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Abstract 

Cutaneous squamous cell carcinoma is the second most common skin 

cancer and the most commonly diagnosed cancer capable of metastasis 

diagnosed in Caucasians. While many are surgically curable, survival rates for 

those which metastasise to regional lymph nodes and beyond are dismal in 

comparison, with 5-year-survival estimates averaging around 30%. There is a 

clear need, therefore, to establish better prognostic markers and systemic 

therapeutics to avoid or treat metastatic disease. 

While chemical carcinogenesis of mouse skin has been the mainstay of 

cSCC research for decades, this process introduces a raft of mutations which are 

not integral to cancer development and the papillomas generated have a low 

rate of conversion; therefore, transgenic models mimicking the initiation and 

promotion steps have been developed to study specific pathways. Using a 

modified human Keratin 1 (HK1) promoter, oncogenes H-Ras and Fos have been 

targeted to the epidermis to study their involvement in initiation and promotion 

and, together, generated aggressive yet benign papillomas. Further work found 

that induced ablation of the Pten tumour suppressor, which results in 

deregulation of the PI3K/Akt pathway, reliably caused conversion to well-

differentiated SCC in this HK1.ras/fos-Δ5Pten model, marked by loss of the 

major TSG, p53, due to upregulating of its main inhibitor, Mdm2. Thus, the first 

area of study investigated the p53-Mdm2 interaction, which identified the 

chaperone protein 14-3-3σ, known as Stratifin, as a positive regulator of p53. 

Stratifin was found to persist after loss of p53 in HK1.ras/fos-Δ5Pten wdSCCs, 

alongside cell cycle regulator p21, but was lost as tumours converted to poorly-

differentiated SCC. This apparent tumour suppressor role fit with much of the 

literature which described its functions in differentiation and cell cycle arrest, 

as well as its role in protecting p53. 

In light of this, a transgenic mouse model was obtained which 

overexpressed Stratifin in the skin and hair follicles using a Keratin 14 promoter 

(K14.stratifin), with the intention of suppressing tumour conversion in the 

HK1.ras/fos-Δ5Pten model of carcinogenesis, in part via p53 protection. The first 

step introduced the K14.stratifin transgene into this multistage model and, 

unexpectedly, initial HK1.fos/K14.stratifin mice developed rapidly growing 
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keratotic tumours on the ears which were found to convert to malignancy at an 

early stage. Detailed analysis found that these tumours seem to recapitulate an 

under-recognised subtype of cutaneous SCC arising from the hair follicle (HF) 

cells; fSCC. Further investigating discovered that mice harbouring the 

K14.stratifin transgene aberrantly express murine K1 in the HF, indicating that 

these fSCCs were possible due to spurious HK1.fos expression in these cells 

alongside elevated Stratifin, becoming the first model to directly link Stratifin 

and Fos deregulation in malignancy. Moreover, despite strong expression of p53 

in these tumours, ablation of the p53 gene did not have any observable effect on 

this model indicating a p53-independent Stratifin pathway is responsible for the 

fSCC tumour aetiology. This model may be the first to implicate Stratifin and Fos 

in the aetiology of fSCC and, once validated in humans, may provide greater 

information on this poorly understood SCC variant. 

Further to this, K14.stratifin was then co-expressed with HK1.ras, which 

alone produces benign wound-dependent papillomas. Here, two very distinct 

tumour types were observed: Type 1 tumours were wound-dependent and slow 

growing, though eventually developed areas of carcinoma and invasion, while 

Type 2 tumours did not require ongoing wound-promotion and grew rapidly, 

converting to SCC in under 2 weeks from inception. Analysis of p53 again showed 

strong expression even in clearly malignant tumours of both types, while its 

downstream effector, p21, appeared to be strongly active in the nuclei of Type 1 

tumours, yet confined to the cytoplasm in Type 2s. Ablation of p53 reconfirmed 

an odd “p53 paradox” previously reported in HK1.ras mice, in which tumours fail 

to form if p53 is ablated prior to growth of the papilloma. Here, however, 

K14.ras.p53flx/flx.stratifin mice developed inflamed hyperplasia with clear signs 

of localised invasion, while K14.ras.p53flx/flx controls appeared grossly and 

histologically normal, indicating the cancer-promotion function of Stratifin 

overexpression despite no overt tumour development. 

To observe the apparent oncogenic effects of K14.stratifin expression on 

a p53-null background in the absence of other known oncogenic activation, 

K14.p53flx/flx.stratifin mice were generated. Wound-promoted skin appeared 

grossly similar to control mice lacking Stratifin overexpression; however, 

histological analysis at >4 months found hyperchromatic nuclei and areas of 

invasion suggestive of early malignancy, again, without precursor benign tumour 
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development. Similarly, when K14.stratifin was subsequently expressed on a 

Pten-null background, its inclusion clearly exacerbated the Cowden Syndrome-

like K14.Ptenflx/flx phenotype, with much more pronounced inflamed hyperplasia, 

hyperkeratosis, and hair defects present. Moreover, wound-promoted ear skin in 

these K14.Ptenflx/flx.stratifin mice showed clear evidence of carcinogenesis and 

cell invasion on histological examination. Again, this did not involve a benign 

tumour intermediary, further indicating that Stratifin acts as an oncogenic agent 

which is involved in producing aggressive, invasive carcinoma directly, not 

requiring development of an overt tumour prior to malignant conversion; hence 

the poor prognosis reported in internal tumours which overexpress Stratifin. On 

a dual p53-null/Pten-null background, Stratifin overexpression caused 

development of small wound-independent tumours requiring biopsy at an early 

stage, unlike the p53- and Pten-null backgrounds alone. These were found to 

have varied histology, though all appeared to involve HF aberration and possible 

involvement of HF stem cells in tumour generation, which requires confirmation. 

Wound-dependent tumours did not form at the ear tag of these mice in the 

relatively short time prior to sacrifice. Thus, the wound-independent tumours 

may have acquired further genetic lesions or have been linked to the cycling of 

the HFs, which occurs differently in ear skin. 

Finally, keratinocytes were isolated from transgenic pups expressing 

HK1.fos and K14.stratifin, alone and together, to examine the phenotypes of 

primary cell cultures and assess their malignant potential. Here, it was found 

that primary HK1.fos, K14.stratifin, and HK1.fos/K14.stratifin cultures did not 

grow from clonal density and were susceptible to calcium-induced 

differentiation. Cell lines derived from these initial cultures were subjected to 

the same tests and while HK1.fos and K14.stratifin lines still responded to 

increased Ca2+ concentrations, several HK1.fos/K14.stratifin lines exhibited a 

much-reduced differentiation response. One such line, FS2, was also able to 

grow from clonal density in both low and high Ca2+ medium, though the other, 

FS3m, which exhibited an unusual morphology somewhat akin to spinous layer 

cells in low Ca2+, was unable to form colonies at this low density even in low Ca2+ 

conditions. Western blot analysis found that these lines expressed approx. 50- 

and 12-fold more Stratifin than normal, respectively, thus, their different 

phenotypes and behaviours may be directly linked to the level of Stratifin 



Abstract  v 

 
 

present, as its functions are highly context-dependent. Stratifin overexpression 

was also found to be linked to increased migratory potential, with monogenic 

K14.stratifin cells closing the gap in a scratch assay experiment almost twice as 

fast as the next line, FS2, while HK1.fos and normal ICR cells took far longer. 

These data reflect the observations in vivo and so the lines generated may be 

useful in helping to elucidate protein interactions and pathways underlying the 

fSCC phenotype. 

In summary, this model not only clearly demonstrates the oncogenic 

activity of Stratifin overexpression—as opposed to a tumour suppressive role—but 

also appears to be the first to show direct co-operation between Fos or Ras 

activation and Stratifin overexpression in cutaneous carcinogenesis. In the case 

of Fos and Stratifin, their co-operation appears to specifically mimic the 

aetiology of rare human fSCC. Given the plethora of mutations observable in SCC 

aetiology, it may be that Stratifin overexpression in combination with other 

parameters could become a useful biomarker of tumour prognosis and final 

tumour outcome also applicable to diverse carcinoma types, not just cutaneous 

SCC.
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1.1. General Introduction 

Carcinogenesis is driven by the acquisition of genetic mutations and 

epigenetic changes that affect gene expression, resulting in dysregulation of 

normal cellular processes, such as those involved in tissue homeostasis or 

differentiation (Hanahan and Weinberg, 2001, 2011). The characteristics of the 

tumour which develops are dependent on the mutations involved and the order 

in which they occur coupled with the stage of tumour development. Tumour 

aetiology is also influenced by the mechanisms which are intended to resist 

carcinogenesis, both intracellular tumour suppressors and effects of other cell 

types and immune system components in the tissue microenvironment (Giglia-

Mari & Sarasin, 2003; Olumi et al., 1999; Hampton, 2005). The complex interplay 

of these various factors can determine whether a tumour will remain benign, 

convert to malignancy, and if it will be capable of invasion and metastasis. 

In skin, these complex mechanisms govern the development of benign 

lesions (e.g., actinic keratoses and papillomas) from hyperplastic keratinocytes 

which harbour initiating mutations, their potential to either regress with time or 

convert into well-differentiated squamous cell carcinoma, and whether or not 

this can subsequently progress to a poorly-differentiated state with the capacity 

for distant metastasis (Berenblum, 1941; Cockerell, 2000; Salasche, 2000). 

Alternatively, similar mutations can result in development of benign 

Keratoacanthomas (KAs) which may be grossly similar to, and histologically 

nearly indistinguishable from, SCC but which regress over time (Watanabe et al., 

2015). 

Studies involving tumour-derived cell lines from clinical samples have 

been useful in garnering information about some of the important mutations 

involved in skin cancer. However, it is difficult to elucidate which are the main 

driver mutations and how these are involved in the stepwise progression of 

carcinogenesis by this type of analysis alone. To address this, early mouse 

models of skin carcinogenesis used chemical initiators and promoters to identify 

possible driver mutations (Berenblum, 1941; Berenblum and Shubik, 1947; Van 

Duuren, 1969). Subsequently, transgenic models have been developed which 

facilitate manipulation of putative driver genes to assess their impact on each 
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stage of carcinogenesis, from hyperplasia to malignancy. These can be 

controlled in both a spatial (cell type restricted expression) and temporal 

(induction of expression when desired) manner, allowing study of the tissue of 

interest with minimal off-target effects. Using these techniques, a multistage 

model was developed in which viral H-Ras (v-H-Ras) and the viral c-Fos 

homologue (v-Fos) are targeted to epidermal keratinocytes to produce benign 

papillomas, followed by Cre-loxP-mediated ablation of the Pten tumour 

suppressor to induce malignant conversion. In skin carcinogenesis, the most 

significant stage from the patient viewpoint is conversion of benign tumours to 

malignancy and their subsequent progression. This model identified tumour 

suppressor p53 loss as a major contributor to this progression to SCC (MacDonald 

et al., 2014), therefore regulation of the level of this protein was studied, 

identifying 14-3-3σ (Stratifin) as a useful target for further study. 

1.2. Skin Structure and Function 

Skin is comprised of the epidermis and the underlying dermis as well as 

nerves, blood vessels and all the adnexal features including hair follicles, 

sebaceous glands, apocrine/eccrine sweat glands (Sundberg et al., 2012), and 

associated immune cells, e.g., Langerhans cells (tissue-specific macrophages) 

(Perdiguero and Geissmann, 2016). Cutaneous stem cells (SCs) which give rise to 

epidermal keratinocytes are located several hair follicle stem cells niches, 

notably the Bulge region, as well as in the interfollicular epidermis, where they 

seldom divide to produce more actively cycling Transit Amplifying cells (Figure 

1-1) (Simpson et al., 2011). The regions incorporating stem cells, transit 

amplifying cells, and the keratinocytes they produce are known as proliferating 

units (Potten, 1974; Blanpain and Fuchs, 2006). 

To maintain the skin barrier and therefore cope with continuous 

mechanical, chemical, and irradiative damage, the tissue is continuously 

renewed, with undifferentiated stratum basale (basal layer) cells entering the 

terminal differentiation program, involving loss of the hemidesmosomes which 

anchored them to the basement membrane and movement through the upper 

layers (stratum spinosum, stratum granulosum, and stratum corneum) before 
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being sloughed off and replaced from beneath (Simpson et al., 2011). The layers 

can be identified through their different protein expression profiles and 

histological appearance; especially the changes in the dominant cytokeratin 

pair, presence of keratohyalin granules, and expression of proteins involved in 

preparing and effecting the cornification process. The specificity of these 

proteins to specific layers makes them useful markers of early (K1 and K10) and 

late (loricrin, involucrin and filaggrin) differentiation, while undifferentiated 

keratinocytes express the K5/K14 pair, predominantly (Fuchs, 1990).   

 

Figure 1-1: The epidermis. 

Schematic depicting the general structure of the epidermis, including protein changes 
during differentiation, which is induced through an increasing Ca2+ gradient. Also note the 
presumed targets for carcinogenesis, the stem and transit amplifying cells in the basal layer.  

Keratinocytes are so named for their abundance of the cytokeratin 

intermediate filaments which provide structural integrity to the cells as well as 

influencing many protein interactions in the cytoplasm. Currently, 54 keratin 

genes have been identified, with roughly half of the encoded keratins localised 

to the hair follicles. Keratins are either Type I (acidic) or Type II (basic/neutral); 

one member of each type come together to form heterodimers which then 

polymerise into long, unbranched filaments approximately 10 nm in diameter 

(Steinert et al., 1985; Moll et al., 2008).  
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The cytoplasmic keratin filament network links to the desmosomes (and, 

in the case of basal cells, hemidesmosomes) to provide both intercellular and 

intracellular stability. Additionally, these filaments form a dense network 

around the nucleus, which is thought to be important for nuclear positioning in 

epithelial cells as they are subject to frequent mechanical stresses. Each nucleus 

has an inner and outer membrane (INM; ONM), separated by an intermembrane 

space of approximately 30-50 nm (Cain and Starr, 2015). While Nesprins 1 and 2 

are believed to be responsible for linkage of the actin cytoskeleton to the 

nuclear envelope (given their actin-binding domains; ABDs), the more recently 

described Nesprin-3 lacks this ABD and instead links the nucleus to intermediate 

filament networks (including keratins) indirectly, via the plakin family member, 

Plectin (Wilhelmsen et al., 2005). Plectin, like other plakins, is a very large 

protein (~500 kDa) with the domains which bind Nesprin-3 and IFs located at 

opposite ends of the protein; a feature which is thought to play an important 

role in spacing of the filaments (Wilhelmsen et al., 2005). Nesprins bind to SUN-1 

and -2 in the intermembrane space, which in turn bind Lamin A/C which 

underlies the INM (Cain and Starr, 2015). This effectively links the 

nucleoskeleton to the cytoskeleton, providing mechanical stability but also 

allowing rapid signals regarding tension and other changes at the plasma 

membrane to be transmitted to the nucleus more rapidly than protein cascades 

could be capable of. Because of these findings, this linked network has been 

implicated in influencing rapid transcriptional changes following cell 

deformation, a process known as mechanotransduction (Reichelt, 2007).  

In addition to the intracellular stability and signalling described, linkages 

of keratins at desmosomes and actin at adherens junctions provide powerful 

cell-cell adhesion. Given the network spans from the plasma membrane (PM) to 

the nucleus of each cell, this system essentially links cells in a continuous 

network to provide rapid cellular crosstalk as well as tensile strength at the 

tissue level, which is extremely important in skin since it is regularly subjected 

to mechanical stress. Desmosomes and hemidesmosomes, in particular, seem to 

be vital to the normal functioning of skin, with genetic mutations in either 

keratins (Jerábková et al., 2010) or other components (Pukkinen and Uitto, 

1999; Charlesworth et al., 2003; Kiritsi et al., 2013) resulting in the 

epidermolysis bullosa (EB) group of blistering diseases and loss of tissue integrity 
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to varying degrees. In normal functioning, desmosomes are able to switch 

between high (“hyper-adhesive”) and low affinity states, a process controlled by 

protein kinase C (PKC) (Kimura et al., 2007). This can reduce cell-cell adhesion 

in order to facilitate migration necessary in wound healing, and can contribute 

to skin cancer progression, as suggested by experiments showing low invasive 

potential of SCCs when desmosomal components are overexpressed (De Bruin et 

al., 1999). This switch in adhesive mode does not seem to involve a change in 

the proteins comprising desmosomal plaques, including desmogleins, 

plakophilins, and intercellular desmosomal cadherins, in addition to the keratin 

filament attachment (Kimura et al., 2007).  

K5 (Type II) and K14 (Type I) are the predominant keratin pair expressed 

in the basal, undifferentiated cells of stratified, keratinising epithelia including 

the epidermis (Fuchs and Green, 1980). Individual polymers are bundled into 

“tonofilaments” which have been observed using transmission electron 

microscopy (TEM). They are also found in all outer root sheath (ORS) layers of 

the hair follicle (HF) but are absent from the companion layer (the layer 

immediately interior to the ORS). Their mRNA synthesis is halted as cells move 

into the suprabasal layers during terminal differentiation. However, K5/K14 

protein filaments are detectable by immunostaining in the lower suprabasal 

layers as they remain part of the IF network early in differentiation before being 

degraded further through the programme (Moll et al., 2008). 

1.3. Cancer 

Mutations occur in DNA when exposed to some form of mutagenic 

agent(s), for example, UV light, x-rays, some aromatic hydrocarbons, among 

others (Parsa, 2012). The vast majority of these mutations are repaired by the 

cell during the DNA-damage response (DDR) (Zhou and Elledge, 2000). However, 

some are incorrectly or insufficiently repaired and persist in the cell, as well as 

in daughter cells if the original mutation occurred in a stem or transit amplifying 

cell (Rothkamm et al., 2002). Mutations can also be heritable, as in Li Fraumeni 

Syndrome, wherein TP53, encoding tumour suppressor protein p53, is mutated in 

the germline resulting in the development of multiple primary cancers, usually 
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at a young age (Malkin, 2011); or in Xeroderma Pigmentosum (XP), a rare 

autosomal recessive disorder (approximately 2.3 cases per million live births in 

Western Europe) which results in defective DNA repair mechanisms and thus 

greatly increases the incidence of skin cancer in affected individuals due to the 

failure to tolerate UV exposure (Lehmann et al., 2011). 

The scope of the effects of persistent mutations varies greatly depending 

on the area of DNA affected; if the defect occurs in a non-coding region or 

where there is a level of redundancy built-in then the effects are likely to be 

minimal, whereas specific mutations in proto-oncogenes (e.g., HRAS) which lead 

to their constitutive activation (Su et al., 2014), or in major tumour suppressor 

genes (e.g., TP53, PTEN, CDKN1A) which result in loss of protective function and 

potentially gain of detrimental functions can have profound effects on cellular 

and tissue function (Pickering et al., 2015; Inman et al., 2018). These genotoxic 

insults can result in either apoptosis or senescence – or terminal differentiation 

in the case of skin – as protective mechanisms to inhibit carcinogenesis at each 

stage, but they may drive oncogenesis if such systems fail. 

Usually, several mutations are required in the same cell to result in 

oncogenic transformation, with recent studies suggesting between two and eight 

are needed, varying between cancer types (Anandakrishnan et al., 2019). Rare 

exceptions can occur with a single mutation (identified in thyroid and testicular 

samples) or more than 10 (Martincorena et al., 2017), however, with greater 

numbers it becomes more difficult to ascertain which are true drivers of disease 

versus passenger mutations.  

Often, transformed cells are detected through immunosurveillance and 

destroyed before tumorigenesis can occur (Swann and Smyth, 2007). This is 

supported by data showing that cancers are more common in 

immunocompromised individuals, with some types occurring almost exclusively 

in these patients, such as Kaposi’s Sarcoma, a tumour type linked to Human 

Herpesvirus 8 (HHV8) which affects HIV patients and others on 

immunosuppressive drugs, e.g., following organ transplant (Schneider and 

Dittmer, 2018).  
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If immunosurveillance is compromised, the transformed cell may be able 

to freely undergo cell division and a tumour may form. Often, this uncontrolled 

proliferation can result in accumulation of further genetic mutations, creating a 

heterogeneous cell population which may develop different characteristics (Kent 

and Green, 2017), which are detailed in Figure 1-2. This figure also notes two 

so-called “enabling characteristics” (Hanahan and Weinberg, 2011), which are 

factors that make oncogenesis more likely, such as a pro-inflammatory 

phenotype which is known to favour malignancies (Birnie et al., 2008; Geng et 

al., 2013). 

  

Figure 1-2: The Hallmarks of Cancer and Enabling Characteristics. 

Asterisks denote Enabling Characteristics to distinguish them from the other Hallmarks. 

(Adapted from Hanahan and Weinberg, 2011) 

Development of a pro-inflammatory phenotype is an example of how the 

tumour microenvironment is integral to tumour development and progression 

(Briso et al., 2013; Bottomly et al., 2019). While many effects of oncogene 
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activation or loss of tumour suppressors have actions within the mutated cells, 

much of the tumour aetiology is determined by the interactions between these 

cells and those in the surrounding tissues which do not harbour genetic 

mutations (Östman and Augsten, 2009). An example of this in tumours of the 

epidermis is the role of cancer-associated fibroblasts (CAFs) (Olumi et al. 1999; 

Kalluri & Zeisberg, 2006; Räsänen & Vaheri, 2010; Ni et al., 2017; Glentis et al., 

2017). Under normal circumstances, there is cross-talk between the 

keratinocytes and fibroblasts in the skin to modulate skin structure, for example 

during wound-healing or remodelling of scar tissue, or to maintain homeostasis, 

which is mediated by paracrine signalling (Ghahary et al., 2007). In 

carcinogenesis, the signals sent out by mutated keratinocytes are akin to those 

released during wound-healing, causing activation of fibroblasts which are not 

themselves mutated and which are reacting correctly to the signals being 

received, but which are doing so in the wrong context, thereby increasing the 

likelihood of invasion and metastasis (Östman and Augsten, 2009; Karagiannis et 

al., 2012). For this reason, cancer has been described as “wounds that do not 

heal” (Dvorak, 1986). 

1.4. Cutaneous Squamous Cell Carcinoma (cSCC) 

Squamous cell carcinomas (SCCs) are malignancies of epithelial cells and, 

together with basal cell carcinomas (BCCs), their diagnoses outnumber all other 

cancer types. Cutaneous SCCs arise from keratinocytes which make up more than 

90% of the cells in the epidermis. It is the second most common skin malignancy 

(after BCC), accounting for at least 20% of cutaneous cancers (Stratigos et al., 

2015). Incidence is very difficult to accurately estimate due to underreporting, 

and while several studies have been conducted to improve estimates, they have 

suffered from small sample sizes and have therefore been inconclusive 

(Christianson et al., 2005). 

Estimates of the increase in incidence have suggested a rise in cases of up 

to 200% in the past 30 years (Karia et al., 2013), with the greatest rise occurring 

in under 40s. Much of this increase has been attributed to rising popularity of 

artificial UV tanning beds and foreign holidays to high UV regions in people with 

Type I-III Fitzgerald phototype skin (Olsen and Green, 2012; Zhang et al., 2012), 
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as mutations caused by ultraviolet radiation (such as pyrimidine dimer 

formation) are implicated in the majority of cSCCs (Mullenders et al., 1993; Kim 

& He, 2014). A rise in the use of immunosuppressive drugs for patients with 

autoimmune (AI) conditions, HIV and organ transplants in this time has also 

contributed to the increase in cases. Incidence in immunosuppressed individuals 

is estimated to be 250-fold higher than the general population, with a greater 

risk of metastasis and mortality (Euvrard et al., 2003; Harwood et al., 2012). 

This is believed to be linked to a reduction in immunosurveillance—the process 

by which cells of the immune system remove damaged cells to counteract clonal 

expansion and carcinogenesis (Ribatti, 2017)—and greater UV sensitivity, 

particularly with the common AI drug azathioprine (Boukamp et al., 2005; 

Hampton et al., 2005). 

The mutational landscape of cutaneous SCCs is extensive, with an average 

of 50 mutations per megabase pair of DNA identified by whole-exome sequencing 

(South et al., 2014), with in excess of 10,000 mutations often occurring in a 

single tumour (Pickering et al., 2014). These can be delineated into those with a 

so-called “UV-signature” and those without, the latter group tending to be 

associated with drug treatments like azathioprine or BRAF-inhibitors (Inman et 

al., 2018; Su et al., 2012). 

As mentioned previously, SCCs of the skin generally arise from pre-

existing benign lesions, commonly actinic keratosis (AK). Diagnosis based on 

gross appearance and histology can be difficult, as these lesions can have a very 

similar appearance to SCC in situ before having progressed to a malignant state 

(Cockerell, 2000). Additionally, while cutaneous SCC has a relatively low rate of 

metastasis (approximately 5%), the very high rate of incidence leads to a 

significant number of deaths per year in spite of this (Karia et al., 2013). Thus, 

being able to use markers to determine at which stage a lesion goes from a 

benign to malignant state is very useful. Identification of such markers has been 

aided greatly by the development and characterisation of mouse models of skin 

carcinogenesis. 
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1.5. Mouse Models of Cutaneous SCC 

1.5.1. Advantages and Disadvantages of using mice to model 

cSCC 

Mice are the most commonly utilised model organism in the research of 

human pathologies for numerous reasons, including their genetic and 

physiological similarities, relatively small size, ease of handling, and short 

generation time (Rosenthal & Brown, 2007). These features make them more 

useful in many ways than invertebrates like Drosophila melanogaster (fruit flies) 

or Caenorhabditis elegans (nematodes) which often lack human orthologous 

genes, and which do not exhibit much cell proliferation making them poor 

models for studying stem cell renewal, tissue repair, and cancer development 

(Murthy & Ram, 2015). In recent decades, genetic manipulation has become 

much more sophisticated and accessible, allowing researchers to knock-out, 

knock-in and otherwise mutate genes to alter their activity in precise ways 

(Rosenthal & Brown, 2007). The fully characterised mouse genome, together 

with their other desirable traits mentioned above, make them extremely useful 

genetic models in characterising protein functions, mutant phenotypes, and 

protein pathways and interactions which are involved in pathologies like cancer. 

Mice are useful models for non-melanoma skin cancer research as their 

keratinocyte biology and differentiation programme is very similar to that in 

humans, with the same stem cell niches identified in the hair follicle and in the 

interfollicular epidermis (Levy et al., 2006; Blanpain & Fuchs, 2006; Watt & 

Jensen, 2009). Their use also allows for the study of the microenvironment as a 

whole, incorporating multiple cell types of the epidermis, dermis, immune 

system, vasculature and nervous system, which is far less feasible in in vitro 

modelling. This is important because research has shown comprehensively that 

cross-talk between cell types in the tumour microenvironment is integral to the 

aetiology of cancer development and progression (Lam et al., 2005; Goetz et al., 

2011; Briso et al., 2013; Jolly et al., 2016). Given that a large proportion of 

human cutaneous SCCs are ultraviolet (UV) light-related (Mullenders et al., 1993; 

Soehnge et al., 1997; Narayanan et al., 2010; Kim & He, 2014), the ability to use 

an in vivo model to study the effects of UV radiation on cells in their native 
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environment is of particular use in skin cancer research (Strickland, 1986; Yang 

et al., 2014; Balupillai et al., 2018).  

Despite these features, there are also drawbacks to relying on mice as 

models of human disease in general and, specifically, in modelling skin cancer. 

Numerous studies have highlighted the issue of strain-specificity in inbred 

laboratory mice; often very different phenotypes are produced in different 

mouse strains in response to genetic manipulation or responses to treatment 

with mutagens or drug therapies (Ashman et al., 1982; Slaga, 1986; Yoshiki & 

Moriwaki, 2006). This can be somewhat mitigated with the use of outbred mice 

which are not all genetically identical (as has been done in this project), though 

this may make phenotypic characterisation and statistical analyses more difficult 

as the mice do not necessarily develop a uniform phenotype. Some researchers 

have proposed the use of multiple inbred mouse strains or substrains as a way to 

account for strain-specific effects while still having all the genetic background 

information in place of outbred mice whose heterogeneous population 

introduces uncertainty (Festing, 2010).  

Furthermore, recent data have indicated that grossly normal human skin 

contains a plethora of genetic mutations also found in skin cancers; their effects 

appear to be countered by differentiation and immunosurveillance mechanism, 

suppressing carcinogenesis (Martincorena et al., 2015; Martincorena et al., 2017; 

Hampton, 2005). Much of this is attributable to UV light exposure over a period 

of years, unlike in laboratory mice whose skin is only subject to UV irradiation if 

done as part of an experiment, which evidently does not accurately reflect the 

situation in human sun-exposed skin. This means that the background effects 

present in human skin on which SCC develops are not faithfully reproduced in 

the mouse, which could have important implications for skin research. There are 

also pertinent differences in the immunological features of mouse versus human 

skin, for example in the predominant T-cell receptors which are present; in 

mice, T-cells predominantly interact with keratinocytes, which in humans these 

cells associate largely with dendritic cells, like Langerhans cells (Naegu, 2016). 

The implications of such differences remains to be fully elucidated but may 

affect the weight of results based on mouse experiments in translational 

research.  
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Lastly, the tissue architecture of the mouse skin is not identical to that of 

human, generally being only one to three cells thick in non-pathologic skin and 

lacking the Rete ridges seen in human epidermis, which develop in response to 

mechanical stretching to resist shear forces (Topczewska et al., 2019); mouse 

skin is largely protected from such forces by the fur. Mice also have far more 

hair follicles in a given area than in human skin, which impacts the type of stem 

cells giving rise to new epidermis and somewhat influences the 

microenvironment (Zomer & Tentin, 2018). Ear skin is frequently used as this is 

mildly hyperplastic compared with back skin and the hair follicles are both 

sparser and do not cycle frequently in the adult mouse as in the rest of the 

body, making it more akin to human skin (Wang et al., 2017). These issues do 

not preclude mice from being good models for skin diseases such as SCC, as 

there are still many benefits to murine models, but the limitations must be 

understood when interpreting experimental results in translational research. 

1.5.2. Chemical Carcinogenesis 

The two-stage chemical carcinogenesis model was developed early in the 

20th century following observations of the effects of tar and croton oil in tumour 

aetiology. The likely stages of tumorigenesis were described in detail in 1941 by 

Berenblum, termed: Precarcinogenesis, wherein cells are primed for 

carcinogenesis, but overt lesions do not form; Epicarcinogenesis, where further 

insult (genetic or epigenetic) induces tumorigenesis, and Metacarcinogenesis, 

where a benign tumour becomes malignant (Berenblum, 1941); these names 

were later changed to the now familiar Initiation, Promotion, and Progression 

(malignant conversion). This is typically part of a two-stage process involving 

application of a low dose of a carcinogenic compound, followed by a promoting 

agent which is non-mutagenic but significantly alters gene expression in the 

primed cells to elicit tumour formation (Figure 1-3). 

Extensive study into this process identified Polycyclic Aromatic 

Hydrocarbons (PHAs) as useful compounds in inducing initiation events when 

topically applied to skin in subcarcinogenic doses. These initiation events occur 

when metabolites of PHAs – most commonly 7,12-dimethylbenz[a]anthracene 
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DMBA – bind to DNA and induce genetic (and, likely, epigenetic) changes, which 

are permanent. This initiation is thought to produce a heterogeneous population 

of keratinocytes harbouring changes which make them susceptible to tumour 

promotion. Early studies in the field deduced that promotion can be achieved by 

means which would not normally by themselves produce a malignant lesion 

(e.g., wounding). Work carried out in the 1940s (Berenblum, 1941; Berenblum 

and Shubik, 1947) found that croton oil (from seeds of the plant Croton tiglium) 

could potently promote initiated keratinocytes to form pre-malignant papillomas 

which could progress to SCC with repeated applications. Subsequently, it was 

discovered that phorbol diesters present in the oil were the promoting agents 

(Van Duuren, 1969), leading to the finding that 12-O-tetradecanoylphorbol-13-

acetate (TPA) was the most potent of those which could be obtained from croton 

oil. In the widely used 2-step chemical carcinogenesis protocol (Abel et al., 

2009), TPA is topically applied for up to a year following initiation with DMBA. 

Application of early molecular biology cloning techniques discovered that 

an important proto-oncogene found to be a target of DMBA initiation; finding 

that the Harvey Ras gene (HRAS) was frequently mutated following treatment 

with DMBA, most notably at codon 61 (Balmain et al., 1984; Yuspa, 1994), 

usually resulting in constitutive activation of the gene. As outlined below in 

Figure 1-3, H-Ras (along with N- and K-Ras) is activated by mitogen-binding to 

the epithelial growth factor receptor (EGFR), initiating the canonical MAP-kinase 

pathway which can drive cell growth and proliferation, among other cell 

activities, hence the potency of Ras activation in human skin carcinogenesis. 

Importantly, it has been noted that the length of time between initiation 

and promotion is not important to the ability of the process to produce 

papillomas; this indicates that the changes induced during initiation appear to 

be permanent. Since skin is continually differentiating and turnover allows most 

cells to be replaced in around 8 weeks, this suggests that the cellular population 

which is expanded via promotion to give rise to overt neoplasms are epidermal 

stem cells. Stem cell niches within the hair follicle (e.g., bulge region) are well 

known to provide new keratinocytes to the interfollicular epidermis (Watt and 

Jensen, 2009); however, interfollicular stem cells in the basal layer of the 
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epidermis are also thought to be likely targets for carcinogenesis (DiGiovanni, 

1992; Morris et al., 2000; Abel et al., 2009). 

 

Figure 1-3: Multistage Chemical Carcinogenesis. 

Initiating mutations (e.g., in HRAS) are induced using a single application of 7,12-

Dimethylbenz[a]anthracene (DMBA), which does not generally cause a visible change in 

the skin. Promotion of tumorigenesis is achieved by repeated application of 12-O-

tetradecanoylphorbol-13-acetate (TPA) for many weeks, up to around 1 year. This results 

in the changes detailed in the central (yellow) portion of the figure in roughly the first 2-20 

weeks, wherein visible papillomas form but generally do not progress to carcinoma until 

much later (20-50+ weeks) if at all. In these later stages, a small proportion of the papillomas 

will undergo progression to invasive carcinoma, as further genetic mutations are obtained. 

(adapted from Abel et al., 2009) 

While acquisition of activating mutations in H-Ras (by DMBA) and 

upregulation of AP-1 (by TPA) are sufficient to induce pre-malignant papilloma 

formation, it is believed that other genetic or epigenetic events are required for 

conversion, hence the long timescale of the chemical carcinogenesis model 

(Hennings et al., 1993; Segrelles et al., 2002). Evidence has shown that AKT 

activation is likely to contribute to this conversion, due to an increase in PI3K 

activity coupled with a decrease in PTEN inhibition of AKT activation (Segrelles, 

2002). 
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1.5.3. Using Mutations Identified in Chemical Carcinogenesis as 

Transgenes to Target Driver Oncogenes to the Epidermis 

Chemical carcinogenesis is useful in recapitulating the multistep nature of 

skin carcinogenesis which, as previously mentioned, often arises from benign  

lesions such as actinic keratosis, in contrast to the de novo development of basal 

cell carcinoma (BCC) (Feller et al., 2016). While several genes of interest have 

been identified through this technique, the stochastic nature of mutations 

following DMBA treatment means that many of those identified are so-called 

“passenger” mutations which do not contribute significantly to the disease 

aetiology. This, therefore, makes it difficult to assess those alterations which 

are driving, firstly, the appearance of papillomas and, later, the progression to 

SCC. Furthermore, TPA application is known to be a very potent promoter in the 

chemical model, however, it has many targets and thus wide-ranging effects 

which creates difficulties in identifying the key events underpinning tumour 

promotion.  

To address these problems, transgenes can be utilised which drive 

overexpression of particular genes of interest. Exogenous activation of such 

genes allows us to target expression to the cells believed to be important for 

carcinogenesis and to reduce the level of confounding passenger mutations 

during of papillomatogenesis. Extensive study of the chemical model has 

identified H-Ras as a key target of DMBA, while TPA is known to upregulate the 

key transcription factor complex, AP1, comprised of Jun and Fos subunits. In 

order to determine the precise nature of the roles of these proteins in the 

development of papillomas, constructs were developed to allow their 

(independent) expression in early differentiating cells and, crucially, around 30% 

of basal keratinocytes, with the intention of targeting some of the interfollicular 

stem cells. 

1.5.3.1. Ras Proteins 

The Ras superfamily comprises more than 150 small guanine 

triphosphatase proteins (small GTPases). The superfamily is divided into five 
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main subgroups based on sequence homology and functional similarities, namely: 

Ras, Rho, Rab, Ran and Arf (Wennerberg et al., 2005).  

Ras proteins have been described as binary molecular switches: they are 

inactive when GDP-bound and activated by binding to GTP. A GEF protein 

(Guanine Nucleotide Exchange Factor) catalyses the removal of GDP from Ras, 

which subsequently binds to GTP due to its greater abundance in the cytosol 

(ratio of 10 GTP: 1 GDP) (Prior and Hancock, 2011). The GTP-bound Ras 

undergoes conformational changes in the two Switch domains, revealing an 

effector binding site, resulting in activation. The low intrinsic GTPase activity 

(Wennerberg et al., 2005) means that hydrolysis of GTP to GDP is very slow, so 

rapid inactivation is achieved by interaction with GTPase-activating proteins 

(GAPs), which increase the rate of reaction by approximately 1000 times (Prior 

and Hancock, 2011).  

The eponymous Ras subgroup –comprising H-Ras, N-Ras and the two splice 

variants of K-Ras (K-Ras4A and 4B) (Castellano and Santos, 2011)– are early 

effectors in the canonical MAPK (RAF-MEK-ERK) and PI3K-Akt transduction 

cascades, thereby positively regulating proliferation and cell survival (Zhang and 

Liu, 2002; Manning and Toker, 2017; Yu and Cui, 2016; Hossini et al., 2016). 

These isoforms are extremely similar, sharing ~80% sequence homology, with 

identical Switch and core G protein domains (Prior and Hancock, 2011). Most of 

the differences are clustered in the C-terminal hypervariable region (HVR) 

(Castellanos and Santos, 2011). Despite the high degree of similarity, the 

isoforms are not functionally redundant, which is believed to be attributable to 

differences in subcellular localisation, resulting in different pools of GEFs, GAPs, 

and effectors available for interaction (Laude and Prior, 2008; Prior and 

Hancock, 2011). 
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Figure 1-4: Ras activation and downstream effectors. 

Activation of Receptor Tyrosine Kinases like EGFR (shown) trigger activation of 

downstream effectors in protein pathways including the canonical mitogen-activated protein 

kinase (MAPK) and PI3K-AKT-mTOR pathways, through activation of Ras protein family 

members (by inducing their switch from a GDP-bound to a GTP-bound state) at the cell 

membrane. MAPK activation generally enhances cell growth and proliferation, through 

transcription factors like AP-1 (involving c-Fos), while upregulation of Akt/mTOR have 

largely anti-apoptotic and thus pro-cell survival effects. Both p-ERK and mTOR also 

influence cytoplasmic proteins like ribosomes, and regulate components of the 

cytoskeleton, for example, to increase migratory potential. Additionally, p-ERK can not only 

induce c-Fos transcription but also enhance its activity through phosphorylation of its 

transactivation domain. 
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Membrane localisation of Ras proteins is required for signal transduction 

following tyrosine kinase receptor activation. Nascent proteins have a C-terminal 

CAAX motif (C= Cysteine; A= Aliphatic AA; X = any AA, but in Ras proteins this is 

either S or M) which undergoes post-translational modifications to result in 

targeting to the PM (Michaelson et al., 2005; Wennerberg et al., 2005).  

All isoforms have a 15 Carbon farnesyl isoprenoid lipid attached to the 

Cysteine of the CAAX motif (farnesylation) by farnesyltransferase, which targets 

them to the endoplasmic reticulum for further processing. There, the AAX 

residues are cleaved by RCE-1 (Ras-converting CAAX endopeptidase-1), then a 

carboxymethyl group is added by ICMT (isoprenylcysteine 

carboxymethyltransferase) in a reversible process. This results in  more 

hydrophobic tail, conferring greater membrane affinity. All isoforms except K-

Ras4B are then palmitoylated by PAT (protein acyltransferase) in the Golgi 

apparatus—N-Ras and K-Ras4A at one further Cysteine residue, H-Ras at two—

increasing hydrophobicity and therefore improving membrane affinity further. 

Both K-Ras isoforms also have 6 lysine residues (polybasic) attached to their tails 

to modify electrostatic interactions with the inner membrane, which is absent 

from N- and H-Ras processing. N-Ras has been found to require further 

processing in the HVR to stabilise membrane-association (Laude and Prior, 2008). 

If farnesyltransferase inhibitors are administered, K- and N-Ras can be 

alternately isoprenylated by geranylgeranyltransferase-I (GGT-1), however, this 

appears not to be the case for H-Ras (Prior and Hancock, 2011). 

The plasma membrane was previously believed to be homogenous, but 

research has found that cholesterol- and sphingolipid-rich regions are present, 

referred to as “lipid rafts” (Brown and London, 2000; Simons and Ehehalt, 2002). 

These areas are more densely packed than the surrounding phospholipid 

membrane and are believed to improve signal transduction from receptors, in 

this case tyrosine kinase receptors like EGFR, to their effectors, such as the 

membrane-associated Ras proteins (Prior et al., 2001). 

Additionally, Ras proteins were believed to only associate with, and 

therefore function at, the plasma membrane. This has also been challenged in 

recent years, with the discovery of Ras activation at endomembranes, 
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specifically on endosomes and in the Golgi and ER (Bivona and Philips, 2003), 

which have also been found to contain lipid rafts (Gkantiragas et al., 2001). This 

has further bolstered the hypothesis that the primary differences in functionality 

between H-, N- and K-Ras are mediated by differences in subcellular localisation 

(Hancock, 2003; Casar et al., 2009), since their regulatory and active domains 

are identical. 

Overall, K-Ras (specifically the 4B splice variant) is the most abundant 

isoform across all tissues and is also the most commonly mutated of the three 

(H, N and K), with one study finding it to be altered in 22% of cancer specimens 

tested, while N-Ras mutants were found in 8% and H-Ras in only 3% . This ratio is 

quite different when only skin cancers are considered, where N-Ras was 

identified as the most commonly mutated at 18%, H-Ras next at 6% and K-Ras at 

only 3% (Prior et al., 2012). The majority of N-Ras mutations were detected in 

melanomas, where it has been frequently identified as a driver mutation 

(Muñoz-Couselo et al., 2017). Mutations related to cancer in these Ras genes are 

very often point mutations in codons 12, 13 or 61; codons 12 and 13 code for 

amino acid residues in the Switch I domain, while 61 normally encodes a 

Glutamine residue in the Switch II domain. These mutations generally confer 

poorer binding ability with the GAPs required to catalyse GTPase activity, 

therefore impairing the cell’s ability to inactivate mutant Ras, causing 

constitutive activation. 

H-Ras is the commonest Ras mutant in cutaneous SCC at 9%, vs 7% N-Ras 

and 5% K-Ras (Bamford et al., 2004). This incidence is greatly increased when 

the pool of SCCs is reduced to those aggressive cSCCs which are  associated with 

previous vemurafenib for B-RafV600E melanomas. One study into these SCCs 

showed that 62% of those tested had some form of Ras mutation (13 of 21 

samples), with all but one of those harbouring an H-Ras mutant (Su et al., 2012). 

The difference in incidence would be in part due to the fact that the majority of 

cutaneous SCCs (50-90%) harbour mutations in the TP53 gene which codes for 

p53 (Giglia-Mari and Sarasin, 2003), and data shows that these vemurafenib-

related tumours rarely have both TP53 and RAS activating mutations 

concurrently (Pickering et al., 2014). This means that in general H-Ras mutant 

SCCs are a subset of the total, while in vemurafenib-related tumours they seem 
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to have a much higher frequency. This is  possibly because TP53 mutations are 

often UV-induced (Mullenders et al., 1993) therefore the mutational landscape is 

reflective of the difference in initiating factors. The majority of H-Ras mutations 

identified in the study were Glutamine to Leucine transition of reside 61 (Q61L) 

(Su et al., 2012) which has previously been determined to be caused by a SNP in 

the centre of the codon from A to T, thereby coding L (CTA) instead of Q (CAA) 

(Quintanilla et al., 1986).  

1.5.3.2. Fos Transcription Factors 

Transcription factors (TFs) are proteins which can initiate or regulate 

gene transcription, acting as effectors for signals from upstream signalling 

cascades, e.g., MAPK pathway. TFs bind to DNA at promoters or regulatory 

elements (e.g., enhancers or repressors) which may be close to the transcription 

start site of target genes (involved in forming the transcription initiation 

complex) or many kb away.  

The Fos family of transcription factors is comprised of c-Fos (the cellular 

homologue of viral v-Fos), FosB (plus shorter splice variants, FosB2 and ΔFosB2), 

Fra-1 and Fra-2. These proteins dimerise with Jun isoforms (c-Jun, JunB and 

JunD) to form AP-1 (activating protein-1) transcription factor complexes which 

have wide-ranging roles in influencing proteins involved in nearly all cellular 

processes, including apoptosis, cell differentiation, proliferation and 

angiogenesis, among others.  

The members differ in sequence primarily towards the C-terminal; all 

have a basic leucine zipper (bZIP) region which allows for binding to DNA and 

dimerization with an AP-1 partner, but only c-Fos and full-length FosB contain a 

C-terminal transactivation domain (TAD) (Wisdon and Verma, 1993) and as such 

are the only isoforms which have transforming properties in rat fibroblasts 

(NIH3T3 cells) (Miller et al., 1984). 

In the epidermis, expression of different Fos isoforms is differentiation 

specific, as indicated in Figure 1-5, indicative of the different roles played by 

these isoforms in normal skin. Fra-1 is the most abundant Fos protein in the 
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undifferentiated basal layer, while Fra-1, FosB and c-Fos are all detected in the 

early-differentiated spinous cells, with only c-Fos and Fra-2 detected in the 

granular layer. 

 

 

Figure 1-5. Fos protein isoforms in the epidermis. 

Fos isoforms are expressed in specific layers of the epidermis, reflecting their different roles 

in cell cycle and differentiation at theses stages. Only c-Fos and the full-length variant of 

FosB have the transactivating domains (TADs) necessary to act as transcription factors, but 

those without (Fra-1, Fra-2, and FosB2/ΔFosB2) are believed to act as negative regulators 

of the transactivating isoforms. Their tight regulation is required for normal epidermal growth 

and differentiation, while deregulated forms of Fos have been implicated in promotion of 

numerous carcinomas. 

 

As indicated in Figure 1-4, c-Fos mRNA transcription can be activated by 

ERK1/2 phosphorylation of transcription factor Elk1 following mitogen 

stimulation of the cell via Receptor Tyrosine Kinases, transduced by Ras 

proteins. Interestingly, it has been found that ERKs can subsequently enhance c-

Fos (and therefore AP-1) activity by phosphorylation of pS/T-P residues in the C-

terminal TAD (Monje et al., 2005), mediated by Pin1, which is also known to 

assist in enhancing c-Jun, NF-κB and p53 activities (Girardini et al., 2011; Kuboki 

et al., 2009; Wulf et al., 2001; Wulf et al., 2002; Zheng et al., 2002). 
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As may be expected given the differentiation-specific expression of the 

various Fos isoforms, in vitro experiments have identified differences in 

induction (by Ca2+ and TPA-treatment) and transcriptional regulation. Cultured 

keratinocytes maintained in low Ca2+ (0.05 mM) medium have basal-like 

expression profiles and morphology, while an increase to high Ca2+ (0.12 mM) 

will result in activation of the terminal differentiation program. The phorbol 

ester, TPA, mentioned earlier in relation to chemical carcinogenesis, can also 

induce differentiation, though the Fos isoforms induced in the process appear to 

be different; Ca2+ causes upregulation of Fra-1 and Fra-2, while TPA induces c-

Fos and Fra-1. Exogenous expression of Fra-2 and c-Fos (either alone or 

concurrent with JunB expression) indicate that Fra-2 acts as a strong negative 

regulator of AP-1 transcriptional activity, whereas c-Fos increases AP-1 activity 

and is able to override endogenous Fra-2 negative regulation during Ca2+-induced 

differentiation (Rutberg et al., 1997). 

Fos family members must heterodimerise to function, primarily with Jun 

members, while Jun can form homodimers or heterodimers within the Jun family 

or with Fos or the lesser studied ATF and MAF families. Fos:Jun dimers are 

known to have higher DNA binding affinity than Jun:Jun complexes, though both 

bind to TPA-responsive elements(TREs)/AP-1 binding motifs and, to a lesser 

extent, cAMP-responsive elements (CREs), 5’-TGA(C/G)TCA-3’ and 5’-TCACGTCA-

3’, respectively. Binding to other variant sequences has been detected in vitro 

and from tissue samples, for example, via ChIP-seq. Until recently, 

transcriptional activation by AP-1 was thought to mostly occur through binding 

to TREs close to the transcriptional start site (TSS) of target genes. However, 

advances in transcriptomics have discovered that the majority of gene regulation 

by AP-1 complexes actually occurs via binding to enhancer elements far from the 

target TSS, brought into close proximity by chromatin interactions (Bejjani et 

al., 2019). 

Fos proteins, perhaps unsurprisingly given the ubiquity and wide-ranging 

effects of AP-1, is implicated in the aetiology of many cancers (Saez et al., 

1995; Plaza-Menacho et al., 2007; Liu et al., 2018). However, unlike other 

oncogenes, its involvement in disease comes primarily from dysregulation of 

upstream signalling molecules, e.g., H-Ras Q61L, rather than mutations in its 
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own genetic sequence (Bejjani et al., 2019). This can involve any of the 

isoforms, with the TAD-containing c-Fos and FosB implicated in tumours of the 

bone (and possibly cartilage), endometrium, lung, and skin (Grigoriadis et al., 

1993; Saez et al., 1995; Sunters et al., 1998 and 2004; Franchi et al., 1998; 

Bamberger et al., 2001; Volm et al., 2002; Silvers et al., 2003), while the 

negative regulating proteins Fra-1 and -2 are often increased in melanomas, 

ovarian, colorectal cancers (Yang et al., 2004; Tchernitsa et al., 2004; Wang et 

al., 2004). Interestingly, changes in regulation of c-Fos, FosB, Fra-1 and Fra-2 

have been observed in various breast cancers and cancer-derived cell lines, 

though not all in the same tumour or cells (Kustikova et al., 1998; Bamberger et 

al., 1999; Andersen et al., 2002). 

1.5.3.3. Phosphatase and Tensin Homologue (PTEN) 

Aside from the MAP kinase pathway and activation of AP-1 responsive 

genes in the chemical carcinogenesis model, activation of Akt has been 

identified as an important even in development of SCC in the chemical 

carcinogenesis model. Therefore, in order to recapitulate these events using a 

transgenic system, its main inhibitor, PTEN, was targeted using an inducible Cre-

loxP-mediated system, outlined below.  

PTEN is a dual lipid and protein phosphatase located on chromosome 10 

(10q23) at a site which frequently suffers loss of heterozygosity which can 

contribute to the formation and progression of many cancers. The N-terminal 

domain contains a CX5R catalytic motif, which is common to protein tyrosine 

phosphatases, forming the P-loop which, along with the WPD-loop, is required 

for phosphatase activities (Lee et al., 1999; Tautz et al. 2013). Specific protein 

tyrosine phosphatases have a binding cleft which is too deep for phospho-

Serine/Threonine residues to reach the Cysteine residue of the P-loop, however, 

the cleft of PTEN has a wider opening which means that all 3 (Tyr/Ser/Thr) 

phospho-residues can be dephosphorylated (Myers et al., 1997).  

It is best characterised in its inhibition of the PI3K/Akt pathway by means 

of its lipid-phosphatase activity. PI3Ks, in response to upstream signalling, e.g., 

by IGF-1, phosphorylates phosphatidylinositol-4, 5-bisphosphate (PIP2) to 
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phosphatidylinositol-3, 4, 5-triphosphate (PIP3). This lipid second messenger is 

then able to bind proteins such as PKC and PKB/Akt at their pleckstrin-homology 

(PH) domain which causes their translocation to the plasma membrane. Binding 

of this domain also serves to alter conformation of the bound substrate, leading 

to a conformational change which better facilitates subsequent phosphorylation 

(Chen et al., 2018). 

Akt is phosphorylated at positions Thr308 and Ser473 by PDK and mTORC2, 

respectively. Phosphorylation of Thr308 must occur first and confers an increase 

in Akt activity, allowing it to phosphorylate SIN1 on mTORC2, which then 

phosphorylates Akt in turn at Ser473 to maximise Akt kinases activity (Yang et 

al., 2015). PTEN interferes in this activation by dephosphorylating PIP3 at the 3’ 

position of the inositol ring to revert it to PIP2 (Chen et al., 2018). Akt activation 

plays numerous roles in cell survival and proliferation, for example inhibition of 

pro-apoptotic proteins FOXOs, BAD, Cas 3 and Cas 9 (Brunet et al., 1999; Datta 

et al., 2000; Kermer et al., 2000; Cardone et al.,1999), nuclear exclusion of cell 

cycle inhibitors p21 and p27 (Zhou et al., 2001; Shin et al., 2002), and activation 

of Mdm2 to reduce p53 levels thereby inhibiting cell cycle arrest and the 

intrinsic apoptotic pathway (Ogawara et al., 2002; Gottlieb et al., 2002). PTEN is 

therefore a major tumour suppressor in its role as important inhibitor of these 

downstream effects of Akt activation. 

Subcellular localisation has also been shown to be very important to PTEN 

functioning (Planchon et al., 2008). It contains a cytoplasmic localisation signal 

at residues 19-25; mutation of any of these except 22 results in nuclear 

accumulation (Denning et al., 2007). Nuclear import of wild-type PTEN (wtPTEN) 

is also mediated through mono-ubiquitination, but poly-ubiquitination results in 

degradation, thereby providing a rapid mechanism for regulating the level of 

PTEN in the cell which does not require changes to transcription or translation, 

similarly to regulation of p53 (Wang et al., 2007). Stabilising/inactivating 

phosphorylation occurs primarily at S370 and S385 (Li et al., 2014), while 

destabilisation occurs at site T366, which it has been shown to auto-

dephosphorylate (Maccario et al., 2007). Phospho-PTEN is more stable, however, 

it is more active when dephosphorylated as this is correlated with a more open 

conformation (Rahdar et al., 2009). 
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While the inhibition of Akt activation is primarily cytoplasmic, nuclear 

PTEN has important roles in maintaining genomic stability, mediation of 

cytokinesis, and cell cycle arrest (Bononi and Pinton, 2015). This latter role 

utilises both protein-phosphatase activity, by downregulation of cyclin D1, and 

lipid-phosphatase activity which was demonstrated to lead to an increase in 

CDK-inhibitor p27 in addition to the aforementioned downregulation of Akt 

(Weng et al., 2001). These activities were determined by comparison of wild-

type PTEN with a phosphatase-dead mutant, C124G, and a mutant lacking only 

lipid-phosphatase activity, G129E. The latter mutation is often present in 

Cowden Syndrome, a heritable disease which results in benign neoplasia 

(hamartomas) of multiple organs (Hanssen and Fryns, 1995), including a 

hyperplastic and hyperkeratotic skin phenotype (Brownstein et al., 1979; Starink 

et al., 1985), which can lead to malignancies following further genetic insults 

(Ngeow et al., 2014). In vivo studies of heterozygous G129E mice suggested gain-

of-function (GOF) activities which promoted tumorigenesis when compared with 

C124G mutants, though it was unclear whether this was solely due to specific 

activities of mutant PTEN or if antagonism of wtPTEN functions were involved, 

since both G129E and C124G/C124S are known to be dominant-negative 

mutations (Papa et al., 2014). It also appears to be an important regulator of 

mitosis by dephosphorylating Polo-like kinase 1 (PLK1) at residue T210; loss of 

this regulation by protein-phosphatase activity ablation causes failed cytokinesis 

and thus an increase in the presence of polyploid cells (Zhang et al., 2016). 

Cytoplasmic activities have been linked to morphological changes, 

inhibition of cell spreading and migration, with some mutations causing 

enhancement of these activities, for example due to the reduced 

dephosphorylation of focal adhesion kinase (FAK) and PIP3 (Tamura et al., 1998; 

Papa et al., 2014). Nuclear activities antagonise genomic aberrations and cycle 

progression, with the loss of protein phosphatase activity in mutants like those 

found in Cowden Syndrome resulting in greater genomic aberrations (Bononi and 

Pinton, 2015; Hubbard et al., 2016). This fits well with the observations that in 

normal, mostly quiescent tissues, PTEN is often much more localised to the 

nucleus, whereas in malignant samples it is more abundant in the cytoplasm 

(Perren et al., 2000).  
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In cancers, PTEN is frequently subject to deletion, mutation and 

epigenetic silencing, contributing to tumour development and progression 

(Perren et al., 2000; Mirmohammadsadegh et al., 2006). For example, loss of 

one or more alleles has been found in more than 20% of primary prostate cancers 

and 50% of castration-resistant prostate cancers (Jamaspishvili et al., 2018).  

Loss of function in skin has been shown in human SCCs including those 

associated with Cowden syndrome (Li et al. 2015; Brownstein et al., 1979) and 

has been investigated in mice using the chemical carcinogenesis model and by 

direct genetic manipulation (Yang et al., 2014; Suzuki et al., 2003). UV light 

causes rapid induction of PTEN in skin as it plays an important role in global 

genomic nucleotide excision repair (GG-NER), as evidenced by the impairment of 

this process when PTEN is downregulated (Ming et al., 2011). This, as well as the 

observations that it is downregulated in chemical carcinogenesis as well as in 

human actinic keratoses and SCC, make it an ideal target for use in inducing 

malignant progression of HK1.ras/fos papillomas. 

1.5.4. HK1.ras/fos-Δ5Pten Multistage Carcinogenesis 

As outlined above, previous experiments established that H-Ras and c-Fos 

are implicated in the aetiology of skin carcinogenesis, through characterisation 

of the Chemical Carcinogenesis model as well as manipulation of cancer cell 

lines and clinical tumour samples (Balmain et al., 1984; DiGiovanni, 1997; 

Greenhalgh et al., 1988, 1989, 1990; Pickering et al., 2014; Silvers et al., 2003). 

Studies which grafted transfected cell lines onto nude mice eliciting tumours 

were the first to identify direct co-operation between H-Ras and Fos in the 

progression from Ras-induced papillomas to malignant SCCs (Strickland et al., 

1988). 

However, in these systems, elucidating the impact of these genes in early 

carcinogenesis and progression is made difficult by the passenger mutations 

present, which may not contribute significantly to the disease. Therefore, in 

order to assess the effects of H-Ras and c-Fos specifically, both alone and 

concurrently, a model was devised using sequences of the viral homologues of 

these proteins, v-Ha-ras and v-fos. These were inserted into a modified human 
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Keratin 1 (HK1) expression vector (Greenhalgh et al., 1993a; 1993b; 1993c), the 

schematic for which is shown in Figure 1-6.  

This vector is expressed exclusively in mouse epidermis under the 

conditions which regulate the endogenous Keratin 1 gene expression. 

Importantly, however, this is a truncated form of the original clone from which 

the sequence was obtained in which some regulatory sequences are missing 

which allows its expression in some (~30%) of proliferative basal keratinocytes 

where endogenous K1 is normally not present (Rosenthal et al., 1991). Moreover, 

this also allows its expression to be maintained throughout tumorigenesis where 

endogenous K1 is lost as the well differentiated phenotype is lost. Furthermore, 

exclusive epidermal expression eliminates unnecessary pathologies which a 

constitutive vector would elicit, thereby complying with the UK’s 3R (reduce, 

refine, replace) framework for animal experimentation. 

 

Figure 1-6: HK1 vector schematic for exogenous v-Ha-ras and v-fos expression in 

mouse keratinocytes. 

The HK1 vector was originally derived from an EcorRI lambda clone of the full-length human 

Keratin 1 gene, from which the coding regions containing the 5’ (blue) and 3’ (red) flanking 

regions as well as the first intron (for efficient mRNA transcription and processing) were 

utilised. A polylinker sequence was inserted immediately downstream of the first intron, with 

the BamH I and Cla I restriction sites used to insert either the v-Ha-ras or FBJ/R chimeric 

form of v-fos genes were inserted. (adapted from Greenhalgh et al., 1993) 

 

As shown in Figure 1-6, in addition to the 5’ and 3’ flanking sequences, 

intron 1 of HK1 was included in the transgene construct; this is an important 

feature to ensure normal processing of the nascent mRNA transcript, as their 
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removal by the spliceosome complex is able to influence processes such as 

correct polyadenylation and nuclear export, thereby impacting the desired and 

efficient expression of the gene (Le Hir et al., 2003). 

