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Abstract

Disease mapping approach is the statistical methodology used to estimate disease risk

over time, and is generally based on areal unit data. Conditional autoregressive (CAR)

models are the most common modelling approach for disease data at the areal unit level.

Such approaches assume constant disease risk within each areal unit, which may not

be realistic. Therefore this study aims to address this problem by creating a pseudo

continuous disease risk surface over the Greater Glasgow and Clyde Health Board. A

set of regular grid squares is overlaid across the study region and the main focus of

this study is to estimate disease risk in each grid square after removing grid squares

with zero population. Areal unit data are transformed to the grid level via two novel

approaches which are multiple imputation and data augmentation and then use these

grid data to fit the standard Leroux CAR model to estimate the spatial patterns in

disease risk at the grid level. The multiple imputation approach generates multiple

sets of disease counts at the grid level via multinomial sampling, and each dataset is

used to fit the CAR model then combine the results to estimate the grid level disease

risk. While the data augmentation allows uncertainty in the disease counts by updating

them in the MCMC steps. Each method is applied to respiratory hospital admission

data from the Greater Glasgow and Clyde Health Board area. The final piece of work

of this thesis extends the spatial model to measure health inequality in Glasgow over

time. Overall, it was found that disease risk is increasing over time and the areas with

higher risk correspond to the deprived areas, while areas with lower risk tend to be the

wealthier areas in Glasgow.

i



Contents

Abstract i

Acknowledgements xii

Declaration xiii

1 Introduction 1

2 Statistical background 10

2.1 Generalised Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Poisson GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Maximum likelihood estimation for β . . . . . . . . . . . . . . . 11

2.2 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Markov Chain Monte Carlo Simulation . . . . . . . . . . . . . . 17

2.2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Spatial Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Disease mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 The neighbourhood matrix . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Moran’s I test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Areal unit modelling . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Geostatistical data . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Spatio-temporal modelling . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Bernardinelli model . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Knorr-Held model . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Ugarte Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



2.4.4 Rushworth model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Spatially rescaled models . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Spatial modelling for respiratory disease risk at the areal unit level 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Estimating disease risk at the areal unit level . . . . . . . . . . . . . . . 48

3.3.1 Spatial modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Grid level inference with multiple imputation 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 The spatial grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Estimating grid level data . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Methodology of estimating disease counts at the grid level . . . 62

4.2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Grid level data generation . . . . . . . . . . . . . . . . . . . . . 70

4.3.4 Data aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.5 Fitting the model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.6 Summarising the results . . . . . . . . . . . . . . . . . . . . . . 74

4.3.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



5 Grid level inference with data augmentation 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.3 Grid level data generation . . . . . . . . . . . . . . . . . . . . . 106

5.3.4 Data aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.5 Fitting the model . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.6 Summarising the results . . . . . . . . . . . . . . . . . . . . . . 109

5.3.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Spatio-temporal modelling of respiratory disease in Glasgow 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Grid level expected disease counts . . . . . . . . . . . . . . . . . 137

6.3.2 Grid level disease counts . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Spatio-temporal modelling at the grid level . . . . . . . . . . . . . . . . 139

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5.1 Convergence diagnostic . . . . . . . . . . . . . . . . . . . . . . . 141

6.5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5.3 Posterior predictive check . . . . . . . . . . . . . . . . . . . . . 144

6.5.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusion 158

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



7.2 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.3 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . 163



List of Tables

3.1 Population estimates in the Greater Glasgow and Clyde Health Board

for 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 The scenarios used in the simulation study. . . . . . . . . . . . . . . . . 71

4.2 Results from the simulation study for the regression parameter with the

estimated covariate at the grid level (grid size = 1,000 m). . . . . . . . 77

4.3 Results from the simulation study for the regression parameter with the

true covariate at the grid level (grid size = 1,000 m). . . . . . . . . . . 78

4.4 Results from the simulation study for the disease risk at the grid level

(grid size = 1,000 m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Results from the simulation study for the regression parameter with the

estimated covariate at the grid level (grid size = 500 m). . . . . . . . . 82

4.6 Results from the simulation study for the regression parameter with the

true covariate at the grid level (grid size = 500 m). . . . . . . . . . . . 83

4.7 Results from the simulation study for the disease risk at the grid level

R(Gj) (grid size = 500 m). . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 The scenarios used in the simulation study. . . . . . . . . . . . . . . . . 107

5.2 Results from the simulation study for the regression parameter with the

estimated covariate at the grid level (grid size = 1,000m). . . . . . . . . 110

5.3 Results from the simulation study for the regression parameter with the

true covariate at the grid level (grid size = 1,000m). . . . . . . . . . . . 111

5.4 Results from the simulation study for the disease risk at the grid level

(grid size = 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Results from the simulation study for the regression parameter with the

estimated covariate at the grid level (grid size 500 m). . . . . . . . . . . 115

vi



5.6 Results from the simulation study for the regression parameter with the

true covariate at the grid level (grid size 500 m). . . . . . . . . . . . . . 116

5.7 Results from the simulation study for the disease risk at the grid level

(grid size 500 m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 RMSE values of disease counts at the areal unit level. . . . . . . . . . . 126

6.1 Parameters estimates and their 95% credible interval at the areal unit

level and grid level (1,000 and 500 metres) . . . . . . . . . . . . . . . . 150

6.2 Annual changes in disease rates and their 95% credible interval. . . . . 152



List of Figures

1.1 One of the first dot maps produced by Seaman (1798). . . . . . . . . . 2

1.2 Disease map of cholera in Soho, London (Snow, 1855) . . . . . . . . . . 3

1.3 An example of disease mapping for respiratory disease in Glasgow in the

years 2015 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Map of the intermediate zones in the Greater Glasgow and Clyde Health

Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Male life expectancy in selected UK cities in the years 1991-93 to 2007-09. 7

1.6 Map of subway in Glasgow with male life expectancies in each station. . 8

2.1 An example of a trace plot. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The general shape of a semi-variogram. . . . . . . . . . . . . . . . . . . 31

3.1 The intermediate zones of the Greater Glasgow and Clyde Health Board. 46

3.2 The standardised incidence ratio (SIR) for respiratory disease risk across

the Greater Glasgow and Clyde Health Board for the years 2015 - 2016. 47

3.3 Trace plots of the MCMC samples from each parameter. . . . . . . . . 50

3.4 Correlation plots of estimated risks between three MCMC chains. . . . 51

3.5 Posterior predictive model checking. . . . . . . . . . . . . . . . . . . . . 52

3.6 The estimated respiratory disease risk across the Greater Glasgow and

Clyde Health Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Scatter plot between SIRs and the estimated disease risks from the spa-

tial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Boxplots of estimated respiratory disease risks using SIR approach and

spatial modelling approach. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 An example of grid squares over the Glasgow intermediate zone regions. 57

viii



4.2 The Glasgow intermediate overlayed by grid squares with non-zero pop-

ulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The population density at the grid square level overlaid on an Open-

StreetMap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 An example of grid squares which partly lie outside the Glasgow map. . 60

4.5 The standardised incidence ratio for respiratory disease hospitalisation

in Greater Glasgow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Traceplots of MCMC samples for each parameter from Model 2 (grid of

size 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Traceplots of MCMC samples for each parameter from Model 3 (grid of

size 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Traceplots of MCMC samples for each parameter from Model 2 (grid of

size 500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Traceplots of MCMC samples for each parameter from Model 3 (grid of

size 500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 The estimated risks scatter plots of scenarios 1 - 3 for Models 2 and 3

(grid of size 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 The estimated risks scatter plots of scenarios 1 - 3 of Models 2 and 3

(grid of size 500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Posterior predictive model checks. . . . . . . . . . . . . . . . . . . . . . 91

4.15 Correlation between the estimated disease risk of Models 2 and 3. . . . 93

4.16 Plots of the absolute estimated disease risk difference between Models 2

and 3 versus the average of the estimated disease risk. . . . . . . . . . . 93

4.13 Estimated disease risks from the proposed models on grid square size

1,000 metres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.14 Estimated disease risks from the proposed models on grid square size

500 metres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.17 The estimates disease risk difference between Models 2 and 3. . . . . . 96

5.1 Traceplots of MCMC samples for selected parameter from Model 5 (grid

of size 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



5.2 Traceplots of MCMC samples for each parameter from Model 2 (grid of

size 500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Posterior predictive checks (Model 5) . . . . . . . . . . . . . . . . . . . 121

5.4 Estimated disease risks from the proposed models on grid square size

1,000 metres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Estimated disease risks from the proposed models on grid square size

500 metres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Correlation between the estimated disease risk of Models 3 and 5. . . . 126

5.7 Plots of the absolute estimated disease risk difference between Models 3

and 5 versus the average of the estimated disease risk. . . . . . . . . . . 126

5.8 The estimated disease risk difference between Models 3 and 5. . . . . . 127

6.1 Male life expectancy for Glasgow compared with other UK cities, 1991-

93 to 2007 - 09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Part of the train map of Glasgow with life expectancy. . . . . . . . . . 134

6.3 Boxplots of the of the standardised incidence ratio (SIR) for respiratory

disease hospital admissions from 2013 to 2016. . . . . . . . . . . . . . . 136

6.4 The standardised incidence ratio (SIR) for respiratory disease for each

IZ in the Greater Glasgow and Clyde Health Board in 2016. . . . . . . 136

6.5 Traceplots of MCMC samples for selected parameter (grid of size 1,000m).142

6.6 Traceplots of MCMC samples for selected parameters (grid of size 500m).143

6.7 The estimated risks scatter plots of scenarios 1 - 3 for the years 2013 -

2016 (grid of size 1,000m). . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.8 The estimated risks scatter plots of scenarios 1 - 3 of Models 2 and 3

(grid of size 500m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.9 Posterior predictive checks. . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.10 Estimated respiratory disease risk maps at the IZ level over Glasgow

from 2013 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.11 Estimated respiratory disease risk maps at the grid level (1,000 m) over

Glasgow from 2013 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.12 Estimated respiratory disease risk maps at the grid level (500 m) over

Glasgow from 2013 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . 149



6.13 Maps of yearly rate change for respiratory disease risk across the Greater

Glasgow and Clyde Health Board. . . . . . . . . . . . . . . . . . . . . . 153

6.14 Boxplots of respiratory disease risk at the grid level across the Greater

Glasgow and Clyde Health Board from 2013-2016. . . . . . . . . . . . . 155



Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisors Prof Duncan

Lee and Dr Craig Anderson for giving me the opportunity for this PhD study, and pro-

viding invaluable guidance throughout this study. Their vision, motivation, patience,

and enormous knowledge have extremely inspired me. This accomplishment would not

have been possible without them. I am also thankful to the examiners, Dr Susanna

Cramb (Queensland University of Technology) and Dr Mayetri Gupta (University of

Glasgow), for valuable suggestions that make my thesis a better version.

I gratefully acknowledge the funding received towards my PhD from Ministry of Higher

Education, Science, Research and Innovation, Royal Thai Government. I am also

thankful to Chiangmai Rajabhat university for allowing me this greatest opportunity

in life. I very much appreciate to all my teachers for all level of my education. In

particular, Asst Prof Yuwanit Hongtrakul and Assoc Prof Putipong Bookamana for

their guidance and support, not only in academic perspective but also living aspect.

I would also like to extend my sincere thanks to my family for providing me with

unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. I would not be in the

position I am today without them. To my friends, thank you so much for supporting

me throughout my PhD journey, for badminton, travels, concerts, and parties. I could

not imagine my life in Glasgow without you guys. Thank you.

xii



Declaration

I hereby declare that this thesis represents my own work which has been done after

registration for the degree of PhD at University of Glasgow, and has not been previ-

ously included in a thesis or dissertation submitted to this or any other institution for

a degree. I have acknowledged all sources used and have cited these in the bibliography

section.

Further, I delivered an invited talk on this work at the GEOMED conference in Glasgow

UK, in 2019.

xiii



Chapter 1

Introduction

Disease risk varies in space and time, and is often related to social factors such as

smoking, drinking, diet and environmental factors such as air pollution or water qual-

ity (Lawson and Lee, 2017). Poverty is also one of the major factors that can be

observed in the variation in disease risks, where the areas with higher disease risk are

more likely to be deprived areas. In contrast, lower risks are often related to wealthier

areas (McCartney, 2012). This difference in disease risk across different social groups is

unfair and defined as health inequality by NHS Health Scotland (2015). Therefore gov-

ernment and health authorities take a huge interest to improve their people’s health as

a whole by increasing life expectancy and reducing the health inequalities gap (Oliver,

2001).

In order to explore spatial variation in disease risks, one of the first studies by Seaman

(1798) showed the spread of yellow fever in New York in 1798 by producing a dot dis-

ease map shown in Figure 1.1. In 1854, there was a cholera outbreak in Soho, London.

At the time, it was assumed that cholera was transmitted via air, but Snow (1855)

produced the disease map illustrated in Figure 1.2, which shows the locations of the

disease cases. He identified that the cholera cases were found near a water pump in

Broad (now Broadwick) street. Therefore, the water pumps were eventually removed

and modernisation of water supplies and sanitation systems was carried out in London.

Current studies also illustrate the spatial patterns of such health inequalities via disease

maps where areas are shaded on a scale in different colours which displays the disease

risk (MacNab et al., 2004; Wakefield, 2007; Lee, 2011; Rushworth et al., 2014). An
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1. Introduction

Figure 1.1: One of the first dot maps produced by Seaman (1798).

example of a disease risk map is presented in Figure 1.3, which related to the estimates

of respiratory disease in the Greater Glasgow and Clyde Health Board for the years

2015 - 2016.

The data used to create such disease maps are collected from non-overlapping areal

units, such as electoral wards, census tracts, or health board areas. Data at the indi-

vidual level can not be made publicly available due to confidentiality reasons, therefore

only aggregated data in each area are available. Each areal unit normally has different

population sizes and demographic structures (e.g. age and sex profiles), so the com-

parison of disease risk between each areal unit can usually be made via a standardised

incidence ratio (SIR). The SIR can be calculated as the ratio of the observed number

of disease cases to the expected number of disease cases. The expected number of

disease case in each area is computed via indirect standardisation based on its popu-

lation demographics. An SIR value less than 1 indicates that there are fewer disease

cases than expected, and hence lower disease risk, while an SIR greater than 1 indi-

cates that there are more disease cases than expected, hence higher disease risk. More

specifically, an SIR value of 0.9 corresponds to a disease risk which is 10% lower than

expected, while an SIR value of 1.1 corresponds to a disease risk which is 10% higher

than expected. However, in cases where the population of the study is small, or the

2



1. Introduction

Figure 1.2: Disease map of cholera in Soho, London (Snow, 1855)

Figure 1.3: An example of disease mapping for respiratory disease in Glasgow in the
years 2015 - 2016.
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1. Introduction

disease being studied is rare, some areas may have low values of the expected num-

ber of disease cases. This can lead to the SIR giving an unstable estimate of disease risk.

