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Abstract 

As the cost of high-throughput techniques reduces, and new more powerful 

equipment is designed, more highly-dimensional biological data will be available 

– and a lot of data is already in the public domain. The aim of this thesis is to 

investigate three case studies with interesting opportunities for the integration 

of large molecular datasets, corresponding clinical data, and publicly available 

data. 

Genome-wide DNA methylation was studied with respect to hypertension. 

Genomic location data was used both to group individual methylation sites into 

meaningful functional groups such as promoter regions, and to report the results 

in a genomic context. Genome-wide SNP data was used to help rule out potential 

false positives where SNPs interfere with detection of DNA methylation. 

Left ventricular hypertrophy is an intermediate cardiovascular phenotype 

associated with the development of heart failure. This phenotype was studied as 

a continuous variable – left ventricular mass index (LVMI) – using multiple sample 

types, in the context of a large cohort, using datasets with different classes of 

biomolecules and varying genomic coverage. Two alternative analysis 

approaches were compared, and a linear model was generated showing that a 

signature of molecular and clinical markers in combination best describes LVMI. 

A multi-omics respiratory dataset was investigated, which includes high-

throughput data for mRNA, miRNA, proteins, and metabolites and has 

measurements in two relevant sample types. Test statistics were performed on 

all datasets, identifying molecules dysregulated with asthma, COPD, and 

smoking. An asthma molecular interaction network was created with the 

significant molecules, and the links between them were formed using a variety 

of public data. Comparisons were made between asthma and COPD, and 

between asthma in smokers and non-smokers. Correlations with cell type counts 

may indicate cell type of origin in samples with multiple cell types like induced 

sputum.  
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1. Introduction 

Until around the turn of the century most molecular biology relied upon a 

relatively distinct hypothesis to be tested (hypothesis-based research). The 

design of the experiment was based heavily on information in the literature and 

the understanding of it, e.g. if a particular protein was previously shown to be 

strongly correlated with a disease state then an experiment might be designed 

to yield evidence on whether the relationship is causal. 

A less specific hypothesis might concern a small group of molecules, perhaps 

related in structure or function, but still the designer of the experiment is 

looking at the literature, constructing a hypothesis and testing it. If a certain 

family of genes is involved in a molecular function that is thought to be crucial 

to the understanding of the disease then every member of the family might be 

tested. The tests may be numerous but are specific and the selection of 

biomolecules is influenced by the experiments which came before. 

Now, with the use of a number of high-throughput techniques, the boundaries of 

an experiment can move beyond these hypotheses by testing ‘globally’ – i.e. 

testing as many biomolecules of a certain class as a given high-throughput 

technique will allow. In doing so the previous work does not bias the future work 

in terms of what is tested – though it is still helpful for interpretation – and there 

is greater opportunity for finding novel variation. This is especially important for 

complex diseases where a large number of variables come into effect, and 

different populations may have different profiles of genetic, epigenetic and 

environmental causes. 

This is not to say that hypothesis-free research is simply better than hypothesis-

driven research but that it serves a different and complementary purpose (Fig. 

1-1). Rather than starting with a hypothesis and testing it, testing ‘all’ of the 

data generates novel hypotheses to be tested with follow-up experiments. In 

addition to generating hypotheses, hypothesis-free experiments may also 

identify biomarkers or indicate how the system functions as a whole. It has been 

suggested that there are ‘hidden hypotheses’ that exist in elements of the 

experimental design, e.g. that the chosen tissue is relevant to the disease (1). 
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Alternatively it might be suggested that every iteration of the statistical test in 

question is essentially questioning a hypothesis. Regardless, the meaning of the 

phrase and the benefits of the approach which it describes are clear. 

 

Fig. 1-1: Hypothesis-Based and Hypothesis-Free 
Hypothesis-based and hypothesis-free experiments fulfil complementary roles. Hypothesis-free 
experiments yield large amounts of data, the interpretation of which may lead to a better 
understanding of the system or to new hypotheses to test. These hypotheses will then confirm or 
alter the model of the system. 

 

1.1 Bioinformatics 

Bioinformatics is a field at the intersection of biology, information technology 

and statistics - programmatic approaches are used to efficiently process, store, 

and analyse large biological data sets which would otherwise be unmanageable. 

Bioinformatics approaches are usually required with hypothesis-free research. 

The data sets gathered by high-throughput techniques are known as ‘omics’ data 

sets – genomics, epigenomics, transcriptomics, proteomics and so on, e.g. 

genomics data describes genetic variation throughout the genome, proteomics 

describes variation in levels of proteins derived from throughout the genome and 

owing to various processes including alternative splicing and post-translational 

modification. The main sources of such information are high-throughput DNA 

sequencing, microarrays and mass spectrometry. 
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1.1.1 Modern Sequencing Technologies 

Massively parallel modern sequencing technologies are capable of generating a 

vast amount of information compared to older technologies at a fraction of the 

cost and have revolutionised genetic research. This explosive growth exceeds 

the growth rate of storage capacity and has resulted in new challenges for data 

storage, retrieval, and analysis. The primary resource for raw sequence data, 

both DNA and RNA, is the Sequence Read Archive (SRA) which is a public 

repository for data from Next Generation Sequencing (NGS) machines. The SRA is 

part of the International Nucleotide Sequence Database Collaboration (INSDC) 

which is a collaboration of three partners, namely the European Bioinformatics 

Institute (EBI), the National Centre for Bioinformatics (NCBI) and the DNA Data 

Bank of Japan (DDBJ) (2). 

 

1.1.2 Gene Expression and Microarrays 

Microarrays are flat surfaces or ‘chips’ on which a large number of probes are 

located. Manufacturing differs from company to company but the general 

concept remains the same: a probe or a set of genomically proximate probes is 

designed to hybridize to a transcript and fluoresce upon hybridization, and the 

level of fluorescence will inform on the abundance of the target molecule. Each 

‘spot’ on the array tests for the presence of a specific biomolecule of a 

particular type and the libraries of probes used have approximate genome-wide 

coverage. 

The devices are perhaps best known for assaying gene expression though they 

have many other uses, including SNP genotyping, protein-DNA binding, protein-

protein binding and DNA methylation. In practical terms a gene expression 

microarray allows the researcher to see which genes have an altered expression 

e.g. depending on different phenotypes or conditions. 

Often it is the case that different probe sets for the same genes are highly 

correlated and where they are not, it suggests that either an un-annotated 
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cross-hybridization or alternative splicing is occurring. RNA-seq is an emerging 

alternative method for estimating gene expression by sequencing 

complementary DNA and aligning it to a reference genome. RNA-seq is a more 

powerful technology in that it can detect much more variation on the level of 

genetics and alternative splicing. 

Microarrays are still a valuable technology, being cheaper, less complicated, less 

data-heavy, and simpler to analyse. RNA-seq, however, can detect SNPs and 

other genetic variation, fusion genes, and levels of different splice variants. It 

has also been suggested that the two technologies can be used together to 

detect the maximum coverage of the transcriptome (3). 

NCBI’s Gene Expression Omnibus (GEO) (4) and EBI’s ArrayExpress (5) are the 

main databases for array-based data, also including some RNA-seq data and MS 

data. One problem with hosting data online like this is the lack of consensus on 

whether additional consent is required to submit the datasets to such a 

database. In a study on the issue participants stated that it was very (69%) or 

somewhat (21%) important that they were asked for their permission, indicating 

an ethical consent issue (6). 

All data in GEO and ArrayExpress must adhere to Minimum Information About a 

Microarray Experiment (MIAME) (7) or Minimum Information about Sequencing 

Experiments (MINSEQE), which are standards dictating that enough information 

must be included for a second party to sufficiently analyse and/or recreate the 

experiment. In 2012 ArrayExpress reported having over 30,000 datasets, 27,000 

more than two years previous. Both GEO and ArrayExpress continue to grow 

quickly and both tools, and ways to link to popular tools, are in development 

from their parent groups and others (8). 

In some cases rather than searching for experimental data relating to a specific 

disease one may simply wish to know about the normal expression across 

different tissues of an organism. This can help identify possible sources of cross-

talk, or help to study normal function or to compare systems in multiple species. 

BioGPS and EBI's Gene Expression Atlas offer similar services in this area, 

including graphical output for each gene, and useful related links (9;10). In order 
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to identify genes which are normally similarly expressed and so potentially share 

similar role or regulatory pressures, the expression profile may also be searched 

against other expression profiles for one with a correlation surpassing a pre-

selected cut-off (11). 

 

1.1.3 Proteomics and Metabolomics 

While any large dataset may be useful, the final functional products – mostly 

proteins and metabolites – are perhaps the most useful. Mass spectrometry (MS) 

is most often the tool to collect this data on a large scale. It is used in 

combination with a method to separate the components of a sample prior to MS 

such as liquid chromatography, gas chromatography or capillary electrophoresis. 

MS itself involves ionizing the molecules, fragmenting them and measuring the 

mass/charge (m/z) ratios of the resulting fragment molecules. Each profile of 

these m/z ratios relates to a specific molecule and can be used for 

identification. Different types of separation and different MS equipment have 

different strengths and limitations. For example different separation techniques 

will be more/less suitable for differently sized or charged molecules and offer a 

different degree of chromatographic resolution (12;13). 

The Universal Protein Resource (UniProt) is a comprehensive database of protein 

structures and annotations. The Human Metabolome Database describes small 

molecule metabolites in humans. It contains over 40,000 metabolites and links 

three types of data: chemical, clinical, and molecular biology/biochemistry (14). 

Several similar databases exist for other species. 

There is currently much less support for sharing of proteomics and metabolomics 

datasets than for transcriptomics, despite the growing need, and relatively few 

public datasets available. The Proteomics Identification Database (PRIDE) 

contains over 25,000 proteomics experiments (15). Metabolights is a repository 

hosted by EBI and launched in 2012, which currently houses 39 experiments (16). 

Standards for reporting proteomics and metabolomics experiments are 
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coordinated by Human Proteome Organisation's Proteomics Standards Initiative 

(HUPO-PSI), and Metabolomics Standards Initiative (MSI) respectively. 

 

1.1.4 Pathway Analysis and Molecular Annotation 

Various interaction and pathway databases can be important for downstream 

analysis of a wide range of experiments. Some databases are simply for storage 

and searching whereas others provide certain extra functionality. KEGG Pathway 

is a large well-curated pathway database with impressive zoomable ‘global’ 

maps which show large sections of metabolism in one view, however, part of its 

service is commercial (17). A similar database with fewer compounds but more 

pathways and reactions, and slightly more extensive pathway report pages is 

MetaCyc (18). Pathway Commons, collects data from a range of free access 

databases and provides a link for interactive viewing of the pathways by 

Cytoscape (19). Reactome allows mapping of a list of IDs to its database of 

pathways, allowing the user to see if a set of biomolecules-of-interest are 

involved heavily in a particular pathway (20). PathVisio is a tool which can be 

used to view and edit the pathways in WikiPathways (21;22). WikiPathways is 

non-commercial and unrelated to Wikipedia, but is also an open and 

collaborative platform. As PathVisio is written in Java it is cross-platform and its 

website provides tutorials to introduce the user to its installation process and 

features. These are just a few of the interactions and pathway databases 

available, listing just some of their ‘front-end’ functionality. To give scope as to 

the scale of the available data it is worth mentioning Pathguide, which lists over 

700 biological pathway and molecular interaction resources (23). 

One of the most common types of annotation used in downstream analysis is 

Gene Ontology (GO) (24). GO terms are a standardised way of classifying genes 

and their products and are split into three broad types – biological process, 

cellular component and molecular function. Each GO term is part of a hierarchy, 

e.g. the term “mRNA splicing, via spliceosome” is a child term of “mRNA 

processing”. Gene ontologies are useful for term enrichment analysis where an 

algorithm detects if any terms are over-represented in a list of genes of interest, 
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such as a list of differentially expressed genes. The more similar a model is the 

more useful it is which is why gene ontologies are not static, changing with each 

version subject to the Gene Ontology Consortium and with advice from the 

scientific community. When a term is associated with a gene, a type of evidence 

is also recorded so that the reader or algorithm may filter out those associations 

with weaker evidence. 

 

1.2 Systems Biology 

In 1958 Francis Crick first discussed the central dogma of molecular biology: that 

information is transferred sequentially in one direction from nucleic acid to 

protein and cannot move in the opposite direction, which is often summarized 

by the phrase “DNA makes RNA makes protein” (25). While the central dogma is 

still a core part of our understanding of the molecular machinery that facilitates 

life, the picture is of course now much more complex (Fig. 1-2), as has been 

previously discussed (26;27). 

 

Fig. 1-2: A Summary of the Regulation of Major Classes of Biomolecule and their Associated 
Interactions. 
 

We now know that in addition to the genetic information stored as the code in 

the form of the four bases guanine, thymine, adenine and cytosine, there is also 

information carried in by the modification of these bases, e.g. methylation or 
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hydroxymethylation of cytosine. Another type of epigenetic (above genetic) 

modification is to the histones, the proteins which bind to DNA to form 

chromatin. These epigenetic changes can act in concert (28) and they contribute 

to changes in levels of gene expression (29) and can direct which parts of the 

genetic code form a resulting mature transcript via alternative promoter 

selection and alternative splicing (30;31). While epigenetic changes are mostly 

erased during gametogenesis, they have been shown in some cases to persist 

through generations (32). 

Similarly RNA transcripts may undergo base modifications although these are 

much less extensively studied (33). While most transcripts are protein-coding as 

suggested by the summarization of the central dogma quoted above, many are 

non-coding. One class of transcripts called microRNAs serve to downregulate 

gene expression by cleaving their specific target mRNA sequences. Some of these 

miRNAs seem to target thousands of specific RNAs and are extremely highly 

conserved across eukaryotes (34). As transcripts can undergo alternative splicing 

one gene may encode a large number of proteins by the removal of exons from 

pre-mRNA (35). The protein products of these transcripts also undergo post-

translational modifications before forming a mature protein product (36), so that 

along with splice variants and alternative start sites, one multi-exon gene has 

the potential to form of a vast array of proteins. Proteins of course interact with 

each other and with metabolites, but also assist in various nucleic acid related 

processes such as transcription (37) and miRNA-directed downregulation (38). 

One of the initial challenges of working with large datasets is the association 

between useful identifiers and the data itself. Many different sets of IDs exist for 

both, and some have become defunct over time as support for a database is 

dropped. Of those which have remained current, some databases are more 

inconsistent over time than others, e.g. the same ID being used for different 

molecules. While some conversion tools are available these issues often cannot 

properly be addressed without a concerted effort of someone with a biological 

background. 

Systems biology is the study of biological systems using large biological datasets 

by the use of computational and mathematical approaches. While the large 
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datasets used for systems biology are often generated from samples gathered 

specifically for the study, public datasets may also be used either in conjunction 

with a new dataset or as the main dataset(s) for the analyses themselves. 

Re-use of existing data by systematic data mining and re-stratification, one of 

the cornerstones of integrative systems biology, is also gaining attention. While 

tremendous efforts using a systems methodology have already yielded excellent 

results, it is apparent that a lack of suitable analytic tools and purpose-built 

databases poses a major bottleneck in applying a systematic workflow. 

Statistical meta-analysis of multiple public datasets can be very powerful. Raw 

data from different experiments is merged into a larger data set and reanalysed. 

 

As more of a system is measured it should become easier to discern the 

pathways and structures involved. Conversely the more of the system measured 

the more information must be integrated and the more complex the analysis. 

This describes both the promise and challenges of multi-omics studies. 

The most obvious way to integrate various omics experimental datasets is simply 

to analyse each set separately and retain only the positives from each set for 

further downstream analysis. The alternative to this set-by-set approach is to 

integrate the data prior to analysis. Generally, this can be done in one of two 

ways — either simply adding all datasets into one large matrix, or identifying 

biological relationships between the molecules and analyzing the resulting 

network. Specialized tools for this type of analysis are currently limited and are 

only beginning to emerge. 

 

1.3 Chronic Disease 

Chronic diseases comprise many of the most common and most costly challenges 

in healthcare today, affecting people of all ages, nationalities, and 

socioeconomic status. The four main types of chronic disease as outlined by 

WHO are: cardiovascular diseases, cancers, respiratory diseases, and diabetes. 
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These four groups represent 56% of all deaths globally, and another 15% of 

deaths are caused by other chronic diseases (39). 

Nine of the top ten causes of death in high-income countries are chronic diseases 

whereas only two of the top ten are chronic diseases in low-income countries 

(40). Though they affect people of varied backgrounds their effect can be 

disproportionate against the less economically-privileged – 85% of the premature 

deaths caused by chronic diseases occur in low and middle income countries. 

This differential vulnerability is also found between people of different 

socioeconomic backgrounds within the same country (41;42). 

Numerous definitions of chronic disease and lists of examples exist throughout 

medical and scientific communities, leading to some confusion over exactly what 

constitutes a chronic disease (43-45). Definitions may include a duration of over 

three months, increased occurrence with aging, or resistance to treatment. WHO 

uses the term ‘non-communicable’ interchangeably with ‘chronic’ in its 

literature and describes them as diseases which “tend to be of long duration and 

are the result of a combination of genetic, physiological, environmental and 

behaviours factors”. 

The inclusion of certain diseases under the four main types of chronic disease 

could be misleading, e.g. some types of cancer in particular can be fatal in the 

near-term. However under WHO’s definition chronic/non-communicable diseases 

only “tend” to be of long duration. While the definition is somewhat vague with 

regards duration the diseases included also have shared risk factors and 

challenges to treatment, and many of them are complex diseases. 

The four main types of chronic disease are related to four common behavioural 

risk factors (alcohol use, tobacco use, physical inactivity, and unhealthy diet) 

which lead to key physiological changes (e.g. increases in blood pressure, 

weight, blood glucose, and blood lipids). Governments and health agencies 

therefore tackle chronic disease in part through implementing policies which aim 

to reduce these behavioural risks e.g. through campaigns to educate the public 

about nutrition and disease, or the taxation of alcohol and tobacco. 
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Air pollution is another modifiable risk factor for many chronic diseases and one 

which may be more difficult to tackle for technological, economic, and political 

reasons. The urban centres where outdoor air pollution is highest may rely 

economically on emission-producing vehicles and factories. While it is described 

as modifiable (or potentially modifiable), there may be little an individual can 

realistically do to modify their own risk. Indoor air pollution is also a problem, 

specifically in rural areas of low-income countries where fires are needed for 

many daily processes and may be kept lit for long periods of time in structures 

with poor ventilation. 

Some risk factors, unlike behavioural risk factors or air pollution, are described 

as non-modifiable, e.g. age, sex, socioeconomic status, genetic risk. Discovering 

which genetic variants are involved in a complex disease is extremely difficult 

due to the scope of the human genome, genetic variation throughout the 

species, and the variation in the molecular basis/development of a disease. Risk 

factors may have interactive effects, further complicating discovery. 

Like environmental risk factors, individual genetic risk factors can also affect the 

risk of multiple chronic diseases, like HLA-DQB1 which Zenin et al found to be 

associated with COPD, diabetes, cancer, and dementia (46). This study used 

genome-wide association study (GWAS) data on over 300,000 patients and 

discovered 12 SNPs associated with ‘healthspan’ – the duration until a chronic 

disease is first developed. While the SNP in HLA-DQB1 was associated with 

multiple chronic diseases, another SNP was not associated with any chronic 

diseases in particular and yet still affected healthspan. 

Chronic diseases sharing both environmental and genetic risk factors, other risk 

factors affecting healthspan in general, and one disease being a risk factor for 

another, all drive multimorbidity (the co-occurrence of two or more chronic 

conditions). Multimorbidity is rising in prevalence and poses a considerable 

challenge to healthcare, both in terms of challenging treatment and worsening 

mental health and quality-of-life with additional conditions (47). 

As more risk factors are identified, and the relationships between them and with 

subtypes of disease are elucidated, we come closer to the era of precision 
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medicine, when a combination of clinical and molecular measurements will 

predict the optimal treatment based on an individual’s genetics, epigenetics, 

and environment. 

 

1.4 Cardiovascular Disease 

Cardiovascular diseases (CVDs) are disorders of the heart and blood vessels. They 

are the leading cause of death worldwide, representing 31% of all annual deaths, 

most of which are caused by stroke or coronary heart disease (48). Low and 

middle income countries are most affected by CVD deaths, accounting for 80% of 

CVD deaths (49). In high-income countries like the UK - where CVD mortalities 

have been substantially reduced - CVDs remain a leading cause of mortality and 

CVD prevalence remains high so it continues to be a significant health burden 

and economic burden (50). Worldwide CVDs are estimated to have cost $863 

billion US dollars in 2010 and are predicted to cost $1044 billion in 2030 (51). 

In addition to the four common behavioural risk factors of chronic disease 

mentioned above, some other common risk factors for CVD are: obesity, 

diabetes, abnormal blood lipids (which are all linked to unhealthy diet and/or 

physical inactivity); age, sex, and socioeconomic status (also mentioned above); 

psychological stress, ethnicity, and family history. Family history is a 

representation of both genetic factors and behaviours/environment, so it is a 

useful predictor for identifying at-risk groups (52). Treatment for those with 

established disease may include medications (aspirin, beta-blockers, 

angiotensin-converting enzyme inhibitors, and statins), medical devices such as 

pacemakers, or costly surgical operations. 

Primary hypertension is the occurrence of persistently elevated blood pressure 

without any identifiable cause and it is the leading mortality risk factor world-

wide. It accounts for most hypertensive patients and while it does not normally 

cause symptoms itself, it is a major risk factor for cardiovascular disease, and is 

also a risk factor for chronic kidney disease. 
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Several tissues and pathways are involved in the maintenance of blood pressure. 

The renin–angiotensin–aldosterone system is one of the central pathways by 

which blood pressure is maintained, and involves the kidneys, lungs, brain and 

vasculature. Angiotensin II increases blood pressure by its vasoconstrictor action, 

and also stimulates the secretion of aldosterone. Aldosterone causes 

reabsorption of sodium and water into the blood causing a raise in blood 

pressure. In the vasomotor system endothelin and endothelial nitric oxide induce 

vasoconstriction and vasodilation respectively, in turn causing an 

increase/decrease in blood pressure. The sympathetic nervous system is another 

major controller of blood pressure, through its effect on cardiac output and 

peripheral resistance. 

Instances of genetic variation in multiple genes in all of these systems, e.g. 

genes relating to sodium regulation such as the three genes for the subunits 

which constitute the epithelial sodium channel, may contribute to differences in 

blood pressure (53). Natriuretic peptides are released by the heart in response 

to atrial and ventricular distension, and neurohumoral stimulation from heart 

failure. These peptides act by inducing natriuresis (excretion of sodium in the 

urine by action of the kidneys), thus lowering blood pressure. SNPs associated 

with blood pressure have been identified both in the genes that encode the 

precursors of these peptides and in their receptors (54-56). Uromodulin is a gene 

expressed exclusively in the thick ascending limb of the loop of Henle. Although 

its precise function is not known, its expression results in increased co-

transporter activity, and sodium retention – thereby increasing blood pressure. 

The minor allele of UMOD SNP rs13333226 has been shown to elicit a protective 

(blood pressure lowering) effect (57). 

Recent GWAS studies have elucidated some of the genetic basis of the targets of 

current anti-hypertensive drugs, and have allowed for the discovery of new 

predictors and new disease mechanisms. GWAS experiments have revealed new 

associations between blood pressure and genes involved in calcium 

transport/homeostasis (e.g. ATP2B1, SLC8A1, and SLC14A2 whose protein is 

targeted by calcium channel blocker drug nifedipine) (56;58). A SNP associated 

with genes for subunits of a mediator of vasodilation, guanylate cyclase, have 

been shown by GWAS to be associated with blood pressure (56). Guanylate 
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cyclase propagates nitric oxide signalling, and is involved with blocking calcium 

influx and dephosphorylating myosin light chains, resulting in smooth muscle 

relaxation. A nonsense SNP in the gene ENPEP is associated with hypertension 

and may represent a novel RAAS target (56). It encodes glutamyl 

aminopeptidase, an enzyme which converts angiotensin II to angiotensin III, 

leading to downstream vasodilation. 

The genetic component of blood pressure has been estimated at between 

approximately 20% and 70% (59;60). However, until recently less than 3% of 

variation of blood pressure could be described by known genetic variants 

(61;62). One possible reason for this discrepancy is interaction effects, which are 

difficult to detect due to the large number of possible gene-gene and gene-

environment combinations. An example of work in this field is a GWAS which 

investigated salt-sensitive effects on blood pressure in a cohort of 1,876 

patients, and identified 8 novel salt-sensitive blood pressure loci (63). 

Rare variants, which are difficult to detect by GWAS, may constitute a large 

proportion of the unknown genetic predictors of blood pressure. One solution to 

this issue is to use small isolated populations to search for rare variants, 

although increasing sample size through meta-analysis can also improve rare 

variant detection. A recent meta-analysis of GWAS hypertension data using the 

largest cohort to date (>1 million patients) confirmed all 274 previously 

identified genetic risk loci, confirmed 92 previously reported but not replicated 

loci, and identified another 535 novel loci (60). In total this set of 901 loci 

explained 5.7% of the variation in blood pressure, a considerable increase on the 

2.8% explained by the previous 274 loci. Based on the estimate of heritability 

specifically for this cohort that means ~27% of the genetic heritability was 

explained. 

The discrepancy between the explained variation and estimated heritability may 

also be partly attributable to epigenetic modifications – histone modifications 

and DNA methylation. Where GWAS is used to compare genome-wide genetic 

variation, epigenome-wide association studies compare epigenetic variation. In 

addition to epigenetic variation causing disease, disease can also cause 

epigenetic variation. Unlike with genetic variation in GWAS, the epigenetic 
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variations assessed in EWAS vary between tissues. So far studies have focussed 

on blood samples, however other relevant tissues may contain further important 

data. 

The largest EWAS study on hypertension assessed DNA methylation in 17,010 

individuals and identified 13 sites where differential methylation was associated 

with blood pressure (64). These methylations are heritable and explained 1.4% 

and 2% of variation in SBP and DBP respectively in a model alongside established 

predictors age, sex and BMI. This data in combination with gene expression 

analysis identified six genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, 

and LPCAT3) with associations between DNA methylation, gene expression and 

blood pressure. These results point to the modulation of vascular contractility 

and inflammatory processes as functionally and causally connecting DNA 

methylation and BP. 

Left ventricular hypertrophy (LVH) is the enlargement of the wall of the left 

ventricle of the heart, which can cause weakening and stiffening, and acts both 

as a metric of cardiovascular strain and as a prognostic marker of cardiovascular 

events. While it is most often described in the context of left ventricular 

dysfunction and disease it may also result as a physiological adaption to 

strenuous exercise, however LVH is usually benign in this context and regresses 

upon reduction of exercise. 

LVH is an intermediate cardiovascular phenotype which is associated with the 

development of heart failure, and is a risk factor for several other cardiovascular 

outcomes such as stroke and coronary heart disease (65). It can both affect the 

severity of myocardial infarction, and can be induced by myocardial infarctions 

(66). 

At the cellular level LVH is characterised by enlarged cardiomyocytes (causing 

the increase in LVM), fibrosis, and changes in the extra-cellular matrix. Collagen 

is deposited by myofibroblasts which are transformed from fibroblasts in a 

process mediated by aldosterone, angiotensin II (Ang II), endothelin-1 (ET-1) and 

tissue growth factor-B1 (TGF-B1) (67). In particular Ang II drives this process by 

its secretion from activated macrophages in response to hemodynamic stress and 
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apoptosis. Ang II has pro-fibrotic and hypertrophic effects in part by stimulating 

TGFβ signalling (68). Myofibroblasts are responsible for an increase in the ratio 

of matrix metalloproteinases (MMPs) to tissue inhibitors of 

metalloproteinases (TIMPs) which has been implicated in fibrosis and heart 

failure (69). Increased circulating Ang II is associated with LVH, along with other 

hormones epinephrine and aldosterone, independent of BP (70). 

LVH is more common in those with hypertension as it can be caused by 

hypertension-induced left ventricular remodelling, and because they share 

numerous risk factors. While hypertension can drive left ventricular remodelling, 

LVH is an independent predictor of cardiovascular morbidity and mortality. 

Other predictors include demographic variables (e.g. body mass index, height, 

age, and sex), hemodynamic variables (e.g. blood pressure, stroke volume), 

contractility, and history of CVD (aneurysm of the abdominal aorta, myocardial 

infarction) (71;72). Since LVM increases with body size it is more reflective of 

disease prediction when indexed by a relevant measurement or score such as 

height, body mass index, or body surface area. The variable chosen to index LVM 

affects modelling outcomes and can complicate the relationship between LVH 

and obesity - which is a risk factor for LVH, along with other comorbidities such 

as hypertension, diabetes mellitus and chronic kidney disease. 

A meta-analysis of 30 studies and 37,700 patients found that LVH has a 

prevalence of 10-19% in the general population, 19-48% in hypertensive cohorts, 

and 58-77% in those with severe hypertension and CVD (73). Left ventricular 

mass (LVM) can be estimated using electrocardiography, and used to categorise 

LVH. A substantial genetic component underlies LVM, demonstrated by 

monozygotic twins showing substantially more similar LVM than dizygotic twins. 

Estimates of heritability of LVM calculated as low as 5% and as high as 84%, 

probably mainly due to differences in cohort recruitment, adjustment for 

covariates, and issues with the repeatability echocardiography in general and 

between modes (74-76). 

Some of the genetic basis and molecular mechanisms of LVH have been 

discerned. Kruppel-like factor 15 (KLF15) is a transcription factor which acts to 

reduce LVM through inhibition of pro-hypertrophic transcription regulators which 
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reduce the activity of the promoters of the natriuretic peptide genes ANP and 

BNP (77). It is also involved in negative regulation of TGFβ which is a key 

mediator of fibrosis. Interestingly KLF15 is reduced in pathological LVH, but not 

physiological LVH. 

ACE acts to promote LVH through Ang II and aldosterone and its inhibition is one 

of the main pharmacological means of protection against LVH. A meta-analysis 

has identified genetic variation in the ACE gene which appears to predispose 

patients to LVH (78). Single nucleotide polymorphisms elsewhere in the RAAS 

system have also been associated with LVM (79). 

GWAS studies have identified SNPs associated with LVM which pertain to genes 

associated with a range of established and potentially relevant processes 

including obesity/energy metabolism (ATRN, NMB), inflammation (ATRN), ion 

channels (KCNB1, SCN5A), and IGF signalling (IGF1R1) (80-82). 

As LVH is a pre-clinical condition it is often only diagnosed after patients present 

with serious related conditions such as heart failure. As a major cardiovascular 

risk factor the regression of LVH is a priority for researchers, however the 

cardioprotective efficacy of current drugs is modest. Further elucidation of the 

complex processes involved in LVH is important both for the discovery of new 

treatments and the identification of prognostic biomarker candidates. 

  

1.5 Respiratory Disease 

Chronic respiratory diseases are diseases which affect the airways and other 

structures of the lung, and include asthma, COPD, pulmonary hypertension, 

respiratory allergies, and occupational lung diseases. Collectively these chronic 

respiratory conditions account for 7% of deaths globally and result in significant 

economic burden via both cost-of-illness and lost output (51). Although these 

diseases are currently incurable, various treatments can improve airflow and 

reduce symptom severity, improving quality of life. There are numerous 

environmental risk factors, including tobacco smoke, air pollution, occupational 
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chemicals and dust. A history of frequently occurring lower respiratory infections 

during childhood is also an important risk factor. 

Asthma is a chronic respiratory disease which is characterised by variable 

airflow obstruction, mucous hypersecretion, and airway inflammation and 

hyperresponsiveness, resulting in coughing, shortness of breath, difficulty 

breathing, chest tightness, and wheezing. These symptoms can be triggered by 

allergens, irritants, infections, exercise and some medications (e.g. beta 

blockers), and are reversible either spontaneously or with treatment. In people 

with asthma one or several of these triggers in combination can lead to 

inflammation and constriction of the bronchial tubes. 

Asthma affects ~300 million globally (with rising prevalence) and causes 250,000 

deaths annually (83). Unlike many chronic diseases asthma is common in 

childhood. Another way it differs from many chronic diseases is its relatively low 

mortality rate (383,000 deaths globally in 2015), although it has a large impact 

on quality-of-life and is responsible for work and school absenteeism. It is 

commonly treated using inhaled β-agonists which act as bronchodilators and 

corticosteroids which inhibit inflammation, however other medications for 

treatment of asthma are emerging. Asthma is described as severe if the 

symptoms are not well controlled by bronchodilators and corticosteroids. While 

often figures of 5-10% are quoted there is little evidence for these estimates as 

discussed by Chung et al (84). 

Asthma is a complex multifactorial disease and mechanisms underlying the 

development of it, including age-of-onset and severity, are not well understood. 

Aeroallergen sensitisation and viral infections have been identified as key causal 

factors in its development, working independently or synergistically (85). There 

is a large genetic component to the disease - hundreds of genes are significantly 

associated with it (86) and heritability estimates ranging from 35% to 95% (87). 

Asthma is often categorised as allergic/non-allergic or atopic/non-atopic, 

however there are many established and emerging categorisations based on 

clinical phenotypes (e.g. exercise-induced, obesity-associated, infection-

related), endotypes categorised by particular immune cell recruitment (e.g. 

eosinophilic, neutrophilic, Th2, Th2-low), and molecular biomarkers (88-90). 
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Atopy describes an exaggerated immune response mediated by immunoglobulin E 

(IgE), as determined by skin prick tests. IgE binding to receptor FcεRI, mediates 

acute degranulation of mast cells and basophils, and may also drive 

inflammation by facilitating antigen presentation. Around a third of asthmatics 

are non-allergic and around a quarter are non-atopic. Atopic and non-atopic 

asthma have been shown by multiple studies to be very similar in terms of 

immunopathology and symptomatic presentation, however there are numerous 

differences including age-of-onset and male:female ratio (91). There are also 

differences in the cellular and molecular level, including various signs of 

epithelial damage and different abundances of various cell types infiltrating the 

bronchial mucosa - mast cells, basophils, eosinophils, lymphocytes, and 

macrophages. In non-atopic patients macrophage infiltration is driven by 

differential expression of the α-subunit of the granulocyte macrophage colony 

stimulating factor receptor (GM-CSFr). These differences may be moderated by 

differences in levels of cytokines and their receptors. Interleukins 4, 5 and 8 

have been detected with greater abundance in atopic asthma and IL-2 and γ-IFN 

in non-atopic asthma. Not all of these associations have proven consistent, 

possibly pointing to the heterogeneity of asthma even within currently-

recognised subtypes. 

The drug omalizumab interferes with the binding between IgE and its receptors 

and has proven effective at treating atopic asthma (92). Interestingly IgE is also 

overexpressed in non-atopic asthmatics and omalizumab has had promising 

results in this context also (93). In addition to classical induction of the IgE 

pathway through allergen response, viral infections and air pollution can also 

induce IgE. Omalizumab’s impact on respiratory symptoms are mainly believed 

to be mediated through its inhibitory effect on the allergic inflammation 

cascade, however there is evidence to suggest that there are other distinct IgE-

asthma mechanisms also affected, such as airway remodelling (94). 

Th2 lymphocytes are involved in both atopic and non-atopic asthma via Th2 

cytokine release. Th2 cytokines IL-4 and IL-13 induce B-cells to synthesise IgE. 

Anti-IL-4 medications have failed to have efficacy in regressing symptoms of 

asthma possibly due to the redundancy found in IL-13 due to having several 

shared actions. This is further supported by the successful action of dupilumab, 
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a monoclonal antibody directed against IL-4Rα, affecting both IL-4 and IL-13 

signalling. In one study it has led to an 87% reduction in asthma exacerbations 

amongst moderate and severe atopic asthmatics. Chemokines are cytokines 

which induce chemotaxis. They are mainly released by macrophages and the 

epithelium, and are important in asthma particularly for the recruitment of the 

pro-inflammatory eosinophils and neutrophils. Antibodies against specific 

chemokines and their receptors can be effective targets for treatment of 

asthma.  

Eosinophilic inflammation occurs mainly via the release of granule-associated 

substances in both atopic and non-atopic asthma. Eosinophils are also 

responsible for the release of other relevant classes of molecules like 

leukotrienes, cytokines, and growth factors. IL-5 is involved in eosinophil 

differentiation, survival and activation. Anti-IL5 therapies are therefore 

effective against eosinophilic asthma. 

Th1 cytokine IFN-γ has been associated with asthma severity and was found to 

have higher expression in non-allergic asthmatics (95). Th2-low subtypes of 

asthma are also common and occur particularly in severe asthma (96). Th9 

cytokines such as IL-9 can also lead to asthma symptoms. Genetic and epigenetic 

variation in Th1 and Th2-associated cytokine genes in asthmatic patients is well 

established (97). Th1 and Th17 cells are responsible for the neutrophilic 

inflammation in the context of severe asthmatic airways. Th17 cells release IL-

17 (which helps regulate IgE synthesis) and viral infections are also associated 

with neutrophilic inflammation. 

Bronchoconstriction in the context of atopic asthma triggers the release of pro-

fibrotic cytokines and the deposition of collagen (98). This is similar to the 

processes of fibrosis and collagen deposition seen in LVH - also involving TGF-β 

signalling and cytokines. Hypertrophy also occurs in asthma, with respect to 

smooth muscle of the airways, and is also mediated by TGF-β amongst others, 

including: IL-1β, IL-6, histamine, serotonin, leukotrienes and vascular 

endothelial growth factor (VEGF). This structural remodelling of the airways 

occurs because of persistent inflammation, and is mediated by TGF-α as well as 

TGF-β. 
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Defective cell adhesion components (affected by genetic variation, viruses, or 

pollutants) such as desmosomes, and tight junctions reduce the barrier function 

of the airways. This increases the number of allergens with the access to 

exacerbate symptoms via dendritic (antigen-presenting) cells. 

A cluster analysis based on spirometry variables and age-of-onset, and another 

cluster analysis based on relevant cytokines both indicate the existence of 

somewhat distinct subgroups of asthma (99;100). Different existing 

categorisations of asthma have varied responses to a particular class of drugs, 

however variation exists within categorisations, overlaps exist between 

categorisations, and some asthmatics still suffer from severe asthma. Further 

understanding of the various molecular mechanisms of asthma is therefore 

appealing in terms of unveiling new drug targets and better predictions of drug 

response. 

GWAS experiments have revealed hundreds of SNPs associated with asthma, 

including many SNPs in genes already known to be involved in asthma (101). 

Transcriptomics is useful for providing a mechanistic explanation of the effect of 

relevant SNPs and in some cases showing downstream effects. Due to harsh 

statistical correction in GWAS and the rarity of variety of SNPs which are risk 

SNPs for asthma, transcriptomics can be more powerful on the gene-level. 

Independently or in combination, transcriptomics along with other omics 

analyses – e.g. proteomics, metabolomics, and epigenomics – enhance the 

molecular description of the pathology of asthma. 

Chronic Obstructive Pulmonary Disease (COPD) and lower respiratory 

infections are the third and fourth leading causes of mortality world-wide, and 

both are among the top causes of mortality regardless of national income level 

(40). In the context of COPD lower respiratory tract infections are more frequent 

and there is a 3 to 10-fold increase in lung cancer risk in comparison with 

smokers without COPD. There is also a greater risk of cardiovascular mortality in 

COPD patients, particularly through an increased rate of myocardial infarction 

and stroke (102). Over 3 million people die each year from COPD, over 90% of 

which occur in low and middle-income countries. COPD is usually the result of 

smoking, or exposure to air pollution, and the amount of exposure correlates 
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with symptom severity. Although smoking is the biggest risk factor for COPD, 

only a fraction of smokers develop the disease, indicating the importance of 

genetic susceptibility. 

