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Abstract

The dissipation of kinetic energy through viscosity provides one mechanism by which the so-

lar atmosphere may be heated. Although isotropic, Newtonian viscosity is a common feature

of many coronal simulations, the proper form of viscosity in a highly magnetised plasma is

anisotropic and strongly coupled to the local magnetic �eld. This thesis investigates the dif-

ferences between isotropic viscosity and a novel family of models of anisotropic viscosity, the

switching model, when applied to simulations of the kink and �uting instabilities in a coro-

nal loop, a slowly stressed magnetic null point, and the Kelvin-Helmholtz instability in the

fan plane of a null point. This switching model provides a method of resolving previously

unresolved regions of isotropic viscosity near null points by essentially removing the perpen-

dicular and drift terms from the Braginskii model of anisotropic viscosity and modifying the

coe�cients of the remaining terms. A number of potential switching models are presented,

with one showing particular promise for use in numerical modelling of the solar corona, that

based on the coe�cient of the parallel term in the Braginskii model. The choice of viscosity

model strongly a�ects the stability and evolution of the studied instabilities, and the heating

generated in their development. The use of anisotropic viscosity generally diminishes viscous

heating, enhances Ohmic heating, produces small scales in �ow and current structures, results

in more energetic instabilities and an overall increase in reconnection rate.
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Chapter 1

Introduction

This thesis details the investigation of anisotropic viscosity and its use in a number of impor-

tant coronal applications. The layout of the thesis is as follows. In this chapter the physics of

the solar corona are introduced, including the governingmagnetohydrodynamic equations and

Braginskii’s model of anisotropic viscosity. In chapter 2 the numerical methods underpinning

the 3D magnetohydrodynamics code Lare3d (which is used to perform the numerical experi-

ments in the remainder of this thesis) are introduced through the construction of a similar 1D

hydrodynamics code. Chapter 3 describes the switching model, a new model of anisotropic

viscosity, its implementation in Lare3d and a set of numerical experiments investigating the

di�erences between the viscosity models when applied to a dynamically stressed magnetic

null point. In chapter 4, the switching and isotropic models are compared when applied to a

twisted �ux rope which is initially unstable to the helical kink instability. Chapter 5 extends

this investigation by twisting an initially straight �ux tube until it becomes unstable to both

the �uting and kink instabilities. In chapter 6 the switching and isotropic models are compared

when applied to a magnetic null point which is twisted so rapidly that the Kelvin-Helmholtz

instability is able to develop. Additionally, the chapter details the collapse of the null due to

a pressure-driven asymmetry. Finally, chapter 7 presents a combined discussion of all results,

beyond the separate discussions present in each chapter.

In this chapter I introduce the physics required to understand the remainder of the thesis.

To give context to the work I present an overview of the layers of the Sun, including a summary

of some recent developments in coronal heating. Then, I present the magnetohydrodynamic

equations which are used in this thesis to model the plasma of the solar corona. Finally, I give

a detailed introduction to the anisotropic nature of viscosity in a magnetised plasma and a

review of modelling e�orts so far.

1



CHAPTER 1. INTRODUCTION 2

1.1 Introduction to solar physics

1.1.1 Layers of the Sun

The strati�ed layers of the Sun can be considered either as part of the solar interior, located

below the photosphere, or as part of the overlying solar atmosphere. The photosphere, con-

sidered the surface of the Sun, is located at a radius of 𝑅� = 695, 508 km.

Beneath the photosphere lie three inner regions: the core, the radiative region and the con-

vection zone. From the centre of the Sun to a radius of approximately 0.2𝑅� lies the engine of

the Sun, the core, undergoing fusion and producing the energy that fuels dynamics in the over-

lying layers. The radiative region lies between the core and convection zone, up to a radius

of approximately 0.71𝑅�, and is the layer in which the density gradient is stable to convec-

tive motions and energy �ows radially outwards via radiative transfer. At a radius of 0.71𝑅�

the density gradient can no longer stably support the temperature gradient and convection

becomes the dominant mechanism of energy transport. The convection zone performs two

major functions: driving the solar dynamo which generates the solar magnetic �eld, and gen-

erating photospheric motions which provide a Poynting �ux of energy into the solar corona.

These photospheric motions are modelled as boundary conditions in the coronal simulations

presented later.

Above (and including) the photosphere is the atmosphere of the Sun, consisting of the

photosphere, chromosphere, transition region and corona. The photosphere is heated to a

temperature of approximately 6000 K and produces most of the visible light emitted from the

Sun. As a result the photosphere is the only part of the Sun usually visible by the human

eye (except during eclipses when both the chromosphere and corona can be seen). Just above

the photosphere is the chromosphere, extending beyond the surface by 3000–5000 km. The

temperature ranges between 6000 K at the photospheric boundary and 25, 000 K approaching

the transition region, with a minimum of 3500 K internally. The transition region, a shallow

layer only a few 100 km deep, lies between the chromosphere and the solar corona and across

the layer the nature of the physics in the solar atmosphere changes rapidly. The primary change

is in the extreme temperature di�erence across the layer, typically ranging from around 25, 000

K on the chromospheric side, to over 1, 000, 000 K on the coronal side [86, 68].

The solar corona, the layer of focus for the remainder of this thesis, is the outermost region

of the Sun, characterised by extremely high temperatures, low densities and a topologically

complex magnetic �eld. With coronal plasmas reaching temperatures of 1–10 MK, the corona

emits predominantly in extreme ultraviolet and X-ray wavelengths, observable only by space-

based instrumentation. The part of the corona visible to the human eye can typically only be

seen during solar eclipses, where the corona appears to surround the Sun like a crown, hence

the name. Due to the near-complete ionisation of plasma in the (low) corona, it is strongly

coupled to the coronal magnetic �eld. Due to the low density, the plasma beta 𝛽 (a measure
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Figure 1.1: Solar coronal loops observed by the Transition Region And Coronal Explorer (TRACE),
171 Å �lter.

of the dominance of plasma versus magnetic pressures) is extremely small and dynamics in

the corona are heavily dominated by magnetic forces as a result. Higher in the corona, 𝛽 can

become larger [47]. Observationally, the corona appears inhomogeneous mainly due to the

coronal plasma being mostly con�ned to hydromagnetic structures known as coronal loops.

These are tubes of plasma contained within magnetic �ux ropes, arch-like in shape with foot-

points anchored in the high-𝛽 photosphere and with lengths of 1-100 Mm. Since heat �ux

within the corona is mostly directed along magnetic �eld lines, the loops are typically well in-

sulated and are unable to homogenise di�erences in temperatures between neighbouring loops.

The di�erences in temperatures, and thus densities, between loops manifests as di�erences in

emission intensity. This allows clear observation of loops which are hotter and brighter than

their neighbours (for example, in �gure 1.1).

The most dynamically exciting loops are those which create �ares, releasing their stored

magnetic energy as heat, radiation and through particle acceleration. Some �aring loops are

capable of ejecting a large proportion of their mass into space as coronal mass ejections. The

nano�are theory of coronal heating posits that many small �ares can collectively heat the

corona to its observed temperature [79]. This is just one theory which attempts to solve the

coronal heating problem.

1.1.2 Coronal heating problem

It is not well understood why the solar corona is several orders of magnitude hotter than un-

derlying layers. It is well known that the magnetic �eld must play a large role, and that the

energy source is the turbulent, convective motions observed at the photosphere [16]. How-
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Figure 1.2: Dependence of non-dimensionalised viscosity𝜈 and Spitzer resistivity𝜂 on temperature.
These are non-dimensionalised using typical coronal values of a magnetic �eld strength of

𝐵 = 5 mT, a length of 𝐿 = 1 Mm and a density of 𝜌 = 1.67 × 10
−12

kg m
−3
. In the non-

dimensionalisation scheme used here, the Reynolds and Lundquist numbers are the inverses

of 𝜈 and 𝜂, respectively.

ever, the question of which heating mechanism or mechanisms are dominant remains broadly

unanswered, although there are some certainties about the nature of these mechanisms (see re-

views [30, 91]). Most proposedmodels of coronal heating involve either magnetic reconnection

or dissipation of magnetohydrodynamic (MHD) waves. Although wave heating is considered

less feasible by some [62], recent observations have generated renewed interest [48, 30, 70, 57,

31]. Of the proposed reconnection-based theories, one which has been particularly successful

is the nano�are theory of coronal heating [79, 62], which suggests the corona is heated by the

collective sum of many small, transient heating events.

Although there aremany kinds of impulsive heating eventswhich could constitute a nano�are,

one which has received a notable amount of attention is the process of magnetic reconnection

as part of the nonlinear development of the kink instability in a coronal loop [54, 17, 53, 18].

This instability arises in a twisted magnetic �ux rope when the twist exceeds a critical value,

dependent on the precise magnetic con�guration [53]. The instability results in the growth of

a helical kink in the rope which presses into the surrounding magnetic �eld, creating current

sheets and typically culminating in the release of energy in one or many reconnection events.

Large amounts of heat can be generated by Ohmic, viscous and shock heating as a result [6,

53]. It has been shown that one loop becoming unstable to the instability can trigger the erup-

tion of neighbouring loops, causing a chain-reaction of reconnection events [55]. The e�ect of

anisotropic viscosity on the kink instability is the focus of chapters 4 and 5.

1.1.3 Dissipation mechanisms in the solar corona

The dominant mechanism of energy dissipation in the solar corona remains unknown, al-

though Ohmic heating and viscous heating are two highly studied candidates. The transport
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parameters for viscosity 𝜈 and Spitzer resistivity 𝜂 can be derived by kinetic means as

𝜈𝑑𝑖𝑚 = 10
−17 𝑇 5/2

kg m
−1

s
−1, 𝜂𝑑𝑖𝑚 = 2 × 10

9 𝑇 −3/2
m

2
s
−1, (1.1)

where 𝑇 is the plasma temperature in Kelvin. Both expressions are taken from [15]. Non-

dimensionalising these using the scheme found in [3] and typical coronal values for the Alfvén

velocity 𝑣𝐴 = 3.45 × 10
6
m s

−1
, length scale 𝐿0 = 1 Mm and density 𝜌0 = 1.67 × 10

−12
kg m

3

give

𝜈 = 1.6 × 10
−18 𝑇 5/2 𝜂 = 5.8 × 10

−4 𝑇 −3/2. (1.2)

Using this non-dimensionalisation scheme the Reynolds number is given 𝑅𝑒 = 1/𝜈 and the

Lundquist number 𝑆 = 1/𝜂. Figure 1.2 shows the dependences of the non-dimensionalised 𝜈

and 𝜂 on temperature 𝑇 . For a typical active region temperature of 𝑇 = 10
6
K, 𝜈 ≈ 10

−3
and

𝜂 ≈ 10
−13

.

Comparing the transport parameters for each dissipationmechanism suggests viscous heat-

ing should outperform Ohmic heating by several orders of magnitude. Indeed, many studies

provide evidence to this e�ect [16, 27, 26, 4, 50]. However, these parameters are unlikely to

re�ect the true degree of dissipation in the solar corona due to the in�uence of various e�ects

which can enhance the e�ective dissipation beyond the values found via (1.1).

Turbulence can enhance viscosity [21] and many mechanisms for the anomalous enhance-

ment of resistivity have been suggested, including turbulence [24] and the impact of electron

scattering [65]. The degree to which either dissipation mechanism is enhanced in the solar

corona is di�cult to estimate, however some studies have attempted to infer the e�ective trans-

port parameters from observations of wave motions in coronal loops [76], although results are

disputed [61]. A further complication in attempting to model dissipation in the solar corona is

that it is still unknown how far the collisional approximation holds [62]. While theMHD solver

Lare3d (discussed in chapter 2) features a model of anomalous resistivity (used, for example,

in [53, 6]) only uniform, background resistivity is used throughout this thesis.

Due to numerical di�usion present in any numerical scheme [41], state of the art, 3D nu-

merical experiments are only able to probe di�usion parameters down to approximately 10
−5

(non-dimensional). While this theoretically reaches the bounds of realistic viscosity, it is not

close to even enhanced estimates of resistivity. Until numerical techniques and computational

resources become sophisticated enough to probe realistic (enhanced or otherwise) dissipation

parameters, the true nature of dissipation in the solar corona remains unclear. At best, the com-

munity can infer the importance of these and other dissipation mechanisms by constructing

scaling laws for computationally feasible parameters, as is done in [27].
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1.2 MHD Equations

1.2.1 The Navier-Stokes equations

The Navier-Stokes equations are a set of partial di�erential equations (PDEs) which model

the dynamics of a �uid through conservation of mass, momentum and energy. Generally, the

equations are derived by considering conservation of the relevant quantity in a small parcel

of �uid that moves with the �ow. Such a derivation may be found in, for example [1]. In the

following description of the equations, use is made of the material derivative

𝐷

𝐷𝑡
≡ 𝜕

𝜕𝑡
+ (𝒖 · ∇) (1.3)

which describes the change in a quantity as it moves with �ow at a velocity 𝒖.

Modelling conservation of mass, the continuity equation describes the change in density 𝜌

due to the compression or dilation of the �ow,

𝐷𝜌

𝐷𝑡
= −𝜌∇ · 𝒖 . (1.4)

The momentum equation is an application of Newton’s second law and models the conser-

vation of momentum in a �uid with a scalar thermal pressure 𝑝 and viscous stress tensor 𝝈 ,

𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑝 + ∇ · 𝝈 . (1.5)

The energy equation is given as

𝜌
𝐷𝜀

𝐷𝑡
= −𝑝∇ · 𝒖 + 𝝈 : ∇𝒖, (1.6)

and describes the change in internal thermal energy due to work done by pressure and viscous

heating. Here, the double dot product (or tensor double contraction) is de�ned as 𝑨 : 𝑩 =

𝐴 𝑗𝑖𝐵𝑖 𝑗 for arbitrary tensors 𝑨 and 𝑩. This system of equations must be closed by an additional

equation of state. As presented later, the ideal equation of state is su�cient, for the purposes

of describing coronal plasma.

While the Navier-Stokes equations adequately describe many �uids, conducting �uids like

ionised plasmas and liquid metals couple with local magnetic �elds and require an extension

to the governing equations. The result are the equations of magnetohydrodynamics.

1.2.2 Magnetohydrodynamics and the induction equation

Magnetohydrodynamics (MHD) describes electrically conducting �uids, that is �uids which

interact with electromagnetic �elds. Typical examples of such �uids are ionised plasmas and

molten metals, the investigation of the latter being key to the understanding of the Earth’s
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molten outer core and its associated magnetic dynamo. Both small-scale laboratory plasmas,

such as those found in current fusion devices, and large-scale astrophysical plasmas, such as

those in the interstellar medium, can be e�ectively modelled using the MHD equations. While

these equations have a large range of applicability, they are limited to systemswith dynamics at

length scalesmuch larger than the ion skin depth or Larmor radius, and time scalesmuch longer

than the ion gyration time. For systems where the length or time scales are too small to be

described by MHD, a kinetic approach using, for example, the Vlasov or Boltzmann equations

is more appropriate. The ideal MHD equations can be recovered from the Boltzmann equation

by taking appropriate moments [14].

The MHD equations are a synthesis of the Navier-Stokes equations of �uid dynamics and

Maxwell’s equations of electromagnetism. The latter set of equations describes the generation

of an electric �eld 𝑬 by a charge density 𝜌𝑐 through Gauss’s law,

∇ · 𝑬 =
𝜌𝑐

𝜀0
, (1.7)

the non-existence of monopoles in the magnetic �eld 𝑩,

∇ · 𝑩 = 0, (1.8)

the generation of electric �elds due to changes in the magnetic �eld in time 𝑡 through the

Maxwell-Faraday equation,

∇ × 𝑬 = −𝜕𝑩
𝜕𝑡
, (1.9)

and the generation of magnetic �elds due to currents 𝚥 and changing electric �elds through

Ampère’s law,

∇ × 𝑩 = 𝜇0

(
𝚥 + 𝜀0

𝜕𝑬

𝜕𝑡

)
. (1.10)

Written in SI units, these equations use the permittivity 𝜀0 and permeability 𝜇0 of free space.

Many conducting �uids can be considered electrically neutral, that is on the timescale of

�uid motion the charges within the �uid are able to quickly redistribute to nullify any elec-

tric forces. This is true for coronal plasmas where the electrons, being much lighter than the

ions, are free to quickly redistribute imbalances in charge density. This allows Gauss’s law to

be entirely neglected. The displacement current, the last term in Ampère’s law, can also be

neglected using the assumption that �uid motions are non-relativistic, that is the typical �uid

velocity is much less than the speed of light, 𝑐 [86].

In order to couple the �uid motion to the electromagnetic �elds, a constitutive Ohm’s law

is also included which describes the generation of currents in response to electric �elds. This

eventually allows the complete elimination of 𝑬 from the governing equations. In a �uid’s rest
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frame, the current response to an electric �eld 𝑬 ′
is

𝚥 = 𝜎𝑬 ′, (1.11)

where 𝜎 is the (�nite) conductivity of the �uid. The Lorentz transformation to the frame where

the �uid is moving at velocity 𝒖 is

𝑬 + 𝒖 × 𝑩 = 𝜂 𝚥, (1.12)

where the conductivity has been rewritten as the resistivity 𝜂 = 1/𝜎 . In ideal MHD, 𝜂 =

0. Additional non-ideal physics like ambipolar di�usion and the Hall e�ect can be modelled

through additional terms in Ohm’s law. However, in the solar corona these e�ects are small

compared to resistivity and are neglected here [86].

Combining the remaining parts of Ampère’s law, the Maxwell-Faraday equation, and the

resistive Ohm’s law results in the induction equation,

𝜕𝑩

𝜕𝑡
= ∇ × (𝒖 × 𝑩) − ∇ × (𝜂/𝜇0∇ × 𝑩), (1.13)

which, in the case of uniform resistivity, may be written using (1.8) as

𝜕𝑩

𝜕𝑡
= ∇ × (𝒖 × 𝑩) + 𝜂

𝜇0
∇2𝑩. (1.14)

This equation essentially describes the advection and generation of a magnetic �eld due to �uid

motions and the di�usion of the �eld due to resistivity. The magnetic �eld must still satisfy

the solenoidal constraint ∇ · 𝑩 = 0.

In order to describe the e�ect of the magnetic �eld on the �uid, additional terms must be

added to the momentum (1.5) and energy (1.6) equations. The Lorentz force describes the force

exerted by the magnetic �eld on the �uid and is given by

𝚥 × 𝑩. (1.15)

When the �uid is resistive, the dissipation of currents can heat the �uid through a process

called Joule or Ohmic heating. This is modelled in the energy equation by the term

𝜇0𝜂 | 𝚥 |2. (1.16)
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1.2.3 The non-dimensionalised MHD equations

Combining the �uid equations (1.4)–(1.6) and the induction (1.14), the full set ofMHD equations

can be written in their non-dimensionalised form

𝐷𝜌

𝐷𝑡
= −𝜌∇ · 𝒖, (1.17)

𝜌
𝐷𝒖

𝐷𝑡
= −∇𝑝 + 𝚥 × 𝑩 + ∇ · 𝝈 , (1.18)

𝐷𝑩

𝐷𝑡
= (𝑩 · ∇)𝒖 − (∇ · 𝒖)𝑩 + 𝜂∇2𝑩, (1.19)

𝜌
𝐷𝜀

𝐷𝑡
= −𝑝∇ · 𝒖 +𝑄𝜈 +𝑄𝜂, (1.20)

where 𝜂 is now the non-dimensionalised resistivity. This notation is used throughout the re-

mainder of this thesis. Note, the original induction equation (1.14) has been split using the

vector triple product and (1.8). The terms 𝑄𝜈 = 𝝈 : ∇𝒖 and 𝑄𝜂 = 𝜂 | 𝚥 |2 are viscous heating and

Ohmic heating, respectively. The system is closed by the inclusion of the equation of state for

an ideal gas

𝜀 =
𝑝

𝜌 (𝛾 − 1) , (1.21)

where the speci�c heat ratio is given by 𝛾 = 5/3.
The non-dimensionalisation scheme is identical to that used in the code Lare3d [3], where

a typical magnetic �eld strength 𝐵0, density 𝜌0 and length scale 𝐿0 are chosen and the other

variables non-dimensionalised appropriately. Velocity and time are non-dimensionalised using

the Alfvén speed 𝑢𝐴 = 𝐵0/
√
𝜌0𝜇0 and Alfvén crossing time 𝑡𝐴 = 𝐿0/𝑢𝐴, respectively. Temper-

ature is non-dimensionalised via 𝑇0 = 𝑢2
𝐴
𝑚̄/𝑘𝐵 , where 𝑘𝐵 is the Boltzmann constant and 𝑚̄ is

the average mass of ions, here taken to be 𝑚̄ = 1.2𝑚𝑝 (a mass typical for the solar corona)

where𝑚𝑝 is the proton mass. Using this scheme, the non-dimensionalised resistivity 𝜂 = 1/𝑆 ,
where 𝑆 is the Lundquist number 𝑆 = 𝐿0𝑢𝐴/𝜂𝑑𝑖𝑚 and 𝜂𝑑𝑖𝑚 is the dimensional resistivity. Di-

mensional quantities can be recovered by multiplying the non-dimensional variables by their

respective reference value (e.g. 𝑩dim = 𝐵0𝑩). All further reference to variables will be to their

non-dimensionalised values, unless stated otherwise.

1.3 Anisotropic Viscosity

Viscosity plays an important part generally in astrophysical �uid dynamics. Recent studies

have demonstrated the importance of anisotropic viscosity in coronal heating in investigations

of three-dimensional (3D) null points [27], current sheet merging [4] and �ux pile-up [64].

There is further evidence of the importance of anisotropic viscosity in other astrophysical

applications including the intracluster medium [123, 80] and the solar wind [5]. In other so-

lar applications, viscosity has a role to play in the damping of coronal instabilities [56] and
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waves [112, 37, 96], though not all these cases have been fully explored using an anisotropic

model of viscosity.

1.3.1 Viscosity

Physically, viscosity is the internal friction of a �uid arising due to interactions (typically colli-

sions) between the particlesmaking up the �uid. Within the context ofMHD, viscosity provides

two functions. The �rst is momentum transport, included in the momentum equation as the

divergence of the viscous stress tensor 𝝈 , written using Einstein notation as

(∇ · 𝝈) 𝑗 =
𝜕𝜎𝑖 𝑗

𝜕𝑥𝑖
. (1.22)

In three dimensions, the nine components of 𝝈 quantify the �ux of each component of

momentum in each direction of motion as a result of viscous di�usion. For example, the 𝜎𝑥𝑦

component gives the �ow of 𝑥-momentum in the 𝑦-direction. Due to symmetry arising from

viscosity conserving angular momentum, the tensor is symmetric, so the component 𝜎𝑥𝑦 also

quanti�es the �ux of𝑦-momentum in the 𝑥-direction. Beyond the requirement of conservation

of angular momentum, it is also assumed that Stokes’ hypothesis holds, that is bulk viscosity

is zero and viscosity does not act under uniform compression or expansion of the �uid. This

requires the viscous stress tensor to be additionally trace-free,

tr(𝝈) = 0. (1.23)

Due to the viscous stress tensor being trace-free and symmetric, the number of independent

components reduces from nine to �ve.

The second function of viscosity is to convert kinetic into thermal energy through work

done by local deformations. This is encoded in a term in the energy equation of the MHD

equations of the form

𝝈 : ∇𝒖 = 𝜎𝑖 𝑗
𝜕𝑢𝑖

𝜕𝑥 𝑗
, (1.24)

and may also be written using the rate of strain tensor𝑾 as

𝝈 : ∇𝒖 =
1

2

𝝈 :𝑾 , (1.25)

where

𝑾 = ∇𝒖 + (∇𝒖)𝑇 − 2

3
(∇ · 𝒖)𝑰 . (1.26)

Here, 𝑰 is the 3 × 3 identity tensor. The tensor𝑾 quanti�es the rate at which a parcel of �uid

undergoes a deformation and is symmetric and trace-free by construction.

Many �uids encountered in nature are Newtonian �uids, that is the viscous stress arising



CHAPTER 1. INTRODUCTION 11

from any deformation of the �uid is directly proportional to the rate of strain of the deforma-

tion,

𝝈 = 𝜈𝑾 , (1.27)

where 𝜈 is the viscous transport parameter, generally referred to as the viscosity. However,

in a magnetised plasma the nature of particle collisions is distinctly di�erent from those in a

non-conducting �uid and the nature of viscosity di�erent as a result.

1.3.2 Viscosity in a magnetised plasma

In a Newtonian �uid, the motion of a single particle travelling with typical thermal velocity 𝑣

and colliding with other particles in a typical collision time 𝜏 will appear as a number of broken,

straight lines, each of approximate length 𝑙 = 𝑣𝜏 , where 𝑙 is the mean free path. These motions

have no preferred direction resulting in an isotropic transfer of momentum. In contrast, in a

plasma made up of charged particles with charge 𝑒 and mass𝑚, threaded by a magnetic �eld of

strength 𝐵, the particles follow helical paths of approximate radius 𝑟 = 𝑣/𝜔 , where 𝜔 = 𝑒𝐵/𝑚
is the cyclotron frequency. After a time 𝜏 , a typical particle will undergo a collision and its path

will describe a new helix. The total resultant motion depends on the strength of the magnetic

�eld. In the presence of a weak �eld, the radius of the helix may be much larger than the

mean free path or in terms of the cyclotron frequency, 𝜔𝜏 � 1. As a result, the path between

collisions will be close to straight and the total path will resemble that of the motion without

a magnetic �eld. In the presence of a strong �eld, 𝜔𝜏 � 1 and a typical particle will be able to

wind around the �eld a number of times, travelling a distance 𝑙 along the �eld, before colliding.

As a result the transport of momentum is strongly anisotropic to the extent that it is una�ected

in the direction of the �eld, but strongly reduced in the transverse direction.

A characteristic coronal value of 𝜔𝜏 can be calculated using expressions found in Bragin-

skii [15]. The collision time can be written in SI units as

𝜏 = 0.82 × 10
−6𝑇

3/2

𝑛
s, (1.28)

where 𝑛 is the number density. The cyclotron frequency is written as

𝜔 = 0.96 × 10
8𝐵 s

−1, (1.29)

where the Coloumb logarithm has been taken to be 22, and the mass fraction, the ratio of ion

to proton mass, 𝑚 𝑓 = 𝑚𝑖/𝑚𝑝 has been taken to be a typical solar value of 1.2. A solar active

region has typical temperatures of around 2 × 10
6
K and number densities of 𝑛 = 3 × 10

3
m

−3
,

giving 𝜏 = 0.773 s. Assuming a magnetic �eld strength of 5 × 10
−3

T gives 𝜔 = 4.79 × 10
5
s
−1
,

resulting in 𝜔𝜏 = 3.70 × 10
5
. Even in the quiet sun, 𝜔𝜏 ≈ 10

4
[75]. This indicates viscosity in

most of the solar corona is highly anisotropic.
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1.3.3 Anisotropic viscous tensors

The form of the viscous stress tensor in a magnetized plasma has been derived in a number

of ways to varying degrees of accuracy. The derivations typically use the methods of kinetic

theory, taking moments of the Boltzmann-Maxwell equations to arrive at continuum-level ap-

proximations of the stress tensor.

A �rst approximation of the stress tensor can be found in the work of Chapman and Cowl-

ing [23]. Their results show that the stress response to a rate of strain can be considered as

responses to three types of deformation: compression or dilation along the �eld, deformations

in the plane transverse to the �eld, and deformations in the plane including the �eld. The

foremost deformation gives rise to the parallel component of viscosity, typically the largest in

magnitude and often the only component modelled in applications [80]. The latter two defor-

mations give rise to two stress responses each, totalling four components: two perpendicular

components and two drift components. In total there are �ve contributions to the viscous

stress tensor in a magnetised plasma, each with an associated transport parameter. The reader

is directed to a discussion by Kaufman [60] where he presents both an illustrative description

of the drift and perpendicular components of the tensor, and a derivation of the full tensor

from a more simpli�ed Boltzmann equation than is used in [23]. The parallel component of

the stress tensor has been derived without use of kinetic theory by Hollweg [51], showing that

the viscous response to parallel motions is a result of collisions repartitioning anisotropies in

the thermal pressure. The tensor derived by Braginskii [15] is perhaps the most well known

and includes accurate approximations of the �ve viscous transport parameters.

1.3.4 Simpli�ed derivation of Braginskii tensor

This section presents a condensed version of Braginskii’s qualitative derivation of the form

of the anisotropic viscosity stress tensor in a magnetized plasma, and its associated transport

parameters [15].

Let us consider how momentum di�uses in the 𝑥-direction. Consider a plasma where, on

average, each particle moves a distance Δ𝑥 in the collision time 𝜏 before colliding. After the

collision the particle has equal probability of moving to the left or the right. Since we are

concerned with the viscous di�usion of momentum, and not the advection of momentum, we

consider the case where the net particle �ux through the plane at 𝑥 = 𝑥0 is zero, that is the

number of particles moving through the plane from the left is equal to the number of particles

from the right. This implies a uniform number density in the small layer around 𝑥0.

Now consider a non-uniform velocity component𝑢 which changes slowly enough over the

distance Δ𝑥 that we may write

𝑢 (𝑥) ≈ 𝑢 (𝑥0) +
𝜕𝑢

𝜕𝑥

����
𝑥0

(𝑥 − 𝑥0). (1.30)
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Within a time 𝜏 half the particles in the layer between 𝑥0 −Δ𝑥 and 𝑥0 will pass through the

plane 𝑥0, the other half moving in the opposite direction. The �ux of momentum from the left

is

𝐹+ =
1

2

∫ 𝑥0

𝑥0−Δ𝑥

1

𝜏
𝑚𝑛𝑢 (𝑥)d𝑥 =

𝑚𝑛

2

[
𝑢 (𝑥0) −

𝜕𝑢

𝜕𝑥

Δ𝑥

2

]
Δ𝑥

𝜏
, (1.31)

and the �ux from the right 𝐹− can be calculated in a similar manner by considering the �ux

from the layer between 𝑥0 and 𝑥0 +Δ𝑥 . The total �ux of momentum moving through the point

𝑥0 is

𝐹 = 𝐹+ − 𝐹− = −𝜈 𝜕𝑢
𝜕𝑥
, 𝜈 ∼ 𝑛𝑚(Δ𝑥)2

𝜏
. (1.32)

The change in momentum at the point 𝑥0 is then given by the negative slope of the momentum

�ux −𝜕𝐹/𝜕𝑥 . Thus, the quantity −𝐹 is a measure of one component of the viscous stress tensor

𝝈 , with the overall strength of viscous dissipation governed by the parameter 𝜈 . For example,

if 𝑢 is the velocity in the 𝑦-direction, −𝐹 estimates the value of 𝜎𝑦𝑥 . Substituting Δ𝑥 for appro-

priate lengths in the expression for 𝜈 reveals the relative strengths of the viscous response to

various motions.