Multiple founder lines of mice expressing either the HK1.ras or HK1.fos 

transgenes were established and characterised (Greenhalgh et al., 1993a, 

1993b), with severity of symptoms varying, likely due to differences in copy 

numbers and insertion sites (Laboulaye et al., 2018). All HK1.ras mice exhibit 

hyperplasia and some hyperkeratosis at birth, appearing wrinkled when 

compared to their normal littermates, which subsides from about 10 days post-

partum, leaving them indistinguishable from normal . Ear tagging for 

identification at 3-4 weeks of age also serves as a site of wound promotion. 

HK1.ras1205 mice develop papillomas at this site around 8 to 10 weeks after 

tagging which are prone to regression if the tag is lost or if given enough time, 

indicative of their benign nature. An alternate line, HK1.ras1276, does not 

develop papillomas after tagging, just hyperplasia comparable with their 

untagged ear skin, without further genetic insult and was typically employed 

where the phenotype became too extensive to allow for reasonable animal 

welfare to be maintained within UK experimental guidelines (Greenhalgh et al., 

1993a). HK1.fos488 (hereafter referred to as HK1.fos) mice are almost identical 

to their normal siblings, though by the time of tagging their ears tend to be 

mildly hyperplastic and smaller than their littermates. Their phenotype remains 

very mild until around 7 months of age, when the hyperplasia and hyperkeratosis 

tend to become pronounced on the tagged ear, while the untagged side remains 

almost normal. 

When HK1.ras1205 mice were bred with HK1.fos, the resultant bi-genic 

pups developed severe hyperplasia and hyperkeratosis soon after birth which 

was not compatible with life as it considerably restricted their movement. 

Breeding of HK1.fos with the milder HK1.ras1276 line, however, generated pups 

with a phenotype only slightly more pronounced than mono-genic HK1.ras pups, 

thus allowing characterisation of the bi-genic phenotype. By the time these mice 

are tagged, they generally have pronounced hyperplasia and some 

hyperkeratosis on both ears. Despite the increased severity of the phenotype 

compared with HK1.ras, and in contrast to in vitro studies of bi-genic v-Ha-
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ras/v-fos transfected keratinocytes, the papillomas which result from wound 

promotion of these mice still do not convert to malignancy (SCC), though they 

are not regression prone as observed in HK1.ras. 

Thus, this autonomy coupled to a lack of malignant conversion made 

these mice ideal to study the requirements for malignant conversion. One of the 

first studies involved inducible, conditional ablation of the Pten ability to 

regulate the PI3K/Akt pathway (Lesche et al., 2001; Yao et al., 2008; MacDonald 

et al., 2014) in order to both model Cowden Syndrome and add Akt signalling 

analysis to that of MAPK effects. 

Induction of a malignant phenotype requires further genetic aberrations, 

ideally tissue-specific and possessing a temporal component to control the stage 

of development at which new mutations are introduced. This was performed 

here by inducible Cre-mediated ablation of Pten exon 5, thereby preventing its 

inhibition of the PI3K/Akt pathway and other functions discussed earlier. This 

requires the presence of a keratinocyte-specific Cre recombinase which targets 

loxP sequences flanking the sequence to be knocked out, in this case, the entire 

exon 5 of Pten: Δ5Pten. Exon 5 encodes the core catalytic motif (Waite and Eng, 

2002) which is required for its dual phosphatase functions. In this model, Cre 

expression is under a Keratin 14 promoter (K14.CrePR1) which targets it to the 

undifferentiated basal keratinocytes in the interfollicular epidermis as well as 

hair follicle cells (Berton et al., 2000), shown in Figure 1-7A. In order to 

temporarily control the ablation of Pten activity, that is, following HK1.ras/fos 

papilloma, the Cre transgene is conjugated to a modified progesterone ligand 

binding domain (PR1), which is insensitive to endogenous progesterone but can 

bind the synthetic steroid Mifepristone, also called RU486. Binding of RU486 to 

the PR1 domain causes translocation of Cre to the nucleus to allow it to excise 

sequences which are flanked by loxP sites (“floxed”), as depicted in Figure 1-7B.  

Histology of the progression from normal skin through hyperplasia and 

benign papilloma to well-differentiated squamous cell carcinoma (wdSCC) is 

depicted in Figure 1-8 alongside the expression of early differentiation marker, 

Keratin 1 (Yuspa et al., 1989), with Keratin 14 as a counterstain showing 

undifferentiated keratinocytes at each stage. 
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Figure 1-7: Pten ablation by K14.CrePR1 in the epidermis and hair follicles. 

(A) Schematic of Cre-loxP mediated excision of Pten exon 5. Cre recombinase bound to 

the modified progesterone ligand binding domain is translocated to the nucleus following 

binding to RU486 (topically applied). The enzyme mediates DNA excision after loxP sites, 

resulting in a loop of DNA including the excised exon 5 plus one loxP site, while the other 

remains in the genomic DNA  (B) Depiction of the interfollicular epidermis and hair follicle 

(HF) showing the cells which express K14 in the interfollicular basal layer and the outer root 

sheath of the HF (purple), where K14.CrePR1-mediated excision will occur after RU486 

treatment. The cells where ablation will occur include the stem cells in both the interfollicular 

epidermis and the bugle region of the HF (green). K14 is not expressed, thus K14.CrePR1 

is not active, in suprabasal spinous and granular layer cells (pink and hatched), not in the 

inner root sheath layers (yellow). 
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Figure 1-8: Spectrum of carcinogenesis in mouse skin histology and early 

differentiation marker (K1) expression. 

Normal mouse skin is around 1-2 cells thick (A and B); exogenous Fos expression with 

wound promotion (tag) or H-Ras expression without tag results in hyperplastic skin which 

is more akin to normal human skin in appearance, with clearly defined basal, spinous, 

granular, and cornified layers (C) and strong suprabasal Keratin 1 expression in green (D); 

wound promotion of either HK1.ras mice or bi-genic HK1.ras/fos mice results in 

development of benign papillomas, characterised by keratin pearl formation (E) and strong 

K1 expression, indicating they are benign; induced ablation of Pten phosphatase activity in 

addition to HK1.ras and HK1.fos expression causes loss of differentiation and progression 

to a malignant histotype (G) and loss of K1 (H) indicating malignancy. Keratin 14 (red) stains 

undifferentiated cells. Scale bars approx. 100 µm. 
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Analysis of this multistage model found that p53 expression was strong in 

the basal layer of premalignant papillomas, while its inhibitor, Mdm2, was 

mostly suprabasal. As areas of the tumour progressed to well differentiated SCC, 

as determined by histology and K1 loss (Figure 1-8), p53 expression was greatly 

reduced, while Mdm2 expression became more basal. Interestingly, p53-

independent p21 expression was found to persist for a time, limiting progression 

to a poorly differentiated state (Macdonald, et al., 2014), until an increase in 

Akt expression antagonises p21 activities allowing pdSCC to develop. This 

supports previous findings in HK1.fos-Δ5Pten mice which develop benign 

keratoacanthomas (KAs), rather than SCC, due to very strong induction of p53 

and p21 expression to limit carcinogenesis (Yao et al., 2008). Therefore, it was 

hypothesised that if p53 levels could be maintained, conversion of HK1.ras/fos-

Δ5Pten papillomas would be inhibited. This led to analysis of proteins involved in 

p53/Mdm2 regulation, with 14-3-3σ/stratifin identified as an ideal candidate to 

explore further. 

1.6. 14-3-3σ/Stratifin 

1.6.1. 14-3-3 proteins 

The 14-3-3 family of adapter proteins comprises seven closely related, 

highly conserved isoforms: β, γ, ε, ζ, η, θ/τ and σ (α and δ were identified as 

further isoforms but are, in fact, just the phosphorylated forms of β and ζ) 

(Aitken et al., 1995; Aitken, 2006). They were named for the specifics of their 

discovery via 2D DEAE-cellulose chromatography and starch gel electrophoresis 

(14th fraction of bovine brain homogenate in the DEAE-cellulose column and 

fraction 3.3. at a later step in the process); 14-3-3s make up approximately 1% 

of total protein in neurological tissue. These proteins have no intrinsic enzymatic 

activity but act to modulate the activity or subcellular localisation of their 

ligands (Sluchanko and Gusev, 2010). 

They function as either homo or heterodimers, with each 28-33 kDa 

monomer comprising 9 alpha helices which are arranged such that the dimer is 

C-shaped, with the N-termini associated in the centre and two phosphobinding 
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grooves on the inner curve of each monomer. All isoforms have high affinity for 

two consensus binding motifs: RSXpSXP and RXXXpSXP; where pS represents a 

phospho-Serine, R is Arginine, P is Proline, and X is any amino acid except 

Cysteine. There have also been some cases identified involving different 

phosphorylation sites, or no phosphorylation at all (Nomura et al., 2015), though 

these are less common. A dimer is able to bind to 2 sites, most often on the 

same target protein, though a few instances in which a 14-3-3 isoform acts as an 

intermolecular bridge have been identified, most notably involving Raf-1 (Raf-

1/Bcr and Raf-1/PKC, for example) (Braselmann and McCormick, 1995; Van Der 

Hoeven et al., 2000). The more common mode of binding to single targets has 

been described as a “gatekeeper” mechanism: whereby one site on the target 

protein must be bound first, which then increases the binding affinity of the 

second target site to the other side of the 14-3-3 dimer, which is believed to 

stabilise the interaction (Wilker et al., 2005). 

14-3-3 proteins are highly conserved across eukaryotic species 

(phylogenetic analysis suggests that the isoforms evolved prior to the divergence 

of mammals) with orthologs of particular isoforms from different species having 

higher sequence similarity than different isoforms within a species (Wang and 

Shakes, 1996). 14-3-3 isoforms are present in all mammalian tissues and have 

been found (either by experiment or by motif homology) to interact with >300 

proteins (MacKintosh, 2004). They are predicted to influence almost all cellular 

pathways in some manner and, as such, have functions in a wide variety of 

cellular processes including proliferation, autophagy, apoptosis, migration and 

wound healing, occasionally in contradictory roles. They are involved in cell 

signalling, cell cycle inhibition and progression, intracellular 

trafficking/targeting, cytoskeletal organisation and transcription (Fu et al., 

2000; Sluchanko and Gusev, 2010). Due to the nature of many of these roles, 14-

3-3 are primarily cytoplasmic proteins, though can also be found at the plasma 

membrane, in the nucleus and Golgi to a lesser degree (Fu et al., 2000). The 

high degree of conservation coupled with their ubiquitous presence in all cell 

types mediating a wide variety of processes is indicative of their importance in 

normal development and functioning. 
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While certain isoforms can perform specific functions in certain cell 

types, many of the effects exerted by 14-3-3s are not tissue-specific as they 

relate to global processes, for example, cell cycle regulation and apoptosis. 

These proteins have been implicated in both positive and negative regulation of 

these processes. For example, γ, ε and ζ isoforms can mediate activation of Raf 

and PI3K to promote cell growth and proliferation (Radhakrishnan and Martinez, 

2010; Radhakrishnan et al., 2012), ζ is involved in BAD phosphorylation 

(deactivation) to inhibit apoptosis, while conversely, γ binds MDMX to prevent its 

ubiquitination of p21 to induce cell cycle arrest at the G1/S checkpoint 

(Aghazadeh and Papadopoulos, 2016), thereby counteracting its other growth-

promoting effects.  

1.6.2. Stratifin: the epithelial-specific 14-3-3 

As mentioned earlier, most 14-3-3s can form either homo or 

heterodimers, with most isoforms preferentially forming heterodimers. 14-3-3σ, 

hereafter referred to as Stratifin, is unusual in that it almost exclusively 

functions as a homodimer. The reasons for this have been extensively 

researched, with five amino acid residues found to be important: mutations in 

Ser5, Glu20 and Glu80 appear to encourage heterodimerisation, while mutations in 

Phe25 and Glu55 inhibit homodimerisation (though do not increase frequency of 

heterodimerisation); if all five are mutated, homodimerisation appears totally 

blocked but heterodimers are still able to form. Other unique features of this 

isoform include a salt bridge between Lys9 and Glu83 and a ring-ring interaction 

between Phe25 and Tyr84 (Wilker et al., 2005; Benzinger et al., 2005b). Stratifin 

is highly expressed in squamous epithelia and at a lower level in simple epithelia 

and is not usually expressed in brain unlike the other isoforms which are very 

abundant in neurological tissue (Cornell & Toyo-oka, 2017). The preference for 

homodimerisation coupled with the epithelial-specific nature of this isoform are 

indicative of the greater divergence of this isoform from the other 14-3-3 

proteins and therefore of its tissue-specific functions. 

Stratifin (gene: SFN) is so-called because of its identification as an 

important protein in epithelial differentiation, which gives rise to the different 
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epidermal layers, or stratifications, discussed in Section 1.1. The protein is 

ubiquitous in suprabasal epidermal cells, where its transcription is induced by 

the p53 gene family member, p63 (Trink et al. 2007), specifically the ΔNp63 

isoform (Westfall et al., 2003) which lacks the transactivation domain of TAp63. 

In this role in epidermal differentiation, stratifin has been identified as an 

important mediator of keratinocyte spatial awareness, which is vital in 

development of a normally stratified epidermis. Work in C. elegans and in HEK 

293 cells had shown that 14-3-3 proteins were able to bind to Par3 in the 

Par3/Par6/aPKC apical polarity complex, specifically around Ser144 of Par3 

(Hurd et al., 2003). Subsequently, stratifin was identified as the binding partner 

of Par3 in mammary cells, with knockdown or knockout in those cells ablating 

normal cell polarization in 3D Matrigel cultures (Ling et al., 2010). 

Stratifin has been found to limit cell cycle progression through several 

different protein interactions, the most well-known example being its effects in 

preventing p53 degradation following activation of the DNA-damage response 

(DDR), for which is has often been referred to as a DNA damage related protein 

(Hermeking et al., 1997). The level of p53 RNA is low in quiescent cells but 

increases quickly in response to mitogenic stimulation. However, while the cell 

cycle is progressing normally, p53 is bound to E3 ubiquitin-ligase MDM2 which 

tags it for degradation, thereby keeping the active level low (Reisman et al., 

2012). This regulatory mechanism is presumably to allow rapid activation of p53 

if DNA damage occurs during the growth phases of mitosis when the DNA is 

vulnerable, and at the G1/S checkpoint. When DNA damage occurs, e.g., double 

stranded breaks caused by UVB radiation, the DDR kinases ATM and ATR 

phosphorylate Chk1/2 which, in turn, phosphorylate p53 at several sites in the 

N- and C-termini (Shieh et al., 2000; Ou et al., 2005). This phosphorylation 

partially stabilising its levels to allow p53 to transcriptionally activate proteins 

involved in cell cycle arrest or apoptosis. Stratifin is an important transcriptional 

target during the DDR, though p53 binds a different DNA response element in the 

SFN promoter than p63 (Westfall et al., 2003). Stratifin binds MDM2 (and possibly 

MDMX) in the RING-finger domain (Lee and Lozano, 2006), which induces auto-

ubiquitination and chaperones it out of the nucleus to allow p53 levels to 

increase as a result. This positive feedback loop is shown in Figure 1-9. 
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Aside from this, Stratifin has been found to limit cell cycle progression by 

several other interactions, such as inhibition of cyclin/cyclin-dependent kinase 

complexes: cyclin D/CDK4/6 at the G1/S checkpoint, and cyclin B/Cdc2 at the 

G2/M checkpoint (Hermeking et al., 1997; Laronga et al., 2000; Steiner et al., 

2012). Conversely, it is able to exert positive influence on cell cycle progression 

by upregulating mTOR activity via a complex with cytokeratin 17 (K17) (Kim et 

al., 2006; Mikami et al., 2015). In a similar vein, it can promote cell survival 

through sequestration of the vital pro-apoptotic protein, BAX, as shown by SFN 

knockout which restores sensitivity to pro-apoptotic signalling (Samuel et al., 

2001). 

 

Figure 1-9: Schematic of p53 regulation following DNA damage. 

DNA double-stranded DNA breaks, such as those caused by electromagnetic radiation, 

including UV light, induce the DNA damage response (DDR). Early in the process, ATM 

and ATR kinases (not shown) phosphorylate Chk1 & 2 kinases which, among other 

functions, stabilise p53 by phosphorylating the protein at multiple sites, somewhat inhibiting 

the E3 ubiquitin ligase, MDM2, from initiating p53 degradation, thereby allowing the quantity 

of p53 in the cell to rise. Subsequently, Stratifin is transactivated by p53 and can inhibit 

MDM2 by binding its RING finger domain and inducing auto-ubiquitination; thereby creating 

a positive feedback loop with p53, which can then induce cell cycle arrest via downstream 

effectors such as p21 and/or the intrinsic pathway apoptosis through interaction with 

proteins such as BAD, BAX and PUMA. 
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In addition, Stratifin has been shown to be required for normal 

development of hair follicles and production of hair shafts (Hammond et al., 

2012), as demonstrated in Repeated Epilation (Er) mice, which have an insertion 

mutation in the SFN gene, producing a truncated protein (Herron et al., 2005). 

Homozygous (Er/Er) mice die shortly after birth due to defects in the airway and 

show defects in skin and limb development. Heterozygous (Er/+) mice are viable 

and have sparse fur, consistent with histology showing fewer hair follicles than 

normal and defects in those present. As the name suggests, the mutation causes 

repeated hair loss and, interestingly, aged Er/+ mice are also prone to 

spontaneously developing papillomas and squamous cell carcinomas (Lutzner et 

al., 1985). 

Stratifin has also been shown to be released by keratinocytes to act on 

fibroblasts in the underlying dermis. It binds to receptor Aminopeptidase N/APN 

(also called CD13) on the surface of fibroblasts and causes the upregulating of 

AP-1 signalling in these cells (Lai et al., 2011). This induces expression of several 

matrix metalloproteinases, including: MMP-1/interstitial collagenase, MMP-

3/stromelysin-1, MMP-8/neutrophil collagenase, MMP-10/stromelysin-2, and 

MMP-24/membrane-type5-MMP. Together, these can act to degrade many types 

of collagen (I, II, III, IV, IX, and X), as well as other matrix proteins like 

fibronectin, laminin, elastin, cadherins, and cartilage proteoglycans (Ghahary et 

al., 2005; Ghaffari et al., 2006). This allows extensive remodelling of the skin 

during wound healing, but has obvious implications in tumour invasion, also.  

1.6.3. Stratifin in Cancer 

Perhaps unsurprisingly, given the nature and variety of pathways the 14-3-

3 family are known to modulate, several isoforms have now been implicated in 

various cancers. Of these, Stratifin is often cited as the isoform most closely 

linked with cancer (Aitken, 2006). However, its relationship with this group of 

diseases is not straightforward, as it has been described in both tumour 

suppressive and oncogenic roles in various carcinomas and adenocarcinomas. 

Loss of function appears to rarely involve mutation or deletion of the SFN 

gene, rather suppression of expression is caused by hypermethylation of the 
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promoter in numerous cancer types including receptor-positive breast cancers 

(Ling et al., 2012), liver (Iwata et al., 2000), oesophagus (Ren et al., 2010), 

small cell and neuroendocrine lung cancers (Yatabi et al., 2002) and basal cell 

carcinoma (Lodygin et al., 2003). Downregulation via methylation of CpG islands 

downstream of the transcription start site has also been identified, though this 

appears to be less common than promoter methylation (Umbricht et al., 2001). 

Non-methylation dependent downregulation has also been reported, however, 

for example hypermethylation is uncommon in colorectal tumours (Ide et al., 

2004; Shao et al, 2016). Reduction or loss of Stratifin expression is believed to 

be correlated with poorer survival outcomes in several of these carcinomas (Ren 

et al., 2010; Ling et al. 2012). 

In contrast, Stratifin overexpression has been detected in many other 

carcinoma types, for example, in pancreatic ductal adenocarcinoma (PDAC) in 

which it is frequently overexpressed as a result of promoter hypomethylation 

(Tan et al., 2009). This can be quite dramatic, as in one case study wherein the 

mRNA level was 54-fold higher in PDAC tissue vs adjacent non-malignant tissue 

(Neupane and Korc, 2008). The same study went on to show that in pancreatic 

cell culture (PANC-1), Stratifin overexpression was demonstrated to confer a 

survival advantage following cisplatin treatment. Its overexpression also occurs 

commonly in lung adenocarcinoma (Shiba-Ishii et al., 2011; Kim et al., 2018). 

Interestingly, multiple studies have determined no correlation between the 

levels of Stratifin and p53, suggesting that in its oncogenic capacity, Stratifin 

often acts independent of the previously described Stratifin-p53-MDM2 

regulatory axis. 

Stratifin expression is also frequently upregulated (mostly via 

hypomethylation) in lung adenocarcinoma (Husni et al., 2019; Shiba-Ishii and 

Noguchi, 2012), non-small cell lung cancer (Radhakrishnan et al, 2011), late 

stage endometrial, as well as subsets of liver (Liu et al., 2014), gastric 

(Mühlmann et al., 2010) and colorectal cancers (Perathoner et al., 2005). 

Interestingly, one study showed that Stratifin positivity was more common in 

triple-negative breast cancers than any receptor-positive breast cancers tested, 

with Stratifin positivity conferring poorer prognosis (Ko et al., 2014). In these, 

positivity was also correlated with high histological grade, high nuclear grade 
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and p53 positivity; this is in contrast with other studies into pancreatic and 

gastrointestinal cancers where Stratifin and p53 levels were independent 

(Tanaka et al., 2004). Additionally, mouse models of basal-like breast cancer 

showed that Stratifin expression was associated with increased mammary cell 

invasiveness as it mediates a complex of G-actin/K5/K17 which allows rapid 

reorganisation of the actin cytoskeleton during invasion (Boudreau et al., 2013). 

In many cases where Stratifin overexpression is present it is well correlated with 

lymph node metastasis and overall worse prognosis (Li et al., 2009; Naidoo et 

al., 2012; Nakayama et al., 2005; Tanaka et al., 2004; Perathoner et al., 2005). 

Frequently, reports of overexpression in cancers specify cytoplasmic, rather than 

nuclear staining, highlighting the importance of subcellular localisation in its 

influence on the cell, especially considering that many of its tumour-suppressive 

functions are in the nucleus (Lodygin et al. 2003; Ko et al., 2014). 

Given that p53 expression is lost upon malignant conversion in 

HK1.ras/fos-Δ5Pten multistage carcinogenesis, concurrent with greater 

activation of Mdm2 in the basal layers (Macdonald et al., 2014), it made sense to 

explore the expression of Stratifin in these tumours since it is integral to 

p53/Mdm2 balance. This will be explored in much greater detail in Chapter 3.  

1.6.4. K14.stratifin Transgenic Mice 

In the HK1.ras/fos-Δ5Pten multistage carcinogenesis model, p53 (and p21) 

status was significant to the inhibition of papilloma conversion to wdSCC, and to 

the further progression to poorly-differentiated SCC. Thus, it was hypothesised 

that exogenous overexpression of Stratifin could be employed to rescue the 

phenotype and prevent malignant conversion, or to explore the possibility of 

oncogenic effects, given the divergent activities described in the literature with 

regards to various carcinomas.  

To explore this, a founder mouse was obtained which overexpressed full 

length human Stratifin under control of a K14 promoter (Cianfarani et al., 2011; 

Vassar et al., 1989). Thus, similar to the mechanism previously described to 

drive K14.Cre expression, the K14.stratifin transgene causes overexpression of 

Stratifin in undifferentiated basal layer and HF cells. In BDF-1 mice, the authors 
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described reduced epidermal thickness (tail skin), lower density of hair follicles, 

and reduced expression of keratins associated with an undifferentiated 

phenotype (K5, K14, and K15) on this genetic background. In cell culture, excess 

Stratifin impaired IGF-1 downstream effects (Cianfarani et al., 2011), consistent 

with observations in pancreatic cancers cells (PANC-1) where reduced IGF-

mediated invasion was described (however, that study also showed an increase 

in EGF-mediated invasion) (Neupane and Korc, 2008). 

These mice were crossed with the transgenes involved in the multistage 

model individually to assess the effects of bi-genic expression with the 

oncogenes: HK1.fos/K14.stratifin and HK1.ras1205/K14.stratifin, or the loss of 

tumour suppressors: K14.Ptenflx/flx.stratifin and K14.p53flx/flx.stratifin. Finally, 

ablation of p53 in both HK1.fos/K14.stratifin and HK1.ras1205/K14.stratifin mice 

was also assessed to explore the roles Stratifin plays separate to p53. These will 

be described and discussed in detail in the following chapters. 

1.7. Hypothesis 

Does 14-3-3σ/Stratifin confer a protective (tumour suppressive) effects in 

transgenic mouse models of cutaneous squamous cell carcinoma or have 

oncogenic effects in line with findings in multiple human carcinomas? 

1.8. Aims 

To determine whether: 

• endogenous Stratifin is a tumour suppressor in HK1.ras/fos-Δ5Pten 

multistage carcinogenesis 

• Stratifin overexpression limits tumorigenesis when co-expressed with 

activated oncogenes HK1.ras (transgenic H-Ras) and HK1.fos (analogous to 

c-Fos) 

• Stratifin is protective in the context of major tumour suppressor ablation 

(p53 and Pten)
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2.1. Materials 

2.1.1. PCR Materials 

Reagents/Kits 
Manufacturer 

(Cat. Number) 

Tail Lysis Buffer: 

50 mM Tris-HCl pH 8.0, 100 mM EDTA pH 8.0, 100mM NaCl, 
1% SDS, Proteinase K (20 mg/mL stock solution, added 
fresh) 

 

Taq DNA Polymerase 

• 10X PCR Buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl) 

• MgCl2 (50 mM) 

Invitrogen TM 

10342053 

• AmpliTaq Gold® DNA Polymerase (1000 U) 

• 10X Buffer I (contains 15 mM MgCl2) 
Applied Biosystems TM 

• Deoxynucleoside triphosphate set (100 mM each dATP, 
dTTP, dCTP, dGTP) 

Roche 

DNTP-RO 

6X DNA loading buffer: 

• 0.25% Bromophenol Blue 

• 0.25% Xylene Cyanol 

• 30% Glycerol 

Sigma-Aldrich 

• B0126 

• X4126 

• G5516 

UltraPure TM Agarose 
Invitrogen TM 

#16500500 

Table 2-1: PCR materials and manufacturers/catalogue numbers. 
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2.1.2. Immunostaining Materials 

Antibody Dilution Manufacturer (Cat. Number) 

Rabbit polyclonal anti-Keratin 1 1:100 
BioLegend® 905601 (previously 
Covance PRB-165P) 

Rabbit polyclonal anti-Keratin 6A 1:100 
BioLegend® 905701 (previously 
Covance PRB-169P) 

Guinea pig polyclonal anti-Keratin 10 1:100 Fitzgerald 20R-2629 

Guinea pig polyclonal anti-Keratin 14 1:400 Fitzgerald 70R-18180 

Rabbit RabMAb® anti-Keratin 16 1:100 Abcam ab76416 

Rabbit polyclonal anti-Keratin 17 1:100 Abcam ab53707 

Rabbit polyclonal anti-14-3-3σ 
IHC 1:200  

IF 1:100 
Invitrogen TM PA5-23507 

Rabbit polyclonal anti-E-Cadherin 1:200 Proteintech® 20874-1-AP 

Rabbit polyclonal anti-β-Catenin 
1:50 

1:50 

Abcam ab16051 

Sigma-Aldrich PLA0230 

Rabbit polyclonal anti-p53 

1:100 

1:100 

1:50 

Abcam ab31333 

Abcam ab131442 

Santa Cruz (discontinued) 

Rabbit polyclonal anti-p21 
1:150 

1:50 

Proteintech® 10355-1-AP 

Santa Cruz (discontinued) 

Rabbit RabMAb® anti-Akt1(phospho-
Ser473) 

1:100 Abcam ab81283 

Rabbit RabMAb® anti-Tenascin-C 1:200 Abcam ab108930 

Rat monoclonal Anti-BrdU 1:100 Abcam ab6326 

HRP-conjugated goat anti-rabbit IgG 1:250 Vector® Laboratories PI-1000-1 

Biotinylated goat anti-guinea pig IgG 1:100 Vector® Laboratories BA-7000-1.5 

Texas Red® Streptavidin (non-Ab) 1:400 Vector® Laboratories SA-5006 

Fluorescein (FITC) AffiniPure donkey 
anti-rabbit IgG (H&L) 

1:100 
Jackson ImmunoResearch Europe 
Ltd. 711-095-152 

Goat anti-Rat IgG H&L (Alexa Fluor® 
488) 

1:200 Abcam ab15057 

Table 2-2: Primary and secondary antibodies, their working dilutions, and 
manufacturers/catalogue numbers. 
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2.1.3. Cell Culture Materials 

2.1.3.1. Reagents and Buffers 

Material Manufacturer (Cat. number) 

L-glutamine (200 mM) GibcoTM 25030081 

Sodium pyruvate (100 mM) GibcoTM 11360070 

Penicillin/Streptomycin (10,000 U/mL) GibcoTM 15140122 

Foetal Bovine Serum GibcoTM 

Chelex® 100 Sodium form Sigma-Aldrich C7901 

Dulbecco’s Phosphate Buffered Saline 
(no Ca2+, no Mg2+) 

GibcoTM 14190169 

2.5% Trypsin (+ 0.01% EDTA) Sigma-Aldrich 59418C 

Table 2-3: Cell culture materials and manufacturers/catalogue numbers. 

2.1.3.2. Media 

DMEM (Gibco 21068028): High glucose, no pyruvate, no glutamine, no calcium. 

Keratinocyte Growth Medium Kit (PromoCell C-20111): 500 mL basal medium 

plus supplement pack including: Bovine Pituitary Extract, human Endothelial 

Growth Factor, Hydrocortisone, Insulin, Epinephrine, Transferrin-5 & CaCl2) 

Complete culture medium (low Ca2+): 500 mL DMEM, 20% KGM (or 10% KGM/10% 

FCM), 10% FBS, 10 mM L-glutamine, 1 mM Sodium pyruvate, 

Penicillin/Streptomycin (50 U/mL and 50 µg/mL, respectively; approx. 85 µM 

each), 0.05 mM Ca2+. 
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2.1.4. Western Blotting Materials 

Material Manufacturer (Cat. number) 

Mini-PROTEAN® TGXTM Precast Gels (4-20%) Bio-Rad 4561093 

2x Laemmli Sample Buffer Bio-Rad 1610737 

Precision Plus ProteinTM Dual Xtra Prestained 
Protein Standards 

Bio-Rad 1610377 

Transfer membrane Immobilon®-P PVDF Merck-Millipore 10344661 

10x Tris-Glycine (TG) Buffer Bio-Rad 1610734 

10x Tris-Glycine SDS (TGS) Buffer Bio-Rad 1610732 

Tween®-20 10% non-ionic, aqueous solution Sigma-Aldrich 11332465001 

TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl) 

(Prepared in-house) 

Tris-HCl (Trizma®-HCl): 
Sigma-Aldrich T3253 

NaCl: Sigma-Aldrich S7653 

Table 2-4: Western blotting materials and manufacturers. 

2.2. Methods 

2.2.1. Mice 

Mice were maintained under non-barrier conditions and fed a standard 

diet, with rotations including an ivermectin-containing diet as prophylaxis 

against ectoparasites, and water ad libitum. Husbandry was provided by staff at 

the University of Glasgow Central Research Facility (CRF), including weaning of 

pups and setting up matings if I was unable to do so. Animals were sacrificed by 

overexposure to isoflurane gas to the stage of non-recovery and confirmed by 

cervical dislocation. All experiments were carried out with the Personal Licence 

IAED844E7 and in accordance with the Project Licence P82170325 under the UK 

Home Office Guidelines. 
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2.2.2. Transgenic mouse lines 

Transgenic mice expressing activated v-H-Ras and/or v-Fos from a human 

keratin K1-based vector, modified to express in basal- and suprabasal 

keratinocytes (HK1.ras/fos) have been described previously and produce 

autonomous papillomas without malignant conversion (Greenhalgh et al., 1990). 

These mice were crossed to mice expressing a keratin K14-driven Cre fusion 

protein (K14.CrePR1) (Berton et al., 2000) and breeding strategies maintained 

HK1.ras/fos and the RU486-inducible K14.CrePR1 regulator as heterozygous 

transgenes in mice homozygous for the lox-P-flanked Pten exon 5 alleles 

(Δ5PTENflx/flx (Lesche et al, 2001)). Bi-genic and tri-genic combinations of 

HK1.ras/fos-5Ptenflx/flx progeny were genotyped by PCR as described (Yao et al., 

2006, 2008; Macdonald et al., 2014) using primer pairs detailed in section 2.2.3. 

Pten phosphatase activity was ablated in epidermis following topical treatment 

of skin with 2 µg RU486 (Mifepristone; Sigma, Gillingham, UK) dissolved in 50 µL 

ethanol, with 15 µL applied to the dorsal surface of each ear and shaved back 

weekly for 3 weeks, and controls receiving ethanol alone.  

Transgenic mice overexpressing human 14-3-3σ/Stratifin in 

undifferentiated epidermis (K14.stratifin) were generated as described on a 

BDF-1 genetic background at the Laboratory of Molecular and Cell Biology, IDI-

IRCCS, Rome, Italy (Cianfarani et al., 2011). A homozygous male K14.stratifin 

mouse was obtained from this lab in 2015 and crossed into an outbred ICR 

genetic background for further crossbreeding with the transgenes involved in the 

multistage model, described above. The PCR primer pair detailed in the 

described method was found to produce a weak band, causing difficulty in 

genotyping. A new forward primer was designed which allowed the production of 

a larger DNA fragment (280 bp) which allowed for easier genotyping. The new 

pair is detailed in section 2.2.3. Similarly to Pten, p53 activity could be ablated 

by the same system after inclusion of the floxed p53 gene. All experiments 

adhered to UK Experimental Regulations (Licence: 60/4318 and P82170325 to 

DAG). 
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2.2.3. DNA isolation  

DNA was extracted from approx. 5 mm pieces of tail tissue obtained from 

weaned pups at time of ear tagging (3-4 weeks old). Tissue samples were 

digested overnight at 55oC in 500-700 µL tail lysis buffer (50 mM Tris.HCl, 100 

mM EDTA, 100 mM NaCl, 1% SDS) + 500-700 µL Proteinase K (20 mg/mL stock), 

depending on sample; 5 mm tail tips were digested in 500 µL, while biopsy 

samples were often larger or keratotic so 600/700 µL was used instead.  

Digested samples were centrifuged at 13,000 rpm (approx. 19,000 x g) for 

20 minutes to precipitate the undigested material, e.g., hair and bone 

fragments. An equal volume of ice-cold ethanol (EtOH) was then gently pipetted 

onto each sample to precipitate dissolved DNA from the buffer. Precipitated DNA 

was then wound onto a clean micropipette tip, excess buffer carefully blotted 

onto tissue paper, and the DNA resuspended in 300 µL dH2O. 

2.2.3. Polymerase Chain Reaction (PCR) Genotyping  

1X Master Mix for all genotyping PCRs except K14.stratifin (total per reaction: 23 

µL Master Mix + 2 µL DNA template):  

Reagent Volume (µL) 

10X PCR buffer (200 mM Tris-HCl pH 
8.4, 500 mM KCl; -MgCl2) 

2.50 

MgCl2 (25 mM stock) 2.00 

Forward primer 0.50 

Reverse primer 0.50 

dNTP mix (20 mM) 0.25 

Taq DNA Polymerase (5 U/µL) 

(Invitrogen) 

0.25 

dH2O 17.0 

Table 2-5: PCR reagents and volumes (µL) per reaction. 
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1X Stratifin PCR Master Mix (total per reaction: 27 µL MM  + 3 µL DNA template): 

Reagent Volume (µL) 

GeneAmp® 10X Buffer I 

(contains 15 mM MgCl2) 
3.20 

Forward primer 0.76 

Reverse primer 0.76 

dNTP mix 

(Roche; made to 20 mM stock) 
0.30 

AmpliTaq Gold® DNA Polymerase 

(Applied Biosystems) 
0.30 

dH2O 21.0 

Table 2-6: PCR reagents and volumes for genotyping of K14.stratifin. 

Transgene Primer Pair 

HK1.ras 
5’-GGATCCGATGACAGAATACAAGC-3’ 

5’-ATCGATCAGGACAGCACACTTGC-3’ 

HK1.fos 
5’-GGATCCATGATGTTCTCGGGTTT-3’ 

5’-CGATTATTGCCACCCTGCCATG-3’ 

Pten* 
5’-ACTCAAGGCAGGGATGAGC-3’ 

5’-GTCATCTTCACTTAGCCATTGG-3’ 

∆5Pten** 
5’-ACTCAAGGCAGGGATGAGC-3’ 

5’-GGTTGATATCGAATTCCTGCAGC-3’ 

p53* 
5’-CACAAAAACAGGTTAAACCCAG-3’ 

5’-AGCACATAGGAGCAGAGAC-3’ 

∆p53** 
5’- CACAAAAACAGGTTAAACCCAG-3’ 

5’-GAAGACAGAAAAGGGGAGGG-3’ 

K14.CrePR1 
5’-CGGTCGATGCAACGAGTGAT-3’ 

5’-CCACCGTCAGTACGTGAGAT-3’ 

K14.stratifin 
5’-CATGGACATCAGCAAGAAGG-3’ 

5’-CTCCTAGGGACTCTAGAGG-3’ 

Table 2-7: Forward and Reverse primer sequences for detection of transgenes. 
*Distinguishes wild-type genes from those with loxP insertions (floxed genes). **Detects 
gene which has had sequence between loxP sites excised by Cre recombinase. All 
working primer concentrations = 20 µM. 
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(Trans)Gene 
Initial 
denat. 

Denaturation Annealing Extension Cycles 
Final 

exten. 

K14.Stratifin 
5 m/ 
95°C 

30 s/ 95°C 55 s/ 57°C 60 s/ 72°C 45 
10 m/ 
72°C 

HK1.Ras 
5 m/ 
95°C 

30 s/ 95°C 60 s/ 56°C 60 s/ 72°C 35 
10 m/ 
72°C 

HK1.Fos 
2 m/ 
95°C 

30 s/ 95°C 30 s/ 62°C 60 s/ 72°C 35 
15 m/ 
72°C 

K14.CrePR1/ 

K5.CrePR1 

5 m/ 
94°C 

30 s/ 94°C 45 s/ 58°C 60 s/ 72°C 35 
5 m/ 
72°C 

Pten/ 

∆5Pten 

2 m/ 
94°C 

30 s/ 94°C 60 s/ 63°C 90 s/ 72°C 36 
10 m/ 
72°C 

p53/ 

∆p53 

3 m/ 
94°C 

30 s/ 94°C 20 s/ 58°C 60 s/ 72°C 32 
5 m/ 
72°C 

Table 2-8: Thermocycler programme conditions for genotyping PCRs. 

2.2.4. Immunostaining  

All sections were heated to 60oC for 40 min and then deparaffinised in 

xylene for a further 20 min before being re-polarised in 100% EtOH for 5 min. 

Sections were then washed twice in PBS between every subsequent step. 

Unmasking of proteins was achieved by heated-mediated epitope retrieval: 

sodium citrate (pH 6.0) was heated to between 95 and 100oC in a microwave 

oven, and reheated subsequent to slides being added. Sections were allowed to 

cool in buffer for 40 min. For IHC, endogenous peroxidase activity was quenched 

by treatment with 3% H2O2 for 10 min at ambient temperature. Sections were 

blocked using the appropriate serum matching the secondary antibody, diluted 

in PBS (IHC: 10% normal goat serum; IF 10% normal goat/10% normal horse serum 

due to double labelling) for approximately 30 min. Primary antibodies were 

diluted in the blocking serum and incubated on sections overnight at 4oC.  

Immunohistochemistry: Sections were incubated for 1 hr with HRP-

conjugated goat anti-rabbit in 10% BSA (1:200) at ambient temperature. After 

washing, sections were treated with DAB according to manufacturer’s 
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instructions for optimised time periods/antibody to visualise antibody binding. 

Slides were washed with dH2O and counterstained with haematoxylin, thoroughly 

washed with tap water then decolourised with acid-alcohol (1% HCl in EtOH). 

Sections were then treated with Scott’s Tap Water for 1 min to induce blue 

colour in haematoxylin staining. Slides were then treated in EtOH for 3 min to 

displace water, followed by 3 min in Xylene. After drying, coverslips were 

attached using Pertex® mounting medium. 

Immunofluorescence: Sections were first incubated with biotinylated goat 

anti-guinea pig IgG in 10% BSA for 1 hr (ambient temperature), then 

subsequently with a combination of FITC-conjugated donkey anti-rabbit IgG and 

Texas Red-Streptavidin (to bind biotin) for 1 hr. Coverslips were attached using 

PermaFluorTM Aqueous Mounting Medium. 

Micrographs were captured using Zeiss Axio Cam with the Axioplan 2 Carl 

Zeiss Microscope along with imaging software AxioVision 3.0 for Windows. 

Composite images were subsequently assembled using Microsoft Image 

Composite Editor (ICE). Some light microscopy images were obtained using at 

the Queen Elizabeth University hospital. 

2.2.5. BrdU labelling and analysis 

Mice were injected intraperitoneally with 125 mg/kg bromodeoxyuridine 

(BrdU) suspended in saline (0.9% NaCl) approximately 2 hr prior to biopsy. BrdU 

labelling was visualised using IF analysis as describe previously, using rat anti-

BrdU (abcam ab6326 1:100) primary antibody and Alexa Fluor® 488 anti-rat 

secondary antibody (abcam ab15057 1:200) with keratin 14 as a counterstain to 

identify basal layer keratinocytes. Enumeration of BrdU positive cells was done 

manually by counting number of positive cells first in 1 mm basal cells (attached 

to basement membrane) and separately in all suprabasal cells in the same 

distance. High suprabasal count was considered to be a marker for a less well-

differentiated, more aggressive tumour. Boxplots to display count data were 

generated using SPSS software (IBM). 
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2.2.6. Primary Keratinocyte Culture and Generation of Cell Lines 

Pups were obtained which had been euthanised at between 24 and 36 hr 

old prior to the development of follicles which would prevent epidermal-dermal 

separation. A small sample of tail tissue from each was taken to be digested in 

lysis buffer containing proteinase K for genotyping analysis (after a short 4-5 hr 

digestion DNA was isolated and analysed as described in Section 2.2.3) as the 

pups were separated into numbered 60 mm dishes. The limbs were removed at 

the elbow/hock joints and the skins were removed in a single piece to limit 

fibroblast contamination at a later stage. The skins were floated on 0.25% 

Trypsin at 4oC o/n to facilitate separation of the layers the next morning. The 

epidermises were batched depending on the genotyping results into Wild Type 

(ICR), K14.stratifin only, HK1.fos only, and HK1.fos/K14.stratifin groups. The 

batches were placed in 50 mL corning tubes with DMEM-glutamax medium (high 

Ca2+) and rocked by hand for 20 min to suspend as many keratinocytes as 

possible through the medium (indicated by the opacity of the liquid). The 

suspensions were filtered through sterile gauze to remove basement membrane 

components and other large cellular debris and centrifuged at 900 rpm for 3 min 

to pellet the cells. Pellets were resuspended in Low Ca2+ DMEM. Cells were 

plated out at a concentration of 5 x 106 cell/mL with the presumption of ~40-

50% plating efficiency.  

Primary cells were kept in clonal growth medium (Low Ca2+ DMEM + 10% 

FBS + 20% KGM) for 4 weeks without subculture. At this stage some were seen to 

be contaminated with fibroblasts which were growing more quickly than the 

keratinocytes, limiting colony growth. These were differentially trypsinised (as 

fibroblasts detach much more readily than keratinocytes) and left to continue 

growing to confluency. When confluent, 2 T25s + ½ of one more T25 were 

pooled and split into 3 T75s.  

Photographs of cell cultures were captured using a Panasonic DMC-G5 

camera mounted on an Olympus phase contrast microscope. 



Chapter 2: Materials and Methods  52 

 
 

2.2.7. Clonal Growth Assay 

Following trypsinisation and resuspension of cells in a confluent T75 flask 

a sample was taken to be counted using a haemocytometer: Four 4x4 grids were 

counted, ignoring non-viable cell debris and clumped cells which were not 

separated by trituration. The average count (N) was used to estimate the 

number of cells/mL in the suspension such that the concentration was N x 104. 

100 µL had been taken from this suspension and added to 10 mL (10,000 µL) 

prior to counting to create a 1:100 dilution, therefore the original concentration 

is reduced to N x 102. The desired concentration to plate out “at clonal density” 

is 50 cell/mL therefore this 1:100 dilution was further diluted to achieve this 

concentration, e.g., 6500 cells/mL reduced to 50 cell/mL by diluting 184 µL with 

24 mL clonal growth DMEM (low Ca2+, 10% KGM/10% FbCM) which was then plated 

out in 6 x 60 mm dishes (4 mL per dish). 3 dishes for each line were treated with 

high calcium medium after 3 days. 

2.2.8. Protein Isolation from Keratinocyte Cultures 

RIPA (Radioimmunoprecipitation assay buffer): 150 mM NaCl, 50mM 

Tris.HCl (pH 7), 500 µL Triton-X 100, 1% (w/v) Deoxycholic acid (initially 

dissolved in 25 mL 1M NaOH solution to increase solubility). Adjusted to ~pH 7.0 

by addition of HCl. β-ME/SDS buffer: 50 mM Tris.HCl, 2% (v/v) β-

mercaptoethanol, 1% (v/v) SDS.  

All primary cells and cell lines were lysed with both RIPA buffer (to obtain 

soluble proteins) and β-ME/SDS buffer (to reduce and obtain insoluble 

components including the keratin intermediate filaments) in low, medium, and 

high (staggered) Ca2+ concentrations thus: low = 0.05 mM Ca2+; medium = 0.125 

mM Ca2+ for 24 hr; high = 0.125 mM for 24 hr, then 0.225 mM for a further 24 hr 

to encourage proper stratification. Cells were lysed with either 1.5 mL RIPA or 2 

mL β-ME/SDS buffer in the flasks and transferred to Eppendorf tubes where the 

samples were manually broken up by needle aspiration (19-22 gauge). RIPA 

lysates were then centrifuged at 13,000 rpm for 20 min to pellet the insoluble 

fraction (this pellet was subsequently treated with β-ME/SDS buffer as for direct 
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lysates for back up). Centrifuged lysates were transferred to fresh Eppendorf 

tubes and stored at -70oC. β-ME/SDS-lysed samples were heated to 90oC for 

approx. 20 min to facilitate proper dissolution prior to being centrifuged as for 

RIPA samples and subsequently stored at -70oC. 

2.2.9. Western Blotting 

Protein samples were quantitated using the Pierce BCA Protein 

Quantitation Assay on a 96 well plate, measured via a Thermo MultiSkan 1500 

microplate reader detecting absorbance at 562 nm. The absorbance data were 

converted to concentrations using results of an albumin standard curve 

(duplicated) onto which a polynomial best fit line was applied. The resulting 

polynomial equation was then used to calculate unknown sample concentrations. 

These values were then used to calculate the volume of each required to run 10 

µg total protein per well (could only run 5 µg each for primary cell lysates due to 

low concentration). 

Prior to running samples, 100 µL of each was mixed in a fresh Eppendorf 

with an equal volume of 2x Laemmli buffer (prepared as 950 µL buffer + 50 µL β-

mercaptoethanol) and heated for 10 min at 95oC to facilitate denaturation. The 

running buffer was prepared according to instructions: 900 mL ddH2O + 100 mL 

10X TGS buffer (Bio-Rad). The appropriate volume of each sample was loaded 

into the wells of Bio-Rad Mini-PROTEAN® TGM™ precast gels (4-20% gradient) for 

protein separation, with 5 µL undiluted Bio-Rad Precision Plus Protein™ Dual 

XTRA pre-stained protein standards loaded in the first and last wells as size 

markers. Gels were run at 100 V for approximately 90 min (or until the loading 

dye reached the bottom of the gel, denoted by a black line on the casing).  

Buffer for wet transfer was prepared as per instructions: 700 mL ddH2O + 

200 mL methanol + 100 mL 10X TG buffer (Bio-Rad). Proteins were transferred 

from the gel to a PVDF membrane which had been soaked in methanol for 5-10 

min prior to use. The transfer was done at 300 mA for approx. 90 min (with an 

ice block to prevent overheating). 
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Blocking was performed in 5% BSA in TBS-T for 1 hr at room temperature 

(rocking). The membranes were briefly washed in TBS-T before addition of the 

primary antibody diluted in 0.3% BSA in TBS-T (Anti-Stratifin pAb 

Pierce®/ThermoFisher Scientific at 1:5,000; Anti-β-Actin pAb Proteintech at 

1:10,000). Primary antibody incubations were performed o/n at 4oC (rocking). 

Membranes were washed 3 times for 10 min each in TBS-T prior to addition of 

the secondary antibodies:  HRP-conjugated anti-Rabbit IgG (1:8,000) + HRP-

conjugated anti-Ladder (1:50,000). Incubation was carried out for 1-1.5 hr at 

room temp (rocking). Visualisation of bands was performed via 

chemiluminescence using the Pierce ECL kit as instructed, followed by image 

capture using the SynGene system. 

2.2.10. Wound closure assay 

Cell lines developed from primary murine keratinocytes expressing either 

no transgenes, HK1.fos only, K14.stratifin only, or both HK1.fos and 

K14.stratifin were grown to confluence in 60 mm dishes (6 each). When 

confluent, the media was removed and each dish was scratched 3 times using a 

clean, sterile 200 µL pipette tip. The dishes were then washed 3 times with 

sterile PBS (-Ca2+) to discard viable detached cells which may colonise the 

scratches and affect the assay results. The dishes were then refed with clonal 

growth medium (as described above). The centre point of each scratch was 

photographed immediately after being refed (T0) and every 12 hours 

subsequently until closed. For the normal ICR line, photographs were not taken 

past 120 hrs as the scratches did not appear to be closing due to a failure of the 

cells to migrate across the scratch border. These were kept for a further 5 days 

with little change thus further results have not been recorded.  

Analysis was performed using ImageJ software to measure the area of the 

scratch (in pixels). Each photograph was analysed 3 times on different days to 

minimise bias, and the means and standard deviations were calculated to assess 

the viability of the technique. These data were then converted into a 

percentage closure of each scratch, represented as a graph, produced on MS 

Excel 2016. 
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2.2.11. Colocalisation Analysis on Dual-Colour 

Immunofluorescence Images 

FIJI (ImageJ; National Institutes of Health and the Laboratory for Optical 

and Computational Instrumentation) was used in analysis of immunofluorescence 

images and western blots. 

Keratin 1 and 10 Co-localisation Analysis: Used Plugin “Colocalization 

Threshold”. Colour channels were split and the empty blue channel discarded. 

Zero-zero values, i.e., entirely black pixels in each channel (background and 

empty nuclei), were excluded from analysis since these would be perfectly 

correlated and skew results. This analysis provided scatter plots to visualise 

pixel colour correlation, the Pearson’s correlation coefficient, and the Manders 

overlap coefficients, M1 and M2. M1 is the percentage of red pixels with a non-

zero green value; M2 is the percentage of green pixels with a non-zero red value 

(Manders et al., 1993). The plugin also provided images showing all overlapping 

pixels in white and all non-overlapping pixels in either green or red as a clear 

visual representation of the coefficients calculated.  
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3.1. Introduction 

As described in Chapter 1, the HK1 transgenic multistage mouse model of 

carcinogenesis mimics the classic two-stage chemical carcinogenesis model in a 

more controlled way that allows for characterisation of each stage in the 

aetiology of skin carcinogenesis (Balmain et al., 1984; Sakai, 1990; Hennings et 

al., 1993; MacDonald et al., 2014). Using specific promoters targeting activated 

H-ras and Fos to the epidermis, it both allows for reduction in off-target effects 

of DMBA/TPA treatment and is able to control the specific cell types in which 

these oncogenes are activated. Being able to target to a desired cell type is 

important, as when H-ras is targeted to the hair follicle and all proliferative 

compartments, aggressive SCCs form very quickly (Brown et al., 1998), 

preventing stage-specific analysis and not recapitulating the course of human 

SCC development, which almost invariably involves a pre-malignant neoplasia 

(Dinehart et al., 1997; Cockerell, 2000). 

In this model, a modified, truncated human keratin 1 promoter is used, 

which is expressed in all early differentiating epidermis, but also in 

approximately one third of basal layer cells, due to the truncated nature of the 

construct in which the 3’ regulatory elements are missing (Rosenthal et al., 

1993). Thus, HK1.ras/fos mice develop an aggressive papilloma some weeks 

after a wound-promotion stimulus (ear tag), but do not convert to well-

differentiated SCC (wdSCC). That requires a further genetic insult, which is 

provided here by ablation of exon 5 of the tumour suppressor gene (TSG), Pten 

(Lesche et al., 2001); a major inhibitor of the PI3K/Akt pathway (Chaloub & 

Baker, 2009; Manning & Toker, 2017). Expression of the mutant Pten allele 

lacking phosphatase activity is targeted to the proliferative cells of the 

epidermis using a Cre-mediated loxP system under the control of a K14 promoter 

and is linked to a progesterone ligand-binding domain to allow inducible 

activation in the skin by topical Mifepristone/RU486 treatment (Berton et al., 

2000). This further allows for temporal control of carcinogenesis in that Pten 

ablation can be induced subsequent to papilloma formation, so that proteins of 

interest can we studied at well-defined stages in progression to SCC, and further 

to poorly-differentiated SCC (pdSCC). 
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Previous studies found that the cell cycle regulator and major tumour 

suppressor p53 was lost during the process of malignant conversion from 

papilloma to well-differentiated carcinoma (MacDonald et al., 2014). p53-

independent p21 expression, however, was found to persist until its eventual 

loss which coincided with progression to pdSCC. Loss of p53 was accompanied by 

basal layer activation of its inhibitor, Mdm2, therefore control of this interaction 

warranted further analysis in this model to identify possible targets which may 

prevent malignant conversion. Through this, 14-3-3σ/Stratifin was identified as a 

key regulator of the Mdm2/p53 interaction, as detailed in Chapter 1 Figure 1-9, 

where it protects p53 by chaperoning Mdm2 into the cytoplasm and inducing its 

autoubiquitination. 

The initial part of this project, therefore, sought to characterise the 

expression pattern of endogenous Stratifin at each stage in the progression of 

HK1.ras/fos-Δ5Pten model of carcinogenesis and to elucidate its possible 

function as a tumour suppressor gene in the model by maintaining strong basal 

layer p53 expression subsequent to induced Pten ablation. 

3.2. Confirmation of genotype by PCR 

Mouse genotypes were first confirmed at 3-4 weeks old using tail tip tissue 

obtained when the mice were tagged. This allowed for confirmation of the 

presence of HK1.ras, HK1.fos and K14.CrePR1 transgenes (Figure 3-1). This DNA 

can also be used to determine Pten status: presence of a floxed Pten allele 

results in a larger band on the gel than the wild-type allele, with heterozygosity 

therefore resulting in a doublet pair of bands. Primers in this instance span a 

region containing the first loxP site, hence the larger PCR product. Cre-

recombinase activity must be induced by treatment with Mifepristone/RU486, as 

detailed in Chapter 1 (Figure 1-7). It was therefore not active in mice at the 

time of tagging, thus Pten exon 5 could not be detected in these samples (not 

shown). 

All mouse genotypes determined from tail tissue were reconfirmed with 

biopsy tissue, including presence of the Δ5Pten band (Figure 7-1, bottom row) in 
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heterozygous and floxed mice from tissue which had been treated with RU486. 

Treated controls lacking the K14.CrePR1 gene were also tested to ensure PCR 

specificity and confirm the requirement of Cre-recombinase to excise the floxed 

region.  

 

Figure 3-1: PCR analysis identifies transgenic genotypes and successful excision of 

Pten exon 5. 

Panel I: PCR analysis of DNA isolated from tails detects HK1.ras, HK1.fos and K14.CrePR1 

transgenes (lanes 1-6), including negative controls to confirm specificity and to check for 

contamination of reagents (lanes 7-12). 

Panel II: PCR of biopsy tissue DNA detects the loxP-flanked (exon 5) Pten allele at 1300 bp 

compared to the wild-type 1200 bp band, forming a doublet in heterozygous samples (primers 

1 & 2; lanes 3 & 4; 9 & 10). RU486 treatment of K14.Ptenflx/+ and K14.Ptenflx/flx results in the 

excision of Pten exon 5 (Δ5Pten) at 300 bp band (primers 1 & 3; lanes 3-6). No bands are 

present in the K14.Pten+/+ samples (lanes 1 and 2), nor in any samples without the K14.CrePR1 

gene (lanes 7-12). 
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3.3. Stratifin expression in benign skin phenotypes 

3.3.1. Stratifin expression increases in HK1.fos and HK1.ras 

hyperplasias and papillomas and is concurrent with increases in 

p53 and p21 expression 

As described in Chapter 1, HK1.fos activation in transit amplifying and 

differentiating cells of the epidermis results in mild hyperplasia upon wound-

promotion (ear tagging) which becomes more pronounced, accompanied by 

keratosis after around 7 months. HK1.ras (line 1205, which is very sensitive to 

wound-promotion) results in immediate neonatal hyperplasia which diminishes in 

adults but acts as an initiating event in the epidermis so that papillomas are 

induced by ear tag wound promotion; these regress if the stimulus is lost, i.e., 

by the tag falling out (Greenhalgh et al, 1993b). HK1.ras line 1276, which 

harbours exactly the same transgene construct, has been shown to be insensitive 

to wound-promotion but results in papilloma formation when co-expressed with 

HK1.fos (Greenhalgh et al., 1993c), recapitulating the initiation-promotion 

mechanism seen in DMBA/TPA chemical carcinogenesis (Filler et al., 2007). NB: 

Promotion experiments in the USA via crossing of HK1.ras1205 with HK1.fos 

activation produced too severe a phenotype in neonatal pups, as the hyperplasia 

normally seen in all HK1.ras pups was exaggerated and accompanied by 

hyperkeratosis; thus all HK1.ras/fos and HK1.ras/fos-Δ5Pten mice produced 

utilised the HK1.ras1276 line. 

Initially, IHC staining was performed to test for p53 and p21 expression 

and localisation in normal skin, HK1.fos hyperplasias (and HK1.ras hyperplasia, 

not shown), and HK1.ras papillomas. Previously, basal layer p53 expression had 

been found to increase in older (>5 mo.) hyperplasias and papillomas, consistent 

with its role in cell cycle regulation, to combat hyperproliferation in the context 

of these activated oncogenes. Similar increases were seen in p21 expression, 

which is downstream of p53 and controls cell cycle arrest at the G1/S checkpoint 

and at G2/M (Niculescu III et al., 1998). 

However, both anti-p53 and anti-p21 antibodies used in the previous study 

(Santa Cruz Biotechnology) were discontinued early in this project, thus 
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replacements needed to be obtained and verified (Appendix 1, McMenemy et al., 

in preparation, Figure S1). Confirmation of these expression patterns with the 

new antibodies is shown in Figure 3-2. In normal skin, p53 showed only 

infrequent basal layer positivity, consistent with division of interfollicular stem 

or transit amplifying cells, while expression of p21 followed an identical pattern 

of staining (Figure 3-2A,B). Expression of both p53 and p21 was increased in 

basal cells of HK1.fos hyperplasia (Figure 3-2D,E) and in HK1.ras papilloma 

(Figure 3-2G,H) with noticeable increases in p21 expression in granular cells, 

consistent with a role in late-stage differentiation. 

Against this background, Stratifin expression in normal skin, hyperplasia 

and papilloma was found to always be strong in suprabasal layers, where it is 

involved in the normal terminal differentiation programme (Dellambra et al., 

1995; Sun et al., 2015). Slight increases in basal layer expression were noted in 

HK1.fos hyperplasia and HK1.ras papilloma, related to the observed increase in 

p53 staining. Following DNA damage, caused here by a marked increase in 

proliferation driven by HK1.fos and HK1.ras, p53 is partially stabilised by Chk1 

and 2, allowing it to go on to transactivate downstream targets including p21 

and Stratifin (Hermeking et al., 1997; Ou et al., 2005). Upregulation of Stratifin 

provides positive feedback to p53 through removal of its inhibitor, Mdm2, from 

the nucleus and induction of its autoubiquitination, as shown in Chapter 1 Figure 

1-9 (Lee & Lozano, 2006). These data, therefore, support the hypothesis that 

Stratifin acts as a tumour suppressor in the initial stages of HK1.fos and ras 

hyperplasia and papillomatogenesis. 
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Figure 3-2: Stratifin expression in normal epidermis, benign hyperplasia and 

papillomas exhibits mainly suprabasal expression with increased basal expression 

corresponding to that of p53 and p21. 

