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Abstract 
Multiple sclerosis (MS) is increasingly treatable. However, highly efficacious treatments 

carry serious potential risks. Treatment decisions must therefore weigh up the risk of 

treatment with the risk of irreversible disability. Current prognostic tools do not fully 

capture the scope of the pathology of MS, particularly axonal loss (an important substrate 

of disability). As a result, the identification of individuals at greatest risk of poor prognosis 

is suboptimal, and treatment decisions can be difficult and inconsistent. There is therefore 

an unmet need for a clinical tool or biomarker which can be employed early in the disease 

to identify those at greatest risk of future disability. New technologies and techniques have 

the potential to address this unmet need but require careful analysis in large cohorts. The 

aim of this work was to establish a large cohort of relapsing remitting MS patients at the 

point of diagnosis and whilst treatment naïve, and then to explore the potential role of 

next-generation biomarkers in early relapsing remitting multiple sclerosis.  

 

We focused on fluid biomarkers reflective of axonal damage, and in particular 

neurofilament (NfL). We evaluated the role of CSF NfL in MS subtypes through 

systematic review and meta-analysis and concluded that NfL has utility as a biomarker of 

acute disease activity. We then employed a single molecule array (Simoa) to demonstrate 

NfL can be measured in blood, and that blood NfL levels correlate with CSF NfL levels.  

 

The extent to which demyelination drives axonal loss in MS is unknown. We combined 

analysis of blood NfL levels with advanced magnetic resonance imaging (MRI) techniques 

of myelin integrity- the MRI g-ratio, to examine, in vivo, the relationship between myelin 

integrity and axonal damage. The MRI g-ratio was higher (suggesting loss of myelin 

integrity) in MS lesions compared with normal appearing white matter, but varied between 

individuals. We showed an association between lesion volume, lesion MRI g-ratio, and 

blood NfL levels. This demonstrates how blood-based biomarkers can be combined with 

advanced imaging biomarkers to gain insights into clinically relevant biology of disease.   

 

Finally, we asked whether the additional measurement of other brain proteins, such as glial 

fibrillary acidic protein (GFAP), could provide further insights into disease biology and 

clinical outcomes. Longterm follow-up of the Future MS cohort will identify whether the 

biomarker trends found in this work continue to be relevant in the identification of patients 

at the greatest risk of poor prognosis from relapsing remitting multiple sclerosis.  
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1. Introduction: Multiple sclerosis, a complex and variable disease 
Multiple sclerosis (MS) is a serious and unpredictable neurological disease with complex 

pathophysiology (Compston and Coles, 2008; Jones and Coles, 2010). MS is an 

immunological disease of the central nervous system, characterised by prominent loss of 

myelin from nerve axons, often referred to as demyelination (Trapp and Nave, 2008; 

Lassmann, 2019).  

 

Inflammation and demyelination can occur anywhere within the central nervous system in 

people with MS and can result in any one of a variety of clinical symptoms. Patients also 

differ remarkably in the severity of clinical relapses, the frequency with which they recur, 

and the extent to which they recover. As such, multiple sclerosis is a heterogeneous disease 

in both clinical presentation and prognosis. 

 

MS is a major cause of disability in young adults, but is increasingly treatable with a 

number of high efficacy treatment options now available (Reich, Lucchinetti, et al. 2018). 

Disease modifying treatments with greater efficacy carry greater potential risk (Soleimani, 

Murray, et al. 2019); however, lower efficacy and potentially less risky treatments run the 

risk of inadequate disease control and accumulation of disability.  

 

A critical issue in the management of patients with multiple sclerosis is therefore choosing 

the most appropriate treatment option for an individual. This in turn is dependent upon 

identifying patients with the greatest long-term risk of developing serious neurological 

deficits and disability. The prognostic markers currently used to make these decisions in 

routine clinical practice are inadequate, resulting in variability in therapeutic approaches 

amongst neurologists (Cerqueira et al., 2018).  

 

1.1 Epidemiology of MS 

1.1.1 Worldwide prevalence 

Worldwide, prevalence of multiple sclerosis varies significantly between low-risk regions 

(Southern and Central America, Africa, East Asia) and high-risk regions (Northern 

America and Northern Europe)(Wallin et al., 2019). Within geographical regions, 

incidence and prevalence also vary by age and sex. Children of both sexes have equal 

(low) risk; whereas after adolescence MS is up to twice as prevalent in women as it is in 

men (Wallin et al., 2019).  
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Variations in incidence rates of MS are also seen on a regional scale. Within Europe, the 

UK has a particularly high incidence of MS, and within the UK Scotland has a higher 

incidence of multiple sclerosis than England, Northern Ireland or Wales (Visser et al., 

2012; Mackenzie et al., 2014). Variations in the prevalence of MS among, and within, 

nations of largely European descent appear to show an association with latitude - 

‘latitudinal gradient’. The reasons for such variations remain unknown, but are likely to be 

the result of a combination of genetic influence of predisposition (such as the HLA-DRB1 

allele) and environmental factors (such as ultraviolet radiation exposure and vitamin D 

synthesis)(Simpson et al., 2011).  

 

1.1.2 Scottish prevalence 

In 2019 the overall incidence rate of MS within Scotland was 9.79 per 100,000(Public 

Health Scotland, 2020), but regional differences are seen. The average annual incidence 

between 2010 and 2017 ranged from 6.24 per 100,000 (NHS Borders) to 17.36 per 

100,000 (NHS Orkney)(Kearns et al., 2019), with a trend to a higher incidence in more 

northerly regions. This intra-regional variation in incidence is consistent with reports of 

latitudinal gradient from other countries (Simpson et al. 2011), and highlights 

heterogeneity in the disease even within small populations.  

 

Multiple sclerosis is a disease of young people, and in particular young women. In 

Scotland the average age of diagnosis is 41 years old and the female to make sex ratio is 

2.3:1(Kearns et al., 2019). This average age of diagnosis is similar to other northern 

European countries (Sweden 40.7 years, Denmark 38 years, Netherlands 39.9 years), but 

slightly older than certain southern European countries (France 35.1 years, Spain 32.1 

years, Italy 34.2 years)(Kobelt et al., 2017).  

 

The age of onset of any disease has important and far-reaching socio-economic 

implications. Patients with MS, even early in the disease course, are more likely to reduce 

working hours or retire early on medical grounds, thus impacting gross income and 

pensions (Kobelt et al., 2017). Later in the disease course, physical and/or cognitive 

disability may mean that patients require additional support, either directly provided by, or 

paid for, by family members (McCrone et al., 2008). Over the lifetime of the patient these 

factors can significantly reduce household income. Furthermore, GP and specialist 

appointments, occupational and physiotherapy input, hospital inpatient stays and 
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medications are costly for the national health service, and therefore society in the whole 

(McCrone et al., 2008; Kobelt et al., 2017).  

 

The recognition of multiple sclerosis as an important issue for Scottish health services 

resulted in the introduction of the NHS Scottish MS register in January 2010. The NHS 

Scottish MS register is implemented across all of Scotland’s 14 heath-boards and mandates 

the collection of baseline demographic data for all new diagnoses of MS. A national report 

is released each year to audit the diagnosis and clinical care of MS patients, to identify 

treatment targets, and to allocate resources. The Scottish MS register is well implemented 

throughout Scotland and has a 99% completion rate for required data (Kearns et al., 2019). 

As a result, Scotland is the only place in the UK where standardised, high-quality baseline 

demographic data are available on all MS diagnoses.  

 

1.2 Clinical presentation and subtypes 

Historically, the disease entity of multiple sclerosis was subdivided into four main groups 

based on the tempo of clinical relapses and the presence or absence of clinical disease 

progression between relapses, see Figure 1-1. Formal definitions of each were described in 

1996 by the US National Multiple Sclerosis Society (NMSS) advisory Committee on 

clinical trials in MS.  

 

This classification system was based on clinical disease activity alone and is now 

considered too restrictive and outdated. Instead, a more descriptive terminology should be 

employed which encompasses disease activity (both clinical and radiological) and disease 

progression (Lublin et al., 2014).  
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Figure 1-1 Historical subdivisions of MS based on clinical phenotype 

The majority of individuals begin with a relapsing-remitting phase (RRMS) and later develop 

secondary progression (secondary progressive MS, SPMS). In a small subset, progression is 

seen from the outset without defined relapses (primary progressive MS, PPMS), or with 

superimposed clinical relapses (progressive relapsing MS, PRMS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

1.2.1 RRMS 

Relapsing-remitting MS (RRMS), with or without disease activity, is the commonest 

phenotype and comprises approximately 85% of all patients at diagnosis. The hallmark of 

relapsing-remitting MS is clinical stability between relapses (irrespective of whether or not 

a full recovery was achieved from the previous relapse). Over time, the frequency of 

relapses diminishes, but despite this disability accrues. At this point the patient may then 

be described as developing progressive multiple sclerosis (PMS), with or without disease 

activity.  

 

1.2.2 Progressive MS 

Progressive MS was historically subdivided into primary or secondary. Secondary 

progressive MS (SPMS) described patients with a history of relapsing neurological 

symptoms, but who then experienced a gradual accrual of symptoms which limited 

function. Primary progressive MS (PPMS) was defined as ‘disease progression from the 
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outset, with occasional plateaus and minor improvements allowed’. A less commonly 

diagnosed subtype, progressive-relapsing MS (PRMS), allowed for acute relapses, with or 

without full recovery, on a background of disease progression from onset. 

 

This nomenclature was based on clinical data alone. Magnetic Resonance Imaging (MRI) 

parameters were purposely excluded from the definitions as it was felt that at that time it 

could not differentiate between clinical courses. Much has changed since the original 

definitions were first proposed. The widespread routine use of MRI in disease monitoring 

enables identification of clinically silent disease activity, challenging the concept that 

relapses occur only infrequently in progressive disease. The ability to describe in the 

nomenclature whether disease activity is present or not, is important for identifying 

individuals who may benefit from disease modifying treatment. For these reasons, the 

original definitions have been superseded in light of emerging data about natural history of 

the disease (Lublin et al., 2014).  

 

Progressive MS is now categorised according to whether there is disability accumulation 

from outset (‘primary progressive’) or following an initial relapsing course (‘secondary 

progressive’), but also whether there is current disease activity or ongoing disease 

progression – ‘active, with progression’, ‘active without progression’, ‘not active but with 

progression’ and ‘not active and without progression – stable disease’(Lublin et al., 2014). 

 

1.2.3 CIS & RIS 

“Clinically Isolated Syndrome” is an initial presentation with clinical symptoms and signs 

suggestive of CNS demyelination, which may show evidence of dissemination in space, 

but does not yet show evidence of dissemination in time, e.g. an initial single MS-like 

presentation which does not yet fulfil the MS diagnostic criteria.  

 

Radiologically isolated syndrome (RIS) is a more simple concept in which MRI 

appearances may be consistent with those commonly seen in MS patients, but occur in the 

absence of clinical symptoms. RIS is therefore only described in patients who have 

undergone CNS imaging for symptoms not consistent with multiple sclerosis. A proportion 

of individuals with RIS will however go on to develop clinical symptoms consistent with 

an MS relapse within 10 years of diagnosis of RIS (Lebrun-Frenay et al., 2019).   
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1.3 Pathophysiology 

The pathological hallmarks of multiple sclerosis were described by the French neurologist 

and professor of anatomical pathology Jean-Martin Charcot in 1880. These include 

inflammation, demyelination, and critically, the persistence of axons as a character 

belonging to multiple sclerosis, suggesting a degree of axonal sparing (Kornek and 

Lassmann, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charcot however also noted that, within some areas of demyelination, axons appeared to 

be entirely destroyed (Kornek and Lassmann, 1999).  In 1906 an Austrian neurologist, Otto 

Marburg, found axonal loss to be more prominent than was the general consensus, and 

Marburg stressed the importance of ‘relative’ axonal sparing (Kornek and Lassmann, 

1999)   

Inflammation 

Demyelination 

Axonal transection 

A 

B
 

C
 

Figure 1-2 The pathological hallmarks of an MS lesion 

Reproduced with permission from ‘Multiple sclerosis’, Compston, A. and Coles, A. Lancet 2008; 

372: 1502–17, Copyright Massachusetts Medical Society.  

 

(A) Perivascular lymphocytes, particularly T cells, make up a core component of the 

inflammatory infiltrate (haematoxylin and eosin stain). (B) Myelin loss in the early stages of 

lesion formation demonstrated by lack of staining with luxol fast blue stain. (C) Demyelination of 

axons is demonstrated by loss of myelin (in red, staining myelin basic protein) between arrow 

heads. Non-phosphorylated neurofilament is stained green with SMI32 antibodies, and axonal 

transection is demonstrated by the presence of a terminal axonal ovoid (arrow).  



 

 23 

 

Myelin loss (‘demyelination’) in multiple sclerosis occurs in discrete foci, producing 

irregular, sharply demarcated ‘MS plaques’ or ‘’lesions’. Although studies continue to 

show that the pathological hallmark of MS is focal demyelination, there is now a greater 

appreciation that disease is not limited to cerebral white matter lesions. Lesions can occur 

anywhere within the central nervous system, with a predilection for the optic nerves, 

periventricular white matter, cortical grey matter, brainstem, cerebellum and subpial spinal 

cord (Popescu and Lucchinetti, 2016).   

 

Cortical lesions (subpial, intracortical and leukocortical) are an important element of whole 

brain axonal and neuronal loss (Kutzelnigg et al., 2005), and have been shown to occur 

early in the disease process and to increase with disease duration (Lucchinetti et al., 2011). 

Sex differences have also been noted, with males shown to have a higher incidence of 

cortical grey matter lesions than females (Luchetti et al., 2018). However cortical lesions 

are not well visualised using conventional MRI techniques (Bjartmar and Trapp, 2001) and 

as a result are significantly under-reported when compared with pathological analysis 

(Lassmann, 2019).  

 

Furthermore, diffuse disease is recognised throughout both the white and grey matter.  

Diffuse injury is prominent in non-lesional ‘normal appearing’ white matter (NAWM),  

particularly later in the disease course (Kutzelnigg et al., 2005). Disease of the NAWM is 

thought to occur as a consequence of secondary Wallerian degeneration from remote focal 

white matter lesions or from neuronal loss in cortical lesions (Bjartmar and Trapp, 2001). 

However, the extent of diffuse NAWM injury does not correlate well with either focal 

white matter or cortical lesion load (Kutzelnigg et al., 2005).  

 

1.3.1 Inflammation 

Cells of both the innate immune system (microglia and macrophages) and adaptive 

immune system (B and T lymphocytes) form a perivascular inflammatory infiltrate which 

disperses into surrounding parenchyma (Lassmann, 2019). Active lesions can be 

differentiated pathologically into ‘early’ or ‘late’ stage active lesions according to the 

myelin debris within macrophages - macrophage within early active lesions contain debris 

from minor myelin proteins (MOG/MAG) whereas macrophages within late active lesions 

contain debris from major myelin proteins (PLP/MBP) (Popescu and Lucchinetti, 2016).  
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For many years MS was considered to be a primarily T cell-mediated disease. This was 

due to the prominence of T cell infiltration seen within demyelinating lesions and GWAS 

studies highlighting many genes associated with adaptive cell-mediated immunity (Sawcer 

et al., 2011). Recently, the identification of persistent B-cell follicle-like structures within 

the CNS, combined with the high efficacy of anti-CD20+ therapies (Hauser et al., 2017) 

have suggested that B-cells play an important role.  

 

CD4+ T cells may be involved in the initiation of the adaptive immune response. However 

cells from B cell lineage are a major component in the brain and spinal cord and are likely 

to be important drivers of inflammation, demyelination and neurodegeneration in MS 

(Serafini et al., 2004; Jones and Coles, 2010; Lassmann, 2019). Particular ways in which B 

cells may contribute to inflammation in MS include in their role as professional antigen-

presenting cells and by secretion of pro-inflammatory cytokines.  

 

Both acute and chronic forms of inflammation can occur in multiple sclerosis (Frischer et 

al., 2015; Kuhlmann et al., 2017; Lassmann, 2019).  

 

i. Acute inflammation is most significant in early and relapsing forms of MS, and is 

thought to occur as a result of the bulk invasion of B and T lymphocytes across a 

dysfunctional blood-brain-barrier. This type of inflammation results in the 

formation of the classic white matter demyelinated plaque and tends to decline with 

disease duration. This type of inflammation can have clinical correlate as a relapse. 

 

ii. Chronic inflammation does not require a damaged blood-brain-barrier to gain entry 

to the central nervous system. Instead, B and T lymphocytes slowly accumulate in 

connective tissues spaces of the brain such as the meninges and perivascular spaces 

(Serafini et al., 2004). Aggregation of lymphocytes in subpial spaces results in the 

development of cortical grey matter lesions and neuronal loss. This type of 

inflammation occurs with increasing disease duration (Frischer et al., 2015).  

 

It should be emphasised that although in general inflammation declines with disease 

duration, this primarily reflects a decline in significant bouts of acute inflammation. 

Inflammation in a chronic form, as seen in progressive disease, remains significant 

(Frischer et al., 2015; Luchetti et al., 2018).  
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Figure 1-3 Demyelination of a neuron 

(A) In a normal myelinated axon, an action potential is propagated by saltatory conduction 

between Nodes of Ranvier, and the thickness of the myelin sheath reflects the speed of conduction 

velocities. The thickness of the myelin sheath can be described by its g-ratio. (B) Myelin damage 

disrupts normal conduction (C) If an oligodendrocyte precursor cell is recruited remyelination 

may occur. However, remyelination results in a thinner myelin sheath and shorter internodes. (D) 

If remyelination does not occur the axon may undergo Wallerian degeneration. As axonal 

damage occurs, products of axonal transport accumulate, and terminal neuronal spheroids 

develop. These are a hallmark of axonal transection. Figure created in BioRender by SJM.  

 

1.3.2 Demyelination 
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The link between inflammation and demyelination is hypothesised, but not proven, to 

occur as a result of an autoimmune response directed against myelin epitopes. One line of 

evidence for this is that MS-like disease can be mediated by adoptive transfer of 

myelin/MOG reactive T cells (Robinson et al., 2014).  

 

Despite the early insight into axonal loss by Charcot et al, historically the focus has 

remained on demyelination as the cause of functional impairment, with axonal destruction 

thought to occur late in the disease and secondary to chronic demyelination.  

 

The myelinating cell of the central nervous system is the oligodendrocyte. Myelination 

begins in utero but continues for years after birth. In adulthood, oligodendrocytes perform 

myelin maintenance and provide structural, electrical and trophic support to multiple nerve 

axons (Podbielska et al., 2013). This is a reciprocal relationship, as seen by the loss of 

oligodendrocytes in the context of demyelination (Podbielska et al., 2013).  

 

Demyelination describes degradation of the fatty myelin sheath surrounding a nerve axon 

and loss of the supporting oligodendrocyte, see figure 1-3. Demyelination slows the 

propagation of action potentials down the nerve axon as the saltatory conduction enabled 

by myelin Nodes of Ranvier is lost (Felts, Baker, et al. 1997). Neurons can recover to a 

certain extent, and some remyelination occurs, although this is highly variable between 

individuals, and rarely to pre-disease levels (Popescu and Lucchinetti, 2016).  

 

Remyelination of an intact axon requires recruitment of oligodendrocyte progenitor cells, 

differentiation of into myelinating oligodendrocytes, and contact between the axon and the 

myelinating oligodendrocyte (Podbielska et al., 2013). These are all potential points at 

which remyelination may fail.  

 

If recovery does occur, the new myelin sheath surrounding the remyelinated axon remains 

thinner, and the internodes are shorter than in developmentally myelinated axons (Gledhill, 

Harrison, et al. 1973). The result in less efficient nerve conduction. Remyelinated plaques 

are identified histologically by a sharply demarcated ring of pale Luxol Blue staining - a 

‘shadow plaque’. If remyelination does not occur, Wallerian degeneration may occur, see 

figure 1-3. Wallerian degeneration is the anterograde degeneration of the distal part of the 

axon which has been separated from the cell body (Dziedzic et al., 2010).   
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Heterogeneity in the immunopathological appearances of active and early demyelinating 

lesions between, but not within, patients, was reported in a study by Lucchinetti et al in 

2000. In that study, Lucchinetti et al proposed four main patterns of early demyelination -  

see table 1-1.  

 
Table 1-1 Summary of four distinct immunopathological patterns of early demyelinating lesions 
proposed by Lucchinetti et al, 2000. 

 

However, this description of four distinct pathological processes is highly disputed. Firstly, 

by nature of the cohort (autopsy and biopsy cases), these cases are unlikely to be truly 

representative. Furthermore, clinical follow-up data were only available for 43 of 51 

biopsy cases, with at least one patient requiring repeat biopsies. Finally, not all the 

antibodies used in the histopathological analysis are commercially available, thereby 

limiting replication of the study (Lucchinetti et al, 2000). In contrast, other groups have 

reported immunopathological homogeneity between patients with established MS, 

suggesting that Lucchinetti’s categorisation may simply represent different chronological 

stages of early lesion development (Breij et al., 2008, Kuhlmann et al., 2017). 

 

In 2017 Kuhlmann et al proposed a simplified histological classification system for MS 

lesions. This differentiated between active, mixed active/inactive and inactive lesions 

(based on the presence/absence and distribution of macrophages), with or without ongoing 

demyelination. The aim was to develop a more descriptive classification that was simpler 

for neuropathologists to apply and thereby enabled easier comparison between studies 

(Kuhlmann et al., 2017).  

Pattern Peri-venous 
distribution? 

Composition of 
inflammatory 
infiltrate 

Additional features Potential for 
remyelination? 

I Yes T-lymphocyte and 

macrophage 

dominated 

 Yes - High incidence 

of shadow plaques 

II 
(most 
common) 

Yes T-lymphocyte and 

macrophages 

Immunoglobulin 

(IgG) and 

complement 

deposition 

Yes - High incidence 

of shadow plaques 

III No T-lymphocyte and 

macrophages  

Preferential loss of 

MAG protein seen in 

some.  

No - Pronounced loss 

of oligodendrocytes 

with no shadow 

plaques 

IV Yes T-lymphocyte and 

macrophages 

Seen in PPMS.  

No preferential loss 

of particular myelin 

protein. 

No - 

Oligodendrocyte 

death without 

shadow plaques 
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1.3.3 Neurodegeneration 

If the neuronal axon remains demyelinated, transection and degeneration of the nerve axon 

may occur, as described above.  

 
Histopathological studies since Charcot’s early descriptions have demonstrated and 

reiterated that axon transection is abundant throughout MS lesions, and that axonal loss 

occurs to a greater extent within areas of active inflammation (Ferguson et al., 1997; Bruce 

D. Trapp et al., 1998). This suggests that axonal damage occurs, to a degree, as a 

consequence of demyelination.  

 

Demyelinated axons become susceptible to inflammatory mediated damage from 

cytokines, proteolytic enzymes and free radicals. At the same time, they lose their 

structural, electrical and trophic support from oligodendrocytes. Loss of saltatory 

conduction redistributes sodium channels along the axon. Activity of Na+/K+ ATPase 

channels increases to counter an influx of sodium, augmenting the energy demands of the 

axon (Campbell, Worrall et al, 2014). In demyelinated axons, this increase in energy 

requirements causes mitochondria to gather in the axon (G. R. Campbell, Worrall, et al. 

2014). However, these compensatory mechanisms often eventually fail, leading to 

axoplasmic influx of calcium and activation of proteolytic enzymes. As fast axonal 

transport is lost and the axon degenerates, amyloid precursor proteins accumulate. These 

are visualised as terminal axonal ovoids, which are considered a hallmark of axonal 

transection (Trapp and Nave, 2008). 

 

At what stage in the disease process axonal damage begins has prognostic relevance. 

Axonal loss is thought to be the final common pathway in the development of disability, 

and once axonal injury occurs beyond the threshold for compensation it is the best 

pathological predictor of permanent neurological deficit (Bjartmar et al., 2000). As such, 

the quantification of axonal loss, through imaging and body fluid biomarker approaches is 

increasingly relevant to clinical practice and will be discussed in sections 1.7.3 - 1.7.5. 

 

1.4 Diagnosis of multiple sclerosis  

A diagnosis of multiple sclerosis is based upon clinical history and examination alongside 

paraclinical tools such as magnetic resonance imaging (MRI), CSF analysis or visual 

evoked potentials (VEPs). Diagnostic criteria exist to ensure diagnosis is consistent 

between neurologists.  
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Figure 1-4 Multiple sclerosis diagnostic criteria to date 

Timeline showing only the most commonly cited diagnostic criteria to date. 

 

The diagnostic criteria are dependent upon showing that episodes of demyelination have 

occurred at least two time points, and in at least two areas of the central nervous system, 

i.e. that there is dissemination of disease in time, and dissemination of disease in space.  

 

What is considered acceptable as proof of dissemination in time/space has varied with 

different renditions of the diagnostic criteria, see figure 1-4. However, all have focused on 

this key point.  

 

1.4.1 Previous diagnostic criteria 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The first diagnostic criteria, published by the Schumacher Committee in 1965, were based 

solely on clinical findings (G.A. Schumacher, G. Beebe, et al 1965). All subsequent 

criteria have been based upon these. In 1983 the Poser criteria expanded upon the 

Schumacher criteria with the addition of paraclinical parameters and classifications of 

‘definite’ or ‘probable’ multiple sclerosis (Poser et al., 1983).  
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The 2001 McDonald Criteria were the first to include MR imaging as a core component 

(McDonald et al., 2001). The McDonald criteria have now been revised three times since 

publication (Polman et al., 2005, 2011; Thompson et al., 2018). Between 2001 and 2010 

the MRI criteria were simplified, and the European MAGNIMS criteria are now used 

(Swanton et al., 2007).  

 

1.4.2 Current diagnostic criteria  

The major update in the 2017 McDonald criteria was the inclusion of unpaired oligoclonal 

bands in the CSF as evidence for dissemination in time.  

 

Since publication of the original diagnostic guidelines, each subsequent review has aimed 

to reduce diagnostic ambiguity and allow diagnostic criteria to be fulfilled at an earlier 

stage in the disease. The effect of these changes is to allow earlier diagnosis, and therefore 

earlier treatment. The consequences are that a greater number of diagnoses are made and 

that MS populations may differ slightly according to the diagnostic criteria employed at the 

time. These are important points when comparing contemporary and historical MS cohorts, 

and are of relevance to interpreting the changing definition of MS used in clinical trials 

over the past four decades.   