In the absence of a magnetic �eld the viscosity is isotropic and particles are able to travel

the full mean free path before colliding, hence Δ𝑥 = 𝑢𝜏 , where 𝑢 is the thermal velocity. This

gives an estimate for the isotropic viscous response,

𝝈𝑖𝑠𝑜 ∼ 𝜂0𝑾 , 𝜂0 ∼ 𝑛𝑚𝜏𝑢2 ∼ 𝑛𝑇𝜏, (1.33)

where we use the notation 𝜂0 = 𝜈 here to mirror Braginskii’s derivation. This should not be

confused with resistivity 𝜂.

Now consider a magnetic �eld aligned with the 𝑧-direction. A similar expression to that for

isotropic viscosity is found when considering the viscous response to a �eld-aligned gradient

in a �eld-aligned velocity 𝜕𝑢𝑧/𝜕𝑧, where Δ𝑥 is still the mean free path,

𝜎𝑧𝑧 ∼ 𝜂0
𝜕𝑢𝑧

𝜕𝑧
. (1.34)

That is, in a magnetised plasma, compression or dilation along the �eld produces the same

viscous response as if the �eld were not there.

Now consider the same velocity 𝑢𝑧 changing in a direction perpendicular to the �eld, say

in the 𝑥-direction. Then Δ𝑥 is approximately the gyroradius 𝑟 = 𝑢/𝜔 . The viscous response is
then

𝜎𝑧𝑥 ∼ 𝜂⊥
𝜕𝑢𝑧

𝜕𝑥
, 𝜂⊥ ∼ 𝜂0

(𝜔𝜏)2 . (1.35)

A similar expression holds when a velocity perpendicular to the �eld, say 𝑢𝑦 , varies in the

𝑥-direction, that is

𝜎𝑥𝑦 ∼ 𝜂⊥
𝜕𝑢𝑦

𝜕𝑥
. (1.36)
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The viscous response to compression or dilation perpendicular to the �eld arises due to

a di�erent mechanism than the simple di�usion of momentum shown previously. When the

plasma is compressed or dilated perpendicular to the �eld, the transverse energy of the parti-

cles changes and is subsequently equipartitioned by collisions. This takes place over a �nite

period of time, during which the transverse and longitudinal pressures di�er. This di�erence

in pressures gives rise to a stress of the same order as the parallel contribution

𝜎𝑥𝑥 = 𝜎𝑦𝑦 ∼ 𝜂0∇ · 𝒖, 𝜎𝑧𝑧 ∼ −𝜂0∇ · 𝒖 . (1.37)

There are further contributions to the viscous stress tensor from motions which give rise

to gyroviscous stresses, the transport parameters of which vary as 𝜂0/(𝜔𝜏). As discussed later,
these contributions produce no viscous heating and shall be neglected. For a detailed discussion

of these terms, see [60].

1.3.5 The Braginskii tensor

The full Braginskii viscous stress tensor can be written in a number of ways. Braginskii’s

original formulation is writtenwith themagnetic �eld alignedwith the 𝑧-axis so presented here

is the more general formulation of Hogan [49], described as the sum of �ve tensor components

𝑾 (𝑖)
with associated transport parameters 𝜂𝑖 ,

𝝈brag = 𝜂0𝑾
(0) + 𝜂1𝑾 (1) + 𝜂2𝑾 (2) − 𝜂3𝑾 (3) − 𝜂4𝑾 (4) . (1.38)

As discussed earlier, there are three types of motion that give rise to the �ve tensor com-

ponents: compression or dilation along the �eld, deformations in the plane transverse to the

�eld, and deformations in the plane including the �eld. The �rst type of motion gives rise to

the parallel term,

𝑾 (0) =
3

2

(𝑾𝒃 · 𝒃)
(
𝒃 ⊗ 𝒃 − 1

3

𝑰

)
, (1.39)

where 𝒃 = 𝑩/|𝑩 | is the unit vector in the direction of the �eld. The second and third types of

motion give rise to two types of stress: two perpendicular terms,

𝑾 (1) = (𝑰 − 𝒃 ⊗ 𝒃)𝑾 (𝑰 − 𝒃 ⊗ 𝒃) + 1

2

(𝑾𝒃 · 𝒃) (𝑰 − 𝒃 ⊗ 𝒃), (1.40)

𝑾 (2) = (𝑰 − 𝒃 ⊗ 𝒃)𝑾 (𝒃 ⊗ 𝒃) + (𝒃 ⊗ 𝒃)𝑾 (𝑰 − 𝒃 ⊗ 𝒃), (1.41)

and two terms often called the drift or gyroviscous terms,

𝑾 (3) =
1

2

𝒁𝑾 (𝑰 − 𝒃 ⊗ 𝒃) − 1

2

(𝑰 − 𝒃 ⊗ 𝒃)𝑾𝒁 , (1.42)

𝑾 (4) = (𝒁𝑾𝒃) ⊗ 𝒃 + 𝒃 ⊗ (𝒁𝑾𝒃), (1.43)



CHAPTER 1. INTRODUCTION 15

0.0 0.5 1.0

|B| (T) ×10−7

0.0

0.2

0.4

0.6

0.8

1.0 η1

η3

Figure 1.3: Dependence of Braginskii coe�cients 𝜂1 and 𝜂3 on magnetic �eld strength. The col-
lision time is 𝜏 = 0.77 s, corresponding to a typical coronal temperature of 𝑇 = 10

6
K. Both

expressions are normalised against 𝜂0.

where the tensor 𝒁 has components 𝑍𝑖 𝑗 = 𝜀𝑖𝑘 𝑗𝑏𝑘 , where 𝜀𝑖𝑘 𝑗 is the Ricci alternating tensor (note

the index ordering). It can be shown that these �ve tensors are mutually orthogonal, that is

𝑾 (𝑖)
:𝑾 ( 𝑗) = 0 for 𝑖 ≠ 𝑗 [15].

Braginskii derives the �ve viscosity coe�cients 𝜂𝑖 from a kinetic description of the plasma

(see [36] for an example derivation). While moremodernmethods of deriving transport param-

eters have generally produced more accurate estimates [36], Braginskii’s expressions combine

relative simplicity and good accuracy are still widely used. These are the expressions used

throughout this thesis.

The parallel viscosity coe�cient 𝜂0 is identical to the dynamic viscosity coe�cient of an

unmagnetised plasma 𝜈 and has already been given in expression (1.1). For completeness, this

is restated here,

𝜂0 = 0.68 × 10
−16𝑇 5/2

kg m
−1

s
−1. (1.44)

For simplicity, the dimensionless quantity 𝑥 = 𝜔𝜏 is used in the expressions for the remain-

ing transport parameters, as is done in [15], and all coe�cients have identical units to 𝜂0. This

quantity is alternatively written as 𝑥 = 𝛼 |𝑩 | to reveal the dependence on the magnetic �eld

strength, where 𝛼 = 𝑒𝜏/𝑚.

The two perpendicular coe�cients are written,

𝜂2(𝑥) =
𝜂0

Δ

(
6

5
𝑥2 + 2.23

)
, 𝜂1 = 𝜂2(2𝑥), (1.45)

where

Δ = 𝑥4 + 4.03𝑥2 + 2.23. (1.46)

The drift coe�cients are written,

𝜂4(𝑥) =
𝜂0

Δ
𝑥

(
𝑥2 + 2.38

)
, 𝜂3 = 𝜂4(2𝑥). (1.47)
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The relative strength of the �ve coe�cients is important (but not su�cient) in considering

which are most signi�cant in the solar corona. The drift coe�cients are of the order 𝜂0/(𝜔𝜏)
and the perpendicular coe�cients of the order 𝜂0/(𝜔𝜏)2. The dependence on the magnetic �eld

strength can be seen in �gure 1.3. Notice that asymptotically as 𝑥 → 0, 𝜂1 → 𝜂0 and 𝜂3 → 0.

As has already been discussed, the origin of each of the �ve viscosity components can be

understood by considering the e�ect of velocity gradients and collisions on a plasma from a

kinetic perspective. The drift terms are products of the velocity gradient perturbing particle

orbits which generates pressure anisotropies and, in the absence of collisions, produces a stress

which is orthogonal to the strain, resulting in no viscous dissipation. Collisions repartition the

anisotropies in the pressure giving rise to the perpendicular terms. This is explored in detail

by Kaufman in [60].

While it is illustrative to understand from a kinetic perspective why the drift terms produce

no dissipation, it can be shown explicitly for the terms given in (1.43). The strain rate tensor

can be written as the sum of only the parallel and perpendicular terms, 𝑾 = 𝑾 (0) +𝑾 (1) +
𝑾 (2)

. Since the drift terms are individually orthogonal to 𝑾 (0)
, 𝑾 (1)

and 𝑾 (2)
, they are also

orthogonal to 𝑾 . By (1.25), the drift terms cannot contribute to overall viscous dissipation.

Furthermore, the relative size of the transport coe�cients (𝜂3 ∝ 𝜂0/(𝜔𝜏)) suggests the drift

terms may be completely neglected. While these terms can still meaningfully participate in

certain dynamics [32, 40], this thesis focuses on the impacts of viscosity on coronal heating

and so the drift terms will be neglected throughout the remainder of this work. While a similar

argument suggests the perpendicular terms should also be neglected (𝜂1 ∝ 𝜂0/(𝜔𝜏)2), they are

required to rewrite the Braginskii tensor in a form useful for numerical simulation, as discussed

later.

1.3.6 Limit of strong magnetic �eld

As already mentioned, in an solar active region 𝜔𝜏 ≈ 10
5 � 1 and the transport coe�cients in

equations (1.45) and (1.47) become negligibly small compared to the parallel coe�cient. As a

result, in the absence of any magnetic null points, the Braginskii tensor can be reduced to its

strong-�eld approximation,

𝝈brag = 𝜂0𝑾
(0) = 3

2
𝜂0(𝑾𝒃 · 𝒃) (𝒃 ⊗ 𝒃 − 1

3
𝑰 ). (1.48)

In a local coordinate system where the magnetic �eld is aligned with 𝒆𝑧 , the tensor is

𝝈brag =
3

2
𝜂0𝑊𝑧𝑧 (𝒆𝑧 ⊗ 𝒆𝑧 − 1

3
𝑰 ), (1.49)

where 𝒆𝑧 is the unit vector in the 𝑧-direction. Notice that the only velocity gradient to enter into

the above tensor is that which is aligned with the magnetic �eld (including gradients stemming
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from the compressional ∇·𝒖 term in the rate of strain tensor (1.26)). It can also be seen that the

magnetic �eld has no e�ect on the component of viscosity parallel to the �eld; it is identical to

the corresponding component in the isotropic stress tensor,

(𝜎iso)𝑧𝑧 = (𝜎brag)𝑧𝑧 = 𝜂0𝑊𝑧𝑧 . (1.50)

In the strong-�eld regime, the only motion damped by viscosity is non-uniform compression

or dilation of the plasma.

This approximationmay be valid even for quiet Sun conditions, where𝜔𝜏 ≈ 10
4
. Where this

approximation fails is around magnetic null points, regions of the corona where the magnetic

�eld vanishes. Null points are an important, abundant feature in the coronal magnetic �eld [33]

and participate in a number of important solar phenomena [69, 74, 7]. Any general model of

solar viscosity must go beyond the strong-�eld approximation and additionally incorporate

viscosity in the limit of weak magnetic �eld.

1.3.7 Limit of weak magnetic �eld

While the full Braginskii tensor (1.38) presents the natural separation of viscous responses

into parallel, perpendicular and drift components, this form is unsuitable for numerical sim-

ulation when null points are present in the magnetic �eld. As the �eld strength goes to zero

approaching a null point, the unit vector 𝒃 in equations (1.39)–(1.43) becomes mathematically

unde�ned. Numerically, the calculation of 𝒃 involves division by the magnitude of the �eld

which is a quantity close to or exactly zero near a null point, leading to errors or complete fail-

ure of the numerical scheme. Even if a numerical implementation were to check for a locally

small �eld, it’s unclear how the viscous terms and transport coe�cients, as written in the form

of (1.38), interact as the �eld strength tends to zero. By rewriting the tensor as

𝝈brag =
3𝜂0 + 𝜂1 − 4𝜂2

2|𝑩 |4 (𝑾𝑩 · 𝑩) (𝑩 ⊗ 𝑩) (1.51)

+ 𝜂1 − 𝜂0
2|𝑩 |2 (𝑾𝑩 · 𝑩)𝑰

+ 𝜂2 − 𝜂1|𝑩 |2 [𝑾 (𝑩 ⊗ 𝑩) + (𝑩 ⊗ 𝑩)𝑾 ]

+ 𝜂1𝑾 ,

the anisotropic terms and isotropic term are clearly separated. The grouping of terms and the

explicit use of 𝑩 rather than 𝒃 allows a numerical implementation to check the local value of

|𝑩 | and, if it’s smaller than some threshold, manually set the anisotropic coe�cients in (1.51)

to zero, avoiding a division by |𝑩 |. Additionally, this form still retains the limiting behaviour

of the original tensor (1.38), where (1.51) tends to (1.39) in the limit of strong �elds and tends

to (1.27) in the limit of |𝑩 | → 0. This is a result of the asymptotic behaviour of equations (1.45)
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and (1.47).

Similar to the strong-�eld limit, it can be shown that the magnetic �eld has no e�ect on the

�eld-aligned component of momentum transport in (1.51). That is, (1.50) still holds.

1.4 Conclusion

This chapter introduces the layers of the Sun, in particular the solar corona, and summarises

some recent developments in coronal heating. TheMHD equations are presented as a synthesis

of the Navier-Stokes equations of �uid dynamics andMaxwell’s equations of electromagnetism

and are non-dimensionalised. Viscosity in a magnetised plasma is discussed in detail and the

particular nature of viscosity in the solar corona is explored. This general introduction to the

solar atmosphere provides the foundation upon which the remainder of the thesis is built.



Chapter 2

Numerical methods

This chapter introduces themain numericalmethod used in the rest of the thesis, the Lagrangian-

remap scheme used in the 3D MHD code Lare3d. This is done through the development of a

1D, hydrodynamic implementation of the scheme. The discretisation and time-stepping algo-

rithms are described, along with the shock capturing techniques used, and the application to

3DMHD summarised. Finally, the Sod shock problem is used to compare the results of the code

against an analytical solution. The results of a parameter search for optimal shock viscosity

values is given and the results of a convergence study presented.

2.1 Lare1d

Lare3d, an abbreviation of LAgragian-REmap 3D, is a 3DMHDcodewhich employs the Lagrangian-

remap scheme, a form of numerical scheme used to solve hyperbolic partial di�erential equa-

tions like those often found in hydrodynamics (HD) and MHD. The core idea of the scheme is

to solve the equations on a grid in Lagrangian form, which involves a deformation of the grid,

and then to remap the variables back to the original grid. This two-step process, combined with

additional shock-capturing techniques such as �ux limiters and shock viscosity, is extremely

e�ective at capturing the kind of shocks that are generated in highly compressible, dynamic

coronal simulations. It compares well to Roe solvers when solving identical problems [3].

As a consequence of the Lagrangian step, the equations are solved in a much simpler form

than if they were to be solved in equivalent Eulerian form, removing some of the nonlinearity

found in the Eulerian description. The disadvantage of this is that a complex remap step must

be introduced. However, once the remap problem is solved (and it is only a complicated but

tractable problem of geometry) it is not necessary to change the step if the physics are changed.

Like other �nite-volume methods, the method requires only local communication, that is a

computation on a single cell requires only information from neighbouring cells. This locality

reduces the overhead associated with communication between nodes when implementing the

method on large clusters and makes the method viable for large-scale, parallel simulations.

19
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This section presents the implementation and testing of a 1D Lagrangian-remap scheme

applied to the inviscid, compressible Euler equations. Then a summary is provided of the

MHD code Lare3d [3] which is used to perform the numerical experiments detailed in the rest

of the thesis.

2.1.1 The physical model

Flows of an inviscid �uid can be described using the Euler equations, here in 1D. The continuity

equation describes the change in density 𝜌 due to expansion or compression of the �uid through

spatial change in the �ow velocity 𝑢,

𝐷𝜌

𝐷𝑡
+ 𝜌 𝜕𝑢

𝜕𝑥
= 0. (2.1)

The momentum equation describes the change in velocity due to a di�erence in pressure 𝑝 ,

𝐷𝑢

𝐷𝑡
+ 1

𝜌

𝜕𝑝

𝜕𝑥
= 0. (2.2)

The energy equation describes the change in internal energy 𝜀 due to expansion or compres-

sion,

𝐷𝜀

𝐷𝑡
+ 𝑝
𝜌

𝜕𝑢

𝜕𝑥
= 0, (2.3)

and �nally the system is closed using the equation of state for an ideal gas,

𝑝 = 𝜀𝜌 (𝛾 − 1). (2.4)

Use has been made of the Lagrangian derivative, de�ned as

𝐷

𝐷𝑡
≡ 𝜕

𝜕𝑡
+ (𝒖 · ∇), (2.5)

which describes the change in a quantity within a parcel of �uid as that parcel is advected by

the �ow.

2.1.2 Discretisation

As illustrated in �gure 2.1a, the grid on which the variables are de�ned is staggered, that is the

velocity is de�ned at the boundary of the cells, and all other variables are de�ned at cell centres.

This is in contrast to collocated grids where all variables are de�ned at the same locations on

a single grid. Without staggering, the speci�c choice of the spatial discretisation of derivatives

would result in two sets of decoupled equations, one associated with even indices and one with

odd. This decoupling can cause a numerical instability often called the checkerboard problem

and is a common numerical issue generally in computational �uid dynamics [41]. Additionally,
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(a) Staggered grid
(b) Deformation and remap of the grid

Figure 2.1: Illustrations of the staggered grid and its deformation. In 2.1a the staggered grid is

illustrated with velocity located at cell-boundaries and pressure located at cell-centres. Illus-

trated in 2.1b is the deformation of the grid during the Lagrangian step and the remapping of

variables back to the original grid during the remap step.

the use of a staggered grid can improve the accuracy of a �nite-di�erence scheme with little

extra computational overhead [94]. However, a staggered grid is more complex to implement,

requiring careful consideration of the precise locations of derivatives and the handling of two

separate grids.

Due to the staggered grid, the derivative of the velocity is de�ned at the centre of a cell as

the �rst-order, central �nite-di�erence of the velocity at the boundaries,(
𝜕𝑢

𝜕𝑥

)
𝑖

=
𝑢𝑖 − 𝑢𝑖−1
𝑑𝑥𝑏𝑖

, (2.6)

and similarly the derivative of pressure (or any of the other cell-centred variables) is de�ned

at the boundaries as (
𝜕𝑝

𝜕𝑥

)
𝑖

=
𝑝𝑖 − 𝑝𝑖−1
𝑑𝑥𝑐𝑖

. (2.7)

2.1.3 The Lagrangian step

The Lagrangian step uses a predictor-corrector scheme to advance the system one timestep.Although

not stated in [3], I believe the scheme to be a version of Heun’s method which is known to be

second order [20]. Each timestep is split into two substeps, the �rst calculating an approxi-

mation of the pressure, and the second using this pressure to advance all other variables to

the next full timestep. Here, the current timestep is denoted as timestep 𝑛, the predictor step

advances the pressure to timestep 𝑛 + 1/2 and then �nally the corrector step advances the

remaining variables to timestep 𝑛 + 1.

The predictor step Using (2.4),

𝑝
𝑛+1/2
𝑖

= 𝜀
𝑛+1/2
𝑖

(𝛾 − 1)𝜌𝑛+1/2
𝑖

. (2.8)
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The energy density at the half timestep is calculated from the discretisation of (2.3),

𝜀
𝑛+1/2
𝑖

= 𝜀𝑛𝑖 −
𝑑𝑡

2

1

𝜌𝑛
𝑖

𝑢𝑛𝑖 − 𝑢𝑛𝑖−1
𝑑𝑥𝑏𝑛

𝑖

𝑝
𝑛+1/2
𝑖

. (2.9)

Since mass is conserved, the change in density in a cell is related to the change in volume of

that cell in the following way,

𝜌𝑛+1𝑖 =
𝜌𝑛𝑖

Δ𝑖
, (2.10)

where Δ𝑖 = 𝑑𝑥𝑏
𝑛+1
𝑖 /𝑑𝑥𝑏𝑛𝑖 is the fractional change in volume of cell 𝑖 between current and future

timesteps. In this case, the density at the half timestep is found by calculating the updated grid

boundary separation, again at the half timestep,

𝑑𝑥𝑏
𝑛+1/2
𝑖

= 𝑑𝑥𝑏𝑛𝑖 +
𝑑𝑡

2

(𝑢𝑛𝑖 − 𝑢𝑛𝑖−1). (2.11)

This is fed into the calculation of the change in volume to give the updated density,

𝜌
𝑛+1/2
𝑖

= 𝜌𝑛𝑖
𝑑𝑥𝑏𝑛𝑖

𝑑𝑥𝑏
𝑛+1/2
𝑖

. (2.12)

The corrector step After the half timestep pressure has been calculated, the velocity, energy

and grid spacing are all advanced to time index 𝑛 + 1. The velocity is updated through the

discretisation of (2.2),

𝑢𝑛+1𝑖 = 𝑢𝑛𝑖 − 𝑑𝑡
1

𝜌𝑛
𝑖+1/2

𝑝
𝑛+1/2
𝑖+1 − 𝑝𝑛+1/2

𝑖

𝑑𝑥𝑐𝑛
𝑖

, (2.13)

where the density at the cell boundary 𝜌𝑖+1/2 is found via a mass-conserving interpolation,

𝜌𝑖+1/2 =
𝑑𝑥𝑏𝑖𝜌𝑖 + 𝑑𝑥𝑏𝑖+1𝜌𝑖+1
𝑑𝑥𝑏𝑖 + 𝑑𝑥𝑏𝑖+1

. (2.14)

Since the product 𝜌𝑖𝑑𝑥𝑏𝑖 is conserved throughout the Lagrangian step, that is 𝜌
𝑛+1/2
𝑖

𝑑𝑥𝑏
𝑛+1/2
𝑖

=

𝜌𝑛𝑖 𝑑𝑥𝑏
𝑛
𝑖 , values at timestep 𝑛 are used in (2.14).

In order to advance the remaining variables the half timestep value for the velocity is re-

quired, calculated using a simple average between current and future timesteps,

𝑢
𝑛+1/2
𝑖

=
1

2

(𝑢𝑛𝑖 + 𝑢𝑛+1𝑖 ). (2.15)

This allows the advancement of the energy to the next full timestep, calculated from the dis-

cretisation of (2.3),

𝜀𝑛+1𝑖 = 𝜀𝑛𝑖 − 𝑑𝑡
1

𝜌𝑛
𝑖

𝑢
𝑛+1/2
𝑖

− 𝑢𝑛+1/2
𝑖−1

𝑑𝑥𝑏𝑛
𝑖

𝑝
𝑛+1/2
𝑖

. (2.16)
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Figure 2.2: Advection of mass from one cell to an adjacent cell.

The grid separation is updated,

𝑑𝑥𝑏𝑛+1𝑖 = 𝑑𝑥𝑏𝑛𝑖 + 𝑑𝑡 (𝑢
𝑛+1/2
𝑖

− 𝑢𝑛+1/2
𝑖−1 ), (2.17)

𝑑𝑥𝑐𝑛+1𝑖 = (𝑑𝑥𝑏𝑛+1𝑖 + 𝑑𝑥𝑏𝑛+1𝑖+1 )/2, (2.18)

and �nally the density updated,

𝜌𝑛+1𝑖 = 𝜌𝑛𝑖
𝑑𝑥𝑏𝑛𝑖

𝑑𝑥𝑏𝑛+1
𝑖

. (2.19)

2.1.4 The remap step

The Lagrangian step distorts the grid from its original state. The remap step recti�es this by

mapping the variables from the distorted Lagrangian grid to the original, undeformed grid. Ini-

tially the density is remapped using regular coordinates before switching to a mass coordinate

to remap the energy and velocity. Using change of coordinate has the bene�t of conserving

mass during the remap step.

The remapping process is a purely geometrical exercise; the problem-speci�c physics are

contained entirely in the Lagrangian step. This is advantageous when applying the scheme to

a general set of problems since once the remap step is realised and implemented, the entire

scheme can be adapted to a speci�c problem by changing only the equations in the Lagrangian

step. Major changes in geometry such as a di�erent coordinate system or the inclusion of

di�erent boundary conditions may require some adaptation in the remap step. Although the

implementation detailed in this chapter (and that of Lare3d) takes one Lagrangian step per

remap step, some implementations of similar schemes take many Lagrangian steps, continuing

until the distortion of the grid becomes greater than some criteria, only then performing a

remap step. The following remap process could be used to remap a distortion created over

multiple Lagrangian steps and only requires data from before and after the entire deformation

of the grid.
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The Density Remap During a single Lagrangian step an amount of mass 𝑑𝑀𝑖 leaves the

𝑖-th Eulerian cell via the right hand side and an amount 𝑑𝑀𝑖−1 enters via the left hand side, as

illustrated in �gure 2.2. The mass remaining in the cell is given by

𝜌𝑛+1𝑖 𝑑𝑥𝑏𝑖 = 𝜌
′
𝑖𝑑𝑥𝑏

′
𝑖 − 𝑑𝑀𝑖 + 𝑑𝑀𝑖−1, (2.20)

where 𝜌𝑖 without the dash denotes the density before the Lagrangian step, 𝜌′𝑖 denotes the den-

sity of the 𝑖-th cell after a Lagrangian step (but before the remap step) and 𝜌𝑛+1𝑖 to denote the

�nal density after the remap step. Note that the grid spacing is remapped to its original Eulerian

value so 𝑑𝑥𝑏𝑛+1𝑖 = 𝑑𝑥𝑏𝑖 . By conservation of mass during the Lagrangian step, 𝜌𝑖𝑑𝑥𝑏𝑖 = 𝜌
′
𝑖𝑑𝑥𝑏

′
𝑖

and (2.20) becomes

𝜌𝑛+1𝑖 = 𝜌𝑖 +
1

𝑑𝑥𝑏𝑖
(𝑑𝑀𝑖−1 − 𝑑𝑀𝑖). (2.21)

As illustrated in �gure 2.2, 𝜌𝑖 is considered piecewise linearwhich allows the approximation

of the movement of mass as

𝑑𝑀𝑖 = 𝜌𝑐𝑢𝑖𝑑𝑡, (2.22)

where𝑢𝑖 = 𝑢
𝑛+1/2
𝑖

denotes the velocity of the boundary (as in (2.18)). The density of the portion

of the cell which has moved beyond the right hand side boundary is given by

𝜌𝑐 = 𝜌
′
𝑖 + 𝛿

𝜕𝜌′𝑖
𝜕𝑥′

. (2.23)

Geometrically it can be seen that,

𝛿 =
1

2

𝑑𝑥𝑏′𝑖 −
1

2

𝑢𝑖𝑑𝑡 =
1

2

𝑑𝑥𝑏′𝑖 (1 −𝜓 ), (2.24)

where 𝜓 = 𝑢𝑖𝑑𝑡/𝑑𝑥𝑏′𝑖 . The calculation of 𝜕𝜌′𝑖/𝜕𝑥′ is performed using a third-order upwind

method given by

𝜕𝜌′𝑖
𝜕𝑥′

=


2−𝜓𝑖
3

𝜌𝑖+1−𝜌𝑖
𝑑𝑥𝑏𝑖

+ 1+𝜓𝑖
3

𝜌𝑖−𝜌𝑖−1
𝑑𝑥𝑏𝑖−1

, 𝑢𝑖 > 0,

2−𝜓𝑖
3

𝜌𝑖+1−𝜌𝑖
𝑑𝑥𝑏𝑖

+ 1+𝜓𝑖
3

𝜌𝑖+2−𝜌𝑖+1
𝑑𝑥𝑏𝑖+1

, 𝑢𝑖 ≤ 0.
(2.25)

The corresponding method for variables located at the boundaries uses a similar formula but

with 𝑑𝑥𝑏 replaced by 𝑑𝑥𝑐 . As is explained in section 2.2, the naive application of this method

can lead to numerical issues so, in practice, the gradient is limited using the �ux limiter de-

scribed in section 2.2.1. The mass leaving the right hand side is calculated as

𝑑𝑀𝑖 =

(
𝜌′𝑖 +

1

2

𝑑𝑥𝑏′𝑖 (1 −𝜓 )
𝜕𝜌′𝑖
𝜕𝑥′

)
𝑢𝑖𝑑𝑡, (2.26)

and feeding that into (2.21) completes the density remap.
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Figure 2.3: Advection of energy from one cell to an adjacent cell.

The Speci�c Energy Density Remap At this point in the algorithm, the mass leaving the

𝑖-th cell 𝑑𝑀𝑖 has already been calculated and this is used to form a change of coordinates,

from 𝑥-coordinates to mass coordinates, denoted by 𝜉 , which is used to remap the remaining

variables. The distance 𝑑𝑥𝑏𝑖 can be written in mass coordinates as

𝑑𝜉𝑖 = 𝜌𝑖𝑑𝑥𝑏𝑖 = 𝜌
′
𝑖𝑑𝑥𝑏

′
𝑖 . (2.27)

In this coordinate, 𝑑𝑀𝑖 directly measures the degree to which the right hand side of the bound-

ary of cell 𝑖 has moved during a Lagrangian step.