(A) Normal ICR skin shows very weak, sporadic p53 staining, similar to (B) p21 expression. (C) 

Stratifin is present in all differentiated cells in this slightly thicker (~2 cells) patch of normal skin, 

with only weak, sporadic basal layer staining. (D) p53 abundance is increased slightly in the 

basal layer of HK1.fos hyperplasia in response to increased proliferation driven by the 

transgene. (E) p21 staining in HK1.fos hyperplasia is mainly suprabasal with some increasing 

basal layer positivity. (F) In HK1.fos hyperplasia, Stratifin is strongly expressed in suprabasal 

layers and shows a slight increase in basal layer positivity compared to normal, mainly around 

the plasma membranes. (G) p53 positivity in basal cells of HK1.ras papilloma is moderate to 

strong with some positive suprabasal cells. (H) p21 staining is strong in basal cells, similar to 

p53 in HK1.ras papilloma, and in suprabasal cells, primarily of the granular layer. (I) Stratifin 

expression is similar in HK1.ras papilloma is similar to HK1.fos hyperplasia, with slightly more 

basal layer staining in areas with more p53 expression. Scale bars approx. 100 µm. 
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3.3.2. Stratifin expression is increased in basal keratinocytes in 

early HK1.fos-5Pten hyperplasia and supports p53 expression in 

later keratoacanthoma in accelerating differentiation 

In contrast to hyperplasias produced by HK1.fos and HK1.ras—and later 

HK1.ras papillomas—induced ablation of Pten activity in HK1.fos (HK1.fos-

Δ5Pten) to deregulate the PI3K/Akt pathway in this background resulted in 

keratotic hyperplasia in RU486-treated TGE skin, which developed into 

keratoacanthoma rather than converting to malignancy (Yao et al., 2008). This 

was found to be due to very high expression of p53 and p21 in the late-stage 

hyperplasia and early papilloma as a result of increasing Akt-mediated GSK3β 

inactivation, causing increased β-catenin activation (Yao et al., 2008; Manning & 

Toker, 2017). This compensatory p53/p21 activation caused a switch in the 

phenotype from hyperproliferation to accelerated differentiation, resulting in 

the highly keratotic KA phenotype to combat malignant conversion (Yao et al, 

2008). 

Ablation of Pten activity in HK1.fos skin appeared to induce an increase in 

Stratifin expression in basal keratinocytes particularly at the membrane and in 

the cytoplasm (Appendix 1, McMenemy et al., in preparation, Figure 2A) of the 

hyperplasia, even prior to the increased p53 expression seen later, suggesting 

p53-independent tumour suppressive roles of Stratifin at this stage. In the later 

disease, two distinct histotypes were evident; fronds of keratinocytes producing 

massive hyperkeratosis, overlying an SCC-like proliferative histotype. Stratifin 

expression was seen to be strong throughout the frond regions, in conjunction 

with increased p53/p21 expression, and keratin 1 (K1) was found to be spuriously 

expressed in the basal compartment, consistent with a confused and accelerated 

differentiation programme (Appendix 1, McMenemy et al., in preparation, Figure 

2C) and in the inappropriate expression of mK1 in HFs that are the presumed 

precursors of HK1.fos/K14.stratifin SCC (see Chapter 4).  

In the proliferative, SCC-like regions, Stratifin expression was notably 

absent in basal keratinocytes, and this was associated with low abundance of 

p53 and p21 alongside increased active Akt1 (pAktser473) in these areas (Yao et 

al., 2008). These data now suggest that the trigger for elevated p53/p21 
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expression in response to excessive AKT/βcatenin could involve increased 

Stratifin expression to commit keratinocytes to differentiate and maintain a 

benign phenotype (Appendix 1, McMenemy et al., in preparation). 

3.4. Stratifin expression persists after p53 loss, mirroring 

p21 expression but is lost in poorly-differentiated SCC 

Taken together, these data suggest a protective role for Stratifin in the 

early stages of HK1.ras/fos papillomatogenesis and in maintaining a 

differentiating phenotype in HK1.fos-Δ5Pten keratoacanthoma to avoid 

malignancy. Previously, in the HK1.ras/fos-Δ5Pten multistage model of 

carcinogenesis, it was found that p53 expression was lost upon conversion to 

squamous cell carcinoma. Given the relationship between p53 and Stratifin 

expression (Chapter 1, Figure 1-9) exemplified in the benign phenotypes already 

discussed, expression of Stratifin was examined in aggressive, late-stage 

HK1.ras/fos-Δ5Pten papillomas which were determined to be converting to a 

malignant phenotype by K1 expression analysis (Chapter 1, Figure 1-8G,H). 

As shown in Figure 3-3, these data confirmed the previously seen 

expression pattern of p53, with moderate to strong basal staining in the K1-

positive benign regions (Figure 3-3A,B; right), becoming weak and negative in 

the K1-negative carcinoma area (Figure 3-3A,B; left). As in previously published 

data (MacDonald et al., 2014), p53-independent p21 is seen to persist in the 

well-differentiated carcinoma (Figure 3-3C), acting to antagonise further 

progression to a poorly-differentiated SCC (pdSCC; MacDonald et al., 2014). 

Immunostaining analysis showed that Stratifin expression was also found to 

persist in these areas of wdSCC, albeit confined to the suprabasal layers and less 

abundant when compared to the adjacent benign tissues (Figure 3-3D left vs 

right; Appendix 1, McMenemy et al., in preparation, Figure 3). However, with 

time the most poorly-differentiated regions appear to have lost Stratifin 

expression completely, concurrent with the p21 expression pattern (Figure 3-3C, 

centre and D, centre), and with increasing pAktser473 at this stage (Appendix 1, 

McMenemy et al., in preparation, Figure 6). This was also identified in HK1.ras-

Δ5Pten TPA-treated tumours, which are seen to rapidly lose expression of p53, 
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p21 and Stratifin (Appendix 1, McMenemy et al., in preparation, Figure 4) and 

exhibit an abundance of pAktser473 (Yao et al., 2006), contributing to 

development of a hyperproliferative, pdSCC histotype. 

 

Figure 3-3: p53 loss coincides with K1 loss on malignant conversion in HK1.ras/fos-

Δ5Pten carcinoma but Stratifin and p21 expression persist in wdSCC. 

(A) K1 expression (green) is strong in the suprabasal layers of the hyperplastic area (right of 

image) and is lost, leaving mostly K14 (red) counterstaining in the wdSCC region. (B) p53 

staining is strong and mostly basal in the benign hyperplastic region (right) but is lost in the 

adjacent carcinoma tissue (left) (C) p21 staining is similar in the hyperplasia (right) and 

carcinoma (left and bottom) with only some cells beginning to lose positivity as the phenotype 

becomes more poorly differentiated (centre), as with Stratifin. (D) Stratifin is mainly suprabasal 

with sporadic basal staining in the hyperplasia (right) and is weak to moderate in the carcinoma 

(left and bottom of image) but not absent as with p53. Scale bars approx. 100 µm. 

Given the nature of the relationship between Stratifin, p53 and Mdm2 

(Lee and Lozano, 2006)—and, indeed, Akt1 (Gottlieb et al., 2002)—expression of 

activated Mdm2 (pMdm2ser166) was assessed in the benign and malignant 

phenotypes described to assess the interplay between expression of these 

proteins in this model (shown in Appendix 1, McMenemy et al., in preparation, 

Figure 5). In normal epidermis, pMdm2ser166 expression was found to be primarily 
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suprabasal, with only sporadic basal layer expression, similar to that of p53 and 

consistent with its antagonism of p53-mediated apoptosis which constitutes a 

threat to barrier maintenance in the skin (Gottlieb et al., 2002). In HK1.ras 

papillomas, pMdm2ser166 remains mainly suprabasal, whilst absent in many basal 

layer strands, indicative of suppression by Stratifin expression in these cells to 

maintain high p53 expression in these regression-prone benign papillomas and 

thus prevent malignant conversion.  

However, in trigenic HK1.ras/fos-Δ5Pten wdSCCs, elevated pMdm2ser166 

expression undergoes a suprabasal-to-basal transition, which was paralleled by 

the observed reverse basal-to-suprabasal change in Stratifin localisation. This 

reduction in basal layer Stratifin expression coupled with an increase in 

pMdm2ser166 activity would reduce p53 expression and increase susceptibility to 

malignant conversion through loss of cell cycle regulation (Appendix 1, 

McMenemy et al., in preparation, Figure 5C).   
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3.5. Discussion 

The purpose of this chapter was to reconfirm the previously observed loss 

of the tumour suppressor p53 during malignant conversion of HK1.ras/fos-Δ5Pten 

carcinogenesis, and subsequently, to assess the pattern of expression of Stratifin 

in this model. 

3.5.1. The HK1.ras/fos-Δ5Pten multistage model of 

carcinogenesis 

Squamous cell carcinoma, unlike BCC, does not arise de novo, and instead 

develops over time from an existing benign neoplasm such as actinic keratosis 

(AK) (Ratushny et al., 2012). For decades, multistage carcinogenesis has been 

studied using to two-stage chemical carcinogenesis protocol, involving induction 

of initiating mutations by topical application of DMBA and subsequent repeated 

application of the promoting agent, TPA (Abel et al., 2009). This analysis 

identified an activating mutation in the proto-oncogene Harvey Ras (HRAS) gene, 

HRASQ61L as a frequently occurring initiating mutation resulting from DMBA 

treatment, with upregulation of c-Fos (part of the AP-1 transcription factor 

complex) being common following repeated TPA treatment (Balmain et al., 

1984; Greenberg & Ziff, 1984). However, in reality, these chemical agents cause 

a plethora of mutations and changes to gene activity, making it difficult to 

elucidate the changes which are associated with stage progression and which 

have little or no effect on carcinogenesis. Additionally, the process of inducing 

malignant conversion in benign papillomas by this method is very time 

consuming (~1 year), the rate of conversion to SCC can be very low and 

conversion rate varies considerably by mouse strain (Slaga, 1986).  

To combat these issues, transgenes were developed which specifically 

activated the oncogenes H-Ras and Fos in the epidermis promotion vector which 

allowed for specific analysis of the consequences of their activation and changes 

in the expression of downstream effectors and antagonists more directly. Studies 

which targeted H-Ras activation to the proliferative compartment, via use of a 

K5 promoter for example, resulted in aggressive SCCs at a very early age (Brown 
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et al., 1998), likely from activation in both interfollicular and follicular stem cell 

compartments. The HK1 promoter (Chapter 1, Figure 1-6), by contrast, activates 

in the suprabasal layers alongside mK1 during differentiation, and in a 

subpopulation of basal layer cells, allowing expression in some stem and transit 

amplifying cells to occur without driving immediate carcinogenesis as seen using 

K5-promotion. In this manner, both the viral homologues of c-H-ras and c-fos (v-

Ha-ras and v-fos) were targeted to the epidermis, alone or in tandem, to study 

the effects of their activation phenotypes detailed in Chapter 1, Section 1.5.3.) 

and to allow further genetic manipulation to be performed. 

Studies utilising primary cells transfected with v-Ha-ras and v-fos 

indicated that this pairing was carcinogenic and able to form wdSCC when 

grafted onto nude mice (Greenhalgh et al., 1990). As mentioned, however, this 

was not true when the HK1.fos and HK1.ras transgenes were co-expressed in 

vivo, as the papillomas produced did not show signs of malignant conversion with 

time (though these were not found to be regression-prone as is the case with 

HK1.ras-only papillomas). This indicated the need for further genetic insult to 

facilitate conversion to carcinoma, which in this model, was provided by 

inducible Cre-loxP-mediated excision of Pten exon 5 (detailed in Chapter 1, 

Figure 1-7). This inducible system is useful in that it allows control over timing 

of conversion and therefore analysis of protein expression changes before and 

after induction of Pten ablation has occurred. 

In previous studies (Yao et al., 2008; MacDonald et al., 2014), induction of 

p53 expression and that of one of its major downstream effectors, p21, was 

found to increase in the proliferative cells of HK1.fos and HK1.ras hyperplasias, 

HK1.ras papillomas, as well as in HK1.fos-Δ5Pten keratoacanthomas, wherein 

very high levels of p53 and p21 were believed to prevent malignancy and 

maintain an accelerated differentiation phenotype (Yao et al., 2008). Similarly, 

this expression of TSGs seems to be key in preventing malignancy in HK1.ras/fos 

bigenic papillomas, as when Pten is ablated through topical RU486 application, 

malignant conversion coincides directly with loss of p53 (MacDonald et al., 

2014). This finding was re-confirmed here (Figure 3-3) with the use of a new 

anti-p53 antibody due to discontinuation of that used in the previously published 

data.  
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Despite the important role Pten plays in inhibition of Akt activation 

(Hemmings and Restuccia, 2012), it was found that the quantity of Akt in 

HK1.ras/fos-Δ5Pten well-differentiated squamous cell carcinoma remained low 

in the early stages of malignant conversion; this interesting finding was also seen 

following Pten ablation in urothelium in a model of bladder carcinoma (Yohn et 

al., 2011). In both this HK1.ras/fos-Δ5Pten model of cutaneous SCC and the 

bladder cancer model (as well as the HK1.fos-Δ5Pten KA), Pten inactivation was 

accompanied by sustained p21 expression, independent of p53, which 

antagonised Akt activation and prolonged the well differentiated phenotype. In 

HK1.ras/fos-Δ5Pten and in the more aggressive HK1.ras-Δ5Pten + TPA 

carcinomas, loss of p21 correlated with an increase in Akt activity and a change 

to a much more poorly differentiated phenotype (Yao et al., 2006; MacDonald et 

al., 2014). 

3.5.2. Endogenous Stratifin expression in HK1.ras/fos-Δ5Pten 

carcinogenesis 

Given the correlation between p53 loss and malignant conversion in 

HK1.ras/fos-Δ5Pten carcinogenesis (MacDonald et al., 2014), proteins involved in 

p53 regulation were analysed. It was found that activated Mdm2 (pMdm2ser166)—

which directly targets p53 for degradation—translocated from the suprabasal 

layers to the proliferative basal layers concurrent with p53 loss from these cells. 

Therefore, the expression of Stratifin, a protein which chaperones Mdm2 from 

the nucleus to the cytoplasm for degradation to protect p53, was analysed 

throughout the benign and converted stages of this model to assess its putative 

roles in the observed aetiology. 

In benign HK1.fos and HK1.ras hyperplasias and papillomas, Stratifin 

expression was strong in all suprabasal layers, as in normal skin, consistent with 

its importance in influencing normal keratinocyte terminal differentiation and 

spatial awareness (Dellambra et al., 1995; Sun et al., 2015; Ling et al., 2010). In 

these tissues, the expression of p53 in proliferative basal layer cells was seen to 

increase above the low level found in normal skin, due to the excess 

proliferation driven by the HK1.fos and HK1.ras activated oncogenes. Stratifin is 
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transactivated by p53 following DNA damage (Chapter 1, Figure 1-9), which can 

be caused by hyperproliferation due to accumulation of genotoxic reactive 

oxygen species generated through oncogene (e.g., H-Ras) activation (Ogrunc et 

al., 2014). Accordingly, in the later HK1.fos hyperplasia and HK1.ras papilloma, 

Stratifin expression was found to be increased in the basal layers (Figure 3-2). 

Concurrently, expression of active Mdm2 (pMdm2ser166) was limited to the 

suprabasal layers, as increased Stratifin activity in basal cells countered its 

activity (Appendix 1, McMenemy et al., in preparation, Figure 5).   

Upon conversion to a malignant wdSCC phenotype (as suggested by loss of 

Keratin 1 expression and concurrent p53 downregulation, in conjunction with 

histological changes consistent with carcinoma development), pMdm2ser166 

activity increased in basal cells and Stratifin expression appeared to be reduced 

(Figure 3-3). Stratifin expression was somewhat maintained in the suprabasal 

cells of wdSCC, presumably transactivated by p63 (primarily TAp63γ (Trink et 

al., 2007)) in the absence of p53. At this stage, Stratifin was likely contributing 

to the maintenance of a well-differentiated state in two modes: performance of 

normal regulation in supporting proteins such as PKC and CALML5 in the terminal 

differentiation programme (Dellambra et al., 1995; Sun et al., 2015) and in cell 

cycle regulation, where it acts in tandem with the CDK-inhibitors p21, p15 and 

p27 by preventing interaction between cyclin D and CDK4/6 to limit G1/S 

progression, and later by sequestration of Cdc2/cyclin B at the G2/M checkpoint 

(Laronga et al., 2000). Stratifin is also a direct inhibitor of Akt activity (Yang et 

al., 2006) and could therefore be aiding in suppressing pAktser473 activity in well 

differentiated HK1.ras/fos-Δ5Pten SCC, compensating for Pten loss. 

These data are generally suggestive of a protective role of Stratifin in 

HK1.ras/fos-Δ5Pten carcinogenesis, which is consistent with its known roles in 

negative regulation of the cell cycle and promotion of differentiation 

(Hermeking et al., 1997; Laronga et al., 2000; Dellambra et al., 1995; Sun et al., 

2015), as well as its loss in certain cancers being associated with poor prognosis 

(Iwata et al., 2000; Umbricht et al., 2001; Ren et al., 2010). However, it is 

important to note that numerous studies of internal carcinomas (Ide et al., 2004; 

Neupane and Korc, 2008; Li et al., 2009; Radhakrishnan et al., 2011; Husni et 

al., 2019), as well as some analysing cutaneous carcinomas (Lodygin et al., 
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2003), have observed persistent or increased Stratifin expression in the 

malignant tissue relative to adjacent benign areas. However, the same 

researchers who identified upregulated Stratifin in all cutaneous SCCs tested 

(Lodygin et al., 2003) also found that loss of Stratifin was associated with 

greater sensitivity to carcinoma induction by DMBA/TPA papillomatogenesis 

(Winter et al., 2016), further highlighting the extremely contextual nature of 

Stratifin activity in the process of tumour development. 

Further analysis is therefore required in the contexts of Ras and Fos 

activation, through manipulation of Stratifin expression using a targeted 

transgenic construct, K14.stratifin, which will be detailed in the coming 

Chapters. 
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4.1. Introduction 

As outlined in Chapter 1, when v-Fos was transfected into keratinocyte 

cultures with v-H-ras, the resultant cell lines were malignant, as confirmed by 

grafting onto nude mice and identified their synergism in skin carcinogenesis 

(Greenhalgh et al., 1990). Expression of activated v-Fos (c-Fos homologue) 

targeted to the epidermis by a modified human keratin 1 promoter (HK1) results 

in mild hyperplasia and hyperkeratosis after >4 months, with wound-promotion 

eventually eliciting a small papilloma at least 8 months after the ear is tagged. 

In contrast with the previous in vitro findings, in vivo, synergy of HK1.fos and 

HK1.ras transgenes results only in benign papillomas. These require further 

genetic insult, for example, via ablation of tumour suppressor gene Pten, to 

elicit malignant conversion (MacDonald et al., 2014). This model thus mimicked 

classical two-stage chemical carcinogenesis and gave a stability of phenotype 

ideal to assess stage-specific genetic insults. 

In Chapter 3, analysis of multistage carcinogenesis in tri-genic 

HK1.ras/fos-Δ5Pten initially identified 14-3-3σ, commonly called Stratifin, as a 

potential tumour suppressor, given its loss following malignant conversion. This 

was consistent with its role in the inhibition of Mdm2-mediated p53 degradation. 

However, as shown in the submitted manuscript, in certain contexts Stratifin 

expression persisted into early-stage carcinoma (Appendix 1; McMenemy et al., 

in preparation, Figure 5). 

Therefore, to directly investigate the putative tumour suppressor role(s) 

of Stratifin in this model, a mouse which overexpresses Stratifin in proliferative 

epidermal cells was purchased from the European Mouse Mutant Archive (B6D2-

Tg(KRT14-SFN)44Odo/Cnrm (EM:06111); Cianfarani et al., 2011). This model 

harbours 14 copies of the K14.stratifin transgene construct and overexpresses 

the full-length human form of the protein—which shares 97.5% identity and 

99.2% similarity with the mouse isoform (ClustalW2, EMBL)—in the 

undifferentiated epidermis and hair follicles. As this epidermal targeting is 

directed under the control of a Keratin 14 (K14) expression cassette (Vassar et 

al., 1989), it is referred to here as K14.stratifin. The schematic for the 

K14.stratifin transgene construct can be seen in Figure 4-1A. 
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As discussed in detail in Chapter 1, both c-Fos and Stratifin have integral 

roles in skin morphogenesis and differentiation (Fisher et al., 1991; Dellambra et 

al., 1995). Stratifin has also been shown to be vital for normal hair follicle 

integrity and maintenance of epidermal homeostasis (Hammond et al., 2012). 

Additionally, both proteins are important in tissue remodelling and return to 

homeostasis following wounding in the skin; Stratifin in particular has been 

identified in mediating scar-free wound-healing (Pakyari et al., 2013). 

Given the overlap in the plethora of functions mediated by Fos and 

Stratifin in the skin, in relation to neoplasia, differentiation and tissue 

homeostasis, it seemed likely that they would produce synergistic effects when 

overexpressed together via the HK1.fos and K14.stratifin transgenes. In the 

initial rounds of breeding to introduce Stratifin into the HK1.ras, HK1.fos and 

Ptenflx/flx backgrounds, it became very clear that a unique novel synergism 

existed between Fos and Stratifin overexpression in this model that challenges 

the dogma of Stratifin as a TSG. 

The main aims of this chapter were to: characterise the K14.stratifin 

mouse phenotype on our outbred ICR background and assess any effects of 

wound promotion on K14.stratifin ear skin; study the novel phenotype elicited 

by concomitant activation of Fos with Stratifin overexpression in the mouse 

epidermis (both wound-promoted and not); and to identify changes in the 

expression and/or localisation of relevant proteins which may be involved in 

development of the HK1.fos/K14.stratifin model phenotype. 

4.2. Confirmation of genotype and overexpression of 

Stratifin in presence of K14.stratifin transgene 

Prior to crossbreeding with the transgenic lines involved in the multistage 

model, it was important to characterise the phenotype generated by the 

K14.stratifin transgene on the outbred ICR genetic background on which all 

other transgenes are maintained on in our research. Cianfarani et al. noted that 

the skin of K14.stratifin mice on a BD-1 background was thinner than their 

normal littermates (measured on tail skin). Additionally, their supplementary 
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data shows desquamation of tail skin in young adults (6 weeks) and hair loss in 

older individuals, though the latter is not shown. However, neither 

desquamation of the tails nor hair loss was observed in any K14.stratifin mice on 

our ICR background by 6 months of age (Figure 4-1D) or indeed up to 12 months, 

suggesting some features identified in the original research may be strain-

dependent. Also, mice employed by Cianfarani et al. were not routinely tagged 

as they are here, thus wound promotion effects in ear epidermis synergistic with 

K14.stratifin transgene expression cannot be compared to their BD-1 

counterparts. 

Confirmation of genotype was done using PCR analysis of genomic DNA 

isolated in the first instance from juvenile tail-tip tissue when tagging (3-4 

weeks old), and subsequently reconfirmed from adult biopsy tissue prior to 

further analyses (Figure 4-1B). 

Since the correct expression of transgenes cannot be inferred from 

genotyping PCR, and K14.stratifin mono-genic mice do not develop an obvious 

macroscopic phenotype (Figure 4-1D), expression of Stratifin was assessed by 

immunofluorescence analysis in K14.stratifin mice compared to normal and 

hyperplastic HK1.fos epidermis (Figure 4-1C). Stratifin (green) is always present 

in the suprabasal layers, consistent with its roles in epidermal differentiation, 

and is seen here in all samples as expected. In basal cells, the abundance of 

endogenous Stratifin is generally low and confined to membrane staining, as 

typified by the expression pattern seen in HK1.fos hyperplasia (Figure 4-1C, 

centre). 

Conversely, the Stratifin expression profile in K14.stratifin skin was much 

higher and present in the cytoplasm, as evidenced by the yellow colour in the 

image, due to the overlay of green Stratifin staining and red K14 counterstain in 

the basal layer (Figure 4-1C, bottom). Unfortunately, due to the similarity of the 

endogenous mouse Stratifin and the transgenic human Stratifin, it is not possible 

to distinguish the two forms through immunostaining, so the greater intensity 

and difference in spatial expression is used to confirm correct expression in vivo, 

consistent with the properties of the K14 promoter. 
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Figure 4-1: Genotyping PCR and confirmation of exogenous Stratifin overexpression 

and macroscopic phenotype. 

(A) Schematic of the K14.stratifin transgene construct containing a ~2.5kb upstream of the  

Keratin 14 gene (KRT14) TATA box, the full Stratifin gene (SFN)  coding sequence (cDNA, 

~700bp), and the Poly(A) signal and ~700bp downstream sequence from the KRT14 gene. 

(B) PCR analysis of HK1.fos and K14.stratifin DNAs confirm genotype via presence of 750 

and 280bp bands, respectively, in lanes 1-6 which are absent in negative DNA samples 

(lanes 7-11) and no DNA control (lane 12). (C) Double-label immunofluorescence analysis 

of Stratifin expression (green), counterstained with K14 (red) to delineate the epidermis. 

Normal and HK1.fos skin display supra-basal Stratifin expression, consistent with roles in 

differentiation. K14.stratifin skin shows both supra-basal expression of endogenous Stratifin 

and basal-layer expression from the K14-driven promoter. Scale bars approximately 100 

μm. (D) Left: 2-month-old non-transgenic ICR mouse Centre: 6-month-old K14.stratifin  

mouse exhibiting no noticeable change in hair phenotype associated with epidermal Stratifin 

overexpression. Right: No tail skin desquamation is apparent at 6 months, as described in 

Cianfarani et al., 2011 in BD-1 mice, suggesting strain specificity in the phenotype 

generated by K14.stratifin expression.  
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4.3. Characterisation of K14.stratifin, HK1.fos and bi-

genic HK1.fos/K14.stratifin macroscopic and histological 

phenotypes 

As previously described, expression of the HK1.fos transgene resulted in 

an early, mild hyperplasia accompanied by some keratosis (Figure 4-2A,C), which 

progressed to a much more macroscopically evident hyperplasia and 

hyperkeratosis at around 7 months of age (Figure 4-2B,D), which eventually 

developed into a small papilloma after approximately 12 months. 

K14.stratifin mice did not exhibit a pronounced phenotype after tagging 

(Figure 4-2E,G), either macroscopically or on histological analysis. However, at 

around 6-7 months of age, the tagged ears developed a thickening localised to 

the tag site, though no hyperkeratosis was evident (Figure 4-2F,H). Histology of 

the thickened area showed that hyperplasia of both the epidermis and dermis 

were present, with the epidermal hyperplasia generally less pronounced than in 

age-matched HK1.fos epidermis (Figure 4-2F,H vs B,D). 
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Figure 4-2: Macroscopic and histological appearance of typical HK1.fos and 

K14.stratifin tagged ears  

HK1.fos tagged ears show only mild hyperplasia and keratosis by about 16 weeks of age, 

which is not easily visible on gross inspection (A) but can be seen on H&E sectioning (C). 

This progresses to greater hyperplasia/hyperkeratosis and papillomatous appearance by 

30 weeks (B & D) and may progress to a papilloma if given enough time (>12 months). 

K14.stratifin tagged ear skin appears grossly and histologically normal (E & G) at 16 weeks, 

progressing to a mildly hyperplastic state (F & H) but lacking the hyperkeratosis seen in 

HK1.fos. The grossly hyperplastic appearance seen in K14.stratifin tagged ear skin is a 

combination of thickened epidermis and dermis, while HK1.fos is primarily epidermal. Scale 

bars approx. 100 μm. 
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In contrast, HK1.fos/K14.stratifin bi-genic offspring rapidly produced a 

distinct and unique phenotype which was quite unexpected. As shown in Figure 

4-3, HK1.fos/K14.stratifin mice developed grossly apparent phenotypes at an 

early age which quickly exceeded that observed in HK1.fos littermates. Those 

which were most strongly affected had evidence of hyperplasia and keratosis 

which gave a dusty appearance to the skin (mainly localised to the ears) within 3 

days of birth. These strongly phenotypic pups had notable bilateral ear 

hyperplasia and hyperkeratosis by 3-weeks-old, as seen in the untagged example 

in Figure 4-3A,B. Of those mice which were tagged, regardless of the severity of 

their phenotype, 100% developed a tagged ear (TGE) tumour (Figure 4-3E,F). In 

many cases, the phenotype was bilateral such that a smaller non-tagged ear 

(NTE) tumour was also present at biopsy. In cross-section, HK1.fos/K14.stratifin 

tumours invariably appeared very pale with a prominent main blood vessel 

through the centre, quite unlike the HK1.ras/fos-Δ5Pten phenotype (Figure 4-

3I,J) which had a more expected pink/red, somewhat homogenous cross section. 

Several unique features were apparent in HK1.fos/K14.stratifin tumour 

histology from a very early stage (3-week-old hyperplasia/early tumour shown), 

most noticeably the deposition of keratin throughout the tumour epidermis 

(yellow arrows in Figure 4-3C,D,H). This produced a very distinctive mottled 

colouration in H&E stained sections when juxtaposed with the pale acanthosis in 

the suprabasal layers. Additionally, there was a striking reduction in the granular 

layer which exhibited a speckled appearance before being lost completely in the 

more advanced regions (Figure 4-3C,G: black asterisk). Mitotic figures were also 

seen in these early examples (circled in Figure 4-3D), suggestive of malignant 

conversion at a much earlier timepoint than in HK1.ras/fos-Δ5Pten multistage 

carcinogenesis, despite only involving overexpression of two genes. 
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Figure 4-3: Gross and histological appearance of Early and Advanced 

HK1.fos/K14.stratifin tumours contrasted with HK1.ras/fos-Δ5Pten wdSCC. 
Gross images of a bilaterally affected HK1.fos/K14.stratifin mouse at 3-weeks-old 

(untagged) are shown in A and B, with prominent thickening of the ears and hyperkeratosis 

evident. Histology of the ear in low (C) and high (D) magnification shows hyperplasia, 

aberrated hair follicles (black arrows) and associated sebocytes (white arrows), 

intraepidermal keratin deposition (yellow arrows), mitotic figures (black circles) and a loss 

of normal granular layer (black asterisk). E and F show macroscopic images of an 

HK1.fos/K14.stratifn mouse with an advanced tumour on the tagged ear (TGE) and smaller 

tumour on the non-tagged ear (NTE); both are hyperkeratotic. x100 (G) and x200 (H) 

powered micrographs of the TGE tumour show some of the features highlighted in C and D 

(white arrow and yellow arrows, and black asterisk) though the section is noticeably more 

poorly differentiated overall. I & J show an HK1.ras/fos-Δ5Pten TGE tumour (no NTE 

tumour is present) for comparison. Low (K) and high (L) powered micrographs of the TGE 

tumour are shown; these do not exhibit the same intraepidermal keratosis seen the 

HK1.fos/K14.stratifin tumours above and the granular layer appears to be thickened (white 

asterisk) rather than absent in the well differentiated area of this SCC. Scale bars approx. 

100 µm. 
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This bigenic genotype clearly impacted the development of hair follicles, 

as many aberrated follicles were found in the hyperplasia and early tumour 

stages (in Figure 4-3C,D: black arrows), including clusters of sebocytes appearing 

in conjunction with follicular keratinocytes (Figure 4-3C,G: white arrows). Such 

structures were not apparent in either HK1.fos or K14.stratifin mono-genic 

mice, nor in the HK1.ras/fos-Δ5Pten wdSCC at any stage. In addition, 

HK1.ras/fos-Δ5Pten wdSCC did not exhibit the intraepidermal keratosis seen in 

HK1.fos/K14.stratifin tumours and the granular layer appeared to be thickened 

rather than lost (Figure 4-3K,L: white asterisk). 

More advanced HK1.fos/K14.stratifin tumours (Figure 4-3G,H) exhibited 

the same features as the early example, though the aberrant differentiation was 

widespread, including the loss of most discernible follicular structures, though 

some sebocytes were still present, unlike in the HK1.ras/fos-Δ5Pten control 

(Figure 4-3K,L). All HK1.fos/K14.stratifin advanced tumours were 

hyperkeratotic, often comprising more than 50% of the total tumour volume. 

Most tumours of this genotype had very little stroma present overall, and many 

larger regions of stroma had broken and were lost during processing. Given this 

was common in advanced HK1.fos/K14.stratifin tumours, it could indicate a 

fragile or brittle stroma, which is also distinct from control tumours. 

HK1.fos/K14.stratifin hyperplasias and SCCs were also evaluated for 

expression of Stratifin (Figure 4-4A,B,D), where it was found to be strongly 

expressed in all layers of the epidermis and throughout tumour keratinocytes. At 

low and moderate magnification (x100 and x200), some areas of the tumour 

appeared to have lower expression, particularly basal cells (Figure 4-4B,D). 

However, on inspection at high magnification (x400) the proliferating basal cells 

were tightly packed together, resulting in a less visible cytoplasm and therefore 

less intense green staining; seen in the narrow spaces between nuclei in the 

highlighted box in Figure 4-5D. In contrast, endogenous Stratifin was largely lost 

subsequent to malignant conversion in HK1.ras/fos-Δ5Pten wdSCC (Figure 4-

4C,E), though some sporadic cytoplasmic and membranous staining was found to 

persist in the wdSCC, before disappearing in the pdSCC, as observed rapidly in 

TPA-treated HK1.ras-Δ5Pten pdSCCs (Appendix 1: McMenemy et al., in 

preparation, Figure 4). 
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Figure 4-4: Exogenous Stratifin expression is maintained throughout 

HK1.fos/K14.stratifin tumorigenesis. 
(A) HK1.fos/K14.stratifin hyperplasia shows Stratifin (green) in all layers of the epidermis. 

Similarly, (B) malignant HK1.fos/K14.stratifin SCC shows strong staining throughout, 

compared to (C) HK1.ras/fos-Δ5Pten SCC where endogenous stratifin expression is lost. 

(D) Higher magnification of HK1.fos/K14.stratifin SCC displays clusters of apparently 

negative basal cells; highlighted to show that where K14.stratifin staining appears reduced, 

this due to the tightly packed nature of the invasive cells, with little cytoplasm. (E) At higher 

magnification, HK1.ras/fos-Δ5Pten SCC show sporadic, mainly membranous Stratifin 

expression. Keratin 14 (red) is used as a counterstain. Scale bars approx. 100 µm.  
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All HK1.fos/K14.stratifin tumours exhibited nearly identical epidermal 

histology to one another. However, as alluded to earlier, there was variation in 

the rate at which tumours developed, whether wound-promotion was required 

for tumour development, and whether the tumour was noticeably distinct from 

adjacent, grossly normal ear tissue or if the entire ear was affected. These 

phenotypes were termed Mild, Moderate, and Strong (Table 4-1). The reasons for 

this variation in phenotype were not immediately apparent, but homozygosity of 

either the HK1.fos or K14.stratifin transgenes was not found to correlate with 

the pattern of severity. 

However, macroscopic observation of the ears of strongly phenotypic mice 

indicated redness and warmth consistent with inflammation, though there were 

no signs of infection from open wounds nor visible pus. This led to examination 

of the histology for signs of immune infiltration, which did appear to correlate 

well with the categories; the number of visible immune cells in the tumour 

stroma increased from mild to strong phenotype, consistent in both tagged (TGE) 

and non-tagged (NTE) ear sections, depicted in Figure 4-5. Also noticeable was 

the increased depth of the basal layer with strength of phenotype, and an 

apparent reduction in the characteristic intraepidermal keratin deposits in the 

Strong phenotype, consistent with less differentiation and more proliferation. 

 Mild Moderate Strong 

Tagged Ear (TGE) 
Tumour 

2-10 mm 6-10 mm 
Whole ear 
affected 

Non-Tagged Ear 
(NTE) 

Normal or very 
mild gross 
phenotype. 

Mild hyperplasia 
on histology 

Hyperplasia and 
keratosis or 

tumour < 8 mm 

Whole ear 
affected 

Age at Biopsy 8-20 weeks 8-16 weeks ≤ 8 weeks 

Frequency 

 
26.1% (6/23) 56.5% (13/23) 17.4% (4/23) 

Table 4-1: Description of Mild, Moderate and Strong HK1.fos/K14.stratifin phenotypes and 

their frequency of occurrence. 
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Figure 4-5: Gross and histological differences between Mild, Moderate and Strong 

HK1.fos/K14.stratifin phenotypes and their correlation with extent of immune cell 

infiltrate. 

(A) Mild HK1.fos/K14.stratifin phenotype, with a tumour on the tagged/wound-promoted ear 

(TGE) on the right and grossly normal non-tagged ear (NTE) on the left. (D) Histology of 

the TGE tumour including immune infiltrate in the stroma; (G) NTE with only mild 

hyperplasia and low abundance of immune cells. (B) Moderate phenotype, TGE tumour 

comparable to that in (A) and gross hyperkeratosis overlying a very small tumour on the 

NTE. (E and H) TGE and NTE histology, respectively, with similar features in the tumour 

and extent of immune infiltrate despite the gross size difference. (C) Strong phenotype 

which required biopsy at an earlier stage (7 wks. vs 12 wks. in A and B), with bilateral 

tumours of similar appearance. Histology of TGE and NTE (F and I), are indistinguishable 

regardless of wound-promotion status, and of immune infiltrate is high in both. Scale bars 

approx. 100 µm. 

Determining the type of immune cells present with certainty would 

require more specific staining to be performed for specific markers. However, 

H&E analysis did allow for identification of eosinophils due to their distinctive 

red cytoplasm, which appeared to be present to some degree in all 

HK1.fos/K14.stratifin tumours. 
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4.4. HK1.fos/K14.stratifin tumours display several 

characteristics of malignancy 

The loss of normal differentiation and presence of mitotic figures seen on 

H&E histological examination of HK1.fos/K14.stratifin tumours were suggestive 

of malignant conversion to SCC. To explore this further, sections of hyperplasia 

and tumours from HK1.fos/K14.stratifin mice were analysed for differentiation 

marker loss that correlate with conversion to SCC. Here, Keratin 1 has been 

examined by immunofluorescence staining, shown in green in Figure 4-6. 

In HK1.fos/K14.stratifin hyperplasia/papilloma (Figure 4-6A,C) most 

suprabasal cells are strongly positive for Keratin 1, indicating a benign 

phenotype at this stage. However, when compared directly with the HK1.ras/fos 

papilloma (8 weeks post-tagging; Figure 4-6B,D), it is clear that the proliferative 

basal layers (denoted by Keratin 14 counterstaining in red) had already 

expanded to 2 or more cells deep, compared with the older, wound-promoted 

control papilloma wherein only one, distinct layer of undifferentiated cells was 

present. 

Furthermore, in the intermediate tumour (Figure4-6E,G; 7-weeks-old) 

HK1.fos/K14.stratifin tumours exhibited loss of K1 positivity in a large 

proportion of cells, to a similar degree to that seen in the older HK1.ras/fos-

Δ5Pten wdSCC (Figure 4-6F,H). It is also worth noting that the pattern of K1 loss 

displayed a much less smooth transition than in HK1.ras/fos-Δ5Pten wdSCC 

aetiology, reflective of the highly unusual differentiation pattern in this 

HK1.fos/K14.stratifin phenotype. 

At the advanced stages (Figure 4-6I,K; 11 weeks) wound-promoted 

tumours displayed regions devoid of Keratin 1 positivity, indicating a highly 

undifferentiated, malignant phenotype, similar to that in the aggressive TPA-

promoted HK1.ras-Δ5Pten SCC (Figure 4-6J,L). This was completely unexpected, 

given the well-documented TSG roles of Stratifin, coupled with the fact that it 

only involves two genetic “hits”, unlike the multistage and TPA-promoted 

control SCCs, which also take longer to develop than HK1.fos/K14.stratifin SCCs. 
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Figure 4-6: Loss of Keratin 1 staining indicates malignancy in HK1.fos/K14.stratifin 

tumours, similar to HK1.ras/fos-Δ5Pten and HK1.ras-Δ5Pten+TPA carcinogenesis 

despite distinct histological features. 

(A) HK1.fos.K14.stratifin untagged ear (3 wks.) shows similar hyperplasia/papilloma 

development to (B) HK1.ras/fos tagged ear (12 wks.) but with unique histological features 

such as intra-epidermal keratin deposition, and (C) a reduction in suprabasal Keratin 1 (K1; 

green) staining and expansion of the undifferentiated K14-positive basal layers (red), 

indictive of early-stage malignant conversion, which is not observed in (D) benign 

HK1.ras/fos early papilloma which displays strong K1 staining in all suprabasal layers. (E)  

HK1.fos/K14.stratifin NTE tumour (7 wks.) shows novel dysplasia in all layers compared to 

(F) HK1.ras/fos-Δ5Pten papilloma/wdSCC which lacks the unusual HK1.fos/K14.stratifin 

aetiology at a similar stage of malignant conversion, as indicated by the comparable extent 

of K1 loss in (G) HK1.fos/K14.stratifin SCC and (H) HK1.ras/fos-Δ5Pten SCC. (I) Older 

HK1.fos.K14.stratifin TGE SCCs (11 wks.; 7 wks. post-tag). exhibit anomalous 

differentiation with no visible granular layer, intraepidermal keratin, acanthosis in the supra-

basal layers, and expanding proliferating invasive layer with hyperchromatic nuclei 

consistent with (K) loss of most K1 expression and a novel SCC histotype. These novel 

features are absent in (J) aggressive, TPA-promoted HK1.ras-Δ5Pten poorly-differentiated 

SCCs, although some features are similar, such as loss of granular differentiation and 

abundant immune cell infiltrate and are (L) K1-negative. Scale bars approx. 100 µm. 
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Given confirmation of malignancy via K1 immunofluorescence showing a 

loss of normal differentiation, coupled with the histological features described, 

including presence of mitotic figures, analysis of the degree of proliferation was 

carried out. This was done using 5-bromo-2’-deoxyuridine (BrdU) labelling; a 

thymidine analogue which is incorporated into the DNA of dividing cells. Mice 

were injected intraperitoneally with 125 mg/kg approximately 2 hours before 

being sacrificed, thus, any positivity detected indicated cells which divided 

during that time frame. This is expressed as positive cells per mm of basement 

membrane (cell mm/BM) (Figure 4-8). 

As shown in Figure 4-7, the number of positive cells in normal skin was 

found to be very low at ~2 cells/mm basement membrane, rising to ~10 cells 

mm/BM in HK1.fos hyperplasia (Figure 4-7A,B). Importantly, in both of these 

genotypes, positivity is almost exclusively confined to the basal layer (i.e., cells 

which are directly attached to the basement membrane). In the malignant 

control, an HK1.ras/fos-Δ5Pten wdSCC, both basal and suprabasal cells are 

positive, and the numbers in both categories are much higher than in the benign 

samples shown, with approximately 40 and 25 positive cells per mm in basal and 

suprabasal layers, respectively (Figure 4-7C; Figure 4-8). 

In moderately developed and two more advanced HK1.fos/K14.stratifin 

SCCs, the occurrence of basal cell positivity was very high in some areas, where 

almost every nucleus was positive, with a dearth in others (compare Figure 4-7D 

with the lower half of E, for example). This resulted in a lower mean basal 

figure than for HK1.ras/fos-Δ5Pten carcinoma, at ~30 cells/mm. However, there 

was a much greater spread in the counts, ranging from less than 20 to nearly 60 

in HK1.fos/K14.stratifin, compared with between around 30 and 50 in the 

HK1.ras/fos-Δ5Pten control. The difference is even more dramatic in the 

suprabasal counts, as evidenced in the boxplot in Figure 4-8, with several areas 

far exceeding the mean (outlier points on plot, labelled) and others having 

negligible positivity. This suggests that despite a similar histology across these 

tumour sections, there was significant heterogeneity in the 

HK1.fos/K14.stratifin phenotype with regards to cellular activity. 
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Figure 4-7: HK1.fos/K14.stratifin shows high mitotic index on BrdU labelling with 

greater  suprabasal staining corresponding with more malignant tumour regions. 

BrdU labelling for mitotic index in 7-month Normal mouse ear skin (A), HK1.fos hyperplasia 

(B), HK1.ras/fos-Δ5Pten SCC (C), and HK1.fos/K14.stratifin SCC (D-F). Well-differentiated 

HK1.fos/K14.stratifin SCC (D) shows predominantly basal layer staining, with a high rate of 

positivity. More poorly differentiated areas of HK1.fos/K14.stratifin SCCs (E & F) have both 

frequent basal and suprabasal layer staining, similar to HK1.ras/fos-Δ5Pten SCC (C). Scale 

bars approx. 100 µm. 
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Figure 4-8: Mitotic index in HK1.fos/K14.stratifin tumours is comparable to 

HK1.ras/fos-Δ5Pten SCC but with greater variation within tumour samples. 

Boxplot showing basal and suprabasal frequencies of BrdU staining in Normal, HK1.fos, 

HK1.ras/fos-Δ5Pten and HK1.fos/K14.stratifin samples. Number of mice in each category: 

Normal n=2; HK1.fos n=2; HK1.ras/fos-Δ5Pten n=2; HK1.fos/K14.stratifin n=3. Multiple 

areas of each section for each genotype were assessed and the number of positive cells 

per 1 mm basement membrane was calculated in each. Note: variation within the tumour 

sections (both HK1.ras/fos-Δ5Pten and HK1.fos/K14.stratifin; latter more pronounced, as 

shown by the whiskers) was large due to tumour heterogenicity (malignancy vs 

benign/hyperplasia). 
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4.5. HK1.fos/K14.stratifin SCCs retain p53 positivity and 

are unaffected by conditional p53 knockout 

To investigate the mechanisms underlying the variation in mitotic index, 

sections were next stained for the tumour suppressor protein, p53. This protein 

has an important role in governing cell cycle progression and as described in 

detail in the introduction, is supported by Stratifin as the latter chaperones its 

inhibitor (Mdm2) out of the cytoplasm to prevent p53 degradation (Lee and 

Lozano, 2006). 

In the HK1.ras/fos-Δ5Pten and TPA-promoted HK1.ras-Δ5Pten models of 

SCC, the abundance of p53 increases in basal cells during the hyperplasia and 

papilloma stages and is lost following conversion to malignancy, as described in 

the Introduction and further in Chapter 3. A p53 negative TPA-promoted 

HK1.ras-Δ5Pten SCC is shown in Panel I of Figure 4-9 for reference. 

Despite the positive feedback relationship between p53 and Stratifin, the 

formation of highly proliferative malignant tumours in HK1.fos/K14.stratifin 

mice, it was thought that p53 was likely to be lost in these tumours at the 

malignant stage, as in controls. Contrary to this hypothesis, the early and 

moderately developed HK1.fos/K14.stratifin SCCs tested showed very strong p53 

positivity in multiple layers of the epidermis, with both stronger staining and a 

greater number of positive cells than in HK1.fos hyperplasia, as indicated in 

Figure 4-9 Panel I vs Panel II. 

In the most advanced regions of HK1.fos/K14.stratifin tumours, where 

differentiation was poorest, some loss in positivity was observed, but this was 

primarily a reduction in the strength of staining present, as truly negative cells 

were few in number (Figure 4-9 Panel II:C,F). This appears to indicate that the 

mechanisms in place to increase p53 are present in the advanced stages of 

HK1.fos/K14.stratifin tumorigenesis. However, there is clearly a disconnect 

which prevents it from initiating cell cycle arrest, as evidenced by the high 

mitotic index of these tumours. 
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Figure 4-9: Immunostaining shows persistence of p53 in HK1.fos/K14.stratifin 

tumours after K1 loss indicates malignant conversion has occurred. 

Panel I: In Normal skin (A), p53 staining is negligible with only sporadic staining in both 

epidermis and follicles (arrows). HK1.fos hyperplasia (C) shows staining in approx. half of 

basal layer nuclei; all staining is light to moderate. HK1.ras-Δ5Pten + TPA SCC shows very 

low abundance of p53 (E). Keratin 1 (green) and Keratin 14 (red) staining is shown in B, D 

and F to indicate the malignant status of the sections assessed for p53. 

Panel II: (A-C) Low and (D-F) high magnification of p53 expression during  

HK1.fos/K14.stratifin tumour progression indicated by (G-I) reducing K1 expression in serial 

sections. (A) Early (3 weeks) ear hyperplasia/early tumour shows p53 staining in high 

numbers of positive cells with moderate to strong staining in multiple layers; boxed section 

is enlarged in D; while K1 staining indicates a benign tumour (G). (B) p53 staining remains 

strong at 7 weeks (boxed area in E) despite tumour converting to SCC as indicated by K1 

expression (H). Positive p53 cells are ~4 layers deep (bracket, { ). (C) Advanced tumours 

show strong p53 positivity, now in multiple layers (bracket, { ); while (F) staining appears 

reduced in aggressive invasive areas, although no regions appear wholly negative. Scale 

bars approx. 100 µm. 
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To explore the role of p53 in this model of carcinogenesis, 

HK1.fos/K14.stratifin mice were crossed with mice harbouring the K14.CreP1 

transgene and floxed (flanked by loxP sites) copies of the endogenous p53 gene 

(p53flx/flx) (Marino et al., 2000). Here, following topical treatment with RU486 in 

an identical fashion to Pten ablation outlined earlier, Cre recombinase acts to 

remove exons 2-10 of the TP53 gene, resulting in functional ablation of the p53 

protein. 

This generated mice heterozygous (K14.fos.p53flx/+.stratifin; n=8) and 

homozygous (K14.fos.p53flx/flx.stratifin; n=14) for the floxed p53 allele, as well 

as control littermates lacking the K14.CrePR1 gene. Cohorts of these mice were 

treated with either RU486 to activate Cre recombinase activity, thereby ablating 

p53 activity, or EtOH as a vehicle control. The cohort of mice which were either 

heterozygous or homozygous for the floxed allele but which lacked K14.CrePR1 

was also treated with RU486 to control for any effects of the treatment itself. 

Mice were first treated topically with RU486 (or EtOH vehicle) at the time of ear 

tagging, then 1-3 subsequent times, dependent on age at biopsy. 

Determination of genotype (from tail tip DNA) was performed by PCR 

using primers spanning one of the two loxP sites in the p53 gene (Figure 4-10A, 

blue arrowheads), which produced either the wild-type (WT) band on gel 

electrophoresis if no loxP sequences were present, a WT and larger “floxed” 

(flanked by loxP; FLX) band if the mouse was heterozygous, or a single FLX band 

if it was homozygous (Figure 4-10B). Genotype was reconfirmed following biopsy 

using either ear or back tissue that had been treated with RU486 (or vehicle 

control). Confirmation of p53 exon 2-10 ablation was done using the 1F and 10R 

primers which span the entire floxed region of the gene, producing a ~550 bp 

band following successful excision (Figure 4-10B). The wild-type band was rarely 

observed in this PCR due to the length of the flanked area (~6 kb). 
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Figure 4-10: Schematic showing floxed regions of TP53 together with PCR 

confirmation of floxed status and confirmation of Cre-mediated gene recombination. 

(A) Map of TP53 (which encodes the p53 tumour suppressor protein) with exons numbered 

(1-11). Blue arrowheads represent loxP sites downstream of exon 1 and exon 10. 

Genotyping can be performed with either the 1F/1R or 10F/10R pair to determine whether 

loxP sites are present (i.e., the allele is floxed; p53flx). Genotyping following RU486 

treatment to activate Cre-recombinase is done using the 1F/10R primer pair which spans 

the entire excised region (Adapted from Marino et al., 2000). (B) Top: Electrophoresis gel 

showing K14.CrePR1 positive samples (lanes 1-6; 600 bp band) and negative (7-12) 

samples. Centre: Gel showing wild-type p53 samples (lanes 1,2, 7 and 8; 350 bp), samples 

heterozygous for the floxed allele (lanes 3, 4, 9 and 10; 350 and 437 bp), and homozygous 

floxed samples (lanes 5, 6, 11 and 12; 437 bp). Bottom: All samples were treated with 

RU486 to activate Cre if present. Lanes 1 and 2 are negative because those samples are 

p53+/+; Lanes 3-6 show a band at around 550 bp as these possessed both the K14.CrePR1 

transgene and at least one copy of the p53flx allele. Notice the band is visibly weaker in the 

p53flx/+ samples than in the p53flx/flx as only half of the p53 alleles can be recombined in the 

heterozygote. Lanes 7-12 are negative because they lack the K14.CrePR1 transgene. 

Loss of a potent TSG would normally be hypothesised to cause a worsened 

phenotype, e.g., more rapid conversion to SCC. However, the analysis in 

HK1.fos/K14.stratifin tumours, indicating increased abundance of p53 in this 

genotype did not inhibit tumour formation, suggested that any observed effects 

may be less dramatic than seen in previous models (Greenhalgh et al., 1996). 

Concurrent with this hypothesis, this analysis found no discernible difference 

between HK1.fos/K14.stratifin, K14.fos.p53flx/+.stratifin and 

K14.fos.p53flx/flx.stratifin whether treated with RU486 or not (Figure 4-11). This, 

again, suggests that p53 is uncoupled from Stratifin regulation as the aetiology 

of SCC appears independent of p53 status in these mice. 
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Figure 4-11: Induced p53 loss does not result in a different histotype in 

HK1.fos/K14.stratifin tumorigenesis. 

(A) K14.fos.p53flx/flx.stratifin (n=14) tumour is indistinguishable macroscopically from (C) 

K14.fos.p53flx/+.stratifin (n=8), (E) fos.p53flx/flx.stratifin (no Cre, thus p53 is intact; n=5) and 

(G) K14.fos.p53+/+.stratifin (n=5) tumours. B, D, F and H show micrographs (100x) of the 

same genotypes which also show no appreciable difference correlated with p53 status. 

Scale bars approx. 100 µm.  
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4.6. Hair follicle keratinocytes are the likely site of origin  

of HK1.fos/K14.stratifin tumours 

In early (3-week-old) HK1.fos/K14.stratifin hyperplasia/papilloma (Figure 

4-3) numerous aberrated follicles were evident. Follicular involvement has not 

been observed in HK1.fos hyperplasia/papilloma, nor in K14.stratifin skin or TGE 

hyperplasia. This aspect of HK1.fos/K14.stratifin carcinogenesis was therefore 

explored further through histological analysis of early and mid-stage tumours. 

Initially, in normal and HK1.fos hyperplastic skin, histological appearance 

of hair follicles and associated structures showed that the keratin of hair shafts 

was not stained with haematoxylin or eosin, unlike that in the Stratum corneum 

(Figure 4-11 Panel I A,C). Hair shafts within their follicles were observed as 

nearly colourless circles or rings with a central pink core, depending on the 

stage in the follicle cycle and the region which was transected, e.g., in 

transverse section through the upper isthmus and infundibulum regions showing 

trichilemmal keratin differentiation surrounding the pink centre of the shaft (El-

Domyati et al., 2017). This transverse section means the associated sebocytes 

are also visible adjacent to the follicles. In HK1.ras/fos-Δ5Pten carcinogenesis, 

clearly demarcated, laminated keratin pearls form in the papilloma stage 

(above; Figure 4-6B). In the subsequent carcinoma, the loss of normal 

differentiation signals impacts the ordered structure of the pearls, which 

become more amorphous (Figure 4-12 Panel I D,E). 

HK1.fos/K14.stratifin tumours are invariably hyperkeratotic and initial 

analysis of early-intermediate tumours identified some structures which at first 

appear to be keratin pearls (centre of image; Figure 4-12 Panel II: A. However, 

closer inspection revealed than most such structures were in fact follicles in 

which the outer root sheath (ORS) had become massively hyperplastic. Here, 

hair shafts could be observed in an oddly normal infundibular-like structure at 

the centre of the hyperplasia (highlighted in Figure 4-12 Panel II C,D) Elsewhere, 

hair shafts appeared to be trapped within the keratosis of cystic structures, 

while sebocytes were incorporated into masses of tumour keratinocytes (Figure 

4-11 Panel II: E). These features strongly suggest a hair follicle cell of origin in 

HK1.fos/K14.stratifin tumour aetiology. 
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Figure 4-12: HK1.fos/K14.stratifin SCCs possess anomalous hair shafts surrounded 

by tumour tissue suggests histological structures derive from aberrant follicle 

development. 

Panel I: (A and B) Normal mouse skin and (C) HK1.fos hyperplasia exhibits typical 

quiescent (telogen) hair follicles (arrows) with sebocytes (asterisks). At higher 

magnification, the pink core of the hair shaft is apparent in the centre of the unstained hair 

keratin (off-white ring). (D) HK1.ras/fos-Δ5Pten and (E) HK1.ras-Δ5Pten+TPA SCCs show 

epidermoid cysts resulting from changes to differentiation signals during carcinogenesis 

and although similar (boxes), these histotypes lack features associated with hair follicles. 

Panel II: (A and B) Low magnification images of HK1.fos/K14.stratifin SCCs exhibit many 

lobular structures with central rings visible typical of HFs. In addition, normal hair follicles 

are present adjacent to the main tumour body, most with a relatively normal appearance. 

(C-E) Higher magnification of lobular boxed areas show apparent hair shafts present in the 

centre of tumour tissue, seen more clearly in the excerpts; with (E) showing a lobular area 

with a clear follicle remnant, closely adjacent to a group of sebocytes (asterisks). Several 

other HF-like histotypes are present in E (top right). Scale bars approx. 100 µm. 

 

To further investigate the suspected follicular origin of 

HK1.fos/K14.stratifin SCCs, immunofluorescence was performed for Keratin 17, 

a keratin which can be associated with hyperplasia and wound healing, but 

which is always present in the ORS of hair follicles (McGowan et al., 2002). This 

was confirmed in normal skin, where staining was confined to the follicle and 

was not found to be present in the intrafollicular epidermis or sebocytes. 

Analysis of HK1.ras/fos-Δ5Pten carcinogenesis found positivity only within 

follicle remnants in the tumour stroma, not in the tumour mass. Both are 

depicted in Figure 4-12 Panel I. 

In stark contrast to HK1.ras/fos-Δ5Pten carcinogenesis, the majority of 

K17 positive staining in HK1.fos/K14.stratifin tumours was seen in rings within 

the tumour epidermis, akin to the placement of follicles seen in H&E in the 

previous figure. Staining also confirmed the nature of the trapped hair shafts 

seen in H&E, as depicted in the serial sections in Figure 4-12 Panel II: C and D, 

below. DAPI was also used here to confirm the presence of parakeratosis in this 

early tumour (white oval) which further highlights the abnormalities in 

differentiation. This expression pattern also supports a follicular cell of origin in 

HK1.fos/K14.stratifin carcinogenesis. 
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Figure 4-13: Keratin 17 expression, a marker for hair follicle outer root sheath (ORS) 

cells, supports the follicular origin of HK1.fos/K14.stratifin tumours. 

Panel I: A shows normal skin in which follicles are cut perpendicular to the hair shaft, 

thereby appearing as a green ring situated between K14+ve (red) sebocytes. B and C show 

low- and high-power micrographs, respectively, of a HK1.ras/fos-Δ5Pten wdSCC in which 

K17 staining is clearly localised to a few follicular structures in the tumour stroma. 

Panel II: Low (A) and high (B) power micrographs (100x & 200x, respectively) show that 

HK1.fos/K14.stratifin SCCs exhibit numerous areas of K17+ve staining (green circles) within 

the tumour, not distinct in the stroma as in Panel I. H&E staining of HK1.fos/K14.stratifin 

tumours possess hair shafts (cut in cross section) that have been trapped in the keratosis 

(black arrows) and (D) serial sections show K17 is associated with this parakeratotic-like 

trapped hair phenotype (arrows), as well as formal parakeratosis, indicated by DAPI staining 

(white oval). Scale bars approx. 100 µm. 
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Having established that the keratinocytes giving rise to 

HK1.fos/K14.stratifin carcinogenesis were likely to be follicular in origin, a 

literature search was performed to identify any known tumour types classed as 

Squamous Cell Carcinomas which develop from follicles, distinct from benign 

trichofolliculoma or trichilemmoma (a common neoplasm in Cowden Syndrome) 

(Hanssen and Fryns, 1995). 