 
As RRMS is the most common form of MS we will focus here on the diagnostic criteria 

for RRMS, using the McDonald 2017 diagnostic criteria (Thompson et al., 2018).  
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Diagnosis requires evidence of dissemination in time and dissemination in space 

 

Dissemination in time can be demonstrated: 

• CLINICALLY - A clinical history of two or more distinct episodes of  

neurological symptoms characteristic for MS, for example optic neuritis. 

• RADIOLOGICALLY - MRI findings of the simultaneous presence of both 

Gadolinium contrast enhancing and non-enhancing T2 lesions; or the finding  

of new T2 hyperintense lesions on a follow-up MRI.  

• CSF ANALYSIS - The finding of unpaired oligoclonal bands (OCB) in 

cerebrospinal fluid (CSF) 

 

 

Dissemination in space can be demonstrated: 

• CLINICALLY - A clinical history clearly reporting symptoms affecting  

distinct regions of the CNS, such as optic neuritis and symptoms of a spinal 

relapse (bilateral leg weakness and bladder symptoms).  

• RADIOLOGICALLY - MRI findings of one or more T2 hyperintense lesion  

characteristic of MS, in at least two of four areas of the CNS: periventricular, 

cortical/juxta-cortical, infratentorial brain regions, and spinal cord.  

• PARACLINICAL MEASURES - The finding of abnormal visual evoked  

potentials in a patient without prior clinical history of optic neuritis suggests 

previous asymptomatic optic nerve involvement. This can be considered  

alongside a secondary symptom or sign from a distinct neurological region.  

 
 
1.4.3 Role of MRI in the diagnosis of MS 

MRI is a non-invasive imaging modality that is particularly well-suited to imaging non-

bony tissues such as the brain, and as such has revolutionised the field of neurology in 

general, and particularly for multiple sclerosis (McDonald, 1986). MRI is routinely used in 

the diagnosis of MS (McDonald et al., 2001; Wattjes et al., 2015), the monitoring of 

disease activity (Miller, 1994; Brex et al., 2002), the assessment of treatment efficacy, and 

in identification of potential treatment side effects. Repeated imaging in this manner is 

possible because MRI uses non-ionising radiation.  

 

An MRI machine produces a powerful magnetic field which causes all the protons in the 

body to align with that field. When a radiofrequency pulse is applied, the aligned protons 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 32 

are disturbed. When the radiofrequency pulse is switched off, the protons swing back into 

alignment, releasing energy as they do so (National Institutes of Health Magnetic 

Resonance Imaging, 2020). The energy released by the protons and the time taken to re-

align with the magnetic field varies between different molecules, allowing the MR sensors 

to differentiate between tissues, fluids, bone etc (National Institutes of Health Magnetic 

Resonance Imaging, 2020).  

 

An ‘MRI sequence’ is a predetermined set of radiofrequency pulses used to produce 

images with a particular appearance (Murphy and Gaillard, 2020). Certain structures are 

better defined with one sequence than another, so in order to appreciate different tissues a 

combination of sequences are employed, see figure 1-5.  

 

The commonly used sequences in an MRI demyelination protocol include: 

• T1 weighted sequences - On T1 imaging fluid (such as CSF) is low intensity 

(appears black), fat is high intensity (appears white), and tissues such as the brain 

are intermediate intensity (shades of grey), figure 1-5(A). 

• T2 weighted sequences - On T2 fluid and fat are both high intensity (appears 

white), and tissues are intermediate intensity (shades of grey), figure 1-5(C). 

• Fluid attenuated (FLAIR) sequences - FLAIR is used to reduce the intensity signal 

from fluid, figure 1-5(B) and (D). An example of its use is in the identification of 

parenchymal oedema, where high T2 signal from nearby CSF may distorts images. 

By suppressing the high signal from CSF, FLAIR sequences allow for easier 

identification of parenchymal oedema.  

• T1 with contrast enhancement - A Gadolinium-based contrast can be given 

intravenously to the patient prior to imaging. If there is breakdown of the blood-

brain-barrier (BBB), the Gadolinium will leak through and appears bright within 

parenchymal tissue, figure 1-5(F). As damage to the BBB heals within a matter of 

weeks, contrast enhancement only highlights acute lesions (approximately 2-6 

weeks old). Gadolinium contrast is therefore used in the identification of new 

lesions or lesions of different ages. Recently, safety concerns surrounding the 

repeated use of Gadolinium contrast and its possible accumulation within the brain 

parenchyma have reduced its use in routine imaging and in research studies (Gulani 

et al., 2017).  
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Figure 1-5 MRI sequences to demonstrate lesions in relapsing remitting MS 

Reproduced with permission from Tillema, Jan-Mendelt, and Istvan Pirko. ‘Neuroradiological 

evaluation of demyelinating disease’ Therapeutic advances in neurological disorders vol. 6,4 

(2013): 249-68.  

 

(A) & (B) - sagittal images showing supratentorial white matter lesions as visualised on (A) T1-

weighted and (B) T2 FLAIR sequences. T2 FLAIR has superior sensitivity in detection of 

juxtacortical (white arrows) and periventricular lesions (black arrows). (C) & (D) - axial images 

showing white matter lesions as visualised on (C) T2-weighted and (D) T2 FLAIR sequences, 

demonstrating the greater sensitivity of posterior fossa lesion detection using standard T2-

weighted images over T2 FLAIR. (E) & (F)- axial images showing supratentorial white matter 

lesions on (E) T2 FLAIR and (F) T1-weighted post Gadolinium contrast sequences. The large 

frontal lesion (white arrow) demonstrates ring enhancement, thus differing it from the older, non-

enhancing lesions seen on T2 FLAIR sequences (E) but not T1-weighted Gad sequences (F).  
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1.4.4 Role of CSF in the diagnosis of MS 

Cerebrospinal fluid analysis is only used routinely at the point of diagnostic work-up.   

Several aspects of CSF analysis can be helpful in confirming or disputing a diagnosis, 

including the white blood cell count (typically <50 x106), CSF protein concentration 

(typically normal, but may be slightly elevated), and the assessment of intrathecal 

immunoglobulin synthesis.   

 

Although not specific to MS, evidence of intrathecal antibody synthesis supports the 

diagnosis of MS (Thompson et al., 2018). Intrathecal antibody synthesis is demonstrated 

by the finding of 2 or more oligoclonal bands (OCBs) in CSF but absent in paired serum.  

 

Oligoclonal bands are bands of immunoglobulins that can be seen in CSF or blood by 

using a combination of isoelectric focusing and immunoblotting techniques. Standardised 

methods for the detection of OCB are commercially available, but interpretation is user-

dependent. With experience however, the sensitivities for detection of OCB (using 

isoelectric focusing followed by immunoblotting) is greater than 95% (Thompson and 

Freedman, 2006).   

 

Unpaired OCB are found in the CSF of approximately 95% of patients with multiple 

sclerosis (Thompson and Freedman, 2006). Therefore, although the absence of unpaired 

OCBs does not exclude a diagnosis of MS, caution is warranted, particularly if there are 

additional atypical clinical or imaging findings.  

 

1.5 Treatment of multiple sclerosis 

The number of treatments available for RRMS patients has increased exponentially over 

the past decade. The first disease modifying treatment (interferon beta-1b) was licensed in 

1993 after being shown to reduce relapse rates by approximately 30% compared with 

placebo (Paty and Li, 1993)(PRISMS (Prevention of Relapses and Disability by Interferon-

1a Subcutaneously in Multiple Sclerosis) Study Group 1998). In general, since then 

treatments have become ever more efficacious.  

 

Disease modifying treatments (DMTs) can be divided (somewhat subjectively) into those 

which are considered lower in their efficacy of controlling disease, but with lower risk of 

potentially serious adverse effects; higher efficacy, which offer better disease control but 
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greater risk of potentially serious adverse events; and intermediate efficacy, which lie 

somewhere between the two.  

 

In some cases, individuals at high risk of a specific potential adverse effect can be 

identified. For example, an older patients with a high JC virus load would be considered a 

high risk patient for receiving Natalizumab (Bloomgren et al., 2012). However, in order 

for patients to make an informed decision about the risks and benefits of treatments, they 

need to be counselled on how severely their disease may affect them in the future. This 

requires clinical tools, applied early in the disease (and ideally at diagnosis), which would 

identify individuals at the greatest risk of developing fixed disability. Identification of this 

cohort could justify the use of higher efficacy treatments and at an earlier stage in the 

disease. Conversely, individuals deemed at low risk of a poor prognosis could avoid riskier 

treatments and the potential adverse effects associated with them.  

 

At present such tools are crude, and are based upon old natural history studies of untreated 

MS which helped identify risk factors for poor outcomes (Weinshenker et al., 1989). 

Consequently, treatment practices vary between clinicians, and both ‘induction’ and 

‘escalation’ approaches are practiced (Ontaneda et al., 2019). Inadvertently some patients 

may be unnecessarily exposed to potentially serious adverse effects of treatments, whilst 

others risk inadequate suppression of MS inflammatory activity.  

 
1.6 Prognosis of MS 

Whilst genome-wide association studies have identified more than two hundred gene 

variants which may increase the risk of developing multiple sclerosis, none have been 

shown to affect clinical course (Reich, Lucchinetti and Calabresi, 2018). Modifiable risk 

factors, such as cigarette smoking and obesity in young adulthood, are known to increase 

disease susceptibility, and may also have an impact on disease prognosis. For example,  

continued cigarette smoking after diagnosis of RRMS has been associated with quicker 

conversion to secondary progressive multiple sclerosis than those who stopped smoking at 

the point of diagnosis (Ramanujam et al., 2015).  

 

Current treatment decisions are primarily based upon the clinical history along-with the 

MR imaging findings. Relapse frequency and presence of MRI activity often features in 

the eligibility criteria for disease modifying therapies. Frequent relapses in early disease 

(Scalfari et al., 2010) and a high burden of infratentorial and spinal lesions on MRI 



 

 36 

(Langer-Gould et al., 2006; Tintore et al., 2010) are believed to be risk factors for poor 

outcome.  

 

A greater frequency of relapses in years one and two has been shown to reduce the time 

taken to reach disability milestones (Scalfari et al., 2010). However, this was reported in 

an untreated cohort, and is dependent on the identification or patient self-reporting of 

relapses and ability to define a ‘start date’ of the disease. In addition, using the number of 

relapses as a prognostic indicator inadvertently requires clinical disease activity to occur. 

An ideal prognostic tool would accurately determine risks of future neurological events 

without them actually happening (similar to stroke prevention).  

 
1.6.1 Current MRI methods used in prognosis  

Correlation between conventional MRI findings (such as T2 lesion volume) and clinical 

disability is weak. This is often referred to as the “clinic-radiological paradox” of multiple 

sclerosis (Barkhof, 2002; Brownlee et al., 2019).  

 

There are numerous potential reasons for this. These include a lack of sensitivity of 

measures of disability such as the EDSS, the fact that widely use standard MRI techniques 

do not visualise well cortical grey matter lesions (Geurts et al., 2005; Mistry et al., 2011), 

or because the spinal axis is often not imaged in full and with the addition of Gadolinium 

enhancement in order to optimise sensitivity (Wattjes et al., 2015; Brownlee et al., 2019).  

 

An important additional explanation for the lack of correlation between MR imaging and 

the clinical prognosis in MS is that conventional MRI remains insensitive to microscopic 

pathology, as demonstrated by pathological evidence of axonal transection within ‘normal 

appearing’ white matter (NAWM)(B D Trapp et al., 1998). There are therefore substrates 

of disability which are not so well visualised on conventional 1.5/3T MR imaging (Mistry 

et al., 2011).  

 

Brain or spinal cord atrophy are thought to reflect the accumulative, irreversible loss of 

neurons and glia cells as a consequence of multiple sclerosis. Atrophy measures are 

therefore an estimate of neurodegeneration (tissue destruction), and do correlate with 

longer term measures of clinical disability (Fisher et al., 2000). However, atrophy 

measures are problematic to employ in standard practice in individual patients (De Stefano, 

Battaglini and Smith, 2007), and are insensitive to small changes in early disease. For 

example, “pseudoatrophy”, describes a phenomenon whereby rates of brain atrophy 
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initially appear to accelerate after the initiation of disease modifying treatment. This is 

thought to represent an early reduction in white matter lesion oedema and inflammatory 

infiltrates as a result of a treatment-response; however its presence complicates the 

interpretation of treatment effects on brain volume (De Stefano and Arnold, 2015).  

 

Conventional MRI can therefore be considered to be a sensitive biomarker of focal 

demyelination, but its role as a biomarker of neurodegeneration is currently limited. 

However, there are opportunities to develop aspects of advanced MR imaging which could 

confer greater information about MS lesion biology and provide better imaging biomarkers 

of neurodegeneration. These are described in the imaging biomarker section in 1.7.3.   

 

1.6.2 Current CSF methods used in prognostication  

Other than the role of OCB at diagnosis (Arrambide et al., 2018), no CSF biomarkers are 

used in clinical practice for disease monitoring or prognostication. The main reason for this 

is likely to be the invasive nature of CSF sampling.  

 

Previous studies have demonstrated there may be prognostic relevance in the identification 

of the subtype of OCB. IgG OCB are the common form that are tested by most laboratories 

and are found in approximately 95% of individuals with MS. IgM OCB against myelin 

lipids are less common. Their presence has been associated with a greater frequency of 

relapses and higher rates of disability that individuals with IgG OCB or IgM OCB that do 

not recognise myelin lipids (Villar et al., 2008).  

 

There may also be a prognostic relevance in the absence of CSF oligoclonal bands in 

individuals with MS. A greater proportion of patients with a diagnosis of benign MS 

(EDSS <3.5 at 10 years) were OCB negative compared with those diagnosed with severe 

MS (EDSS >7.5 at 10 years)(Avasarala, Cross, et al, 2001). However, as previously 

discussed, the absence of unpaired oligoclonal bands should also raises suspicion of 

alternative diagnoses.  

 

In summary, the conventional MRI sequences and the routine CSF markers used in clinical 

practice have limited ability to predict an individual’s future risk of a poor outcome from 

multiple sclerosis.  

 

 



 

 38 

1.7 Biomarkers 

1.7.1 Definition of a biomarker 

A biomarker is an objective measure of a physiological or pathological parameter that 

enables characterisation of the health or disease state of an individual (Raphael et al., 

2014). Broadly speaking, biomarkers can be divided into clinical measures, radiological 

measures or laboratory analysis of a fluid or tissue (O’Connor et al., 2006).   

 

Biomarkers may be employed in different ways and at different stages in a disease - 

diagnosis; prognosis; identification of appropriate treatment groups; treatment monitoring 

for efficacy; identification of side effects; identification of a treatment end-point.  

 
1.7.2 Clinical biomarkers for quantifying outcomes 

When MR imaging biomarkers are measured against clinical phenotype there is greater 

disparity than when they are measured against pathological analysis. The accuracy of any 

biomarker is therefore ultimately dependent upon what it is measured against. 

 

There are a myriad of clinical examination tools which have been developed specifically 

for use in the field of MS research. All share a common aim - to standardise the disability 

or clinical symptoms of a clinically heterogenous MS population. The most commonly 

used measure of disability is the Kurtze Expanded Disability Status Scale (EDSS). A 

commonly used measure of function is the Multiple Sclerosis Functional Composite 

measure (MSFC).  

 

Kurtze Expanded Disability Status Scale (EDSS) 

The routine clinical neurological examination was translated into a clinical examination 

disability scale specifically for use in MS - The Kurtze Expanded Disability Status Scale 

(EDSS) (Kurtzke, 1983). The EDSS divides the neurological examination into eight 

functional systems, assigning a score to each based on a combination of clinical signs and 

patients reported symptoms. The scores from each system are then combined to produce an 

overall EDSS score ranging from 0 (asymptomatic) to 10 (death as a result of MS).  

 

The EDSS has well recognised limitations, primarily that the scoring is heavily dependent 

on mobility performance. In addition, it is considered to be insensitive to small changes in 

function (particularly changes in cognitive function) and is non-linear. That said, the EDSS 
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remains the most widely used standardised scoring system for describing clinical disability 

in MS and is included in all major studies and trials.  

 

Multiple Sclerosis Functional Composite measure (MSFC) 

The MSFC was developed to better reflect the overall impact of multiple sclerosis on 

function, particularly cognitive function. The MSFC is composed of three separate 

measures of performance - upper limb function, lower limb function and cognition. Upper 

limb and hand function are examined with the timed 9-hole peg test. Lower limb function 

and ambulation are assessed with a timed 25-foot walk. Finally, the Paced Auditory Serial 

Addition Test (PASAT) assesses auditory information processing speed and flexibility as 

well as calculation ability (Fischer et al., 1999). The MSFC overall score is calculated 

from z-scores, whereby each component of an individual’s score is measured in terms of 

standard deviations compared with the mean of the group. A lower zMSFC represented a 

poorer performance across MSFC tests.  

 

The primary advantage of the MSFC over the EDSS is that it is less dependent on 

ambulation and therefore captures additional dimensions of the impact of multiple sclerosis 

on function. The disadvantages are that interpretation of the scoring is not intuitive and that 

it requires specific equipment, such as a 9-hole peg test (Fischer et al., 1999).  

 
1.7.3 Evolving concepts in MRI biomarkers 

MRI is a cornerstone in the diagnostic criteria for multiple sclerosis. 7T MRI scanners and 

growing libraries of MRI sequences could enable a diagnosis of MS to be made with ever 

greater sensitivity and specificity (Sinnecker et al., 2019). However, the role of MRI in the 

management of MS patients goes beyond diagnosis.  

 

With an increasing number of treatment options available, MRI is now used in routine 

clinical practice as a biomarker of MS disease activity. For example, eligibility criteria for 

immunotherapies such as ocrelizumab depend on identification of active disease, on 

clinical or MRI criteria (Scottish Medicines Consortium, 2020). Radiological evidence of 

active MS may therefore result in the initiation or a change in therapy, despite an absence 

of clinical relapses. Routine MR imaging in individuals established on certain DMTs 

(Natalizumab, Fingolimod, Dimethyl-fumarate) also offers a secondary benefit as a safety 

biomarker in the identification of potentially fatal progressive multifocal 

leukoencephalopathy (PML).  
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For the reasons discussed above the role of conventional MRI as a prognostic biomarker in 

multiple sclerosis remains limited. However, technological advances in MR imaging which 

enable the quantification of both focal and diffuse structural changes, in white as well as 

grey matter, offer new opportunities. For example, advanced MRI techniques now enable 

the indirect measure of myelin integrity.  

 

Quantification of myelin integrity provides an opportunity to identify myelin disruption at 

an earlier stage than previously possible, and prior to the development of large focal 

lesions. An in-vivo biomarker of myelin integrity could enable patients to be classified 

according to their ability to remyelinate damaged axons, and may also be of use in the 

identification of remyelination therapies (Compston and Coles, 2008; Podbielska et al., 

2013). One such method of quantification of myelin integrity is measurement of the MRI 

aggregate g-ratio (Stikov et al., 2015; Campbell et al., 2018).  

 
The g-ratio is defined as the ratio of the inner axonal radius to the myelinated fiber radius. 

It is a measure of the degree of myelination of an axon (figure 5-1). The g-ratio is 

quantified by electron microscopic visualisation and measurement, however an aggregate 

g-ratio can be calculated using the advanced MR imaging techniques of Magnetization 

Transfer Saturation (MTsat) and Diffusion Weighted Imaging (DWI).  
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Figure 1-6 Magnetization Transfer 

 
Myelinated axons have more macromolecules to absorb energy than demyelinated axons. 

After a radiofrequency pulse is applied, macromolecules transfer their energy 

(magnetization transfer) to free hydrogen ions. Axons with greater number of 

macromolecules will transfer more energy. Therefore, when a second radiofrequency pulse 

is applied, areas with more myelin will have already transferred greater energy, i.e. will 

have a greater magnetization saturation.(St-Amant and O’Gorman, 2020)  

 

Magnetization transfer 

(Schmierer et al., 2004; Stikov et al., 2015; St-Amant and O’Gorman, 2020) 

Magnetization transfer refers to the exchange of energy between protons from three pools: 

1) bound up in macromolecules in myelin, membranes and proteins  

2) in ‘free’ water; and  

3) in water layers between membranes.  
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Figure 1-7 Diffusion weighted imaging 

Within an axon, water molecules will show isotropic distribution at short diffusion times, but 

diffusion anisotropy at long diffusion times. Figure created in BioRender by SJM. 

The difference between the free water signal detected with, and without, the preceding 

magnetization pulse produces the magnetization transfer ratio (MTR). A higher MTR 

occurs when more protons are bound within macromolecules such as myelin, whereas a 

lower MTR results from less magnetization transfer, i.e. less protons bound in 

macromolecules such as myelin. MTR has been shown to correlate well with histological 

reports of myelin content (Schmierer et al., 2004). MTsat is a variation on MTR that 

corrects for T1 relaxation and B1 inhomogeneities.  

 

Diffusion weighted imaging 

Diffusion weighted imaging (DWI) is based on the principle that free water molecules 

move differently to those contained within cellular structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diffusion models can be used estimate the size and integrity of a cellular compartment 

based on the movement patterns of free water molecules (Rovira, Auger and Alonso, 

2013). For example, anisotropic water molecule movement within a MR voxel suggests 

that the water molecules are contained within cellular structures, such as an intact axon. 

Isotropic water molecule movement within an MR voxel may however suggest disruption 
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of tissue architecture, such as axonal damage. Diffusion weighted imaging has 

demonstrated isotropic patterns of water molecule movement within normal appearing 

areas of brain tissue in MS patients, suggesting subtle, diffuse injury to tissue structures 

(Rovira, Auger and Alonso, 2013).  

 

1.7.4 Evolving concepts in CSF biomarkers  

Even with the advances in MR imaging techniques in MS, there is still an unmet need for a 

biomarker of axonal loss. Due to its proximity to the pathology, CSF offers greater 

resolution with which to identify and study proteins of brain damage. By-products of 

neuronal damage, such as the release of intrinsic structural proteins, offer a source of 

potential markers with which to measure neuronal injury and axonal loss.   

 

Intermediate filament proteins (IFs) provide structural support to eukaryotic cells. 

Intermediate filaments are so-called because of the diameter of the assembled filament (8-

10 nm) when compared with the two other cytoskeleton structures - actin microfilaments 

and microtubules.  

 

Different cell types produce distinct IFs to meet tissue-specific requirements, and six main 

subgroups have been categorised according to amino acid sequence (Petzold, 2005): 

• IF type 1 - Acidic keratins 

• IF type 2 - Basic and Neutral keratins 

• IF type 3 - Vimentin, desmin, peripherin and glial fibrillary acidic protein (GFAP) 

• IF type 4 - Neurofilaments and alpha internexin 

• IF type 5 - Lamin A, B and C (the only IF to be nuclear as opposed cytoplasmic) 

• IF type 6 - Nestin 

 

Within the nervous system, intermediate filaments are found in astrocytes (IF type 3 – 

GFAP) and neurons (IF type 4 – Neurofilaments). Here we will focus on neurofilaments.  
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Neurofilaments are composed of three polypeptide subunits which differ in molecular 

weight and phosphorylation, known as neurofilament light, medium and heavy chains. 

Assembled subunits are orientated along the axon, and form an integral part of the extreme 

cytoarchitecture of neurons - the neuronal cell body measures between 0.001 to 0.005mm 

diameter, but may support an axon up to 1m in length (Petzold, 2005).  

 

Both neurofilament light chain (NfL) and neurofilament medium chain (NfM) are coded 

on chromosome 8p21.  Neurofilament light chain is composed of 543 amino acids and has 

a molecular mass of 61kDa. However, as a result of phosphorylation and glycosylation, 

NfL is often described as a molecular mass of 68kDa due to its slow migration in sodium 

dodecyl sulfate (SDS) polyacrylamide gels (PAGE). Neurofilament medium chain is 

composed of 916 amino acids, has a true molecular mass of 102.5kDa, and a molecular 

mass of 150kDa calculated from SDS-PAGE. Neurofilament heavy chain is coded on 

chromosome 22q12.2, is comprised of 1020 amino acids and has a true molecular mass of 

111kDa. Neurofilament heavy chains have a long tail region with variable degrees of 

phosphorylation, which give NfH a SDS-PAGE calculated molecular mass of between 

190-210kDa (Petzold, 2005).  
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Figure 1-8 The structure of neurofilament 

Neurofilaments are composed of light, intermediate and heavy chains in a ratio of 5:3:1. NfL, 

NfM and NfH differ in molecular weight and extent of phosphorylation. The subunits interact 

to form coiled-coil dimers, then protofilaments, the protofibrils. The final neurofilament is 

important for growth in axonal diameter during development and in maintaining axon 

calibre. Figure created in BioRender by SJM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

  

 

 

 

Each neurofilament subunit contains a central hydrophobic rod domain, a subtype specific 

globular head domain (N-terminus) and a variable tail domain (C terminus), see figure 1-8.  

Each domain plays a specific role. The head domain regulates microtubules within the 

axon. The rod domains allow interactions between the subunits. The primary function of 

the tail domain is to form extensions which increases the distance between neighbouring 

neurofilaments and microtubules, thus increasing axon calibre (Yuan et al., 2012). 

 

Neurofilament construction starts with the rod domains of two alpha-helix subunits 

forming a coiled-coil dimer, with head-to-head and tail-to-tail ends. Two dimers then 
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interact in an anti-parallel fashion to form a tetramer, with two head and two tail domains 

at either end. Adjacent tetramers form protofibrils. Protofibrils interact via the head 

domain to produce a neurofilament 10nm in diameter. 

 

After a neurofilament is formed in the neuronal cell body it is transported into the axon. 

Neurofilaments are considered very stable proteins. Although they have bi-directional 

movement within the axon, their overall path is to move slowly along the axon from cell 

body to axonal terminal (Al-Chalabi and Miller, 2003). Under healthy conditions 

neurofilaments are degraded only when they reach the axon terminals (Lee and Cleveland, 

1996). The stability of neurofilament is thought to occur to arise from their 

phosphorylation (Goldstein, Sternberger et al, 1987).  