The energy remap now follows a similar path to the density remap. By analogy with (2.20),

the energy remaining in the 𝑖-th cell after a Lagrangian step is given by

𝜀𝑛+1𝑖 𝑑𝜉𝑛+1𝑖 = 𝜀′𝑖𝑑𝜉
′
𝑖 + 𝑑𝐸𝑖−1 − 𝑑𝐸𝑖, (2.28)

where 𝑑𝐸𝑖 is the amount of energy being advected out of the cell through the right hand side

boundary and𝑑𝐸𝑖−1 is the energy advected in through the left hand side boundary. Rearranging

for 𝜀𝑛+1𝑖 ,

𝜀𝑛+1𝑖 =
1

𝑑𝜉𝑛+1
𝑖

(𝜀′𝑖𝑑𝜉′𝑖 + 𝑑𝐸𝑖−1 − 𝑑𝐸𝑖). (2.29)

At this point, only the calculation of𝑑𝐸𝑖 is unknown and can be found by analogy to the density

remap by considering �gure 2.3. In mass coordinates,

𝑑𝐸𝑖 = 𝜀𝑐𝑑𝑀𝑖, (2.30)

where

𝜀𝑐 = 𝜀
′
𝑖 + 𝛿

𝜕𝜀′𝑖
𝜕𝜉
, (2.31)

and

𝛿 =
1

2

𝑑𝜉𝑖 −
1

2

𝑑𝑀𝑖 . (2.32)
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Hence,

𝑑𝐸𝑖 =

(
𝜀′𝑖 +

1

2

𝜕𝜀′𝑖
𝜕𝜉

(𝑑𝜉𝑖 − 𝑑𝑀𝑖)
)
𝑑𝑀𝑖 . (2.33)

To convert from mass coordinates, use is made use of the chain rule,

𝑑𝜉𝑖
𝜕𝜀′𝑖
𝜕𝜉

= 𝑑𝑥𝑏𝑖𝜌𝑖
𝜕𝜀′𝑖
𝜕𝜉

= 𝑑𝑥𝑏𝑖
𝜕𝜀′𝑖
𝜕𝑥

(2.34)

to rewrite 𝑑𝐸𝑖 as

𝑑𝐸𝑖 =

(
𝜀′𝑖 +

1

2

𝑑𝑥𝑏𝑖
𝜕𝜀′𝑖
𝜕𝑥

(
1 − 𝑑𝑀𝑖

𝜌𝑖𝑑𝑥𝑏𝑖

))
𝑑𝑀𝑖, (2.35)

where, in practice, calculation of 𝜕𝜀′𝑖/𝜕𝜉 is again performed using a �ux limiter (discussed in

section 2.2.1). Feeding this �nal equation into (2.29) completes the speci�c energy density

remap.

The velocity remap The velocity remap is nearly identical to the speci�c energy density

remap shown previously so a derivation will not be given, however since the velocity is de�ned

at cell centres, some of the relevant variables must be interpolated. The �nal two equations

required to remap the velocity are

𝑑𝑈𝑖 =

(
𝑢′𝑖 +

1

2

𝑑𝑥𝑐𝑖
𝜕𝑢′𝑖
𝜕𝑥

(
1 −

𝑑𝑀𝑖+1/2
𝜌𝑖+1/2𝑑𝑥𝑐𝑖

))
𝑑𝑀𝑖+1/2, (2.36)

𝑢𝑛+1𝑖 =
1

𝑑𝑥𝑐𝑖𝜌
𝑛+1
𝑖+1/2

(𝑢′𝑖𝑑𝑥𝑐𝑖𝜌𝑖+1/2 + 𝑑𝑈𝑖−1 − 𝑑𝑈𝑖), (2.37)

where 𝑑𝑈𝑖 is the velocity advected through the right hand side boundary, the boundary dis-

tance 𝑑𝑥𝑏 is replaced by the cell centre distance 𝑑𝑥𝑐 , mass is interpolated using an average,

𝑑𝑀𝑖+1/2 = (𝑑𝑀𝑖 + 𝑑𝑀𝑖+1)/2, and the density is interpolated using equation (2.14). Once again,

the derivative 𝜕𝑢′𝑖/𝜕𝑥 is found using a �ux limiter.

2.1.5 Constraints on the timestep

Lagrangian-remap schemes are often considered to be unconditionally stable and do not have

a CFL condition like many explicit numerical schemes [8]. Despite this, the remap step detailed

previously makes some assumptions about how the grid deforms during the Lagrangian step,

namely a gridpoint cannot be advected more than one grid separation away from its original

position. This condition appears similar to a CFL condition and restricts the timestep 𝑑𝑡 to

𝑑𝑡 <
𝑑𝑥𝑏𝑖

|𝑢𝑖 |
∀𝑖 . (2.38)

Without this condition a large enough velocity could deform the grid so much that the remap

step is not able to correctly remap the variables. With a more complex remap step, the assump-
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tions about the grid deformation and corresponding timestep constraints could be relaxed.

2.1.6 Language and library choice

This example of a LARE scheme was implemented in C++, a language which e�ectively bal-

ances computational speed and usability. The getopt and json libraries were used to take input

from a JSON �le allowing for better runtime �exibility. The unit testing library Catchwas used
as the testing framework. Since this is a one-dimensional problem with limited complexity,

there was no need to include parallelism in the code, although due to the computations being

well-localised, it would be reasonably simple to parallelise the code using similar approaches to

those commonly applied to �nite-di�erence and �nite-volume codes. Some helper tools were

also written in Python and running scripts in bash. Due to the mature numerical and plotting

libraries available for Python, it is a natural choice of language for developing tools.

2.2 Shock capturing techniques

In hyperbolic systems of PDEs such as that given in equations (2.1)–(2.3) solutions may con-

tain discontinuities like shock waves (also known as shocks). While such shocks do have some

physical width in real systems, they are typically so thin compared to the larger scales of the

system they are treated as mathematical discontinuities. Numerical solvers which aim to rep-

resent a solution on a �nite grid of points struggle to provide adequate resolution to accurately

resolve a shock. When under-resolved, high-resolution numerical solvers may overestimate

the shock, creating an overshoot in the solution and introducing spurious oscillations in the

wake of the shock, known as the carbuncle phenomenon [92]. Two methods of dealing with

these unwanted oscillations are used in this code: �ux limiters, which restricts spatial gradi-

ents and maintains monotonicity, and shock viscosity, which acts to better resolve the shock

by spreading it over numerous grid points. The use of these techniques in both the 1D code

and Lare3d are detailed here.

2.2.1 Flux Limiters

Flux limiters are numerical tools applied to high-resolution schemes to reduce the spurious

oscillations associated with such schemes by restricting the �ux through some numerical in-

terface. In practice, this often involves the restriction of spatial gradients, so �ux limiters are

often called slope limiters. A wide variety of �ux limiters have been developed, however at-

tention here is restricted to total variation diminishing (TVD) schemes, speci�cally that of van

Leer [110]. For a review of other TVD schemes, see [120], and for a review of the related

essentially non-oscillatory scheme, see [101].
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Figure 2.4: Illustration of the van Leer �ux limiter. The gradient at index 𝑖 , 𝐷𝑖 (solid line) is

limited to the gradient 𝐷𝑚𝑜𝑛𝑜𝑖 (heavy solid line) to ensure the value of 𝑓𝑖 extrapolated to the

left-hand boundary of the cell is less than the average value of the neighbouring cell, 𝑓𝑖−1. This
diagram is a modi�ed reproduction of that found in [110].

To measure the degree of oscillation in a quantity 𝑞, the total variation of the discretised

quantity is de�ned as

𝑇𝑉 (𝑞) =
𝑁∑︁
𝑖=1

|𝑞𝑖 − 𝑞𝑖−1 |. (2.39)

Any oscillation which is generated in the wake of a shock generates local maxima and minima

which increase the total variation. TVD schemes aim to maintain, or at least decrease, this

measure. As a result, a solution containing a shock (which is naturally monotonic) should

remain monotonic when a TVD scheme is used in its evolution. A good TVD scheme should

also only weakly a�ect maxima and minima which are true features of the solution.

The van Leer �ux limiter

Consider the cells shown in �gure 2.4, where we wish to calculate the gradient of the quantity

𝑓 at the index 𝑖 . This scheme is valid regardless of method of discretisation of the gradient so

this gradient is labelled 𝐷𝑖 for now. The monotonicity requirement of van Leer requires the

value of 𝑓 , extrapolated to the boundary to the right, to be less than the average value of that

cell, 𝑓𝑖+1. For a cell centred variable, this condition can be written

𝑓𝑖 + 1

2
𝐷𝑚𝑜𝑛𝑜𝑖 𝑑𝑥𝑏𝑖 < 𝑓𝑖+1, or, 𝐷𝑚𝑜𝑛𝑜𝑖 < 2(𝑓𝑖+1 − 𝑓𝑖)/𝑑𝑥𝑏𝑖 . (2.40)

Correspondingly, the value of 𝑓 extrapolated to the left must be greater than 𝑓𝑖−1 giving

𝑓𝑖 − 1

2
𝐷𝑚𝑜𝑛𝑜𝑖 𝑑𝑥𝑏𝑖 > 𝑓𝑖−1, or, 𝐷𝑚𝑜𝑛𝑜𝑖 < 2(𝑓𝑖 − 𝑓𝑖−1)/𝑑𝑥𝑏𝑖 . (2.41)

When the gradients are reversed, a similar set of conditions exists to maintain monotonicity.
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Both these conditions on 𝐷𝑚𝑜𝑛𝑜𝑖 are met if

𝐷𝑚𝑜𝑛𝑜𝑖 = 𝑠 min( |𝐷𝑖 |, 2|𝑓𝑖+1 − 𝑓𝑖 |, 2|𝑓𝑖 − 𝑓𝑖−1 |), (2.42)

where

𝑠 =

{
sign(𝐷𝑖) if sign(𝐷𝑖) = sign(𝑓𝑖+1 − 𝑓𝑖) = sign(𝑓𝑖 − 𝑓 𝑖 − 1)
0 otherwise

(2.43)

The action of this second part of the limiter, represented by 𝑠 , can be understood by considering

a few example cases. The outputted gradient is only non-zero when the gradient 𝐷𝑖 aligns

with neighbouring gradients, that is the signs of the gradients are all equal, as is the case in

�gure 2.4. In this case, the outputted slope is either the original slope if the monotonicity

conditions are met, or a �rst-order approximation otherwise, as given by (2.42). In all other

cases, for example where the cell 𝑖 represents a maxima or minima, the outputted gradient is

zero to ensure monotonicity.

2.2.2 Shock Viscosity

Shock viscosity (or arti�cial viscosity) is amethod of arti�cially spreading a shock overmultiple

grid points using enhanced viscosity only in the vicinity of the shock, thus approximating (or

capturing) the shock
1
. Mirroring the choice of shock viscosity used in Lare3d [3], which is that

of Wilkins [114], the arti�cial viscosity 𝑞 is taken to be

𝑞 = 𝑐1𝜌𝑐𝑠 |Δ𝑢 | + 𝑐2𝜌 (Δ𝑢)2, (2.44)

where 𝑐2𝑠 = 𝛾𝑝/𝜌 is the sound speed, Δ𝑢 is the di�erence in velocity across the shock, and 𝑐1

and 𝑐2 are constants to be optimised by experiment. This is an extension of the widely-used

von Neumann-Richtmyer shock viscosity [111]. In this form, the shock viscosity is applied

everywhere but only becomes signi�cant in the vicinity of shocks.

The scalar 𝑞 is added to the thermal pressure during the predictor stage of the Lagrangian

step. Since the arti�cial viscosity is modifying the pressure, the energy equation gains an

additional term incorporating the heat generated by the shock viscosity, which takes the form

−𝑞Δ𝑢/𝜌 . To ensure this term only heats, it is only included where Δ𝑢 < 0.

2.3 Extension to 3D

The previous section details an application of the Lagrangian-remap scheme to the 1D, com-

pressible Euler equations. This section discusses the way in which the same concepts and

1
An alternative to shock capturing, used particularly in supersonic aerodynamics, is shock �tting, where the

location of the shock is determined numerically (or analytically if the location is known a priori) and the grid

shaped to �t the shock and align the discontinuity with the grid points [77].
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techniques are extended to solve the 3D, MHD equations in the code, Lare3d.

The major di�erence between the 1D and 3D schemes is in the choice of staggered grid.

While the concept of a cell centre remains the same, in 3D a variable located at a cell boundary

can be located at a cell vertex or face centre. Lare3d chooses to locate the density and internal

energy at cell centres, the velocity components at cell vertices, and the magnetic �eld compo-

nents at cell faces
2
. The speci�c choice of staggered grid in Lare3d allows few averaging steps

to be taken in any spatial derivatives.

The Lagrangian step in 3D remains relatively similar to that in 1D, with the exception that

the MHD equations are solved in place of the Euler equations. The solenoidal condition on

the magnetic �eld ∇ · 𝑩 = 0 is maintained to machine precision by solving for the induction

equation using constrained transport [38]. The remap step in 3D is analogous to the 1D remap

process, merely requiring a more complex geometrical argument.

In the full 3D code, the shock viscosity given in (2.44) is extended to include 3D, MHD

shocks. The viscosity, modelled as a tensor similar to that of Newtonian viscosity, takes the

form

𝝈𝑠ℎ𝑜𝑐𝑘 = (𝑐1𝜌𝑐 𝑓 𝐿 |𝑠 | + 𝑐2𝐿2𝜌𝑠2)𝑾 , (2.45)

where the scalar quantity 𝑞 has been modi�ed to include 𝐿 and 𝑠 as the grid length and strain

rate, both measured in the direction of the acceleration, and 𝑐 𝑓 is the fast mode speed. For

1D hydrodynamic shocks (2.45) reduces to (2.44). Viscosity in this form has the advantage of

being negligible everywhere except the locationswhere a compressional shock is present. Since

shock viscosity applied in this way is a numerical tool originally developed for hydrodynamic

purposes, it is unclear if this an appropriate tool for use in MHD shocks, where the viscosity is

intrinsically anisotropic. A more complex model of shock viscosity which includes the e�ect

of the magnetic �eld while still adequately capturing shocks would be more appropriate. For

this reason, the shock viscosity is turned o� in all 3D numerical experiments in proceeding

chapters, to ensure it does not in�uence the investigation of anisotropic viscosity. The shock

viscosity is enabled in the 1D code described here, however.

2.4 Results of numerical tests

Lare1d was tested using the Sod shock tube problem. The problem was used to run parameter

studies over the two shock viscosity parameters to identify optimal values which minimise a

given error function. The optimal values found indicate that the linear shock viscosity term,

the �rst term in (2.44), is mostly su�cient for this problem. Other parameter choices give

bene�ts that are not quanti�ed by the chosen error function.

2
The location of the magnetic �eld components is not completely trivial. Each component is located at the

centre of the cell face normal to the direction associated with that component. For example, the 𝐵𝑥 component

is located at the centre of the face normal to the 𝑥-direction, i.e. for coordinate indices which align with the cell
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Figure 2.5: Analytical solution to the Sod shock tube problem at 𝑡 = 0.2. The solution is sepa-

rated into �ve regions: the left (L) and right (R) regions, which retain the values of the initial

conditions; the right (1) and left (2) states on either side of the contact discontinuity, region

1 bounded to the right by the shock and region 2 to the left by the rarefaction wave; and the

rarefaction wave (E).

The Sod shock tube problem is commonly used in testing compressible hydrodynamic codes

and has a known analytical solution [102], shown in �gure 2.5. The initial conditions for the

problem is a discontinuity in pressure 𝑝 and density 𝜌 and uniform, zero velocity 𝑢 at the

location 𝑥0 = 0.5, ©­­«
𝜌𝐿

𝑝𝐿

𝑢𝐿

ª®®®¬ =
©­­«
1.0

1.0

0.0

ª®®®¬ ,
©­­«
𝜌𝑅

𝑝𝑅

𝑢𝑅

ª®®®¬ =
©­­«
0.125

0.1

0.0

ª®®®¬ , (2.46)

where the subscripts 𝐿 and𝑅 refer to the values left and right of the location of the discontinuity

𝑥0.

The large initial pressure jump generates three waves: a shock wave, a contact disconti-

nuity and a rarefaction wave. Shock waves are the discontinuous limit of compressive waves,

created as a result of �ow velocities exceeding the local speed of sound. These can form spon-

taneously or as the result of a smooth compressive wave steepening. The states before and

after the shock are connected by the Rankine-Hugoniot conditions, described in the proceed-

ing paragraphs. Contact discontinuities are similar to shock waves, and are similarly governed

vertices, it has coordinates (𝑖, 𝑗 + 1/2, 𝑘 + 1/2).
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by the Rankine-Hugoniot conditions, but only involve a jump in density, maintaining pressure

equilibrium across the jump. Rarefaction (or expansion) waves are travelling regions of ex-

panding medium, in contrast to a compressive wave. Such waves are often found in the wake

of shocks, as is the case here. The rarefaction wave here travels leftwards. These three waves

can be identi�ed in �gure 2.5.

2.4.1 Analytical solution

The analytical solution to the problem is found by splitting the solution into �ve parts (�g-

ure 2.5). The solution in regions R and L keep the values set in the initial conditions. These

known states can be connected to the unknown states in regions 1, 2 and E via the Rankine-

Hugoniot conditions and the locations of the interfaces between the regions, 𝑥1,2,3,4 found by

the method of characteristics. The Rankine-Hugoniot conditions for the Euler equations rep-

resent the conservation of mass, momentum and total energy across a discontinuity. These are

written

𝑢𝑅 − 𝑢𝐿 = 𝑠
(
1

𝜌𝐿
− 1

𝜌𝑅

)
,

𝑝𝑅 − 𝑝𝐿 = 𝑠 (𝑢𝑅 − 𝑢𝐿),
𝑝𝑅𝑢𝑅 − 𝑝𝐿𝑢𝐿 = 𝑠 (𝐸𝑅 − 𝐸𝐿),

(2.47)

where 𝑠 is the speed of the discontinuity, 𝐸 = 𝜀 + 𝑢2/2 is the total energy and the value of a

quantity to the right (left) of a discontinuity is given the subscript 𝑅 (𝐿). For brevity I shall only

state the analytical solution, however a full derivation can be found in [29].

The Mach number of the shock𝑀𝑠 = 𝑠/𝑎𝑟 is calculated via the implicit equation,

𝑀𝑠 −
1

𝑀𝑠

= 𝑎𝐿
𝛾 + 1

𝛾 − 1

{
1 −

[
𝑝𝑅

𝑝𝐿

(
2𝛾

𝛾 + 1

𝑀2

𝑠 −
𝛾 − 1

𝛾 + 1

)] 𝛾−1
2𝛾

}
, (2.48)

where 𝑎𝐿 =
√︁
𝛾𝑝𝐿/𝜌𝐿 is the local sound speed (de�ned similarly for other regions) and𝛾 = 1.4 is

the ratio of heat capacities. For this problem,𝑀𝑠 ≈ 1.75. This is used to calculate the pressure,

density and velocity in region 1, found via the equations,

𝑝1

𝑝𝑅
=

2𝛾

𝛾 + 1

𝑀2

𝑠 −
𝛾 − 1

𝛾 + 1

𝜌𝑅

𝜌1
=

2

𝛾 + 1

1

𝑀2

𝑠

+ 𝛾 − 1

𝛾 + 1

,

𝑢1 =
2𝑎𝑅

𝛾 + 1

(
𝑀𝑠 −

1

𝑀𝑠

)
.

(2.49)
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The velocity and pressure are equal across regions 1 and 2 and the density given by,

𝜌2 = 𝜌𝐿

(
𝑝2

𝑝𝐿

)
1/𝛾
. (2.50)

Within the rarefaction wave, the solution is given by,

𝑝𝐸 = 𝑝𝐿

(
𝑎

𝑎𝐿

) 2𝛾

𝛾−1
,

𝜌𝐸 =
𝑎2

𝛾𝑝
,

𝑢𝐸 =
2

𝛾 + 1

(
𝑎𝐿 +

𝑥 − 𝑥0
𝑡

)
,

(2.51)

where 𝑎 = 𝑎𝐿 − (𝛾 − 1)𝑈 /2. The interfaces as depicted in �gure 2.5 are given by

𝑥1 = 𝑥0 − 𝑢𝐿𝑡,
𝑥2 = 𝑥0 + (𝑢2 − 𝑎2)𝑡,
𝑥3 = 𝑥0 + 𝑢2𝑡,
𝑥4 = 𝑥0 +𝑀𝑠𝑡 .

(2.52)

2.4.2 Results

The total error 𝐸𝑁 is used as a measure of solution accuracy and is calculated as the 𝐿2 norm

of the di�erence between the full numerical and analytical solutions, normalised by the reso-

lution,

𝐸𝑁 =
1

3𝑁

(
𝑁−1∑︁
𝑖=0

‖𝑝𝑖 − 𝑝 (𝑥𝑖)‖2 +
𝑁−1∑︁
𝑖=0

‖𝜌𝑖 − 𝜌 (𝑥𝑖)‖2 +
𝑁−1∑︁
𝑖=0

‖𝑢𝑖 − 𝑢 (𝑥𝑖)‖2

)
. (2.53)

This is only one possible way to evaluate a numerical solution. As shall be seen later, certain

choices of parameters lead to numerical solutions which are closest to the analytical solution in

that they minimise 𝐸𝑁 for a given 𝑁 , however other parameter choices better resolve features

like steep gradients at the expense of an increase in global error. Since this is only a toy problem,

I will not attempt to quantify such trade-o�s here, opting to use the simple error measure given

by (2.53).

Figure 2.6 shows surface plots of the error 𝐸 as a function of 𝑐1 and 𝑐2. Using a resolution of

𝑁 = 500, an initial parameter study of 2500 points covering 𝑐1, 𝑐2 ∈ [0, 10] was run and found

optimal values of 𝑐1 = 0.8 and 𝑐2 = 0. A more focused study of 5000 points further optimised

these values to 𝑐1 = 0.77 and 𝑐2 = 0.

While the values 𝑐1 = 0.77 and 𝑐2 = 0minimise the error given in (2.53), using a lower 𝑐1 and

higher 𝑐2 more accurately maintains the steep shock gradient, at the expense of less e�ectively

tracking the shock location (�gure 2.7). Without any shock viscosity the solution overshoots
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Figure 2.6: Wide and focused parameter searches over the shock viscosity parameters 𝑐1 and 𝑐2.
Optimal values of 𝑐1 = 0.77 and 𝑐2 = 0 (crosses) are estimated as those values which minimise

the error given by (2.53). The colour is added to aid visibility and represents the error 𝐸.

the true value behind the shock and does not e�ectively track the shock’s position. Using

values of 𝑐1 = 0.77 and 𝑐2 = 0 removes the overshoot and appears to track the approximate

location of the shock well, at the expense of the shock being smeared over many grid points.

Using values of 𝑐1 = 0.1 and 𝑐2 = 1.0, as is done in [3], removes the overshoot and tracks the

shock location better than no shock viscosity. Although using these values result in a more

accurate, steeper shock gradient, the values 𝑐1 = 0.77 and 𝑐2 = 0 track the shock location

more accurately. As with many optimisation problems, choosing shock viscosity parameters

requires balancing which aspects of the shock are considered crucial to a speci�c problem.

E�ect of resolution

The resolution a�ects the ability of the numerical scheme to adequately resolve discontinuities

in the numerical solution. Figure 2.8 shows three sample simulations at resolutions of 𝑁 = 50,

100 and 500. Although 𝑁 = 500 is a computationally cheap resolution for 1D simulations,

500 grid points per dimension in 3D MHD is a typical resolution at current computational

limits. This simulation gives an indication of how well a fully 3D scheme might cope with

shocks. Even with a low resolution of 𝑁 = 50, no major features of the solution have been lost,

although the discontinuities are arti�cially spread over a large distance.

Figure 2.9 shows the error 𝐸𝑁 as a function of resolution. The slope of the dependence

suggests the global error is linearly dependent on the inverse of the resolution, instead of a

quadratic dependence as expected from a second order scheme. This may be a result of the

numerical scheme reverting to �rst order in the vicinity of discontinuities, or it may indicate

an error in the code or the scheme. Again, since this is only an illustrative toy implementation

of the numerical scheme, it is not worth delving into further.
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Figure 2.7: Solutions to the Sod problem for various values of the shock viscosity parameters. The
solution is plotted at 𝑡 = 0.2 for a resolution of 𝑁 = 500 and in the region 0.8 ≤ 𝑥 ≤ 0.9 to

focus on the shock itself. The analytical solution is also shown.

2.5 Conclusion

This chapter presents a 1D, hydrodynamic code using the same numerical scheme as the 3D,

MHD code Lare3d. The implementation of the scheme to the 1D, compressible Euler equations

is described, along with the van Lee �ux limiter and Wilkins shock viscosity, two techniques

used to more e�ectively capture shocks. The way in which Lare3d extends the same scheme

and shock capturing techniques is discussed. Finally, results of a numerical test of an imple-

mentation of the scheme are presented.
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Figure 2.9: Numerical error as a function of resolution. Each data point represents a simulation

run with the optimal shock parameter values to 𝑡 = 0.2 using a resolution 𝑁 . The error is

calculated via (2.53).



Chapter 3

The switching model of viscosity

In this chapter I initially explore the e�ect of resolution on the Braginskii model of viscos-

ity. A direct numerical implementation of the tensor as written in (1.51) fails to capture the

transition between isotropic and anisotropic viscosity in the vicinity of magnetic null points

when such an implementation is used in simulations performed at resolutions typical of mod-

ern 3D simulations. This motivates the implementation of a di�erent model of viscosity, the

switching model, which approximates the Braginskii tensor as an interpolation between fully-

isotropic and fully-parallel tensors. Three potential interpolation (or switching) functions are

introduced: a phenomenological model derived from considering the probability of momentum

transport in di�erent magnetic �eld strengths, and two functions based on coe�cients of the

full Braginskii tensor. The development of the �rst function, referred to here as the von Mises

switching function can be found in [67]. Finally, I present the results of a suite of simulations

performed at various resolutions which illustrate the di�erences between the models and are

used to gauge their e�cacy.

3.1 The transition from isotropic to anisotropic in the full

Braginskii tensor

In strong magnetic �elds, the Braginskii tensor can be approximated by the parallel term (1.39)

while in the absence of a magnetic �eld, the tensor reduces to that of isotropic viscosity (1.27).

Between these extremes the perpendicular and drift components of the tensor can become

relevant [37]. The form of the Braginskii tensor as written in (1.51) is nearly in a form useful in

understanding how quickly the tensor transitions from isotropic to anisotropic with changing

magnetic �eld strength, since the isotropic component is completely isolated. Similarly, the

37
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Figure 3.1: Coe�cients of the terms in the Braginskii tensor (3.1) normalised against 𝜂0. In these

plots, 𝛼 = 10
8
, a value realistic of the corona.

parallel component can be isolated by further rewriting the tensor as,

𝝈brag =
3𝜂0 + 𝜂1 − 4𝜂2

3

𝑾 (0)

+ (𝜂2 − 𝜂1) [𝑾 (𝒃 ⊗ 𝒃) + (𝒃 ⊗ 𝒃)𝑾 − 2

3

(𝑾𝒃 · 𝒃)𝑰 ]

+ 𝜂1𝑾 ,

(3.1)

Figure 3.1 presents the magnitudes of the coe�cients of each of the terms in tensor (3.1)

where 𝛼 = 𝑒𝜏/𝑚 = 10
8
(recall that the coe�cients 𝜂1 and 𝜂2 are de�ned in terms of the quantity

𝑥 = 𝜔𝜏 = 𝛼 |𝑩 |). Over the extremely small range between |𝑩 | = 0 T and 10
−7

T, the Braginskii

tensor goes from completely isotropic to nearly completely parallel. Over the same range the

coe�cient corresponding to the perpendicular viscosity becomes relatively signi�cant before

tending to zero for large |𝑩 |. The small transition region presents a problem in the numeri-

cal simulation of anisotropic viscosity, where the magnetic �eld strength likely changes more

rapidly in space than can be captured by the coe�cients in (3.1) when applied on a discretised

grid. This is illustrated by an example.

In the simulations of magnetic null points found later in section 3.4, the magnetic �eld

strength changes linearly in the 𝑥-direction. Given a typical grid spacing of Δ𝑥 = 0.01, the

jump in magnetic �eld from one grid point to the next is 5 × 10
−5

T. This is much greater

than the range over which the Braginskii tensor transitions between isotropic and anisotropic

regimes and the viscous response is under-resolved as a result. For these simulations, the res-

olution would have to increase by a factor of 100 per dimension to even begin to resolve the

region of transition. This region may be physically signi�cant, particularly in magnetic con-

�gurations involving large-scale weak �eld, for example in fragmented current sheets located

at null points [117] and in the heliospheric current sheet where �eld strengths are estimated

to be on the order of 10
−10

T [28]. Given the abundance of observable null points and their

involvement in high-energy phenomena, it is possible that the isotropic (and perpendicular)
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viscosity regions in the vicinity of a null point plays an important part in its dynamics, hence

it is important to be able to properly resolve these regions and investigate their physical rele-

vance. At the resolutions typically studied in general 3D MHD simulations (between 300 and

1000 grid points per dimension) the isotropic regions in the vicinity of null points would be

poorly resolved, were the full Braginskii tensor to be employed. This is particularly true in

simulations where null points are not the main focus of the simulation, but are dynamically

created by some process.

Computational solutions such as re�ning the mesh near the null or implementing a multi-

grid method may help to improve the resolution of a given simulation and better resolve the

viscosity transition region, however such approaches can be complex to implement in existing

codes. An alternative to improving the resolution itself is to arti�cially scale |𝑩 | in the ex-

pression for the parallel Braginskii transport parameter (1.45) in order to enlarge the isotropic

region to resolvable scales. This is done by arti�cially setting 𝛼 in the argument 𝑥 of the parallel

and perpendicular coe�cients in (1.45) and (1.47) to a value other than its physical value.

Consider the e�ect of decreasing 𝛼 on the coe�cients shown in �gure 3.1. Decreasing 𝛼

exaggerates the size of the region near |𝑩 | = 0 where the isotropic and perpendicular compo-

nents are signi�cant. In this way, 𝛼 can be used as a controllable parameter to prescribe the

size of the region of isotropic (or perpendicular) viscosity around a null point.

As well as exaggerating the region of isotropic viscosity, this approach requires exaggerat-

ing the region of perpendicular viscosity. To see this, consider the contributions to the �eld-

aligned component of (3.1) in a coordinate system where the �eld lies in the 𝑧-direction,

(𝜎𝑏𝑟𝑎𝑔)𝑧𝑧 =
3𝜂0 + 𝜂1 − 4𝜂2

3

𝑊𝑧𝑧 + (𝜂2 − 𝜂1)
4

3

𝑊𝑧𝑧 + 𝜂1𝑊𝑧𝑧 = 𝜂0𝑊𝑧𝑧 . (3.2)

If the coe�cient of the perpendicular component 𝜂2−𝜂1 is not scaled identically to the isotropic
and parallel coe�cients, the terms in (3.2) no longer cancel appropriately and the �eld-aligned

momentum transport is no longer independent of |𝑩 | (as it should be in models of anisotropic

viscosity). Hence, scaling the coe�cients in the Braginskii tensor to enlarge the isotropic region

necessarily requires also scaling the size of the perpendicular region. While this may be a useful

feature, creating a purely parallel-isotropic switching model o�ers an alternative which avoids

the inclusion of perpendicular viscosity altogether.

3.2 The switching model

The switchingmodel is amodel of viscosity that approximates the full Braginskii tensor through-

out most of the solar corona. By stripping out the perpendicular and drift components of the

full Braginskii tensor, the model presents a cleaner, better-resolved model of anisotropic vis-

cosity. It focuses on what are, in most cases, the physically important parts of anisotropic
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Figure 3.2: The von Mises switching function 𝑠 , 𝑠2 and the spline representation of 𝑠2 as functions
of 𝑎.

viscosity in the solar corona: the parallel and isotropic components. The idea at the core of the

model is the interpolation between the parallel and isotropic tensors, approximating the way

in which the Braginskii tensor changes between strong and weak �elds.