This identified several case studies in which Follicular Squamous Cell 

Carcinomas (fSCC) were described (Shendrik et al. 2012; Misago et al., 2012; 

Carr et al., 2014). Some variation was observed in the histopathology of the 

tumours presented between and within these papers, though all described 

trichilemmal differentiation being present, highlighted in the human tumour 

shown in Figure 4-14A (Shendrik et al. 2012; reproduced with permission), 

highlighted in B for direct comparison with the very similar pattern of keratin 

deposition in the mouse HK1.fos/K14.stratifin tumour in F. Several other 

similarities were identified, including the juxtaposition of highly acanthotic 

regions with packed areas of proliferative cells (C/G and D/H, respectively). All 

HK1.fos/K14.stratifiin tumours also showed increased angiogenesis in the 

tumour stroma, often accompanied by extravasation of red blood cells which is 

also apparent in the human fSCC shown. Furthermore, as described in Figure 4-

6, a high degree of immune infiltration is frequently observed in 

HK1.fos/K14.stratifin SCCs, which is also evident in the human fSCC as 

highlighted in Figure 4-14E. 
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Figure 4-14: HK1.fos/K14.stratifin carcinogenesis recapitulates many features seen 

in human follicular squamous cell carcinoma. 
(A) Human follicular squamous cell carcinoma, fSCC (Shendrik, et al., 2012; reproduced 

with permission). Notable features include intraepidermal keratin deposits/trichilemmal 

differentiation (B), acanthosis (C), tightly packed proliferative basal cells and increased 

angiogenesis (D) and immune infiltration and invasion (E). These characteristics are 

reproduced in HK1.fos/K14.stratifin SCCs, as highlighted in the lower row (F-G). Scale bars 

approx. 100 μm. 
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4.7. Changes in cell-cell adhesion may promote invasion 

of malignant HK1.fos/K14.stratifin tumours 

In order to assess cell-cell adhesion in the tumour, immunofluorescence 

staining was performed for β-catenin, a major component of adherens junctions 

in normal epidermis. β-catenin is also an important protein in the canonical 

WNT-signalling pathway, involved in embryogenesis, hair follicle growth and 

development, and carcinogenesis as it can act as a transcription factor for 

numerous downstream targets involved in these processes.  

Strong suprabasal membrane staining with some sporadic basal layer 

positivity was seen in both HK1.fos hyperplasia, with little to no cytoplasmic or 

nuclear staining evident, consistent with its role in adherens junctions and a lack 

of TF activity (Figure 4-15A). The staining pattern was found to be almost 

identical in tumour-adjacent hyperplastic regions of HK1.fos/K14.stratifin 

samples tested (Figure 4-15C), suggesting cell-cell adhesion is not greatly 

altered in the early stages of carcinogenesis, and β-catenin does not appear to 

be involved as a TF at this stage. 

In HK1.ras/fos-Δ5Pten carcinogenesis, membrane staining was found to be 

reduced, mainly in the proliferative cells and invasive front, while the change in 

colour from red to orange suggested cytoplasmic (and likely nuclear) staining 

was present in these SCCs (Figure 4-15B). In later HK1.fos/K14.stratifin tumours, 

membrane staining was much less pronounced, and what was present indicated 

the lack of organisation in the tumour epidermis; cell sizes appeared to vary 

widely and not conform to distinct layers. 

DAPI staining was then utilised to assess whether the loss of membrane 

staining corresponded with an increase in nuclear activity. Analysis showed many 

cyan-coloured cells in the basal layers (where both green β-catenin and blue 

DAPI staining co-localised) where membrane staining was very indistinct if 

present at all (Figure 4-15E,F). Sporadic nuclear positivity was also seen in some 

suprabasal cells. This was confirmed using the ColorInspector 3D plugin for 

ImageJ, wherein specific nuclei were isolated for colour analysis. Using this 

method, pixels were plotted on three axes (green, red and blue); in the nuclei 
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which appeared to be β-catenin positive, a roughly equal quantity of green and 

blue positive pixels were detected, while in the seemingly negative nuclei 

tested, almost no colour other than blue was present, as expected (Figure 4-

15G). This indicated that there was an increase nuclear localisation of β-catenin 

in the advanced stages of HK1.fos/K14.stratifin tumorigenesis, concurrent with 

the visible loss in distinct membranous positivity, suggestive of increased β-

catenin TF activity and reduction in cell-cell adhesion. Together, these findings 

indicate a role for altered β-catenin activity in progression of 

HK1.fos/K14.stratifin tumours to a more advanced stage and an increase in 

invasive potential. 
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Figure 4-15: Immunofluorescence staining shows anomalous β-catenin expression 

aids HK1.fos/K14.stratifin progression to SCC. 

(A) HK1.fos hyperplasia shows membranous β-catenin localisation in the suprabasal layers 

with sporadic expression in basal layer keratinocytes. (B) HK1.ras/fos-Δ5Pten wdSCC 

shows reduced membranous staining in proliferative basal cells with increasing cytoplasmic 

positivity. (C) HK1.fos/K14.stratifin hyperplasia shows near identical β-catenin expression 

profile to that seen in HK1.fos. (D) Advanced HK1.fos/K14.stratifin SCC now shows loss of 

β-catenin staining at the membranes of the proliferative layer keratinocytes, with diffuse 

cytoplasmic and nuclear positivity. (E) At higher magnification, such aggressive 

HK1.fos/K14.stratifin SCCs now counterstained with DAPI show the appearance of cyan 

nuclei, indicating green β-catenin staining colocalised with blue DAPI. (F) Nuclear β-catenin 

expression is further confirmed by appearance of cyan nuclei (white arrows) compared to a 

lack of nuclear β-catenin in the less aggressive cells that retain membranous expression 

(yellow arrows). (G) ImageJ plugin ColorInspector 3D image analysis (lower plots) shows 

that roughly equal levels of blue and green are present in the cyan nucleus (highlighted), 

whereas the upper (membrane positive) cell is completely blue and lacks discernible 

nuclear β-catenin expression. Scale bars approx. 100 µm. 
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4.8. Homeostasis of the keratin filament network is 

greatly disrupted in HK1.fos/K14.stratifin carcinogenesis 

and may contribute to SCC progression 

In HK1.fos/K14.stratifin tumours, histological analysis showed that the 

normal differentiation programme was clearly aberrated. For instance, whilst 

Keratin 1 expression was used as a marker of malignant conversion  (Figure 4-6), 

it was also noted that K1 was lost from the lower suprabasal layers at an early 

stage in the benign hyperplasia/early papilloma. However, when Keratin 1 

expression was assessed in K14.stratifin skin, it was also found to be spuriously 

expressed in hair follicles. As described in Chapter 1, Keratin 1 is an early 

differentiation marker expressed in the spinous layers (with the protein 

persisting somewhat in the granular layers without further RNA expression). To 

explore this further, back skin from normal ICR and K14.stratifin mice were 

assessed since many more follicles are present there than in ear skin. Sections 

were chosen for comparison where follicles were at a similar stage of their cycle 

and where the transverse section had captured them at a similar level in each 

(judged based on the appearance on the H&E stained sections). 

As shown in Figure 4-16, K1 staining (green) is totally confined to the 

differentiating cells of the epidermis, whereas strong expression was seen in the 

hair follicles of the K14.stratifin counterpart and epidermal expression did not 

appear to be limited to the supra-basal epidermis, though this was harder to 

evaluate given the very thin nature of mouse skin. 

To better assess where the spurious expression was present, K14.stratifin 

back skin (where HFs were in telogen) was cut giving sections in which the 

follicles were cut longitudinally, allowing examination of most of the follicle 

length. This staining showed clear expression in the ORS cells and, importantly, 

in the bulge cells. The bulge is located in the area highlighted in Figure 4-16C 

close to the bottom of the follicle, rather than to the side as in an anagen-stage 

follicle. This is the site of one of the main stem cell pools in hair follicles, as 

discussed in Chapter 1. 
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In order to confirm the basal layer K1 staining that appeared to be 

present in K14.stratifin back skin, a 7-month-old tagged ear hyperplasia was 

assessed. Here, there was very poor demarcation between the basal and 

suprabasal layers as a large proportion of basal cells were found to spuriously 

express K1, while numerous cells in the lower suprabasal layers lacked K1 

staining (appearing red in the image in Figure 4-16D where only K14 staining is 

present). This clearly indicated the presence of a disordered differentiation 

pattern resulting from K14.stratifin expression coupled with wound-promotion. 
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Figure 4-16: Exogenous Stratifin expression results in spurious Keratin 1 expression 

in hair follicles and basal layer keratinocytes. 

(A) Keratin 1 (green) staining in normal 6-month-old ICR back skin with Keratin 14 (red) 

counterstaining to identify undifferentiated intrafollicular keratinocytes and hair follicles; no 

K1 positivity is observed in the follicles pictured. (B) Age-matched K14.stratifin back, with 

very clear K1 positivity in the follicles and strong epidermal staining. (C) 7-month 

K14.stratifin back in which follicles can be observed in longitudinal cross section, in which 

K1 staining is visible in multiple follicle cell layers. (D) 7-month K14.stratifin TGE hyperplasia 

in which K1 is spuriously expressed in a high proportion of basal layer cells, indicated by 

arrows in the highlighted box (white dotted line indicates basement membrane). Scale bars 

approx. 100 µm. 
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Since keratins function as polymerised dimers in a basic-acidic pair, the 

partner of Keratin 1, Keratin 10, was assessed to evaluate whether it was also 

expressed outside of the suprabasal epidermis. This was done using a guinea-pig 

anti-K10 antibody to allow co-localisation analysis with the rabbit anti-K1 

antibody, therefore K10 appears as red in the following figures, while K1 is still 

green. 

As shown in Figure 4-17, co-localisation was found to be imperfect in 

HK1.fos hyperplasia, though most suprabasal cells expressed both K1 and K10, 

with K10 staining appearing slightly stronger (Figure 4-16A). In contrast, in 

K14.stratifin skin, K1 appeared to be more widely expressed than K10, with only 

K1 present in basal layer cells and follicles, while K10 was limited to suprabasal 

cells (Figure 4-17B). In the benign HK1.ras/fos-Δ5Pten papilloma there was little 

sign of divergence in localisation, though in the later wdSCC K10 appeared to 

persist slightly longer than K1 in the lower suprabasal layers (Figure 4-17C,D). 

While, overall, those controls which lacked the K14.stratifin transgene 

did not show excessive loss of co-localisation, all stages of HK1.fos/K14.stratifin 

carcinogenesis showed extensive divergence of K1 and K10 expression patterns. 
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Figure 4-17: Keratin partners K1 and K10 diverge in localisation in K14.stratifin skin 

and in HK1.fos/K14.stratifin tumours. 

(A) HK1.fos hyperplasia demonstrates colocalization of both K1/K10; similar to normal (not 

shown). (B) K14.stratifin back skin exhibits a divergence in expression as K1 is expressed 

in the basal layer and in follicles, while K10 expression is confined to differentiating supra-

basal cells, as expected. (C) Tri-genic HK1.ras/fos-Δ5Pten papillomas exhibit only slight 

divergence which becomes increased in (D) wdSCCs as K1 expression begins to diminish 

with tumour progression. (E) HK1.fos/K14.stratifin hyperplasia now exhibits an early 

divergence as K1 expression diminishes and K10 remains strong - unlike HK1.fos controls. 

(F) Intermediate HK1.fos/K14.stratifin SCC and (G) advanced SCC all exhibit marked 

divergence as K10 expression persists whilst K1 expression is lost in the context of a highly 

confused differentiation programme. White dashed lines indicate basement membrane 

position. Scale bars approx. 100 µm.  
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As it can be difficult to manually assess subtleties in colour distribution, 

especially when there are differences in the intensity of the signal due to 

differing degrees of expression, the Colocalisation Threshold plugin for ImageJ 

was utilised (Figure 4-18; 4-19). This allowed for objective assessment of red-

green distribution, with and without taking intensity into account. 

Multiple images were assessed using the plugin for each skin or tumour 

sample. The plugin output a colocalised image, wherein pixels with a value 

above the threshold for both the red and green channels appeared in greyscale, 

while any pixels with an above-threshold value in only one of those channels 

appeared as green or red. Additionally, a scatterplot was generated for each 

showing each pixel value plotted on a set of axes (Y = green; X= red). The plot is 

colour coded from blue through red to white to indicate increasing numbers of 

pixels of those red-green values. Representative examples of each control 

genotype are shown in Figure 4-18. 

As shown in Figure 4-18A-C, the K14.stratifin skin showed very poor 

correlation as evidenced by the coloured patches in the co-localised image as 

compared to the far better co-localisation seen in both HK1.fos and benign 

HK1.ras/fos-Δ5Pten papilloma (Figure 4-18D-F and G-I). The co-localised images 

controls show that very few cells were not positive for both K1 and K10 to some 

degree, despite areas in the full colour image of the HK1.fos hyperplasia 

appearing to be negative for K1 staining. Colocalisation appears slightly poorer 

in the later trigenic papilloma/wdSCC (Figure 4-18J-L); however, as with the 

earlier example of this genotype, the scatterplot suggests strong correlation in 

expression pattern. 

Subsequently, Figure 4-19 depicts co-localisation of K1 and K10 in 

advancing stages of HK1.fos/K14.stratifin carcinogenesis. It is clear from the 

green and red patches in the co-localisation images that the expression pattern 

of these proteins diverged greatly from the that of the controls which lack 

K14.stratifin expression. This is supported by the much more diffuse nature of 

the scatterplots at all stages, indicating that this divergence was an early event, 

unlike K1 (and K10) loss which is correlated with malignant changes. 
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Figure 4-18: Keratin 1 and 10 expression localisation is closely correlated in HK1.fos 

and HK1.ras/fos-Δ5Pten samples but diverges in K14.stratifin skin. 

(A-C) 5-month K14.stratifin back skin, K1 (green) is present in basal cells where K10 is not, 

indicated by the green cells in (B) and the diffuse scatterplot in (C). (D-F) 7-month HK1.fos 

ear hyperplasia shows better correlation between K1 and K10 staining, with the Colocalised 

image in (E) largely greyscale and less diffuse scatterplot in F. (G-I) HK1.ras/fos-Δ5Pten 

papilloma which has not converted to wdSCC shows very good correlation between K1 and 

K10 staining, with few red areas and no green seen in (H). (J-L) Later HK1.ras/fos-Δ5Pten 

papilloma/wdSCC shows slight disparity in correlation but the colocalised image (K) is still 

mainly greyscale and the scatterplot (L) shows good correlation. Sale bars approx. 100 µm. 
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Figure 4-19: Stage-specific expression analysis confirms poor Keratin 1 and Keratin 

10 correlation throughout HK1.fos/K14.stratifin tumour development. 

Full colour images of (A) Early, (D) Intermediate and (G and J) Advanced 

HK1.fos/K14.stratifin tumours are shown for reference. (B, E, H and K) Co-expression of 

K1 and K10 in HK1.fos/K14.stratifin tumours is poor, as indicated by the red and green 

areas seen in the colocalised images, where the colocalised areas (grey) make up a much 

smaller fraction of the total area compared to tri-genic controls in Figure 4-18. (C, F, I and 

L) Poor co-localisation is also shown by the scatterplots, in which many blue data points far 

from the line of best fit indicate many pixels with only green or red values, i.e., no 

colocalisation. The more strongly correlated values also appear quite spread out and mainly 

in the lower left region (low intensity values) and do not lie closely along the line of best fit, 

especially in the advanced tumours (I and L). Scale bars approx. 100 µm. 
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In earlier analyses, the K14 expression pattern was seen to be unusual in 

HK1.fos/K14.stratifin tumours when compared to controls, with a patchy 

staining appearance at low magnification and rings which did not appear to 

come close together observed at higher magnification. β-catenin staining was 

also useful to investigate this further, as shown in Figure 4-20. 

 

 

Figure 4-20: Keratin 14 exhibits perinuclear localisation indicating membrane 

detachment in advanced HK1.fos/K14.stratifin SCC. 

β-catenin (green) was used to indicate positions of cell membranes (specifically, adherens 

junctions). In A, an advanced HK1.fos/K14.stratifin SCC, Keratin 14 (red) has clearly 

collapsed or aggregated in the perinuclear region and does not span the space between 

the nuclear membrane and the cell membrane, indicated by the double-headed arrow in the 

highlighted box. B shows an HK1.ras/fos-Δ5Pten wdSCC in which there are no examples 

of K14 exhibiting perinuclear localisation; the highlighted box clearly shows the red K14 

staining filling the whole cytoplasmic area. Scale bars approx. 100 µm. 

 

This highlighted a unique phenotype, wherein K14 had become localised 

into the perinuclear region, which has not been seen in any other transgenic 

phenotype, including K14.stratifin. β-catenin membrane positivity strongly 

suggested that cell-cell adhesion was present in these areas, however, K14 was 

clearly no longer attached to the cell membrane. Staining of Keratins 1, 10 and 

17 (as well as K6 and K16, not shown) do not show this perinuclear localisation, 

indicating that this is specific to Keratin 14, and perhaps its partner K5, though 

this is yet to be assessed. 
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4.9. Discussion 

This chapter characterised the phenotypes generated by concomitant 

overexpression of Fos and Stratifin in mouse skin. Resultant 

HK1.fos/K14.stratifin mice produced tumours with highly unusual aetiology 

which is believed to recapitulate an under recognised form of cutaneous 

squamous cell carcinoma arising from the hair follicle (HF), termed follicular 

squamous cell carcinoma (fSCC). This appears to be the first evidence of direct 

co-operation between Fos activation and Stratifin overexpression in the causal 

aetiology of squamous cell carcinomas in general and, in particular, in fSCC. 

These data clearly show that Stratifin can have significant oncogenic potential 

when overexpressed in certain contexts, separate to the apparent tumour 

suppressive functions observed earlier in HK1.ras.fos/Δ5Pten carcinogenesis. 

4.9.1. The HK1.fos/K14.stratifin model 

This model combines expression of the activated v-Fos oncogene (c-Fos 

homologue; Curran et al., 1982) with overexpression of human Stratifin 

(Cianfarani et al., 2011), targeted to the epidermis. This was achieved using the 

HK1 promoter to drive Fos expression; HK1 is a modified form of the human 

Keratin 1 where the keratin coding region is replaced by oncogenic FBR/J v-Fos 

to create the HK1.fos transgene (Chapter 1 Figure 1-6) which is expressed in all 

suprabasal cells and a subset of proliferative interfollicular cells (Rosenthal et 

al., 1991; Rothnagel et al., 1993). Importantly, while mK1 and other 

differentiation-related genes are reduced during carcinogenesis, HK1 expression 

continues throughout malignancy. 

The K14 promoter which drives human Stratifin expression in the 

epidermis is targeted to undifferentiated cells in the basal layer of the 

interfollicular epidermis and to hair follicles (Vassar et al., 1989), especially the 

layers of the outer root sheath (which also contains the bulge region; an 

important stem cell niche), in accordance with the mK14 expression pattern 

(Coulombe et al., 1989). While HK1.fos expression elicits epidermal hyperplasia 

and hyperkeratosis after approximately 7 months, K14.stratifin expression does 
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not produce a particularly keratotic phenotype (Figure 4-2), though both 

epidermal and dermal hyperplasia are seen, the latter may be influenced by 

Stratifin secreted into the stroma from keratinocytes, where it acts on 

fibroblasts to encourage remodelling (Ghahary et al., 2005; Ghaffari et al., 2006; 

Ghaffari et al., 2010), though the generation of hyperplasia through this 

interaction does not appear to have previously been described in the literature 

and may involve novel processes. 

Based solely on these promoters, the majority of cells expressing both 

HK1.fos and K14.stratifin should be those 30% of cells in the basal layer of the 

interfollicular epidermis wherein HK1.fos is expressed, which may include 

interfollicular stem or transit amplifying cells. However, analysis of mK1 

expression in K14.stratifin-expressing skin showed that K1 was aberrantly 

expressed in hair follicle cells (Figure 4-16), notably including cells of the bulge 

region. Given that HK1 is sensitive to the same activating cues as mK1 

(Rosenthal et al, 1991; Rothnagel et al., 1993), it is reasonable to assume that in 

the presence of the K14.stratfin transgene, HK1.fos is also active in these 

follicular cells—which is not the case in other models involving HK1.fos, 

including HK1.ras/fos-Δ5Pten carcinogenesis. 

4.9.2. HK1.fos/K14.stratifin mice elicit a novel malignant histotype  

Unlike HK1.fos and K14.stratifin parental phenotypes (Figure 4-2), bigenic 

HK1.fos/K14.stratifin mice developed hyperplasia and hyperkeratosis early, 

which did not always require wound-promotion, as most mice developed either 

hyperplasia and hyperkeratosis or a tumour on the non-tagged ear (Figure 4-3). 

Tumorigenesis occurred at the tag site in all tagged mice, with those biopsied 

early (prior to tagging) exhibiting wound-independent hyperplasia and 

hyperkeratosis of the ear skin at 3 weeks (Figure 4-3A,B). Variation in the extent 

of the phenotype was observed (likely influenced by outbred nature of these ICR 

mice); however, all individuals shared common gross and histological features 

independent of the difference in overall severity. HK1.fos/K14.stratifin mice 

developed hyperplasia and hyperkeratosis to a stronger degree and much more 

rapidly than HK1.fos monogenic controls (Figure 4-3 vs 4-2). When wound-
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promotion was applied (ear tag), 100% of mice developed a tumour at the tag 

site, which were invariably highly keratotic on the surface; in cross-section, 

these all exhibited a very pale interior with a distinct large central blood vessel. 

Histological analysis suggested that this pale colour reflected the highly 

keratotic nature of these tumours. This also identified a unique histotype 

characterised by an abundance of intraepidermal keratin deposition, early 

disruption to and loss of the granular layer in many places, acanthosis in the 

suprabasal region juxtaposed with areas of highly proliferative cells with many 

mitotic figures visible, and an obvious disruption to the hair follicle (HF) 

morphology in the early stages (Figure 4-3C,D). Further histological and 

immunofluorescence analysis identified a definite link between the observed 

changes in HF morphology and the development of these highly unusual tumours, 

for example the presence of hair shafts within tumour lobes (Figure 4-12) and 

rings of Keratin 17 positive cells (a marker for outer root sheath keratinocytes) 

(Figure 4-13) placed these structures at the forefront of the tumour aetiology. 

Given that histological analysis identified blatant disruption to the 

epidermal architecture, cell-cell adhesion was assessed using 

immunofluorescence analysis of β-catenin expression (Figure 4-15). β-catenin is 

a multifunctional protein: it is an integral part of adherens junctions, in which it 

binds E-cadherin and α-catenin and is thus present at the plasma membrane 

(Hartsock & Nelson, 2007). Aside from this, it plays an important role in the 

canonical Wnt signalling pathway as a transcription factor (TF) during 

embryogenesis and stem cell regulation/fate determination, including in hair 

follicle development (Willert & Nusse, 1998; Lien et al., 2014). β-catenin 

therefore has implications in carcinogenesis both in changes to cell-cell adhesion 

that may facilitate cell migration/invasion, and as a TF promoting cell growth 

and proliferation, and possibly aberrant differentiation. 

In HK1.fos/K14.stratifin tumours, immunofluorescence analysis showed 

that while β-catenin was still present at the membranes (Figure 4-15D-F), it was 

weaker than in either HK1.fos or earlier HK1.fos/K14.stratifin hyperplasias 

(Figure 4-15A,C), suggesting some loss of cell-cell adhesion may contribute to 

the highly unusual structure of the HK1.fos/K14.stratifin epidermis and fSCCs. 
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Subsequently, DAPI was used as a counterstain to assess the nuclear localisation 

of β-catenin in areas where the quantity was clearly increased in the cytoplasm 

(Figure 4-15E,F). This showed that there were clearly positive nuclei present, 

confirmed using the ColorInspector 3D plugin for ImageJ (Figure 4-15G); positive 

staining was mostly confined to the basal cells, whilst there was only sporadic 

suprabasal positivity, where cells retained a higher degree of membranous 

staining, albeit in cells with unusual morphology. This echoes other studies into 

the roles of β-catenin activation in carcinomas (Brabletz et al., 1998; 

Miyazawaet al., 2000) in which the majority of β-catenin positivity was found at 

the invasive front, despite homogeneity in the mutational status of the tumours 

(e.g., germline APC mutation), leading the authors to suggest a role of the 

tumour microenvironment in its localised upregulation. Activation of β-catenin 

has also been observed in HK1.fos/ras-Δ5Pten SCCs, with work ongoing to 

elucidate its roles in this model and in HK1.ras/ROCK carcinogenesis (Masre et 

al., 2020). 

In this study, there are multiple ways in which K14.stratifin expression 

could contribute to this β-catenin activation. Stratifin is now well-known to be 

released from keratinocytes into the dermis to facilitate remodelling of the 

stroma, leading to changes in expression and activity of fibroblasts which could 

in turn, influence basal keratinocyte gene expression (Maas-Szabowski et al., 

1999; Lai et al., 2011). Alternatively (or in addition), Stratifin has been shown to 

sequester GSK3β (which binds cytoplasmic β-catenin, preventing its activation) 

during embryonic development, thereby facilitating increased Wnt/β-catenin 

signalling (Chang et al., 2012); the high degree of Stratifin overexpression in 

basal cells via targeted expression of the K14.stratifin transgene (coupled with 

HK1.fos activation) may create a context for this activity to re-emerge in the 

adult tissue, contributing to tumorigenesis and possibly increasing the invasive 

potential. Finally, the apparent follicular origin of HK1.fos/K14.stratifin tumours 

may mean that the Wnt signalling pathway is intrinsically more active in these 

cells, given its importance in follicle growth and homeostasis (Lien et al., 2014), 

again contributing to the unique aetiology. 
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4.9.3. HK1.fos/K14.stratifin carcinogenesis: a potential model for 

follicular squamous cell carcinoma (fSCC) 

The combination of abrupt terminal differentiation throughout the 

epidermis causing a uniquely mottled appearance in H&E, loss of the granular 

cell stage of the differentiation process, and excessive keratosis lead to a review 

of the literature to identify any proliferative skin diseases exhibiting similar 

characteristics. 

The majority of interfollicular histopathologies and malignancies observed 

did not share much similarity with the HK1.fos/K14.stratifin histotype, however, 

given the notable aberration of HF morphogenesis, the search was extended to 

include proliferative diseases of hair follicles and associated malignancies. 

Again, most of these (e.g., trichofolliculoma) did not fit the features observed in 

this study, but a non-malignant condition known as a trichilemmal (pilar) cyst 

did share some morphological features, such as the lack of granular layer and 

highly irregular border between cells and abundant keratosis (Ramaswamy et al., 

2013). Moreover, a more aggressive form, proliferating trichilemmal cyst, which 

only occasionally converts to malignant state, showed particular similarity. 

This, therefore, led to the specific search to determine whether a form of 

squamous cell carcinoma which develops from HF keratinocytes is possible; thus, 

identifying several case studies and characterisations of follicular (or 

trichilemmal/tricholemmal) squamous cell carcinoma, which is believed to be an 

often-misdiagnosed skin malignancy, frequently mistaken for BCC (Misago et al., 

2012; Shendrik et al., 2013; Carr et al., 2014). As shown in Figure 4-14, this 

HK1.fos/K14.stratifin mouse model appears to recapitulate many of the features 

identified in human fSCC (Shendrik et al., 2013; reproduced with permission). 

Upon staining sections of the fSCC with an anti-keratin 17 antibody, Misago et al. 

also found well circumscribed rings of positive staining akin to those observed in 

this study via immunofluorescence (Figure 4-13). 

However, none of these studies investigated the expression of Stratifin in 

the tumours presented, despite its well-known roles in HF morphogenesis and 

maintenance, and numerous examples of its upregulation in carcinomas, 



Chapter 4: K14.stratifin and HK1.fos co-operation in mouse skin carcinogenesis 118 

 
 

including some cutaneous SCCs (Lodygin et al., 2003; Herron et al., 2005; 

Hammond et al. 2012; Neupane & Korc, 2008). This mouse model could, 

therefore, represent an opportunity to shed light on the underlying mechanisms 

of this poorly recognised neoplasia and may represent a possible druggable 

target for therapeutic intervention as an alternative or adjunct to surgical 

excision. 

4.9.4. Immune infiltrate in severity of phenotype 

The macroscopic phenotypes generated in HK1.fos/K14.stratifin mice 

were divided into Mild, Moderate, and Strong with regards primarily to the rate 

of phenotype development (early hyperplasia and hyperkeratosis, and later 

tumour development) and whether or not the non-tagged ear (NTE) was 

phenotypic. In Mild individuals, no phenotype was visible until after tagging 

(wound-promotion) which elicited a small tumour over a period of several 

weeks; Moderate mice developed a tumour on the TGE which could be of any 

size but was clearly a tumour with adjacent grossly normal ear skin, while the 

non-tagged ear exhibited some degree of hyperplasia and hyperkeratosis, or a 

small tumour (relative to the TGE tumour). Strongly phenotypic individuals 

exhibited hyperplasia on both ears prior to wound-promotion, which developed 

into tumours involving the whole ear, with little to no normal adjacent skin 

visible (Figure 4-5C). 

Histological analysis of the three levels of phenotype severity indicated 

that the abundance of immune infiltrate was correlated with the degree of 

tumour development. In mild individuals, the non-phenotypic NTEs had no 

obvious increase in the number of visible immune cells (on H&E) compared to 

normal skin, while moderate and strong phenotypes both had much increased 

immune cell infiltrate. As shown in Figure 4-5, with the TGE of Moderately 

phenotypic mice noticeably more inflamed than the NTE, whilst both the TGE 

and NTE of Strongly phenotypic siblings possessed similarly high numbers of 

infiltrating immune cells. It was difficult to quantify the number of immune cells 

reliably, as many HK1.fos/K14.stratifin tumours, particularly in the advanced 

stages, had lost a large portion of their stroma during processing, with only the 
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tissue closest to the epidermis left intact in many cases. A more focussed study 

into the inflammation in non-wounded skin (i.e., NTE) may be possible, as the 

majority of tumours in this group did not exceed the intermediate phenotype in 

which stroma was generally intact. 

Through studies investigating its implication in scar-free wound-healing, 

Stratifin has been implicated as an anti-inflammatory 14-3-3 isoform (Rahmani-

Neishaboor et al., 2012). However, some studies investigating its expression on 

epithelial carcinomas have indicated an upregulation in its expression is 

associated with areas of inflammation in the tumour (Nakajima et al., 2003; 

Robin et al., 2020). However, there appears to be a dearth in the literature 

regarding the specific correlation between Stratifin expression in carcinomas and 

the associated degree of inflammatory response in these metastatic contexts. 

Very preliminary data involving two intermediate HK1.fos/K14.stratifin tumours 

compared to relevant controls showed a possible increase in the number of 

infiltrating Mast cells (CD34+; not shown), which are pro-inflammatory and 

known to release chemoattractants to recruit eosinophils and T lymphocytes to 

the area (Krystel-Whittemore et al., 2016); based on histopathology, both 

eosinophils and lymphocytes make up a large proportion of the infiltrating 

immune cells (Figure 4-5). Unfortunately, a proper investigation into this aspect 

of HK1.fos/K14.stratifin tumorigenesis was outside of the time frame of this 

project, though presents an interesting avenue for future study. 

4.9.5. Involvement of p53 expression in HK1.fos/K14.stratifin 

tumorigenesis 

The key role played by Stratifin in regulation of the p53-Mdm2 interaction 

was described in Chapter 1 (Figure 1-9) and revisited in Chapter 3 given their 

relative expressions in HK1.ras/fos-Δ5Pten carcinogenesis, which appeared to 

support TSG roles. In light of the finding that p53 expression was lost on 

malignant conversion in the multistage model, it had been hypothesised that 

maintaining p53 expression in proliferating cells by means of Stratifin 

overexpression could prevent such conversion. These HK1.fos/K14.stratifin data 

clearly demonstrated an oncogenic mechanism and, given the highly unusual 
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nature of HK1.fos/K14.stratifin carcinogenesis compared with this multistage 

model, the hypothesis seemed unlikely to hold true in this context. 

Surprisingly, the level of p53 was found to be moderate or high 

throughout the early and intermediate stages of HK1.fos/K14.stratifin 

carcinogenesis, with some fading of this positivity only in the advanced tumour 

stages (Figure 4-9 Panel II). These data did indeed appear to show that p53 

expression was maintained in the presence of exogenously increased Stratifin 

activity; however, unlike the outcome hypothesised based on the role of p53 as 

a master cell cycle regulator, maintenance of its expression was totally 

insufficient to prevent tumorigenesis and malignancy in this 

HK1.fos/K14.stratifin fSCC phenotype. Indeed, tumours of this genotype were 

found to arise and convert to carcinoma very quickly, as confirmed by Keratin 1 

loss (Figure 4-6), in spite of strong p53 expression in the early stages (Figure 4-

9), thus it was concluded that p53 function had somehow been uncoupled from 

its normal roles. Alternate possibilities such as the presence of a gain-of-

function (GOF) p53 mutant was deemed to be a very unlikely cause of 

carcinogenesis in this study, given the lack of strong staining or tumorigenesis in 

monogenic parents and siblings of HK1.fos/K14.stratifin mice, as well as the 

eventual fading of p53 expression here, which is not seen in GOF models. 

Furthermore, these results were obtained in rounds of breeding over several 

years, with only HK1.fos/K14.stratifin bigenic mice exhibiting this staining 

pattern. Genetic sequencing will be conducted on frozen tissue samples to 

confirm this. 

Since p53 expression appeared unhampered and its degradation was 

reduced in the presence of high Stratifin activity due to the K14.stratifin 

transgene, inhibition of downstream effectors of p53 is likely to explain its 

impotence in the context of HK1.fos/K14.stratifin carcinogenesis. Given the vast 

number of effectors targeted by p53 for transcriptional activation, this 

conclusion is somewhat vague. Preliminary data suggested that expression of the 

G1/S (and to a lesser extent, G2/M) inhibitor p21, an important downstream 

target of p53, is maintained in HK1.fos/K14.stratifin carcinogenesis, as 

previously detected in HK1.ras/fos-Δ5Pten SCCs (MacDonald et al., 2014). 
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However, this analysis was not performed on a large number of samples and has 

not yet been validated by further IF or IHC analysis. 

4.9.6. HK1.fos/K14.stratifin phenotypes are associated with major 

disruption to keratin expression and localisation  

The Keratin 1 and 10 intermediate filament proteins are the most 

abundant proteins in the suprabasal layers of the epidermis (Moll et al., 2008), 

whose transcription is activated by separation of divided cells from the 

basement membrane (BM) and upregulation of TAp63 isoforms (Trink et al., 

2007) and subsequent increase in Notch1 signalling (Blanpain et al., 2006). This 

allows Keratin 1 analysis to be a useful marker for loss of differentiation during 

malignant conversion, as lower K1 expression is correlated with a resistance to 

normal differentiation cues (BM detachment and increased Ca2+ concentration 

(Banno and Blumenberg, 2014; Bilke et al., 2012)). When immunofluorescence 

analysis was performed to assess K1 expression in K14.stratifin skin (both thin 

back skin and wound-promoted TGE hyperplasia), it was found that K1 was 

aberrantly expressed in both basal cells and HF keratinocytes, while very few 

cells of normal basal epidermis are K1+ve and no HF cells should express this 

keratin (Roop et al., 1987). 

Interestingly, despite being obligate heterodimers, there are known 

differences in their transcriptional regulation, functions and degradation. For 

example, initial induction of Keratin 10 mRNA expression lags behind that of K1 

during embryogenesis, with K1 mRNA consistently more abundant throughout 

development, including in adulthood (Ouellet et al., 1990), and K10 induction 

during differentiation has been shown to require the transcription factor AP-2 

(Maytin et al., 1999), while the K1 gene has multiple AP-1 binding sites instead 

(Rothnagel et al. 1993). Additionally, Keratin 10 knockout results in a normal 

epidermis (Reichelt et al., 2001), albeit one which experiences much faster cell 

turnover, while Keratin 1 knockout has been found to be perinatally lethal (Roth 

et al., 2012), indicative of their diverging functions. Furthermore, Keratin 1-null 

mice exhibited an increase in interleukin 18 (of the IL-1 group) and upregulation 

of anti-microbial peptides which indicates a link to immune regulation not 
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observed in K10. On the other hand, Keratin 10 has been shown to prevent Akt 

and PKCζ activity, thereby acting in a tumour suppressor capacity (Paramio et 

al., 2001). With regards to their removal, K10—but not K1—is targeted for 

degradation by Mdm2 in Varicella zoster virus-infected skin and in the autosomal 

recessive congenital ichthyosis family of genetic diseases, leading to uncoupling 

of their expression (specifically, increased K1 and downregulated K10) (Tommasi 

et al., 2020; O’Shaughnessy et al., 2010; Youssef et al., 2014).  

In this study, Keratin 1 loss was used as a marker of loss of differentiation 

and transition to a malignant SCC. However, it was noticed that from an early 

stage in HK1.fos/K14.stratifin carcinogenesis, expression and localisation of K1 

and K10 was uncoupled, to a far greater degree than observed in HK1.ras/fos-

Δ5Pten multistage carcinogenesis (Figures 4-16, -17, 18). The reasons for this are 

unclear, since the loss in Keratin 1 also appeared to be accompanied by an 

increase in Keratin 14 expression in suprabasal cells (Figure 4-6), indicative of 

the more proliferative, less well-differentiated phenotype. In this model, Mdm2 

activity is repressed by high K14.stratifin expression (as evidenced by much 

higher-than-normal p53 expression throughout carcinogenesis), thus, Mdm2-

mediated degradation is not likely to be implicated in the discrepancy between 

K1 and K10 staining seen in HK1.fos/K14.stratifin carcinogenesis. However, the 

fact that this mechanism exists to reduce K10 independent of K1 in other disease 

states suggests that they can be selectively targeted for removal, thus, it is 

plausible that K1 is actively degraded in this tumour context by another 

molecule. Given that K10 has independent roles of K1 in tumour suppression (via 

inhibition of Akt and PKCζ activities (Paramio et al., 2001)) while K1 appears to 

have influence in immunoregulation (Roth et al., 2012), the discrepancy in their 

expression may be reflective of these independent roles and slight differences in 

their transactivation. 

Finally, through its use as a counterstain, it was found that Keratin 14 

uniquely exhibited perinuclear localisation in intermediate and advanced stage 

HK1.fos/K14.stratifin tumours. This peculiar phenomenon was confirmed using 

β-catenin as membrane marker (Figure 4-20) which showed that, while cells 

were clearly distorted, total loss of cell-cell adhesion did not explain this 

perinuclear localisation. Keratin IFs attach to desmosomal plaques at the plasma 
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membrane; thus, it was initially hypothesised that desmosomal dysregulation or 

loss may be implicated. However, since no other Keratins analysed (K1, K10, 

K17, and K6/K16 (not shown)) displayed the same untethering from the 

membrane, this theory doesn’t appear to fit the data. The only instances in the 

literature of this staining pattern appear to be in cases where a keratin mutation 

has occurred, preventing correct IF formation in cases of Epidermolysis Bullosa 

Simplex (Keratin 5; Livingston et al., 2001) and Epidermolytic Hyperkeratosis 

(Keratin 10; Huber et al., 1994). In this study there is no reason to believe that a 

Keratin mutation has occurred, however, post-translational modifications like 

phosphorylation have are known to be required for correct filament assembly, 

thus, disruption of this process could have the same profound effect. These 

results, therefore, appear to suggest some form of direct targeting of K14, 

preventing normal filament organisation and association with the desmosomes. 

Alternatively, this finding could indicate a novel protein-protein interaction 

involving K14 independent of K5, as is the case with K16-iRHOM2 (Maruthappu et 

al., 2017), thus indicating a very interesting focus for further research which 

could have more wide-ranging implications in other epithelial disease 

aetiologies. 

4.9.7. Future directions 

It will be important to validate the HK1.fos/K14.stratifin genotype as a 

model of human follicular squamous cell carcinoma (fSCC). This will require 

acquisition of fSCC samples, which is likely to prove difficult due to the under-

recognised nature of this SCC subtype (Misago et al., 2012; Shendrik et al., 2013; 

Carr et al., 2014), thus, initially this will involve reaching out to the authors of 

studies cited here, before inevitably requiring a much larger cohort of samples. 

The first such validation experiments will examine the expression of both 

c-Fos and Stratifin; however, since both of these proteins have been shown to be 

elevated in classic cSCCs (Lodygin et al., 2003), further analysis is required to 

confirm the fSCC phenotype. This will involve similar analyses to those already 

performed on mouse samples, including initial histopathological assessment to 

look for the unique features found in all HK1.fos/K14.stratifin tumours assessed 
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(e.g., trichilemmal differentiation), which are absent in the HK1.ras/fos-Δ5Pten 

multistage model of more classic SCCs. Mouse ear skin undergoes an initial 

anagen growth phase between 2 and 15 days post partum, then enters an 

extended quiescent (telogen) phase, unlike that of the body where the hair 

follicles grow in roughly monthly cycles, coordinated into waves around the body 

(Wang et al., 2017). Ear skin again differs, in that even when HFs re-enter 

anagen, they do not do so in a coordinated manner, but do so sporadically and 

individually. Since these HK1.fos/K14.stratifin tumours are believed to be of 

follicular origin, and tumours of the follicles are more likely to arise during 

active growth (Miller et al., 1993), this long quiescence may further account for 

the differences in phenotype severity; if the tumour does not arise early, prior 

to tagging, then it may not be generated until the next time a HF enters its 

growth cycle. This could be tested by inducing anagen at a specific site by 

plucking the hairs; known to stimulate the follicle to enter anagen (Wang et al., 

2017). 

Further analyses will look for the cause of divergence in post-mitotic 

keratin (K1/K10) expression, which is evident early in these tumours, though 

also appears in aggressive HK1.ras/K14.stratifin Type 2 tumours (see Chapter 5); 

divergent K1/K10 expression may become a reliable marker for aggressive 

Stratifin-driven oncogenesis. More investigation is required into the reasons for 

K14 filament accumulation in the perinuclear region (Figure 4-20), which 

remains specific to this HK1.fos/K14.stratifin fSCC phenotype. 

While this model appears to be the result of two genetic “hits”, in reality, 

the nature of Fos as part of the major transcription factor complex, AP-1, means 

that the exact underlying gene expression changes which contribute to 

HK1.fos/K14.stratifin carcinogenesis are unclear. Thus, to identify such changes 

in expression which underpin the disease pathology, transcriptomic or proteomic 

approaches may be required, given the scope of influence of AP-1, coupled with 

the vast array of interaction partners of Stratifin. This could potentially identify 

new interactions and allow identification of novel proteins or pathway 

interactions to develop targeted treatment strategies. Furthermore, given 

previous research has identified Stratifin as a vital component in normal HF 

development and implicated it in having roles in the bulge region stem cell 
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niche, this approach may elucidate Stratifin-mediated interactions governing SC 

physiology and how the overexpression of Stratifin, here, in conjunction with 

activated Fos induces carcinogenesis. 

Additionally, the role of the immune system is patently apparent in these 

HK1.fos/K14.stratifin tumours, as it has been observed that the stronger 

phenotypes are correlated with greater immune cell infiltrate. However, 

understanding which components are involved and how requires much more 

study, likely in collaboration with scientists in the field of onco-immunology to 

properly elucidate the mechanisms of immune cell recruitment and their 

interactions with keratinocytes in tumour promotion. 

Finally, since p53 ablation had no observable effect on 

HK1.fos/K14.stratifin tumorigenesis (despite high abundance of the protein in 

the wild-type tumours), work is ongoing to assess the impact of p21 knockout 

(Appendix 2; Figure S2). This is one of the main downstream effectors of cell 

cycle arrest mediated by p53 but can also be induced by p53-independent 

mechanisms (such as by TGF-β), as seen in HK1.ras/fos-Δ5Pten carcinogenesis in 

which both p21 and Stratifin persisted beyond p53 loss (Appendix 1; McMenemy 

et al., in preparation). Preliminary results suggest the development of these 

tumours is similar to wild type but with a more aggressive histological 

appearance, with all mice assessed so far resembling the strongly phenotypic 

p21WT fSCC tumours. Given the natural variability in the severity of phenotype 

in HK1.fos/K14.stratifin tumours, however, a larger cohort of mice will be 

needed to confirm this finding. 

4.9.8. Conclusions 

HK1.fos/K14.stratifin mice generate tumours of varying size and speed of 

development but with remarkably similar histopathology despite their outbred 

background. These tumours appear to recapitulate the histological features of 

human fSCCs, an underrecognized subset of cutaneous SCC. The relatively stable 

nature of the phenotype on an outbred genetic background implies that this 

model could be useful in studying the underlying mechanisms of disease 
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pathogenesis and potentially inform new treatment modalities specific to this 

tumour type. 
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5.1. Introduction 

As detailed in Chapter 4, co-operation of HK1.fos and K14.stratifin 

transgene constructs caused development of malignant tumours of follicular 

origin in bi-genic mice. This chapter deals with the phenotypes resulting from 

concomitant expression of HK1.ras and K14.stratifin transgenes. 

HK1.ras mice develop benign papillomas on the tagged ear due to the 

tumour-promotion effects of wounding, which regress over time if the tag is 

removed. Rarely, papillomas have been found to develop on other areas of the 

body which do not require wounding to initiate papillomatogenesis. Such 

papillomas are believed to remain benign but exhibit a more aggressive 

histological phenotype than those at ear tag. 

As previously discussed, K14.stratifin mice appear grossly normal 

throughout development, with only tagged ears generally exhibiting visible 

hyperplasia after 5 months of age, though mild hyperplasia is seen on 

histological examination at an earlier stage. 

While HK1.fos/K14.stratifin mice developed tagged ear tumours in 100% 

of cases, the follicular origin of this type of carcinogenesis was unusual. This was 

thought to be related to the synergistic effects of these proteins in the hair 

follicle (HF), since both already have roles in HF development. While H-Ras has 

been shown to be carcinogenic when expressed in the HF via a K5 promoter 

(Brown et al., 1998) it is not otherwise believed to play a part in fate 

determination of HF stem cells or differentiation, unlike Fos proteins (Fisher et 

al., 1991). 

Here, the aims were to characterise the phenotypes generated by co-

expression of the HK1.ras and K14.stratifin transgenes using histological and 

immunostaining analyses of several proteins of interest to inform the stage in 

malignant progression and identify possible effectors of the pathology. Further, 

this protein analysis was used to attempt to identify the reasons underpinning 

the two distinct disease aetiologies seen in HK1.ras/K14.stratifin mice. 
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5.2. Initial results that suggested a protective effect of 

K14.stratifin on the HK1.ras phenotype 

HK1.ras mice were crossed with K14.stratifin mice and, whilst little 

effect could be observed in neonatal skin (pups remained wrinkly and became 

normal as juveniles, as in HK1.ras), preliminary data based on the first bigenic 

litter generated suggested that the K14.stratifin transgene elicited a tumour-

suppressive effect on HK1.ras papillomatogenesis (Figure 5-1). When biopsied, 

HK1.ras monogenic controls had developed the expected papilloma at tag, 

approximately 8 mm in diameter. In contrast, whilst two bigenic 

HK1.ras/K14.stratifin mice exhibited papillomas of a similar size to their 

HK1.ras siblings, three had much smaller papillomas which were more V- or C-

shaped than standard HK1.ras papillomas, as depicted in Figure 5-1. 

 

Figure 5-1: Initial results showed smaller papilloma size in HK1.ras/K14.stratifin bi-

genic mice compared with HK1.ras age-matched controls. 

Three (middle) HK1.ras/K14.stratifin mice show smaller papillomas relative to HK1.ras 

siblings (right) at ~10 weeks post-tag, with the two remaining more similar to the HK1.ras 

controls. 

Initial examination suggested that these tumours were largely benign, 

though some differences were immediately apparent compared with HK1.ras 

papillomas. For example, the centre of the biopsied tumours had a grossly glassy 

or jelly-like appearance compared to control papillomas which appear largely 

matte due to the presence of keratin pearls throughout the structure. 

Histological examination suggested that the gross cross-sectional appearance 

resulted from a high stroma content in the HK1.ras/K14.stratifin tumours, with 

few keratin pearls evident and some histological features challenging their 

apparently benign aetiology (Figure 5-3). Subsequently, this initial trend for 

smaller tumours became evidently only part of the story, with the emergence of 

many more aggressive (Type 2; see below) tumours in a large number of mice. 
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5.3. HK1.ras/K14.stratifin tumours fall into two distinct 

phenotypes based on growth rate, appearance at biopsy 

and histopathology 

While preliminary data suggested a putative logical, protective role for 

Stratifin in suppressing HK1.ras papillomatogenesis, increased numbers of mice 

generated (n=40) indicated that this was incorrect. 

As mentioned above, HK1.ras mice typically develop wound-dependent 

papillomas at ear tag in all cases, generally between 8- and 10-weeks post-tag; 

should the tag fall out, these papillomas regress (or do not commence if this 

wound-promotion fails prior to their formation) (Greenhalgh et al., 1993a). 

However, in very few cases and dependent upon the background substrain of 

ICR, H-ras activation may produce wound-independent papillomas at other body 

sites, with a completely different aetiology and appearance. In this model, 

under UK Home Office guidelines, these rapidly-growing tumours quickly 

approach acceptable limits and are therefore biopsied. As they remain benign at 

biopsy, they are termed type 2 papillomas, lacking signs of carcinoma but 

exhibiting some dysplasia and are not regression-prone like their Type 1 TGE 

counterparts. 

In HK1.ras/K14.stratifin bi-genic mice, these wound-independent tumours 

occurred frequently on the body, most commonly at the base of the tail where 

the hyperplasia and hyperkeratosis present at birth never regressed before 

tumour formation; a result which suggests early co-operation between activated 

H-ras and Stratifin overexpression. These tumours grew rapidly from inception to 

a size and appearance which necessitated biopsy within 2 weeks, whereas the 

sporadic Type 2 papillomas on HK1.ras littermates could legitimately remain for 

up to 8 weeks. Additionally, a subset of tumours on the TGE mimicked this rapid 

growth and large, aggressive appearance, while others grew much more slowly 

and were macroscopically more akin to HK1.ras papillomas. This was the first 

indication that two distinct types, designated Type 1 and Type 2 in this chapter, 

also existed in the HK1.ras/K14.stratifin genotype and despite a dissimilar 

aetiology, both exhibited evidence of SCC development. 
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As shown in Figure 5-2, in the absence of a wound-promotion stimulus, 

NTE tumours did not develop in any mice in this cohort. Type 1 TGE tumours 

frequently developed the “dumbbell” shape (Figure 5-1B) and grew slowly, 

ranging from 12-17 weeks at biopsy. Type 2 TGE tumours were much larger at an 

earlier stage in development than their Type 1 counterparts, with obvious 

hyperkeratosis and inflammation apparent. In cases where the tag was lost (n=4) 

these tumours did not regress, indicating a wound-independent phenotype. Type 

2 tumours on the body frequently appeared at the tail base (n=7), with others on 

the dorsum, flank, shoulders or lower abdomen (n=5). This type differed in 

outward appearance, with some like that shown in Figure 5-1E,F exhibiting a 

relatively benign, lobular structure, while others had a much smoother, dome-

like shape. No mice were homozygous for the HK1.ras gene, (since homozygosity 

creates an unacceptable degree of hyperplasia and hyperkeratosis in neonatal 

mice which compromises viability of juveniles (Greenhalgh et al., 1993), and no 

link between K14.stratifin homozygosity and tumour type was apparent. 

 

Figure 5-2: Type 1 and Type 2 HK1.ras/K14.stratifin tumours are grossly 

distinguishable. 

(A) Type 1 HK1.ras/K14.stratifin phenotype showing grossly normal non-tagged ear (NTE) 

and small tumour on tagged ear (TGE) at 12 wks./8 wks. post-tag. (B) Close-up of TGE 

tumour showing dumbbell shape and mild surface keratosis common to Type 1 tumours. 

(C) Type 2 HK1.ras/K14.stratifin phenotype showing grossly normal NTE and large, 

flattened tumour on TGE at 9 wks./5 wks. post-tag. (D) Close-up of TGE tumour showing 

very keratotic centre. (E) Type 2 HK1.ras/K14.stratifin phenotype showing rounded tumour 

at tail base at 11 wks. (F) Close-up shows seemingly lobular structure and little keratosis. 

(G) HK1.ras with grossly normal NTE and TGE papilloma at 10 weeks. (H) Close-up 

showing slightly keratotic surface and multi-lobed structure. 
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Histological analysis (H&E) assessed the morphological features in each 

tumour type, compared with each other and HK1.ras controls, as shown in Figure 

5-3. Despite their outward similarity to HK1.ras papillomas, Type 1 

HK1.ras/K14.stratifin tumours exhibited a very different cross-sectional 

appearance (Figure 5-3A vs G). In these tumours, the structure generally 

comprised a large area of stroma, surrounded by a relatively thin layer of 

hyperplastic and papillomatous tumour epidermis, very different to the ratio 

seen in HK1.ras papillomas, which do not contain as much stroma relative to the 

outer epidermis and keratin pearls. On closer examination (Figure 5-3B), it was 

also apparent that the normal stratification of the epidermis was highly 

disrupted in these HK1.fos/K14.stratifin tumours, with an increase in 

proliferative cells and keratosis present in the spinous layers, somewhat akin to 

that seen in the HK1.fos/K14.stratifin phenotype but with clear overall 

differences. Here, the granular layer was also found to be reduced or missing 

entirely, with hyperkeratosis observed in all examples. The 

HK1.ras/K14.stratifin histotype appeared to be a mix of dysplastic but generally 

benign papilloma and clear indications of malignant conversion, with frequent 

mitotic figures present, particularly in invasive regions, where the delineation 

between epidermis and dermis at the basement membrane (BM) was lost. These 

Type 1 HK1.ras/K14.stratifin tumours thus represent a mixed phenotype of 

benign papilloma, albeit with unusual dysplasia and high stromal content, and 

clear carcinoma in situ or early wdSCC given the increasing signs of invasion. 

Analysis of Type 2 tumours from ear and body sites showed some variation 

in these HK1.ras/K14.stratifin features present and all were found to exhibit 

widespread malignancy and quite aggressive SCC (Figure5-3C,F). Such features 

included a high degree of hyperkeratosis both on the tumour surface and in 

misshapen keratin pearl structures which were not generally seen in Type 1 

tumours. These also exhibited a large expansion of the proliferative basal 

compartment which, in some cases, involved a clear separation of the cells 

suggestive of oedema or possible loss of cell-cell adhesions. Uniquely, this 

tumour type produced “ghost cell” keratosis, a failure of proper cornification in 

which the nuclear envelope was not fully collapsed and the cornified cell overall 

retained its shape as in life (Figure 5-3D; circled). 
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Figure 5-3: Histological analysis shows Type 1 HK1.ras/K14.stratifin tumours are less 

aggressive  than Type 2 tumours, but both have features of malignant conversion. 

(A) Low magnification (40x) H&E histology of Type 1 HK1.ras/K14.stratifin tumour showing 

a hyperplastic epidermis surrounding inflamed stroma which constitutes a large proportion 

of the tumour mass. (B) High mag. (200x) showing intra-epidermal keratosis (arrow), 

increase in proliferative layers (bracket; { ) and loss of basement membrane (BM) integrity 

in places (box). (C) Low mag. (40x) Type 2 HK1.ras/K14.stratifin TGE tumour showing more 

hyperplastic epidermis than in (A) with large keratin pearls and a high immune infiltrate. (D) 

High mag. (200x) shows unusual “ghost cell” keratosis (oval), a lack of granular layer cells, 

less intra-epidermal keratosis than in Type 1 (arrows), expanded proliferative compartment 

(bracket; { ) and loss of BM integrity with signs of invasion (boxes). (E) High mag. (200x) 

shows expanded proliferative compartment (bracket; { ) and gaps visible between cells. 

Invading keratinocytes and immune infiltrate are seen in the lower left. (G) HK1.ras 

papilloma showing clearly stratified layers and ordered keratosis. This also shows a much 

lower stromal content than in HK1.ras/K14.stratifin tumours. (H) High mag (200x) shows the 

single proliferative layer and presence of granular cells clearly, with no invasion. Scale bars: 

(A, C, E, G) approx. 500 µm; (B, D, F, H) approx. 100 µm. 
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Additionally, the inflammatory response appeared to be much greater in 

all Type 2 tumours than Type 1. Indeed, their presence may have been integral 

to invasion in some Type 2 tumours, where the infiltrating immune cells 

participated in BM disruption, facilitating invasion (Figure 5-3F). 

 Tumour 
development* 

Histology Immune cell 
infiltration 

Wound 
dependent? 

Type 1 Slow 

(≥ 8 weeks) 

Papilloma, 
carcinoma in 
situ & wdSCC 

Low/Moderate Yes 

Type 2 Fast 

(≤ 2 weeks) 

wdSCC & 
carcinoma 

High No 

Table 5-1: Characteristics of Type1 and Type 2 HK1.ras/K14.stratifin tumours based 

on macroscopic appearance/growth rate and histological observations. 

Tumour development refers to time from first appearance of tumour to date of biopsy, not 

age of mouse. Frequency of tumours reflects how many mice had each tumour type, not 

number of tumours total (several mice had > 1 Type 2 tumour). Type 2 category includes 

all Type 2 TGE and body tumours biopsied. 5 mice were biopsied between 4 and 9 weeks 

old due to rapid growth of Type 2 tumours on the body, prior to expected development of a 

Type 1 TGE tumour; 100% of mice were expected to develop a TGE of either Type >9 

weeks old. 9 mice had both a TGE tumour (of either Type) and at least 1 Type 2 body 

tumour. 

To assess whether the difference in phenotype was linked to K14.stratifin 

transgene expression, immunofluorescence analysis was performed to assess 

Stratifin abundance in Type 1 and Type 2 HK1.ras/K14.stratifin tumours 

compared with HK1.ras control papillomas (Figure 5-4). This showed strong 

Stratifin expression in all layers of the tumour epidermis in both types of 

HK1.ras/K14.stratifin neoplasia (Figure 5-4A,B), in contrast with strong staining 

in only the suprabasal layers of HK1.ras papilloma, in which only weak basal 

layer staining was observed (Figure 5-4C). The comparable staining pattern and 

intensity in Type 1 and Type 2 HK1.ras/K14.stratifin tumours therefore did not 

appear to be linked to weak or patchy K14.stratifin expression. 

All mice used in this study were outbred on an ICR background which 

could account for some difference in the observed phenotypes; however, several 

HK1.ras/K14.stratifin mice developed both a Type 1 TGE tumour and a Type 2 

tumour at another site, indicating that this was not the only factor accounting 

for the difference. 
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Figure 5-4: Elevated Stratifin expression is present in both Type 1 and Type 2 

HK1.ras/K14.stratifin tumours. 

(A) Type 1 HK1.ras/stratifin TGE tumour showing Stratifin (green) in all layers of the 

epidermis, highlighted in the boxed area to show strong basal layer staining from expression 

of the K14.stratifin transgene. (B) Type 2 HK1.ras/K14.stratifin tail tumour showing strong 

Stratifin staining in all layers, highlighted in the boxed area. (C) HK1.ras papilloma showing 

mainly strong suprabasal Stratifin staining with some basal layer staining, highlighted in the 

boxed area showing a lack of strong basal layer staining in the absence of the K14.stratifin 

transgene. Scale bars approx. 100 µm. 
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5.4. All HK1.ras/K14.stratifin tumours undergo malignant 

conversion with differential expression of markers 

indicative of Type 1 and 2 derivation 

Histological analysis indicated signs of malignancy in Type 1 and 

aggressive SCC in Type 2 HK1.rasK14.stratifin tumours, including increased 

proliferation, loss of stratification and areas of invasion (Figure 5-3A-F). To 

further evaluate this progression to SCC, Keratin 1 staining was performed on 

typical Type 1 and Type 2 HK1.ras/K14.stratifin tumours and their profiles were 

compared with benign HK1.ras papillomas (Figure 5-5). 

These results supported histological analysis, that at the time of biopsy, 

Type 1 tumours did not exhibit widespread malignant conversion, indicated by 

the largely K1-positive suprabasal layers (Figure 5-5A). However, large areas of 

these tumours did show a reduction in K1 staining intensity and areas of patchier 

K1 loss compared to HK1.ras papilloma controls (Figure 5-5A vs C). Additionally, 

areas such as that highlighted in the boxed area in Figure 5-5A exhibited greater 

K1-loss, suggesting development of localised carcinoma in situ which appeared 

to be becoming invasive. 

In contrast, Type 2 HK1.ras/K14.stratifin tumours exhibited a more 

aggressive aetiology with widespread K1 loss (Figure 5-5B). All Type 2 tumours 

grew rapidly and, based on this K1 loss coupled with histological analysis, 

converted to malignancy within this short time frame. This was unusual given 

that this only required overexpression of two genes to elicit these aggressive 

SCCs. However, the contextual differences which cause development of Type 2 

tumours instead of the slower-growing, wound-dependent Type 1 variety is 

unclear, though it may depend upon expression in hair follicle stem cells, given 

that K14.stratifin has been shown to direct mK1 activation in follicle cells 

(Chapter 4; Figure 4-15) and targeting of activated Ras to HFs has been found to 

elicit aggressive SCCs (Brown et al., 1998). 
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Figure 5-5: Keratin 1 loss indicates that both Type 1 and Type 2 HK1.ras/K14.stratifin 

tumours exhibit conversion to wdSCC. 

