis 

All statistical analysis mentioned in this work was carried out using GraphPad 

Prism 6 software. Differences seen amongst data sets are represented by p-

values which are represented by Asterix meaning the following; * p < 0.05, ** p < 

0.01, *** p < 0.005 and **** p < 0.001. Graphs produced to represent data are 

produce from 3 repeats and show the mean +/- standard deviation (SD) unless 

stated otherwise. The test used to analyse each data set is stated along with the 

results due to variations in sample number and the normal distribution of data. 

D’Agostino-Pearson Normality test was used to determine the distribution of the 

data and the appropriate test chosen depending on the result. For normally 

distributed data ANOVA with Tukey multiple comparison test or T-test were used 

to compare data sets. Kruskal-Wallis test was used when the sample number was 

too low to determine normal distribution or data did not fit normal distribution.   

 

  



Chapter 3  48 
 

 

Chapter 3 Hydrogels  

3.1 Introduction 

Hydrogels are defined as materials that have both a solid and liquid phase, a gel 

is formed when the liquid phase is immobilised within a network of fibres 

(Cacopardo et al., 2019). A technique used to measure the mechanical 

properties of soft materials such as hydrogels is rheology. Through rheology we 

are able to measure both the solid and liquid phase of a material and gain 

information such as stiffness, viscosity and strength (Yan and Pochan, 2010). 

Rheology can also be used along with nuclear magnetic resonance (NMR) to 

assess the gelation kinetics (Figure 3.1) of hydrogels. NMR measures the 

molecular assembly while rheology can measure the structural assembly that 

occurs when the fibres that are produced entangle and immobilise water forming 

a hydrogel (Raghavan et al., 1996; Escuder, LLusar and Miravet, 2006).  

 

Figure 3.1. Methods to determine gelation kinetics. 
This figure is a diagrammatical representation for how Rheology and NMR can be used to measure 
the stages of gelation. 

 

Rheology is a technique which can be used to measure the storage modulus (G¢) 

and the loss modulus (G¢¢) which represent the solid and liquid phases of a 

material respectively. These can be measured under a controlled strain and/or 

frequency applied through a geometry which either sits in contact with the 

surface or within the gel. As the geometry oscillates applying a set strain and/or 

frequency the gel deforms and recovers, information is gathered on how the gel 

reacts to the oscillations allowing the rheometer to determine values for G¢ and 

G¢¢ along with other properties. There are many different geometries including 

Kinetics of Gelation

+

Nuclear magnetic resonance (NMR)
Molecular assembly / fibre formation

Rheology
Structural assembly / Entanglement

Gelation kinetics
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parallel plates and vane & cup, which have been used to gather the results 

discussed later in this chapter, among others. Each geometry comes with 

different limitations and advantages therefore the specific geometry used can be 

chosen depending on the material that is to be measured.  

Parallel plate geometry can be used for measuring the properties of hydrogels, 

this method involves a stationary lower plate and an adjustable upper plate that 

can vary in size, which rotates according to the test being performed (Figure 

3.2). Advantages of parallel plate geometries include the variability of the upper 

plate, volume of gel required is lower than using vane & cup. This can influence 

the cost of an experiment and the use of sandblasted plates to avoid slipping, 

which can occur when the plate moves without moving the gel (Mezger, 2006). 

Despite this, slipping can still be a disadvantage to the parallel plate geometry if 

the material itself is particularly slippery. Another disadvantage is the specific 

size and formation of the material. The ideal sample fills the gap between the 

plates without spilling out or not meeting the sides, which may cause some 

inaccuracies, and is flat on the top for contact with the upper plate. Lastly, 

transferring the sample to the lower plate can be problematic depending on the 

sample being measured. 

Vane & cup geometry has also been used in previous studies to measure the 

properties of hydrogels (Draper et al., 2015; Akhtar et al., 2018). This involves a 

stationary cup that can be inserted into the base of the rheometer with a vane 

that can be lowered into this cup before rotating according to the test required 

(Figure 3.2). By lowering the vane into the cup, it is immersed in the sample 

removing the need for a specific shape and a flat surface to the sample giving 

this geometry an advantage over the parallel plate.  Other advantages include 

the use of a removable cup in which the sample can be formed therefore 

allowing the sample to be placed in the rheometer without the need to remove 

it reducing the chances of disruption and slipping (Mezger, 2006). Again, slipping 

can still be a problem while using vane & cup and can be further avoided by 

sanding the inside of the cup to increase roughness. The biggest disadvantage is 

the volume of material required as the vane has to be fully immersed in order to 

get an accurate measurement, this is mostly a problem when measuring 

expensive materials. Choosing the best geometry will be dependent on the 
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material being measured, in particular looking at if it is easy to produce flat gels 

within a mould and the expense of the materials used. 

 

Figure 3.2. Rheology geometries: parallel plate vs vane & cup. 
Figure shows a schematic drawing of the parallel plate geometry (top left) and the vane & cup 
geometry (bottom left) and pictures of the instruments used with parallel plates (top right) and a 
vane (bottom right). 

 

As previously mentioned, another technique that can be used when looking at 

the characteristics of hydrogels is nuclear magnetic resonance (NMR). NMR works 

through applying an external magnetic field which aligns the spin of the nuclei 

that are in their lower energy state. A radio frequency is applied (Figure 3.3) 

that is able to shift the nuclei to their higher energy state where the spin is 

opposite to that of the external magnetic field. The energy gap between the two 

states corresponds to the frequency and can be used to analyse the molecules 
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present. There are different nuclei that can be used for NMR analysis the most 

common being proton or 1H NMR (Zia et al., 2019). 

 

Figure 3.3. Basic set up for nuclear magnetic resonance. 
This figure shows a schematic drawing of the basic structure of an NMR machine, N and S 
represent the magnet defining north and south respectively. 

 

Through NMR the molecular composition of a solution can be quantified. This can 

be used for determining the purity of a known sample or discovering the content 

of unknown samples. This can also allow gelation to be observed as larger 

molecules greater than approximately 25 kDa are invisible to standard NMR 

(Foster, McElroy and Amero, 2007). Due to this, the gelator peaks seen in NMR 

reduce in size as the chains forming become too large to detect. By taking 

measurements over a period of time this method is able to show the ratio of 

assembled versus unassembled gelator (Hirst et al., 2008). Through comparing 

this over time the kinetics of network formation are able to be shown (Rhoner et 

al 2015). 

For hydrogels used in cell in vitro/ in vivo models, it is important to know the 

mechanical properties of the network as this can have an influence on cell 

behaviour. The aim of the work in this chapter was to measure the properties of 

the PEG hydrogel matrix to be used to create the in vitro niche model in order 
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to show tunability helping to understand what cells encapsulated in the system 

will experience. By using tuneable hydrogels to mimic in vivo properties of the 

bone marrow we can better understand how changes influence the cells within 

this environment.  
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3.2 Methods 

3.2.1 Nuclear Magnetic Resonance (NMR) 

NMR was used to study the formation of PEG hydrogels at a molecular level, this 

was done for gels formed at pH 4.5 and pH 3.5, gels at pH 7.4 formed instantly 

and could not be measured. The 1H NMR spectra were recorded using a Bruker 

Avance III 500 MHz spectrometer with the temperature internally controlled. 

Samples were run in D2O (deuterated water) with DCL (deuterium chloride) to 

reduce the pH and ethanol (2 µL/mL) added as an internal standard. For the 

kinetic measurements, ethanol was added to 1 mL of each solution, PEG dithiol 

and PEGMAL in an NMR tube. Each of these solutions were measured alone in 

order to record a standard measurement prior to mixing (i.e. a time zero 

measurement). After the standard measurement was obtained, the two solutions 

were mixed into a new NMR tube and inserted into the spectrometer. Due to the 

experimental limitations, there was a time delay of around 5 minutes from 

mixing of the two samples to the first sample acquisition. Spectra were recorded 

every 5 minutes until change in the gelators’ proton peaks were no longer 

detectable. This took around 5 hours depending on the sample. Examples of the 

spectra obtained of the proton environments are shown in Figure 3.4.   
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Figure 3.4. Example of a 1H NMR spectra. 
Figure shows a 1H NMR spectra recorded of a) PEG dithiol b) PEGMAL and c) both PEG dithiol 
and PEGMAL. The methyl groups from the ethanol standard against which peaks of PEG dithiol 
and PEGMAL are integrated are just over 1 ppm. The proton environments labelled PEG dithiol 
was used to determine the percentage assembly over time.  

 

The proton environments identified for PEG dithiol (highlighted green in Figure 

3.4) were used to determine the percentage assembly overtime as the peaks 

were reduced during gelation. Once there was no more change in the peaks 

observed this was assumed to be full molecular assembly and the data collected 

was normalised with respect to this.  

3.2.2 Rheology 

To form gels for rheology, first a custom cylindrical mould was created using 

polydimethylsiloxane (PDMS) with an inner diameter of 16 mm and 2 mm thick. 

Moulds were fixed to a glass slide using vacuum grease producing an airtight seal 

between the mould and the slide, this prevents the gels solution from leaking 

during gelation. Hydrochloric acid (HCl) was added to PBS to produce a low pH 

solution, pH 3.5, slowing the gelation to compare the properties with those 
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formed at pH 7.4 (unaltered PBS). The pH value was lowered to slow the 

gelation reaction in order to produce a gel with a flat upper surface, which is 

advantageous for the parallel plate methodology. Due to difficulty moving the 

gels from the slide to the rheometer plate, the glass slides were placed on to 

the rheometer plate for measuring, held in place with adhesive tape, and then 

the moulds removed once the gel was in place.  

Parallel plate measurements were carried out using a 25 mm sandblasted plate 

with a constant height of 2.8 mm set for each of the samples and a normal force 

set at 0 N. All the gels analysed through this methodology were 5% PEG (exact 

composition seen in Table 3.1) with a total volume of 350 µL (before any 

swelling). For swollen conditions, 200 µL PBS was placed on top of the gels 

overnight and any excess that was left was removed before measurements were 

taken. For unswollen measurements, gels were stored in petri dishes that 

contained water soaked tissue below the slides to prevent any evaporation 

before measuring. For the time sweep measurements the solution was added to 

the rheometer as liquid straight after being mixed and left to form a gel while 

measurements were carried out. 

Table 3.1. PEG concentration in 3, 5 and 10% hydrogels. 
PEG gel condition PEGMAL (mg/mL) PEG dithiol (mg/mL) 

3% PEG 23.5 4.8 

5% PEG 40 8.2 

10% PEG 83 16 

 

For the vane & cup rheology, a cup base was fitted on the rheometer that 

allowed a Sterilin sample vial to be used and a measuring vane. A volume of 2 

mL of gel was required in order to fully immerse the vane. To form these, 

PEGMAL and PEG dithiol solution were added directly into a Sterilin vial 
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producing gels instantly. The vial containing the gel was placed directly into the 

rheometer cup and held in place by blue tac to prevent any movement during 

the experiment. Gels were produced with different concentrations of PEG; 3%, 

5% and 10% in order to assess the effect on gel stiffness. 

Rheological measurements were all carried out using the same Anton Parr 301 

rheometer. A frequency sweep was carried out at a strain of 10% and a 

frequency of 1 – 100 rad/s. Strain sweep tests were all performed at an angular 

frequency of 10 rad/s and a strain of 0.1 – 5000 %. Time sweeps were measured 

with an angular frequency of 10 rad/s with a strain of 0.5 % taking a reading 

every 30 seconds. All experiments were performed at 25 °C. Data was analysed 

using Origin software to produce graphs. Further analysis was used to calculate 

the Young’s modulus using Equation 3.1 where E is the Young’s modulus, G* is 

the complex modulus and ʋ is the Poisson’s ratio (Lee, Zhang and Ryu, 2018). 

𝐺∗ =
𝐸

2(1 + 𝑣) 

Equation 3.1 Determining Young’s modulus. 
The above equation was rearranged in order to calculate a Young’s modulus for the gels using 
rheological data. 

 

In order to calculate the Young’s modulus data for the G* was taken from the 

linear viscoelastic region of the graph highlighted in Figure 3.5. Poisson’s ratio is 

assumed to be 0.5 for hydrogels (Anseth, Bowman and Brannon-Peppas, 1996). 

These could then be used to find the Young’s modulus for each gel. From the 

rheology data we can also determine the strength of the gel through its breaking 

point (Figure 3.5). 
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Figure 3.5 Example of a graph produced through rheology. 
This figure highlights the different areas seen on a rheology graph with linear viscoelastic region 
(green), the creep zone (yellow) and the breaking point (red). The breaking point is used to 
determine the strength of a gel while storage modulus can be used to determine the stiffness of the 
gels. 

 

3.2.3 Swelling  

The swelling of several gel compositions was assessed, these included differing 

amounts of PEGMAL (3 %, 5 % and 10 % (w/V) Table 3.1) and differing VPM 

crosslinker content (Table 3.2). Only 5 % PEG gels were included in condition 

containing VPM.  

Table 3.2. VPM : PEG dithiol ratio in hydrogels. 
Gel condition  VPM (mg/mL) PEG dithiol (mg/mL) 

0 VPM 0 8.2 

0.25 VPM  2.05 6.15 

1 VPM 8.2 0 
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All gels were formed in the end of a 1 mL syringe before being transferred to an 

Eppendorf tube for weighing. The gels were then swollen for ~24 hours in excess 

PBS. After swelling PBS was removed and the gels were weighed once again. The 

gels were then freeze dried to remove any remaining solution overnight for 

approximately 16 hours before a final weighing. This was then used to compare 

to the theoretical dry weight which was calculated from stock solution 

concentration and volume required. 

3.2.4 Cell viability 

Cell culture is carried out as described in chapter 2 (2.2.1). 

To produce the data shown below 3 biological replicates were analysed for each 

condition with multiple images taken to get an average viability for each 

sample. This was done through image J and is explained in general methods 

chapter 2 (2.2.2).   
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3.3 Results 

3.3.1 The effect of frequency on stiffness 

In order to determine the parameters of the rheological tests it was important to 

first ensure that the frequency chosen did not influence the results. This is due 

to some materials undergoing changes to their properties when different 

frequencies are applied for example frequency hardening where the G¢ increase 

with increasing frequencies. To do this, a frequency sweep was run, showing no 

significant change in G¢ over a wide range of frequencies (Figure 3.6). Given 

these results the gels were determined to be frequency independent meaning 

the properties do not change under different frequencies. A frequency of 10 

rad/s was chosen to carry out measurements through strain and time sweeps. 

 

Figure 3.6 Frequency effect on stiffness 
This figure shows the G¢ (solid) and G¢¢ (hollow) over a range of frequencies at a consistent strain. 
The G¢ stays consistent throughout varying frequencies suggesting that the gel is frequency 
independent.  
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3.3.2 The effect of pH on gelation and stiffness 

When preparing gels for parallel plate rheology it was difficult to produce the 

flat upper surface required to get the most accurate readings. This was due to 

the speed of the Michael-type addition reaction where gel is formed instantly as 

the solutions are mixed (in cystine free media or PBS) which is good for 

encapsulating cells. This, as shown in Figure 3.7, produces a gel with a very 

uneven surface or in some case where the solution didn’t mix properly when 

added the gels were completely misshapen. 