For a general interpolation function 𝑠 ( |𝑩 |), henceforth referred to as a switching function,

the switching model takes the form,

𝝈swi = 𝜂0 (1 − 𝑠)𝑾 + 𝜂0𝑠𝑾 (0), (3.3)

or,

𝝈swi = 𝜂0 (1 − 𝑠)𝑾 + 𝜂0𝑠
[
3

2

(𝑾𝒃 · 𝒃)
(
𝒃 ⊗ 𝒃 − 1

3

𝑰

)]
. (3.4)

This trivially satis�es the requirement that the �eld-aligned component of momentum trans-

port is independent of |𝑩 |. The switching function is a measure of the degree of anisotropy

in the momentum transport, dependent on the local magnetic �eld strength, where 𝑠 ( |𝑩 |) = 0

corresponds to totally isotropic and 𝑠 ( |𝑩 |) = 1 corresponds to totally anisotropic. A variety of

possible switching functions can be used in (3.3), however focus is placed here on physically-

derived functions, starting with the von Mises switching function.

It should be noted that the relative size of the viscous transport coe�cients (1.45) and (1.47)

is not the only factor in determining the relative importance of the associated terms in (1.38).

Strong perpendicular velocity gradients (as found in [96]) can result in non-negligible contri-

butions from terms other than the parallel term and, as such, would not be well modelled by

the switching model.
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3.2.1 The von Mises switching function

The von Mises switching function was originally developed by MacTaggart and Vergori
1
[67].

In this model, a measure of anisotropy is developed by considering the direction of momentum

transport to be governed by a particular orientation probability distribution, where a greater

�eld strength increases the probability of the momentum transport aligning with the �eld.

Choosing the von Mises distribution leads to the form 𝑠 = 𝑠2 where

𝑠 ( |𝑩 |) = 3 exp[2𝑎]
2

√
2𝜋𝑎er�[

√
2𝑎]

− 1

2

[
1 + 3

4𝑎

]
, (3.5)

and 𝑎( |𝑩 |) is a constitutive function controlling the sensitivity of the interpolation function to

changes inmagnetic �eld strength. Here, er� is the imaginary error function. Where thismodel

is used throughout this thesis, the choice 𝑎( |𝑩 |) = 𝑎0 |𝑩 |2 is made, where 𝑎0 is a parameter

which controls the size of the isotropic region near magnetic null points.

For more e�cient evaluation of (3.5), it is approximated and implemented numerically us-

ing a piecewise polynomial spline. For 𝑎 < 0.5051, the function is clamped to 𝑠 = 0 and for

𝑎 > 29.41, 𝑠 = 1. Between these cut-o�s, 𝑠2 is approximated using eight splines. The upper

cut-o� gives the halo e�ect in the results presented later in section 3.4. The function (3.5), its

square and its spline approximation are plotted in �gure 3.2.

3.2.2 Braginskii-inspired switching functions

Two alternatives to the phenomenological von Mises switching function (3.5) can be extracted

from the Braginskii tensor itself. The tensor, written in the form (3.1), suggests two alternative

interpolation functions, one based on the coe�cient for the isotropic part𝜂1, and another based

on the coe�cient of the parallel part (3𝜂0 + 𝜂1 − 4𝜂2)/3. Figure 3.1 shows that the coe�cient

of the perpendicular term 𝜂2 − 𝜂1 is not suitable as an interpolation function.

The Braginskii switching functions are easiest written using a form of 𝜂2(𝑥) (1.45) nor-
malised against 𝜂0,

𝜂 (𝑥) = 𝜂2(𝑥)/𝜂0 =
6

5

𝑥2 + 2.23

𝑥4 + 4.03𝑥2 + 2.23
. (3.6)

This allows the de�nition of a new interpolation function based on the coe�cient of the parallel

part of the Braginskii tensor as

𝑠𝑝𝑎𝑟 (𝑥) =
3 + 𝜂 (2𝑥) − 4𝜂 (𝑥)

3

, (3.7)

1
While I am cited as an author in the referenced paper, I became involved in the research after the switching

model itself was developed. My contribution is in the numerical implementation of themodel and the development

and analysis of the simulations.
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Figure 3.3: Three potential switching functions.

and another based on the coe�cient of the isotropic part,

𝑠𝑖𝑠𝑜 (𝑥) = 1 − 𝜂 (2𝑥). (3.8)

Figure 3.3 plots the two Braginskii and the von Mises switching functions. The function

𝑠𝑝𝑎𝑟 shows the most similarity to the von Mises switching function, particularly the shallow

slope near |𝑩 | = 0, in contrast to the steeper slope of 𝑠𝑖𝑠𝑜 . Note that the argument of the von

Mises switching function is the square of 𝑥 = 𝛼 |𝑩 |. This is a direct result of the choice of

constitutive function 𝑎( |𝑩 |) = 𝑎0 |𝑩 |2, where 𝑎0 = 𝛼2 for comparison.

3.2.3 Calibrating the interpolation functions

The parameters 𝑎0 and 𝛼 control the e�ective size of the isotropic region by controlling the

degree to which the viscosity is anisotropic for a given �eld strength. From �gure 3.3, the

viscosity can be considered fully parallel when 𝛼 |𝑩 | = 10. If the viscosity should be considered

parallel when the �eld strength is some reference value 𝐵0 then𝛼 = 10/𝐵0 gives the appropriate
parameter choice. Similarly, for the von Mises function, 𝑎0 = 100/𝐵2

0
. This calibration can be

seen in practice in the following example.

In the numerical experiments performed in chapter 6, the magnetic �eld strength increases

linearly with distance from the null point and the grid separation is found to be Δ𝑥 ≈ 0.014.

If the viscosity is considered fully anisotropic at a radius of, say, ten grid points, the �eld at

𝑥 = 10Δ𝑥 is |𝑩 | = 0.14, resulting in a calibrated 𝛼 ≈ 70. The associated von Mises parameter

would be 𝑎0 ≈ 4900.

3.3 Implementation of viscosity in Lare3d

The two types of viscosity already present in the Lare3d code are shock and isotropic viscosi-

ties. Since shock viscosity is turned o� for most numerical experiments presented in this thesis,
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I shall only detail the numerical implementation of isotropic viscosity, before discussing the

implementations of the Braginskii and switching models.

3.3.1 Review of the implementation of isotropic viscosity

The isotropic viscous stress tensor is implemented in Lare3d as six 3D arrays, each storing the

values for the six required components of a symmetric stress tensor. These are �lled during

the Lagrangian step using (1.27), where the components of the strain rate tensor are calculated

via (1.26). This stress tensor is used in the calculation of forces in the momentum equation and

in the calculation of viscous heat contribution in the energy equation. This entire process is

presented in detail below.

The strain rate tensor𝑾 is calculated in the code as

sxx = (2.0 _num * dvxdx - dvydy - dvzdz) * third

for the diagonal elements sxx, syy and szz and

sxy = (dvxdy + dvydx) * 0.5 _num

for the o�-diagonal elements sxy, sxz and syz. Since𝑾 is a symmetric tensor, only six com-

ponents need to be calculated. The gradients of velocity, written like dvxdy for 𝜕𝑢𝑥/𝜕𝑦, are
calculated using �nite di�erences between appropriate velocity components, where the veloc-

ity is interpolated between neighbouring grid points to ensure the resultant stress tensor is

de�ned at the appropriate grid location. Note, the calculation of 𝑾 in the code is a factor of

a half smaller than the de�nition used in this thesis (1.26). This is corrected for during the

calculation of the viscous stress tensor, stored in the variable qxx, where a factor of two is

included,

qxx(ix,iy,iz) = qxx(ix,iy,iz) + 2.0 _num * sxx * rho(ix,iy,iz) * visc3

and similarly for the other �ve components of the tensor. The multiplication by rho at this

point is cancelled out at a later stage.

The gradient of the tensor is used in the calculation of the forces in themomentum equation

in the following way. The tensor values must be averaged to ensure the resultant gradient is

correctly aligned with the velocity grid locations. Similar calculations are carried out for the

other components of the stress tensor and force vector. This same code is used to include the

anisotropic viscous stress tensors when they are enabled.

w1 = (qxx(ix ,iy ,iz ) + qxx(ix ,iyp ,iz ) &

+ qxx(ix ,iy ,izp) + qxx(ix ,iyp ,izp)) * 0.25 _num

w2 = (qxx(ixp ,iy ,iz ) + qxx(ixp ,iyp ,iz ) &

+ qxx(ixp ,iy ,izp) + qxx(ixp ,iyp ,izp)) * 0.25 _num

fx = fx + (w2 - w1) / dxc(ix)
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The viscous heat is calculated using

visc_heat(ix,iy,iz) = &

qxy(ix,iy,iz) * dvxy + qxz(ix,iy,iz) * dvxz &

+ qyz(ix,iy,iz) * dvyz + qxx(ix,iy,iz) * dvxdx &

+ qyy(ix,iy,iz) * dvydy + qzz(ix,iy,iz) * dvzdz

and, just as in the calculation of the forces above, this same code is used to calculate the viscous

heat generated by the anisotropic viscous tensors when they are enabled.

3.3.2 Implementation of the Braginskii tensor

Since the contribution of a generic viscous stress tensor to the momentum and energy equa-

tions is already included in the numerical implementation of isotropic viscosity, the only new

piece of code required to implement a new stress tensor is the calculation of the stress tensor

itself. The Braginskii tensor given by (1.51) is implemented in the following way and, when

enabled, replaces the calculation of the isotropic viscous stress tensor.

The four coe�cients of the terms in (1.51) are calculated as

a = (3. _num*visc3 + brag_visc1 - 4._num*brag_visc2 )&

/ MAX(2. _num*mB2**2, none_zero)

b = (brag_visc1 - visc3 )/(2. _num*mB2)

c = (brag_visc2 - brag_visc1 )/(mB2)

d = brag_visc1

where visc3 is the variable holding the value of𝜂0, brag_visc1 and brag_visc2 hold the values

of 𝜂1 and 𝜂2, calculated via (1.45), and mB2 holds the value of |𝑩 |2. The calculation of 𝜂1 and 𝜂2

is performed in the following way

xi2 = (brag_alpha **2) * mB2

brag_visc_coeff = visc3 *(6. _num /5. _num*xi2 + 2.23 _num)&

/ (2.23 _num + 4.03 _num*xi2 + xi2 **2)

where brag_alpha represents the parameter 𝛼 .

The quantity (𝑾𝑩)·𝑩 and the tensor components of𝑩⊗𝑩 are calculated using the following

snippet.

calc_wbdotb = 2._num *(&

(bx*sxx + by*sxy + bz*sxz)*bx &

+ (bx*sxy + by*syy + bz*syz)*by &

+ (bx*sxz + by*syz + bz*szz)*bz)

btxx = bx**2
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btyy = by**2

btzz = bz**2

btxy = bx*by

btxz = bx*bz

btyz = by*bz

This allows the Braginskii stress tensor to be calculated using

bsxx = wbdotb *(a*btxx + b) + 2._num*d*sxx &

+ 4._num*c*(btxx*sxx + btxy*sxy + btxz*sxz)

and similar for the diagonal bsxx, bsyy and bszz components. The o�-diagonal components

are calculated using the following snippet.

bsxy = wbdotb*a*btxy + 2._num*d*sxy &

+ 2._num*c*(btxx* sxy + btxy* syy + btxz* syz &

+ sxx*btxy + sxy*btyy + sxz*btyz)

Finally, the contribution from the Braginskii stress tensor is added to the total stress tensor

using

qxx = qxx + rho*bsxx

and similar for the other components. A later calculation in Lare3d requires that the Braginskii

stress tensor is multiplied by rho. Since multiple separate stress tensors can be included, at this

point in the execution qxx may already contain a contribution from an unrelated tensor (such

as shock viscosity), hence why bsxx is added in this way. However, this is included for the

bene�t of other users of the code; in this thesis qxx will only contain a single stress tensor: the

isotropic stress tensor or one of the anisotropic stress tensors.

3.3.3 Implementation of the switching model

The numerical implementation of the switching model (3.4) is similar to the implementation

of the Braginskii model detailed previously, with the exception of the tensor itself which is

calculated using

bsxx = visc3 *((1.0 _num -s2)*sxx *2.0 _num + 1.5 _num*s2&

/MAX(mB2**2, none_zero )* wbdotb *(btxx - mB2*third))

where s2 holds the local value of the chosen switching function, and the diagonal bsxx, bsyy

and bszz components are calculated similarly. The o�-diagonal components are calculated

using the following snippet.

bsxy = visc3 *((1.0 _num -s2)*sxy *2.0 _num + 1.5 _num*s2&

/MAX(mB2**2, none_zero )* wbdotb *(btxy))
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As discussed in section 3.2.1, the vonMises switching function 𝑠2 is implemented as a spline

approximation. The Braginskii switching functions (3.7) and (3.8) have been simpli�ed using

the Python package SymPy and are implemented directly.

3.4 Application to stressed null point

As a test of the switching model in a non-trivial topology, a series of simulations of magnetic

null points subjected to twisting motions were carried out. Isotropic, Braginskii (without drift

terms) and switching viscosity, with the three switching functions presented here, were used

and the results compared. The shock viscosity was turned o� in every experiment.

3.4.1 Numerical setup

The non-dimensionalised MHD equations are solved using the code Lare3d, introduced in

chapter 2. For the purposes of testing and comparing the various models, the typical val-

ues used to non-dimensionalise the MHD equations are arbitrary
2
. The domain is a cube of

dimension [−3, 3]3 and the resolution is 500 or 100 grid points per dimension. The magnetic

�eld is initially prescribed as a linear magnetic null point,

𝑩 = (𝑥,𝑦,−2𝑧)𝑇 . (3.9)

The density 𝜌 is initially set to unity, the velocity to 𝒖 = 0, and the internal energy initially

𝜀 = 𝛾 − 1, where 𝛾 = 5/3 is the speci�c heat ratio. Both viscosity and resistivity are uniform

and take the value 𝜈 = 𝜂 = 10
−4
.

On the lower boundary (𝑧 = −3) the velocity takes the form of a twisting vortex

𝒖 =
𝑣0

2

[
1 + tanh

(
2

𝑡 − 𝑡0
𝑡𝑑

)]
𝒖ℎ, (3.10)

with 𝒖ℎ = (𝑢′𝑥 , 𝑢′𝑦, 0)T and

𝑢′𝑥 =


−𝜋𝑦 sin(𝜋𝑟 )

𝑟
if 𝑟 2 < 1,

0 if 𝑟 2 ≥ 1,

𝑢′𝑦 =


𝜋𝑥

sin(𝜋𝑟 )
𝑟

if 𝑟 2 < 1,

0 if 𝑟 2 ≥ 1,

(3.11)

where 𝑟 2 = 𝑥2 +𝑦2. On the opposite boundary, the twisting motion is reversed. The maximum

driving velocity is set to 𝑣0 = 0.05. The acceleration parameters are set to 𝑡0 = 2, the time

at which the velocity is half its maximum, and 𝑡𝑑 = 1, resulting in maximum velocity being

2
For reference, the typical values are 𝐵0 = 0.03 T, 𝐿0 = 180 × 10

3
m and 𝜌0 = 1.67 × 10

−4
kg m

−3
, for the

magnetic �eld strength, length and density, respectively.
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Table 3.1: Total heat generated up to 𝑡 = 10 by each model of viscosity for resolutions of

𝑁 = 100 and 500.

Model Iso Brag Swi (von Mises) Swi (par) Swi (iso)

𝑁 = 100 5.08 × 10
−3

5.74 × 10
−5

7.13 × 10
−5

8.39 × 10
−5

4.66 × 10
−5

𝑁 = 500 4.04 × 10
−3

5.25 × 10
−5

6.81 × 10
−5

7.80 × 10
−5

4.39 × 10
−5

achieved around 𝑡 ≈ 4. On the boundaries, all other variables keep their initial values and the

derivatives through each boundary is zero.

For comparison between the switching models, the switching parameters are set to 𝛼 = 6

and 𝑎0 = 𝛼
2 = 36. This dramatically exaggerates the size of the isotropic region around the null

point and allows good comparison of the viscosity models. These parameter choices result in

the viscosity being nearly fully parallel at a distance of around 0.8 from the centre of the null

point. From the centre to this distance, the viscosity transitions from isotropic to fully parallel.

3.4.2 Results

The primary di�erence between isotropic and the anisotropic viscositymodels is themagnitude

and spatial distribution of the viscous heating. Isotropic viscosity overestimates the total heat

generated by several orders of magnitude, when compared to any anisotropic model. The

switching models all share some characteristics with the Braginskii model and each present

di�erent advantages.

Di�erences in viscous heating rates

Table 3.1 shows the total heat generated by 𝑡 = 10 for each viscosity model for two di�er-

ent resolutions. The isotropic model overestimates the viscous heating by approximately two

orders of magnitude compared to any of the anisotropic models. The switching models all

dissipate similar amounts of heat to the Braginskii model, indicating that these models are ap-

proximating well the Braginskii tensor. The variance between each of the anisotropic models

can be explained by considering how the isotropic and anisotropic parts of the tensors each

contribute to the heating pro�le.

Figure 3.4 shows the isotropic heating rate at time 𝑡 = 10 for each viscosity model. Isotropic

viscosity heats at a generally greater rate than the anisotropic models, and the heating is dis-

tributed more extensively throughout the null. The boundary of the numerical cut-o�, where

isotropic viscosity turns o� in the von Mises switching model, can be seen in �gure 3.4c. The

isotropic heating generated by the two Braginskii-inspired models showmost similarity to that

of the Braginskii model, with the isotropic-based switching model showing a nearly identical

heating pro�le. This is to be expected since the coe�cients of the isotropic contributions to

the Braginskii and isotropic-based switching tensors are identical. The relative magnitude of
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Figure 3.4: Isotropic heating generated by the viscosity models. Shown are plots of the isotropic

heating produced by the isotropic, full Braginskii and switching models at 𝑡 = 10, sliced

through 𝑦 = 0. Note the peak colour of the isotropic plot is an order of magnitude greater

than that of the anisotropic models.

the isotropic heating contributions for each anisotropic model re�ects the total heat generated

in table 3.1, showing that the isotropic model overestimates viscous heating by two orders of

magnitude.

Figure 3.6 shows the contributions to viscous heating from the anisotropic parts of the

Braginskii and switching tensors. The anisotropic heating generated by the Braginskii tensor

is dominated by the perpendicular contribution near the fan plane. This again reveals the

potential issue with arti�cially increasing 𝛼 , that alongside increasing the size of the isotropic

region, the extent of the perpendicular contributions are similarly enhanced.

While table 3.1 shows the global estimate of total viscous heat remains broadly consistent

between di�erent resolution for each of the viscosity models, �gure 3.6 shows the spatial dis-

tribution of the heating does not. Figure 3.7 shows the heating rate produced by the anisotropic

parts of the Braginskii and switching models and reveals the primary issue with the Braginskii

model. When the resolution is too low to properly resolve the region around the null point, the

Braginskii model erroneously heats anisotropically, primarily due to the arti�cially increased

𝛼 enhancing the perpendicular components near the null point. This issue is mitigated by the

switching models, all of which remove the perpendicular components of the Braginskii tensor.

At the higher resolution of 𝑁 = 500 the von Mises switching model appears to remove more
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Figure 3.5: Relative computational e�ciency of viscosity models measured via mean runtime. The
runtime for each viscosity model is scaled by the runtime for the isotropic model.

anisotropic heating than may be necessary however this could be solved by optimising the

parameter 𝑎0. Both Braginskii-based switching models show greater similarity to the Bragin-

skii model without su�ering from the issue of anisotropy at the null. Away from the null all

switching models give similar results to the Braginskii model.

3.5 Model e�ciency

In order to evaluate the computational e�ciency of each model, a set of benchmark tests were

run with the same physical setup as that of the test simulations found in section 3.4, although

changing the initial or boundary conditions should not a�ect the results. The resolution is set

to 𝑁 = 100, all output is disabled, only one CPU core is used, and the simulations run for only

100 timesteps. This number of timesteps allows the main loop of the simulation to run for a

longer time than the overhead required to start and end the simulation, giving a more accurate

estimate of the running time. The combination of the resolution and the number of timesteps

results in the viscosity routines running 10
8
times per simulation. The time is calculated via the

Linux time command which reports millisecond accuracy. Due to other software running on

the same machine, the total time can vary. To measure a more accurate running time, the test

for each model is repeated 25 times and the results averaged. The machine used to run these

tests is a Dell all-in-one with a 4 core, Intel i7-6700 CPU running at 3.4 GHz and the machine

has 16 GB of RAM.

Figure 3.5 shows the average runtime for each model. Since the isotropic model requires

only the calculation of the rate of strain tensor, it is the quickest. The Braginskii model, being

the most complex, requires many additional calculations to be carried out and this is re�ected

in its poorer runtime. The switching models show similar e�ciencies, worse than the isotropic

model but mostly better than the Braginskii model, as expected from considering the number

of required calculations. The di�erences between the runtimes of the di�erent interpolation
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functions are slight, although the von Mises implementation appears moderately faster. This

is likely due to the spline representation of the von Mises function requiring only one compu-

tation of a cubic, while the other switching functions require two.

3.6 Conclusion

This chapter details the switching model, a new model of anisotropic viscosity speci�cally de-

signed for use in numerical simulations of the solar corona. The model o�ers an alternative

to the Braginskii model, capturing the main physics while avoiding the problem of anisotropic

heating at the null point itself. It does this by arti�cially enlarging the isotropic region sur-

rounding magnetic null points. The switching model does this by exposing a tunable inter-

polation function which measures the degree of anisotropy (dependent on the local magnetic

�eld strength) and interpolates between isotropic and fully �eld-aligned viscosity. Three can-

didate interpolation functions are presented and their e�cacy and computational e�ciency

compared. The switching model is generally found to be computationally more e�cient than

the Braginskii model and o�ers a good approximation to it.

Overall, the three switching functions behave similarly and each provide unique advan-

tages. While the von Mises switching function is computationally faster than the Braginskii-

inspired functions, it is a phenomenological model and requires a spline approximation for

e�cient implementation. In contrast, the Braginskii switching functions utilise the interpola-

tion already implicit in the Braginskii tensor and can be implemented directly in the code.

In chapters 4 and 5 the von Mises switching model is employed although the �eld is strong

enough everywhere that the tensor reduces to purely parallel (i.e. 𝑠 = 1 everywhere). In

chapter 6 the Braginskii-inspired parallel function (3.7) is used to avoid the numerical cut-o�

associated with the spline representation.
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(d) Switching (iso)

Figure 3.6: Anisotropic heating generated by the full Braginskii and switching models at time
𝑡 = 10. Close to the fan plane the Braginskii model shows notably greater anisotropic heating

than any of the switching models. The switching models all appear similar though with minor

di�erences near the null point.
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Figure 3.7: The e�ect of resolution on anisotropic heating rates. The anisotropic heating rate

is plotted at resolutions of 100 (left of each plot) and 500 (right of each plot) grid points per

dimension and both plots are slices through 𝑥 = 0 at 𝑡 = 5. When the null point is less resolved

(left half of both �gures) Braginskii viscosity erroneously permits anisotropic heating at the

null. At higher resolutions (right half of both �gures) the null is better resolved and much less

anisotropic viscous heating is found at the null. All switching models avoid this issue.



Chapter 4

Application to the kink instability

4.1 Introduction

In this chapter I investigate the e�ects of anisotropic viscosity on the kink instability [54, 53],

believed to be a trigger for �ares [103] and an important mechanism in the nano�are theory of

coronal heating [18]. The instability has been studied using shock viscosity [53, 6] but a detailed

investigation of the e�ects of anisotropic viscosity has not, to the best of my knowledge, been

performed.

The main aim of this investigation is to provide insight into the e�ect of the choice of vis-

cosity model on the nonlinear dynamics and relaxation of a twisted coronal loop, where the

kink instability converts magnetic energy to heat through Ohmic heating generated via current

structures and through viscous heating generated via �ow structures. This additionally gives

an estimate of how well viscous heating (using both isotropic and anisotropic models) per-

forms when compared with Ohmic heating. This study extends previous work [53] which also

considers the kink instability in a zero-current loop (details given below). However, in contrast

to [53], only background resistivity and viscosity are used as the two heating mechanisms here

(that is, shock viscosity and anomalous resistivity are disabled).

The layout of the chapter is as follows. The coronal loop model is described in section 4.2.

Details of the numerical setup and methods used in the analysis of the simulation results are

presented in section 4.3. Detailed numerical results of a typical case of a kink instability are

given in section 4.4 with a particular focus on how the di�erent viscosity models a�ect its

nonlinear evolution. The results of the typical case are con�rmed and generalised by a param-

eter study in section 4.5 where the dependences of the Ohmic and the viscous heating on the

resistivity and the dynamic viscosity are explored. Conclusions are summarised in section 4.7.

This chapter is an adaptation of a previously published paper [87].

53
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𝐵0 𝐿0 𝜌0 𝑢𝐴 = 𝐵0/
√
𝜌0𝜇0 𝑡𝐴 = 𝐿0/𝑢𝐴 𝑇0

5 × 10
−3

T 1 Mm 1.67 × 10
−12

kg m
−3

3.45 Mm s
−1

0.29 s 1.73 × 10
9 𝐾

Table 4.1: Reference values for the magnetic �eld, length, density, and temperature. These are

used to non-dimensionalise the MHD equations (1.17)–(1.20) and to calculate the reference

values for velocity, time and temperature.

4.2 Coronal loop model

A twisted magnetic �ux rope is used as the model of an idealised coronal loop. The domain is

a Cartesian box of dimension [−2 Mm, 2 Mm] × [−2 Mm, 2 Mm] × [−10 Mm, 10 Mm] in the 𝑥 ,

𝑦 and 𝑧-directions, respectively. The state of the plasma is typical of the corona, with density

𝜌 initially 1.67 × 10
−12

kg m
−3
, and with plasma pressure 𝑝 such that the temperature of the

plasma 𝑇 is initially 2 × 10
4
K everywhere in the domain. This initial temperature is low for

the solar corona however it matches the value used in [53] and results in a suitably low initial

plasma beta. The magnetic �eld 𝑩 is constructed so that it is initially force-free, line-tied at

the boundaries, and twisted such that it is linearly unstable to the ideal kink instability. In

a dynamically twisted �ux tube (such as that found in chapter 5) the �eld is such that the

total axial current (integrated over the cross-section of the tube) is zero. To better model a

real coronal loop, which would have been dynamically twisted by motions at its footpoints,

the magnetic �ux rope modelled here is additionally ensured to have zero total axial current.

This con�guration allows direct comparison to previous studies that use similar magnetic �eld

con�gurations [53, 6, 13]. The �eld outside the �ux tube is straight (aligned with the 𝑧-axis) and

has a strength of 5 × 10
−3

T. Given this temperature and magnetic �eld strength, the plasma

beta is initially 𝛽 ≈ 10
−5
, a value realistic for the corona. The evolution of this �ux tube is

governed by the nonlinear MHD equations described in section 1.2.3.

The magnetic �eld is considered force-free, that is the �eld is constructed such that the

Lorentz force is zero, or (∇ × 𝑩) × 𝑩 = 0. In cylindrical coordinates (𝑟, 𝜃, 𝑧), the chosen force-

free magnetic �eld takes the form ∇×𝑩 = 𝛼 (𝑟 )𝑩, where 𝛼 (𝑟 ) is a function of a particular form

that ensures the total axial current is zero. Aligning with previous work by Hood et al. [53], the

smooth 𝛼 (𝑟 ) pro�le given as Case 3 in [53] is used. Using this pro�le, the equilibriummagnetic

�eld 𝑩 is written as

𝐵𝜃 = 𝜆𝑟 (1 − 𝑟 2)
3

,

𝐵𝑧 =

√︂
1 − 𝜆2

7

+ 𝜆
2

7

(1 − 𝑟 2)7 − 𝜆2𝑟 2(1 − 𝑟 2)6,

𝛼 (𝑟 ) = 2𝜆(1 − 𝑟 2)2(1 − 4𝑟 2)
𝐵𝑧

,

(4.1)
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Figure 4.1: The initial �eld con�guration. In (a) �eld lines are plotted corresponding to inner

(red), outer (blue) and straight (yellow) regions of twist, with slices of 𝛼 (𝑟 ) shown at the foot-

points. In the slices, red corresponds to 𝛼 (𝑟 ) > 0, blue to 𝛼 (𝑟 ) < 0 and white to 𝛼 (𝑟 ) = 0. In

(b) the pro�les of 𝛼 (𝑟 ) and the �eld components 𝐵𝑧 and 𝐵𝜃 across the �ux tube are plotted.

for 𝑟 ≤ 1 and

𝐵𝜃 = 0

𝐵𝑧 =

√︂
1 − 𝜆2

7

𝛼 (𝑟 ) = 0,

(4.2)

for 𝑟 > 1, where 𝜆 is a parameter measuring the twist in the tube. The radial �eld throughout

the domain is set to 𝐵𝑟 = 0. As is done in [53], 𝜆 = 1.8 to ensure the tube is unstable to the

ideal kink instability. The equilibrium velocity for this magnetic �eld con�guration is 𝒖 = 0.
The form of 𝛼 (𝑟 ) in equations (4.1) and (4.2) splits the pro�le of the �ux tube into three

twist regions, the inner region of positive twist (𝑟 ≤ 0.5), the outer region of negative twist

(0.5 < 𝑟 < 1) and the straight-�eld region of zero twist (𝑟 ≥ 1) as shown in �gures 4.1a and

b. These �gures also illustrate the equilibrium �eld. Since the inner region is more tightly

twisted, this �eld con�guration results in only the inner region becoming unstable to the kink

instability, rather than the global instability seen in non-zero-current loops [54]. The regions

of twist are used later to de�ne a measure of reconnection.

Although the initial temperature is prescribed as𝑇 = 2× 10
4
K, the equations simulated by

the code are written using internal energy, thus the temperature is converted to internal energy

using the non-dimensional relation 𝜀 = 𝑇 /(1 − 𝛾). Hence, the initial non-dimensionalised

density and internal energy are uniformly

𝜌 = 1, 𝜀 = 8.66 × 10
−4, (4.3)

and have been non-dimensionalised using the reference values found in Table 4.1. The initial

magnetic �eld and velocity are set to their equilibrium states, discussed above, with the addition

of a small perturbation.