(A) Type 1 HK1.ras/K14.stratifin TGE tumour showing reduced Keratin 1 staining (green) with 

increased depth of basal proliferative compartment, indicated by Keratin 14 (red) counter-

staining. A patch of carcinoma in situ is shown at higher magnification in the boxed area. (B) 

Type 2 HK1.ras/K14.stratifin tumour showing widespread K1 loss, highlighted in the boxed 

area, indicating malignancy. (C) HK1.ras papilloma with strong suprabasal K1 staining and a 

single layer of proliferative K14 positive cells, indicative of a benign papilloma.  Scale bars 

approx. 500 µm. 

 

 



Chapter 5: K14.stratifin and HK1.ras co-operation in mouse skin carcinogenesis 138 

 
 

To explore this further and gain an idea of the extent of proliferation, the 

mitotic index was assessed of HK1.ras/K14.stratifin tumours, by labelling 

dividing cells with BrdU, as described in Chapter 4 (Figure 5-6A-D). Here, basal 

layer positivity was found to be similar in both Type 1 and Type 2 tumours, with 

mean counts of 27.7 and 35.1 cells/mm BM, respectively, compared with a mean 

of only 15.9 in the HK1.ras papillomas assessed. The difference in suprabasal 

positivity was more marked between the HK1.ras/K14.stratifin tumour Types, 

with means of 9.1 and 23.5, in Type 1 and Type 2 tumours, respectively. Both 

groups had much higher mean suprabasal values than in HK1.ras papillomas, 

which were found to have few suprabasal positive cells, with a mean of only 3.9 

cells/mm BM. The range in values was also found to be larger in both 

HK1.ras/K14.stratifin tumour types than in HK1.ras papillomas, indicative of 

heterogeneity in the tumours assessed, whereas the number of dividing cells in 

HK1.ras was found to be much more consistent across the sections. This is seen 

in the boxplot (Figure 5-6) where the 95% CI of HK1.ras/K14.stratifin tumours is 

much greater than in controls, as denoted by the whiskers. 

These data suggest that, whilst the amount of proliferation in each was 

comparable, BrdU-positivity was extensive throughout the Type 2 tumour, 

consistent with the disordered nature of differentiation and proliferation, 

compared to Type 1 in which division was largely confined to basal layer cells. 
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Figure 5-6: BrdU labelling indicates the mitotic index is high in both Types of 

HK1.ras/K14.stratifin tumours compared to HK1.ras papillomas. 

(A) BrdU labelling showing low mitotic index in Normal ICR skin (n=2), with approx. 5 

labelled cells per mm basement membrane (BM) in the basal layer and no supra-basal 

positivity, as shown in the box plot. (B) BrdU labelling in HK1.ras (n=2) is approx. 15/mm 

BM with very little supra-basal labelling (C) Mitotic index in Type 1 HK1.ras/K14.stratifin 

tumours (n=4) is approximately 30 cells/mm BM in the basal layer with supra-basal labelling 

approximately 7 cells/mm BM. Variation in labelling is much greater than in HK1.ras, as 

shown by whiskers in the boxplot depicting 95% CI. (D) Labelling in Type 2 

HK1.ras/K14.stratifin tumours (n=3) is >30 in the basal layer and approx. 15 in the supra-

basal layers. Variation in positivity is especially apparent in the suprabasal counts due to 

low positivity in benign regions and a high number of positive cells in SCC regions. Scale 

bars approx. 100 µm. 
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5.5. HK1.ras/K14.stratifin invasive potential may be linked 

to changes in cell-cell adhesion and cancer-associated 

fibroblast activity 

Skin neoplasms undergo stages of development, from normal skin through 

hyperplasia, and from there may develop into a benign tumour such as a 

papilloma before progression to carcinoma. The well-charactered HK1.ras 

expression model results in the formation of papillomas when subject to wound 

or chemical promotion. Histopathological and immunofluorescence analyses 

show that these papillomas exhibit clear epidermal stratification with little 

dysplasia and overall, relatively normal features of differentiation. Conversely, 

HK1.ras/K14.stratifin tumours exhibited dysplasia from an early stage, with 

several unusual histological features such as intra-epidermal keratosis and ghost 

cell cornification, along with the more common signs of carcinoma in situ such 

as increased proliferation and loss of stratification, as shown in Figure 5-3. 

In addition to in situ features, both Type 1 and Type 2 

HK1.ras/K14.stratifin tumours exhibited signs of invasion, even in areas which 

were not entirely undifferentiated, as indicated by the presence of K1 in some 

suprabasal cells (Figure 5-7D-F). Here, both collective cell invasion in the form 

of finger-like projections into the tumour stroma together with broader 

“pushing” invasive fronts and several hot spots of individual cell invasion (in 

more advanced Type 2 SCCs) wherein cells appear to scatter into the stroma 

following basement membrane (BM) degradation (Figure 5-7A, B and C). 
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Figure 5-7: HK1.ras/K14.stratifin tumours exhibit multiple forms of invasion. 

(A) Type 1 HK1.ras/K14.stratifin tumour exhibiting collective invasion in the form of finger-

like protrusions into the stroma (black arrows) (B) Type 1 HK1.ras/K14.stratifin tumour 

showing broad “pushing” invasive fronts (yellow arrows) as well as more diffuse invasion 

(black dashed box) (C) Type 2 HK1.ras/K14.stratifin ear tumour exhibiting diffuse, individual 

cell invasion where BM integrity has been lost. (D) Type 1 HK1.ras/K14.stratifin tumour: K1-

ve/K14+ve (red) cells are seen invading into the surrounding stroma via multiple finger-like 

projections from an otherwise seemingly benign (K1+ve; green) region. (E) Type 1 

HK1.ras/K14.stratifin tumour: K1-ve cells show invasion via pushing tumour borders from an 

area where K1 is seen to be fading more so than in A. Sebocytes are visibly trapped among 

the tumour keratinocytes (white arrows) indicating aberration of hair follicle structures. (F) 

Type 2 HK1.ras/K14.stratifin tail tumour: patches of basal keratinocytes (white box) are 

invading individually where BM integrity has failed. Scale bars approx. 100 µm. 

  



Chapter 5: K14.stratifin and HK1.ras co-operation in mouse skin carcinogenesis 142 

 
 

5.5.1. Differences in E-cadherin expression facilitate multimodal 

invasion in HK1.ras/K14.stratifin SCCs 

These findings prompted analysis of two components with major roles in 

the regulation of tumour cell invasion. Firstly, a keratinocyte component, E-

cadherin, which has a vital role in cell-cell adhesion and mediation of collective 

invasion, whose loss permits individual cell invasion and more aggressive SCC. 

Secondly, the potential role of keratinocyte-releasable Stratifin in recruitment 

of cancer-associated fibroblasts that express Tenascin-C, thereby facilitating 

keratinocyte invasion through stromal dynamism, as recently observed in 

ROCK2/H-Ras-mediated carcinogenesis (Masre et al, 2017; 2020). Tumour cell 

invasion is a highly complex process involving extracellular matrix (ECM) 

remodelling in conjunction with acquisition of cellular abilities involving 

actinomyosin mechanotransduction and alterations in cell-cell adhesion, similar 

to what is observed during wound-healing. 

During collective invasion, observed here in the more well-differentiated 

Type 1 HK1.ras/K14.stratifin SCCs and in less advanced areas of Type 2 tumours 

(Figure 5-8A,B,D), E-cadherin—a major component of adherens junctions which 

connect the actin cytoskeleton of adjacent cells—is known to maintain 

expression in the leading cells (Krakhmal et al., 2015); this allows the formation 

of finger-like projections (Figure 5-7A and Figure 5-8D) and broader invasive 

fronts (Figure 5-7B). Epithelial-mesenchymal transition is a set of processes 

resulting in loss of epithelial characteristics in invasive cells; loss of E-cadherin 

positivity at the cell membranes is therefore one of the earliest changes seen in 

EMT. During EMT, the loss of cell-cell adhesion allows individual cell invasion to 

occur, as observed in Figure 5-8C, where E-cadherin is cytoplasmic rather than 

membranous, and notably, Keratin 14 (red) expression is greatly reduced. 

Nuclear positivity for E-cadherin has been observed in some advanced 

human carcinomas and has been found to inhibit β-catenin TF activity. However, 

this inhibition is ablated if E-cadherin is acetylated at its β-catenin binding site 

(Zhao et al., 2019). Without testing for acetylation, it was not possible to 

determine the actions of nuclear E-cadherin apparently observed in some 

HK1.ras/K14.stratifin samples (Figure 5-8C). 
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Figure 5-8: E-cadherin staining shows differences in expression at various invasive 

sites in HK1.ras/K14.stratifin carcinogenesis. 

(A) HK1.ras/K14.stratifin ear tumour showing basal E-cadherin (green) expression at the 

membranes in some collectively invading areas (left box) and reduced positivity in others with 

more irregular morphology (right box). Suprabasal membranes are mostly positive but show 

some patchiness in intensity. (B) HK1.ras/K14.stratifin ear tumour showing an area of tumour 

with very low expression of E-cadherin in all layers, especially at the invasive front (top box) 

juxtaposed with an area of relatively strong staining (lower box), where cell size is also much 

smaller. (C) HK1.ras/K14.stratifin ear tumour showing reduced E-cadherin to the left of the 

image and diffuse cytoplasmic staining (and possibly nuclear, given cyan colour of some, 

combined with DAPI) in the highlighted area. Keratin 14 (red) expression is also reduced in the 

boxed area and invasion appears more individual than collective here, suggestive of epithelial-

mesenchymal transition in these cells (D) Finger-like invasion in a nearby area of the same 

tumour as in C, showing clear membranous E-cadherin positivity in the invading cells, 

highlighted in the boxed area. The centre of the image also shows an aberrated follicular 

structure while to the left other pushing invasive fronts are E-cadherin positive. (E) HK1.ras 

papilloma showing strong membranous E-cadherin staining throughout the supra-basal layers 

and negligible staining in the basal layer, highlighted in the boxed area (white dashed lines 

represent BM). Scale bars approx. 100 µm. 

 

5.5.2. Tenascin-C is upregulated in HK1.ras/K14.stratifin tumour 

stroma, indicating presence of CAFs which may facilitate 

invasion 

Invasion occurs not just due to activity within the tumour keratinocytes 

themselves, but also due to changes in the tumour microenvironment. 

Specifically, crosstalk between cancer cells in the epidermis and the tumour 

stroma can result in the development of cancer-associated fibroblasts (CAFs). 

CAFs are not themselves mutated but exhibit changes in their behaviour and 

secretory phenotype as a result of paracrine signalling from the tumour 

epidermis and can facilitate invasion through the BM by both physical and 

protease-mediated mechanisms (Goetz et al. 2011; Glentis et al, 2017). 

Stratifin has been found to be secreted into the dermis by keratinocytes, 

inducing fibroblasts to undertake matrix remodelling as an important step in 

wound-healing (Ghaffari et al., 2006; Ghahary et al., 2007). Here, Stratifin binds 

aminopeptidase N/CD13 on dermal fibroblasts, resulting in upregulation of AP-1 

signalling and increased expression of various matrix metalloproteinases (MMPs) 

which break down stromal components including collagens and fibronectin 

(Ghaffari et al., 2006; Lai et al., 2011). This is interaction is thus hypothesised 

to play a role in the invasion commonly seen in HK1.ras/K14.stratifin SCCs. 
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Tenascin-C (TENC), a large matrix glycoprotein, has been identified as a 

reliable marker of CAFs in tumour stroma, with increased expression significantly 

associated with increased invasion and metastasis in several carcinomas (Jahkola 

et al., 1998; Cai et al., 2017), as well as induction of EMT and blood vessel 

invasion (Sun et al., 2019). Moreover, increased Stratifin expression has been 

identified in invasive colorectal cancer cells where the tumour stroma exhibited 

high TENC positivity (Ide et al. 2007), suggesting a link between their 

expressions and co-operation in inducing invasion and thus was investigated in 

both types of HK1.ras/K14.stratifin tumours. 

Here, expression of TENC in Type 1 and 2 HK1.ras/K14.stratifin SCCs—

both of which have been shown to be invasive—was compared with that in non-

invasive benign HK1.ras papillomas (Figure 5-9). In all HK1.ras/K14.stratifin 

SCCs tested (n=5) TENC expression was found to be moderate to strong 

throughout the tumour stroma (Figure 5-9A,C,D,E), compared with mostly weak 

staining in HK1.ras papillomas (Figure 5-9F,G). Strongest staining was observed 

close to the dermo-epidermal junction in all samples, though staining was weak 

or negative in HK1.ras papillomas in the stroma farthest from the epidermis 

whereas it remained moderate or strong in the comparative regions in 

HK1.ras/K14.stratifin carcinomas (Figure 5-9C,E vs G). Where areas of benign 

hyperplasia existed adjacent to HK1.ras/K14.stratifin tumours, the majority of 

the stroma exhibited very weak or negative staining, with some patches of 

positivity along the dermo-epidermal junctions (Figure 5-9B, arrows). This may 

be indicative of an early role in matrix remodelling in HK1.ras/K14.stratifin 

tumours as an integral part of their aetiology, as was previously observed in 

HK1.ras/ROCK2 carcinogenesis (Masre et al., 2017; 2020). 
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Figure 5-9: Tenascin C expression is markedly stronger in all HK1.ras/K14.stratifin 

tumours compared to HK1.ras controls. 

(A) Type 1 HK1.ras/K14.stratifin tumour showing strong Tenascin C (TENC) staining in the 

tumour versus weak or no staining in the adjacent hyperplastic ear. (B) Magnification of the 

hyperplastic area in A, showing sporadic staining only at the dermo-epidermal (arrows). (C) 

Close-up of part of the tumour portion in A, showing strong stromal staining for TENC throughout 

the stroma. (D) Type 2 HK1.ras/K14.stratifin tumour exhibiting moderate to strong staining 

throughout the stroma, except in the hyperplastic area to the lower left of the image. (E) Close-

up of D: moderate to strong staining throughout, especially at the dermo-epidermal junctions 

and surrounding the 3 tumour islands in the centre of the image (F) HK1.ras papilloma exhibiting 

weak staining throughout the stroma and moderate staining at the dermo-epidermal junctions. 

(G) Close-up of F: TENC expression is mainly confined to the stroma close to the epidermis, 

staining weakly in the central portion. Scale bars: A, D and F approx. 500 µm; B, C, E and G 

approx. 100 µm. 
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5.6. HK1.ras/K14.stratifin tumours exhibit strong p53 

expression into malignancy but Types 1 and 2 differ in 

p21 localisation  

In Chapter 4, it was shown that the major tumour suppressor p53 

persisted though HK1.fos/K14.stratifin tumorigenesis, in contrast to 

HK1.ras/fos-Δ5Pten multistage tumorigenesis in which p53 loss coincided with 

malignant conversion (MacDonald et al., 2014). This persistence was assumed to 

be due to overexpression of Stratifin through the K14.stratifin transgene due to 

the protective effect exerted through Stratifin’s inhibition of Mdm2 activity. 

However, whilst expression of the gene appeared to be responsible for the 

persistence of p53 in those fSCCs, p53 appeared uncoupled from its TSG roles. 

Hence, while HK1.ras/K14.stratifin tumour aetiology was shown to be rather 

different to the HK1.fos/K14.stratifin fSCC tumours, it was hypothesised that if a 

similar persistence occurred in HK1.ras/K14.stratifin tumours this may influence 

the aetiology of Type 1 wdSCC and aggressive Type 2 SCCs. 

Here, HK1.ras/K14.stratifin tumours of both types showed moderate to 

strong p53 staining in the expanded basal compartment where K1 was still 

present in suprabasal cells, or throughout the epidermis when K1 expression was 

absent. This was observed in both Type 1 wdSCC and Type 2 SCC of this genotype 

(Figure 5-10A,B). In contrast, HK1.ras activation elicited an increase in p53 

abundance in the basal layer, as depicted in Figure 5-10G, with low or negligible 

expression in the suprabasal layers, since the increase in proliferation was 

mainly confined to basal cells. 

Since this strong p53 response did not appear to prevent excessive 

proliferation or malignant conversion in either Type 1 or Type 2 

HK1.ras/K14.stratifin tumours, one of its main downstream effectors, p21, was 

assessed. p21 acts in the nucleus to halt the cell cycle at the G1/S checkpoint by 

sequestration of cyclin-dependent kinases 4 and 6 (CDK4/6) and was found to 

mimic p53 localisation in HK1.ras papilloma, shown in Figure 5-10H. 
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In both Type 1 and 2 tumours, p21 staining was moderate in the cytoplasm 

across the whole epidermis, though only Type 1 showed strong nuclear staining 

in the proliferative layers (Figure 5-10C). Of note, Type 2 tumours showed only 

sporadic nuclear p21 staining in basal cells, despite moderate cytoplasmic 

staining throughout, indicating the protein was being transcribed but was not 

active in the nuclei (Figure 5-10D). The areas contrasted in Figure 5-10A/B and 

C/D were both determined to be carcinoma rather than papilloma by the 

absence of Keratin 1 staining, shown in E and F, respectively. This lack of 

functional p21 could partly explain the more widespread carcinoma and 

aggressive histology seen in Type 2 tumours; a conclusion also supported by 

persistent endogenous Stratifin/p21 antagonism of pAKT1 observed in 

HK1.ras/fos-Δ5Pten carcinogenesis (Appendix 1, McMenemy et al., in 

preparation), explored further later in this chapter. 

Evidence suggests that strong expression of p53 in this genotype was 

insufficient to suppress tumorigenesis and progression to carcinoma, even where 

p21 was induced and located in the nucleus, thus, presumably functional. 
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Figure 5-10: Both Type 1 and Type 2 HK1.ras/K14.stratifin tumours exhibit strong p53 

positivity but have differing p21 expression. 

(A) Type 1 HK1.ras/K14.stratifin tumour showing strong nuclear p53 expression in multiple 

layers of cells, shown at higher magnification in the boxed area. (B) Type 2 HK1.ras/K14.stratifin 

tail tumour showing similar very strong nuclear p53 staining throughout the epidermis. (C) Type 

1 tumour showing moderate cytoplasmic p21 staining in all layers and moderate to strong p21 

nuclear expression in the multiple basal layers. (D) Type 2 tumour showing moderate 

cytoplasmic staining in all layers with strong cytoplasmic staining in the basal layers but a lack 

of nuclear p21 expression in most basal cell, as shown in the highlighted box. (E & F) 

Confirmation of malignancy as indicated by the lack of K1 (green) staining in the areas tested 

for p53 and p21. (G) HK1.ras papilloma showing moderate nuclear p53 staining mainly confined 

to basal layer cells, similar to the pattern of p21 staining (H) which also displays some 

cytoplasmic staining mainly in the basal and granular layers. (I) Strong suprabasal K1 staining 

confirms benign nature of this HK1.ras papilloma. Scale bars approx. 100 µm. 
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To investigate this further, expression of active Akt1 (pAkt1ser473) was 

assessed in both HK1.ras/K14.stratifin tumour types. Akt can be phosphorylated 

at several sites, though the main activating residues are Thr308 and Ser473; 

Thr308 is always activated prior to Ser473, thus assessing pAkt1ser473 indicated 

expression of the fully active form (Hemmings and Restuccia, 2012).  

Akt can indirectly inhibit p53 by phosphorylating Mdm2 at 

ser166/186/188, thereby increasing its ubitquin ligase activity to antagonise p53 

(Mayo & Donner, 2001). However, Stratifin directly inhibits Mdm2 (Lee and 

Lozano, 2006), reflected in the very high p53 expression in both Type 1 and Type 

2 HK1.ras/K14.stratifn tumours (Figures 5-10A,B and 5-11A,D). Akt is also a 

direct inhibitor of p21 by phosphorylation of p21 at position Thr145 which results 

in cytoplasmic localisation (Zhou et al., 2001), which is consistent with the 

pattern of p21 expression seen in Type 2 HK1.ras/K14.stratifin tumours (Figures 

5-10D and 5-11E). 

Seemingly in direct contradiction with what was hypothesised, it was 

found that pAkt1ser473 expression was much higher in Type 1 tumours than Type 2 

(Figure5-11C vs F); however, this may be consistent with the roles of Akt in 

differentiation, rather than proliferation (Calautti et al., 2005; Naeem et al., 

2015). It was noted than in both types, pAkt1ser473 expression was localised to the 

perinuclear regions of positive cells or indeed, in the nuclei (Figure 5-11C,F). 

Nuclear Akt has been shown to have a myriad of roles, including suppression of 

apoptosis and senescence, and inhibiton of cell cycle inhibitors including p21, 

p27 and p300, among others (Martelli et al., 2012). 

Stratifin has been shown to directly bind and inhibit Akt activity (Yang et 

al., 2006), and may partly account for the low pAkt1ser473 expression seen here in 

Type 2 HK1.ras/K14.stratifin tumours, since despite, apparently comparable 

overall Stratifin expression driven by the K14.stratifin transgene in Type 1 and 

Type 2 tumours, Stratifin activity is known to be highly context-dependent, such 

that it may act in contridictory fashions given small changes in signalling (Li et 

al., 2009). This however, leaves the question of why p21 is not active in the 

nuclei of Type 2 tumours, which may be integral to their more aggressive 

phenotype. 
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Figure 5-11: pAkt1ser473 expression is stronger in Type1 HK1.ras/K14.stratifin tumours 

than in Type 2 and thus does not account for cytoplasmic p21 localisation in Type 2 

SCCs. 

(A) Type 1 HK1.ras/K14.stratifin tumour confirming strong p53 positivity throughout epidermis 

(B) Same area as in A, also confirming concurrent strong p21 expression and both cytoplasmic 

and nuclear localisation (C) Surprisingly strong pAkt1ser473 expression concomitant with strong 

p53/p21 in Type 1 HK1.ras/K14.stratifin tumour, exhibiting primarily perinuclear and nuclear 

expression. (D) Type 2 HK1.ras/K14.stratifin tumour showing similarly strong p53 expression to 

the Type 1 tumour in A. (E) Moderate cytoplasmic p21 expression but a lack of nuclear p21 is 

seen in this area, dented by blue haematoxylin counterstained nuclei with few positive nuclei 

visible (F) Very little pAkt1ser473 expression suggesting this is not responsible for the cytoplasmic 

localisation of p21 in Type 2 HK1.ras/K14.stratifin SCCs. Scale bars approx. 100 µm. 
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5.7. Ablation of p53 repeats experiments showing that its 

expression is paradoxically required for HK1.ras-driven 

tumour formation, but K14.stratifin expression elicits 

malignancy in the p53-null hyperplasia 

Prior studies by Greenhalgh et al. (1996) identified a paradoxical anti-

tumorigenesis effect of p53 knockout (via gene-targeting) in mice expressing 

HK1.ras, HK1.fos and HK1.TGF-α. These results were also recapitulated in 

HK1.ras and HK1.fos mice through use of a Cre-mediated excision of exons 2-10 

of p53, targeted to the epidermis either constitutively (K5.Cre; Tarutani et al., 

1997) or induced in the manner previously described for excision of Pten exon 5 

(K14.CrePR1). The mechanisms underpinning this paradox of inhibiting wound-

dependent papillomatogenesis have remained elusive and continue to be 

investigated. 

As shown in Figure 5-10, p53 expression in HK1.ras/K14.stratifin 

phenotypes was found to be both stronger and present in more layers of the 

tumour epidermis than in HK1.ras papillomas, where expression was mostly 

limited to basal cells, consistent with the confinement of proliferating cells to 

the basal layers in benign tumours (Figure 5-6C). Taken together with the data 

regarding the p53 paradox in HK1.ras papillomatogenesis, it was hypothesised 

that p53 expression may be required for generation of the tumours seen in 

HK1.ras/K14.stratifin mice, despite its well-known status as a major TSG. 

To investigate this, HK1.ras/K14.stratifin mice were mated with mice 

harbouring floxed p53 alleles (p53flx/flx) as well as the K14.CrePR1 transgene 

(designated K14.ras.p53flx/flx.stratifin), required for excision of the floxed 

segment following repeated topical RU486/Mifepristone application. This 

generated mice which were homozygous (K14.ras.p53flx/flx.stratifin, n=14) and 

heterozygous (K14.ras.p53flx/+.stratifin, n=6) for the floxed allele, as well as 

controls either lacking the K14.CrePR1 regulator transgene 

(ras.p53flx/flx.stratifin, n=4; and ras.p53flx/+.stratifin, n=4) or K14.stratifin 

(K14.ras.p53flx/flx n=7, and K14.ras.p53flx/+, n=4). A subset (n=2 per cohort) of 

those with the K14.CrePR1 transgene were not treated with RU486 to ensure the 
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phenotypes observed were due to Cre-mediated p53 ablation, while the 

remaining mice were treated between 2 and 4 times. Previous experiments with 

HK1.ras mice (n>60, over many years) suggested the paradoxical effect was only 

present if p53 ablation occurred prior to initial papilloma growth (either by 

wound-promotion or TPA-treatment (Greenhalgh et al., 1996), or if a K5.Cre 

promoter was employed, which is constitutively active throughout development. 

Thus, all mice in this study received their first RU486 treatment on the day they 

were tagged (wound-promotion). Determination of genotype was performed as 

described in Chapter 4: Figure 4-9. Interestingly, no mice in this cohort 

developed wound-independent (Type 2) papillomas/SCCs. 

The first of the K14.ras.p53flx/flx.stratifin mice generated (n=2, Figure 5-

12) and control littermates were treated with RU486 3 times (first at tag) and 

biopsied at 4-months-old. Macroscopically, K14.ras.p53flx/flx.stratifin exhibited 

only hyperplasia at the tag site, though this was clearly inflamed, unlike the 

K14.ras.p53flx/flx littermates which showed almost no gross phenotype (Figure 5-

12), supporting paradoxical tumour suppression in this loss-of-function genotype 

(Greenhalgh et al., 1996), whereas K14.ras.p53flx/+ and ras.p53flx/flx  exhibited 

typical papillomatogenesis over 8-10 weeks (not shown). 

No clear difference in macroscopic phenotype was observed between 

K14.ras.p53flx/+.stratifin mice and p53 wild-type mice, as all developed keratotic 

tumours at tag (Figure 5-12; top row, labelled) which did not regress when the 

tag was lost (see the third mouse in the heterozygous group, Figure 5-12). 

K14.ras.p53flx/+.stratifin tumours grossly appeared more inflamed and keratotic 

than K14.ras.p53flx/+ papillomas (Figure 5-12; top row), consistent with the 

phenotype observed in HK1.ras/K14.stratifin ear tumours and reflective of the 

recessive nature of this TSG, wherein both copies generally need to be either 

altered or lost to produce a significant change in phenotype (Venkatachalam et 

al., 1998). 
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Figure 5-12: Initial results showed K14.ras.p53flx/flx.stratifin mice did not develop 

tumours but instead exhibited inflamed hyperplasia not seen in K14.ras.p53flx/flx. 

First set of K14.ras.p53flx/flx.stratifin mice generated alongside their various age-matched 

controls at 20 weeks/17 weeks post-tag. All mice received 3 topical treatments of RU486 to 

activate K14.CrePR1 activity to each ear and a shaved portion of the back between the tag 

date and biopsy. Top row: 3 x K14.ras.p53flx/+.stratifin mice exhibiting keratotic 

papillomas/possible SCCs at tag. The third mouse lost the tag several weeks prior to biopsy 

with no noticeable tumour regression in that time. 1 x K14.ras/p53flx/+ papilloma showing 

less keratosis than those with the K14.stratifin transgene. Bottom row: 1 x K14.ras.p53flx/flx 

mouse lacking any gross phenotype, due to previously described paradoxical inhibition of 

papillomatogenesis by p53 ablation. 2 x K14.ras.p53flx/flx.stratifin lacking any tumour 

development but exhibiting an inflammatory hyperplasia at ear tag. 1 x K14.p53flx/flx.stratifin 

mouse showing some hyperplasia at tag without the obvious inflammation seen in 

K14.ras.p53flx/flx.stratifin. 
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Histological analysis of the initial K14.ras.p53flx/flx.stratifin hyperplastic 

ears (Figure 5-12) showed that despite lacking overt tumour development, the 

TGEs showed signs of malignancy. The sections exhibited a very high degree of 

immune infiltrate in the stroma, which was expanded as had previously been 

identified in HK1.ras/K14.stratifin SCCs. Unlike the heterozygous or wild-type 

p53 controls (K14.ras.p53flx/+.stratifin or K14.ras.p53+/+.stratifin) and parental 

HK1.ras/K14.statifin) tumours, K14.ras.p53flx/flx.stratifin did not exhibit 

hyperkeratosis and, indeed, may be considered hypokeratotic in places (Figure 

5-13C,D), suggesting this combination inhibited the normal terminal 

differentiation programme, supported by the apparent lack of granular cells in 

some areas (Figure 5-13E,F). 

K14.ras.p53flx/flx.stratifin hyperplasias were found to exhibit extensive 

invasion, both collective in the form of pushing borders (Figure 5-13E; immune 

infiltrate appears to be facilitating BM disruption) and finger-like projections 

(Figure 5-13F), as well as a trend towards aggressive SCC and even epithelial-

mesenchymal transition/spindle cell carcinoma, seen in Figure 5-13D. Here, 

invading cells have a very elongated shape and less cohesion than the collective 

projections in F, with the leading cells nearly indistinguishable from fibroblasts 

in the surrounding stroma. This phenotype is quite different to the age-matched 

K14.ras.p53flx/+.stratifin tumours or K14.ras.p53flx/+ papillomas analysed (Figure 

5-13G and H, respectively). Age-matched K14.ras.p53flx/flx TGEs showed only 

mild hyperplasia and no signs of invasion (Figure 5-13I). 
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Figure 5-13: K14.ras.p53flx/flx.stratifin hyperplasia exhibits a high degree of immune 
infiltrate and invasion. 
(A) Outer surface of K14.ras.p53flx/flx.stratifin hyperplasia surrounding the ear tag site, showing 

signs of inflammation (B) Inner surface of A, showing a slightly larger hyperplastic area (C) 

Histological overview of the same ear hyperplasia showing a large proportion of stroma with a 

very high number of infiltrating immune cells, especially in the patch near the top of the image 

which appears dark due to the density of immune cells in the region. (D) Highlighted from C, 

showing elongated invasive cells (top, centre) consistent with a trend towards partial or full 

epithelial-mesenchymal transition phenotype. (E) Collectively invading cells with immune 

infiltrate apparently contributing to BM destruction, further promoting keratinocyte invasion. (F) 

Collective invasion in the form of finger-like projections, similar to that described in p53-

competent HK1.ras/K14.stratifin tumours. (G) K14.ras.p53flx/+.stratifin tumour indistinguishable 

from HK1.ras/K14.stratifin-p53WT tumours (H) K14.ras.p53flx/+ papilloma outwardly similar to G 

but lacking signs of malignancy and unusual differentiation (I) K14.ras.p53flx/flx mild hyperplasia 

typical of this genotype, showing far fewer immune cells than in the counterparts expressing 

K14.stratifin. Scale bars approx. 100 µm. 
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Further breeding generated more K14.ras.p53flx/flx.stratifin (n=12) which 

exhibited some variation compared with the initially observed phenotype, 

above. Again, none of these mice had developed a tumour macroscopically 

comparable with their heterozygous or WT control siblings, though several 

produced small tumours (Figure 5-14; Table 5-2) at the tagged, RU486-treated 

ear. The histology of these TGE sections showed only one mouse had developed 

an actual tumour with papilloma-type features, e.g., keratin pearls and some 

surface keratosis (Figure 5-14A,B), though even this developed areas or 

carcinoma and invasion (Figure 5-14C). 

The rest developed either inflamed hyperplasia similar to that shown in 

Figure 5-13A-F, a very small (<5 mm) tumour (Figure 5-14D-F), or small (≤8 mm) 

tumour (Figure 5-14G-I), as detailed in Table 5-2. When the histology of these 

was examined, it was found that most of their mass was comprised of stroma 

(Figure 5-14D-I) in all cases, suggesting the papilloma-like tumour in Figure 5-

14A-C may be an outlier, possibly influenced by unknown genetic or epigenetic 

differences that facilitate escape from the described p53-paradox which could 

not be assessed within the scope of this project yet remain under scrutiny. 

With the exception of a single outlier (Figure 5-14A-C), these data suggest 

that p53 competency is a requirement for development of HK1.ras-driven 

tumorigenesis, consistent with that described by Greenhalgh et al. (1996). 

However, given the invasive nature of all HK1.ras/K14.stratifin tagged ear 

sections analysed, the lack of overt tumour formation is unconnected with the 

malignant potential of lesions generated by this K14.ras.p53flx/flx.stratifin 

genotype. Collectively, these data also show that K14.stratifin expression cannot 

overcome the initial paradox to elict overt benign tumours, however, the 

histotypes suggest the beginnings of invasion that may circumvent this apparent 

protection and once overcome, would rapidly lead to aggressive tumours possibly 

exhibiting extensive EMT to metastatic spindle cell carcinoma. 
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Figure 5-14: Later K14.ras.p53flx/flx.stratifin mice developed small tumours which also 
showed signs of invasion. 
(A) K14.ras.p53flx/flx.stratifin small papilloma at 11 wks./7 wks. post tag with mild surface 

keratosis. (B) Histology of A shows a fairly benign papilloma appearance with keratin pearls 

throughout and largely stratified epidermis, however, the area in the top right of the image 

is highlighted in (C) and shows a loss in differentiation and presence of invading cells 

contrary to the benign appearance of the rest of the structure. (D) K14.ras.p53flx/flx.stratifin 

at 11 wks./7 wks. very small tumour not much larger than the hyperplasia in Figure 5-12, 

lacking any surface keratosis. (E) Histology of D showing hyperplastic epidermis 

surrounding a tiny tumour mostly comprised of stroma. Many patches of epidermis are 

invasive, like that highlighted in (F). (G) K14.ras.p53flx/flx.stratifin at 13 wks./9 wks. with 

unusually large tumour for the genotype exhibiting a very smooth, rounded appearance 

dissimilar to a papilloma or classic SCC. (H) Histology of G showing hugely hyperplastic 

stroma with epidermal hyperplasia surrounding it of a similar appearance to that in E. Again, 

this is quite invasive, as seen to the far left of the image. It also exhibits a large immune 

infiltrate, seen as an especially dark band close to the central cartilage and other dark 

patches throughout the stroma. (I) Higher magnification of an invasive region of H including 

a small tumour island. Scale bars: B, E, H approx. 500 µm; C, F, I approx. 100 µm. 
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Phenotype Frequency 

Inflamed hyperplasia (lots of stroma) 4/14 (28.6%) 

Papilloma (some invasion) 1/14 (7.1%) 

Very small tumour (<5 mm ø) 5/14 (35.7%) 

Small tumour (≤8 mm ø; mostly stroma) 4/14 (28.6%) 

Table 5-2: Frequency of observed K14.ras.p53flx/flx.stratifin TGE phenotypes. 

 

5.8. Type 1 HK1.ras/K14.stratifin tumours exhibit only 

minor loss of K1/K10 co-localisation but Type 2 tumours 

show similar extensive divergence to that seen in 

HK1.fos/K14.stratifin SCC 

In Chapter 4, it was shown that Keratin partners 1 and 10 greatly diverge 

in expression and localisation in HK1.fos/K14.stratifin SCCs from an early stage. 

While noted that HK1.fos hyperplasias exhibited minor loss in K1/K10 co-

localisation, the divergence seen in K14.stratifin skin was much more apparent, 

suggesting that Stratifin overexpression was the driver for this phenomenon. 

Here, HK1.ras/K14.stratifin tumours were assessed for K1.K10 co-

localisation in the same manner. Immunofluorescence examination (Figure 5-15) 

showed that both Type 1 and Type 2 tumours exhibited differences in co-

localisation when compared with HK1.ras papillomas (Figure 5-15 A,B vs C), and 

the divergence was much more striking in Type 2 than Type 1 tumours (Figure 5-

15 B vs A). 
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Figure 5-15: Expression of Keratin 1 and Keratin 10 is mostly co-localised in Type 1 

HK1.ras/K14.stratifin but diverges extensively in Type 2 SCCs. 

(A) Type 1 HK1.ras/K14.stratifin tumour showing well co-localised K1 (green) and K10 (red) 

expression in some areas (lower left of image) diverging in some patches (centre right). 

Highlighted area shows a moderate level of co-localisation. (B) Type 2 HK1.ras/K14.stratifin 

tail tumour shows similar K1 and K10 expression but poor colocalization throughout; 

highlighted in the boxed area. (C) HK1.ras papilloma shows apparent yellow staining 

indicative of very good co-localisation throughout. Scale bars approx. 100 μm. 
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To determine the extent of the difference in K1/K10 co-localisation 

between HK1.ras/K14.stratifin tumours and HK1.ras, and between the two 

HK1.ras/K14.stratifin tumour types, the Colocalization Threshold plugin was 

employed, as described in Chapter 4, for objective image analysis. 

This analysis now found that Type 1 HK1.ras/K14.stratifin tumours 

actually did show a co-localisation pattern more akin to that of the HK1.ras 

controls when only position of positive cells was considered, ignoring intensity of 

the signal (Figure 5-16 Panel I: A,B vs H,I). Thus, co-localisation in space of 

Keratins 1 and 10 is consistent with controls, though further assessment would 

be required to determine if the expression of each was comparable in these 

tumours, for example through western blotting or by RT-PCR to determine 

whether the difference lies at the level of transcription or post-transcriptional 

repression mechanisms. 

In contrast, Type 2 tumours differed significantly in K1/K10 co-localisation 

(Figure 5-16 Panel II:B) from control HK1.ras papillomas (Figure 5-16 Panel I: C-F 

vs H,I). In some Type 2 tumours, such as the TGE SCC shown in Figure 5-16C, 

Keratin 10 expression was found to persist after K1 was lost in some regions, as 

indicated by the large red area in the image, similar to the pattern observed in 

HK1.fos/K14.stratifin SCCs (Figure 4-18). In other Type 2 tumours, however, the 

overall abundance of K1 and K10 was comparable, though many cells were either 

K1 or K10 positive, as denoted by the patches of red and green cells in the 

colocalised image (Figure 5-16E), and reflected by the scatterplot, which is 

diffuse but does not have a strong skew to either colour. 

Manders overlap coefficients (thresholded values only) (Manders, Verbeek 

and Aten, 1993) were assessed in all HK1.ras/K14.stratifin tumours tested and 

compared with HK1.ras papillomas and HK1.ras/fos-Δ5Pten SCCs. Here, tM1 

(percentage of red pixels which also had a green value over threshold) and tM2 

(percentage of green pixels which also had a red value over threshold) were 

close to 1 (100%) for both the HK1.ras/K14.stratifin Type 1 tumours and the 

control HK1.ras papillomas, with only one of the 3 HK1.ras/fos-Δ5Pten SCCs 

tested showing a drop in value for each, through variation was also greater in 

that sample. Type 2 HK1.ras/K14.stratifin tumours showed much lower mean 
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tM1 and tM2 values, though far more variation was seen than in any other group 

(Figure 5-16 Panel II C,D), hindering numerical analysis. When Pearson’s 

correlation coefficients were compared between genotypes, there was no 

significant difference found between HK1.ras and HK1.ras/K14.stratifin tumours 

(Mann-Whitney U; p = 0.336), but a highly significant difference was detected 

between Type 2 tumours and HK1.ras papillomas (p ≪ 0.001) (Figure 5-16 Panel 

II B). These data, therefore, support earlier analyses indicating that 

HK1.ras/K14.stratifin tumours have distinct aetiologies despite both showing 

evidence of malignant conversion and invasion. 
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Figure 5-16: Image analysis confirms that HK1.ras/K14.stratifin Type 1 tumours 

exhibit similar K1/K10 co-localisation to controls while Type 2 tumours diverge 

significantly. 

Panel I: (A) K1-K10 co-localisation image of a typical HK1.ras/K14.stratifin Type 1 tumour 

showing mostly co-localised pixels (grey). (B) Scatterplot of the pixels in A confirming 

similar degree of co-localisation as in HK1.ras control (H and I). (C) K1-K10 co-localisation 

image of a HK1.ras/K14.stratifin Type 2 ear tumour showing poor co-localisation mainly due 

to loss of K1 (green) while K10 (red) persists juxtaposed with a hyperplastic region 

exhibiting good correlation (grey, right of image). (D) Scatterplot confirms poor correlation 

between red and green pixels in C. (E) K1-K10 co-localisation image of a 

HK1.ras/K14.stratifin Type 2 tail tumour showing poor co-localisation but without the bias 

towards more K10 positivity seen in C. (F) Scatterplot shows relatively similar numbers of 

red and green pixels, but the diffuse nature of the plot indicates the low correlation in their 

expression. (H) HK1.ras papilloma showing very well correlated K1 and K10 expression, 

supported by the scatterplot (I). Scale bars approx. 100 μm. 

Panel II: (A) Pearson’s R value for above-threshold pixel correlation in HK1.ras (R, n=2), 

HK1.ras/fos-Δ5Pten (RFP, n=3), HK1.ras/K14.stratifin Type 1 (RS1, n=4) and 

HK1.ras/K14.stratifin Type 2 (RS2, n=3) showing consistently lower correlation in RS2. (B) 

Mean Pearson’s R values for the 4 categories (R, RFP, RS1 and RS2) showing no 

significant difference between the mean values of R and RS1 (p = 0.336), but highly 

significant difference between R and RS2 (p ≪ 0.001), using Mann-Whitney U non-

parametric test. (C) Manders thresholded overlap coefficient 1, tM1 (i.e., percentage of red 

pixels above threshold also had a green value above threshold), showing colocalisation 

approaching 1 (100%) in R and RS1, with one RFP sample exhibiting a value ~0.9. RS2 

sample means are all >0.8 but the spread of data is far greater than in the other groups, 

with 95% CI ranging between ~0.5 and 1 in the last sample set. (D) tM2 (i.e., percentage 

green pixels above threshold which also have an above threshold red value), showing all 

values closer to 1 in all groups, confirming slight bias towards K10 retention when K1 is lost; 

clearest in RS2. Note that y-axes in C and D begin at 0.4. 

 

5.9. Discussion 

This chapter explored the effects of Stratifin overexpression, via the 

K14.stratifin transgene, on the benign, wound-dependent papilloma phenotype 

produced in HK1.ras mice. As outlined in co-operation with Fos, an initial pre-

conception was that these mice would exhibit an inhibition of papilloma 

formation, given the observations in HK1.ras/fos-Δ5Pten mice as well as the 

increased papillomatogenesis seen in DMBA/TPA-treated 14-3-3σ knockout mice 

(Winter et al., 2016). However, again, the converse proved to be true, as the 

expression of HK1.ras in follicles due to K14.stratifin expression led to SCC 

aetiologies, though distinct from HK1.fos/K14.stratifin fSCC. 
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5.9.1. Type 1 and Type 2 HK1.ras/K14.stratifin tumours 

As discussed above, loss of endogenous Stratifin expression, paralleled by 

loss of p21 and increased Akt activity, in HK1.ras/fos-Δ5Pten carcinogenesis 

resulted in tumour progression to a more poorly differentiated phenotype, 

suggestive of a tumour suppressive effect; consistent with tumour suppressive 

roles as inferred from the knockout model results (Winter et al., 2016). In 

contrast, co-expression of K14.stratifin with HK1.fos resulted in fast-growing 

malignant tumours which recapitulate histological features of fSCC, indicating an 

oncogenic role for Stratifin. Unlike HK1.fos mice, which develop hyperplasia and 

hyperkeratosis at the wound-promoted tag site after several months, HK1.ras 

mice (of the 1205 line) typically produce wound-dependent papillomas around 8 

weeks after tagging. These papillomas remain benign and are prone to regression 

if the tag is removed or if given enough time (Greenhalgh et al., 1993a). These 

mice, therefore, gave an ideal opportunity to study either inhibition of 

papillomatogenesis or, as it turned out, a role in papilloma conversion, 

independent of its functioning in p53 protection. 

As shown in Figure 5-1, the initial bigenic litter produced papillomas on 

the tagged ear (TGE) similar in size or slightly smaller than the HK1.ras 

monogenic controls. However, in cross-section, these HK1.ras/K14.stratifin 

tumours were found to be pink with a glassy appearance through the centre, 

unlike the dull, pale appearance of HK1.ras papillomas created by their high 

keratosis content. 

With much greater numbers (n>40), it became apparent that two distinct 

phenotypes were generated by the HK1.ras/K14.stratifin genotype. The first was 

a wound-dependent tumour (termed Type 1) which grew slowly (>8 weeks) and 

outwardly resembled a small to moderately sized HK1.ras papilloma, though 

different in cross-section (as in Figure 5-1). Secondly, a rapidly growing (<2 

weeks from initiation) wound-independent tumour (Type 2) which formed either 

at the tag site or elsewhere on the body, commonly at the tail base where the 

juvenile hyperplasia and hyperkeratosis common to HK1.ras pups did not regress, 

or areas subject to bite or scratch wounds. 
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This result recapitulated the two types of DMBA-initiated (HRAS activated) 

papillomas generated followed by TPA treatment in the classic two-stage 

carcinogenesis SCC model: researchers found that the earliest papillomas to 

develop were not reliant on continued TPA treatment after initial promotion and 

were much more likely to convert to SCC following repeated promotion, whereas 

later emerging papillomas would regress more readily if TPA treatment was 

halted and converted at a lower rate than the early variety with continued 

promotion (Hennings et al., 1985). 

Similarly, while in HK1.ras mice the vast majority of papillomas require 

prolonged wound-promotion (ear tag) to prevent regression, a small subset of 

papillomas with more aggressive—though still benign—histology can emerge, 

induced by a single wounding event (e.g., bite) which do not readily regress over 

time (Greenhalgh et al., 1993a). The difference in these types has been linked 

to the dose and type of initiation and promotion agents in chemical 

carcinogenesis (Ewing et al., 1988); their mutational landscape and epidermal 

targets (HF or interfollicular stem cells (Type 2) versus transit amplifying cells 

(Type 1)). Since the frequency of spontaneous Type 2 tumour development 

seems to be markedly increased in HK1.ras/K14.stratifin mice (below), this 

suggests the synergy between Ras and Stratifin activation creates a highly 

initiated epidermis, similar to SENCAR (sensitive to carcinogenesis) mouse strain 

(Slaga, 1986). 

 This also may translate to the level of HK1.ras expression in the basal 

cells, possibly linked to whether stem or transit amplifying cells are the tumour 

initiation site. It is also possible that other co-operating mutations are present in 

these persistent papillomas, which further prime them for conversion to 

carcinomas in the presence of other genetic or chemically promoting factors 

(Greenhalgh et al., 1993a). 

One hypothesis to consider is the role of the immune system in the 

regression of wound-dependent papillomas. Continual immunosurveillance 

should ordinarily detect abnormally dividing cells and counter tumour 

progression; supported by the fact that immunocompromised individuals are at 

much greater risk of developing SCCs (Hampton, 2005; Bottomley et al., 2019). 



Chapter 5: K14.stratifin and HK1.ras co-operation in mouse skin carcinogenesis 166 

 
 

However, a pro-inflammatory immune response is also known to be cancer-

promoting (Grivennikov et al., 2011) and, as seen in HK1.fos/K14.stratifin 

tumours (Chapter 4, Figure 4-5), as well as in other models involving the 

K14.stratifin construct (see Chapter 6), this transgene appears to be associated 

with very high immune infiltration. While the type of immune response observed 

has not been characterised in-depth, higher numbers of immune cells in the 

stroma appear to correlate with more aggressive histology in 

HK1.ras/K14.stratifin tumours, as was found in HK1.fos/K14.stratifin fSCCs and 

which was thought to contribute to the development of these fSCCs in non-

wounded skin. 

Unlike in HK1.ras monogenic controls in which promotion-independent 

papillomas are rare, HK1.ras/K14.stratifin mice frequently developed this type 

of tumour, with approximately half of the 40 mice so far assessed having at least 

one rapidly-growing tumour on the body or at the tag site. This suggests that 

K14.stratifin expression can co-operate with HK1.ras expression in the skin to 

promote tumorigenesis in certain contexts. Furthermore, in a study of lung 

adenocarcinoma—in which Stratifin overexpression appears to be a common 

finding—researchers found that Stratifin associated with ubiquitin-specific 

protease 8 (USP8) and stabilised receptor tyrosine kinases, such as EGFR, which 

is upstream of Ras in the canonical MAPK pathway (Kim et al., 2018). Thus, by 

this mechanism, Stratifin may increase endogenous Ras signalling (as well as the 

other MAPK pathways) in the basal layer, where HK1.ras is only present in 

around 30% of cells (Greenhalgh et al., 1993a), resulting in a much stronger 

signal in this proliferative compartment. Furthermore, as shown in Figure 4-15, 

K14.stratifin expression results in spurious mK1 expression in hair follicle cells, 

notably in the stem cells of the bulge, suggesting HK1 is also anomalously 

expressed in this compartment, as it is sensitive to the same transcriptional 

promotion signals as mK1 (Rosenthal et al., 1991; Rothnagel et al., 1993). It is 

known that targeting activated H-Ras to all basal and HF keratinocytes results in 

aggressive SCC formation at an early stage (Brown et al., 1998), thus, these 

mechanisms by which K14.stratifin is able to elicit both endogenous and 

exogenous H-Ras activation in proliferative basal and HF cells could help explain 

the higher incidence of wound-independent Type 2 tumours as well as their 

rapid growth and aggressive histology. 
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However, while the aetiology of Type 2 tumours was clearly more 

aggressive, Type 1 tumours also exhibited histological signs of malignancy 

(Figure 5-3A,B) including increased basal layer proliferation (supported by BrdU 

labelling, Figure 5-6C & Graph), loss of BM integrity and invasion (further 

explored in Figure 5-7), and invariably exhibited a high stromal content which 

has been associated with poorer prognosis in other carcinomas (Wu et al., 2016). 

Thus, while exhibiting quite different aetiologies in terms of growth rate, 

wound-dependence and histological appearance, both Type 1 and Type 2 

HK1.ras/K14.stratifin tumours do show features of conversion to SCC. This was 

assessed further using K1 loss as a marker for malignancy (Figure 5-5) as was 

shown previously (Greenhalgh et al., 1993a; MacDonald et al., 2014). It was 

found that some loss of K1 was evident in Type 1 tumours, mainly from the lower 

suprabasal layers, though an overall reduction in staining intensity was apparent 

throughout. Some areas of these Type 1 tumours (such as that highlighted in 

Figure 5-5A) showed greater loss and were indicative of the development of 

carcinoma in situ, while areas of collective invasion (Figure 5-7A,B) were also 

devoid of K1 positivity. Concurrent with the more advanced gross and 

histological phenotype, Type 2 tumours exhibited far more widespread and 

complete loss of K1 positivity (Figure 5-5B) and were more invasive, with a 

higher degree of individual cell invasion than in Type 1 tumours (Figure 5-7C). 

5.9.2. Involvement of the tumour stroma and changes in cellular 

adhesion in HK1.ras/K14.stratifin invasion 

Since invasion was found to be common to both HK1.ras/K14.stratifin 

tumour Types, proteins which are implicated in promoting and facilitating this 

were examined. Stratifin is now well-known to have roles in influencing 

extracellular matrix remodelling; it is secreted by keratinocytes in the 

epidermis, binds to the CD13/APN receptor on dermal fibroblasts and 

upregulates their AP-1 activity to induce production of multiple matrix 

metalloproteinases (Medina et al., 2007; Ghahary et al., 2005; Ghaffari et al., 

2006; Ghaffari et al., 2010; Lai et al., 2011). In the process of wound-healing, 

this is very useful in reducing fibrosis and improving the healing process, but in 

the context of carcinogenesis, it is ideal for increasing invasion and promoting 
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the development of cancer-associated fibroblasts (CAFs) (Kalluri & Zeisberg, 

2006). CAFs can mediate keratinocyte movement into the dermis through 

paracrine signalling, direct mechanical interaction, alterations to the stroma 

structure and chemical signalling environment (Räsänen & Vaheri, 2010; Glentis 

et al., 2017). 

Furthermore, Stratifin has been identified at the invasive front in multiple 

carcinomas, which has been correlated with an upregulation in Tenascin-C (TEN-

C) expression in the stroma (Ide et al., 2007). Higher TEN-C expression in 

tumours has been implicated in more active tumour invasion as well as a 

prognostic marker of recurrence and metastasis (Jahkola et al., 1998; Cai et al., 

2017; Sun et al., 2019). Thus, TEN-C expression was analysed in both Type 1 and 

Type 2 HK1.ras/K14.stratifin tumours, using HK1.ras papillomas as benign, non-

invasive controls (Figure 5-9). In both types of HK1.ras/K14.stratifin tumour, 

TEN-C expression was moderate to strong throughout the tumour area, while the 

benign HK1.ras papilloma exhibited much weaker staining with some sporadic 

moderate staining around parts of the dermo-epidermal junction. Only the 

histologically normal and mildly hyperplastic adjacent ear tissue in the Type 1 

HK1.ras/K14.stratifin tumour exhibited weak staining, again with some positivity 

at the dermo-epidermal junction, akin to the staining pattern in normal skin 

(Midwood et al., 2016). This highlights both the wound-dependency of the Type 

1 tumours (since tissue farther from the tag was much less phenotypic), and the 

role of the activated stroma in the invasion which is common to all 

HK1.ras/K14.stratifin tumours. 

In these bigenic HK1.ras/K14.stratifin mice, multiple modes of tumour 

cell invasion were evident on histological examination. Collective cell invasion 

was most commonly observed in Type 1 tumours but was also seen in Type 2, 

while the trend was reversed with regards to individual cell invasion which 

appeared more commonly in aggressive Type 2 tumours (Figure 5-7). Collective 

cell invasion, perhaps surprisingly, requires the maintenance of cell-cell 

adhesion, thus E-cadherin—a key component of adherens junctions—is often 

retained in these projections (Krakhmal et al., 2015; Hesse et al., 2016), but 

must be lost to facilitate individual cell invasion. Collectively invading cells may 

be aided by CAFs; thus, they do not require mutations or gene expression 
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changes which allow them to navigate the BM and stroma themselves (Gaggioli 

et al., 2007; Glentis et al., 2017). Indeed, CAF-mediated invasion may actually 

require E-cadherin in the cancer cells, as one study showed that adhesion 

between E-cadherin present in cancer cells (derived from vulvar SCC) formed 

adhesions with N-cadherin in CAFs, allowing the fibroblasts to mechanically 

guide the SCC keratinocytes to invade a surrounding matrix (Labernadie et al., 

2017). This, therefore, may allow invasion to occur at an earlier stage in 

tumorigenesis before further accumulation of mutations has occurred that allow 

escape from anoikis and therefore individual amoeboid or spindle cell invasion. 

Reduction in E-cadherin at the plasma membranes, along with reduction in K14 

expression (Figure 5-8A,B,C) is associated with a shift towards individual cell 

invasion and a more aggressive SCC phenotype including epithelial-mesenchymal 

transition (Hesse et al., 2016). 

5.9.3. Expression of p53 and p21 and p53 ablation in 

HK1.ras/K14.stratifin tumours 

Given the relationship between Stratifin and p53 regulation, IHC was 

performed to assess the p53 expression in Type 1 and Type 2 

HK1.ras/K14.stratifin tumours compared with HK1.ras papillomas (Figure 5-10). 

Previous results showed that loss of p53 was correlated with conversion to 

wdSCC in HK1.ras/fos-Δ5Pten multistage carcinogenesis (MacDonald et al., 

2014), while in HK1.fos/K14.stratifin fSCCs, p53 expression persisted throughout 

carcinogenesis, fading only in advanced tumours (Chapter 4, Figure 4-9). This 

latter result was most likely due to the high level of Stratifin expression from 

the K14.stratifin transgene, but clearly did not confer protection from 

tumorigenesis, thus it was concluded that antagonism of its TSG roles occurred 

downstream. Here, it was hypothesised that a similar protection of p53 may 

occur in HK1.ras/K14.stratifin tumours, although similarly failing to prevent 

generation or conversion of tumours to SCC. IHC staining showed that this was 

indeed the case, with both Type 1 and Type 2 tumour variants exhibiting strong 

nuclear p53 staining in multiple layers of the epidermis, contrasted with the 

more moderate staining in HK1.ras papillomas where it was almost exclusively 

confined to basal layer cells (Figure 5-10A,B vs G). Unlike in 
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HK1.fos/K14.stratifin fSCC, the expression of p53 in advanced Type 2 

HK1.ras/K14.stratifin tumours did not show signs of fading. 

Since presence of p53 did not confer an anti-tumour effect in this 

genotype, one of its major downstream effectors, p21, was also assessed to 

identify possible differences between Type 1 and Type 2 HK1.ras/K14.stratifin 

SCCs. Here, there was a striking difference in p21 localisation, with only Type 1 

tumours exhibiting nuclear staining, which followed the pattern of p53 

expression, whereas in Type 2 tumours p21 was excluded from the nucleus, 

showing only cytoplasmic staining in most cells (Figure 5-10C vs D). In order to 

perform its functions in cell cycle arrest, p21 must be localised to the nucleus, 

thus this discrepancy between the two Types could help to explain the higher 

mitotic index (Figure 5-6) and more aggressive tumour aetiology. This is also 

interesting since Stratifin has previously been shown to support the functions of 

p21 in its TSG roles, antagonising cell cycle progression by binding CDK4/6 at 

G1/S and the Cdc2/cyclin B1 complex at G2/M (Laronga et al., 2000). Here, 

however, much like p21 its expression is almost exclusively cytoplasmic (Figure 

5-4), perhaps explaining the lack of tumour suppressive functions seen in these 

K14.stratifin-expressing tumour models. 

To elucidate possible reasons for this p21 cytoplasmic localisation, 

expression of pAkt1ser473 was assessed by immunofluorescence analysis, since Akt 

can prevent nuclear localisation of p21 via phosphorylation (Zhou et al., 2001). 

However, expression of pAkt1ser473 was found to be expressed to a greater degree 

in Type 1 tumours than in Type 2 and was primarily expressed in suprabasal cells 

(Figure 5-11) possibly more indicative of its roles in the terminal differentiation 

process than in proliferation (Calautti et al., 2005). This is contrary to the 

pdSCCs generated in HK1.ras/fos-Δ5Pten mice following p21 loss, wherein 

pAktser473 is strongly expressed (though absent in the earlier wdSCC stage) 

(MacDonald et al., 2014). The lack of pAktser473 in suprabasal cells of Type 2 

HK1.ras/K14.stratifin tumours may also explain the development of “ghost 

cells” found on histology in many examples of this tumour type (Figure 5-3C,D), 

as Akt1 is required for proper nuclear degradation in the normal cornification 

process (Naeem et al., 2015). Another, related, protein possibly implicated in 

the carcinogenesis process which has not been analysed yet is mTOR, which 
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Stratifin is able to upregulate through an interaction involving keratin 17 in the 

cytoplasm directly, without involvement of Akt (Kim et al, 2006). 

To further explore the involvement of p53 in this system, a Cre-mediated 

gene-switch was employed to induce p53 ablation as in HK1.fos/K14.stratifin 

mice in Chapter 4. As explained above, when p53 is ablated in HK1.ras mice 

(prior to papilloma formation), papillomas paradoxically fail to form despite 

wound-promotion (Greenhalgh et al., 1996); a finding which has been repeated 

in both knockout and inducible Cre-mediated excision models (Greenhalgh et al., 

unpublished) and was repeated in this study as control K14.ras.p53flx/flx mice 

exhibited only mild hyperplasia (Figures 5-12 and 5-13I). Given the co-operation 

between HK1.ras and K14.stratifin to produce malignant tumours, it was 

hypothesised that K14.stratifin expression may subvert the paradoxical tumour-

inhibitory effect of p53 knockout. 

The majority of K14.ras.p53flx/flx.stratifin mice did not develop overt 

tumours, though the hyperplasia at ear tag was noticeably more inflamed than in 

K14.ras.p53flx/flx controls (Figure 5-12). Histological examination showed that 

K14.ras.p53flx/flx.stratifin hyperplasias had a high level of immune cell 

infiltration, abundant stroma, and were clearly invasive despite the lack of a 

benign tumour stage. These data further support the unusual paradoxical 

requirement for p53 competency to develop a benign HK1.ras-driven papilloma 

and indicate that the invasion and immune cell recruitment seen in 

HK1.ras/K14.stratifin tumours are unconnected to their strong p53 expression. 

In gastric and pancreatic cancer studies where high Stratifin expression was 

observed, it was noted that the abundance of p53 and Stratifin were not 

correlated with one another (Neupane & Korc, 2008; Mühlmann et al., 2010), 

indicating that in these cases of human carcinomas in which Stratifin appears to 

be oncogenic, its functions are also uncoupled from the role it plays in p53 

upregulation, as observed here. 