In order to overcome this limitation, hierarchical Bayesian modelling is commonly

adopted to estimate disease risk patterns by utilising a Poisson generalised linear model

with random effects that account for the spatial autocorrelation present in the data.

These random effects are typically modelled via a conditional autoregressive (CAR)

models (Besag et al., 1991) which are outlined in Chapter 2. These models make an

assumption of spatial autocorrelation; i.e. nearby areas are more likely to have similar

disease risks than areas further apart. This is because of the idea that the neighbouring

areas are more likely to have similar social characteristics, e.g. ethnicity, house price,

population behaviour, etc. These models also address the problem of overdispersion

that often present in count data.

An example related to these models is presented by Lee and Mitchell (2012), they

utilised this idea to estimate risk surface for lung cancer in the Greater Glasgow and

Clyde Health Board between the years 2001 and 2005. They found that the factors

related to lung cancer are smoking and house price, which is used as a proxy mea-

sure of deprivation and affluence. In the same paper, they also used a hierarchical

Bayesian model to identify boundaries in disease mapping by measuring the similarity

and dissimilarity between people living the neighbourhood areas. They believed that

the rapid change in disease risk surface mostly occurs when people live in neighbouring

areas that very different in social characteristics.

Furthermore, Anderson et al. (2014) aimed to identify clusters of elevated and reduced

respiratory disease risk in Glasgow. They proposed a two-stage Bayesian hierarchi-

cal agglomerative clustering approach using CAR models. The first stage produced

a number of candidate cluster structures for the disease data. The second stage fit-

ted a separate Poisson log linear model to the disease data for each candidate cluster,

and the most appropriate cluster structure was selected by minimising the Deviance

Information Criterion. This approach allows spatial smoothness within clusters and

different levels of average risk between clusters.
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However, these approaches still assume that the level of disease risk is constant within

each area. Therefore, the novel methodology developed in this thesis tackles this issue

by using areal unit data to estimate disease risks at a finer pseudo-continuous spatial

scale. This approach also addresses the ecological fallacy where the risk estimates are

closer to the individual level and a continuous disease risk map is estimated.

The main aim of this thesis is to make pseudo-continuous spatial inference in disease

risk from aggregated areal unit data, and the general approach is outlined as follows.

Firstly, regular grid squares are created over the study region, and the areal unit data

are transformed to the grid level to estimate disease risks at the grid level. The data

needed to do this transformation include the sizes of the intersection areas between each

grid square and each areal unit, and the total population in each grid square. Then

the expected disease counts and the covariates can be estimated at the grid square

level based on the proportion of each grid square that lies in each areal unit. Differ-

ent types of covariates (e.g. continuous, binary, etc.) are transformed using different

approaches. Then the number of disease cases in each grid square is estimated via

multinomial sampling. The probabilities of each disease case in an areal unit occurring

in a given grid square depends on the size of the intersection area (between areal unit

and grid square) and the estimated expected number of disease cases in each grid square

based on population size. More details of the methods are discussed in Chapters 4 to 6.

The study region considered in this thesis is the Greater Glasgow and Clyde Health

Board, which is in west central Scotland. It is the largest health board in the UK,

and provides health care to almost 1.2 million people (https://www.nhsggc.org.uk).

Intermediate zones (IZ) are the small area units for which data are available (https:

//statistics.gov.scot/home), and there are many useful datasets available at this

level. There are a total of 257 IZs in the health board, containing populations between

1,074 and 8,989 people with a median population of 4,326. The geographical sizes of

these IZs are different, and depends on the density of the population of each IZ. Figure

1.4 shows a map of the IZs in the Greater Glasgow and Clyde Health Board; it can

be seen that the geographical areas in the centre of the health board, which are the
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1. Introduction

Figure 1.4: Map of the intermediate zones in the Greater Glasgow and Clyde Health
Board.

densely populated areas, are much smaller than the more rural areas.

The main focus in this thesis is measuring health inequalities in the Greater Glasgow

and Clyde Health Board. This health board area is chosen for a few reasons. First,

Figure 1.5 presents male life expectancies in the major cities in the UK, and it can

be seen that men in Glasgow have the lowest life expectancy of any city in the UK.

Although there is a slightly increased trend for Glasgow, the gaps between Glasgow

and the other cities are widening. Moreover, Figure 1.6 illustrates average male life

expectancies in the areas close to each of the subway stations in Glasgow. Glasgow

Subway has only 15 stations and runs over 10 kilometres with only 24 minutes to com-

plete a circuit. The average life expectancy for men who live in Hillhead (a wealthy

area) is 80 years which is higher than those living in Govan (a less wealthy area) by

14 years, even though they live only 3 stations away from each other (6 minutes of

travelling). Therefore, it is clear that there are large health inequalities in Glasgow,

which should be of interest to study in more detail. The data being used in Chapters

3 to 5 are the total number of hospital admissions for respiratory disease in the 2-year

period 2015 - 2016 in each IZ. Additionally, Chapter 6 uses annual counts of disease

data for the years 2013 to 2016. Respiratory disease is defined using the International

6
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Figure 1.5: Male life expectancy in selected UK cities in the years 1991-93 to 2007-09
(Walsh et al., 2016).

Classification of Diseases volume 10 (ICD10) codes (J00:J99, R09.1). Respiratory dis-

ease is selected in this study because the mortality rate in the UK is in the top three

highest across Europe for the years 2001 to 2015 (Salciccioli et al., 2018).

The remainder of this thesis is organised as follows. Chapter 2 provides an overview of

the statistical methodology which is used in this thesis, including Poisson generalised

linear models, Bayesian statistics, spatial statistics as well as the relevant literature

in grid square level risk modelling. Specifically in spatial statistics, the most common

areal unit models are discussed, including the intrinsic model (Besag et al., 1991),

convolution model (Besag et al., 1991), Stern and Cressie model (Stern and Cressie,

2000), and Leroux model (Leroux et al., 2000). Furthermore, spatio-temporal mod-

els, which are extended from the spatial models, are outlined including the Bernar-

dinelli model (Bernardinelli et al., 1995), Knorr-Held model (Knorr-Held, 2000), Ur-

garte model (Ugarte et al., 2012), and Rushworth model (Rushworth et al., 2014).

Spatial prediction is also used in this thesis, therefore the method introduced by Krige

(1951) is presented in this chapter.

Chapter 3 aims to estimate respiratory disease risk patterns across the Greater Glas-

gow and Clyde Health Board based on aggregated disease data at the areal unit level.

A spatial hierarchical Bayesian model used to achieve this goal is a combination of
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Figure 1.6: Map of subway in Glasgow with male life expectancies in each station
(Jack, 2019).

a Poisson generalised linear model and the spatial model proposed by Leroux et al.

(2000). This hierarchical model is one of the most commonly used models to estimate

the risk at the areal unit level, therefore this chapter gives an overview of the standard

methods, limitations, to and how to address these limitations.

Since this thesis focuses on estimating a pseudo-continuous spatial disease risk sur-

face via regular grid squares, Chapter 4 will introduce the methodology of estimating

spatial data at the grid level based on areal unit level data via multinomial sampling

steps. I then use the multiple imputation approach to estimate pseudo-continuous risk

surface utilising the spatial CAR model proposed by Leroux et al. (2000). Unlike the

standard approach presented in Chapter 3, this approach allows disease risks to vary

within each areal unit or IZ and does not estimate the risks where no people live. A

simulation study is conducted to investigate the performance of the models proposed

in this chapter, and my chosen model is then applied to the respiratory disease data

in the Greater Glasgow and Clyde Health Board.

An alternative approach for estimating a pseudo-continuous risk surface is data aug-

mentation, which is presented in Chapter 5. In this chapter, the CAR model proposed
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by Leroux et al. (2000) is utilised to estimate disease risks in each grid square, but

the initial results show unrealistic estimates. This is because the Leroux model al-

lows spatial autocorrelation to vary from weak to strong, which could lead to very

high variation in the risk estimates. Therefore, the spatial model proposed by Besag

et al. (1991) which assumes strong spatial autocorrelation is used instead. Unlike the

approach proposed in Chapter 4, this approach estimates disease counts and model pa-

rameters via MCMC steps, which allows the uncertainty in the grid level disease cases

to be included when estimating model parameters. The performance of the models

used in this chapter are examined via a simulation study, then applied to the same

dataset as the previous chapter.

Chapter 6 extends the spatial modelling from Chapters 3 to 5 to spatio-temporal mod-

elling, which is used to estimate disease risk at the grid level over time. The main

objective of this chapter is to measure health inequalities in the Greater Glasgow and

Clyde Health Board and investigate how the disease risk change over time. The spatio-

temporal model used in this chapter is proposed by Bernardinelli et al. (1995), which

is fitted to respiratory disease data in the Greater Glasgow and Clyde Health Board in

the years 2013 to 2016. This model assumes that the trend in disease risks in each area

can be explained by a linear relationship, which is suitable for a trend covering four

years data. Finally, Chapter 7 summarises the key finding in this thesis and discusses

applications for future work.
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Chapter 2

Statistical background

2.1 Generalised Linear Model

A generalised linear model (GLM) extends the ordinary regression model for analysing

response data y = (y1, ..., yn) which are not normally distributed. There are three

components; a random component identifies the response variable and its probability

distribution, a linear predictor defines the set of covariates, and a link function relates

E[Yi] to the linear predictor. The random component models independent random vari-

ables Y = (Y1, ..., Yn) with observations y from the exponential family of distributions

f(Y ) = f(Y1, ..., Yn)

=
n∏
i=1

f(Yi),

where

f(yi|θi, φ) = exp

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
. (2.1.1)

Here θi is called the canonical parameter and represents the location, while φ is called

the dispersion parameter and represents the scale. The linear predictor η = (η1, ..., ηn)

is given by

ηi = x>i β,

where x>i is a vector of covariates and β = (β1, ..., βp) are the corresponding regression
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2. Statistical background

parameters. The last component of the GLM is the link function that connects the

expectation E[Yi] to the linear predictor. Let µi = E[Yi] for i = 1, ..., n. The model

links µi to ηi by ηi = g(µi). Thus, g links µi to the covariates through this formula

g(µi) = x>i β.

2.1.1 Poisson GLM

In this thesis I will mostly be modelling count data, so therefore the Poisson log-linear

model is outlined as it is appropriate distribution for count data. Let the discrete

random variable Yi denote a count of the number of events that occur in an interval of

time or space. Then Yi is a Poisson random variable with sample space yi = 0, 1, 2, ...

and the probability mass function is:

f(Yi = yi) =
exp(−µi)µyii

yi!
, (2.1.2)

and E[Yi] = Var[Yi] = µi, where µi is the mean. The Poisson distribution is a member

of the exponential family of distributions because it can be written as (2.1.1) as follows:

f(Yi = yi) =
exp(−µi)µyii

yi!

= exp[yi ln(µi)− µi − ln(yi)!].

Therefore, θi = ln(µi), b(θi) = µi = exp(θi), a(φ) = 1 and c(yi, φ) = − ln(yi)!. The

response data from the Poisson distribution are non-negative, so the link function that

is suitable and commonly used is the log. The basic Poisson GLM can be specified as

follows:

Yi ∼ Poisson(µi) i = 1, ..., n,

ln(µi) = x>i β.
(2.1.3)

2.1.2 Maximum likelihood estimation for β for the Poisson Model

Suppose that the Poisson random variable Yi is observed on the ith replicate of an ex-

periment and that Yi has probability mass function f(Yi), then assuming independence,
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2. Statistical background

the overall likelihood function of the data is

f(Y1 = y1, ..., Yn = yn) = f(Y1 = y1)× ...× f(Yn = yn)

= f(y1)× ...× f(yn).

The likelihood function of the unknown parameter β, given a sample of data, (y1, ..., yn)

is defined as follows:

L(β; y1, ..., yn) =
n∏
i=1

f(yi)

=
n∏
i=1

exp(−µi)µyii
yi!

.

It is often easier to work with the natural logarithm of the likelihood function which

is known as the log-likelihood function and is denoted as l(β) = ln{L(β;y)}. The

log-likelihood of the Poisson distribution is given as follows:

l(β) = ln

[
n∏
i=1

exp(−µi)µyii
yi!

]

=
n∑
i=1

ln

[
exp(−µi)µyii

yi!

]
=

n∑
i=1

[−µi + yi ln(µi)− ln(yi!)]

=
n∑
i=1

[− exp(x>i β) + yix
>
i β − ln(yi!)].

To find the MLE for β, differentiation of the log-likelihood function is needed

d(β)

dβj
=

n∑
i=1

[
−xij exp(x>i β) + yixij

]
=

n∑
i=1

[
xij
(
yi − exp(x>i β

)]
.
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To find the turning point set d(β)/dβj = 0 for all j = 1, ..., p



∑n
i=1 xi1(yi − exp(x>i β)∑n
i=1 xi2(yi − exp(x>i β)

...∑n
i=1 xipyi − exp(x>i β)

 =


0

0
...

0




∑n
i=1 xi1yi −

∑n
i=1 xi1 exp(x>i β)∑n

i=1 xi2yi −
∑n

i=1 xi2 exp(x>i β)
...∑n

i=1 xipyi −
∑n

i=1 xip exp(xi
>β)

 =


0

0
...

0




∑n
i=1 xi1yi∑n
i=1 xi2yi
...∑n

i=1 xipyi

 =



∑n
i=1 xi1 exp(x>i β)∑n
i=1 xi2 exp(x>i β)

...∑n
i=1 xip exp(xi

>β)


X>y = X> exp(Xβ)

where X=


1 x12 · · · x1p

1 x22 · · · x2,p

...
... . . . ...