In order to make a meaningful comparison of the following results with those of [53], iden-

tical initial magnetic �eld and velocity perturbations are used, calculated via a linear stability
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analysis (in ideal MHD) applied to a similar �ux tube that uses a constant, piecewise pro�le for

𝛼 (𝑟 ) [109, 17, 18].
At the boundaries, the line-tied condition on the magnetic �eld is satis�ed by ensuring the

�eld is constant and equal to its initial values given by equations (4.1) and (4.2). Similarly,

on the boundaries the density, internal energy and velocity 𝒖 are considered constant and

equal to their initial values. To close the system, the �uxes of all variables through each of the

boundaries are set to zero. That is, on the 𝑥-boundary,

𝜕𝑩

𝜕𝑥
=
𝜕𝒖

𝜕𝑥
= 0;

𝜕𝜌

𝜕𝑥
=
𝜕𝜀

𝜕𝑥
= 0 for 𝑥 = ±2, (4.4)

and similarly, the 𝑦 and 𝑧 derivatives are zero on the 𝑦 = ±2 and 𝑧 = ±10 boundaries, respec-
tively.

Since there are no nulls created during the evolution of the kink instability, the �eld remains

strong everywhere and the viscosity reverts to fully parallel. To ensure this, the switching

model (3.4) is used with the von Mises switching function (3.5) where 𝑎0 = 150.

4.3 Methods

4.3.1 Numerical setup

The MHD equations (1.17)—(1.20) were solved numerically using the Lare3d code [3], previ-

ously described in chapter 2. Shock viscosity was disabled in order to properly investigate

the e�ect of di�erent viscosity models. In order to compare results with those of Hood et

al. [53] numerical tests were performed using shock viscosity instead of either the switching

or isotropic models. Using the default shock viscosity parameters present in the code, the be-

haviour closely mirrors that of isotropic viscosity with 𝜈 ≈ 5× 10
−4
. When both switching and

shock viscosity are enabled, the shock viscosity dominates and, again, the behaviour mirrors

that of isotropic viscosity. In all other results presented here, shock viscosity has been disabled

to better isolate the e�ect of anisotropic viscosity.

The simulations were run at a resolution of 350 × 350 × 700, with the exception of the

parameter studies, which were run at a slightly higher resolution of 400 × 400 × 800. Since

the switching viscosity only acts parallel to the magnetic �eld, in perpendicular directions

numerical di�usion dominates. By running several simulations at resolutions of 250×250×500
up to 500 × 500 × 1000, it was found that the di�erences between simulations of di�erent

resolutions were negligibly small until around 𝑡 = 150, well after the nonlinear phase of the

instability. After this time there were some quantitative di�erences in outputs for di�erent

resolutions. However, the qualitative behaviour, described later, does not strongly depend on

the resolution.

The numerical di�usion present in the simulations (due to the numerical scheme employed
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in Lare3d) is estimated as 𝜈 = 𝜂 = 𝑢̃𝑥𝐿𝑥/𝑁 2

𝑥 . Taking a typical velocity of 𝑢̃𝑥 = 1, i.e. the Alfvén

velocity; 𝑁𝑥 = 350 as the number of grid-points in the 𝑥-direction; and 𝐿𝑥 = 4 as the length in

the 𝑥 direction, the numerical di�usion coe�cient is estimated as 𝜈 = 𝜂 ≈ 10
−5
. This provides a

theoretical lower bound on simulating a physical viscosity or resistivity. In practice, setting the

physical resistivity lower than 𝜂 ≈ 5 × 10
−5

results in behaviour that does not converge with

increasing resolution. This gives a practical lower bound for di�usion coe�cients of 5 × 10
−5
.

Thus, all results presented use physical di�usion coe�cients (either viscosity or resistivity)

greater than this lower bound.

4.3.2 Methods of analysis

Reconnection rate

The generally acceptedmeasure ofmagnetic reconnection is themaximum value of the integral

of the electric �eld parallel to the magnetic �eld 𝐸‖ = 𝜂 ( 𝚥 · 𝑩)/|𝑩 | along a magnetic �eld

line [45, 85, 98],

Φ =

∫
𝐶

𝜂
( 𝚥 · 𝑩)
|𝑩 | d𝑙, (4.5)

where 𝐶 is a magnetic �eld line with start and end points within the footpoints at 𝑧 ± 10.

The visualisation tool Mayavi [90] is employed to compute magnetic �eld lines using a grid

of �eld line starting points (𝑥𝑖, 𝑦 𝑗 ) at a given time. The absolute value of the parallel electric

�eld is integrated along each of the magnetic �eld lines to give a distribution Φ(𝑥𝑖, 𝑦 𝑗 ) across
the pro�le of the �eld. The maximum of this distribution gives a measure of the reconnection

rate.

It can be argued that the reconnection rate calculated by taking the global maximum is

only the rate for one region of magnetic di�usion, and the nonlinear phase of the kink instabil-

ity creates multiple di�usion regions in its development. One way to calculate the reconnec-

tion rate for each region is via the algorithm described in [83], which dissects the distribution

Φ(𝑥𝑖, 𝑦 𝑗 ) into separate regions before �nding the maxima corresponding to the reconnection

rate per di�usion region. In practice, the current structures created by the kink instability in

the reported results are simple enough that this extended analysis is unnecessary.

Other observables

In the course of analysing the simulation outputs, use is also made of the volume-integrated

parallel and perpendicular kinetic energies,

KE‖ =
1

2

∫
𝑉

𝜌
(𝒖 · 𝑩)2
|𝑩 |2 d𝑉 ; KE⊥ =

1

2

∫
𝑉

𝜌 |𝒖 |2 d𝑉 − KE‖, (4.6)
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the magnetic energy,

ME =
1

2

∫
𝑉

|𝑩 |2 d𝑉 , (4.7)

and the total Ohmic heating generated by time 𝑇 ,

𝑄𝜂 = 𝜂

∫ 𝑇

0

∫
𝑉

| 𝚥 |2 d𝑉 d𝑡 . (4.8)

The time and volume-integrated viscous heating rate can be written in the form

𝑄𝑖𝑠𝑜𝜈 =
𝜈

2

∫ 𝑇

0

∫
𝑉

tr(𝑾 2) d𝑉 d𝑡, (4.9)

for the isotropic viscous stress tensor (1.27) and in the form

𝑄𝑎𝑛𝑖𝑠𝑜𝜈 = 𝜈

∫ 𝑇

0

∫
𝑉

[
(1 − 𝑠2( |𝑩 |) 1

2

tr(𝑾 2) + 𝑠2( |𝑩 |) 3
4

((𝑾𝒃) · 𝒃)2
]
d𝑉 d𝑡, (4.10)

for the switching viscous stress tensor (3.4) using the von Mises switching function, respec-

tively.

4.4 Nonlinear evolution of a typical case

This section presents results from a pair of simulations with a single choice of viscosity and re-

sistivity. This provides an opportunity to analyse, in detail, the onset and evolution of the kink

instability in a single, typical case, in particular comparing the e�ect of the two viscosity mod-

els. Parameter studies generalising the observed dynamics are presented in section 4.5. The pair

of simulations di�er only in that isotropic viscosity is used in one case and switching viscosity is

used in the other. The di�usion parameters used in both simulations are 𝜈 = 10
−4, 𝜂 = 5×10−4.5,

both small but suitably above the threshold of numerical di�usion discussed in section 4.3. The

chosen value of 𝜈 is within the range of typical values found in the real corona, that is between

10
−8

and 10
−3

[96]. All other parameters are identical in both cases and are kept �xed to the

values speci�ed in section 4.3. Due to the strength of the �eld and lack of null points, it is

measured that 𝑠 = 1 throughout the entire domain, thus the switching model reverts to the

strong �eld approximation of the Braginskii tensor (1.39).

4.4.1 Linear phase

The linear development of the kink instability lasts until 𝑡 ≈ 35 as illustrated in �gure 4.2

and has a measured linear growth rate of 𝜎 = 0.13. Since the initial velocity perturbation

is calculated from an ideal and inviscid MHD model with a piecewise constant 𝛼 (𝑟 ) in the

equilibrium con�guration, the perturbation does not necessarily represent the most unstable
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Figure 4.2: Logarithmic plot of the total kinetic energy during the linear phase. Overlaid is a

straight line corresponding to the linear growth rate 𝜎 = 0.13. The isotropic case is represented

as a blue, solid line and the switching case as an orange, dashed line. Though the kinetic en-

ergy is initially slightly greater using the switching model, the growth rate appears una�ected

by choice of viscosity model. The duration of the linear phase also appears to be negligibly

a�ected.

(a) 𝑡 = 45 (b) 𝑡 = 50

Figure 4.3: The transition from linear to nonlinear instability in the isotropic case. The yellow

�eld lines start at 𝑧 = 10 and the blue �eld lines at 𝑧 = −10. The isosurfaces are at | 𝚥 | = 4.

The slices are plots of 𝛼 (𝑟 ). The linear growth of the instability ends around 𝑡 = 35 and the

inner �eld compresses into the outer �eld, creating a current sheet. Between 𝑡 = 45 and 50 this

current sheet enables reconnection between the two regions. The transition for the switching

case is qualitatively similar. In all three plots, 𝜈 = 10
−4

and 𝜂 = 5 × 10
−4.5

, respectively.

mode for the setup of the simulation. For this reason there is a brief transient period before the

exponential rise of the instability at 𝑡 ≈ 10, as shown in �gure 4.2. The isotropic model damps

this initial velocity perturbation more than the switching model, leading to a small di�erence

in kinetic energy during the growth of the linear instability, although the growth rate appears

to be identical across the two models. The duration of the linear phase is also una�ected by

the choice of viscosity model.

Initially, the instability occurs in the inner region of twist, 𝑟 < 0.5, where the magnetic �eld

kinks helically. This section of the magnetic �eld compresses into the outer region, creating

a current sheet along the length of the tube as shown in �gure 4.3a. As the �eld continues to

be compressed, it provides a magnetic pressure force that stalls the linear growth. The greater

kinetic energy in the switching case leads to greater compression and thus a larger (though
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Figure 4.4: Energy components and current as functions of time. Both isotropic (blue, solid) and

switching (orange, dashed) viscosity models are shown, with di�usion parameters 𝜈 = 10
−4

and 𝜂 = 5 × 10
−4.5

.

not notably stronger) current sheet. After this point, the growth of the kink instability is no

longer in the linear phase.

During the transition from the linear to the nonlinear phase, �eld lines in the current sheet

between the regions of inner and outer twist start to reconnect (�gures 4.8). This happens

sooner in the switching case, due to the larger compression.

4.4.2 Nonlinear phase

Although the choice of viscosity model has a small e�ect on the linear phase of the kink insta-

bility, it does play an important role in the development of the nonlinear phase. By examining

the kinetic energies (KEs) in �gures 4.4a and b, a pattern emerges in both cases that has simi-

larities with the nonlinear behaviour of kink instabilities described in Hood et al. [53]. Shortly

after the linear phase, at 𝑡 ≈ 50, the KEs for both viscosity models exhibits a sharp rise, with

the KEs associated with the switching model attaining higher amplitudes. At the same time,

a sharp rise is also found in the maximum current as seen in �gure 4.4c and, leading on from

this spike, the current magnitudes associated with the switching model are larger than those

associated with the isotropic model. Returning to the KEs, the energies associated with the
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Figure 4.5: Reconnection rate. The maximum integrated parallel electric �eld is plotted for the

isotropic (blue dot & solid line) and switching (orange cross & dashed line) cases with 𝜈 = 10
−4

and 𝜂 = 5 × 10
−4.5

. The di�erence in time between each data point is 5 Alfvén times.

switching model are greater until 𝑡 ≈ 175, after which, in only the isotropic case, a clear sec-

ondary spike in perpendicular kinetic energy is found, along with a large increase in parallel

kinetic energy, much greater than the corresponding energy found in the switching case. It is

di�cult to detect this new phase in the maximum current (�gure 4.4c), but it is found in other

quantities related to magnetic reconnection.

Figure 4.5 displays the time series of the maximum integrated parallel electric �eld, for

both viscosity models. The time series in �gure 4.5 displays a similar trend to that found in

the perpendicular kinetic energy plot, �gure 4.4b. For both isotropic and anisotropic viscosity

there appears to be two major peaks in the reconnection measures that align with peaks in the

perpendicular kinetic energy. This is much more obvious in the isotropic case. Both viscosity

models allow for two phases of reconnection but the time at which they occur is signi�cantly

modi�ed by the form of viscosity chosen. It is, therefore, clear that the form of viscosity is

having a signi�cant e�ect on the nonlinear evolution of the kink instability, both on the �ow

dynamics and the reconnection of the magnetic �eld. The following section presents, in more

detail, the two important phases indicated by the isotropic time series, and how the results

di�er in the switching case.

4.4.3 First phase: 𝑡 ≈ 65–100

At 𝑡 ≈ 65, an intense current structure appears near the centre of the tube for both viscosity

models, although it is much stronger in the switching case as illustrated in �gure 4.6. Since the

viscous damping associated with parallel viscosity is much less than that of isotropic viscosity,

the �ows in the switching case are stronger than those in the isotropic case (�gures 4.4a and

b). The faster �ows drive stronger reconnection in the central current structure (see �gure 4.5)

and the interaction of these processes leads to stronger out�ows and �ner-scale structures in

the switching model case compared with the isotropic model case. Evidence of this behaviour

can be seen by comparing the current and �ow structures in �gure 4.6. The e�ects of this
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(a) iso; 𝑡 = 65 (b) iso; 𝑡 = 75 (c) iso; 𝑡 = 100

(d) swi; 𝑡 = 65 (e) swi; 𝑡 = 75 (f) swi; 𝑡 = 100

Figure 4.6: The di�erence in the evolution of current density, temperature and velocity structures
between the isotropic and the switching viscosity cases. Slices at 𝑧 = 0 of current density (top of

each �gure; blue is | 𝚥 | = 3.5, white is | 𝚥 | = 0) and temperature (bottom of each �gure; red is

𝑇 = 5× 10
−2
, white is𝑇 = 1.15× 10

−5
), overlaid with �uid �ow. The halves shown are identical

to their unseen counterparts, for both temperature and current density. That is, the simulation

is vertically symmetrical at these times. The pro�le is cropped to 𝑥 = ±1, 𝑦 = ±1. The top

three panels show the isotropic case and the bottom three panels show the switching case.

phase can also be seen in the magnetic energy evolution, shown in �gure 4.4d. Between times

𝑡 = 100 and 125, due to stronger reconnection in the switching case, the magnetic �eld relaxes

marginally faster than that of the isotropic case, before the secondary instability begins in the

isotropic case around 𝑡 = 125.

4.4.4 Second phase: 𝑡 ≈ 125–175

The contrast between �ne-scale current and �ow structures for the switching model, and the

smoother, larger-scale structures of the isotropic model continues to be present at later times.

Figure 4.7 shows the same data as �gure 4.6 but for times 𝑡 = 125, 150 and 175. Looking at the

slices at 𝑡 = 125, there is more �ne-scale structure generated in the switching case compared

to the isotropic case, as in the �rst phase described above. This second phase, however, marks

the beginning of a signi�cant change in behaviour in the isotropic model case. From �gure 4.4,
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(a) iso; 𝑡 = 125 (b) iso; 𝑡 = 150 (c) iso; 𝑡 = 175

(d) swi; 𝑡 = 125 (e) swi; 𝑡 = 150 (f) swi; 𝑡 = 175

Figure 4.7: The formation of a reconnection feedback loop in the isotropic and the switching vis-
cosity cases. Plotting parameters are identical to those of �gure 4.6. The isotropic case shows

two current sheets causing reconnection at the top and bottom of the tube, producing �ows

that sustains another central current sheet, which feeds back into the top and bottom sheets.

The switching case instead shows one single main current sheet at the right hand side, along

with numerous smaller current structures throughout the domain.

the parallel KE for the isotropic model exhibits a rapid and large increase in kinetic energy,

characteristic of a secondary instability. To a lesser extent, there is also growth in the perpen-

dicular KE, and the two reconnection measures for the isotropic model. In the second phase,

these three measures increase to eventually become greater than their corresponding values

for the switching model, at 𝑡 ≈ 175. The signi�cant di�erence in the behaviour between the

two models is explored by �rst considering the slices in �gure 4.7.

At 𝑡 = 125 (panels a and d of �gure 4.7), the di�erence in behaviour between the models is

similar to the �rst phase but some new features appear. The KE in the isotropic model begins to

increase and, as mentioned before, appears to signify a secondary instability. In �gure 4.7a, two

new current sheets have formed at the top and bottom of the tube. A three-dimensional (3D)

visualisation of these current sheets is shown in �gure 4.8a. The out�ow from the reconnection

occurring within these current sheets then creates two new symmetric vortices on the right

hand side of the tube, advecting the �eld into the centre of the tube. This behaviour can be seen



CHAPTER 4. APPLICATION TO THE KINK INSTABILITY 64

(a) Isotropic (b) Switching

Figure 4.8: The di�erence in 3D current structures at 𝑡 = 175. Isosurfaces are at | 𝚥 | = 1.5.

(a) Isotropic (b) Switching

Figure 4.9: Late-time magnetic �eld structures at 𝑡 = 600.

clearly in �gure 4.7b where vortex motion compresses the magnetic �eld and forms a central

region of enhanced current density. Later, as seen at 𝑡 = 175 in �gure 4.7c, the central current

region becomes stronger due to continued compression and reconnection ensues, stronger even

than in the switching model case (see �gure 4.5). The out�ows from this current region then

feed into the vortical motions that drive the compression. In this way, a feedback loop is set

up, and the reconnection within the current structure continuously drives the �ow, resulting

in an instability. This interaction between multiple current sheets is also seen in [53]. Due

to the secondary instability, magnetic relaxation now becomes more e�cient in the isotropic

case and, as a result, the magnetic energy for this case dips below that of the switching case,

as shown in �gure 4.4d.

During this phase, the kinetic energy in the switching model case also increases but to a

much smaller extent compared to the isotropic model case. Although the current densities in

�gures 4.7d to f again exhibit �ner-scale structure compared to the isotropic case, the mag-

nitude of the current density within the tube becomes weaker with a more uniform pro�le

developing in time. The dominating current sheets are on the edge of the tube, as also indi-

cated in �gure 4.8b.

4.4.5 Late-time states

For both cases, the asymptotic relaxed magnetic �eld is a linear force-free �eld. The route

to this asymptotic state, however, depends on the viscosity model used. At the late time of
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Figure 4.10: Heating rates as functions of time. Plots are shown for isotropic (blue, solid) and

switching (orange, dashed) viscosity, with di�usion parameters 𝜈 = 10
−4

and 𝜂 = 5 × 10
−4.5

.

Ohmic heating dominates isotropic viscous heating by an order of magnitude, and switching

viscosity by four orders. Isotropic viscosity generates a factor of around 10
3
more heat that

switching viscosity. Even though more Ohmic heat is generated in the switching case, it does

not compensate for the much weaker viscous heating.

𝑡 = 600, there remain clear di�erences in the �eld structure between the two models resulting

from the di�erent nonlinear evolutions, as can be seen in �gure 4.9. At 𝑡 = 600, the magnetic

�eld in the isotropic case (�gure 4.9a) appears straighter, indicative of more e�cient magnetic

relaxation. Indeed, �gure 4.4d shows that more energy has been extracted from the �eld in the

isotropic case. At 𝑡 = 600, the current density and energies (see �gure 4.4) are still non-zero,

so further relaxation is expected. For coronal applications, however, these late times are not

as important as the early phases, described above, when the initial and secondary instabilities

develop.

4.4.6 Viscous and Ohmic heating

Over the lifetime of the entire instability the switching model allows for the generation of

more Ohmic heating (�gure 4.10a). This is despite the long, secondary phase of reconnection

produced in the isotropic case. The greater heating in the switching case is due to two factors:

the greater compression created by faster �ows, creating stronger or larger current sheets and

the more numerous current sheets created by more complex �ows. However, isotropic viscous

heating dominates that of the switching model by two orders of magnitude (�gure 4.10b) ul-

timately leading to greater overall heating in the isotropic case (�gure 4.10c). Physically, this

is due to anisotropic viscosity only performing signi�cant damping when velocity gradients

align appropriately with the magnetic �eld (that is, when (𝑾𝒃) · 𝒃 is non-zero).

Comparing Ohmic and viscous heating (�gures 4.10a and b), Ohmic heating outperforms

viscous heating in both cases, by an order of magnitude in the isotropic case and by three

orders in the switching case. Even though similar values for the di�usion of the magnetic

�eld 𝜂 and the velocity 𝜈 are used, during the kink instability the current sheets produced are

much stronger than the gradients in velocity, hence Ohmic heating dissipates more energy

than viscous heating.
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Figure 4.11: Kinetic energy over time varying the switching function 𝑠2. The grey lines are the

two regular cases; switching, where 𝑠2 = 1 (dashed), and isotropic (solid), where 𝑠2 = 0. The

coloured lines represent values of 𝑠2 = 0.5 (blue, dotted), and 𝑠2 = 0.6 (orange, dash-dotted).

There is a clear critical value somewhere between 0.5 and 0.6, where the behaviour changes.

Due to the relationship between (𝑾𝒃) · 𝒃 and 𝑄𝜈 (equation (4.10) with 𝑠 ≈ 1), the small

magnitude of𝑄𝜈 in �gure 4.10b implies that (𝑾𝒃) ·𝒃 is small everywhere. With the anisotropic

viscous heating being heavily dependent on the magnetic �eld direction and since (𝑾𝒃) · 𝒃 is

small everywhere in the kink simulation, it follows that the anisotropic viscous heating is

always lower in magnitude compared to the isotropic viscous heating, which is not bound by

the direction of the magnetic �eld.

4.4.7 The e�ect of anisotropy on feedback reconnection

The previous section describes the nonlinear evolution of the kink instability for the cases

of purely isotropic viscosity and purely (parallel) anisotropic viscosity. When the viscosity is

totally isotropic, the secondary instability is found, yet when the viscosity is totally anisotropic,

the same instability is disrupted. To determine how anisotropic the viscosity must become

before the secondary instability is disrupted, the degree of anisotropy can be �xed by arti�cially

�xing the value of 𝑠 to some constant, instead of letting 𝑠 rely on the local �eld strength |𝑩 |. It
should be noted that the simulations in which 𝑠 is �xed are no longer physically realistic, but

the results can be used to estimate the degree of anisotropy required in the viscosity to disrupt

the secondary instability. Since the implementation in Lare3d involves only 𝑠2 instead of 𝑠 , in

practice the value of 𝑠2 is �xed.

By letting 𝑠2 in (3.4) take values between 0 and 1, it is found that there is not likely to be

a smooth transition between the two extremes of behaviour. Instead, there is likely a critical

value of 𝑠2, between 0.5 and 0.6, belowwhich (closer to isotropic) the resultant �ows are simple

enough to create and sustain feedback reconnection, and above which (closer to anisotropic)

the �ows are su�ciently complex to disrupt the secondary instability. This behaviour can be

seen in how the kinetic energy time series changes with 𝑠2 in �gure 4.11.
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Figure 4.12: Maximum kinetic energy corresponding to initial instability and secondary instability
as functions of resistivity 𝜂 and viscosity 𝜈 . In both plots are shown the maximum kinetic energy

produced by the initial instability (green, 1-marker) and the maximum kinetic energy produced

by the secondary instability (purple, 2-marker). Only results using the isotropic viscosity are

shown.

4.5 Parameter study

In order to con�rm that the results of section 4.4 are typical, and to further understand how

they vary, two parameter studies were performed; one varying viscosity, keeping all other

parameters constant; and one varying resistivity, again keeping all other parameters constant.

In the �rst study the viscosity was varied as 𝜈 = 5×10
−𝑛
, where the index 𝑛 took the values

4.75, 4.5, 4.25, 4 and 3.75, while resistivity was held constant at 𝜂 = 5 × 10
−4.5

. This range of

viscosities represents values that are typically used in simulations, with a lower bound above

numerical di�usion and an upper bound below physically unrealistic values for the corona.

In the second study the resistivity was similarly varied as 𝜂 = 5 × 10
−𝑚

, where the index

𝑚 took the values 4.75, 4.5, 4.25, 4, 3.75, and 3.5, while viscosity was kept constant at 𝜈 =

5 × 10
−4.5

. Similar to the limits on viscosity, any lower resistivities become comparable to

numerical di�usion. Higher resistivities di�use the �eld so quickly that the instability does

not have time to grow.

4.5.1 E�ect on the secondary instability varying di�usion parameters

Figure 4.12 shows the maximum kinetic energy produced by the two instabilities found in the

isotropic case in section 4.4. The maximum kinetic energy provides a useful measure of the

e�cacy of an instability, particularly when comparing the relative magnitudes of the initial

and secondary instabilities. Since only the isotropic case reveals evidence of the secondary

instability, results from the switching case are not shown.

Looking at �gure 4.12a, it is observed that increasing 𝜈 reduces the kinetic energy generated

in both instabilities. For small values of 𝜈 the secondary instability causes more energy to
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Figure 4.13: Anisotropic viscous heating, Ohmic heating, and maximum kinetic energy as func-
tions of viscosity𝜈 . Plots are shown using isotropic viscosity (blue, solid) and switching viscosity
(orange, dashed) as functions of viscosity 𝜈 at the �nal time of 𝑡 = 400 for a �xed resistivity

𝜂 = 5 × 10
−4.5

. The anisotropic viscous heating has been multiplied by a factor of 10. The

maximum kinetic energy is calculated as the maximum value prior to 𝑡 = 400.

be produced than the �rst, however as 𝜈 increases, this relationship reverses, with the initial

instability causingmore energy to be produced than the secondary one for large𝜈 . This reversal

suggests that the greater kinetic energy produced by the initial instability for low values of 𝜈

is causing a stronger current sheet to form, enhancing reconnection, and producing a more

energetic secondary instability.

The e�ect of resistivity 𝜂 on the secondary instability is to suppress it when 𝜂 is large. Since

the secondary instability is driven by reconnection out�ows, it is not surprising that there are

values of 𝜂 for which the reconnection out�ows do not feedback to produce the instability.

4.5.2 Varying viscosity

Dependence of heating on viscosity

Figures 4.13a and 4.13b show the total heat generated by 𝑡 = 400 via viscous𝑄𝜈 and Ohmic𝑄𝜂

dissipation as 𝜈 is varied. It should be noted that, to allow the trend in the anisotropic viscous

heating to be seen in the plot, it has been multiplied by a factor of 10. Before discussing the

apparent trends in the heating as 𝜈 is varied, it is useful to note that, just as in the typical

case described previously, for the range of 𝜈 shown, isotropic viscous heating remains approx-

imately two orders of magnitude greater than the anisotropic viscous heating, and the Ohmic

heating is consistently higher when using anisotropic viscosity than when using isotropic.

Since viscous dissipation (equations (4.9) and (4.10)) has a functional dependence on 𝜈 and

Ohmic dissipation (equation (4.8)) does not, it could be naively assumed that variation in vis-

cosity should present some trend in the viscous dissipation for both models and no trend in

the Ohmic dissipation. The trends that are observed broadly adhere to this but, unexpectedly

there appears some trend in the Ohmic heating when using isotropic viscosity.

When employing the switching model, the Ohmic heating appears to be independent of 𝜈 ,

whereas when employing the isotropic model, there appears a small trend of decreased Ohmic
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heating with increased 𝜈 . These trends can be explained by considering the e�ect of viscosity

on compressive �ows and current densities. During the kink instability, Ohmic heating, being

proportional to the square of the local current density, is increased when an already sheared

magnetic �eld is compressed by �ows perpendicular to the �eld, increasing the local current

density. Thus, as the speeds of perpendicular �ows increase, so does the Ohmic heating. These

perpendicular �ows are e�ectively only damped by isotropic viscosity. Since the maximum

kinetic energy (�gure 4.13c) decreases with 𝜈 in only the isotropic case, and remains constant

in the switching case, it is appropriate that the Ohmic heating decreases with 𝜈 in the isotropic

case and is negligibly dependent on 𝜈 in the switching case.

If varying 𝜈 does not change the dynamics in the switching case, the functional dependence

of 𝑄𝜈 on 𝜈 (see (4.10)) suggests an increase in anisotropic viscous heating with 𝜈 should be

observed. Figure 4.13a reveals precisely this.

The relationship between the isotropic viscous heating and 𝜈 appears non-trivial. Given the

decrease in maximum kinetic energy (�gure 4.13a) with 𝜈 , it is expected the isotropic viscous

heating should also decrease. However, this is not what is observed. Although there appears

to be a slight decreasing trend in the isotropic viscous heating when 𝜈 is increased past 10
−4
,

the left-most point is clearly an outlier. This suggests the secondary instability is having a

signi�cant and non-trivial e�ect on the heating. Indeed, this is also suggested by the subtle

change of gradient in the maximum kinetic energy on the left-hand side of the �gure 4.13c.

Due to this particular parameter study producing only �ve data points, these trends cannot

be discussed with much con�dence. A more detailed parameter study should be performed,

investigating more values of 𝜈 within and beyond the range studied here.

Dependence of linear growth rate on viscosity

For each value of 𝜈 the linear growth rate 𝜎 of the onset of the kink instability is estimated by

plotting the logarithm of the kinetic energy against time andmeasuring the gradient during the

period of linear growth (as is done in �gure 4.2). The gradient is calculated automatically using

central �nite di�erences. Figure 4.14a plots these growth rates against 𝜈 , and �gure 4.14b shows

the maximum kinetic energy calculated as the maximum prior to 𝑡 = 125. For every value of 𝜈 ,

this time is between the peaks of the kinetic energy corresponding to the �rst and secondary

instabilities. Taking the maximum before this time allows the capture of only the behaviour of

the initial instability, since this is the instability of interest in this section.

It can be seen from the relationship between the growth rate and 𝜈 for both viscositymodels

that isotropic viscosity begins to suppress the kink instability for larger values of 𝜈 , while

switching viscosity does not (�gure 4.14a). This is also apparent from the relationship between

the maximum kinetic energy and 𝜈 for both models (�gure 4.14b). This di�erence between the

viscosity models results from the anisotropic viscosity being so weak that the dynamics of the

initial onset of the kink instability are not signi�cantly a�ected by a signi�cant increase in 𝜈 .
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Figure 4.14: Linear growth rate and maximum (in time) kinetic energy as functions of viscosity 𝜈
for a �xed resistivity of 𝜂 = 5×10

−4.5. Plots are shown using isotropic viscosity (blue, solid) and

switching viscosity (orange, dashed) as functions of viscosity 𝜈 . The maximum kinetic energies

are calculated as the maximum values in time prior to 𝑡 = 125. This is to capture the behaviour

of only the initial nonlinear evolution of the instability, neglecting any further instabilities like

the secondary instability found in section 4.4. Note, the maxima do not necessarily occur at

the same time and this particular parameter study has been performed �xing 𝜈 at a slightly

di�erent value to the previous parameter studies.