 

Depending on the length of the axon, neurofilaments may have a lifespan of up to two 

years (Lee and Cleveland, 1996). During this time neurofilaments can undergo 

inflammatory or oxidative damage which results in their accumulation. Accumulation of 

neurofilament proteins has been noted in neurodegenerative diseases other than MS, 

including amyotrophic lateral sclerosis (Rouleau et al., 1996) and dementias (Petzold, 

2005). Accumulation of aberrant neurofilaments can result in loss of axonal structural 

integrity and ultimately in axonal transection. Axonal transection, from any cause, releases 

neurofilament sub-units into the extracellular space, enabling their detection in CSF 

(Petzold, 2005), see figure 1-9. The slow turnover of neurofilaments under healthy 

conditions means that their elevated concentrations in the CSF mainly reflect aberrant 

release as a result of axonal transection. Neurofilament levels are therefore a biomarker of 

axonal damage.   
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Neurofilament subunits are formed at a ratio of NfH: NfM: NfL of 1:3:5. Neurofilament 

light chain is the smallest, the most soluble, the least phosphorylated and the most 

plentiful, and as a result has been the main focus of biomarker research, particularly within 

the field of multiple sclerosis.  

 

In 1996, Rosengren et al were the first to measure NfL in cerebrospinal fluid by adapting 

an enzyme-linked immunosorbent assay (ELISA) protocol for the measurement of GFAP 

(Rosengren et al., 1996). The result was an ELISA able to quantify NfL levels ranging 

between 125-16,000 ng/L. Two years later, Lycke et al used the same assay to compare 

CSF NfL levels between 60 RRMS patients and 11 HCs. NfL was detectable in 78% of 

MS patients, but below the limit of detection in all HCs (Lycke et al., 1998).  

 

 

 

Figure 1-9 Neurofilament is released as a result of axonal transection 

Axonal transection, from any cause, releases neurofilament subunits into the extracellular 

fluid thereby allowing their detection in CSF (using ELISA), or blood (using next-generation 

ELISA). Figure created in BioRender by SJM.  
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Figure 1-10 Capture (sandwich) neurofilament ELISA 

Sandwich ELISAs are a commonly performed type of ELISA. The neurofilament ELISA described 

above employs capture and detection antibodies made commercially available through Uman 

Diagnostics. 

Detecting neurofilament by Enzyme-linked immunosorbent assay 

Enzyme-linked immunosorbent assay (ELISA) is an analytical biochemistry assay which 

utilises an antibody to detect a specific antigen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are several different methods of performing an ELISA. These differ, for example, in 

whether the antigen or the antibody is bound to the plate or in a solution (direct ELISA 

versus capture ELISA). All ELISAs however are fundamentally dependent on the antigen-

antibody pairing, which is the key element determining the sensitivity and specificity of 

the assay.  
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In 2003, Norgren et al used hybridomas to identify antibody pairs with superior affinity, 

and by doing so were able to reduce the lower limit of detection of the NfL ELISA from 

125ng/L to 60ng/L. Over the following 10 years Norgren’s assay was also outdated by the 

development of a commercial ELISA with a sensitivity of 32pg/mL (UmanDiagnostics). 

Improving the sensitivity of the assay enabled CSF NfL to be accurately quantified in both 

MS patients and healthy controls.  

 

A large body of work has examined the potential role of CSF NfL both in multiple 

sclerosis and in many other neurological diseases. This has been summarised in a large 

meta-analysis comprising approximately 10,000 individuals and 35 neurological diseases 

(Bridel et al., 2019). CSF neurofilament levels differed significantly between different 

diseases. The highest NfL levels were found in cognitively impaired HIV positive patients 

(where levels were approximately 20 times higher than in healthy controls) and 

amyotrophic lateral sclerosis (approximately ten times higher than in healthy controls). In 

contrast, CSF NfL levels in multiple sclerosis were less than five times those seen in 

healthy controls (Bridel et al., 2019). CSF NfL levels in frontotemporal dementia were 

significantly higher than other dementias, and may therefore have use in this context as a 

diagnostic biomarker (Bridel et al., 2019). These results show that neurofilament light 

chain is a non-specific marker of axonal damage, and that disease-specific reference values 

are likely to be required to interpret clinically meaningful results.  

 

Within the field of multiple sclerosis, levels of CSF NfL have been shown to be higher in 

MS patients compared with controls, to rise in the context of relapse, and to fall with 

certain disease modifying treatments (Lycke et al., 1998; Novakova et al., 2016; 

Novakova, Axelsson, et al., 2017). Although further systematic review and meta-analysis 

of the data are required, results reported suggest that CSF NfL has the potential to be a 

clinically meaningful marker of disease activity. However, CSF is invasive to obtain, 

making it unsuitable for repeat or longitudinal sampling and less likely to be available 

from both patients and controls. This is probably the main reason for the lack of CSF 

biomarkers used clinically, not only in multiple sclerosis, but across neurodegenerative 

diseases as a whole.  
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1.7.5 Evolving concepts in blood biomarkers 

Single molecule array (Simoa) is a type of next-generation, bead-based sandwich ELISA. 

Simoa technology which was originally described in 2010 (Rissin et al., 2010).   

 

In a Simoa, instead of the capture antibody being immobilised to a plate it is coupled to 

paramagnetic beads, see figure 1-11. When the beads are added to an experimental sample 

the protein of interest is therefore captured on the beads. Detection and secondary 

antibodies are then added, punctuated by wash cycles in a similar series of steps as a 

traditional ELISA. The entire antigen-antibody complex occurs on the bead.  

 

In a traditional ELISA the antigen-antibody-detector complex is formed within a 360µL-

volume well and the colour change of the reaction (the optical density) across the well is 

determined by spectrophotometry. In a Simoa assay the beads are separated into individual 

50fL-volume wells spread over a disc. The wells are sealed with a layer of oil, thereby 

containing each fluorescent reaction within individual wells.  

 

The disc is then imaged in several steps to determine which wells contain a bead, and 

which beads are ‘on’ – i.e. produce a fluorescent signal, or ‘off’. A white light image is 

first used to identify the wells containing beads. Fluorescent images are obtained over a 

series of frames to determine whether beads are ‘on’ or ‘off’. For a bead to be labelled as 

‘on’, it must have a detectable fluorescent signal in all five frames taken, and the 

fluorescence must increase by greater than 20% over four frames. The proportion of wells 

containing ‘on’ beads compared to those containing ‘off’ beads is calculated to produce the 

‘average enzyme per bead’ (AEB) value. Calibrators with predetermined concentrations 

enable the protein concentration of the experimental sample to be interpolated from the 

AEB in the same manner as a traditional ELISA.  

 

The primary difference between a traditional ELISA and a Simoa is therefore the physical 

volume in which the detectable signal is contained and measured. By reducing the volume, 

and thus increasing the local concentration of fluorescent signal, a single molecule is 

sufficient to produce a detectable fluorescence. This technology has reduced the lower 

limit of detection of proteins a thousand-fold to femtomolar concentrations (10-15) (Rissin 

et al., 2010). 
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Figure 1-11 Principle of Ultrasensitive Single molecule array (Simoa) 

(A) A capture AB (e.g. IgG1 monoclonal anti-NfL) is coupled to paramagnetic beads. (B) The 

beads are added to the sample of interest in a 96-well plate. A series of washes removes 

uncoupled protein from the beads, and then a detection AB (IgG1 monoclonal biotin-labelled 

anti-NfL) is added, followed by a fluorescent substrate and reporter enzyme. The samples are 

incubated before a further wash cycle. (C) Within the Simoa analyser the beads are distributed 

throughout a disc containing femtolitre seized wells. (D) The wells are imaged using white light 

and fluorescent images to determine how many wells contain a bead, and what proportion of 

beads have captured the protein of interest. Figure created in BioRender by SJM.  
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Next-generation ELISA technology has the potential to address significant gaps in the field 

of clinically relevant fluid biomarkers, not only in multiple sclerosis, but across 

neurodegenerative diseases as a whole.  

 

Enabling biomarker research in blood as opposed CSF aids access to both disease and 

control samples, increases the volume of samples available for testing and allows for 

longitudinal sampling. As a result, since the introduction of Simoa blood levels of neuronal 

and glial proteins have been measured in various neurological diseases, including multiple 

sclerosis. To date these studies have often been performed retrospectively, using biobanked 

samples, and usually in heterogenous cohorts of relapsing and progressive MS patients.  
 

1.8 Large cohorts are required for biomarker research 

A major unmet need for multiple sclerosis patients currently is a biomarker which can be 

used early in the disease course to identify patients at risk of a poor outcome. The 

advances in MRI and fluid biomarkers described above have the potential to change this.  

 

To fully address this issue requires a standardised and methodical approach. Firstly, a 

large, homogenous cohort of early MS patients is required. Ideally the cohort should also 

be treatment naïve. Certain disease modifying treatments are known to affect biomarkers, 

for example normalise MRI appearances and reduce neurofilament levels (Novakova et al., 

2016). Identification of a large cohort of treatment naïve, early MS patients is difficult in 

the treatment era, and requires recruitment of individuals at the point of diagnosis.  

 

 In addition, detailed clinical and radiological phenotyping of the cohort is needed to 

correlate biomarker outcomes with clinical measures. Specific technologies are required to 

perform next generation single molecule arrays or advanced MRI imaging. Finally, the 

cohort needs to be longitudinally followed up for many years in order to determine the true 

use of any potential novel biomarkers.  
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1.9 Aims of thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Aims of Thesis 

 

Aim One: To establish a large cohort of newly diagnosed, treatment naïve 

relapsing remitting multiple sclerosis patients - The Future MS study. 

 

Aim Two: Use the Future MS study to evaluate the potential role of next-

generation biomarkers in early RRMS. 

 
 
 
 

Summary of Chapter One 

 

• Multiple sclerosis (MS) is a serious and unpredictable disease with complex 

pathophysiology, but it is also increasingly treatable. However, highly 

efficacious treatments carry serious potential risks. 

 

• There is a paucity of clinical tools to identify patients at risk of a poor 

prognosis, and treatment decisions are therefore difficult and inconsistent. 

 

• There is therefore an unmet need for a clinical tool or biomarker which can 

be used early in the disease to identify patients at risk of poor prognosis.  

 

• Advances in MR imaging and next-generation single molecule arrays have 

the potential to address the unmet need but require careful analysis and 

validation in large cohorts.  
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2 Materials and methods 
This chapter provides detailed descriptions of the clinical and laboratory research 

methodology presented in this thesis.  

 

2.1 Future MS Ethical approvals (including substudies) 

Overarching study design and ethical approval for the Future MS study were sought and 

obtained by the Future MS study team at the Anne Rowling Regenerative Neurology 

Centre, led by Professor Siddharthan Chandran and Dr Peter Connick. Ethical approval 

reference REC 15/SS/0233.  

 

Study design and ethical approval for the BEFORE-MS research substudy were carried out 

by the author of this thesis, with assistance from the Glasgow Neuroimmunology 

laboratory at the Queen Elizabeth University Hospital, Glasgow.  

Ethics approvals REC 17/LO/1611 and REC 17/WM/0379.  
 
 
2.2 Future MS protocols (including substudies) 

2.2.1 Future MS Eligibility criteria and funding 
 

Table 2-1 Inclusion and exclusion criteria for the Future MS study 

Inclusion Criteria 

1. A diagnosis of relapsing-remitting multiple sclerosis (RRMS), fulfilling the 2010, or updated 2017, 

McDonald Criteria 

2. Diagnosis of multiple sclerosis within six months of baseline assessment 

3. Aged 18 years or over  

4. Capacity to provide written informed consent 

Exclusion Criteria 

1. Initiation of disease modifying treatment prior to baseline assessment 

2. Participation in a clinical trial for an investigational medicinal product (IMP) 

3. Contraindication to magnetic resonance imaging (MRI) 

 

The study was funded by Stratified Medicine Scotland Innovation Centre (SMS-IC) with 

additional support from Biogen.  
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2.2.2 Recruitment sites 

Participants were recruited from the fourteen NHS health boards and study visits were 

conducted across five main sites – Aberdeen Royal Infirmary; Ninewells Hospital, 

Dundee; The Anne Rowling Clinic, Edinburgh Royal Infirmary; Queen Elizabeth 

University Hospital, Glasgow; and Raigmore Hospital, Inverness.  

 

2.2.3 Primary and secondary aims of the Future MS study 
 
Table 2-2 Aims of the Future MS study 

Primary Aim 

• To develop predictive tools for focal neuroinflammatory disease activity over 12 months, 

based on baseline clinical, imaging, laboratory and genomic assessment. 

Secondary Aims 

• To develop predictive tools for neurodegenerative disease activity over 12 months, based on 

baseline clinical, laboratory and genomic assessment. 

• To develop predictive tools for clinical measures of disease activity.  

• To develop predictive tools for clinical measures of quality of life. 

 

2.2.4 Study data recording 

Each participant was identified by a unique Future MS study ID in the form 01-xxxx, 

where 01 was the site number (01 = Edinburgh; 02 = Glasgow; 03 = Dundee; 04 = 

Aberdeen, 05 = Inverness). Future MS study IDs were allocated in chronological order of 

recruitment, and were used to label all paperwork, biological samples and imaging results.  

 

Clinical data were recorded in paper files which were stored in a locked clinical research 

facility. Additional demographic and clinical data from patient questionnaires were 

recorded on a web-based electronic data system. The electronic data system was designed 

and maintained by Aridhia Informatics, Edinburgh. Data extraction was performed by Dr 

Patrick Kearns.  

 

2.2.4.1 Future MS study protocol 

Potential participants were identified by clinical care teams and invited to participate. If 

they were interested in participating a member of the Future MS research team then 

contacted them directly to discuss participation and ensure they met inclusion criteria. A 

study information leaflet (version 1.3, May 2016) was provided by post or email. Potential 
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participants were followed up to ensure they had received the information leaflet and, if 

they wished to participate, to book a research visit.  

 

Research visits were conducted by myself, Rowling clinical fellows and Future MS 

research nurses. Written informed consent was obtained, and a copy of the signed consent 

form given to all participants. Participants were made aware of their right to withdraw 

from the study at any time and for any reason. All clinical, laboratory and imaging 

assessments were performed in a standardised manner at each research visit. Data collected 

in the main study are outlined in table 2-3.  

 

Four optional sub-studies were offered alongside the main Future MS research study. 

Separate patient information leaflets were provided for each substudy, and participation 

required written consent in the form of a dated participant signature. All substudies fell 

under the same ethical approval as Future MS, and additional ethical approval was 

obtained to allow access to linked serum/CSF samples as described above.   

 

Follow-up 12 months review assessments were arranged by the clinical fellows and 

research nurses covering each site.  
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2.2.4.2 Future MS study data collection 

 
Table 2-3 Future MS data collection at baseline and review visits 

 Baseline visit 12 month follow-up visit 

Demographics Date of birth 

Sex 

Address 

GP 

Ethnicity 

Occupation 

Updated where necessary 

Medical 

history 

Past medical history 

Medications 

‘Over-the-counter’ medications 

and supplements 

Family history 

Updated where necessary 

MS history Date of first symptoms 

Descriptions and dates of 

relapses 

Hospitalisations 

Use of oral/IV steroids 

Date of diagnosis 

Disease modifying treatment  

Descriptions and dates of 

relapses 

Hospitalisations 

Use of oral/ IV steroids 

Clinical 

measures 

Blood pressure (BP) 

Body mass index (BMI) 

Blood pressure (BP) 

Body mass index (BMI) 

Clinical 

assessments 

Expanded Disability Status 

Scale (EDSS) 

Timed 25-foot walk (T25W) 

Paced auditory serial addition 

test (PASAT) 

9-hole peg test (9HPT) 

Symbol Digit Modalities test 

(SDMT) 

Expanded Disability Status Scale 

(EDSS) 

Timed 25-foot walk (T25W) 

Paced auditory serial addition 

test (PASAT) 

9-hole peg test (9HPT) 

Symbol Digit Modalities test 

(SDMT) 

Patient 

completed 

questionnaires 

MS Impact Scale (MSIS) 

CDC Health-related quality of 

life (CDC-HRQOL-4) 

MS Impact Scale (MSIS) 

CDC Health-related quality of 

life (CDC-HRQOL-4) 
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Patient determined disease steps 

(PDSS) 

Generalised Anxiety Disorder-7 

(GAD-7) 

Patient Health Questionnaire 9-

item depression scale (PHQ-9) 

Baecke Habitual Physical 

activity 

Cognitive leisure questionnaire 

Social and lifestyle 

questionnaire 

Patient determined disease steps 

(PDSS) 

Generalised Anxiety Disorder-7 

(GAD-7) 

Patient Health Questionnaire 9-

item depression scale (PHQ-9) 

Baecke Habitual Physical 

activity 

Cognitive leisure questionnaire 

Social and lifestyle questionnaire 

Clinical blood 

samples* 

Full blood count 

Renal function 

Liver function 

Cholesterol 

HBA1c 

Vitamin D 

CRP 

 

Blood for 

storage* 

PBMCs were stored for  

genetic analysis 

 

MRI 3T non-contrast MRI brain scan.  

Sequences included image 

localiser, volumetric (1mm³ 

isotropic) T1 / MP-RAGE, T2, 

and fluid attenuated inversion 

recovery (FLAIR) 

3T non-contrast MRI brain scan. 

Sequences included image 

localiser, volumetric (1mm³ 

isotropic) T1 / MP-RAGE, T2, 

and fluid attenuated inversion 

recovery (FLAIR) 

* Performed at baseline visit only. 

 

2.2.4.3 Study blood sampling and storage 

Clinical blood tests required x2 ochre 5.7ml serum separating tubes and x1 purple 4.0ml 

EDTA plasma tube and were performed by NHS laboratories following local protocols. 

Blood results were reviewed by the research teams at each site and any unexpected finding 

were relayed to the participant’s GP. 

Peripheral blood mononuclear cell (PBMC) extraction and freezing was performed at local 

CRFs using existing SOPs and required x8 PBMC extraction tubes (approximately 30ml). 



 

 60 

Samples were batch transported for storage preparation, FACS sorting, and DNA and RNA 

extraction to the Wellcome Trust CRF Genetics Core Laboratory (Edinburgh). Samples 

were then cryopreserved (-196 °C) at a managed tissue bank in the Wellcome Trust CRF 

Genetics Core Laboratory (Edinburgh).  

2.2.4.4 Study MRI acquisition 

MR imaging was performed in dedicated research imaging facilities associated with the 

local clinical research facilities at each site. Images from each site were transferred to the 

University of Edinburgh imaging for processing. MRIs were also clinically reported at 

each site by the local neuroradiologist, and the clinical care team made aware of the MRI 

results.  

 

2.2.5 Future MS substudies 

Four optional sub-studies were offered alongside the main Future MS research study. 

Separate patient information leaflets were provided for each substudy, and participation 

required written consent in the form of a dated participant signature. 

 

• Substudy One - Available to participants across all sites. Participation enabled the 

research team to store diagnosis and contact details on a secure NHS approved 

server within the University of Edinburgh, with the purpose of advising 

participants of additional research opportunities in the future. 

• Substudy Two – see section 2.2.5.1 

• Substudy Three – Available to participants at Edinburgh and Glasgow site. 

Participation involved detailed visual assessment and retinal imaging using optical 

coherence tomography to measure retinal nerve fibre layer (RNFL) thickness, 

ganglion cell and inner plexiform layer (GCIP) thickness, and inner nuclear layer 

(INL) thickness. 

• Substudy Four – see section 2.2.5.2 

 

2.2.5.1 Sub-study for biobanking of plasma samples 

‘Storage of donated tissue for future research purposes’ (sub-study two) was open to 

individuals at all sites. Participation involved an addition 34ml of blood, drawn alongside 

the standard Future MS blood samples so that no additional venepuncture was required. 

Participants were made aware that samples were for research purposes only, and that no 

results would be made available to them. 
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Samples were processed in parallel with those for Future MS using SOPs for the separation 

and storage of plasma. In brief, vacutainers were centrifuged at 2000g for 15 minutes to 

separate the plasma, which was then pipetted out using a liquipipette into two 2.0ml 

cryovials. The cryovials were stored at -80°C. At a later stage the cryovials were aliquoted 

into 10 x 200µL aliquots. All samples had therefore undergone one freeze-thaw prior to 

analysis.  

2.2.5.2 Sub-study for advanced MR imaging 

‘Extended MRI in Future MS’ (substudy four) was available for patients recruited at the 

Edinburgh site between September 2017 and April 2020. Participants had addition 

magnetization transfer imaging (MTsat) and diffusion tensor imaging (DTI) sequences 

performed alongside their routine Future MS MRI brain scan. No additional visits were 

therefore required, but participation resulted in an additional 30 minutes of scanning time. 

Images were transferred to the University of Edinburgh imaging for processing.  

 

2.2.5.3 BEFORE-MS substudy 

‘BEFORE-MS’, Biomarker Evaluation For Outcome in RElapsing MS’- was devolved 

from the main Future MS study and had separate ethical approvals. BEFORE-MS was 

available only in Glasgow and enabled the acquisition of ‘paired’ CSF and serum 

specimens from two source - historical samples from the Glasgow neuroimmunology 

biobank for patients participating in Future MS, and prospective collection from 

individuals at the point of diagnostic work-up. Incorporation of BEFORE-MS alongside 

Future MS substudies enabled linkage of CSF and serum samples with clinical data.  

 

Historical samples from Glasgow neuroimmunology biobank 

Surplus samples (CSF and serum left over after OCB testing) are stored at -80°C by 

Glasgow Neuroimmunology Biobank at the Queen Elizabeth University Hospital. Specific 

ethics approvals were sought and acquired to enable the identification of biobanked 

specimens from patients who had gone on to participate in Future MS (IRAS ID 232152; 

REC 17/WM/0379; R&D GN17NE455). For inclusion we required that the surplus 

specimens of both CSF and serum be of sufficient volume (greater than approximately 

100µL). Identified samples were stored at -80°C prior to transfer on dry ice to the Institute 

of Genetic and Molecular Medicine, University of Edinburgh for analysis.  
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Prospective samples collected at diagnostic work-up - BEFORE-MS 

CSF, serum and urine samples were collected from patients undergoing routine diagnostic 

lumbar puncture at the Queen Elizabeth University Hospital, Glasgow (IRAS 224527; 

REC 17/LO/1611; R&D GN17NE373). All lumbar punctures were performed by myself. 

Clinical samples were collected first, followed by the research sample. Between 5-8ml of 

CSF was collected (depending on the CSF flow rate), into a polypropylene tube, and 

placed on ice (Teunissen et al., 2009). Blood and urine specimens were collected 

immediately afterwards. All samples were prepared for storage according to a 

predetermined protocol. CSF was centrifuged at 500g for 10 mins at room temperature and 

the supernatant aliquoted into two cryovial tubes. Blood samples were centrifuged at 

1000g for 10mins at room temperature. The serum was removed and divided between two 

cryovials for storage. Urine was not centrifuged, and 1ml of urine was pipetted into 2 

cryovials for storage. All cryovials were stored at -80°C prior to transfer on dry ice to the 

Institute of Genetic and Molecular Medicine, University of Edinburgh for analysis.  

 

2.3 Healthy controls 

Sixty-five healthy controls for blood bio-banking were recruited from the University of 

Edinburgh. Controls were age-band matched and sex matched to the Future MS cohort, 

and specimens were handled according to the same SOPs as the Future MS blood samples.  

 

2.4 Simoa protocols 

Quanterix Simoa Neuro 4-plex A kit was used to measure neurofilament light chain (NfL), 

glial fibrillary acidic protein (GFAP), Tau and UCH-L1 enzyme levels in CSF and blood 

samples using a Quanterix SR-X benchtop instrument. Lot numbers 501888 and 502148.  

 

2.4.1 Simoa laboratory protocol for CSF and blood specimens 

Samples, reagents, calibrators and controls were equilibrated to room temperature. CSF 

and serum/plasma samples were centrifuged at 1100 rpm for 10 minutes at room 

temperature. 152µL of calibrators A-H were added in triplicate, and 38 uL of low/high 

controls in quadruplicate, as per the manufacturer’s instructions. CSF samples (3.8µL) and 

serum/plasma samples (38µL) were pipetted in in duplicate. Control and serum/plasma 

samples were diluted with 114µL of supplied sample diluent (a dilution factor of x4). CSF 

was diluted with 148.2µL of supplied sample diluent, (a dilution factor of x40).  20µL of 

the supplied beads were added to every well, followed by 20µL of detector reagent. The 

plate was covered with a black lid and placed on an automated orbital plate shaker for a 30 
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minute incubation at 35°C. During the incubation time the SR-X plate set-up was 

performed (as per the ELISA plate layout depicted in figure 4-6), and the calibrator 

concentrations for each biomarker added using the lot-specific certificate of analysis. After 

the 30 minute incubation, the 96-well plate was transferred to an automated plate washer 

where 100µL of N4PA reagent was added, followed by a two-step was cycle. The plate 

was allowed to dry for 10 minutes and then transferred to the Quanterix SR-X benchtop 

instrument.  

 

2.4.2 Data extraction and review 

Data were provided by Quanterix SR-X benchtop instrument in the form of a run report. 

The run report included the following data: standard curve fit algorithm, fit equation and 

R2 value, as well as replicate AEB values, AEB mean and standard deviations (SD) and 

AEB coefficient of variation (CV); fitted concentrations, fitted concentration mean and 

SD, and fitted concentration CV; for all four biomarkers, in every well.  

 

Data were reviewed to determine the reliability of results. All biomarker results were 

above the lower limit of quantification. The standard curves were checked visually for 

goodness of fit and the coefficient of variation was calculated for each duplicate. This was 

a check of both laboratory technique and the interpolation of biomarker concentrations 

from the standard curves. High and low controls, supplied by the manufacturer and ran in 

quadruplicate, were within the expected ranges reported in the lot-specific certificate of 

analysis, see figure 4-6. CSF and serum duplicates with a coefficient of variation (CV%) of 

greater than 30% were excluded. Ideally, we would have repeated samples with a CV% 

greater than 20%, however a significant number of our samples had insufficient volume of 

either CSF or serum to allow this. We therefore compromised by excluding samples with a 

clearly unacceptable CV%, (>30%) but chose to include samples with a CV% up to 30% to 

include as many samples as possible. Sample volume constraints were less stringent with 

baseline blood samples, and therefore any plasma duplicates with a CV% greater than 20% 

in NfL, GFAP or Tau was repeated. 