5.9.4. Keratin 1 and 10 expression differs between Types 1 and 2 

In Chapter 4, aberrations in Keratin filament expression, and both tissue 

and cellular localisation were found in HK1.fos/K14.stratifin fSCCs. The 
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perinuclear collapse of Keratin 14 (Chapter 4, Figure 4-20) was not apparent in 

any HK1.ras/K14.stratifin tumour and thus appears to be a unique aspect of 

HK1.fos/K14.stratifin carcinogenesis. However, aberrant basal layer and 

follicular Keratin 1 expression was also observed in HK1.ras/K14.stratifin 

hyperplasias and carcinomas, indicating this to be a common feature in mice 

expressing the K14.stratifin construct. 

Therefore, as in Chapter 4, co-localisation of Keratin 1 and Keratin 10 was 

analysed by fluorescence analysis and quantified using the Colocalisation 

Threshold ImageJ plugin (Figures 5-15 & 5-16). Here, a discrepancy in the 

localisation of K1 and K10 expression between tumours designated Type 1 and 

Type 2 based on histology, mitotic index, and Keratin 1 expression was found.  

Type 1 HK1.ras/K14.stratifin immunofluorescence exhibited a mottled 

appearance in full colour images, which suggested a reduction in co-localisation 

compared with HK1.ras papillomas which were more uniformly yellow due to 

consistent red/green overlap. However, Colocalisation Threshold analysis 

showed that the co-expression of these keratins was very good in terms of 

spatial distribution (Figure 5-16 Panel I A), thus, the fluctuations seen in Figure 

5-15A are likely to be tied to a difference in the level of expression, with Keratin 

1 exhibiting a lower intensity in most of the tumour than K10. This perhaps 

reflects the slight differences in their timing and mechanism of transactivation 

in normal skin, with AP-1 TFs important in KRT1 activation, while AP-2 is 

implicated in KRT10 transcription. AP-1 is directly downstream of Ras-MAPK, 

thus its abundance is likely altered in HK1.ras-mediated tumorigenesis, while 

AP-2 is regulated by stress response pathway proteins and retinoic acid and has 

primarily pro-differentiation and pro-apoptotic roles (Lüscher et al., 1989; 

Wajapeyee et al., 2006). This difference could help to account for the evidently 

higher Keratin 10 expression in Type 1 HK1.ras/K14.stratifin tumours, while the 

loss of K1 causes a greater inflammatory response (Roth et al., 2012), 

contributing to the evident immunogenicity of all K14.stratifin-expressing 

tumours. 

Keratin 10 is also an antagonist of Akt (Paramio et al., 2001), possibly 

contributing to the patchy Akt expression in Type 1 tumours and negligible 
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staining in Type 2, especially in areas where K10 was retained while K1 was lost 

(Figures 5-11 & 5-16 Panel I). Expression of K10 is not ubiquitously higher in all 

Type 2 tumours, however, with some (Figure 5-16C) showing strong K10 staining 

in the absence of K1, while others (Figure 5-16E) exhibiting a more even total 

expression of each protein, albeit with very poor co-localisation. As in HK1.ras 

Type 2 papillomas (Greenhalgh et al., 1993a), this may occur due to differences 

in other mutations which have occurred in the skin to facilitate wound-

independent growth of these tumours or could reflect the initiating cell type. 

Activated Akt1 expression was previously seen to increase during progression of 

HK1.ras/fos-Δ5Pten wdSCCs to pdSCC following loss of p21 (Macdonald et al., 

2014) and Stratifin (Chapter 3) expression. 

Both Pearson’s correlation coefficients and Manders thresholded overlap 

coefficients were obtained for the K1/K10 co-localisation data, showing a clear 

distinction between HK1.ras papilloma controls and Type 2 HK1.ras/K14.stratifin 

tumours (Pearson’s p < 0.001), with a similar difference between Types 1 and 2 

observed. Conversely, no significant change in localisation between Type 1 

tumours and HK1.ras papilloma controls was found (Figure 5-16 Panel II), though 

further study is needed to probe the reasons for the discrepancy in the relative 

expressions of these partner keratins in Type 1 tumours. These data further 

support the hypothesis that Type 1 and Type 2 tumours are different entities 

which share some common histological features (e.g., inflammation and 

invasion) due to the expression of HK1.ras and K14.stratifin genes, though other 

factors, including spontaneous mutations or changes to gene expression/protein 

degradation are likely to play a role in the different aetiologies observed. 

5.9.5. Future directions 

From extensive previous research using DMBA/TPA chemical 

carcinogenesis and transgenic Ras activation using the HK1 promoter, it has been 

established that H-Ras activation is an initiating event which primes the skin for 

tumorigenesis when subjected to wound, genetic (e.g., Fos activation or Pten 

ablation), or chemical promotion (e.g., TPA). Here, it was found that 

spontaneous, aggressive tumours formed in HK1.ras/K14.stratifin mice at much 
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greater frequency than is observed in HK1.ras mice, suggesting that Stratifin 

overexpression in proliferative cells acts as a novel promoting agent. Given the 

large number of proteins which Stratifin activity is known to modify, these 

tumours would ideally be analysed using transcriptomic and proteomic analyses 

to further explore pathways involved in this model of carcinogenesis. This 

approach could allow identification of the mechanisms of promotion and 

potentially elucidate novel interactions which may, in turn, identify novel 

therapeutic targets applicable to both skin and internal carcinomas involving 

Stratifin activation.  

Additionally, differences in the precise cells in which HK1.ras is expressed 

(Greenhalgh et al., 1993a; Brown et al., 1998) may be important in the 

generation of spontaneous/wound-independent carcinomas in conjunction with 

K14.stratifin expression. For example, hair follicle cells which normally do not 

express the HK1 constructs have been found to express mK1 when K14.stratifin 

is expressed, leading to the hypothesis that HK1.ras is spuriously expressed in 

these cells in HK1.ras/K14.stratifin mice. This could be investigated using in situ 

hybridisation (ISH) to detect HK1.ras mRNA transcripts, which differ slightly from 

mouse c-H-Ras as the construct is based on v-H-Ras (which additionally contains 

an HK6 tag). Recently, a technique has been described which allows for exon-

specific RNA ISH to be performed reliably, such that even sequences which have 

a high degree of homology, such as splice-variants, are distinguishable from one 

another, making this a more feasible tool to use in this application than may 

otherwise have been possible (Guo et al., 2018). Alternatively, probes detecting 

intron-specific pre-mRNA sequences may be a useful alternative (Gainer et al., 

2016), as more sizeable differences exist in these regions of the transgenic 

versus cellular transcripts. 

In addition, the reasons for the discrepancy between wound-dependent 

Type 1 HK1.ras/K14.stratifin and Type 2 aggressive, spontaneous SCCs is 

presently unknown and requires further study. Since the mice used in this study 

are outbred, it is possible that differences in the genetic or epigenetic 

background of individuals contributes to the two different phenotypes observed, 

with differences in the immune responses also possibly playing a role. Here 

proteomic analysis is almost certainly necessary to elucidate this mechanism and 
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again these stage specific  tumours provide an ideal opportunity to apply these 

techniques. Moreover, this approach may shed light on the so-called “p53 

paradox” where loss clearly inhibits wound-associated papillomatogenesis in the 

HK1.ras model (Greenhalgh et al., 1996) an effect that continues in the 

HK1.ras/K14.stratifin model. Thus, despite presence of exogenous elevated 

Stratifin, it apparently failed to overcome this intriguing phenotype of 

paradoxical p53 loss. Indeed, as outlined above in HK1.fos/K14.stratifin 

tumorigenesis p53 ablation had no discernible effect on fSCC tumorigenesis 

(despite high abundance of the protein in the wild-type tumours). Here 

proteomic analysis is almost certainly necessary, as no clear reasoning for p53 

ablation to result in tumour suppression is evident from its known functions. 

Furthermore, as for HK1.fos/K14.stratifin tumorigenesis, the impact of 

p21 knockout is ongoing and, unlike the paradoxical tumour suppressive effect of 

p53 ablation, preliminary results show development of more rapid, larger 

HK1.ras/K14.stratifin/p21-/- SCC (Appendix 2; Figure S3). This seems consistent 

with HK1.ras/fos-Δ5Pten carcinogenesis, where both p21 and Stratifin persisted 

beyond p53 loss yet became lost in aggressive TPA-promoted SCC concomitant 

with high levels of uniform AKT activation (Appendix 1; McMenemy et al., in 

preparation Figure 6), thus, analysis of the AKT/mTOR pathways are a logical 

future step. This also appears to fit with the observations that aggressive Type 2 

HK1.ras/K14.stratifin tumours lacked nuclear p21 staining, while less aggressive 

Type 1 tumours showed strong nuclear localisation (Figures 5-10 & 5-11). Finally, 

to assess whether p21 maybe responsible in part to compensate for p53 loss 

resulting in a lack of papillomas K14.ras.p53flx/flx.stratifin, breeding is ongoing to 

create the K14.ras.p53flx/flx.stratifin.p21-/- compound genotype in another 

attempt to solve the “p53 paradox”. 

5.9.6. Conclusions 

Co-expression of activated H-Ras alongside Stratifin overexpression in skin 

results in two distinct tumour phenotypes of different aggressiveness but which 

both exhibit indicators of malignant conversion and invasion. Type 2 tumours are 

often spontaneously generated, suggesting Stratifin is a promoting agent in skin, 
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similar to the effects of TPA-treatment in classic 2-stage chemical 

carcinogenesis. The reasons for the different phenotypes remain to be 

elucidated but may lie in the expression of H-Ras in different stem cell niches. 
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6.1. Introduction 

In Chapters 4 and 5, p53 expression was seen to be high in both 

HK1.fos/K14.stratifin and HK1.ras/K14.stratifin tumours, despite histological 

signs of carcinoma development and loss of differentiation marker keratin K1, 

again indicative of malignancy. This contrasted with the findings of p53 loss in 

HK1.ras/fos-Δ5Pten carcinogenesis; indeed, when p53 function was ablated in 

HK1.fos/K14.stratifin mice, the resultant phenotype was indistinguishable from 

those which were p53 competent. In addition, whilst in HK1.ras/K14.stratifin 

mice tumours no longer formed in the same way as in the p53 wild-type 

counterparts, histological analysis identified the beginnings of widespread 

invasion in these hyperplasias, despite the lack of tumour formation. This latter 

observation suggested the lack of p53 still prevented HK1.ras-derived papilloma 

formation, as documented previously (Greenhalgh et al., 1996). However, this 

genetic combination appeared to create a context which bypassed the 

intermediate benign stage and elicited progression to malignant invasion. 

Stratifin has a well-known role in protection of p53 by inhibiting its main 

antagonist, the E3 ubiquitin-ligase Mdm2, from tagging it for degradation (Lee & 

Lozano, 2006). This interplay likely explains why an abundance of p53 was seen 

in both HK1.fos/K14.stratifin and HK1.ras/K14.stratifin carcinogenesis (Chapter 

4 Figure 4-9 and Chapter 5 Figure 5-10). However, more complexity in the 

system is evident, given the uncoupling of p53 expression from tumorigenesis in 

HK1.fos/K14.stratifin mice, and the apparent requirement for p53 to be present 

in order to form HK1.ras/K14.stratifin tumours. Here, K14.p53flx/flx.stratifin 

mice were generated to further investigate the effect of Stratifin overexpression 

separate to its interaction with p53, without the added complexity of an 

activated oncogene (Fos or Ras) to drive tumorigenesis. 

Furthermore, to assess the possible tumour suppressive or tumour 

promoting effects of K14.stratifin expression in the context of a deregulated 

PI3K/Akt pathway, K14.Ptenflx/flx.stratifin mice were created. Stratifin itself is 

known to be a direct inhibitor of Akt activity (Chalhoub & Baker, 2009), thus, 

taken in isolation, its overexpression on a Pten-null background was 

hypothesised to potentially rescue the phenotype, at least partially. However, 
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the plethora of other roles of Stratifin in cell cycle regulation, cell-cell 

adhesion, matrix remodelling, and differentiation obviously complicate this 

simplistic hypothesis. In particular, both Pten and Stratifin dysregulation are 

known to cause hair follicle defects (Herron et al., 2005; Hammond et al., 2012; 

Suzuki et al., 2003) and, in the case of Pten, benign tumours (trichilemmoma; 

Brownstein et al., 1979; Liaw et al., 1997). Additionally, previous work using this 

model for Pten exon 5 ablation found, unexpectedly, that Akt1 expression did 

not immediately increase following Cre-mediated excision (MacDonald et al., 

2014). This was believed to be due to antagonism by p21 upregulation, with lack 

of Akt1 activity being linked to an increase in mTOR activity (downstream of Akt) 

which, with Mdm2, bypassed the compensatory p53/p21 increase to elicit the 

hyperplastic and hyperkeratotic phenotype observed (MacDonald et al., 2011). 

Finally, K14.stratifin was expressed in a combined Pten-null/p53-null 

background. The K14.p53flx/flx.Ptenflx/flx genotype, with loss of function of two 

major TSGs, should prime the keratinocytes for oncogenesis, though alone it 

produces a surprisingly mild phenotype: a testament to the resilience of skin to 

transformation. Here, therefore, K14.stratifin overexpression was included in 

the genotype to assess whether it would produce oncogenic effects in this 

context, or if some of its known tumour-suppressive roles would maintain the 

benign phenotype. 

The main aims of this chapter were to: assess any phenotype which arose 

from the overexpression of Stratifin in conjunction with p53 loss, separate to Fos 

or Ras expression, given the close relationship between these proteins and the 

unusual findings in the previous chapters regarding p53 expression and ablation; 

assess phenotypic changes in the Pten ablation model when Stratifin is 

overexpressed and use immunostaining to identify protein changes which may be 

relevant to the aetiology observed; combine these tumour suppressor ablation 

models with Stratifin overexpression to further assess its oncogenic potential in 

the absence of major TSGs. 
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6.2. K14.p53flx/flx.stratifin mice developed invasive 

hyperplasia at ear tag but not overt tumours 

In Chapter 1, the positive feedback loop between p53 and Stratifin 

expression was described in detail (Figure 1-9). In both HK1.fos/K14.stratifin 

and HK1.ras/K14.stratifin tumours, p53 was found to be very highly expressed, 

even in clearly malignant areas of the tumours, indicative of the protective 

effect of Stratifin (Lee & Lozano, 2006). However, p53 activity seemed to be 

uncoupled from HK1.fos/K14.stratifin tumorigenesis, with no change in the 

phenotype elicited by p53 ablation compared with p53 competent tumours. In 

K14.ras.p53flx/flx.stratifin, while p53 ablation paradoxically prevented overt 

tumour formation—itself a counter-intuitive finding—malignant conversion 

occurred in the resultant hyperplasias, with extensive invasion evident. 

To investigate the effects of K14.stratifin overexpression separately from 

oncogene expression and also separate to any effects elicited by the elevated 

expression of p53 observed, K14.stratifin mice were crossed with mice 

harbouring floxed p53 alleles as described in Chapter 4, with either inducible 

(K14.CrePR1) or consitutive (K5.CreP) Cre-recombinase to excised the floxed 

exons (n=22 and 4, respectively). Of those, none developed tumours (either 

wound-promoted or spontaneous), though all developed some degree of 

hyperplasia at the tag site. This hyperplasia was, in many cases, not grossly 

distinct from control mice (Figure 6-1). 
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Figure 6-1: K14.p53flx/flx.stratifin mice do not develop tumours but localised 

hyperplasia at the tag site. 

(A) K14.p53flx/flx.stratifin TGE with minor hyperplasia at tag site. (B) K14.p53flx/flx.stratifin 

TGE showing greater hyperplasia surrounding a scabbed wound at the tag. (C) Age-

matched K14.p53flx/flx mouse showing slightly thickened skin at tag, similar to (E) 

K14.p53flx/+.stratifin and (F) p53flx/flx.stratifin (no Cre control) tagged ears. All mice pictured 

are 20-weeks-old and received RU486 treatment 3 times. K5.p53flx/flx.stratifin mice 

produced identical results (not shown). 
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The lack of appreciable difference in the appearance of 

K14.p53flx/flx.stratifin (n=22), K14.p53flx/+.stratifin (n=8), K14.p53flx/flx (n=12), or 

p53flx/flx.stratifin (n=7; no Cre control) cohorts suggested that K14.stratifin 

expression had little impact on the p53-null background, either from inducible 

ablation in adults or throughout development in K5.p53flx/flx.stratifin individuals.  

However, histological examination of these hyperplasias showed that 

K14.p53flx/flx.stratifin skin displayed more pronounced hyperplasia, extensive 

dysplasia, hyperchromatic nuclei in proliferative cells, and the beginnings of 

widespread invasion (Figure 6-2A-C). In contrast, K14.p53flx/flx epidermis was not 

found to be greatly hyperplastic, with only occasional thickened areas seen at 

the tag site mainly due to increased stromal thickness. In this regard, whilst 

K14.p53flx/flx.stratifin showed a similar degree of stromal depth increase, 

measured from the average level of the basement membrane to that of the ear 

cartilage (Figure 6-2A; bracket). The immune cell recruitment was much greater 

in K14.p53flx/flx.stratifin TGE skin compared with non-K14.stratifin controls 

(Figure 6-2A-C vs D), as seen in HK1.fos/K14.stratifin and HK1.ras/K14.stratifin 

phenotypes previously. 
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Figure 6-2: K14.p53flx/flx.stratifin wound-promoted skin exhibits epidermal and dermal 

hyperplasia and keratinocyte invasion. 

(A) K14.p53flx/flx.stratifin TGE (20 wks.; RU486 x3) showing hyperplastic epidermis and 

greatly increased stromal depth (epidermis to ear cartilage; bracket, { ). The epidermis 

shows signs of invasion, indicated in boxed areas highlighted in B and C. (B) Collectively 

invading cells are evident at several points. (C) Right of picture shows total loss of 

differentiation and invasive spread into the stroma. Also highlighted (white arrows) are the 

very hyperchromatic nuclei common in this genotype. Age-matched controls: (D) 

K14.p53flx/flx TGE showing relatively normal appearance, though basal layer nuclei appear 

somewhat hyperchromatic. (E) K14.p53flx/+.stratifin slightly hyperplastic and dysplastic 

epidermis with more pronounced granular layer than other genotypes, showing some signs 

of becoming invasive (arrow), though less pronounced than in A. (F) p53flx/flx.stratifin no Cre 

control displaying mild hyperplasia associated with K14.stratifin expression by this time 

point (5 months) without hyperkeratosis or hyperchromatism associated with p53-null 

genotypes. Scale bars: A approx. 500 µm; B-F approx. 100 µm. 

  



Chapter 6: Ablation of tumour suppressors p53 and Pten in K14.stratifin skin 184 

 
 

 

Figure 6-3: Stratifin is strongly expressed in K14.p53flx/flx.stratifin skin, including in 

invading cells. 

(A) Strong Stratifin expression (green) is apparent throughout the K14.p53flx/flx.stratifin 

epidermis (16 wks.), indicated by yellow colour where it is co-expressed with the K14 

counterstain (red). (B) Higher magnification (x400) highlights invasive cells expressing 

Stratifin (white arrow) despite early-stage hyperplasia. 

 

6.3. K14.Ptenflx/flx.stratifin mice displayed an exacerbated 

K14.Ptenflx/flx phenotype and produced carcinoma without 

tumour formation 

Mice harbouring inducible Cre-recombinase to excise floxed Pten exon 5 

(K14.Ptenflx/flx; alternatively, K14.PtenΔ5) have been studied extensively in our 

ICR mouse background. Alone, K14.Ptenflx/flx mice have been found to develop 

mild epidermal hyperplasia and hyperkeratosis, mimicking the skin pathologies 

associated with Cowden Syndrome; a familial cancer predisposition syndrome 

primarily caused by defects in the PTEN gene and resulting in benign 

hamartomas, but with a significantly increased risk of aggressive internal 

carcinomas in adults (Gammon et al., 2016). In conjunction with HK1.fos 

expression, the resultant phenotype induced a compensatory burst of p53 and 
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p21 that switched proliferation to one of differentiation, which recapitulated 

aetiology of keratoacanthomas (KAs) (Yao et al., 2008), a type of benign skin 

tumour which is often difficult to distinguish on histological examination from 

carcinoma in situ, but which regresses over time, unlike carcinoma (Ko, 2010). 

To investigate the effects of elevated Stratifin expression on the Pten-null 

phenotype, K14.stratifin were crossed with K14.Ptenflx/flx mice, generating 

K14.Ptenflx/flx.stratifin (n=19), K14.Ptenflx/+.stratifin (n=7), K14.Ptenflx/flx (n=9), 

K14.Ptenflx/+ (n=5), as well as controls lacking Cre-recombinase. 

K14.Ptenflx/flx.stratifin mice were found to develop similar macroscopic 

features to their K14.Ptenflx/flx counterparts, including a generally scruffy 

appearance of the coat, as well as ear hyperplasia and keratosis. However, these 

effects were far more pronounced in the ears of the K14.Ptenflx/flx.stratifin 

mouse (Figure 6-4A, B) which were clearly far more hyperplastic and 

hyperkeratotic at 15 weeks than the K14.Ptenflx/flx littermate (E, F). Indeed, the 

phenotype of K14.Ptenflx/flx mice more closely resembled that of 

K14.Ptenflx/+.stratifin with regards to the wound-promoted skin of the tagged 

ear—though K14.Ptenflx/+.stratifin produced a less pronounced fur phenotype 

than Pten-null mice overall (Figure 6-4C,D vs E,F). These results suggested that 

overexpression of Stratifin in K14.Ptenflx/flx mice exacerbated the gross 

phenotypic effects of total Pten deficiency in the skin. 

Subsequently, histology of K14.Ptenflx/flx.stratifin skin was analysed and 

compared with that of K14.Ptenflx/flx. Not only did this confirm an exacerbation 

of the benign hyperproliferative and hyperplastic phenotype, but identified 

features consistent with carcinoma development, including poorly defined strata 

and loss of BM integrity, leading to individual cell invasion (Figure 6-5A,B). By 

contrast, K14.Ptenflx/flx hyperplasia (and that of K14.Ptenflx/+.stratifin) was 

noticeably milder and stratification was largely maintained, with a clearly visible 

granular layer that is largely absent in K14.Ptenflx/flx.stratifin (Figure 6-5E,F vs 

A,B). Inflammation in K14.Ptenflx/flx.stratifin skin was also found to be much 

greater (Figure 6-5A,B), as had been hinted at by the reddening of both the TGE 

and NTE of these mice compared to littermates lacking K14.stratifin expression 

(Figure 6-4A,B vs E,F). 



Chapter 6: Ablation of tumour suppressors p53 and Pten in K14.stratifin skin 186 

 
 

 

Figure 6-4: Expression of K14.stratifin strongly exacerbates the K14.Ptenflx/flx gross 

phenotype. 

(A) K14.Ptenflx/flx.stratifin TGE (15 wks.) showing obvious hyperplasia and keratosis over 

the whole ear surface, with particularly hyperplastic skin close to the tag site (B) Overview 

of the same mouse showing a similar hyperplasia and hyperkeratosis is present without 

wound-promotion on the NTE, and a generally thin and scruffy appearance to the fur, with 

skin visible over the crown of the head. (C) K14.Ptenflx/+.stratifin (21 wks.), showing much 

more mild hyperplasia at tag and very little keratosis (D) Overview of mouse in B, showing 

grossly normal NTE and no apparent hair phenotype present. (E) K14.Ptenflx/flx mouse (15 

wks.) with almost identical TGE phenotype as in C (F) Overview of mouse in E shows some 

mild keratosis at the base of the NTE and a generally scruffy appearance to the coat. (G) 

K14.stratifin mouse showing slight hyperplasia at tag, with little to no visible keratosis 

present. (H) Overview of K14.stratifin mouse (15 wks.) showing normal fur and no NTE 

phenotype present. 
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Figure 6-5: K14.Ptenflx/flx.stratifin mice develop invasive carcinoma without overt 

tumour formation. 

(A) K14.Ptenflx/flx.stratifin (15 wks.) histology shows very hyperplastic epidermis and 

hyperkeratosis; layers are poorly defined with few granular cells present. The central area 

of the image shows invasive carcinoma with many proliferative keratinocytes and high 

numbers of immune cells in the surrounding stroma. (B) Higher magnification of the 

carcinoma area of A, highlighting the large number of proliferative cells which appear to be 

poorly interconnected and invasive. (C) K14.Ptenflx/+.stratifin TGE (21 wks.) showing well-

ordered mild hyperplasia, seen at higher magnification in (D). (E) K14.Ptenflx/flx TGE 

displaying moderate hyperplasia and a hyperkeratosis. (F) High magnification shows clearly 

demarcated layers and lack of immune infiltrate seen in B. (G) K14.stratifin TGE at 15 weeks 

which is not yet hyperplastic. (H) Higher magnification shows largely normal appearance. 

Scale bars approx. 100 µm. 
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A notable feature of the K14.Ptenflx/flx.stratifin was the exaggerated 

dishevelled appearance of the fur, in particular on the ventral surface (Figure 6-

6). Here, the coat appeared less dense and the hair shafts where less sleek than 

in normal mice, resulting in a woolly appearance; a phenotype is not observed in 

Pten-heterozygous mice expressing Stratifin. Both Stratifin and Pten are known 

to be involved in hair follicle morphogenesis and thus in production of normal 

hair shafts (Hammond et al., 2012; Suzuki et al. 2003), thus, this phenotype is 

most likely due to concurrent deregulation of these proteins (by overexpression 

and ablation, respectively), causing aberrant follicle formation, though no 

carcinogenesis. Histological analysis of RU486-treated K14.Ptenflx/flx.stratifin 

back skin supports this, with hair follicles and shafts visibly distorted when 

compared with that of the K14.Ptenflx/flx control, wherein the hair is clearly 

smooth and straight with no visible follicle changes (Figure 6-6F vs G). 
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Figure 6-6: K14.Ptenflx/flx.stratifin mice exhibit a more pronounced hair phenotype 

than age-matched K14.Ptenflx/flx. 

(A) 2 x K14.Ptenflx/flx.stratifin littermates (15 wks.) displaying strong TGE phenotypes 

including hyperplasia and hyperkeratosis with some inflammation, and milder NTE 

phenotype. Fur over the crowns is noticeably thinner than K14.Ptenflx/flx control (15 wks.; far 

right) and dorsal fur appears dishevelled, whereas this is less pronounced in the 

K14.Ptenflx/flx littermate shown. (B) More pronounced fur phenotype on the ventral side, 

where the K14.Ptenflx/flx.stratifin mice have a thin coat with a woolly appearance; not so 

apparent in the K14.Ptenflx/flx mouse (far right). (C) Left: K14.Ptenflx/+.stratifin littermate with 

normal coat and very mild TGE phenotype showing little macroscopic effect of Pten 

heterozygosity and K14.stratifin expression. Right: K14.Ptenflx/flx.stratifin (15 wks.) with a 

similar phenotype to the mice in A. (D) Left: K14.Ptenflx/+.stratifin has normal ventral coat. 
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Right: K14.Ptenflx/flx.stratifin also showing the dishevelled ventral fur as above. (E) Right: 

Shaved patch where RU486 is applied to induce full Cre-recombinase activity, showing a 

thickened, folded skin apparently lacking elasticity in the K14.Ptenflx/flx.stratifin mouse 

(Right), compared with the K14.Ptenflx/+.stratifin mouse (Left) which appears grossly 

normal. (F) K14.Ptenflx/flx.stratifin RU486-treated back skin with incorrect follicle 

morphogenesis producing poorly structured hair shaft (arrow), compared with (G) 

K14.Ptenflx/flx RU486-treated skin showing normal, straight hair production. Scale bars 

approx. 100 µm. 

 

6.4. K14.Ptenflx/flx.stratifin hyperplasia shows loss of K1 

consistent with early malignant conversion yet an 

unexpected pAkt1ser473 expression pattern 

Prior to further analysis, RU486-treated, hyperplastic 

K14.Ptenflx/flx.stratifin, K14.Ptenflx/+.stratifin and control K14.Ptenflx/flx tagged 

ear sections were assessed for expression of Stratifin (Figure 6-7). These results 

showed that Stratifin expression was strong throughout the 

K14.Ptenflx/flx.stratifin and K14.Ptenflx/+.stratifin siblings, especially in 

proliferative areas with heightened K14 expression, seen as the bright yellow 

cells in Figure 6-7A and B. Compared to untreated controls, elevated 

endogenous Stratifin expression was found in the basal layer of K14.Ptenflx/flx  

TGE skin (Figure 6-7C), though clearly less pronounced than that seen in  

K14.stratifin-expressing epidermis (Figure 6-7A,B). Furthermore, this staining 

was punctate in places especially along the BM and cell membranes, possibly 

indicative of Stratifin’s roles in spatial awareness and 

desmosome/hemidesmosome maintenance (Li et al., 2007; Reitscher et al. 2018; 

Roberts et al., 2013). 

This, therefore, may indicate that at this lower level of upregulation, 

Stratifin performs tumour suppressive activities in Pten-null skin, helping to 

ensure stratification despite loss of a major TSG; a finding also observed in 

K14.fos.Ptenflx/flx keratoacanthoma (Appendix 1: McMenemy et al., manuscript in 

preparation, Figure 2). This supports evidence for the highly context-dependent 

nature of Stratifin function in carcinogenesis; dubbed a “double-edged sword” 

(Li et al., 2009). 
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Figure 6-7: Strong Stratifin expression is apparent throughout K14.Ptenflx/flx.stratifin 

and K14.Ptenflx/+.stratifin epidermis, while K14.Ptenflx/flx exhibits elevated endogenous 

Stratifin expression in basal cells. 

(A) Strong Stratifin expression (green) is detected throughout K14.Ptenflx/flx.stratifin 

hyperplastic epidermis, with large areas of yellow indicating the expanded proliferative 

compartments which are K14+ve (red) in areas of carcinoma. Some green staining appears 

to be present in the stroma (upper centre) which may indicate presence of keratinocyte-

releasable Stratifin. (B) K14.Ptenflx/+.stratifin milder hyperplasia is also strongly Stratifin+ve 

throughout, again showing yellow hyperproliferative patches of K14+ve cells extending into 

suprabasal layers (C) K14.Ptenflx/flx mild hyperplasia also shows more Stratifin staining in 

the basal layer than was previously detected in normal and HK1.fos or HK1.ras epidermis, 

though notably less than in mice expressing K14.stratifin, indicated by the orange-yellow 

colour compared with the bright yellow in A and B. Scale bars approx. 100 µm. 
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Subsequently, Keratin 1 expression was assessed (Figure 6-8), given the 

apparent malignant nature of K14.Ptenflx/flx.stratifin TGE skin. Indeed, many 

areas of hyperplasia determined to have progressed to carcinoma (without 

formation of an overt tumour) by histological analysis were devoid of K1 

staining, while K1+ve regions exhibited an expanded basal proliferative 

compartment, indicating a transient pre-malignant stage (Figure 6-8A). 

In contrast, Pten-heterozygous skin expressing K14.stratifin (Figure 6-8B), 

K1 staining was found to be strong throughout most of the suprabasal layers with 

an expanded basal compartment visible in some of the most hyperplastic 

regions, indicating a largely benign phenotype at this stage (15 weeks). 

However, K1 positive cells occurred frequently in the basal layer in this 

genotype, as had previously been identified in skin expressing only the 

K14.stratifin transgene (Chapter 4, Figure 4-15), which when combined with the 

generally expanded basal layers, gave the impression of a confused 

differentiation programme. No K1 positive basal cells were seen in either 

K14.Ptenflx/flx (22 wks.; Figure 6-8C) or K14.Ptenflx/+ (not shown), consistent with 

it being a direct result of high anomalous basal layer Stratifin expression. 



Chapter 6: Ablation of tumour suppressors p53 and Pten in K14.stratifin skin 193 

 
 

 

Figure 6-8: K14.Ptenflx/flx.stratifin wound-promoted skin shows Keratin 1 loss 

consistent with histological signs of malignant conversion, while 

K14.Ptenflx/+.stratifin shows spurious basal cell K1 expression. 

(A) K14.Ptenflx/flx.stratifin TGE hyperplasia showing suprabasal K1 (green) to the right of the 

image above an expanded basal compartment which is K14+ve (red). Areas to the left are 

largely K1-ve, highlighted in the boxed area showing strong K14 expression in much of the 

epidermis and only weak, sporadic suprabasal K1 positivity, indicating malignancy. (B) 

K14.Ptenflx/+.stratifin wound-promoted skin maintains suprabasal K1 expression and thus is 

benign. However, spurious basal layer K1 expression is seen throughout, as exhibited in 

the highlighted box, similar to K14.stratifin skin shown in Chapter 4. (C) K14.Ptenflx/flx TGE 

skin exhibits a much lower degree of hyperplasia than the sections in A and B, with K1 

expression mainly strong in areas which are 3 or more cells thick, as in the highlighted box. 

No basal layer K1 is seen in this genotype. Scale bars: A, B and C approx. 500 µm; 

highlighted boxes approx. 100 µm. 
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The most well-known tumour suppressive function of Pten is its inhibition 

of Akt activation via dephosphorylation of PIP3 (Chalhoub & Baker, 2009). 

Therefore, in this K14.Ptenflx/flx model, it would be assumed that in ablating 

phosphatase activity by excision of exon 5, phosphorylated Akt1 would be 

elevated. However, previous studies in this model have shown that pAkt1 is 

absent in benign K14.Ptenflx/flx skin (MacDonald et al., 2011). This was 

determined to be the result of an increase in the p53 and p21 activity following 

Pten ablation to antagonise Akt1 activity, further observed in HK1.fos-Δ5Pten 

keratoacanthomas (Yao et al., 2008). However, instead, in both HK1.fos-Δ5Pten 

KA and HK1.ras/fos-Δ5Pten wdSCC, mTOR activation increased dramatically 

following loss of Pten activity, thereby contributing to the hyperplastic 

phenotype seen in K14.Ptenflx/flx skin (manuscript in preparation). Thus, given 

this lack of Akt activation, it is noteworthy that Stratifin has also been shown to 

directly antagonise Akt activity, similar to its inhibition of Mdm2 (Yang et al., 

2006). Therefore, elevated endogenous Stratifin expression in basal 

K14.Ptenflx/flx keratinocytes may be performing the dual functions of protecting 

p53 through Mdm2 inhibition and suppressing Akt activity in lieu of functional 

Pten.  

Here, a lack of pAkt1ser473 activation was indeed observed in K14.Ptenflx/flx 

TGE skin (Figure 6-9E) as was the case in K14.Ptenflx/+.stratifin. Conversely, in 

K14.Ptenflx/flx.stratifin TGE hyperplasia/carcinoma, the benign areas (as 

determined by histological analysis and K1 positivity) displayed pAkt1ser473 

positivity in the suprabasal layers (Figure 6-9A,B), following the pattern of K1 

expression in this section (Figure 6-8A). 

This is consistent with the roles of Akt in differentiation in suprabasal 

epidermis and prevention of p53-mediated apoptosis which could result in 

ulceration if left unchecked (Naeem et al., 2015; Kermer et al., 2000; Ogawara 

et al., 2002), rather than its oncogenic roles in proliferative cells, in which it 

appears to be absent here (Figure 6-9A,C). Taken together, these results 

indicate that while pAkt1ser473 is detected in K14.Ptenflx/flx.stratifin hyperplasia, 

it is acting in a pro-differentiation role in the premalignant hyperplasia (Calautti 

et al., 2005), not in promoting progression to carcinoma, as may have been 

anticipated. 
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Figure 6-9: Expression of pAkt1ser473 is limited to patches of suprabasal cells in 

K14.Ptenflx/flx.stratifin carcinoma and is strikingly absent in both K14.Ptenflx/+.stratifin 

and K14.Ptenflx/flx genotypes. 

(A) K14.Ptenflx/flx.stratifin exhibits strong suprabasal pAkt1ser473 expression in areas of 

benign hyperplasia (K1 positive; Figure 6-8A), as highlighted in the left-hand box, magnified 

in B, but expression is strikingly absent in areas of carcinoma as in the adjacent box, 

magnified in C. In this genotype, the pAkt1 expression pattern appears to mimic that of 

Keratin 1. (D) K14.Ptenflx/+.stratifin shows no pAkt1 positivity, suggesting a very different 

cellular context than in the full Pten-null counterparts, as pAkt1 expression blatantly does 

not follow that of K1 in this genotype. (E) K14.Ptenflx/flx also shows a total absence of pAkt1 

positivity, as has previously been reported in this genotype. Scale bars approx. 100 µm.  
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6.5. K14.p53flx/flx.Ptenflx/flx.stratifin mice quickly developed 

wound-independent keratotic lesions and non-keratotic 

carcinomas 

The data suggest that K14.stratifin plays oncogenic roles in both p53 and 

Pten-null mice, with evidence of functions both in initiation (since neither 

K14.p53flx/flx or K14.Ptenflx/flx mice alone develop carcinoma) and in promotion to 

an invasive phenotype in each case. Notably, although both 

K14.p53flx/flx.stratifin and K14.Ptenflx/flx.stratifin mice developed carcinoma, as 

evidenced by histological analysis on which hallmarks such as hyperproliferation 

and invasion were apparent, neither genotype developed overt tumours either as 

a result of wound-promotion or spontaneously. Although, K14.Ptenflx/flx.stratifin 

mice had a much greater degree of hyperplasia and more widespread malignant 

changes compared with K14.p53flx/flx.stratifin, and necessitated biopsy earlier 

on average due to welfare reasons mainly related to phenotypic face skin. 

Subsequently, K14.stratifin was introduced to a dual 

K14.Ptenflx/flx.p53flx/flx background, producing K14.Ptenflx/flx.p53flx/flx.stratifin 

(n=9) and K14.Ptenflx/flx.p53flx/flx mice along with various heterozygous and no-

Cre controls. In all cases, mice in the K14.Ptenflx/flx.p53flx/flx.stratifin cohort 

necessitated biopsy at an early stage; an average of 13.6 weeks (range: 11-19 

weeks); approximately 9 weeks after the first dose of RU486 when the mice 

were tagged. This was due to the development of wound-independent tumour 

formation and/or development of ulcers in the head and neck region (Figure 6-

10A; Figure 6-11B,C). None of the mice developed a pronounced gross wound-

promoted phenotype on the TGE, though this may be reflective of the short time 

frame. 

As shown in Figure 6-10A and more clearly in Figure 6-11B,C, the areas 

surrounding these wound-independent tumours were devoid of hair growth, even 

where the skin was only hyperplastic. This, given the aberration of hair follicle 

(HF) development (and hair shaft production) in K14.Ptenflx/flx.stratifin skin 

(Figure 6-6F) indicated that such tumour formation was again related to HF 

keratinocytes. 
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Figure 6-10: K14.p53flx/flx.Ptenflx/flx.stratifin mice develop multiple wound-independent 

tumours necessitating biopsy at an early stage, precluding development of 

macroscopic TGE phenotype. 

(A) K14.p53flx/flx.Ptenflx/flx.stratifin mouse at 14 wks. displaying development of multiple 

keratotic and scabbed tumours around the head area which were inadvertently treated with 

RU486. The face phenotype necessitated biopsy at this early stage, such that the TGE 

phenotype was still relatively mild. (B) K14.p53flx/flx.Ptenflx/flx mouse at 22 wks. displaying a 

slightly exaggerated K14.Ptenflx/flx phenotype with no tumour formation. (C) Left: 

K14.p53flx/+.Ptenflx/flx.stratifin mouse at 14 wks. displaying expected K14.Ptenflx/flx phenotype 

with no effect of p53-heterozygosity. Right: K14.p53flx/flx.Ptenflx/flx.stratifin mouse at 14 

weeks showing no macroscopic phenotype at this stage. (D) p53flx/flx.Ptenflx/flx.stratifin no-

Cre control mice treated with RU486 at 14 wks., also showing a normal phenotype. 
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Examination of the histology of K14.Ptenflx/flx.p53flx/flx.stratifin TGE skin 

(Figure 6-11A,D,E), keratotic tumour distal to the NTE (Figure 6-11B,F), and 

non-keratotic face tumours (Figure 6-11C,G) identified several distinct 

histotypes which all featured malignant regions. The TGE skin close to the tag 

showed a combination of the features typically seen in K14.p53flx/flx.stratifin and 

K14.Ptenflx/flx.stratifin wound promoted skin, i.e. hyperchromatic nuclei in a 

highly expanded proliferative compartment, loss of stratification, extensive 

(invasion despite the short time frame), increased neoangiogenesis, and high 

immune infiltrate in the stroma (Figure 6-11D). Conversely, ear tip skin, far from 

the actual tag wound, was not found to be actively invading but exhibited 

dysplasia and a loss of distinct skin layers (Figure 6-11E). 

Histology of the keratotic tumours pictures in Figure 6-11B showed a 

hyperkeratotic phenotype with a much more pronounced granular layer than in 

the TGE skin. Several hyperplastic follicle structures were observed in these 

tumours (Figure 6-11F; left and centre) and while the overall strcuture was 

actually more benign in appearance, some clusters of invasive keratinocytes had 

already begun to form disordered tumour islands (Figure 6-11F; black arrow). 

Histology of the non-keratotic tumours of the face (seen in Figure 6-11C) 

exhibited a far more poorly-differentiated phenotype (Figure 6-11G); likely 

explaining  the lack of keratosis visible macroscopically. Here, several 

indications of follicular involvement were pesent, including structures with 

intraepidermal keratosis surrounding circular lumens which bear some similarity 

to that seen in advanced HK1.fos/K14.stratifn fSCC (Chapter 4), and attendant 

sebocytes, including the large cluster seen at the right of the image (Figure 6-

11G; black arrow) and smaller clusters near the top with a distinct absence of 

normal follicles. 
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Figure 6-11: K14.p53flx/flx.Ptenflx/flx.stratifin mice develop invasive wound-promoted 

hyperplasia and wound-independent papillomas and carcinomas at an early stage. 

(A) K14.p53flx/flx.Ptenflx/flx.stratifin TGE at 11 wks. showing mild hyperplasia with some 

keratosis. (B) Cluster of wound-independent keratotic/scabbed tumours behind the NTE on 

RU486-treated skin. Skin surrounding these tumours is hairless. (C) Cluster of less keratotic 

wound-independent tumours on the cheek, also lacking hair. (D) Histopathology of TGE in 

A, showing disorganised, hyperproliferative epidermis with may hyperchromatic nuclei as 

in K14.p53flx/flx.stratifin wound-promoted skin. Multiple invasive tumour nests are apparent 

(black arrows), and the basal layers of the epidermis appear to be invading into the stroma 

collectively (white arrow). (E) Histology of the tip of the ear, away from the tag site, shows 

less evidence of invasion but an obviously disorganised hyperkeratotic epidermis lacking 

clear demarcation of basal, spinous and granular layers. (F) Histology of one of the tumours 

in B, showing hyperplastic and hyperkeratotic epidermis with HF involvement (left and 

centre bottom of the image). A disorganised mass of invasive cells is present (arrow) and 

is associated with many immune cells. Neoangiogenesis is apparent in the large branching 

vessel (blue arrow). (G) Poorly differentiated histology of face tumour in C, showing 

intraepidermal keratosis similar. A proliferation of sebocytes is present (black arrow) which, 

coupled with the hairless nature of the skin here, is indicative of follicular involvement. Scale 

bars approx. 100 µm.  
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6.6. Discussion 

The purpose of this chapter was to assess the effects of elevated Stratifin 

expression in the context of TSG loss (namely Pten and p53), and thereby to 

evaluate its potential oncogenic or tumour suppressive role in these contexts.  

6.6.1. K14.p53flx/flx.stratifin 

Initial results from examination of the K14.p53flx/flx.stratifin genotype 

(n=22) suggested little effect, as mice grossly resembled control K14.p53flx/flx, 

K14.p53flx/+.stratifin and K14.stratifin mice by 5 months of age (Figure 6-1). 

However, histological analysis of wound-promoted (tagged ear) tissue indicated 

morphological changes to the skin structure, hyperchromatic nuclei and early 

signs of invasion, including collective invasion forming tumour buds, despite the 

lack of overt tumour formation in any of the K14.p53flx/flx.stratifin cohort. 

The presence of large, hyperchromatic nuclei indicates an abnormal 

accumulation of chromatin due to reduced constraints on cell growth and cell 

cycle progression; their spread throughout several layers of the epidermis has 

been shown to correlate with malignancy (Malhotra et al., 2013). Cre-mediated 

ablation of p53 alone (K14.p53flx/flx) does not appear to cause notable or 

widespread hyperchromatism in the epidermis (Figure 6-2D), whereas this was 

found to be common in K14.p53flx/flx.stratifin. p53 is a master cell cycle 

regulator, termed the “guardian of the genome” (Lane, 1992), which is able to 

induce cell cycle arrest at checkpoints during mitosis and following DNA damage, 

and can induce the intrinsic pathway of apoptosis when excessive DNA damage 

has occurred (Haupt et al., 2001; Ou et al., 2005). Skin normally exhibits very 

little p53 staining (Reisman et al., 2012; Chapter 3 Figure 3-1)—since few 

interfollicular cells are actively cycling at any given time—and has been shown to 

be largely unaffected by targeted p53 knockout, unlike internal tissues 

(Donehower et al., 2002). This resilience is believed to be due to increased 

compensatory differentiation to eject mutated cells (Freije et al., 2014), hence 

the relatively normal gross and histological appearance of K14.p53flx/flx control 

mice in this study.  
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In contrast, nuclear hyperchromatism was a common feature of 

K14.p53flx/flx.stratifin TGE skin (Figure 6-2A-C) suggesting that the 

overexpression of K14.stratifin in undifferentiated cells is involved in either 

directly or indirectly driving cell growth and proliferation, causing the 

accumulation of abnormal chromatin in the absence of functional p53. This likely 

signals changes in gene expression which could contribute to carcinoma 

development and progression in synergy with Stratifin overexpression. 

 While Stratifin is known to have tumour suppressive properties (mostly in 

relation to cell cycle inhibition) there are several mechanisms by which a high 

level may result in increased proliferative capacity. For example, although 

Stratifin can directly antagonise Akt activation (Yang et al., 2006), it can 

conversely aid in upregulation of mTOR activity (downstream of Akt) by forming 

a cytoplasmic complex with both mTOR and Keratin 17, resulting in increased 

cell growth which has been shown to contribute to the pathology of oral SCC 

(Kim et al., 2006; Mikami et al., 2015). Furthermore, as previously mentioned, 

Stratifin acts alongside USP-8 in hepatocellular carcinoma to stabilise receptor 

tyrosine kinases (RTKs), thereby increasing mitogen signalling and driving further 

uncontrolled cell growth (Kim et al., 2018). Moreover, stimulation of IGF-1R (an 

RTK) has been found to cause a subsequent upregulation of Stratifin 

transcription, with Stratifin activity found to positively regulate cell cycle 

progression after IGF-1 treatment as a result of PI3K pathway activation in MCF-7 

breast cancer cells; an effect which was not impacted by p53 knockdown (Zhang 

et al., 2004). Taken together, these studies may indicate a positive feedback 

loop between Stratifin and IGF-1R, similar to that which exists with p53 (Lee & 

Lozano, 2006). It is also indicative of the extremely contextual nature of 

Stratifin activity, exemplified by these contradictory roles within the 

PI3K/Akt/mTOR pathway. 

Other features of this wound-promoted K14.p53flx/flx.stratifin skin include 

several which appear to be common to all the models assessed which express 

K14.stratifin, such as stromal hyperplasia and immune infiltration. While further 

study is needed to assess the specific nature of these features, development of 

CAFs in the stroma via action of keratinocyte-released Stratifin as well as some 

yet to be elucidated mechanisms by which this transgene upregulates immune 
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infiltration are likely to be involved in the development of the invasive 

phenotype observed. Furthermore, the literature suggests that loss of p53 

functionality in skin does not itself cause malignant conversion, however, it does 

introduce chromosomal instability which may be transformative (Weiss et al., 

2010). Thus, the phenotypes of 5–7-month K14.p53flx/flx.stratifin mice may in 

truth be generated by commonly acquired mutations of the p53-null background 

working in synergy with the oncogenic effects of Stratifin overexpression in 

proliferative cells; a facet which still remains to be assessed via genetic 

sequencing. 

6.6.2. K14.Ptenflx/flx.stratifin 

In contrast with the results seen in p53-null mice, expression of 

K14.stratifin on a Pten-null background (K14.Ptenflx/flx.stratifin; n=19) exhibited 

clear exacerbation of the gross K14.Ptenflx/flx phenotype by 15 weeks (Figure 6-

4). K14.Ptenflx/flx.stratifin mice had prominent hyperplasia and hyperkeratosis on 

both ears which was more extensive that that seen in either K14.Ptenflx/flx or 

K14.Ptenflx/+.stratifin, with reddening of the skin indicative of inflammation not 

observed in controls.  

Histological examination of TGE skin of K14.Ptenflx/flx.stratifin (Figure 6-

5A,B) showed marked hyperplasia and dysplasia, as well as areas of 

hyperproliferation and invasion, indicating carcinoma development despite the 

lack of overt tumour formation. This was accompanied by marked immune cell 

infiltrate (also seen previously in both HK1.fos/K14.stratifin and 

HK1.ras/K14.stratifin tumours) which was not present in K14.Ptenflx/flx and only 

moderately so in K14.Ptenflx/+.stratifin hyperplasias. Invasion in these lesions 

may be a combination of the pro-migratory roles of Stratifin, involving both the 

epidermis and dermis (Ide et al., 2007; Boudreau et al., 2013; Liu et al., 2016) 

combined with the loss of suppression of cellular migration due to ablation of 

Pten activity (Tamura et al., 1998). Combined, these changes in cell activity and 

regulation could explain why invasion appears to be an early event in 

K14.Ptenflx/flx.stratifin aetiology. 
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Immunofluorescence analysis of these RU486-treated, wound-promoted 

K14.Ptenflx/flx.stratifin hyperplasias supported histological data in indicating 

development of carcinoma, as the early differentiation marker Keratin 1 was 

found to be lost in hyperproliferative regions, and was reduced in adjacent 

lower suprabasal layers in pre-malignant hyperplasia. K14.Ptenflx/+.stratifin, by 

contrast showed no K1 loss, but did exhibit spurious basal layer expression, 

already described in K14.stratifin-only skin (Chapter 4; Figure 4-15) and, 

indeed, in K14.fos/Ptenflx/flx keratoacanthoma where elevated endogenous 

Stratifin expression has also been detected in basal cells (Figure 6-7).  

Given the role of Pten in regulation of Akt1 activation, pAkt1ser473 was also 

assessed in K14.Ptenflx/flx.stratifin and control TGEs. As shown previously (Yao et 

al., 2008), Pten ablation in this model does not initially cause upregulation of 

Akt activity, likely due to direct inhibition of Akt1 via other phosphatases such as 

PHLPP1 and 2 (Gao et al., 2005) and possibly also Stratifin (Yang et al., 2006), 

which seems especially probable given its unusually high basal positivity in 

K14.Ptenflx/flx wound-promoted skin (Figure 6-7). 

Mice overexpressing Stratifin on a heterozygous Pten background 

(K14.Ptenflx/+.stratifin) similarly did not show positivity for pAkt1ser473. However, 

K14.Ptenflx/flx.stratifin did exhibit positive pAkt1ser473 staining, though this was 

confined to suprabasal cells and seemed to follow the staining pattern of Keratin 

1. This may indicate that the abundance of Stratifin in proliferative cells 

resulting from K14.stratifin expression either directly or indirectly inhibits Akt 

activation; thus, despite oncogenesis, Akt1 does not appear to be a causal factor 

in this malignancy. Moreover, since pAkt1ser473 expression mimics K1 localisation, 

it would appear to be acting in a pro-differentiation manner, rather than pro-

survival, perhaps suppressing p53 activity to limit apoptosis and maintain the 

skin’s barrier properties (Calautti et al., 2005; Lippens et al., 2005). In previous 

Chapters, the overabundance of p53 in tumours expressing K14.stratifin has 

been documented, therefore, accumulation of activated Akt1 may occur in 

K14.Ptenflx/flx.stratifin but not in K14.Ptenflx/flx skin in direct response to the 

abnormally high p53 expression as a counter to apoptosis and the threat to this 

paramount barrier function of the epidermis (Gottleib et al., 2002). 
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K14.Ptenflx/flx.stratifin mice also developed a particularly noticeable 

disruption to normal hair growth, with the slightly dishevelled appearance of the 

K14.Ptenflx/flx genotype amplified, including marked thinning of the hair over the 

crown and a woolly appearance to the ventral hair. Histological observations 

showed incorrect formation of the hair follicle and shaft in 

K14.Ptenflx/flx.stratifin RU486-treated skin, which was not observed in 

K14.Ptenflx/flx counterparts (Figure 6-6F,G); indicative of the importance of 

normal Pten and Stratifin proteins in hair follicle morphogenesis (Suzuki et al., 

2003; Herron ret al., 2005; Hammond et al., 2012). 

6.6.3. K14.p53flx/flx. Ptenflx/flx.stratifin 

Subsequently, mice were generated in which K14.stratifin was expressed 

concurrent with both Pten and p53 functional ablation 

(K14.p53flx/flx.Ptenflx/flx.stratifin). Here, unlike in K14.p53flx/flx.stratifin or 

K14.Ptenflx/flx.stratifin, RU486-treated mice developed small tumours which 

were wound-independent and rapidly growing, with the mice requiring biopsy at 

13.6 weeks of age on average due to the position of the lesions (frequently 

around the eyes and face, where mice had spread RU486 after treatment of the 

ears), or due to persistent scratching which caused bleeding. This latter feature 

suggested the tumours were itchy, which did not appear to be the case in other 

K14.stratifin-expressing tumour models, but which is a common feature of 

human cutaneous SCCs (Mills et al., 2012). K14.p53flx/flx.Ptenflx/flx controls did 

exhibit papillomas on the palmar surfaces (again, from touching recently RU486-

treated ears) but these were found to be benign and did not appear to cause any 

discomfort. 

Histology of K14.p53flx/flx.Ptenflx/flx.stratifin individuals (Figure 6-11) showed 

that the structures were varied, with some exhibiting a mostly benign papilloma 

appearance with hair follicle enlargement and aberration and small patches of 

invasive keratinocytes forming nests in the stroma, while others showed 

widespread dysplasia and carcinoma. The differences in these histopathologies 

may be the result of a difference in the initiating tumour cell (e.g., 

interfollicular vs follicular stem cell). Indeed, all tumours which developed in 
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this genotype were associated with a patch of alopecic skin which, along with 

the histopathological findings of distorted follicles or loss of discernible follicular 

structures within the tumours, indicates involvement of hair follicles in the 

disease aetiology. Alternatively, or perhaps additionally, the varied tumour 

phenotypes could indicate a different set of further driver mutations has been 

acquired in each. This appears quite likely, since both p53 and Pten are involved 

in regulating genomic stability and error checking (Yeo et al., 2016; Hu et al., 

2018; Bononi & Pinton, 2015; Hubbard et al., 2016), thus their combined loss 

likely allows for further mutations to accumulate.  

Based on this data and prior HK1.ras/K14.stratifin results (Chapter 5), it seems 

that overexpression of Stratifin in the undifferentiated epidermis and hair 

follicles increases the likelihood of promotion-independent tumour formation 

compared with controls lacking the K14.stratifin construct, suggestive of roles in 

initiation. Additionally, the changes to the underlying stroma and consistent 

evidence of invasion in these models indicates a role in tumour progression. 

Aside from the effects on dermal fibroblasts, Stratifin has been shown to 

increase migratory potential by forming a complex with keratins 5 and 17 and 

soluble actin, allowing more rapid changes to cytoskeletal structure and 

motility. 

6.6.4. Future directions 

Thus far, K14.p53flx/flx.stratifin hyperplasias have only been assessed 

using H&E stained sections to determine features of the wound-associated 

pathology. In order to better assess whether these are of a dysplastic benign or 

malignant phenotype, differentiation markers (K1 and K10) will be assessed, 

along with later differentiation markers loricrin and filaggrin to observe granular 

layer changes at different time points, since these exhibited a much less 

keratotic appearance than in other models and histology appears to show patchy 

granular layer loss. Furthermore, wound-associated Keratin K6 (and its partner, 

K16) will be investigated, as these are known to provide a less rigid form to the 

basal cells in order to aid in migration during wound healing (Wong & Coulombe, 

2003; Rotty & Coulombe, 2012); a process which has been shown to be co-opted 
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during cancer cell invasion (Hu et al., 2020), and which was a common finding 

among K14.stratifin models and is again observed in these K14.p53flx/flx.stratifin 

despite the lack of tumour formation. The mitotic index will be determined as in 

HK1.fos/K14.stratifin and HK1.ras/K14.stratifin, as all mice sacrificed were 

injected with BrdU prior to biopsy; the hyperchromatism observed suggests a 

high level of DNA replication though cells may not be undergoing cytokinesis 

correctly, resulting in the accumulation of chromatin observed. 

In both HK1.fos/K14.stratifin and HK1.ras/K14.stratifin models (Chapters 

4 & 5) it was found that p53 was highly expressed even through conversion to 

SCC; quite unlike models lacking exogenous Stratifin upregulation. It would be 

interesting, therefore, to see whether p53 is also upregulated in these 

K14.Ptenflx/flx.stratifin mice. Previous work showed that massive p53 and p21 

upregulation was integral to the benign keratoacanthoma aetiology generated 

via activated Fos expression on a Pten-null background (Yao et al., 2008), which 

also appeared to show some degree of Stratifin expression in the basal layer, 

likely transactivated by p53 in those cells (Figure 6-7C). However, these novel 

K14.Ptenflx/flx.stratifin mice did not develop the same KA phenotype, seemingly 

transitioning directly from dysplastic hyperplasia to invasive carcinoma without a 

benign tumour stage; this suggests that very high Stratifin expression in basal 

layer keratinocytes in this background provides a different, more aggressive 

context to that seen in HK1.fos-Δ5Pten KAs. In addition, results in 

HK1.ras/K14.stratifin experiments seem to show a disconnect between p53 and 

p21 signalling that may be integral to the Type 2 tumour phenotype (which 

undergoes more rapid conversion than Type 1). Thus, it would also be prudent to 

test expression and subcellular localisation of p21 in K14.Ptenflx/flx.stratifin TGE 

skin, as this may indicate whether this may also be a factor in why this genotype 

produces malignant lesions while the HK1.fos-expressing counterparts do not. 

Indeed, in HK1.fos-Δ5Pten KAs, p53 & p21 expression seem to antagonise 

oncogenic Akt activities, while the pattern of pAktser473 expression in 

K14.Ptenflx/flx.stratifin skin suggests the opposite is true in this genetic 

background, with Akt seemingly driving differentiation, possibly to antagonise 

p53-mediated apoptosis which is a threat to maintaining the essential barrier 

function of the epidermis (Naeem et al., 2015; Kermer et al., 2000; Ogawara et 

al., 2002; Calautti et al., 2005). The differences seen between these genotypes 
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again exemplifies the highly context-dependent nature of Stratifin activity, 

requiring more in-depth analysis of the pathways affected to elucidate the 

mechanisms underlying carcinogenesis in this model. 

To begin to explore this, K14.stratifin was expressed on a combined p53-

null/Pten-null background, thereby removing the effects of Stratifin-induced p53 

overexpression believed to be present in K14.Ptenflx/flx.stratifin mice. Here, 

unlike in the previous bigenic models, small overt tumours were generated. 

However, these did not appear at the wound-promotion site but on the back of 

the neck and face; areas most likely to be scratched or bitten and provide a 

single, initial promotion stimulus (or repeated low-level stimulus if as a result of 

grooming). These were found to be follicle-related, though clearly exhibited a 

different histotype to HK1.fos/K14.stratifin SCCs. Furthermore, histology of 

tumours from different sites of the same mouse showed differences in their 

histopathology; this could indicate either a different cell of origin — perhaps 

from different HF or interfollicular stem cell niches — or differences in the 

mutations acquired as a result of the ablation of two major TSGs. Genetic 

sequencing may, therefore, be performed on samples of the various tumours in 

order to determine whether the latter hypothesis is true. Staining for specific 

stem cell niche markers (e.g., LGR6 and CD34) may help to determine the niche 

where each tumour originated and whether different origins produce different 

pathologies in the context of K14.Ptenflx/flx.stratifin expression. 