COPD is a complex, heterogeneous obstructive airway disease like asthma. It is 

categorised by many of the same symptoms seen in asthma and the two diseases 

share several biomarkers and biological pathways in common, and a moderate 

genetic correlation (103). But Asthma and COPD also contrast with each other in 

several ways. Unlike asthma, the airway obstruction in COPD is largely 

irreversible, meaning that it responds poorly to anti-inflammatory treatment. 

The airway obstruction in COPD is slowly progressive and is associated with 

enhanced infiltration of immune cells, a thickening alveolar wall, and damage to 

the epithelium – it may be described as a combination of emphysema and 

bronchitis in an environment of inflammation in the small airways. 

Oxidative stress is increased in COPD, which can lead to mucous hypersecretion 

and the inactivation of antiproteases. The imbalance of proteases and anti-

proteases is one of the main mechanisms by which emphysema develops in the 

COPD-affected lung. There are many possible proteases involved, and they are 

of different classes – serine proteases (in particular A1AT), matrix 

metalloproteinases, cysteine proteases, and aspartic proteases (104). 

Emphysema is also induced via the disruption of homeostatic maintenance and 

repair. The system can be skewed towards apoptosis by the reduction in vascular 

endothelial growth factor (VEGF), increasing the sensitivity of the alveolar wall 

to oxidative stress and proteases (105). 

Like asthma, TGF-β signalling and WNT signalling are involved in pathogenesis of 

COPD. These pathways may be controlled via the miR-15/107 family, as 

discovered through a multi-omics study using miRNA and mRNA microarrays 

(106). Like in asthma and in LVH, TGF-β is involved in fibrotic remodelling and it 

is involved in VEGF expression in fibroblasts. Also like asthma there are various 

types of T cells which can help describe the molecular basis of an individual’s 

condition – including Th2 and Th17 responses in both asthma and COPD (107). 
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Reductions in levels of miR-146a and let-7c have been observed in COPD patients 

(108). The reduction in miR-146a leads to increases in cyclooxygenase-2 and 

subsequently prostaglandin E2 which is correlated with COPD severity - it acts to 

maintain inflammation of the airway epithelium and cell growth and senescence 

in lung fibroblasts, causing a reduction in the repair capacity of the lung (109). 

The reduced level of let-7c leads to increased tumor necrosis factor receptor 2 

which can have a pro-inflammatory outcome and is involved in the pathogenesis 

of COPD. 

Inflammation in the airways in COPD is mostly neutrophil-associated. 

Neutrophilic airway inflammation is usually steroid-resistant and is not mediated 

by Th2 mechanisms. However up to 40% of COPD patients have eosinophilic COPD 

and may benefit more from asthma medications with Th2-related targets 

(110;111). 

The most commonly studied molecular biomarkers of COPD exacerbation are C-

reactive protein (CRP), IL-6 and TNF-α (112). CRP is produced by the liver in 

response to IL-6 secretion by macrophages and T-cells. It binds to the surface of 

dead or dying bacterial cells in order to activate the complement system and 

promote phagocytosis by macrophages. CRP is associated with increased 

mortality in patients with COPD, along with molecular marker fibrinogen, and 

clinical markers: shorter six minute walk distance, elevated heart rate, and 

white cell count (113). 

 

1.6 Aims 

Many serious diseases are poorly understood and difficult to treat, seemingly due 

to a large number of independent risk factors operating in a complex system. 

High throughput methods allow more of the system to be measured which could 

lead to better biological understanding of a disease and ultimately more patients 

being targeted with effective treatment or preventative measures (relevant to 

their disease subtype, genetic background and/or environmental factors). 
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Ideally this kind of research would use large cohorts and would not be restricted 

to a single class of biomolecules. Multi-omics research requires the 

establishment of multi-omics workflows applying existing methods and possibly 

the development of new methods. Equally when it comes to downstream analysis 

we can use various public databases to help with interpretation. 

The aim of this work is to study cardiovascular and respiratory disease by 

approaches which rely on the integration of large datasets, whether integrating 

different omics layers (genomics, transcriptomics, proteomics) or contextualising 

results with information from various public databases or with clinical 

measurements. These approaches can be compared in some cases, highlighting 

potential strengths and weaknesses.  
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2. Materials and Methods 

2.1 General Methodology 

A wide variety of methods may be used for both preprocessing and downstream 

analysis, found as stand-alone software or on shared platforms. ‘R’ is a scripting 

language and environment primarily developed for statistical computing. It is 

particularly useful in bioinformatics and systems biology both because of the 

base statistics functions and the more specific bioinformatics packages, many of 

which are available through the open source Bioconductor project (114). 

R has a diverse range of uses, from preprocessing, to statistical testing and on to 

downstream analysis, and in particular it has great utility in microarray 

processing and many other omics data pre-processing. Many graphical user 

interface (GUI) alternatives exist, however often what is gained in speed and 

simplicity is lost in flexibility and power, and many of these GUI applications 

such as Partek, SPSS and IPA are commercial. 

 

2.1.1 Data Pre-Processing 

One popular pre-processing procedure is called Robust Multi-array Average 

(RMA), which background adjusts, quantile normalizes, log-transforms and 

summarizes from individual probe values down to probe set values (115). A log2 

transformation is performed in order to acquire a more normal distribution to 

allow the use of parametric tests. The log2 scale is also beneficial to the 

interpretation of fold changes as upregulations and downregulations are scaled 

equally around zero, as opposed to raw downregulations being found between 

zero and one and upregulations being found between one and infinity. 

There are now a diverse range of mass spectrometers used to generate MS data 

in proteomics, with various advantages and limitations. Similarly there are also a 

considerable number of algorithms developed to query and cross compare the 
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tandem MS data (116). IDEOM is an Excel interface used for the analysis of LC/MS 

and GC/MS metabolomics data (117). It alleviates the requirement for either 

scripting skills or in-depth understanding of preprocessing procedures in 

obtaining a filtered, interpretable list of metabolites from a raw input file. 

IDEOM uses XCMS (118) to extract raw peaks and mzMatch (119) for peak 

matching, noise filtering, gap-filling and annotation of related peaks. After this 

preprocessing and identification, worksheets are populated with metabolite data 

and graphs of statistical output.  

 

2.1.2 Dimensionality Reduction 

After pre-processing the data should be in the format of a large matrix with rows 

by biomolecule and columns by patient (or the transpose of this). Distance 

matrices may be useful at this stage, showing either distances between samples 

or between molecules and often displayed as a heatmap. The ‘distance’ is most 

commonly Euclidean distance, Manhattan distance or some type of correlation 

(Pearson, Spearman etc.). 

Dimensionality reduction methods reduce the number of rows describing each 

patient so that the data may be plotted on a 1D, 2D or 3D graph. The points on 

the graph are often coloured according to various features — plotting these 

points and colouring by certain variables may prove informative as to quality 

control by identifying samples which are extremely different from others, or 

displaying the association between clusters and various variables. 

Sammon mapping compresses a highly dimensional dataset down to a plottable 

number of dimensions (120). It does this while minimizing what is described as 

stress, which is a representation of the error in the distances between points in 

the new data space as compared to the original. Principal Components Analysis 

(PCA) on the other hand seeks to essentially tilt the axis through the data space, 

such that the ‘first’ principle component (denoted “PC1”) captures the 

maximum amount of variance possible and all components remain orthogonal to 

each other (121). The order of the naming of the components is determined by 
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ranking the list based on the amount of variance described by each, i.e. PC2 

captures the second most variance. While all the data is maintained (unlike in 

Sammon mapping) scree plots may be used to show the amount of variance for 

each component and to decide how many principle components are worthy of 

examination. 

Each PC can be described as correlating to a certain extent with each original 

input variable, such that if a particular PC separates the samples into two 

clusters, those variables mostly responsible may be identified. A technique 

which can be used in combination with PCA is varimax rotation, in which the top 

PCs are selected and further rotated such that for each varimax-rotated 

component the variance across the correlations with the input variables is 

maximized — therefore each PC may be said to largely correlate to a small 

number of input variables (122;123). In some cases, where data is highly 

dimensional and highly correlated, it can be useful to input these data into 

statistical tests — this way each varimax-rotated PC would be representative of a 

group of biomolecules and each group can be tested alongside the other in the 

same model, rather than doing iterative tests in which different molecules may 

be accounting for the same difference in the dependant variable. This is, in a 

sense, a more powerful approach — in that less statistical power is lost through 

multi-test adjustment (Section 2.1.3). 

 

2.1.3 Significance Testing 

Several possibilities exist for statistical analysis on a list of biomolecules or 

groupings of biomolecules, each with its own set of assumptions. Standard 

statistical tests to compare two groups such as the nonparametric Mann-

Whitney-Wilcoxon (MWW) and parametric Student's t-test may be used 

depending on the assumptions appropriate to the data. Alternatively the 

independent variable of interest may be continuous in which case a different 

technique such as simple linear regression is used. Linearity of relationships 

should be considered and non-linear regression and mutual information 

employed where appropriate (124). Non-linear relationships are poorly 
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accounted for by linear approaches and can be responsible for apparent noise in 

a system (125). 

These may be iterated over every available probe/biomolecule and the results 

should be multi-test adjusted. These tests seek to identify those results with a 

low (e.g. < 0.05) probability of occurring by chance, and so if 100 tests were 

done then 5 results would be expected to show positive without multitest 

correction. Bonferroni correction is direct and intuitive and simply involves 

multiplying each p-value by the number of tests done. It is very stringent 

however, especially with a very large number of tests, so other less stringent 

methods have been developed (such as the Benjamini–Hochberg correction), 

which often take into account the rank of each test as ordered by p value (126). 

New methods have been developed with the advent of genome-wide 

technologies. Limma is an R package which was developed to facilitate gene 

expression microarray analysis (127). With Limma one may use linear modelling 

to adjust for batch effects, include technical replicates, and analyse complex 

multifactor experiments. It also provides the option to compute a moderated t-

statistic, essentially borrowing information from other genes. 

 

2.1.4 Downstream Analysis 

Two of the most common procedures in downstream analysis of omics data sets 

are term enrichment and pathway analysis. Term enrichment analysis relies on 

utilising a database of information which links to the biomolecules being 

studied. Perhaps most commonly this would be the Gene Ontology database. In 

this case a group of genes with statistical significance could be described as 

being ‘enriched for a gene ontology’ — i.e. a larger number of the genes are 

linked to that gene ontology than one would expect by chance, indicating that a 

particular biological process, molecular function, or cellular component is of 

particular importance. This enrichment itself is also given a statistical value, 

which can be used as a cut-off. The same analysis can also identify terms that 

are under-represented rather than over-represented. Another way to do term 
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enrichment analysis is with ranked lists – i.e. rather than describing a group of 

genes of interest the entirety of the data is taken into consideration and certain 

terms are identified as enriched towards the top or bottom of the list. 

Cytoscape is a tool primarily designed for network visualization and analysis; it 

makes use of a wide variety of plug-ins to extend its functionality which are 

designed by the scientific community. ClueGO (128) is a popular Cytoscape plug-

in used for term enrichment analysis. It calculates enchrichment/depletion tests 

based on the hypergeometric distribution. As the name suggests this is done with 

GOs as the terms, and allows the user to subcategorize based on the three main 

categories or by evidence codes. It also provides the capability to analyze with 

KEGG, WikiPathways and Reactome terms. For additional functionality, 

CluePedia (129) can be added to ClueGO to produce networks with custom 

correlation scores and other data plotted as edges (lines) between nodes 

representing genes and gene ontologies.  

Cytoscape has a “pathway database” ‘app category’ containing plug-ins which 

derive data from a variety of information sources and provide some appropriate 

tools for pathway editing and enrichment analysis: CyKEGGParser manipulates 

KEGG files (130); ReactomeFIPlugIn facilitates pathway enrichment analysis 

based on the Reactome database (131); an alternative interface to WikiPathways 

is provided; and Metscape allows users to build and analyze networks of genes 

and compounds, use gene expression and metabolomics data to identify enriched 

pathways and their metabolic consequences and rely on data from several 

different sources (132). These are just a few examples of the tools available in 

this category. There are many similar tools under several other related 

categories and many of them are found repeatedly across categories. 
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2.2 DNA Methylation in Essential Hypertension 

2.2.1 Design 

A hypertension genotype risk score comprising 35 SNPs identified from meta-

analysis of various genome-wide association studies (GWAS) (133-135) was 

developed by Sandosh Padmanabhan, who designed the project for this chapter. 

Each unit in this risk score represents presence of a disease-associated allele. 

Peripheral whole blood samples from a previous GWAS – covering patients with a 

wide range of blood pressure phenotypes ranging from severe hypertension to 

low blood pressure (57) - was restricted to those which were homozygous for the 

uromodulin (UMOD) SNP rs13333226, as it has a greater effect on blood pressure. 

The ages and genotype risk scores were similar between hypertensives and 

normotensives (mean ages: 55, 58; mean genotype risk scores: 36.3, 35; Table 2-

1). Body Mass Index (BMI) was categorically different between hypertensives 

(‘overweight’ on average, with a mean BMI of 29.2 kg/m²) and normotensives 

(‘normal weight’ on average, with a mean BMI of 24.0 kg/m²). 

Variable Normotensive Patients Hypertensive Patients 

Age (years) 58 55 

Body Mass Index (kg/m²) 24.0 29.2 

Genotype Risk Score 35.0 36.3 

Table 2-1: Patient Demographics of the DNA Methylation Cohort. 
The hypertensive group has a substantially higher BMI at similar genetic risk score and age. Each 
group comprises 12 patients. 

12 hypertensive and 12 control samples were selected on the basis of having an 

equal number of high and low genotype risk score and UMOD genotype, such that 

every combination, or ‘subgroup’, of blood pressure, genotype risk score and 

UMOD genotype has n=3 (Fig 2-1). UMOD genotype was analysed distinctly from 

the genotype risk score because the homozygous selection gives two clear 

discordant groups. While the sample size is small compared to the number of 

tests the cohort selection is quite homogenous – all patients being male Swedes 

of a similar age. 
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Fig. 2-1: Histogram Describing Experimental Design. 
24 patients are selected for having the most extreme hypertension, genetic risk scores and being 
homozygous for the minor or major allele of the UMOD SNP ‘rs13333226’. 

The most extremely discordant hypertensive then would have high BP, low 

genotype risk and the minor, protective UMOD allele (G), whereas the most 

discordant normotensive group would have low BP, high genotype risk and the 

major UMOD allele (A). The high genetic risk group had a mean score of 41.6 (SD 

= 3.7) and the low genetic risk group had a mean score of 29.7 (SD = 2.0). 

 

2.2.2 Statistical Analysis 

Peripheral leukocyte DNA from these samples was interrogated using Illumina’s 

Infinium HumanMethylation 450 BeadChip. Microarray experiments were 

conducted by BGI (previously Beijing Genomics Institute) and summarised into a 

standard tab-delimited GenomeStudio output file. Illumina Methylation Analyzer 

(IMA) (136) was used to import the data into ‘R’ and filter it using the defaults 

laid out in the pipeline provided: 

 Sites with missing data were removed 

 Sites in which more than 50% of samples had detection p-values greater 

than 0.05 were removed 

 Samples in which more than 75% of sites had detection p-values less than 

1 X 10-5 were kept 
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After filtering 461,856 sites remained from the original 485,577 and no samples 

were removed. Peak correction normalization was also performed using IMA to 

correct for the different Illumina probe types used in the arrays (137). Beta 

values for each site were logit-transformed as in previous studies (138;139). 

The ‘ComBat’ function from the R package ‘sva’ (140) was used to remove the 

batch effect from the data prior to clustering using Principal Component 

Analysis. Euclidean distances between each sample were calculated and used to 

empirically determine distances between groups. Shapiro-Wilk test showed that 

the distances were not normally distributed (W=0.95, p=3.05 X 10-5) and normal 

Q-Q plot revealed a negative skew, so MWW was used to identify clustering – by 

testing distances within groups against distances between groups. 

Limma (127) was used to assess differential methylation (DM) in every remaining 

site. The R function ‘stepAIC’ was used to select various combinations of 

variables suspected of influencing DNA methylation and linear modelling was 

then used to assess how well the models explained the data. Linear regression 

was iterated over all sites and the model with the highest mean adjusted-R2 was 

selected. This model involved taking high/low blood pressure, UMOD genotype 

and high/low genetic risk as one categorical variable – the subgroup. Additionally 

the batch effect of the experiment being conducted over two chips and BMI 

were included in the model. BMI was included as it was less well controlled 

between groups, compared to other confounders such as age. Several 

comparisons were made between different subgroups and combinations of 

subgroups. Contrasts made were ‘discordant cases – others’, ‘discordant controls 

– others’, ‘hypertensives – normotensives’, ‘UMOD_AA – UMOD_GG’ and ‘high 

genetic risk – low genetic risk’. Resulting p values were multi-test corrected with 

the Benjamini and Hochberg method, over all sites within each contrast. 

Gene regions (i.e. TSS, gene body etc.) were analysed rather than entire genes 

as DNA methylation has been associated with different changes to expression 

depending on the gene region, as described in Section 3.1.2. If a gene were to 

have hypermethylation in one region and hypomethylation in another the 

‘effect’ could be in the same direction, so averaging over a whole gene seems 

inappropriate. Thus DM is detected by site or region, however some downstream 



  51 

 

analyses were done on a gene level. Not only is this a biologically relevant way 

to group CpGs, potentially showing a more complete picture, it also allows for 

more statistical power than testing by individual CpG site allows (due to multi-

test correction). This is particularly important since due to the relatively small 

sample size (24) for the number of data points (450,000), only those CpGs with 

extreme raw significance will persist through multi-test correction. 

Values were summarised, by geometric mean (141), for all gene regions and CGI 

regions as annotated by Illumina. CGI regions which later showed to have 

significant DM were inspected manually on UCSC Genome Browser (142) to assign 

potentially relevant genes to them and give the results biological meaning. 

Geometric mean was used to summarise the extent and potential effect of 

methylation of gene regions as it treats outliers in a conservative manner. The 

same model and contrasts were used and resulting p-values were multi-test 

corrected (Benjamini-Hochberg, pBH) over all region types (1st exon, north CGI 

shore, etc.), for each contrast. Lists of gene names ordered by p value were 

generated based on these analyses and input into Gorilla (143), a gene ontology 

term enrichment analysis web application. The number of genes related to hits 

were categorised by chromosome and chromosome 1 was tested for enrichment 

in gene-level hits by chi-squared test. 

The mean of the genome-wide methylation was calculated for each patient and 

multi-factor ANOVA was used to analyse differences by hypertension status, 

genetic risk and UMOD, taking batch effect, age and BMI into account. Welch’s t-

test was used to test whether a global increase or decrease could be 

contributing to discordant cases or discordant controls. Linkage disequilibrium 

(LD) blocks have been shown to be biologically relevant for studying DNA 

methylation as in genetic variation (144). MWW was used to check if differential 

methylation was higher within LD blocks containing the risk SNPs comprising the 

genetic risk score, and p-values were Bonferroni multi-test corrected. 
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2.3 Integrative Analysis of Variation in Left 

Ventricular Mass Index  

2.3.1 Design 

The InGenious HyperCare cohort was established by first identifying index 

patients, and through them selecting families to be included. Index patients 

were diagnosed with hypertension before the age of 50 years and either had a 

blood pressure of at least 160/95mmHg on two occasions or were on treatment 

with at least two antihypertensive drugs. Families were included if a family 

member of an index patient had identical age criteria, at least 140/90mmHg on 

two occasions or treatment with at least one antihypertensive drug. Minimum 

family size was four, and normotension was defined as blood pressure below 

140/90 mmHg in absence of treatment. The cohort consists of 1589 participants 

belonging to 460 families recruited between 2008 and 2010 in 19 study centers in 

Europe. Cardiovascular phenotypes from 535 of these individuals have been 

previously published (145). For the present analysis 270 participants from four 

sites in Gdansk, Krakov, Glasgow and Prague were selected for detailed 

molecular phenotyping. In order to represent a continuum of blood pressure and 

LVM, patients with hypertension and normotensive controls were included. This 

study has been approved by local ethics committees and all participants gave 

written informed consent. 

There were approximately equal numbers of males and females at a mean of 48 

years of age, with overall normal mean diastolic blood pressure and BMI and 

heart rate and borderline high systolic blood pressure and borderline low 

estimated glomerular filtration rate eGFR (Table 2-2). As LVMI in the cohort 

takes a normal distribution containing 34 cases of LVH we in this study focused 

on the continuous analysis of LVMI data. Significant results with linear regression 

were also tested with logistic regression to show that these results extend to the 

clinical categorization into presence and absence of LVH. 
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Clinical Variable Summary (ratio or mean) Standard Deviation Range 

Sex (M:F) 134:136 - - 

Age (years) 48 14.6 17-80 

BMI (kg/m²) 28.7 5.0 18.9-51.7 

HR (bpm) 70.0 10.7 46-103 

DBP (mmHg) 84.5 11.6 59-117 

SBP (mmHg) 141.0 20.8 95-223 

eGFR (mL/min) 88.4 19.9 18.9-181.4 

Diabetes Count (%) 6.7 - - 

LVMI (g/m²) 88.2 18.4 42.5-139.7 

LVH Count (%) 12.6 - - 

Blood Pressure Medication (%) 47.8 - - 

RAAS Count (%) 41.5 - - 

Table 2-2: Clinical demographics of the subset of the InGenious HyperCare cohort used for 
this study. 
Mean values are given in the summary column unless stated otherwise. BMI: body mass index, 
HR: heart rate, DBP: diastolic blood pressure, SBP: systolic blood pressure, eGFR: estimated 
glomerular filtration rate, LVMI: left ventricular mass index, LVH: left ventricular hypertrophy, 
antihypertensive medications, RAAS: RAAS-blocking medications 

 

2.3.2 Echocardiography 

Echocardiograms were performed by experts in the recruiting sites according to 

strict acquisition procedures detailed in the InGenious HyperCare protocol. In 

brief, echocardiographic instruments equipped with 2.5 to 3.5 MHZ transducer 

with M-mode, 2D and Doppler capability had to be used.  Images had to be 

acquired in sequence along parasternal long-axis view, parasternal short-axis 

view, apical four-chamber view, apical two-chamber view and apical three-

chamber view.  

 In order to minimize observer dependency and to improve overall quality, 

echocardiographic tracings from the 270 individuals included in the present 

analyses were sent in electronic format to the central laboratory at Istituto 

Auxologico Italiano, Ospedale San Luca, Milan, for centralized reading according 

to American Society of Echocardiography standards (146). Left ventricular mass 

was calculated using the formula recommended by the American Society of 

Echocardiography (147). 
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2.3.3 Molecular Testing 

The miRNAs together with one technical normalization miRNA (cel-miR-39) were 

measured in plasma samples by standard Q-PCR using a LightCycler® 480 (Roche) 

quantitative real time PCR machine, and employing general methodology as 

directed by the manufacturer. miRNAs were amplified using a miRNA specific 

forward primer and a universal reverse primer (miScript kit, Qiagen). Raw qRT-

PCR data were analyzed using free qRT-PCR analysis software: LinReg (148) 

which calculates an arbitrary value which is representative to the amount of a 

specific miRNA that was present at the start of the amplification. 

Capillary electrophoresis mass spectrometry analysis was performed on urinary 

samples by Mosaiques Diagnostics using a P/ACE MDQ capillary electrophoresis 

system (Beckman Coulter, Brea, CA) coupled on line to micro-TOF-MS instrument 

(Bruker Daltonics, Bremen, Germany) (149). Serum metabolomic profile was 

assessed by INCLIVA using a Bruker Advance DRX 600 spectrometer (150). Serum 

carboxy-terminal propeptide of procollagen type I (PICP) was measured by using 

the METRA EIA kit (Quidel Corporation) and serum carboxy-terminal telopeptide 

of collagen type I (CITP) was measured by an ELISA method (Orion Diagnostica) 

(151). 

 

2.3.4 Bioinformatics analysis  

Simple and multiple linear regression was performed in the statistical software 

environment R, and diagnostic plots produced for each regression, to show the 

regression plot itself, residuals vs fit, normal Q-Q, scale location, residuals vs 

leverage and influence. Plots for each regression were visually inspected in order 

to ascertain whether the assumptions of the method were violated. The R 

package leaps (152) was used to interrogate models via an all-subsets approach, 

using Bayesian information criterion (BIC; a measure of how well the data fits 

the model) and adjusted-R2 as assessment criteria. Backwards stepwise selection 

on the variables identified with leaps was used to select the model with the 

greatest number of independently significant terms. 
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Two alternative approaches were used to analyze the data. The first approach 

(Fig. 2-2) involved an initial step of establishing a linear model using the clinical 

dataset. Each molecular dataset was then interrogated with univariate linear 

regression, multiple linear regression with confounders (age, sex and BMI) and 

multiple linear regression with the above-mentioned clinical model. Including 

BMI in models may seem to be redundant or a case of overfitting, however there 

is only a moderate correlation (Spearman’s Rho: 0.56) between BMI and Body 

Surface Area – the variable used in this case to calculate LVMI. 

Points of high influence (where Cook’s distance > 4/n) were removed and a 

record was made of these removals so that those samples which had consistently 

high influence across datasets could be identified for removal in the modeling 

stage. All non-detections were treated as missing except NMR metabolomics 

data and CE-MS peptidomics data where zero values were deemed appropriate. 

Negative values in the metabolomics data were interpreted as noise and also set 

to zero. 

Any variable passing this screening procedure with a Benjamini-Hochberg 

adjusted p value < 0.05 in any iteration was used as a potential predictor in the 

final modeling stage, thereby reducing the number of terms to analyze in the 

final modeling step. In the final modeling step two further models were 

generated – a molecular model and a mixed molecular-clinical model. In order to 

retain all variables and reduce the bias towards those of high detection data was 

imputed and linear models generated again for comparison. Missing points were 

imputed using the defaults of the Bioconductor package impute (153), using K-

nearest neighbour or the mean value where appropriate (where missing data 

exceeds 50% in a variable). 

The second approach (Fig. 2-2) uses PCA with varimax rotation, which results in 

principal components (PCs) which may each be described as mostly composed of 

a small subset of the input variables. The resulting varimax-rotated PCs were 

then tested with linear regression in the same manner as the molecular variables 

in the first approach. Samples were filtered prior to PCA for missing data (where 

>80% missing) and variables were filtered for low variance (< 0.1*mean). 

Remaining missing points were imputed as above. 



 

 

 

Fig. 2-2: The Two Approaches Used to Study LVMI 
The first approach utilizes a linear regression based screening step to reduce dimensionality of the dataset prior to multiple linear regression, whereas the second 
relies on PCA to reduce dimensionality based on the amount of variance described. The other major difference is that where additional tests are required in the first 
approach to determine how predictor variables relate to each other, in the second approach the relationships between original input variables are inherently described 
in the resulting varimax-rotated principal components. PCA: Principal Components Analysis, LVMI: Left Ventricular Mass Index. 



 

 

2.4 Multi-Omics Analysis of Respiratory Data 

2.4.1 Design 

The main aims of the COPD and Asthma Biomarker (CAB) study were to compare 

severe (treatment-resistant) asthma and COPD, and investigate the effect of 

smoking on those respiratory conditions, hence the six groups studied were all 

combinations of disease status (healthy, asthma, COPD) and smoking status 

(smoker, never-smoker). While this work focused on the omics subsets, the 

larger CAB cohort amounts to 220 patients. A dataset of mostly clinical and lab 

measurements (and associated metadata) on these patients contains 1,818 

variables, however for many variables data is only available for a subset of the 

patients. 

Induced sputum and nasal epithelium samples collected from subsets of the full 

cohort were used for ‘omics’ analyses. Sputum samples contain a varied mixture 

of cell types so our apparent ‘differential expression’ may come from the same 

mixture of cells undergoing ‘true’ differential expression or different cell types 

being recruited under different conditions. Correlation between each probe set 

and cell type were calculated in order to aid interpretation results in an 

empirical manner. The cell counts used were highly reproducible as shown by 

the close correlation between counts done on the same samples (Fig 2-3). 

Enrichment of specific cell types in sputum have been associated with asthma 

(154), COPD(155) and smoking (156), and are defined by a selected cut-off 

percentile for the percentage of a particular cell type in the sample. For 

example often eosinophilia is defined as >3% eosinophils and neutrophilia is 

defined as >60% which can be seen in asthma and COPD respectively in Figure 2-

4. A weakness of this classification is that a difference in the raw numbers of 

one cell type necessarily alters the percentage of another cell type even if their 

raw numbers remain steady. By the same token neutrophilia has been shown to 

mask eosinophilia (157), so it is unclear whether the COPD group truly exhibits 

less eosinophilia on average than the asthma group. 
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Both asthma and smoking have been implicated in epithelial shedding which 

explains increases in epithelial cells. With the large differences in cell type 

across groups we might expect to find some effects which are dependent on 

differential recruitment of cell types. Correlations between molecular 

abundance and the number of cells of a particular type may suggest which cells 

are involved in production of the molecule, either directly or by stimulating 

another cell.  

 

Fig. 2-3: Reproducibility of Cell Counts in CAB Dataset. 
High correlation is found between iterations of counting each cell type in the same samples. 
Slightly less correlation is found between lymphocyte counts presumably due to v small counts of 
that cell type (as seen in Fig 2-4). Neutrophil cell count is in strong anti-correlation with 
macrophage cell count and moderate anti-correlation with epithelial cell count. 
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Fig. 2-4: Leukocyte Viability and Cell Type Counts of Induced Sputum of Smokers and 
Never-Smokers in Asthma, COPD, and Healthy Controls 
Cell recruitment appears to occur with particular conditions, such as recruitment of eosinophils in 
asthmatics and recruitment of neutrophils in COPD patients. 

Sex, age and BMI were compared between groups (Fig 2-5) to identify potential 

confounders. There is heterogeneity in that both males and females were used 

in the study however groups were quite well balanced by sex. There are various 

sex-specific differences with regards asthma, including more severe and 

frequent symptoms in boys vs girls, women vs men, and in particular women in a 

state of pregnancy or menopause. While our groups are well balanced for sex, 

due to different ages dictating different sex-responses there may be interaction 

effects between age and sex which will go un-modelled. 

16 of the 100 patients used for omics-level analysis across the study had missing 

height or weight so BMI could not be calculated. Across the cohort there is a 

broad range of BMI from clinically underweight to obese in each. BMI is well 

balanced between groups, except for in smokers with COPD – a large proportion 

of whom were obese. Without statistical correction a comparison between this 

group and any other would be particularly prone to obesity-related false 

positives. Ages are extremely varied within and between groups.  
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Fig. 2-5: Age, Sex and BMI of Groups. 
BMI is poorly controlled in asthmatic non-smokers. Subset used to generate graphs was that used 
in the sputum microarray samples, however graphs of sets used in other comparisons are similar. 
NS: non-smoker, S: smoker. Groups A-F correspond to the order of subgroups in the BMI boxplot. 

We might also expect obscuring effects from medications (Fig. 2-6), particularly 

those used for treatment of asthma or COPD. Some terminology was noted to be 

inconsistent - so any further text analysis should merge e.g. “tiotropium” and 

the brand name “Spiriva” - however there are too many relevant prescriptions to 

work into a useful statistical model given the number of samples. To compensate 

for this while still maintaining statistical power, analyses were repeated with a 

steroid dose normalised to beclomethasone. 13 of the 57 patients (of 100 ‘omics’ 

data patients) on steroids were missing a steroid dose value and for analysis the 

median value was substituted. 
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Fig. 2-6: All Prescription Medications Taken Once Weekly by at least Ten Patients. 
Some medications appear repeatedly in the database due to usage of brand names (e.g. 
“tiotropium”/“Spiriva”). Given the number of different medications, even after cleaning the data, all 
steroids were normalised to beclomethasone and other medications were excluded from analysis. 

Microarrays for testing the genome-wide transcription of mRNA and miRNA were 

used for both the nasal epithelium samples and the induced sputum samples. 

The same 89 patients were tested in the mRNA and miRNA nasal epithelium 

microarray data, with an extra patient with only miRNA tested. A similar set of 

90 patients was tested in induced sputum, with 80 patients at the intersection. 

Comparing information between files highlighted several typos with sample IDs 

used in the mRNA/miRNA work which were corrected. Proteomic and 

metabolomic data were only available for healthy and asthmatic induced sputum 

samples (not for COPD patients). 34 patients are found at the intersection of all 

four omics datasets (Fig 2-7). 
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Fig. 2-7: Counts of Induced Sputum Samples from Asthmatic and Healthy Individuals in 
Microarray and Mass Spectrometry Datasets 
All microarray samples in sputum work were shared, however ‘mismatched’ samples in the 
proteomics set and metabolomics set resulted in only 34 patients at the intersection of all four 
techniques. 

 

2.4.2 mRNA Microarray 

Genome-wide transcription in nasal epithelium and induced sputum samples was 

analysed using the Human Genome U133 Plus 2.0 Microarray from Affymetrix. 

Analysis was performed in R using various Bioconductor packages (158). The 

package simpleaffy (159) was used for CEL file parsing and affyPLM (160) used in 

conjunction with generic methods towards quality control (161;162). These 

methods resulted in various diagnostic plots including RNA degradation plots, 



  63 

 

PCA clustering, normalised unscaled standard error (NUSE) plots, relative log 

expression (RLE) plots, box plots and correlation plots. 

The mRNA microarrays were run in two batches over a year apart. 16 technical 

replicates of samples from the first batch were tested along with the second 

batch to assess the associated technical effect from e.g. sample degradation, 

subtle differences in application of protocol or equipment maintenance. 

Technical replicate pairs were shown to cluster closely (Fig. 2-8), having a 

median Manhattan distance 22.2% the magnitude of the median Manhattan 

distance of all other pair-wise combinations. 

 

Fig. 2-8: Validation of Technical Replicates by PCA. 
Close clustering of technical replicate pairs (indicated by colour) shows that a batch effect of testing 
samples at different times has not adversely affected analysis. 
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Spatial technical effects constitute areas of a microarray where intensity is 

particularly high – since the probes are randomly distributed across the array 

there should be no prevailing patterns. These were identified and replaced with 

“NA” using Harshlight, which relies on a combination of statistical methods and 

image-processing methods to identify both small localised ‘blemishes’ where 

every outlier probe is adjacent to one another, and larger more diffuse defects 

(163). Chips were then median-scaled and suspect values replaced by the 

median of the other values using a custom Java application. There is an option in 

the Harshlight package to replace technical effects with the median directly 

(Fig. 2-9) however this worsened or introduced new technical effects in some 

cases (Fig. 2-10). All images were examined and this improved protocol was used 

to remove technical effects. 

 

Fig. 2-9: Usage of R Package Harshlight Identifies and Removes Technical Effects. 
In this case the option was selected to directly replace those affected areas with the median value 
on other arrays.  
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Fig. 2-10: Harshlight Was Used for Detection but Not Replacement. 
Using Harshlight for the replacement makes some technical artefacts worse, so this was done 
separately with a custom solution written in Java, leaving Harshlight only responsible for detection. 

CDF files describe the physical location of each probe on the microarray and how 

they are grouped into ‘probe sets’. The HGU133Plus2_Hs_ENSG v18 chip 

definitions file (CDF) from BrainArray (164) was used for this analysis. 

Affymetrix’s probe set selection relied on early genome and transcriptome 

annotation, significantly different from today’s annotation. Brainarray is a 

project which periodically generates new CDFs based on current annotation. 

Affymetrix annotation has 54,613 probe sets, many of which cross-hybridise, 

hybridise the same gene multiple times (sometimes catching different 

transcripts) or target no known gene/transcript. Brainarray excludes cross-

hybridising probes, and designs one probe set per gene (19,947 Ensembl Gene 

IDs; 58.6% of probes). To pick up alternative splicing events there is also a 

transcript-level grouping (86,103 Ensembl Transcript IDs; 58.2% of probes). 

GCRMA(165) was used to quantile normalize, background correct and summarise 

from probes to probe sets. After pre-processing the nsFilter function from the R 

package genefilter (166) was used to screen the Affymetrix controls and target 

genes with low variance. After pre-processing, the nsFilter function from the R 

package genefilter (23) was used to screen the Affymetrix controls and 50% of 

target genes based on their having low variance. Y chromosome genes were also 

removed since the analysis is not restricted to men.  
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Fig. 2-11: Distributions of Sputum mRNA Before Normalisation, After Spatial Normalisation, 
and After Quantile Normalisation 
Quantile normalisation adjusts expression distributions of each array, making them more uniform 
and accounting for technical effects. 

Steroid dose was normalised to beclomethasone, with missing values (5/30) 

substituted with the mean dose. Statistics were generated from iterated linear 

regression, testing a model with asthma disease status and smoking status 

always included, and variations of this model with the addition of: age, sex, BMI 

or steroid dose. 

Data was log2-transformed for input to limma as standard. Log-fold-change 

values given here are those reported by limma and are calculated as the 

difference between the means of the log2 values for each group rather than the 

log2-transformation of the fold change. The CEL files for the above-mentioned 

technical replicates were also included the limma analysis (167). 

 

2.4.3 miRNA Microarray 

The miRNA 2.0 Array from Affymetrix was used to assess the levels of miRNAs 

and other non-coding RNAs. The samples used pertained to the exact same group 

of patients as the mRNA microarrays, however no technical replicates were 

available. Spatial normalisation was not possible by the same procedure for this 

array type, though none required removal upon visual inspection of plots. The 

CEL files were processed and checked for quality control in a similar manner, 

but using the VSNRMA function of the VSN package instead of GCRMA for 

normalisation and summarisation. A custom CDF was created by merging those 

probe sets which are assigned to different species in the Affymetrix annotation 
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but contain exactly identical probes. Other non-human probes were removed 

except for viral miRNAs which are distinctly different from human miRNAs and 

may be interesting as an indicator of infection. Data was filtered for low 

variance as with the mRNA microarrays. Screening, modelling and significance-

testing were all done as with the mRNA microarray analysis. 

With the miRNA chip each ‘probe set’ consists of repeats of the same probe as 

mature miRs are too short to require multiple probes. Some mature miR 

sequences from different human miRNA genes are identical. The sequence of 

some miRs is conserved entirely between several species. In total 3245/6703 

miRs on the chip are redundant. All non-unique probe sets were merged in a 

custom CDF, also removing all non-human species entries except for a few viral, 

human-infecting species (potentially useful as measures of infection). 

 

2.4.4 Proteomics 

Proteomics data were provided in two files which used different scales. A 

reference protein present in both datasets was used to appropriately scale the 

data so it could all be included. Protein IDs were mapped from the defunct IPI 

using the internal CluSO database. For the purposes of generating a summary 

value, protein quantities were summarised to the gene-level however the data 

for individual peptides were used for statistical testing so that alternative 

splicing and protein modifications could also be identified. MWW was used for 

significance testing, taking zero values as an equal bottom-rank so as not to 

exclude results where a protein is detected only in one group (but treating them 

as truly missing for calculation of summary statistics such as the mean of a 

group). 
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2.4.5 Metabolomics 

Metabolites were extracted from 60 airway fluid samples using a standard 

organic phase extraction protocol. LC/MS analysis was performed using 

Exactive/Qexactive mass spectrometer and pHilic column. 200 standard 

metabolites were used for identification as described by the MSI (metabolomics 

standard initiative). IDEOM provides Students t-test results however it does not 

do multiple test adjustment on those figures and as the documentation itself 

points out the t-test is often not the optimal statistical method – often the t-test 

is not appropriate for large portions of these types of datasets due to non-

normality or heteroschedasticity (168). As such, MWW was used on output from 

IDEOM, as in proteomics. Statistics were calculated for all three asthma 

contrasts and multi-test adjusted as per the other omics data sets. 

Unfortunately different mediums were used for different samples which may 

have affected data quality. 

 

2.4.6 Downstream Analysis 

The p values from all experiments were Benjamini-Hochberg multi-test 

corrected (by dataset) and an alpha of 0.05 was selected for all. Variables were 

(Spearman-) correlated with cell count percentages of eosinophils, neutrophils, 

macrophages, lymphocytes and epithelial cells. For the transcriptomic and 

proteomic data ClueGO (169) and CluePedia (170) were used (with default 

settings) for term enrichment analysis utilizing terms from gene ontology, KEGG, 

WikiPathways and Reactome. 