 

For two runs of plasma samples (dated 11/12/2019 and 19/12/19) the SR-X was unable to 

produce standard curves due to a technical error. However, as the raw AEB values had 

been calculated for the calibrators and samples we were able to derive standard curves and 

interpolate results. Calculations were performed by two researchers (SJM and EC) 

independently, and results compared.  
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2.5 Imaging protocols 

All MRI data were processed, reviewed and analysed by the University of Edinburgh 

research imaging team (Professor AdamWaldman (AW), Beth York (BY), Rozanna 

Meijboom (RM), Dr. Daisy Mollison (DM), Nicole White (NW) and Agniete Kampaite 

(AK)). AW and BY specifically were involved in the processing, analysis and 

interpretation of MRI data from the extended imaging substudy.  

 

2.5.1 Future MS 

Future MS participants were assessed by MR brain imaging within four weeks of clinical 

assessment visits, and in the vast majority within the same day. MR imaging was 

performed in the dedicated research imaging facilities associated with local CRFs.  

 

MRI sequences were obtained using Siemens magnetom prisma 3.0T systems and 

included: image localiser, volumetric (1mm3 isotropic) T1 / MP-RAGE, T2, and Fluid 

attenuated inversion recovery (FLAIR). MR imaging took approximately 30 minutes per 

subject.  

MRI outcomes at baseline included: 

1. White matter lesion volumes, corrected for intracranial volume  

(processed by RM and AK) 

MRI outcomes at 12 months included: 

2. White matter lesion volumes, corrected for intracranial volume  

(processed by RM and AK) 

3. Visual reads for ‘new/ enlarging T2 lesions - yes/no’ 

(performed by DM and AW). 

 

White matter lesion volumes were corrected for intracranial volume in order to minimise 

potential confounders such as overall brain volume.  

 

2.5.2 Extended imaging substudy 

Participants in the extended imaging substudy had routine Future MS MR brain imaging 

performed (T1, T2 and FLAIR sequences) alongside advanced imaging sequences (MTsat 

and DWI). The methods and analysis below were provided by AW and BY.  
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Calculation of the myelin volume fraction  

The MVF was calculated from MTsat, assuming a linear relationship (Campbell et al., 

2018), as:  

!"# = %!"" ∗ ' 

where k is a constant calibrated from healthy control data (see supplementary methods).  

 

Calculation of the axonal volume fraction 

The AVF was calculated from NODDI data and scaled according to the MVF as: 

 

("# = (1 −!"#)(1 − -#$%)-#& 
where -#$% and -#& are the isotropic and restricted signal fractions derived from the NODDI 

model. 

 

Calculation of the aggregate g-ratio 

The aggregate g-ratio was derived using the following equation (Mohammadi et al., 2015): 

. = /01 +!"#("#2
'(

 

 

2.6 Statistics and Graphics 

With the exception of meta-analysis data, all data were analysed using GraphPad prism 

version 8.4.3. The normality of all data were assessed using a Shapiro-Wilk test. 

Additional statistical tests relevant to data are described in the figure legends. Statistical 

non-significance was defined as p>0.05. Meta-analysis data were analysed using R 

software with assistance from Dr Matthew Jamieson, University of Glasgow. All figures, 

unless otherwise stated, were designed by the author of this thesis using a combination of 

BioRender (www.biorender.com) and GraphPad prism version 8.4.3.  
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3 Future MS Study: Baseline characteristics of a newly diagnosed 
MS cohort 

3.1 Introduction 

There are currently fourteen treatments disease modifying treatments licensed for the 

treatment of MS in the UK. These treatments differ both in their efficacy in controlling the 

disease process and their safety profile. For this reason, it is increasing important to predict 

which individuals are at greatest risk of developing disability, in order to counsel patients 

and guide immunomodulatory treatment. However, multiple sclerosis is an unpredictable 

disease in clinical presentation and disease course. Determining the prognosis for an 

individual early in the disease course of relapsing remitting MS is difficult.  

 

Current prognostic indicators are mainly coarse measures of disease activity that has 

already occurred. More sensitive clinical, imaging and biomarker tools, applicable at an 

earlier stage in the disease, are needed to prognosticate on an individual level to guide 

treatment decisions and ultimately change long-term disability rates in MS.   

 

Current clinical practice is to consider MRI disease burden at baseline, demographic data 

and the number of clinical relapses as predictors of risk of accruing disability (Scolding et 

al., 2015). A higher burden of infratentorial and spinal lesions on baseline MR imaging is 

associated with poorer long-term prognosis (Brownlee et al., 2019). The evidence on sex 

as a prognostic indicator is conflicting (Degenhardt et al., 2009), with studies both 

supporting (Confavreux, Vukusic, et al. 2003) and opposing (Kalincik et al., 2013) the 

view that disability accrues more quickly in males than females, and may be confounded 

by a higher likelihood of progressive disease in men. An older age at onset of RRMS is 

associated with a shorter time spent in the relapsing-remitting phase, with quicker 

advancement to disability milestones (Confavreux and Vukusic, 2006; Degenhardt et al., 

2009). In this manner, older age could be construed as a poor prognostic factor. Although 

the time taken to reach disability milestones is longer for younger patients, the absolute age 

at which they are reached is similar irrespective of the age of disease onset (Confavreux 

and Vukusic, 2006). Age at diagnosis is therefore probably not useful in identifying an 

individual’s long-term risk of poor prognosis.  

 

A greater frequency of clinical relapses in years one and two is associated with a shorter 

time to reach certain EDSS milestones (Scalfari et al., 2010). This has prognostic 

relevance but is dependent on the identification of relapses (by both the patient and 
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clinician) and ability to define a ‘start date’ of the disease. Consequently, it is usually the 

occurrence of relapses after year two which drive treatment decisions (but which have no 

clear association with prognosis (Scalfari et al., 2010)). Clinical presentation of relapses 

may also carry prognostic significance. Although studies are conflicting as to whether a 

polysymptomatic onset is a poor prognostic factor (Degenhardt et al., 2009) or not 

(Scalfari et al., 2010), complete recovery from the initial relapse is associated with a longer 

interval to fixed disability endpoints (Confavreux, Vukusic, et al. 2003).  

 

The identification of better prognostic tools requires large, homogenous cohorts of 

patients, recruited from disease onset and followed-up through life. However, this is an 

ideal - it is often not possible to identify patients at disease onset (as opposed to diagnosis), 

and it is difficult to categorise a homogenous cohort when the disease remains 

unpredictable.  

 

Scotland has a high incidence of MS within a stable population of 5.4 million people. The 

Scottish national healthcare system (NHS) is linked across the fourteen health-boards. 

Every resident has a unique medical reference number (CHI) which is used at all 

interactions with health care services. This allows every attendance at primary or 

secondary care services to be tracked and linked with test results, imaging results, and 

prescriptions from across Scotland (ISD Data dictionary, CHI number).  

 
Scotland is the only UK country to have a national register of all MS diagnoses, 

established by the Scottish Government in January 2010 as a public health tool. Because 

the NHS Scottish MS register is well implemented across all health-boards, standardised, 

high-quality baseline demographic data are available on all MS diagnoses throughout 

Scotland. These data are freely available as a public health resource against which research 

cohorts can be audited to ascertain whether they are representative of the Scottish MS 

population.  

 

For these reasons Scotland offers many practical advantages for the long-term study of 

patients with MS. Detailed phenotypic studies of a large cohort, recruited at the point of 

diagnosis and then longitudinally followed-up, enables retrospective identification of 

groups of clinically, pathologically, or prognostically homogenous individuals. A 

longitudinal cohort study therefore offers a flexible way in which to study multiple 

different aspects of the disease, without the need to recruit different participants to separate 

studies.  
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Future MS is a Scotland-wide, prospective, observational cohort study with initial data 

collection points at baseline and one year. Future MS differs from other large MS cohorts 

in its specific recruitment of newly diagnosed and treatment naïve RRMS participants. 

This study provides the opportunity to identify potential determinants of prognosis at the 

earliest possible stage in the disease course, with minimal confounders, and then 

longitudinally follow the cohort in a ‘real world’ clinical setting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim of Chapter Three 

 

The aim of this chapter is to establish a cohort of RRMS patients at the point of 

diagnosis (the FUTURE MS study) and to explore the baseline clinical associations of 

the cohort.  
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Figure 3-1 Overview of Future MS visits and the datapoints collected at each visit 

3.2 Methods and substudy methods 

The methodology of the Future MS study is detailed in chapter 2 (section 2.2) and the  

relevant details are summarised here.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The study was conducted throughout Scotland between February 2016 and April 2020. 

Participants were prospectively recruited from fourteen health boards and study visits were 

conducted across five main sites: Aberdeen Royal Infirmary; Ninewells Hospital, Dundee; 

The Anne Rowling Clinic, Edinburgh Royal Infirmary; Queen Elizabeth University 

Hospital, Glasgow; and Raigmore Hospital, Inverness. Participants were not restricted to 

only attend their local research site if, for example, an appointment date at different site 

was preferable.   

 

Eligibility criteria included adults that were over 18 years old with a new diagnosis of 

relapsing remitting multiple sclerosis in accordance with the 2010 or 2017 McDonald 

criteria.  Participants had to be reviewed for baseline assessment within six months of 
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diagnosis and before disease modifying treatment (DMT) was started. Follow-up review 

occurred 12 months later.  

 

The recruitment target was 440 participants. Formal power calculations based on the 

methods of Dobbin & Simon (Biostatistics 2007;8:101-117) were performed by Dr Pete 

Connick to identify the sample size required for investigation of genetic variants (single 

nucleotide polymorphisms) associated with disease course within the study population.  

 

Eligible patients were identified by their clinical care team and invited to participate. 

Research visits were appointed and conducted by Rowling clinical research fellows and 

Future MS research nurses. Data points collected are detailed below - see table. All 

participants provided written consent and the Future MS research visit (including MRI) 

lasted approximately 2 hours.  

 

Participants in the main study were eligible to participate in optional sub-studies (overview 

in chapter 2; detailed specifically in chapters 4 and 6 (storage of CSF/blood samples); and 

chapter 5 (extended imaging substudy)), see figure 3-2. Participation in each substudy 

required separate, specific written consent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2 Substudies in Future MS 

430 of 440 participants had plasma samples biobanked (substudy 2) at baseline visit. Paired 

CSF and serum biobanking from diagnostic work-up (BEFORE-MS) was only available at the 

Glasgow site. The extended imaging substudy (SUBSTUDY 4) was only available at the 

Edinburgh site.   



 

 72 

Figure 3-3 Map showing the recruitment strategy for covering the 14 Scottish NHS health boards 

3.3 Results 

3.3.1 Overview of Future MS recruitment and demographics 

Four hundred and forty participants (100% of the recruitment target) were recruited 

between May 2016 and March 2019. Four hundred and seven were followed-up at 12-

month review, and 33 (7.5%) either had follow-up postponed as a result of the COVID-19 

outbreak or were lost to follow-up. 

 

 Table 3-1 Recruitment of Future MS   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site Recruitment dates Recruited and reviewed by Number 

Glasgow Nov 2016 – Feb 2019 SJM 166 

Edinburgh May 2016 - March 2019 ARC research team 184 

Dundee Dec 2016 – Dec 2018 SJM, clinical care teams and 

ARC research team 

46 

Aberdeen March 2017- Jan 2019 SJM, clinical care teams and 

ARC research team 

36 

Inverness Dec 2017- Oct 2018 Clinical care teams 8 
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Figure 3-4 Summary figure of the baseline demographics and disease severity of the Future MS 
cohort 
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Figure 3-5 Comparison of baseline demographics between male and female participants in Future 
MS 

No differences were found between male and female participants age, baseline EDSS score or 

duration from onset of first symptom attributable to MS to diagnosis. 

3.3.2 Age and sex distribution of the cohort 

The Future MS cohort was primarily Caucasian, reflecting the Scottish population (92% 

Caucasian according to consensus data)(National Records of Scotland 2018). Basic 

demographic data for the cohort were compared with NHS incidence data. The Future MS 

cohort had a mean age at diagnosis of 37.8 years, with a range from 18.7 to 67 years old, 

and was made up of 325 females and 115 males. The proportion of females to males was 

therefore slightly higher than Scottish MS register data (Scottish MS register, 2019).  

 
Table 3-2 Baseline demographics of the FMS cohort (newly diagnosed RRMS), with reference to 
“real-life” Scottish MS register data (all forms of MS) 

 

Age, baseline EDSS and time from the onset of first symptom attributed to MS to 

diagnosis were similar for males and females. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Future MS cohort  Scottish MS resgiter data 

MS subtype RRMS All MS  

Sex ratio, F:M 1: 2.82 1: 2.3 

Age at diagnosis, mean (SD) 37.8 (10.51) 40 
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Future MS 

Glasgow cohort 37.7%  
Edinburgh cohort 41.8%  
Dundee cohort 10.5%  
Aberdeen cohort 8.2%  

Inverness cohort 1.8%  

NHS incidence data

Glasgow cohort 41.8%  
Edinburgh cohort 23.6%  
Dundee cohort 10.7%
Aberdeen cohort 14.2%  

Inverness cohort 9.7%  

Figure 3-6 Comparison of geographical distribution of Future MS with Scottish MS register data 

Pie chart showing a breakdown of the Future MS cohort according to site of recruitment, and 

comparison with SMSR data from 2019 according to side of diagnosis.  

3.3.3 Geographical distribution of cohort recruitment 

Incidence rates of MS vary throughout Scotland (Kearns et al., 2019). To assess if the 

Future MS cohort captured the geographical spread of patients, we compared the 

proportion of participants recruited at each site with Scottish MS register data for each site 

(Scottish MS register, 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

The majority of participants were recruited from sites with the largest population densities. 

Edinburgh was over-represented (41.8% of the study cohort but 23.6% of Scottish MS 

register data) and the northern centres underrepresented.  

 

3.3.4 Baseline disability of the cohort 

The Future MS cohort had a median baseline EDSS score of 2 (IQR 1.5-3). This is 

comparable to Scottish MS register data (Scottish MS register, 2019) and also to other 

large cohorts of MS patients early in the disease course.  

 

3.3.5 Demographic and clinical data are similar between recruitment sites  

To ascertain if the populations were similar across recruitment sites we compared basic 

demographic and clinical data, see table 3-3. No significant differences were found for 

age, sex, EDSS, employment status or smoking status between sites using univariate 

analyses.  

 

 

 

Future MS Scottish MS register data 
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Table 3-3 Demographic variations between Future MS sites 

For sex ratio, employment and smoking history Chi-squared tests were used to assess the 

significance of differences between the groups. For age and EDSS, non-parametric ANOVA with 

Kruskal-Wallis test for multiple comparisons was used to assess the significance of differences 

between the groups.  

 

3.3.6 Time from first symptom to diagnosis of MS averaged 21 months, but varied across 

Scotland 

In order to participate in the study, patients had to be reviewed within six months of 

diagnosis. Future MS was therefore designed as an early disease cohort. However, disease 

onset may occur many years before formal diagnosis, and ‘newly diagnosed’ does not 

necessarily equate to early pathology (Wijnands et al., 2017).  

 

There is an increasing trend towards earlier diagnosis of multiple sclerosis, aided by the 

latest update to the McDonald diagnostic criteria, which allow cases previously classified 

as “CIS” to be called multiple sclerosis if OCBs are present in the CSF (Thompson et al., 

2018). Earlier diagnosis allows for earlier treatment, which may improve outcome (Coles 

et al., 2008). Time to diagnosis is therefore of clinical importance.  

 

To determine the likely duration of (clinical) disease we calculated the time interval from 

the onset of the first symptom attributable to MS (reported by the patient) to the date of 

formal diagnosis (documented by the physician). Data were available for a total of 424 

participants. 

 

 Aberdeen Dundee Glasgow  Edinburgh Inverness  
N  36 46 166 184 8  

Sex ratio, F:M 2.6 3.18 2.32 3.18 all female p=0.3 

Age at 

diagnosis,  

 

36.2 

(30.2 - 47.4) 

39.3 

(32 – 47.2) 

35.5 

(29.3 – 44.5) 

36.7 

(29.7 – 45) 

31.1 

(26.7 – 46.6) 

p=0.47 

EDSS at 

baseline        

2 (1.5 - 3) 2.5 (1.6 - 3) 2 (2 - 3) 2 (1.5 - 3) 3 (2.5 - 3.3) p=0.37 

Percentage of 

cohort in 

employment 

82.9  84.8 84.6 80.9 87.5 p=0.9 

Percentage of 

cohort ever 

smoked 

42.9 56.5 49.4 49.7 50 p=0.68 
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The median time from onset of the first symptom attributable to MS to a formal diagnosis 

of RRMS was 21 months (IQR 8.6-62). Approximately half the participants (227, 53.5%) 

were diagnosed within two years of the onset of symptoms, however the range was large 

(from 5 days to 37.8 years). Forty-seven participants (11.1%) were diagnosed more than 10 

years after symptom onset and 10 (2.4%) after an interval of greater than 20 years, figure3-

7(A).  

 

We reviewed whether this time interval differed between the five research sites. We found 

that participants in Glasgow had a significantly shorter time from onset of first symptom to 

diagnosis than participants in Edinburgh, p=0.004, and Dundee/Aberdeen/Inverness 

combined, p=0.0008 (Non-parametric ANOVA with Kruskal-Wallis test for multiple 

comparisons, figure 3-7(B) and (C).  
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Figure 3-7 Histograms of time from symptom onset to diagnosis 

(A) Histogram of time from first symptom onset to diagnosis for the Future MS cohort as a whole, 

(B) Histograms for Glasgow, Edinburgh and the northern sites individually, (C) statistical 

comparison using ANOVA with Kruskal-Wallis test for multiple comparisons showed that Glasgow 

had a significantly shorter time period between onset of symptoms and diagnosis than either 

Edinburgh (p=0.004) or the northern centres (p=0.008).   
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3.4 Discussion 

Our aim was to develop a large cohort of newly diagnosed and treatment naïve RRMS 

patients from across Scotland. We met our recruitment target of 440 participants.  

 

Baseline demographic and clinical data were compared with data from the Scottish MS 

registry (SMSR) and the cohort appeared generally representative of the newly diagnosed 

MS population in Scotland. The Future MS cohort was slightly younger (37.8 years versus 

40 years) and had a higher proportion of females than SMSR data (male to female sex ratio 

for Future MS cohort 1: 2.82 versus 1: 2.3), (Scottish MS register, 2019). These 

observations are not unexpected as incidence data collected by the Scottish MS register 

encompasses all diagnoses of MS, including progressive forms. Individuals diagnosed 

with (primary or secondary) progressive MS are typically older than those diagnosed with 

RRMS (Scalfari et al., 2011), and the sex ratio in primary progressive MS is more equal 

than for RRMS (Scalfari et al., 2011). The inclusion of individuals with progressive MS in 

the Scottish MS registry is therefore likely to increase the age and reduce the female to 

male sex ratio of SMSR data.  

 

There are several potential reasons for the differences seen in the geographical 

representation of the Future MS cohort versus real life incidence data. Edinburgh, as the 

primary research site, was open to recruitment for the longest period of time. The larger 

sites (Edinburgh and Glasgow) also had a full-time Future MS research presence and were 

therefore less dependent on clinical staff to identify and contact potential participants. 

Northern centres (NHS Orkney, NHS Shetland and NHS Highland) were unrepresented 

most likely as a result of the logistical difficulties involved for remote patients to attend 

mainland sites for research visits. These sites were also more restricted in terms of their 

availability for research appointments, and as a result a small number of participants chose 

to attend the Edinburgh site instead. As the cohort has been divided according to the site at 

which participants were reviewed for the study (as opposed their local NHS board) a very 

small number of participants will be incorrectly attributed to the wrong site.  

 

The point of disease (pathology) onset in multiple sclerosis can be clinically silent, with a 

diagnosis not made until many years later. Recruiting a cohort of patients that are truly 

representative of early disease is therefore difficult, but the point of diagnosis represents an 

important and standardised landmark of early disease where dissemination in time and 

space has been demonstrated.   
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Figure 3-8 Median time from onset of clinical symptoms to diagnosis, and from diagnosis to 

baseline visit 

The median time from first symptom to diagnosis was 21 months (IQR 8.6-62), and the median 

total time from the onset of first symptoms attributable to MS to baseline review in the study was 

24 months (IQR 11 to 65 months). 

Whilst there are numerous cohort studies of multiple sclerosis, many include a mix of 

relapsing-remitting and progressive MS patients, recruited years after diagnosis and treated 

to differing extents. We recruited participants within an average of 2 months (IQR 1.2 to 

3.1 months) of diagnosis and before initiation of disease modifying treatment.  

 

Recruitment of individuals prior to starting treatment was important as certain treatments, 

such as Natalizumab, significantly affect neurofilament levels (Gunnarsson et al., 2011). It 

was therefore preferable to obtain treatment naïve specimens in order to interrogate the 

potential use of neurofilament as a prognostic tool, without the confounding effects of 

treatments. Furthermore, by having a treatment naïve baseline neurofilament level against 

which to compare post-treatment levels we could potentially investigate the sensitivity of 

neurofilament in the monitoring of treatment efficacy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To understand how well the Future MS study encapsulates an early disease cohort in the 

context of previously published work we compared baseline demographics with those from 

three other large observational cohort studies  - CLIMB (Gauthier et al., 2006), EPIC (Cree 

et al., 2016) and SWIMS (Zajicek et al., 2010), as well as the Danish MS registry 

(Brønnum-Hansen, Koch-Henriksen, et al. 2011), table 3-4. All patients in Denmark with a 

suspected diagnosis of MS have their hospital discharge letter mailed to the Danish MS 

registry office. Patients are therefore enrolled at diagnosis. We used the Danish MS 

registry as a benchmark for a newly diagnosed cohort.  
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Table 3-4 Comparisons between different cohorts/registries inclusion criteria, baseline demographic and clinical data 

 

Cohort N 

(at year) 

MS subtypes included Treatment 

naïve at 

inclusion? 

Age at 

inclusion 

Mean (SD) 

Percentage 

female  

 

EDSS at 

inclusion 

Med (IQR) 

Time from first symptom 

onset to inclusion, years 

Med (IQR)/Mean (SD) 

Future MS, Scotland. 

Multi-centre, observational,  

longitudinal cohort study. 2016 onw 

440 

(2020) 

RRMS 

Enrolled within 6 months of 

diagnosis 

Yes 37.8 (10.5) 73.9 2 (1-3) 

 

2 (0.46-5.4) 

CLIMB, Boston, USA. 

Single centre, observational,  

longitudinal cohort study. 2000 onw 

>2000 

(2017) 

All MS/CIS 

Enrolled within 3 years of 

diagnosis 

No 39 (10.5) 76.1 1.5 (1-2) 

 

7.6 (8.7) 

relapsing onset only 

N=1541 

EPIC, San Francisco, USA. 

Single centre, observational,  

longitudinal cohort study. 2004 onw 

>500 All MS/CIS  

(but ambulatory patients and 

those with ‘recent onset’ were 

preferentially recruited) 

No 42.7 (9.9) 67.5 1.5 (1-3) 7 (2-13.5) 

 

SWIMS, England. 

Patient-centred, prospective, 

observational longitudinal cohort 

study. 2004-2017 

1600  

(2017) 

All MS/CIS 

No limit on time since diagnosis 

No 51.6 (11.5) 75 Mean 4.3  

(SD 2.3) 

13.3 (6.8 - 24.5) 

Danish MS registry, Copenhagen 

Epidemiological register with 91% 

completion rate. 1956 onw 

>13,000 

(2013) 

All MS/CIS 

Individuals are enrolled in register 

at point of discharge from hospital 

- i.e. at diagnosis 

No 37.6 68.9 2 (1-3) 2 
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Figure 3-9 Comparison of baseline demographic and clinical data for several large MS cohorts 

(A) Bubble chart showing age and EDSS at study inclusion (where size of bubble represents size 

of cohort) are similar between several cohorts of established disease (EPIC & CLIMB), Future 

MS, and the Danish MS registry; (B) Disease duration varies between cohorts of established 

disease (EPIC, CLIMB and SWIMS), but it similar for Future MS and the Danish MS registry.   

Average age and EDSS at study inclusion were similar between the Danish MS registry, 

Future MS and two cohorts of established disease (EPIC and CLIMB), figure 3-9(A).  

 

Time from first symptom to study inclusion varied more notably. Participants in the EPIC 

and CLIMB cohorts had an average duration of symptoms of approximately 7-8 years prior 

to inclusion. Participants in the SWIMS study reported an average of thirteen years from 

symptom onset to study enrolment (Zajicek et al., 2010). The median time from first 

symptom to study inclusion was the approximately 2 years for both the Future MS cohort 

and the Danish MS registry (Steenhof et al., 2019), figure 3-9(B). 
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The established disease cohorts (EPIC and CLIMB) appeared to have similar average 

baseline demographics as participants at the point of diagnosis (the Danish MS registry and 

Future MS), yet with a markedly different ‘disease duration’ (time since first symptom). 

This is likely a reflection of the MS populations recruited.  

 

With the exception of Future MS, all the studies included varying proportions of patients 

with clinically isolated syndrome and progressive MS. Approximately 16% of the EPIC 

and CLIMB cohorts were CIS patients (Bove et al., 2018), compared with only 3.6% of the 

SWIMS cohort (Zajicek et al., 2010). Conversely, approximately 40% of the SWIMS 

cohort reported a diagnosis of progressive MS (and 20% did not know)(Zajicek et al., 

2010) compared with 7% of CLIMB and 14% of EPIC (Bove et al., 2018). Variations 

between the composition of cohorts will affect demographic and clinic results, with a 

larger proportion of progressive patients skewing the cohort towards an older age, longer 

disease duration and higher EDSS, and the inverse seen with CIS. This explains how 

cohorts of established disease appear to have similar baseline demographics to cohorts of 

early disease.  

 

Our comparisons also show that participants in Future MS had a similar age, EDSS and 

duration of symptoms as those enrolled into the Danish MS registry, figure 3-9. This 

demonstrates that the baseline characteristics of the Future MS cohort are similar to 

established cohorts based around the study of early MS.  

 

The proportion of patients receiving disease modifying treatment at inclusion varied from 

approximately 18% in the SWIMS study (Zajicek et al., 2010) to approximately 80% in 

the CLIMB study (Raghavan et al., 2015). Future MS is the only treatment naïve cohort. 