 

Figure 3.7. PEG gels formed at pH 7.4 vs pH 3.5. 
This figure shows the ability to create a flat gel (right) when lowering the pH of the reaction while at 
higher pH an uneven gel surface is created (left). 

 

In order to overcome this problem, the pH of the gelator solutions were lowered 

under the assumption this would alter the reaction taking place and allow slower 

gelation. The ability to slow the reaction through changing the pH allowed the 

production of gels with a flat surface (Figure 3.7) ideal for using a parallel plate 

geometry on the rheometer. This was investigated using NMR to see the effect 

on the molecular assembly of the gels and time sweep rheology to see the effect 

on structural assembly. These results can be seen in Figure 3.8, the dashed lines 

were added to highlight correlation between the end of molecular assembly and 

beginning of structural assembly of the network. It is at the point of full 

molecular assembly that a network able to immobilise water begins to form 

creating a hydrogel. 
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Figure 3.8. Assembly of hydrogels overtime shown through NMR and Rheology. 
Figure showing the assembly of PEG hydrogels as a function of time through 1H NMR (B) and 
rheology using a time sweep (A) at pH 3.5 (black) and pH 4.5 (red). For the rheological data the 
storage modulus is represented by the solid circles while the loss modulus is represented through 
the hollow circles. 

 

However, after testing it was shown that this slower gelation caused the 

production of softer gels (Figure 3.9) compared to those produced at pH 7.4. The 

softer gels, with a Young’s modulus ~ 150 Pa, did not represent those used for 

the final cell model and therefore slowing the reaction could not be used as a 

method for creating flat gels to carry out rheology. 
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Figure 3.9. Rheology pH 3.5 vs pH 7.4 
Figure showing the storage and loss modulus measurements for 5% PEG hydrogels at pH 7.4 
(Green) and pH 3.5 (Black) using parallel plate rheology. Showing the mean n=3 +/- SD. 

 

Due to the uneven surface produced by the faster reaction (Figure 3.7) that 

occurs at pH 7.4 a vane and cup geometry was used for further rheological 

measurements. As the vane is fully submerged in the gel as measurements are 

taken this technique is not influenced by the uneven surface. Results for the two 

different geometries were compared to assess if the uneven surface would have 

an influence on the stiffness measured, these are shown in Figure 3.10 below. 
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Figure 3.10. Parallel plate vs vane & cup rheology at pH 7.4. 
This figure shows that there is a significant difference between these techniques when comparing 
the same gels **** p < 0.0001 using Kruskal-Wallis in prism software. Graph shows mean +/- SD 
along with individual readings. 

 

A significant difference was seen between the Young’s modulus calculated for 

each technique. The Young’s modulus for the vane & cup was significantly higher 

than that for parallel plates with means of 2505 Pa and 2098 Pa respectively. To 

get results comparable to those seen in cell culture conditions gels must be 

produced at pH 7.4 as a change in pH and therefore the rate of reaction 

significantly reduces the stiffness. The vane & cup technique is thought to be 

more accurate for these measurements as it cannot be influenced by the uneven 

surface. Due to these two factors the vane and cup technique was used for all 

further rheological measurements. 

3.3.3 Concentration of PEG effect on stiffness 

The concentration of PEG within the gels was altered between 3, 5 and 10% 

weight/volume (Table 3.1) to assess the effect on gel stiffness. The G¢ and G¢¢ of 

the gels was measured through rheology using a vane & cup geometry showing an 

increase in the G¢ with the increase in PEG concentration along with the small 

scale of any deviations between repeated gels suggesting a level of 

reproducibility in the formation of the gels for each condition (Figure 3.11A).  

The storage modulus measurements, within the viscoelastic region, at a strain of 
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10% were extracted and plotted against percentage PEG showing a positive 

linear relationship (Figure 3.11B). This linear relationship shows the tuneability 

of stiffness in a PEG system and should allow gels to be made at a required 

stiffness. A significant difference was seen between the Young’s modulus of all 

the gel conditions (Figure 3.11C). With a mean stiffness of 4433Pa, 2505Pa and 

934Pa for gels of 10, 5 and 3 % gels respectively. 

 

Figure 3.11. The effect of PEG concentration on stiffness. 
This figure shows 3% w/v (blue), 5% w/v (purple) and 10% w/v (orange) gels measured through 
rheology n=3 (A) and the storage modulus of each at 10% strain to highlight the relationship 
between this and PEG % w/v. The Young’s modulus calculated from the rheology data within the 
viscoelastic region (C) shows a significant different between all gel conditions using a Kruskal-
Wallis statistical test in prism software where **** is p£0.0001. 

 

3.3.4 Swelling Behaviour 

The swelling assay (3.2.3) revealed no significant differences in the gel swelling 

for varying VPM % (Figure 3.12). This is important to show that the addition of 

the degradable crosslinker (VPM) is not changing the ability for the gel to hold 

water. This was not the case when comparing the amount of PEG in the gels 

where a significant difference was seen between the 3% PEG gels and the 10% 
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PEG gels with swelling varying from ~50% to ~150% relative to initial gel mass. 

The 5% PEG gels showed no significant differences between the other 2 

conditions (Figure 3.12). This shows that the volume of swelling is varied by the 

amount of PEG in the gel. 

  

Figure 3.12. Swelling behaviour of gels. 
Figure shows the percentage of swelling at ~24 hours with differing VPM crosslinker content and 
the percentage swelling with various PEG concentrations. Both are normalised to the initial gel 
mass with n=3 +/- SD. *p ≤ 0.05 Kruskal Wallis multiple comparison test carried out on all data 
within graphs. 

 

No significant difference was found between any of the calculated theoretical 

dry mass and the experimental dry mass for any of the gel conditions. Though 

not significantly different the experimental weight was higher in every case 

(Table 3.3) than the theoretical, this is thought to be due to some inefficiency in 

the drying.  

Table 3.3. Experimental vs theoretical dry mass of gels with varying PEG volumes. 
Gel Condition Experimental Dry Mass (mg) Theoretical Dry Mass (mg) 

3% PEG 1.60 ± 0.1 1.42 

5% PEG 2.57 ± 0.29 2.41 

10% PEG 5.03 ± 0.23 4.95 
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If used as a model where cells are encapsulated into the gels during gelation, 

they will experience any changes in the properties that occur over the gelation 

period. This includes any changes in stiffness that occur during swelling of the 

gels after gelation. The differences in swollen and unswollen gels were also 

assessed by rheology using parallel plates. These results are shown in Figure 

3.13. Effect of swelling on the stiffness of gels. Here, we saw that for tests 

carried out at pH 3.5 a change in the storage modulus was observed between the 

swollen gels and the unswollen gels increasing as the gels are swollen. However, 

using gels at pH 7.4 the storage modulus was consistent for both swollen and 

unswollen conditions. 

 
Figure 3.13. Effect of swelling on the stiffness of gels. 
This figure shows the rheology measurements for swollen and unswollen gels at pH 7.4 and pH 3.5 
n=3 +/- SD (A) and the Young’s modulus (B) calculated from measurements within the viscoelastic 
region showing mean +/- SD ****p < 0.0001 using Kruskal-Wallis test. 

 

3.3.5  Viability of Cells in Gels 

With the final goal for the gels to be used for an in vitro bone marrow niche 

model, cells were introduced to the gels under various conditions. Two cell 

types were used: pericytes and MSCs. Pericytes were investigated here to 

determine if they would be a more viable cell type for this model, as precursor 

cells for MSCs they would have the same capabilities within the model as MSCs. 

Pericytes were seeded in gels with and without the ECM protein FN to 

investigate if the presence of the protein influences cell viability (Figure 3.14). 

Once quantified it was found that due to the high variability no significant 
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difference was seen in the viability between gels with and without FN, though it 

is notable that while some gels without FN had good cells numbers there were 

some with no viable cells at all. The average viability for the 2 conditions was 

also notably different with the presence of FN showing an average of 65% while 

with no FN the average was 46%. 
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Figure 3.14. Effect of FN pericyte viability in gels. 
This figure shows examples of the images acquired while investigating the effect of FN within the 
gels on cell viability. The graph shows mean +/- SD viability quantified from the images gathered 
from 3 biological replicates and analysed using image J. A no significant difference is observed 
between the conditions determined by Kruskal-Wallis using prism software. 
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A reduction in seeding density was investigated along with a longer time point to 

see if the cells would start to recover over time (Figure 3.15). Again, the 

average viability was low with the longer time point showing a drop in viability 

though not statistically significant. For the lower seeding, a density of 50,000 

cells/gel was used. The viability increased to 50% compared to 40% viability 

obtained for the higher density seeding of 100,000 cells/gel. However, 50% 

viability was considered too low to carry out further experiments on this model.  

 

 Calcein AM Ethidium 
Homodimer-1 

Combined 

 

50,000 

Pericytes 24 

hours 

   

 

100,000 

Pericytes 24 

hours 

   

 

100,000 

Pericytes 4 

days 

   



Chapter 3  69 
 

 

 

Figure 3.15. Live dead results for pericytes in gels 
This figure shows example images taken for each condition covered looking at pericytes in 5% 
PEG gels with FN.  The graph shows mean +/- SD viability quantified from the images gathered 
from 3 biological replicates and analysed using image J.  A significant difference is observed 
50,000 and 100,000 cells at 24 hours some of the conditions where *p £ 0.05.  

 

For MSCs seeded in gels at 20,000, 50,000 and 100,000 cells/gel no significant 

difference was observed at a 24 hour timepoint (Figure 3.16). Though observing 

a higher average viability than seen with pericytes, the viability was still far 

below that desired for a functional model.  
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Figure 3.16. Live dead results for MSCs in gels (24 hours) 
This figure shows examples of the images acquired while investigating the effect of MSC seeding 
density on cell viability in the gels over 24 hours. The graph shows mean +/- SD viability quantified 
from the images gathered from 3 biological replicates and analysed using image J.  A no significant 
difference is observed between the conditions determined by Kruskal-Wallis using prism software. 
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At the 7 day time point again there was no significant difference to the 3 

seeding densities tested for MSCs (Figure 3.17). With the average viability 

dropping compared to those seen at 24 hours showing no recovery of the cells 

over time.  

 Calcein AM Ethidium 
Homodimer-1 

Combined 

 

20,000 MSCs 
7 days 

   

 

50,000 MSCs 
7 days 

   

 

100,000 MSCs 
7 days 

   

 

2D MSCs 7 
days 

   



Chapter 3  72 
 

 

 

Figure 3.17. Live dead results for MSCs in gels (7 days). 
This figure shows examples of the images acquired while investigating the effect of MSC seeding 
density on cell viability in the gels over 24 hours. The graph shows mean +/- SD viability quantified 
from the images gathered from 3 biological replicates and analysed using image J.  A no significant 
difference is observed between the conditions determined by Kruskal-Wallis using prism software. 

 

When investigating the gelation temperature effects on viability no statistical 

significance was shown between those where cells were combined with the pre-

gelation mixture and gelled at room temperature and those gelled at 37°C 

(Figure 3.18). The average viability for room temperature gelation was higher 

though the results were more variable with more spread maximum and minimum 

observed for this condition. 
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Figure 3.18. MSC viability during room temperature gelation vs 37°C gelation. 
This figure shows examples of the images acquired while investigating the effect of incubated 
gelation on the cell viability. The graph shows mean +/- SD viability quantified from the images 
gathered from 3 biological replicates and analysed using image J.  A no significant difference is 
observed between the conditions determined by Kruskal-Wallis using prism software. 

 

2D controls that were run alongside experiments to ensure that the cells were 

not influenced by any other factors other than the gels can be seen in Figure 

3.16 and Figure 3.17, though not shown on the graph, viability for these controls 
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3.4 Discussion 

 

Figure 3.19 Michael addition of 4-arm PEGMAL and PEG dithiol at physiological and acidic 
pH. 
Reaction pathway with curly arrow annotation of the Michael addition of 4-arm PEGMAL with PEG 
dithiol at physiological pH (A) and an acidic pH (B). At an acidic pH the presence of the enol 
version of 4-arm PEGMAL and the protonated version of PEG dithiol inhibits the Michael addition, 
slowing the rate of reaction. 

 

The ability to slow gelation using pH is due to a change in the chemical reaction. 

At physiological pH, gelation occurs instantly through a Michael type addition 

reaction; this is ideal for forming gels for a cell based model (Rizzi and Hubbell, 

2005; Nair et al., 2014). At physiological pH the maleimide group is in its keto 

form, when the pH is lowered an equilibrium is created between the keto 

maleimide and its enol tautomer. The enol tautomer is unreactive to the thiol 

group found on the PEG dithiol. An equilibrium is also formed between the PEG 
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dithiol and its protonated version which is unreactive to the 4-arm PEGMAL, this 

only occurs at an acidic pH (Figure 3.19). Through rheology and NMR (Figure 3.8) 

we can see that the reaction is slowed down on a molecular level when the pH 

of the gelator solution is lowered. We can also see through rheology that the 

changing of the pH and therefore the rate of the reaction alters the final 

stiffness of the gel (Figure 3.9). From this we can conclude when working with a 

PEG system similar to that outlined here, the pH must not be altered from that 

appropriate for the work planned. Changes in pH have previously been noted to 

change the rate of thiol reaction, however these reports did not cover changes 

outside the physiological range and the effect on the physical characteristics 

(Rizzi and Hubbell, 2005; Fu and Kao, 2011; Nair et al., 2014).  

 In Figure 3.10 there was a significant difference observed in the stiffness when 

comparing the geometry used when measuring fast forming gels (pH 7.4) with an 

uneven surface. The parallel plate can be influenced by an uneven contact with 

the gel as this causes uneven forces to be applied creating inaccuracies in the 

calculation performed by the rheometer. As the vane & cup geometry does not 

contact the surface of the gels with the measuring surface but rather takes 

measurements from within the gel the uneven surface has no influence on the 

measurements, therefore these can be assumed to be more accurate. This led to 

the conclusion that for gels that form quickly and produce uneven surfaces the 

vane & cup geometry should be utilised over parallel plates where possible.  

It is important to have a system with tuneable properties if we wish to mimic 

different tissues of the body or diseased tissues using comparable models. An 

example for this is the increase in stiffness commonly seen with cancerous or 

precancerous tissues compared to the healthy tissue (Huang and Ingber, 2005; 

Plodinec et al., 2012). I have shown that the PEG gels I am using for my model 

can have varying stiffness dependent on the amount of PEG in the gel’s 

composition. Figure 3.11 shows a range in stiffness between ~1kPa - ~4.5kPa for 

gels of 3 – 10% PEG though it is notable that this range could be extended. As my 

model is aimed at the bone marrow niche I did not investigate outside this range 

and chose to work with 5% PEG gels which lie within the range of the bone 

marrow seen in literature which is said to be <3kPa (Choi and Harley, 2017). It is 
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also shown in the figure that there is a positive linear relationship between the 

storage modulus and the amount of PEG. 