1 xn2 · · · xnp

 .

This equation cannot be solved analytically to find the MLE for β. Therefore, numer-

ical optimization can be used by applying the Newton-Raphson method with Fisher

scoring which is equivalent to the iteratively reweighted least square (IRWLS) algo-

rithm.

Set β(0) as a starting value, then compute the next estimate β(j+1) from β(j) as

β(j+1) =
[
X>W (β(j))X

]−1

X>W (β(j))ỹ(β(j)),

13
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where

W (β(j)) = diag(W11(β(j)), ...,Wnn(β(j)))n×n

Wii(β
(j)) = exp(x>i β

(j))

ỹ(β(j)) = Xβ +


y1−exp(x1β)

exp(x1β)
...

yn−exp(xnβ)

exp(xnβ)

 .

The algorithm stops when ‖β(j+1) − β(j)‖ < δ for some small value δ.

2.2 Bayesian Statistics

Bayesian statistics is a branch of statistics that provides people with the tools to update

their beliefs in the evidence of new data. Bayes’ theorem was developed by Thomas

Bayes in the 18th century (Bayes, 1764) and is defined for events A and B as follows:

P (A|B) =
P (B|A)P (A)

P (B)
,

where P (A|B) is the conditional probability of event A happening given that event

B has happened, and P (A), P (B) are the probabilities of events A and B happening.

This theorem can be adapted to provide a basis for model parameter inference. In

frequentist statistics, the data Y are used to estimate parameters θ, but in Bayesian

statistics each parameter can be assigned in advance a distribution which is known

as a prior distribution, f(θ). A prior distribution can be used to reflect prior beliefs

about a parameter and it can be updated by using the observed data, Y , via the data

likelihood, f(Y |θ), in order to define a posterior distribution, f(θ|Y ) as follows

f(θ|Y ) =
f(Y |θ)f(θ)

f(Y )
,

where f(Y ) is the marginal distribution of the observed data. However the distribution

f(Y ) is generally difficult to estimate, as it usually involves a multidimensional integral.
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As it does not depend on θ, the posterior distribution can instead be written up to

proportionality as

f(θ|Y ) ∝ f(Y |θ)f(θ),

the product of the data likelihood and the prior distribution.

2.2.1 Prior Distributions

The prior distribution f(θ), often simply called the prior, represents the information

about uncertain parameters θ, that are combined with the probability distribution of

the observed data Y to determine the posterior distribution f(θ|Y ). The prior should

be determined before seeing the data, represents prior beliefs, and it could be based

on information from a previous study or an expert in the field. It can be chosen in

various forms depending on the type of data and model. Furthermore, if the prior and

the posterior distribution are from the same family, which means that the prior and

the posterior have the same form, the prior is called a conjugate prior. As an example

suppose Y ∼ Poisson(θ), then the likelihood is:

L(θ|y) = f(y|θ)

=
exp(−θ)θy

y!

L(θ|y) ∝ exp(−θ)θy.

If I select a Gamma distribution as the prior for θ

θ ∼ Gamma(α, β)

f(θ) =
βα

Γ(α)
θα−1 exp (−βθ), θ > 0

∝ θα−1 exp (−βθ).
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The posterior can therefore be written as

f(θ|y) ∝ f(y|θ)f(θ)

∝ exp(−θ)θy × θα−1 exp (−βθ)

∝ θα+y−1 exp [−(β + 1)θ].

Thus the posterior distribution will be of the same general form as the prior distribu-

tion, that is a Gamma distribution,

f(θ|y) ∼ Gamma(α + y, β + 1). (2.2.1)

A Gamma prior is the conjugate prior for a Poisson mean parameter resulting in a

Gamma distribution for the posterior distribution. Conjugate priors are popular as

they allow the posterior to be a known distribution, which makes inference easier.

Note that conjugate priors can not be used all the time since some distributions do not

have conjugate priors.

The selection of the prior will influence the posterior distribution so it is important to

choose a sensible prior. If a prior has no impact on the posterior distribution it is called

a noninformative prior. An example of noninformative prior is Jeffreys prior (Jeffreys,

1946), which is designed to be constant under reparameterisation. Jeffreys priors are

formed as f(θ) ∝
√

det I(θ) where I(θ) is the Fisher information, defined as

I(θ) = −E
[
∂2

∂θ2 log f(Y ;θ)|θ
]
.

In contrast, an informative prior is a prior that is not dominated by the likelihood and

that has influence on the posterior distribution. For example, a Gaussian distribution

with variance one (θk ∼ N(0, 1)) for real valued parameters. It is also possible to assign

a weakly informative prior when we do not have much information about a parameter

e.g. θk ∼ N(0, 1000000). Furthermore, if we make α and β from (2.2.1) really small

values then they have very little influence on the posterior distribution, and in such a

case, the Gamma prior would also be weakly informative. A prior is called an improper
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prior when the integral of the prior function is not finite. However, an improper prior

can be used, as long as the resulting posterior is proper.

2.2.2 Markov Chain Monte Carlo Simulation

Markov Chain Monte Carlo (MCMC) simulation is the most commonly used approach

to estimate parameters in a Bayesian model. It is a simulation based approach that is

used when θ cannot be sampled directly from f(θ|Y ). Two main algorithms have been

proposed, the Gibbs sampler (Geman and Geman, 1984) and the Metropolis-Hastings

algorithm (Hastings, 1970).

Gibbs Sampler

The idea in Gibbs sampling is to generate posterior samples by sweeping through each

variable (or block of variables) to sample from its conditional distribution with the

remaining variables fixed at their current values. The Gibbs sampling algorithm for

drawing d samples from the posterior distribution is as follows.

Gibbs sampler algorithm

1. Set initial values θ(0)=(θ
(0)
1 , ...,θ

(0)
b ), where θ has been partitioned in to b sets of

parameters (θ1, ...,θb).

2. For each iteration i = 1, ..., d generate θ(i)
k for each k = 1, ..., b in turn from the

conditional distribution f(θk|θ(i)
1 , ...,θ

(i)
k−1,θ

(i−1)
k+1 , ...,θ

(i−1)
b ,Y ).

Gibbs sampling works when each f(θk|θ(i)
1 , ...,θ

(i)
k−1,θ

(i−1)
k+1 , ...,θ

(i−1)
b ,Y ) is a proper dis-

tribution. However, there are some limitations to the Gibbs sampler. If the conditional

distribution is not straightforward to sample from, simulation is generally conducted

by using a more complex method, such as the Metropolis-Hastings algorithm.

Metropolis-Hastings

The Metropolis-Hastings algorithm generates a sequence of random samples from a

posterior distribution for which direct sampling is difficult. The Metropolis-Hastings

algorithm for drawing d samples from the posterior distribution is as follows.
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Metropolis-Hastings algorithm

1. Set initial values θ(0)=(θ
(0)
1 , ...,θ

(0)
b ).

2. For each iteration i = 1, ..., d in turn generate θ(i)
k for each k = 1, ..., b sets of

parameters using the following steps.

(a) Generate a set of proposed parameter values θ∗k from a proposal distribution

g(θ∗k|θ
(i−1)
k ).

(b) Accept the proposed set of values θ∗k with probability

p = min

{
1,

f(θ∗k|Y )g(θ
(i−1)
k |θ∗k)

f(θ
(i−1)
k |Y )g(θ∗k|θ

(i−1)
k )

}
,

and reject with probability 1-p.

(c) If we accept the proposal then set θ(i)
k = θ∗k, otherwise set θ(i)

k = θ
(i−1)
k .

The selection of starting values θ(0) may influence the performance of the simulation

(Turner et al., 2013). The starting values can take any possible value, but should be

chosen carefully to ensure that they are not too large or too small. For example, if the

true value of µ is 0 and you set the initial value µ(0)=1,000,000, then it will take a large

number of steps to reach the true value. One approach for selecting starting values is to

run multiple chains with different initial values, while another is to estimate a reason-

able range of starting values from the data. In step 2 (b), in the Metropolis-Hastings

algorithm the proposal distribution g needs to be assigned. The most commonly used

proposal for Metropolis-Hastings is a Gaussian distribution with mean θ(i−1)
k (the cur-

rent value) and variance V because it is symmetric; that is g(θ
(i−1)
k |θ∗k) = g(θ∗k|θ

(i−1)
k ).

This is a special case of the Metropolis-Hastings algorithm and is called the Metropolis

algorithm (Metropolis et al., 1953). Therefore, the acceptance probability is equal to

p = min

{
1, f(θ∗

k|Y )

f(θ(i−1)

k |Y )

}
.

Proposing small moves to our chain will likely lead to more of our proposals being

accepted, which mean we will have a high acceptance rate. In contrast, if we propose

moves which are too large, the proposals are often rejected and our acceptance rate will

be low. Roberts et al. (1997) suggested that it is optimal to have an acceptance rate
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close to 0.25 for parameters of high dimension and approximately 0.5 for parameters

of dimension one or two.

Convergence of the MCMC algorithm

The basic idea of the MCMC algorithm is to construct a Markov chain with properties

which allow it to converge to the posterior distribution of interest after a number of it-

erations. Technically, convergence occurs when the simulated Markov chain converges

in distribution to the target distribution. There are many approaches to diagnose

whether the samples have converged. Geweke et al. (1991) introduced a convergence

diagnostic based on standard time series methods. The chain is divided into two win-

dows containing the first 10% and last 50% of the chain. Ideally, if the whole chain

is stationary, the means of both windows should be nearly equal. A Z-statistic is cal-

culated as the difference between the two means divided by the asymptotic standard

error of the difference, where the variance is defined by a spectral density estimation.

As the number of iterations increases, the distribution of the Z-statistic approaches the

N(0, 1) distribution if the chain has converged.

Gelman and Rubin (1992) proposed a convergence test based on multiple chains, where

each chain starts from different overdispersed initial values to compute an estimation

of a posterior distribution. This approach is based on a comparison of the within

and between chain variances for each parameter. A potential scale reduction factor

(PSRF ) is computed for each scalar quantity of interest, which estimates the factor

by which the scale of the Student t density that approximates the posterior distribution

of a scalar parameter might be reduced if the chains are run to infinity. The PRSF is

defined as follows:

PSRF =

√
n− 1

n
+

B

nW
,

where B is the variance between the means of the m chains, W is the average of the

m within-chain variances, and n is the number of iterations. As n becomes larger, the

PSRF is approximately 1 if the algorithm converges. Values< 1.1 suggest convergence.

Convergence is also commonly diagnosed by visual assessment of trace plots, where
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Figure 2.1: An example of a trace plot.

convergence is assumed once the trace plots are considered weakly stationary. A trace

plot is a plot representing the generated values of a parameter for each iteration in a

chain. Basically, a line connects the points in such a plot for simplicity of considering

the path traveled by the chain. An example trace plot for 10,000 MCMC samples is

shown in Figure 2.1. In this thesis, convergence will be assessed via trace plots, the

Geweke and the Gelman and Rubin approaches.

2.2.3 Inference

Once the Markov chain has converged, subsequent samples come from the posterior

distribution. The chain will typically take some time to converge, and we are only inter-

ested in the equilibrium distribution, i.e. those samples obtained after convergence. We

should therefore remove the samples which were obtained prior to convergence. This is

known as the burn in period. In addition, samples generated from MCMC algorithms

are normally correlated which means that our set of samples are not independent. We

can create a set of independent samples by the process of thinning, which involves

taking only every kth sample from the posterior distribution and discarding all oth-

ers. The main drawback of thinning is throwing away information. However Link and

Eaton (2012) argued that there are a few reasons for thinning, firstly to reduce the

autocorrelation between MCMC samples. The effective sample size is the approximate

number of independent samples from the MCMC chain, which can be calculated by

20



2. Statistical background

neff =
n

1 + 2
∑∞

k=1 ρk
,

where n is the number of iterations and ρk is the autocorrelation between the samples

in the Markov chain at lag k. The second is due to the limitations of computer memory

and storage since there are large numbers of MCMC samples to be stored.

A key advantage of Bayesian statistics is the ability to obtain a complete posterior

distribution for each parameter. To obtain a point estimate for a univariate θ from its

posterior distribution, we can simply apply an appropriate summary statistic such as

the posterior mean or median to the MCMC samples. 100(1−α)% posterior uncertainty

intervals can also be obtained directly from the MCMC samples, and in Bayesian

modelling these are known as credible intervals. To create a 100(1 − α)% credible

interval from the marginal posterior distribution for the parameter of interest, we

simply select the interval between α/2 and 1 − α/2 quantiles of the MCMC samples.

The interpretation of a credible interval is different from that of a confidence interval in

frequentist statistics. A 95% credible interval means that the parameter will lie in the

interval with posterior probability 0.95 while a 95% confidence interval means 95% of

the intervals produced from repeated sampling of the data will contain the parameter

of interest.

2.3 Spatial Statistics

Spatial statistics is the analysis and modelling of data at different locations. Spa-

tial data are any form of statistical data which have geographical locations attached.

Spatial data and time series data have the same feature, where observations close in

time or space are likely to be similar, while observations further apart are likely to be

independent. It is therefore necessary to account for autocorrelation when modelling

spatial data. There are three main forms of spatial data; point process data, areal data,

and geostatistical data. Point process data are a form of spatial data where the actual

location itself is the feature of interest. An example of point process data would be
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the locations of trees in a forest. Areal data are based on a geographical area which is

divided into non-overlapping areas such as census tracts or electoral wards, and there is

one summary measurement per unit. Geostatistical data consist of a set of observations

taken at precise spatial locations, such as the concentration of air pollution measured

by monitors across Glasgow. In this thesis I am mainly modelling areal unit data in

a disease context, so in the remainder of this chapter I discuss the field of areal unit

data modelling known as disease mapping.

2.3.1 Disease mapping

Disease mapping involves estimating the spatial pattern in disease risk over a pre-

defined study region such as a city or country. The study region is divided in to a

number of small non-overlapping areas, A = (A1, ...,An), and we obtain data about

the number of people with a particular disease in each area. These data take the form

Y = [Y (A1), ..., Y (An)], where Y (Ai) denotes disease counts from people living in area

Ai. In general, the areas A consist of pre-existing administrative units, for example

postcode areas, electoral wards or counties. Disease count data for these areas may

often be published by a government or health board, for example health data in Scot-

land are published at www.statistics.gov.scot. Modelling disease risk based on

raw disease counts such as these can be misleading because each area varies in terms

of population size and demographic structure (e.g. age and sex). For example, as el-

derly people have a higher risk of heart disease than younger people, then areas which

have a higher percentage of elderly people are likely to have a higher number of heart

disease cases, but this does not necessarily imply a higher disease risk in such areas.