Whilst this reduces the confounding influence of treatments, by only including treatment 

naive individuals the Future MS study risked excluding patients with very active disease 

(who may be required to start treatment as an inpatient at time of diagnosis). We actively 

tried to minimise this by including participants who were current inpatients as a result of a 

severe first presentations of MS. Despite this, it is likely that some potential participants 

have been missed, for example as a result of being hospitalised in a district general 

hospital. However, the median EDSS of the Future MS cohort appears consistent with 

other studies and the range of EDSS scores within the Future MS cohort (0 - 7.5) 

demonstrates inclusion of individuals with significant disability.  
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In the context of previously published MS cohorts, Future MS therefore represents both a 

homogenous and an early disease population of RRMS patients.   

 

Date of diagnosis does not equate to date of disease onset. However, a multiple sclerosis 

relapse can produce any one of a number of possible symptoms and identifying the earliest 

symptom truly attributable to MS is difficult. In order to gauge the potential duration of the 

disease it is common to ask patients if they have experienced similar symptoms. Whilst 

some may give a classical description of symptoms suggestive of optic neuritis, in other 

instances a recount of sensory disturbance affecting the hand for example, could be 

attributable to several potential causes. Whether a historical symptom is ultimately 

considered to be potentially relevant to a diagnosis of MS is therefore dependent on both 

the patient and the clinician. This is important to remember when interpreting results, such 

as when we reviewed how time from symptom onset to diagnosis differed between 

participants, and noticed variability between recruitment sites.  

 

No differences in baseline demographic or clinical data between recruitment sites were 

apparent, therefore the significantly quicker diagnosis seen in the Glasgow cohort was 

unlikely to be a reflection of a younger MS population or the inclusion of individuals with 

particularly aggressive disease. We considered whether this could be the result of an 

ascertainment basis, as the Glasgow cohort were predominantly reviewed by one 

researcher (SJM). However, this seems unlikely given that the same researcher reviewed 

participants in other sites. A potential reason for the variation in time to diagnosis may be 

due to regional disparities in the use of cerebrospinal fluid in the diagnosis of RRMS, 

figure 3-10.  
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Figure 3-10 The percentage of patients across Scotland diagnosed with MS using CSF analysis 

Across all centres, there was a general trend towards increasing use of CSF in the diagnosis of 

multiple sclerosis, however variation was apparent, particularly between the two largest 

centres - Edinburgh and Glasgow.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The use of CSF in conjunction with the McDonald 2017 diagnostic criteria facilitates an 

earlier diagnosis of MS (Thompson et al., 2018). NHS incidence data detailing the 

percentage of patients who had a lumbar puncture performed at diagnostic work-up in the 

years 2016, 2017 and 2018 was provided from the Scottish MS Register (Scottish MS 

Register, 2019).  

 

In general, the use of CSF increased between 2016 and 2018, however, there was regional 

variability. Glasgow employed CSF analysis in the diagnostic work-up of MS significantly 

more frequently than other sites (Glasgow vs Edinburgh, p=0.035, ANOVA with Dunn’s 

multiple comparisons). This may explain in part the shorter time between first attributable 

symptom onset and MS diagnosis to diagnosis seen in the Glasgow cohort. This is an area 

which requires further study, as the ability to reduce time to diagnosis has potential 

prognostic significance.  
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With increasing disease modifying treatment options available there is an increasing 

consensus towards earlier treatment (Cerqueira et al., 2018). Delayed diagnosis risks 

delaying treatment options which could potentially alter the disease course and reduce the 

risk of disability. 

 

Identification of the most appropriate treatment option for an individual requires weighing 

up the balance between potential risks of the medication against potential risk of disability 

if the patient remains untreated. Prognostic tools are therefore required in order to identify 

individuals most likely to develop permanent disability, in whom risker but higher efficacy 

treatments would be warranted. The Future MS cohort offers an opportunity to employ 

next-generation technologies to study potential prognostic markers of poor prognosis in an 

early disease cohort.  

 

 

 

 

 

 

 

 

 

 

 

 

Summary of Chapter Three 

 

• We successfully recruited a large, representative, cohort of treatment naïve 

individuals from across Scotland within an average of 2 months of diagnosis 

of RRMS. 

 

• Analysis of baseline data identified regional similarities in demographics and 

clinical status, and regional variability in time to diagnosis.  

 

• When compared with other large cohorts, the Future MS study has achieved 

recruitment of a particularly homogenous, early disease cohort of individuals. 

 

• Longitudinal follow-up over many years will enable us to link baseline data 

with long-term outcomes.  
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Chapter Four 
 
 

 
Neurofilament in CSF and blood 

in MS:  

Meta-analysis and validation 

 
 
 
 
 
 



 

 88 

4 Neurofilament in CSF and blood in MS: Meta-analysis and 
validation 

 
Part of this chapter has been published: Martin SJ et al. Cerebrospinal fluid 

neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control 

studies Journal of Neurology, Neurosurgery & Psychiatry, September 2019;90:1059-1067. 

This is an unofficial translation of a manuscript that has been accepted for publication by BMJ. 

Neither BMJ nor its licensors have endorsed this translation  
 

4.1 Introduction 
Axonal damage is thought to be an important substrate of disease progression in MS, 

and once axonal injury occurs beyond the threshold for compensation it is the best 

pathological predictor of permanent neurological deficit (Bjartmar et al., 2000). 

Neurofilament appears to be promising biomarker of axonal damage.  

 

MRI is currently the gold-standard biomarker for disease diagnosis, monitoring and 

prognostication in multiple sclerosis, and is non-invasive and readily available. 

However, MRI is insensitive to microscopic pathology, primarily capturing the 

macroscopic endpoint of white matter disease that has already occurred. A biomarker 

that reflects current fluctuations in disease pathology may enable more ‘reactive’ 

identification of disease activity.  

 

Neurofilament is the major structural protein of neuronal axons in the central nervous 

systems (Petzold, 2005; Yuan et al., 2012). Release of neurofilament subunits into 

extracellular fluid can occur consequent to any cause of axonal transection (Yuan et al., 

2012). Detection of elevated neurofilament levels is therefore non-specific and may 

require disease specific reference values (Bridel et al., 2019). Neurofilament light chain 

is the most abundant subunit of neurofilament and is reliably quantified in CSF. Levels 

of NfL in the CSF have been shown to be higher in MS patients compared with 

controls, to rise in the context of relapse, and to fall with certain disease modifying 

treatments (Lycke et al. 1998; L. Novakova et al. 2016; Novakova, Axelsson, et al. 

2017). This suggests that CSF NfL has the potential to be a clinically meaningful 

marker of axonal damage. However, CSF is invasive to obtain, making it unsuitable for 

repeat or longitudinal sampling and less likely to be available from both patients and 

controls.  
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Blood is a more acceptable biofluid to sample. The limiting factor in the detection of 

neuronal proteins in blood has always been the lower limit of quantification of the 

assays available. Conventional NfL ELISAs had a lower limit of detection of 

approximately 60ng/L (Norgren, Rosengren et al. 2003).   

 

Next generation ELISA technology - single molecule array (Simoa), was developed in 

2010 (Rissin et al., 2010) and has reduced the lower limit of detection of proteins a 

thousand-fold, to sub-femtomolar concentrations (<10-15)(Rissin et al., 2010).  

 

Simoa enables the quantification of NfL in blood in both MS patients and healthy 

controls (Rissin et al., 2010; Kuhle et al., 2016). The concentrations of neurofilament 

in blood seem to correlate with those seen in CSF (Kuhle et al. 2016; Novakova, 

Zetterberg, et al. 2017) and appear too to reflect MS disease activity. Blood NfL levels 

are greater in MS than controls, higher in relapse than remission and decrease with 

disease modifying treatment (Novakova, Zetterberg, et al. 2017). Higher blood NfL at 

baseline has been linked with more significant brain atrophy at ten years, suggesting 

that blood NfL levels may also have a prognostic relevance.  

 

Current biomarker studies are often retrospective analyses of cohorts of MS patients 

with disease durations which range by decades. The proportion of the cohorts that are 

treated (and what disease modifying treatment they are receiving), vary with local 

practice. Finally, how researchers define ‘relapse’ (clinically versus radiologically), and 

thus ‘remission’, also differs between studies.  

 

We sought to synthesise the published literature on CSF NFL. We performed a 

systematic review and meta-analysis in order to better understand the relevance of 

neurofilament measurement, and improve the power to detect the potential utility of 

NfL as a biomarker of axonal damage.  

 

After reviewing the literature on CSF neurofilament in MS, we then demonstrated the 

use of next-generation ELISA technology. We used Simoa to measure neurofilament in 

paired CSF and blood samples from RRMS patients at the point of diagnosis in order to 

determine how well blood NfL reflects CSF NfL levels in early RRMS.  

 

 

 



 

 90 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aims of chapter Four 

 

Aim 1 - To evaluate the role of CSF NfL in MS subtypes through systematic 

review and meta-analysis. 

 

Aim 2 - To demonstrate that, within the Future-MS study, plasma NFL can be 

measured using single molecule ELISA. 
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4.2 Meta-analysis of the potential utility of CSF NfL in MS 

No meta-analyses of neurofilament light chain in multiple sclerosis were published or 

registered with PROSPERO (National Institute for Health Research PROSPERO, 

2017) in September 2017. We therefore designed a meta-analysis, which we registered 

with PROSPERO (National Institute for Health Research PROSPERO, 2017) (ID 

CRD42017078996) and conducted according to a predetermined protocol. The research 

question was defined as ‘Can CSF NfL levels differentiate people with MS (pwMS) 

from controls (either healthy controls or controls with other diseases)?’. If so, ‘Do CSF 

NfL levels differentiate between different MS disease stages or states?’.  

 

Any original study quantifying NfL in CSF of people with MS was identified. No 

language or publication date restrictions were imposed. Patients of any age were 

included, with no restrictions on disease duration or subtype, time since relapse, 

disability, co-morbidities or treatment. Diagnosis had to be stated with reference to 

established diagnostic criteria. Where cohorts were not differentiated by MS subtype, 

they were named accordingly, for example ‘clinically definite MS (CDMS). Clinical 

and radiologically isolated syndromes were excluded in order to reduce the 

heterogeneity of the overall cohort. Each MS cohort required a control comparator. 

Ideally, studies should reference guidelines on defining control groups, but this was not 

an inclusion criterion (Teunissen C et al., 2013). Studies could be retrospective, cross-

sectional or prospective. CSF collection and bio-banking were required to meet criteria 

proposed by BioMS-EU (Teunissen C et al., 2009). If these criteria were not 

referenced, the paper was required to describe CSF sampling, pre-analytical handling 

and storage techniques applied to ensure the samples used were of sufficient quality. 

Studies also had to use a validated assay or describe the ELISA technique to satisfy 

inclusion. Assays with a coefficient of variation >25% were excluded, as were studies 

where NfL was detectable in less than 85% of either comparator group. 

 
One author (SJM) searched electronic databases for published and unpublished ‘grey’ 

literature using the terms [“MS” OR “Multiple sclerosis”] AND [“NfL” OR 

“Neurofilament light”] AND [“CSF” OR “cerebrospinal fluid”] (see appendix 1). The 

search was performed on 8th September 2017. Detailed review of potentially eligible 

papers followed, as per Preferred Reporting Items for Systematic Reviews and Meta-

Analyses, 2009, (PRISMA) guidelines, figure 4-1.  
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Sixty-eight duplicates were removed, and 100 records excluded on abstract alone (see 

appendix 2). Of the remaining 51 papers, 17 studies had no control group, three 

measured NfL in a categorical way, and one measured serum NfL levels.  Seven studies 

were excluded on the basis that CSF NfL level was detectable in less than 85% of one 

comparator group. These were older studies that used a less sensitive assay 

(Malmeström C et al., 2003, Norgren N et al., 2004). Three papers were excluded as 

NfL levels for the MS cohort had previously been published. One paper used 

previously published data from a control cohort, but compared it with a new MS 

cohort, and was included (Novakova L et al., 2017). Twenty studies met our criteria for 

inclusion (see appendix 2).  

 
Within the studies identified, data were reported either as mean and standard deviation 

(SD), or as median and range or interquartile range. To improve comparison between 

datasets we contacted authors and asked them to provide raw data. 

 

We applied a weighted fixed effect model to estimate standardised mean differences in 

CSF NfL level between groups (with 95% CI, and corresponding p value). 

Heterogeneity between studies was documented as a Q test statistic and corresponding 

p value. Publication bias was assessed using funnel plots. Demographic differences 

between cohorts were tested for significance using two-way T tests and Z scores.  

 

Required data were available in the original paper or provided by the authors in 14 of 

the 20 studies. This equated to a total of 805 MS patients (638 RRMS, 104 SPMS and 

63 PPMS) and 435 controls (332 non-inflammatory neurological disease controls 

(NINDCS) and 103 healthy controls).  
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Figure 4-1  PRISMA 2009 (Preferred reporting in Systematic reviews and Meta-analyses) 
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Seven studies were retrospective, four prospective, and three were cross-sectional 

analyses. Seven studies referenced BioMS-EU guidelines on biobanking, and two 

referenced guidelines relating to definition of control populations (Teunissen et al., 

2013; Trentini et al., 2014; Stilund et al., 2015). All 14 studies used the commercially 

available Uman NfL ELISA to measure CSF NfL, which has a lower limit of detection 

of 31ng/L documented by the manufacturer. The intra-assay coefficient of variations 

reported by the authors (between 3.5% and ‘<15%’) were all below our predetermined 

cut-off of ‘<25%’. Seven papers explicitly reported that the analysis was blinded 

(Gunnarsson et al., 2011; Axelsson et al., 2014; Burman et al., 2014; Trentini et al., 

2014; Aeinehband et al., 2015; Stilund et al., 2015; Hakansson et al., 2017).  

 

The Newcastle-Ottawa Scale (NOS) is a scoring system designed to assist with quality 

assessment of non-randomised research. We used this as a framework when reviewing 

the design of the studies included in our meta-analysis. However, as the NOS has not 

been validated, no articles were excluded based on this score (Stang, 2010). 
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Table 4-1 Summary table of studies included in meta-analysis 

 

Quality (NOS) - Each study is scored using a star system based on three domains  

 1) selection of study groups (cases and controls) – maximum 4*;  

2) comparability of the groups – maximum 2*; 

3) ascertainment of outcome – maximum 3*. 

(NOS = Newcastle-Ottawa Scale) 

 

 

 

 

 

 

 

 

 

 

 

 

1st Author; Year No 

MS 

Mean age 

of MS 

patients 

No 

controls 

Mean age 

of 

controls 

Quality (NOS) 

Selection    

(4*) 

Comparability 

(3*) 

Exposure    

(2*) 

Piehl; 2017 39 39.6 27 35.2 **  *** 

Trentini; 2014 31 49.6 15 39 ***  ** 

Novakova; 2017a 59 37 39 (dup) 33.6  ****  *** 

Novakova; 2017b 43 39.7 39 33.6 **** * *** 

Hakansson; 2017  22 unknown 22 32 **** ** **** 

Bergman; 2016 110 37.7 113  40.2 ***  ** 

Lam; 2015 59 45.7 44 40.4 **  ** 

Stilund; 2015 59 41.2 39 40.7 ***  ** 

Villar; 2015 127 33.6 37 34.6 ** * *** 

Aeinehband; 2015  48 41.2 18 30.4 ***  ** 

Burman; 2014 63 43.8 15 40.2 **  *** 

Axelsson; 2014 35 48 14 42 **** * *** 

Fialová; 2013 18 38 24 33 **  ** 

Gunnarsson; 2011 92 37.3 28 43 ***  ** 
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Figure 4-2 Clinically definite MS versus controls (HCs and NINDCs), subgroup and 

combined meta-analysis 

Four studies compared CSF NfL levels in patients with MS with HCs, and nine studies used 

NINDCs. One group (Novakova et al) used the same control cohort in two papers (Novakova 

a and b). (Novakova a) was therefore excluded from the overall analysis to avoid duplication. 

This study is used in later sub-analyses, and a sensitivity analysis including it did not alter 

results. CSF NfL levels are higher in MS than healthy and disease controls. CDMS, clinically 

definite MS; CSF, cerebrospinal fluid; HCs, healthy controls; MS, multiple sclerosis; 

NINDCs, non-inflammatory neurological disease controls; SMD, standard mean deviation.  

4.3 Results of meta-analysis 
4.3.1 CSF NfL levels are higher in MS compared with controls 

CSF NfL levels were approximately three times higher in 746 ‘clinically definite’ MS 

patients (CDMS) than in 435 controls (1965.8 ng/L, SD=3102.5 vs. 578.3 ng/L, 

SD=1212.3). Meta-analysis revealed a statistically significant moderate effect size, 

0.61, p<0.00001. MS and control groups were comparable in age (41.3 v 37.3 years, 

respectively) and sex (63% and 62% female). A funnel plot showed spread around the 

observed outcome, making publication bias unlikely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

 97 

Heterogeneity between study outcomes was significant in the CDMS v NINDCs meta-

analysis but not the CDMS v HC meta-analysis. The MS cohorts were comparable 

(mean age 41.7 years; 56% and 65% female), with approximately a third of subjects in 

relapse. This suggested that there were differences between the control populations, 

and we found that the mean CSF NfL level in the 332 NINDCs was double that of the 

103 healthy controls, 643.4 ng/L, SD=1515.2 vs. 368.4 ng/L, SD=224.  

 

4.3.2 CSF NfL levels are higher in relapse compared to remission, irrespective of MS 

subtype 

CSF NfL was higher in RRMS than controls. This was significant during both relapse 

and remission, p<0.00001, but with a larger effect size during relapse (1.13), than 

remission (0.67).  

 

RRMS patients in remission had CSF NfL levels five times greater than NINDCs, 

(1896.4 ng/L, SD=3371.4, v 365.1 ng/L, SD=281.3). Heterogeneity was not significant. 

When RRMS patients in relapse were compared with the same control population, CSF 

NfL levels were nine times higher in the MS patients compared to the controls, (3272.2 

ng/L, SD=5164.8 vs 364.9 ng/L, SD=275.3), but heterogeneity was detected, p=0.0008.  
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Figure 4-3 (A) RRMS in remission versus controls (NINDCs) and (B) RRMS in relapse 

versus controls (HCs and NINDCs), subgroup and combined meta- analysis 

(A) CSF NfL levels were higher in patients with RRMS in remission than disease controls, 

with a moderate effect size of 0.67; (B) CSF NfL levels were higher in patients with RRMS in 

relapse than both healthy and disease controls, with a large effect size of 1.13; however, 

heterogeneity between studies was also significant. CSF, cerebrospinal fluid; HCs, healthy 

controls; NfL, neurofilament light chain; MS, multiple sclerosis; NINDCs, non-inflammatory 

neurological disease controls; RRMS, relapsing remitting MS; SMD, standard mean 

deviation. 
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Meta-analysis of 75 SPMS compared with 48 PPMS showed no difference in NfL 

levels (see appendix 3), and they were therefore combined as ‘progressive MS’ for 

further analyses. Mean CSF NfL levels were three times higher in progressive MS than 

controls, and meta-analysis showed a significant effect size of 0.96, p<0.00001. 

However, progressive MS patients were older (52.6 versus 38.4 years, p<0.001), and 

the sex distribution was unequal, (50.4% female versus 67.1% female, p=0.0047). 

When progressive patients were included alongside RRMS patients in an analysis of 

the effect of relapse on CSF NfL, NfL levels remained approximately twice as high in 

relapse populations compared to remission, (3080.6 ng/L, SD 4715.9 vs 1541.7 ng/L, 

SD 2406.5).  

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 CSF NfL in relapse v remission for A) RRMS, and B) with the addition of 

progressive MS patients. 

(A) CSF NfL levels are higher in RRMS in relapse than in remission; (B) when progressive 

and patients with RRMS are combined as ‘all patients’, CSF NfL levels remain higher in 

relapse patients than remission patients. SMD, standard mean deviation.   



 

 100 

Figure 4-5 RRMS versus progressive MS (PPMS and SPMS combined) meta-analysis 

4.3.3 CSF NfL levels are higher in RRMS than progressive MS, but do not 

discriminate the two 

Meta-analysis of five studies showed a higher CSF NfL in 176 RRMS patients 

compared with 92 progressive patients, (2124.8 ng/L versus 1121.4 ng/L). The effect 

size was small (0.34), but statistically significant, p=0.0108.  

 
Demographic data were available for 87% of all subjects in this analysis. RRMS 

patients were younger (40.1 years versus 53.4 years), with a greater proportion female 

(74% versus 53%). Relapse data were available for 75% of the RRMS cohort (of which 

40.2% were in relapse), and 83.7% of the progressive cohort (of which 5.2% were in 

relapse). There was also a marked difference in disease duration between the cohorts - 

69.9 months for RRMS patients compared to 167.5 months for progressive patients. 

Limited subgroup data prevented us from being able to analyse the relationship 

between disease duration and NfL levels. Within the progressive cohort we did 

however note that SPMS patients had a longer mean disease duration than PPMS 

patients (204.3 versus 59.5 months), and that mean CSF NfL levels between the two 

did not differ. 

 

 

 

 

 

 

 

 

 

 

 

 

We then asked whether CSF NfL might discriminate RRMS in remission from 

progressive MS. Although CSF NfL levels remained higher in RRMS in remission, the 

difference was not significant, suggesting that CSF NfL cannot be used to discriminate 

relapsing from progressive disease. 
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4.3.4 CSF NfL levels may be influenced by disease modifying treatments 

Meta-analysis of 163 treated and 70 untreated patients with MS showed no effect of 

treatment on CSF NfL levels (see appendix 4). This was potentially a reflection of the 

fact that the majority (78%) of the treated cohort were on less efficacious DMT 

(interferon-beta, glatiramer acetate or teriflunomide). Less efficacious DMTs are 

recognised to reduce neurofilament levels to a lesser extent than highly efficacious 

DMTs, despite the fact they have a significant impact upon the development of new T2 

lesions on MRI and reduce clinical relapse rates by approximately a third. Further 

analyses in larger cohorts are required to investigate the impact of different DMTs on 

neurofilament levels over both the short and long-term.  

 
4.4 Use of next-generation single molecule array (Simoa) to measure 

NFL in blood 

Our meta-analysis suggested that CSF NfL is a potentially useful marker of disease 

activity, and our findings are in keeping with other published meta-analyses (Cai et al, 

2018; Bridel C et al., 2019).  

 

However, CSF analysis in large powerful cohorts is limited by the small proportion of 

individuals who undergo CSF sampling as part of routine diagnosis. Further 

interrogation is required and measurement of NfL in blood is preferable to enable 

validation in large numbers of patients and controls.  

 

Quantification of NfL in blood samples from an MS cohort was first performed in 2016 

(Kuhle et al., 2016). Since then, and the development of a commercially available 

assay, measurement of neurofilament in blood has been demonstrated by different 

groups, typically in cohorts of established MS, and using a Quanterix HD-1 Simoa 

analyser, which is fully automated and requires no sample or reagent manipulations 

(Cantó et al. 2019; Disanto et al. 2017; Novakova, Zetterberg, et al. 2017).  

 
4.4.1 Measurement of NFL in paired serum-CSF samples in individuals with MS 

We used a Simoa assay to ascertain whether we could detect neurofilament in the blood 

of individuals newly diagnosed with RRMS, and subsequently explored whether blood 

neurofilament levels reflected CSF levels.  

 

Sixty-eight ‘paired’ CSF and serum specimens (i.e. samples taken sequentially) were 

acquired. All samples were taken during the diagnostic work-up for MS in patients who 
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had gone on to participate in the Future MS study. The population from whom the 

samples were obtained had baseline demographics typical of an RRMS disease cohort 

at the point of diagnosis, with a 2.05: 1 female to male predominance, and a median 

age of 34 years, IQR 30-43 years. The median EDSS score was 2.5 (IQR 2-3), 

reflecting the fact that the cohort had already developed mild disability by diagnosis.  

 
Simoa Neuro 4-plex A kit was used with a Quanterix SR-X instrument. The SR-X 

instrument is a smaller, semi-automated benchtop version of the Quanterix HD-1 

instrument. The SR-X requires manipulation of samples and reagents prior to analysis 

and is therefore more user-dependent than the HD-1 instrument.  

 

CSF and serum samples from each participant were measured simultaneously, and in 

accordance to the manufacturer’s instructions (see methods for detailed lab protocol), 

figure 4-6(A). All samples were measured in duplicate and researchers were blinded to 

sample identification during the experiment and initial data analysis. The mean fitted 

concentrations of each biomarker were calculated by Quanterix SR-X software, figure 

4-6(B).  

 

Data were reviewed to determine the reliability of results. All biomarker results were 

above the lower limit of quantification. High and low controls (provided by the 

manufacturer and run in quadruplicate) produced results within the expected ranges, 

figure 4-6(C). Eight of the 68 paired samples had a coefficient of variation between 

duplicates of greater than 30% and were therefore excluded.  
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Figure 4-6 Simoa ELISA plate layout, standard curve and review of control results 

(A) ELISA plate layout for simultaneous measurement of neurofilament in CSF and serum 

samples (B) Simoa NfL standard curve with annotations showing the dynamic range of the 

assay and lower limit of quantification (C) Interpolation of NfL concentration for high and 

low controls for each plate produced results within the expected ranges reported by the 

manufacturer. 



 

 104 

4.4.2 Blood NfL levels correlate with CSF NfL levels   

The median CSF NfL was 689 pg/ml (IQR, 418-1190), and the median serum NfL was 

approximately 60 times lower, 10 pg/ml (6.1-21), figure 4-7(A).  

 

Spearman rank correlation analysis revealed a strong positive correlation between CSF 

and serum NfL, rs=0.69, which was statistically significant, p<0.001, figure 4-7(B).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

4.4.3 Neurofilament levels did not differ between sexes or correlate with age 

No significant correlation was found between age and neurofilament levels in CSF or 

serum in this cohort of newly diagnosed MS patients, figure 4-8(A). Neither CSF or 

serum NfL levels differed significantly between the sexes, p=0.30 and p=0.11, 

respectively, figure 4-8(B).  
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Figure 4-7 CSF and corresponding blood neurofilament concentrations 

(A) CSF and serum neurofilament values shown with median and interquartile range. (B) 

Paired samples from 60 RRMS patients at the point of diagnostic work-up showed a strong 

correlation between CSF and serum results, r=0.69, p<0.0001. 
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Figure 4-8 Association between CSF/serum neurofilament and age and sex 

(A) Neurofilament levels did not show a significant correlation with age, in either CSF or 

serum. (B) Neurofilament levels did not differ between the sexes in either CSF or serum, 

Mann Whitney T test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 Discussion 

Neurofilament is a non-specific marker of axonal injury. Consequently, neurofilament  

has been studied as a potential biomarker of neurodegeneration across many diseases, 

in different populations and using different assays (Bridel et al., 2019). To better 

understand the potential role of neurofilament as a biomarker in multiple sclerosis we 

performed a meta-analysis of the literature on CSF neurofilament in multiple sclerosis.  