Through changes in the amount of PEG changes in swelling properties were also 

observed (Figure 3.12). A higher PEG concentration leads to a higher percentage 

of swelling suggesting that increasing the PEG content gives the gels a higher 

capacity to hold water. It is important to understand the swelling properties of 

the gels as any cells within the gel will experience this and the volume of the 

final gel will differ. If the volume of the final gel differs this may have to be 

taken into account for calculating the seeding density of cells in the model or 

the concentration of any additional factors. Understanding swelling allows the 

model to be kept consistent and comparable. Swelling has not posed a problem 

or a benefit to this model though knowing the properties have allowed accurate 

cell density and growth factor concentration calculations. While looking at the 

inclusion of a degradable crosslinker (VPM) there was no significant effect shown 

on the swelling ability of the gels (Figure 3.12). It is important to consider 

degradability when looking at cell models as it allows them to remodel and 

create their own matrix (Anderson et al., 2011; Madl et al., 2017). Therefore, 

for the final model 25% of the crosslinker used to form the gels was VPM allowing 

degradability as shown previously in our group (Trujillo et al., 2020). 

As the aim of the project is to produce a bone marrow niche like model in vitro 

for investigating cell behaviour in normal and diseased states focus moved to 

seeding cells within the PEG gels. For initial cell work the focus was on ensuring 

that healthy cells could survive within the gels this was done by looking at basic 

live/dead staining. Cell types chosen for the initial cell work were pericytes, a 

progenitor cell to MSCs and fully formed MSCs as these are a key component to 

the bone marrow niche and one of the two stem cell types that reside there 

(Crisan, Yap, Casteilla, C. W. Chen, et al., 2008; Frenette et al., 2013; Morrison 

and Scadden, 2014). The model was unable to support cells as results for both 

cell types within the gels showed poor viability, up to ~50% and ~65% 

respectively, over various time points (Figure 3.15 & Figure 3.16). Due to 

pericytes showing a lower average viability than MSCs the latter was chosen to 

continue investigating the viability within the gels. Many different conditions 

were considered including cell density, removal of FN and the gelation 
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temperature but showed no significant increases for the viability (Figure 3.14, 

Figure 3.15, Figure 3.16, Figure 3.17 & Figure 3.18). The average viability over 

the conditions tested varied from ~35 – 70% with large variation within the same 

conditions; poor viability has been seen in the literature and was overcome 

through the introduction of peptide sequences to functionalise the gels (Benoit, 

Durney and Anseth, 2007; Salinas and Anseth, 2008). 

Due to the low viability observed when cells were seeded within the gels a new 

model had to be considered in order to continue. Examining the differences 

observed in the cell morphology where cells in 2D culture are spread flat 

adhered to the surface of the tissue culture vessel while those in the gel are 

small and rounded. This suggested that the inability to adhere and spread within 

the soft gels may be a reason behind the low viability. The low stiffness of the 

gels though it well represents the bone marrow stiffness it does not represent 

the stiffer surface of the endosteum one of the locations where MSCs are found 

within the marrow cavity. For these two reasons the model was altered to test 

seeding cells under gels showing a much higher consistent viability up to 100% 

viable cells (Figure 4.12). By introducing this surface an opportunity arose to 

include surface modifications to the model opening up new possibilities for the 

model. 
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Chapter 4 Surface Modification 

4.1 Introduction 

Polystyrene (PS) is a versatile synthetic polymer with various uses in both 

commercial and medical applications which range from packing materials to 

tissue culture plastics. PS is manufactured through addition polymerisation of 

styrene monomers, producing a polymer comprising of carbon and hydrogen 

molecules in an aromatic ring formation on a hydrocarbon backbone (Figure 4.1). 

PS is commonly used as the base material to manufacture tissue culture plastics 

due to its availability, modification potential, biocompatibility and bioinert 

nature. Various treatments have been developed to enhance cell-material 

interactions when PS is employed in more refined cellular systems (Lerman et 

al., 2018). The most frequently utilised of these treatments is oxygen plasma 

which changes the surface properties by incorporating negatively charged ions 

onto the surface, increasing hydrophobicity and improving cellular surface 

interactions (Ramsey et al., 1984). Notably, this surface modification technique 

is utilised to produce commercially available tissue culture plastics and enhance 

cellular adhesion for culture (Lerman et al., 2018).   

 

Figure 4.1 Chemical structure of PS. 
The figure shows a representation of one monomer unit of PS.  

 

Within the field of biomedical engineering surface modifications are commonly 

implemented in order to aid cellular interactions and function and are often 

refined so as to maintain favourable bulk characteristics of the base polymer. 

These can be as simple as an energetic plasma activation treatment on PS to 

more complex alterations in surface chemistries to influence, induce or drive 
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more complex biological functions. Many methodologies have been developed to 

achieve the appropriate changes to a material to fulfil a specific role each with 

their own benefits and issues (Schwalm, 2007; Sprott et al., 2019). For example, 

within our group several methodologies (as will be detailed below) have been 

developed for the incorporation of Poly (Ethyl Acrylate) (PEA) onto several bulk 

surfaces, providing novel biological interactions to these materials.  

For 2D surfaces such as coverslips, spin coating has been utilised as a technique 

for producing a polymer coating (Llopis-Hernández et al., 2013). Through spin 

coating a thin layer of polymer can be produced on the surface of the coverslip. 

However, this technique is not feasible for coating small materials (smaller than 

the head of the spin coater, ~ 0.5 cm) and/or 3D structures such as the 

microbeads (Corning) proposed for use within this model. PS microbeads (PSm) 

were chosen to create a surface for MSCs to adhere to, their small size (125 µm 

to 212 µm) make them easy to encapsulate within the gel while the shape allows 

cells to adhere over the entire surface, they were also commercially available 

sterilised for cell culture. Due to the limitations of spin coating other methods 

were therefore considered and assessed to find the best option for incorporating 

PEA onto the PSm. 

Plasma polymerisation, via high electrical monomer stimulation, has been shown 

to coat both the external and penetrate the internal surfaces of scaffolds 

(Cantini, Rico, et al., 2012; Llopis-Hernández et al., 2016). This technique has 

previously been used with success to coat decellularised bone fragments for a 

study on regenerating critical sized bone defects by utilising the relationship 

between PEA, FN and growth factors (Cheng et al., 2019). These studies have 

shown the ability to create a coating of PEA on the material surface while 

retaining the functionality of the polymer, maintaining the ability to influence 

FN conformation on the material surfaces. These studies also highlight the 

potential to use plasma PEA coatings for use on osteogenic regenerative 

implants. Despite this there are still disadvantages to modifying surfaces via 

plasma polymerisation. It has to be considered that due to the handling process 

the section of the sample resting on the base of the chamber will be 

unreachable resulting in a section of the material remaining untreated.  
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Due to the potential issues with plasma PEA, chemical surface modification 

techniques were also investigated. Surface Initiated Atomic Transfer Radical 

Polymerisation (SI-ATRP) is a widely used technique for the development of 

materials used for various biomedical applications (Matyjaszewski et al., 2007). 

The process allows control over properties such as functionality and the 

macromolecular structure which are important when designing materials for 

biomedical purposes (Siegwart, Oh and Matyjaszewski, 2012). SI-ATRP works 

through the addition of polymer brushes onto a base polymer backbone adding 

functionality. This is achieved through the immobilisation of an initiator 

molecule onto the base polymer which subsequently reacts with the addition of 

a transition metal catalyst creating a free radical and an oxidised transition 

metal. On the introduction of a monomer polymerisation is triggered by the 

presence of the free radicals and this newly formed polymer chain is bound to 

the base polymer surface in place of the initiator molecule (Matyjaszewski and 

Xia, 2001; Matyjaszewski et al., 2007).  

SI-ATRP has previously been utilised to incorporate PEA onto poly l-lactic acid 

(PLLA) surfaces, promoting the formation of fibronectin networks and 

subsequently enhancing cellular adhesion and differentiation on these surfaces 

(Sprott et al., 2019). PS has been used in SI-ATRP systems, however these 

studies predominantly use the process to graft PS onto other base materials 

(Jeyaprakash et al., 2002; Morandi, Heath and Thielemans, 2009; Kumar et al., 

2016) rather than modifying a PS base with another polymer. However, utilising 

this system we aim to incorporate functional PEA brushes onto PS surfaces, 

chemically bound to the base polymer in a homogenous coverage. The more 

complex process of SI-ATRP compared to plasma treatment also introduces 

higher likelihood of unwanted damage to the base polymer due to the chemicals 

required and the heat produced through the reaction. 

Another chemical based method which is used to modify surfaces is UV 

polymerisation or light controlled radical polymerisation. UV polymerisation is 

commonly used in biomedical applications for initiating crosslinking to produce 

hydrogels (Mellott, Searcy and Pishko, 2001) but can also be used as a surface 

modification technique (Chen, Zhong and Johnson, 2016). For the process to 

work a photoinitiator is required, this acts similarly to the initiator in the SI-
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ATRP process and is introduced to the base material in the initial stage of the 

process. Once incorporated within the surface this then reacts under UV 

irradiation producing free radicals that trigger the polymerisation of monomer 

present in the surrounding solution. The benzoyl group is known to be a powerful 

initiating species making benzophenone (BPO) a good candidate as a 

photoinitiator (Decker, 1996). BPO has been commonly utilised for surface 

modifications as well as bulk polymerisation of various polymers including 

methyl methacrylate (MMA) and PEA (Achilias and Sideridou, 2002; Lozano Picazo 

et al., 2015). In light driven polymerisation, parameters such as the duration of 

UV treatment and monomer concentration allows control of the resulting 

polymer chain length (Chen, Zhong and Johnson, 2016). Additionally, coverage 

or patterning can be modulated by defining the UV exposure areas this can also 

be viewed as a disadvantage when working with 3D structures as areas may be 

inaccessible to the light source. All these factors along with the simplicity of the 

process make UV polymerisation a good candidate for our surface modification. 

The aim of the work outlined in the following chapter was to find the most 

effective and efficient way to coat PSm in PEA. Various methodologies were 

chosen from established surface modifications techniques available and assessed 

by evaluating the chemical, topographical and biological variations within 

certain parameters. This aimed to establish which technique would provide the 

best coverage and functionality of PEA and therefore be optimal for use within 

the niche model. 
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4.2 Methods 

The methods for surface modifications investigated in this chapter SI-ATRP, UV 

polymerisation, plasma polymerisation and spin coating are described in Chapter 

2 (2.2.3). For ease of handling and to better assess any damage caused by the 

process’s polystyrene pellets (PSp) were used, rather than microbeads (PSm) due 

to the larger size for SI-STRP and UV treatments.  These PSp were also dissolved 

in toluene (12% w/v) and spin coated onto surfaces for flat 2D analysis used for 

atomic force microscopy (AFM) and water contact angle (WCA). These 2D 

samples allowed for comparison of PS surface modification to previous studies.  

4.2.1 Imaging FN networks 

AFM was used to visualise the surface coating and the formation of FN 

nanonetworks. FN protein was adsorbed onto the surface of PEA coated 

coverslips for 10 minutes at room temperature at a concentration of 20 µg/mL. 

AFM was used in AC mode (Nanowizard-3 Bioscience AFM, JPK) to obtain height 

images of the PEA samples both with and without FN adsorbed. The cantilevers 

had a resonance frequency of 75 kHz and a force constant of 3 N m-1 (MPP-

21120, Bruker). Images were processed using JPKSPM data processing software, 

utilising a polynomial filter to normalize images. 

FN (Sigma) tagged using DyLight 488 NHS Ester (ThermoFisher) following the 

manufacturers protocol was used to confirm FN adsorption on PEA coated PSm 

and a control spin coated PEA glass coverslip. These were then imaged at 40x 

magnification on a ZEISS AxioObserver Z.1. This could not image specific 

networks but could confirm successful adsorption of FN. 

4.2.2 Water Contact Angle 

WCA measurements were taken using a Theta Optical Tensiometer (Biolin 

Scientific, Sweden) for all surface modification methods and controls. These 

were taken as 3 measurements at different locations on each sample with 3 

samples for each condition. Static contact angles were measured by dropping 3 

µL of deionised water onto the sample, contact angles were then recorded by 
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the tensiometer. Angles that were greater than 90° indicate a hydrophobic 

surface while angles less than 90° show a hydrophilic surface (Figure 4.2). 

 

Figure 4.2 Diagram of WCA on hydrophobic vs hydrophilic surfaces 
This shows how the tensiometer measures the contact angle produced by the water droplet on the 
material surface.  

 

4.2.3 Fourier-Transform Infrared Spectroscopy 

Fourier-Transform Infrared Spectroscopy (FTIR) was performed to characterise 

the bulk chemical composition of samples before and after surface 

modifications. Initial blank scans were taken to correct for air conditions and 

any background signals produced. Surface scrapings were taken from samples 

and scanned between the range of 650 – 4000 cm-1 using an Agilent Cray 630 

spectrometer. The resulting data was then analysed using GraphPad Prism to 

highlight any changes created through the surface modification process.  

4.2.4 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) was used to define the chemical 

composition of the top £ 10 nm of the of sample surfaces. All XPS analysis was 

performed on a NEXSA spectrometer (ThermoFisher Scientific) using a micro-

focused monochromatic Al X-ray source (19.2 W) over an area of ~100 µm. Each 

sample was analysed at 3 points or in the case of the PSm due to their small size 

3 individual beads were measured. XPS data collection was performed at the 

EPSRC national facility for XPS (‘Harwell XPS’), operated by Cardiff University 

and UCL, under contract No. PR16195. Survey scans were recorded at pass 

energies of 200 eV while high resolution scans were recorded for oxygen, carbon, 

nitrogen and bromine at 50 eV. The resulting spectra were analysed, and curve 

fitting performed using CasaXPS version 2.3.16 (Casa Software Ltd). 
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4.2.5 Cell viability on surfaces 

Cell viability testing was carried out with cells seeded in a 24-well plate and left 

overnight to adhere in media with 2% human serum. Non degradable 5% PEG 

hydrogels (2.2.4) were then formed on top of the cells. Viability was tested at 1, 

2 and 3 week time points, controls were performed alongside with no gels 

included.  

Cell viability was also carried out on PSm that were encapsulated into 25% 

degradable 5% PEG hydrogels. The cells were imaged at 1 and 2 weeks but 

viability was not quantified due to the difficulty with the 3D structure of the 

beads. Confocal imaging was carried out using a Zeiss Observer Z1 spinning disc 

confocal microscope, equipped with a Yokogawa CSU-X1 filter wheel and 

spinning disc unit and a Photometrics Evolve 512 delta EM-CCD camera to better 

visualise the cells on the beads confirming adherence and spreading. 
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4.3 Results 

Various techniques were used to investigate the efficiency of several surface 

modification methodologies as possible approaches for coating PSm. 