KEGG Mapper (171) and PathVisio (172) were used for pathway analysis. 

Relationships between miRNA and transcript/protein levels were scored using 

CoMir, where all those with probability >90% were included. Additional 

relationships between significant variables were also extracted from GeneMania 

(173) and MiMI (174). 
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Integration of different omics using various databases: 

 ITFP (transcription factors targets) 

 CoMir and MirTarBase (predicted and validated miR targets) 

 MiMI & GeneMania (protein-protein interactions) 

 KEGG & WikiPathways (protein-protein, protein-metabolite) 

 Allergy and Asthma Portal 

These analyses were done for several contrasts (‘all asthmatics vs all non-

asthmatics’, ‘asthmatic non-smokers vs healthy non-smokers’, and ‘asthmatic 

smokers vs healthy smokers’), thus focusing on asthmatic status with different 

smoking backgrounds. The results were combined into a large asthma network, 

where all nodes have been found significant in at least one contrast and are 

joined by the edges gathered from the databases listed above.  

Different colour schemes were attributed onto the network to denote up/down-

regulation and cell type correlation. Comparing with different fold changes set 

against a large combined map is more informative than comparing gene sets, as 

it can be seen how different results are (e.g. by fold change), not simply 

whether they pass the selected statistical criterion. 

Another version was produced extending out to also include non-significant but 

biologically consistent networks (assessed by inspecting relationship and fold 

change for each node and edge). This allowed the inclusion of some 

metabolomic data, giving it context in terms of the other results and bridge gaps 

where data is simply unavailable due to technological limitations.  
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3. Using SNP Data to Facilitate Enhanced 

Interpretation of Genome-Wide DNA 

Methylation Data in Essential Hypertension 

3.1 Introduction 

3.1.1 Heritability of Essential Hypertension 

Hypertension is the leading world-wide mortality risk factor and is the fifth 

greatest risk factor for disability-adjusted life years (175). Although there are 

rare monogenic forms of hypertension it is usually a multifactorial disease – so-

called essential hypertension. Hypertension is associated with modification of 

the vasculature and is itself an influential risk factor for several cardiovascular 

diseases such as stroke, heart disease and kidney failure (176;177). Many 

environmental and life-style risk factors for hypertension are well established 

such as high salt diets, high alcohol consumption, lack of exercise and obesity. 

Using familial studies the genetic component of essential hypertension has been 

estimated at between approximately 30% and 70% (59). So far, however, less 

than 2% of variation of blood pressure in the general population is described by 

known genetic variants (61). Incomplete concordance of essential hypertension 

between monozygotic twins reported in the range of 38%-52% (178;179) further 

indicates that epigenetic factors may be involved. 

 

3.1.2 DNA Methylation and Gene Expression 

DNA methylation is an epigenetic modification which is prone to occur at sites in 

the genome where a cytosine is followed by a guanine, and affects about 70-80% 

of these ‘CpG’ sites in the genome, however CpG sites are depleted throughout 

most of the genome, being found mostly in ~1kb regions called CpG islands 

(CGIs) often within or close to genes and regulatory elements (180). CpG 

sequences are palindromes and may be methylated de novo (by DNMT3a and 
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DNMT3b), or methylation may be maintained by the action of an enzyme 

(DNMT1) which recognises hemimethylated DNA after somatic cell division. DNA 

methyltransferase enzymes are required both for this methylation pattern 

maintenance and for de novo methylation and in the latter case are influenced 

by histone modifications (181;182), whereas demethylation occurs by base 

excision and by lack of maintenance methylation (183). 

It has long been held that DNA methylation can silence gene expression, and that 

the presence of methylated CpGs may be interpreted by proteins with methyl-

binding domains (184;185). However, with the recent advances of high 

throughput technologies the picture of how these epigenetic modifications 

operate is growing more complex. Methylation of a CGI at the transcription start 

site (TSS) appears to either ‘lock in’ a silenced state (186) or direct that state to 

occur by other mechanisms (187), and is usually found in the context of stable, 

long-term silencing (e.g. X-inactivation, imprinting). Methylation at shores (2kb 

island-flanking the islands) and shelves (2kb beyond shores) have been shown to 

have different levels of methylation, and have also been associated with 

differential expression (188;189). Non-CGI TSS methylation is more dynamic and, 

although it is less well studied, it is also associated with silencing (190). 

Methylation of gene bodies, on the other hand, has been shown to be positively 

correlated with transcription (191), possibly via repression of intragenic 

transcription initiation (192) and may influence alternative splicing (30;31). One 

must also remember that often genes may have additional, downstream, TSSs so 

that a region may be considered to be both a TSS and a gene body and that DNA 

methylation could be considered a mechanism for alternative promoter 

selection. Methylation also been shown to inhibit the activity of enhancers (193) 

and insulator methylation appears to either be cause or effect of insulator 

activity (194;195). 
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3.1.3 DNA Methylation Microarrays in Hypertension and 

the Integration of SNP Data 

There are a multitude of available technologies for assessing DNA methylation 

(196). The technology selected for this study was Illumina’s Infinium 

HumanMethylation450 BeadChip which is a microarray which interrogates over 

485,000 CpGs throughout the genome. It is one of many technologies which rely 

on treating the sample DNA with sodium bisulphite which converts methylated 

cytosine residues into uracil residues. While this is a commonly-used technique it 

does have a drawback in that it also converts hydroxymethylated cytosine 

residues into uracil, i.e. some apparent DNA methylation results will instead be 

DNA hydroxymethylation which is a less common and less well-studied epigenetic 

mark (197). Another issue is that SNPs within the probe sequences could 

interfere with binding and also generate false positives, providing further 

challenges to interpretation of results (198). 

A decreased level of global methylation has been associated with hypertension in 

whole blood DNA in one study (199), whereas another study has found results to 

the contrary in repeat regions of DNA extracted from leukocytes (200). A similar 

lack of consensus can be seen in placental DNA of women with preeclampsia 

(201;202). These apparent disparities may in some cases merely be due to the 

fact that different technologies were used in different studies, and so different 

sets of CpGs were being targeted e.g. some target repetitive regions or CGIs at 

promoters and others operate in a more truly global sense. Alternatively, or in 

addition to this, it might be concluded that DNA methylation in hypertension is a 

gene, gene region, or CGI-specific phenomenon, rather than a global one, and so 

any differences in global DNA methylation related to hypertension may be either 

spurious or determined by the combination of gene-specific differences inherent 

to that group (203). 

There have been many studies on the epigenetics of hypertension (204), however 

there have only been two genome-wide DNA methylation studies on essential 

hypertension, and two studies which instead focussed on blood pressure as a 

continuous variable. Wang et al used Illumina’s HumanMethylation27 BeadChip 

(which targets 27,000 CpGs) to compare whole blood samples from 8 
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hypertensive patients and 8 age-matched controls, all of whom were male (205). 

The study did not find any statistically significant results after multi-test 

correction, however the most significant CpG (in gene SULF1) showed 

significance after correction in a meta-analysis of two replication cohorts, along 

with an additional CpG found within the same gene. These results remained 

significant after adjusting for age but not when adjusting for both age and BMI. 

Wang et al suggest that SULF1 may be influential in hypertension by regulating 

inflammation via IL6 production. 

The other hypertension study had a much larger sample size - 126 hypertensive 

patients out of a total of 712 in the cohort (206). Patients of European and South 

Asian ethnicity were recruited and analyses were done both within these groups 

and across all patients. Results were presented both unadjusted for confounders, 

and adjusted for a large number of variables: age, BMI, smoking status, social 

class, estimated cell counts and batch effects. There are two significant CpGs in 

the trans-ancestry analysis, found in genes PPP1R2 and LOC100132354, however 

their significance markedly drops (beyond the significance threshold) upon 

addition of the confounders to the model. PPP1R2 encodes a protein which binds 

serine/threonine phosphotase PP1, strongly inhibiting its activity. PP1 has 

hundreds of potential targets but the target with most relevance is nNOSser852 

which in the vascular endothelium is dephosphorylated by PP1 leading to 

subsequent NO generation and vasodilation (207). In addition the activity of PP1 

can be inhibited by oxidative inactivation by NOX4 which is implicated in 

hypertension pathogenesis (208). LOC100132354 is a long non-coding RNA which 

has been shown to promote angiogenesis which can affect blood pressure (209). 

In this study blood pressure was also analysed as a continuous variable. 

Unadjusted for confounders there were four CpGs associated with SBP (in genes 

FHL2, MYO5C, ELOVL2, KLF14) and two associated with DBP (in AHRR, MYO1G). 

With adjustment none are significant however one distinct CpG is significant in 

the presence of confounders: cg07598370 near OR5AP2. This gene encodes an 

olfactory receptor which may influence blood pressure via renal expression, as 

other olfactory receptors have been shown to do (210). There were three CpGs 

associated with DBP in the European subset, unadjusted for confounders. Two of 

which remained after adjustment and a third additional CpG was also associated 
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in this context. A CpG was also associated with SBP in the South Asian subset. In 

addition to analysing CpGs individually, they were also analysed as agglomerated 

into differentially methylated regions by the R package DMRcate. This analysis 

identified 395 differentially methylated regions (mapped to 326 genes) which 

were associated with SBP, and 237 differentially methylated regions (mapped to 

157 genes) which were associated with DBP. Pathway analysis of differentially 

methylated regions indicated Notch signalling in relation to SBP in the European 

subset and insulin-like growth factor-2 mRNA binding proteins in relation to DBP 

in the South Asian subset. 

Boström et al studied DNA methylation in relation to SBP in 11 obese patients 

undergoing gastric surgery, and found 24 differentially methylated CpGs 

correlated to changes in SBP between before and after the surgery (211). A 

replication cohort showed that two of these CpGs (in genes EHMT2 and SKOR2) 

were significant independent of age, BMI, ethnicity and sex, although the 

statistics in the replication cohort instead addressed the categorical variable 

hypertension. Boström et al suggest that EHMT2 may be involved in hypertension 

via regulation of the pro-inflammatory cytokine IL-17. 

Richard et al also focussed on blood pressure rather than hypertension, devising 

a two-stage meta-analysis using a total of 17,010 patients (212). Of 31 discovery 

stage CpGs (found significant in a model along with age, sex and technical 

covariates) 13 were replicated. These 13 sites are heritable (h2 > 30%) and 

independent of known BP genetic variants. 4 of these were found to have one or 

several cis-located genes (TSPAN2, SLC7A11, UNC93B1, CPT1A, PTMS, 

and LPCAT3) whose expression was associated with both CpG methylation and 

SBP, DBP or hypertension. In particular Richard et al describe TSPAN2 as a 

candidate gene for blood pressure which is regulated by heritable DNA 

methylation. TSPAN2 was found to have the strongest associations with 

methylation level and blood pressure out of all transcripts tested, and it is 

significantly associated with SBP, DBP and hypertension. TSPAN2 is highly 

expressed in the vascular tissues and two different SNPs in the gene have been 

associated with large artery atherosclerosis-related stroke (213), and migraine 

(214) – which can be driven by changes in the vasculature and is itself a risk 

factor for cerebrovascular and cardiovascular disease. 
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Genome-wide differential methylation studies in related conditions such as 

preeclampsia may also prove to be insightful. Using the NimbleGen ‘Human CpG 

Island Plus Promoter’ microarray (385K sites in promoter regions) Jia et al found 

296 genes significantly differentially methylated in the placentas of patients 

with preeclampsia. The greatest overrepresentation of these genes was in 

chromosome 1 (10.5%, P=0.005) (215). 

Epigenetics of hypertension has also been studied with a candidate gene 

approach, specifically analysing genes which are already implicated. Many 

associations between hypertension and differential methylation at these genes 

have been detected, particularly related to pathways and processes central to 

our current understanding of blood pressure control (e.g. renin–angiotensin-

system genes ACE and AGTR1) (216). There is even strong evidence indicating 

that fine particulate matter air pollution can induce ACE DNA methylation, ACE 

expression, and blood pressure elevation (217). 

While the candidate gene approach has been successful, epigenome-wide studies 

have identified genes which had not previously been linked with hypertension at 

any level, and perhaps reflect the heterogeneity of hypertension. In addition to 

furthering biological understanding of the molecular mechanisms of blood 

pressure control, epigenomic data may be important to fill a gap in knowledge 

moving towards personalised medicine – predicting predisposition to disease or 

to a particular treatment, in combination with other data such as SNPs. 

The integration of SNP data regarding the same cohort facilitates enhanced 

interpretation of the DNA methylation data, by identifying those results which 

are likely to be false positives due to SNPs. Where data is unavailable for a 

particular SNP, allele frequencies integrated from SNPDB can at least give an 

estimation of how common the SNP is in a general population. This aids in the 

interpretation of the DNA methylation data, and the selection of DM 

sites/regions for verification. Another possibility is to run an analysis with sites 

with all proximate common SNPs (e.g. within 10bp of CpGs) excluded altogether. 

In addition to integrating SNP data, one could also integrate transcriptome data 

to show the effect on genes proximate to the significant differential 

methylations, however this data was unavailable. 
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3.2 Results 

3.2.1 Data Pre-Processing 

The data was initially filtered by missing data and detection p values using the 

defaults of the R package IMA. The quality of the samples was assessed by the 

number of sites whose detection p value exceeds 1 X 10-05. All samples have less 

than 0.08% sites exceeding this. Had any samples exceeded 75% of sites 

exceeding the cut-off they would have warranted exclusion, i.e. quality is good 

and no samples were rejected. A similar procedure was carried out checking for 

any sites with high rates (again 75%) of large detection p values (>0.05). Finally, 

those sites with missing values were removed. 

Distributions are similar across samples both in shape and median values (Fig. 3-

1), with a slight left skew. Similar medians between samples are to be expected 

as the same amount of DNA from each sample is used in the lab protocol. The 

distributions should also be similar, assuming a relatively small proportion of the 

methylome is altered in certain clinical groups (while comparing samples of the 

same type). No distribution stands out in particular in terms of quality control.  

 

Fig. 3-1: Box Plot Showing Distributions for each Sample. 
Samples have similar medians and distributions as would be expected – no need to remove any 
samples. 
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The cleaning of the data can be summarised as: 

 0 samples removed with at least 75% of sites having detection p value 

greater than 1 X 10-05 

 12 sites had at least 75% samples with detection p value greater than 0.05 

and were removed 

 23,709 sites contain missing values and were removed 

 461,856 sites were retained from the original 485,577 sites 

The remaining values were peak-normalised, logit-transformed and finally 

grouped into gene regions and CGI regions by definitions from UCSC provided in 

the official Illumina annotation, resulting in 206,326 regions. Peak normalisation 

was effective at normalising signals between the Illumina Infinium I probe type 

and Infinium II probe type (Figures 3-2 and 3-3), which are both used on this 

microarray. Both probe types follow binomial distributions in each sample – one 

peak for those mostly methylated sites and another for the mostly unmethylated 

sites. The differences in beta between the peaks of type I vs type II probes are 

artefacts of differences in probe design; the differences represent a technical 

effect to be corrected. 

 

Fig. 3-2: Density Plot of Beta in one Sample (‘948.151’) Before Peak Normalization.  
Each line represents one of the two probe types used on the array. The offsets of the peaks 
represent a technical effect to be removed prior to statistical analysis. 
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Fig. 3-3: Density Plot of Beta in one Sample (‘948.151’) After Peak Normalization.  
Each line represents one of the two probe types used on the array. The data has been corrected 
for the effect of the different probe types used on the array, which can be seen by the alignment of 
the peaks. 

3.2.2 Sites 

DM of CpG sites within the genes PAX7, NADK, IFT140 and HLA-G were found to 

be significantly associated with genetic risk (pBH=4.11 X 10-3, 0.01, 0.02, 0.05; 

Table 3-1, Figure 3-4). The same NADK and PAX7 sites were found to be 

borderline-associated (pBH = 0.05) with discordant controls. The NADK site 

(‘cg27433479’) has the highest change in beta value of 0.57 between discordant 

controls and others. It is one of 28 CpGs in the gene body of NADK which is found 

to be significantly differentially methylated with respect to genetic risk 

(Δβ=0.02, pBH=0.02). 

By merging these results with data from dbSNP we find that some of the 

significant CpGs overlap with locations of SNPs, which may interfere with probe 

binding and create misleading results (Table 3-2). In particular SNPs associated 

with cg27433479 and cg26544072 have large minor allele frequencies – indicating 

a commonly-occurring variant in the general population. 
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Site Gene CGI Δβ p pBH Contrast 

cg27433479 NADK chr1:1685373-
1685971 

-0.57 2.01 X 10-7 5.03 X 10-2 Discordant 
Control 

cg27433479 NADK chr1:1685373-
1685971 

0.02 1.30 X 10-7 1.99 X 10-2 Genetic 
Risk 

cg26544072 HLA-G chr6:29795553-
29796594 

-0.01 4.29 X 10-7 4.95 X 10-2 Genetic 
Risk 

cg00065215 PAX7 chr1:18956895-
18959829 

0.01 8.89 X 10-9 4.11 X 10-3 Genetic 
Risk 

cg00427553 IFT140 chr16:1604964-
1605345 

<0.01 5.05 X 10-8 1.17 X 10-2 Genetic 
Risk 

cg00065215 PAX7 chr1:18956895-
18959829 

<0.01 2.18 X 10-7 5.03 X 10-2 Genetic 
Risk 

Table 3-1: Details of Significant Results Across all CpG sites in all the Contrasts studied.  
Gene and CGI occupied by CpG is shown as well as statistics and the contrast to which they 
relate. All sites were found in the “body” regions of their respective genes. cg27433479 was in the 
south shore region of CGI ‘chr1:1685373-1685971’ and all other CpGs were in the island regions of 
their respective CGI. Δβ: change in beta, pBH: Benjamini-Hochberg adjusted p values. 

 

site Gene SNPs SNP Distance MAF 

cg27433479 NADK rs2076328 1 0.36 

cg26544072 HLA-G rs1130355;rs41555713 1;37 0.50;<0.01 

cg00427553 IFT140 rs143047330 5 <0.01 

Table 3-2: SNPs Documented in dbSNP which may Interfere with Probe Binding and Result 
in a False Methylation Signal. 
‘SNP distance’ gives the distance to the nearest SNP in number of bases. MAF: Minor Allele 
Frequency, SNP: Single Nucleotide Polymorphism. 



 

 

 

 

Fig. 3-4: Volcano Plots of Sites and Regions of Differential Methylation by Contrast.  
pBH values shown in log scale. Those with pBH < 0.05 are highlighted red. Deviation from the centre along the horizontal axis shows the associated increase or 
decrease in beta.



 

 

3.2.3 Regions 

Significant DM was found with all contrasts on a region level and the 

intersections of the genes and CGIs involved are shown in the form of a Venn 

diagram in Figure 3-5. The total significant hits for each contrast were: genetic 

risk = 48; hypertension = 4; UMOD = 19; discordant cases = 4; discordant controls 

= 27, although some genes and CGIs have DM in several regions so are listed 

multiple times within these lists. Almost half of the significant gene regions are 

located proximate to the transcription start site (Fig. 3-6). Approximately 2/3 of 

CGI-related regions were within the island themselves, and more regions were 

found to be demethylated compared with other samples. 38 unique genes were 

associated with the gene regions results and 31 with the CGI regions results, with 

an intersection of 15 between the sets and 54 genes represented in total. 

Reanalysing after filtering out CpGs with SNPs <10bp away reduces this list to 32. 

Chromosome 1 was overrepresented in the list of 54 genes (10.11%, p=0.04). 

 

Fig. 3-5: Venn Diagrams Showing Intersections of Significant Hits from Various Contrasts in 
Terms of Whole Genes or CGIs, as Detected in Regions. 
Genes identified in the hypertension contrast are designated by an asterisk to reduce the 
complexity of a fifth set in the diagram. 
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Fig. 3-6: Summaries of Significant Gene Regions and CGI Regions. CGI: CpG islands. 
Most of the significant regions were within 1500 bases of the transcription start site (“TSS200Ind”, 
“TSS1500Ind”) or within the gene body. 

The largest change in beta was in the south shore of the CGI at 1685373-1685971 

of chromosome 1 and measured from three CpGs (Table 3-3). The same region 

was also significantly associated with genetic risk (Δβ=0.02, pBH=0.01). The 

region with the greatest statistical significance is the 5’ UTR of CHID1 (Δβ=0.08, 

pBH=4.36 X 10-12), and comprises 18 CpG sites (Table 3-4). CHID1 and APTX are 

found at the intersection of four contrasts, and CNIH4 and a CGI of chromosome 

1 at 224544523-224545224 are found at the intersection of 3 contrasts. 

Interestingly, all nine results at the intersection of the discordant controls 

contrast and the UMOD genotype contrast are in the same direction, displaying a 

similarity in pattern of DM. In these two contrasts DM were mostly seen as 

hypomethylation (16/18 and 11/12 respective to the order above). 

 



 

 

Gene/Region ID Region Type Δβ p pBH Site Count Contrast Survive SNP Filter 

chr1:1685373-1685971 (NADK) SSHOREInd -0.26 5.24 X 10-9 2.16 X 10-4 3 Discordant Control 
 CHID1 UTR5Ind 0.08 2.11 X 10-17 4.36 X 10-12 18 Discordant Case Y 

MBOAT2 TSS200Ind -0.07 1.58 X 10-9 1.09 X 10-4 3 Discordant Control Y 

APTX GENEBODYInd -0.05 2.19 X 10-10 2.26 X 10-5 6 HT – NT Y 

APTX GENEBODYInd -0.04 5.93 X 10-6 3.60 X 10-2 6 High Risk - Low Risk 
 APTX GENEBODYInd 0.04 1.46 X 10-12 1.50 X 10-7 6 UMOD Y 

chr6:83775374-83775766 (UBE3D) ISLANDInd -0.04 4.23 X 10-10 8.73 X 10-5 9 Discordant Control Y 

APTX UTR5Ind -0.03 8.23 X 10-9 5.66 X 10-4 5 HT – NT Y 

APTX GENEBODYInd 0.03 2.46 X 10-6 3.08 X 10-2 6 Discordant Control 
 chr1:26560449-26561028 (CEP85) NSHELFInd 0.03 3.39 X 10-6 3.18 X 10-2 1 Discordant Control Y 

Table 3-3: Top Ten Significant Changes in Geometric Mean Beta Value of Genomic Regions, Ranked by Absolute Change in Beta. 
Δβ: the change in methylation level ‘β’ where 0=not methylated and 1=fully methylated. pBH: the p value multi-test corrected by the Benjamini-Hochberg method. 

Gene/Region ID Region Type Δβ p pBH Site Count Contrast Survive SNP Filter 

CHID1 UTR5Ind 0.08 2.11 X 10-17 4.36 X 10-12 18 Discordant Case Y 

chr11:910242-910500 (CHID1) ISLANDInd 0.01 2.31 X 10-13 2.38 X 10-8 3 Discordant Case Y 

CHID1 UTR5Ind -0.02 1.30 X 10-13 2.67 X 10-8 18 UMOD Y 

APTX GENEBODYInd 0.04 1.46 X 10-12 1.50 X 10-10 6 UMOD Y 

APTX UTR5Ind 0.02 7.38 X 10-11 5.07 X 10-6 5 UMOD Y 

CHID1 UTR5Ind 0.02 6.98 X 10-11 1.44 X 10-5 18 HT - NT Y 

APTX GENEBODYInd -0.05 2.19 X 10-10 2.26 X 10-5 6 HT - NT Y 

chr11:910242-910500 (CHID1) ISLANDInd -0.01 1.09 X 10-9 5.62 X 10-5 3 UMOD Y 

chr6:83775374-83775766 (UBE3D) ISLANDInd -0.03 4.23 X 10-10 8.73 X 10-5 9 Discordant Control Y 

chr14:58666567-58667198 (ACTR10;C14orf37) ISLANDInd -0.02 1.05 X 10-9 1.08 X 10-4 6 Discordant Control Y 

Table 3-4: Top Ten Significant Changes in Geometric Mean Beta Value of Genomic Regions, Ranked by p.  
pBH: the p value multi-test corrected by the Benjamini-Hochberg method.



 

 

3.2.4 Genomic Distribution 

A summary of results by chromosome in Figure 3-7 shows observed and expected 

counts of statistically differentially methylated genes by chromosome. 

Chromosome 1 was found to have an overrepresentation of differentially 

methylated genes (10.11%, p=0.04). 

 

Fig. 3-7: The Genomic Distribution of Differentially Methylated Genes: showing disparity 
between observed results and those expected under a null hypothesis. 
A significant increase in differential methylation noted in chromosome 1 in particular. 

ANOVA revealed a significant association (Δβ = 3.54 X 10-3, p = 0.04) between the 

UMOD phenotype and global methylation and a borderline-significant association 

(Δβ = 3.82 X 10-3, p = 0.05) with the hypertension status and global methylation. 

Discordant controls and discordant cases were not found to have significant 

differences in global methylation as compared to the remaining samples (p = 

0.63, 0.08). 

The extent of differential methylation found in discordant controls and 

individuals of high genetic risk is greater within the LD blocks surrounding those 

SNPs which comprise the genetic risk score (Table 3-5). The group with high 

genetic risk has the greatest change in DM (23% increase in mean DM). There is 

only one risk-SNP-containing LD block which contains regions shown to exhibit 

DM (in genes HLA-G, HLA-DQB1, ZNRD1-AS1; Fig. 3-8). 
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Contrast P Value PBON Difference (%) 

Discordant Control 2.63 X 10-11 1.31 X 10-10 0.87 

Discordant Case 8.57 X 10-1 1.00 1.83 

Genetic Risk 9.48 X 10-3 4.74 X 10-2 23.3 

Hypertension 3.19 X 10-1 1.00 11.3 

UMOD SNP 4.97 X 10-2 2.48 X 10-1 12.7 

Table 3-5: Comparison of Differential Methylation in LD Blocks Containing Risk SNPs and 
Those Without Risk SNPs 
DM was higher in risk SNP LD blocks for all contrasts, though only discordant controls and 
individuals of high genetic risk were significantly different. pBON = bonferroni-corrected p values 

 

Fig. 3-8: More Detailed View of the Genomic Distribution of the Significant Events 
Locations of the DM sites and region, risk SNPs, and LD block of interest is shown. Sizes of 
regions shown are not representative, they are enlarged for clarity. Chromosome numbers are 
shown around the outside of the image. 
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3.2.5 Clustering Analysis 

Hierarchical clustering applied to a heatmap of hits from all contrasts was used 

to graphically represent the most important data (Fig. 3-9). It can be seen that 

the statistically significant differences between groups are mostly subtle ones - 

having little difference in methylation level. Related results cluster closely, e.g. 

the NADK gene body as a whole and the significant CpG site within it (Fig. 3-10). 

PC1 explains 98.02% of the variance in the data (Fig. 3-11), and graphing the PC1 

data ordered by sample group showed no obvious trends (Fig. 3-12 to 3-15). 

Euclidean distances within subgroups are not significantly different from 

distances between subgroups (p= 0.07), perhaps due to the small sample size. No 

significant clustering was detected by hypertension, genetic risk or UMOD 

genotype. 

 

 

 



 

 

 

Fig. 3-9: A Hierarchical Clustering of the Average beta of all Significant Gene Regions. 
Includes results from all contrasts tested. Representation of data in this format quickly conveys that most of the significant differential methylations detected are subtle 
or somewhat inconsistent.



 

 

 

 

Fig. 3-10 A Hierarchical Clustering of the Average beta of all Significant Gene Regions. 
Includes results from all contrasts tested.  
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Fig. 3-11: Scree Plot showing that the Second and Third Components Describe Relatively 
Little Variance 
 

 

Fig. 3-12: Principle Component 1, Showing Possible Clustering of Subgroups. 
Coloured by subgroup. It is difficult to assess clustering in such small subgroups, but it does not 
appear that any subgroup is noticeably distinct from the others. Sample IDs are on the vertical 
margin. 
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Fig. 3-13: Principal Component 1, Coloured by Hypertensive Status. 
Sample IDs are on the vertical margin. There may be some separation by hypertensive status. 

 

Fig. 3-14: Principal Component 1, Coloured by UMOD Allele. 
Sample IDs are on the vertical margin. 
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Fig. 3-15: Principal Component 1, Coloured by Genotype Risk Score. 
Sample IDs are on the vertical margin. 

 

3.2.6 Term Enrichment Analysis 

GO Term enrichment analysis showed many general disturbances across broad 

gene ontologies. Single ranked lists of the discordant control and discordant case 

lists were shown to be significantly enriched in 290 and 326 GO terms 

respectively, after applying multiple test correction. In both analyses (and their 

intersection) the biological processes terms formed the majority of significant 

results (Fig. 3-16). 

The discordant controls contrast was particularly enriched in terms related to 

regulation, development and morphogenesis, e.g. “anatomical structure 

morphogenesis” (pBH: 4.77 X 10-15). A text analysis of the discordant control 

terms shows 118 occurrences of “regulation”; 37 of “morphogenesis”; 32 of 

“development”; 21 of “binding”; 21 of “metabolic”. 
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Fig. 3-16: Discordant Control and Discordant Case Appear to be Enriched for Biological 
Process Gene Ontologies 
Ratios of Different Types of Significantly Enriched Gene Ontologies found in Two Contrasts in this 
Experiment contrasted with the Ratio for the Entire Gene Ontology Database. 

All 21 molecular function gene ontologies were related to transcription factor 

activity and transcription, e.g. “sequence-specific DNA binding transcription 

factor activity” (pBH:  1.17 X 10-09). The cellular component terms were mostly 

related to “cell junctions” (pBH:  9.75 X 10-06), “organelles” (pBH:  1.71 X 10-04), and 

“dendrites” (pBH: 2.80 X 10-3). Inclusion of dendrite/neuron-related terms may be 

indicative of enriched differential methylation of genes related to dendritic cells 

or a related immune cell type. 

The discordant cases contrast was particularly enriched with metabolic terms, 

e.g. “cellular macromolecule metabolic process” (pBH: 5.42 X 10-26). Text 

analysis reveals 46 occurrences of “metabolic” – over twice as many as in the 

discordant controls. Some other words with high occurrences were: “catabolic” 

41 times; “binding” 35 times; “regulation” 33 times; “ligase” 18 times. There 

are 33 terms shared between the two contrasts, however they are too general to 

be very informative. 
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3.3 Discussion 

This study benefits from genotype data which aids interpretation of the results 

in cases where probes may truly be indicating SNPs rather than DM. Rather than 

only assessing DM in individual probes, summarised values have been generated 

for gene and CGI regions, which in addition to more powerfully picking up subtle 

but consistent DM across a region, should be less prone to SNPs confounding 

results through differences in hybridisation affinity. 

An extreme case-control design was employed as in the original GWAS which, 

through that design, successfully identified a novel SNP associated with lowering 

blood pressure (UMOD). As all samples are from male patients of the same 

ethnicity and region it is unclear whether the trends identified extend across the 

population or are unique to this group, although this is also beneficial since the 

selected group is more homogeneous and statistical adjustments are not 

required for confounding factors such as sex and genetic background. In addition 

to assessing DM in hypertension, this study makes use of nested subgroups of 

genetic risk to test the hypothesis that DM may be involved in the discordant 

phenotypes present in the cohort. While the probes in the 450K have been 

selected in such a way as to try to avoid cross-hybridisation, and may have been 

more focussed towards transcribed regions, the global DNA methylation levels 

will be less biased in its description of global methylation than a technology 

specifically targeting promoter regions or repeats. 

 

3.3.1 Differential Methylation of NADK and its Potential 

Role in Hypertension 

Nicotinamide adenine dinucleotide phosphate is a coenzyme which, in its 

reduced form (NADPH), acts as a reducing agent in several different pathways 

(218-220). NADPH oxidases (NOX) are enzymes which transfer electrons from 

NADPH to molecular oxygen, creating superoxide anions. Superoxide is a reactive 

oxygen species which can form hydrogen peroxide and other reactive oxygen 

species. This process was first discovered to occur in phagocytes as a non-



  94 

 

specific host defence and in that instance is called an oxidative burst or 

respiratory burst (221;222). It has since been discovered to be constitutively 

active at low levels in other cell types (223). 

NADPH is responsible for the restoration of all known innate defence systems 

against oxidative stress (224-226). In doing so, through the transfer of an 

electron, it is oxidised to NADP+. While human cells seem ultimately to rely 

primarily on NADP-dependant dehydrogenases for their protection against 

oxidative stress (by reducing NADP+), it has been shown that the activity of NAD 

kinase (NADK) can also contribute a moderate enhancement (227). NADK is an 

enzyme which converts NAD to NADP by phosphorylation. An increased amount 

of NADK activity allows more conversion of NAD to NADP and thus there is a 

greater pool specifically of NADPH, since NADP exists largely in its reduced form 

in human cells (228). The hypomethylation of NADK detected in discordant 

controls may be responsible for an increase in expression of NADK and in turn a 

greater protective effect against the potentially hypertension-inducing effects of 

oxidative stress - potentially explaining why individuals with a higher genetic risk 

for hypertension might not express the phenotype. 

Oxidative stress is associated with many diseases and appears to play a central 

role in the pathophysiology of hypertension. Oxidative stress leads to a reduction 

in nitric oxide bioavailability which is a major factor in controlling vascular tone 

and therefore blood pressure. The action of several vasoconstrictor peptides 

such as angiotensin II, endothelin-1 and urotensin II lead to oxidative stress by 

activating enzymes like NOX and xanthine oxidase which generate reactive 

oxygen species. NOX enzymes in particular appear to be involved in blood 

pressure control via several mechanisms and across multiple relevant tissues 

(229). The effective reduction of oxidative stress in the relevant tissue(s) – 

either by introduction of antioxidants, or by interfering with the pathways 

involved in reactive oxygen species - is an active area of research (230). Several 

existing hypertension medications such as ACE inhibitors and calcium channel 

blockers may work in part by reducing oxidative stress. 

A SNP (rs1130355) for which there is no data within the significant NADK CpG 

site with a high minor allele frequency (MAF) of 0.36 could be the true source of 
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the association with hypertension. This hypothesis is backed up by the fact that 

the NADK-related regions are filtered out by the SNP-filtered analysis. If it were 

this SNP itself it would be a novel association. The apparent association with 

hypertension may also be a nearby SNP in close linkage with it - it can be seen 

from Figure 3-17 that there is another potential occurrence of DM in a close 

genomic proximity to NADK, within the GNB1 gene. 

 

 

 



 

 

 

Fig. 3-17: Genomic context of NADK, and the methylation regions and CpG cg27433479 
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Fig. 3-18: Genomic context of CHID1. 
Location of methylation regions consistent with downregulation by promoter activity. 
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Fig. 3-19: Genomic context of APTX. 
Location of methylation regions consistent with downregulation at promoter, upregulation in gene body or splicing – many variants are referenced in RefSeq. 



  99 

 

3.3.2 Genes CHID1 and APTX are found at the Intersection 

of Results 

While not all of the directions of the DM (i.e. positive or negative Δβ) are as 

expected, the relationships between the discordant cases and controls and the 

hypertension contrast appear to be in concordance in the two most prominent hits, 

as identified by relatively large, significant DM, across several contrasts and 

regions – CHID1 and APTX. CHID1 (Fig. 3-18) and APTX (Fig. 3-19) show DM in four 

of the five contrasts investigated (Fig. 3-5) and the latter shows DM in two gene 

regions. Regions of these genes are also shown repeatedly in the top ten significant 

regions ranked by beta (Table 3-3) and by significance (Table 3-4). DM of the gene 

body of APTX could potentially have a protective effect for discordant controls 

(hypertension: Δβ=-0.05, p=2.26 X 10-5; discordant control: Δβ=0.03, p=0.03) and 

DM of the 5’ UTR of CHID1 may have a predisposing effect on discordant cases 

(hypertension: Δβ=0.02, p=1.44 X 10-05; discordant case: Δβ=0.08, p=4.35 X 10-12). 

CHID1 is part of a family of the glycoside hydrolase 18 (GH18) family of chitinases 

and followed a different evolutionary path from all others of the family, remaining 

conserved and unduplicated in humans (231). It is upregulated in macrophages, its 

protein has been detected in lysosomes, and it is secreted into the extracellular 

region. While little is known about its function it has the ability, in vitro, to bind a 

variety of saccharides and saccharide-containing molecules such as chitin and 

lipopolysaccharides (LPS). Chitin is found in fungal pathogens and LPS is a potent 

driver of inflammation of bacterial origin. Inflammation is thought to contribute to 

hypertension by via oxidative stress and endothelial dysfunction. 

LPS in particular can induce an immune response from multiple cell types, 

including macrophages, and it has been shown to affect blood pressure in animal 

models (232). To resolve LPS-driven inflammation the bacterial cells responsible 

need to be cleared and the LPS neutralised. Although CHID1 has not been shown to 

bind LPS in vivo and its binding affinity is relatively low, recombinant CHID1 

protein can reduce the inflammatory response to LPS challenge in macrophages – 

specifically regarding cytokines IL-1β, IL-8, TNFα, and IL-6 (233) – indicating an 

involvement in LPS neutralisation. 
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CHID1 has been shown to interact with the trans-membrane receptor stabilin-1 

(234), which is known to be expressed in macrophages and endothelial cells 

(including angiogenic endothelial cells). In macrophages it appears to be 

responsible for intracellular sorting of endogenously synthesised CHID1 into 

lysosomes, leading to CHID1 secretion (235), potentially facilitating an effect of 

CHID1 on LPS neutralisation. Stabilin-1 mediates apoptotic cell clearance in 

alternatively activated macrophages (236). Apoptotic cells can induce 

inflammation, and in addition to the removal of this source of inflammation 

apoptotic cell clearance triggers anti-inflammatory mechanisms (237). Stabilin-1 is 

capable of binding gram-negative and gram-positive bacteria, which may indicate 

involvement in bacterial cell clearance also (238). 

Stabilin-1 acts as a scavenger receptor for a variety of molecules including 

acetylated low density lipoproteins (acLDL) and oxidated low density lipoproteins 

(oxLDL). oxLDL is normally cleared by macrophages however an excess of oxLDL 

can cause their transformation into foam cells which play a role in the initiation 

and progression of atherosclerosis - physically contributing to atherosclerotic 

lesions and driving inflammation. oxLDL is a major risk factor for cardiovascular 

disease with multiple putative mechanisms (239). It affects other relevant cell 

types beyond macrophages, including endothelial cells which also express stabilin-

1. 

SPARC is an acLDL which modulates angiogenesis and is mainly endocytosed by 

stabilin-1 in macrophages which appear to be responsible for clearance of SPARC 

from the extracellular space (240). Stabilin-1 has also shown angiogenesis-

modulating activities (238). Anti-angiogenesis medications (targeting VEGF) are 

used in the treatment of cancer and have been demonstrated to cause 

hypertension as a side-effect. This may occur by multiple possible mechanisms 

including vasoconstriction induced by activation of endothelial cells, increased 

endothelin signalling and decreased NO signalling leading to vasoconstriction, and 

by reduced lymphangiogenesis modulating the salt sensitivity of blood pressure 

(241). 
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APTX is a gene involved in DNA repair and expressed highest in lymphoblasts. DNA 

damage is associated with hypertension, seen as a product of the increased 

oxidative stress the system is under (242). Increased expression of DNA repair 

genes such as PARP1 – a gene known to interact with APTX – have been associated 

with hypertension, possibly as a response to the increased ROS-related DNA 

damage(243). A CGI within the gene body of PARP1 and of CNIH4 (chr1:224544523-

224545224) is shown to be differentially methylated across three contrasts. An 

overlapping region annotated by IMA as being the gene body of CNIH4 however 

being in the region of both genes is also found to have DM across these contrasts. 