 

In our meta-analysis we noted that levels of CSF NfL were elevated in all patients with 

MS, suggesting that axonal damage occurs throughout the disease. Our finding that 

relapse appears to be a stronger driver of CSF NfL levels than progressive disease may 

mean that NfL concentrations correlate more closely with acute than chronic axonal 

loss. This would suggest that transection of axons within an acute inflammatory lesion 

releases greater quantities of neurofilament subunits than insidious axonal damage as a 

consequence of chronic inflammation. This is demonstrated by the observation that on 

sequential analysis, CSF NfL levels within individuals are not persistently significantly 

elevated (Lycke et al., 1998), although may remain higher than healthy controls.  

 

At present, CSF NfL levels are thought to peak during acute relapse and decline within 

3 months (Malmeström et al., 2003). However, the dynamic changes of neurofilament 

levels in response to acute disease activity has not yet been established and will require 

serial samples in large cohorts over many years.  
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Limitations of our meta-analysis include the fact that a single author (SJM) reviewed 

the literature, and that studies were excluded due to insufficient data. We contacted the 

authors but had to exclude six papers. A further limitation was that we used raw data 

(uncorrected for age). The reason for this was that only some studies corrected data for 

age (when analysing results), and in others the demographic data provided was not 

sufficiently detailed to allow correction for age within subgroups. Despite these 

limitations, our results suggest that neurofilament could be a useful marker of acute 

axonal damage in MS. Our results are similar to other meta-analyses, both specifically 

in multiple sclerosis (Cai et al, 2018) and where multiple sclerosis has been included as 

part of a larger meta-analysis of neurofilament levels across different neurological 

diseases (Bridel C et al., 2019).  

 

As CSF is invasive to obtain, the comparative ease of blood sampling is of significant 

advantage both in the validation of a fluid biomarker and its accessibility in routine 

clinical practice. Reliably quantifying a protein of CNS neuronal damage in blood was 

previously not possible due to the extremely low concentration of neuronal proteins in 

blood. By reducing the lower limit of quantification to sub-femtomolar levels, next-

generation ELISA technology has changed that.  

 

We successfully measured neurofilament levels in paired CSF and serum samples from 

patients at the point of diagnosis of RRMS. We have demonstrated that, in our hands, 

the Simoa neurofilament assay works with the Quanterix SR-X instrument and 

produces results in line with the published literature.  

 

The median CSF NfL of 698pg/ml (418-1190pg/ml) is similar to other studies (Kuhle 

et al. 2016; Novakova, Zetterberg, et al. 2017) The reports surrounding blood NfL 

levels are less consistent, and our results of a median serum NfL of 10pg/ml (6.1-

21pg/ml) are comparable with certain studies (Quanterix, 2018) but lower than others 

(Novakova, Zetterberg, et al. 2017). This may partly be a reflection of the disease 

activity of the participants sampled, but is also likely a result of variations in the 

techniques used (Quanterix semi-automated SR-X (our data); Quanterix fully-

automated HD-1 analyser (Novakova, Zetterberg, et al. 2017); ECL assay using Uman 

AB (Kuhle et al., 2016)).  
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Although neurofilament levels were approximately 60 times lower in serum than CSF, 

we found a moderate-strong correlation between the two, r=0.69, p<0.0001. We were 

also able to demonstrate this on an individual patient level, whereby the three 

individuals with the highest concentrations of CSF NfL also had the highest serum NfL 

levels (data not shown).  

 

Using Simoa, we have demonstrated that neurofilament can be measured in patients at 

the point of diagnosis of MS. Our findings of a good correlation between CSF and 

blood neurofilament levels are consistent with published data and adds to the body of 

evidence of the use of blood in place of CSF in the measurement of neurofilament 

(Abdelhak et al. 2018; Kuhle et al. 2016; Novakova, Zetterberg, et al. 2017). 

 

To address the extent to which neurofilament levels are elevated in early disease, and in 

what contexts, requires analysis in large, well-defined cohorts of early MS patients, and 

comparison with healthy controls. This is now feasible by using a Simoa assay to 

measure neurofilament levels in the Future MS cohort.  

 

Measurement of neurofilament levels within the Future MS cohort also provides an 

opportunity to combine this blood biomarker of axonal damage with other biomarkers 

reflecting different aspects of the pathology of MS, such as an imaging biomarker of 

myelin integrity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of Chapter Four 

 

• Metanalysis of systemically reviewed published studied shows that CSF 

Neurofilament has utility as a biomarker of acute disease activity in 

multiple sclerosis. 

 

• Using Simoa, we have demonstrated that neurofilament can be detected in 

the blood at the point of diagnosis of MS, and that blood NfL levels 

correlate with CSF NfL levels. 
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Chapter Five 
 
 
 

Evaluating myelin and axonal 
integrity in early MS lesions 
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5 Evaluating myelin and axonal integrity in early MS lesions 
This chapter has been submitted for publication and is currently under review 

(joint first author with Elizabeth York). This work was performed in close 

collaboration with Professor Adam Waldman (Professor of Neuroradiology, University 

of Edinburgh) and Elizabeth York. I was involved in the recruitment and review of the 

patients, the collection of samples, and the running and analysis of Simoa NFL assays. 

AW and EY were involved in the collection and analysis of raw imaging data. All 

parties contributed equally to the subsequent analysis of results.  

 
5.1 Introduction – Towards non-invasive evaluation of lesion biology 

The pathological endpoint in multiple sclerosis is a combination of myelin damage, 

myelin repair and axonal loss. Multiple sclerosis is unpredictable but treatable. 

Individuals can develop irreversible disability over highly variable periods of time. 

Converging lines of experimental, clinical and trial evidence suggest that axonal loss is 

an important contributor to this disability (Ferguson et al., 1997; Trapp and Nave, 

2008; Gunnarsson et al., 2011; Cantó et al., 2019).  

  

If prevention of permanent disability is to be achieved, identification and 

quantification of factors which influence axonal damage early in the disease course 

is required to aid prognostication.  

 

Neuropathological studies 

Neuropathological studies provide the greatest resolution in which to study the 

relationship between loss of myelin and axonal damage. Studies have demonstrated that 

axon transection occurs to a greater extent within areas of active inflammation 

(Ferguson et al., 1997; Bruce D. Trapp et al., 1998). This suggests that axonal loss 

occurs, to a degree, as a consequence of demyelination, and may therefore begin at 

disease onset.  Histopathological studies have previously suggested that the pattern of 

demyelinating lesions  may vary between, but not within, individuals; particularly early 

in the disease course (Lucchinetti et al., 2000). This has been debated. Subsequent 

studies have not replicated these findings, suggesting that histopathological variation 

between demyelinating lesions may simply represent different time points of lesion 

formation (Breij et al., 2008, Kuhlmann et al., 2017), However, if the severity of 

demyelination varies between individuals, the extent of axonal damage may also differ,  

particularly early in the disease course when inflammation is most active.  
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By nature of the typical cohort (obtained post-mortem or on biopsy), histopathological 

studies lend themselves best to studying established, chronic disease or fulminant 

severe disease. If pathological heterogeneity between individuals is greatest in early 

disease (Breij et al., 2008), then findings from post-mortem or lesion biopsy cases may 

not be representative of the majority of patients with early MS. In vivo biomarkers are 

therefore required to study the relationship between loss of myelin and loss of neuronal 

axons in early or ‘typical’ disease. 

 

Magnetic resonance imaging is non-invasive and readily available (Wattjes et al., 

2015), and is the gold-standard clinical tool for the identification of focal areas of 

demyelination. A greater number of MS lesions at baseline has been associated with a 

higher chance of conversion from clinically isolated syndrome to clinically definite 

multiple sclerosis (Fisniku et al., 2008) and a shorter time to reaching disability 

milestones (Tintore et al., 2015). Ultimately however MRI is insensitive to microscopic 

pathology, primarily capturing the macroscopic end-point of white matter disease that 

has already occurred (Rovira, Auger, et al. 2013). Lesion appearances are diverse both 

within, and between patients; and clinical outcomes differ between patients with similar 

lesion burdens (Barkhof, 2002). Conventional MRI metrics therefore do not fully 

account for the clinical variability seen between individuals (Barkhof 2002; Rovira, 

Auger, et al. 2013), and lack sensitivity in estimating the risk of long-term disability for 

a particular patient.  

 

The use of MRI to evaluate g-ratio 

Advanced MR imaging techniques have been developed which offer opportunities for 

the noninvasive study of myelin integrity. One such method is the determination of an 

aggregate g-ratio (Stikov et al., 2015; Campbell et al., 2018). The g-ratio is defined as 

the ratio of the inner axonal radius to the fiber radius, quantified in vitro by electron 

microscopic visualisation and measurement. The g-ratio is therefore a measure of how 

well myelinated an axon is, and will vary during myelination, demyelination and 

remyelination, figure 5-1. Spatial resolution of MRI does not allow for individual axon 

g-ratios to be calculated. Instead, MRI can estimate an ‘aggregate’ g-ratio, within a 

voxel, using Magnetization Transfer Saturation (MTsat) and Diffusion Weighted 

Imaging (DWI) imaging modalities (see also sections 1.7.3 and 5.2.2.).  
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Combining MRI g-ratio with a blood biomarker of axonal damage 

Neurofilament is released as a consequence of axonal transection (Lycke et al., 1998; 

Petzold, 2005). We have demonstrated that, in our laboratory, Simoa can be used to 

accurately quantify NfL in blood and that levels correlate with those seen in CSF 

(Kuhle et al. 2016; Novakova, Zetterberg, et al. 2017).  

 

Classical histopathological studies have demonstrated ex vivo that inflammation and 

axonal damage co-exist in late disease, and that axonal damage is significant in areas 

of acute inflammation. Based on the this, we hypothesized that in early disease, axonal 

damage is also likely to occur secondary to inflammation, and that individuals with 

more significant inflammatory disease activity (demyelination) may have more 

extensive axonal damage.  

 

To investigate our hypothesis in newly diagnosed MS patients requires in vivo models.  

By combining advanced imaging metrics and blood neurofilament measurement we are 

able to simultaneously measure myelin integrity and axonal loss in a non-invasive way, 

figure 5-2.  

 

 

Normal g-ratio 
 

High g-ratio 
 

Figure 5-1 The g-ratio 

The g-ratio is the ratio of the inner axonal radius to the myelinated fibre radius. The g-ratio is 

higher for demyelinated axons than for myelinated axons. Figure created in BioRender by SJM. 
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Figure 5-2 Study overview: Measuring myelin integrity and axonal damage in early MS 

Within the Future MS cohort, 73 individuals participated in a substudy which enabled the 

simultaneous measurement of the MRI g-ratio (as a measure of myelin integrity) and blood 

neurofilament (as a measure of axonal damage).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim of chapter five 
 
To examine the relationship between myelin integrity within MS lesions and 

axonal damage, at the point of diagnosis, in 73 individuals with early RRMS by 

combining advance MR imaging and blood-based biomarkers. 

 
 

Aim of the study 
 
To examine the relationship between myelin integrity of MS lesions and axonal 

integrity in early MS 

 
 

Hypothesis 
In newly diagnosed MS, individuals with more extensive 
inflammatory disease (demyelination) have greater axonal damage.  
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5.2 Methods 

Within the larger Future MS cohort, 73 participants recruited at the Edinburgh site 

participated in an extended imaging sub-study which included the MRI sequences 

necessary to derive an aggregate g-ratio. All 73 had also participated in the sub-study 

biobanking plasma samples. Plasma samples were drawn at the same visit as MRI and 

were stored at -80ºC. As per the Future MS inclusion criteria, all participants had been 

diagnosed with RRMS according to the MacDonald 2010 or 2017 diagnostic criteria no 

more than six months prior to baseline review and were treatment naïve. Baseline 

demographic and clinical data were comparable to NHS incidence data, confirming that 

the study cohort was representative of the newly diagnosed MS population in Scotland.  

 

5.2.1 Measurement of plasma NfL as a biomarker of axonal damage  

We measured plasma neurofilament in 73 RRMS patients and 65 age-matched, healthy 

controls (HCs) recruited from the University of Edinburgh. The control samples were 

handled according to the same protocols as the Future MS samples.  

 

All blood samples had undergone one freeze-thaw prior to thaw for measurement of 

plasma NfL. We used a Simoa Neuro 4-plex A kit along-with a Quanterix SR-XTM 

benchtop instrument. The assay was performed by researchers (SJM and EC) who had 

previously validated its use in the measurement of CSF and serum NfL, and ran in 

accordance with the manufacturer’s instructions (see method for lab protocol). Samples 

were measured in duplicate and researchers were blinded to sample identification 

during the experiment and in the initial data analysis.  

 

The mean fitted concentrations were calculated by Quanterix SR-X software and 

provided in the form of a run report. Data were reviewed to determine the reliability of 

results.  

 

All results were above the lower limit of quantification. High and low controls 

(provided by the manufacturer and ran in quadruplicate) produced results within the 

expected ranges. The average intra-assay coefficient of variation (CV) between 

duplicates was 9.4% for the 73 MS samples and 10.2% for the 65 HC samples. As a 

quality control step, only samples with a CV of less than 20% were included in 

analyses. Ten MS samples and 12 HC samples were therefore repeated. All repeat 

results were satisfactory for inclusion.   
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5.2.2 Measurement of the aggregate g-ratio as a biomarker of myelin integrity  

The 73 participants in the extended imaging substudy had routine MR brain imaging 

performed (T1, T2 and FLAIR sequences) alongside advanced imaging sequences 

(MTsat and DWI). MRI data were acquired using Siemens magnetom prisma 3.0T 

systems and the images were processed by the University of Edinburgh research 

imaging team.  

 

Anatomical images (specifically T2 FLAIR) were used for segmentation of cerebral 

white matter lesions (WML), figure 5-3. Lesion volumes (but not corresponding blood 

neurofilament levels) were corrected for intra-cranial volume (ICV). The lesion masks 

were visually inspected and corrected where necessary by the research imaging team. 

The remaining unmasked cerebral tissue was considered normal appearing white matter 

(NAWM). 

 

The aggregate g-ratio was derived from MTsat and DWI data (neurite orientation 

dispersion and density imaging, NODDI) according to the following equation (Stikov 

et al., 2015): 

! = #$1 +'()*()+
!"

 

 

where MVF is the myelin volume fraction and AVF is the axonal volume fraction.  

Myelin volume fraction was calculated from MTsat and axonal volume fraction from 

diffusion data (see also section 1.7.3).  

 

The resulting g-ratio map was masked with the white matter lesion segmentations, and 

then mean aggregate g-ratios were determined for lesions and NAWM.   
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Figure 5-3 MRI analysis of the aggregate g-ratio within cerebral white matter lesions 

Myelin integrity can be quantified as an “aggregate” MR g-ratio, derived from magnetization 

transfer imaging (MTsat) and diffusion (NODDI) MRI data, according to the equations shown 

in the text. In order to determine the aggregate g-ratio within lesions and within NAWM, 

anatomical MRI sequences (T2 FLAIR) were used to identify lesions, which were then 

segmented, and the segmentation map applied to the aggregate g-ratio map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

The normality of data were assessed using the Shapiro-Wilk test. Demographic, 

clinical, lesion volume and NfL data were not normally distributed and were therefore 

described by median and interquartile range. Correlations were analysed with 

Spearman rank correlation coefficient, and possible differences between groups were 

determined using Kruskal-Wallis one-way analysis of variance (ANOVA) with Dunn’s 

multiple comparisons test or Mann-Whitney T-tests. All WML volumes used in 

analyses were corrected for intra-cranial volume.  
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5.3 Results 

5.3.1 The study cohort was representative of the newly diagnosed RRMS population  

We have previously demonstrated that the Future MS cohort appears representative of 

the Scottish newly diagnosed MS population (chapter 1). Demographic and clinic data 

of the 73 participants in the extended imaging substudy did not differ significantly from 

the Future MS cohort as a whole.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This cohort Future MS cohort 

Participants 73 440 

Sex ratio, F:M 3.6:1 2.82:1 

Age at diagnosis 

median (IQR) 

33 (28-45) 37 (30-45) 

Time from symptom onset  

to inclusion in study (months) 

34 (11-71) 

(N=67/73) 

22 (10-62) 

(N=422/440) 

Baseline EDSS 2 (1.5-3) 2 (1.5-3) 

B 

Figure 5-4  Comparison between the extended imaging cohort and the Future MS cohort as 

a whole 

(A) Table comparing baseline demographic and clinic data between the extended imaging 

cohort and Future MS cohort as a whole, and (B) The distribution of baseline EDSS scores 

were similar for the extended imaging cohort (in blue) and the Future MS cohort as whole 

(in yellow). 

B 

A 
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5.3.2 The aggregate g-ratio was significantly higher in white matter lesions than 

NAWM 

The MRI aggregate g-ratio was significantly higher in white matter lesions (median 

0.607, range 0.538-0.682) than in NAWM (median 0.574, range 0.540-0.615), Mann-

Whitney T test, p<0.0001, figure 5-5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this we concluded that the MRI g-ratio can identify reduced signal within 

voxels/areas which are known to have myelin disruption (white matter lesions) 

compared with areas of normal appearing white matter. Although paired 

neuropathological analysis would be required to confirm that this reduced signal 

equates to myelin loss, the wide range of results suggests that the MRI aggregate g-

ratio might be a marker of lesion severity.  

 

We also noted that the g-ratio in white matter lesions not only varied between 

individuals, but appeared too to vary between individuals with similar structural MR 

imaging, figure 5-6.  

 

 

 

 

 

 

Figure 5-5 MRI aggregate g-ratio is higher in lesions than normal appearing white matter 

Segmentation strategy for anatomical MRI scans shown, where lesions are purple, and 

NAWM is blue. The g-ratio was higher in lesions compared to NAWM. 
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Based on these results we hypothesised that the aggregate g-ratio might have utility as a 

marker of lesion severity, (high G-ratio = more demyelination = more severe and 

vulnerable to axonal loss). To investigate this we examined the relationship between 

white matter lesion volume, the extent of myelin loss within lesion (aggregate g-ratio) 

and axonal loss (plasma NfL).  

 

 

 

 

 

A 

B 

Figure 5-6 G-ratio in MS lesions at the point of diagnosis 

(A) Representative patient with significant lesion load and normal g-ratio within white 

matter lesions.  On the left the T2 FLAIR image is shown, with hyperintense white matter 

lesions consistent with MS. The aggregate g-ratio from these lesion segmentations was 

evaluated (right hand MRI) and compared with the g-ratio from NAWM. This is shown as a 

histogram where the g-ratio from lesions (purple) is the same as the g-ratio from NAWM 

(blue). (B) Representative patient with significant lesion load and high g-ratio within white 

matter lesions. The lesion shown has a high g-ratio (right hand MRI) and the resulting 

individual histogram from the patient shows separation of g-ratios derived from white matter 

lesions (purple) and NAWM (blue).  
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Figure 5-7 Comparison of plasma neurofilament levels between MS patients at point of 

diagnosis and age-matched controls 

Data were non-parametric and a Mann-Whitney T-test was used to test significance. Plasma 

neurofilament levels were significantly higher in MS patients at the point of diagnosis than 

heathy controls, p<0.0001. 

5.3.3 Plasma neurofilament levels are higher in MS than in age-matched healthy 

controls 

In order to interpret blood NfL levels in MS patients we first measured plasma NfL in 

65 healthy controls to identify a range of ‘normal’ values.  

 

The healthy controls had a median age of 33 years old (IQR 28-48) and a female to 

male sex ratio of 3.3:1. The MS patients had a median age of 33 years old (IQR 28-45) 

and a female to male sex ratio of 3.6:1.  

 

The median plasma NfL levels in HCs was 4.5pg/ml (IQR 3.5-6.5). The median plasma 

NfL in the 73 MS patients at the point of diagnosis was 7.5pg/ml, (IQR 4.9-12). We 

defined a ‘high’ NfL level as three standard deviations above the mean of HCs - 

12.3pg/ml.  
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5.3.4 Plasma neurofilament is associated with both the size of lesions and the extent 

of myelin loss within lesions 

The relationship between plasma NfL levels and white matter lesion volumes and g-

ratios were analysed using Spearman’s rho test for correlation. Plasma NfL levels 

showed a significant correlation with white matter lesion volume, rs=0.39, p=0.007, and 

white matter lesion g-ratio, rs=0.24, p=0.04, figure 5-8.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This suggests that there is a relationship between plasma NfL and both lesion volume 

and lesion g-ratio. However, multivariate analysis revealed that only lesion volume was 

significant, p=0.01 (not lesion g-ratio, p=0.08) in determining plasma NfL.  

 

Based on these results, we considered that axonal loss may be primarily driven by 

lesion size, but that the extent of myelin loss within lesions exerts an additional 

influence. To account for lesion volume and to examine the influence of g-ratio on 

axonal damage in patients with similar lesion loads, we divided the study cohort into 

two groups based on the median WML volume of the cohort – ‘low lesion load’ and 

‘high lesion load’. ‘Low lesion load’ was defined as a total white matter lesion volume 

below the median (WML volume </= 0.5% of intracranial volume), and ‘High lesion 

load’ as a WML volume above the median (>0.5% of intracranial volume). Within 

those groups we then investigated the relationship between MRI aggregate g-ratio and 

plasma NfL levels, figure 5-9(A).  
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Figure 5-8 Correlation between plasma NfL and (A) lesion volume and (B) g-ratio 

Plasma neurofilament showed a significant correlation with both white matter lesion volume 

and white matter lesion g-ratio when assessed using Spearman’s rho test for correlation 
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‘Normal’ g-ratio’ and ‘High’ g-ratio were defined according to the median (0.607) in 

the same manner. Within the cohort with a low lesion load at diagnosis, 14% with a 

normal g-ratio and 8% with a high g-ratio had abnormally elevated plasma NfL levels 

(defined as >12.3pg/ml), 3/22 versus 1/13, no significant difference using Fisher’s 

Exact test. However, within the cohort with a high lesion load at diagnosis, 48% with a 

high g-ratio had abnormally raised plasma NfL levels, compared to 13% with a normal 

g-ratio, 11/23 versus 2/15, p=0.04, Fisher’s Exact test, figure 5-9(B).  

 

The combination of a high lesion load and a high g-ratio therefore resulted in a 

significantly greater proportion of patients with abnormally raised blood NfL levels 

compared with those who had either a low lesion load, or a high lesion load but low g-

ratio.  
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Figure 5-9 The influence of g-ratio on plasma neurofilament levels 

(A) The relationship between white matter lesion volume at diagnosis, g-ratio within lesions 

and plasma neurofilament levels. (B) Patients with both a high white matter lesion load and a 

high aggregate g-ratio within lesions were significantly more likely to have high plasma 

neurofilament levels.  



 

 123 

Within the high lesion load group, individuals with a high g-ratio did not differ 

significantly from those with a normal g-ratio in terms of the volume of white matter 

lesions, age, time to diagnosis, or the g-ratio of NAWM.  

 

Average baseline disability scores were higher in those with a high g-ratio compared 

with those with a low g-ratio (EDSS 2.5 v 2, respectively), but were not statistically 

significant, and EDSS scores at 12 month follow-up did not differ between the groups.  

  

 

Table 5-1 Comparison between patients with a high white matter lesion load at diagnosis 

 High lesion load  Statistical 

significance* Normal g-ratio 

N=15 

High g-ratio 

N=23 

WML volume 

(% of ICV) 

1.2 (0.75-1.9) 1 (0.83-1.9) p=0.71 

Age of participants 

(years) 

38 (32-53) 33 (26-49) p=0.10 

Time to diagnosis 

(months) 

33 (13-75) 50 (7.8-105) p=0.82 

g-ratio in NAWM 0.57 (0.56-0.58) 0.57 (0.56-0.58) p=0.88 

Baseline EDSS, 

med (IQR) 

2 (1.5-4.25) 2.5 (1.75-3) p=0.87 

Follow-up EDSS, 

med (IQR) 

3 (2-5.75) 3 (2.4-3.6) p=0.85 

*Mann-Whitney unpaired T test used in all analyses 
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5.4 Discussion 

Multiple lines of evidence suggest that axonal loss is an important biological substrate 

of disability (Tallantyre E.C. et al., 2010). Classic histopathological studies have 

demonstrated that significant axonal loss occurs in areas of acute, active, demyelination 

(Ferguson et al., 1997; B D Trapp et al., 1998). This infers that axonal loss probably 

occurs from disease onset. However, the extent to which demyelination drives axonal 

loss, and at what point in the disease course this occurs, has been debated.  

 

The identification and quantification of axonal loss at the point of diagnosis could aid 

prognostication and inform treatment decisions. MR imaging is the gold standard 

clinical tool for identification of focal demyelination but is insensitive in quantifying 

axonal loss. This is particularly true in early disease when lesion loads may be 

minimal; or over short periods of time where atrophy changes may be tiny.  

 

We used advanced MR imaging techniques to measure a biomarker of myelin integrity 

(the aggregate g-ratio) and combined this with a single molecule ELISA (Simoa) to 

quantify axonal loss in the blood of newly diagnosed RRMS patients.  

 

We showed that the aggregate g-ratio detected loss of myelin integrity in white matter 

lesions, and that it varied between individuals. The MRI aggregate g-ratio was 

significantly higher in white matter lesions than in normal appearing white matter, 

Mann-Whitney T-test, p<0.0001. This suggests that it may have potential utility in 

quantifying myelin integrity in MS patients at the point of diagnosis. Our findings 

replicate other smaller studies (Stikov et al., 2015), but require histopathological 

validation by electron microscopy measurement of g-ratio within and outwith 

demyelinating lesions in humans. To date this has only been demonstrated, to our 

knowledge, in an animal (long-tailed macaque) model (Stikov et al., 2015).  