4.3.1 Water contact angle 

WCA was measured on coverslips that were coated in PS, through spin coating, 

to match the base material of the PSm. The results were used to show any 

changes in the hydrophobicity and thus surface chemistry from treatment 

through any changes in the contact angle. Spin coated PS and spin coated PEA 

samples were included as controls to observe changes in the hydrophobicity 

produced through each methodology. 

Spin coated PEA (scPEA) was observed to be significantly more hydrophilic than 

spin coated PS, however no difference was observed between either of these 

conditions and plasma treated PS samples (Figure 4.3 A). This may imply that 

while PEA is present on these surfaces, as suggested by the drop in contact 

angle, the coverage is not homogenous and certain areas may retain the 

hydrophobicity of PS or that the plasma treatment results in variation from bulk 

PEA characteristics. For UV polymerisation (Figure 4.3 B) both BPO treated and 

BPO + PEA treated (uvPEA) conditions showed no significant change in the mean 

WCA from that of scPS although these samples did present slightly lower contact 

angles more similar to those seen for scPEA. A significant difference was seen 

between scPEA and SI-ATRP (Figure 4.3 C) and the final contact angle was 

similar to that of the scPS suggesting that the surface may not have been altered 

in the desired way. These results suggest that both plasma polymerisation and 

UV polymerisation changed the surface chemistry of the samples to one more 

similar to PEA. For SI-ATRP, however, the treatment did not appear to have 

changed the surface chemistry and remains similar to the PS.  Though WCA can 

be used to imply certain changes in the surface chemistry it cannot definitively 

confirm or deny the presence of PEA. 

 



Chapter 4  86 
 

 

 

Figure 4.3 Water contact angle characterisation. 
Graphs show the static water contact angle characterisation of the various surface modifications 
used to incorporate PEA. No difference was observed between pPEA or uvPEA and scPEA. A 
difference was seen between bPEA and scPEA control. All 3 graphs show the mean +/- SD 
statistical differences shown through Kruskal-Wallis test where p** > 0.01 and p**** >0.0001.  

 

4.3.2 FTIR 

FTIR was used as a way to assess the bulk composition of each treated sample, 

plasma treated (pPEA), UV treated (uvPEA) and SI-ATRP (bPEA) along with 

untreated PSp, PSm and bulk PEA for comparison. The full spectra were 

measured from 650 cm-1 to 4000 cm-1 and analysed for any changes from the 

base material composition. As FTIR measures the bulk composition of the 

material scanned, the base material will also appear in the spectra though 

visible changes can show modifications have occurred. For pPEA and uvPEA there 

were no obvious changes in the scans when compared to their respective PS base 

materials, PSm for plasma and PSp for UV (Figure 4.4). The lack of changes seen 

for these samples is likely due to the thin layer produced through these 

techniques being masked by the volume of the base material. The PEA control 
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shows a clear peak at approximately 1700 cm-1 which is related to the C=O bonds 

in the polymer.  

 

Figure 4.4 Full FTIR spectra for plasma and UV polymerised samples. 
Spectra are shown between 650 cm-1 and 4000 cm-1 for plasma polymerisation (top) and UV 
polymerisation (bottom). The most obvious differences (red) or similarities (Purple) observed are 
circled within the spectra. Both Plasma and UV polymerisation maintain a spectrum that matches 
that of the PS base materials rather than that of the PEA control.  

 

For SI-ATRP treated samples the full spectra from 650 cm-1 to 4000 cm-1 (Figure 

4.5) was analysed more closely with a focus between 650 cm-1 and 1550 cm-1 

with the changes that coincide with the PEA spectra outlined in Figure 4.6. A 
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large peak appears in the bPEA sample spectrum at ~800 cm-1 which can be 

associated to the peak seen in PEA at ~790 cm-1  as they are both in the range of 

peaks associated with C-H bonding, this peak was not present in either the PSp 

or the brominated spectra (Figure 4.6 A). Also within this section we see the 

peak at ~ 680 cm-1 increase in size for the brominated sample in comparison to 

the PSp, this region is associated C-Br bonding, this increase could be an 

indication of the introduction of C-Br bonds. The peak highlighted at ~1025 cm-1 

is sharp in the PEA spectra and broad in the bPEA spectra associated with a 

carbonyl group, another peak is noted ~1090 cm-1 this can be associated with C-O 

bonding (Figure 4.6 B). These are again not present in the PSp or brominated 

spectra suggesting the addition of these binding regions through SI-ATRP 

treatment. Another peak appeared within the bPEA spectrum that was seen in 

the PEA spectrum but was completely absent from the others at ~1260 cm-1 this 

region is associated with C-O bonding (Figure 4.6 C). Two peaks are also noted to 

have increased in size on the brominated spectrum compared to PSp again 

suggesting that this reaction did produce changes to the base material. These 

peaks seen at 1450 cm-1 and 1490 cm-1 are within regions associated with C-H 

bonding.  

 

Figure 4.5. Overview of full FTIR spectra for SI-ATRP treatment process including 
bromination stage. 
There are some clear changes in the spectra between the PSp base and bPEA though the 
spectrum still varies from that of PEA control. The brominated sample spectrum appears generally 
unchanged from the PSp in this overview spectra. 
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Figure 4.6 Focussed FTIR Spectra for SI-ATRP samples. 
The figure shows select parts of the spectra which show changes caused by the process of SI-
ATRP. A PSp control and bulk PEA were used as a comparison between a brominated sample and 
a sample that was fully treated with the SI-ATRP protocol (bPEA). Changes in bPEA spectra are 
highlighted in yellow with changes in brominated spectra highlighted in green, including changes in 
peak size. 
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Changes in the FTIR spectra confirm that the surface chemistry of the PS has 

been altered through the SI-ATRP process. The most obvious modification to the 

samples appears to take place in the final stage of the process as more changes 

appear in the fully treated spectra. Though brominating the samples does cause 

changes to the spectra indicating that the chemical addition of the bromine 

based initiator has occurred. Despite no indication of surface changes through 

the WCA results, FTIR data suggests that chemical changes have occurred to the 

samples. Though FTIR peaks can be associated with particular chemistries 

further analysis was carried out with XPS to definitively confirm the presence of 

PEA on the sample surfaces. 

4.3.3 XPS 

XPS was used to analyse the surface chemical composition of the samples to 

verify if the changes occurring through treatment were the result of a PEA 

coating on the sample surfaces. The scans have been fitted with peaks that 

relate to different binding conformations of the specified atoms. The specific 

binding points of PEA are annotated in Figure 4.7 for the carbon and oxygen 

scans. For carbon scans; 1 defines the C-C bonding, while 2 represents an ester 

bond C-O, 3 the carboxyl group O-C=O and 4 represents tertiary carbon bonds. 

XPS spectra showed significant changes in the profiles between PSm and PEA 

allowing easy comparison with pPEA sample to assess the success of the 

treatment and introduction of PEA (Figure 4.7). The carbon binding composition, 

as shown from the C1s scans for pPEA matched that seen for the PEA control 

scan with the introduction of a peak between 290 – 288 eV which is not seen in 

the PSm sample and represents the carboxyl group annotated as 3 within the PEA 

formula. An increase in peak height in line with PEA scan compared to PSm is 

seen at ~286 – 284 eV showing the introduction of ester groups and tertiary 

carbon bonds and a similar ratio between these and secondary carbon bonds as 

seen within PEA scan. Within the oxygen scans the peak seen at ~533 eV, 

annotated 2 in the PEA O1 scan, representing the C-O-C bond is present in both 

pPEA and PSm scans. The second oxygen peak showing the C=O bonding is found 

between 531.5 – 532 eV, the notable change between the PSm control, pPEA and 
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PEA scans is the ratio between C-O-C : C=O PSm has the smallest ratio this 

increases in pPEA and is highest in PEA. Due to the obvious shift of the carbon 

and oxygen spectra of the pPEA from that of PSm to those resembling more PEA 

we are able to confirm the successful PEA coating through use of plasma 

polymerisation. 

 

Figure 4.7 XPS for plasma coated microbeads. 
Figure shows the carbon and oxygen scans for PEA, polystyrene microbeads (PSm) and PEA 
plasma coated microbeads (pPEA). The chemical formula for PEA is outlined in the top right for the 
figure annotated to match the components with the peaks present in the scans (blue for carbon, red 
for oxygen). The peaks as seen on the PEA spectra left to right for carbon are; peak 3 carboxyl 
group (dark blue), peak 2 ester bond (red), peak 4 carbon-carbon backbone with sidechain (light 
blue) and peak 3 carbon-carbon backbone without sidechain (pink). The peaks as seen on the PEA 
spectra left to right for oxygen are; peak 2 ester bond (light blue) and peak 1 carboxyl group (pink). 

 

XPS was performed to investigate the chemical changes caused by UV 

polymerisation (Figure 4.8) with PEA and PSp controls along with a sample 

1

2

Binding Energy (eV)

20
15
10

5
0
538     536      534      532     530      528

x103
25

Binding Energy (eV)

16
12

8
4

0
292     290      288      286     284      282

x103

Binding Energy (eV)

16
12

8
4

0
292     290      288      286     284      282

x103

Binding Energy (eV)

20
15
10

5
0
538     536      534      532     530      528

x103
25

1CH2
4CH
3C = 1O
2O
2CH2

1CH3

PE
A

PS
m

pP
EA

CP
S

CP
S

CP
S

CP
S

CP
S

CP
S

C1 Scans O1 Scans



Chapter 4  92 
 

 

treated only with the photoinitiator BPO and the final samples treated in 5% EA 

solution or 20% EA solution. There is a clear difference between the scans for 

PEA and the PSp allowing easy comparison with other samples to assess the 

success of the treatment and introduction of PEA. BPO scans for carbon and 

oxygen are almost unchanged from the PSp except for the loss of the peak seen 

on the carbon scan at 292 eV, this is an Auger peak produced by the presence of 

the aromatic ring on the PS, its absence suggests masking or loss of this ring. 5% 

EA treatment carbon scans show the introduction of carboxyl and ester peaks 

present in PEA sidechains but absent from PSp confirming the successful addition 

of PEA to the surface. The Auger peak seen at 292 eV is seen in this scan as in 

the PSp suggesting that the PEA present is not thick enough to fully mask the 

underlying base material in the scan.  

A second oxygen peak is present at ~534 eV which is absent for PSp but seen on 

PEA representing C-O-C bonding further confirming the presence of PEA in the 

scan. For the treatment with 20% EA, like with 5%, there is and introduction of 

carboxyl and ester peaks, at ~289 eV and ~286.5 eV respectively, consistent with 

those seen in the PEA scans while being absent from PSp. The absence of the 

Auger peak at 292 eV is also noted indicating that this treatment potentially 

creates a thicker coating of PEA able to mask the base material fully compared 

to the 5% EA treatment. For treatment with 20% EA, when compared to the 5% 

EA, there is an obvious increase in the peaks on both the oxygen and carbon 

scans with the exception of the peak at 292 eV on the carbon scan which is 

absent on this sample and the peak between 285-286 eV which appears slightly 

reduced for this condition compared to 5% EA.  

When comparing to the PSp and PEA scans it can be concluded that PEA is 

present on the surface of the samples. It is clear upon comparing the spectra for 

5% and 20% EA that the higher concentration of EA solution used in the process 

increases the PEA on the surface of the samples. Also, the absence of the peak 

at 292 eV shows less or none of the base polystyrene is being recorded in the 

scan suggesting a thicker layer of PEA beyond the scan range (£10 nm).  
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Figure 4.8 XPS for UV polymerised polystyrene. 
The figure shows the XPS carbon, oxygen and nitrogen scans for PEA and PSp controls 
polymerisation with 5% and 20% EA as well as the BPO initiator stage of the polymerisation. It 
should be noted that PEA is on a different scale to the other samples but still represents the 
binding composition. Auger peaks are labelled while all other peaks related to the binding 
composition of the surfaces are described in main text. The peaks are as described in Figure 4.7. 
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XPS results for SI-ATRP (Figure 4.9) were less conclusive than those for plasma 

and UV polymerisation. There is an introduction of peaks on the bromine (Br3D) 

scans for the brominated samples confirming the successful introduction of the 

bromine-based initiator onto the surface. The bromine peaks present in the fully 

treated samples suggest that the subsequent polymerisation was unsuccessful, 

and the initiator did not react as planned. For oxygen scans of bPEA, samples are 

similar to the PEA control while the brominated sample was consistent with the 

PSm control, suggesting that while the polymerisation was not obviously 

successful some chemical modification did take place. For the carbon scan, 

however, brominated and bPEA samples were observed to have similar spectra 

to that of PSp with the exception of the loss of the Auger peak representing the 

aromatic ring. This indicates that there were some changes occurring with 

polymerisation particularly from the oxygen scans though not to the extent that 

would be required for sufficient introduction of PEA. 
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Figure 4.9 XPS for SI-ATRP treated polystyrene. 
The figure shows the XPS carbon, oxygen and bromine scans for PEA and PS control samples 
along with samples taken at the bromination stage and samples that have undergone the full SI-
ATRP protocol (bPEA). Auger peaks are labelled while all other peaks related to the binding 
composition of the surfaces are described in main text. Peaks are as described in Figure 4.7. 

 

4.3.4 FN Networks 

AFM was used to confirm the presence of FN networks through imaging surfaces 

at the nanoscale on PEA surfaces created through various methodologies; spin 

coating, plasma polymerisation and UV polymerisation. SI-ATRP samples were 

not used for AFM imaging due to the XPS results showing insufficient 

polymerisation. The images below (Figure 4.10) show height scans with the 

colour scale shown on the right of each image. FN networks were visualised in all 

three samples though the organisation of the network varied depending on the 
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methodology used to incorporate PEA. Similarities are seen in the network 

produced through spin coating and plasma treatment with dense FN networks 

seen on both surfaces, though pPEA appeared denser. This was different to the 

sparser and more spread network which appeared on the UV polymerised 

samples. The height measured on each of the images varied with uvPEA showing 

fibres at 4 times the height of scPEA and pPEA. Though they appear different FN 

networks can be confirmed on all PEA surfaces showing the maintenance of 

polymer functionality after each process. 

 

Figure 4.10 AFM images of FN networks on PEA surfaces. 
Figure shows 1 x 1 µm height images produced using AFM to visualise FN networks on PEA 
surfaces produced through either spin coating (top), UV polymerisation (bottom right) or plasma 
polymerisation (bottom left). Scale bar shows 200 nm on each image and colour scale varies for 
each. The scPMA sample was used as a control to show FN in the globular formation as a 
comparison to the network shown on scPEA. All PEA coatings produce a FN network though each 
network has variations in the fibre height/ width. 

 

Due to the difficulty of imaging the PSm resulting from their small size and 

curvature AFM could not be used and so fluorescence microscopy was used to 

confirm FN adsorption. Figure 4.11 shows confirmation that FN could be 

adsorbed onto the pPEA coated PSm. A control, scPEA, coverslip was used for 

comparison, it is clear from observation that FN is present in both samples. 