In addition to passing the SNP-filtered version of the analysis, no significant 

associations with hypertension were found in these regions in the previous GWAS 

study, indicating that the result is novel and not a false positive induced by a SNP. 

It seems plausible that APTX and PARP1 are differentially methylated/expressed as 

a consequence of the same oxidative stress which drives hypertension, rather than 

being a cause of hypertension themselves. 

 

3.3.3 Other Genes of Interest and Global Methylation 

UBE3D encodes a ubiquitin protein ligase, an enzyme which transfers ubiquitin to 

substrates promoting their degradation by the proteosome. DM of a CGI found at 

the transcription start site of the UBE3D gene has the 8th greatest difference with 

the 9th greatest significance (Δβ=-0.03, p=8.73 X 10-05). Other ubiquitin protein 

ligases, UBE3A and UBE4A were amongst the 296 genes detected by Jia et al. 

MBOAT and CEP85 are involved in lipid metabolism and the centrosome 

respectively and as such are related to the two largest functional categories 

described by Jia et al. 

PAX7 is one of the family of paired box (PAX) family of transcription factors 

involved in fetal development and a number of diseases (244). IFT140 encodes a 

subunit of intraflagellar transport (IFT) complex A and mutations of the gene have 

been associated with kidney disease(245). HLA-G is a leukocyte antigen gene which 

is relatively highly expressed in both blood and placenta, is downregulated in the 
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placentas of preeclamptic women(246) and hypermethylation of its promoter is 

associated with that downregulation(247). It is one of several genes in the risk-SNP 

LD block shown in Figure 3-8. As with NADK, the significant site of HLA-G has a 

common SNP (rs2076328, MAF= 0.50) within the CpG sequence itself, and the 

association may truly be with a SNP rather than DM. The probes corresponding to 

significant sites of PAX7 and IFT140 however do not contain SNPs annotated by 

Illumina. 

Jia et al found that in the placenta of patients with preeclampsia the greatest 

overrepresentation of differentially methylated genes was in chromosome 1 

(10.5%, p= 5X10-3). Despite the differences in condition and sample type it may be 

interesting that this observation was somewhat mirrored in this data (10.1%, 

p=0.04) (215). The over or under representation of other chromosomes is less 

interpretable as numbers for expected counts are lower, however chromosomes 12 

and 19 do not seem to follow the less pronounced over-representation also 

described by Jia et al (Fig. 3-7). 

A significant association was found between global methylation and hypertension, 

showing a ~0.3% increase in hypertensives. This result may be somewhat biased by 

the selection criteria used by Illumina to assemble the 450,000 CpGs tested on 

their microarray. It is in agreement with a study by Kim et al which focussed on 

repeat regions, however it is also in disagreement with a study by Smolarek which 

used a smaller sample size (60 compared with 286) but a less targeted ((i.e. more 

global) methodology (199;200). 

The results of the term enrichment analysis show similarity with the functional 

analysis of Jia et al (215), in particular the two largest groups, one relating to 

metabolic processes and the other to replication, repair etc. Numerous terms 

related to the immune system were also shared between both sets of results. Some 

structural terms which were significantly enriched may bear relevance to vascular 

remodelling, e.g. “anatomical structural development”. 
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The increased differential methylation within the LD blocks surrounding those SNPs 

which comprise the genetic risk score similar to previous findings of an association 

between hypertension risk SNPs and nearby CpGs (248). 

 

3.3.4 Conclusion 

The findings regarding SULF1, PPP1R2, and LOC100132354 from the previous 

studies of DM in essential hypertension could not be replicated, possibly because of 

samples being sourced from groups of different ancestry, different environment, 

small sample sizes, or simply due to the heterogeneity of hypertension. As 

essential hypertension is a complex, multifactorial disease, with many potential 

causes and effects it is perhaps not surprising that the results only comprise parts 

of some components of the disease – in particular changes to metabolism, 

efficiency of combating over-oxidation and the resulting DNA repair response, 

immune responses, and structural development (in particular angiogenesis). CHID1 

and APTX are repeated across several contrasts, several regions, and/or show close 

interactions with other identified genes, lending additional confidence to the 

relevance of these results in particular. APTX (and another DNA repair gene, 

PARP1) may be differentially methylated in response to the increased oxidative 

stress found amongst people with hypertension. 

CHID1 appears to be responsible for the neutralisation of LPS, a molecule of 

bacterial origin which otherwise would cause inflammation. Inflammation can in 

turn cause oxidative stress and endothelial dysfunction, ultimately resulting in 

increased blood pressure. The hypermethylation at CHID1 in hypertensive patients 

may cause a decrease in expression which could be partly responsible for their 

increased blood pressure. It may also affect blood pressure through its interaction 

with stabilin-1, which is involved in several relevant processes including 

angiogenesis, atherosclerosis, and the clearance of pro-inflammatory cells. CHID1 

protein could modulate its activity by binding to it or could block its binding sites 

for other molecules. 
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Fig 3-20 CHID1 Interacts with the Stabilin-1 and is Involved in LPS Neutralisation 
CHID1 is packaged in the lysosomes by stabilin-1 for secretion into the extracellular region where it 
binds LPS and other antigens to inhibit inflammation 

Several statistical tests indicate a protective effect of DM in discordant 

normotensive patients – i.e. those who are normotensive despite high genetic risk - 

and that term enrichment analysis would suggest that its role is primarily related 

to morphogenesis. By far the largest change in beta is in a CpG of NADK, whose 

expression has been shown to have an impact on reducing oxidative stress by the 

phosphorylation of NAD to NADP, which exists primarily as the protective NADPH. 

However this may truly be association with a SNP which was not covered in the 

preceding GWAS study. Although further studies are needed to confirm these 

associations, DNA methylation appears to play a role in hypertension – on a CpG 

site level, gene region level, and global level – whether it is causative or simply a 

downstream effect. Knowledge derived from this experiment and similar 

experiments may help both in the understanding of the pathogenesis of 

hypertension and in the future of personalised medicine where epigenetic marks 

may be insightful, adding novel points to signatures of disease predisposition or 

drug response. 
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Fig 3-21 NADK Converts NAD to NADP, and Subsequently NADPH Combats Oxidative Stress 
The addition of a phosphate by NADK means an increase specifically of NADPH, since NADP exists 
largely in its reduced form in human cells. NADPH combats oxidative stress via reduction of its 
targets. Meanwhile APTX responds to oxidative stress by its involvement in DNA repair. 

The interpretation of the main results is enriched by integrating various additional 

datasets. Gene ontologies, a common addition to omics experiments, summarised 

the results in terms of biological processes, cellular components and molecular 

function. Extensive SNP location data based from dbSNP and experimental SNP 

data from the previous GWAS study on this cohort were useful in determining 

which of them were the most reliable results in terms of ruling out interference 

from SNPs. Integration of gene region data and linkage disequilibrium blocks allow 

the data to be analysed with different boundaries and categorisations which is 

useful since still relatively little is known about the causes and effects of 

differential methylation. 
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4. Integration of Diverse Datasets Towards 

Studying Mechanisms Underlying Variation in 

Left Ventricular Mass Index 

4.1 Introduction 

With the advances in omics technologies and analysis methodology, and with 

rapidly reducing costs, experiments involving multiple large datasets are 

increasingly attractive. As biomolecules of different classes interact it follows that 

we should aim to combine data of different types in order to test whether 

predictors are independent of each other, to describe relationships between 

different parts of the system and to put results in a greater context. 

Heart failure is a major global health issue; it is both common and rising  

worldwide (249). Left ventricular hypertrophy (LVH) is an intermediate 

cardiovascular phenotype associated with the development of heart failure (65). A 

previous study in 536 patients with hypertension integrated clinical variables in 

relation to left ventricular mass (LVM), and found systolic blood pressure (SBP), 

body mass index (BMI), height, sex and history of aneurysm of the abdominal aorta 

to be important predictors (71). This model accounted for 45% (adjusted R2) of the 

variation in the data set, and the inclusion of electrocardiography data added a 

small increase of 2%. 

Other studies have shown similar findings in various contexts – each case including 

relatively small numbers of variables and only including clinical measurements or 

assessments (250;251). Although only clinical models of LVM have been developed, 

some molecular predictors have been identified and could be modelled with each 

other or along with clinical predictors, potentially describing additional variation 

in the data, or providing novel insights. Single nucleotide polymorphisms in the 

angiotensinogen and apolipoprotein B genes have been shown to significantly 

predict changes in LVM index (LVMI) (79) and omics experiments of various types 

have detected many significant associations with LVH (252;253). 
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Within the Network of Excellence “InGenious HyperCare” patients with 

hypertension and normotensive controls belonging to the same families were 

characterised for LVM and other clinical variables (254). The full cohort consists of 

1589 participants which were recruited from 19 study centers in Europe. While no 

studies have been published before on this combined cohort, cardiovascular 

phenotypes from 535 of these individuals have been previously published (145). For 

the present analysis 270 participants from four sites in Gdansk, Krakov, Glasgow 

and Prague were selected for detailed molecular phenotyping. These 270 patients 

exhibit an approximately normal distribution of left ventricular mass index, and 

include 34 cases of LVH. There were approximately equal numbers of males and 

females at a mean of 48 years of age. Further details on the patients which 

participated can be found in section 2.3.1. LVMI was analysed with respect to one 

clinical dataset and several molecular datasets. The molecular datasets include 

data on 1,605 biomolecules including peptides, miRNAs and metabolites. They 

were acquired with both targeted and untargeted methodologies and derived from 

blood and urine samples. Lab work and some initial data processing was done in 

various labs specialising in different methodologies, before being sent to Glasgow 

for this combined analysis. 

The large number of predictor variables, the large amount of missing data for some 

predictors and the varying scales and sizes of the individual datasets present 

challenges to analysis (255;256). These challenges are not unique to our dataset 

but are a common problem for integration of molecular and clinical features. We 

present two alternative linear regression-based approaches to deal with such large 

diverse datasets in order to identify mechanistic biomarkers for the underlying 

pathways of increased LVM. Analysing variables from molecular and clinical data in 

combination could enhance discovery of significant associations and allow for the 

description of relationships between the relevant molecules. 

The main aims of this analysis were to identify novel molecular predictors, to 

compare these with clinical predictors, and to see whether molecular predictors 

explained additional variation in the data which clinical predictors alone did not. 

The first approach involves a screening step to reduce dimensionality before using 

a range of established methods to further test those significant predictors of LVM 
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and how they correlate with each other. First, as had been done in other studies, a 

linear model was established using only clinical variables. Each molecular dataset 

was then interrogated with univariate linear regression, multiple linear regression 

with confounders included (age, sex and BMI) and multiple linear regression with 

the above-mentioned clinical model. Any variable with a Benjamini-Hochberg 

adjusted p value < 0.05 in any iteration of testing was used as a potential predictor 

of LVMI in the final modeling stage, where two further models were generated – a 

molecular model and a mixed molecular-clinical model. Correlations between 

variables of interest were mapped out, and complimentary clustering analysis 

done. 

The strength of this approach is in the detail and relative robustness of the results, 

however with the numerous rounds of various statistical tests and data from 

different sources which all need to be treated appropriately, the analysis requires 

time and varied expertise. The length of time to thoroughly analyse data in this 

manner increases with the size of the datasets and number of significant results. It 

would therefore be attractive if there were a simpler way to analyse large mixed 

datasets such as this, which was not so affected by multi-test correction. The 

second approach uses principal components analysis (PCA) with varimax rotation to 

reduce dimensionality and capture relationships between predictors inherently in 

the resulting variables - each varimax-rotated principal component corresponds to 

several highly correlated molecules. 

 

4.2 Results 

16 of the 17 clinical variables in this dataset were shown to be significantly 

associated with LVMI (Table 4-1, Fig. 4-1 and 4-2). A multiple linear regression 

model was also developed from these 17 variables. The leaps output (Fig. 4-3) 

demonstrates not only what the best model is in terms of adjusted R2 and BIC, but 

also how well other models perform – whether the best model is significantly 

better or only marginally better than others by the selected criteria. By backwards 
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step selection the model with the greatest number of significant p values is also 

identified (Table 4-2). 

All three models describe a similar amount of variance (when corrected for number 

of variables) and the models based on the number of significant variables and 

minimal BIC had a better and similar fit to the data and lower p values. Five terms 

were shown to be independently statistically significant, namely sex, presence of 

congestive heart failure (CHF), SBP, heart rate (HR) and BMI. This model was 

selected to be taken forward and used for modelling with molecular variables in 

‘Approach 1’ below, however the factor CHF had to be dropped as there were few 

cases and in many instances there was an intersection between cases and missing 

molecular data. 

Variable Coefficient p R2 Model p 

Sex 8.18 2.68 X 10-4 0.05 2.68 X 10-4 

Age 0.35 4.70 X 10-6 0.08 4.70 X 10-6 

Age > 50 years 7.38 1.03 X 10-3 0.04 1.03 X 10-3 

Hypertension 9.45 2.53 X 10-5 0.07 2.53 X 10-5 

Diabetes 9.57 3.74 X 10-2 0.02 3.74 X 10-2 

CAD 13.53 9.24 X 10-3 0.03 9.24 X 10-3 

MI 18.71 2.36 X 10-2 0.02 2.36 X 10-2 

CHF 24.51 7.76 X 10-3 0.03 7.76 X 10-3 

BMI 0.88 6.88 X 10-5 0.06 6.88 X 10-5 

BMI > 30 kg/m² 7.41 1.47 X 10-3 0.04 1.47 X 10-3 

SBP 0.35 1.12 X 10-11 0.16 1.12 X 10-11 

DBP 0.39 7.78 X 10-5 0.06 7.78 X 10-5 

HR -0.30 4.85 X 10-3 0.03 4.85 X 10-3 

Creatinine 0.14 1.20 X 10-2 0.02 1.20 X 10-2 

eGFR -0.07 2.52 X 10-1 0.01 2.52 X 10-1 

BPMED 2.24 7.83 X 10-4 0.04 7.83 X 10-4 

RAAS 8.70 1.40 X 10-4 0.05 1.40 X 10-4 

Table 4-1: Simple Linear Regression of Clinical Variables. 
16/17 variables were shown to be significantly predictive of LVMI. eGFR: Estimated glomerular 
filtration rate, RAAS: Renin-angiotensin-aldosterone system, BPMED: number of antihypertensive 
medications, RAAS: RAAS-blocking medications, BMI: body mass index, HR: heart rate, DBP: 
diastolic blood pressure, SBP: systolic blood pressure, CAD: Coronary Artery Disease, MI: Myocardial 
Infarction, CHF: Congestive Heart Failure.
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Fig. 4-1: Simple Linear Regression of Clinical Variables. 
16/17 variables were shown to be significantly predictive of LVMI including six continuous variables: 
systolic blood pressure (p = 1.12 X 10

-11
), age (p = 4.70 X 10

-6
), body mass index (p = 6.88 X 10

-5
), 

diastolic blood pressure (p = 7.78 X 10
-5

), heart rate (p = 4.85 X 10
-3

), creatinine (p = 1.20 X 10
-2

). 
Variables are listed in order of statistical significance and match graphs reading left-to-right, top-to-
bottom. LVMI is shown on the vertical axes. One data point with an implausible creatinine value of 
300 was removed from the plot as its validity could not be verified. 
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Fig. 4-2: Significant Categorical Clinical Variables. 
16/17 variables were shown to be significantly predictive of LVMI including ten categorical variables: 
hypertension (p = 2.53 X 10

-5
), renin-angiotensin-aldosterone system medications (p = 1.4 X 10

-4
), sex 

(p = 2.68 X 10
-4

), blood pressure medication (p = 7.83 X 10
-4

), history of congestive heart failure (p = 
7.76 X 10

-3
), history of coronary artery disease (p = 9.24 X 10

-3
), history of myocardial infarction (p = 

2.36 X 10
-2

), history of diabetes (p = 3.74 X 10
-2

) 
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Fig. 4-3: Development of a Clinical Model using an All-Subsets Model Selection with the R Package 
Leaps. 
The selection criteria used were the maximum adjusted R2 (adjr2) and the minimum Bayesian 
Inference Criterion (BIC). Each row describes a model, and colouring indicates the inclusion of 
variables in each model. Where directional model selection methods are heuristic the all-subsets 
approach runs all possible combinations of variables, and it can be seen from the output how the 
top models compare. 

Criterion Terms Adj-R2 BIC Model p 

Max Terms p < 0.05 sex, CHF, SBP, HR, BMI 0.24 -45 4.02 X 10-15 

Max Adj-R2 sex, age, MI, CHF, SBP, HR, BMI, 
eGFR 

0.24 -33 2.44 X 10-14 

Min BIC sex, CHF, SBP, HR 0.23 -45 8.74 X 10-15 

Table 4-2: Modelling with a Combination of an All-subsets Approach and Backwards step 
selection. 
The R package leaps determined the models of lowest Bayesian Information Criterion (BIC) and 
highest adjusted R

2
. Backwards step selection was run on the maximal adjusted R

2 
model to find the 

model with the maximum number of significant terms. All three of these models describe a similar 
amount of variance (adjusted for number of terms in the model). The maximal terms model and best 
fit model have a lower fit and more significant model p value than that of the maximal adjusted R

2
 

model. eGFR: Estimated glomerular filtration rate, CHF: Congestive Heart Failure, SBP: systolic blood 
pressure, HR: heart rate, BMI: body mass index, MI: Myocardial Infarction. 
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4.2.1 Approach 1: Testing Molecular and Clinical Variables 

Separately then Combining the Data 

All constituent datasets contained at least one significant molecule at the 

screening step except the Randox Cytokine Array. Positive associations with LVM 

were found (Table 4-3) with two identified plasma peptides (Angiotensin A, 

Angiotensin II), 6 unidentified plasma peptides (m/z: 266.16, 288.13, 567.14, 

834.18, 831.18, 553.10), two circulating miRNAs (has-miR-18a-3p, has-miR-92b-

3p), two myocardial remodeling markers (PICP:CITP ratio, PICP), three serum 

metabolite signals (D-glucose, D-glucose + L/D-proline, ‘D-glucose + alanine + 

glutamine’) and one urinary metabolite (phenylacetylglycine). Negative 

associations were found with two serum metabolite signals (trimethylamine, 

‘unsaturated fatty acids + isoleucine + L-proline’), one unidentified urinary 

metabolite and five urinary peptides (a Haemoglobin Subunit Beta peptide, a 

Collagen Alpha-1(III) Chain peptide and three Collagen Alpha-1(I) Chain peptides). 

For these molecules the coefficients were consistently signed regardless of the 

other variables included in the model. 
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Table 4-3: Results from simple linear regression and multiple linear regression of molecular variables with respect to left ventricular mass index 
(LVMI). 
Coefficients have been standardised to aid comparison between variables of different scales and units. The value resulting from this standardization (“Std Beta”) 
represents the number of standard deviations of LVMI0.5 increase/decrease with every 1 SD increase/decrease of the predictor. Associations with plasma 
peptides Angiotensin II and Angiotensin A and urinary metabolite phenylacetylglycine would not have been detected with simple linear regression but strong 
associations were found with multiple linear regression. A confounder model (age, sex, body mass index) and a clinical model (sex, body mass index, systolic 
blood pressure, heart rate) were used for multiple linear regression. IPP: identified plasma peptides, UPP: unidentified plasma peptides, MRM: myocardial 
remodeling markers, Std. Beta: standardized beta, pBH: Benjamini-Hochberg corrected p value, Adj-R

2
: adjusted R

2
, BMI: body mass index, HR: heart rate, SBP: 

systolic blood pressure, PICP: carboxy-terminal propeptide of procollagen type I, CITP: carboxy-terminal telopeptide of collagen type I.

Molecule Dataset (size) 

Simple Linear Regression With Confounders (Age, Sex, BMI) 
With Clinical Model (Sex, SBP, 
HR, BMI) 

Std. 
Beta pBH Adj. R2 Std. Beta pBH Adj. R2 Std. Beta pBH Adj. R2 

Angiotensin II IPP (3) 0.18 1.00E-01 0.01 0.28 5.91E-04 0.14 0.22 4.89E-03 0.25 

Angiotensin A IPP(3) 0.17 1.00E-01 0.01 0.24 5.91E-04 0.15 0.19 4.89E-03 0.25 

Unknown Peptide 266.16m/z UPP (18) 0.43 1.05E-03 0.17 0.29 9.36E-02 0.23 0.33 1.03E-02 0.30 

Unknown Peptide 288.13m/z UPP (18) 0.30 4.18E-02 0.05 0.10 9.38E-01 0.17 0.15 5.77E-01 0.28 

Unknown Peptide 567.14m/z UPP (18) 0.37 4.18E-02 0.16 0.16 6.79E-01 0.26 0.13 7.29E-01 0.39 

Unknown Peptide 834.18m/z UPP (18) 0.32 4.18E-02 0.11 0.16 8.17E-01 0.29 0.27 1.68E-01 0.38 

Unknown Peptide 831.18m/z UPP (18) 0.31 4.18E-02 0.20 0.21 6.79E-01 0.31 0.09 8.51E-01 0.19 

Unknown Peptide 553.10m/z UPP (18) 0.32 3.06E-02 0.08 0.16 6.79E-01 0.08 0.21 3.00E-01 0.21 

hsa-miR-18a-3p miRNA (5) 0.23 4.30E-03 0.05 0.06 9.76E-01 0.12 0.01 9.50E-01 0.21 

hsa-miR-92b-3p miRNA (5) 0.18 2.60E-02 0.03 0.03 9.76E-01 0.11 0.00 9.50E-01 0.20 

PICP/CITP (collagen turnover) MRM (4) 0.14 7.72E-02 0.01 0.17 1.62E-02 0.21 0.13 5.47E-02 0.31 

PICP MRM (4) 0.13 7.72E-02 0.01 0.14 3.41E-02 0.20 0.11 8.34E-02 0.32 

isoleucine + L-proline + unsat f.a. Serum Met (50) -0.27 1.31E-02 0.06 -0.14 2.74E-01 0.14 -0.15 5.40E-01 0.26 

D-Glucose Serum Met (50) 0.24 1.71E-02 0.04 0.11 4.22E-01 0.13 0.10 5.40E-01 0.22 

D-Glucose + L/D-Proline Serum Met (50) 0.27 1.71E-02 0.04 0.15 3.82E-01 0.15 0.12 5.40E-01 0.25 

D-Glucose + alanine + glutamine Serum Met (50) 0.27 1.42E-02 0.05 0.10 4.82E-01 0.14 0.07 5.70E-01 0.23 

Trimethylamine Serum Met (50) -0.24 1.71E-02 0.05 -0.06 5.50E-01 0.14 -0.08 5.40E-01 0.23 

'Unknown8' Urinary Met (168) -0.35 9.49E-03 0.07 -0.19 4.94E-01 0.17 -0.14 3.40E-01 0.27 

Phenylacetylglycine Urinary Met (168) 0.47 8.20E-02 0.03 0.50 2.15E-02 0.19 0.46 1.99E-02 0.29 

Collagen alpha-1(I) chain (50172) Urinary Pep (1340) -0.28 2.26E-02 0.06 -0.18 5.24E-01 0.17 -0.17 1.33E-01 0.27 

Collagen alpha-1(III) chain (84440) Urinary Pep (1340) -0.28 2.26E-02 0.06 -0.24 2.17E-02 0.21 -0.17 1.33E-01 0.30 

Haemoglobin subunit beta (110333) Urinary Pep (1340) -0.30 2.75E-02 0.06 -0.24 1.41E-01 0.22 -0.22 1.33E-01 0.31 

Collagen alpha-1(I) chain (18393) Urinary Pep (1340) -0.32 3.07E-02 0.05 -0.17 5.24E-01 0.20 -0.12 4.93E-01 0.31 

Collagen alpha-1(I) chain (124886) Urinary Pep (1340) -0.23 3.75E-02 0.05 -0.14 5.24E-01 0.18 -0.13 3.55E-01 0.31 



 

 

These results were taken forward and used as a basis for cluster/correlation 

analysis (Fig. 4-4) and multiple linear regression. Correlations performed 

between each variable were organized into a correlation matrix. The 

columns/rows of this matrix were sorted by the resulting dendrogram from the 

hierarchical clustering analysis, to aid visual inspection of the data. These 

results helped group the variables into three clusters, the three clades at the 

root of the graph. 

The largest cluster is cluster C and it includes LVMI. This cluster contains 133 

significant positive correlations and only one significant negative correlation – 

between diastolic blood pressure and coronary artery disease. Cluster C clusters 

closely with cluster B (phenylacetylglycine, angiotensin II and angiotensin A) 

whose pattern of correlation is more complex. While all significant correlations 

between phenylacetylglycine and cluster C are positive, the Angiotensin 

molecules are positively related to LVMI, but negatively related to miR-18a-3p, 

miR-92b-3p, D-glucose, ‘Sex-M’ and creatinine. Strong correlations are detected 

between the two Angiotensin molecules, between two miRs (miR-18a-3p, miR-

92b-3p), and between three serum metabolites (D-Glucose, Met.S38, Met.S42). 

Cluster Acontains nine significant positive correlations and two significant 

negative correlations, most of which are weak. Three serum metabolites 

(trimethylamine, Met.S17, Lipids) exhibit strong positive correlations with each 

other. Significant correlations between the variables of Cluster A and Cluster C 

are mostly negative (count: 93). Strong anti-correlations include those between 

two sets of serum metabolites (Cluster A: trimethylamine, Met.S17, Lipids; 

Cluster C: D-Glucose, Met.S38, Met.S42), and between PICP/CITP and both 

Angiotensin molecules. 13 correlations were positive including the correlations 

between diastolic blood pressure and heart rate, and between Sex-M and eGFR. 

‘PICP/CITP’ and ‘Hx of CHF’ were consistently positively correlated with cluster 

D and are responsible for the remaining 11 positive correlations. 

A dataset with recurring points of high influence removed was used for multiple 

linear regression analysis (Table 4-4). Using molecular variables alone it was 

determined that four molecules are independently predictive of LVMI: collagen 

type I alpha 1 peptide (internal ID: 50172), phenylacetylglycine, D-glucose and 
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Angiotensin A (from urine, urine, serum and plasma respectively). The clinical 

modelling based on this slightly smaller dataset results in a similar model to the 

maximal significant variables model identified above, however BMI as a 

predictive variable was slightly over the selected significance threshold. 

 

 

Fig. 4-4: A Clustered Correlation Map of the Variables Identified in the Screening Step of 
Approach 1. 
This figure shows significant correlations between molecular and clinical variables ordered by 
hierarchical clustering. Many expected correlations are shown between variables, e.g. Angiotensin 
A and Angiotensin II are strongly positively correlated. Associations with non-specific metabolite 
signals can be derived: MetS17 (unsaturated fatty acids); MetS38 and MetS42 (glucose). The 
unsaturated fatty acids, lipids, and trimethylamine cluster is in anticorrelation with the glucose 
cluster. This relationship may be due to control by insulin which suppresses FMO3 expression. The 
‘lipids’ metabolite was not significant, but added to assess its correlation with significant variables 
and aid in understanding other metabolite signals. A blue-red colour scale for correlation rho values 
is shown in the legend to the right. Grey crosses indicate insignificant correlations. 
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Criterion Terms Adj-R2 BIC Model p 

Clinical sex, CHF, SBP, HR 0.20 -33 3.61 X 10-12 

Molecular collagen type I alpha 1 peptide (50172), 
phenylacetylglycine, D-glucose, angiotensin A 

0.20 -9.4 1.30 X 10-7 

Clinical 
and 
Molecular 

collagen type I alpha 1 peptide (50172), 
haemoglobin beta peptide (110333), 
phenylacetylglycine, angiotensin A, sex, SBP 

0.29 -25 1.99 X 10-12 

Table 4-4: Modelling with Clinical Variables and Significant Molecular Variables. 
The model using both molecular and clinical variables describes approximately 9% more variance 
than those using either dataset alone. Models were selected here on the criterion of having the 
maximum number of independently predictive variables. CHF: congestive heart failure, SBP: 
systolic blood pressure, HR: heart rate, Adj-R

2
: adjusted R

2
, BIC: Bayesian information criterion. 

When both molecular and clinical terms were used as predictors the emerging 

model consisted of: collagen type I alpha 1 peptide (internal ID: 50172), 

haemoglobin beta peptide (internal ID: 110333), phenylacetylglycine, 

angiotensin A, sex and SBP. Using both clinical and molecular variables in 

combination it could be seen that there is a greater proportion of the data 

described – an adjusted R2 of 0.20 for either set alone and 0.29 for the combined 

model. 

Data imputation results in a similar combined model describing a similar amount 

of variance but with a better fit, lower model p value and more independent 

predictors (Table 4-5). The two models share five variables and both include an 

angiotensin molecule. While SBP and HR are found to be significant predictors in 

the second model this slightly different approach does not yield more variance 

explained after adjustment for the number of terms included. Logistic regression 

with LVH categorisation, while underpowered, showed six of the molecules 

identified in the linear regression screening step (i.e. shown in Table 4-2) were 

also significant for LVH and that SBP, Angiotensin A and phenylacetylglycine 

were independently significant. 

 

 

 

 



  118 

 

Criterion  Terms Adj-R2 BIC Model p 

Clinical sex, CHF, SBP, HR 0.20 -33 3.61 X 10-12 

Molecular collagen type I alpha 1 peptide 
(50172), collagen type III alpha 1 
peptide (84440), phenylacetylglycine, 
D-glucose, angiotensin II, 533.10m/z 
peptide 

0.18 -24 5.21 X 10-10 

Clinical 
and 
Molecular 

collagen type I alpha 1 peptide 
(50172), haemoglobin beta peptide 
(110333), phenylacetylglycine, 
angiotensin II, sex, SBP, BMI, HR 

0.29 -47 2.20 X 10-16 

Table 4-5: Modelling with Clinical Variables and Significant Molecular Variables Using 
Imputed Data. 
Using K-nearest neighbour and mean imputation missing data points were imputed. This allows the 
resulting molecular model to include one of the terms with poor representation (533.10m/z peptide). 
The resulting combined model describes a similar amount of data to that from the non-imputed 
dataset, but associating one more independent predictor and has a better fit and lower model p 
value. CHF: congestive heart failure, SBP: systolic blood pressure, HR: heart rate, Adj-R

2
: adjusted 

R
2
, BIC: Bayesian information criterion. 
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4.2.2 Approach 2: Combine Variables Prior to Testing 

Four patients and six variables were screened based on having a high proportion 

of missing data, and missing data in the remaining variables were imputed. The 

imputation of missing data can alter datasets, changing distributions and 

artificially reducing variance. The more data points are imputed for a particular 

variable the worse these problems get hence the removal of some variables 

altogether. While not perfect this screening and imputation step is necessary for 

the following statistical analysis which is incompatible with missing data. Initial 

PCA clearly showed that a large proportion of the data was mainly describing 

three extreme outliers, and therefore these were removed (Fig. 4-5). It seems 

likely that these outliers are so different due to some unknown technical effect. 

If not then it could be argued that the analysis is being biased by their removal, 

however the results will still reflect the vast majority of the sample – and they 

will reflect the majority better un-skewed by the outliers. 

 

Fig. 4-5: Screening Extreme Outliers with Principal Components Analysis. 
The first two principal components (PC1 and PC2) are shown. This initial principal components 
analysis (PCA) revealed that a large proportion of the variation discriminated only three outliers so 
these three points were removed for the subsequent PCA analysis. Red = high LVMI, green = low 
LVMI. 

219 components were selected from a subsequent PCA analysis by the Kaiser 

criterion (257) and those components were varimax-rotated. Four were found to 

be significantly associated with LVMI. These four components correlate with 

many clinical and molecular variables associated in the first approach (Fig. 4-6). 

All four are independently predictive and this model outperforms using only the 
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clinical or only the molecular data from approach 1, but is itself outperformed 

by the combined model from approach 1 (Table 4-6). PC44, PC204 and PC209 

were all found to be significantly associated with left ventricular hypertrophy by 

simple logistic regression. 

 

Fig 4-6: Contributions of Original Variables to Significant Varimax-Rotated Components. 
Each pie segment represents a correlation of 0.1 or greater and those with a lower correlation are 
removed for clarity. They are independently predictive and seem to be related to blood pressure, 
BMI, heart rate, and the unidentified plasma peptides (PC 44, PC204, PC209, PC218 respectively). 
Contributions to these come from only three of the constituent datasets and there are several weak 
contributions (i.e. slightly above the inclusion threshold) from the largest of these (urinary peptides). 
C: clinical, UP: urinary peptides, PP: plasma peptides. 

 

PC  Estimate Standard Error  p  pBH  Adj. R2  model p 

PC44 0.16 0.03 5.48 X 10-8 1.20 X 10-5 0.11 5.48 X 10-8 

PC204 -0.15 0.03 2.59 X 10-7 2.84 X 10-5 0.10 2.59 X 10-7 

PC209 0.16 0.03 1.39 X 10-6 1.01 X 10-4 0.09 1.39 X 10-6 

PC218 0.13 0.04 3.47 X 10-4 1.90 X 10-2 0.05 3.47 X 10-4 

All four PCs - - - - 0.21 8.13 X 10-13 

Table 4-6: Linear Regression was used to test for Associations Between LVMI and Varimax-
Rotated Principal Components. 
The results of simple linear regression analysis of each individual PC is shown along with those of 
a multiple linear regression with all four PCs wherein all four PCs are significant. pBH: Benjamini-
Hochberg corrected p value, Adj-R

2
: adjusted R

2
. 
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4.3 Discussion 

4.3.1 Combined Molecular and Clinical Model 

Using both molecular and clinical variables in multiple linear regression 

describes approximately 29% of the variation in LVMI. This model contains 

collagen type I alpha 1 peptide (50172), haemoglobin beta peptide (110333), 

phenylacetylglycine, angiotensin A, sex, SBP. Sex and SBP were determined to 

be important independent clinical predictors in the initial clinical model along 

with BMI, HR and CHF. There were few cases of the fifth clinical variable (CHF) 

in our data which made analysis more complicated – when some molecular 

variables were tested along with the clinical model, missing molecular data 

coincided with CHF cases meaning that CHF had to be dropped from the model 

in those particular tests. This also means that its presence in the clinical model 

vs its absence in mixed clinical-molecular model should not be over-interpreted – 

perhaps if there were a few more cases the molecular variables would not have 

‘displaced it’ from the model.  Interestingly when missing data is imputed the 

same combined model is derived but with the addition of remaining two clinical 

variables, BMI and HR, suggesting that all of the molecular variables in our final 

model are independently predictive of the clinical model (albeit it with the 

alternative but highly correlated angiotensin II in place of angiotensin A). Thus 

the molecular variables can be shown to add variation to LVMI which cannot be 

explained by clinical data alone and vice versa, assuming the data imputation is 

reliable. This indicates that the molecular processes of LVH underlying these 

molecular variables are at least partially distinct from the molecular processes 

related to the clinical variables. Clinical variables such as blood pressure clearly 

drive the development of LVH, however not all hypertensive patients develop 

LVH. Molecules which describe variation which is distinct from easily-measured 

well-understood clinical measures are perhaps the most promising for discovery 

of novel mechanisms to describe the differences between those patients which 

are susceptible to development of LVH. 

Urinary phenylacetylglycine appears to be the most important molecular 

predictor which has been identified. It was found to be positively associated, has 
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the greatest coefficient of the significant results, is predictive of LVMI 

independently of the clinical model, and its addition to the clinical model used 

for the screening step of Approach 1 explains approximately the same amount of 

variation in LVMI (when adjusted for the number of variables in the model). It is 

associated with heart failure (258) and is a biomarker for phospholipidosis (Fig. 

4-7). Phospholipidosis is the accumulation of abnormally high levels of 

phospholipids in lysosomes or cytoplasm and it can be induced by many 

commonly prescribed cationic amphiphilic drugs - which includes drugs of many 

classes used to treat a wide range of conditions (259). In drug-induced 

phospholipidosis the inhibition of lysosomal phospholipase leads to the formation 

of large indigestible complexes which are visible with electron microscopy. 

Organs affected by phospholipidosis show signs of inflammation and 

histopathological changes (260), and there are associations with various 

modulations to immune response (261). In cardiac tissue this process may lead to 

cell hypertrophy and fibrosis (262). Furthermore anzoline-induced renal 

phospholipidosis has been suggested as a cause of heart failure in a case study 

(263). 

Phospholipidosis can occur in many organs so another possible connection with 

LVH may be found elsewhere in the body. Gentamicin-induced renal 

phospholipidosis has been demonstrated to have a causal link to nephrotoxicity 

(264-266). This may explain the association with heart failure since eGFR is 

associated with LVM (267-269), notably in a longitudinal study of living kidney 

donors where reduced renal function appeared to be causative for increased LVM 

(270). However if urinary phenylacetylglycine were indicating reduced kidney 

function in this study we would not have expected so little correlation between 

it and eGFR. Alternatively the association may not underlie a causative role for 

development of LVM, rather it could be a biomarker of LVH or simply of 

medication use – e.g. those at high risk of developing LVH may already be using 

certain medications which are capable of inducing phospholipidosis, such as 

propanolol.  There is also some debate whether it truly is phenylacetylglycine or 

phenylacetylglutamine being detected in the studies described - while 

phenylacetylglycine has been detected in human urine using NMR but could not 

be detected using MS which has a higher sensitivity and is generally considered 
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to be more reliable (271) – in this case however phenylacetylglycine was 

detected with MS, suggesting the NMR results were accurate. 

 

Fig. 4-7: A Summary of the Molecular Variables Identified by the Screening Step of Approach 1 
and how they Relate to Various Relevant Clinical Terms. 
Unsat: unsaturated, Ang: angiotensin, TMA: trimethylamine, TMAO: trimethylamine oxide, FMO3: 
flavin containing monooxygenase 3, FOXO1: forkhead box protein O1, PICP: collagen I propeptide, 
CITP: C-telopeptide for type I collagen. Circle: protein, diamond: miRNA, hexagon: metabolite, red: 
upregulated, green: downregulated, blue: up/downregulated in different forms. 

Angiotensin II is well known to increase blood pressure and has been shown in 

rats to have a blood pressure independent effect on LVM (272) – an association 

also demonstrated in humans in the data presented here. In hypertensive 

patients blockers of the renin-angiotensin system have been shown to be more 

effective in producing reduction in LVM than beta-blockers (273;274). 

Angiotensin II also drives hypertrophy via inflammation and oxidative stress, and 

by interactions with the sympathetic nervous system (275). Angiotensin A is 

identical to angiotensin II but for a single amino acid difference and it is formed 

via the enzymatic decarboxylation of an aspartic acid residue of Angiotensin II. 

While the effects of angiotensin A appear to be very similar to angiotensin II, it 

has a higher affinity for the angiotensin II receptor type 2 receptor (276). The 

same study by Jankowski et al found the relative abundance of angiotensin A to 

angiotensin II to be 9.7% in plasma samples from a group of healthy human 

controls. Angiotensin A was only first described in 2007 and research in humans 

in very limited - most information about its function so far is drawn from animal 

models. In rats it has very similar cardiovascular effects to angiotensin II, 
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including an increase in blood pressure and vasoconstriction, and a decrease in 

cardiac contractility and heart rate (277). Also similarly to angiotensin II its 

effects are partially reduced by an angiotensin II receptor type 1 antagonist 

(278). Angiotensin A is less effective at inducing vasoconstriction compared to 

angiotensin II. This is probably due to the vasodilatory effects it has through (i) 

its increased affinity for angiotensin II receptor type 2, and (ii) production of 

alamandine which binds with ‘mas-related G-protein coupled receptor D’, 

increasing levels of atrial natriuretic peptides (279;280). Separately angiotensin 

II and angiotensin A were both predictive of LVMI, but since they were so highly 

correlated in our data no reliable inference can be made based on which one of 

them is included in the combined model. 

The two remaining molecules in the combined model were a urinary collagen 

(type I) peptide and a urinary haemoglobin peptide. The inclusion of a 

haemoglobin beta peptide in the model may represent the causal link between 

anaemia and left ventricular mass in patients with chronic kidney disease and 

patients with end-stage renal failure – treatment with erythropoietin regresses 

LVH independent of blood pressure (281;282). 