 

That the aggregate g-ratio of white matter lesions varied between individuals is in 

keeping with neuropathological studies which show that the extent of demyelination 

differs between patients (Lucchinetti et al., 2000). Furthermore, the MRI aggregate g-

ratio appeared to vary between individuals with similar structural MR imaging, figure5-

6. We therefore asked whether the aggregate g-ratio might account for some of the 

clinical heterogeneity between patients with similar conventional radiological findings.  
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Using Simoa, we demonstrated that in early MS there is already evidence of axonal 

loss, and that plasma NfL levels were associated with both lesion volume and the 

aggregate g-ratio within lesions.  

 

Published literature suggests that lesions need to be above a certain threshold volume 

before neurofilament levels become abnormally elevated (Schreiber et al., 2018). We 

therefore stratified our newly diagnosed MS cohort according to lesion volume in order 

to study the effect of the g-ratio on axonal damage. In patients with a high white matter 

lesion load, we found that a high g-ratio was associated with high plasma NfL levels, 

whereas patients with a normal g-ratio were significantly less likely to have high NfL 

levels. This effect was not seen in patients with a minimal volume of lesions. 

 

This is the first study to demonstrate the use of these particular non-invasive, advanced 

techniques (MRI aggregate g-ratio and blood neurofilament levels) for simultaneous 

evaluation of myelin and axon integrity in multiple sclerosis. This style of approach is 

frequently used in oncology where imaging and fluids biomarkers are combined to 

perform what is sometime referred to as a “liquid biopsy”, whereby circulating 

biomarkers can give biological insight into focal imaging abnormalities and act as a 

proxy for invasive pathological studies. Our ability to perform these analyses in vivo 

provides us the significant advantage of linking these results with long-term clinical 

and radiological outcomes.  

 

We chose to study the relationship between demyelination and axonal loss in newly 

diagnosed RRMS patients. This is a cohort in whom histopathological studies are 

rarely, if ever, performed. However, it is at this time-point - at the point of diagnosis, 

that prognostication is becoming critical given the increasing availability of disease 

modifying treatments. There is therefore a need for greater understanding of lesion 

biology in early disease. Our results, which suggest the demyelination influences 

axonal loss, are consistent with similar findings from classic neuropathological studies, 

and indicate that this relationship between myelin loss and axonal loss might apply 

throughout the disease course. Our data however only suggest an association and may 

be confounded by other aspects of lesion biology, such as level of inflammatory cell 

infiltrate and age of lesion. 

 

There are several additional limitations to our study. Firstly, the MR aggregate g-ratio 

is an indirect measure of the g-ratio, and the imaging techniques employed are 
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dependent on certain assumptions (Campbell et al., 2018). The g-ratio shows slight 

spatial variability (Stikov et al., 2015) and therefore lesion location may be of 

relevance, although we did not find an obvious trend regarding lesion location in our 

cohort. The g-ratio also does not differentiate between demyelination and 

remyelination states, meaning that the same g-ratio result could occur as a result of 

irreversible myelin loss, or during a period of early remyelination with potential for 

axonal recovery.  

 

A further limitation in the analysis of our results was that we did not correct our results 

for age or take into consideration time since recent relapse (clinical or radiological 

relapse). Blood NfL levels are age dependent, however no definitive study on age-

appropriate levels has yet been published. The g-ratio may also show an age 

dependency, but this has not yet been extensively studied and may vary according to 

the metrics used to derive the aggregate g-ratio (Campbell et al., 2018). Blood NfL 

levels increase during acute relapse and remain elevated for several weeks. Therefore, a 

relapse in the weeks prior to blood sampling could have resulted in a particularly 

elevated plasma NfL level, potentially prior to corresponding imaging findings 

“catching up”.  

 

No spinal imaging was performed as part of the Future MS study, and this was 

therefore not available to add to the analysis. Demyelinating spinal lesions could 

significantly elevate blood NfL levels without intra-cranial representation of significant 

disease burden. 

 

In addition, we did not include analysis of grey matter lesions or correct for black 

holes. Grey matter lesions are not well visualised on conventional MRI sequences or 

without use of Gadolinium enhancement (which was also not included in the Future 

MS study protocol), and as a result are often under-reported compared with histological 

quantification (Geurts et al., 2005). For this reason, we did not attempt to quantify grey 

matter lesion volumes with this set of MRI sequences. Although a very high burden of 

grey matter lesions may increase neurofilament levels, previous studies have shown no 

correlation between MRI grey matter lesion volume and CSF neurofilament levels 

(Kuhle, J. et al., 2016). This may be because neurofilament is predominantly expressed 

in large-calibre myelinated axons, and therefore more closely associated with white 

matter than grey matter disease.  
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Measurement of the MRI aggregate g-ratio is particularly susceptible to artefact at 

tissue-CSF interfaces (Duval, T., et al, 2017), making measurement of the g-ratio more 

difficult and less reproducible for cortical and spinal cord lesions. Finally, analysis of 

the MRI aggregate g-ratio in black holes would have required a second manual 

segmentation process with T1 mapping, which was outwith the scope of this study and 

is an area for future study.  

 

Despite these limitations, this remains one of the largest studies to date of g-ratio 

mapping in multiple sclerosis (Hagiwara et al., 2017; Kamagata et al., 2019; Yu et al., 

2019)  

 

In conclusion, we combined an imaging marker of myelin integrity and a blood 

biomarker of axonal damage to draw insights into lesion biology and prognostic 

relevance in early MS. We measured these biomarkers in a homogenous cohort of 

newly diagnosed, treatment naïve patients.  

 

Our data suggest that measurement of the MRI aggregate g-ratio at an early stage in the 

disease is of potential utility in identifying individuals with greater axonal damage (as 

measured by blood neurofilament). Since axonal loss is the cause of permanent 

disability this is of clinical importance. To better understand how well blood 

neurofilament levels are associated with clinical metrics of disease activity requires 

analysis is a larger cohort. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Summary of Chapter Five 

 

• We demonstrated that the MRI aggregate g-ratio is higher in MS lesions 

compared with normal appearing white matter and varies between 

individuals. 

 

• There is an association between white matter lesion volume, lesion MRI g-

ratio, and axonal damage in MS patients at the point of diagnosis.  
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6 Multiplexed measurement of brain proteins in blood samples 
in early multiple sclerosis 

6.1 Introduction - Multiplex single molecule ELISA 

We have shown that neurofilament levels, and thus axonal damage, differ between 

individuals with MS at the point of diagnosis, and may be influenced by the extent of 

demyelination within lesions. This demonstrates how Simoa-based detection of NfL in 

blood can be used to gain insights into clinically relevant biology of the disease. We 

therefore asked whether the additional measurement of other brain proteins such as 

glial fibrillary acidic protein (GFAP) could provide further insights into disease biology 

and clinical outcomes.  

 
GFAP is a cytoskeletal protein of astrocytes - the glial cells that provide structural and 

functional support for neurons. Axonal damage associated with astrocytic scarring is 

frequently observed in MS lesions (Lassmann, 2019). For that reason, GFAP is of 

interest as a potential biomarker of disease activity.  

 

Single molecule ELISA technology was further advanced in 2013 with the 

development of a multiplex assay (Rissin et al., 2013). The Simoa multiplex assay 

employs the same basic methodology as the original Simoa assay but enables 

simultaneous measurement of multiple proteins. The ability to measure multiple 

proteins simultaneously has several advantages, namely that it can provide 

contemporaneous information about different cell types and that it is more efficient 

when testing low-volume samples, figure 6-1.  
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Figure 6-1 Principle behind a multiplex Simoa assay 

(A) For a 4plex assay the beads are divided into four populations and each population of 

beads is fluorescently dyed and coupled with a specific capture antibody (e.g. anti-NfL IgG, 

anti-GFAP, anti-Tau and anti-UCH-L1). The different bead populations are then combined 

to produce a heterogenous bead population. This is added to the solution of interest, followed 

by the detection antibodies and a fluorescent substrate. (B) Within the Simoa analyser the 

beads are divided into single wells, which are then sealed. (C) A white light image 

determines which wells have a bead. A fluorescent image of all wells is then taken to 

determine which beads that have produced a fluorescent reaction (‘on’ beads). Finally, in 

order to determine which bead-type is within each well a series of fluorescent images at 

different wavelengths are taken. This enables the ‘on beads’ to be identified according to 

their capture antibody(Rissin et al., 2013). Image created in BioRender by SJM.  
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Figure 6-2 Four brain proteins measured by multiplex Simoa assay 

Glial fibrillary acidic protein (GFAP) is an astrocytic protein. Tau, neurofilament and 

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) are neuronal proteins. Image created in 

BioRender by SJM.   

We were particularly interested in measuring neurofilament light chain and glial 

fibrillary acidic protein (GFAP). NfL and GFAP were available as separate assays or 

included in a multiplex assay alongside ubiquitin C-terminal hydrolase-L1 (UCH-L1) 

and (total) tau protein. Rather than employ two separate assays, we chose to use a 

Simoa multiplex assay to quantify the three neuronal proteins and one glial protein in 

the blood of newly diagnosed, treatment naïve RRMS patients.  
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Table 6-1 Overview of the literature from individual studies analysing the potential relevance of four protein biomarkers in MS 

 

1(Bridel et al., 2019), 2(Petzold, 2015), 3(Novakova, Zetterberg, et al. 2017), 4(Kuhle, Kropshofer et al. 2019), 5(Kuhle, Kropshofer et al. 2019)     6(Ayrignac et al., 2020), 
7(Gunnarsson et al., 2011), 8(Martínez et al., 2015)

Protein Main locations Primary function MS V HC Disease subtypes Relapse v Remission Radiological 
measures 

Clinical 
measures 

Altered 
by DMT 

NfL 
 

Neuronal axons in the 
CNS and PNS 

Radial growth and 
structural integrity of 
axons 

Higher in 
MS1 

May be higher in 
RRMS1 

Higher in clinical 
relapse3 
 
Association with 
Gd+4 
 

Correlates with 
lesion volume4 
 
 

Some 
correlation 
with clinical 
measures 

Yes7 

GFAP Multiple isoforms:  
GFAP-a primarily found 
in astrocytes in CNS. 
GFAP-b primarily found 
in Schwann cells in PNS.  

The cytoskeletal protein 
of astrocytes 

Higher in 
MS2 

May be higher in 
progressive 
disease2 
 

Possibly association 
with Gd+5 

Correlation 
with lesion 
volume6 

Some 
correlation 
with clinical 
measures 

No7 

UCH-L1 Found ubiquitously 
throughout neurons of 
the CNS 

Involved in the 
degradation of damaged 
or abnormal proteins 

Not known Not known Not known Not known Not known Not 
known 

Tau Neuronal axons and 
dendrites in the CNS. 
Also found in PNS. 

Stabilizes microtubules 
in neuronal axons. 
Hyperphosphorylation 
results in formation of 
neurofibrillary tangles 

Not known Not known 
 

No8 Not known No8 Not 
known 
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6.1.1 Neurofilament light chain as a biomarker in MS 

See detailed discussion in chapter 1 Introduction, section 1.7.3. In short, blood 

neurofilament levels seem to correlate with those seen in CSF (Kuhle et al. 2016;  

Novakova, Zetterberg, et al. 2017) and appear too to reflect MS disease activity. Blood 

NfL levels are greater in MS than controls, higher in relapse than remission and 

decrease with disease modifying treatment (Novakova, Zetterberg, et al. 2017). Higher 

blood NfL at baseline has been linked with more significant brain atrophy at ten years, 

suggesting that blood NfL levels may also have a prognostic relevance (Cantó et al., 

2019). 

 

6.1.2 Glial fibrillary acidic protein as a biomarker in MS 

In response to cellular injury, astrocytes enlarge and develop thickened and elongated 

cytoplasmic processes. This process, known as reactive astrogliosis, results in an 

increase in GFAP expression (Eng, Ghirnikar et al. 2000). As activated astrocytes 

proliferate and migrate to areas of cellular injury, both the number of astrocytes and the 

concentration of GFAP within astrocytes are increased. If astrocytes are also damaged, 

GFAP and GFAP-breakdown products are released into extracellular fluid.  

 

The literature on GFAP as a biomarker in MS is more mixed than for neurofilament. 

However, meta-analysis (Petzold, 2015) and recent studies suggest that GFAP levels 

are higher in MS compared with controls, and higher in in progressive disease than 

early or RRMS disease (Gunnarsson et al., 2011; Ayrignac et al., 2020)  

 

The literature is conflicting (for both blood and CSF) as to whether GFAP levels reflect 

acute or chronic disease activity. One study reported that GFAP levels decreased 

during clinical relapse (Martínez et al., 2015) whereas others have found no difference 

(Ayrignac et al., 2020). Several studies have shown associations between GFAP levels 

and MRI (Gd+) lesion load (Ayrignac et al. 2020; Högel et al. 2020; Kuhle, 

Kropshofer et al. 2019); or GFAP levels and clinical metrics, such as EDSS (Axelsson 

et al., 2011).  

 

Several studies have combined blood GFAP and neurofilament assessment (Abdelhak 

et al., 2018; Ayrignac et al., 2020; Högel et al., 2020), but in relatively small, 

heterogenous cohorts; and only one in early disease (Kassubek, 2017). No studies of 

combined blood neurofilament and GFAP levels have been performed in a large, 

homogenous and early disease cohort, such as Future MS.   
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6.1.3 Ubiquitin C-terminal hydrolase-L1 as a biomarker in MS 

UCH-L1 has mainly been investigated as a potential marker of outcome in traumatic 

brain injury, whereby its ubiquitous expression throughout neurons may enable the 

identification of diffuse neuronal injury (Mondello et al., 2011). UCH-L1 does not 

appear to have been evaluated as a biomarker in multiple sclerosis, and a lack of 

negative results reported suggests that accurate UCH-L1 quantification may be 

difficult. One study found CSF UCH-L1 was detectable in only 3 of 39 MS patients 

(Martínez et al., 2015), although this was using a standard ELISA. A report by 

Quanterix showed that with a Simoa assay blood UCH-L1 levels did not differ between 

16 RRMS patients and 12 healthy controls (Quanterix, 2018).  

 

6.1.4 Tau as a biomarker in MS 

The literature on tau as a biomarker in multiple sclerosis is contradictory and has 

mostly been conducted in CSF studies in small cohorts. One study found CSF tau to be 

significantly higher in MS compared with healthy controls (Abdelhak et al., 2015), 

although that same study also reported that CSF tau levels did not appear to correlate 

with disease duration or clinical metrics (Martínez et al., 2015). Other groups have 

found no difference in CSF tau levels between MS and controls, (Hein (née Maier) et 

al., 2008), and Quanterix reported that serum tau levels were actually higher in 12 

healthy controls compared with 16 RRMS patients (Quanterix, 2018).  

 

We measured plasma NfL, GFAP, UCH-L1 and tau in the Future MS cohort and in 65 

age-matched healthy controls recruited from the University of Edinburgh. We analysed 

differences in biomarker levels between controls and individuals with MS. Within the 

Future MS cohort, we then explored associations between biomarker levels and clinical 

and radiological measures at baseline and at 12 month follow-up, figure 6-3. 
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Figure 6-3 Correlation of blood biomarkers with clinical and radiological measures in 

the Future MS cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aim of Chapter Six 

 

To measure different brain proteins in the plasma of newly diagnosed RRMS 

patients and explore their prognostic value.  
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6.2 Methods - Using a multiplex single molecule ELISA to measure four 

biomarkers in newly diagnosed MS  

Plasma samples were obtained at baseline study visit from Future MS participants, 

stored at -80ºC, and had undergone one freeze-thaw prior to use. Control samples from 

65 healthy controls were handled in the same manner.  

 

We chose to use healthy controls as the comparator in our analysis for several reasons. 

Samples from age-matched healthy control were available under the same ethical 

approvals as Future MS. The proteins measured as part of the 4plex are non-specific 

and may therefore be elevated to varying extents in different neurological diseases. As 

we were not investigating a potential diagnostic biomarker of multiple sclerosis this 

was less relevant and therefore did not require comparison with disease controls. 

Instead we were interested in whether any of the four proteins were reflective of 

disease pathology and comparison with healthy controls offered the greatest 

opportunity to identify that.  

 

Quanterix Simoa Neuro 4-plex A kit was used along-with a Quanterix SR-XTM 

benchtop instrument. The assay was performed in accordance with the manufacturer’s 

instructions (see methods, section 2.4.1 for lab protocol). All samples were measured in 

duplicate and researchers were blinded to sample identification during the experiment 

and in the initial data analysis. The assays were performed on non-consecutive days 

between December 2019 and March 2020. The mean fitted concentrations were 

calculated by Quanterix SR-X software and provided in the form of a run report. Data 

including the R2 value, accuracy of high and low control results, and the coefficient of 

variation between duplicates were reviewed to determine the reliability of results. 

Samples with a coefficient of variation between duplicates greater than 20% were 

repeated.  
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Figure 6-4 Comparison of four blood biomarkers in 440 patients with multiple sclerosis and 65 

healthy controls 

Neurofilament data were available for 419 MS patients and 65 healthy controls. Median NfL 

levels were 7.0pg/ml (IQR 4.8-11.0) in MS patients and 4.6pg/ml (3.5-6.5) in heathy controls. 

GFAP data were available for 416 MS patients and 65 healthy controls. Median GFAP levels 

were 63pg/ml (46-85) in MS patients and 52pg/ml (37-66) in healthy controls. UCH-1L data 

were available for 380 MS patients and 55 healthy controls. Median UCH-L1 levels were 

12pg/ml (7.5-16) in MS patients and 13 (7.6-18) in healthy controls. Tau data were available 

for 425 MS patients and 65 healthy controls. Median tau levels were 2.3pg/ml (1.7-3.1) in MS 

patients and 1.8pg/ml (1.4-2.3) in healthy controls.   
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6.3 Results 

Figure 6-4 shows values of the brain proteins measured in the blood. To determine 

whether differences were statistically significant we went on to compare MS and 

healthy control levels of each biomarker individually with Bonferroni correction for 

multiple comparisons.  
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6.3.1 Levels of neurofilament and GFAP are significantly higher in newly diagnosed 

MS than healthy controls 

We compared MS and healthy control levels of each biomarker individually with 

Bonferroni correction for multiple comparisons. Analysis showed that of the four 

biomarkers, only neurofilament and GFAP were significantly higher in MS than age-

matched healthy controls, figure 6-5. However, when two (MS) outliers were removed 

from the analysis, GFAP levels were no longer significantly higher in the MS group 

compared with controls, p=0.08.  
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Figure 6-5 Analysis between MS and HC plasma levels of (A) neurofilament, (B) GFAP, (C) 

UCH-L1, (D) tau, Kruskal-Wallis ANOVA with  p-values corrected for multiple comparisons. 
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6.3.2 Plasma neurofilament correlates weakly with plasma GFAP 

We compared the correlations between blood biomarkers in (a) healthy controls and (b) 

multiple sclerosis. The most consistent finding was that blood levels of neurofilament 

and GFAP correlated weakly with each other in both healthy controls and MS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.3 Neurofilament and GFAP, but not other brain proteins, correlate with age 

Neurofilament showed a strong positive correlation with age in healthy controls, 

rs=0.52, p<0.0001. This was not observed in the context of multiple sclerosis, rs= 0.07, 

p=0.16, figure 6-7(A).  GFAP correlated with age in healthy controls, rs=0.41, 

p=0.0008, but again this association was not observed in MS patients, r= -0.003, 

p=0.95, figure 6-7(B).  

 

 

 

 

 

 

Figure 6-6 Correlation between blood biomarkers in (A) healthy controls, and (B) multiple 

sclerosis 

The correlations between the four blood biomarkers differed slightly between healthy 

controls and individuals with MS. In both populations, a significant correlation was seen 

between neurofilament and GFAP levels. This could suggest a correlation between axonal 

and astrocyte damage.  
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Figure 6-7 Biomarker correlation with age in healthy controls and in MS 

(A) Neurofilament, (B) GFAP, (C) UCH-L1 and (D) tau, showing linear regression line 

and 95% CI. Neurofilament and GFP correlate with age in healthy controls, but not in 

MS. UCH-L1 and tau levels showed no correlation with age in either controls or 

individuals with MS.    
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6.3.3.1 Blood NFL concentrations alone correlate with CSF concentration  

We next asked whether blood 4-plex Simoa concentrations correlated with CSF 

concentrations by analysing a subset of FMS participants who had paired CSF and 

serum. The correlation between CSF and serum for each biomarker were reviewed to 

determine how well blood levels refelect CSF levels.  

 

The only biomarker to show a statistically significant correlation between CSF and 

blood concentrations was neurofilament, rs=0.69, p<0.001, figure 6-8(A). 

 

We previously showed in chapter four (section 4.4.2, figure 4-7) that serum NFL 

concentrations were approximately 60 times less than CSF, but strongly correlated with 

CSF NFL. The median GFAP concentration was 25 times higher in the CSF compared 

with blood, and no statistically significant correlation was identified, rs=0.06, p=0.65. 

UCH-L1 levels were also approximately 25 times higher in CSF than blood, and no 

significant correlation was found, rs=0.23, p=0.12. The median concentration of Tau in 

CSF was 112 times higher than blood, and again no statistically significant correlation 

was identified between CSF and blood levels, rs=0.14, p=0.31. Therefore, only NFL 

serum concentrations correlated with CSF levels. 
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Figure 6-8 Correlation between CSF and blood concentrations of brain proteins 

Correlation between CSF and serum concentrations of (A) neurofilament, (B) GFAP, (C) 

UCH-L1, (D) tau in 65 RRMS patients at point of diagnosis. The only correlation which was 

statistically significant was for neurofilament, rs=0.69, p<0.001.  
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Figure 6-9 Neurofilament and GFAP levels correlate with white matter lesion volume at 

baseline 

6.3.4 Blood levels of certain brain proteins are associated with MRI metrics of 

disease activity at baseline and at twelve months 

We showed in the previous chapter in a subset (73 of 440 subjects enrolled in an 

advanced imaging study) a significant association between plasma NFL and WML 

volume (corrected for ICV) at baseline.  

 

In this larger study we replicated this finding: Blood neurofilament correlated with 

baseline white matter lesion volume, rs=0.38, p<0.0001. When we analysed GFAP we 

found that it too correlated with baseline white matter lesion volume, rs=0.33, p<0.001. 

No such association was found for UCH-L1 and tau.  

 

 

 

 

 

 

 

 

 

 

 

 

We then asked, if an individual has an abnormally high NfL/GFAP level, do they have 

an increased risk of developing new white matter lesions at one year? 

 

We stratified the cohort into ‘normal’ and ‘high’levels of each of the biomarkers using 

threshold values calculated from 65 healthy controls (mean plus three standard 

deviations, see also chapter five, section 5.3.3). Normal NfL levels were defined as less 

than or equal to 12.3pg/ml and high NfL levels as >12.3 pg/ml. Normal GFAP levels 

were defined as less than or equal to 113pg/ml; normal UCH-L1levels as less than or 

equal to 83 pg/ml; and normal tau as less than or equal to 4.2 pg/ml.  

 

Using this approach, 86 of 420 participants (20.5%) had elevated NfL levels; 39 of 417 

(9.4%) had elevated GFAP; 4/366 (1.1%) had elevated UCH-L1 and 39/426 (9.2%) had 

elevated tau levels, figure 6-10.  
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Figure 6-10 Venn diagram showing number of individuals with elevated levels for each of the 

four biomarkers 

291 individuals had ‘normal’ levels for all four biomarkers and one individual had elevated 

levels of all four biomarkers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A binary outcome of ‘new or enlarging T2 WML lesions - yes/no’ determined by visual 

reads was available for 83% (367 participants) of the Future MS cohort. White matter 

lesion volumes at 12 month follow-up were available for approximately half the cohort 

(225 participants).   

 

Within the cohort for whom we had MRI visual reads data, we found that individuals 

within the ‘high’ baseline neurofilament group (>12.3pg/ml, n=73) were more likely to 

develop new/enlarging WMLs than those with a ‘normal’ baseline neurofilament level 

(<12.3pg/ml, n=294), 71.2% versus 34.9%, Fisher’s exact test for significance 

p=0.00002, figure 6-11(A).  

 

However, the absolute change in volume of WML over 12 months was not significantly 

different between those with normal blood NfL levels and those with high blood NfL 

levels. This suggests that either the changes in new/enlarging lesions were relatively 

small, or that larger changes in volume were masked by the simultaneous resolution of 

active lesions alongside the development of new lesions, figure 6-11(B).   
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Blood levels of GFAP at baseline did not show any prognostic significance in the risk 

of developing new or enlarging white matter lesions at 12 months (figure 6-12). The 

absolute change in WML volume was also no different between those with normal and 

high plasma GFAP levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11 Association between baseline neurofilament levels and development of new WML 

lesions over 12 months 

(A) High NfL levels at baseline were associated with a greater risk of new/enlarging white 

matter lesions at 12 months, Fisher’s exact test for significance, p=0.0002. (B) Absolute 

changes in WML volume did not differ significantly between groups, Mann-Whitney T test.  

Figure 6-12 Association between baseline GFAP levels and development of new WML lesions 

over 12 months 

 (A) Baseline plasma levels of GFAP were not associated with a greater risk of new/enlarging 

WML at 12 months. (B) Absolute change in WML volume did not differ significantly between 

groups, Mann-Whitney T test.  
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6.3.5 Blood levels of certain brain proteins are associated with clinical metrics at 

baseline 

We next examined the relationship between biomarker blood levels and clinical 

disability of the cohort at baseline and at follow-up. EDSS scores were available for 

393 of 440 patients at 12 month follow-up.  

 

Neurofilament, GFAP and UCH-L1 all showed statistically significant positive 

correlations with baseline EDSS scores, NfL rs=0.13, p=0.0008; GFAP rs=0.15, 

p=0.003; UCH-L1 rs=0.14, p=0.009. However none of the brain proteins were 

significantly associated with EDSS scores at one year.  

 

6.3.6 Combining blood biomarkers - The Simoa brain biomarker score 

Although our results so far suggested that only neurofilament and GFAP may be of 

prognostic value, we investigated the combinatorial potential of measuring all four 

brain proteins.  