Uncoated PSm were also tested for FN adsorption, a small amount of FN was 

thought to be present due to areas of slightly higher fluorescence however, this 
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was difficult to define compared to that seen on pPEA and scPEA due to higher 

background autofluorescence of the beads. 

 

Figure 4.11 Fluorescently tagged FN on PEA surfaces. 
The figure shows images of DyLight 488 fluorescently tagged FN which has been adsorbed onto 
PEA plasma (pPEA) coated microbeads, PEA spin coated (scPEA) coverslips and an uncoated PS 
microbead. Arrow used to indicate area of higher fluorescence on uncoated microbeads assumed 
to be FN. 

 

4.3.5 Cells on Surfaces 

In chapter 3 it was shown that encapsulating cells directly into PEG hydrogels 

resulted in low viability, a lack of cell spreading was observed in these 

conditions. Due to these results the model was altered to include a surface for 

the cells to adhere and spread. After assessing various methods for introducing a 

PEA surface to the model cell work was continued with pPEA coated microbeads 

or scPEA coverslips. Live dead staining was carried out to test the viability for 

cells seeded on a scPEA coverslips with gels, 5% PEG 25% VPM degradable 

crosslinker, formed on top (Figure 4.12). The mean viability after 1 week of 

culture sat at 88% rising to 89% after 3 weeks, no statistical differences were 

found between these time points showing a maintenance of cell viability over 

long term culture. A slight dip in viability was observed at week 2 with the mean 

dropping to 77%, this is still above that seen when cells were encapsulated 

within the gels and with the recovery at week 3 did not cause concern.  

 

 

FN on pPEA microbead FN on scPEA coverslip FN on uncoated microbead
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Figure 4.12 Live dead results for MSCs under gels. 
This figure shows example images taken for each time point covered looking at MSCs seeded 
under 5% PEG hydrogels.  The graph shows mean +/- SD, viability quantified from the images 
gathered from 3 biological replicates and analysed using image J.  A significant difference is 
observed between the viability at week two compared to week one and three where *p £ 0.05. The 
shows good viability for cells seeded below gels on a PEA coated coverslip. 
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Live dead staining was also carried out on cells which had been seeded onto 

pPEA treated microbeads with FN adsorbed and encapsulated into gels. Images 

collected from this could not be quantified accurately, due to the curvature of 

the beads it was difficult to focus and define cells. The images could, however, 

be assessed qualitatively. Cells were present at both time points with far less 

dead staining visible compared to live staining at each position (Figure 4.13). 

The increased viability appeared to follow the same trend as seen for coverslips 

at the same time points suggesting that the introduction of a stiffer surface 

within the gel improved cell viability allowing the maintenance of a cell 

population in the gels over time. 
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2 Weeks 
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Figure 4.13 Live dead staining for MSCs on beads within gels. 
The figure shows example images taken of MSCs which have been seeded onto microbeads and 
encapsulated into degradable 5% PEG hydrogels after live / dead staining. This shows that the 
cells remained comparatively viable when seeded onto the beads and encapsulated within the gels 
as when seeded under gels onto coverslips. 

 

Due to the difficulty experienced in imaging with the 3D nature of the 

microbeads within the gels confocal imaging was used to observe the cells more 

clearly. Cells were stained for actin to highlight cell spreading and DAPI to 

highlight the nuclei of individual cells. Four conditions, PEGFN gels with or 

without GFs (BMP-2 and NGF) and PEG gels with or without GFs, were used and 

cultured for 3 weeks before staining, all gels were 5% PEG gels with 25% VPM 

degradable crosslinker. Figure 4.14 shows images selected from the z stacks that 

show various features observed. A slight sprouting from the bead was observed 

in gels containing FN where GFs were also present on the beads. PEGFN gels 

without the presence of GFs show how cells appear to have the ability to adhere 

between 2 beads holding them together. In the PEG gel with GFs the nuclei 

appear clumped together while actin staining shows the cells spreading over the 

whole bead. In the final condition of PEG without GFs a section of the bead 

appears to be avoided by the cells this may be the section of the bead that 

would be uncoated during plasma treatment therefore making it less favourable 

for cell adhesion compared to surrounding areas. 
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Figure 4.14 Confocal images of MSCs on beads after 3 weeks culture. 
The images above show Actin (green) and DAPI (blue) staining of cells adhered onto microbeads 
coated in FN and in some conditions (with GF) containing BMP-2 + NGF. These were 
encapsulating into 25% degradable PEG or PEGFN hydrogels.  
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4.4 Discussion 

Due to the low cell viability observed when cells were encapsulated directly into 

the PEG hydrogels a stiffer surface was introduced to the model, the 

development of this surface has been outlined in this chapter. The introduction 

of a surface allowed for the inclusion of another polymer, PEA, providing 

additional functionality and control to the final model. Microcarrier beads 

(corning) were chosen to be encapsulated within the gels to allow cell adhesion 

while retaining the advantages of the cells being held within the gel. In this 

chapter we investigated the effectiveness of various surface modification 

techniques on incorporating PEA on to a PS surface representing the base 

material of the microbeads. The incorporation of PEA is favourable for the model 

due to the relationship with the ECM protein FN (Salmerón-Sánchez et al., 2011; 

Cantini, González-García, et al., 2012). The relationship with FN inducing the 

formation of protein networks leads to improved cellular adhesion and provides 

a means to incorporate and allow solid-phase presentation of growth factors 

enhancing cellular interactions and control within the model (Llopis-Hernández 

et al., 2016). 

The various surface modification techniques included spin coating, plasma 

polymerisation and SI-ATRP which were previously established for use with PEA 

(Llopis-Hernández et al., 2016; Cheng et al., 2018; Sprott et al., 2019). Spin 

coating was only viable for use on flat surfaces, for example coverslips, due to 

this limiting factor spin coated PEA was only used for comparison with WCA, to 

show PEA networks using AFM and for cell viability quantification. A decrease in 

hydrophobicity was shown in the WCA results between scPS and scPEA on a glass 

coverslip using the spin coating technique with scPEA showing similar results to 

previously published data (Guerra et al., 2010; Alba-Perez et al., 2020). Spin 

coated PEA was then used to compare to the other modification techniques 

looking for similar trends in WCA with the introduction of PEA. Both plasma 

treated and UV polymerised samples showed no significant difference to the 

scPEA this corresponded to results seen in the literature for pPEA surfaces (Alba-

Perez et al., 2020). These results suggested a similar surface chemistry though 

this could not be used to definitively confirm the presence of PEA. This change 

in hydrophobicity with the introduction of PEA also has the potential to improve 

cellular attachment as it has been shown in the literature that hydrophilic 
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surfaces promote enhanced cellular adhesion (Chuah et al., 2015). SI-ATRP 

however, saw a statistically significant difference when compared to scPEA and 

no notable difference when compared to the scPS. This suggests that after 

treatment the surface either remains unchanged or maintains the hydrophobic 

properties of the PS base material. It should be noted that damage occurred on 

samples treated via SI-ATRP resulting in swelling of treated PSp and peeling of 

scPS from the glass coverslips which could also influence WCA results. 

FTIR was carried out to measure the bulk composition of samples after the 

various treatments and compared to untreated samples as well as bulk PEA. No 

changes were observed between the untreated PS and the treated samples for 

pPEA and uvPEA. It has been noted in literature that XPS should be chosen over 

FTIR when investigating surface modifications that effect the material on a 

nanometer level due to the technique reading the bulk material (Morent et al., 

2008). This is thought to be why no changes were seen in the plasma and uv 

treated samples, the layer of PEA produced through plasma treatment has been 

shown to be in the nm range, ~ 34 nm (Cheng et al., 2019; Alba-Perez et al., 

2020). Therefore, it can be assumed with the FTIR results that the layer 

produced by UV polymerisation is also within a nm range, this could be 

confirmed through further characterisation such as a scratch test. For SI-ATRP 

samples, we were able to see changes in the FTIR spectra when compared to the 

PSp untreated sample. These confirmed changes in the surface chemistry had 

occurred through the treatment. However, much like WCA, these could not be 

used to definitively confirm PEA presence only that chemical modification had 

occurred. After confirmation of changes on all samples, through either WCA or 

FTIR results, they were all sent for XPS analysis to determine if the modifications 

had resulted in a PEA layer on the surface. 

XPS measures the top ~10 nm of a sample (Mather, 2009) and was used to 

determine the presence of PEA on a sample after treatment. The results 

confirmed the presence of PEA on plasma treated microbeads and UV treated 

polystyrene pellets (Figure 4.7 & Figure 4.8), showing spectra that were almost 

identical to control PEA and modified from bulk PS samples. Plasma treatment 

has been previously shown to successfully coat PEA onto various base materials 

(Cantini, Rico, et al., 2012; Cheng et al., 2019; Alba-Perez et al., 2020), the 
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results in this chapter confirmed that the treatment was successful in 

incorporating PEA onto the PS microbeads. XPS results for SI-ATRP were less 

conclusive, though there were changes the spectra did not definitively represent 

PEA on the surface concluding that this technique would need further 

optimization if it were to be used. Though the XPS scans confirmed the success 

of bromination through presence of a bromine peaks, the lack of definitive PEA 

polymerisation is possibly due to low initiator activity. This could be improved 

through the introduction of a further step to create more active initiation points 

at the bromination stage. If continued the process would also be altered to 

minimise chemical damage to the base polystyrene which underwent some 

swelling with the current method. On optimisation of this protocol samples 

would then have to be tested for degradation, mechanical properties and 

functionality to assess if it could be a better method to the current plasma 

treatment. Due to the success of the other techniques SI-ATRP was not 

developed past this point though it has potential for future modification. 

After the confirmation of successful incorporation of PEA through plasma 

treatment and UV polymerisation the functionality of the polymer was tested. As 

previously mentioned, PEA induces the formation of FN nanonetworks due to its 

unique chemistry (Cantini, González-García, et al., 2012; Llopis-Hernández et 

al., 2016). AFM imaging was used to ensure that the PEA surfaces produced 

through each technique retained the ability to drive formation of these FN 

nanonetworks as seen on spin coated samples. Results revealed the formation of 

networks on spin coated, plasma polymerised and UV polymerised PEA surfaces 

when FN was introduced. Networks observed on plasma polymerised samples 

were denser than those seen on spin coated samples, this corresponds to 

previous results in the literature (Cheng et al., 2019; Alba-Perez et al., 2020). 

Networks seen on UV polymerised surfaces appeared sparser with an increase in 

fibril height compared to those seen on plasma and spin coated samples. This is 

likely due to UV polymerisation producing polymer brushes rather than simply 

coating the surface, as with pPEA and scPEA, as it is similar to the networks 

observed in a previous study which introduced PEA brushes through SI-ATRP 

(Sprott et al., 2019). 
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Though UV treatment was shown to be successful and a viable method for 

coating 3D materials further investigation would be required to refine the 

method for ideal PEA coverage. As was shown in the XPS results changing the 

volume of monomer in the solution used for polymerisation resulted in an 

increase in the polymer detected on the surface (Figure 4.8). Factors like this as 

well as the mechanical properties would have to be tested further to develop 

the method to the point of use. Other properties of the surface would have to be 

investigated like the degradation over time and FN functionality when adsorbed 

onto the surface for example using in vitro analysis to assess the availability of 

the various binding domains. This method has lots of potential for future use in 

creating PEA surfaces for cell studies but was not developed further due to the 

optimisation required and established method of plasma polymerisation. 

Plasma polymerisation was chosen as the technique to coat the microbeads for 

continuing to develop the in vitro model. This is due to the established success 

of plasma polymerisation shown in previous in vitro and in vivo studies (Cheng et 

al., 2019; Alba-Perez et al., 2020) alongside the positive results obtained for PS 

outlined in this chapter. Plasma polymerisation was successful in coating the 

chosen microbeads showing the ability to coat 3D materials while maintaining 

the ability to adsorb FN. The lack of any obvious chemical alterations from the 

bulk characterisation technique FT-IR through plasma polymerisation may be 

regarded as a positive result. XPS showed definitive PEA chemical composition 

this shows that plasma polymerisation while successfully able to incorporate PEA 

onto the PSm does not induce significant chemical alterations. Fluorescently 

tagged FN was used to confirm adsorption of FN on pPEA coated microbeads as 

this could not be imaged through AFM due to the curvature. Though networks 

could not be visualised by this method FN could be confirmed on the surface and 

it was hypothesised that networks would therefore form as on the 2D surface 

used for AFM.  
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Table 4.1 Summary of the results from each technique. 
 Spin coating Plasma UV SI-ATRP 

WCA scPEA more 

hydrophilic 

than scPS 

pPEA more 

hydrophilic than 

scPS 

uvPEA more 

hydrophilic than 

scPS  

Similar to 

contact angle 

for scPS 

FT-IR No FT-IR 

performed for 

these samples 

No changes 

observed 

through FT-IR 

No changes 

observed 

through FT-IR 

Changes in FT-

IR confirm 

chemical 

modification 

XPS No XPS 

performed for 

these samples 

XPS confirms 

presence of PEA 

XPS confirms 

presence of PEA 

XPS not 

consistent 

with presence 

of PEA 

AFM AFM confirms 

presence of FN 

networks  

AFM confirms 

presence of FN 

networks 

AFM confirms 

presence of FN 

networks 

No AFM 

performed on 

these samples 

 

The inclusion of pPEA treated microbeads and scPEA coverslips was observed to 

increase cell viability (Figure 4.12 & Figure 4.13). This resolved the previous 

issue of low viability seen when cells were seeded directly into the gels 

suggesting this was caused by a lack of cell adhesion within the gels. The higher 

viability quantified in the new system allowed for adaptation of the final model 

into two possible set-ups. Firstly, a model that had been utilised with a collagen 

gel previously within our lab (currently unpublished data) where cells are seeded 

onto PEA coated coverslips with the gel introduced on top (Figure 4.15 A). This 

would be used switching out the collagen gel for the PEG gels investigated in this 

work, collagen gels were replaced due to difficulty in full controlling biologically 

sourced gels as discussed previously (1.7.2). Secondly a model where the stiffer 

surface would be introduced within the gel through the encapsulation of 
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microcarrier beads on which cells could be seeded prior to encapsulation (Figure 

4.15 B).  

 

Figure 4.15 Proposed set up for final niche models. 
The figure shows the two proposed models for introducing a PEA surface to the niche models. A 
shows the use of a PEA coated coverslip onto which MSCs could be seeded with HSCs 
encapsulated in the PEG hydrogel formed on top. B shows the use of PEA coated microbeads that 
can be encapsulated within the gel. 

 

In conclusion, this chapter has outlined the development of surface modification 

techniques to introduce a PEA coating onto PS microbeads. This was carried out 

to achieve similar functionality observed in previous 2D systems, such as seeding 

cells on spin coated PEA with gels formed on top, in a 3D model. Successful PEA 

coatings were achieved using plasma polymerisation and UV polymerisation, due 

to its previous optimisation plasma was continued for in vitro studies. Cells were 

shown to adhere to these surfaces with improved viability over cells 

encapsulated straight into gels. FN has been show to adhere to beads and is 

assumed to form networks as shown using 2D samples. 