Four of the significant urinary peptides were collagen peptides, one of which 

was significant independent of common confounders, and another is described 

above as part of the combined model. Cardiac fibrosis is a process which occurs 

during the development of LVH and it is characterised by an increase of collagen 

and other extracellular matrix components. The composition of the extracellular 

matrix has an influence on heart function, and the accumulation of collagen can 

cause stiffness and impairs function. Collagen build-up can occur by an increase 

in procollagen peptide gene expression, a reduction in collagenases, or by an 

increase in collagenase inhibition. Collagen I and collagen III are the main 

myocardial collagens, both of which can be synthesised at an increased rate in 

patients with LVH (283;284). Collagen type I synthesis is driven partly by 

angiotensin II, and has been associated with hypertensive heart failure 

(285;286). The significant correlations between angiotensin II and two collagen 

peptides in our data support this. While angiotensin A has significant correlations 

with most of the same variables (PICP/CITP, miR-18a-3p, miR-92b-3p, glucose, 

sex), it is not significantly correlated with the collagen peptides. While the 
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collagen peptides identified here are inversely correlated this may be 

representative of reduced activity of a specific protease(s) rather than a 

decrease in the parent molecule itself - different peptidases which can cleave 

collagen alter the levels of these peptides. A reduced level of collagenase would 

lead to collagen build-up as part of the process of cardiac fibrosis. The activity 

of certain peptidases, especially matrix metalloproteinase proteins – many of 

which are already known to contribute directly towards LVH – may reflect 

predisposition to LVH (287). The expression of particular known myocardial 

collagenases such as MMP-1, MMP-8, MMP-9, and MMP-13 could be tested and 

compared against the collagen fragments data to determine which collagenase 

or combination of collagenases is responsible for a particular collagen fragment. 

The collagen fragments are positively but weakly correlated. While some of the 

correlations are not significant this would suggest that more than one 

collagenase is differentially expressed. 

4.3.2 Additional Insights 

Other molecules identified in the screening step are also worthy of discussion 

because: (i) they may interact with molecules described above which is why they 

add nothing to the statistical model but may be interesting from a biological 

function/pathways perspective, (ii) they may not describe enough variation in 

the sample to be significant with this sample size but be more relevant in other 

samples/populations or have a strong influence in certain individuals, (iii) high 

rates of missing data can be misleading, resulting in reduced power especially 

when modelling alongside other more complete variables, (iv) relationships 

between variables within the study may generally add to knowledge from the 

literature (v) they may be highly correlated with a well-described clinical 

variable, so while they may not describe differences in proneness to LVH in 

isolation they could add to the understanding of a clinical variables relationship 

with LVMI. 

miR-18a-5p is negatively associated with age-related heart failure in mice and 

has been shown to repress anti-angiogenic factors connective tissue growth 

factor (CTGF) and thrombospondin-1 (TSP-1) (288). We found the other (3p) arm 

to be positively associated, indicating that ‘arm switching’ is responsible for the 
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decrease in miR-18a-5p rather than differential expression of the precursor 

(289;290). The other miRNA hsa-miR-92b-3p is positively associated with heart 

failure in human (291). 

Of the myocardial remodelling markers procollagen type I (PICP) – a precursor to 

mature collagen and therefore indicative of collagen synthesis – was the only 

significant molecule. PICP:CITP ratio has been previously suggested as an index 

of the coupling between collagen synthesis and collagen degradation (i.e. with 

maximum coupling at approximately 1 and net synthesis and degradation above 

and below this respectively) (292) and been shown to correlate to changes in left 

ventricular stiffness upon treatment with angiotensin II receptor blockers (293). 

LVH regression induced by blockers of the renin-angiotensin system has been 

found to be associated with a significant decrease in echocardiographic indexes 

of myocardiac fibrosis (294;295). PICP:CITP was calculated and found to be more 

significant and with a higher coefficient (both positive) and adjusted R2 than 

PICP alone, showing collagen turnover to be a more important indicator of LVMI 

than collagen synthesis. Interestingly while PICP is significantly positively 

correlated with angiotensin II – as previously shown (296) – the PICP:CITP ratio is 

more strongly correlated and unexpectedly in the opposite direction.  

Several studies have shown blood glucose to be associated with LVMI. However, 

in a well-powered study it was shown that significance does not persist when 

accounting for BMI (297), which is correlated with blood glucose levels. This 

indicates that blood glucose may not be important itself, but rather is acting as 

an indicator of BMI which is a known predictor. Our results support both the 

association between glucose and LVMI, and the result that shows it is not 

predictive independently of BMI. One significant metabolite was resolved to D-

glucose alone, however another two were compound measures of several 

metabolites – the signal representing several molecules combined with 

energetically similar hydrogens – but included D-glucose and cluster and 

correlate highly with the glucose signal, so the most parsimonious explanation is 

that the association found with all three measures can be attributed to D-

glucose. Similarly another serum metabolite association is unresolved, with a 

value representing levels of isoleucine, L-proline and unsaturated fatty acids. 

Using clustering we can see that the variations in this molecule closely resemble 
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that of a (non-significant) measure of lipids which suggests that the association 

detected is with the unsaturated fatty acids (rather than isoleucine or L-

proline), as we might expect from the literature (298). 

Trimethylamine (TMA) is produced by gut bacteria from dietary choline, 

phosphatidylcholine, and carnitine. In the liver it is oxidised by FMO3 into 

trimethylamine-n-oxide (TMAO) which promotes development of atherosclerosis 

(299) and is associated with heart failure (300) and poorer prognosis in chronic 

heart failure patients (300;301).  We detected a negative LVMI association with 

molecules with TMA, perhaps due to increased FMO3 activity converting TMA to 

TMAO. FMO3 varies greatly between individuals (302) and FMO3 knock-out in 

insulin-resistant mice prevents atherosclerosis (303). TMA clusters with lipids 

and unsaturated fatty acids. This may be due to the effect of FMO3 on lipid 

metabolism or microbiota composition altering in response to dietary changes 

(304) and affecting TMA production and metabolism (305;306). The unsaturated 

fatty acids, lipids and TMA cluster (Fig 4-4) is in anticorrelation with the glucose 

cluster. This relationship may be due to control by insulin which suppresses 

FMO3. 

Some peptides which were found to be associated with LVMI could not be 

identified and so they can only be reported rather than interpreted. An 

unidentified urinary metabolite, ‘Unknown8’, is negatively associated with LVMI 

and clusters most closely with heart rate and has significant negative 

correlations with several variables. Six of the 18 unidentified peptides tested 

were shown to be significantly related to LVMI, in particular the one with an m/z 

value of 266.16, which is robust to the addition of the clinical variables; in 

addition to it being independently predictive of the selected clinical variables it 

also has one of the greatest coefficients. The identity of this molecule is 

currently unknown. This molecule is not found in our final models however this 

may be due to the high frequency of missing data associated with these 

unidentified peptides relative to the rest of the data. Another unidentified 

peptide which stands out is ‘831.18m/z’ which has an adjusted R2 approximately 

equal to that of the clinical model and the molecular model. 
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4.3.3 Comparison of Approaches and Limitations of 

Study 

The results from the second approach are similar to the first however less 

comprehensive and with some additional urinary peptides. In general it seems 

they can largely be described as related to blood pressure, BMI, heart rate, and 

the unidentified plasma peptides (PC44, PC204, PC209, PC218 respectively). As 

we can see there is a tendency towards weak contributions (slightly above the 

set rho>0.1 inclusion threshold) from the largest constituent dataset. 

Missing data is problematic for performing certain statistical tests (including 

linear regression and PCA), particularly if it is found dispersed rather than in 

certain samples or variables that should obviously be removed. In linear 

regression individual missing data points may be excluded or imputed – the 

former results in differently-powered tests for different variables and the latter 

introduces a small violation of the linear regression assumption of independent 

observations and potentially introduces erroneous data. For the screening step 

of Approach 1 the primary aim was not to compare results so removal was 

preferable. For the modelling step both methods of dealing with missing data 

were employed, and while there were some differences in results the final 

models were very similar. For Approach 2 data had to be imputed for PCA 

analysis, however the multivariate nature of this method (the resulting principal 

components are composed of data from several variables) means that erroneous 

imputation should have less impact on results. 

Some molecules found to be associated with LVM were not identified however all 

of those which were in the final linear models were identified except the 

‘533.10m/z’ peptide. While it was not the aim of this paper to make these 

identifications the identities of those molecules corresponding to two clusters of 

metabolites could be speculated and supported with statistics from the 

clustering and correlation analysis of Approach 1. Perhaps with the introduction 

of another data set with a wider genomic scope such as gene expression 

microarray or RNA-seq similar speculations about unknown peptides could be 

made and tested. While no replication or validation is available for these results, 
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the potential role in the pathophysiology is discussed and it is supported by the 

published literature. 

4.3.4 Conclusions 

Our modelling shows that the combination of clinical and molecular data can 

explain several times the variance of most individual biomarkers, and 

approximately an additional 10% of total variance than that of either set (clinical 

or molecular). While several molecular markers are included in the combined 

models, a similar amount of variance can be significantly explained by clinical 

measures combined with just urinary phenylacetylglycine, which stands out as 

the most useful identified biomarker of the dataset and was also shown to be 

significantly associated with the clinical categorisation of normal and increased 

LVM. Phenylacetylglycine is associated with phospholipidosis which is a disorder 

that can be induced in the kidneys by various drugs. Multiple terms relevant to 

left ventricular mass were highlighted by these results, including diet, blood 

pressure, diabetes, atherosclerosis, anaemia, cardiac remodelling and heart 

failure. 

Interestingly some well-established associations with markers of LVH and related 

cardiovascular disease, such as angiotensin II, only become apparent in the 

presence of the confounders or the full clinical model. This demonstrates the 

utility of analysing putative predictors of different types in combination when 

analysing complex diseases/processes. While we cannot draw firm conclusions 

our study provides interesting insights into the molecular genesis of LVM.  

Without intending to over-interpret the data we were still pleased to find that 

many of the signals that derived from this approach are in keeping with and in 

part extending current biological knowledge. 

While the PCA-varimax solution is substantially less time-intensive and is 

appealing in its inherent description of relationships between input variables and 

original components, it is far less comprehensive than the screening-modelling 

approach, and in a sense it is biased towards the largest datasets. The 

screening-modelling approach was found to be superior, identifying markers 

belonging to a range of molecule classes and relating to a wide range of 
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biological processes known to be involved in LVM or heart failure, and providing 

more statistical output to analyse. It also performed better in terms the amount 

of variance described in the combined (clinical and molecular) multiple 

regression models produced. PCA-varimax may however be more effective in an 

animal model where there is less noise due to heterogeneity.  
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5. Analysis of Multi-Omics Data in Conjunction 

with a Large Clinical Respiratory Dataset 

5.1 Introduction 

Asthma is a chronic respiratory disease which causes bouts of coughing, 

shortness of breath, difficulty breathing, chest tightness and wheezing. 

Symptoms are triggered by various environmental stimuli and can resolve 

spontaneously or with treatment. Severe asthmatics have frequent 

exacerbations and are more likely to have irreversible airflow obstruction 

associated with airway remodelling despite high doses of corticosteroids. They 

account for only 5-10% of asthmatics however require substantially greater 

healthcare resource use (307;308). Severe asthmatic patients’ symptoms are 

exacerbated by different triggers and they express different profiles of 

biomarkers, both suggesting multiple subtypes of disease or complex 

heterogeneity. 

Many current categorisations of severe asthma relate to a phenotype such as a 

trigger or an enriched cell type (e.g. eosinophilic). Another important phenotype 

to consider regarding the treatment of asthma is smoking, which increases 

asthma severity and reduces steroid efficacy – and the same is true for COPD. 

Developing better understanding of the molecular processes underpinning these 

difficult-to-treat cases could lead to improved testing and treatment. 

Several recent attempts to develop asthma drugs beyond beta agonists and 

corticosteroids have failed to deliver consistent effective results through clinical 

trials (309;310). However more recently a move towards personalised medicine 

has shown several promising results. Monoclonal antibodies (mAb) have been 

developed against specific targets and more are in development (311). These 

can be applied in a phenotype-specific manner (e.g. based on cell counts) or 

based on biomarker measurements. Type 2 inflammation is characterised in part 

by high levels of IL-5, which is heavily involved in the proliferation of 

eosinophils. mAbs for IL-5, Mepolizumab and Reslizumab, are given as 

supplementary treatments to patients with severe eosinophilic asthma, and they 
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have been demonstrated to improve lung function and quality-of-life (312;313). 

In allergic asthma IgE is central to allergic response – when allergens bind IgE it 

triggers the release of histamine and other inflammatory mediators. The mAb 

Omalizumab can be used for severe asthmatics with high IgE and a positive skin 

prick test and reduces symptoms and inhaled steroid use (314). 

Asthma and COPD are both common obstructive pulmonary diseases and share 

many of the same features, such as inflammation and airflow limitation (315). 

COPD is usually the result of sustained exposure to cigarette smoke or 

environmental pollution and it causes over 3 million deaths per year. It typically 

presents with many of the same symptoms as asthma – such as wheezing, 

breathlessness and coughing – however they are less reversible. In addition to 

reversibility COPD patients have other differences to asthma patients, including 

age-of-onset, counts of different cell types, and abundances of various 

mediators of inflammation. Generally sputum neutrophilia is detected in COPD 

and sputum eosinophilia is detected in asthma, however severe asthmatics 

exhibit more COPD-like inflammation - they are more neutrophilic and share 

some mediators of inflammation with COPD such as IL-8 and TNF-α (316). 

The diagnosis of both asthma and COPD is often described as a distinct 

syndrome: Asthma-COPD Overlap Syndrome (ACOS). Due to similarities in the 

two diseases this syndrome may be difficult to diagnose if it is brought into 

practice (317). ACOS patients suffer more frequent and severe symptoms 

(318;319), experience a lower health-related quality of life (320), are 

hospitalised more frequently, and present a greater healthcare burden (321). 

The description of these diseases co-occurring as a separate syndrome unto itself 

has drawn some criticism but the similarities and differences between the 

diseases are of great interest regardless of categorisation (322). 

Gene expression microarrays have been used to study asthma and COPD in 

different states and in a range of sample types including induced sputum and 

various types of airway samples (323;324). This kind of work has allowed the 

identification of biomarkers and the beginnings of a better molecular 

understanding of disease, e.g. expression profiles which can predict steroid 

response and discriminate between subtypes of asthma (325-327). In a multi-
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tissue gene expression microarray study by Singhania et al (328), 19 healthy 

controls were compared to 46 asthmatic patients of varied severity, across 

epithelial brushings and flow-sorted CD3+ T cells from sputum and BAL. Amongst 

severe asthmatics there was a neutrophilic phenotype and upregulation of genes 

relating to neutrophilia, mucin, and oxidative stress response. The majority of 

the disease signature was present in the 267 genes significantly dysregulated in 

the T cells of the severe asthmatics. The IL-13-inducible chemokines 

(POSTN, SERPINB2, and CLCA1) were found to be upregulated in the epithelium 

of mild and moderate asthmatics, but not severe asthmatics. Alternatively IL-17-

inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) were only found 

significantly upregulated in the sputum of severe asthmatics.  

miRNA microarray studies and candidate gene studies have identified miRNAs 

which are dysregulated in asthma and COPD in various sample types, including 

several which are dysregulated in both conditions (329). In induced sputum miR-

145-5p and miR-338-3p are both expressed with a higher abundance in both 

asthmatic patients and those with COPD (330). In an animal model of asthma, 

antagonism of miR-145-5p results in inhibited eosinophilic inflammation, mucus 

hypersecretion, Th2 cytokine production, and airway hyperresponsiveness (AHR) 

– with effects comparable to steroid treatment (331). Interestingly miR-145-5p, 

and several other asthma associated miRs also have anti-inflammatory potential, 

depending on the biological context (332). 

There are relatively few proteomics and metabolomics studies compared to 

genomics and transcriptomics ones (333). Proteomics studies in asthma, COPD 

and smoking have identified several dysregulated molecules in common across 

phenotypes and studies (334). Gharib et al performed LC-MS/MS on five healthy 

subjects and ten asthmatic subjects and analysis identified ten proteins which 

were upregulated and seven proteins which were downregulated (335). 

Upregulation of serpin peptidase inhibitor (SERPINA1) and downregulation of 

SMR3B and SCGB1A1 were confirmed by western blot. Gharib et al suggest that 

SERPINA1 causes inflammation and airway remodelling by degradation of elastin 

in the extra-cellular matrix. SCGB1A1 inhibits phospholipase A2 which is involved 

in inflammation in asthma and a polymorphism in this gene has been shown to 

confer a risk for asthma susceptibility (336). In this same study exercise was 



  134 

 

shown to induce increased levels of hemopoxin (HPX) and activated complement 

component 3 (C3a), where only C3a (which is involved in allergen response) was 

validated. Another proteomics study was performed by Lee et al to determine 

dysregulated proteins involved in severe neutrophilic asthma and identified 

S100A9 as a putative marker (337). Interestingly C3 (which hydrolyses to form 

C3a and C3b) was found downregulated in this context, but it is not clear 

whether this is due to increased C3 hydrolysis or decreased C3 production. 

Several metabolomics studies in asthma and COPD have shown dysregulation 

within lipid metabolism, fatty acid metabolism, and mitochondrial beta-

oxidation (338). COPD metabolomics studies have also shown dysregulation in 

the glycolysis and TCA cycle. Studies have taken place using several relevant or 

readily available tissues and a large number of putative biomarkers identified 

(339), however there are no studies published to date on the metabolome of 

induced sputum in asthma or COPD. 

In this study microarrays for gene expression and miRNA expression were used to 

analyse the similarities and differences between severe asthma and COPD, and 

the effect of smoking on airway disease. While not featuring ACOS patients this 

data will highlight the molecular similarities that exist between the constituent 

diseases. The samples used were from 100 people (Table 5-1) representing all six 

combinations of respiratory health status (severe asthma/COPD/healthy) and 

smoking status (smoker/non-smoker). These patients are a subset of the CAB 

cohort which features a large volume of corresponding clinical data. 

Metabolomics and proteomics techniques were also used for healthy patients and 

asthmatic patients to look more closely at severe asthma and smoking in a wider 

molecular context. Not all of the patients with microarray data available were 

also used for proteomics and/or metabolomics, however a core set of 34 healthy 

and asthmatic patients have all four of these omics datasets available (Table 

5.2). Some groups in this table have particularly small numbers, especially for 

omics-level analysis, however many published omics studies are similarly 

underpowered but still valuable (proteomics study above by Gharib et al used 

only five healthy controls), and combining groups for analysis provides a more 

reasonable sample size – e.g. asthmatics of both smoking status (n=25) compared 

with non-asthmatics of both smoking status (n=9). 
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Group (n) M:F GOLD (II:III) Age BMI ICS Steroid Dose 

S_COPD (15) 8:7 10:5 63 24.8 9 1800 

NS_Healthy (18) 5:13 - 50 26.2 0 - 

S_Asthmatic (17) 8:9 - 51 26 17 1557 

S_Healthy (16) 7:9 - 54 26.2 0 - 

NS_Asthmatic (17) 11;6 - 49 32.5 17 1892 

NS_COPD (17) 8:9 8:9 68 25.7 17 1410 

Table 5-1: The 100 Patients of the CAB Dataset with Omics Data Available 
Microarray data (mRNA, miRNA) corresponding to these patients exists for both induced sputum 
and nasal epithelium samples whereas mass spectrometry data (proteomics, metabolomics) is only 
available for asthmatics and healthy participants. M: male, F: female, S: smoker, NS: non-smoker, 
GOLD: Global Initiative for Chronic Obstructive Lung Disease, GOLD II: moderate COPD, GOLD 
III: severe COPD, BMI: body mass index, ICS: inhaled corticosteroid (number of patients 
prescribed this class of drug). 

Group (n) M:F Age BMI ICS Steroid Dose 

NS_Healthy (4) 2:2 46 25.3 - - 

S_Asthmatic (11) 5:6 51 26.3 11 1420 

S_Healthy (5) 2:3 59 25.4 0 - 

NS_Asthmatic (14) 8:6 48 32.7 14 1982 

Table 5-2: The 34 Patients of the CAB Dataset with Four Types of Omics Data Available 
Metabolomics, Proteomics, and Transcriptomics – mRNA and miRNA – data sets are all available 
for induced sputum samples in the same set of patients. M: male, F: female, S: smoker, NS: non-
smoker, BMI: body mass index, ICS: inhaled corticosteroid (number of patients prescribed this 
class of drug). 

In both asthma and COPD the cells of the bronchial epithelium and the 

proximate leukocytes react to those external stimuli which may cause or 

exacerbate symptoms or features of disease. Nasal epithelium was used as a 

surrogate for bronchial epithelium, as has been done previously for studies of 

asthma and bronchial inflammation (340;341), because the samples are easier to 

obtain than bronchial samples - both procedurally and in terms of gaining 

consent. It forms a continuous tract with the bronchial epithelium, shares 

several mediators of inflammation with a strong correlation (342), and exhibits a 

similar response to viral infection (343). They also share similar gene expression 

changes in response to smoking (344). Genome-wide DNA methylation 

experiments show that nasal epithelium has a more similar epigenetic profile 

than other putative surrogates for bronchial epithelium such as blood or buccal 

cells (345). While many features of the nasal epithelium are similar there are 

some important differences such as lower proliferation rates, lower percentages 

of goblet cells and ciliated cells, and altered responses to IFN and IL-13 

(346;347). In addition there is evidence suggesting that nasal epithelium is 
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unsuitable for use as a surrogate for bronchial epithelium in patients with COPD 

(348). 

Induced sputum was used to study leukocytes, and counts were made for 

neutrophils, eosinophils, macrophages and lymphocytes to calculate 

differentials. These cell counts can be used as features/classifiers of disease 

(e.g. neutrophilic asthma) and taken into account when making clinical decisions 

(349), although cut-offs are quite varied - sputum eosinophilia has been defined 

as 1-3% of sample content and neutrophilia as 40-80% depending on the study 

(350-352). Using 3% and 60% for cut-offs of eosinophilia and neutrophilia 

respectively, non-smoking asthmatics had the highest proportion of eosinophilic 

patients (10/17), and non-smoking COPD patients had the most neutrophilic 

patients (10/17) (Table 5-3). 

Target (Total) Eos >3% Neut >60% 

S_COPD (15) 5 6 

NS_Healthy (18) 1 6 

S_Asthmatic (17) 7 7 

S_Healthy (16) 1 7 

NS_Asthmatic (17) 10 4 

NS_COPD (17) 6 10 

Table 5-3: Cell Type Percentages in Induced Sputum of the 100 Omics CAB Patients – 
Eosinophilia and Neutrophilia 
Metabolomics, Proteomics, and Transcriptomics – mRNA and miRNA – data sets are all available 
for induced sputum samples in the same set of patients. S: smoker, NS: non-smoker, Eos: 
eosinophil count expressed as a percentage of total cells counted, Neut: neutrophil count 
expressed as a percentage of total cells counted. 

Not only is macrophage count important but also ‘polarisation’, in which 

macrophages adopt different patterns of expression and different dominant 

functions, e.g. the pro-inflammatory M1 macrophages are involved in 

microbicidal activity, whereas the anti-inflammatory M2 macrophages are 

involved in wound healing (353). M2 macrophages are further divided into four 

subtypes with different gene expression profiles and functions (354). In asthma 

T-lymphocytes release Th2 cytokines such as IL-13, inducing airway 

hyperresponsiveness (355). T-lymphocytes express different cell surface markers 

in the context of smoking and in the context of COPD (356).  
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When viewed over long time-scales, age relates to many biological and clinical 

variables in a non-linear way, often tracking with disease events or physiological 

changes such as childhood development and functional decline. Age and 

bodyweight affect lung function even in healthy lungs. Asthma is more severe in 

older adults and age itself seems to contribute more towards risk of severe 

asthma than does the duration since diagnosis (357). Age has also been 

implicated in a steroid-resistant inflammatory effect, which could easily be 

mistaken for an asthma effect or a COPD effect (358). 

Obesity reduces apoptotic cell clearance in airways (359), causes systemic 

inflammation and results in reduced lung function by several metrics including a 

reduced FEV1 and FVC. Even patients being overweight rather than obese was 

enough to detect a significant difference in lung function in several studies 

(360). Obesity in the context of an asthmatic patient makes their asthma more 

severe and resistant to treatment (361). On the other hand obesity in the 

context of COPD appears to have both deleterious and protective effects 

(362;363). 

As age and obesity were not well controlled between groups they were modelled 

as confounders where possible to reduce their effect on the main statistical 

contrasts of interest. Despite these limitations it is a valuable multi-omic, multi-

tissue, and multi-disease dataset which allows a lot of different biological 

questions to be asked. 
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5.2 Results 

5.2.1 Induced Sputum 

After pre-processing and screening the mRNA microarray data, 9957 genes 

remained for significance testing. The model including BMI had the lowest 

median p value, highest adjusted R2, lowest median AIC, and almost as many 

genes were best-modelled with BMI as without. Since BMI is distinctly different 

between groups, and modelling statistics demonstrate the impact on the data 

across a large number of genes (Table 5-4) it was included in the model. This 

model was used with the R package LIMMA to determine which genes were 

differentially expressed in relation to asthma (364;365). 

Model Median p Median Adj-R2 Median AIC # Genes Lowest AIC 

~group 6.78 X 10-2 6.05 X 10-2 -162.73 4127 

~group + bmi 5.62 X 10-2 7.19 X 10-2 -162.76 3505 

~group + age 6.87 X 10-2 6.58 X 10-2 -162.08 2325 

Table 5-4: Comparison of Statistical Models in Relation to mRNA Data 
This shows that the resulting statistics from modelling with BMI included are on average more 
significant and explain more of the data as highlighted above. They also provide on average the 
best fit across all genes tested and a large proportion of genes are better-modelled with BMI 
included. Adj-R

2
: adjusted R

2
, AIC: Akaike Information Criterion 

Filtering by variance (nsFilter) reduces the non-coding RNA (ncRNA; mostly 

mature miRNAs, miRs) list to 935. The same modelling procedure was followed 

as for the mRNA microarrays, showing that the model with age had the lowest 

median p value and highest median adjusted R2, whereas the model with BMI has 

a lower median AIC (Table 5-5). Since there is the same number of samples but 

less than ten percent of the tests (to multi-test adjust for) including both is not 

statistically prohibitive. 

Model Median p Median Adj-R2 Median AIC 
# Genes 
Lowest AIC 

~group 1.00 X 10-1 4.90 X 10-2 -191.154 487 

~group + bmi 1.07 X 10-1 5.17 X 10-2 -190.235 170 

~group + age 8.25 X 10-2 6.01 X 10-2 -189.74 278 

Table 5-5: Comparison of statistical models in relation to miRNA data. 
While the best fit is seen with the simplest model a large number of the genes are better described 
by the inclusion of age or BMI. However, the inclusion of these terms while looking at miRNA data 
is less statistically costly given the number of variables being analysed. Adj-R

2
: adjusted R

2
, AIC: 

Akaike Information Criterion. Adj-R
2
: adjusted R

2
, AIC: Akaike Information Criterion. 
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Despite ‘spending statistical power’ by adjusting for age and BMI, there is still a 

large number of significant molecules (especially large number of miRNAs) the 

interaction network for the second becomes too complex: 

 
mRNA  ncRNA  Peptides  Metabolites  

Asthma 49 42 158 0 

Asthma in Non-Smokers 78 163 69 0 

Asthma in Smokers 0 5 48 0 

Smoking 1578 17 1 5 

Table 5-6: Counts of Statistically Significant Variables Across Four Different Sets of ‘Omics’ 
Data. 
For the purposes of interaction networks the number of hits highlighted likely covers too many 
molecules to provide useful results. 

So for these purposes we restricted this list to those with two-fold change (as 

well as being multi-test adjusted p < 0.05): 

 
mRNA ncRNA Peptides Metabolites 

Asthma 12 4 105 0 

Asthma in Non-Smokers 36 36 69 0 

Asthma in Smokers 0 0 48 0 

Smoking 80 2 1 5 

Table 5-7: Counts of Statistically Significant Variables Across Four Different Sets of ‘Omics’ 
Data After Restriction by Two-Fold Change in Abundance. 
Restriction by both fold change and multi-test adjusted p value which provides numbers of 
molecules which should be useful for generating meaningful interaction networks 

 

5.2.1.1 Asthma 

49 mRNA probe sets were found to be significantly associated with asthma.12 of 

these had at least a two-fold change, and they were all upregulated in asthma 

(F13A1, CCL17, ALOX15, MMP10, CPA3, CCL26, CST1, CD1A, CD1B, BPIFB1, 

IL18R1, TSPAN8; Table 5-8). 46 of the 49 significant genes were correlated with 

eosinophils (mean rho = 0.49), 4 with neutrophils (mean rho = 0.38), 1 with 

macrophages (rho = 0.53), 5 with lymphocytes (mean rho = 0.29) and 10 with 

epithelial cells (mean rho = 0.38). 
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ENSG Log2(FC) Ave Exp p pBH Gene Symbol 

ENSG00000124491 1.29 8.78 1.32 X 10-8 1.32 X 10-4 F13A1 

ENSG00000102970 1.17 6.98 9.55 X 10-8 4.75 X 10-4 CCL17 

ENSG00000166670 1.43 7.91 4.39 X 10-6 5.20 X 10-3 MMP10 

ENSG00000161905 1.60 6.82 5.35 X 10-6 5.20 X 10-3 ALOX15 

ENSG00000163751 1.41 6.75 1.12 X 10-5 6.81 X 10-3 CPA3 

ENSG00000006606 1.23 6.20 1.4 X 10-5 7.72 X 10-3 CCL26 

ENSG00000170373 1.38 5.72 2.27 X 10-5 1.13 X 10-2 CST1 

ENSG00000158477 1.21 8.20 2.75 X 10-5 1.19 X 10-2 CD1A 

ENSG00000158485 1.09 7.66 4.18 X 10-5 1.49 X 10-2 CD1B 

ENSG00000125999 1.46 9.48 1.05 X 10-4 2.83 X 10-2 BPIFB1 

ENSG00000115604 1.15 8.66 1.75 X 10-4 4.16 X 10-2 IL18R1 

ENSG00000127324 1.31 6.26 1.82 X 10-4 4.18 X 10-2 TSPAN8 

Table 5-8: Significant mRNAs in Asthmatics with a >2-fold Change. 
These results are generated by asthmatics and non-asthmatics, regardless of smoking status, but 
with the effects of smoking statistically accounted for. 

Term enrichment analysis identified two clusters (lipid antigen binding, and 

leukotriene metabolic process) and an individual term (positive regulation of 

production of molecular mediator of immune response) which were enriched. 

These all corresponded to genes upregulated in asthma and correlated with 

eosinophils (Fig 5-1). 80% of all genes in the genome associated with ‘lipid 

antigen binding’ were enriched. 

158 peptides were found to be statistically significantly dysregulated in asthma, 

and restricted to those with a two-fold change 68 were downregulated and 37 

upregulated. Correlations between two-fold altered peptides and cell types 

showed: 17 with eosinophils (mean rho = 0.37), 3 with macrophages (mean rho = 

0.36), and 5 with epithelials (mean rho = 0.40). Proteins corresponding to this 

list of two-fold dysregulated peptides were split into ‘upregulation’ and 

‘downregulation’ groups for term enrichment. 21 terms were significantly 

associated with downregulated genes including regulation of actin cytoskeleton, 

defence response to fungus, glucose metabolism, and negative regulation of 

apoptosis. Terms for staphylococcus aureus infection and complement and 

coagulation cascades were upregulated. 
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Just two of the significant proteins were also found to be significant at the 

transcript level (CST1, BPIFB1) and both were consistent in direction of fold 

change between the protein level and the transcript level. 

38 mature miRNA sequences (miRs) and small nucleolar RNAs (snoRNAs) were 

found negatively associated with asthma - of which four had two-fold changes 

(hsa-miR-146a-5p, hsa-let-7f-5p, hsa-let-7g-5p, hsa-miR-146b-5p). Two 

correlated with eosinophils (mean rho = 0.28), two with neutrophils (mean rho = 

0.43) and 21 with macrophages (mean rho = 0.42), and 1 with epithelials (mean 

rho = 0.26). 4 miRs were found positively associated with asthma with a two-fold 

change, two of which were correlated with macrophages. The miRNA with the 

largest fold change and the lowest p value by over a degree of magnitude is hsa-

miR-146a-5p (Log2(FC) = -1.35, pBH = 1.03 X 10-4), which has previously been 

discussed as a putative M1 macrophage marker. It is similarly downregulated in 

all six subgroups (combinations of disease state and smoking status) except the 

healthy non-smoker (Fig 5-2). 

Two other putative M1 macrophage markers followed the same trend, one of 

which was also statistically significant (miR-155-5p: Log2(FC) = -0.76, pBH = 0.02; 

miR-187-3p: Log2(FC) = -0.72, pBH: 0.09), whereas statistics for two M2 

macrophage markers showed little difference (miR-511-5p: Log2(FC) = -0.07, pBH 

= 0.68; miR-193b-3p: Log2(FC) = -0.13, pBH: 0.75). 

None of the 1019 identified metabolites were significant after multi-test 

correction, however 23 were downregulated two-fold and 67 were upregulated 

two-fold. The most significant changes in identified metabolite levels were a 

>13-fold increase in toluene-4-sulfonate (p: 2.77 X 10-3) and a >7-fold increase in 

quinate (p: 7.12 X 10-3). Three unidentified metabolites were significant after 

multi-test correction (76.02Da, 85.02Da, 85.02Da).



 

 

 

 

Fig. 5-1: Term Enrichment Analysis of Asthma using mRNA Microarray Data. 
Two clusters of terms (dark green, light green) and one single individual term (grey) were identified as being enriched in asthma. Colours indicate clustering of terms by 
ClueGO and genes contributing to enrichment are shown. All genes shown are upregulated in asthma and correlated with eosinophil



 

 

 

Fig. 5-2: miR-146a is Downregulated in Sputum of Smokers and Patients with Asthma or 
COPD 
miR-146a is downregulated with asthma, COPD, and with smoking status in induced sputum. 
Legend shows colours for each group, with group code in brackets (S: smoker, NS: non-smoker). 
Light green: healthy smoker, dark green: healthy non-smoker, blue: asthma non-smoker, dark blue: 
asthma smoker, red: COPD non-smoker, dark red: COPD smoker. 

Taking all statistically significant data points with at least a two-fold change and 

integrating them in a contextualised manner using interaction databases led to 

the construction of the interaction network shown in Figure 5-3. Relationships 

demonstrating upregulation or downregulation were removed where the fold 

changes were inconsistent with that action. In this network graph there are 3 

small clusters and one large cluster containing fibronectin (FN1), 24 molecules it 

interacts with, and other ‘connected’ molecules. 

Fibronectin is the node (molecule) with the highest degree, i.e. the molecule 

with the most interactions with other molecules. 16 of these 24 interacting 

molecules were downregulated. One of the eight upregulated interacting 

molecules is known to degrade it (matrix metalloproteinase 10; MMP10), possibly 

explaining its change in abundance. While sputum fibronectin has previously 

been found upregulated and eosinophil-correlated in asthmatic patients, here it 

is downregulated and macrophage-correlated. 

The node with the next-highest degree (eight interactions) is beta-actin (ACTB) 

which is usually considered to be a ubiquitous well-regulated component of the 
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cytoskeleton but can also be secreted into the extracellular space and can be 

dysregulated in lung conditions - and like fibronectin it is also downregulated 

here. 

The several of the next-most interconnected molecules of the network are 

connected with fibronectin, beta-actin, and with each other. Cofilin 1 (CFL1), 

ezrin (EZR), and plasminogen (PLG) all interact with fibronectin and beta-actin, 

and with two additional proteins each. Fibrinogen alpha chain (FGA) and 

pyruvate kinase M1/2 (PKM) interact with four molecules including fibronectin. 

Tubulin alpha 4A (TUBA4A) interacts with four molecules including PKM. 

Lactoferrin (LTF) also interacts with four other molecules, including the 

upregulated lysozyme (LYZ) which acts in concert with it for its antibacterial 

activity. In addition to a reduction in LTF – which has anti-bacterial and anti-

inflammatory properties – there is also a reduced amount of calmodulin to 

deactivate it. It also interacts with mucin 7 (MUC7) which itself interacts with 

four molecules in the network. 

Both miRs shown (miR-146a-5p and miR-146b-5p) can downregulate the same 

protein – a type II Golgi transmembrane protein also found in the extracellular 

space. The reduction in cathepsin G (CTSG) may explain the increase in 

complement 3 (C3). CTSG is also known to deactivate AGT however there is 

increased AGT and an increased amount of another molecule known to activate 

it – carboxypeptidase (CPA3). 

The same network was subsequently used to view correlations between 

molecules of interest and the cell types which may be responsible for producing 

them (Fig 5-4), indicating which cells of the mixed sample type are relevant in 

which processes and highlighting potential signalling between different cell 

types. The macrophage-associated reductions in fibronectin, miR-146a-5p, and 

miR-146b-5p, and lack of macrophage-associations in other molecules may 

suggest that these molecules are secreted by macrophages for interaction with 

molecules originating from other cell types - although 19 of the molecules which 

interact with fibronectin do not have predicted cell types by this method. The 

other five molecules connected to fibronectin are all eosinophil-correlated, two 
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of which are also lymphocyte-correlated (MMP10) and epithelial-correlated 

(KRT10). Secretion of fibronectin (which forms part of the extracellular matrix) 

and miRs (secreted in vesicles) are consistent with the literature. 

 

 

 



 

 

 

Fig. 5-3: Interaction Network Consisting of Molecules Significantly Differentially Regulated in Asthma. 
This interaction network graph shows three small networks and one large network with fibronectin, and to a lesser extent beta-actin, as highly-connected nodes, 
indicating a significant dysregulation of the extracellular matrix in asthmatic sputum. Red: upregulation in asthma, green: downregulation, cyan: different 
transcripts/proteins of the same gene are regulated in different direction. Solid lines with arrow/flat heads indicate up/downregulation. Dashed lines denote 
activation/inactivation. Rectangle: protein, octagon: mRNA, parallelogram: miR. 
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Fig. 5-4: Asthma Interaction Network Coloured by Cell Type Correlations. 
Most significant molecules were not correlated with any particular cell type. Fibronectin which is at the centre of the network is macrophage-correlated, and interacts 
with molecules without correlation or eosinophil-correlated. Coloured by correlation with cell type, red = eosinophil, purple = epithelial, blue = macrophage, cyan = 
lymphocyte. Solid lines with arrow/flat heads indicate up/downregulation. Dashed lines denote activation/inactivation. Rectangle: protein, octagon: mRNA, 
parallelogram: miR.



 

 

5.2.1.2 Asthma in Non-Smokers 

78 mRNA probe sets were found to be significantly associated with asthma – 8 

downregulated and 70 upregulated. 36 of these were differentially regulated at 

least two-fold. 70 genes were correlated with eosinophils (mean rho = 0.63), 3 

with neutrophils (mean rho = 0.46), 5 with macrophages (rho = 0.58), 6 with 

lymphocytes (mean rho = 0.41) and 17 with epithelials (mean rho = 0.47). 

ClueGO identifies four clusters of terms (unsaturated fatty acid biosynthetic 

process, coated vesicle membrane, chemokine receptor binding, and lipid 

antigen binding) and two individual terms (regulation of fibroblast growth factor 

receptor, and activation of matrix metalloproteinases) upregulated in asthmatic 

non-smokers in contrast to healthy non-smokers (Fig 5-5). All but three of the 

genes are eosinophil-correlated: CD207, HLA-DQB2 and SLC16A2 – which are all 

related to the ‘coated vesicle membrane’ term. 