6.6.5. Conclusions 

These data further serve to highlight the oncogenic nature of Stratifin 

expression, which appears to be separate to the formation of overt tumours and 

be primarily involved in the conversion to malignancy and invasion. Further 

study into these models of Stratifin overexpression in the content of TSG 

ablation may elucidate further roles of Stratifin interaction in known or novel 

oncogenic pathways and processes, potentially serving to identify further 

therapeutic targets for the treatment of invasive SCCs. 
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7.1. Introduction 

Co-operation between HK1.fos and K14.stratifin expression in vivo 

resulting in novel carcinogenesis which mimicked human follicular SCC (fSCC) 

was described in Chapter 4. Both Fos and Stratifin are known to play integral 

roles in keratinocyte differentiation, with both proteins most abundant in the 

suprabasal layers of the epidermis, consistent with this activity. Despite its 

importance in differentiation (Mehic et al., 2005), c-Fos is also a well-described 

promoter of oncogenesis in skin, with mice overexpressing c-Fos more 

susceptible to chemical carcinogenesis (Sakai, 1990) and, in vitro, its 

overexpression co-operates with Ras activation to induce malignancy 

(Greenhalgh & Yuspa, 1988; Greenhalgh et al., 1990). In vivo, Fos activation 

exerts a promotional role in conjunction with H-ras activation, resulting in 

aggressive papillomatogenesis, but requires further oncogenic events (such as 

ablation of tumour suppressor Pten and subsequent loss of p53) to progress to 

wdSCC (MacDonald et al., 2014). Stratifin is normally induced early in the 

terminal differentiation process and acts to enhance PKC activity (Dellambra et 

al., 1995). It later binds to and facilitates activity of CALML5, a vital effector of 

the terminal differentiation programme expressed in the granular layers (Sun et 

al., 2015). 

While this in vivo system is useful in assessing the interplay between 

genes and effects of their downstream targets on carcinogenesis, it does not 

allow for manipulation of cells to directly assess their responsiveness to 

differentiation signal or their motility and invasive potential. Thus, to address 

this, experiments were performed employing primary neonatal keratinocytes 

cultured in vitro using established methods (Hennings et al. 1980; Yuspa et al., 

1990) with modifications that prevent spontaneous transformation to then 

produce cell lines from these primary cultures (Greenhalgh et al., 1989). This 

allowed for real-time observations and experimental manipulation to study the 

effects of transgene expression on differentiation signals in normal and 

transgenic keratinocytes, and to assess the ability of primaries and early passage 

cell lines (<10) to grow clonally as an indication of transformation and to 

compare cell motility as an indication of invasive potential. 
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This chapter primarily aimed to: Identify changes in transgenic 

keratinocyte growth and differentiation in response to increased calcium 

concentration using monocultures of primary cells obtained from neonatal pups 

in the presence of the HK1.fos and K14.stratifin transgenes. and, subsequently, 

the cell lines established from these primaries; assess these features as well as 

relevant protein expression and changes in cellular motility (using a scratch 

assay) in cell lines derived from primary transgenic keratinocytes. 

7.2. Phenotypes of primary keratinocytes cultured from 

transgenic neonatal epidermis 

In Chapter 4, it was established that HK1.fos/K14.stratifin mice develop a 

novel phenotype recapitulating fSCC—unlike classic SCC histotypes seen in 

HK1.ras/fos-Δ5Pten carcinogenesis—which exhibited a highly unusual 

differentiation programme relative to normal skin. Therefore, to investigate the 

properties of HK1.fos/K14.stratifin keratinocytes further, in vitro experiments 

were performed that assessed their degree of transformation and altered 

differentiation programme in response to increased calcium concentration, 

together with migration assays to begin to assess their invasive potential. In 

skin, keratinocytes are induced to differentiate when they leave the basal layer 

in response to detachment from the basement membrane (Banno and 

Blumenberg, 2014) and an increasing calcium gradient (Chapter 1, Figure 1-1) 

(Bikle et al, 2012). In vitro, sensitivity to this calcium-mediated differentiation 

can be utilised as a method of assessing malignant transformation in cultured 

cells; resistance to increased calcium concentration is indicative of more 

transformed cells (Kulesz-Martin et al., 1983; Greenhalgh et al., 1989). 

Skin was processed as described (Methods Section 2.2.6.) from neonates 

<36-hours-old, as later skin possesses developed follicular structures which 

prevent separation of epidermis from dermis and causes significant 

contamination of keratinocyte cultures with dermal fibroblasts (Hennings et al., 

1980; modified in Greenhalgh et al., 1989). Following PCR to confirm genotype, 

separated epidermis were pooled and plated out at 5x106 cells per T25 flask in 

order to develop cell lines, and separately plated into 60 mm dishes at 

approximately 50 cells/mL (around 250 cells total/dish) to perform clonal 
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growth assays that assess their potential transformation. Keratinocytes were 

typically cultured in 0.05 mM Ca2+ DMEM supplemented with 10% chelexed foetal 

bovine serum (FBS), 20% keratinocyte growth medium (KGM) (clonal growth 

medium: CGM). In addition, dermal fibroblasts were extracted to produce 

fibroblast-conditioned medium (FbCM), such that keratinocytes could be 

cultured at low plating density using low calcium DMEM supplemented with 10% 

KGM + 10% FbCM, in place of 20% KGM. This medium was developed to prevent 

crisis which leads to spontaneous transformation (Greenhalgh et al., 1989) yet 

establish normal, immortalised keratinocyte cell lines, and was employed in 

clonal growth assays to assess the colony-forming ability of transgenic 

keratinocytes compared to wild type (below). 

Normal keratinocytes are sensitive to calcium-induced differentiation, 

changing their cobblestone morphology in proliferative 0.05mM Ca2+ medium to a 

flattened dull morphology indicative of suprabasal cells when switched to an 

intermediate 0.08mM Ca2+ medium for 24 hours, and a stratified morphology 

after a further 24 hr at 0.12mM Ca2+ (Figure 7-1). Thus, any resistance to the 

morphology change or growth in high calcium conditions indicates resistance to 

differentiation cues and a phenotype consistent with malignant transformation 

when subsequently grafted onto nude mice (Strickland et al., 1988; Greenhalgh 

et al., 1989; Greenhalgh et al., 1990). 

 

Figure 7-1: Normal (ICR) keratinocytes differentiate in response to increasing Ca2+ 

concentration. 

(A) ICR cells in low Ca2+ (0.05 mM) medium have a cobblestone appearance and regularly 

sized cells. (B) When treated with 0.08 mM Ca2+ for 24 hr, the cells develop a dull 

appearance indicative of suprabasal differentiation. (C) These will terminally differentiate 

into cornified cells (squames) if maintained for 48 hr in 0.08 mM Ca2+ or if switched to 0.12 

mM for the second 24 hr period, as here. 
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Typically, normal keratinocytes cultured without FbCM/KGM supplements 

quickly differentiate in the absence of cell-cell contact. However, in clonal 

growth media (CGM: low Ca2+ DMEM supplemented with 10% FbCM/10% KGM; or 

low Ca2+ DMEM plus 20% KGM) normal keratinocytes develop small, slow growing 

colonies by 4 weeks that can be cultured over the following months, whereas 

transformed cells produce more colonies that grow faster and can become 

confluent within 4 weeks (Figure 7-2 Panel II) (Greenhalgh et al., 1989). In 

addition to clonal growth assays in low Ca2+ CGM, a more stringent assessment of 

transformation involves resistance to calcium-induced differentiation coupled to 

an ability to grow from clonal density in high Ca2+ media (Hennings et al., 1980; 

Kulesz-Martin et al., 1983; Greenhalgh et al., 1989). Here, this study again found 

that normal keratinocytes developed several small slow growing colonies in low 

Ca2+ CGM (Greenhalgh et al., 1989) but most cells quickly differentiated, 

suggesting that these colonies may have derived from original stem cells (Figure 

7-2). 

Unexpectedly, keratinocytes expressing only K14.stratifin grew slightly 

better than HK1.fos/K14.stratifin primaries, while both transgenic cultures grew 

slower than normal keratinocytes in CGM. Wild-type primary keratinocyte 

morphology in low calcium CGM again showed the expected polygonal 

cobblestone appearance of proliferative keratinocytes (Figure 7-2 Panel I), 

whereas both K14.stratifin and HK1.fos/K14.stratifin primary keratinocytes 

appeared to have fewer cells which were more loosely packed with increased 

shedding. Furthermore, both these primary K14.stratifin-expressing keratinocyte 

cultures began to adopt a more stretched, somewhat spindle shaped morphology 

(Figure 7-2 Panel I) which became more evident in the derived cell lines, 

alongside another HK1.fos/K14.stratifin line which exhibited a uniquely 

irregular, flattened appearance and splayed cell morphology (FS1s vs FS3m; 

Figure 7-2 Panel III). In addition, unlike their derived cell lines (below), while 

HK1.fos/K14.stratifin primary cells were found to grow (albeit poorly) from 

clonal density in low calcium CGM, they were unable to grow at all in high 

calcium medium (Figure 7-2 Panel II); a surprising finding, given the 

malignancies generated by this bigenic genotype in vivo (Chapter 4). 
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Another unexpected result was that whilst keratinocytes expressing 

K14.stratifin initially grew better than their HK1.fos/K14.stratifin counterparts, 

they then largely became senescent or terminally differentiated, ultimately 

producing few colonies, if any, which stained poorly with a specific keratin 

stain, Rhodamine B (Figure 7-2 Panel II). This lack of staining suggests a problem 

with the intermediate filament network in vitro that echoes in vivo observations 

of the disruption that deregulated Stratifin expression brings to the normal 

differentiation process (Chapter 4 Figures 4-16—4-20), which was subsequently 

pursued further in established cell lines (below). It may be that Stratifin exerts a 

rapid transition of the initially viable stem cells out of the proliferative niche to 

one of accelerated differentiation.  

These results contrasted starkly with normal primary keratinocytes that 

grew slowly from clonal density as observed previously (Figure 7-2 Panel II, row 

5; Hennings et al., 1980; Kulesz-Martin et al., 1983; Greenhalgh et al., 1989), 

reflecting the seeding behaviour of the stem cells present. Conversely, 

malignant T52 cells—a line derived from H-Ras-activated SP1 cells transfected 

with activated v-Fos, which formed pdSCCs when grafted onto nude mice 

(Strickland et al.,1988; Greenhalgh & Yuspa, 1988)—grew rapidly in either low or 

high calcium medium, as expected (Figure 7-2 Panel II row 6). 
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Figure 7-2: In vitro analysis of Normal, K14.stratifin and HK1.fos/K14.stratifin primary 

keratinocytes. 

Panel I: Morphology of Normal primary keratinocytes in low Ca2+ medium at 5 days shows 

cobblestone appearance. Both K14.stratifin and HK1.fos primary cultures have fewer cells 

and exhibit more varied and elongated cell shapes (“S” morphology, see below) than 

Normal.   

Panel II: Primary keratinocytes clonal growth assays showed neither K14.stratifin (rows 1 

& 2) nor HK1.fos/K14.stratifin (rows 3 & 4) established viable colonies in low or high calcium 

that stained with Rhodamine B. In contrast normal keratinocytes developed slow growing 

colonies, whilst malignant T52 cells (v-H-Ras/v-Fos transformed) grew rapidly even in high 

calcium media. 

Panel III: Elongated cell morphology of HK1.fos/K14.stratifin-derived cell line FS1s, 

retaining features seen in the primary cells above, compared with the more irregular and 

flattened morphology of the FS3m cell line which appears to mimic the in vivo morphological 

features of HK1.fos/14.stratifin tumours.  
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7.3. HK1.fos/K14.stratifin cell lines exhibit resistance to 

Ca2+-induced differention correlated with higher Stratifin 

expression 

Cell lines were established from normal ICR mice, HK1.fos, K14.stratifin 

and HK1.fos/K14.stratifin and, in repeat experiments performed over a total of 

2 years, their characteristics at very low passage number (ranging from tertiaries 

at passage 2 to a max of passage 10 for rapidly growing lines) were compared to 

T52 SCC keratinocytes and SP1 papilloma cells (Strickland et al., 1988; 

Greenhalgh & Yuspa, 1988). Thus, two phases of in vitro analysis produced phase 

1 cell lines: S1A, S2A, FS1s, FS2, FS2s and FS3m; and phase 2 cell lines: ICRnormal, 

WTnormal, S4, S5, F1c F5, F6 and FS4 (S = K14.stratifin; F = HK1.fos; c = derived 

from clonal density;  FS = HK1.fos/K14.stratifin). Close examination of their 

respective morphologies showed that HK1.fos/K14.stratifin keratinocytes 

possessed two distinct subtypes when sub-cloned into lines: “s” referred to more 

elongated, spindle-shaped morphology (FS1s and FS2s), and “m” to an unusually 

heterogeneous morphology of splayed cells, reminiscent of HK1.fos/K14.stratifin 

tumour epidermis (FS3m). In addition, it was noted that all K14.stratifin lines 

developed an elongated morphology compared to normal or HK1.fos 

keratinocytes (Figure 7-2). 

The keratinocyte morphology of selected cell lines and expression of 

differentiation markers K1/K14 and Stratifin are summarised in Figure 7-3, 

including phenotypes representative of normal (ICR), HK1.fos (F1c), K14.stratifin 

(S1A), and both variants of HK1.fos/K14.stratifin morphologies (FS2 and FS3m). 

For each line, keratinocytes were cultured on coated glass chamber slides in low 

calcium (0.05 mM) CGM medium until near-confluent, then half were switched to 

high calcium CGM (0.225 mM) medium for 24 hours to assess the level of 

resistance to calcium in each line before being photographed (Figure 7-3, left 

panel) and fixed in ice cold methanol. Fixed cells were then stained for 

differentiation markers K1/K14 to assess the levels of altered differentiation, if 

any (Figure 7-3, centre panel), and for Stratifin, to both confirm elevated 

expression in lines harbouring the K14.stratifin transgene (S1A, FS2 and FS3m) 

and to correlate this with calcium resistance (Figure 7-3, right panel). 
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Of the lines tested, FS2 and FS3m were chosen as exemplars of the 

different HK1.fos/K14.stratifin morphologies identified. FS2 exhibited a 

generally “cobblestone” appearance but with much greater variation in cell size 

than in normal keratinocyte cultures, while FS3m exhibited more irregularities in 

cell morphology (Figure 7-3 left panel). Here, HK1.fos/K14.stratifin line FS2 

possessed the most rapid growth and showed the greatest resistance to Ca2+-

induced differentiation, exhibiting very little change to the morphology of the 

cells other than a slightly flattened appearance, consistent with a malignantly 

transformed cell line. Conversely, the other HK1.fos/K14.stratifin line, FS3m, 

grew slowly, were difficult to trypsinise, and generally exhibited a flattened 

shape suggesting a degree of attempted premature differentiation in low 

calcium; however, it lacked the squames present in normal ICR, F1c or S1A 

genotypes which would indicate complete terminally differentiation (Figure 7-2, 

left panel, white arrows). 

It may be that this FS3m line represents the stalled stages of spinous 

differentiation and irregular granular layers observed in vivo; however, this 

awaits analysis of late-stage markers such as filaggrin and loricrin. There is also 

a possibility that this line may be derived from hair follicle cells as this approach 

gives cultures believed to be composed of roughly 50% cells from the 

interfollicular epidermis and 50% from the immature hair follicle buds (Lichti et 

al., 2008), though this requires confirmation with specific HF markers.  
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Figure 7-3: All cell lines expressing K14.stratifin exhibit spurious K1 expression in low 

Ca2+ medium and some HK1.fos/K14.stratifin cells show signs of calcium-resistance. 

Left: Morphology of lines cultured in low (0.05mM) and high (0.225mM) Ca2+ CGM. Normal ICR, 

K14.stratifin (S1A), HK1.fos (F1c), show differentiation responses to increased Ca2+ with signs 

of stratification evidenced by presence of squames (white arrows). In low Ca2+ CGM, 

K14.stratifin line S1A exhibits elongated keratinocytes while HK1.fos-expressing F1c and ICR 

cells have the normal cobblestone appearance. Conversely, in low Ca2+ CGM, 

HK1.fos/K14.stratifin (FS2 and FS3m) cells have a unique morphology and FS2 shows little 

response to increased Ca2+; while FS3m cells exhibit some resistance but terminal 

differentiation appears incomplete with no squames developing. Centre: K1/K14 expression 

analysis. Normal ICR cells in 0.05mM CGM express little K1 which is induced by the Ca2+ switch. 

In S1A, K1 is expressed early in 0.05mM CGM, particularly in the spindle morphology cells, 

while not all cells express K1 in high Ca2+, consistent with in vivo observations. F1c also exhibit 

slightly elevated K1 in low Ca2+ suggesting premature differentiation due to Fos activity. In FS2 

cells, K1 expression is similar in low and high Ca2+ whilst in low Ca2+, FS3m exhibit high K1 in 

oddly flattened cells and virtually uniform K1 expression in high Ca2+; consistent with a stalled, 

spinous cell morphology. Right: Analysis of Stratifin expression. ICR cells express few Stratifin 

positive cells in low Ca2+ while staining becomes uniform in high Ca2+. In F1c, small foci of cells 

strongly express Stratifin suggesting these are differentiating prematurely, while they have a 

uniform Stratifin profile in differentiated high Ca2+ cells. In S1A cells, Stratifin is expressed in 

most low Ca2+ cells, while spindle cells exhibit some polarisation to the sub-cellular localisation 

in the pseudopodia, while there is more uniform, strong Stratifin expression in high Ca2+ cells. 

Both transformed FS2 cells and FS3m cells exhibit strong Stratifin expression in low Ca2+, which 

is particularly prominent in the spinous-like cells with pseudopodia. Stratifin expression is not 

greatly affected in FS2 in high Ca2+ medium due to the resistance to differentiation, but FS3m 

show strong Stratifin expression in all cells in high Ca2+. Scale bars approx. 50 µm. 
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Interestingly, S1A (expressing only K14.stratifin) also showed an 

elongated cell shape (Figure 7-3), as did the other K14.stratifin lines: S2A, S4 

and S5, usually indicative of transformation, though these cell lines all 

responded to increased Ca2+ by differentiating fully. Conversely, F1c (and F2 

(below), F5 and F6 (not shown)) appeared much more similar to ICR tertiary 

cultures, showing a cobblestone appearance of regularly-sized cells which grew 

much more slowly than S or FS lines.  

In addition to altered morphology, expression of differentiation marker 

keratins K1 and K14, together with exogenous and endogenous Stratifin were 

examined in low Ca2+ CGM high Ca2+ conditions (Figure 7-3, centre panel: K1; 

green/ K14 red). In normal ICR keratinocytes maintained at 0.05 mM Ca2+, 

expression of K1 was negligible, consistent with a proliferative basal cell 

phenotype predominantly expressing K5 and K14. These normal cells exhibited 

greatly increased K1 expression when switched from low (0.05 mM) to high 

(0.225 mM) calcium medium for 24 hr, indicative of stratification into spinous 

and granular layer cells. Similarly, in low calcium CGM, Stratifin expression in 

ICR cells was also low and sporadic (green; right panel) but became abundant in 

suprabasal high calcium keratinocytes; an expression profile consistent with the 

differentiation roles for Stratifin observed in vivo (Dellambra et al., 1995; Sun et 

al., 2015). 

In contrast, all cell lines expressing K14.stratifin exhibited prematurely 

high K1 expression in low Ca2+ CGM medium, and all HK1.fos/K14.stratifin cells 

also showed some signs of calcium-resistance. Both of the HK1.fos/K14.stratifin 

lines expressed high levels of Stratifin in low calcium conditions, yet produced 

somewhat contrasting results, further highlighting the context-dependent roles 

of Stratifin. For example, K14.stratifin cell line S1A exhibited marked K1 

positivity in many keratinocytes grown in low calcium CGM (green, centre panel 

row 2; as did lines S2A, S4 and S5 not shown), akin to spurious basal layer K1 

staining observed in K14.stratifin skin (Chapter 4 Figure 4-15), 

HK1.ras/K14.stratifin hyperplasia (Supplementary data Figure S4), and 

K14.Ptenflx/+.stratifin hyperplasia (Chapter 6 Figure 6-7). Additionally, this 

spurious K1 expression in K14.stratifin line S1A was found to be particularly 

prominent in keratinocytes with a spindle-like morphology, suggesting a 
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premature commitment to differentiate. Thus, K14.stratifin S1A cells were quite 

responsive to calcium-induced differentiation, and in many cases, differentiation 

was complete with confluent cultures showing a stratified phenotype complete 

with squames (Figure 7-3, left panel row 2). However, while the majority of 

K14.stratifin and HK1.fos/K14.stratifin cells exhibited increased K1 expression 

when switched to high calcium CGM (Figure 7-3, right panel row 2), not all 

differentiating cells expressed uniform K1, similar to the patchy K1 expression 

which has been observed in vivo in skins overexpressing Stratifin. 

Further, S1A cells were confirmed to exhibit widespread Stratifin 

expression in low calcium CGM due to exogenous K14.stratifin expression; 

however, it was also noted that Stratifin expression was predominantly in the 

cells with a spindle morphology. Moreover, most Stratifin-positive cells exhibited 

a polarised sub-cellular localisation, with strongest expression seen in 

pseudopodia. As proposed above, anomalous Stratifin overexpression may exert 

a rapid transition of cells out of the proliferative niche to one of accelerated 

differentiation given the numbers of shedding cells and premature K1 expression 

(below; Figure 7-3); an idea consistent with the fact that primaries at clonal 

density initially grew but then stalled and either underwent senescence or 

terminal differentiation. 

The HK1.fos line assessed, F1c, also exhibited some K1 expression in low 

calcium medium (Figure 7-3, centre panel row 3), though at lower levels than 

those expressing K14.stratifin. K1 expression then greatly increased in response 

to elevated calcium concentration, consistent with increased Fos expression 

from the HK1 promoter and the importance of AP-1 in K1 expression induction 

(Rothnagel et al., 1993). Additionally, F1c cells displayed Stratifin expression in 

low calcium which appeared to be confined to clusters of cells with slightly 

different, more compact morphology, possibly indicating early commitment to 

differentiation despite the low calcium culture medium. This is likely due to Fos 

activity, given the normal roles of c-Fos in keratinocyte differentiation 

(Greenhalgh et al., 1993b; Basset-Seguin et al., 1994; Mehic et al., 2005). 

Stratifin expression in F1c became widespread, similar to ICR and S1A, when 

exposed to a higher calcium concentration. 
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Of great interest was the data derived from analysis of the two 

HK1.fos/K14.stratifin lines, FS2 and FS3m, given their contrasting morphologies. 

Initial analysis of the most rapidly growing HK1.fos/K14.stratifin line, FS2, 

showed little change in morphology when switched to high calcium medium 

(Figure 7-3, left panel row 4) indicating resistance to differentiation and, thus, 

transformation; a finding supported by their growth from clonal density (below). 

As observed in S1A cells, many FS2 cells also prematurely expressed K1 in low 

calcium conditions, although, unlike the other lines assessed, K1 expression did 

not alter when switched to high calcium medium, again suggestive of malignant 

transformation (Figure 7-3, centre panel row 4) and consistent with the reduced 

suprabasal K1 expression observed in vivo (Chapter 4 Figure 4-6). Strong Stratifin 

expression was detected in most FS2 cells cultured in low Ca2+, while the intense 

cellular expression observed in many cells in low calcium medium (Figure 7-3, 

right panel row 4) became more diffuse in cell cytoplasm in high calcium, 

suggesting that the less responsive nature of FS2 cells to differentiation cues 

were reflected by less endogenous Stratifin expression. 

Finally, FS3m cells, which possessed unique morphological changes in low 

and high Ca2+ media (Figure 7-3, left panel row 5), were found to express more 

limited premature K1 in low Ca2+ than either FS2 or S1A, though a subset of cells 

(mainly those with flattened, irregular morphology) did express it strongly 

(Figure 7-3, centre panel row 5). Stratifin expression was seen to be very strong 

in some undifferentiated cells, while others showed much weaker expression. In 

high calcium conditions, FS3m expressed a high level of Stratifin, consistent with 

activation of endogenous Stratifin in suprabasal-like cells in these conditions, yet 

the cells failed to completely stratify, lacking terminally differentiated squames 

(Figure 7-3, right panel row 5). This result was reminiscent of the failed 

differentiation in vivo that also exhibited large, disordered cells in the 

suprabasal compartment and lacked a true granular layer (Chapter 4 Figure 4-2). 
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7.4  HK1.fos/K14.stratifin cells exhibit transformation and  

clonal growth correlated with high Stratifin expression 

To quantify the difference in Stratifin expression, Western Blot analysis 

was performed on cells lines grown in low Ca2+ CGM (Figure 7-4). Band intensity 

was assessed using ImageJ, and Stratifin expression was normalised to that of 

the corresponding β-actin band, then further normalised against WT Stratifin 

expression value (i.e., WT had a value of 1) with all other values expressed as a 

fold change. 

HK1.fos/K14.stratifin line FS2 exhibited the highest levels of Stratifin 

expression by far, with a 50-fold increase over WT cells, yet this line possessed 

the fastest growth and exhibited the most resistance to Ca2+-induced 

differentiation with little change in morphology. Thus, despite premature 

Stratifin-associated K1 expression in low Ca2+ CGM (Figure 7-3), these data again 

confirm the oncogenic potency of Stratifin in specific contexts. The other 

HK1.fos/K14.stratifin line assessed, FS3m, exhibited the next highest level of 

expression with an approximately 12-fold increase over normal, again consistent 

with premature K1 expression and oddly spinous-like morphology in low Ca2+, in 

addition to incomplete terminal differentiation in high Ca2+ CGM. These data 

indicate that these FS lines have a highly dysregulated response to 

differentiation signals, suggestive of transformation.  

In addition, the average increase in Stratifin expression over normal (WT) 

was similar in K14.stratifin-expressing lines S1A/S2A and HK1.fos-expressing 

lines F1c/F2, at an average of ~6.25 and ~5.25 times the WT value, respectively. 

These results echo the immunofluorescence analysis which showed where 

elevated Stratifin expression appeared in many S1A cells (Figure 7-3, row 2) 

whilst in F1c (Figure 7-3, row 3) small clusters of cells expressed very high levels 

of Stratifin expression (which may have been prematurely committing to 

differentiation due to Fos activity and culture confluence), leading to this 

perceived similarity in expression via Western Blotting. 

These western data confirm elevated Stratifin expression and add further 

support to the links between elevated Stratifin and HK1.fos-associated 
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expression, in the commitment to (premature, if incomplete) differentiation in 

vitro. Even in the most transformed line HK1.fos/K14.stratifin line, FS2, excess 

of Stratifin appeared to induce K1 in both low and high Ca2+ conditions. 

Nonetheless, when coupled to clonal growth and migration (below) the 

importance of Stratifin or Fos in terminal differentiation appears to be 

superseded and their co-operation leads to oncogenic transformation, as 

observed in vivo. 
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Figure 7-4: Western blot analysis shows that calcium-resistance in 

HK1.fos/K14.stratifin cell lines is correlated with the level of Stratifin expression. 

(A) Western blot showing Stratifin protein levels normal (ICR and WT), K14.stratifin (S1A and 

S2A), HK1.fos (F1c and F2) and HK1.fos/K14.stratifin (FS2 and FS3m) cell lines using β-actin 

as loading control. All cell lysates shown are from cells grown in proliferative Low Ca2+ medium. 

ICR and WT lines showed lowest Stratifin levels, whilst showed F1c and F2 slightly raised levels, 

consistent with immunofluorescence results. S1A and S2A showed a noticeable increase in 

Stratifin levels, as expected. FS2 and FS3m showed the highest levels of Stratifin, with FS2 

exhibiting a considerably stronger band than any other lysate. 10 µg total protein/well. (B) Graph 

of band intensities normalised to the WT band. K14.stratifin lines S1A and S2A show ~6-6.5-

fold increase compared to WT. HK1.fos lines exhibited ~3.5- and 5.75-fold increase. 

HK1.fos/K14.stratifin lines show greatest levels of expression: FS2 expressed nearly 50-fold 

more Stratifin than WT, while FS3m expressed approximately 12-fold more than WT. 
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Also, it should be noted that T52ras/fos SCC cells employed in clonal growth 

experiments below, had unexpectedly retained Stratifin expression (Appendix 1; 

McMenemy et al., in preparation, Figure 7). This was thought to be due to 

derivation of parental SP1 cells from DMBA initiated /TPA promoted papillomas 

(Strickland et al., 1998) and possibility of G-o-F p53 mutations (Wang et al, 

1998) giving rise to sustained Stratifin levels. However, HK1.fos/K14.stratifin 

FS2 data suggest an equally valid possibility that Stratifin contributed to Fos-

mediated progression of SP1ras papilloma cells into T52 SCC cells. 

Given the results regarding morphological and expression differences 

between cell lines, their ability to grow from clonal density was assessed in low 

and high Ca2+ culture conditions. In repeat experiments, all cells utilised were 

between sub-culture 3 (SC3; ICR cells) and SC9 (S1A) and 6 dishes were plated 

out at 250 cells/dish with 3 representative results shown (Figure 7-4). As found 

for wild-type primary keratinocytes, early passage normal ICR cells formed 

numerous colonies in low Ca2+ CGM (Greenhalgh et al., 1989) which grew very 

slowly and were thus relatively small when fixed at 4 weeks (Figure 7-4, left 

panel row 1). All HK1.fos cell lines including F1c (Figure 7-4, left panel row 2) 

showed almost no propensity for colony formation in low Ca2+, with occasional 

small clusters of cells visible, possibly linked to the involvement of Fos in 

suprabasal differentiation, supported by the premature K1 expression seen in IF 

(Figure 7-3, centre panel row 3). K14.stratifin lines such as S1A did produce 

several colonies, all with a larger diameter than equivalent ICR cells, with one 

especially large colony seen in dish 3 (Figure 7-4, left panel row 3). Also, 

consistent with their transformed phenotype, HK1.fos/K14.stratifin FS2 cells 

formed numerous colonies in low calcium (Figure 7-4, left panel row 4), though 

growth was less extensive than in the malignant T52 cells used as a positive 

control (Figure 7-4, left panel row 6). In addition, and consistent with their odd 

morphology above, FS3m showed no clonal growth in low Ca2+ CGM. 
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Figure 7-5: Only the highly Stratifin-expressing line, FS2, was able to form colonies 

from clonal density in high Ca2+ culture conditions. 

From top: ICR cells plated at ~250 cells/dish (6 dishes; 3 representative shown) formed 

numerous very small colonies in 21 days in low Ca2+ but did not grow at all in high Ca2+ medium; 

One of the three F1c dishes grew a small number of tiny colonies in low Ca2+ conditions and did 

not grow at all in high Ca2+; S1A cell formed numerous small colonies and one large colony in 

low Ca2+ but did not grow in high Ca2+; FS2 produced many small colonies in low Ca2+ medium 

and exhibited some resistance in high Ca2+ with the formation of a few small colonies, especially 

in dish 2; FS3m, interestingly, did not grow from clonal density in either low or high Ca2+ 

conditions; T52 cells, transformed by infection with v-H-Ras and v-Fos constructs, were used 

as a positive control, showing extensive colony formation in low Ca2+ medium and a similar 

number of smaller colonies in high Ca2+. 
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After plating out at clonal density (~50 cells/mL; ~250 cells/dish), cells 

were allowed to attach and settle for 24 hours prior to being switched to high 

calcium (0.225 mM) medium for the remainder of the assay. In these conditions, 

only FS2 and the positive control T52 produced any colonies (Figure 7-4, right 

panel rws 4 and 6, respectively), supporting the previous data regarding 

morphology and differentiation marker expression in high Ca2+ (Figure 7-2). 

However, considerably fewer colonies formed in FS2 than in T52, perhaps 

indicative of a heterogenous population or of a generally less aggressive 

phenotype. 

7.5. Expression of K14.stratifin conferred enhanced 

migration in vitro 

Stratifin is well-known to influence the extracellular matrix in its normal 

roles in regulating epidermal homeostasis. Following wounding, studies suggest 

that Stratifin secretion by keratinocytes targets dermal fibroblasts to upregulate 

Fos/AP-1 transcription activity, resulting in the production of multiple matrix 

metalloproteinases that aid in extracellular matrix (ECM) remodelling (Lam et al 

2005; Medina et al., 2007; Ghahary et al., 2005; Ghaffari et al., 2006; Ghaffari et 

al., 2010; Lai et al., 2011) facilitating the necessary changes to the chemical 

signalling environment. In addition, as outlined in Chapters 5 and 6, these signals 

cause cancer associated fibroblasts to alter the local ECM via expression of such 

molecules as Tenascin-C (Räsänen & Vaheri, 2010; Glentis et al., 2017; Ide et al., 

2007) that alter collagen type and fibre alignment, that prepare the wound site 

for re-epithelialisation which in turn, influence basal layer keratinocyte gene 

expression (Maas-Szabowski et al., 1999; Lai et al., 2011) e.g., wound-associated 

keratin, K6 (Wojcik et al., 2000; Wong, et al., 2003) and help limit the fibrosis of 

scarring (Edward et al., 2011; Rahmani-Neishaboor et al., 2012). 

Thus, this process is a prime target for subversion in malignant 

progression, yet despite Stratifin expression being detected at the invasive front 

in many carcinomas, (Ide et al., 2004; Ide et al., 2007; Neupane & Korc, 2008) 

the actual migration abilities of keratinocytes that overexpress Stratifin has not 

been fully investigated. To begin to address this, these cell lines were subjected 
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to scratch assays (Figure 7-5A) to evaluate migratory potential and to see 

whether cells migrated collectively or individually; both seen in vivo (Gaggioli et 

al., 2007; Krakhmal et al., 2015; Hesse et al., 2016; Glentis et al., 2017; 

Labernadie et al., 2017). Typically, each cell line was grown to near-confluency 

then 3 scratches were made per dish. The dishes were photographed at 12-hour 

intervals over a total period of 120 hours (5 days), with medium changes every 

two days as standard (low Ca2+ CGM). 

The results showed that K14.stratifin-expressing line (S5) closed all 

scratches rapidly, within a 36-hour time frame (Figure 7-5A row 4 and B blue 

line). The line FS2 was next quickest at 60 hours, which was somewhat 

unexpected given its proliferative most transformed phenotype (Figure 7-5A row 

3 and B dark green line). Lines which did not overexpress Stratifin, such as F2 

(HK1.fos) or normal ICR exhibited a markedly slower timeframe for scratch 

closure; F2 took double the time of FS2 at 120 hours, and ICR cells did not close 

the scratch within this time frame; indeed, ICR dishes were kept for a total of 10 

additional days, though still failed to fully close the scratch gap. 

With respect to the modes of invasion or migration in wounds, it was also 

noticed that in the less migratory HK1.fos cells and tertiary ICR cells that the 

borders of the scratches remained quite straight and rigid; suggesting that these 

cells migrate as a collective unit rather than as individuals; as observed in re-

epithelisation following wounding (Ito et al 2005; Levy et al., 2005). ICR cells, 

especially, seemed to largely remain at the border of the scratch, suggesting 

that stark removal of the basement membrane component proteins they had laid 

down (Pruniéras et al., 1983) may have inhibited their migration across the 

plastic, which was not observed in any transgenic cells. 

Both K14.stratifin and HK1.fos/K14.stratifin cells appeared to migrate as 

individual cells, consistent with the spaces observed between in their primary 

keratinocyte and cell line cultures (above Figures 7-2 and 7-3) and which hint at 

a less contact-inhibited, more migratory phenotype. Thus, this rapid migration 

of K14.stratifin keratinocytes may reflect a subversion of normal Stratifin roles 

as keratinocytes migrate out of the follicles during wound re-epithelisation (Ito 

et al., 2005; Levy et al., 2007; Snippert et al., 2010). 
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Figure 7-6: Overexpression of Stratifin is correlated with faster scratch closure. 

(A) Examples of scratch assay results in ICR, HK1.fos (F2), HK1.fos/K14.stratifin (FS2) and 

K14.stratifin (S5) cell lines; 3 scratches were made in 6 dishes per line with one of each 

removed and fixed at each time point for later analysis. Photos taken at 12 hr time intervals 

show that normal (ICR) cells did not bridge the gap in the 120-hr duration of the experiment. 

F2 took 120 hr to close the scratch and was used as the end point. FS2, a line known to 

express Stratifin at a very high level (Figure 7-3), closed the scratch in half that time (60 hr), 

while S5, expressing only K14.stratifin, fully closed all scratches within 36 hr. (B) Graphical 

representation of reduction in the area of all scratches in the experiment, showing the clear 

difference between cells expressing K14.stratifin and those without this transgene. Areas 

were determined using the area measuring function in ImageJ and averaged per line. 
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7.6. Discussion 

The ability to culture primary transgenic keratinocytes and induce their 

differentiation via increased calcium levels (Hennings et al., 1980; Greenhalgh 

et al., 1989) has allowed experiments geared to investigate effects of transgene 

expression on differentiation markers and assess the degree of transformation 

via growth from clonal density and resistance to Ca2+-induced differentiation. 

This classic method of assessing malignant transformation in vitro (Kulesz-Martin 

et al., 1983) was previously employed to study effects of Fos and Ras co-

operation (Greenhalgh and Yuspa 1988; Greenhalgh et al., 1990). This resulted in 

the use of fibroblast condition medium which prevented spontaneous 

transformation, and also allowed clonal growth of normal primary keratinocytes 

and development of immortalised cell lines (Greenhalgh et al., 1989). 

In terms of differentiation, use of this classic calcium switch identified 

consequences of Stratifin deregulation consistent with Stratifin induction during 

the terminal differentiation programme (Dellambra et al., 1995; Sun et al., 

2015). It also highlighted the activities of Stratifin in regulating keratinocyte 

spatial awareness and polarisation (Ling et al., 2010) which are important as 

basal layer keratinocytes detach from the basement membrane (Bikle et al, 

2012; Banno and Blumenberg, 2014). Similarly, effects of Fos activation further 

strengthened the links between these two proteins in both differentiation 

(Fisher et al., 1991; Greenhalgh et al 1993b; Basset-Seguin et al., 1994; Mehic et 

al., 2005) and transformation as seen in vivo (Chapter 4). 

7.6.1. Primary cell culture 

Cells derived from Normal, K14.stratifin, HK1.fos (not shown) and 

HK1.fos/K14.stratifin neonatal mouse skins were cultured in low calcium (0.05 

mM) clonal growth medium and assessed for morphological differences and 

changes in response to high calcium (>0.15 mM). Normal cells exhibited the 

classic cobblestone pattern of confluent keratinocytes in 5-7 days. Conversely, 

both K14.stratifin and HK1.fos/K14.stratifin primary cells exhibited varied cell 
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shape and size, with elongated cells common in both, and lower cell density 

despite growing more quickly than Normal ICR cells. 

These observations suggest effects on both increased proliferation 

mediated by Stratifin and Fos, followed by or paralleled by alterations in 

differentiation, e.g., where this subtle shape shift—which was more pronounced 

in cell lines—would be consistent with spatial awareness/polarisation observed 

previously in vitro (Ling et al., 2010) and may echo the shape shift observed in 

vivo as normal keratinocytes become narrow to leave the basal layer and commit 

to differentiation (Watt, 1987; Bikle et al., 2012; Banno and Blumenberg, 2014). 

This idea of rapid growth paralleled by accelerated differentiation was also 

consistent with premature mK1 expression mediated by excess Stratifin 

expression in cell lines. Moreover, the intercellular spaces may reflect an 

increased migratory potential of these cells, as observed in their cell line 

derivatives that reflect roles for Stratifin in wounding (Rahmani-Neishaboor et 

al., 2012). 

When challenged with an intermediate calcium concentration (0.08 mM) 

for 24 hours, Normal cells differentiated into a spinous layer phenotype, 

exhibiting a flattened morphology without the bright cell edges seen in Low Ca2+ 

medium. Either continued exposure to 0.08 mM Ca2+ for a further 24 hr or a 

single 24 hr challenge in high Ca2+ (>0.15 mM) medium resulted in terminal 

differentiation with granular cells overlain by cornified squames; this progression 

is shown in Figure 7-1 as reference for transgenic cell responses. 

When plated at clonal density, normal keratinocytes in these conditions 

formed slowly-growing, stable colonies which stained strongly with Rhodamine B 

(Figure 7-2 Panel II). Interestingly, both primary K14.stratifin and 

HK1.fos/K14.stratifin cells grew poorly in low calcium clonal growth medium, 

forming only small colonies which did not stain strongly with Rhodamine B, 

which may be indicative of problems with the keratin filament network, as have 

been observed in vivo (Chapter 4). Cells in these colonies were prone to 

senescence and spontaneous differentiation, which may represent poorer plating 

efficiency compared with normal cells or a higher sensitivity to low-density 

culture. This is possibly related to accelerated differentiation, as seen in vivo in 
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several models expressing K14.stratifin, where K1 was found to be expressed in 

some basal cells (Chapter 4 Figure 4-15; Chapter 6 Figure 6-7; Supplementary 

data Figure S4). T52 cells (v-H-Ras/v-Fos transformed; Greenhalgh et al., 1990) 

were used as a positive control for malignant cells which grew rapidly in both 

low and high Ca2+ medium, while neither K14.stratifin nor HK1.fos/K14.stratifin 

primaries continued to grow after medium was switched to 0.15 mM Ca2+, with 

morphology showing they had terminally differentiated. 

7.6.2. Phenotypes of cell lines derived from primary cultures 

Primary keratinocytes were also maintained in low calcium clonal growth 

medium (to prevent spontaneous malignant transformation) and cell lines were 

established for further study producing lines designated: Normal: WT, ICR; 

K14.stratifin: S1A, S2A, S4, S5; HK1.fos: F1c, F2, F5, F6; HK1.fos/K14.stratifin: 

FS1s, FS2, FS2s, FS3m and FS4. Initial analysis examined morphological changes, 

hence the suffixes “s” denoted lines with an elongated, spindle-shaped 

morphology, or “m” with a particularly unusual and irregular morphology, that 

may reflect establishment of a proliferative line with elements of a spinous layer 

keratinocyte phenotype. Of note, K14.stratifin lines that developed an 

elongated morphology (typified by the S1A cells shown in Figure 7-3) grew fairly 

quickly, but they also spread throughout flasks/dishes before reaching 

confluency, suggesting these cells were prone to migrate in monolayer cultures– 

as confirmed in migration assays (Figure 7-6).  

In addition, reflecting the complex, context-specific roles Stratifin exerts 

in the epidermis, all K14.stratifin and HK1.fos/K14.stratifin lines grew faster 

than Normal or HK1.fos keratinocytes, consistent with studies that show Stratifin 

aids in cell proliferation, for example, by upregulating mTOR activity by 

facilitating its interaction with cytokeratin 17 (K17) (Kim et al., 2006; Mikami et 

al., 2015). However, in all K14.stratifin cell lines, Stratifin overexpression gave 

rise to confluent K14.stratifin cultures that exhibited marked shedding of cells 

in low calcium medium along with notable premature mK1 expression, consistent 

with a role in the commitment to differentiate (Dellambra et al., 1995; Bikle et 

al, 2012; Banno and Blumenberg, 2014). These results suggest that 
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overexpression of Stratifin induced early differentiation in low Ca2+ medium 

consistent with the normal suprabasal differentiation profile for Stratifin 

observed in vivo (Westfall et al., 2003; Trink et al., 2007; Sun et al., 2015). 

In contrast, HK1.fos cell lines, such as F1c, grew more slowly than the 

K14.stratifin or HK1.fos/K14.stratifin lines. The HK1 promoter is largely 

activated by the same cues as mK1, thus, is more strongly activated in high 

calcium medium, where it (like endogenous c-Fos) regulates differentiation, as 

described in Chapter 1 (Fisher et al., 1991; Mehic et al., 2005). However, the 

modifications to the HK1 promoter allow it to be expressed in a subset of basal-

like cells in low calcium conditions (Rosenthal et al., 1991; Rothnagel et al., 

1993). Given its roles in differentiation of keratinocytes, this pattern of 

expression may account for the clusters of mK1 positive cells seen in F1c 

cultures (Figure 7-3), as well as the strong expression of endogenous Stratifin in 

similar cell clusters in low calcium. These findings suggest that, alone, HK1.fos 

cell lines may be prone to premature differentiation, supported by the fully 

differentiated phenotype seen in high calcium medium (Greenhalgh et al., 

1993b; Basset-Seguin et al 1994; Mehic et al., 2005). This is believed to counter 

the oncogenic proliferation induced by HK1.fos expression in vivo, resulting in 

only hyperplasia rather than papilloma generation (Chapter 4 Figure 4-2) 

(Greenhalgh et al., 1993b). 

HK1.fos/K14.stratifin lines which were assessed for calcium resistance 

showed varying results. FS2 showed very little change in morphology in response 

to high calcium medium, while FS3m, which had a markedly different 

morphology in low calcium to FS2, appeared to differentiate somewhat but did 

not form cornified cells (squames). This is reminiscent of the different levels of 

severity in the HK1.fos/K14.stratifin phenotype in vivo, suggesting that 

differences in the keratinocytes themselves exist in addition to changes in the 

microenvironment which drive tumorigenesis. Indeed, differences in cellular 

expression in keratinocytes form a feedback loop with their microenvironment 

via paracrine signalling and directly influence the behaviour of stromal and 

immune cells, which in turn affect tumour development (Goetz et al., 2011). 
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Morphological changes in response to calcium were supported by the 

changes in K1 expression in these cell lines. ICR cells did not express Keratin 1 in 

low calcium medium, which increased greatly due to calcium-induced 

differentiation. This was also seen in F1c cells, though the cells in low calcium 

interestingly exhibited some low-level K1 expression, suggesting a subset of cells 

were primed for differentiation by HK1.fos expression, also seen in vivo, 

wherein the wound-promoted hyperplasia is delayed as proliferation is 

counterbalanced by increased differentiation (Chapter 4 Figure 4-2; Greenhalgh 

et al., 1993b). 

7.6.3. Enhanced cell migration was associated with Stratifin 

overexpression in vitro 

One consistent feature of Stratifin overexpression in vitro was the 

increase in cell migration which was apparently separate to transformation 

status. These data are consistent with roles suggested for Stratifin in terms of 

spatial awareness—indicated here in immunofluorescence (Figure 7-3)—and the 

fact that Stratifin appears in several invasive internal carcinomas (Ide et al., 

2004; Neupane & Korc, 2008; Li et al., 2009; Naidoo et al., 2012). The results 

also indicate that Stratifin-overexpressing keratinocytes can migrate 

independent of dermal fibroblast interactions that are necessary to provide the 

ECM remodelling observed in full thickness wounding (Ghahary et al., 2005; 

Ghaffari et al., 2006; Ghaffari et al., 2010; Lai et al., 2011). This suggests that 

in wound-healing, paracrine Stratifin secretion from such migratory 

keratinocytes (Ito et al., 2005) maybe an essential facet that helps reduce 

fibrosis and scarring thus improving the overall healing process (Edward et al., 

2011; Rahmani-Neishaboor et al., 2012). 

This increase in motility may be facilitated by the interaction between 

Stratifin, intermediate filaments (K5 and K17) and soluble actin; a complex 

which has been shown to potentiate movement of breast cancer cells by 

mediating a dynamic pool of cytoskeletal components (Boudreau et al., 2013). 

The reasoning for the lower migratory potential of FS2 cells compared to the 

K14.stratifin lines is unclear; however, this may reflect concurrent activated Fos 
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expression, as HK1.fos lines readily terminally differentiated in response to high 

calcium medium (Figure 7-3), reflecting the importance of Fos in the 

differentiation program, as described in Chapter 1 (Fisher et al., 1991; 

Greenhalgh et al 1993b; Mehic et al., 2005). This suggests that expression of 

HK1.fos, while conferring a transformed phenotype in conjunction with high 

Stratifin expression, actually impeded movement of cells into the scratched 

area. It may be that Fos transcription factor activity—that regulates expression 

of many intermediate filaments (Oshima et al., 1990; Ma et al., 1997)—simply 

creates a different cellular context with reduced migratory potential due to 

alterations in influence of Stratifin activities. 

Nonetheless, once transformed, Western Blot analysis showed clear 

differences in the level of Stratifin expression between cell lines, with the 

highly-expressing line FS2 showing both most resistance to Ca2+-induced 

differentiation and being the only line tested to grow from clonal density in high 

calcium medium (Figure 7-5). This appears to be consistent with the results 

observed in vivo in previous chapters, wherein K14.stratifin expression was 

repeatedly linked to a greater propensity for invasion than in controls not 

expressing this transgene. Also, whilst the unique phenotype of FS3m remains to 

be fully elucidated, co-expression of Fos and Stratifin did confer some Ca2+ 

resistance. Here it may be that these cells represent a stalled spinous 

morphology, with the more moderate 12-fold increase in Stratifin expression 

over normal seemingly conferring a suprabasal-like phenotype on these cells 

even in low Ca2+ medium. This may account for the weak response to high Ca2+ 

medium which resulted in an incomplete differentiation, denoted by the lack of 

stratification and cornified cells. 

The differences in the characteristics of these HK1.fos/K14.stratifin and 

K14.stratifin lines further cements the hypothesis that the effects of Stratifin 

overexpression vary greatly in different subcellular environmental contexts and 

appear to indicate that the resulting phenotypes are dose-dependent. This latter 

point may be an important factor in the different degrees of severity of the 

HK1.fos/K14.stratifin phenotype in vivo. The approximately 50-fold excess in 

Stratifin expression observed in the most transformed FS2 line clearly shows that 

the synergy between these two proteins is the important factor and combined, 
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support the hypothesis that increased Stratifin expression confers growth 

advantages and resistance to differentiation signals in conjunction with Fos 

activation. 

Further, with respect to invasion, whilst the scratched borders of normal 

keratinocytes remained quite rigid, this was not the case in Stratifin-expressing 

cells. This suggests that, as observed in vivo in the more aggressive 

HK1.fos/K14.stratifin fSCC cells and Type 2 HK1.ras/K14.stratifin SCCs, cells 

appeared to migrate as individuals rather than as a collective unit—an 

observation also consistent with the spaces between individual K14.stratifin and 

HK1.fos/K14.stratifin cells observed in primary and cell line cultures. In contrast 

the less aggressive Type 1 HK1.ras/K14.stratifin SCC cells initially retained some 

element of the collective cell invasion mode (Figure 5-7). 

This latter observation suggests that the collective front migration model 

requires the continued maintenance of cell-cell adhesion, thus E-cadherin—a key 

component of adherens junctions—would be expected to persist (Figure 5-7) 

(Krakhmal et al., 2015; Hesse et al., 2016), but of necessity in the aggressive 

cell lines, E-cadherin must be lost to facilitate individual cell invasion. 

7.6.4. Limitations 

This in vitro study utilised keratinocytes derived from neonatal skins to 

establish primary monocultures from which cell lines were derived for further 

study. While this produced useful results, there were notable limitations due to 

resources and time constraints which affected the strength of the study and the 

robustness of its conclusions. For example, none of the cell lines (with the 

exception of Fos1c) were clonally derived, thus the populations were 

heterogeneous and therefore may not have displayed uniform protein 

expressions and behaviours throughout the cultures. This also means that with 

each passage, the more transformed cells were likely being selected for, since 

these trypsinise more readily than normal keratinocytes—though it should be 

noted that all lines used here were at very early passage numbers (≤ 10). Going 

forward, clonal colonies will be derived to improve repeatability of the work, 

and to minimise confounding factors related to uneven transgene expression 
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within colonies (noted above to be possible with the expression of HK1.fos in low 

Ca2+, proliferative medium). 

Additionally, cells grown on chamber slides for immunofluorescence 

analysis were near confluent when fixed, which is known to change protein 

expression and behaviour of keratinocytes compared to growing colonies. This 

issue was later corrected in a repeat experiment, however, time constraints 

primarily due to work on concomitant in vivo studies meant that staining was not 

completed within the allotted time for research activities and therefore could 

not be included here. Similarly, logistical problems in performing western 

blotting meant that, while proteins were isolated and transferred to 

membranes, the staining and visualisation for a variety of proteins of interest 

could not be performed as this had to be done at a secondary location and was 

later postponed indefinitely due to restrictions relating to Covid-19.  

While these problems certainly impact the strength of the conclusions 

which can be drawn, the in vitro work nevertheless allowed for better insight 

into the relationship between K14.stratifin expression and keratinocyte 

morphology and behaviour which was harder to glean from in vivo experiments. 

Importantly, this work also established multiple cell lines for use in future work 

(detailed below) which could allow for much more insight into the 

HK1.fos/K14.stratifin phenotype and the underlying mechanisms. 

7.6.5. Future directions 

To further explore potential Stratifin expression role(s) in these models of 

re-epithelialisation during wound closure and altered migration potential that 

mimics invasion, experiments are planned to assess the migrating cell fronts for 

expression of Stratifin and its subcellular localisation; together with E-cadherin, 

β-catenin and Keratin K6α, initially employing the fixed dishes and, 

subsequently, 3D organotypic invasion assays (Edward et al., 2010; Timpson et 

al., 2011; Appendix 1: McMenemy et al., in preparation). These may also be 

useful in assessing the effects of Stratifin on normal fibroblasts employed to 

contract the matrix, as CAFs appeared to play important roles in tumorigenesis 
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in vivo, and such a setup may allow for easier characterisation of their changes 

in behaviour and gene expression with time than in vivo. 

Larger scale protein analysis via Western blotting also remains to be 

performed on cell lysates obtained from all primary cultures and immortalised 

cell lines; this includes lysates in both RIPA buffer (for soluble proteins) and 

SDS/β-mercaptoethanol buffer (for insoluble components including keratins). 

Given the notable effects on the keratin filament network observed in vivo in 

HK1.fos/K14.stratifin tumours and their apparent follicular origin, expression of 

various keratins associated with the terminal differentiation programme and 

with specific compartments of the hair follicles will be examined and quantified 

relative to normal ICR primary and tertiary cell lysates. 

Given the consistently invasive phenotypes seen in vivo in previous 

chapters and the greater migratory potential observed here in vitro when 

Stratifin is overexpressed, further work should also focus on cell components 

which regulate cell movement, such as the actin cytoskeleton and the proteins 

with which it associates in pseudopodia (such as that seen in FS3m cells in Figure 

7-3). This is especially of interest since Stratifin was found to mediate a pool of 

soluble actin in complex with intermediate filaments in a basal-like breast 

cancer model (Boudreau et al., 2013), and therefore should be assessed here to 

see whether the same is true in epidermal cells and whether other components 

may be involved. 

Finally, in the long term, new transgenic mice have been imported to 

assess effected of E-cadherin loss and β-catenin overexpression that will allow 

further investigation of the roles of Stratifin in these in vitro and in vivo models 

of keratinocyte differentiation and carcinogenesis. 

7.6.6. Conclusions 

The cell lines generated in this study have confirmed several observations 

in vivo, such as premature K1 expression and increased migratory capacity in 

cells expressing high levels of Stratifin via the K14.stratifin transgene. These 

cultures, along with the proteins which can be analysed from cell lysates of both 
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primary and cell line cultures, will provide valuable insights into the behaviour 

of keratinocytes in the fSCC phenotype. This will allow further analysis of the 

keratinocyte-specific behaviours in this genotype, separate to the effects of 

immune cells or stromal fibroblasts, allowing insights into fibroblasts-

independent migration and invasion mechanisms which appear to be pertinent 

across all K14.stratifin-expressing genotypes studied, here. 
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8.1. Summary of the findings 

The main aim of this study was to evaluate the possible tumour 

suppressive or oncogenic roles of Stratifin in cutaneous squamous cell carcinoma 

using transgenic mouse models. 

In Chapter 3, analysis of endogenous Stratifin expression in a well-

characterised multistage model of carcinogenesis (HK1.ras/fos-Δ5Pten) showed 

that its loss occurred subsequent to that of p53, persisting in the well-

differentiated carcinoma until p21 loss signalled transition to a poorly-

differentiated histotype. This suggested that Stratifin exhibits tumour 

suppressive roles separate to its positive regulation of p53 levels in the context 

of this multistage model and may support p21-mediated cell cycle inhibition 

(Hermeking et al., 1997; Niculescu III et al., 1998; Steiner et al., 2012) until the 

mutational burden in the absence of p53 and Pten activity tips the balance in 

favour of progression to pdSCC. 

In Chapter 4, experiments progressed to investigate Stratifin activity 

further in the context of these established models, employing new transgenic 

mice which overexpresses human Stratifin under the control of a Keratin 14 

promoter. This allowed targeting to the undifferentiated epidermis and hair 

follicle outer root sheath. K14.stratifin mice were found to develop epidermal 

hyperplasia without hyperkeratosis in the epidermis ~6 months after wound 

promotion (ear tag) was applied; a novel finding which had not been previously 

reported due to the lack of wound-promotion employed in the original study 

(Cianfarani et al., 2011). 

K14.stratifin expression was then investigated in the context of activated 

Fos expression (Chapter 4). These mice developed rapidly-growing wound-

promoted tumours, and most also developed either hyperplasia/hyperkeratosis 

or a tumour on the non-tagged ear. Histological analysis, differentiation marker 

loss and increased BrdU labelling indicated that HK1.fos/K14.stratifin tumours 

converted to malignant carcinoma within weeks and did not require further 

genetic manipulation to do so; indeed, ablation of p53 in this model had no 

effect on timing of tumour development or histological appearance. Certain 



Chapter 8: Final Discussion  241 

 
 

histological features and the pattern of Keratin 17 staining indicated that the 

model recapitulated human follicular squamous cell carcinoma (fSCC); described 

in the literature as an under-recognised neoplasm which is often misdiagnosed 

and requires further study (Shendrik et al., 2013; Carr et al., 2014). There was 

also extensive disruption to the keratin filament network, including loss of co-

localisation of partner keratins K1 and K10, and perinuclear collapse of K14 — 

possibly indicating novel activities of Stratifin in regulating intermediate 

filament stability. 

Next, following the unexpected and intriguing HK1.fos/K14.stratifin data, 

Chapter 5 explored the possibility that Stratifin overexpression may also have a 

tumour promoting, rather than suppressing, role in co-operation with H-Ras 

activation. Thus, the K14.stratifin transgene was co-expressed with HK1.ras, 

which alone results in benign, wound-dependent papillomas. Here, two distinct 

tumour aetiologies were produced: Type 1 slow growing, wound-dependent 

tumours which showed signs of malignant conversion after approximately 3-4 

months, and Type 2 rapidly-growing, wound-independent tumours which 

exhibited widespread malignant conversion. These were blatantly of different 

tumour aetiology to the HK1.fos/K14.stratifin fSCCs, with histotypes more 

closely resembling classic cSCCs than the unusual histotype detailed in Chapter 

4. Histological analysis indicated a high stromal content and collective invasion 

of keratinocytes in Type 1 tumours, while Type 2 featured a more aggressive 

histotype with both collective and individual cell invasion present. Differences in 

the co-localisation of K1 and K10 were found, with Type 1 tumours similar to 

HK1.ras controls while Type 2 showed greater divergence, somewhat akin to 

HK1.fos/K14.stratifin results. 

In addition, previous studies have shown that ablation of p53 in these 

HK1.ras mice resulted, unexpectedly, in the suppression of tumour development 

(Greenhalgh et al., 1996); here, this illogical result again appeared in control 

HK1.ras/p53flx/flx genotypes as previously observed. Thus, this provided an 

opportunity to assess if Stratifin overexpression could by-pass this “p53 

paradox”. However, unlike HK1.fos/K14.stratifin aetiology which appears to be 

uncoupled from p53 activities, here following p53 ablation, whilst all 

K14.ras.p53flx/flx.stratifin hyperplasias were found to be sporadically invasive 
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and have a high level of inflammatory infiltrate, again there was a lack of overt 

tumour formation. 

To further assess the roles of Stratifin overexpression in the context of 

TSG ablation, preliminary experiments reported in Chapter 6 investigated the 

consequences of K14.stratifin transgene expression in mice lacking either p53 or 

Pten (K14.p53flx/flx.stratifin and K14.Ptenflx/flx.stratifin), then subsequently 

alongside loss of both TSGs (K14.p53flx/flx.Ptenflx/flx.stratifin). 

K14.p53flx/flx.stratifin mice exhibited signs of malignancy including dysplasia, 

hyperchromatic nuclei and invasion, which were absent in K14.p53flx/flx controls. 

Expression of K14.stratifin was then found to greatly exacerbate the Cowden 

Syndrome phenotype of K14.Ptenflx/flx mice, and histopathology indicated that, 

while no overt tumours were generated, patches of invasive carcinoma formed 

on wound-promoted ear skin. This was confirmed by examination of 

differentiation marker (K1) loss, though Akt upregulation was not determined to 

be a factor in carcinogenesis. Dual ablation of p53 and Pten concurrent with 

Stratifin overexpression resulted in wound-independent tumour production with 

variable histological appearances, though all showed signs of malignant 

progression. Furthermore, all tumour sites were macroscopically hairless and, as 

in K14.Ptenflx/flx.stratifin skin, HFs structures appeared to be integral to the 

pathology, though these, too, did not resemble the fSCCs generated in 

HK1.fos/K14.stratifin mice. 

Finally, in Chapter 7, primary keratinocytes were obtained from neonatal 

skins of HK1.fos, HK1.fos/K14.stratifin and K1.stratifin transgenic pups, 

alongside normal controls, to assess effects of these transgenes on Calcium-

induced differentiation and cell migration. It was found that despite 

morphological changes consistent with transformation and their consistent 

tumorigenic effects in vivo, primary transgenic cells did not display resistance to 

high Ca2+ concentrations and terminally differentiated similar to normal ICR 

cells. They were also unable to grow from clonal density in either low or high 

Ca2+ medium. 