 

  

A B
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Chapter 5 The Model  

5.1 Introduction 

In vitro modelling is commonly used following tissue engineering principles to 

investigate cell behaviour under controlled conditions such as drug treatments 

(Baguley and Marshall, 2004). In vitro modelling has become more popular driven 

by the easier use of techniques for cell analysis but also the ethics and public 

opinion that surround the use of in vivo animal modelling (Ashrafian, Ahmed and 

Athanasiou, 2010). This has led to the development of many in vitro modelling 

techniques aimed to mimic the in vivo conditions including the use of co-cultures 

and materials such as hydrogels.  

A major difference between early in vitro modelling and in vivo conditions was 

the 2D nature of most tissue culture techniques. One way in which this has been 

overcome is the use of hydrogels to introduce a 3D matrix that can mimic the 

ECM (Tibbitt and Anseth, 2009; Geckil et al., 2010). Collagen gels are commonly 

used when producing bone marrow niche models as they have been shown to 

enhance osteogenic differentiation and mimic the elastic properties of the bone 

marrow (Schneider et al., 2010; Metzger et al., 2014). Collagen gels, however, 

due to their biological source have a batch to batch variation that can influence 

experimental results when used in a model. To overcome this, synthetic gels are 

becoming increasingly popular for in vitro modelling, such as PEG (Burdick and 

Anseth, 2002). The use of synthetic gels over biologically sourced gels allows 

more control and understanding of the influencing factors within a model.  

An important function of the ECM is to allow the diffusion of essential nutrients, 

signalling molecules and waste (Mouw, Ou and Weaver, 2014). This is a central 

property to consider when developing an in vitro model, so that essential 

molecules and influencing factors introduced to the culture such as growth 

factors or drugs can reach the cells. Another factor to consider is the ability of 

the ECM to immobilise secreted molecules within the matrix creating a reservoir 

effect which can surround the cells with signalling molecules influencing 

behaviour (Frantz, Stewart and Weaver, 2010). 
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The use of co-cultures allows cell types found within the same tissue and that 

interact in vivo, to have the same interactions in vitro, maintaining biological 

cues. An example is the use of a stromal layer when culturing HSCs to mimic the 

cells within in the bone marrow. This technique has been shown to successfully 

induce the maintenance and proliferation of a HSC population in vitro (Dexter, 

1982; Leisten et al., 2012).  

MSCs, particularly those which are found to be nestin positive, have been shown 

to be important within the bone marrow niche due to their expression of HSC 

maintenance factors and are commonly used within niche models (Méndez-

Ferrer, T. V. Michurina, et al., 2010; Pinho et al., 2013). Along with nestin, Stro-

1 positive MSCs have also been shown to support HSCs and is important to 

consider within niche modelling (Kolf, Cho and Tuan, 2007). ALCAM is another 

MSC marker that can show the maintenance of the MSC phenotype in culture 

(Nakamura et al., 2010). It is important to be able to define the maintenance of 

an MSC population for long term culture of the model as differentiation may 

occur resulting in the depletion of these cells.  

Though the maintenance of an MSC population is favourable within a bone 

marrow niche model, some differentiation, particularly osteogenic, can be 

beneficial due to the role of osteoblasts within the niche. Osteoblasts have been 

shown to produce HSC maintenance factors such as IL-6, SCF, and CXCL-12 and 

have been well characterised for their key role in supporting HSCs within the 

endosteal niche (Calvi et al., 2003; Nakamura et al., 2010). Due to this 

expression of HSC maintenance factors, some osteogenic differentiation within 

the MSC population can be desirable for niche models. This can be investigated 

looking at the expression of osteocalcin (OCN) and osteopontin (OPN) which are 

expressed during the stages of osteogenic differentiation (Yang et al., 2014). 

There are many proteins that have been linked to roles in HSC maintenance, one 

which has been well characterised is SCF (Calvi et al., 2003; De Ugarte et al., 

2003; Ding et al., 2012).When introduced to in vitro HSC cultures, SCF has been 

shown to increase self-renewal and maintenance of the HSC population (Ema et 

al., 2000; Walasek, van Os and de Haan, 2012). It has been shown that HSCs 

become less sensitive to SCF as they mature despite expressing the same number 

of receptors, making it important that the cells within a niche model excrete a 
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high enough level to influence the HSCs (Zhang and Lodish, 2008). VCAM-1 is 

another protein well characterised as a HSC maintenance factor, which is 

important for the co-localisation of HSCs to MSCs and osteoblasts (Kopp et al., 

2005). This is key within a niche model as closer localisation to MSCs and/or 

osteoblasts will expose the HSCs to factors secreted by those cells.  

The aims of this chapter were to assess the hydrogels ability to mimic the ECM in 

allowing the diffusion of soluble proteins throughout the matrix and the 

retention of proteins relevant to the bone marrow niche. To assess the MSC 

phenotype within the final model looking to maintain a stem-like, nestin and 

Stro-1 positive, MSC population while inducing some osteogenic differentiation 

shown through OCN and OPN expression along with the expression of HSC 

maintenance factors SCF and VCAM-1.  
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5.2 Methods 

Cell culture, ICW, immunostaining, GF tagging and material preparation is 

described in the general methods Chapter 2 (2.2.1, 2.2.2 and 2.2.5).  

5.2.1 Growth Factor Diffusion and Release 

Diffusion 

Hydrogels were produced as described in section 2.2.4 with conditions PEG only, 

PEGFN and PEGFN with VPM, n=3 for each condition. The gels were then swollen 

overnight in PBS. After swelling the gels were placed in a solution of PBS 

containing 5 µg/mL of 488 tagged NGF (2.2.5) and left for 24 hours protected 

from the light and incubated at 37 °C. The gels were then removed from the 

solution, quickly rinsed with fresh PBS to wash excess GF solution from the 

outside and mounted on glass bottom petri dishes with VECTASHIELD mounting 

media to prevent drying during imaging. Imaging was carried out using confocal 

microscopy on a Zeiss LSM 880 at 10X magnification (Figure 5.1). Z-steps were 

taken through the gel comprising of 42 images each with an interval of 5 µm 

between each image in the Z plane. Images were then analysed using ImageJ 

software, where fluorescence was quantified by measuring the integrated 

density for the different regions of the gel to investigate the efficiency of 

diffusion. The quantified data was then analysed using GraphPad Prism software.  

 

 

Figure 5.1 Schematic of the diffusion assay method. 
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PEG hydrogels were added to a tagged GF solution and left for 24 hours to allow diffusion. These 
were then imaged throughout the width of the gel from one edge to the other using confocal 
microscopy. Created using BioRender.com. 

 

Release 

Release assays were carried out for SCF, Flt-3, CXCL12 and TPO that had been 

tagged with Dylight 488 dye (2.2.5). A standard curve was produced using 8 

solutions starting from 10 µg/mL halving the concentration at each point with 

the final solution being blank. Hydrogels were prepared (2.2.4) with PEG only, 

PEGFN and PEGFN with VPM conditions, n=3 for each condition. 488 tagged 

cytokines were incorporated into the gels at a final concentration of 10 µg/mL 

before gelation. Gels were protected from the light from the point of adding the 

tagged cytokines. After gelation was complete gels were transferred into PBS 

and incubated at 37 °C. PBS was removed at each time point, 3 hours, 6 hours, 

24 hours and 48 hours and replaced with fresh PBS. The PBS removed at each 

time point was used to measure fluorescence using a plate reader (BIOTEK) with 

Ex/EM wavelength set at 493/518 nm (Figure 5.2). Analysis of collected data was 

carried out using GraphPad Prism software. 

 

Figure 5.2. Schematic of the release assay method. 
Gels loaded with tagged GFs are placed into PBS then after set time points the supernatant is 
removed and the fluorescence measured using a plate reader to show the release over time. 
Created using BioRender.com. 
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5.2.2 PCR 

RNA extraction 

Cells had to be extracted from gels before RNA extraction could be carried out. 

The gels were first digested using collagenase D at 2.5 mg/mL with pipetting 

used to encourage the breakdown of the gel every 30 minutes for 1.5 hours. A 

cell strainer with 80 µm diameter pores was then used to remove the microbeads 

and undigested gel from the mix. The mixture was then centrifuged to remove 

collagenase and produce a cell pellet. RNA was then extracted using a MinElute 

spin column following the Qiagen RNAeasy micro kit protocol, DNase was used to 

degrade and remove any DNA from the samples. Once extracted RNA volume and 

purity was measured using a nanodrop, this was then used to calculate total 

RNA.  

qPCR 

Reverse transcription was then carried out using a Qiagen Quantitect reverse 

transcription kit following the protocol provided to produce the cDNA. This can 

be summarized in 2 steps, first the elimination of genomic DNA followed by the 

reverse transcription forming the cDNA which can then be used to carry out 

qPCR. PCR was carried out using the QuantiFast SYBR Green PCR kit (Qiagen) 

using appropriate forward and reverse primers (Table 5.1) for the genes of 

choice following the kit protocol. The final samples were analysed by real time–

PCR using a 7500 real time PCR system (ThermoFisher). Due to a low RNA yield 

only 3 genes, GapDH, nestin and ALCAM, could be analysed and only 3 ng of RNA 

was used per sample.  

Table 5.1 Forward and reverse primer sequences for markers investigated using PCR. 
Marker Forward Sequence Reverse Sequence 

GapDH TCAAGGCTGAGAACGGGAA TGGGTGGCAGTGATGGCA 

Nestin GAGGTGGCCACGTACAGG AAGCTGAGGGAAGTCTTGGA 
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ALCAM ACGATGAGGCAGACGAGATAAGT CAGCAAGGAGGAGACCAACAAC 

 

5.2.3 Confocal imaging  

MSCs were seeded onto microbeads (2.2.1) before being encapsulated into 5% 

PEG (with and without FN) gels with 25% VPM various conditions were; gels with 

FN with and without growth factors (BMP2 and NGF) on the microbeads and gels 

without FN with and without growth factors on the microbeads. All the gels were 

50 µL in volume 5% PEG with 25% VPM and all microbeads were coated in PEA via 

plasma polymerisation with FN adsorbed. Once gelation was complete gels were 

transferred to a 48 well plate and cultured for 3 weeks. Gel formation and cell 

seeding methods are found in general methods Chapter 2. 

After 3 weeks of culture, gels were then fixed and stained for actin, nuclei and 

the marker of interest using monoclonal antibodies (Table 2.5) ready to be 

imaged using confocal microscopy. Confocal imaging was carried out on a Zeiss 

observer Z1 spinning disc confocal microscope. For each condition three beads 

were captured producing a z stack to image the entire bead with a gap of 2 µm 

between each slice. Actin was stained using Phalloidin 488, nuclei using DAPI and 

the marker of interest using Cy3 stain. Once acquired, these stacks were 

analysed using ImageJ software. To quantify the presence of the marker of 

interest the integrated density was measured, and an average taken for the 

whole stack for the DAPI and Cy3 images this allowed the results to be 

normalised to the nuclei staining.  

5.3 Results 

5.3.1 Diffusion Assays 

Diffusion assays were carried out in order to investigate the ability of soluble 

molecules to enter the different gels. Images were gathered and quantified to 

show that molecules are able to diffuse through to the centre of all gel 

conditions. For the PEG only condition (Figure 5.3) a statistically significant 

difference was found between the edge of the gel and the points within the gel. 

This lower presence of NGF at the edge is thought to be down to the diffusion 
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gradient changing more readily at the edge of the gel with the molecules flowing 

in and out to reach an equilibrium with the outside conditions, perhaps some 

diffusing out during the short wash step. Images within the gels centre show that 

the tagged GFs were able to diffuse through the entirety of the gel as desired.  

 

Figure 5.3 Diffusion in PEG only hydrogel. 
Images represent stacks taken throughout the gel (outlined in top left diagram) these were then 
analysed to produce the graph shown. Images from points A represented the edge, points B the 
intermediate section and points C the centre of the gels. Kruskal-Wallis statistical test was used to 
find statistical differences between the fluorescence at the various positions in the gel where p**** £ 
0.0001. This result indicates that GFs can move into the PEG only gels successfully. 

 

For the PEGFN condition (Figure 5.4) the images again showed complete 

diffusion through to the centre of the gel. When looking at the different areas of 

the gel, no notable differences were observed suggesting an equilibrium was 

reached within the gel. When comparing to the PEG only results the lack of a 

drop at the edge of the gel may be a result of some GF binding onto the FN 
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which is present becoming part of the solid phase of the hydrogel and/or 

suggests slower diffusion of the growth factor. Therefore, the diffusion gradient 

introduced by the quick wash did not cause a drop in the GF concentration at 

the edge in this condition before imaging suggesting the hydrogel is actively 

retaining the GF slowing the diffusion. 

 

Figure 5.4 Diffusion in a PEGFN hydrogel. 
Images represent stacks taken throughout the gel (outlined in top left diagram) these were then 
analysed to produce the graph shown. Images from points A represented the edge, points B the 
intermediate section and points C the centre of the gels. No statistical difference was observed 
between the various positions in the gel. This result indicates that GFs can move into the PEGFN 
gels successfully. 

 

For the condition containing degradable crosslinker, 25% VPM PEGFN (Figure 

5.5), it was again seen that the GF was able to diffuse to the centre of the gel. 

Difference seen between the GF measured in the centre compared to the other 

points in the gel were found to be statistically significant, this is likely the result 
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of slower diffusion through the gel possibly a result of smaller pore size from 

crosslinker differences. The difference noted between the edge and the other 

points is again thought to be due to the wash step or increased diffusion back 

out due to the increased gradient found at the edge position.  

 

Figure 5.5 Diffusion in a 25% VPM PEGFN hydrogel. 
Images represent stacks taken throughout the gel (outlined in top left diagram) these were then 
analysed to produce the graph shown. Images from points A represented the edge, points B the 
intermediate section and points C the centre of the gels. Kruskal-Wallis statistical test was used to 
find statistical differences between the fluorescence at the various positions in the gel where p* £ 
0.05, p** £ 0.01 and p**** £ 0.0001. This result indicates that GFs can move into the 25% VPM 
PEGFN gels successfully. 

 

All 3 gel conditions showed the ability for the tagged NGF to diffuse through to 

the centre of the gels despite differences observed in each condition. This 

allows the assumption that molecules could readily diffuse through the gels over 

time as required. 
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5.3.2 Release Assays 

Release assays were carried out focussing on GFs that are commonly used to 

supplement the media when culturing HSCs: CXCL12, Flt-3, SCF and TPO. The 

release over time is shown in Figure 5.6 and shows that for all growth factors the 

release plateaus after 6 hours. The majority of the release occurs in the first 3 

hours shown by the sharp increase seen in all the graphs. The plateau after 6 

hours suggests that no/very little GF is released after this time point implying 

the gels have the ability to retain the remaining GF.  

 

Figure 5.6 Growth factor release profiles over time. 
The graphs above show the release of GFs from different gel conditions overtime. The graph 
shows the mean release at each time point with error bars representing +/- SD. In less than 10 
hours the gels reach maximum release in all conditions. 