4.5.3 Varying resistivity

Dependence of heating on resistivity

Figure 4.15a and 4.15b show the total heating generated by 𝑡 = 400 via viscous 𝑄𝜈 and Ohmic

𝑄𝜂 dissipation as the strength of resistivity 𝜂 is varied. Just as in section 4.5.2, the anisotropic

viscous heating is multiplied by 10. Again, it is useful to note that, across the entire range

of 𝜂 studied here, the isotropic viscous heating remains approximately two orders of magni-

tude greater than the anisotropic viscous heating and the Ohmic heating produced when using

switching viscosity is consistently higher than that produced when using isotropic viscosity.

This aligns with the results when varying viscosity, as discussed previously.

As in the parameter study varying 𝜈 , a non-trivial relationship appears between the viscous

heating for both models and 𝜂 (�gure 4.15a). The isotropic viscous heating reveals a decreas-

ing trend over all values of 𝜂 studies here, however there is a clear jump in heating between

approximately 10
−3.9

and 10
−3.7

. Given that these are the values of 𝜂 where there is strong in�u-

ence of the secondary instability on the kinetic energy output (see section 4.5.1), these results

suggest it is the kinetic energy produced by the secondary instability that is being damped at

high values of 𝜂.

Just as in the parameter study varying 𝜈 , the anisotropic viscosity shows very little vari-

ability with 𝜂 (�gure 4.15a), even with the heating multiplied by a factor of 10 for plotting.

Despite the dynamics signi�cantly changing with 𝜂, the e�ect of the anisotropic viscosity is so

small that very little change in the heating is observed.

Ohmic heating is observed to increasewith increasing𝜂 (�gure 4.15b). This is to be expected
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Figure 4.15: Anisotropic viscous, and Ohmic heating as functions of resistivity 𝜂 for a �xed value
of viscosity 𝜈 = 5 × 10

−4.5. Plots are shown using isotropic viscosity (blue, solid) and switch-

ing viscosity (orange, dashed) as functions of resistivity 𝜂 at the �nal time of 𝑡 = 400. The

anisotropic viscous heating has been multiplied by a factor of 10. Overlaid on �gure (b) is the

scaling log
10
(𝜂1/2).

given the functional dependence of 𝑄𝜂 on 𝜂, however the actual scaling is not linear in 𝜂, as

might be predicted from (4.8). Rather, 𝑄𝜈 varies linearly with log
10
(𝜂1/2) for the range of 𝜂

studied here. Without a more comprehensive parameter study covering more values of 𝜂, it

is di�cult to reason why the scaling takes this form. However, what is certain is that the

use of anisotropic viscosity is consistently enhancing Ohmic heating across the range of 𝜂

studied here. This is due to the kink instability producing more kinetic energy in the switching

case, which better compresses the magnetic �eld, creating stronger current sheets and thus

enhancing Ohmic heating.

Dependence of linear growth rate on resistivity

As is done in section 4.5.2, the linear growth rates are measured for each value of 𝜂. These

and the maximum early time (𝑡 < 125) kinetic energy are shown in �gure 4.16. Note that

this particular parameter study has been performed �xing 𝜈 at a slightly di�erent value (of

𝜈 = 10
−4

as opposed to 𝜈 = 5 × 10
−4.5

) and includes two additional values of 𝜂 greater than

those presented in previous results. These particular simulations were not run to the same

�nal time as those presented previously so are only useful for presenting early-time (𝑡 < 125)

results. The plots show that the use of the switching model seems to consistently amplify the

growth of the kink instability, shown both in the growth rate and in the kinetic energy. Beyond

this, the two models of viscosity show similar trends with 𝜂.

Both plots in �gure 4.16 show that the kink instability is strongly inhibited for values of 𝜂

greater than approximately 10
−2.5

. This can be explained by the initial di�usion of the magnetic

�eld being so fast-acting for large values of 𝜂 that the instability is totally suppressed. The

increased suppression of the instability with strength of Ohmic di�usion can be seen in both
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Figure 4.16: Linear growth rate and maximum (in time) kinetic energy as functions of resistivity
𝜂 for a �xed viscosity of 𝜈 = 10

−4. (a) Growth rate and (b) maximum kinetic energy, generated

by isotropic viscosity (blue, solid) and switching viscosity (orange, dashed) as functions of re-

sistivity 𝜂. The maximum kinetic energies are calculated as the maximum values in time prior

to 𝑡 = 125. This is to capture the behaviour of only the initial nonlinear evolution of the in-

stability, neglecting any further instabilities like the secondary instability found in section 4.4.

Note, the maxima do not necessarily occur at the same time.

plots as 𝜂 increases past 10
−3
.

4.6 Discussion

Although there can be much variability in the nonlinear behaviour of the kink instability,

these results reveal an important general �nding. At the beginning of the nonlinear phase,

anisotropic (parallel) viscosity allows for the development of smaller length scales (both �ows

and current sheets), compared to isotropic viscosity, leading to more e�cient reconnection and

faster magnetic relaxation, at least initially. As has been described in detail, isotropic viscosity

can produce other e�ects later. However, for coronal applications, it is the initial nonlinear

phase of the instability that is likely to be of most interest since, in reality, a coronal loop will

interact with others before the secondary instability becomes signi�cant. For example, in the

kink-instability driven avalanche model of [55], an initially kink-unstable loop interacts with

neighbouring loops over a timescale of around 100–150 Alfvén times. This is less than the

timescale over which the secondary instability develops and, so, is likely to be disrupted by

interactions with neighbouring loops.

Additionally, the results of the parameter study reveal a potential scaling between Ohmic

heating and resistivity. Extrapolating this to smaller values of𝜂 thanwere investigated suggests

that viscous heating will outperform Ohmic heating when 𝜂 ≈ 10
−7
, a value greater than even

generous estimates of anomalous resistivity of 𝜂 ≈ 10
−8
. While there is no guarantee that

the observed scaling will continue down to realistic resistivities, this �nding does add to the

body of evidence indicating viscous heating is the dominant heating mechanism in the solar
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corona [26, 27].

4.7 Conclusion

This chapter details the linear and nonlinear development of the MHD kink instability with

two di�erent viscosity models. The �rst is isotropic (Newtonian) viscosity, which is the most

commonly used viscosity model in coronal loop studies. The second is anisotropic viscosity,

representing the strong-�eld limit of Braginskii viscosity with a preferred direction parallel to

the magnetic �eld. The implementation of anisotropic viscosity is via the von Mises switching

model [67].

By considering particular (low) values of the viscosity and resistivity, it is found that the

e�ect of the di�erent viscosity models on the linear onset of the kink instability is marginal.

The signi�cant di�erences appear in the nonlinear phase. Two main phases of evolution can

be identi�ed which highlight the di�erences between the e�ects of the two viscosity models.

The anisotropic (switching) case produces more kinetic energy at the onset of the nonlinear

phase of the instability—the �rst phase. It also produces �ows and current sheets with smaller

length scales compared to the isotropic case and this allows the magnetic �eld to relax faster

due to more e�cient reconnection.

In the second phase, the isotropic case exhibits a secondary instability, which is not found in

the anisotropic case. This new instability leads to enhanced reconnection and faster magnetic

relaxation, compared to the anisotropic case. The simulations are run for 600 Alfvén times (a

long time period for coronal applications) and the behaviour of the second phase continues for

all of this time.

A series of parameter studies was also run, where the strengths of viscosity and resistivity

were varied. The qualitative results of the two phases of the detailed investigation hold true

over a range of viscosities and resistivities, including the existence of the secondary instabil-

ity. Notably, over all parameters studied, viscous heating is consistently overestimated by the

isotropic model, and Ohmic heating is consistently enhanced by use of the switching model.



Chapter 5

Application to a dynamically twisted
�ux tube

5.1 Introduction

In chapter 4 the dynamics in a magnetic �ux rope which is already linearly unstable to the

helical kink instability were investigated. An alternative way to excite the kink instability is

to start with an initially straight �eld and apply twisting motions at the boundaries to create

a twisted �ux rope which eventually becomes unstable to the kink instability. This kind of

dynamic excitation of the kink instability is the focus of this chapter. In addition, a �uting

instability is found to be excited prior to the development of the kink instability. To my knowl-

edge, this is the �rst time a �uting instability in coronal conditions has been studied through

3D numerical simulations. Since the kink instability and associated literature has already been

introduced in chapter 4, this introduction focuses on the �uting instability.

The �uting instability arises in magnetised plasmas where the plasma pressure gradient

is directed in the same direction as the �eld line curvature, that is the pressure and magnetic

tension forces compete. This is similar to the competition between pressure and gravitational

forces which gives rise to the Rayleigh-Taylor instability (RTI), a typical example of an inter-

change instability, where magnetic �eld lines are minimally bent and are, instead, exchanged

during the evolution of the instability. The ideal �uting instability is another example of an

ideal interchange instability, con�ned to a cylindrical geometry. In a twisted �ux tube like a

coronal loop, the magnetic curvature is always directed towards the axis so the tube may be

unstable to �uting when the pressure decreases outwards from the core. Such a pressure dis-

tribution is found in the �ux tubes studied here. The appearance of the �uting instability is

illustrated by, for example, the pressure contours in �gure 5.4, where the perturbations follow

the pitch of the �eld.

Although the kink instability has been studied in detail in coronal loop models, I do not

know of any coronal studies of the �uting instability. In other solar contexts, interchange in-

74
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stabilities can be found in the form of ballooning modes in arcades [52], as the instability which

forms tubes of speci�c size in the photosphere [19] and in the buoyancy of �ux tubes [99]. The

instability is more commonly studied in fusion contexts.

While the stability of the ideal (and resistive) �uting instability has been studied exten-

sively in fusion research [71, 121, 113], the focus is generally on understanding how a partic-

ular plasma device may be stabilised to the instability in particular geometries such as that of

the mirror machine [59] or in toroidal geometries such as the tokomak [100]. The resistive

interchange instability (the resistive form of the �uting instability) can be excited even when

the ideal �uting instability is stabilised. As a result, this has been given signi�cantly more

attention [58, 25].

While this body of research is useful and applicable in solar contexts, it is mostly limited to

the stability and linear development of the instability. More detailed investigations of the non-

linear development is required to understand its importance in the context of coronal dynamics

and coronal heating. The experiments described in this chapter provide one such investigation

and represent an initial exploration into the nonlinear �uting instability in the solar corona.

5.1.1 The �uting instability

In general, the stability of a cylindrical twisted magnetic �ux tube is analysed using perturba-

tions of the form

𝜉 (𝑟, 𝜃, 𝑧) = 𝜉 (𝑟 )𝑒𝑖 (𝑚𝜃+𝑘𝑧), (5.1)

where𝑚 and 𝑘 are the wavenumbers in the 𝜃 and 𝑧 directions, respectively. The helical kink

instability occurs for perturbations where𝑚 = 1, 𝑘 ≠ 0 and is the only instability of this form

which is a body instability, that is it moves the entire body of the �ux tube. Perturbations

where𝑚 > 1 are termed �uting or interchange instabilities.

When themagnetic �eld is sheared, as in a twistedmagnetic �ux tube, an interchange insta-

bility (such as the �uting instability) is con�ned to a surfacewhere the peaks and troughs follow

the shear of the �eld. That is, the instability is con�ned to the surface where the perturbation

wavevector (0,𝑚/𝑟, 𝑘) is perpendicular to the direction of the �eld which, in an axisymmetric,

twisted �ux tube, is located at a radius 𝑟 given by

𝑚

𝑟
𝐵𝜃 (𝑟 ) + 𝑘𝐵𝑧 (𝑟 ) ≈ 0. (5.2)

The stability of a cylindrical �ux tube to perturbations of the form (5.1) is given by the

classical Suydam’s criterion

𝐵2𝑧𝑆
2

4

+ 2𝑟𝑝′ > 0, (5.3)

where 𝑆 = 𝑟𝑞′/𝑞 is a measure of the shear, 𝑞 = 2𝜋𝑟𝐵𝑧/𝐿𝐵𝜃 is the safety factor for a �ux tube of

length 𝐿 and a dash denotes di�erentiation with respect to 𝑟 [71]. This applies to both �uting
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and kink instabilities although many additional e�ects such as line-tying are not incorporated

into the corresponding linear analysis. The e�ect of line-tying on the kink instability can be

found in [54]. Where (5.3) is not satis�ed, the �ux tube may be unstable to perturbations of the

form (5.1). When𝑚 > 1, the perturbations remain local to resonant surfaces given by (5.2).

When the criterion is satis�ed and the �ux tube is linearly stable, it may still be unstable

to non-local perturbations, where the shear and pressure are low enough that interchange

perturbations do not need to satisfy (5.2). Additionally, the inclusion of resistivity generally

reduces the stabilising e�ect of the shear, permitting growth of a resistive interchange mode,

albeit at a lower rate than that in the ideal case [71]. It will be found that the ideal linear analysis

is su�cient for understanding the �uting instabilities investigated in this chapter since the �ux

tubes investigated here adequately fail the criterion (5.3).

While Suydam’s condition gives an indication of the stability of a �ux tube to a given

perturbation, the linear growth rate of the ideal �uting instability 𝛾 can be found via a stability

analysis analogous to that of the Rayleigh-Taylor instability (see [46]) and is given by

𝛾2 =
2|∇𝑝 |
𝜌𝑅𝑐

, (5.4)

where 𝑅𝑐 is the radius of curvature of the magnetic �eld. This equation only applies when the

pressure gradient and radius of curvature vector are in the same direction, that is the plasma

is constrained by a concave magnetic �eld such that the pressure forces and magnetic tension

forces are in competition. In a cylindrical, twisted �ux tube, the �eld is always concave towards

the central axis of the tube, so any inwardly directed pressure gradient is unstable to �uting.

Throughout this chapter, the twisted �ux tube generated by the drivers has a pressure

pro�le which is axisymmetric, approximately independent of 𝑧 away from the boundaries at

𝑧 = ±2, and has a negative gradient, hence |∇𝑝 | may be written as −𝑑𝑝/𝑑𝑟 . Similarly, away

from the boundaries, themagnetic �eld has a negligible 𝑟 component and little dependence on 𝜃

and 𝑧, allowing the �eld to be approximated as 𝑩 = (0, 𝐵𝜃 (𝑟 ), 𝐵𝑧 (𝑟 ))T, in cylindrical coordinates
(𝑟, 𝜃, 𝑧). For a twisted �eld of this form, the radius of curvature is given by

𝑅𝑐 =
1

| (𝒃 · ∇)𝒃 | =
𝑟

𝑏2
𝜃

, (5.5)

where 𝒃 = 𝑩/|𝑩 | is the unit vector in the direction of themagnetic �eld and𝑏𝜃 is the component

of 𝒃 in the azimuthal direction. These approximations allows the growth rate to be written as

𝛾2
𝑖𝑑𝑒𝑎𝑙

=
−2𝑝′
𝜌𝑅𝑐

. (5.6)

In contrast to the precise form of the equilibrium state and perturbation studied in chap-

ter 4, this is an experiment where a system is driven and instabilities occur naturally as a result
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Figure 5.1: Radial velocity pro�le 𝑢𝑟 (𝑟 ) and acceleration pro�le 𝑢𝑡 (𝑡) of the driver for parameters
𝑢0 = 0.15, 𝑟𝑑 = 5 and 𝑡𝑟 = 2.

of noise providing a random perturbation. As a result of the driving, the �ux tube is not in

static equilibrium. Consequently, the stability criterion and linear growth rate presented pre-

viously are useful as a guide and approximate comparison, but should not be considered as an

appropriate prediction of growth rates or overall stability.

5.2 Numerical setup

The non-dimensionalisation scheme and values are identical to those used in chapter 4. The

magnetic �eld is prescribed as initially straight and uniform,

𝑩 = (0, 0, 1)T, (5.7)

in a cube of dimension [−2, 2]3. The velocity is set everywhere to 𝒖 = 0, the density to 𝜌 = 1,

the internal energy to 𝜀 = 8.67× 10
−4

(corresponding to a temperature of 10
6
K). At the bound-

aries, the magnetic �eld, density, and energy are �xed to their initial values and the velocity

to zero except at the upper and lower boundary where the twisting driver, described below,

is prescribed. The spatial derivatives of these variables are also set to zero at the boundaries.

The resolution is 512 grid points per dimension, comparable to the highest resolution kink in-

stability studies of [53] or medium resolution studies of [6]. The switching function employed

is the von Mises function (3.5) and the switching parameter is chosen to be 𝑎0 = 150, a value

su�ciently large to ensure the viscosity is anisotropic throughout the entire domain.

The �ux rope is formed by prescribing a slowly accelerating, rotating �ow at the upper

𝑧-boundary as

𝒖 = 𝑢0𝑢𝑟 (𝑟 )𝑢𝑡 (𝑡) (−𝑦, 𝑥, 0)𝑇 , (5.8)

where𝑢𝑟 (𝑟 ) describes the radial pro�le of the twistingmotion in terms of the radius 𝑟 2 = 𝑥2+𝑦2,
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𝑢𝑟 (𝑟 ) = 𝑢𝑟0(1 + tanh(1 − 𝑟𝑑𝑟 2)), (5.9)

where 𝑟𝑑 controls the radial extent of the driver, 𝑢𝑟0 is a normalising factor, and 𝑢𝑡 (𝑡) describes
the imposed acceleration of the twisting motion,

𝑢𝑡 (𝑡) = tanh
2(𝑡/𝑡𝑟 ), (5.10)

where the parameter 𝑡𝑟 controls the time taken to reach the �nal driver velocity 𝑢0. The func-

tions𝑢𝑟 (𝑟 ) and𝑢𝑡 (𝑡) are plotted in �gure 5.1. At the lower boundary, the �ow is in the opposite

direction.

This form of driver allows the system to be accelerated slowly enough that the production

of disruptive shocks and fast waves is minimal. It is unavoidable that some waves are produced

during the boundary acceleration, however these usefully provide one source of noise which

eventually forms a perturbation.

The driver velocity is set to 𝑢0 = 0.15, the normalising factor is 𝑢𝑟0 = 2.08, and setting

𝑟𝑑 = 5 corresponds to a driver constrained to 𝑟 < 1 and with a peak velocity at 𝑟 ≈ 0.38. The

ramping time is set to 𝑡𝑟 = 2, resulting in an acceleration from 0 to 𝑢0 over approximately 5

Alfvén times. These driver parameters correspond to a peak rotational period of 𝑇𝑅 = 15.92,

the length of time taken for one full turn to be injected by a single driver. Both drivers result

in twist being added at a rate of 2𝜋 every 7.96 Alfvén times. The twist pro�le across the entire

�ux tube develops in such a way that it is qualitatively similar to that studied in chapter 4 by

𝑡 ≈ 20, however the length of the �ux tubes di�ers signi�cantly. This con�guration produces

a 𝑧-directed tube of increasingly twisted magnetic �eld that eventually becomes unstable to

both the �uting instability and the helical kink instability.

Two pairs of simulations were performed, one pair where the background resistivity is set

to 𝜂 = 10
−3

and another where 𝜂 = 10
−4
. As in chapter 4, only background resistivity is used.

Each simulation pair consists of one simulation using isotropic viscosity and another using the

switching model (3.3) with the von Mises switching function (3.5). The value of viscosity is set

to 𝜈 = 10
−4

in all cases.

5.3 Results

The overall development of both instabilities is broadly similar for the two values of resistivity

and is described initially. Focus is then placed on the development of the 𝜂 = 10
−4

cases,

comparing the results of the two viscosity models. These cases illustrate the development

of the instabilities while showcasing the e�ect of the viscosity models. Then the di�erences

apparent in the 𝜂 = 10
−3

cases are summarised without a full exploration of the (qualitatively

similar) results.
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Figure 5.2: Gradients in the current density generate pressure gradients through Ohmic heating.
All plots are from switching cases when 𝑡 = 20 through the plane 𝑧 = 0. Note the sign of the

axial current density 𝑗𝑧 has been �ipped for comparison and the Ohmic heating is given by

𝑄𝜂 = 𝜂 𝑗
2
. The pressure pro�le of an additional test-case where 𝜂 = 0 is also shown.

5.3.1 Overview of instability development

In all cases, the initial reaction to the twisting at the upper and lower boundaries is two tor-

sional Alfvén waves which travel along the tube from the upper and lower boundaries to the

opposite boundary. The interaction between these waves produces an oscillating pattern in

the kinetic energy with a period of approximately 4 Alfvén times, equal to the time taken for

an Alfvén wave to travel the entire length of the domain (visible early in �gure 5.5a).

As the �eld continues to be twisted, currents form due to the local shear in the magnetic

�eld which heat the plasma through Ohmic heating. Due to the radial form of the driver, the

magnitude of the current density is greatest at the axis of the tube, then decreases radially out-

wards (�gure 5.2a). The orientation of the twisting produces a current directed in the negative

𝑧-direction for 𝑟 / 0.5. At 𝑟 ≈ 0.5 (corresponding to the radius of peak driving velocity) the

current switches direction and is in the positive 𝑧-direction in a shell where 0.5 / 𝑟 / 0.8.

This form of twisted �eld with an inner core of current in one direction surrounded by an

oppositely-directed current shell is similar to the prescribed �eld in chapter 4.

This current pro�le is re�ected in the radial Ohmic heating pro�le (�gure 5.2b) and, con-

sequently, in the radial pressure pro�le (�gure 5.2c). The highly pressurised core extends to

𝑟 ≈ 0.2–0.4 (depending on the value of 𝜂) before increasing slightly around 𝑟 ≈ 0.7. The sec-

ondary bump in pressure is due to the outer shell of current. The pressure gradient near the

axis provides the outwardly directed pressure force which competes against the binding action

of the magnetic tension to (potentially) result in the �uting instability. The magnitude of the

pressure gradient depends strongly on the value of 𝜂, with lower values producing shallower

gradients which (as shall be seen) are more stable to the �uting instability. Indeed, when 𝜂 = 0,

the radial pressure pro�le is nearly �at and the tube stable to the �uting instability.

In all cases unstable to the �uting instability, it occurs some time between 𝑡 = 20 and

𝑡 = 30. During this time, the continued driving at the boundaries eventually injects enough

twist that the tube also becomes unstable to the kink instability. This initially develops linearly

alongside the �uting instability and then erupts during the kink’s nonlinear phase, dominating
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Figure 5.3: Pressure pro�les during the development of the �uting and kink instabilities. Shown
are slices of pressure through 𝑧 = 0 where 𝜂 = 10

−4
and the viscosity model is switching. Note

the di�erence in colour scale in �gure 5.3c. The development in the isotropic case is similar.

(a) Isotropic (b) Switching

Figure 5.4: Simultaneous development of �uting and kink instabilities in the isotropic and switch-
ing cases as �eld lines and pressure contours. Field lines and contours of pressure (where 𝑝 = 0.3)

are plotted at 𝑡 = 28. Also shown is the velocity driver as a slice. The �uting instability grows

in both cases, though faster in the switching case. The initial stages of the kink instability can

also be observed in the �eld lines of the isotropic case in sub�gure 5.4a.

the dynamics and disrupting the �uting instability. The development of the two instabilities is

strongly a�ected by the value of 𝜂 and the viscosity model used.

5.3.2 Development where 𝜂 = 10
−4

Figure 5.3 shows the pressure pro�le through 𝑧 = 0 where 𝜂 = 10
−4

and the viscosity model

is switching for times 𝑡 = 26, 28 and 30. At 𝑡 = 26 the tube becomes unstable to the 𝑚 = 4

�uting instability, when the plasma begins to (slightly) bulge out diagonally from the high-

pressure core (�gure 5.3a). As the bulges move radially outwards into lower pressure regions

they expand and accelerate, resulting in the entire pressure structure appearing clover-shaped

(�gure 5.3b). By 𝑡 = 30 the kink instability has disrupted the �uting instability and is developing

nonlinearly (�gure 5.3c). As is typical of nonlinear kink development, the tube continues to

release its stored potential energy as kinetic energy and heat and the contained plasma becomes

highly mixed. In the unseen isotropic case, the �uting instability is present but damped, and

the kink instability quickly dominates the dynamics.

Figure 5.4 shows the e�ect the viscosity models have on the initial stages of the �uting and
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Figure 5.5: Kinetic energy as a function of time showing the development and measured growth
rates of the �uting and kink instabilities. Both plots are from results where 𝜂 = 10

−4
.

kink instabilities in 3D. While the �uting instability is observed in both cases, it is damped

in the isotropic case and grows faster in the switching case. In the latter case, the extended

development of the �uting instability appears to disrupt the inner core of �eld lines and (as shall

be seen) slows the growth of the kink instability. In the isotropic case, the �uting instability

has been damped to the extent that the kink instability grows uninhibited and quickly disrupts

the �uting.

Despite the �uting instability appearing in the isotropic case (�gure 5.4a) only in the switch-

ing case can the onset of both the �uting and kink instabilities be seen in the kinetic energy

pro�le (�gure 5.5b), where the nonlinear growth rates of the two instabilities are found to be

𝛾 = 0.69 for the �uting and 𝜎 = 2.55 for the kink. The onset times are approximately 𝑡 = 27 for

the �uting instability and 𝑡 = 28 for the kink. In the isotropic case, the growth rate of the kink,

𝜎 = 2.97, is larger than in the switching case, although the onset times appear similar, and the

kinetic energy pro�le shows no evidence of the growth of the �uting instability.

The faster growth of the kink compared to, say, that of chapter 4 is due to the relative aspect

ratios of the �ux tubes. The tube prescribed in chapter 4 has an aspect ratio of approximately

20 compared to the tube studied here which has an aspect ratio of approximately 4. While the

total twist is similar in both tubes (after the drivers have injected twist up to 𝑡 ≈ 20) the small

aspect ratio results in more turns per unit length, resulting in a faster growing instability.

Prior to the onset of either instability, the �ux tube is found to be linearly unstable to

perturbations of the form (5.1) at 𝑡 = 20 via Suydam’s criterion (5.3) (�gure 5.6a). The criterion

represents a balance between destabilising pressure gradients and stabilising magnetic shear

and in this case, the shear is so small and the pressure gradient so large that the tube is unstable

over a wide range of radii, for 0.02 / 𝑟 / 0.29. The measure of linear �uting growth rate 𝛾

is plotted as a function of 𝑟 at the same time (�gure 5.6b). While the magnitude of the peak

linear growth rate predicts the observed rate reasonably well, the location of the peak growth

matches nearly exactly the location of the resonant surface where the observed perturbation
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Figure 5.6: Stability and linear growth rate of the �uting instability. In 5.6a, Suydam’s stability

criterion and contributing terms (LHS of (5.3)) are plotted and in 5.6b the predicted linear

growth rate (5.6) is plotted. Both plots are produced at 𝑡 = 20 for 𝜂 = 10
−4

and using the

switching model. The location of the peak linear growth rate is also shown.

grows (�gure 5.3a).

Figure 5.7a plots the observed perturbations corresponding to the �uting and kink instabil-

ities at 𝑡 = 26. The �uting perturbation is observed in the pressure and is plotted as a function

of 𝑧 following a line through the point (𝑟, 𝜃 ) = (0.101, 0). The kink instability is observed in

the 𝑥-velocity (a proxy for the radial velocity) through the axis. Comparing the magnitudes

of the perturbations at this time suggests the �uting instability is close to transitioning to its

nonlinear phase while the kink instability is still very much in its linear phase.

The value of 𝑘 for each perturbation is calculated as 𝑘 = 2𝜋/ ˜𝜆 where
˜𝜆 is the wavelength

of the perturbation, measured as the di�erence between the two peaks closest to 𝑧 = 0 (thus

minimising the in�uence of line-tying on the measurement). This gives a value of 𝑘 𝑓 𝑙𝑢𝑡𝑒 =

23.61 and 𝑘𝑘𝑖𝑛𝑘 = 4.57 for both viscosity models. Hence, the observed most unstable �uting

perturbation is that of the form (5.1) where 𝑚 = 4 and 𝑘 = 23.61 and the observed kink

instability is that where 𝑚 = 1 and 𝑘 = 4.57. Using these values, it is observed that the

�uting perturbation exactly resonates with the �eld, that is𝑚𝐵𝜃 (𝑟 )/𝑟 +𝑘𝐵𝑧 (𝑟 ) = 0, at 𝑟 = 0.125

(�gure 5.7b). This is precisely the predicted radius of peak linear growth (�gure 5.6b). At this

time the perturbation is close to resonance, that is𝑚𝐵𝜃 (𝑟 )/𝑟 +𝑘𝐵𝑧 (𝑟 ) ≈ 0, over a range of radii

from 𝑟 = 0.125 to 0.2.

Comparing the e�ect of the viscous models on the perturbations, in the isotropic case, the

�uting perturbation is damped, while in the switching case the kink perturbation is diminished,

explaining why the �uting instability appears more readily in the switching case (�gure 5.5a).

5.3.3 Development where 𝜂 = 10
−3

Figures 5.8 show the prolonged development of the �uting instability and the slow nonlinear

development of the kink. Due to the enhanced Ohmic heating when 𝜂 = 10
−3
, the pressure
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Figure 5.7: Perturbations corresponding to the �uting and kink instabilities and the spatial ra-
dial distribution of the associated resonance function. Pressure and velocity perturbations in 𝑧

(corresponding to the �uting and kink instabilities, respectively) and of the resonance function

𝑚𝐵𝜃 (𝑟 )/𝑟 +𝑘𝐵𝑧 (𝑟 ) as a function of 𝑟 using the observed �uting perturbation wavenumbers. All

plots are from snapshots at 𝑡 = 26 where 𝜂 = 10
−4

and the viscosity model is switching.

gradient is substantially stronger thanwhen𝜂 = 10
−4

and the �uting instability is excitedmuch

earlier. Compared to the 𝜂 = 10
−4

cases, the instability occurs further from the axis, at 𝑟 ≈ 0.16,

and the larger pressure gradient drives the bulges further from the axis in the nonlinear phase

(�gure 5.8a). These bulges continue to extend outwards and mix the plasma as they develop.

The kink instability can be observed moving the axis of the tube diagonally upwards and to the

right in �gure 5.8c. At this time in the 𝜂 = 10
−4

cases, the nonlinear development of the kink

was further along (�gure 5.3c). The development of the kink then proceeds slowly as it moves

the axis of the tube through the mixed region to eventually begin the reconnection process

with the outer region of �eld that is typical of the instability in this kind of �ux tube (as was

observed in chapter 4).

It is evident from the kinetic energy pro�le that the �uting instability develops much earlier

than in the 𝜂 = 10
−4

cases and grows at an increased rate of 𝛾 = 1.06 (�gure 5.9b). The kink

instability grows at a rate of 𝜎 ≈ 0.15, much slower than that observed in the 𝜂 = 10
−4

cases,

and much lower than the �uting instability. One key observation is that, despite the early and

disruptive growth of the �uting instability, the kink instability still generates the bulk of the

kinetic energy (�gure 5.9a).