Immortalised cell lines derived from the initial primary cultures to 

facilitate further analysis of their traits in vitro. Slight differences in morphology 



Chapter 8: Final Discussion  243 

 
 

of the lines were observed compared to normal ICR cells, as well as different 

levels of resistance to Ca2+ and the ability to grow from clonal density; more 

transformed HK1.fos/K14.stratifin cells (line FS2) were found to express the 

most Stratifin using Western Blot analysis. Lastly, migration potential was 

assessed using a scratch assay, which showed that higher Stratifin expression was 

correlated with shortened wound-closure time, though concurrent expression of 

HK1.fos was found to increase closure time over cells expressing K14.stratifin 

alone. 

8.2. Contribution of Stratifin to tumour initiation, 

progression and invasion 

The initiation stage of carcinogenesis involves mutations in the sequence 

of genes or changes to their epigenetic control mechanisms which increase the 

risk of cancer formation. For example, HK1.ras, mimics activating mutations in 

the HRAS gene, with some lines (e.g., 1205) able to form benign papillomas upon 

wound-promotion, whereas HK1.fos give hyperplasia and require further genetic 

hits over time (often >12 months) to achieve even benign papilloma 

development. However, these models can universally initiate carcinoma 

development when subjected to further “hits” (as in HK1.ras-Δ5Pten + TPA and 

HK1.ras/fos-Δ5Pten) (Yao et al., 2006; MacDonald et al., 2014). Here, it was 

found that overexpression of Stratifin alone via the K14.stratifin construct 

produced only mild hyperplasia after several months in wound-promoted skin 

(Chapter 4), while carcinomas developed in all multigenic models. This indicates 

that Stratifin, too, is unable to induce carcinogenesis alone, consistent with 

decades of study indicating the requirement for multiple concurrent genetic 

aberrations for tumour development (Ashley, 1969; Knudson, 1971, 2001; Renan, 

1993). 

When K14.stratifin was co-expressed with either the HK1.fos or HK1.ras 

oncogenes, the skin did progress to carcinogenesis either as an overt tumour 

(Chapters 4 and 5) or, following additional TSG loss, unusual invasive hyperplasia 

(Chapters 4 and 6), consistent with roles in cell migration (Chapter 7). 

Collectively, these data showed that overexpression of Stratifin can act as a 
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potent tumour promoting agent, as even concurrent expression of HK1.ras and 

HK1.fos does not induce progression past the benign papilloma stage without 

further genetic insult in vivo (Greenhalgh et al., 1993c), despite their wide-

ranging effects and known oncogenic properties (Milde-Langosch, 2005; Bejjani 

et al., 2019; Brown et al., 1990; Hancock, 2003). 

One aspect which may help to elucidate this is the aberrant expression of 

Keratin 1 in the basal layer and hair follicles (including stem cell compartments) 

seen in all skins expressing K14.stratifin (Chapter 4 Figure 4-16). While this may, 

at first, seem counterintuitive since early K1 (and K10) expression has been 

associated with tumour suppression (Kartasova et al., 1992; Santos et al., 2002), 

the HK1 promoter is sensitive to the same activating cues as the endogenous 

mK1 (Rosenthal et al., 1991); therefore, it is likely that HK1.ras and HK1.fos are 

expressed in the HFs and possibly in a greater number of basal cells when 

K14.stratifin is active. 

In all experimental models incorporating K14.stratifin, some evidence of 

keratinocyte invasion was observed, and was extensive in some cases. Instances 

of both collective and individual cell invasion were found to be present, 

sometimes in the same tumour, indicating multiple underlying mechanisms at 

play. Evidence suggests that paracrine signalling to stromal cells and the likely 

development of cancer-associated fibroblasts (CAFs) is integral to facilitating 

early invasion (Gaggioli et al., 2007; Glentis et al., 2017), with Stratifin known 

to be a potent paracrine activator of fibroblasts to facilitate tissue remodelling 

(Lam et al., 2005; Ghaffari et al., 2010; Liu et al., 2016). This was exemplified 

in Type 1 HK1.ras/K14.stratifin tumours, which were largely benign but where 

patches of carcinoma in situ and multiple regions of E-cadherin positive 

collectively invading cells invasion. This was also supported by the observed 

marked increase in Tenascin-C expression in all HK1.ras/K14.stratifin tumour 

stroma; TEN-C is a matrix glycoprotein which has been proposed as a novel CAF 

marker (Ni et al., 2017), and has been found to be associated with increased 

tumour invasion, metastasis, and recurrence (Jahkola et al., 1998; Cai et al., 

2017; Sun et al., 2019), in some cases linked to higher Stratifin expression in the 

associated keratinocytes (Ide et al., 2007). This appears to be consistent with 

the observations here that invasion precludes overt tumour formation in TSG 
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ablation models (Chapter 6) and increased migration in vitro (Chapter 7), which 

echo studies in human carcinomas both in clinical samples and in in vitro 

experiments (Boudreau et al., 2013). 

8.3. Significance: potential biomarker and drug target? 

8.3.1. Background 

Cutaneous SCC (cSCC) is the second most common skin cancer in 

Caucasians and represents around 20% of skin malignancies (Rogers et al., 2006). 

It is also the most common cancer overall with the capacity to metastasise 

(Brougham et al., 2012) and its incidence is increasing, especially in younger and 

immunocompromised populations (for example, transplant recipients and those 

being treated for autoimmune conditions) (Christenson et al., 2005; Hunter et 

al., 2012; Karia et al., 2013; Schmults et al., 2013). True incidence and 

mortality are difficult to measure, however, with large ranges reported in the 

registries which do separate SCC data from BCC (Que et al., 2018); indeed, some 

studies have proposed that the ratio of SCCs to BCCs is actually much closer than 

the 1:5 often cited (Rogers et al., 2015). Additionally, the incidence of the fSCC 

subtype believed to be recapitulated by the HK1.fos/K14.stratifin mouse model 

is currently unknown, with reports describing the disease as under-recognised 

and often mistaken for other entities in the clinic, including BCC (Shendrik et 

al., 2013), since the histopathology is rather unlike classic cSCC. 

In the clinical setting, tumour staging is among the most important 

aspects when devising treatment options and evaluating prognosis (Que et al., 

2018). In superficial or locally invasive cSCC (i.e., contained within the dermis), 

ablative therapy (e.g., liquid nitrogen) or surgical resection alone may be 

sufficient, with a 5-year cure rate of >90% (Stratigos et al., 2015). Current 

European guidelines for treatment of cSCC indicate that surgical margins for 

resection of low-risk tumours (<2 cm horizontal width) are recommended to be 

at least 5 mm, while higher risk tumours (>2 cm diameter or >6 mm depth) 

require larger margins of 10 mm (Stratigos et al., 2015). While this approach is 

often curative, in sensitive areas of the face, such as the lips and eyelids or skin 
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overlying the facial nerves, these margins cause disfigurement and loss of 

functionality which may render them unresectable. In such cases, radiotherapy 

may be employed as an alternative or as an adjuvant to less radical surgery and 

provides favourable responses and a similar 5-year survival to surgery in many 

cases (Al-Othman et al., 2001), especially when combined with platinum-based 

chemotherapy (Ogata et al., 2020). However, radiotherapy is contraindicated in 

many situations, including on photodamaged skin, areas which are poorly 

vascularised areas or prone to trauma (e.g., lower legs), patients who are 

immunocompromised, or have previously undergone radiotherapy, and those 

with cancer-predisposition syndromes like Xeroderma pigmentosum (Stratigos et 

al., 2015). 

Metastasis to local lymph nodes (LN) is believed to occur in around 4% of 

cases (Schmults et al., 2013) and has been shown to dramatically reduce the 5-

year survival rate to only around 30% (Givi et al., 2011). This is due to its 

correlation with poorer histological grade and a higher incidence of both local 

recurrence and distant metastasis than in situ or locally invasive disease. While 

combined surgery and radiotherapy (or radiotherapy with systemic platinum-

based chemotherapy in cases which are unresectable) has been shown to provide 

the best outcomes in the case of LN involvement, many people in the mean age 

group are ineligible for radiotherapy due to immunodeficiency (Givi et al., 2011; 

Stratigos et al., 2015; Ogata et al., 2020). In light of this, it is clear that 

prevention of LN invasion is paramount and new treatment options for those 

which have already reached this stage are vital if survival is to be improved. 

Therefore, identification of proteins involved in tumorigenesis and 

carcinogenesis is necessary for development of targeted therapies which could 

allow less intensive treatment to be possible, especially those limiting the 

requirement for repeated hospital treatment as with radiotherapy. 

Currently, the only targeted systemic therapies available for advanced 

SCC are EGFR inhibitors such as Erlotinib and Cetuximab (Gold et al., 2018; Alter 

et al., 2013; Otaga et al., 2020) and, very recently, Cemiplimab, a monoclonal 

antibody which targets programmed cell death-1 (PD-1) and has shown promising 

results (Migden et al., 2018; Guerrero et al., 2019). It should be noted, however, 

that studies have shown that constitutively active mutant KRAS or HRAS reduce 
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efficacy of therapies targeting EGFR (Hah et al., 2014), which occur in 3% and 6% 

of cSCCs (though HRAS may be more prevalent in aggressive SCCs than in general 

at around 20% (Pickering et al., 2014)). 

8.3.2. Biomarker 

Biomarkers are signs, including protein expression, which can be used to 

identify pathological processes with which they are correlated (e.g., PSA 

glycoprofiling in prostate cancer (Tkac et al., 2019)) or are involved in 

generating (e.g., BCR-ABL transcripts in chronic myeloid leukaemia (Mishra et 

al., 2018)). In this study, Stratifin overexpression was consistently shown to have 

oncogenic effects in a range of transgenic mouse models including those 

overexpressing the activated oncogenes Fos and H-Ras, and lacking tumour 

suppressor genes p53 and Pten. The most common features seen across the 

models were invasion, immune infiltration, and a propensity for wound-

independent tumour development. 

Stratifin overexpression is correlated with invasion and poor prognosis in 

multiple carcinoma types, with research showing a link between high Stratifin 

expression in some internal carcinomas and lymph node metastasis leading to 

poorer prognosis (Neupane and Korc, 2008; Li et al., 2009; Naidoo et al., 2012; 

Robin et al., 2020). Even in breast cancer, where Stratifin expression is 

commonly lost through promoter methylation, studies have shown that in a 

subset of cases where Stratifin is highly expressed (often triple negative and 

basal-like subtypes), it is significantly correlated with invasion, and both poorer 

disease-free survival and disease-specific survival (Simpson et al., 2004; 

Boudreau et al., 2013; Ko et al., 2014). 

While there is some evidence suggesting that Stratifin is retained in many 

human cutaneous SCCs (Lodygin et al., 2003), there is a paucity of data 

regarding its expression in these skin cancers. In Chapter 3, it was shown that 

endogenous Stratifin expression is greatly reduced following malignant 

conversion in HK1.ras/fos-Δ5Pten carcinomas, after the loss of its main 

activator, p53 (Appendix 1; McMenemy et al., in preparation). However, 

overexpression of Stratifin in the studies regarding internal carcinomas show 
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that epigenetic alteration, namely promoter hypomethylation, is the primary 

mechanism of upregulation, thus, in the context of normal epigenetic regulation 

and in the absence of p53 (or TAp63) this is perhaps not surprising. Additionally, 

most cutaneous SCCs possess a mutant G-O-F isoform of p53 which may be able 

to transactivate Stratifin expression, though this does not appear to have been 

investigated yet. 

All experiments described in this thesis in which Stratifin has been 

exogenously overexpressed resulted in increased carcinogenesis and invasive 

potential, thereby supporting the literature describing Stratifin as a “double-

edged sword” (Li et al., 2009), as both its loss and overexpression are tumour-

promoting but highly context-dependent. This is indicated by the in vitro 

experiments described in Chapter 7, wherein HK1.fos/K14.stratifin cell lines 

which expressed more Stratifin were seen to be more highly transformed and 

less sensitive to differentiation cues than lines expressing lower levels (FS2 vs 

FS3m). Similarly, while HK1.fos-only lines expressed more Stratifin than normal 

ICRs, the level was not found to be hugely different to K14.stratifin cells by 

Western Blot quantitation, but as the IF analysis showed, the number of cells 

expressing the protein above ICR baseline in low calcium medium (discrete 

clusters in F1c vs all cells in S1A, for instance) created a totally different 

context which did not promote transformation in these cells. 

Furthermore, when K14.stratifin was expressed in vivo concurrently with 

p53 ablation (both alone and alongside HK1.ras expression), and with Pten 

ablation, histological analysis indicated the presence of areas of invasive 

carcinoma; however, no overt tumours were produced (or occasional small ones 

in K14.ras.p53flx/flx.stratifin mice). This suggests that Stratifin has promoting 

roles in carcinogenesis, but not necessarily in overt tumour development. 

Indeed, since monogenic HK1.ras mice generate benign tumours upon wound-

promotion, it may be that, while K14.stratifin expression clearly augments the 

histotype, its main promotion roles are in malignant conversion and invasion 

rather than early-stage tumour development. Thus, the only model described 

here in which Stratifin overexpression appears integral to initial tumour 

development as well as malignant conversion is in the unique 
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HK1.fos/K14.stratifin fSCC histotype. Hence, Stratifin is likely most use as a 

biomarker of invasive malignant potential and in prognosis, in specific contexts. 

Moreover, since a large proportion of cutaneous SCCs harbour inactivated 

TP53 (i.e., loss of p53 function, mainly due to UV-induced pyrimidine dimers) 

(Giglia-Mari & Sarasin, 2003; Pickering et al., 2014), and do not necessary 

exhibit overt tumours early in development of SCC, overexpression of Stratifin 

could be investigated as a potential causative agent in such cases, possibly 

informing the prognosis in terms of likelihood to convert and become invasive. 

This is supported by the finding that all SCCs tested in one study exhibited high 

Stratifin expression, though this data is not conclusive as only 11 SCCs were 

examined (Lodygin et al., 2003). Stratifin has recently been implicated in 

resistance to both radiotherapy and several chemotherapeutic drugs in multiple 

cancer types by preventing senescence in treated cells, and enhancing DNA 

repair (Han et al., 2006; Han et al., 2009; Chen et al., 2017). This further 

suggests that high Stratifin expression should be considered as a poor prognostic 

marker as such tumours may evade therapeutic intervention, while the current 

study has indicated a high invasive potential, as in several internal carcinomas 

(Ide et al., 2004; Nakayama et al., 2005; Li et al., 2009; Naidoo et al., 2012; Liu 

et al., 2016). The results obtained in this study suggest that high levels of 

Stratifin in basal layer cells should be investigated as a potential 

biomarker/prognostic marker for invasion in human cutaneous SCCs, and as a 

specific marker for fSCCs alongside Fos/AP-1 and HF markers (e.g., K17 and 

CD34) as published previously (Misago et al., 2014). 

8.3.3. Drug target 

14-3-3 proteins make attractive druggable targets and, as such, drugs 

targeting 14-3-3 family members have been studied in recent years, including 

those both stabilising and inhibiting their interactions (Kaplan et al., 2017; 

Stevers et al., 2018). While generation of small molecule inhibitors of 14-3-3 

binding has been successful in several studies, the family members are very 

similar, meaning that drug targeting of the binding groove with the intention of 

preventing interactions with a specific 14-3-3 molecule is highly likely to target 
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most or all family members, creating potentially unacceptable side effects. 

Recently, secondary binding pockets which are separate to the primary groove 

have been identified which researchers believe may allow for more specific 

targeting (Sijbesma et al., 2017); however, they also state that these regions are 

highly conserved, highlighting their importance but also reducing the capacity 

for improvement of specificity. In the case of Stratifin (14-3-3σ), this may be 

less of an issue than with the other 14-3-3s, as this molecule has more unique 

features than the other members, for example, the salt bridge between Lys9 and 

Glu83 and ring-ring interaction between Phe25 & Tyr84, both of which only occur 

in the σ isoform (Wilker et al., 2005). Furthermore, analysis of the crystal 

structures has shown that a region on the edge of the phosphopeptide binding 

groove (Ala203-Asp215 loop) is most likely responsible for ligand-specific binding, 

as, despite the highly conserved primary amino acid sequence, 3 AAs are unique 

to Stratifin (Met202, Asp204 and His206) and result in a much more open 

conformation in this region than in other isoforms (Bezinger et al., 2005). This 

could, therefore, represent an ideal starting point for drug development to 

specifically-target Stratifin interactions while sparing the other 14-3-3 functions. 

Studies into Stratifin, specifically, have used RNA interference and gene 

knockouts in vitro to reverse the drug and radio-resistance attributed to Stratifin 

but so far, no drugs have been developed to target this molecule in vivo (Han et 

al., 2006; Han et al., 2009; Chen et al., 2017). Mouse knockout models suggest 

that systemic targeting of Stratifin is a viable option, as use of a deleting-Cre 

(CMV-Cre) to constitutively excise the gene in all tissues was found to create a 

dishevelled fur phenotype in otherwise viable mice (Winter et al., 2016). While 

this knockout study concluded that these Stratifin-deficient mice were viable, 

they found that they were more susceptible to DMBA-TPA induced 

carcinogenesis; a finding which supports the results described here in Chapter 3. 

However, this would be a consideration for systemic therapy as it suggests 

depletion of the protein may increase the likelihood of subsequent SCC 

development. 
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8.4. Future directions 

While some model-specific future experiments have been outlined in the 

relevant results chapters, there are features common to all the K14.stratifin 

expression models described. These include clear effects on the dermis and 

tumour stroma, with notable hyperplasia being common. This should be 

quantified and the reasons for it investigated (Wu et al., 2016), since most 

information in the literature regarding effects of keratinocyte-releasable 

Stratifin on the dermis focus on the induction of MMP secretion in wound healing 

(Medina et al., 2007) and do not describe increased fibroblast proliferation or 

greater matrix deposition (which, indeed, is a little at odds with the known 

induction of protease secretion). 

Furthermore, marked immune infiltration of both hyperplastic skin and 

tumours was seen in all K14.stratifin models, suggesting a pro-inflammatory role 

which has not been described previously and which, again, appears to defy the 

convention that it is anti-inflammatory in wound-healing (Rahmani-Neishaboor et 

al., 2012). This further underlines the context-dependent nature of Stratifin 

functions in normal and neoplastic tissues, wherein normally regulated Stratifin 

appears to largely perform tumour-suppressive functions (which can backfire and 

introduce resistance to therapies (Han et al., 2006; Han et al., 2009; Chen et 

al., 2017)) with its loss often allowing cancer growth and progression (Iwata et 

al., 2000; Umbricht et al., 2001; Cheng et al., 2004; Ling et al., 2012), while 

unregulated overexpression in cancers seems to invariably have a tumour-

promoting effect (Radhakrishnan et al., 2011; Shiba-Ishii et al., 2012; Husni et 

al., 2019; Robin et al., 2020). This immunological aspect, therefore, should be 

investigated further to elucidate whether the upregulation in the inflammatory 

response is direct or indirect, and if this could be targeted to reduce 

carcinogenicity in these genotypes, as has been shown to be effective in c-Fos-

induced pro-tumorigenic inflammation in mice (Briso et al., 2013). 
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8.5. Conclusions 

Initial studies using the HK1.ras/fos-Δ5Pten multistage model of 

carcinogenesis found that normal regulation and loss of Stratifin expression in 

tumorigenesis supports the literature indicating that Stratifin is a tumour 

suppressor. However, experiments with mice overexpressing Stratifin in the skin 

and hair follicles appear to indicate that this upregulation exclusively promotes 

carcinogenesis and increases the invasive potential of the resultant tumours. 

This was seen both in the unique follicular SCC histotype generated via co-

operation between HK1.fos and K14.stratifin expression, and in both types of 

tumour generated in HK1.ras/K14.stratifin mice, as well as in the invasive 

hyperplasias resulting from K14.stratifin expression on p53- and Pten-null 

backgrounds. These findings implicate Stratifin overexpression in oncogenesis, in 

particular in invasion, as well as seemingly novel role in increasing pro-

tumorigenic inflammation. Together, these data suggest Stratifin could be a 

useful biomarker in cutaneous squamous cell carcinomas, especially in those 

which are unresectable, in indicating invasive potential; a role which has been 

alluded to in several internal carcinomas. It provides an attractive new drug 

target for possible inhibition of lymph node metastasis and, further, in 

treatment of disseminated disease. 
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ABSTRACT  

To study mechanisms driving/inhibiting skin carcinogenesis, expression of 14-3-3σ 

[Stratifin] was analysed in stage-specific skin carcinogenesis driven by activated rasHa/fos 

expression [HK1.ras/fos] and ablation of PTEN-mediated AKT regulation 

[K14.creP/Δ5PTENflx]. In bi-genic combinations, consistent with 14-3-3σ roles in normal 

differentiation, epidermal hyperplasia and papillomas displayed elevated expression in 

supra-basal keratinocytes;  associated with supra-basal p-MDM2166/186 activation and 

sporadic p-AKT273. Early HK1.fos/Δ5PTENflx hyperplasia exhibited novel, increased basal-

layer14-3-3σ expression, alongside p53/p21 which accelerated epidermal differentiation, 

highlighted by anomalous basal-layer keratin K1 expression, resulting in keratoacanthoma.  

Tri-genic HK1.ras/fos-Δ5PTENflx hyperplasia/papillomas also displayed elevated basal-

layer 14-3-3σ, possibly geared to maintain the supra-basal p-MDM2166 expression and thus 

increase basal-layer p53 levels via limiting auto-ubiquitination. However, with time, tri-

genic basal-layer 14-3-3σ expression decreased alongside supra-basal-to-basal increases in 

MDM2166 which coincided with p53 loss and subsequent malignant conversion. 

Nonetheless, [p53-independent] 14-3-3σ expression persisted and, together with elevated 

p21, was associated with downregulated p-AKT1273 that limited tumour progression to 

well-differentiated squamous cell carcinoma; until loss of 14-3-3σ/p21 facilitated 

progression to aggressive, uniform p-AKT1+ve SCCs. TPA promotion of HK1.ras-

Δ5PTENflx mice and rapid transit to poorly-differentiated SCC further highlighted 14-3-3σ 

tumour suppressive roles, as 14-3-3σ responses in early hyperplasia rapidly diminished; 

alongside increased p-MDM2166, p53/p21 loss and p-AKT1273 activation. In 2D/3D culture 

contexts, membranous 14-3-3σ expression in normal HaCaT or SP1ras61 papilloma 

keratinocytes remained detectable in malignant T52ras61/v-fos SCC 2D-cells but not invading 

3D-cells. Collectively, 14-3-3σ/Stratifin appears to exert suppressive roles in contexts of 

ras/fos/PTENflx skin carcinogenesis via MDM2/p53-dependent and p53-independent 

mechanisms, which alongside p21 inhibit AKT1 activities to limit early-stage malignant 

progression. 
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METHODS 

Transgenic genotypes and induction of tumours 

Transgenic mice expressing activated  rasHa and/or v-fos from a human keratin K1-based 

vector, modified to express in basal- and supra-basal keratinocytes (HK1.ras/fos) have 

been described previously (Greenhalgh et al., 1993a, 1993b, 1993c; See supplemental data 

Fig. S2). These mice were crossed to mice expressing a keratin K14-driven Cre fusion 

protein (K14.creP (Berton et al., 2000)) and breeding strategies maintained HK1.ras/fos 

and the RU486-inducible K14.creP regulator as heterozygous transgenes in mice 

homozygous for the lox-P-flanked-PTEN exon5 alleles (5PTENflx/flx (Lesche et al., 2001)). 

Bi-genic and tri-genic combinations of HK1.ras/fos-5PTENflx/f/x progeny were genotyped 

by PCR as described [MacDonald et al., 2014; see Supplemental data Table 1) and PTEN 

regulation of AKT was inactivated following topical treatment of skin with 2ug RU486 

(mifepristone; Sigma, Gillingham, UK) dissolved in 50ul ethanol and 15ul applied to the 

dorsal surface of each ear and shaved back weekly for 3 weeks; controls received ethanol 

alone. Papillomas and SCCs were also raised in RU486-treated, bi-genic HK1.ras-

5PTENflx/flx mice via 3 weekly treatments with 2.5µg/50µL acetone TPA (50µL of 1.6 x 10-

4M TPA; Sigma, Gillingham, UK). All experiments adhered to UK Experimental 

Regulations (Licence: P82170325 to DAG). 

Histology, immunofluorescence and immunochemical analysis 

Skin biopsies and organotypic rafts were fixed in buffered formalin (24hrs @ 4oC), 

embedded in paraffin (FFPE) and stained with haematoxylin and eosin. To confirm 

differentiation status via double-label immunofluorescence, following antigen retrieval (5 

mins. boil/10mM sodium citrate), paraffin sections were incubated overnight (4oC) with 

rabbit anti-mK1 or anti-mK6α  (diluted 1:100 (Covance, Richmond, CA) employing 

guinea-pig anti-K14 antibodies (1:400 (Fitzgerald, Acton, MA) to delineate epidermis; and 

visualized employing biotinylated-goat anti-guinea pig/Streptavidin-Texas Red 

(1:100/1:400) (Vector Labs  Burlingame, California) or FITC-labeled anti-rabbit IgG 

(diluted 1:100; Jackson Labs West Grove, PA). FFPE biopsy sections were also analysed 

for expression status of 14-3-3σ/Stratifin (1:100; rabbit anti-14-3-3σ/stratifin: Invitrogen 

(ThermoFisher Scientific) cat. # PA5-23507); and p-AKT1 (1:100; abcam #81283 

Cambridge, UK; shown) confirming previous data employing Santa Cruz p-AKT1/2/3 sc-

7985-R (1:50; not shown), counterstained for K14 (as above).   

Stage-specific FFPE biopsy sections, rafts and cultured cells were also subjected to 

immunohistochemical analysis. Following antigen retrieval, FFPE sections were incubated 

overnight (4°C) with rabbit anti-14-3-3σ/Stratifin (1:100). p53/p21 analysis employed p53 

antibodies Abcam cat. # ab31333 or ab #131442 and p21 Proteintech #10355-1-AP) 

replacing discontinued Santa Cruz p53 (sc#393) and p21 (sc#397). Antibody comparison is 

shown in Supplementary Fig. S1: where p53 ab#31333 gave a greater nuclear expression; 
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whilst p53 ab#131442 more closely repeated the nuclear/cytoplasmic expression profile of 

sc#393 (MacDonald et al., 2014). p-MDM2166 analysis employed Abcam anti-MDM2 

(phospho-S166) ab131355 1/400). IHC expression was visualised via HRP-conjugated goat 

anti-rabbit (1:100; 60 mins/RT; Vector Labs Burlingame, California) followed by DAB+ 

staining (Dako, Amersham Biosciences, Little Chalfont, UK). Photomicrographs employed 

Axiovision image capture software (Zeiss Microscopes, Cambridge, UK). 

Cell culture  and organotypic tumour invasion modelling  

Normal HaCaT keratinocytes (Boukamp et al., 1988; provided at passage 35/used at 

passage 49-53), rasHa-transformed SP1 papilloma and rasHa/fos transformed T52 carcinoma 

cells (Greenhalgh & Yuspa, 1988) were cultured in Dulbecco’s modified Eagle’s medium 

(w/o Ca2+), supplemented with 10% (chelated) foetal calf serum (FCS) with the calcium 

concentration adjusted to 0.05 mM (Low Ca2+ (Hennings et al., 1980)). C8161 melanoma 

cells were cultured in standard DMEM/10% FCS (Timpson et al., 2011). All cells were 

maintained in 5% CO2 at 37°C. For IHC or IF analysis on microscope chamber slides 

(Millicell EZ SLIDE 8; Millipore), cells were trypsinised, counted and plated at 1000 cells 

per chamber. Two days later, cells were re-fed with Low Ca2+ media, or induced to 

differentiated by culture in 0.12 mM Ca2+ media (Hennings et al., 1980), for 48 hours. 

Prior to immunofluorescence or immunohistochemical analysis, media was removed, cells 

washed in PBS and fixed in 10% buffered  formalin (5 min; Sigma).  

To prepare the organotypic invasion models, primary dermal fibroblasts were prepared as 

described (Greenhalgh et al., 1989) and  cultured in DMEM 10% FCS until confluent. Rat 

tail collagen solution was prepared via extraction from tendons with 0.5M acetic acid and 

gels were prepared as described (Timpson et al., 2011). In brief, typically 3 ml 10X 

DMEM 30% FCS  was added to 25ml rat tail collagen (2 mg/ml; 4°C), neutralized with 

0.22M sodium hydroxide (pH 7.2). Dermal fibroblasts (7 x 104 cells/ml) were seeded in 

2.5ml neutralized collagen plated into 35mm dishes and maintained for up to 7 days until 

fibroblasts contracted the collagen to form a gel raft (~1.5cm diameter). Free-floating 

collagen rafts were placed into 24-well dishes containing 1 ml media and seeded with 104 

cells, employing C8161 melanoma cells as a positive invasion control. Each cell-matrix 

was cultured for 3 days and transferred to 60mm dishes containing a submerged grid for a 

further 3 days. Subsequently, media was removed to raise cells to the air liquid interface 

and rafts cultured for 8-10  days with  medium changes every two days. Cell-matrixes were 

fixed in 10% buffered formalin (4°C overnight) and fixed in paraffin for FFPC sections. 
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RESULTS 

14-3-3σ is expressed in differentiating keratinocytes of normal epidermis, HK1.ras 

hyperplasia and papillomas  

To investigate the role[s] of 14-3-3σ in carcinogenesis, expression was assessed initially in 

normal epidermis together with hyperplasia/papillomas produced by expression of 

activated rasHa in transit amplifying keratinocytes [HK1.ras] and the expression profile 

compared to that of p53 and p21 (Fig. 1A-C). Consistent with previous studies, normal 

murine epidermis expressed 14-3-3σ in supra-basal layers with occasional expression detected in 

proliferative basal-layer keratinocytes (Fig. 1A). This profile is consistent with roles in 

keratinocyte spatial awareness (Hurd et al., 2003; Ling et al., 2010) and potentially a role in 

keratinocyte commitment to terminal differentiation as 14-3-3σ  expression in occasional basal 

cells was similar to that of keratin K1 [see Fig. 1B], an early marker of differentiation expressed 

as basal layer keratinocytes commit to differentiate (Yuspa et al., 1989), alongside normal 

interactions with p53 (MDM2-see below) and p21 expression as sporadic cells complete a given 

cell cycle [p53] or exit the proliferative niche (Dotto, 2000). 

In pre-neoplastic hyperplasia produced by HK1.ras expression (Greenhalgh et al., 1993), a 

similar supra-basal 14-3-3σ expression profile was observed,  with occasional positive basal-

layer keratinocytes consistent with the relatively normal differentiation pattern in HK1.ras-

mediated hyperplasia  [indicated by keratin1/14 expression] and again sporadic, low-level 

p53/p21 (Fig. 1B). This latter result indicates that at early stages of pre-neoplastic 

hyperplasia an epidermis appears relatively tolerant of excessive rasHa signalling in the 

absence of other neoplastic events (see below ras and ras Fos papers ras p10). However, 

whilst HK1.ras papillomas maintained this profile in terms of supra-basal 14-3-3σ expression 

and ordered K1/K14 differentiation; with time more aggressive hyperplasia [not shown] 

and overt papillomas displayed elevated nuclear p53 and increasing levels of p21 

expression (Fig. 1C). This apparent independence from 14-3-3σ protective functions in 

papilloma basal layers e.g., 14-3-3σ-mediated MDM2 suppression (Lee and Lozano, 2006) may 

reflects the benign, regression prone nature of these tumours; as at this stage activated p-MDM2166 

and p-AKT1473 expression are also confined to supra-basal layers (see Figs 5 and 6 below), where 

presumably 14-3-3σ maintains the relatively normal interactive roles in differentiating 

keratinocytes. 

 

HK1.fos-Δ5PTEN keratoacanthoma aetiology exhibits basal layer 14-3-3σ expression 

associated with elevated p53/p21 and accelerated differentiation 

In contrast to hyperplasia and papillomas produced by HK1.ras expression, bi-genic 

expression of HK1.fos and inducible, inactivation of PTEN-mediated AKT regulation-(K14.creP-

Δ5PTEN) initially produced a keratotic hyperplasia in RU486-treated HK1.fos-Δ5PTEN skin that 

evolved into keratoacanthomas KA (Yao et al., 2008) rather than malignant conversion. This was 

due to high expression of compensatory p53/p21, triggered in late-stage hyperplasia/early 

papilloma by achieving a threshold of AKT-associated GSK3β inactivation (i.e., deregulated, 
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increased β-catenin), that switched keratinocyte proliferation into an accelerated differentiation, 

resulting in the classic hyperkeratosis of KA (Ko, 2010) and preventing malignant conversion (Yao 

et al., 2008; Supplementary Fig. S3). 

Analysis of HK1.fos-Δ5PTEN hyperplasia (Fig. 2A and B) showed increasing strands of basal 

layer keratinocytes exhibiting strong membranous/cytoplasmic 14-3-3σ expression together 

with increasing expression of p53 (but not p21 which appeared later (MacDonald et al., 

2014); Fig. 2A); yet at this stage of low p21 activity, K1 expression remained relatively 

normal (Fig. 2B). As disease progressed into overt KA, two distinct histotypes appeared 

one of massive keratosis interspersed with fronds of keratinocytes that derived from an 

underlying proliferative form, often confused with wdSCC (Watanabe et al., 2015). 

Analysis of the frond-histotype found elevated levels of 14-3-3σ expression were retained 

throughout each epidermal compartment, and this expression was paralleled by strong p53 

expression and now p21 also; the latter possibly combining with 14-3-3σ/fos to evoke the 

anomalous basal layer K1 expression observed in these frond regions (Fig. 2C) indicative of an 

accelerated differentiation. 

However, the underlying highly proliferative, wdSCC-like histotypes exhibited reduced  14-3-3σ 

expression (Fig. 2C: green/frond vs yellow/wdSCC-like); with a distinct reduction of 14-3-

3σ  in basal-layer keratinocytes. Previously, such areas were associated with low levels of 

both p53 and p21 and were positive for activated AKT expression  until the p53/p21 

expression induced a basal-to-supra-basal transition of p-AKT473 and massive 

differentiation (Yao et al., 2008). These data now suggest that the trigger for such p53/p21 

expression in response to excessive AKT/βcatenin may also involve 14-3-3σ expression to 

sequester roles in keratinocyte commitment to differentiate and avoid malignant 

conversion/progression. 

 

HK1.ras/fos-Δ5PTEN carcinogenesis shows 14-3-3σ expression paralleled by immediate 

p53/p21 in hyperplasia/papilloma, persists with p21 to limit malignant progression following 

p53 loss.  

Co-operation between HK1.ras/fos and the loss of PTEN-mediated AKT regulation resulted in a 

rapid papillomatogenesis but malignant conversion required spontaneous p53 loss and further 

progression initially stalled at a well-differentiated SCC histotype due to  persistent p21 

(MacDonald et al., 2014). Analysis of late-stage hyperplasia/early papilloma found that 

HK1.ras/fos-Δ5PTENflx epidermis exhibited high levels of 14-3-3σ in all epidermal layers; with the 

strongest expression in basal and granular layers, giving an apparent hiatus of protein in the 

acanthotic layers (Fig. 3A). Unlike HK1.ras papillomas or  HK1.fos-Δ5PTEN KAs here the 

14-3-3σ expression profile was paralleled by an immediate response of  high level p53/p21 

expression and strong, supra-basal K1 expression indicating benign papilloma (Fig. 3A); with 

p21 expression mirroring the 14-3-3σ expression profile in acanthotic layers (compare Fig. 3A 

SFN vs p21 IHC). With time, HK1.ras/fos-Δ5PTENflx tumours progressed to wdSCC and as 

papillomas converted this was associated with p53 loss (Fig. 3B). However, analysis of 
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serial sections as papillomas converted shows that expression of both 14-3-3σ and p21 

persisted in areas of p53-negative carcinoma in situ (Fig. 3B). Higher magnification of these areas 

suggested that 14-3-3σ expression diminished in the wdSCC basal layers, whereas p21 expression 

persisted (Fig. 3B;  MacDonald et al., 2014). This result was confirmed by IF analysis of older, 

uniform wdSCC (Fig. 3C) where persistent 14-3-3σ expression weakened [green to yellow] in 

basal layers becoming reduced/lost in areas of aggressive, invasive SCC-concomitant with p21 

(Macdonald et al., 2014) loss and p-AKT1 activation [see below]. 

 

Rapid tumour progression in TPA-treated HK1.ras-Δ5PTEN carcinogenesis is associated 

with early loss of 14-3-3σ, p53 and p21 expression in hyperplasia and papillomas.  

The lack of papilloma progression in earlier HK1.ras-Δ5PTEN studies (Yao et al., 2006), 

associated with compensatory p53/p21 (MacDonald et al., 2014) and now consistent with 

14-3-3σ expression (Fig. 1 above) had prompted TPA promotion experiments which resulted 

in a (very) rapid progression to poorly-differentiated SCC (Yao et al., 2006). Analysis of 

serial sections from these archival tumours found that all pdSCCs exhibited loss of 14-3-3σ 

expression (Fig. 4A). The lower magnification composite micrograph (Fig. 4A) shows this 

loss in a typical pdSCC (virtually devoid of K1 expression) and fortuitously possessed a 

strand of untreated hyperplastic skin, where basal-layer 14-3-3σ expression appears quite 

high; suggesting an initial suppressive response was deployed to loss of PTEN and rasHa 

activation – hence, contributing to their lack of progression. If so, this response was short 

lived, as analysis of serial sections of TPA-promoted HK1.ras-Δ5PTENflx papilloma/SCC 

shows loss of 14-3-3σ expression parallels loss of p53 and p21; even in areas of K1-positive 

papilloma (Fig. 4B); whilst the earliest biopsies of TPA-promoted HK1.ras-Δ5PTENflx 

hyperplasia were already devoid of 14-3-3σ, p53 and mostly p21 (Fig. 4C). These results 

collectively highlight the protective nature of these three TSGs where early loss leads to 

rapid papillomatogenesis, malignant conversion and swift malignant progression to 

aggressive pdSCC. 

Tumour progression/inhibition in HK1.ras/fos-Δ5PTEN genotypes shows 14-3-3σ 

antagonism with activated p-MDM2
166 

expression. 

Given the close interactions between 14-3-3σ and MDM2 expression in the regulation of 

p53 via ubiquitin removal (Lee and Lozano, 2006), activated p-MDM2166 status was 

compared to 14-3-3σ/p53 expression in stage-specific tumour aetiology (Fig. 5). In normal 

epidermis activated p-MDM2166 expression paralleled that of both p53 and 14-3-3σ being mainly 

supra-basal with occasional positive basal keratinocytes (Fig. 5A); a profile consistent with the 

regulatory loop between 14-3-3σ and induction of MDM2 to remove p53 whose apoptotic 

functions are a danger to the paramount barrier function of the epidermis (Haupt et al., 

2003; Baroni et al., 2012). Similarly, in overt HK1.ras papillomas this regulatory loop is 

maintained in supra-basal layers (Fig. 5B and C), but less so in basal layers and is often absent in 

many strands of basal layer keratinocytes in these benign regression prone papillomas  (Fig. 5C). 
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Hence,  this lower p-MDM2166 activity facilitates the strong compensatory expression of nuclear 

p53. 

However, in HK1.ras/fos-Δ5PTENflx wdSCCs, elevated p-MDM2166 expression now appears in 

basal layer keratinocytes, and this supra-basal-to-basal transition in MDM2 expression was 

paralleled by a reverse basal-to-supra-basal change in 14-3-3σ expression levels. Thus, reduced 14-

3-3σ expression in the basal layers and increased p-MDM2166 activity would reduce the levels of 

protective p53 expression (Fig. 5C) and once lost a susceptibility  to malignant 

conversion/progression. Oddly in more aggressive HK1.ras/fos-Δ5PTENflx  SCC where 14-3-3σ 

expression is actually lost, resultant p-MDM2166 expression in the invasive basal keratinocytes 

results in only occasional p53-positive cells in residual keratotic areas (Fig. 5C). 

 Tumour progression highlights a cooperative 14-3-3σ/p21 antagonism against activated p-

AKT
473 

expression. 

A similar situation arose in analysis of p-AKT1473 activation and 14-3-3σ expression in 

HK1.ras/fos-Δ5PTENflx SCC and HK1.ras-Δ5PTENflx pdSCC aetiology (Fig. 6)-however this 

involved p21 rather than p53 and indicated a strong synergism between 14-3-3σ and p21 in this 

model as suggested by their expression profiles in tri-genic HK1.ras/fos-Δ5PTENflx papillomas 

(Fig. 3A) geared to limit malignant progression. An initial surprising result given the loss of 

PTEN-mediated AKT regulation came from analysis of p-AKT1473 and 14-3-3σ/p21 expression in 

HK1.ras/fos-Δ5PTENflx hyperplasia/papilloma where activated p-AKT1473 expression was virtually 

absent in the presence of strong 14-3-3σ/p21 co-expression (Fig. 6A). However, following 

malignant conversion, early HK1.ras/fos-Δ5PTENflx wdSCCs exhibited increasing p-AKT1473 

levels but expression was confined to supra-basal layers; a result consistent with the presence of 

continued basal-layer 14-3-3σ/p21 co-expression in proliferating cells (Fig. 6B), that echoes the 

basal-to-supra-basal eviction of p-AKT expression in HK1.fos-Δ5PTENflx KAs outlined 

above (Yao et al., 2008). With time, as aggressive HK1.ras/fos-Δ5PTENflx  SCCs exhibited 

reduced 14-3-3σ expression in basal layers (Fig. 3C; above) and this was followed by reduced 

p21 expression and when both were lost, invasive keratinocytes exhibited uniform p-AKT1473 

activities throughout the tumour (Fig. 6C). Similarly, in TPA-promoted HK1.ras-Δ5PTENflx 

pdSCC aetiology the early loss of 14-3-3σ/p21 (Fig. 4; above) led to very high levels of p-

AKT1473 expression such that it masked the K14 counterstain (Fig. 6D). Indeed,  based on these 

data the specific interactions between AKT/mTOR/MDM2 and p21/p53/Stratifin in malignant 

conversion/progression are currently under further investigation [manuscript in preparation]. 

 

In vitro analysis shows 14-3-3σ expression in normal and benign keratinocytes persists 

in malignant SCC cells grown in 2D-culture but not invading 3D-cells. 

To compare these in vivo findings to analysis of cells in culture (Fig. 7), 14-3-3σ expression 

was assessed in normal HaCaT keratinocytes (Boukamp et al., 1988) together with rasHa-

transformed SP1 papilloma cells, established from DMBA/TPA papillomas (Strickland et 

al., 1988) that give rise to papillomas in nude mouse graft assays; and their derivatives, 

T52 cells, transformed by introduction of activated Fos (HVV-fos; Curran et al., 1982) 
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which produce carcinomas in graft assays (Greenhalgh & Yuspa, 1988). In each case 

SP1ras61 and T52ras61/HVVfos SCC were selected for resistance to calcium induced 

differentiation; where SP1 adopts a slow growth phenotype, with a flattened morphology 

consistent with an apparent stalled attempt to differentiate, whereas T52ras61/HVVfos SCC 

were completely indifferent to calcium levels. 

In 2D cultures, strong membranous/cytoplasmic 14-3-3σ expression appeared in normal 

immortalised HaCaT and SP1ras61 papilloma keratinocytes cultured in Low Calcium 

(0.05mM Ca2+) media giving a halo appearance to the IF expression analysis (upper panel; 

Fig. 7). Surprisingly 14-3-3σ expression was also observed in malignant T52ras61/v-fos 

keratinocytes; again, giving a similar halo appearance to the “cobblestone” cells, but to a 

lesser extent.  When challenged to differentiate in high calcium media (> 0.12mM Ca2+) 

the more flattened SP1ras61 keratinocytes expressed high levels of 14-3-3σ expression but in 

distinct cellular areas. T52ras61/v-fos keratinocytes also exhibited a similar, spatially aware 

14-3-3σ expression, but to a much lesser extent. In comparison to p53 expression was 

found to be high and strongly nuclear in HaCaT cells, as reported previously, whereas in 

Low Cal only sporadic SP1ras61 cells expressed low level cytoplasmic p53, although 

numbers increase in Hi Cal media. Oddly, most malignant T52ras61/v-fos cells expressed p53 

but this was assumed to be a p53175 GOF mutant which may explain persistent 14-3-3σ 

expression given that p53 directly binds the 14-3-3σ promoter to induce expression (Lee & 

Lozano, 2006).  

In 3D organotypic culture HaCaT cells produce a relatively normal skin on organotypic 

rafts (lower panel; Fig. 7 H & E) and maintains  membranous 14-3-3σ expression in both 

basal and supra-basal keratinocytes. SP1 cells attempt to create an overt papilloma, which 

is easily lost in sample processing and where present gave very poor sections susceptible to 

loss of section  in IF/IHC analysis. Indeed, this collagen-based rafting protocol (Timpson 

et al., 2011) appeared less that optimum for all murine cells assessed compared to human 

counterparts, e.g., HaCaT or the c8161 human melanoma line employed as a positive 

invasion control (Welch et al., 1991). Nonetheless the invasive nature of T52 SCC cells 

essentially nailed the epidermis to the underlying collagen raft to survive processing and 

exhibited 14-3-3σ expression in only sporadic epidermal cells; with no expression in the 

migrating invasive cells in either IF or IHC analysis; whilst the invasion control c18161 

melanoma cells were completely negative for 14-3-3σ expression. These data again 

highlight 14-3-3σ roles in spatial awareness and whilst the TSG functions appear to be lost 

in progression/invasion, in certain malignant contexts, 14-3-3σ expression is still observed 

and may act to influence tumour outcome. 
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Figure 1. 14-3-3σ, p53 and p21 expression in normal epidermis and pre-malignant 

phenotypes. A, Normal epidermis: single-label immunofluorescence (IF) and 

immunohistochemical (IHC) analysis show 14-3-3σ expression in supra-basal layers with 

occasional basal-layer keratinocytes. IHC analysis of p53 and p21 show low numbers of 

sporadic, p53/p21-positive keratinocytes. Bottom panel: histology of normal epidermis. B, 

HK1.ras hyperplasia: double-label IF displays supra-basal 14-3-3σ expression (SFN green), 

with few positive (yellow) basal-layer keratinocytes; K14 counterstain (red) indicates basal 

layer; serial section stained for keratin K1 (green) and K14 (red) indicates a relatively normal 

differentiation pattern. IHC analysis of p53/p21 shows sporadic, low-level expression. C, 

HK1.ras papilloma: 14-3-3σ shows supra-basal expression with occasional positive basal-

layer keratinocytes and supra-basal K1 expression indicates benign tumour with expansion 

of K14+ve basal layers. IHC analysis now shows elevated/nuclear p53 and (lesser) p21 

expression in basal layer keratinocytes. (Note: p53/p21 analysis employed Abcam ab131442 

and Proteintech #10355-1-AP. Discontinued Santa Cruz p53 sc#393 & p21 sc#397 gave 

identical results; see Supplementary Figs. S1 and S2A and B for histological analysis). Bars 

(A) approx.25-30µm; (B) approx.75µm; (C). SFN/K14 & K1/K14 approx.50µm; p53 

approx.75µm; p21 approx. 100µm. 
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Figure 2. 14-3-3σ, p53 and p21 expression in HK1.fos-Δ5PTENflx keratoacanthoma 

aetiology. A, Composite micrographs of HK1.fos/∆5PTEN hyperplasia show strands of 

elevated basal layer 14-3-3σ expression; whist p53 shows higher (cytoplasmic) expression 

and p21 is expressed at low/undetectable levels. B, At higher magnification, IHC/IF analysis 

show  strong cytoplasmic/membranous 14-3-3σ expression in basal layer strands; yet 

K1/K14 expression remains relatively normal. p53 analysis shows elevated mainly 

cytoplasmic expression (Abcam ab 131442). C, Overt HK1.fos/∆5PTENflx keratoacanthoma 

shows that highly differentiated  areas (left panel) retain basal-layer 14-3-3σ expression 

which parallels elevated nuclear p53/p21 expression (p53: Abcam ab 131333)  and 

anomalous basal-layer K1 expression; however less differentiated KA regions (right panel) 

exhibited weaker, supra-basal 14-3-3σ similar to wdSCC (see Supplementary Figs. S1 and 

S2E for histological analysis). Bars (A) approx. 120-150µm; (B) approx.75µm; K1/K14 

approx.50µm; (C) approx.75µm; p21 approx. 100µm; K1/K14 approx.150µm. 
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Figure 3. 14-3-3σ, p53 and p21 expression in HK1.ras/fos-Δ5PTENflx SCC aetiology. A, 

IHC/IF analysis of tri-genic HK1.ras/fos-Δ5PTENflx mice show that late-stage 

hyperplasia/early papilloma exhibits strong basal and upper supra-basal layer 14-3-3σ 

expression; with a hiatus in the intermediate, acanthotic layers. Strong p53 is also observed 

in all layers; whilst basal p21 expression paralleled 14-3-3σ with a hiatus in the acanthotic 

layers. Strong, supra-basal K1 expression indicates benign tumour. B, Composite 

micrographs of HK1.ras/fos-Δ5PTENflx papilloma conversion to wdSCC shows strong 14-

3-3σ and p21 co-expression, whereas p53 expression is already lost in the papilloma/wdSCC 

area. Higher magnification of wdSCC area shows persistent 14-3-3σ expression begins to 

diminish in basal layers, whereas p21 expression persists. C, HK1.ras/fos-Δ5PTENflx 

wdSCC shows persistent 14-3-3σ expression weakens in basal layers (arrows) becoming 

reduced/lost in invasive SCC (see Supplementary Figs. S2C for histological analysis). Bars 

(A) approx. 120-150µm; (B) approx.150µm. & 100µm; K1/K14 50µm; (C) approx.100µm 

& 75µm. 
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Figure 4. 14-3-3σ, p53 and p21 expression in TPA-promoted poorly-differentiated SCC 

aetiology. A, Serial sections of TPA-promoted HK1.ras-Δ5PTENflx carcinogenesis show  

loss of 14-3-3σ expression alongside sporadic K1; indicating aggressive, poorly-

differentiated SCC compared to epidermal hyperplasia (bottom left). B, IHC analysis of 

TPA-promoted HK1.ras-Δ5PTENflx papilloma/wdSCC shows loss of 14-3-3σ expression 

parallels loss of both p53 and p21; even in areas of K1-positive papilloma. C, TPA-promoted 

HK1.ras-Δ5PTENflx hyperplasia already shows reduced/lost 14-3-3σ expression paralleled 

reduced p21 and loss of p53 (see Supplementary Figs. S2D for histological analysis. Bars 

(A) approx. 120-150µm & 50µm; (B) approx.150µm; (C) approx.100µm. 
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Figure 5. Comparison of p-MDM2166 and 14-3-3σ/p53 expression in HK1.ras/fos-

Δ5PTENflx SCC aetiology. A, Normal epidermis shows supra-basal 14-3-3σ parallels 

activated p-MDM2166 expression, with occasional sporadic positive basal layer keratinocytes 

also positive for p53 expression. B, Serial sections from HK1.ras papillomas show supra-

basal 14-3-3σ parallels supra-basal p-MDM2166 expression; with nuclear p53 appearing in 

basal layer keratinocytes. C, Left: Serial sections from HK1.ras/fos-Δ5PTENflx wdSCCs 

show elevated basal layer p-MDM2166 expression, whilst 14-3-3σ remains essentially supra-

basal and p53 becomes sporadic/lost; Middle: serial sections from aggressive HK1.ras/fos-

Δ5PTENflx SCC/pdSCC shows strong p-MDM2166 expression in the invasive basal 

keratinocytes whilst 14-3-3σ reduces further, becoming sporadic alongside occasional p53-

positive cells. Right: For comparison HK1.ras papilloma exhibits supra-basal 14-3-3σ/p-

MDM2166 expression, with nuclear p53-positive basal-layer keratinocytes. NB: p53 analysis 

employed Abcam ab 131333 (Supplementary Fig. S1). Bars (A) approx.25-30µm; (B) 

approx.85-100µm; (C) wdSCC and pdSCC approx.50µm. 
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Figure 6. Comparison of p-AKT1473 and 14-3-3σ/p21 expression in HK1.ras/fos-Δ5PTENflx 

and  TPA-promoted SCC aetiology. A, HK1.ras/fos-Δ5PTENflx hyperplasia (paradoxically) 

lacks p-AKT1473 expression in the presence of strong basal layer 14-3-3σ/p21 co-expression. 

B, Early well-differentiated HK1.ras/fos-Δ5PTENflx SCCs exhibit increasing  p-AKT1473 

expression confined to supra-basal layers in the presence of continued basal-layer 14-3-

3σ/p21 co-expression in proliferating cells. C, Aggressive HK1.ras/fos-Δ5PTENflx SCC 

exhibit increasing uniform p-AKT1473 expression profile in basal layers paralleled by 

reduction of 14-3-3σ/p21 expression in the invasive keratinocytes. D, TPA-promoted 

HK1.ras-Δ5PTENflx pdSCC aetiology exhibits very high levels of uniform p-AKT1473 

expression that masks the K14 counterstain; paralleled by loss of both 14-3-3σ and p21 

expression. Bars approx.85-100µm. 
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Figure 7: In vitro analysis of 14-3-3σ expression in normal, papilloma and malignant cells. 

Upper panel: Normal, immortalised HaCaT keratinocytes express membranous 14-3-

3σ/SFN and high levels of nuclear p53 in all cells. Benign SP1 papilloma cells express 

membranous 14-3-3σ/SFN in proliferative low Ca2+ media with a spatially-localised 

cytoplasmic expression when  (partially) differentiating in high Ca2+ media. In proliferative 

and differentiating, media SP1 cells exhibit sporadic, low levels of cytoplasmic p53. 

Malignant T52 SCC cells express lower levels of membranous 14-3-3σ/SFN in proliferative 

low Ca2+ media; and being resistant to Ca2+-induced differentiation, again exhibit a distinct 

cytoplasmic localisation in high Ca2+ media. In proliferative and differentiating media, T52 

cells exhibit cytoplasmic/nuclear levels of (mutant) p53 (Supplementary S3 for  cell 

morphology).  

Lower panel: 14-3-3σ expression in tumour invasion assays. HaCaT cells produce a 

relatively normal skin on organotypic rafts, with membranous 14-3-3σ expression in both 

basal and supra-basal keratinocytes. T52 SCC cells exhibit weaker expression overall, except 

in sporadic cells; however, both IF and IHC analysis show that migrating invasive T52 cells 

are negative for 14-3-3σ expression. Similarly, c18161 melanoma cells employed as an 

invasive control are negative for 14-3-3σ expression.  Bars approx.30-40µm 
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SUPPLEMENTAL DATA  

Table 1  PCR  primers and reaction conditions 

Transgene Primer Pair 

HK1.ras 5’-GGATCCGATGACAGAATACAAGC-3’ 

5’-ATCGATCAGGACAGCACACTTGC-3’ 

HK1.fos 5’-GGATCCATGATGTTCTCGGGTTT-3’ 

5’-CGATTATTGCCACCCTGCCATG-3’ 

PTENWT/FLX 5’-ACTCAAGGCAGGGATGAGC-3’ 

5’-GTCATCTTCACTTAGCCATTGG-3’ 

∆5PTEN 5’-ACTCAAGGCAGGGATGAGC-3’ 

5’-GGTTGATATCGAATTCCTGCAGC-3’ 

K14.CrePR1 5’-CGGTCGATGCAACGAGTGAT-3’ 

5’-CCACCGTCAGTACGTGAGAT-3’ 

 

Transgene 

Initial 

denaturatio

n 

Denaturatio

n 

Annealin

g 

Extensio

n 

Cycle

s 

Final 

extensio

n 

HK1.ras 5 m; 95°C 30 s; 95°C 
60 s; 

56°C 

60 s; 

72°C 
35 

10 m; 

72°C 

HK1.fos 2 m; 95°C 30 s; 95°C 
30 s; 

62°C 

60 s; 

72°C 
35 

10 m; 

72°C 

Pten/∆5Pte

n 
2 m; 94°C 30 s; 94°C 

60 s; 

63°C 

90 s; 

72°C 
36 

10 m; 

72°C 

K14.CrePR

1 
5 m; 94°C 30 s; 94°C 

45 s; 

58°C 

60 s; 

72°C 
35 

10 m; 

72°C 
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Figure S1: Immunohistochemical analysis of p53 levels: Comparison of Abcam to 

discontinued Santa Cruz antibodies.  

HK1.fos/∆5PTEN keratoacanthoma was employed as a p53 positive control: [A] Santa Cruz 

FL-393; [C] abcam ab31333; [E] abcam ab131442. All three antibodies show positive 

staining in basal layer nuclei, with ab31333 displaying the strongest nuclear staining and 

lowest levels of cytoplasmic or background staining. Negative control HK1.ras/∆5PTEN 

TPA-promoted SCC: [B] Santa Cruz FL-393; [D] abcam ab31333; [F] abcam ab131442. No 

antibody detected p53. Scale bars approx.50-75 µm. 
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Figure S2: HK1.ras/fos-Δ5PTENflx tumour phenotypes and histotypes.  A, Typical thickened 

ear and beginnings of mild, wound promoted keratosis produced in HK1.fos mice. Typical 

hyperplasia shown is exhibited by HK1.ras/fos (left) and HK1.fos.Δ5PTENflx (right is  serial 

section from Fig. 2B) epidermis. B, Typical wound-promoted ear tag papilloma and benign 

papilloma histotypes exhibited by HK1.ras mice. C, Typical overt appearance of HK1.ras/fos-

Δ5PTENflx wdSCCs with early and later examples of wdSCC histotypes. D, Typical overt 

appearance of aggressive rapid growing TPA-promoted HK1.rasΔ5PTENflx SCCs increased 

vascularisation and less overt keratosis. Histotypes show examples of an early SCC and later, 

highly invasive pdSCC.  E, Typical overt appearance of HK1.fos-Δ5PTENflx KA  with classic 

keratotic columns. KA histotypes comprise a convoluted mix of keratosis interspersed with fronds 

of growing keratinocytes with a very confused differentiation patten; the second histotype often 

underlying these frond regions resembles wdSCC.  
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Figure S3: Cell morphology of benign SP1 papilloma and malignant T52 cells cultured in  

low and High Ca2+  media. In proliferative low Ca2+ media SP1 papilloma cells have a very 

similar morphology to that of normal keratinocytes, with an ordered cobblestone 

morphology. When induced to differentiate by increasing the calcium concentration, SP1 

cells partially differentiate, adopting an intermediate morphology similar to that of supra-

basal keratinocytes but without progressing to stratified phenotype.  In contrast, malignant 

T52 SCC cells possess a transformed spindle shape and no contact inhibition, becoming 

overgrown in either  Low or Hi Ca2+ conditions.   
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Figure S-1: Gross appearance of HK1.ras/K14.stratifin tumour cross-section. 

High stromal content of HK1.ras/K14.stratifin Type 1 tumours appears grossly as a glassy 
pink region surrounded by the duller, paler epidermal layer (A), confirmed by histology 
(C). HK1.ras control papillomas are duller throughout (B), reflecting their low stroma/high 
keratin content (D). 
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Figure S-2: HK1.fos/K14.stratifin/p21-/- vs HK1.fos/K14.stratifin/p21+/- tumours. 

HK1.fos/K14.stratifin/p21-/- mice at 9 weeks (5 weeks post-tag) exhibit unusually large 
tumours at tag (right of image) compared to HK1.fos/K14.stratifin/p21+/- littermates (left of 
image) or p21 wild-type mice (see Chapter 4), suggesting p21 loss causes a more 
aggressive disease, unlike p53 loss which appeared to have no effect. 
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Figure S-3: HK1.ras/K14.stratifin/p21-/- vs HK1.ras/K14.stratifin/p21+/- tumours. 
HK1.ras/K14.stratifin/p21-/- mice at 9 weeks (5 weeks post-tag) exhibit large tumours at 
tag (2 mice, left and centre of image) compared to HK1.ras/K14.stratifin/p21+/- littermates 
(right of image). These appear to be similar to Type 2 HK1.ras/K14.stratifin tumours, as 
predicted given the lack of p21 nuclear localisation in those samples in p21WT mice. As in 
HK1.ras mice, p21 ablation does not create the same paradoxical tumour suppressive 
effect seen with p53 loss on this background. 
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Figure S-4: Spurious expression of Keratin 1 in HK1.ras/K14.stratifin skin. 
HK1.ras/K14.stratifin skin exhibits spurious Keratin 1 expression in follicles (A) and basal 
layer keratinocytes (B) which is not seen in HK1.ras control HFs (C) or basal cells (D). 
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