 

Excluding TPO the general trend of the graphs shows that the inclusion of FN 

into the gels reduces GF release over time. This would suggest that some of the 

GF may be binding to the FN present. Focusing on the end points the GF 

retention was calculated after 48 hours (Figure 5.7). For CXCL12, Flt-3 and SCF 

PEGFN hydrogels were able to retain more GF than PEG only while release for 

TPO was similar for all gels. For CXCL12 after 48 hours the retention within 
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PEGFN gels and 25% VPM PEGFN was higher when compared to PEG only gels with 

means of 30.8%, 32.8% and 12.5% respectively. However, only PEGFN was found 

to be statistically significant due to the spread of the data. Release of Flt-3 

revealed the same trend with the mean values for each condition. PEG only has 

the highest release with a mean retention of 7.0% and 25% VPM PEGFN gels 

showing the lowest release retaining 45.9%, this difference was statistically 

significant. PEGFN was also lower than PEG only with a mean of 37.8% though it 

was not statically significant. For SCF the mean retention for all conditions 

increased compared to the other growth factors. However, the trend of PEG only 

showing the lowest retention was maintained. A mean retention of 34.9% seen 

for PEG only compared to 61.2%, statistically significant, and 54.6% for PEGFN 

and 25% VPM PEGFN conditions respectively. TPO does not follow this pattern of 

PEG only retaining the lowest percentage of GF with PEG FN showing the highest 

release with a mean retention of 18.5% compared to the very similar means of 

26.0% and 26.9% seen for PEG only and 25% VPM PEGFN conditions. 

 

Figure 5.7 Total retained GFs in hydrogels after 48 hours. 
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The graphs above show the total retained GFs calculated after a 48 hour time period. Graphs show 
the mean +/- SD where n = 6 for each condition. Kruskal-Wallis statistical test was carried out 
where p* £ 0.05 and p** £ 0.01. 

5.3.3 In cell western 

In cell western was carried out to assess changes in cell phenotype when 

cultured on different surfaces under a 5% non-degradable PEG hydrogel (Figure 

5.8). Data was normalised to the CellTag 700 stain and represented as a fold 

change to a glass control. Three other conditions were investigated; glass with 

FN, PEA spin-coated glass with FN and, PEA spin coated glass with FN and GFs 

(BMP-2 and NGF). Markers were selected to look at stemness, HCS maintenance 

and osteogenic differentiation. 

 

Figure 5.8 Concept figure for ICW set up. 
Outlined above is the set up for ICW experiments. Cells are seeded onto glass coverslips with and 
without a PEA coating all with FN absorbed with and without GFs depending on the condition 
required. Gels are then formed on top of the adhered cells followed by 3 weeks culture. Gels are 
then removed prior to ICW staining, protocol outlined in methods, and finally staining is measured 
using a plate reader. Figure created using BioRender.com. 

 

The markers investigated to show changes in stem cell marker expression were 

Stro-1, nestin and ALCAM (Figure 5.9). Stro-1 and ALCAM both follow the trend of 

the lowest expression in the condition with GFs present, and highest expression 

in the glass with FN. For nestin however, an increase in expression was observed 

in the condition containing GFs compared to the others with PEA with FN 

showing the lowest mean. Despite these observations there was no statistical 
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significance in the differences observed, though this does not suggest an 

increase in the stem phenotype, it also shows no loss of the phenotype in these 

conditions compared to glass with FN.  

 

Figure 5.9 In cell western results for MSC stem markers. 
Graphs show the expression of MSC stem markers represented as a fold change to the expression 
on a glass surface. Bars represent the mean values +/- SD with n = 4. Statistical analysis was 
carried out using the Kruskal-Wallis test with no significant differences found for any markers. 
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VCAM-1 and SCF were used as markers to represent HSC maintenance phenotype 

from the MSCs (Figure 5.10). VCAM-1 showed almost no change for any condition 

all maintaining similar expression to glass as seen by means sitting ~1. A higher 

variance in the data was observed for SCF particularly for PEA with FN and GF. 

Again, none of the differences observed in these conditions were found to be 

statistically significant. Though this shows no increase in HSC maintenance 

phenotype it also shows no loss of this phenotype in the new conditions.  

 

Figure 5.10 In cell western results for HSC maintenance markers. 
Graphs show the expression of HSC maintenance markers represented as a fold change to the 
expression on a glass surface. Bars represent the mean values +/- SD with n = 4. Statistical 
analysis was carried out using the Kruskal-Wallis test with no significant differences found for any 
markers. 

 

To assess changes caused by osteogenic differentiation, OCN and OPN were both 

investigated (Figure 5.11). Both markers saw the lowest expression in the 

condition with the GFs present which was unexpected as the presence of BMP-2 

should induce some differentiation. If looked at as a fold change to glass OPN 
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showed an increase in expression while OCN showed a general decrease. Like the 

other markers no statistically significant differences were found suggesting no 

change in osteogenic potential through the different conditions. 

 

 

Figure 5.11 In cell western results for osteogenic markers. 
Graphs show the expression of osteogenic markers represented as a fold change to the expression 
on a glass surface. Bars represent the mean values +/- SD with n = 4. Statistical analysis was 
carried out using the Kruskal-Wallis test with no significant differences found for any markers. 

 

The HSC maintenance and osteogenic markers were also assessed without gels 

present to observe if the addition of the gel on top influenced the cell 

phenotype with regard to these markers (Figure 5.12). This data was gathered 
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results normalised using cellTag 700. For osteogenic markers, OCN and OPN the 
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presence of the gel appears to reduce the expression of the marker in 

comparison to no gel with OCN showing a statistically significant difference in 

the conditions. For VCAM-1 and SCF the trend appears the opposite with the 

mean expression with a gel revealed as higher than without a gel though the 

difference was not found to be significantly different. These trends specifically 

the difference seen in osteocalcin suggest that gel presence may inhibit 

osteogenic differentiation of MSCs and further work would have to be carried out 

to investigate the potential increase in HSC maintenance capabilities.  

 

Figure 5.12. Comparing marker expression with and without gel presence. 
In cell western results were used to compare differences in marker expression with and without the 
presence of a PEG hydrogel. A Mann-Whitney test was used to compare conditions with and 
without the gel for each marker. Bars represent the mean +/- SD with n = 4 for each, P* £ 0.05. 

 

5.3.4 PCR 

PCR was used for the 3D model with the microbeads to back up the data seen 

through In-cell Western for the 2D model with the spin coated coverslips. 

Unfortunately, due to difficulty and a low RNA yield, only 2 genes could be 

investigated. Nestin and ALCAM were chosen to assess the maintenance of a 

stem-like phenotype in the various conditions; PEGFN gels with GFs, PEGFN gels 

no GFs and PEG only gels with GFs normalised to the expression in PEG only gels 

without GFs (Figure 5.13). All gels were 5% PEG with 25% VPM. 
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gel without GFs saw an increase in nestin expression. Due to the wide spread of 

the data, there was no statistical significance found. ALCAM data showed a 

similar trend with PEGFN with GFs showing the biggest change to the control but 

again with a widespread in the data. Due to the wide variation no conclusion was 

drawn from this data. 

 

Figure 5.13 PCR results for nestin and ALCAM. 
The graphs above represent the PCR data for nestin and ALCAM genes in MSCs cultured for 3 
weeks within PEG hydrogels. The data is shown as fold change to the control PEG only gel with no 
GFs present (represented by the blue line). Graph shows the mean +/- SD with variation in sample 
number due to RNA yield.  

 

The lack of RNA at the start of the process is likely to have impacted the overall 

success of the PCR process. No firm conclusions could be drawn from this data 
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and further work would have to be carried out to refine the RNA extraction to 

achieve a more efficient yield. If able to extract more RNA this technique could 

be further utilised to analyse the model but was not possible at this time. 

5.3.5 Confocal 

Due to difficulty with attaining RNA to carry out reliable PCR, immunostaining 

was used to visualise the cells on the microbeads within the 3D model. Staining 

for some relevant markers to the bone marrow niche: nestin, Stro-1 and SCF. 

Samples were stained after 3 weeks in culture with 4 different conditions: PEG 

only gel no GFs, PEG only gel with GFs, PEGFN gel no GFs and PEGFN gel with 

GFs, all gels were 5% PEG with 25% VPM.  

Nestin was present in all conditions though no changes were observed over the 

different conditions (Figure 5.14). With the quantification of the image 

fluorescence higher mean was found for the conditions with PEGFN gels vs PEG 

gels however, this appeared to be a result of general variance and showed no 

statistical significance. The PEG gel with no GFs had the lowest average nestin 

staining, though still showed no statistically significant differences to the others. 
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Figure 5.14 Nestin confocal images and quantified results. 
Images show a selected point through one of the stacks obtained to best represent what was 
observed. Actin, DAPI and nestin staining of MSCs seeded on microbeads within 5% PEG 25% 
VPM hydrogels for each condition. Graphs shows the quantified results normalised to the DAPI 
nuclei staining for each condition. Bars represent the mean +/- SD with n=3 for each condition 
except PEG w/ GFs when n=2 Tukey test was carried showing no significant differences within the 
data.  

 

Stro-1 (Figure 5.15) staining was, like nestin, lowest in the PEG gel with no GFs. 

Conditions with PEGFN gels had the highest average staining though PEG gels 

with GFs was very similar to PEGFN gels with no GFs. The highest average 

staining for Stro-1 was seen in the PEGFN gels with GFs which was found to be 

statistically significant versus all other conditions. Suggesting the addition of FN 

along with GFs to the PEG gels may increase the maintenance of the stem-like 

phenotype. 
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Figure 5.15 Stro-1 confocal images and quantified results. 
Images show a selected point through one of the stacks obtained to best represent what was 
observed. Actin, DAPI and Stro-1 staining of MSCs seeded on microbeads within 5% PEG 25% 
VPM hydrogels for each condition. Graphs shows the quantified results normalised to the DAPI 
nuclei staining for each condition. Bars represent the mean +/- SD with n=3 where p* £ 0.05 p** £ 
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0.01 and p*** £ 0.001. Tukey test was carried showing significant differences within the data 
between PEGFN with GFs and all other conditions. 

The staining assessed presence membrane bound SCF, though soluble SCF is also 

likely present within the model. SCF (Figure 5.16) did not follow the same trend 

seen for nestin and Stro-1 with conditions containing GFs, PEG gels with GFs and 

PEGFN gels with GFs, showing the highest average staining. Like the other 

markers PEG gels with no GFs showed the lowest average staining of all the 

conditions for SCF. Data for SCF revealed notable differences between 

conditions containing GFs and the PEG without GFs condition. 
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Figure 5.16 SCF confocal imaging and quantified results. 
Images show a selected point through one of the stacks obtained to best represent what was 
observed. Actin, DAPI and SCF staining of MSCs seeded on microbeads within 5% PEG 25% VPM 
hydrogels for each condition. Graphs shows the quantified results normalised to the DAPI nuclei 
staining for each condition. Bars represent the mean +/- SD with n=3 where p* £ 0.05. Tukey test 
was carried showing significant differences within the data between PEG without GF and both 
conditions including GFs. 
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5.4 Discussion 

Within the final model we put together the components developed in the 

previous chapters to mimic the various components of the bone marrow niche. 

The PEG hydrogel tuned to the stiffness of the bone marrow was used to produce 

a 3D matrix around the cells that could mimic the functions of the ECM in vivo. 

This included the ability to allow diffusion through the matrix allowing the 

movement of waste, essential nutrients and soluble molecules (Mouw, Ou and 

Weaver, 2014). Figure 5.3, Figure 5.4 and Figure 5.5 all show the ability for 

soluble proteins to diffuse through the entire gel for 3 different gel 

formulations. Though differences were observed in the ability to reach an 

equilibrium within the gels there were no concerns that essential diffusion would 

be obstructed by the gel matrix. The release assays shown by Figure 5.6 and 

Figure 5.7 also support the conclusion that diffusion through the gel is possible 

as they show the ability of GFs to leave the gels into the surrounding 

supernatant. 

Release assays were carried out using CXCL12, Flt-3, SCF and TPO to investigate 

the ability for the matrix to retain signalling molecules to surround the cells. 

These specific GFs were chosen due to their roles within the bone marrow niche 

in vivo and common addition to media when culturing HSCs (Calvi et al., 2003; 

Yoshihara et al., 2007; Greenbaum, Y. M. S. Hsu, et al., 2013; Sugimura et al., 

2017; Tsapogas et al., 2017). The release profiles over time (Figure 5.6) showed 

that any molecule not trapped within the matrix would diffuse out within the 

first 6 hours after which no further release was recorded up to 48 hours. The 

total cumulative release calculated after the 48 hour time point, varies for each 

GF though a general pattern does emerge (Figure 5.7). With the exception of 

TPO the highest release is seen in the PEG only gels vs those containing FN, 

possibly due to a lack of FN affinity. CXCL12 was of particular interest as it not 

only is known to be produced by MSCs within the niche and to influence HSC 

maintenance but also have a known affinity to FN binding (Pelletier et al., 2000; 

Ding and Morrison, 2013). With Flt-3 and SCF following the same trend it could 

suggest some interaction between FN and these GFs. In the literature we see a 

similar outcome when looking at VEGF, which has a known affinity to FN binding, 
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release from PEG vs PEGFN hydrogels (Trujillo et al., 2019). This study also 

showed that introducing VPM could have an influence on the release which 

supports the results produced in this chapter where we see a general reduction 

in the mean between PEGFN vs 25% VPM PEGFN gels. It has been shown in the 

literature that the introduction of VPM causes a reduction in pore size compared 

to using dithiol which could explain what is observed in the release and diffusion 

assays when VPM is present (Weaver et al., 2018).  

The second material component in the model is the PEA coated surface, either a 

coverslip or microbead, which was incorporated as a surface for MSCs to adhere 

and allowing the incorporation of GFs. Previous research completed by 

colleagues in our research group found that the addition of BMP-2 and NGF 

produced the best HSC supporting phenotype. BMP-2 was included to induce 

some osteogenic differentiation of the MSCs as osteoblast cells are important in 

HSC regulation and NGF due to nestin positive MSCs being linked to peripheral 

nerves and control within the niche (Lucas et al., 2011).  

The use of NGF was to support the maintenance of naïve MSC population which 

was investigated looking at MSC stem markers like nestin, Stro-1 and ALCAM 

using ICW (Figure 5.9). Results showed that, with the inclusion of growth factors, 

an increase in nestin expression is observed compared to the other conditions, 

with an upregulation to glass. For other MSC markers however, no change in 

expression was observed when GFs were included. Phenotype control within the 

model is still difficult and would require further assessment and optimisation to 

make definitive conclusions. With nestin positive MSCs being noted as 

particularly important within the niche (Méndez-Ferrer, T. V Michurina, et al., 

2010; Pinho et al., 2013) the slight increase in nestin with GFs present could be 

further investigated using other techniques such as PCR or flow cytometry in 

order to draw further conclusions. For culture in the 3D based model with the 

microbeads encapsulated within the gels with MSCs, immunostaining was carried 

out to determine the maintenance of a nestin and Stro-1 positive population of 

cells after 3 weeks. Figure 5.14 shows the presence of nestin in all conditions 

allowing the conclusion that MSCs remain nestin positive after 3 weeks in culture 

though there are no differences observed between the different conditions. 