Due to the in�uence of the drivers on the kinetic energy, the �uting growth rate is di�cult

to estimate from the kinetic energy pro�le as accurately as in the 𝜂 = 10
−4

cases. Since the

kink instability occurs after the development of the �uting, its growth rate is similarly di�cult

to gauge. Nevertheless, it is clear that the �uting instability grows at a rate of the same order

as that in the 𝜂 = 10
−4

cases. It is also apparent that the kink instability grows much slower in

the 𝜂 = 10
−3

cases.

Table 5.1 summarises the quantitative di�erences between the results for the two values of

𝜂. All values are calculated from simulations using the switching model with the exception of
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Figure 5.8: Pressure pro�les through 𝑧 = 0 during the development of the �uting and kink insta-
bilities in the higher resistivity switching case. The viscosity model is switching and 𝜂 = 10

−3
. In

contrast to the case of 𝜂 = 10
−4
, the nonlinear development of the �uting instability has time

to mix the interior of the �ux tube before the onset of the kink instability, the growth of which

is a�ected by the mixed plasma.

𝑘𝑘𝑖𝑛𝑘 which is measured from isotropic results due to noise in the switching case (the value of

𝑘𝑘𝑖𝑛𝑘 appears similar, however). The results of the isotropic cases are qualitatively similar. The

radius of peak 𝛾 is calculated at time 𝑡 = 20. The �uting wavenumber 𝑘 and observed 𝑟𝑠 are

measured at times just prior to the nonlinear development of the �uting instability, that is at

𝑡 = 22 when 𝜂 = 10
−3

and 𝑡 = 26 when 𝜂 = 10
−4
. The kink wavenumber is measured at 𝑡 = 26

in both cases. These times allow fair comparison between measurements.

The longitudinal wavenumber 𝑘𝑘𝑖𝑛𝑘 of the observed kink perturbation remains similar in

both cases since the instability is essentially governed by the twist injected by the driver which

remains the same in both cases. In contrast, the longitudinal wavenumber𝑘 𝑓 𝑙𝑢𝑡𝑒 of the observed

�uting perturbation is lower in the 𝜂 = 10
−3

cases. This is due to the di�erent resonant surface

within which the perturbation grows, the location being dictated by the peak of the linear

growth rate. Note that the location of this peak again matches well the location of the observed

resonant surface, as in the 𝜂 = 10
−4

cases. Similar to the 𝜂 = 10
−4

cases, the peak growth rate

predicted by the linear analysis is the same order of magnitude as the observed growth rate.
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Figure 5.9: Kinetic energy as a function of time in the cases where 𝜂 = 10
−3. The results from

both viscosity models are shown. The �uting instability appears earlier than where 𝜂 = 10
−4

and the growth rate of the kink instability is decreased.

𝜂 = 10
−4 𝜂 = 10

−3

Predicted linear 𝛾 1.43 2.72

Observed nonlinear 𝛾 0.69 1.06

Observed 𝜎 2.55 0.15

Radius of peak 𝛾 0.125 0.163

Observed 𝑟𝑠 0.125 0.163

Observed 𝑘 𝑓 𝑙𝑢𝑡𝑒 23.61 16.05

Observed 𝑘𝑘𝑖𝑛𝑘 4.57 4.53

Table 5.1: Quantitative di�erences in the observed perturbations between results for both val-

ues of 𝜂. See text for details of measurements times.

5.4 Discussion

Due to the perturbations arising from numerical noise, it is likely that the𝑚 = 4 perturbation

is excited due to in�uences from the boundaries in the Cartesian box, for example through

the interaction of re�ected fast waves generated in part by the driver. Performing a similar

experiment in a cylindrical numerical domain, or prescribing a variety of perturbations in the

Cartesian domain may reveal other, faster growing modes. The modes may also be in�uenced

by nonlinear coupling between the𝑚 > 1 and𝑚 = 1 modes, as is found in the study of kink

and �uting oscillations [105, 95].

This set of experiments has shown that the mixing as a result of the nonlinear �uting

instability appears to slow the growth of the kink instability. In the linear regime it seems

unlikely that the linear perturbations of either the �uting or kink are able to directly couple,

given that the kink instability generally presents at the axis of a �ux tube and the �uting at

some resonant surface away from the axis. Further investigation of the nonlinear interaction

between the two instabilities is required.
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Since the main driver of the �uting instability is the pressure gradient generated through

Ohmic heating, it is prudent to ask if the same pressure gradient could be generated using phys-

ical coronal values of the resistivity (of approximately 𝜂 = 10
−8

[26]) which are much smaller

than those studied here. Additionally, the simulations presented here do not incorporate radi-

ation or thermal conductivity, two processes which would remove energy (and thus pressure)

from high-pressure regions in a coronal loop and thus could remove the required conditions

for the growth of a �uting instability. Where 𝜂 = 10
−4
, the �uting instability was quickly dom-

inated by the kink instability and appeared to have little impact on the resultant dynamics,

which mirror those of other kink instability studies (such as [53]). This suggests that even

lower values of resistivity would result in �ux tubes without any signi�cant �uting instabil-

ity, at least for this form of driver and mechanism of pressure generation. Regardless, coronal

loops with strong radial pressure gradients have been observed [42] and such loops may be

unstable to the �uting instability. Modelling of a prescribed �uting-unstable �ux tube (as op-

posed to the dynamically stressed loop investigated here) would provide a useful comparison

to observations, however it may be di�cult to prescribe a tube which is not also susceptible

to kinking. Linear stability analyses of this kind of �ux tube (a dynamically created zero total

axial current tube) focus on the kink instability [17] so do not provide much insight into the

potential for �uting without a kink.

These results show that a �ux tube can be unstable to the �uting instability and yet the faster

growing kink instability can quickly dominate when the pressure gradient is small enough.

However, the opposite case is also observed, where a faster growing �uting instability appears

to slow the growth of the kink instability although, importantly, it does not fully disrupt the

development of the kink. Understanding the balance between the nonlinear growth rates of

the two instabilities is important in understanding whether the �uting instability may be found

at all in the real solar corona, or whether a realistic growth rate is too slow compared to that

of the kink instability.

5.5 Conclusion

This chapter details the nonlinear development of two ideal instabilities, the kink and �ut-

ing instabilities, both of which develop naturally in the course of twisting an initially straight

magnetic �ux tube. This provides a di�erent approach to that employed in the simulations per-

formed in chapter 4 in that the instabilities are not excited by any prescribed perturbations but,

instead, the �eld is dynamically driven into an unstable state and the perturbations provided

by noise in the system. Not only is the kink instability excited due to the twist in the �eld, a

pressure-driven �uting instability can also be excited in unstable pressure gradients generated

by Ohmic heating. Simulations were run over two values of resistivity, 𝜂 = 10
−3

and 10
−4
, and

for two forms of viscosity, isotropic and switching, providing an initial and important �rst step
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into the simulation of nonlinear �uting instabilities in the solar corona.

It has been shown that the �uting instability can be quickly dominated by the kink insta-

bility if the kink grows substantially faster than the �uting. However, if the �uting has time to

develop nonlinearly, it mixes the plasma within the �ux tube, generating small scale current

sheets and releasing some magnetic energy. The overall e�ect of this mixing is to slow the

growth of the kink instability. The slowed growth of the kink does not appear to signi�cantly

impact the kinetic energy released during its evolution, only the time over which it is released.

The form of viscosity has been found to signi�cantly a�ect the growth of the �uting insta-

bility. Importantly, isotropic viscosity is found to damp the growth of the �uting instability to

the degree that it is unable to grow appreciably before the onset of the faster growing nonlinear

kink instability. Overall, the switching model permits greater release of kinetic energy. Sim-

ilar to chapter 4, isotropic viscous heating is found to be signi�cantly lower than anisotropic

(switching) viscous heating, by approximately two orders of magnitude.

These numerical experiments have provided evidence that the �uting instability can occur

in twisted magnetic �ux ropes and grow at similar rates to the kink instability. Further esti-

mation of the relative growth rates in more realistic coronal loop setups is required to fully

understand if the �uting instability plays a pertinent role in coronal loop physics.



Chapter 6

Application to a dynamically twisted
null point

6.1 Introduction

This chapter presents the results of a series of numerical experiments intended to develop an

understanding of the e�ect of anisotropic viscosity on the Kelvin-Helmholtz instability (KHI)

in the fan plane of a magnetic null point, reproducing and extending the work of Wyper &

Pontin [116]. The experiments take the form of the dynamic twisting of an initially static mag-

netic null point around the footpoints of its spine, resulting in a current-vortex sheet forming

in the fan plane which can be unstable to the KHI given appropriate parameter choices. This is

performed using both isotropic and anisotropic viscosity using a variety of parameter choices.

In the course of twisting the null point, it is discovered that continued driving past the point

at which the KHI occurs causes the null to spontaneously undergo spine-fan reconnection and

collapse. The evolution of the KHI and the eventual collapse of the null is found to depend

strongly on the form of viscosity.

The KHI has been well studied in MHD and has been found in a number of coronal con-

texts, both in numerical simulations [56, 116] and in observations [43, 118]. See [39] for a

recent review of the KHI in MHD and [22] for a classical treatment. In general, the e�ect of a

magnetic �eld is stabilising; when the wavevector of a perturbation in a shear layer is parallel

or at an oblique angle to a magnetic �eld, magnetic tension acts to stabilise the KHI [22, 97].

Otherwise, the KHI acts as an interchange instability and the magnetic �eld does not a�ect its

linear stability [22].

In a current-vortex sheet, where a velocity shear coincides with a magnetic shear, the bal-

ance of shear layer strengths and thickness dictates if the KHI, tearing instability, or some

mixture, is excited. Generally, when the magnetic shear is strong compared to the velocity

shear, the KHI is suppressed and the tearing instability grows [34]. This can be somewhat

modi�ed by the inclusion of resistivity [35]. The nonlinear development of the KHI is known

88



CHAPTER 6. APPLICATION TO A DYNAMICALLY TWISTED NULL POINT 89

to enhance reconnection by local distortion of magnetic �eld lines and generation of current

sheets [72] and by generating local turbulence in conjunction with the tearing instability [63].

The e�ect of (anisotropic) viscosity on the stability of a current-vortex sheet is to suppress

the growth of the KHI, although viscosity is found to enhance the linear growth of the tearing

instability, where the KHI is stabilised by a strong magnetic �eld [35]. A number of studies

suggest isotropic viscosity can also slow and even suppress the KHI [56, 93, 116].

Magnetic null points, locations in a magnetic �eld where the �eld strength goes to zero,

are an abundant feature in the topologically complex coronal magnetic �eld [33]. Given they

are sites coinciding with changes in topology, they are strongly associated with reconnection

processes [119, 104]. Additionally they are inferred to participate in a number of high-energy

phenomena such as in the generation of �are ribbons in compact solar �ares [69, 84], produc-

tion of jets [74] and of coronal mass ejections [7, 122], particularly through their necessary

involvement in the breakout model of eruptive solar �ares [2, 66].

A well studied form of reconnection in 3D null points is spine-fan reconnection, where a

strong current sheet forms in the vicinity of the null point and enables e�cient reconnection

between the magnetic �eld making up the spine and fan plane, collapsing the �eld around the

null in the process [106]. The collapse of a null point has the potential to develop into a form

of oscillatory reconnection [107].

The layout of this chapter is as follows. The numerical setup of the simulations is presented

in section 6.2, including a description of the model of linear null point and the driver used. The

methods of calculating the stability measures, shear layer properties and reconnection rate are

described in section 6.3. In the �rst part of section 6.4 the results of a high-resolution pair of

simulations are presented for a single choice of viscosity and resistivity parameters and the

e�ect of the viscosity model compared. In the second part, the results of a parameter study are

presented, generalising the high-resolution results. The chapter concludes with a discussion

of �ndings in section 6.5 and conclusions in section 6.6.

6.2 Numerical setup

The magnetic structure of the null point with the spine aligned along the 𝑧-axis is written in

non-dimensional units as

𝑩 = (𝑥,𝑦,−2𝑧), (6.1)

giving a magnetic null point located at the origin. The non-dimensionalisation scheme is iden-

tical to that used in chapter 4. The domain is a box of dimension [−3.5, 3.5] × [−3.5, 3.5] ×
[−0.25, 0.25] in the 𝑥 , 𝑦 and 𝑧 directions, respectively. Unlike the stretched grid of [116], the

grid spacing used here is uniform. The initial velocity is uniformly zero, the initial density is

uniformly 𝜌 = 1 and the internal energy is uniformly 𝜀 = 5/4, corresponding to a temperature

of 1.44 × 10
9
K and a reference plasma beta of 𝛽 ≈ 0.017. The surface corresponding to 𝛽 = 1
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Figure 6.1: Field con�guration after 4 Alfvén times. The speed of the driver is also shown as a

slice.

is an ellipsoid extending to a radius of 𝑟 ≈ 3/5 in the fan-plane and 𝑧 ≈ ±3/20 along the spine.
Inside this surface, the dynamics are predominantly driven by plasma pressure and, outside,

by magnetic forces.

The velocity driver at the upper and lower boundaries is of an identical functional form to

that used in chapter 5 but with modi�ed driver parameters of 𝑢0 = 0.09, 𝑢𝑟0 = 5.56, 𝑡𝑟 = 0.25

and 𝑟𝑑 = 36 in order to match more closely with the driver used in [116]. The driver twists the

plasma around the footpoints of the upper and lower spines of the null point, dragging the �eld

and introducing twist throughout the entire null point (�gure 6.1). As in chapter 5, there is no

prescribed perturbation which results in either the KHI or the null collapse; all perturbations

are dynamically generated due to noise in the system. This setup is similar to that of Wyper

and Pontin [116].

Unlike previous chapters, here the Braginskii-inspired parallel function (3.7) is used with

the general switching model (3.4) to avoid the numerical cut-o� associated with the spline

representation of the von Mises function (3.5). In preliminary tests it was found that the sharp

transition where the von Mises function transitions to fully anisotropic (see section 3.2.1) was

exciting a small perturbation and disrupting the results. The parallel Braginskii switching

function does not su�er from this issue. The switching parameter 𝛼 is set to 𝛼 = 12, meaning

the viscosity can be considered fully parallel for |𝑩 | > 5/6. The surface |𝑩 | = 5/6 is in the

shape of an ellipsoid cutting the 𝑥 and 𝑦 axes at 5/6 and the 𝑧 axis at 5/24.
The main parameter study required 18 simulations to be run in total; one per viscosity

model for each of the 9 parameter choices. To limit the time required to complete the study, a

relatively low resolution of 320 grid points in each direction is used for these runs. A single,

higher-resolution pair of simulations were run for each viscosity model at the resolution of 640

grid points for a single parameter choice. As well as allowing a detailed analysis of this case,

these higher-resolution simulations provide evidence that the lower resolution simulations

have suitably converged. In all cases, only background resistivity is used.
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6.3 Tools of analysis

6.3.1 Shear layer properties

To quantify the di�erences between the shear layers produced using di�erent viscosity mod-

els, the peak vorticity and current density within the current-vortex sheets are measured, along

with the radii at which the peaks occur. These radii are then used as the locations at which

the absolute di�erence in azimuthal velocity Δ𝑢 and magnetic �eld Δ𝐵 across the shear layers

are measured, calculated as the di�erence between the maximum and minimum values of ve-

locity or magnetic �eld either side of the shear layer. The distance between the maximum and

minimum points gives a measurement of the thickness of the shear layers, 𝐿𝑢 and 𝐿𝐵 . These

measures are all used in the calculation of the stability measures discussed in the proceeding

section.

6.3.2 Stability measures

Following Wyper and Pontin [116], two quantities are used in understanding the stability of

the current-vortex sheet: the fast modeMach number𝑀𝑓 , associated with the shear in velocity,

and a parameter Λ describing the balance of stability between the tearing mode and the KHI

in a current-vortex sheet
1
The fast mode Mach number is given by

𝑀𝑓 =
Δ𝑢√︃
𝑐2𝑠 + 𝑐2𝐴

(6.2)

where 𝑐𝑠 and 𝑣𝐴 are the local sound and Alfvén speeds, respectively. The parameterΛmeasures

the relative strength of the velocity shear to magnetic shear and is given by

Λ =
𝐿𝑏

𝐿𝑢
𝑀

2/3
𝐴
, (6.3)

where𝑀𝐴 is the projected Alfvén Mach number

𝑀𝐴 =
Δ𝑢

√
𝜌

Δ𝐵
. (6.4)

Since the shear layer occurs in the presence of a guide �eld (that of the initial magnetic null

point) which is not included in the linear stability study of the KHI, the di�erence in azimuthal

magnetic �eld Δ𝐵 is used in the Alfvén Mach number as opposed to the full magnetic �eld

strength |𝑩 |. In this way the Alfvén Mach number can be considered projected on to the shear

layer.

1
Wyper and Pontin additionally use the projected AlfvénMach number alongside the two measures used here,

however it is my opinion that Λ ultimately captures the same information.
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Plotting the radial dependence of these quantities over the shear layers gives an indication

of the local linear stability based on the stability analysis performed by [34]. Such an analysis

predicts that a current-vortex sheet is linearly unstable to the KHI where 𝑀𝑓 < 2 and Λ > 1.

Where Λ < 1, the analysis predicts that the sheet is unstable to the tearing instability instead.

It should be noted that the analysis of [34] is 2D so can only be approximately used in the study

of the KHI here, where there is an additional 3D guide �eld in the system.

6.3.3 Reconnection rate

The reconnection rate is calculated using the samemethod employed in chapter 4. In summary,

the reconnection rate local to a given magnetic �eld line is calculated as the local parallel elec-

tric �eld (that is, parallel to the magnetic �eld) integrated along the �eld line. By choosing a

grid of starting points and integrating along each associated �eld line, an image is constructed

of reconnection rates projected onto the grid of �eld line seed points. This is used to explore

the spatial distribution of reconnection. The maximum value across all seed points gives the

conventionally accepted measure of reconnection rate, the maximum integrated parallel elec-

tric �eld [45, 85, 98]. Since this method uses a �nite number of �eld lines, there is no guarantee

that any of the chosen �eld lines will produce the true maximum value of the integrated par-

allel electric �eld. Hence, the reconnection rate produced can only represent a lower bound of

the true reconnection rate.

In this chapter, the �eld lines are seeded from points on a regular grid located in the plane

𝑧 = 0.23 and extending to ±0.5 in the 𝑥 and𝑦 directions. Some calculations lower the 𝑥𝑦-extent

to ±0.1 where this does not a�ect the results. Field lines which start outside this region are

unlikely to signi�cantly participate in reconnection processes. Due to symmetry, it is assumed

that a similar calculation where �eld lines are started from the opposite plane 𝑧 = −0.23 would
give qualitatively similar results. The number of seeded �eld lines varies between 400 for

calculations of single data points in �gures such as 6.8f to 1 × 10
4
for spatial distributions of

the reconnection rate such as 6.4b.

6.4 Results

In the �rst part of the results, the evolution of the high-resolution pair of simulations is pre-

sented, both performed using a resistivity of 𝜂 = 10
−4

and viscosity 𝜈 = 10
−4
, and the e�ect

of the two viscosity models are compared. These simulations capture the main features of the

dynamics in the null point in response to the driver: the formation of a current-vortex sheet in

the fan plane, the appearance of counter�ows, the (potential) growth of a KHI, and the eventual

collapse of the null. This simulation pair also highlights the di�erences between the isotropic

and the switching viscosity models, mainly the suppression of the KHI in the isotropic case,
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Figure 6.2: Rings of vorticity and current density and associated linear stability criteria. Sub�gure
(a) plots the vorticity and current density for both viscosity models at 𝑡 = 3. Sub�gure (b) plots

the linear stability measures as functions of radius at 𝑡 = 6. The switching model permits rings

of greater radial extent and notably stronger vorticity resulting in a current-vortex sheet which

is linearly unstable to the KHI.

and the quicker collapse of the null in the switching case. These results are then generalised

to other parameter choices in a later section.

6.4.1 Evolution of a typical case

The evolution of the high-resolution, typical cases is detailed in stages, �rst exploring the

formation, stability and breakup of the current-vortex sheet, before investigating the collapse

of the null. Then, the evolution is summarised through an analysis of the energy budget and

reconnection rate in time.

Formation of the current-vortex sheet

Initially, the torsional Alfvén waves injected by the driver trace the �eld surrounding the null,

moving �rst along the spine then out across the fan plane. This occurs from above and below.

The upper and lower waves eventually meet and create shear layers in the velocity and mag-

netic �eld in the form of rings of vorticity and current density centred around the null point.

These shear layers are jointly called the current-vortex sheet. Without any di�usion in the

system the waves would travel far along the fan plane before meeting. The presence of both

viscosity and resistivity di�uses the waves as they travel along the �eld, allowing the upper

and lower waves to meet around 𝑟 = 1, where the current-vortex sheet forms (�gure 6.2a). The

hole in the sheet is due to magnetic tension forces opposing the twisting motion, as illustrated

in �gure 3 of [116]. This also gives rise to the counter�ows similar to [116, 44] (not shown).



CHAPTER 6. APPLICATION TO A DYNAMICALLY TWISTED NULL POINT 94

−2 −1 0 1 2

x

−2

−1

0

1

2

y

isotropic
×1

switching

−4

−2

0

2

4

×10−6

(a) 𝑡 = 2

−2 −1 0 1 2

x

−2

−1

0

1

2

y

isotropic
×5

switching

−1.0

−0.5

0.0

0.5

1.0
×10−4

(b) 𝑡 = 6

−2 −1 0 1 2

x

−2

−1

0

1

2

y

isotropic
×1000

switching

−4

−2

0

2

4

×10−2

(c) 𝑡 = 10

Figure 6.3: Development of the KHI in the out of plane velocity 𝑢𝑧 at 𝑡 = 2, 6 and 10 for both
viscosity models. Note the isotropic results have been multiplied by as much as 1000 in order

to compare to the switching results. In the switching case the KHI appears initially along

the diagonals before extending azimuthally. In the isotropic case there is no evidence of the

instability.

In the switching case, the reduced e�ective viscosity produces a vortex ring which is larger

in radius and stronger inmagnitude. The current density ring is somewhat larger in the switch-

ing case, but of equivalent peak magnitude to that in the isotropic case. Since the viscosity dif-

fuses velocity directly and a�ects the magnetic �eld only indirectly, the vorticity is naturally

a�ected by the change in viscosity model more than the current density. This di�erence in

vorticity but not current density a�ects the relative size of the stability measures.

Figure 6.2b shows the relevant stability measures as functions of radius across the fan plane

at 𝑡 = 6, a time when the fan plane has become unstable to the KHI in the switching case but

remains stable in the isotropic case (�gure 6.3b). The measure Λ con�rms that the current-

vortex sheet is linearly stable to the KHI in the isotropic case and unstable in the switching

case for 𝑟 > 0.6. This linear prediction matches where the KHI is observed to develop. In

the switching case the peak of 𝑀𝑓 aligns with the observed region of initial growth of the

instability.

In the switching case, Λ and 𝑀𝑓 are signi�cantly larger due to the greater vorticity (�g-

ure 6.2a). In the isotropic case the more e�cient dissipation of velocity results in a generally

weaker vorticity ring and, thus, lower stability measures.

As expected from the linear stability measures shown in �gure 6.2b, �gure 6.3 shows the

development of the out of plane velocity from 𝑡 = 2 to 10 and reveals that only the current-

vortex sheet in the switching case is unstable to the KHI. Both cases appear similar until 𝑡 = 6

when the KHI appears only in the switching case, initially along the diagonals (�gure 6.3b)

before spreading azimuthally (�gure 6.3c). In the isotropic case, the initial pattern appears to

grow slightly in magnitude but does not evolve into the KHI.

There are a number of reasons the KHI may appear �rst at the diagonals. Due to the Carte-

sian grid, the e�ective grid spacing in the azimuthal direction is a factor of

√
2 larger along
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Figure 6.4: The breakup of the current-vortex sheet and associated reconnection at 𝑡 = 10. Sub�g-
ure (a) presents the current and vorticity density and sub�gure (b) presents the spatial distri-

bution of reconnection rate. Both sub�gures show both viscosity models. The current-vortex

sheet remains stable in the isotropic case while that in the switching case has been fragmented

by the KHI. The resultant small-scale reconnection in the rolls produce localised pockets of

strong vorticity and current density.

the diagonals than along the 𝑥 or 𝑦 axes. This may in�uence the impact of some numerical

viscosity. Additionally, the diagonals are locations where waves interact after re�ecting from

the boundaries. This increases the level of noise in these regions, acting as an enhanced source

of perturbations for the instability.

In both cases the current-vortex sheet grows in radius and magnitude with time, more in

the switching case than in the isotropic. The shearing action of the counter�ows produces

a secondary ring of strong current density closer to the spine which is greater in magnitude

in the isotropic case. By 𝑡 = 10 the KHI has disrupted the current-vortex sheet (�gure 6.4a)

and the resultant rolls of the KHI create strong, small-scale current sheets, enhancing the local

reconnection rate.

Figure 6.4b shows the spatial distribution of the reconnection rate for both viscositymodels.

Each pixel in the image represents one �eld line passing through that pixel along which the

parallel electric �eld has been integrated. The colour of the pixel is given by the value of the

integration. The reconnection rate is greatest close to the origin, corresponding to regions of

slippage reconnection due to the strong currents in the spine and current-vortex sheet. The

e�ects of the boundary can be seen as long dark lines which spiral outwards from the origin.

The switching case shows a greater peak reconnection rate due to the small scale current sheets

created by the KHI, and the enhanced reconnection far from the null can be seen as ripple-like

structures in the fringes of the plot.
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(a) 𝑡 = 15 (b) 𝑡 = 18.5

Figure 6.5: Collapse of the null point visualised with �eld lines in the isotropic case. Field lines are
plotted from a circle of radius 0.05 around the upper and lower spine footpoints. Contours of

|𝒋 | = 60 are also plotted and reveal the strong current within the spine as well as the formation

of the central sheet associated with the spine-fan reconnection. At 𝑡 = 18.5 the bulk of the �eld

lines which previously wrapped around the spines have reconnected.

Spine-fan reconnection

This section presents the results of driving the magnetic null to the point at which it undergoes

spontaneous collapse. The collapse is instigated by a velocity shear across the null which

generates a magnetic shear, permitting spine-fan reconnection. The results of the isotropic

case are �rst presented in detail, then the e�ect of the KHI is explored in the switching case.

In typical studies of spine-fan reconnection (such as [81]) the spines of a null point are

dragged in opposite directions at the boundaries. This motion pulls the �eld above and below

the null point in opposite directions and creates a current sheet which acts to reconnect �eld

lines between the spine and fan �eld lines. Here, the �eld near the null is shifted not because

of motions at the footpoints of the spine, but due to imbalances in the velocity which arise

naturally during the course of the initial driving. Figure 6.5 presents the magnetic �eld lines

before and during the reconnection.

The twist in the spines creates a current which heats the contained plasma via Ohmic heat-

ing and generates a small pressure force directed towards the null point. This drives two

oppositely directed streams of plasma along the spine towards the null point (�gure 6.6a).

Where these streams meet (at the null point) they form a stagnation point �ow, compressing

the plasma in the vicinity of the null and �owing out along the fan plane. Due to small asym-

metries in the solution that accrue during the simulation, an imbalance in the velocity appears

above and below the null point (�gure 6.6b).

In similar numerical simulations of twisted null points, the kink instability has been excited

in the spine [78] so it is natural to ask whether the asymmetry found in �gure 6.6b could be a

result of a similar kink instability. However, the initial plasma beta 𝛽 > 1 in the region 𝑧 < 0.15

and 𝑟 < 0.8 (see section 6.2) which comfortably contains the region showing asymmetry in
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Figure 6.6: Velocity imbalance above and below the null. Figure (a) plots a slice of the pressure
through 𝑦 = 0 overlaid with �uid velocity, where the longest arrows correspond to a �uid

velocity of approximately 0.1. Figure (b) depicts |𝑢𝑥 (𝑥) |− |𝑢𝑥 (−𝑥) |, the di�erence in𝑢𝑥 between
the left and right sides of the plane 𝑥 = 0. This gives a measure of the asymmetry in the velocity

around the null point.

�gure 6.6b. This suggests the dynamics are not driven by magnetic forces (as would be the

case for a kink-driven asymmetry) but are, instead, predominantly pressure-driven.

The velocity shear around the null shears the magnetic �eld accordingly, creating a current

sheet through the null point (�gures 6.7). This current sheet enables reconnection between the

spine and fan which further extends, thins and strengthens the sheet, continuing the recon-

nection process (�gure 6.5b) until the �eld around the null collapses. The collapse itself can

be seen in the kinetic energy as a dramatic increase starting at 𝑡 ≈ 18 (�gure 6.8a). The devel-

opment of the current sheet and the resultant spine-fan reconnection is similar to that of [81]

with the exception that the twist in the �eld unravels as the reconnection proceeds.

In the switching case, the development of the spine-fan reconnection and associated col-

lapse is qualitatively similar to that in the isotropic case with the exception that the reconnec-

tion occurs notably earlier. Where the current sheet development shown in �gures 6.7 occurs

between 𝑡 = 17 and 18 in the isotropic case, a similar evolution occurs between 𝑡 = 14 and 15

in the switching.

Development of energy budget and reconnection rate

The kinetic energy in the switching case describes themain evolution of a KHI-unstable current-

vortex sheet as presented in detail previously (�gure 6.8a). The initial injection of the Alfvén

waves and formation of the current-vortex sheet can be seen at at 𝑡 ≈ 3. As the null continues

to be driven, the sheet becomes unstable to the KHI and the kinetic energy grows accordingly

from 𝑡 ≈ 3 to 8. At 𝑡 ≈ 8 the KHI saturates as small-scale current sheets form and Ohmic

heating begins to drain energy from the instability (�gure 6.8c). This is also re�ected in the
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Figure 6.7: Development of the spine-fan reconnection current sheet. This is shown as plots of |𝒋 |
sliced through 𝑦 = 0 between 𝑡 = 17 and 18. Maximum current density in all plots is |𝒋 | = 120.

reconnection rate (�gure 6.8f) where the small current sheets in the rolls of the KHI in the fan

plane enhance reconnection locally. Around 𝑡 = 14, a transient increase in the kinetic energy

reveals the start of the null collapse.

In the isotropic case, the increased kinetic energy and enhanced reconnection rate asso-

ciated with the KHI are absent, however the collapse of the null produces signi�cantly more

kinetic energy at 𝑡 ≈ 17 than in the switching case (�gure 6.8a). The Ohmic heating is simi-

larly damped without the in�uence of the KHI (�gure 6.8c). This results in the switching model

extracting more energy from the �eld (�gure 6.8d) and heating the plasma much more e�ec-

tively (�gure 6.8e). One signi�cant �nding is that the velocity shears created by the KHI allow

anisotropic viscous heating of comparable levels to that of isotropic viscosity (in contrast to

the orders of magnitude di�erence observed in other chapters).