We can address this issue by computing the expected number of disease cases in each

area, based on demographic information. The expected disease counts are denoted by

e = [e(A1), ..., e(An)], and can be constructed via indirect standardisation based on the

age and sex of the population within each area. We construct a set of m strata of the

population based on sex and age (e.g. female 0-4, female 5-9, etc), and then compute

the expected disease counts via e(Ai) =
∑m

j=1Nijrj, where Nij is the population of

area Ai in strata j, and rj is the national disease rate in strata j.
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We can use these expected disease counts to compute a measure of disease risk known

as the standardised incidence ratio (SIR), which is given for areaAi as SIR(Ai) = Y (Ai)
e(Ai)

.

An SIR value equal to 1 means there are as many disease cases as expected in an areal

unit. An SIR value greater than 1 means there are more disease cases than expected

and hence higher risk, while an SIR value less than 1 means there are fewer disease

cases than expected and hence lower risk. For example, an SIR value of 1.2 indicates

there are 20% more disease cases than expected, while an SIR value of 0.9 indicates

there are 10% fewer disease cases than expected.

2.3.2 The neighbourhood matrix

In order to conduct a spatial analysis for areal unit data, it is necessary to define a

neighbourhood matrix, which is a summary of which areas are close to which other ar-

eas. In fact the neighbourhood matrix,W , defines the spatial autocorrelation structure

for the n areas {Ai : i = 1, ..., n}. W is typically a symmetric n× n matrix, with ele-

ment wij denoting how close areas (Ai,Aj) are. There are different ways to defineW ,

and the values of this matrix can be binary or continuous. HoweverW is non-negative,

with larger values wij denoting areas (Ai,Aj) being spatially closer than if wij were

smaller. One method of defining a binary specification forW is to set wij = 1 if areas

(Ai,Aj) are defined to be neighbours and wij = 0 otherwise. The three most common

ways to specify neighbours are: (a) if areas (Ai,Aj) share a common border; (b) if the

centroids of areas (Ai,Aj) are within a fixed distance d of each other; and (c) if area Ai
is one of the k closest areas to area Aj in term of distance. ContinuousW matrices are

typically based on distance, with an example being the inverse distance between the

two areas’ centroids; wij = 1/dij, where dij is the distance between centroids of areas

(Ai,Aj), and wii = 0. However, using non-sparse W matrices can be computationally

intensive due to the increased complexity involved in fitting the models described in

section 2.3.4. In this thesis, we focus on scenarios where W is defined by the binary

specifications (a) based on sharing a common border or (c) based on nearest distance.

The k-nearest neighbour weights matrix for areas (Ai,Aj) ensures that every region has

at least k neighbours, which avoids the issues surrounding isolated regions. However,
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a potential problem with k-nearest neighbour weights is the occurrence of ties, i.e.,

when more than one area has equal distance from area Ai. In such cases, the simplest

approach is to randomly choose a nearest neighbour when ties occur. Moreover, a

k-nearest neighbour matrix is not necessarily symmetric, area Ai being one of the k-

nearest neighbours to area Aj does not imply that area Aj is also one of the k-nearest

neighbours to area Ai. There may be another area that is closer to area Aj than area

Ai. This can be resolved by defining wij = 1 if area Ai is the k-nearest neighbour to

area Aj or area Aj is the k-nearest neighbour to area Ai and wij = 0 otherwise

2.3.3 Moran’s I test

Consider data Y = (Y (A1), ..., Y (An)) relating to (A1, ...,An) that have been collected

(one observation per unit). Then the level of spatial autocorrelation in Y can be

calculated via Moran’s I statistic (Moran, 1950), which is given as follows:

I =
n(∑n

i=1

∑n
j=1wij

)∑n
i=1

∑n
j=1 wij[Y (Ai)− Ȳ (A)][Y (Aj)− Ȳ (A)]∑n

i=1[Y (Ai)− Ȳ (A)]2
. (2.3.1)

The value of Moran’s I ranges between -1 and 1. Values close to -1 indicate a strong

negative spatial autocorrelation, an example is a checkerboard pattern. Values close to

1 indicate a strong positive spatial autocorrelation, this means values cluster together

as similar values are close to each other. Values close to 0 indicate spatial independence

or no autocorrelation. However, Moran’s I is mostly non-negative since negative spatial

autocorrelation is rare in practice. A permutation approach can be used to test the

hypothesis of spatial autocorrelation. The hypotheses for the test are

H0 : There is no spatial association

and H1 : There is some spatial association.

The p-value can be computed by randomly permuting the data set M times, and then

calculating the Moran’s I value from (2.3.1) for each permuted data set. The p-value is

computed as the proportion of those simulated Moran’s I values that are more extreme

than the observed Moran’s I value from the actual data set.
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2.3.4 Areal unit modelling

Typically in this thesis the responses are count data, and thus areal data are generally

modelled by the Poisson log linear model (2.1.3), which is extended to account for the

spatial autocorrelation in the data. The spatial pattern in the data is modelled by

a combination of the covariates and a set of random effects. Let X = (x>1 , ...,x
>
n )>

denote the n×p matrix of covariates including a column of ones for the intercept term,

where the values relating to row i for areal unit Ai are denoted by xi = (1, xi2, ..., xip),

while the vector of random effect terms is denoted by φ = (φ1, ..., φn). A Poisson log-

linear spatial model is typically used to model count data Y , and a general specification

is given by

Yi ∼ Poisson(eiθi) i = 1, ..., n,

ln(θi) = x>i β + φi,
(2.3.2)

where ei is the expected number of disease cases in area i which can be computed via

indirect standardisation and θi denotes the disease risk in area i. The random effects

φ are commonly modelled by the class of prior distributions known as conditional

autoregressive (CAR) models. These models can be specified by a set of n univariate

full conditional distributions f(φi|φ−i), where φ−i = (φ1, ..., φi−1, φi+1, ..., φn). The

spatial autocorrelation between these random effects is controlled by the neighbourhood

matrix W , which was specified in Section 2.3.2, with wij = 1 if area (Ai,Aj) share a

common border and wij = 0 otherwise. A number of conditional autoregressive prior

models have been proposed, and the four models that are most commonly used are

described below.

Intrinsic Model

The simplest CAR prior is the intrinsic autoregressive model proposed by Besag et al.

(1991), and the full conditional distribution is given by

φi|φ−i ∼ N

(∑n
j=1wijφj∑n
j=1wij

,
τ 2∑n
j=1wij

)
i = 1, ..., n. (2.3.3)

The conditional expectation of φi is the mean of the random effects in neigbouring areal
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units (as specified byW ), while the conditional variance is inversely proportional to the

number of neighbouring units. The variance formula is appropriate for strong spatial

autocorrelation, because the more neighbouring areas there are, the more information

there is to estimate the value of the random effect, hence the variance decreases. One

disadvantage of this model is that there is no parameter to control the level of the

spatial autocorrelation between the random effects: if one multiplies each φi by 10,

τ 2 will increase but the spatial autocorrelation structure does not change. Therefore,

the intrinsic model is sensible in cases where the data have strong spatial autocorrela-

tion but is not appropriate for weak and moderate spatial autocorrelation. The joint

distribution for φ corresponding to (2.3.3) is given by

φ ∼ N(0, τ 2[diag(W1)−W ]−),

where “−” denotes a generalised inverse and W1 is the row sum of W .

Convolution Model

The convolution model was also proposed by Besag et al. (1991), and is also known

as the Besag-York-Mollié (BYM) model. It combines the intrinsic CAR model (2.3.3)

with a set of independent random effects. The model from (2.3.2) is extended to be

given by

Yi ∼ Poisson(eiθi) i = 1, ..., n, (2.3.4)

ln(θi) = x>i β + φi + ψi,

ψi ∼ N(0, σ2),

where φ is a set of random effects from the intrinsic CAR model (2.3.3) and ψ =

(ψ1, ..., ψn) is an additional set of independent random effects ψi ∼ N(0, σ2). Different

levels of spatial autocorrelation can be modelled by varying the relative levels of vari-

ation in φ and ψ. The major drawback of this model is it is difficult to estimate both

random effect sets separately, normally only their sum φi + ψi is identifiable.
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Stern and Cressie Model

The model proposed by Stern and Cressie (2000) was adapted from the intrinsic CAR

model (2.3.3), by adding a spatial autocorrelation parameter ρ into the model. The

model is given by

φi|φ−i ∼ N

(
ρ
∑n

j=1wijφj∑n
j=1wij

,
τ 2∑n
j=1 wij

)
. (2.3.5)

The conditional expectation is equal to a proportion of the mean of the random effects

in neighbouring units, while the conditional variance is the same as the intrinsic model.

The parameter ρ controls the level of the spatial autocorrelation between the random

effects, ρ = 0 corresponds to independence, while increasing ρ toward one corresponds

to increasingly strong spatial autocorrelation. The main disadvantage for this model

is the structure of the conditional variance, because in the case where ρ = 0 we are

assuming independence, but the conditional variance still depends on the number of

neighbours.

Leroux Model

The Leroux model was proposed by Leroux et al. (2000). The model is given by

φi|φ−i ∼ N

(
ρ
∑n

j=1 wijφj

ρ
∑n

j=1wij + (1− ρ)
,

τ 2

ρ
∑n

j=1 wij + (1− ρ)

)
. (2.3.6)

The conditional expectation is again a function of the random effects in neighbouring

areas, while the conditional variance addresses the issues identified in the Cressie model

(2.3.5). For example, a value of ρ = 1 indicates a strong spatial autocorrelation and

corresponds to the intrinsic model (2.3.3), as does (2.3.5). In contrast, if ρ = 0 then

the random effects are independent and the conditional mean and variance are equal

to 0 and τ 2 respectively, so that the variance now does not depend on W . The joint

distribution for φ corresponding to (2.3.6) is given by

φ ∼ N(0, τ 2[ρ(diag(W1)−W ) + (1− ρ)I]−1),
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and the precision matrix Q = [ρ(diag(W1)−W ) + (1− ρ)I] is invertible if ρ ∈ [0, 1).

2.3.5 Geostatistical data

In this thesis, I will use geostatistical modelling to predict the data at new locations

because I will change the areal unit level data to the grid square level data since I

do not have real data at grid square level. This section will introduce theory about

geostatistical data. A geostatistical process is a stochastic process

{Z(s) : s ∈ D},

where Z(s) is the random variable at location s, D is a fixed subset of the p-dimensional

space Rp. In this study, p is fixed at p = 2 because I have data points with their coor-

dinates (northing and easting), so D ⊂ R2. The location s varies continuously across

D. However, in practice data are collected from n locations, and are represented by

a random variable denoted by Z = {Z(s1), ..., Z(sn)}. An example of geostatistical

data is the concentration of air pollution recorded at monitoring stations in Glasgow.

Air pollution exists across the city, but we only receive data at a finite set of loca-

tions. The major concerns when modelling geostatistical data are dependence and

autocorrelation because non-spatial data typically assume independence of observa-

tions. Generally, geostatistical data have positive autocorrelation; the closer in space

the locations of two data points are, the more similar their values are likely to be. On

the other hand, two locations which are far apart are likely to have less in common.

Therefore, the autocorrelation is controlled by the distance between two data locations,

and the exponential covariance model will be used in this thesis to capture the auto-

covariance. In this thesis, the main use of geostatistical processes are for prediction

at unobserved locations. We wish to estimate disease risk across the region based on

finite observations. In the following section, the theory behind geostatistical processes

is introduced.
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Mean and autocovariance

The mean and autocovariance functions of the geostatistical process Z(s) are given by

µZ(s) = E[Z(s)] ∀s ∈ D,

CZ(s, t) = Cov[Z(s), Z(t)]

= E[(Z(s)− µZ(s))(Z(t)− µZ(t))]

= E[Z(s)Z(t)]− µZ(s)µZ(t),

where µZ(s) is the mean of the geostatistical process Z(s) at location s. Here CZ(s, t)

represents the autocovariance between the data at locations s and t. The autocovari-

ance measures the strength of the linear dependence and the directional relationship

between Z(s) and Z(t). Note that the autocovariance function is symmetric in its

arguments, hence CZ(s, t) = CZ(t, s) for each s, t ∈ D.

Autocorrelation

The autocorrelation measures the strength of the linear association between data at

location s and t, scaled to be between [-1, 1], and is denoted by ρZ(s, t). The autocor-

relation function of the geostatistical process Z(s) is given by

ρZ(s, t) = Corr[Z(s), Z(t)]

=
CZ(s, t)√

CZ(s, s)CZ(t, t)
.

Weakly stationary and isotropy

The geostatistical process {Z(s) : s ∈ D} is stationary when if the set of locations

in space D are moved by a specific amount in a specified direction, the entire process

retains the same characteristics e.g. a constant mean, a constant variance. It does not

mean that the data are all the same. A geostatistical process Z(s) is strictly stationary

if

f(Z(s1), ..., Z(sn)) = f(Z(s1 + h), ..., Z(sn + h)),

for any displacement vector h ∈ R2. However, this assumption is often too strict and

hard to verify, therefore one often tests whether it is weakly stationary which can be
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defined as follows. A geostatistical process {Z(s) : s ∈ D} is weakly stationary if

1. E[Z(s)] = µZ(s) = µZ for some constant mean µZ which does not depend on s.

2. Cov (Z(s), Z(s+ h)) = CZ(s, s+ h) = CZ(h), a finite constant that can depend

on h but not on s.

In addition, if the geostatistical process is invariant to the direction of the displacement

h in that only the magnitude of the displacement matters, then the process is isotropic

and, the autocovariance function CZ(h) can be simplified to

CZ(h) = CZ(‖h‖), (2.3.7)

where h = ‖h‖ denotes the Euclidean distance between two locations h = (h1, h2) in

the geostatistical process, which can be computed by ‖h‖ =
√
h2

1 + h2
2.