69 peptides were found to be significantly associated with asthma in non-

smokers, all but one with two-fold difference in expression – 47 downregulated 

and 22 upregulated. 19 were correlated with eosinophils (mean rho = 0.51), 1 

with macrophages (rho = 0.68), and 1 with epithelials (rho = 0.56). Terms 

relating to salivary gland secretion, G13 signalling and glucose metabolism were 

mostly downregulated and complement and coagulation cascades were enriched 

(Fig. 5-6). Proteins were split by correlations with cell type for further analysis 

which revealed a cluster of macrophage-correlated terms (prostaglandin 

synthesis and regulation, phospholipase inhibitor activity, lipase inhibitor 

activity) amongst individual epithelial-correlated terms (myeloid cell 

development, amyloids, salivary secretion, cysteine-type endopeptidase 

inhibitor activity) and a cluster of 28 epithelial-correlated terms whose main 

term is RHO GTPases activate PKNs. MUC5AC was significantly associated both at 

the protein and mRNA level, both enriched in asthmatics. 

163 ncRNAs were dysregulated with asthma in non-smokers, all but 21 of which 

were downregulated. 36 of these downregulated ncRNAs were downregulated 

more than two-fold, all of which were miRs. These miRs were mostly 

macrophage-associated (18 probes, mean rho = 0.46) and some were neutrophil-

associated (2 probes, mean rho = 0.43). 
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None of the identified metabolites were significant after multi-test correction, 

however with at least a two-fold change: 25 were downregulated and 61 were 

upregulated. 

Figure 5-7 shows an interaction network comprising significant results for 

asthmatic non-smokers, with colours indicating the direction of regulation in 

asthmatics. The largest network consists of 59 peptides, mRNAs and miRs, and 

the remaining two networks are 3 and 2 molecules in size and consist only of 

peptide results. In the large network there are many instances of putative 

regulation by downregulated miRs, perhaps explaining the increased abundance 

of target genes at the mRNA or protein level. Most miRs appear to be expressed 

by macrophages and neutrophils and target exclusively eosinophil-correlated 

genes (Fig. 5-8). Four miRs are shown to target four different genes (151a-5p, 

34a-3p, 181c-5p, 148b-3p), and four genes are targeted by four different miRs 

(PRH, KIT, MAOA, CTTNBP2). 

In comparison with the previous network most notably fibronectin is missing, 

though several elements are found in common. Again PKM is a highly connected 

molecule (nine interactions), and seven of the eight peptides in the upper-left of 

the graph, centred around LTF are maintained from the previous network. With 

this contrast however three of these molecules have a different direction of fold 

change – LCN1 and LYZ are downregulated instead of upregulated, and there are 

peptides of LTF regulated in both directions.



 

 

 

 

Fig. 5-5 Term Enrichment Analysis of Asthma in Non-Smokers Using mRNA Microarray Data. 
Four clusters of terms (shown by light blue, green, dark green and dark blue left-to-right above) and two individual terms (grey) were identified as being enriched in 
asthma. Colours indicate clustering of terms by ClueGO and genes contributing to enrichment are shown. All genes shown are upregulated in asthma and correlated 
with eosinophils 2/3 of the genes described by the term “regulation of fibroblast growth factor receptor signalling pathway” are also correlated with epithelials. 
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Fig. 5-6: A Term Enrichment Analysis of Asthma in Non-Smokers Using Proteomics Data and Performed with ClueGO. 
Terms relating to salivary gland secretion, G13 signalling and glucose metabolism were mostly downregulated and complement and coagulation cascades were 
enriched. Colours indicate direction of fold change of respective genes, where green signifies downregulation, red signifies upregulation with grey in the centre of the 
scale. 
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Fig. 5-7: Interaction Network Consisting of Molecules Significantly Differentially Regulated in Asthma Amongst Non-Smokers. 
Red: upregulation in asthma, green: downregulation, cyan: different proteins of the same gene are regulated in different direction. Solid lines with arrow/flat heads 
indicate up/downregulation. Dashed lines denote activation/inactivation. Rectangle: protein, octagon: mRNA, parallelogram: miR. 
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Fig. 5-8: Interaction Network Consisting of Molecules Significantly Differentially Regulated in Asthma Amongst Non-Smokers Coloured by Cell Type 
Correlation. 
Significant mRNA and protein levels were mostly eosinophil and epithelial-correlated, while miRNAs were mostly neutrophil and macrophage-correlated. Coloured by 
correlation with cell type, red = eosinophil, purple = epithelial, blue = macrophage, cyan = lymphocyte. Solid lines with arrow/flat heads indicate up/downregulation. 
Dashed lines denote activation/inactivation. Rectangle: protein, octagon: mRNA, parallelogram: miR



 

 

5.2.1.3 Asthma in Smokers 

No mRNA probe sets were found significantly associated with asthma in smokers, 

even when BMI was removed from the model. 93 mRNAs had a raw p value < 

0.05, four of which had a two-fold change. This list was enriched for several 

gene ontologies (Fig. 5-9) related to genes which were all upregulated in 

asthmatics amongst smokers. 

 

Fig. 5-9: Term Enrichment Analysis of Asthma in Smokers Using mRNA Microarray Data and 
Performed with ClueGO. 
Three clusters of terms (shown by dark green, light blue, green) and three individual terms (grey) 
were identified as being enriched. This analysis was done on those genes with raw p values < 0.05 
so it is not as robust as the other analyses which use multi-test adjusted gene lists. 

50 peptides were found significant with asthma in smokers, all but two of which 

were differentially expressed two-fold – 35 downregulated and 15 upregulated. 

Term enrichment analysis showed similar patterns of term enrichment as in non-

smoking asthmatics (Fig. 5-10). The genes associated with ‘blood microparticle’ 

and ‘acute-phase response’ were all eosinophil-correlated except for SERPINA1 

which was lymophocyte-correlated and STOM and KV402_HUMAN which were not 

correlated to a cell type. 
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Fig. 5-10: Term Enrichment Analysis of Asthma in Smokers Using Proteomics Data. 
Retina homeostasis, calcium-dependent protein binding and glucose metabolism are all 
consistently associated with downregulated genes. 

3 miRs and 2 snoRNAs were found significantly upregulated with asthma in 

smokers. Three of these ncRNAs were eosinophil-associated (mean rho = 0.49), 

one was lymphocyte-associated (rho = 0.43). No metabolites were significant 

after multi-test correction although quinate had a large fold change and 

significant raw p value (>6-fold, p=0.017). 30 identified metabolites were 

decreased more than two-fold and 63 were increased more than two-fold. Two 

clusters are found in the interaction network which is smaller than the previous 

two and consists only of proteomics results (Fig. 5-11). Of the larger six-

molecule network four of these molecules were also found downregulated in the 

asthma contrast and three of those were also downregulated in the asthma in 

non-smokers contrast. Similarly the MUC7-centered network was previously 

found as part of the asthma contrast and two of those molecules were found in 

the asthma in non-smokers contrast. 

Fig. 5-11: Interaction network consisting of molecules significantly differentially regulated in 
asthma amongst smokers. 
Both networks shown in this graph were found to an extent in previous networks based on similar 
asthma contrasts. Red = upregulation in asthma, green = downregulation. 
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5.2.1.4 Smoking 

Of the 1578 genes that were found to be significantly associated with smoking 

only 80 had a greater than two-fold change. A term enrichment analysis of the 

full set of 1578 shows 217 significant terms clustered into 23 groups with 11 

remaining individual terms. Two of these 217 terms were represented by over 

50% of their associated genes (‘fat-soluble vitamin biosynthetic process’ and 

‘Transcriptional activation by NRF2’, downregulated and upregulated 

respectively). Term analysis split by cell type indicated increased macrophage 

cell division. 

Of the smaller more stringent set of 80: 45 were upregulated and 35 were 

downregulated. 6 were correlated with eosinophils (mean rho = 0.37), 5 with 

neutrophils (mean rho = 0.32), 15 with macrophages (mean rho = 0.38) and 15 

with epithelials (mean rho = 0.35). Term enrichment analysis of this fold-change-

restricted data shows upregulation of mast cell activation, oestrogen and 

glutathione metabolism, and the downregulation of chemokine receptor binding. 

One protein, NAD(P)H dehydrogenase [quinone] 1 (NQO1) was found highly 

upregulated (over 9-fold) in smokers. The same upregulation and correlation is 

detected at the transcript level also. In smokers 11 miRNAs were downregulated, 

three of which correlated with macrophages (mean rho = 0.38). 5 miRs were 

upregulated, three of which were correlated with neutrophils (mean rho = 0.29) 

and one RNA-binding E3 ubiquitin ligase was upregulated and correlated with 

epithelials (mean rho = 0.51).



 

 

5.2.1.5 COPD 

3078 mRNA signals were statistically significant, 67 of which had a two-fold 

change. Term enrichment using the full set of significant mRNAs shows 219 

significant terms clustering into 20 clusters with 10 individual terms remaining. 

There is upregulation in terms relating to cell activation, cytokine production, 

and signalling by NF-κB, interleukins, and CD209/DC-SIGN. Downregulation 

occurs with terms relating to lipid/lipoprotein metabolism, mitochondria and 

microtubules. The upregulated terms are predominantly neutrophil-correlated 

and the downregulated terms are predominantly macrophage-correlated. Two 

terms were represented by over 50% of their genes: ‘I-kappaB/NF-kappaB 

complex’ and 'CD209 (DC-SIGN) signalling', which are both upregulated. A cluster 

of mitosis terms and an NRF2 term are upregulated and a cell activation cluster 

was downregulated. A similar cluster of mitosis terms is macrophage-correlated.  

The 67 with at least two-fold change were also used for term enrichment 

analysis (Fig. 5-12). The matrix metalloproteinase cluster is consistently 

upregulated in COPD across all four associated genes, whereas the other two 

terms have genes both up- and down-regulated.  

 

Fig. 5-12: Term Enrichment Analysis of COPD Using mRNA Microarray Data. 
Complement and coagulation cascades, arachidonic acid metabolism, and activation of matrix 
metalloproteinases were the gene ontologies enriched with COPD mRNA results. Green = cluster 
of terms, grey = individual terms. 

The vast number of molecules was used to generate an interaction graph which 

showed no discernible features due to extremely high interconnectivity. A 

version truncated by a two-fold cut-off shows the relationships between some of 
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the most dysregulated genes (Fig 5-13). Four of these molecules are matrix 

metalloproteinases, which can activate each other. These are well-known to be 

dysregulated in COPD, probably participating in proteolytic attack on the 

alveolar wall matrix. MMP10 in particular was also significantly dysregulated in 

asthma. The other three molecules are chemokines (CCL7, CCL24) and a 

chemokine receptor (CCR3). One miR (hsa-miR-663a) was statistically significant 

after multi-test correction (pBH: 0.02, log2FC: -0.60). 

 

Fig. 5-13 GeneMania Analysis of COPD-Associated Genes 
Relationships between those significant genes with a two-fold difference between COPD patients 
and healthy participants were identified with GeneMania. Molecules include matrix 
metalloproteinases, chemokines and a chemokine receptor. 

 

5.2.1.6 Comparing Contrasts 

More significant mRNA results were found with the smaller non-smoking 

comparison than the comparison also including smokers (78 in non-smokers, 49 in 

all asthmatics, Fig. 7-1). 19 of the 1568 smoking-associated genes overlap with 

asthma contrasts. Of the 80 smoking-associated genes with >2-fold change, four 

genes overlap with one of the asthma contrasts (FCER1A, CD1A, CD1B, HLA-

DQB2). 55 of the 3078 COPD-associated genes overlap with asthma contrasts. Of 

the 67 COPD-associated genes with >2-fold change, three genes overlap with one 

of the asthma contrasts (F13A1, MMP10, IL18R1). 12 peptides were significant in 

asthmatic smokers but not in asthmatic non-smokers, versus 33 in non-smokers 

but not in smokers (Fig. 7-2). 
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One miR, hsa-miR-335-5p, was found to be significant for asthma amongst both 

non-smokers (Log2FC: -0.54, pBH: 0.01) and smokers (Log2FC: 0.74, pBH: 7.86 X 10-

3), and interestingly the change is in a different direction depending on smoking 

status (Fig 7-3). 3/17 smoking miRNAs were also significant in asthma contrasts 

(hsa-miR-146a-5p, hsa-miR-708-5p, hsa-miR-187-3p). 

The induced sputum asthma and COPD hits were used for clustering analysis and 

heatmap generation (Fig 5-14), and displayed numerous small clades of 

consistent phenotypes and combinations of phenotypes (i.e. disease state and 

smoking status), which may indicate distinct subtypes of disease. Interestingly 

there is a group of four healthy non-smokers distinct from the other healthy 

subjects, who perhaps have a shared phenotype with a similar expression 

pattern to those with lung disease. The few asthmatic patients with similar 

expression patterns to healthy subjects may achieve a severe phenotype through 

a smaller set of influential molecular predictors, or by signals which have gone 

unmeasured. Generally the small clusters of patients with the same phenotype 

being distant from each other indicates a complex molecular signature or 

relatively distinct subtypes of disease – however it must be assumed that 

important information is missing, including metabolomics data which was not 

suitably statistically powered, peptides missed by the particular technique used, 

and splice variant level data. 
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Fig. 5-14 Clustering and Heatmap of Induced Sputum Asthma and COPD Hits 
Hits were used for clustering analysis and heatmap generation, which displayed numerous small 
clades of consistent phenotypes and combinations of phenotypes (i.e. disease state and smoking 
status). Clustering of patient groups indicates a complex molecular signature or relatively distinct 
subtypes of disease. 
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5.2.1.7 Merged Interaction Network 

The interaction network for asthma in smokers is much smaller than the other 

two asthma contrasts, but this may be misleading. Molecules in this contrast may 

have only fallen slightly short of the specified thresholds, so to check the extent 

of the differences identified between the three asthma contrasts (i.e. ‘Asthma’, 

‘Asthma in Non-Smokers’, ‘Asthma in Smokers’), and to summarise the pertinent 

relationships  the respective interaction networks were merged into one large 

network. All significant molecules across any of these contrasts were included 

and the data describing relationships between these molecules were gathered 

from the same sources as in the previous interaction networks. 

A large number of molecules were shown to interact with fibronectin (FN1), so 

to reduce the complexity of the diagram those interactions were summarised by 

making the FN1 node a ‘container’ for those nodes with which it interacts. This 

step reduces complexity of the image by removing 26 edges from the network 

without any loss of information content. Fold change values for asthma, asthma 

in non-smokers, and asthma in smokers, were mapped onto this network (Fig 7-4 

to 7-6). 

While ‘directionless’ interactions  between molecules of increased and 

decreased abundance can be informative (showing what interactions may not 

occur when one of the molecules is missing, and also which molecules are 

therefore more available for interactions with other molecules) these were also 

removed to form a more concise network, with fewer edges crossing over each 

other (Fig 5-15 to 5-17). 

19 of the 30 instances of miRNA targeting mRNA transcripts in the network are 

confirmed by significant correlations (mean rho: -0.36). Even though these 

verified interactions exist in a complex network, where there are several 

occurrences of particular miRs targeting multiple genes, and several occurrences 

of particular genes targeted by those miRs. In particular KIT is targeted by four 

miRs in the network, three of which have significant correlations, and two of 

which are both significant alongside each other in a linear model (miR-30a-3p, 

miR-146b-5p). Although fewer samples were available with both proteomic and 
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miRNA microarray data were available 1 of 15 instances of miRNA 

downregulation was significant at the protein-level. One of the four interactions 

shown at the mRNA/protein level had a significant correlation – TXN upregulating 

LDHA (rho: 0.75, p: 1.85 X 10-07). 

The differences between the asthma contrast and the asthma in non-smokers 

contrast when viewed in this way appear minimal, and suggest that many of the 

differences are merely due to a reduced statistical power, putting the adjusted 

p-value below the threshold. As noted above (section 5.2.1.2) when looking at 

all asthmatics LCN1, LTF and LYZ are upregulated, however specifically amongst 

non-smokers LCN1 and LYZ are downregulated and LTF is differentially regulated 

(peptides of the same gene are regulated in different directions). Amongst 

smokers they are all upregulated, which is responsible for the difference when 

looking at all asthmatics. While few of the molecules in the interaction network 

were significant amongst non-smokers most of the fibronectin-associated and 

adjacent genes maintained strong fold changes in the same directions. The fold 

changes of most of the miRs and many of their targets were significantly reduced 

however, which may be because smoking itself induces the same fold changes in 

many of the molecules as seen with miR-146a-5p (Fig 5-2). 

Cell type correlations from all three contrasts were combined and added to the 

network graph (Fig 5-18). Many genes at both the peptide and mRNA level are 

eosinophil-correlated, and all of these are upregulated in asthma. Some of these 

eosinophil-correlated molecules were also found correlated with neutrophils, 

lymphocytes, or epithelial cells. miRs were mostly macrophage-correlated and 

were all downregulated in asthma. One of the three peptides (LDHA) which were 

macrophage-correlated had a greatly-reduced fold change in asthma amongst 

smokers - the same pattern as seen with miRs. 

To gauge the effect of steroid treatment and its influence on the model linear 

modelling was used with the same background confounders as used for each 

dataset previously, then the process was repeated with steroid dose included – 

normalised to beclomethasone. The percentage increase or decrease in the 

asthma coefficient when including steroid dose in the model was mapped to the 

network, and those molecules for which steroid dose was significant were 
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highlighted (Fig 5-19). This methodology may not be as appropriate for 

proteomics data as for mRNA and miRNA data and each molecule type used 

different confounders so results are not directly comparable. Nonetheless it 

indicates that in most cases steroid effect on asthma dysregulation in the 

network was relatively low. It also indicates quite consistently that steroids do 

have an effect in the “correct” direction with regards those molecules which 

interact with fibronectin and their interacting molecules, with the exception of 

MMP10, TIMP1 and SERPING1. Most of the molecules where the steroid dose itself 

is significant were also close to fibronectin in the network and all but one of 

them are peptides (HRH4). With the exception of LYZ (which was found 

regulated differently depending on smoking status) HRH4 was also the only 

molecule which had a significant steroid dose association and which appears to 

be further dysregulated rather than reducing the effect of asthma. The miR 

which targets it also has follows this pattern of regulation. 

Clinical variables were also mapped to this network. Strong correlations exist 

between FEV1 and many molecules of the network (Fig 5-20). In particular again 

the fibronectin portion of the network is consistently correlated. Low FEV1 is 

indicative of asthma and as this portion of the network was negatively 

associated with asthma a positive correlation results between FEV1 and these 

molecules. 

 

 



 

 

 

Fig. 5-15 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by Asthma Fold Change 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. This graph shows that many of the molecules only found significant amongst non-
smokers – including the majority of the miRs – maintain the same direction of fold change although they do not quite meet the significance threshold. 
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Fig. 5-16 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by Fold Change of Asthma Amongst Non-Smokers 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. This graph shows that fibronectin and its associated molecules maintain the same 
direction of fold change although they do not quite meet the significance threshold. However LCN1, LYZ and LTF follow different patterns of expression. 
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Fig. 5-17 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by Fold Change of Asthma Amongst Smokers 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. This graph shows many molecules which show strong fold changes despite not 
passing the significant threshold (particularly the fibronectin-associated molecules). Alternatively many molecules, in particular the miRs, are much less dysregulated 
here than in the other contrasts. This may be due smoking status being responsible for similar changes. 
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Fig. 5-18: Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by Cell Type Correlation 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. Most molecules with significant positive correlations with a cell type are eosinophil-
correlated (peptides and mRNAs) or macrophage-correlated (mostly miRs but also some peptides including the central node fibronectin). Correlations with 
lymphocytes, neutrophils and epithelial cells were also detected. 
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Fig. 5-19: Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by Difference in Asthma Estimate with the Inclusion of 
Steroid Dose 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. When steroid dose is modelled alongside asthma fibronectin and associated molecules 
are associated with a greater dysregulation due to the steroid dose working in opposition to asthmatic dysregulation. In many cases the steroid dose effect is 
significant. 
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Fig. 5-20: Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured by correlation with FEV1 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with to simplify the representation of the network. Many molecules are seen to have a strong correlation with FEV1, particularly the 
fibronectin section of the network.
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5.2.2 Nasal Epithelium 

A large proportion of the genes in this gene set were best-modelled with the BMI 

parameter, resulting in a model with the lowest median p-value and the highest 

median adjusted R2. Since modelling statistics (Table 5-9) demonstrate the 

impact on the data across a large number of genes BMI was included in the 

model (as in the induced sputum mRNA model). 

Model Median p Median adj-R2 Median AIC # Genes Lowest AIC 

~group 1.80E-01 3.09E-02 -199.28 6091 

~group + bmi 1.67E-01 3.73E-02 -198.95 2712 

~group + age 2.10E-01 2.90E-02 -198.14 1150 

Table 5-9: Comparison of Statistical Models in Relation to Nasal mRNA data. 
While the best fit is seen with the simplest model a large number of the genes are better described 
by the inclusion of BMI, and the inclusion of BMI explains more of the variation in the data. Adj-R

2
: 

adjusted R
2
, Adj-R

2
: adjusted R

2
, AIC: Akaike Information Criterion. 

The model for miRNA with BMI had the highest median adjusted R2, and while 

the simplest model has the best fit on average, both the BMI model and the 

model with age account for the best fit of data for a large proportion of the 

genes (Table 5-10). As with the sputum samples, both were used in the 

statistical model since it is not statistically prohibitive.  

model median p median adj-R2 median aic # Genes Lowest AIC 

~group 0.265427 0.017407 -108.529 644 

~group + bmi 0.2794 0.017977 -107.233 143 

~group + age 0.293264 0.016085 -107.002 148 

Table 5-10: Comparison of Statistical Models in Relation to Nasal miRNA data. 
While the best fit is seen with the simplest model a large number of the genes are better described 
by the inclusion of BMI, and the inclusion of BMI explains more of the variation in the data. Adj-R

2
: 

adjusted R
2
, AIC: Akaike Information Criterion. Adj-R

2
: adjusted R

2
, AIC: Akaike Information 

Criterion. 
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5.2.2.1 Asthma 

Four genes showed differential expression in asthma - TDRKH-AS1, FREM2, PBX3 

and SIN3A (Table 5-11). No miRNAs showed differential expression even with 

both confounders removed from the model. 

ENSG Log2(FC) Ave Exp p pBH Gene Symbol 

ENSG00000203288 -0.48 8.50 5.10 X 10-6 0.03 TDRKH-AS1 

ENSG00000150893 -0.56 9.41 6.83 X 10-6 0.03 FREM2 

ENSG00000167081 -0.31 7.84 1.25 X 10-5 0.04 PBX3 

ENSG00000169375 -0.22 10.38 1.61 X 10-5 0.04 SIN3A 

Table 5-11: Significant mRNAs in Asthmatics 
These results are generated by asthmatics and non-asthmatics, regardless of smoking status, but 
with the effects of smoking statistically accounted for. 

 

5.2.2.2 Asthma in Non-Smokers 

OVGP1 was significantly downregulated in asthmatics amongst never-smokers 

(logFC: -0.70, pBH: 0.017). Eight non-coding RNAs were also found to have 

significant differential expression – six human miRs, one viral miR and one small 

nucleolar RNA (Table 5-12). miR-210-3p and miR-140-3p are both increased two-

fold in never-smoker asthmatics.  

ID Log2(FC) p pBH 

hsa-miR-374a-3p 0.81 6.01 X 10-6
 5.62 X 10-3

 

hsa-miR-210 1.02 7.24 X 10-5
 2.32 X 10-2

 

hsa-miR-548p 0.48 9.40 X 10-5
 2.32 X 10-2

 

U18C -0.41 9.94 X 10-5
 2.32 X 10-2

 

kshv-miR-K12-6-5p 0.61 1.84 X 10-4
 3.45 X 10-2

 

hsa-miR-140-3p 1.05 3.44 X 10-4
 4.40 X 10-2

 

hsa-miR-193a-5p 0.40 3.75 X 10-4
 4.40 X 10-2

 

hsa-miR-487b 0.46 3.76 X 10-4
 4.40 X 10-2

 

Table 5-12: Significant mRNAs in Non-Smoking Asthmatics 
These results are generated by non-smoking asthmatics and non-asthmatics. 
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5.2.2.3 Asthma in Smokers 

No mRNAs or miRNAs were found significantly dysregulated in asthmatics 

amongst smokers after multi-test correction regardless of adjusting for BMI 

and/or age. 

 

5.2.2.4 Smoking 

585 genes were significantly downregulated and 458 significantly upregulated (7 

and 38 respectively when restricted to two-fold changes). Of the larger set 304 

terms were significantly enriched, including ‘lipid antigen binding’ and 

‘regulation of dendritic cell differentiation’ at over 50%. An analysis of the 

smaller set of 44 genes identified enriched upregulation of six clusters of terms, 

two individual terms and the enriched downregulation of an “Interferon-gamma-

mediated signalling pathway” term cluster. 

No miRs were found significant when adjusted for confounders. Without 

adjustment however miR-193b-3p was found significantly upregulated in smokers 

(log2FC: 0.52, pBH: 0.03) and miR-424-3p significantly downregulated (log2FC: -

0.33, pBH: 0.03). 

 

5.2.2.5 COPD 

459 genes were significantly downregulated and 657 significantly upregulated (6 

and 29 respectively when restricted to two-fold changes). Nine clusters and five 

individual terms were enriched in this set (Fig 5-35), most of which are 

upregulated. “Fatty acid elongation, saturated fatty acid” has 80% of its genes 

found to be significant. 

Eight miRs were upregulated in patients with COPD, four of which had more than 

a two-fold increase (Table 5-13).  
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miR Probe ID logFC AveExpr P.Value adj.P.Val 

hsa-miR-199a-3p hsa-miR-199a-3p_st 1.423595 4.947135 1.30E-05 0.012193 

hsa-miR-126-3p hsa-miR-126_st 1.772569 6.273463 7.23E-05 0.023803 

hsa-miR-363-3p hsa-miR-363_st 0.55563 3.821824 8.58E-05 0.023803 

hsa-miR-143-3p hsa-miR-143_st 1.53381 6.001103 0.000162 0.023803 

hsa-miR-145-5p hsa-miR-145_st 1.603344 6.524047 0.000165 0.023803 

hsa-miR-199a-5p hsa-miR-199a-5p_st 0.985083 4.268569 0.000194 0.023803 

hsa-miR-192-5p hsa-miR-192_st 0.575629 4.680521 0.000202 0.023803 

hsa-miR-195-5p hsa-miR-195_st 0.962701 5.250416 0.000204 0.023803 

Table 5-13: miRNAs Upregulated in Association with COPD 

 

5.2.2.6 Comparing Contrasts 

SIN3A was downregulated in both asthma and COPD, and PBX3 was 

downregulated in both asthma and smoking. 49 terms were shared between 

asthma and COPD. None of the miRs found significant with smoking or COPD 

overlapped with each other or with those from the asthma amongst non-smokers 

contrast (regardless of using confounders or not). Asthma and COPD hits in the 

nasal epithelium were clustered alongside a heatmap of the data (Fig. 5-21). 

This heatmap is based on fewer molecules of interest than the induced sputum 

heatmap and may show some clustering, but less than that which was seen in 

the induced sputum. This may be due to the sample type obtained being from 

the upper rather than lower respiratory tract. The clade of nine molecules at 

the bottom of the graph includes all eight of the miRs included. 
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Fig. 5-21: Heatmap Showing Dysregulation of Genes in the Nasal Epithelium 
Heatmap rows (genes) and columns (patients) were clustered. As with induced sputum small 
groups of phenotypes appear to cluster, however overall there appears to be less clustering of 
phenotypes than with induced sputum results. mRNA: messenger RNA, ncRNA: non-coding RNA. 

 

5.2.3 Sample Types 

Clustered heatmaps were produced to represent the significant microarray 

results across both sample types. One was produced for asthma, COPD, and both 

conditions together (see Figures 5-22, 5-23, 5-24 respectively). All show 

clustering of diseases and to a lesser extent combinations of disease and smoking 

status. Grouping is more apparent in when viewing the clustering results of 

healthy controls, asthmatic patients, and COPD patients together.  
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Each phenotype clusters to into small groups in Fig 5-22, particularly a large 

group of mostly healthy controls on the left of the graph. In some cases small 

clusters of asthmatics of a certain smoking status can be seen adjacent to 

healthy patients of the same smoking status. The same four miRs which 

clustered together based on induced sputum data alone (Fig 5-14; miR-146a-5p, 

miR-146b-5p, let-7f, and let-7g) again cluster together. A greater degree of 

clustering is seen in the cross-sample-type COPD data in Fig 5-23. The largest 

patient clusters in Fig 5-24 are those of healthy controls, reflecting the 

similarities in the molecular dysregulation between asthma, COPD and smoking 

status. 

 

Fig. 5-22: Heatmap Showing Dysregulation of Genes in the Induced Sputum and Nasal 
Epithelium with Asthma 
Heatmap rows (genes) and columns (patients) were clustered. Colours at the top denote the 
subgroup of the patient – green: healthy non-smoker, dark green: healthy smoker, blue: asthma 
non-smoker, dark blue: asthma smoker. 
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Fig. 5-23: Heatmap Showing Dysregulation of Genes in the Induced Sputum and Nasal 
Epithelium with COPD 
Heatmap rows (genes) and columns (patients) were clustered. Colours at the top denote the 
subgroup of the patient – green: healthy non-smoker, dark green: healthy smoker, red: COPD, dark 
red: COPD smoker. 

 

 

 

 

 



177 

 

 

 

 

 

Fig. 5-24: Heatmap Showing Dysregulation of Genes in the Induced Sputum and Nasal 
Epithelium with COPD and Asthma 
Heatmap rows (genes) and columns (patients) were clustered. Colours at the top denote the 
subgroup of the patient – green: healthy non-smoker, dark green: healthy smoker, blue: asthma 
non-smoker, dark blue: asthma smoker, red: COPD, dark red: COPD smoker. 
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5.3 Discussion 

Numerous significant results were found via mRNA and miRNA microarray 

investigations pertaining to asthma, COPD, and smoking status. Metabolomic and 

proteomic data were compromised by incorrect sample selection and by 

metabolite samples being stored in different media. Despite this proteomics 

analysis still yielded numerous statistically significant results, but metabolomics 

analysis did not show any identified metabolites of significance after multiple-

test correction. 

Results of term enrichment analysis indicated consistently enriched gene sets in 

asthmatic patients, upregulated for classic immune system terms related to 

general mediators of immune response, chemokines, antigen binding, and 

leukotrienes, and with other terms including the complement system, fibroblast 

growth factor, matrix metalloproteinase (MMP) activation, and vesicle 

endocytosis. Term enrichment also indicated consistently downregulated gene 

groups related to glucose metabolism, platelet degranulation, and the secretion 

of proteins normally found in the saliva. 

Smoking and COPD contrasts for induced sputum show significant widespread 

dysregulation across thousands of genes, however less than a hundred in each 

have a two-fold difference. Term enrichment analysis of significant COPD genes 

truncated by fold change also showed dysregulation of MMP activation and the 

complement system as in asthma, but with different genes involved. In general 

there were many genes which overlapped between asthma and COPD contrasts 

but only a few when restricted to two-fold changes. 

Results of the interaction network generated for the sputum results show a large 

cluster of downregulated extracellular matrix fibronectin-associated genes, and 

a large number of genes potentially knocked down by miRNAs. The while much 

of the fibronectin cluster does not retain significance in the smoking asthma 

contrast it does maintain large fold changes for most of its constituents and 

nearest neighbours. This section of the network is shown to correlate strongly 

with FEV1 and while steroid dose does seem to have a consistent positive effect 
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in returning it to healthy levels of expression the effect is mild and only 

significant for some molecules. 

The scope of the results is vast, however this discussion will focus more on the 

asthmatic sputum work as there were the most types of biomolecules available 

for that sample type and disease (proteomic and metabolomic data were 

unavailable for the COPD samples and for nasal epithelium samples), and 

because that sample type is more reliable in terms of being from the lower 

respiratory tract rather than the surrogate nasal tissue. The discussion focuses 

on two-fold dysregulated molecules significant after multi-test correction and 

comparisons are drawn against these data to smoking and COPD where 

appropriate. 

 

5.3.1 Calcium Signalling and Homeostasis 

Calmodulin (CALM) is a ubiquitously-expressed protein encoded by three 

separate genes and it is downregulated in asthmatics regardless of smoking 

status. It regulates the activity of a large number of proteins by Ca2+ signalling, 

affecting various relevant processes such as inflammation, metabolism, 

apoptosis, immune response, secretion, and smooth muscle contraction. CALM 

regulates levels of cytosolic Ca2+ both by CALM-mediated Ca2+ induced 

inactivation (CDI) and by CALM-mediated Ca2+ induced facilitation, both in terms 

of cellular uptake and intracellular transport across internal membranes (366). 

While Ca2+ signalling is required for many central processes and the functioning 

of many proteins besides CALM, CDI is also essential as excessive intracellular 

levels of Ca2+ are toxic (367). 

Although CALM (complexed with Ca2+) is essential to priming smooth muscle for 

contraction, and increased smooth muscle contraction is a major feature of 

asthma, the levels of CALM in induced sputum samples (primarily comprising 

leukocytes and epithelial cells) may not be reflective of those in the smooth 

muscle cells, so a reduction in CALM here is likely not to be contradictory. 
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A recently discovered role of CALM in the airway epithelium is its regulation of 

ciliary beat frequency, as studied in the nasal epithelium (368). Inhibition of 

CALM was shown to reduce ciliary beat frequency which in turn could reduce 

mucociliary clearance of mucous (excessively-produced in asthma) and harmful 

foreign substances. This excess mucous obstructs the airways and provides an 

advantageous environment for bacteria. 

The interaction of CALM with calmodulin-dependent protein kinase II (CAMKII) 

induces the activation of numerous transcription factors, including NF-κB, which 

has hundreds of known targets. NF-κB is typically described as pro-inflammatory 

due to its induction of pro-inflammatory cytokines and chemokines, and it has 

been associated with several inflammatory diseases including asthma and COPD. 

Similarly its role in relation to oxidative stress is complex and context-

dependent, being capable of inducing both pro- and anti-oxidative responses 

(369). A protective effect of NF-κB has been demonstrated in the epithelium in 

which it promotes epithelial cell survival and mucosal barrier integrity (370). 

The dysregulation of a number of other genes (e.g. genes related to tight 

junctions) discussed later also contribute to reduced epithelial barrier function, 

possibly via NF-κB whose expression has been shown to repair epithelial tight 

junctions in lung epithelia (371). 

In addition many of the studies which implicate NF-κB as a central driver of 

pathological oxidative stress and inflammation in asthma rely on data from 

murine models (otherwise-healthy animals exposed to a variety of possible 

allergens) and in vitro studies, which may be misleading. Studies in murine 

models show inhibition of CAMKII activity inhibiting NF-κB activity and suggest 

that it is essential for proasthmatic effects such as airway hyper-reactivity, 

eosinophilia, and mucin 5AC (MUC5AC) expression (372;373). Despite a large 

reduction in CALM, which CAMKII is dependent on for many of its interactions 

including NF-κB activation, the airway hyperreactivity is unresolved in our 

cohort, eosinophilia is present, and MUC5AC is greatly upregulated. In contrast 

to the idea of increased CALM/NF-κB activity as a main driver of a pathology-

inducing level of oxidative stress and inflammation, a reduced level of CALM 

expression and NF-κB activity (implied by reduced CALM and other NF-κB 

activators) may contribute to pathology by the reduced mucociliary clearance 
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action of CALM, the disruption of the epithelial barrier function by reduced NF-

κB, and a reduced capability of macrophages to kill bacteria – CALM and NF-κB 

are both implicated in macrophage survival and bacterial killing (374-377). This 

would be consistent with an allergen-sensitised respiratory environment and 

with the tendency for bronchitis to occur in the context of severe asthma. 

Over 30 small clinical trials of calcium channel blockers such as verapamil or 

nifedipine have shown little if any effect on asthma symptoms in response to 

exercise or histamine challenge (378;379), and no effect as maintenance therapy 

(380). A small effect on FEV1 in exercise-induced asthma has been confirmed by 

a recent meta-analysis (381). Interestingly, one study showed a paradoxical 

bronchoconstrictor effect with administration of doses greater than 10mg of 

verapamil, which could be representative of the state of dysregulation in this 

severe asthma cohort (382). 

20 known targets of NF-κB were found significantly dysregulated amongst 

asthmatic patients, and the expression of 10 of these (SERPINB1, C4A, B2M, FN1, 

S100A6, LCN2, LTF, SERPINA1, ENO2, and CCL17) were significantly correlated 

with CALM expression. Overall CALM was significantly correlated with 81 of the 

181 other two-fold dysregulated molecules (mRNA/miRNA/peptides), including 

all of the three proteins shown to interact directly with CALM in the interaction 

network (BASP1, CFL1, and LTF). 

Lactoferrin (LTF) has a wide range of effects in host defence, including anti-

bacterial, anti-fungal, and anti-viral effects (383). These functions are at least 

partly explained by its interactions with cell surface receptors of cells of innate 

and adaptive immunity, and it also interacts with the surface of epithelial cells. 

It is has a bacteriocidal effect working in concert with lysozyme (LYZ; an NF-κB 

target which was downregulated in non-smoking asthma, but upregulated in 

smoking asthma), and acting alone each protein is bacteriostatic (384). Its 

bacteriocidal effect may be due to its ability to induce bacterial agglutination 

which can promote phagocytic killing. Its bacteriostatic effect may be due to its 

binding free iron ions which otherwise would allow bacterial growth. This iron-

binding also gives it the capability to reduce oxidative stress. LTF also binds and 

neutralises LPS and other pathogen-derived molecules giving it a role in anti-
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inflammation and antigen presentation (383), it attracts eosinophils (which is it 

correlated with in our data) (385), and appears to induce wound healing by 

promoting fibroblast proliferation and migration and stimulating re-

epithelialisation (386). 

While it is upregulated with asthma in this dataset amongst smokers, there are 

lactoferrin peptides regulated in both directions amongst non-smokers - and 

several peptides of LTF have been reported to be active with respect to host 

defence (387;388). These two peptides are not simply in anti-correlation with 

each other, as some asthmatic patients had very high levels of both, relative to 

the rest of the samples. 

CALM is known to bind lactoferrin in a Ca2+-dependent manner, and inhibit its 

ability to agglutinate bacterial cells (389). CALM acting both to increase its 

transcription through NF-κB and acting as an antagonist forms a kind of negative 

feedback loop, at least for the purposes of its bacteriocidal capacity. Regardless 

of which LTF peptide is responsible for this agglutination effect (or both), CALM 

is downregulated so it is less likely to work as an antagonist. Beyond being an 

antagonistic interaction the CALM-LTF complex has a secondary functional 

interface of unknown specificity, and could be involved in one of the other 

known LTF effects (390). Human LTF has been shown to induce asthma 

symptoms in an atopic mouse line, also resulting in increased MUC5AC and IL5 as 

also seen in this dataset (391). The presence of allergens in vitro causes 

asthmatic neutrophils to release LTF, but not neutrophils from healthy patients, 

and the amount released increases with asthma severity (392). 

Cofilin-1 (CFL1) encodes an actin-binding protein involved in both polymerisation 

and de-polymerisation, and although it is downregulated in this data is has been 

previously found upregulated in severe asthma (393). Brain associated protein 1 

(BASP1) is proposed to act as a CALM antagonist, interfering with the action of 

other CALM-bound transcription factors, particularly proteins of the pro-

proliferation MYC gene (394). It is also involved in the inhibition of WT1 which is 

another gene which is involved in cell proliferation amongst other activities, but 

CALM is not as yet implicated in this interaction (395). BASP1 also binds 
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phospholipids and actin (including beta actin, downregulated in our data), and 

may be involved in the maturation of actin filaments (396). 

Calcium signalling regulates tight junction permeability and eicosanoid 

production by eosinophils (397;398). Extracellular Ca2+ is also required at the 

epithelium for cell polarisation and the formation of tight junctions. 