Stro-1 (Figure 5.15) similarly, is observed in all conditions suggesting cells are 
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maintained in a naïve state with PEGFN gels with GFs present showing a 

significant increase in Stro-1 presence compared to other conditions. The use of 

other techniques to confirm this data and further analyse the cell phenotype 

should be considered before concluding these results, a method to extract cells 

more efficiently would allow this to be done more easily.  

BMP-2 is a GF known to induce osteogenic differentiation of MSCs (Knippenberg 

et al., 2006). With osteoblasts playing such an important role in the bone 

marrow niche in the regulation of HSCs and production of HSC maintenance 

factors (Nakamura et al., 2010) it is favourable that osteogenic differentiation 

occurs within the model while maintaining a population of naive MSCs. Figure 

5.11 showed a down regulation of OCN expression in both PEA with FN and PEA 

with FN and GF conditions compared to glass after 3 weeks culture. For OPN 

however, there is an up regulation in all conditions compared to glass though the 

GF condition still does not appear to enhance the osteogenic capabilities. 

Despite BPM-2 not showing the effect expected further analysis should be 

carried out to assess any effect on osteogenesis as these markers are up-

regulated at different stages of differentiation that could influence these results 

(Yang et al., 2014). The lack of an increase in these markers may also be 

explained by an inhibition to osteogenesis brought on by the presence of the gel, 

this is suggested by the results shown in Figure 5.12. A possible cause for this 

reduced osteogenic commitment could be the production of a hypoxic culture 

environment created by the gel. It has been shown in the literature that hypoxic 

culture can reduce osteogenic differentiation in bone marrow derived MSCs 

(D’Ippolito et al., 2006; Fehrer et al., 2007) and also that hydrogels can be used 

to create a hypoxic environment (Park and Park, 2016). Again, future analysis 

with PCR or flow cytometry would be beneficial looking at more genes 

associated with the differentiation process before drawing a final conclusion to 

this data. 

Finally the expression of HSCs maintenance markers, VCAM-1 and SCF, was 

investigated using ICW (Figure 5.10) due to their known roles in the HSC niche 

(Calvi et al., 2003; Kopp et al., 2005). SCF can be found in a membrane bound or 

soluble state, the presence of membrane bound SCF has been shown to influence 

HSCs (Driessen, Johnston and Nilsson, 2003; Takagi et al., 2012). Little to no 
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differences were observed in VCAM-1 expression through all conditions and with 

respect to glass. SCF on the other hand showed an upregulation of all conditions 

compared to glass though the condition with the GFs present showed the 

smallest increase. When comparing this to the same condition with no gel 

however, the presence of the gel appears to increase the expression of both HSC 

maintenance markers with SCF showing the largest increase (Figure 5.12). 

Techniques such as PCR and/ or flow cytometry could be utilised for further 

phenotyping using this 2D based model with the coverslips due to the ease of 

removing cells compared to the 3D model. Immunostaining was used to observe 

and quantify the presence of SCF when MSCs were cultured on the microbeads 

within the gels (Figure 5.16). The results showed a significant increase in the 

volume of SCF staining within the conditions containing GFs this indicates that 

these conditions would be more favourable to host an HSC population. 

Continuing work with immunostaining could further characterise the cells or if 

the cells are able to be removed from gels efficiently techniques such as PCR 

and flow cytometry could be used to more accurately assess the phenotype. 

In conclusion, this chapter has outlined some of the biological interactions and 

effects of the model. Diffusion and release assays show the ability of the 

hydrogel to act like the ECM allowing movement of molecules while also creating 

a reservoir of influencing factors around the cells. Cell characterisation shows a 

general reduction in osteogenic differentiation in the presence of hydrogels 

which could be resultant of the creation of a hypoxic culture environment. 

Generally, cells appeared to retain stemness and HSC maintenance markers 

though further work would have to be carried out to fully characterise the MSCs 

within the model. 
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Chapter 6 General Discussion 

6.1 Discussion 

The overall aim of this project was to develop an in vitro model, for the culture 

of stem cells, able to mimic the in vivo environment of the bone marrow niche. 

The work presented in this thesis shows the tuning of PEG hydrogels simulating 

the stiffness that has been previously recorded for the bone marrow. We have 

also demonstrated the ability of these gels to reproduce ECM functionalities, 

such as allowing diffusion and retention of soluble molecules, that can act as 

influencing factors, within the matrix, mediated by the inclusion of FN within 

the gels. This model was further developed with the inclusion of solid polymeric 

surfaces within the gels to facilitate MSC cultures. With the inclusion and surface 

modification of polystyrene microbeads, we have then shown the potential of UV 

polymerisation to be used as a technique to coat materials in PEA for cell studies 

and the successful use of plasma polymerisation to coat polystyrene microcarrier 

beads for cell culture. We demonstrated the ability of PEA coatings produced 

through UV and plasma polymerisation to induce fibrillogenesis when FN is 

introduced to the surface. The work also demonstrated the ability for the system 

to sustain MSCs for long term culture. This was in aim of producing a system that 

is able to induce in vivo like cell behaviour within an in vitro model.  

In vitro modelling has become an important method used in research to further 

understand cell behaviour in both diseased and healthy tissues. The use of in 

vitro models allows control over the cellular environment leading to a better 

understanding of influencing factors as found in situ(Arantes-Rodrigues et al., 

2013). A disadvantage, however, is that cells when cultured in vitro may not 

behave as they do in vivo, potentially due to a variety of differences in 

mechanical, biological or chemical factors, it is therefore important to mimic 

the in vivo environment of the cells as closely as possible during development of 

in vitro models. Recent studies have utilised hydrogels, as an in vitro equivalent 

to the ECM, reproducing selected mechanical and biological cues within models, 

(Tibbitt and Anseth, 2009) as has been done in this work. The ECM, as 

summarised in chapter 1, is the non-cellular component of tissues and provides 

various functions for the cells, including support through a 3D matrix (Frantz, 

Stewart and Weaver, 2010). It is known that the stiffness of the cells 
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environment can influence their behaviour (Discher, Janmey and Wang, 2005) it 

is therefore important to use a model with the appropriate mechanical 

properties for the tissue being studied. In this work the model was developed to 

mimic the bone marrow niche. Therefore, the stiffness was tuned to fall within 

the known range of bone marrow stiffness, generally <3 kPa (Choi and Harley, 

2017). This was performed through investigating how gel composition and 

gelation conditions could influence the resulting bulk properties of the gel 

measured using rheology. Changing the concentration of PEG within the gels was 

shown to influence the stiffness of the gels with a positive linear relationship 

found between the storage modulus and the concentration of PEG in gels up to 

10% w/v. This allowed us to choose a composition which would produce gels with 

the appropriate stiffness to mimic the bone marrow, in this instance 5% PEG gels 

were chosen with an average Young’s modulus of 2.5 kPa. Altering the starting 

pH also resulted in changes to the final stiffness of the formed gels with lower 

pH starting solutions producing softer gels. 

Though the bulk stiffness of the bone marrow is found to sit at <3 kPa (Choi and 

Harley, 2017) it has also been found to be heterogenous ranging between 0.25 to 

24.7 kPa throughout the marrow (Jansen et al., 2015). Microcarrier cell culture 

beads were introduced to our model providing localised points of higher stiffness 

allowing cellular adhesion within the gel and improved cell viability. The surface 

introduced by the microcarrier beads allowed for further development of the 

model through the use of PEA surfaces. As previously described PEA interacts 

with the ECM protein FN and induces fibrillogenesis producing protein networks 

on the polymer surface (Cantini, Rico, et al., 2012). FN, when in this fibrillar 

conformation, compared to the soluble globular conformation, allows the 

exposure of various binding sites improving cellular adhesion and allowing the 

tethering of GFs (Llopis-Hernández et al., 2016). In this work various 

methodologies; plasma polymerisation, UV polymerisation and SI-ATRP, were 

investigated to find the most effective way to coat polystyrene, the base 

material of our microcarrier beads, with PEA. SI-ATRP was unsuccessful at 

coating polystyrene samples, producing insufficient chemical modification to 

confirm the presence of PEA, however with optimisation the process has 

potential to be an effective modification method. UV polymerisation and plasma 

polymerisation were both found to successfully produce a PEA surface on 
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polystyrene samples, as shown by XPS analysis. Further analysis also revealed the 

presence of FN networks on surfaces coated via these methodologies, confirming 

the functionality of the polymer coating. As an established method in both in 

vitro and in vivo studies plasma polymerisation was taken forward for use in cell 

work where microcarrier beads are used. 

Another important aspect of the ECM is the diffusion of essential/ signalling 

molecules and waste through the matrix (Mouw, Ou and Weaver, 2014). There 

are various cytokines secreted by cells in vivo that have been shown to play key 

roles within the bone marrow niche such as; FLT-3 ligand, SCF, TPO, OPN, VCAM-

1 and CXCL-12 (Calvi et al., 2003; De Ugarte et al., 2003; Stier et al., 2005; Qian 

et al., 2007; Greenbaum, Y.-M. S. Hsu, et al., 2013; Tsapogas et al., 2017).It is 

important that the hydrogels used in vitro mimics the ECMs ability to retain 

these molecules and even immobilise them within the matrix (Powers, McLeskey 

and Wellstein, 2000; Zhu and Clark, 2014). Within this work we have shown that 

the PEG hydrogels used allow diffusion of molecules through the entirety of the 

gels. Release assays carried out also showed the ability for the hydrogels to 

retain some of these molecules known to be important in the bone marrow niche 

particularly in gels with FN incorporated. Therefore, this model was confirmed 

to be able to simulate the ECMs ability to both allow diffusion of and facilitate 

the solid state presentation of cytokines. 

 The bone marrow niche is of particular interest in the field of regenerative 

medicine as it is home to two populations of stem cells, MSCs and HSCs, which 

give rise to bone, cartilage, fat, muscle (MSCs) and blood cells (HSCs) (Méndez-

Ferrer, T. V Michurina, et al., 2010). This unique environment is able to 

maintain a naïve population of stem cells while differentiation continues to 

sustain mature cell types. A successful in vitro niche model would give rise to 

vast research and therapeutic potential such as; pharmaceutical screening, 

disease modelling and cell sourcing. MSCs seeded within the model developed in 

this thesis were shown to survive long term culture, of up to 3 weeks, after 

encapsulation. The phenotype was assessed to investigate the maintenance of a 

naïve population within the model with emphasis on HSC maintenance 

phenotype. After 3 weeks MSCs were shown to be nestin positive, which is 

related to expression of HSC maintenance markers and linked to a naïve 
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phenotype (Méndez-Ferrer, T. V Michurina, et al., 2010; Kunisaki, Bruns, 

Scheiermann, Ahmed, Pinho, Zhang, Mizoguchi, Wei, Lucas, Ito, Jessica C. Mar, 

et al., 2013; Pinho et al., 2013), though further investigation is required to fully 

determine the MSC phenotype within the model. It was also found that the 

introduction of the hydrogel reduced osteogenic commitment of MSCs, even in 

the presence of BMP-2, which is thought to potentially be due to a hypoxic 

environment within the gel. 
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6.2 Summary of Key Findings 

• PEG hydrogels can be tuned to match the stiffness of the bone marrow 

through changes in PEG concentration, higher PEG concentrations produce 

stiffer hydrogels. Lowering the pH slows the rate of gelation resulting in 

the production of softer gels, slowed gelation likely produces more 

homogenous gels. 

• Soluble proteins can diffuse fully through the PEG hydrogels. PEG 

hydrogels can retain certain growth factors creating a reservoir of 

influencing factors for cells like the ECM in vivo. This growth factor 

retention is likely influenced by the inclusion of the ECM protein FN within 

the hydrogels 

• UV polymerisation can successfully produce a PEA surface on a PS base 

material. The PEA layer produced through UV polymerisation has the 

ability to induce protein networks when FN is introduced. 

• Plasma polymerisation can be used to coat PS microcarrier beads in PEA 

suitable for cell culture.  

• MSCs are viable after encapsulation within the PEG hydrogels for long 

term culture (3 weeks) when seeded on to PEA coated PSm. MSCs are still 

Nestin positive after 3 weeks culture. PEG hydrogels appear to inhibit 

osteogenic differentiation even in the presence of BMP-2. 
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6.3 Recommendations for Future Work 

The following section outlines future work that may be considered taking the 

model forward. 

The PEG hydrogels are now well established and characterised for use in tissue 

models. However, a few further characterisations may be beneficial. It may be 

beneficial to assess the ability of the gels to induce a hypoxic environment which 

is thought to be important in maintaining stem cell quiescence (Mohyeldin, 

Garzón-Muvdi and Quiñones-Hinojosa, 2010).The range of PEG volumes assessed 

may be increased to determine if the linear relationship observed between 3% - 

10% PEG gels and storage modulus continues or plateaus at higher volumes. 

Rheological characterisation should be carried out with the inclusion of FN and 

microcarrier beads within the gels in order to investigate any effects these have 

on the final bulk properties. Finally, it may be helpful to investigate any changes 

in stiffness over time when using the gels for long term culture. Though 

degradation studies have been carried out on these gels in previous research no 

study specifically looks at changes in stiffness over an extended period (Trujillo 

et al., 2020). This would improve the validity of the model over longer time 

points and potentially provide new avenues of study with higher degrees of 

stiffness.  

There is potential for further work to be carried out on the method of surface 

modification used to introduce PEA to the surfaces with UV polymerisation and 

SI-ATRP. SI-ATRP has been shown to successfully introduce PEA onto PLLA 

surfaces (Sprott et al., 2019) but was unsuccessful when used on our polystyrene 

surfaces. Optimisation of the method would likely involve including a step to 

produce more active initialisation points from the bromination step. If 

optimisation was successful further testing into degradation, mechanical 

properties and functionality would have to be carried out to determine if this 

would be a more effective method than plasma polymerisation. UV 

polymerisation successfully produced a layer of PEA on the polystyrene surface 

though similar validation would have to be carried out as with SI-ATRP. 

Additionally, cellular cytotoxicity should also be investigated to confirm that the 

chemical treatment of the surfaces with BPO and ethyl acrylate monomer do not 

negatively impact the cells. 
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In order to determine the success of the model for mimicking the bone marrow 

niche cell phenotyping would have to be continued. The inclusion of HSCs into 

the model along with MSCs would determine if the co-culture is able to maintain 

a LT-HSC population over time. Optimising a technique to successfully remove 

the cells from the system would allow the utilisation of techniques like PCR and 

flow cytometry to determine cell phenotype. The final model may also be 

optimised through tuning stiffness, changing GFs and cell types included in the 

system to mimic other tissues. 
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