Semi-variogram

In geostatistics, the semi-variogram is often used to quantify the autocorrelation in the

data. The semi-variogram function of the geostatistical process Z(s) is defined as

γZ(s, t) =
1

2
Var[Z(s)− Z(t)],

which measures the variance of the data difference at two spatial locations s and t. Note

that 2γZ(s, t) is called the variogram. The relationship between the autocovariance and

the semi-variogram is explained as follow:

γZ(s, t) =
1

2
Var[Z(s)− Z(t)]

=
1

2
[Var(Z(s)) + Var(Z(t))− 2Cov(Z(s), Z(t))]

=
1

2
[Cov(Z(s), Z(s)) + Cov(Z(t), Z(t))− 2Cov(Z(s), Z(t))]

=
1

2
[CZ(s, s) + CZ(t, t)− 2CZ(s, t)].

Let us denote t = s+ h, then h is called displacement or spatial lag. Furthermore we

assume that geostatistical process Z(s) ∈ D is weakly stationary. Hence E[Z(s)] = µZ
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Figure 2.2: The general shape of a semi-variogram.

and CZ(s, s+ h) = CZ(h), thus we can simplify the semi-variogram to

γZ(s, t) =
1

2
[CZ(s, s) + CZ(s+ h, s+ h)− 2CZ(s, s+ h)]

=
1

2
[CZ(0) + CZ(0)− 2CZ(h)]

= CZ(0)− CZ(h)

= γZ(h).

If the process is also isotropic then γZ(h) = γZ(h = ‖h‖), where h = ‖h‖ denotes

the Euclidean distance between two locations. Therefore, the semi-variogram can be

calculated given the autocovariance. The semi-variogram has the general shape shown

in Figure 2.2 under weak stationarity and isotropy. This semivariogram chart is taken

from Scheeres, Annaka (2016). A semi-variogram is based on three parameters

1. Partial sill (σ2) measures the amount of spatially correlated variation in the data.

2. Nugget (ν2) measures the amount of non-spatial variation or random error.

3. Range (δ) controls the smallest distance (h) at which data become uncorrelated.

There are several weakly stationary and isotropic parametric models that can be used

to model geostatistical data, for example exponential, Gaussian, and spherical. The
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most commonly used is the exponential autocovariance function, which is given as

follows:

CZ(h) =

σ
2exp(−h/δ) h > 0

ν2 + σ2 h = 0,

and the associated semi-variogram is

γZ(h) =

ν
2 + σ2exp(−h/δ) h > 0

0 h = 0.

Geostatistical modelling

Suppose we have spatial response data Z = (Z(s1), ..., Z(sn)) and covariate risk factors

x(si) = (x1(si), ..., xp(si)) for i = 1, ..., n, where x1(si) = 1 is the intercept term. All

covariates in all n locations are contained in the matrix Xn×p. Thus the Gaussian

geostatistical model is written as

Z ∼ N(Xβ,Σ(θ)), (2.3.8)

where β = (β1, ..., βp) is a vector of regression parameters which we want to estimate

and forms a linear regression model. Σ(θ) is the covariance matrix related to the au-

tocovariance function CZ(h) and the vector θ = (σ2, ν2, δ) includes partial sill, nugget,

and range parameters. In this study, a constant mean model is used as the special case

which can be written as

Z ∼ N(β01,Σ(θ)), (2.3.9)

where 1n×1 = (1, ..., 1) while Σ(θ)ii = Var(Z(si)) and Σ(θ)ij = Cov(Z(si), Z(sj)). We

can obtain the parameters estimates (β̂0, θ̂) by maximum likelihood estimation.

Parameter estimation

Consider geostatistical data Z = (Z(s1), ..., Z(sn)) which has the general form as fol-

lows;
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Z ∼ N(Xβ,Σ(θ)), (2.3.10)

and there are two sets of parameters needing to be estimated; parameters in the mean

model β and parameters in the covariance model θ = (σ2, ν2, δ). Here these parameters

are estimated via a maximum likelihood approach. Assuming for exposition that an

exponential autocovariance model is used and the model is given by

Σ(θ) = σ2 exp(D/δ) + ν2I,

where D = (dij) is an n × n distance matrix with values dij = ‖si − sj‖ and I is the

n×n identity matrix. The likelihood function for this multivariate normal distribution

is as follows:

f(β,θ|Z) = (2π)−
n
2

∣∣σ2 exp(−D/δ) + ν2I
∣∣− 1

2 exp

(
−1

2
(Z−Xβ)>[σ2 exp(−D/δ) + ν2I]−1(Z−Xβ)

)
.

Then removing unnecessary constants the log-likelihood function is given by

ln[f(β,θ|Z)] = −1

2
ln
∣∣σ2 exp(−D/δ) + ν2I

∣∣− 1

2
(Z−Xβ)>[σ2 exp(−D/δ) + ν2I]−1(Z−Xβ).

To make the estimation easier the transformation ξ2 = ν2/σ2 is applied. Then replacing

ν2 by ξ2σ2 the log-likelihood is given by

ln[f(β,θ|Z)] = −n
2
ln(σ2)− 1

2
ln
∣∣exp(−D/δ) + ξ2I

∣∣− 1

2σ2
(Z−Xβ)>[exp(−D/δ) + ξ2I]−1(Z−Xβ).

(2.3.11)

Then differentiate the log-likelihood function above with respect to β0 and σ2 and then

setting equal to zero and solving gives the estimates of β and σ2 as follows;

β̂(δ, ξ2) = (X>V(δ, ξ2)−1X)−1X>V(δ, ξ2)−1Z,

σ̂2(β, δ, ξ2) =
1

n− p
(Z−Xβ)>V(δ, ξ2)−1(Z−Xβ),

where p is the number of parameters in the mean model which is subtracted from n

in σ̂2(β, δ, ξ2) to ensure that the estimate is unbiased. Note that I denote V(δ, ξ2) =

exp(−D/δ)+ξ2I for simplicity of notation. For the estimation of (φ, ξ2), differentiation

of the log-likelihood functions does not work since both parameters are included in

V(δ, ξ2), which is then inverted. Hence no closed form solution exists. Therefore, the
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estimates β̂(δ, ξ2) and σ̂2(δ, ξ2) are plugged into the log-likelihood function (2.3.11),

obtaining the following reduced form (only components that are based on (δ, ξ2) are

included) as follows;

ln[f(δ, ξ2)|Z] = −n
2

(σ̂2(β̂, δ, ξ2))− 1

2
ln(|V(δ, ξ2)|).

The estimates (δ̂, ξ̂2) can be obtained by numerical maximisation methods using a

computer. Then the final estimates of β̂(δ, ξ2) and σ̂2(δ, ξ2) are given by

β̂(δ̂, ξ̂2) = (X>V(δ̂, ξ̂2)−1X)−1X>V(δ̂, ξ̂2)−1Z,

σ̂2(β̂, δ̂, ξ̂2) =
1

n−H
(Z−Xβ̂)>V(δ̂, ξ̂2)−1(Z−Xβ̂),

Spatial prediction

Spatial prediction is the process of predicting the geostatistical processes Z(s0) at an

unmeasured location s0. There are several methods that can be used for spatial pre-

diction, one of the most common approaches is Kriging, named after Krige (1951) who

worked in the mining industry in South Africa. Kriging assumes that the distance

between two locations in the study area reflects the spatial autocorrelation between

the values of the geostatistical process. It is based on the following result.

LetX =

X1

X2

 be a vector of length n that is split into sub-vectors of length (q, n−q).

Then assume that X is multivariate Gaussian distributed, so we have that

X ∼ N

µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22

 .

Then the conditional distribution of X1|X2 is

X1|X2 ∼ N(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21). (2.3.12)
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Now suppose we have a constant mean for our data, and we propose the geostatistical

model

Z ∼ (β01,Σ(θ)). (2.3.13)

Then consider the joint geostatistical process at the n data locations and N prediction

locations s∗ = (s∗1, ..., s
∗
N):

Z∗ =

Z(s∗)

Z

 ∼ N

β01

β01

 ,
 Σ∗(θ) C(s∗,θ)>

C(s∗,θ) Σ(θ)

 ,

where Σ∗(θ) = Var(Z(s∗)) = σ2I + ν2I based on the exponential autocovariance and

C(s∗,θ) = (Cov(Z(s1), Z(s∗), ...,Cov(Z(sn), Z(s∗)). Then using the result (2.3.12)

above gives

Z(s∗)|Z ∼ N
(

̂E[Z(s∗)|Z], ̂Var[Z(s∗)|Z]
)
,

where

̂E[Z(s∗)|Z] = β̂01 +C(s∗, θ̂)>Σ(θ̂)−1(Z− β̂01) and

̂Var[Z(s∗)|Z] = Σ∗(θ̂)−C(s∗, θ̂)>Σ(θ̂)−1C(s∗, θ̂).

Here (β̂0, θ̂) have been estimated by maximum likelihood estimation, and the ordinary

kriging predictor is given by

Ẑ(s∗) = β̂01 +C(s∗, θ̂)>Σ(θ̂)−1(Z− β̂01), (2.3.14)

and a corresponding 95% prediction interval is

̂E[Z(s∗)|Z]± 1.96

√
̂Var[Z(s∗)|Z]. (2.3.15)

2.4 Spatio-temporal modelling

The spatial modelling approaches outlined in Section 2.3.4 are used to fit data at a single

time point in order to investigate disease risk patterns over the study region. However,

in some cases, disease data are collected across multiple time points and therefore
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spatio-temporal modelling approaches have been developed in order to identify changes

in disease risk in both space and time across the area of interest. One of the main aims

of these spatio-temporal approaches is to estimate the variation or trends in disease

risk over time in different areal units. In this section, I introduce some of the important

spatio-temporal models, which are used to achieve different goals of the studies. Since

my thesis focuses on count data, all models are written in terms of a Poisson likelihood.

2.4.1 Bernardinelli model

Bernardinelli et al. (1995) proposed a Poisson GLM with the linear predictor including

separate parameters for space and time effects and also interactions between space and

time. Suppose the response data for area i take the form Y i = (Yi1, ..., YiT ) for each

area i = 1, ..., n for time t = 1, ..., T . The model is given by

Yit ∼ Poisson(eitθit) i = 1, ...n, t = 1, ..., T

log(θit) = (µ+ φi) + (β + δi)t,
(2.4.1)

where Yit is the number of disease cases in area i during time t, which is assumed to

follow a Poisson distribution with expected number of disease cases eit and disease risk

θit. µ is a global intercept which is common for all areas and β is an overall slope

parameter. This model allows different areas to have different intercepts and slopes

by containing random effect terms φi and δi which respectively represent area specific

intercepts and linear slopes for area i. In other words, the intercept for area i can

be computed by µ + φi and the slope for area i is β + δi. Additionally, the random

effect terms φ and δ are modelled via the conditional autoregressive models outlined

in Section 2.3.4, thus allowing for spatial autocorrelation in the area specific intercepts

and slopes. The major drawback for this model is it assumes the temporal trend is

linear, therefore it does not allow more flexible trends to be estimated.

2.4.2 Knorr-Held model

Knorr-Held (2000) proposed a hierarchical Bayesian model for representing the space-

time variation in disease risk. The model contains separate spatial and temporal effects
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as well as a space-time interaction term. A Poisson likelihood equivalent of the Knorr-

Held model is given by

Yit ∼ Poisson(eitθit) i = 1, ...n, t = 1, ..., T

log(θit) = µ+ αi + φi + βt + δt + ηit,
(2.4.2)

where µ is the global intercept, α = (α1, ..., αn) and φ = (φ1, ..., φn) are spatial ef-

fect terms which account for the spatial structure of the data, β = (β1, ..., βT ) and

δ = (δ1, ..., δT ) are temporal effects which account for the temporal structure of the

data, and ηit is an space-time interaction which accounts for the possibility of differ-

ent temporal trends in different areas. This model can be thought as the convolution

model outlined in Section 2.3.4 in a spatio-temporal context since the structured and

unstructured temporal effect terms are added to this model.

Here µ can be assigned by a non-informative prior and the two sets of unstructured

independent main effects are assumed to have multivariate normal prior i.e. α ∼

N(0, σ2
αI) and β ∼ N(0, σ2

βI). The spatially structured random effects φ are modelled

by the intrinsic CAR model introduced in Section 2.3.4. Furthermore, the structured

temporal random effects δ are modelled by a first order random walk given by δ1 ∼

N(0, σ2
δ ) and δt|δt−1 ∼ N(δt−1, σ

2
δ ) for t = 2, ..., T . There are four possible combinations

to assign the prior distribution for the space-time interaction term ηit. The first is the

interaction between unstructured spatial effects α and unstructured temporal effects

β, in which case the interaction term ηit follows an independent prior distribution for

all i and t. This interaction term accounts for unexplained effects which do not have

any spatial or temporal structure. The second is an interaction between unstructured

spatial effects α and structured temporal effects δ, and then the interaction terms

ηi = (ηi1, ..., ηiT ) can be modelled by separate random walks for each unit. For an

interaction between structured spatial effects φ and unstructured temporal effects β

the interaction terms ηt = (η1t, ..., ηnt) follow a CAR model for each time period.

Finally, an interaction between structured spatial effects φ and structured temporal

effects δ follows the conditional distribution of ηit, i.e. ηit|η−it ∼ N(ψit, σ
2
η(it)). The
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mean and the variance can be computed as given

ψit =
1

2
(ηi,t−1 + ηi,t+1) +

∑n
j=1wijηjt∑n
j=1wij

+

∑n
j=1 wij(ηi,t−1 + ηi,t+1)

2
∑n

j=1 wij

σ2
η(it) =

1

2
∑n

j=1wij
,

(2.4.3)

whereW is an n×n neighbourhood matrix with wij = 1 if areas (i, j) are neighbours,

otherwise wij = 0. More details about the neighbourhood matrix are given in Section

2.3.2. To select an appropriate structure for the interaction term, it depends on the

structure of the remaining variation in the data after the spatial and temporal main

effects have been estimated. One drawback of this model is the linear predictor contains

two variables per area, two variables per time period, and one interaction term per

data point. Therefore five different sources of variation need to be estimated which can

present challenges both in terms of computation and interpretability.