 

Each biomarker was scored as 0 if the level was below the threshold derived from 

mean + 3SD of healthy controls, and 1 if the level was above the threshold (see also 

section 6.3.5). The scores were added together to give an overall ‘Simoa brain 

biomarker score’. The minimum Simoa brain biomarker score was therefore 0, which 

equated to normal levels of all four biomarkers, and the maximum Simoa brain 

biomarker score was 4. Scores 2,3 and 4 were combined (‘2+’) for comparison given 

the low numbers. 
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     * All four biomarker results were available for 426 of 440 individuals.  

 

 

 

 

 

 

 

 

 

Simoa Brain Biomarker Score Score 0 Score 1 Score 2+ 

N/426* 291 

68.4% of cohort 

108  

25.3% of cohort 

27 

6.3% of cohort 

Median age 37 (30-45) 36 (29-45) 43 (31-50) 

% female 73% 69.7% 70.4% 

Months from 1st symptom to 

diagnosis 

23 (12-65) 17 (5.2-55) 8.8 (4.1-50) 

    

Baseline WML vol 0.006  

(0.004-0.008) 

0.009 

(0.006-0.02) 

0.016 

(0.006-0.03) 

Follow-up WML vol 0.007 

(0.005-0.01) 

0.01 

(0.006-0.02) 

0.008  

(0.007-0.03) 

New lesions over 12 months 

 - Yes 

44.9% 56.2% 70.8% 

    

Baseline EDSS 2 (1.5-3) 2.5 (2-3) 3 (2-5.6) 

Follow-up EDSS 2.5 (2-3) 2.5 (1.8-3) 3 (2-3.3) 

Baseline MSFC 0.21 (-0.3-0.6) 0.09 (-0.5-0.4) -0.36 (-1.1 - 0.1) 

Follow-up MSFC 0.37 (-0.1-0.7) 0.37 (-0.2-0.7) 0.09 (-0.5-0.4) 

Percentage of cohort

Score 0
Score 1
Score 2/3/4

Percentage of cohort

Score 0
Score 1
Score 2/3/4

A B 

C 

Figure 6-13 The Simoa brain biomarker score 

(A) Venn diagram showing breakdown of the individuals with elevated scores in one or more 

of the four biomarkers. 291 individuals had a score of 0. (B) Pie chart showing breakdown 

for the Future MS cohort according to Simoa brain biomarker score. (C) Table showing the 

demographic, radiological and clinical associations with each score. 
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Figure 6-14 Association between Simoa brain biomarker score and radiological outcomes  

At baseline (A) and 12 month follow-up (B) higher 4plex scores were associated with 

significantly higher WML volumes, ANOVA Kruskal-Wallis test with Dunn’s test for multiple 

comparisons. (C) Higher 4plex scores were associated with greater risk of developing new or 

enlarging WML over the subsequent 12 month period, Chi squared test for trend, p=0.003.  

The majority of the cohort (68.4%) had a Simoa brain biomarker score of 0 out of 4. A 

quarter of patients had a score of 1. Of the 27 participants with a score of 2 or greater, 

22 scored 2, 4 scored 3 and a single individual had a score of 4. 

 

Age and sex were not different between individuals with different scores, figure 6-

13(C). However, patients with higher Simoa brain biomarker scores had shorter times 

from initial symptom onset to diagnosis of MS, score 0 vs score 1, p=0.03, and score 0 

vs score2+, p=0.03, ANOVA Kruskal-Wallis test with Dunn’s test for multiple 

comparisons.  

 

A higher Simoa brain biomarker score was associated with signficantly higher white 

matter lesion volumes at both baseline and 12 month follow-up, figure 6-14(A/B), and 

greater chance of developing new or enlarging T2 white matter lesions, figure 6-14(C).  
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Figure 6-15 Higher 4plex scores were associated with greater disability and poorer 

performance  

A higher Simoa brain biomarker score was associated with signficantly greater disability at 

baseline (A) but not at 12 month follow-up (B). A lower MSFC score represents a poorer 

performance across MSFC. Higher Simoa brain biomarker scores were associated with 

significantly lower MSFC scores at baseline (C), but not at 12 month follow-up (D). 

Statistical analysis using ordinary one-way ANOVA with Turkey’s multiple comparisons 

tests. 

A higher Simoa brain biomarker score was associated with greater disability (as 

measured by EDSS) and poorer clinical performance (as measured by MSFC) at 

baseline, but not at 12 month follow-up, figures 6-13(C) and 6-15.  
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6.4 Discussion 

We have demonstrated the use of a multi-plex next generation ELISA to 

simultaneously quantify blood levels of four different brain proteins in a large cohort of 

newly diagnosed RRMS patients. This is one of the largest studies, to our knowldege, 

to report results using this 4plex of neurofilament, GFAP, UCH-L1 and tau in multiple 

sclerosis, and in a treatment naïve cohort.  

 

Our results show that neuronal and glial proteins can be detected in the blood of both 

MS patients and heathy controls using Simoa. Plasma neurofilament and GFAP were  

increased in MS compared with healthy controls, however after the removal of outliers 

GFAP was no longer statistically significant. Published literature suggests higher 

GFAP levels occur in progressive disease states (Petzold, 2015), and are therefore 

unlikely to be significantly elevated in a newly diagnosed cohort. Particularly high 

GFAP levels have been noted in neuromyelitis optica spectrum disorder (NMOSD) 

(Watanabe, M et al., 2019), a potential MS mimc. Misdiagnosis might explain the 

extremely high GFAP levels seen in our two outliers. We had planned to measure 

aquaporin-4 and anti-MOG antibody levels in the Future MS cohort as part of an 

assessment of rates of misdiagnoses, however this was delayed due to the COVID-19 

pandemic and is an area for future study.  

 

We have already demonstrated that blood levels of neurofilament correlate strongly 

with CSF NfL, rs=0.69, p<0.0001. None of the additional three biomarkers showed a 

significant corrleation between CSF and blood levels. The lack of correlation between 

CSF and blood levels of GFAP, tau and UCH-L1 suggests that they do not reflect 

concurrent CSF concentrations at time of sampling. This may be the limiting factor in 

their use as blood biomarkers.  

 

There are many potential reasons why a brain protein may or may not have the same 

dynamics in cerebrospinal fluid as in blood. Factors intrinsic to the protein should exert 

a constant influence on the ratio between CSF and blood concentrations, between 

patients. These include the molecular size of the protein; the specificity of the protein 

to the CNS; the speed of degradation or half-life of the protein in CSF; and the speed of 

degradation of the protein within the blood. Factors that vary in relation to disease 

activity, such as the rapidity and extent of protein release into the CSF, will however 
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differ between patients and within individuals during different disease states, for 

example relapse versus remission (Abdelhak et al., 2018).  

 

However, contrary to our results, published literature suggests that CSF and blood 

GFAP levels do generally correlate (Watanabe, M et al., 2019; Abdelhak, A et al., 

2018). One potential reason for the discrepancy may the assay we employed - 

Quanterix 4plex ‘A’. When compared with other studies, our CSF GFAP levels appear 

lower than expected in relation to our plasma GFAP levels. Since we carried out our 

analysis, Quanterix have released a newer version of the same 4plex assay (Quanterix 

4plex ‘B’). The 4plex ‘B’ assay has a greater dynamic range of GFAP measurement in 

order to improve sensitivity at the upper range. Some of our CSF GFAP levels may 

therefore be falsely low due to a hook effect. Although this may negate our analysis of 

the correlation between CSF and blood GFAP, this does not affect the interpretation of 

our plasma GFAP levels.  

 

We found that both plasma neurofilament and GFAP showed a positive correlation 

with age in healthy controls, but that this relationship was lost in the context of multiple 

sclerosis. These results are similar to previous findings (Bridel et al., 2019) and suggest 

that the effect of age on NfL and GFAP concentrations are surpassed by disease-

associated differences. A definitive study on age-appropriate levels has not yet been 

published and will require data from large numbers of healthy controls. This was 

outwith the scope of our relatively small number of healthy control subjects and was 

therefore a limitation in this study. We did however quantify the potential effect of age 

on blood neurofilament levels in our cohort of 65 healthy controls using linear 

regression modelling. Linear regression modelling has previously been used to quantify 

the effect of age on NfL levels in the CSF of healthy controls, r2 =0.65 (Vågberg et al., 

2015). This statistical model requires that a linear relationship exists between the 

variables, which would appear to be biologically plausible given that a linear 

relationship has been shown between age and total intracranial grey matter volume loss 

(Ge et al., 2002). We found that approximately a third of the variance seen in plasma 

NfL levels in healthy controls is due to age, R2 =0.33, p<0.001, whereas the effect of 

age on plasma GFAP was slightly less marked, R2=0.28, p=0.007. Together, these 

results suggest NfL and GFAP concentrations should be adjusted for age. This would 

be particularly important in older cohorts.  
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Our results suggest that blood neurofilament is the best biomarker in terms of reliability 

and reflection of concurrent CNS pathology.  

 

Approximately 20% of the Future MS cohort had an elevated plasma neurofilament 

level at baseline assessment. As a biomarker of concurrent disease activity, 

neurofilament levels correlated better with radiological markers (T2 white matter lesion 

volume) than clinic markers (EDSS and MSFC). Plasma GFAP, elevated in 

approximately 10% of the cohort, also showed potential as a biomarker of concurrent 

disease activity.  

 

We then explored the potential of these proteins as prognostic biomarkers by 

comparing baseline biomarker levels with white matter lesion volumes at 12 months, 

visual reads binary outcome (Yes/No) of new/enhancing WML at 12 months and 

clinical metrics at 12 months.   

 

We found that individuals with a high baseline plasma neurofilament were significantly 

more likely to develop new/enlarging lesions than those with a normal NfL. The 

absolute change in WML volume over 12 months however did not differ between the 

cohort with normal plasma NfL and the cohort with high plasma NfL. This highlights 

the major limitation of using lesion volumes: that ‘no change’ in lesion volume over a 

time period may reflect a complete lack of disease activity but could also occur if there 

is simultaneous resolution (involution) of lesions alongside the development of multiple 

new lesions. This is of particular relevance in early stage disease, at the point of 

diagnosis, where lesions may be more likely to have an inflammatory component 

which would be expected to recede over time. None of the remaining biomarkers 

(GFAP, Tau or UCH-L1) showed a significant association with radiological or clinical 

outcomes at 12 months.   

 

A sizeable proportion of the Future MS cohort had high baseline tau (9.2%) or GFAP 

(9.4%) levels. We hypothesised that the patients with the most significant disease (and 

thus extensive neuronal and glial cell damage) were more likely to have elevated levels 

of more than one glial biomarker. Based on this hypothesis, we explored the potential 

of combining all four biomarkers as a ‘Simoa brain biomarker score’.  
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Individuals with higher Simoa brain biomarkers scores had a shorter time period from 

onset of first symptom to diagnosis, greater clinical disability and higher white matter 

lesion burden at baseline. This is in keeping with patients with more severe disease and 

more significant symptoms being diagnosed more quickly. 

 

We also found that individuals with higher scores were at greater risk of developing 

new or enlarging white matter lesions over 12 months: 45% of individuals with a score 

of 0, 56% of individuals with a score of 1, and 71% of individuals with a score of 2 

developed new/enlarging T2 WML at 12 months. This suggests that, despite treatment, 

patients with greater ‘pathological burden’ at the point of diagnosis are at greater risk 

of disease accrual that those with less evidence of neuronal or glial cell damage.  

 

These results can be compared with our analysis of neurofilament levels alone to 

determine if the inclusion of additional protein biomarkers improves the ability to 

detect individuals at higher risk of future disease activity.  

 

71% of individuals with a Simoa brain biomarker score of 2+ developed new/enlarging 

T2 WML. 71% of individuals with an elevated NfL (alone) developed new/enlarging 

T2 WML. These results are identical because of the 27 participants with a score of 2+, 

only 2 did not include neurofilament as part of their score (both had elevated GFAP 

and tau) – i.e. nearly all the individuals with a score of 2+ had an elevated 

neurofilament.   

 

45% of individuals with a Simoa brain biomarker score of 0 did not develop 

new/enlarging T2 WMLs. 35% of individuals with a normal NfL (alone) did not 

develop new/enlarging T2 WMLs. The difference occurs because some individuals 

with elevated levels of GFAP, Tau or UCH-L1 (but not NfL) developed new/enlarging 

T2 WML over the 12 month follow-up period. 

 

By incorporating the additional glial and astrocyte biomarkers we are able to improve 

the negative predictive value – i.e. determining which individuals are less likely to 

develop disease activity. The inclusion of additional protein biomarkers of disease 

activity may therefore improve the sensitivity in detecting individuals with milder 

disease who are less likely to have future disease activity. These individuals might be 

less likely to require higher efficacy disease modifying treatments. Knowing this, at the 

point of diagnosis, could aid in informing treatment decisions.   
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There are several limitations to our analysis. Firstly, we have not analysed 12 month 

data for the entire cohort. These data will be analysed once available. A further 

important limitation is that disease modifying treatments started between baseline and 

follow-up visit will have affected clinical and radiological outcomes at 12 months. Data 

pertaining to the specific DMTs initiated have not been finalised at time of writing and 

are therefore not available for analysis. Higher efficacy treatments are more likely to 

have an impact on both clinical and radiological measures at 12 months than less 

efficacious DMTs. Treatment decisions are therefore important potential confounders 

of our findings which require review. Finally, we have not adjusted NfL or GFAP 

levels for age. As previously discussed, these protein increase with age, however 

normative age-appropriate values are not yet available.  

 

In summary, our findings suggest that axonal damage occurs early in the disease 

course, is present at the point of diagnosis and can be quantified using plasma 

neurofilament. These results support our findings from the previous chapter where we 

used the MRI aggregate g-ratio in a subset of patients to identify those at the greatest 

risk of axonal loss.  We have demonstrated that neurofilament levels, in particular, 

reflect radiological measures of disease activity at baseline and that high neurofilament 

at baseline is associated with a greater risk of developing new/ enlarging white matter 

lesions over 12 months. The addition of further neuronal and glial markers into a Simoa 

brain biomarker score may improve the ability to identify individuals at lower risk of 

future disease activity, in whom highly efficacious treatments may not be required.  

 

 Longterm follow-up of the Future MS cohort will identify whether the biomarker 

trends found in this work continue to be relevant in the identification of patients at the 

greatest risk of poor prognosis.  

 

 

 

 

 

 

 

 

 

 

Summary of Chapter Six 

 

• Plasma levels of neurofilament, but not GFAP, UCH-L1 and tau, are 

significantly higher in MS patients at the point of diagnosis than healthy 

controls.  

 

• Plasma neurofilament levels at baseline correlate with white matter lesion 

volumes, and higher neurofilament levels are associated with a greater risk of 

developing new/enlarging white matter lesions in the year following diagnosis.  
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Chapter Seven 
 
 

 
Conclusions and future directions 
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7 Conclusions 
Although multiple sclerosis is increasingly treatable, highly efficacious treatments 

carry serious potential risks. Current prognostic tools do not fully capture the scope of 

the pathology, particularly axonal loss. If irreversible disability is to be prevented, a 

clinical biomarker which can be employed early in the disease to identify individuals at 

greatest risk of axonal loss is required to guide treatment decisions.  

 

To address this unmet need we applied next-generation single molecule array (Simoa) 

and advanced MR imaging techniques in a large, prospective, observational cohort of 

RRMS patients recruited from across Scotland - Future MS. We recruited 440 

treatment naïve RRMS patients within an average of 2 months of diagnosis. When 

compared with other large cohorts, the Future MS study has achieved recruitment of a 

particularly homogenous and early disease cohort. This, coupled with the location of 

the cohort (in a country of 5 million with relatively little net migration and a national, 

linked health-care system) makes Future MS a powerful cohort for long-term study.  

 

We began by evaluating the role of neurofilament as a fluid biomarker in MS through 

meta-analysis. Our results showed that CSF NfL reflects acute disease activity better 

than chronic disease activity. Neurofilament may therefore have a role in the detection 

of sub-clinical or sub-radiological disease activity. The clinical implications of this 

would be important for monitoring disease activity, not only in RRMS, but also for 

progressive MS patients (who are less likely to undergo regular MR imaging). A 

biomarker of sub-clinical and sub-radiological disease activity could identify 

individuals with suboptimal treatment response, and in fact has been proposed as a fifth 

element to the ‘NEDA’ (No Evidence of Disease Activity) score.  

 

However, any biomarker used in the monitoring of a disease needs to be easily 

accessible, non-invasive and applicable at regular time intervals. CSF analysis does not 

meet these criteria, and as such CSF neurofilament has no real promise in this context.  

 

Quantification of neurofilament levels in the blood of MS patients was first 

demonstrated in 2016 (Kuhle et al, 2016).  Multiple studies since then (including our 

own) have shown that neurofilament levels in blood are reflective of CSF. As a result, 

over the past five years measurement in blood (using Simoa) has become an established 

alternative to measurement in CSF. Most studies have employed a Quanterix HD-1 
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fully automated Simoa analyser, however a smaller benchtop analyser is also available 

– Quanterix SR-1. The benchtop analyser requires manipulation of samples and 

reagents and is more user-intensive; but the difference in size and cost, compared with 

the HD-1 analyser, may make it a more feasible option for clinical laboratories. For this 

reason, we decided to run our samples using our Quanterix SR-1 analyser rather than 

send samples elsewhere for analysis.  

 

Classical neuropathological studies have shown the axonal damage occurs in line with 

acute inflammation (B D Trapp et al., 1998). However, histopathological studies are 

usually performed in individuals with chronic, end-stage or atypical, fulminant disease, 

and are thus not truly representitive of ‘typical’ newly-diagnosed MS.  

 

Using Simoa, we demonstrated that neurofilament can be accurately quantified in blood 

at the point of diagnosis of relapsing remitting MS. This demonstrates, in vivo, that 

axonal damage is present at diagnosis and emphasises the need to control inflammatory 

disease activity quickly and effectively in order to minimise longterm axonal loss.  

 

We went on to investigate the relationship between axonal damage and inflammation 

(demyelination) by combining measurement of blood neurofilament with an advanced 

MRI biomarker of myelin integrity - the MRI aggregate g-ratio. We demonstrated that 

the MRI aggregate g-ratio not only varied between individuals, but between individuals 

with similar structural imaging. Interestingly, this reflects what is often seen in the 

clinic, where patients with similar findings on routine MR imaging can vary 

significantly in their clinical presentation.  

 

After finding an association between lesion volume, lesion MRI g-ratio and blood 

neurofilament levels, we dichotomised patients into two groups according to lesion 

burden. We found that individuals with a high burden of lesions and a high g-ratio 

within those lesions were significantly more likely to have elevated blood 

neurofilament levels when compared with those with a high burden of lesions but a 

normal g-ratio within lesions. Our results suggest that the extent of myelin damage 

within lesions varies between individuals early in the disease course, and that greater 

loss of myelin integrity may be associated with greater axonal damage.  

 

We have demonstrated how simultaneous assessment of advanced imaging and liquid 

biomarker techniques can be used, in vivo, to gain insights into clinically relevant 
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biology of multiple sclerosis. This is, to our knowledge, one of the largest studies to 

date of the MRI aggregate g-ratio in MS, and the first to combine it with quantification 

of axonal damage.  

 

As technologies continue to improve, we may soon be able to assess multiple different 

aspects of pathology, in vivo, at greater resolutions. Combining complimentary 

biomarkers could provide insights into biological heterogeneity of MS between 

individuals, enable identification of particular cohorts for inclusion in clinical trials and 

provide biomarkers for which to measure success or failure of new treatments.  

 

We continued this theme in the final aspect of this work where we asked whether 

measurement of multiple brain proteins could provide further insights into disease 

biology or the prognosis of the Future MS cohort.  

 

After the removal of outliers, neurofilament levels (but not GFAP, UCH-L1 or tau) 

were significantly higher in MS patients than healthy controls. Neurofilament levels, in 

particular, reflected radiological measures of disease activity at baseline and were 

associated with risk of radiological disease activity over the subsequent 12 months.  

 

We did not find an association between baseline levels of GFAP, UCH-L1 or tau and 

radiological or clinical outcomes at 12 months. However, combination of all four 

biomarkers as a ‘Simoa brain biomarker score’ improved the negative predictive value 

over neurofilament alone by increasing the ability to identify individuals who did not 

have radiological evidence of disease activity at 12 months.  

 

Although identification of individuals at the greatest risk of future disability is the aim 

of the Future MS study, identification of individuals with ‘milder’ disease has clinical 

relevance also. Such individuals may achieve remission with less efficacious disease 

modifying therapies and might therefore avoid the potential associated risks associated 

with certain DMTs.  

 

In summary, based on our work, it is our belief that blood neurofilament levels 

should be incorporated into the routine clinical care of patients with multiple 

sclerosis. However, at present, there remain limitations which first need 

addressed.  
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Measuring blood neurofilament levels on a three-monthly basis may reveal disease 

activity which occurs asymptomatically, which resolves between annual MRIs, or in 

individuals with a very high plaque burden in whom the identification of a single new 

lesion can be difficult. Routine monitoring of neurofilament levels would therefore 

inform treatment decisions by improving the sensitivity to detect disease activity. This 

is increasingly relevant because of the number and scope of disease modifying 

treatments now available. Neurofilament is not a replacement for annual MR imaging. 

Neurofilament is measuring acute/subacute disease activity whereas MRI best 

demonstrates disease accrual. In addition, neurofilament could not replace the role of 

MRI in safety monitoring for individuals on DMTs, for example, in detection of PML.  

 

At present, there are several limitations to the implementation of neurofilament into 

routine clinical practice. The first is that age-appropriate normative values are yet to be 

published. These are needed for individual results to be interpreted accurately. Work on 

this is already underway in a large Swiss cohort of healthy controls and will hopefully 

be published in the near future.  

 

The second limiting factor is that the potential influence of comorbidities on the 

measurement of this blood biomarker is unknown. We already know that comorbidities 

of the central or peripheral nervous system, such as stroke or neuropathy, can elevate 

neurofilament levels; however other comorbidities (such as renal impairment) may 

impact measurement in blood. To address this would require enormous studies of 

healthy and disease controls and is therefore probably best answered with ‘real-world’ 

data.  

 

Further limiting factors to the widespread introduction of this blood-based biomarker 

are the cost of the Simoa assay and the equipment required to analyse it. At present, a 

single Simoa plate analyses 32 patient samples (in duplicate) at a cost of several 

thousand pounds. Cost efficient, high throughput systems would be required for 

implementation in clinical settings where the care of several thousand MS patients 

could require tens of thousands of neurofilament tests each year.   
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Future directions 

Options enabling greater personalisation of multiplex assays are likely to become 

increasingly available, and with this, the opportunity to study different aspects of MS 

disease pathology in greater depth. Although axonal damage has been the focus of this 

work, an important potential future direction of study is myelin biology, and in 

particular, combining fluid biomarker analysis of myelin damage with advanced 

imaging modalities.  

 

For example, an elevated MR aggregate g-ratio does not tell us whether an axon is 

undergoing demyelination or remyelination. However, by combing the aggregate g-

ratio with quantification of myelin proteins (such as MOG, MAG, MBP and PLP) in 

the blood, myelin destruction could be analysed and quantified in vivo, longitudinally 

measured, and linked with clinical outcomes. This might produce new insights into an 

individual’s potential for remyelination. This in turn could improve understanding of 

the mechanisms involved in remyelination, inform the discovery of potential 

treatments, and identify cohorts for clinical trials.  

 

Long-term follow-up of the Future MS cohort is planned, and we will link the findings 

presented in this work with outcomes at 5 years and beyond. We hope that this study 

will aid in improving the management of MS patients, with the aim of reducing, 

halting, or one day even reversing the disability associated with multiple sclerosis.  
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Appendices 
Appendix 1 

Meta-analysis search strategy 
 

 

 

 
 

 
 

Search Term Search 

Number 

Number of Hits (08/09/2017) 

‘MS’ OR ‘Multiple sclerosis’ 1 Pubmed – 303,063 

Web of Science – 307,800 

Cochrane Library – 14,503 

OpenGrey database– 3,044 

‘Neurite Orientation Dispersion 
and Density Imaging 
NfL’ OR ‘Neurofilament light’ 

2 Pubmed – 1,456 

Web of Science – 1,673 

Cochrane Library - 84 

OpenGrey database- 1 

‘CSF’ OR ‘Cerebrospinal fluid’ 3 Pubmed – 132,444 

Web of Science – 60,522 

Cochrane Library – 7,220 

OpenGrey database- 337 

1 AND 2 AND 3 4 Pubmed - 83 

Web of Science - 124 

Cochrane Library - 12 

OpenGrey database - 0 

Total Number of Hits                          = 219 
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Appendix 2  

Meta-analysis inclusion and exclusion criteria 
 

 
 

Reasons for exclusion on abstract and on full text 

Inclusion Criteria Exclusion Criteria 

Diagnosis of MS meeting established 

diagnostic criteria 

Clinically or radiologically isolated 

syndrome 

Case control studies (retrospective or 

prospective) producing original work. 

Animal studies, reviews or responses, or 

manuscripts unrelated to research topic. 

Neurofilament light measured in CSF in 

quantitative manner. 

NfL levels detectable in less than 85% of 

either MS or control cohort. 

CSF biobanking referencing established 

guidelines, or if not, ELISA protocol 

described. 

Coefficient of Variation >25% 

Validated assay or, if not, description of 

ELISA technique and lower limit of 

detection 

NfL data given as relative units or not 

absolute values. 

 Reason for exclusion Number 

Excluded on 

Abstract 

Not Multiple Sclerosis 47 

Summary or Review article  23 

Basic science study/Animal (not clinical) 14 

NfL AB or other measured 9 

Assay analytical analysis or validation 4 

Only abstract available  3 

Total                                                                   100 

Excluded on Full 

text 

No control group 17 

Assay sensitivity <85% for MS/ control group 7 

NfL cohort data published elsewhere 3 

Semi-quantitative data 3 

NfL measured only in serum 1 

 Total 31 

Excluded as required dataset unavailable 6 

Raw data or dataset available for inclusion in meta-analysis 14 
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Appendix 3 

Meta-analysis of CSF neurofilament levels primary versus secondary MS 

 

 

 

 

 

 

 

 

 
CSF NfL levels do not differ between primary progressive and secondary progressive MS 

 
 

Appendix 4 

Meta-analysis of CSF neurofilament levels in treated and untreated MS 

 

 

 
 
 
 
 
 
 
 
 
 
 

CSF NfL levels do not differ between treated and untreated MS patients. The majority of 

disease modifying treatments used were first line therapies.  
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