Interestingly Cd2+, a component of cigarette smoke and air pollution, blocks 

formation of tight junctions and the influx of Ca2+ (399). Calcium requirements 

are different between females and males and across different ages, which may 

account for some of the variation in asthma frequency and severity observed. 

Differences in levels of various hormones may also account for some of the 

demographic differences recorded (400). Estradiol stimulates growth factor 

signalling and causes an increase in intracellular Ca2+ and drives some of the 

known molecular processes involved in asthma including IgE-induced mast cell 

degranulation, and leukotriene production (401). The estrogen-dependant 

OVGP1 (oviductal glycoprotein 1) was downregulated in nasal epithelium of non-

smoking asthmatics. 

Patients with various lung diseases often have low vitamin D, which is required 

for calcium absorption (402). In asthma vitamin D levels have been found 

reduced, positively correlated with FVC and FEV1, and negatively correlated 

with exercise-induced bronchoconstriction (403), however levels of serum Ca2+ 

do not correlate with this difference in vitamin D level and symptom severity in 

asthmatic patients so calcium absorption/deficiency is likely not responsible 

(404). Vitamin D may instead be beneficial through various other routes such as 

the suppression of IL-5 (upregulated in this dataset) secretion, in an effect which 

may be distinct from corticosteroid action (405). Vitamin D supplementation is 

somewhat effective against asthma and COPD (406;407). 

28 of the dysregulated asthma genes’ products are calcium-binding. Several of 

these (other than CALM) are involved in calcium homeostasis, including AHSG, 

PRH1/PRH2, CAPSL, GNB2, NUCB1, S100 proteins, STOM, and WNT5A. 

Alpha-2-HS-glycoprotein precursor (AHSG), which is upregulated and eosinophil-

correlated can inhibit calcium salt precipitation (408). It also inhibits the 
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phosphorylation of the insulin receptor and insulin receptor substrate 1 (409), 

which in turn inhibits the PI3K and MAPK pathways, and processes of energy 

metabolism. It may also lead to the inhibition of T-cell immunity during 

inflammation and infection (410). An upregulated peptide of salivary acidic 

proline-rich phosphoprotein 1/2 precursor (encoded by genes PRH1/PRH2; PRH 

in network graph) encodes a proline-rich protein normally secreted into the 

saliva in a number of forms due to genetic variation and extensive modification 

such as glycosylation and phosphorylation. In the saliva it is involved in calcium 

homeostasis by inhibiting calcium phosphate precipitation (411). 

Calcyphosin-Like Protein (CAPSL) does not have a known function but as a 

paralog of calcyphosin it is predicted to be involved in ion transport. G Protein 

Subunit Beta 2 (GNB2) is involved in the PI3K pathway, and it is normally 

involved in inhibition of Ca2+ channels and it is downregulated in asthmatics in 

our data. Nucleobindin 1 (NUCB1) is a major calcium binding protein of the Golgi 

and it may have a role in calcium homeostasis. S100 proteins (discussed more 

extensively later) are regulatory molecules involved in many processes including 

calcium homeostasis. Ca2+ channels may also be affected by the downregulation 

of stomatin (STOM), which interacts with calcium pump Ca-ATPase-4. Wnt 

Family Member 5A (WNT5A), acts through the non-canonical WNT pathway to 

increase levels of Ca2+ via downstream release through channels of the 

endoplasmic reticulum. 

 

5.3.2 Fibronectin, the Extracellular Matrix, and Airway 

Remodelling 

Decreased fibronectin (FN1) production and secretion by airway epithelial cells 

contributes to the dysregulated epithelium repair, possibly due to its importance 

to cell adhesion and migration (412). This downregulation may be related to the 

reduced CALM/NF-κB signalling mentioned above. Fibronectin has also been 

reduced in macrophages, fibroblasts and bronchial epithelial cells in response to 

bacterial and viral infections (413-415). Other groups however have reported 

increased fibronectin expression in the airway epithelium cells of asthmatic 
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patients (416), and suggested this may be responsible for pathological airway 

remodelling.  Fibronectin is also involved in binding and clearance of fibrin by 

macrophages (417). Fibronectin is cleaved by plasmin, the activated form of 

plasminogen (PLG; a peptide of which is highly upregulated in our data), along 

with fibrin, thrombospondin and von Willebrand factor. Fibrin and fibronectin 

were both found downregulated. Angiotensin II, a downstream peptide of AGT 

expression, inhibits activation of plasminogen, but it is unclear which peptide 

related to AGT was detected as upregulated. 

Fibronectin can form cross-links with other molecules by action of a 

transglutaminase. In the study by Hallstrand et al transglutaminase 2 was the 

only gene expressed differently at baseline and it was suggested that its role in 

asthma was to cause a sustained increase in the activity of secreted 

phospholipase A2 (demonstrated in vitro) which regulates the release of 

arachidonic acid leading to eicosanoid production. Factor XIII (F13A1) is the only 

transglutaminase included in our list of putative markers. Like many of the 

eosinophil-correlated enzymes it is Ca2+ dependent and interestingly it was one 

of three genes also found significant and two-fold increased in COPD. 

Coagulation factor XIII cross-links fibrin chains in a calcium-dependent manner as 

the final step of the classic coagulation cascade, generating a clot to which 

additional proteins are attached by cross-linking, including complement C3 

which was upregulated and eosinophil-correlated in our data. It can also cross-

link fibronectin or alpha-2-plasmin inhibitor (a serine protease inhibitor 

responsible for inactivating plasmin) to fibrin, fibronectin to itself, fibronectin 

to collagen and lipoproteins to fibrinogen (418;419). Factor XIII has been 

associated with asthma previously and its expression is correlated with type 2 

immune response and airway obstruction (420;421). Factor XIII enhances the 

proliferation and migration of fibroblasts, and inhibits their apoptosis (422). It 

binds to the fibroblast ECM and matrix assembly sites, where it remains active 

until it is eventually internalized and degraded (423). It also appears to reduce 

the proteolytic breakdown of collagen precursors (424). Factor XIII has been 

shown to be highly correlated with other significant, eosinophil-correlated genes 

CCL17 and CD207 in induced sputum (425). 
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MMP10 is an extra-cellular calcium-dependant enzyme which degrades 

fibronectin, gelatins and collagen. It is upregulated in eosinophilic asthma where 

it is suspected of being involved in airway remodelling (426). It is expressed in 

response to damage or infection, and can modulate macrophage activation 

(427). MMP10 drives the conversion of M1 macrophages to M2 macrophages and 

may be responsible for fibrotic clearance by M2 macrophages (428). This shift to 

M2 macrophages is also supported by a reduction of M1 macrophage miRs such as 

the most significant miR hsa-miR-146a-5p. MMP10 also has increased abundance 

in bronchial biopsies with high mucosal eosinophils (429). In our data MMP10 is 

upregulated and correlated with eosinophils and lymphocytes, but not 

macrophages. It is also found significantly upregulated two-fold in COPD. Despite 

the upregulation of MMP10, metalloproteinase inhibitor 1 precursor (TIMP1), an 

inhibitor of MMP10 is upregulated (430). 

 

5.3.3 Actin 

The actin cytoskeleton has several relevant roles in asthma including smooth 

muscle contraction and airway hyperresponsiveness and remodelling (431). It 

also plays a role in cell adhesion via actin filaments at adherens junctions. ACTB 

(actin beta) is downregulated in asthmatics in our data. ALDH1A1 is strongly 

upregulated and eosinophil-correlated and is involved the retinoid cascade which 

regulates genes involved in actin assembly/disassembly such as gelsolin and 

actinins. A number of dysregulated molecules are involved in actin binding or 

actin (de)polymerisation including BASP1, CFL1, CDC42, MSN, PFN1, ARPC5 and 

EZR – all of which except MSN (moesin) were downregulated. Cellular calcium 

concentrations affect also actin interactions/conformation and antagonism of 

CALM has been shown to inhibit polymerisation (432). 

Ezrin (EZR) is a membrane-actin cytoskeleton linker, involved in cell-to-cell 

adhesion and microvilli formation, and it is also involved in numerous signalling 

pathways (433). It is also biomarker of asthma - reduced levels of this protein 

are present in exhaled breath condensate and serum of asthmatic patients and 

the (IL-13-driven) reduction in EZR is correlated with reduction in lung function 
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(434). Knockdown of EZR also results in increased epithelial permeability, and 

similarly inhibition of AKT (which activates EZR) and NF-κB (which is activated 

by EZR) can block epithelial-to-mesenchymal transition (EMT) (435). EMT creates 

a mesenchymal cell which detaches from the basement membrane, generates 

fibroblasts, and is involved in inflammation-driven wound healing (436). In cases 

of chronic inflammation wound healing goes unchecked and it leads to fibrosis 

(437). This mechanism may be involved in asthma (438). In airway epithelial 

cells EZR is downregulated by IL13 (439). 

Ezrin binds F-actin and is involved its assembly, and in interactions between it 

and the cell membrane. Activated Ezrin provides membrane tension (440), 

whereas fluid shear stress induces Ezrin activation via Ca2+ dependant Akt 

phosphorylation (441). It has been suggested that EZR is secreted in epithelial-

derived exosomes, however in our data EZR is negatively correlated with 

epithelial cells. Intracellularly EZR activation by binding of an S100P dimer 

precedes its translocation to the cell membrane and induction of microvilli 

(442;443). 

 

5.3.4 Cell Adhesion 

Tight junctions and adherens junctions bind the cells of the airway epithelium, 

forming a barrier against the external environment including allergens and 

pathogens. Disruptions to this barrier open the airway tissues to allergens 

causing inflammatory damage, caused by the recruitment and activation of 

immune cells. Fibronectin and actin have a profound effect on cell adhesion, 

amongst other structural molecules and regulators, many of which were found 

dysregulated in this dataset. 

Microtubules are important for maintaining tight junctions and products of two 

microtubule genes (TUBA4A and TUBB4B) and a microtubule-associated gene 

(KLC3) are all downregulated. 
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Trefoil factor 3 (TFF3) has been variously reported to cause downregulation and 

internalisation of E-cadherin, and the phosphorylation of β-catenin (CTNNB1) 

which induces dissociation of the E-cadherin/catenin complex from the actin 

cytoskeleton (444-446). These disruptions of the E-cadherin/catenin complexes 

of adherens junctions cause reduced intercellular adhesion, promoting cell 

migration in a manner which aids epithelial repair (447;448). It has been shown 

that inhibition of E-cadherin function can prevent tight junction and desmosome 

formation in vitro however TFF3 also affects tight junctions by causing the 

redistribution of ZO-1 from the cytoplasm to tight junctions, which may add 

structural support (449). Further, TFF3 increases expression of the ‘tightening’ 

claudin 1 and decreases expression of the cation channel forming claudin 2 

which results in reduced permeability in vitro. Presumably these changes allow 

maintenance of barrier function despite the reduced cell adhesion from 

adherens junctions. 

Tetraspanin 8 (TSPAN8) is a transmembrane protein which is known to complex 

with integrins. Tryptase Alpha/Beta 1 (TPSAB1) is the major neutral protease 

released by mast cells to degrade the ECM (450). While the study by Hallstrand 

et al found no difference at baseline, of the aforementioned molecules, some of 

them were found differently expressed at baseline in another study by 

Dougherty et al (451), however only within a high Th2 subgroup of asthmatics – 

CPA3, CST1 and TPSAB1. They are part of a mast cell associated cluster of 

differentially expressed genes along with some other significant genes from our 

data – KIT, PRR4 and SPRR3. 

Dorscheid et al found that in an airway epithelial cell line, corticosteroids 

induced epithelial apoptosis (452). This suggests that while corticosteroids 

clearly provide a protective effect in the short-term by reducing inflammation, 

their chronic use may promote the epithelial damage partly responsible for 

driving that same inflammation. Corticosteroid treatment is also responsible 

from thickening of the epithelium (453). Epithelial shedding triggers induction of 

myofibroblasts and fibrogenesis (454). 

In our data cystatin 1 (CST1) is upregulated, and cystatin 3 is downregulated 

allowing cystatin 1 to act unrestricted and preventing inhibition of cathepsin B. 
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Cystatin A (CSTA) being downregulated is also consistent with preventing 

inhibition of cathepsin B. CSTA is a type I cystatin (or stefin), and it is found 

both intracellularly and extracellularly (455). It inhibits cathepsins B, H and L 

and can play an important role in desmosome-mediated cell-to-cell adhesion 

(456). Inhibition of cathepsin B results in activation of glycogen synthase and 

induction of glycogen accumulation (457). A desmosome subunit gene (DSG3) 

was also downregulated, leading to further disruption to desmosome formation 

and loss of cell adhesion. Calcium binding at these subunits normally acts to 

strengthen connections. 

 

5.3.5 miRNAs 

Many miRNAs have been implicated in lung diseases and several have been shown 

to be produced by one cell type, and transferred to its target cell type via 

microvesicles and exosomes (458). All significant miRs were downregulated and 

22/36 miRs were correlated with macrophages. While most miRs shown in the 

interaction network were macrophage correlated, none of their targets were. 

This may indicate macrophages producing miRs and targeting products in/from 

other cell types after transport. Most target genes were correlated with 

eosinophils, but proteins from all other measured cell types except macrophages 

were ‘targeted’ by this rationale. 

hsa-miR-146a-5p inhibits the NOTCH1 pathway and drives macrophages towards 

an M2 phenotype (459). It is a regulator of immune response, has anti-

inflammatory function in human airway smooth muscle and polymorphisms in 

this miR are associated with asthma. In mice miR-146a-5p deficiency is 

associated with autoimmune deficiency and their macrophages are 

hypersensitive to LPS. 

17 of the significant miRs were previously found downregulated in asthma (460-

469). Previous evidence shows that NF-κB can regulate nine of the significant 

miRs and is regulated by ten of them (470-473). 



190 

 

In some studies in mice it was demonstrated that miR-155-5p can attenuate Th2 

response and promote Th1 response (474-476), however there is also evidence in 

that model organism to suggest it is essential for Th2 response in some 

circumstances (477;478). In mouse macrophages it is induced by exposure to LPS 

(479). It is predicted to target CPA3 and WNT5A both of which show significant 

correlations. 

Although it has previously been described as pro-fibrotic in several organs 

including the lungs (480;481) possibly by involvement in EMT and FMT 

(fibroblast-to-myofibroblast transition) (482;483), the 5p arm of the ubiquitously 

expressed miR-21 is downregulated in asthma in our data. However, 

corresponding with our data, this miR is downregulated in the exosomes from 

the BALF of asthmatic patients (484). In general it is known to inhibit apoptosis 

and to promote proliferation through activation of the MAPK pathway (485). In 

mice it has been shown to regulate the Th1/Th2 balance in immune cells in 

favour of Th2 response (486). Like miR-155-5p, this miR is also predicted to 

target WNT5A and shows a significant correlation with it. 

Although not two-fold dysregulated one miR is interesting in that it is 

significantly downregulated in asthmatic non-smokers and significantly 

upregulated in asthmatic smokers. miR-335-5p has been implicated in the 

inhibition of TGFβ1-induced epithelial–mesenchymal transition in evidence from 

lung cancer cell lines. While it is unclear what process causes this alternate 

direction of dysregulation, smoking inhibits TGF-β1 via a different signalling 

route providing a compensatory effect in asthmatic smokers (487;488). 

30 miR-gene interactions are shown in the interaction network (some validated 

interactions and others predicted at over 90% confidence), and 19 of these have 

significant correlations between miR and target across all asthmatic and healthy 

samples. This list of interactions with significant correlations provides a list of 13 

miRs which target a total of 12 genes, whose relationships could be confirmed 

with antagomirs. miR-151-5p, miR-155-5p, miR-30a-3p, and miR-34a-3p had 

more than one target in this list, perhaps making these the highest priority for 

study using antagomirs to replicate their mRNA knockdown effects in isolation. 

Similarly WNT5A, KIT, MAOA, DNAI2, and ZNF469 were all targeted by more than 
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one miR. WNT5A (which has been found upregulated in other asthma datasets) 

and KIT (whose siRNA knockdown in a murine model of asthma led to a decrease 

in eosinophils and lymphocytes infiltration, and a reduction in Th2 cytokines IL4 

and IL5) present as particularly interesting therapeutic targets for future 

treatments utilising synthetic miRNA mimics, having previous evidence of asthma 

association and being collectively targeted by three of these four miRs. 

 

5.3.6 IL-4, IL-5, and IL-13 

While not sufficient for expression on their own, the classical Th2-cytokines IL-4 

and IL-13 - which are involved in asthma and in the recruitment of eosinophils 

(489;490) – highly upregulate expression of arachidonate 15-lipoxygenase 

(ALOX15) (491). IL-4 and IL-13 were not significantly upregulated in asthmatics 

in our data set, however they were both increased as expected in asthma, and 

modest IL-4 concentrations may be sufficient to induce ALOX15 expression as 

strong (>300-fold) upregulation has been observed (492). Exposure to IL-4/13 

strongly upregulates ALOX15, fibronectin, MAOA, CD1c, FCER2 (Fc Fragment Of 

IgE Receptor II) and the coagulation factor XIII (F13A1, a transglutaminase) (493) 

– all of these except FCER2 were significant in our data and only fibronectin was 

significant with a fold change in the opposite direction expected. 

While FCER2 was not significant in our data, another IgE receptor FCER1A was 

significantly increased. FCER1A is responsible for initiating the allergic response 

and polymorphisms of its gene are associated with variations in levels of IgE 

expression and may drive IgE in the context of asthma (494). Although IgE is not 

measured, increase in expression of one of FCER1A of a receptor for histamine 

(released downstream of IgE) imply that its inhibition may also be beneficial.  

IL-4 and IL-13 have distinct signalling cascades with several shared components. 

Under energy-deficient conditions AMPK is activated which suppresses IL4-

induced ALOX15 expression (495). IL-13 induces p38 MAPK activation that 

upregulates STAT1 and STAT3 phosphorylation, which in turn activates ALOX15 

expression (496). IL-13 induction of 15-HETE-PE enhances MUC5AC expression in 
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human airway epithelial cells. Significant high levels of MUC5AC have been 

observed in asthma previously (497;498) and in our data. MUC5AC is the highest 

expressed gel-type mucin in the airways and hypersecretion of mucins can 

generate mucus which is viscous and difficult to clear (499;500). MUC5AC 

expression by bronchial epithelial cells in vitro can be induced by mechanical 

stress representative of bronchoconstriction (501). Our data suggest that 

eosinophils may be involved in the regulation of MUC5AC in the epithelium. 

While IL-5 (statistically significant in our data) is coexpressed with IL-4 and IL-13 

(all of which part of the same gene cluster) it does not appear to upregulate 

ALOX15A. IL5 is involved in eosinophil-related airway hyperreactivity (502) via 

increased eosinophil recruitment, differentiation and survival (503;504). It is 

associated with asthma, and in particular with severe asthma in which it is 

already a successful drug target (505;506). IL-5 expression may also be necessary 

for recruitment of eosinophils by eotaxins (507). 

 

5.3.7 Arachidonic Acid Pathway, ALOX15, and 

Leukotrienes 

ALOX15 (Arachidonate 15-lipoxygenase) encodes an iron-containing fatty acid 

dioxygenase which has previously been shown to be increased in eosinophils of 

severe asthmatics (508). It is one of 6 different functional human ‘LOX’ genes 

which each produce distinct isoforms of an enzyme which converts 

polyunsaturated fatty acids (PUFA) into their hydroperoxy derivatives. LOX 

enzymes have a greater affinity for free PUFAs so the reaction often is preceded 

by the liberation of membrane-bound PUFAs. However, ALOX15 has also been 

shown to bind to membranes, in a calcium-dependant manner, which increases 

its oxygenase activity and allows oxygenation of membrane-bound PUFAs 

(509;510). Action on cholesterol esters has also been observed (511). 

ALOX15 is involved in three catalytic activities – as a lipoxygenase (above), a 

lipohydroperoxidase and a leukotriene synthase. The lipoxygenase function of 

this enzyme converts arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-
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HETE), and to a lesser extent 12-HETE (inserting molecular oxygen to the 12th 

carbon instead). Another, more preferred substrate is linoleic acid which it 

converts to 13-HODE. These three major ALOX15 products 15-HETE, 12-HETE and 

13-HODE are pro-inflammatory (512). The hydroperoxy lipids resulting from a 

lipoxygenase reaction may be further converted in the same manner if they still 

contain bisallylic methylene groups, leading to production of (the anti-

inflammatory) lipoxins, protectins, resolvins and maresins (513). 

Lipohydroperoxidase activity of ALOX15 further converts hydroperoxy lipids into 

hepoxilins (hydroxy epoxy eicosanoids) and leukotriene synthase activity further 

converts hydroperoxy lipids into epoxy leukotrienes. Lipohydroperoxidase 

activity requires free polyenoic acids as reducing agents and is strongly favoured 

over lipoxygenase activity under anaerobic conditions, whereas leukotriene 

synthase activity occurs under aerobic and anaerobic conditions. 

Lipohydroperoxidase can occur under aerobic conditions with limited 

concentrations of acid substrate or oxygen or both (514). Eoxins are pro-

inflammatory metabolites formed in eosinophils by leukotriene synthase activity 

(515). Leukotrienes may be involved in recruiting eosinophils to the asthmatic 

airway following exercise challenge (516). 

Research into the various functions of this enzyme in differing environments is 

complicated by the fact that orthologs in animal models show different 

affinities, e.g. in mouse ALOX15 has a greater affinity for the 12th residue and 

ALOX12 is more similar to human ALOX15 in function and regulation. While 

ALOX15 can accept a variety of polyenoic acids as substrates, monoenoic acids 

and saturated fatty acids are not oxygenated and act as weak competitive 

inhibitors. It is constitutively expressed at high levels in reticulocytes, 

eosinophils and airway epithelium (517), which is replicated in our cell type 

correlation results for both eosinophils and airway epithelium. It is also 

expressed at low levels in spermatozoa where it is implicated in infertility via 

the propagation of oxidative stress cascades (518). miRNA mir-125b-5p is 

induced by NF-κB and causes the downregulation of ALOX15 (519), and is 

significantly downregulated in our data which would be consistent with the 

observed ALOX15 upregulation. In a mouse model it has been shown to reduce 

inflammation, levels of IL4 and IL13, goblet cell differentiation, and production 
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of MUC5AC (520), possibly via ALOX15. This goblet cell differentiation may also 

be due to ALOX15 as 15-HETE-PE is involved in goblet cell differentiation (521). 

hsa-mir-125b also inhibits the expression of TNF-α, which has been implicated in 

asthma. 

The ALOX15 promoter contains STAT6 binding sites, and the phosphorylation and 

acetylation of this transcription factor by histone acetyltransferase CREB-binding 

protein/p300 is required for ALOX15 production (522). Interestingly, despite 

adenovirus infections having been shown to exacerbate asthma symptoms, 

adenovirus protein E1A binds to the CREB-binding protein/p300 complex 

preventing it from phosphorylating STAT6 and p53 (which appears to induce 

ALOX15 expression via SAT1 (523)) and thereby downregulating ALOX15 (524). 

E1A binding CREB-binding protein/p300 also inhibits hypoxia response via HIF1A 

(525). 

It has been shown that ALOX15 in eosinophils can drive fibrin formation in 

individuals with thrombotic disease by providing the required procoagulant 

phospholipid surface (526;527). Eosinophils from severe asthmatic patients have 

increased 15-HETE and eoxin C4 compared to mild asthmatic patients or healthy 

volunteers (528). 

Epithelial ALOX15 expression is correlated with asthma severity (529). 15-HETE 

has been shown to induce endothelial barrier permeability by the 

phosphorylation of zonula occludens 1 and zonula occludens 2 proteins, causing 

their dissociation from tight junctions (530). ALOX15 inhibition has been shown 

to prevent this effect in tight junctions of arterial endothelium (531). In airway 

epithelium increased barrier permeability results in increased penetration of 

allergens into the intercellular space allowing direct disruption of apical junction 

complexes (complexes of tight junctions and adherens junctions), and the 

indirect disruption via IL4 and IL13, which forms a positive feedback loop (532). 

Tight junctions can also act as scaffolding platforms for cell signalling and 

docking stations for transport vesicles (533;534). Viral infection of respiratory 

epithelial cells has also been shown to disrupt AJCs and increase permeability. 

This epithelial barrier disruption involves actin cytoskeletal remodelling, possibly 
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dependent on cortactin activation (535). In our data Cortactin Binding Protein 2 

(CTTNBP2) is significantly upregulated in asthma. 

WNT5A initiates an age-related cascade in asthma which contributes to 

leukotriene formation and is steroid-resistant (536). WNT5A has previously been 

reported upregulated in asthmatic samples (537;538). WNT5A can drive or inhibit 

beta-catenin signalling, depending on the receptor context (539), and can drive 

fibroblast ECM deposition, proliferation, and resistance to apoptosis (540). It 

also facilitates β-catenin/p300 interaction in rat (541). 

In addition to fibroblasts, myofibroblasts are also involved in airway remodelling. 

These can differentiate from fibroblasts by FMT. This process is stimulated by IL-

4 and IL-13 via multiple pathways, by CCL26 (eotaxin 3), and by cysteinyl 

leukotrienes (LTC4, LTD4, and LTE4) produced via the arachidonic acid pathway 

(542). Cysteinyl leukotrienes also regulate collagen production by bronchial 

fibroblasts (543). GGT5 cleaves glutathione and converts leukotriene C4 into 

leukotriene D4. It was found correlated with eosinophils in non-smoking 

asthmatics and neutrophils in smoking asthmatics. 

ALDH3B1 is an enzyme which oxidises unsaturated medium- and long-chain 

aldehydes such as hexadecanal, which is an intermediate in glycosphingolipid 

metabolism (544). It is protective against oxidative stress (545). Transcription is 

driven by transcription factor NRF2 which itself is expressed in response to 

oxidative stress (546) and induces NQO1 which was found dysregulated in 

smokers. 

 

5.3.8 Metabolism 

An increase in glycolysis has been reported in asthma previously, and it appears 

to drive T-cell activation, airway inflammation and hyperreactivity, and 

production of several molecules involved in asthma including IL-5 (547). 

Pyruvate Kinase M1/2 (PKM) is a glycolytic enzyme involved in production of ATP 

from ADP and is upregulated in asthmatics in our data. ALDH1A1 and ALDH3B1 
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are also involved in glycolysis – causing the oxidation of acetaldehyde to acetate 

– and are both upregulated. Transaldoase 1 (TALDO1) is an enzyme of the non-

oxidative phase of the pentose phosphate pathway which is involved in NADPH 

generation, oxidative stress, inflammation, and it is closely related to glycolysis, 

providing for it the substrates fructose-6-phosphate and glyceraldehyde-3-

phosphate (548;549). TALDO1 is upregulated and epithelial-correlated in our 

data.  

On the other hand many genes involved in glycolysis were also downregulated. 

Lactate dehydrogenase A (LDHA) catalyzes the conversion of L-lactate and NAD 

to pyruvate and NADH (and the reverse reaction) in the final step of anaerobic 

glycolysis. It is upregulated in response to viral infection, and downregulated 

with steroid treatment in severe asthma (550;551). In this data it is 

downregulated with asthma amongst non-smokers but not smokers, possibly due 

to a downregulated gene (TXN) which is predicted to upregulate LDHA via HIF-1α 

activity (552) – expression of TXN and LDHA is >75% correlated. Glucose-6-

Phosphate Isomerase (GPI) which converts between glucose-6-phosphate and 

fructose-6-phosphate is downregulated. Enolase 2 (ENO2), which promotes cell 

survival in a Ca2+-dependant manner and is part of glycolysis is also 

downregulated, possibly via reduced NF-κB signalling. 

In addition to these energy metabolism enzymes, alpha-2-glycoprotein 1, zinc-

binding (AZGP1) which is involved in glucose transport was also downregulated. 

As mentioned above AHSG also inhibits several processes of energy metabolism 

through inhibition of insulin receptor and insulin receptor substrate 1. 

While metabolomics data did not yield any significant results after multi-test 

adjustment there were large increases of toluene-4-sulfonate and quinate in 

asthmatic patients, which were significant before multi-test adjustment. 

Quinate (>13-fold increase in asthmatics) is the conjugate base of quinic acid, 

which is normally found in plant sources but is used in the production of 

pharmaceuticals. Toluene-4-sulfonate (>3-fold increase in asthmatics) is the 

conjugate base of toluene-4-sulfonic acid which is a strong organic acid, likely to 

act as a respiratory irritant. 
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Exposure to another highly reactive toluene compound, toluene diisocyanate, 

has many harmful effects on the body including in the lungs where it can induce 

asthma (553). In animal models it has shown to increase epithelial shedding 

(554) possibly via E-cadherin distribution (555). In addition to toluene-4-

sulphonate, two other toluene compounds had a greater-than-twofold change in 

asthma contrasts - 2,4-diamino-6-nitrotoluene (asthma amongst smokers, log2FC: 

1.23); 4-toluenesulfonamide (asthma amongst non-smokers, log2FC: 1.41). 

Assuming these identifications are accurate they may be relevant to asthma as 

indicators of lung irritation. Although normally studied in the context of 

bicarbonate levels resulting from respiratory acidosis or metabolic acidosis, acid-

base disturbances in the lung are detectable in asthma and are associated with 

reduction in FEV1 (556). 

 

5.3.9 Chemokines 

C-C Motif Chemokine Ligand 17 (CCL17) is a T-lymphocyte chemoattractant and 

has been shown to attract Th2 cells and induce airway inflammation in a 

humanised mouse model (557). In a mouse model it is required for NOD1-

mediated asthma exacerbation (558). It is upregulated by lung macrophages in 

asthmatics (559) and in our data it is significantly enriched in asthmatics 

amongst non-smokers and consistently eosinophil-correlated. CCL17 expression is 

corticosteroid-resistant but is suppressed by PI3Kinase enzyme inhibitors. 

CCL13, CCL17 and CCL26 are all increased in eosinophilic asthma and COPD 

(560). CCL13 is highly expressed in numerous cell types during inflammation, 

including eosinophils and lymphocytes with which it is correlated in our data 

(561). It has also been detected in (and was found correlated with) airway 

epithelial cells where it is associated with pulmonary fibrosis (562), and in 

airway smooth muscle where it is upregulated in asthmatics and where it is 

downregulated by vitamin D (563). CCR3 is a receptor for CCL13 which is 

expressed in airway smooth muscle and induces intracellular calcium 

mobilization and ASMC migration (564). CCL13 and CCL17, along with IgE, are 
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effectively reduced in severe asthma via an IL13 antibody called lebrikzumab 

(565). 

CCL26 is involved in eosinophil chemotaxis and is overexpressed even more in 

severe asthma than mild/moderate asthma. Patients with increased CCL26 may 

also respond to this lebrikzumab treatment, being that CCL26 is upregulated by 

IL13, expressed in airway epithelial cells and is upregulated in asthma and so 

may also respond to this treatment (566). In our data CCL26 is correlated with 

eosinophils and lymphocytes, both of which are recruited by it (567;568), and 

the latter is involved in its expression (569). It also acts to repel macrophages 

via an antagonistic interaction with an alternative receptor CCR2 (570). CCL26 is 

also associated with persistent (>48 hours) eosinophil-driven inflammation (571) 

and has been reported to induce fibroblast migration (572). CCL26 (AKA eotaxin 

3) is more effective than eotaxin 1 and 2, and unlike them it induces an 

additional phase of cell migration which is resistant to blockade (573). 

Clusterin (CLU), which normally modulates airway inflammation by attenuation 

of CCL20 was downregulated in our data, suggesting a possible increase in CCL20 

activity also. 

 

5.3.10 Minor Discussion Points 

5.3.10.1 The Complement System 

Complement C3 (C3) was upregulated at the protein level and eosinophil-

correlated. C3 is the central component of the complement system, as its 

activation products are involved as mediators in most of the systems immune 

regulatory effects (574). IL4 and IL13 stimulate its production in an airway 

epithelial cell line (575). C3 acts as a danger sensor – DAMPs cause a 

nucleophillic attack of its thioester. C3 cleavage is initiated by lectin binding 

mannose on a pathogen surface or by C1 complex activation through binding of 

C1 complex to antigen‐antibody complexes to apoptotic cells or to C reactive 

protein. Eosinophil granule proteins have been shown to strongly inhibit C3 
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convertase function by interfering with C1 (576). The initial cleavage products of 

C3 are C3a and C3b. In addition to its numerous functions across various cell 

types it also is responsible for the proliferation and differentiation of leukocytes. 

Cathepsin G, which was downregulated, cleaves C3, and may be involved in 

connective tissue remodelling at sites of inflammation. It may also exhibit 

bacteriocidal properties. 

C3a is an anaphylatoxin, a complement molecule that is proinflammatory via 

several pathways. It is upregulated in induced sputum and BAL of asthmatics, 

particularly during exacerbations (577;578). It is involved in neutrophil, 

eosinophil and mast cell chemotaxis and induces histamine release from mast 

cells and basophilic leukocytes. C3a can stimulate the increase of free 

intracellular Ca2+ by the influx of extracellular Ca2+ via a G-protein mediated 

process (579). It is also responsible for the activation of respiratory burst in 

neutrophils (580) and can stimulate MUC5AC production in airway epithelial cells 

in vitro (581). Interestingly it can trigger smooth muscle contraction. C3b can 

also activate respiratory burst (582) and assists in phagocytosis as an opsonin. 

C3b can form subunits for the alternate C3 convertase (causing positive 

feedback) or for C5 convertase. Interestingly it has also been shown that C5 can 

regulate airway hyperreactivity and pulmonary eosinophilia by downregulating 

expression of the C3a receptor (583). In addition to its numerous functions 

across various cell types C3 also is responsible for the proliferation and 

differentiation of leukocytes. 

C4 protein, in contrast, was found heavily downregulated via one of its two 

highly similar genes, C4A, and not associated with any particular cell type. As 

this was a downregulation at the peptide level it may be due to reduction in NF-

κB transcription regulation or enhanced cleavage. Its cleavage product C4b is a 

subunit of one of the C3 convertase enzymes which forms C3a and C3b; C3b is a 

subunit of the other C3 convertase. C4a is also an anaphylatoxin and C4b can 

operate as an opsonin. C4a upregulation has been detected in asthma, but only 

in blood samples (584;585). 

Karp suggests that the balance of C3a to C5a is important in the pathogenesis of 

asthma – that a C3a increase and C5a decrease potentially caused by allergens 
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such as smoke and by viral infections initiates the Th2 environment described in 

asthmatic lungs (586). Further, that the myeloid dendritic cells present under 

these conditions which produce CCL17 contribute to the development of this Th2 

environment. 

5.3.10.2 The PI3K/AKT Pathway 

Phosphoinositide 3-kinase (PI3K) is implicated in asthma pathogenesis in several 

ways and its inhibition has been shown to reduce mucous secretion, mast cell 

degranulation, and immune cell recruitment, and to cause bronchodilation, 

making this pathway an attractive target – however it also has protective effects 

on the airway (587). 

In the airway smooth muscle PI3K affects contraction, accumulation of 

contractile proteins, airway tone, chemokine/cytokine secretion, proliferation, 

migration, β-2 adrenergic receptor resensitization, and levels of CD38 – a 

calcium signalling protein involved in AHR (588-592). In the epithelium PI3K is 

involved in: responses to environmental stimuli such as viruses (593;594), 

inflammation via iNOS and VEGF (595;596), and IL-13 driven mucous 

hypersecretion (597). There is a high level of expression of PI3K in eosinophils, 

induced in part by Th2 cytokines IL4 and IL5 (598). PI3K is also responsible for 

neutrophilic and eosinophilic degranulation and cell migration (599;600). 

On the other hand PI3K negatively regulates both IgE – normally secreted by B 

cells – and its receptor – localised on the surface of mast cells – reducing mast 

cell degranulation (601) which normally results in the release of mediators of 

bronchoconstriction such as histamine and prostaglandin D2. It can also play an 

anti-inflammatory role, inhibiting pro-inflammatory cytokines and increasing 

macrophage production of anti-inflammatory IL10 (602). 

Somewhat surprisingly (as with NF-κB) in this cohort the direction of 

dysregulation of several molecules would indicate a reduced PI3K signalling - 

CALM, which is downregulated promotes PI3K activation; AHSG which is 

upregulated inhibits PI3K; GNB2 which is part of the pathway is downregulated; 

downregulated S100P activates the PI3K pathway; knockdown of EZR which is 
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downregulated can result in inhibition of AKT; dysregulation of KIT, TXN and PIP, 

below. A downregulation of the PI3K may itself contribute to downregulation of 

the NF-κB pathway. 

KIT Proto-Oncogene, Receptor Tyrosine Kinase (KIT) acts as a cell surface 

receptor for cytokine KITLG/SCF, and causes phosphorylation of many targets 

including PIK3R1 (the regulatory subunit of phosphatidylinositol 3-kinase, PI3K). 

KIT is correlated with eosinophils and epithelials in our data, and it is 

upregulated with asthma, suggesting a deactivation of PI3K. Interestingly its 

target phosphatidylinositol is a ‘self’ target of CD1B and it is also bound by 

SCGB1A1 which is a protein involved in phospholipase A2 inhibition and whose 

downregulation in induced sputum and bronchial brushings is linked with asthma 

(as in our data) (603-605). KIT also activates transcription factors STAT1, STAT3, 

STAT5A and STAT5B and activates the MAPK pathway. In mice it has been shown 

to be essential for alveolar maintenance and resistance to an emphysema-like 

disease (606). Knockdown of KIT in a murine model by siRNA reduces infiltration 

of eosinophils and lymphocytes to the lung tissue and BALF and reduces levels of 

IL-4 and IL-5 (found upregulated in this dataset) (607).  

Thioredoxin (TXN) is a redox-active protein which is dysregulated in childhood 

asthma (608), and in animal models it inhibits eosinophilic inflammation and the 

production of chemokines and Th2 cytokines, thus a decrease as in our data 

would lead to an increase in airway hyperresponsiveness (609). Inhibition of TXN 

in chickens results in the inhibition of the P13K pathway. Prolactin Induced 

Protein (PIP) is involved in AKT signalling (and actin binding) and has previously 

been found downregulated in chronic rhinitis, the same direction of change as 

with asthma in our data (610). 

 

5.3.10.3 S100 Proteins 

The S100 proteins are calcium binding proteins of a broad range of intracellular 

and extracellular functions and all three of the significant S100 proteins in this 

dataset were downregulated. S100P is a calcium-binding protein which forms 
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dimers with itself and with other S100 proteins. These dimers interact with the 

extracellular region of the AGER (aka RAGE) cell surface receptor. This S100P-

RAGE interaction activates NF-κB, MAPK, JNK, and PI3K/AKT pathways (611). 

miRNA-155 and miRNA-21 are regulated by S100P-RAGE signalling through these 

pathways (612;613). Interestingly an asthma medication, cromolyn sodium, binds 

S100P which blocks the S100P-RAGE interaction (614;615), which in this cohort 

may contribute to dysfunction. 

S100P dimers also bind and inactivate p53 protein (616) which triggers apoptosis. 

Although it inactivates p53 it also prevents its degradation by binding HDM2. 

S100P is increased in induced sputum of asthmatics after a high-fat meal (617). 

S100A6 has been detected in many cell types including lymphocytes, but most 

abundantly in epithelial cells and fibroblasts (618-620). It drives proliferation in 

pulmonary fibroblasts and affects cell morphology and cytoskeletal organisation 

(621). Its modulation of the cytoskeleton may occur through its binding 

structural proteins tropomyosin, various annexins, caldesmon and calponin (622-

625). It is involved in cell adhesion in various studies, with contrasting effects 

depending on cell type (626). In healthy rather than cancerous cells it seems to 

promote cell adhesion, particularly in conjunction with fibronectin and 

fibrinogen which are both also reduced in our data. This downregulation and loss 

of cell adhesion may occur as a result of decreased NF-κB signalling for which 

S100A6 is a target. 