2.4.3 Ugarte Model

Ugarte et al. (2012) dropped some parameters from the model proposed by Knorr-

Held (2000), as the structured and unstructured main effects are combined to a single

parameter for both spatial and temporal effects. The model takes the form

Yit ∼ Poisson(eitθit) i = 1, ...n, t = 1, ..., T

log(θit) = µ+ φi + δt + ηit,
(2.4.4)

where µ is the global intercept, φi represents the spatial effect at area i, δt represents the

temporal effect during time t, and ηit denote a space-time interaction. To assign prior

distributions to each parameter, µ can be modelled by a non-informative prior. The

spatial random effects φ follow a CAR prior proposed by Leroux et al. (2000) which

contains a spatial autocorrelation parameter to control the level of spatial smoothness

in the data. The temporal random effects δ are modelled by the first order random

walk as described above. Finally the interaction effects η can be modelled by a normal

prior with mean zero and a precision matrix which can be computed by the Kronecker
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product of the precision matrices for the spatial and temporal effects. This model is

simpler than the one proposed by Knorr-Held (2000) since the formula contains fewer

variance parameters to be estimated.

2.4.4 Rushworth model

Rushworth et al. (2014) proposed a spatio-temporal model which has fewer parameters

than the Ugarte model and is given by

Yit ∼ Poisson(eitθit) i = 1, ...n, t = 1, ..., T

log(θit) = µ+ ηit,
(2.4.5)

where ηit denote space-time random effects which are represented by a Gaussian Markov

random field (GMRF) prior distribution. They assume that observations which are

close together in time or space are likely to be correlated, and thus adopt multivariate

first order autoregressive structure. The joint prior distribution for η1 = (η11, ..., ηn1)

is given by η1 ∼ N(0, τ 2Q(ρ,W )−1) where the precision matrix Q(ρ,W ) is modelled

via the CAR model proposed by Leroux et al. (2000), which is given by Q(ρ,W ) =

ρ(diag(W1)−W ) + (1− ρ)I. Here I is the n× n identity matrix and 1 is the n× 1

vector of ones. The conditional distribution for the random effects at time t is as

follows:

ηt|ηt−1 ∼ N(αηt−1, τ
2Q(ρ,W )−1) t = 2, ..., T. (2.4.6)

Here, the temporal autocorrelation is induced via the mean αηt−1, while the spatial

autocorrelation is induced through the precision matrix Q(ρ,W ).

2.5 Spatially rescaled models

The simplest situation of spatial misalignment people have considered in disease map-

ping is multiple scale modelling, where data are available at two (or more) nested

spatial scales. Ugarte et al. (2016) modelled data on the fine spatial scale of municipal-

ities, but aimed to make inference about larger units called provinces. The motivation

is that each province has different health care implementation policies, and they are
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aiming to see if these differences have an impact on disease risk. There is a many to

one mapping between municipalities and provinces, so that each municipality is lo-

cated within exactly one province. They modelled repeated municipality level count

data on brain cancer incidence over time in Spain, and included spatial and temporal

main effects as well as a space-time interaction. They linked the two spatial scales by

including a random effect for province, which like the municipality level spatial effects,

were modelled with a conditional autoregressive prior to allow for spatial autocorre-

lation. They showed by simulation that their model performs better than single level

models in this two-level data setting, and then identified high risk provinces in Estella

and Pamplona in the real data application. Although this model does have two spatial

scales, the unique data really only exist at the small level, as the province level data

are simple aggregates of the municipality level data.

Aregay et al. (2017) extended this idea by developing multiple spatial scale mod-

elling that accounts for spatial autocorrelation at the lower (municipality) and higher

(province) levels simultaneously using shared and separate random effect components.

In the simplest case, a joint convolution model at the lower and higher levels is consid-

ered, and the linkage between these two levels is incorporated in the model by including

a shared random effect of the higher level. The second proposed model includes an

extra spatially structured random effect at the lower level. They compared these mod-

els to the case where they simply fitted separate convolution models at both levels.

Finally, they also considered a model that obtains disease risk at the higher level by

aggregating over the lower level estimated risks. The comparison of these models was

made via a simulation study, and the results indicate that the shared random effect

model with the extra random effect at the finer level performs best in regard to the

bias and MSE of the estimated risks. This is because the lower level inherits a com-

mon characteristic from the higher level via the shared random effect, leading to better

estimation. These proposed models were applied to Georgia oral cancer data, and the

results were similar to the simulation study. The shared random effect model has the

best performance at the higher level in terms of model fit, while at the lower level there

is not much difference in the estimates.
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Both these papers tackled the problem of spatial misalignment, but in the simplest

case of there being exact nesting between the two spatial scales. If there is not exact

nesting then we need to consider an alternative approach. The Log Gaussian Cox pro-

cess (LGCP) is a commonly used model for spatial point patterns analysis. Li et al.

(2012a) proposed modelling aggregated disease case count data with a spatially con-

tinuous LGCP. The continuous risk surface is approximated by a piecewise constant

surface evaluated on regular grid squares. They assumed a hierarchical structure, where

the first level involved a Poisson process with random intensity, and the second level

had an intensity function drawn from a Gaussian Markov random field. They made

statistical inference on the counts in the intersection areas between regions and grid

squares. To perform inference, a data augmentated MCMC algorithm was used to

produce samples for both model parameters, and the disease counts in the intersec-

tion areas. The disease counts were sampled from a multinomial distribution with the

weight proportional to the size of the intersection areas. They compared the proposed

model to the commonly used BYM model via a simulation study, and the results indi-

cated that the proposed LGCP model outperformed the BYM since it produced more

accurate disease risk maps in terms of MSE and was also better at identifying areas

of abnormally high risk as measured by ROC curves. However, one drawback of this

approach is that the expected disease counts and covariates are ignored in the multino-

mial steps. Additionally, I still obtain disease risk estimates in areas where no people

live which is not realistic.

Li et al. (2012b) developed their methodology from the previous paper by addressing

the problem of spatial modelling when the area boundaries change. They aimed to

make inference on systemic lupus erythematosus (SLE) data for 40 years to 2007 and

identified high risk areas in Toronto, Canada. The locations in space and time for

individual cases are assumed to come from a spatio-temporal inhomogeneous Poisson

process, while the random spatial risk surface is modelled via an LGCP. The disease

cases in each grid cell were estimated by a generalised linear mixed model, with the

spatial random effects approximated by a Gaussian Markov random field. In addition,

the offset parameter was based on the population size in each grid cell, age group effect

and the variation in risk over time. The proposed model was compared to the more
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established BYM model via a simulation study, and was shown to perform better in

terms of MSE. However, they still estimated disease risk for the grid squares with zero

population.

Diggle et al. (2013) aimed to provide a map that estimates the spatial variation in the

risk of lung cancer in the Castile-La Mancha in Spain. They partitioned each region of

interest into subregions to make inference, however the subregions have different sizes

and shapes. Therefore, the inference is made on regular grid cells via an LGCP model

and a data augmentation approach as the previous approaches did.

Taylor et al. (2018) proposed spatial and spatio-temporal models that aimed to make

continuous inference at the fine grid level based on aggregated disease count data where

disease counts relate to (i) non-overlapping areas, (ii) overlapping areas, or (iii) areas

with unknown boundaries such as usage of healthcare facilities. Multinomial sampling

is again used to estimate disease cases at the grid level. The probability of each disease

case in each region occurring in the intersection area is based on the size of the inter-

section area and covariate information, and different specifications are used depending

on the boundary type. Inference was carried out via a data augmentation approach

and an MCMC algorithm. They applied their method to three datasets, primary bil-

iary cirrhosis cases between 1987 to 1994 in Newcastle upon Tyne, malaria over a two

year period in Namibia with overlapping catchment areas, and general election results

from 2010 and 2015 in Manchester and surrounding areas. The aim in the latter was

to predict the results in 2020 when the electoral boundaries have changed. However,

there are a few limitations in this study. Firstly, the expected disease counts are not

included in the probabilities in the multinomial steps, whereas the estimated disease

counts in each grid cell should depend on the population size that live there. Secondly,

they estimated the disease risks in areas where no people live, for example mountains

and fields. Moreover, they did not assess the risk estimation accuracy via a simulation

study. Finally, they used an LGCP in their study which is more computationally de-

manding than the CAR model used here.
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Therefore, in this thesis I aim to solve these issues by estimating disease risks on regular

grid squares and hence create an approximate spatially continuous risk surface over the

Greater Glasgow and Clyde Health Board. The disease counts at the grid square level

are estimated via multinomial step with probabilities based on the expected counts

and the sizes of areas of intersection between grid squares and regions. I propose two

methods to achieve this goal; multiple imputation and data augmentation approaches.

Then finally I extend these methods to estimate the spatio-temporal variation in disease

risk.
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Chapter 3

Spatial modelling for respiratory

disease risk at the areal unit level

3.1 Introduction

Disease risk varies over space and time, and poverty and deprivation are significant

factors that drive the spatial variation that can be observed in disease risk, with more

affluent areas normally having lower levels of disease risk, while more deprived areas

usually exhibit higher risk levels (McCartney, 2012). Disease mapping methods are

most commonly used to estimate disease risk over space and time, and therefore ar-

eas of high or low risk can be identified. One aim in doing this is to estimate health

inequalities, which can be defined as the variation in health risk between different so-

cial groups and population areas (Murray et al., 1999), and refers to the unfair and

avoidable differences in people’s health. These inequalities are mainly based on socio-

economic factors, for example education, income and wealth (Jack et al., 2019). There

have been many previous studies, such as Levin and Leyland (2006), Ellis and Fry

(2010) and Marmot et al. (2010), focusing on health inequalities in large scale areas

e.g. between countries. In this chapter I will explore the inequality in respiratory

hospital admissions in the Greater Glasgow and Clyde Health Board at a small area

level known as intermediate zones using an existing spatial correlation model called

the Leroux conditional autoregressive (CAR) model (Leroux et al., 2000). These re-

sults will motivate the development of the novel methodology in the following chapters.
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The remainder of this chapter is organised as follows. Section 3.2 introduces the dataset

which will be used in this chapter and throughout this thesis. Then Section 3.3 outlines

a spatial model used to estimate disease risk at the intermediate zone level, and also

presents the results from the model. Finally Section 3.4 discusses the results and some

drawbacks of this study.

3.2 Data

The study region is the Greater Glasgow and Clyde Health Board, which contains the

largest city in Scotland (Glasgow) and the surrounding areas including areas of East

Dunbartonshire, East Renfrewshire, Glasgow City, Inverclyde, Renfrewshire and West

Dunbartonshire. These areas are called council areas and Table 3.1 presents the popu-

lation in each council area. The Health Board area is split into 257 administrative units

called intermediate zones (IZ) which are presented in Figure 3.1. These IZs have a me-

dian area of 119 hectares, with a maximum of 11,300 and a minimum of 20 hectares,

while the median population is 4,306 with a maximum of 9,008 and a minimum of

1,321 (Scottish Government, 2019). The disease data are two-year total counts of the

numbers of hospital admissions with a primary diagnosis of respiratory disease for the

years 2015 to 2016 in each IZ and are collected from all hospitals in the health board

(35 hospitals). The respiratory disease data are defined using the International Clas-

sification of Diseases Volume 10 (ICD10) codes (J00:J99, R09.1). The total number of

disease counts for all IZs is 51,271 cases with a median of 188 and range is between 50

to 530 cases. Note that these disease data will be used throughout this thesis but in

Chapter 6 will used the data from 2013 to 2016.

The disease data, Y (A) = [Y (A1), ..., Y (An)], are obtained from the Scottish Statis-

tics website https://statistics.gov.scot. These data are denoted by Y (Ai) =

[Y (A1), ..., Y (An)], and are the numbers of hospital admissions for respiratory disease

for each area Ai. The expected values, e(Ai) = [e(A1), ..., e(An)], are the expected hos-

pital admission numbers for each area Ai computed to adjust for varying population

sizes and demographic structures in each IZ. The expected values can be computed via
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Figure 3.1: The intermediate zones of the Greater Glasgow and Clyde Health Board.

Table 3.1: Population estimates in the Greater Glasgow and Clyde Health Board for
2016.

Area Population
East Dunbartonshire 107,540
East Renfrewshire 93,3810
Glasgow City 615,070
Inverclyde 79,160
West Dunbartonshire 89,860

Source: Population Estimates (Current Geographic Boundary), available at https://
statistics.gov.scot/data_home.

indirect standardisation based on age and sex specific disease rates for the whole of

Scotland. In other words, the expected disease count for area Ai can be calculated by

first constructing a set of B strata of the population in each area based on age and sex.

Then compute the expected disease counts via e(Ai) =
∑B

b=1Nb(Ai)rb, where Nb(Ai)

is the population in area Ai in strata b and rb is the average disease rate for strata b

in Scotland. The simplest measure of disease risk is the standardised incidence ratio

(SIR), which can be calculated by SIR(Ai) = Y (Ai)/e(Ai). An SIR value greater than

1 indicates that there is a higher disease incidence rate within the areal unit than the

average over Scotland. In contrast a value less than 1 indicates a lower incidence rate

than the average over Scotland.
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Figure 3.2: The standardised incidence ratio (SIR) for respiratory disease risk across
the Greater Glasgow and Clyde Health Board for the years 2015 - 2016.

Based on the two years disease data, the total disease counts for the Greater Glasgow

and Clyde Health Board is 51,271 with the maximum of 530 and minimum of 50, while

median disease count is 188. In addition, the median SIR for the whole study region is

1.27 with the maximum of 2.48 and minimum of 0.50. Figure 3.2 presents the spatial

map of the SIR for each IZ across the Greater Glasgow and Clyde Health Board in

the years 2015 to 2016. The areas with higher SIRs are Clydebank, Paisley, and Bar-

rhead, which are the poorer areas in Glasgow. In contrast the areas with lower SIRs

are Giffnock, Clackston, Eaglesham, Bishopton and Bearsden, which are the wealthy

areas. These results suggest that the wealthier areas tend to have lower SIRs than the

less wealthy areas.

There are however some disadvantages of the SIR as the measure of risk. When the

studied disease is rare or the populations in some areas are very small, some areas may

have low values of the expected disease count e(Ai) which may result in very unstable

SIR values in some areas as the SIR is a ratio. Furthermore the SIR is computed

independently for each area, and therefore it does not take account of the spatial

autocorrelation that might be present in the data. It is therefore more common to take

a hierarchical Bayesian modelling approach to estimate disease risk. This approach

often extends a Poisson GLM to allow for spatial autocorrelation, which is included
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via a set of random effects. These random effects borrow strength from geographically

nearby areas to improve the accuracy of estimation.