The reconnection rate reveals some interesting features about the nature of reconnection

within the system and how the presence of the KHI a�ects the null collapse (�gure 6.8f). One

interesting observation is that the switching case shows a greater reconnection rate than that

of the isotropic case even before the onset of the KHI (i.e. for 𝑡 < 6), suggesting the switch-

ing model itself is enhancing reconnection. As in other chapters, this is due to the switching

model permitting greater velocities, greater compression and thinner, stronger current sheets.

It is then unclear whether the generally enhanced reconnection rate in the switching case for

times 𝑡 = 5 to 10 can be attributed to the current-enhancing e�ect of the switching model

or an e�ect of the KHI. Certainly, the spiky nature of the reconnection rate from 𝑡 = 8 to 15

can be attributed to the small, transient current sheets produced due to shearing e�ect of the

developed KHI, which do not appear in the stable isotropic case. The collapse of the null is

observed in the reconnection rate in the switching case around 𝑡 = 15 and in the isotropic case

around 𝑡 = 17, however it di�ers signi�cantly between the two cases. In the isotropic case, the

reconnection rate increases during the collapse, while in the switching case, it decreases. This

is due to the di�erence in the state of the nulls in each case as the collapse occurs.
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Figure 6.8: Energy measures and reconnection rate as functions of time. Vertical, dotted lines

signify the beginning of the null collapse in the isotropic (blue) and switching (orange) cases.

In the isotropic case, where the KHI has not been excited, the �ows and magnetic �eld are

relatively simple and smooth such that the collapse is able to form large current sheets and

reconnect many �eld lines at once. In contrast, in the switching case the KHI has broken up

the current-vortex sheet, introduced inhomogeneities throughout the fan plane and generated

small current sheets. This results in a collapse which struggles to reconnect with the same

e�ciency as in the smoother, simpler isotropic case. Additionally, there is simply more free

magnetic energy in the system where the KHI remains stable, allowing current sheets to form

more e�ectively during the collapse. In essence, the KHI places the null in a more complex

state where the collapse is less e�cient at reconnecting �eld lines.

6.4.2 Analysis of parameter study

The results shown in section 6.4.1 change dramatically when 𝜈 and 𝜂 are varied. This section

presents results of simulations where 𝜈 is varied as 10−5, 10−4 or 10−3 and 𝜂 as 10−4 or 10−3. This

results in six pairs of simulations, each choice being run with switching viscosity or isotropic

viscosity. The simulations were performed at a resolution of 320 grid points per dimension,

half that of the high-resolution cases, and run to 𝑡 = 15 instead of 𝑡 = 20. The null collapse

occurs sooner than at higher resolutions and shows behaviourmore typical of fast reconnection

indicative of inadequate resolution [73]. For this reason, focus is placed on the development of

the KHI rather than the null collapse, leaving a parameter study of the null collapse itself open

as an avenue of future research. Generally, increasing 𝜂 to 10
−3

produces a null that is more

unstable to the KHI (even in isotropic cases) due to the greater di�usion of the magnetic �eld



CHAPTER 6. APPLICATION TO A DYNAMICALLY TWISTED NULL POINT 100

10−5 10−4 10−3

ν

0

20

40

60

80

100

120

140

m
a
x
|ω
|

η = 10−3; iso

η = 10−4; iso

η = 10−3; swi

η = 10−4; swi

(a) Peak vorticity

10−5 10−4 10−3

ν

0

5

10

15

20

m
a
x
||

(b) Peak current

Figure 6.9: Peak vorticity and current as functions of viscosity 𝜈 for each value of resistivity 𝜂 at
𝑡 = 8. In the isotropic case, both rings decrease in radial extent as either di�usion parameter

is increased. In the switching case, both rings also decrease with 𝜂, however there is a notable

increase in the radial extent with 𝜈 , particularly for high values of 𝜂.

which reduces the stabilising e�ect of magnetic tension. Increasing 𝜈 damps the KHI but does

not totally suppress it, while decreasing 𝜈 leads to a more unstable KHI.

Shear layer properties and instability

To understand the e�ect viscosity and resistivity have on the stability of the current-vortex

sheet, it is useful to understand how changing their strength a�ects the magnitude of the vor-

ticity and current density rings. Figure 6.9 presents the peak vorticity and current density as

functions of 𝜈 for both values of 𝜂. In general, increased viscous or ohmic di�usion leads to a

thicker, weaker ring, due to the Alfvén waves di�using more before meeting in the fan plane.

This is re�ected in the broad trends found in �gure 6.9, where both peak current and peak

vorticity decrease with increased viscous or ohmic di�usion. The switching model, being gen-

erally less di�usive than the isotropic model, permits velocity shear layers with much greater

peak vorticity. Due to the coupling between the magnetic �eld and the velocity in an Alfvén

wave, the isotropic model appears to provide some di�usion to the magnetic �eld during the

formation of the magnetic shear layer, resulting in a layer with weaker peak current, however

the switching model a�ects the magnetic layer very little.

Since the stability of the current-vortex sheet depends on the balance of velocity and mag-

netic shear, it is not exactly clear from �gure 6.9 what the e�ect of changing resistivity is on

the ultimate stability of the sheet. Lower resistivity results in a stronger vorticity layer (in the

switching case) but also a stronger current layer, and vice versa for larger resistivity. To fully

understand the e�ect of the di�usion parameters on the stability of the sheet, analysis of the

sheets using the stability parameters Λ and𝑀𝑓 is required.

Figure 6.10 plots the stability measures as functions of radius for every studied parameter

choice and both viscosity models at 𝑡 = 8. In every case 𝑀𝑓 < 2, a necessary condition for an
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Figure 6.10: Plots of stability measures as functions of radius 𝑟 for all parameter choices at 𝑡 = 8.
Note the di�erence in the scale of 𝑀𝑓 for di�erence values of 𝜂. The cases where Λ > 1 are

unstable with the exception of the isotropic cases where 𝜈 = 10
−4, 𝜂 = 10

−3
(dashed line in

�gure 6.10a).

unstable current-vortex sheet. The condition on Λ for instability is Λ > 1. All switching layers

are linearly unstable to the KHI (�gures 6.10b and 6.10d) while the isotropic cases show amix of

linear stability. When 𝜈 = 10
−5
, the viscosity is weaker and the linear stability analysis predicts

that the layers should be unstable for either value of 𝜂. The opposite is true for 𝜈 = 10
−3
, when

the isotropic viscosity is at its most dissipative. The two middle cases, when 𝜈 = 10
−4

show

stability when 𝜂 = 10
−4

and instability when 𝜂 = 10
−3
.

The observed stability of the current-vortex sheet to the KHI in each case is determined

via inspection of the out of plane velocity for each parameter choice and is summarised for

each parameter choice in table 6.1. Some entries are marked as unstable*, referring to their

being marginal cases, that is the KHI is directly observed in the out of plane velocity but the

growth rate is close to zero and the perturbation remains negligibly small even at the �nal time

of 𝑡 = 15. The observed stability is well matched by the theoretical conditions of instability

Λ > 1 and 𝑀𝑓 < 2 in all but one case. This indicates that, despite the di�erence in geometry,

the stability analysis of [34] is of practical use in predicting the stability of the KHI in magnetic

null points. This condition even accurately predicts the stability of the marginal cases.

Figure 6.11 shows the kinetic energy as a function of time for all parameter choices and
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𝜂 𝜈 Iso linear Iso observed Swi linear Swi observed

10
−3

10
−3

Stable Stable Unstable Unstable

10
−3

10
−4

Unstable Stable Unstable Unstable

10
−3

10
−5

Unstable Unstable Unstable Unstable

10
−4

10
−3

Stable Stable Unstable Unstable*

10
−4

10
−4

Stable Stable Unstable Unstable

10
−4

10
−5

Unstable Unstable* Unstable Unstable

Table 6.1: Stability in the isotopic and switching cases for di�erent choices of 𝜈 and 𝜂. Both

linear stability (as predicted by Λ > 1 in �gure 6.10) and observed stability are shown. Entries

marked as unstable* show growth of the KHI but the growth rate of the perturbation is close to

zero. The isotropic model mostly results in stability while the switching model mostly results

in instability.
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Figure 6.11: Kinetic energy as functions of time for each parameter choice and viscosity model.
An increase in 𝜈 damps the energy released during the KHI in the switching cases and totally

suppresses the KHI in most isotropic cases.

both viscosity models. The strongly KHI-unstable cases show a similar kinetic energy pro�le

to that of the unstable typical case (�gure 6.8a). In the switching cases, the peak kinetic energy

is larger when 𝜂 = 10
−4

in two cases (�gures 6.11d and 6.11e). This is a result of the reduced

di�usion of the magnetic �eld resulting in a stronger vorticity layer (�gure 6.9). The isotropic

cases in �gure 6.11 show an interesting trend in that the kinetic energy grows more for smaller

𝜈 (as expected) or for larger 𝜂. In particular, the isotropic case where 𝜂 = 10
−3

and 𝜈 = 10
−5

(�gure 6.11a) is only isotropic case where the KHI is signi�cantly unstable. In this case the

kinetic energy pro�le shares a similar shape to the associated switching case, but the enhanced

dissipation prevents the KHI from generating similar levels of kinetic energy. Instead, the

pro�le is �atter and saturates at a later time.

Table 6.1 reveals three cases of interest which are explored through the kinetic energy
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Figure 6.12: Internal energy, total viscous and total Ohmic heat as functions of viscosity 𝜈 at
𝑡 = 12.5, before the onset of any null collapse, for all parameter choices. Isotropic (blue, solid)
and switching viscosity (orange, dashed) are both shown. An upwards-facing triangle denotes

the higher value of 𝜂 = 10
−3

and a downwards-facing triangle, 𝜂 = 10
−4
. The anisotropic

viscous heating can become signi�cant for larger values of 𝜈 yet, when 𝜈 is smaller, the lack of

viscous heating is compensated by enhanced Ohmic heating.

pro�les. The marginally unstable isotropic case, where 𝜂 = 10
−4

and 𝜈 = 10
−5
, does show some

growth but it is notably less than the fully unstable case (�gure 6.11d). Given that the current-

vortex sheets in both these cases share similar strengths of vorticity, it is the combination of

viscous dissipation of perturbations and enhanced magnetic shear in the lower 𝜂 case which

acts to stabilise the sheet (�gure 6.9). This conclusion can similarly be drawn for the outlying

switching case where 𝜂 = 10
−4

and 𝜈 = 10
−3

(�gure 6.11f). The remaining case of interest

is where 𝜂 = 10
−3

and 𝜈 = 10
−4
, the single case where the linear prediction disagrees with

the observed stability (�gure 6.11b). In this case, the kinetic energy plateaus as the viscosity

dissipates kinetic energy as it is generated by the instability.

Figure 6.12 presents the total heat generated by viscous and Ohmic dissipation and the

total internal energy at 𝑡 = 13, prior to any null collapse. Looking �rst at the viscous heating

(�gure 6.12a),𝑄𝜈 generally decreases with decreasing 𝜈 , as one may expect, with the exception

of the isotropic cases where 𝜂 = 10
−4
. Instead, in these cases the viscous heating shows little

dependence on 𝜈 . This reveals the complex, nonlinear relationship between viscous heating,

the value of 𝜈 and the �ows generated.

In the switching cases, generally an increase in 𝜈 increases viscous heating and decreases

Ohmic heating. The decrease in Ohmic heating is due to two complementary e�ects. Firstly,

viscosity generally slows �ows and limits the compression of current sheets, consequently

limiting Ohmic heating, thus a larger 𝜈 produces less Ohmic heating. Secondly, the nonlinear

phase of the KHI enhances Ohmic heating in the fan plane and, since the instability is more un-

stable for smaller 𝜈 , Ohmic heating increases with decreasing 𝜈 . The overall e�ect is a decrease

in internal energy with increasing 𝜈 . This is also true for the 𝜂 = 10
−3

isotropic cases.

The Ohmic heating pro�le similarly reveals complex behaviour in the isotropic cases (�g-

ure 6.12b. The stark di�erence in trends can be explained by considering the spatial distribution

of Ohmic heating which mirrors that of the current density. The two main current structures

in a twisted null are the current-vortex sheet and the structure associated with the twisted
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Figure 6.13: Ohmic heating contributions from separate current structures in the spine and fan.
Shown are mean Ohmic heating contributions from the spines (dotted) and current-vortex

sheet (dashed) and their sum (solid) for 𝜂 = 10
−3

(a) and 𝜂 = 10
−4

(b) in only the isotropic cases

at 𝑡 = 10. The value of 𝜂 dictates how rapidly the balance of contributions shifts from fan to

spine with 𝜈 , resulting in di�erent trends in total Ohmic heating.

spines (although the spine currents are two separate regions of current density, they contribute

equally to the Ohmic heating so are considered one here). These are the main sources of Ohmic

heating and the balance of contributions from each source, for di�erent values of 𝜂 and 𝜈 , is

non-trivial and results in the observed di�erence in trends.

Figure 6.13 reveals how the contributions from the current-vortex sheet and spines change

with 𝜈 , and the e�ect that has on the total Ohmic heating. These measures are calculated as

the mean of the Ohmic heating in the 𝑥𝑦-plane (representing the heating within the current-

vortex sheet) and that in the 𝑦𝑧-plane (representing the heating in the spines). These are not

true measurements of the Ohmic heating within each current structure, however they provide

a useful proxy.

For any value of 𝜂, the spine heating increases and the current-vortex heating decreases as

𝜈 increases. This is due to greater viscosity dissipating the initial Alfvén waves more e�ectively

and reducing the magnetic shear in the current-vortex sheet while retaining magnetic shear in

the spines. The di�erence in how rapidly the relative contributions change with 𝜈 gives rise to

the di�erence in total Ohmic heating trends found in �gure 6.12b. When 𝜂 = 10
−4
, the heating

in the sheet decreases faster than the spine heating increases with 𝜈 , resulting in a drop in total

Ohmic heating (�gure 6.13b). The opposite is true when 𝜂 = 10
−3

(�gure 6.13a).

6.5 Discussion

While the values of 𝜂 used in the simulations performed here are orders of magnitude greater

than typical coronal estimates, the values of 𝜈 are certainly within realistic bounds. It has been

found that, when using a model of viscosity appropriate in the solar corona, i.e. the switching

model, the KHI is unstable, regardless of parameter choice. This strongly suggests that, in the
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real corona, the KHI can be excited in current-vortex sheets similar to those studied here. What

this investigation does not take into account are other possible null point con�gurations.

This chapter details the investigation of the KHI and null point collapse around an axisym-

metric, linear null point, an idealised model of a real null point (such as that observed in [69]).

The impact of di�erent null con�gurations such as those with asymmetry (e.g. those investi-

gated in [106, 84]) is somewhat unclear. Pontin et al. [82] show that asymmetry in a twisted

null point results in a current sheet which is stretched and enhanced in way which mirrors the

asymmetry of the null point. This suggests a torsionally-driven, asymmetric null point would,

correspondingly, exhibit an asymmetric current-vortex sheet and, potentially, an asymmetric

KHI. Similarly, the simplicity of the driver used here is unlikely to re�ect the true nature of

drivers in the real solar corona. The impact of driver complexity on spine-fan reconnection

speci�cally has been investigated [115], however the drivers studied in [115] focus on sheared

drivers, as opposed to the torsional drivers employed here. It would be of interest to under-

stand how di�erent magnetic �eld con�gurations and forms of driver a�ect the formation and

stability of the kind of current-vortex sheets studied here.

The simulations detailed here have been performed with a model of anisotropic viscosity

which only captures the parallel component of viscosity. As discussed in [35], perpendicular

components can become signi�cant in strong velocity shears (such as those found in the fan

plane of a twisted null point) despite the small size of the associated transport coe�cient 𝜂1

(see section 1.3.5). A similar set of experiments exploring the e�ect of perpendicular viscosity

could provide useful insight, particularly in ascertaining if the growth of the tearing instability

in the current-vortex sheet could be accelerated by perpendicular viscosity, as is found in the

linear analysis performed by [35].

An important �nding of this investigation is the spontaneous collapse of the null point

without shearing drivers (as in [81]) or prescribed current density perturbations (as in [106]).

The formation of the current sheet at the null point (which facilitates spine-fan reconnection

and null collapse) is primarily driven by a shearing motion at the null point, itself a result of

oppositely directed streams of plasma �owing along the spine towards the null. These �ows

rely on pressure gradients which are generated by Ohmic heating in the twisted spine. In

chapter 5 it was found that the pressure generated in the ideal case (i.e. without any Ohmic

heating) was too small to generate a �uting instability. Similarly, here, it may be that the

pressure generated under ideal conditions (or using realistically small coronal resistivity) is

not enough to drive the null-directed �ows and, thus, not enough to collapse the null. Further

investigation of this form of collapse within a twisted null point is required to ascertain if such

a collapse is possible in the real corona.

The e�ect of the form of viscosity on the collapse of the null is also explored in the two

high-resolution simulations (of section 6.4.1) and it is found that in the switching case, where

the KHI is unstable, the null collapses notably earlier than in the isotropic case, where the
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KHI is stable. It is unclear if the early null collapse is a consequence of the KHI or the use

of the switching model. From the results of the isotropic case, the null collapse appears to be

ultimately caused by slight asymmetries in the spine-aligned �ows, so onemay conjecture that,

in the switching case, the KHI introduces its own asymmetries which cause the early collapse

of the null. A higher resolution version of the unstable, isotropic case (where 𝜈 = 10
−5

and

𝜂 = 10
−3
) would provide clarity.

It is unclear how the unravelling of the null as it collapses a�ects the ability of the null

to undergo the kind of oscillatory reconnection found in [107]. One observed phase in the

oscillatory process is the generation of back-pressure which halts and reverses the spine-fan

reconnection process. It may be that a collapsing twisted null is unable to produce the required

back-pressure if it unravels during its initial collapse. Running the high-resolution simulations

reported here for a longer time would reveal if the particular setup studied here can generate

oscillatory spine-fan reconnection. Alternatively, using a pre-twisted null point as an initial

condition with the perturbation used to collapse the null found in [107] would provide a similar

experiment.

6.6 Conclusions

In this chapter two models of viscosity have been applied to a magnetic null point which has

been dynamically twisted at its footpoints in such a way that a current-vortex sheet forms in

the fan plane. This sheet has the potential to become unstable to the KHI. It was found that

increased viscous dissipation, particularly in the form of isotropic viscosity, has a stabilising

e�ect on the sheet. This is primarily due to viscosity thickening the sheet and increasing its

stability. The presence of the instability enhances reconnection and viscous heating within the

sheet.

After some time, the null spontaneously collapses due to an imbalance in spine-directed,

pressure-driven �ows. This was found to occur sooner when the KHI is present. The general

development of the collapse and associated spine-fan reconnection is similar to that of previous

work with the exception that the twist in the spine unravels during the collapse.

The investigation of the stability of the current-vortex sheet was extendedwith a parameter

study over an order of magnitude di�erence in resistivity and two in viscosity. The results show

that the KHI is mostly unstable when using switching viscosity and mostly stable when using

isotropic viscosity.



Chapter 7

Final discussion

As a whole, this thesis presents a detailed investigation of a newmodel of anisotropic viscosity,

the switching model, and its use in a number of important coronal applications including the

helical kink and �uting instabilities in a twisted magnetic �ux rope and the Kelvin-Helmholtz

instability in the fan plane of a twisted null point. The switching model captures the main

physics of the classical Braginskii model (when applied to the solar corona) where momentum

transport is isotropic in the vicinity of a null point and is otherwise (predominantly) parallel

to the magnetic �eld. The switching model additionally exposes control over the e�ective size

of the isotropic regions around magnetic null points. This �nal chapter presents a holistic

discussion of general �ndings and motivates future research. For detailed discussions of the

results of individual applications, see the discussion sections of the relevant chapters.

The choice of viscosity model in simulations of twisted magnetic �ux ropes and stressed

magnetic null points strongly a�ects the stability of the �uting, kink and Kelvin-Helmholtz

instabilities, their linear and nonlinear evolution, and the viscous and Ohmic heating gener-

ated throughout their development. In general, isotropic viscosity has a pronounced damping

e�ect on the growth of each instability, to the point of complete suppression in some cases. In

the dynamically twisted �ux rope, the growth of the �uting instability is suppressed to the ex-

tent it is completely disrupted by the simultaneously growing kink instability. In the stressed

null point of chapter 6, only a single case is found where the instability notably breaks up the

associated current-vortex sheet when using isotropic viscosity, due to its enhanced viscous

damping. Surprisingly, it is this damping which allows the formation of a secondary instabil-

ity after the onset of the kink instability in chapter 4, behaviour that is not observed when

anisotropic viscosity is used.

In terms of heating, isotropic viscosity is generally found to estimate viscous heating to be

up to two orders of magnitude larger than that of the switchingmodel. Despite this, the smaller

length scales permitted by anisotropic viscosity tend to generate stronger current sheets and

enhance Ohmic heating. In the applications studied here this results in an overall greater in-

crease in total heating when using anisotropic viscosity. Although it is generally true that
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isotropic viscous heating outperforms anisotropic by several orders of magnitude, where the

KHI occurs in the null point (in chapter 6) the resultant �ows are such that anisotropic vis-

cous heating is massively enhanced and becomes comparable to isotropic heating. Hence,

the overall e�ect of anisotropic viscosity on viscous heating in a given coronal application is

fundamentally non-trivial and cannot be easily understood without investigation of relevant

nonlinear phenomena. However, the general enhancement of heating by anisotropic viscosity

in the applications studied here is encouraging in the context of coronal heating, and suggests

that simulations using isotropic viscosity may generally be underestimating the degree of total

heating.

While the speci�c estimates of Ohmic heating presented here rely on unrealistically large

values for the resistivity (due to computational limits) the results of the various parameter stud-

ies show that an order of magnitude di�erence in the value of resistivity does not correspond

to an order of magnitude di�erence in Ohmic heating, at least for kink-unstable �ux ropes and

stressed magnetic null points. If a realistic estimate of the resistivity is taken to be around four

to eight orders of magnitude smaller than those studied here, these �ndings indicate that the

predictions of Ohmic heating found in the results presented here may only be a few orders of

magnitude greater than realistic levels, assuming the results scale to such realistic values of the

resistivity. Contrastingly, since the value of viscosity used here is close to a realistic coronal

value, the predictions of viscous heating generated by the anisotropic model give an estimate

of the degree of true viscous heating in the solar corona. For the speci�c parameters studied

here, Ohmic heating contributes the bulk of the total heating, outperforming viscous heating

by several orders of magnitude, however this relationship may not hold for lower values of

resistivity.

Aswell as enhancingOhmic heating, the stronger current sheets generated using anisotropic

viscosity permit more e�cient reconnection, generally enhancing the reconnection rate. This

allows for faster magnetic relaxation and, in the case of the disruption of the secondary in-

stability during the nonlinear development of the kink instability in chapter 4, more energetic

reconnection-driven �ows.

Generally, anisotropic viscosity allows greater release of kinetic energy and permits faster

�ow structures at smaller scales. In the nonlinear development of the kink instability, these

faster �ows result in the previously mentioned disruption of the secondary instability which is

only present when isotropic viscosity is used and the �ow remains relatively laminar. In simu-

lations where the �uting instability occurs, the mixing caused by the nonlinear development of

the instability appears chaotic and over a range of length scales. These results prompt a ques-

tion for future research; are �ows associated with anisotropic viscosity generally turbulent in

nature?

Two phenomena have been observed which were unexpected: the �uting instability in a

dynamically twisted �ux rope, and the spontaneous collapse of a twisted null point. Both the
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�uting instability and the speci�cmechanism causing the collapse of the null point are pressure

driven and rely on spatial gradients in Ohmic heating to generate the required pressure gradi-

ents. It is unclear if the use of lower, more realistic values for the resistivity would provide the

required Ohmic heating to generate these pressure gradients. Both phenomena are a�ected by

the choice of viscosity model but do not rely speci�cally on either model; the �uting instability

is damped by isotropic viscosity in some cases, while the null collapse occurs sooner when

anisotropic viscosity is employed. The results presented here are a proof-of-concept, that the

�uting instability can be dynamically excited in a coronal loop model, and that a null point can

spontaneously collapse under the action of a torsional driver. Further investigation of either

would be valuable avenues of future research.

The models of anisotropic viscosity employed throughout this thesis have mainly been

the switching model with either the von Mises switching function or the parallel Braginskii

switching function, both of which neglect the drift and perpendicular terms in Braginskii’s full

viscous stress tensor on the basis that the relative strengths of the associated transport param-

eters render these terms negligible. However, a �nding general to all numerical experiments

performed here has been the consistently smaller length scales and faster �ows generatedwhen

using anisotropic viscosity, resulting in greater velocity shears. Are these shears great enough

to result in notable perpendicular viscosity? Although the drift terms do not participate in

heating, how might they a�ect the dynamics in a strong shear layer such as that studied in

chapter 6? These remain open questions to answer in future research.

However, without extreme velocity shears the perpendicular and drift components of the

Braginskii tensor remain secondary in importance to the parallel and isotropic components

and, as discussed in chapter 3, their inclusion may not be desired when arti�cially increasing

the value of 𝛼 for numerical purposes. Hence, the switching model provides a valuable numer-

ical tool in the simulation of coronal instabilities. For the model to be used in future research,

chapter 3 should be consulted to understand the advantages of each switching function. The

parallel switching function used in chapter 6 appears to capture the physics in a way closest

to Braginskii’s original model. This is the model recommended by this author for future work

involving anisotropic viscosity in the solar corona.

This thesis presents an initial, important foray into the application of anisotropic models

of viscosity to nonlinear solar instabilities. The switching model provides a useful numerical

tool to investigate the balance of isotropic and parallel viscosity in the solar corona. Along

with the study of the KHI and kink instabilities, two novel phenomena, the nonlinear �uting

instability in a coronal loop and the spontaneous collapse of a null point, are presented and

warrant further investigation.



Appendix A

Software and reproduction of results

This thesis has involved the development of a number of tools used to analyse the outputs

from Lare3d, mostly written in Python. For the purpose of proper reproducibility, this appendix

details the theory behind the �eld line integrator, the precise software versions and parameters

used to run the simulations and analyses, and the locations of all relevant code and data. Due to

the size of the output �les from Lare3d (the total amount of data generated in the entire thesis

is approximately 10 TB) only the code and relevant parameters are published. These should

provide enough information to reproduce the simulation results, however if a required piece

is missing, I encourage the reader to contact me.

A.1 Reproduction of results

With the exception of a �eld line integrator used in chapter 4, all analysis code is packaged

alongside the latex �les used to generate this thesis and can be found in the Github repository

at https://github.com/jamiejquinn/thesis and is also stored in Zenodo [89]. The theory behind

each piece of analysis is described in the relevant chapters and instructions for rerunning any

analysis can be found in the README of the thesis repository. The �eld line integrator used

in chapter 4 can be found at [88] and is distinct from the alternative �eld line integrator used

in other chapters which is described below and can be found alongside the other analysis tools

in the thesis repository.

The code which implements only the anisotropic viscosity module can be found at [9] and

should be simple to merge into another version of Lare3d for future research. To facilitate

reproduction of the simulation data presented in this thesis, the code used in each chapter

is individually packaged in di�erent branches of the repository found at https://github.com/

jamiejquinn/Lare3d and are also stored in Zenodo for chapter 3 at [12], chapter at 4 at [10],

chapter 5 at [11], and chapter 6 at [108]. These versions of Lare3d include initial conditions,

boundary conditions and basic running parameters. The speci�c parameters used in each in-

dividual simulation can be found in the methods sections of the corresponding chapters. The
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parameters were inputted to the simulations using the tools found in the run_scripts folder

of the thesis repository. These can be used to quickly generate multiple simulations suitable

for a parameter study.

All simulations were performed on a single, multi-core machine with 40 cores and 192

GB of RAM, although this amount of RAM is much higher than was required; a conservative

estimate of the memory used in the largest simulations is around 64 GB. Most simulations

completed in under 2 days, although the longest running simulations (the highest-resolution

cases in chapter 6) completed in around 2 weeks.

A.2 Field line integrator

As detailed in section 4.3.2, the reconnection rate local to a single �eld line is given by the elec-

tric �eld parallel to the magnetic �eld, integrated along the �eld line. The global reconnection

rate for a given region of magnetic di�usion is the maximum value of the local reconnection

rate over all �eld lines threading the region. In chapter 4 this was calculated using the visu-

alisation tool Mayavi (more details are found in section 4.3.2) while in all other chapters, a

�eld line integrator was developed speci�cally for the calculation of reconnection rate and is

detailed here.

Magnetic �eld lines lie tangential to the local magnetic �eld at every point 𝒙 (𝑠) along the

line,

𝑑𝒙 (𝑠)
𝑑𝑠

= 𝒃 (𝒙 (𝑠)), (A.1)

where 𝑠 is a variable which tracks along a single �eld line and 𝒃 is the unit vector in the direc-

tion of 𝑩. This equation is discretised using a second-order Runge-Kutta scheme to iteratively

calculate the discrete positions 𝒙𝑖 along a �eld line passing through some seed position 𝒙0,

𝒙𝑖+1 = 𝒙𝑖 + ℎ𝒃 (𝒙′𝑖 ), (A.2)

𝒙′𝑖 = 𝒙𝑖 + ℎ
2
𝒃 (𝒙𝑖) (A.3)

where ℎ is a small step size. Since 𝒃 is discretised, the value at an arbitrary location 𝒙𝑖 is

calculated using a linear approximation. The integration of a scalar variable 𝑦 is carried out

along a �eld line given by a sequence of 𝑁 locations 𝒙𝑖 using the midpoint rule,

𝑌 =

𝑖=𝑁∑︁
𝑖=1

(𝑦 (𝒙𝑖−1) + 𝑦 (𝒙𝑖))
2

, (A.4)

where 𝑌 is the result of the integration. In practice, 𝑁 is not speci�ed and the discretised �eld

line contains the required number of points to thread from its seed location to the boundary

of the domain.
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While the linear interpolation, second-order Runge-Kutta and midpoint rule are all low or-

der methods, testing higher-order methods showed little change in results but dramatically in-

creased the runtime of the analysis. The lower-order methods used o�er an acceptable compro-

mise between speed and accuracy. The above algorithm is implemented in Python and can be

found in code/shared/field_line_integrator.pywith examples of use in code/null_point_khi/field_line_integrator.Rmd.

The integration of multiple �eld lines is an embarrassingly parallel problem and is parallelised

in a straight-forwardmanner using a pool of threads supplied by the Pool feature of the Python

library multiprocessing. Although the integrator is solely used to integrate the parallel elec-

tric �eld along magnetic �eld lines in this thesis, the tool can be easily applied to arbitrary

vector and scalar �elds.
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