S100A6 activates the JNK pathway, driving apoptosis (627), and it also seems to 

be involved in proliferation via MAPK pathway and others (628;629). This dual 

functionality may represent alternative functions in different cellular types and 

conditions or it may regulate proliferation and apoptosis simultaneously – both 

regulating apoptosis in target cells and driving proliferation in nearby cell of a 

different type or state (630). It has also however been shown to inhibit both 

processes under certain circumstances (631;632). Like S100P it also binds 

intracellularly to p53, inactivating but preventing degradation (633).  

S100A6 is correlated with eosinophils in our asthmatic non-smokers and healthy 

non-smokers, but no significant correlation is present regarding the asthmatic 
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smokers and healthy smokers. NF-κB acts as a transcription factor for S100A6 

and p53 inhibits transcription (634;635). It is upregulated under certain stress 

conditions, including oxidative stress (636) and under mechanical stress in 

fibroblasts (637). Mechanical stress can occur in the airway during 

bronchoconstriction, which without additional inflammation is capable of 

inducing airway remodelling (638). The compressed bronchial epithelium has 

been shown to produce collagens I and III (639) and to release exosomes (640). 

Other mechanical forces present might include stress from hypertrophy, 

hyperplasia or the periodic stresses from cell jamming (641). 

S100A6 is downregulated by asthma medication amlexanox (642). It binds with 

high affinity to GADPH (643). In Rat it has been shown to inhibit histamine and 

actin secretion in mast cells (644) and in Chicken it binds lysozyme which is also 

significant in our data (645). Lysozyme is a bacteriocidal enzyme which is 

expressed highly in mucosal secretions and neutrophil granules, and its 

bacteriocidal activity is inhibited by high levels of calcium (646). While lysozyme 

is effective at improving airway function in COPD it is not effective in asthma 

(647). It is involved in cell spreading and cell anchorage in fibroblasts (647) and 

promotes EMT under signalling by Sonic hedgehog-Gli1 (648). 

S100A9 stimulates NF-κB signalling (649) and MAPK signalling, via RAGE, 

recruiting fibroblasts to the lung (650), and has been implicated in neutrophillic 

inflammation in asthmatic patients (651). However, in asthmatic patients 

without increased counts of inflammatory cells S100A9 has been found to be 

downregulated (652). It also activates natural killer cells via RAGE (653) and 

induces MUC5AC production in airway epithelials (654). It forms a heterodimer 

with S100A8 which may be involved in neutrophil chemotaxis and adhesion to 

fibrinogen (655). This dimer binds and transports arachidonic acid, linoleic acid 

and others. When this heterodimer is phosphorylated it appears to alter its ion-

binding specificity, thus it accepts Cu2+ or Zn2+ which blocks binding with 

arachidonic acid and may induce alternative pathways. Equimolar tetramers can 

also form bound to Ca2+ ions – essential for formation of microtubules (656) –  or 

bound to Zn2+ ions (657). 



204 

 

S100A9 activates NADPH oxidase which produces inflammatory superoxide ions, 

however paradoxically it may also be involved in a protective anti-inflammatory 

effect via oxidant scavenging, possibly as part of a negative feedback loop to 

control excessive inflammation (658;659). This interaction also forms a link with 

energy metabolism, particularly in activated neutrophils where NADPH oxidase 

activity is increased and accounts for some of the increased glycolysis rate in 

response to inflammation (660;661). 

As a damage-associated molecular pattern (DAMP), S100A9 is one of a group of 

diverse molecules which respond to non-infectious damage and pro-inflammatory 

stressors, signalling IFNs through pattern recognition receptors like TLR4. The 

inflammasome reaction generated by DAMPs induces IL-18 expression, which in 

turn leads to the activation of NF-κB (662-664). 

 

5.3.10.4 Dendritic Cells 

CD1a has previously been shown to be upregulated in macrophages in BAL from 

asthmatic patients, and CD1a+ dendritic cells are increased in asthmatic 

bronchial epithelium. CD1C is a cell surface marker which is involved in antigen 

presentation and is usually expressed in dendritic cells. Airway dendritic cells 

express more of CD1C when presented with an allergen challenge (665) and it is 

upregulated in asthmatic patients (666). CD1A, CD1B and CD1C are all increased 

in asthmatics and correlated with eosinophils. It is possible that some of the 

eosinophil-correlated results relate to dendritic cell activity as the counts of 

activated eosinophils and dendritic cells in induced sputum are correlated (667). 

However eosinophils can also act as antigen-presenting cells (668). Each CD1 

protein complexes with a large set of specific self and non-self targets (669). 

Some self targets appear to be involved in blocking the large hydrophobic 

pockets of CD1 structures during trafficking to endosomes and then to the cell 

membrane. 

Another dendritic cell protein involved in antigen presentation and which is 

normally targeted by NF-κB, B2M, was downregulated in our data. It is known to 
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form heterodimers with CD1A, CD1B, and CD1C, and its absence has been shown 

to cause an immunodeficiency related to the major histocompatibility complex, 

and various respiratory conditions (670). 

CD207 (langerin) is expressed in langerin+ dendritic cells (Langerhans cells) 

which are responsible for LPS-induced reactivation of allergen-specific Th2 

responses in postasthmatic mice (671). These cells are responsible for another 

respiratory condition called pulmonary Langerhans cell histiocytosis which also 

causes inflammation and fibrosis.  

 

5.3.10.5 Hormonal Regulation 

IGFBP7, which binds IGF-I and IGF-II, was significantly downregulated in our 

data, though the relevance to asthma may be its promotion of cell adhesion. 

While growth factors such as IGF-I or EGF cannot directly induce androgen 

receptor activity, they can increase the effect of androgens, yielding large 

responses in the presence of low levels of androgens (672). SMR3B (Submaxillary 

Gland Androgen Regulated Protein 3B), an androgren-related protein was 

downregulated in asthma. SCGB2A1 (Secretoglobin Family 2A Member 1) may 

bind androgens and other steroids, and appears to undergo alternative 

splicing/modification, with one significant peptide upregulated and another 

downregulated. A SNP in another gene of this family, SCGB3A1, is implicated in 

asthma, which is consistent with the downregulation in our data. AKR1C2 (Aldo-

Keto Reductase Family 1 Member C2) catalyses the inactivation of androgens, 

was upregulated in our data and correlated with epithelial cells in asthmatics 

amongst smokers. 

MAO-A (Monoamine Oxidase A) degrades norepinephrine, serotonin and 

dopamine, which are all correlated/involved with asthma and/or 

bronchodilation (673-676), and it produces hydrogen peroxide. A significant gene 

involved in reducing hydrogen peroxide levels, PRDX5, is downregulated 

potentially leading to even greater levels. Hydrogen peroxide is increased in the 

exhaled air of asthmatic patients (677) is inflammatory and in epithelials (one of 
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the cell types it was correlated with) it drives EMT. MAO-A also appears to be 

involved in apoptosis (678;679).  

Glutathione S-Transferase Alpha 3 (GSTA3), which is involved in testosterone and 

progesterone synthesis, was downregulated significantly in asthmatics amongst 

non-smokers. Lipocalin 1 (LCN1) was upregulated in asthma and another 

lipocalin (LCN2) was downregulated, possibly as a result of reduced NF-κB 

signalling. Both are involved in the extracellular transport of small hydrophobic 

metabolites. LCN2 has been shown in a murine model of allergic airway disease 

to prevent airway inflammation (680). 

 

5.3.10.6 Other Interesting Results 

While MUC5AC was upregulated two other mucins were downregulated, however 

a reduction in these particular mucins may not be advantageous to asthma 

pathology as initially expected. MUC7 is a small mucin which facilitates bacterial 

clearance, and which an allele of was associated with asthma (681). This adds to 

the effect of reduced mucociliary clearance from downregulated CALM. MUC1 is 

a mucin associated with anti-inflammatory effects in the lungs (682). Trefoil 

Factor 3 (TFF3) is a trefoil – a family of mucin-associated genes, which have 

mostly been studied in the context of the intestinal epithelium. Trefoils are 

involved in various signalling pathways (683) and affect physical properties of 

mucous which they partly comprise, possibly by linking mucins. TFF3 is 

expressed in goblet cells in various epithelia of the body including the airway 

epithelium (684) and its presence in mucous appears to increase viscosity (685). 

It is expressed more in neutrophilic asthma and paucigranulocytic asthma than 

eosinophilic asthma (686), and it has also been upregulated in severe asthma, as 

in our data (687). Prominin 1 (PROM1), which is involved in mucocilliary 

differentiation in the epithelium, was upregulated, though its precise effects are 

unknown (688). 

Proline Rich 4 (PRR4) is a gene of unknown function which is secreted and 

appears to have a protective effect. Downregulation of this gene has been 
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implicated in other pathologies (689;690) as in our data, however its 

upregulation has previously been detected in asthma (691;692). SPRR3 is a 

cornified envelope precursor protein, mutations in which have previously been 

implicated in asthma (693). 

SERPINF1 is known to normally be involved in anti-angiogenesis, so we might 

expect it to be downregulated in asthma, however it is upregulated in our data. 

It has previously been upregulated in three studies of emphysema (694). 

SERPINC1 and SERPING1 were also upregulated in asthma. SERPING1 inhibits the 

complement system via components of the C1 complex, and also inhibits factor 

XIIa, chymotripsin and kallikrein. SERPINC1 is also an inhibitor of thrombin, along 

with blood clotting factors IX, X and XI. Thrombin is often implicated in tissue 

remodelling, including in asthmatic airways (695). SERPINB1 is an NF-κB target 

and is downregulated in this dataset, and through its protease targets normally 

acts to prevent damage from neutrophil-associated inflammation. SERPINA1 – 

also a target of NF-κB - is an inhibitor of elastase, plasmin, thrombin, trypsin, 

chymotrypsin, thrombin, and plasminogen activator, and has proteolytic activity 

against insulin. It has previously been found upregulated in asthmatic sputum, 

contrary to our data, however this is perhaps not surprising given its multiple 

targets. Another serine protease which is downregulated, KLK11, targets bz-Phe-

Arg-4-methylcoumaryl-7-amide and other kallikrein and trypsin substrates. 

Previously an exercise-induced upregulation has been reported (696). 

Histamine is involved in both early and late phase allergic response and is 

released by basophils and mast cells. Levels of histamine in BALF correlate with 

bronchial hyperresponsiveness (697). Histamine receptor H4 (HRH4) reduces LPS-

induced TNF production in vivo. Polymorphisms in this gene are associated with 

asthma - particularly infection-induced asthma (698). HDC converts histidine to 

histamine and was strongly downregulated and correlated with eosinophils in 

asthmatics amongst non-smokers. 

IL-18 is increased in induced sputum of severe asthmatic patients (699) and IL-

18R1 has also been found upregulated in severe asthmatics (700) and asthmatics 

with eosinophilia (701). IL-18R1 is increased in asthmatic patients in our data 

and correlated with eosinophils and neutrophils. IL-18 has had contradictory 
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reports on its function in neutrophils – e.g. one study reporting an anti-apoptotic 

effect and expression of almost exclusively the beta receptor (702), another 

reporting enhanced adhesion molecule expression, respiratory burst, and 

chemokine production – but no apoptotic effect – and constitutive expression of 

both the alpha and beta receptors (703). Two SNPs in IL-18R1 encode variants 

with a higher rate of transcription, which are associated with asthma (704). IL-

18 can activate NK cells and co-stimulate production of IFNγ via immunoglobulin 

receptors (705). 

CST1 (Cystatin SN/Cystatin 1) and CPA3 (Carboxypeptidase A3) were both 

upregulated and eosinophil-correlated, and have previously been found 

dysregulated with exercise-induced bronchoconstriction in asthmatics, in an 

airway environment of high levels of leukotrienes and increased epithelial 

shedding (706). Cystatins inhibit the proteolytic activity of endogenous and 

exogenous cysteine proteases, which normally act to degrade proteins and 

modify proteins/proproteins. They are part of a complicated system tightly 

regulating proteolytic burst under particular circumstances, and the disturbance 

of this system is implicated in several diseases. CST1 is extracellular and inhibits 

cathepsin C. Cathepsins can be secreted to degrade the extracellular matrix. 

CST1 also binds and inhibits cystatin 3 (CST3), which was downregulated in our 

dataset, interfering with its inhibition of cathepsin B (707). In fact the apparent 

downregulation of CST3 at the protein level may be due to this dimerisation, 

driven by the increase in CST1 transcription. CST3 can form inactive homodimers 

and amyloid fibrils (708), and has been shown to inhibit the replication of herpes 

simplex virus (709). Like CST1 it is a type II cystatin and is extracellular, 

however it can be re-internalised to the intracellular compartment - in 

particular to lysosomes (710). 

CPA3 is a protease of exogenous and endogenous targets and is a marker for a 

connective tissue subtype of mast cells which are not commonly found in the 

lung but are associated with severe asthma and COPD. Presumably this is the 

product of mast cells in our data also, despite our correlation with eosinophils – 

there is a correlation between mast cells expressing CPA3 and eosinophil 

recruitment (711). Indeed CPA3 and TPSAB1 (also known to be secreted by mast 

cells) have been suggested as biomarkers of eosinophilic asthma (712;713).They 
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are expressed more in peripheral airways in severe asthma and in normal 

patients (714). In a study using them as markers of mast cell subtypes indicative 

of asthma (715), 7/14 genes differentially expressed across mast cell subtypes 

were found also in our results (CD1A, CD1B, CD1C, CLEC4F, DNASE1L3, FCER1A, 

HDC). CLEC4F is a receptor which is correlated with epithelial cells and 

eosinophils and upregulated in our data. It was until recently thought to be 

solely expressed in the liver, where it responds to galactose, fucose and 

glucosphingolipids (716). In a respiratory and particularly an asthmatic context it 

may be a receptor which responds to environmental stimuli (perhaps mostly 

bacterial in origin), leading to secretions from mast cells involved in eosinophil 

recruitment. Genetic variation in CLEC4F has been linked with susceptibility to 

Pseudomonas aeruginosa lung infection in mice (717). 

DNASE1L3 is a calcium-dependant enzyme which hydrolyses DNA. Our results 

correspond with the increase in asthmatic sputum reported for this gene 

previously and the correlation with eosinophils corresponds to it being a marker 

of eosinophilic asthma (718). DNASE1L3 and CPA3 also discriminate between 

steroid responders and non-responders (719). 

BPIFA2 plays role in antibacterial response in the upper respiratory airways by 

binding LPS and inhibiting bacterial growth. The upregulated GOLM1 has an anti-

viral response. The class II major histocompatibility complex gene HLA-DQB2 

which is involved in antigen presentation was downregulated. A component of 

class I histocompatibility complex was also downregulated. BPIFB1 binds and 

modulates responses to LPS, and is an autoantigen. Similarly to TFF3, it is 

upregulated in asthma, it is eosinophil-correlated and epithelial-correlated, and 

it is expressed more in neutrophilic asthma and paucigranulocytic asthma (720). 

BPIFB2 is a member of the lipid transfer/lipopolysaccharide binding protein gene 

family, and was downregulated in asthma and correlated with eosinophils. 

DMBT1 (Deleted In Malignant Brain Tumors 1) is a calcium-dependent enzyme 

which may be involved in anti-bacterial defence and epithelial differentiation. 

Lacritin (LACRT) is a Ca2+ binding protein normally secreted in tears and saliva 

and is involved in epithelial proliferation, survival, and wound healing. YWHAB 
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was strongly downregulated in asthma amongst non-smokers, and a SNP in this 

gene has been previously reported as associated with asthma (721). 

Five out of eleven significantly dysregulated immunoglobulin peptides (IGG1, 

IGHG1, IGLV1-51, IGLV1-44, IGHV3-23) were upregulated and correlated with 

eosinophils. Of the remaining immunoglobulin peptides one was upregulated and 

the remaining were downregulated, and none were correlated with cell types. 

A peptide derived from AGT, whose initial protein product (angiotensinogen) is 

converted into the active protein angiotensin II, is upregulated in asthma. While 

CPA3 (which can cause the first step of this conversion into angiotensin I) is 

upregulated, CTSG which can cause the second step is downregulated – however 

other enzymes can cause this conversion. Angiotensin II is mostly studied in 

respect to cardiovascular phenotypes (as in chapter 4) however it also is known 

to cause bronchoconstriction. Haemoglobin subunits HBB and HBD were found 

upregulated with asthma in our dataset, and HBD is correlated with eosinophil. 

HBB has previously been found upregulated in asthmatic lung biopsies (682). 

ENSG00000258752, FGFBP1, KRT10, PRH1/PRH2 and TMEM151B are all correlated 

with epithelials and eosinophils, and they are all upregulated in asthma in our 

data. ENSG00000258752 is an anti-sense RNA gene which has been previously 

detected in BALF, where its downregulation coincided with severity 

of pneumonia infection (722). It inhibits translation of the transcription factor 

FOXN3, which otherwise acts to inhibit cell proliferation (723). It has also been 

shown that FOXN3 binds beta-catenin, blocking its interaction with at least one 

other protein (724). Little is known about the transmembrane protein 

TMEM151B, but in this context, and given its correlation with epithelials and 

eosinophils it might be logical to assume that it is a receptor on the surface of 

the epithelium, affected by environmental stimuli and whose downstream 

effects include eosinophil recruitment or function. FGFBP1 codes for a secreted 

fibroblast growth factor carrier protein which binds FGFs, particularly FGF2, 

facilitating its release from ECM storage enhancing their mitogenic activity and 

aiding in epithelial repair. It has previously been detected upregulated in severe 

asthma (725) and its target FGF2 has been implicated in atopic asthma 

(726;727). KRT10 encodes a type I cytokeratin, which form part of the 
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cytoskeleton (the intermediate filament) in epithelial cells. It has previously 

been shown upregulated in asthmatic sputum (728). Interestingly it interacts 

with AKT1 – a protein whose phosphorylation by activated PI3K can cause many 

downstream effects including mTOR activation – apparently preventing its 

translocation and therefore subsequent activation. A type II cytokeratin, KRT4, 

is upregulated in our data and correlated with epithelial cells. The acidic KRT10 

and basic KRT4 may interact with each other in epithelial cells to form the 

acidic-basic keratin heterodimers which chain to form keratin filaments. KRT4, 

like KRT10, is epithelial-correlated in our data. 

Interestingly a number of genes which have previously been identified as 

biomarkers of response to exercise challenge in asthmatics with exercise-

induced bronchoconstriction were recorded as dysregulated without exercise 

challenge in our cohort of severe asthmatics – CST1, CPA3, CD207, MUC5AC, 

TFF3, TPSAB1, and TSPAN8 (729). All were upregulated in both cohorts and 

eosinophil-correlated in our data (MUC5AC, TFF3, and TSPAN8 were all also 

epithelial-correlated). 

 

5.4 Conclusions 

While measuring cell types as percentages of a number of cells counted rather 

than as a number of cells per unit volume could be somewhat problematic – due 

to large variation in one cell type obscuring variations in other cell types – cell 

type percentages still seem beneficial to downstream analysis. In some cases 

cell type correlations indicate which cell type might be involved in regulation or 

production of the molecule, and in the case of miRs they seem to indicate a 

large percentage produced by macrophages and endocytosed to interact with 

gene products of other cell types. Something similar might also be helpful with 

other relevant, less abundant, cell types such as mast cells, dendritic cells and 

goblet cells. 

Many of the molecules identified verify previous work in other cohorts, and many 

others seem to be totally novel, and in need of further research. Smoking and 
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COPD contrasts for induced sputum show significant widespread dysregulation 

across thousands of genes, however less than a hundred in each have a two-fold 

difference. Of these two-fold differentially expressed molecules there were 

three in common between asthma and COPD (F13A1, MMP10, IL18R1), and four 

in common between asthma and smoking (FCER1A, CD1A, CD1B, HLA-DQB2). 

Results demonstrated how important smoking status is when investigating the 

asthmatic airway. While the contrast of all asthmatic patients vs all healthy 

patients gave almost twice as big a sample size the results for non-smokers alone 

had more significant results. And not only were some results significant in one 

set and not another, some molecules were differently regulated depending on 

smoking status , e.g. lysozyme which has bacteriostatic and bacteriocidal 

properties. One gene which works in concert with lysozyme for its bacteriocidal 

effect, lactoferrin has many relevant functions for the asthmatic airway, 

however it is difficult to discern the effect of its differential regulation as one 

peptide is significantly increased and the other significantly decreased with 

regards asthma. A fourth asthma contrast may even have been helpful, 

comparing smoking asthmatic patients to healthy non-smokers. 

The interaction networks show the high connectivity of the pathway(s) 

underlying asthma, which highlights the complexity of the system. While these 

interaction networks were informative the available databases only contain a 

fraction of the information available in the wider literature and only indicated 

direct relations without ‘gaps’ where data may be missing. 

Large disruptions exist in relation to calcium signalling (particularly calmodulin), 

the extracellular matrix (with a focus on fibronectin), and actin – each spanning 

a large number of dysregulated mRNAs, peptides and miRs. These dysregulations 

and others appear to underlie a system wherein bacterial killing, the epithelium 

has reduced barrier function, mucous is upregulated and it (along with allergens 

and pathogens therein) is poorly cleared from the respiratory tract. Surprisingly 

there are several indicators of NF-κB being downregulated despite its known 

involvement in inflammation and previous implication in asthma through studies 

with murine models – and similarly with PI3K. This potential reduction in NF-κB 

activity may be due to the reduced levels of calmodulin or other factors. 
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Several drugs are being developed and tested towards targeting well-studied 

molecules with respect to asthma, including IgE and interleukins (730-732), and 

calcium signalling (733). The poor effect of calcium channel blockers in human 

trials may be reflected by the reduced CALM expression seen in the induced 

sputum of this cohort. Mepolizumab and Reslizumab should have efficacy for this 

cohort, as it exhibits high IL-5 expression. There is also some indirect and weak 

evidence that mAbs for IgE and IL-13 could have beneficial effects. The 

knockdown of upregulated genes by siRNAs or synthetic miR mimics may be 

interesting future therapeutic targets, particularly those which have multiple 

significant targets backed up by significant correlations. 
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6. General Discussion 

While in hypothesis-based research we ask ourselves “why do this”, in 

hypothesis-free we should instead ask “why not do this?”. Diseases are not 

limited to an individual class of biomolecule so ideally we should look at 

multiple omics technologies simultaneously. While a single-gene disorder might 

not require such an extensive approach, many of the diseases which have the 

highest mortality and biggest effect on quality-of-life are complex diseases 

which are still poorly understood at the molecular level (including those 

respiratory and cardiovascular diseases discussed). 

DNA methylation microarrays are relatively inexpensive ways to assess 

differential methylation at a large number of sites across the genome, however 

they are prone to false positives where a CpG site coincides with a SNP. By 

combining these data with SNP data, this drawback is eliminated. The 

shortcoming with this approach is when there is incomplete coverage of SNP 

data, as with the dataset in chapter two - where SNP data was also assessed by 

microarray rather than by sequencing. In this way data from one omics 

experiment supplemented the analysis of another. Another method to overcome 

this issue was to summarise methylation values of CpGs by regions of the genes 

in which they are annotated - rather than grouping them across the entire gene 

since DNA methylation in different gene regions appears to correlate to different 

effects, be it causative or not. This way they are again less prone to the 

interference of a single SNP and there is less of a statistical cost in multi-test 

adjustment. This was helpful with the dataset regarding DNA methylation in 

essential hypertension as sample size was extremely small for an omics 

experiment. While the sample size was small the samples originated from a 

much larger cohort and their selection made use of extremes of phenotype and 

genotype. 

The results of this experiment implicated NADK, CHID1, and APTX as being 

differentially methylated in essential hypertension. Nicotinamide adenine 

dinucleotide phosphate is a coenzyme which, in its reduced form (NADPH), acts 

as a reducing agent to restore all known innate defence systems against 
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oxidative stress. In doing so it is itself oxidised and can be returned to its 

reduced form by NADP-dependant dehydrogenases – by this action these enzymes 

form the main protection against oxidative stress. However, since NADP mainly 

exists in its reduced state in human cells, by increasing the overall pool of NADP 

the amount of reduced NADP is increased - and so NADK is responsible for a 

moderate protective effect also. Hypomethylation of NADK detected in 

discordant controls may be responsible for an increase in expression of NADK and 

in turn a greater protective effect against the potentially hypertension-inducing 

effects of oxidative stress - potentially explaining why individuals with a higher 

genetic risk for hypertension might not express the phenotype. A SNP 

(rs1130355) for which there is no data within the significant NADK CpG site with 

a high minor allele frequency (MAF) of 0.36 could be the true source of the 

association with hypertension. If it were this SNP itself it would be a novel 

association. 

CHID1 and APTX were also differentially methylated across several group 

comparisons of hypertension phenotype and genotype. CHID1 may function to 

combat inflammation and its effect on hypertension - also ultimately by 

oxidative stress - by neutralising LPS and other pathogen-derived antigens. APTX 

is involved in DNA repair in response to oxidative stress, along with another 

differentially methylated gene PARP1, which it is known to interact with. APTX 

and PARP1 may simply be genes which are activated in response to DNA damage 

occurring in the context of hypertension rather than being causative themselves. 

Further work is required to verify these data, ideally with the gold-standard 

bisulfite sequencing method. The next steps would be to assess whether these 

instances of confirmed DNA methylation truly lead to differential expression of 

the identified genes or genes which are genomically proximate. Finally this work 

would be validated in another cohort if possible, potentially elucidating 

mechanisms of hypertension and identifying epigenetic marks which could be 

used towards patient stratification for personalised treatment. 

Using both molecular and clinical variables in multiple linear regression, a linear 

model for the development of left ventricular mass index (LVMI) was derived - 

collagen peptide, a haemoglobin beta peptide, phenylacetylglycine, angiotensin 
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A/angiontensin II, sex, and systolic blood pressure (SBP) - which describes 

approximately 29% of the variation in LVMI. Angiotensin A and Angiotensin II 

were too highly correlated to make a meaningful distinction between them. Sex 

and SBP were determined to be important independent clinical predictors in a 

model derived from only clinical predictors, along with body mass index, heart 

rate and history of congestive heart failure (CHF). With missing data imputed the 

same combined model is derived but with the addition of BMI and HR, 

demonstrating that all of the molecular variables in the combined model are 

independently predictive of the clinical model - except CHF which may have 

been missing due to having very few occurrences across the dataset. 

This indicates that the molecular processes of left ventricular hypertrophy (LVH) 

underlying these molecular variables are at least partially distinct from the 

molecular processes related to the clinical variables. Clinical variables such as 

blood pressure clearly drive the development of LVH, however not all 

hypertensive patients develop LVH, and these molecules which describe 

variation which is distinct from easily-measured and well-understood clinical 

measures are promising for the discovery of novel LVH mechanisms and drugs 

which could target these mechanisms. 

The combination of clinical and molecular data can explained several times the 

variance of most individual biomarkers, and approximately an additional 10% of 

total variance than clinical markers or molecular markers separately. Some well-

established markers of LVH, such as angiotensin II, only become apparent in the 

presence of the confounders or the full clinical model, demonstrating the utility 

of analysing putative predictors of different types in combination when analysing 

complex diseases/processes. 

Urinary phenylacetylglycine appears to be the most important molecular 

predictor. It is associated with heart failure (an end-point of LVH) and 

phospholipidosis which may be responsible for causing cardiac cell hypertrophy 

and fibrosis. Angiotensin II is well known to increase blood pressure and has been 

shown in rats to have a blood pressure independent effect on LVM – an 

association also demonstrated in humans in the data presented here. This 

independent association may be through driving hypertrophy via inflammation 
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and oxidative stress, and by interactions with the sympathetic nervous system. 

The inclusion of a haemoglobin beta peptide in the model may represent the 

causal link between anaemia and left ventricular mass in patients with chronic 

kidney disease and patients with end-stage renal failure. The collagen peptide 

may be indicative of cardiac fibrosis which is a process which occurs during the 

development of LVH and it is characterised by an increase of collagen and other 

extracellular matrix components, whose accumulation causes stiffness and 

impairs function. 

Some other significant molecules not included in the model were also of 

interest. miR-18a-3p whose 5p arm is negatively associated with age-related 

heart failure in mice was instead positively associated LVMI. The other miRNA 

miR-92b-3p is positively associated with heart failure in human. PICP:CITP ratio 

has been previously suggested as an index of the coupling between collagen 

synthesis and collagen degradation. This composite value representing collagen 

turnover was found to be more strongly predictive of LVMI than the marker of 

collagen synthesis alone. Our results confirm a previous finding that while blood 

glucose is predictive of LVMI it is not predictive independently of BMI. 

Trimethylamine (TMA) is produced by gut bacteria from dietary choline, 

phosphatidylcholine, and carnitine. In the liver it is oxidised by FMO3 into 

trimethylamine-n-oxide (TMAO) which is associated with heart failure and poorer 

prognosis in chronic heart failure patients.  We detected a negative LVMI 

association with molecules with TMA, perhaps due to increased FMO3 activity 

converting TMA to TMAO. 

While the PCA-varimax solution is substantially less time-intensive and is 

appealing in its inherent description of relationships between input variables and 

original components, it is far less comprehensive than the screening-modelling 

approach, it is less well-known and harder to describe the underpinnings of it to 

other researchers, it provides less useful statistical output, and in a sense it is 

biased towards the largest datasets when using multiple sources of data (i.e. 

testing different types of biomolecules with different methodologies). 

Where significantly differentially regulated asthma genes comprised a relatively 

small list which were mostly two-fold dysregulated, there was a broad pattern of 
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dysregulation associated with COPD and smoking, consisting of thousands genes 

with <2-fold changes. While only three genes were found statistically 

significantly dysregulated two-fold in both asthma and COPD, term enrichment 

analysis showed dysregulation of similar terms indicating the involvement of the 

complement system and matrix metalloproteinase activity. Metabolomic analysis 

did not show any significant results after multi-test correction partly due to 

small sample sizes and also due to incorrect sample selection and by metabolite 

samples being stored in different media. 

Results of the interaction network generated for the induced sputum results 

indicate a large cluster of downregulated fibronectin and actin associated genes 

which may correspond to a reduction in epithelial barrier function (via 

downregulated peptides relating to tight junctions, adherens junctions, 

desmosomes and microtubules), allowing ongoing sensitisation from allergens 

and an increased risk of infection from pathogens. While much of the fibronectin 

associated section of the graph does not maintain significance in asthma 

amongst smokers, it does mostly maintain large fold changes consistent with the 

direction of the other asthma contrasts. It also correlates strongly with FEV1 and 

while steroid dose is not predicted to have a strong effect on expression it does 

seem to 'act against' the dysregulation of these molecules in asthma. 

The interaction network also indicates a number of miRs potentially produced by 

macrophages, secreted, and targeting gene products in or from other cell types. 

This section of the graph is much more altered by smoking status, and less 

consistent with regards steroid dose effect. Many of these miR targets are known 

or suspected to be involved in asthma and many of the interactions show 

significant correlations between miR and target. 

Somewhat surprising, given data from murine models of asthma and its effect on 

airway smooth muscle cells, calmodulin is downregulated. Calmodulin is a 

ubiquitously-expressed protein which regulates a wide variety of relevant 

processes including inflammation, metabolism, apoptosis, immune response, 

secretion, mucociliary clearance, and smooth muscle contraction. Calmodulin, 

along with many other dysregulated genes is also involved in calcium 

homeostasis. Cell staining could provide valuable insight into the effect of these 
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dysregulations, in terms of calcium content intracellularly, and within particular 

compartments like the endoplasmic reticulum. 

There are also indications that NF-κB and PI3K pathways may be downregulated - 

possibly by calmodulin, and other dysregulated molecules with known effects on 

these pathways - which would also be surprising given their involvement in 

inflammation and evidence from murine models. NF-κB may instead be involved 

in pathogenesis (along with many other dysregulated genes) through a 

contribution to reduced barrier function and a reduced ability for macrophages 

to kill bacteria. Calmodulin may be involved in these processes too along with a 

reduction in mucociliary clearance which results in excess mucous and a pro-

bacterial environment. The activity of NF-κB and PI3K pathways should be 

confirmed along with the level of glycolysis, which is normally high in asthmatic 

airways but in term enrichment indicated the opposite and further analysis of 

the results had mixed indications – reduction in glycolysis would be consistent 

with reduced PI3 signalling however.  

While its overall expression may not be altered much between groups on an 

mRNA level, there are two lactoferrin peptides which are dysregulated in 

different directions. Lactoferrin has many relevant effects including 

bacteriocidal and bacteriostatic activity, anti-inflammatory activity, wound 

healing, and attracting of eosinophils (which are increased in number). Lysozyme 

which it requires for its bacteriocidal activity is regulated differently depending 

on smoking status, along with lipocalin-1 which both lactoferrin and lysozyme 

interact with. 

In addition to macrophages being reduced in number and there being molecular 

indications of their reduced capability for bacteriocidal activity, there is also 

evidence from both miRNAs and from MMP10 mRNA that they are converted 

towards an M2 (anti-inflammatory) type. 

Many of the molecules identified verify previous work in other cohorts, and many 

others seem to be totally novel and some which require further research to 

validate and verify - particularly those which appear to run counter to previous 

findings. Novel asthma-associated miRs and their known/likely targets should be 
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validated and verified in another cohort, perhaps starting with those miRs with 

multiple targets with significant correlations (miR-151-5p, miR-155-5p, miR-30a-

3p, and miR-34a-3p). Their identity as exosome-contained miRs could be 

confirmed also (rather than acting intracellularly), as has been done in previous 

work on macrophage-derived miRNA exosomes. Antagomirs could allow study of 

their effects in isolation in airway cells in vitro and synthetic miRs may prove to 

be useful for treatment in the future. The results of this study should also be 

taken in combination with other analyses of asthma (particularly those using 

human samples) to generate a list of biomarkers which could be used on a much 

larger sample set, towards identifying subtypes of disease. 

Regardless of the scale of the omics study there may be potential for wider 

usage of data beyond the usual fold changes, term enrichments, and clustering 

usually reported in the literature. Counts of cell type appear useful for 

performing correlations to help determine which cell of a mixed sample is 

responsible for the production or regulation of the molecule-of-interest. The 

same could be interesting for the effect of drugs, measurements of phenotypes, 

and anything which is relatively easily quantified in the clinic or lab. Even when 

relatively few associated data are available, typically-recorded demographic 

variables can be useful for downstream analysis. 

In addition to the extra work that could be routinely done in omics datasets in 

order to generate hypotheses, a corresponding increase would also be required 

in the lab to test those hypotheses - the barriers to research in biology are 

quickly transitioning from technical limitations to logistical problems with their 

roots in politics and economy. Even many of the statistical methods which have 

only relatively recently come into use were developed decades ago before the 

data and computing power were available. 

One specific recurring issue which would seem relatively trivial to improve is the 

completeness of the accompanying data. It is to be expected that some variables 

are more difficult to gather due to time constraints, patient compliance, and 

technical difficulties, however simple measurements such as height or age 

should not be missing, and the effect on the power and accuracy of downstream 

statistics may not be trivial considering the low samples sizes often involved. 



221 

 

Care should be taken to identify all the relevant clinical variables prior to a 

study and to place appropriate focus on the lab and clinical work involved in 

gathering those data. 

Ideally a bioinformatician or systems biologist would work in cooperation with 

other molecular biologists, in order to do more extensive literature searches, 

though an extensive molecular interactions database and a suite of attached 

tools would help in this direction. Such a database should cover all types of 

biomolecular interactions, be free for academic use, be manually curated, and it 

have an indicated species, sample type, evidence type (e.g. yeast two-hybrid), 

and publication source for each interaction. An associated mapping tool should 

allow the stylising of edges to show different types of relationships, and 

facilitate the application of multiple variables to the nodes, e.g. by shape, fill 

colour, border colour, and asterisks. It should also allow various additional 

features such as the inclusion of neighbouring molecules which meet certain 

conditions (e.g. relation with ‘x’ number of dysregulated molecules), or the 

displaying of results in the context of a pre-defined pathway. 

Doing multi-omics analysis in a collaborative effort is more advantageous to 

several omics experiments being funded to analyse different sets of 

biomolecules in different cohorts, but towards the same ends. A multi-omics 

approach allows for relationships between molecules to be elucidated, which 

allows for enhanced interpretation and more informed selection of molecules for 

validation and verification. Similarly the addition of clinical data as in chapters 4 

and 5 can help describe more variation than the molecular variables alone, and 

help more fully describe the molecular results. 

Non-linear relationships are still a challenge to analysis, with no single obvious 

solution. An area of analysis which could be improved is the access to biological 

knowledge in the literature, and how that can be used to provide a greater 

context for the results. Heuristic methods should be developed to aid 

researchers in this respect, but their efficacy will rely on the quality of the 

underlying database. Ideally these methods for pathway assembly should be 

flexible to any number of omics sets, and should be trained and tested against 

well understood systems where possible. 
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Each disease may have several distinct subtypes and each subtype potentially 

caused by a multitude of possible polymorphisms within the same set of genes or 

pathways. This may be the case even where patients are clinically identical. Or 

perhaps the subtypes are not so distinct, and a disease comprises and large 

number of possible combinations of disease predictors. Until such diseases are 

better understood at the molecular level it may be wise to act towards larger, 

more collaborative efforts (such as EU-MASCARA in chapter 4), using multiple 

omics methodologies on the same cohort (as in the CAB study in chapter 5), 

rather than splitting focus into smaller studies with less statistical power and 

less scope. Using multiple omics methodologies not only allows a greater view of 

the ‘molecular landscape’ of a disease but generates data which would not exist 

if experiments were done separately – e.g. evidence of SNP interference in DNA 

methylation experiments, correlations between miRNAs and the mRNAs they 

target, and the metabolic effects of combinations of differentially expressed 

proteins. Unfortunately in chapter 4 the omics methodologies chosen did not 

reflect a wide spread of the biology, and in chapter 5 there were small sample 

sizes and errors in sample storage and selection which compounded problems. In 

addition the comparison to COPD was hampered by the lack of proteomics 

samples for that disease type. 

Due to the variety of the available datasets this thesis covered a wide spectrum 

of techniques which were used to analyse a variety of diseases and disease-

related variables, some of which were respiratory and others cardiovascular in 

nature, and therefore it does not come with a clear-cut message. However, a 

range of approaches were explored in relation to omics-level analysis which not 

only contribute to the knowledgebase of each individual field – furthering future 

research therein – but also identify useful methods of integrative analysis to be 

used for the systems biology analysis of complex human disease. 
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7. Appendix 

 

Fig. 7-1 Comparing Results of Different Statistical Contrasts When Applied to mRNA Data. 
The numbers of mRNA microarray hits are shown for each contrast. NS: non-smoker, FC2: two-
fold change criteria also met. 
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Fig. 7-2 Comparing Results of Different Statistical Contrasts When Applied to Protein Data. 
The numbers of proteomics hits are shown for each contrast. NS: non-smoker, S: smoker. 
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Fig. 7-3 Comparing Results of Different Statistical Contrasts When Applied to miRNA Data. 
The numbers of miRNA microarray hits are shown for each contrast. NS: non-smoker, S: smoker, 
FC2: two-fold change criteria also me
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Fig. 7-4 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured By Asthma Fold Change 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with – reducing the complexity of the network by 26 edges. 
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Fig. 7-5 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured By Fold Change of Asthma in Non-Smokers 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with – reducing the complexity of the network by 26 edges. 
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Fig. 7-6 Interaction Network Constructed from Hits from all Three Asthma Contrasts – Coloured By Fold Change of Asthma in Smokers 
This network shows interactions between molecules with a significant two-fold difference in at least one of the three asthma contrasts. Interactions were gathered from 
interaction databases and directly from the literature and only inconsistent directions of fold change were excluded. The FN1 node is represented as a container for 
many of the nodes it interacts with – reducing the complexity of the network by 26 edges.
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