3.3 Estimating disease risk at the areal unit level

In this section I will estimate respiratory disease risk at the areal unit level across

the Greater Glasgow and Clyde Health Board using the commonly used Leroux CAR

model (Leroux et al., 2000).

3.3.1 Spatial modelling

The spatial model used for the disease count response data is typically a Poisson GLM

with random effect and is outlined as follows:

Y (Ai) ∼ Poisson[e(Ai)R(Ai)] i = 1, ..., n,

ln[R(Ai)] = x(Ai)>β + φ(Ai),
(3.3.1)

where Y (Ai) and e(Ai) respectively denote the number of observed and expected res-

piratory disease cases in area Ai. R(Ai) is the disease risk in area Ai which can

be estimated via the covariate information, x(Ai)>β, and a set of random effects,

φ(A) = [φ(A1), ..., φ(An)]. Here the covariates are not included in this study so

x(Ai)>β = β0 since the grid level analysis presented in subsequent chapters shows

they are not well estimated. The intercept parameter β0 is assigned a normal prior

distribution with mean zero and variance 100,000, i.e. β0 ∼ N(0, 100, 000). The ran-

dom effects are used to account for the spatial autocorrelation that might be present in

the data. These random effects are typically modelled via a conditional autoregressive

(CAR) model. Here I use the CAR prior proposed by Leroux et al. (2000) which is

given by

φ(Ai)|φ(A−i) ∼ N

(
ρ
∑n

k=1wikφ(Ak)
ρ
∑n

k=1wik + (1− ρ)
,

τ 2

ρ
∑n

k=1wik + (1− ρ)

)
,

τ 2 ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1),

(3.3.2)
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where φ(A−i) = [φ(A1), ..., φ(Ai−1), φ(Ai+1), ..., φ(An)]. Here ρ denotes the spatial

autocorrelation between these random effects and is controlled by an n×n neighbour-

hood matrix W , which is described in Section 2.3.3, with wij = 1 if areas Ai and Aj

share a common border and wij = 0 otherwise. A value of ρ = 1 indicates strong

spatial autocorrelation (the intrinsic CAR model (Besag et al., 1991)), while ρ = 0

indicates that the random effects are completely independent (φ(Ai) ∼ N(0, τ 2)). The

variance parameter τ 2 controls the level of variation between the random effects, which

is assigned an inverse-Gamma prior distribution with a shape parameter a and a scale

parameter b.

3.3.2 Results

Model inference is performed by using an MCMC algorithm via a combination of Gibbs

sampling and Metropolis-Hasting steps. The MCMC algorithm is implemented using

the CARBayes package (Lee, 2013) in R (R Core Team, 2014). The model is run three

times in order to generate three independent Markov chains, and each chain is run

for 200,000 iterations with 50,000 as burn-in iterations and thinned by 15. This gives

30,000 remaining samples for overall inference, with 10,000 samples for each chain.

Convergence diagnostic

To assess convergence of the Markov chains, the simplest way is to draw a traceplot of

the posterior samples for each parameter, and the convergence is presented when the

samples show no clear pattern (e.g. always increasing) in such a plot. In general, the

convergence diagnostic should be applied for every model parameter however, this is

infeasible in practice since there are a large number of random effects. Therefore only

selected parameters which are (β, τ 2, ρ) and ten random effects (φ(Ai)) are undertaken.

Figure 3.3 presents trace plots of the posterior samples for (β0, τ
2, ρ) and random ef-

fect for area A1, and each chain is represented in different colours. The figure shows

the MCMC chains have converged since there is no change in a mean or variance of

the posterior samples among the three chains. Note that, the convergence of random

effects for ten areas has been checked, however it is presented only one area since the
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(a) β (b) τ2

(c) ρ (d) φ(A1)

Figure 3.3: Trace plots of the MCMC samples from each parameter.

plots look very similar.

An additional diagnostic is the method of Gelman-Rubin (Gelman and Rubin, 1992),

used to assess the convergence for multiple chains. Gelman et al. (2013) suggest that

a value less than 1.1 indicates good mixing of the chain. The Gelman-Rubin statistics

for selected parameters are all less than 1.1 with a maximum value of 1.02. Typically

the results show that the posterior samples are well mixed.

Sensitivity analysis

Sensitivity analysis is carried out in order to ensure that the posterior distribution is

not driven by a choice of hyperpriors. Here, three scenarios with different hyperpriors

for the variance of random effects τ 2 are operated as follows:

1. Scenario 1 - τ 2 ∼ Inverse-Gamma(1, 0.01)

2. Scenario 2 - τ 2 ∼ Inverse-Gamma(0.01, 0.01)
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3. Disease risk at the areal unit level

Figure 3.4: Correlation plots of estimated risks between three MCMC chains.

3. Scenario 3 - τ 2 ∼ Inverse-Gamma(0.05, 0.0005)

These choices of hyperparameters are selected regarding to Lee (2020), Rodrigues and

Assunção (2012), and Law (2016). Figure 3.4 presents the correlation plots between

the risk estimates across scenarios. The plots show that the risk estimates lie on the

straight line, which indicates all three scenarios producing very similar estimates of the

risk. These results indicate that different hyperpriors do not affect the posterior distri-

bution, therefore the posterior samples of one scenario are used for the model inference.

Posterior predictive check

Posterior predictive check is a goodness of fit assessment criteria to check if the model

is fitted the data well which was introduced by Rubin (1984) and was extended by Gel-

man et al. (1996). The idea is to compare simulating replicated data under the fitted

model to the observed data. Intuitively, if the model specifications are appropriate,

the simulated data and the observed data should be the same. Figure 3.5 presents the

correlation plot between the observed data and the average of simulated data for each

areal unit. The plot indicates that both data sets are similar since the data lie on the

straight line with correlation coefficient of 0.999.
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3. Disease risk at the areal unit level

Figure 3.5: Posterior predictive model checking.

Main results

Point estimates of the parameters are taken from the median of the posterior distribu-

tion of each parameter, and the 95% credible interval is taken from the 2.5 and 97.5

percentiles of the posterior distribution. The estimate of the spatial autocorrelation ρ̂

is 0.74 with the 95% credible interval (0.52, 0.92). The credible interval is not near

zero, therefore there is sizeable spatial association present in the data. In addition the

estimate of the random effect’s variance τ̂ 2 is 0.26 with 95% credible interval (0.20,

0.32), suggesting sizable variation in thedisease risk (τ 2 is on the log scale). Figure

3.6 shows the estimated respiratory disease risk from the model introduced in Section

3.3.1. The spatial estimated risk map shows a similar spatial pattern to the SIR map

presented in Figure 3.2. To quantify this similarity, Figure 3.7 illustrates the correla-

tion of the SIRs in each IZ and the estimated risks from Model (3.3.1), which is 0.999,

therefore this spatial model and SIR approach produce very similar risk estimates.

However, the variation of the risk estimates is slightly smaller than the SIRs (0.641

vs 0.665) as seen in Figure 3.8. The numbers in red on the top of each boxplot are

the interquartile ranges (IQR), which is used to measure the variability in the disease
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3. Disease risk at the areal unit level

Figure 3.6: The estimated respiratory disease risk across the Greater Glasgow and
Clyde Health Board.

risk and it can be computed as the difference between the upper and lower quartiles.

The results collectively suggest that the higher risk areas are located both in the east

and west of Glasgow city centre. These areas are among the most deprived areas in

Glasgow e.g. Clydebank and Paisley. In contrast, the areas with lower risks which are

wealthier areas such as Bearsden, Clarkston and Eaglesham are mainly located in the

north and south of the city centre.

3.4 Conclusion

In this chapter the hierarchical Bayesian model proposed by Leroux et al. (2000) has

been used to estimate the respiratory disease risk across the Greater Glasgow and

Clyde Health Board. This model has a parameter to control the level of the spatial

autocorrelation between the random effects. Therefore, a strong spatial smoothness is

not necessary to be assumed. Hence, this model is suitable for the spatial data with all

levels of correlation, and in this study it is moderate to strong correlation (ρ̂ = 0.74).

Overall the areas with the higher disease risks are located on both the east and west of

Glasgow city centre such as Clydebank and Paisley. These areas are among the most
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3. Disease risk at the areal unit level

Figure 3.7: Scatter plot between SIRs and the estimated disease risks from the spatial
model.

Figure 3.8: Boxplots of estimated respiratory disease risks using SIR approach and
spatial modelling approach.
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3. Disease risk at the areal unit level

deprived areas in Glasgow. In contrast, the areas with the lower risks are in the north of

the city centre and also in the south such as Bearsden, Clarkston and Eaglesham which

are wealthier areas. These results suggest that people living in the more deprived areas

are more likely to be hospitalised for respiratory disease than those living in richer ar-

eas. However, a major limitation of this study is the risk estimates which are assumed

constant within each IZ, which is not necessary true. Therefore in the next chapters

It would be overcome for these problems by proposing novel models which estimate

the disease risk on a pseudo-continuous spatial surface using a grid based approach.

This allows risk to vary within each IZ, thus providing a more accurate estimate of the

spatially varying risk surface across the Greater Glasgow and Clyde Health Board.
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Chapter 4

Grid level inference with multiple

imputation

4.1 Introduction

The Modifiable Areal Unit Problem (MAUP) is a well known issue for people who

analyse spatial data aggregated to non-overlapping areal units (Dark and Bram, 2007).

There are two issues of concern related to MAUP: (i) the choice of unit is arbitrary

and therefore when the units are changed, the data also change and hence change the

results, (ii) when the set of areas are changed from one time period to the next period

or more generally between two different data sets, we cannot directly compare the re-

sults because the units have been changed.

In the previous chapter, the existing method was presented in order to investigate

health inequalities in respiratory disease hospital admission in the Greater Glasgow

and Clyde Health Board. This method illustrated spatial disease risks at the areal

unit level in disease maps using a hierarchical Bayesian model. There are however

some drawbacks to this method in terms of estimating disease risk in each areal unit.

For example, disease risk in each IZ is assumed to be constant, and it also estimates

the risks in areas where nobody lives e.g. mountains, fields, which are not necessarily

realistic.
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4. Multiple Imputation approach

Therefore this chapter will try to overcome these problems by developing methodology

that uses areal unit level data to make grid square level inference, thus providing a

common grid scale for inference regardless of the original areal units. Moreover, an-

other benefit of this method is that as the grid squares become smaller the data and

hence the inference will get closer to an individual level, moving away from the ecolog-

ical fallacy (Wakefield and Salway, 2001). The ecological fallacy occurs when we make

inference at the individual level based only on analyses of group or aggregated data in

which those individuals belong.

The remainder of this chapter will be organised as follows. Section 4.2 introduces

methodology of estimating grid level data based on areal unit level data, as well as the

spatial model being used in this chapter and how to make an inference at the grid square

level. Then a simulation study is carried out in Section 4.3 to test the performance

for the proposed models. Section 4.4 applies respiratory hospital admissions data in

the Greater Glasgow and Clyde Health Board to the selected models from Section 4.3.

Finally, Section 4.5 summarises the main findings in this chapter and discusses the

benefits and limitations of this methodology.

Figure 4.1: An example of grid squares over the Glasgow intermediate zone regions.
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4. Multiple Imputation approach

4.2 Methodology

4.2.1 The spatial grid

Suppose I have n regions A = (A1, ...,An), for which I have data [Y (A1), ..., Y (An)]

and [e(A1), ..., e(An)], which denote the observed and expected numbers of disease

cases respectively. In addition, x(Ai) = [x1(Ai), ..., xp(Ai)] denotes a p × 1 covariate

vector for area Ai including x1(Ai) = 1 for the intercept term. The expected number

of disease cases for region Ai , e(Ai) can be computed via indirect standardisation,

to ensure that the observed disease cases, Y (Ai), are adjusted due to the populations

in each region having different sizes and demographic structures e.g. age and sex.

The aim is to provide grid square level inference based on areal unit data. Thus I

overlay a grid of M squares H = (H1, ...,HM) over the areas of interest, an example

of which is shown in Figure 4.1. However, some grid squares have a zero population

as they are areas of fields, mountains, lake, etc., so it is inappropriate to provide grid

level inference in grid squares where no people live. Therefore grid squares with zero

population have been removed in this study, and the remaining m grid squares with

non-zero populations G = {G1, ...,Gm} ⊂H will be used for grid level inference, which

is illustrated in Figure 4.2. Let a(·) denote area, so that a(Ai), a(Gj), and a(Ai ∩ Gj)

respectively denote the areas of region Ai, grid square Gj, and their intersection Ai∩Gj.

I wish to carry out grid level inference by fitting a spatial model to grid level data,

[Y (Gj), e(Gj),x(Gj)], which denote the unknown observed and expected disease counts

for grid square Gj and their covariates. Then let P̃ (Gj) denotes the population living in

grid square Gj, these data can be obtained from population density maps (Reis et al.

(2017)), as shown in Figure 4.3. However, there is a problem with the grid squares

that lie on the border of the map as illustrated in Figure 4.4, since some part of these

grid squares is not included in region A. Let us consider two cases

1. If some part of the grid square that lies outside the map is uninhabitable (e.g.

the sea), then the population in the whole grid square will come from region A.

2. If some part of the grid square that lies outside the map is inhabitable (e.g. a

neighbouring region of Glasgow) as show in Figure 4.4, then the population in

that grid square will only partially come from region A. Hence, I have to make
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Figure 4.2: The Glasgow intermediate overlayed by grid squares with non-zero popu-
lation.

Figure 4.3: The population density at the grid square level overlaid on an Open-
StreetMap.
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Figure 4.4: An example of grid squares which partly lie outside the Glasgow map.

an adjustment for the population in these grid squares to only relate to region

A.

Therefore, under the assumption of a constant population density across a grid square,

the population in grid square Gj is given by

P (Gj) =

P̃ (Gj) case 1⌊
P̃ (Gj)

∑n
i=1 a(Ai∩Gj)

a(Gj)

⌉
case 2,

(4.2.1)

so that in case 2 the population is reduced proportionally to the area of intersection

with region A. Here b·e denotes rounding to the nearest integer.

4.2.2 Estimating grid level data [e(Gj), x(Gj)]

Recall that I have areal unit level data [e(Ai),x(Ai)], and want to transform them

to grid level data [e(Gj),x(Gj)]. To compute the expected number of disease cases

e(Gj), the total expected disease cases need to be reallocated from the n regions to

the m grid squares. Note that I must have
∑n

i=1 e(Ai) =
∑m

j=1 e(Gj) to keep the total

expected counts as the same as the areal unit level. The expected disease cases for

grid square Gj can be computed as e(Gj) =
∑n

i=1 e(Ai ∩ Gj), the sum of the expected

number of disease cases in the intersection areas between each region Ai and grid

square Gj. Then assuming the expected counts are proportional to population density,

the intuitive estimate of e(Gj) is

e(Gj) =
n∑
i=1

P (Ai ∩ Gj)∑m
k=1 P (Ai ∩ Gk)

e(Ai), (4.2.2)
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which is a weighted average based on the population in the intersection areaAi∩Gj.Here

P (Ai ∩Gj) is unknown, but it can be estimated based on the assumption of a common

population density within each grid square. Therefore P (Ai∩Gj) =
a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)
P (Gj),

the proportion of grid square Gj in region Ai multiplied by the population in grid square

Gj. Finally, substitute P (Ai ∩ Gj) into (4.2.2), so that

e(Gj) =
n∑
i=1

P (Gj) a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)∑m

k=1 P (Gk) a(Ai∩Gk)∑n
q=1 a(Aq∩Gk)

e(Ai). (4.2.3)

It its straightforward to show that the total number of expected disease counts in the

grid level is equal to the areal unit level.

Covariates at the grid square level also need to be estimated. I consider three different

types of covariate; continuous, count, and categorical data, and they must be estimated

in different ways. The simplest approach for each type of covariate is given below

• Continuous data are a weighted average based on the population in the area of

intersection, so that I have

x(Gj) =
n∑
i=1

P (Ai ∩ Gj)∑n
q=1 P (Aq ∩ Gj)

x(Ai) =
n∑
i=1

a(Ai ∩ Gj)∑n
q=1 a(Aq ∩ Gj)

x(Ai), (4.2.4)

which is the proportion of grid square Gj in region Ai multiplied by the covariate

value in region Ai and assumes a common population density across the grid

square.

• Count data are weighted in the same way as e(Gj), namely

x(Gj) =
n∑
i=1

P (Gj) a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)∑m

k=1 P (Gk) a(Ai∩Gk)∑n
q=1 a(Aq∩Gk)

x(Ai). (4.2.5)

• Categorical data modelled by binary indicators are estimated as in (4.2.4) except

that the result is rounded to the nearest integer. Mathematically this can be
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written as,

x(Gj) =

⌊
n∑
i=1

a(Ai ∩ Gj)∑n
k=1 a(Ak ∩ Gj)

x(Ai)

⌉
, (4.2.6)

where b·e denotes rounding to the nearest integer.

Note that few issues that occur for the count data are the sum of the data at the grid

level is not necessarily equal to the areal unit level, i.e.
∑m

j=1 x(Gj) 6=
∑n

i=1 x(Ai) and

x(Gj) is not necessarily an integer. To overcome these problems, I propose the following

steps:

1. Round down all the values from (4.2.5), i.e. take the integer part of those values,

κ(Gj) = bx(Gj)c.

2. Denote the decimal part of the values from (4.2.5), x(Gj), by π(Gj) = x(Gj) −

κ(Gj).

3. Sum the integer part from step 1,
∑m

j=1 κ(Gj), and compute the difference between

the total number of the data at the areal unit level for the whole study region

and the result from this step to find the number of data that have been lost in

the transformation step, i.e. d =
∑n

i=1 x(Ai)−
∑m

j=1 κ(Gj).

4. Order the decimal parts, π(Gj), from step 2 and add one case to the κ(Gj) in

grid squares with the d greatest decimal values, thus ensuring that
∑m

j=1 x(Gj) =∑n
i=1 x(Ai).

4.2.3 Methodology for estimating Y (Gj)

Next, the disease cases at the grid level, Y (Gj), need to be estimated. Here, I propose

estimating Y (Gj) by multiple imputation (Rubin, 2004), and then using these imputed

data to fit a spatial model to estimate disease risk and covariate effects at the grid

level. Multiple imputation generally consists three stages, the first stage is to generate

multiple datasets of Y (Gj) based on Y (Ai) via multinomial sampling. Then fit a spa-

tial model to each of the imputed datasets, and finally combine the results from the

previous stage in order to make an inference.
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Let us denote Y (Ai ∩ Gj) as the number of disease cases in the intersection of Ai and

Gj. Then Y (Gj) is simply computed by

Y (Gj) =
n∑
i=1

Y (Ai ∩ Gj). (4.2.7)

Y (Ai ∩ Gj) can be estimated by dividing the disease cases in region Ai, Y (Ai) across

the m grid square intersections {Ai ∩ G1, ...,Ai ∩ Gm} using a multinomial sampling

step. Therefore given Y (Ai), I can generate Y (Ai ∩ Gj) as follows

[Y (Ai ∩ G1), ..., Y (Ai ∩ Gm)] ∼ Multinomial(n = Y (Ai)|ωi1, ..., ωim). (4.2.8)

Then combine Y (Ai∩Gj) via (4.2.7) to estimate Y (Gj) for each grid square Gj. However,

I cannot complete the multinomial step if I do not know the probability (ωij) of each

disease case in region Ai occurring in the intersection area Ai ∩ Gj. Here, ωij will

depend on two elements.

1. The size of the area of intersection between region Ai and grid square Gj relative

to the other grid squares’ areas of intersection,

ηij =
a(Ai ∩ Gj)∑n
q=1 a(Aq ∩ Gj)

.

2. The estimated number of disease events that we expect to observe in grid square

Gj,

ξ(Gj) = e(Gj)R(Gj),

where R(Gj) is the grid level relative risk.

Then I combine ηij and ξ(Gj) together, giving ωij ∝ ηijξ(Gj) = e(Gj)R(Gj) a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)

.

I consider two possibilities for ωij:

Scenario 1: Constant risk across the region

Since I do not know the relative risk R(Gj) for any grid square, I assume equal risk

across all grid squares by setting R(Gj) = 1 for all j. This gives me:
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ωij =
e(Gj) a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)∑m
k=1 e(Gk)

a(Ai∩Gk)∑n
q=1 a(Aq∩Gk)

, (4.2.9)

and the denominator is used to ensure that
∑m

j=1 ωij = 1 for all i = 1, ..., n.

Scenario 2: Risk estimates via kriging

I estimate R(Gj) at the grid square level for j = 1, ...,m by applying spatial predic-

tion methodologies to the standardised incidence ratio data at the areal unit level,

R̂(Ai) = Y (Ai)/e(Ai), because it is on the same risk scale as R(Gj). I consider

this as essentially a geostatistical prediction problem where I have SIR data at the

areal unit level {R̂(A1), ..., R̂(An)}, and want to predict the SIR at the grid level

{R̂(G1), ..., R̂(Gm)}. Note that for this prediction exercise I assume that the SIR data

in region Ai and grid square Gj are located at their central points known as centroids

ai and gj respectively. Here I use the method of kriging which is explained in Section

2.3.5 to predict the SIR values at locations g = {g1, ..., gm} based on all SIR data at

locations a = {a1, ..., an}. I propose the geostatistical model as follows:

R̂(a) ∼ N(µ1,Σ(θ)a),

where R̂(a) = {SIR(a1), ..., SIR(an)} is the vector of SIR data at the n IZ centroids

{a1, ..., an} and the centroids are purely land based. Here µ is the overall mean, and 1 is

an n×1 vector of ones. Furthermore, Σ(θ)a is a covariance matrix which is specified by

the exponential model, where θ is the vector of nugget, sill and range parameters that

need to be estimated. Then consider the joint geostatistical process at the n locations

of IZs a = {a1, ..., an} and the m grid squares prediction locations g = {g1, ..., gm}:

R̂
∗

=

R̂(g)

R̂(a)

 ∼ N

β0I

β01

 ,
Σ(θ)g Σ(θ)>ag

Σ(θ)ag Σ(θ)a

 ,

where R̂(g) = [R̂(g1), ..., R̂(gm)]. Additionally Σ(θ)g = Var[R̂(g)], and Σ(θ)a =

Var[R̂(a)] are based on the exponential autocovariance. Furthermore Σ(θ)ag is the ma-

trix containing elements Cov(R̂(ai), R̂(gj)). Here I assume that the risk estimate R̂(gj)

at the centroid of grid square gj is constant within grid square gj, hence R̂(gj) = R̂(Gj).
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Then the conditional distribution of R̂(g)|R̂(a) is given by the kriging predictor as fol-

lows:

R̂(g) = β̂0I + Σ(θ̂)>agΣ(θ̂)−1
a [R̂(a)− β̂01]. (4.2.10)

Here (β̂0, θ̂) are estimated by maximum likelihood estimation. Full details of kriging

are presented in Section 2.3.5. Then the weights are defined as follows:

ωij =
e(Gj)R̂(Gj) a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)∑m
k=1 e(Gk)R̂(Gk) a(Ai∩Gk)∑n

q=1 a(Aq∩Gk)

, (4.2.11)

Multiple imputation algorithm

1. Generate Y (L)(Gj) for L = 1, 2, ..., l based on Y (Ai) via multinomial sampling

steps, which is outlined in Section 4.2.3. Allison (2000) and Carpenter and Ken-

ward (2008) have been suggested that five imputed datasets (l = 5) are sufficient

on theoretical grounds. However, l = 10 is used in this study in order to reduce

sampling variability from the imputation process.

2. For each imputed dataset from the previous step, fit a spatial CAR model pro-

posed by Leroux et al. (2000) to obtain the posterior samples for all model pa-

rameters.

3. Combine the results from step 2 in order to make a model inference.

4.2.4 Model

Now I have [Y (Gj), e(Gj),x(Gj)], the overall model to obtain grid level inference is given

by
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Grid Level Model

Y (Gj)|e(Gj)R(Gj) ∼ Poisson[e(Gj)R(Gj)]

ln[R(Gj)] = x(Gj)>β + φ(Gj)

φ(Gj)|φ(G−j) ∼ N
(

ρ
∑m

k=1 wkjφ(Gk)
ρ
∑m

k=1 wkj + 1− ρ
,

τ 2

ρ
∑m

k=1wkj + 1− ρ

)
βh ∼ N(0, 100000) for h = 1, ..., H

τ 2 ∼ Inverse-Gamma(1, 0.01)

ρ ∼ Uniform(0, 1).

(4.2.12)

Here, R(Gj) denotes disease risk in grid square Gj and β = [β1, ..., βH ] is a vector of re-

gression parameters including an intercept term. In addition, φ(G) = [φ(G1), ..., φ(Gm)]

is a vector of random effects, and φ(G−j) = [φ(G1), ..., φ(Gj−1), φ(Gj+1), ..., φ(Gm)]. The

spatial autocorrelation between these random effects is controlled by an m×m neigh-

bourhood matrix, W , at the grid level. Note that the sharing a common border

approach for defining W is not appropriate to use in this model because some grid

squares have no neighbours. Therefore, I use the k-nearest neighbour instead as de-

scribed in Section 2.3.2, and set wkj = 1 if grid square Gk is one of the 4 nearest grid

squares to grid square Gj in term of distance and wkj = 0 if not. Here I use the 4

nearest neighbours because it corresponds to the number of neighbours of grid square

under the sharing common border assumption which is the most commonly used to

create W . However, in some cases I may have wkj = 1 and wjk = 0, for example a

region in a remote area may have a “nearest” neighbour quite some distance away, but

those neighbours may have several other regions close to themselves. To ensure that

the neighbourhod matrix is symmetric, I set wjk = 1 in all such cases. Consequently,

some grid squares have more than four neighbours and the maximum number of neigh-

bours in this study is eight for both sizes of grid square.

The random effect of grid square Gj, φ(Gj) is modelled by a conditional autoregressive

model. In this study I am using the model proposed by Leroux et al. (2000) which is

described in Section 2.3.4. In this model, ρ controls for the level of spatial autocor-

relation. A value of ρ = 0 corresponds to a completely spatially smooth model with

mean 0 and variance τ 2, while ρ = 1 corresponds to the intrinsic model proposed by
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Besag et al. (1991). Finally, I use the hyperparameters (0, 100000) in the normal prior

for regression parameter, (1, 0.1) in the inverse gamma prior for τ 2 and (0, 1) in the

uniform prior for ρ.

4.2.5 Inference

Inference for this model is performed using an MCMC algorithm via a combination

of Gibbs sampling and Metropolis-Hastings steps. The parameters are updated in the

algorithm as described below.

For each iteration t = 1, ..., T of the MCMC algorithm, conduct the following steps.

• Update β.

The full conditional distribution for β is as follows:

f(β|Y (G),φ) ∝
m∏
j=1

Poisson(Y (Gj)|β)×
p∏
r=1

N(βh|0, c)

∝
m∏
j=1

[
exp(x(Gj)>β + φ(Gj))

]Y (Gj) × exp[− exp(x∗(Gj)>β + φ(Gj))]

×
p∏
r=1

exp

(
− 1

2c
β2
h

)
.

Update β using the Metropolis-Hastings algorithm, with a proposal β∗ randomly

sampled from the distribution β∗ ∼ N
(
β(t),V β

)
, where β(t) is the current value.

The acceptance probability of β∗ is given by min

[
1,

f(β
∗
|Y ∗

(G),φ(G))

f

(
β(t)

|Y ∗
(G),φ(G)

)
]
, where

φ(G) = (φ(G1), ..., φ(Gm)). The proposal variance V β can be adapted to keep an

acceptance rate between 15% and 35% for parameters of high dimension (Roberts

et al., 1997).
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• Update φ = [φ(G1), ..., φ(Gm)].

Update each φ(Gj) in turn for j = 1, ...,m from its full conditional distribution.

f(φ(Gj)|Y (Gj)) ∝ Poisson(Y (Gj)|φ(Gj))

× N
(
µj =

ρ
∑m

k=1 wkjφ(Gk)
ρ
∑m

k=1wkj + 1− ρ
, σ2

j =
τ 2

ρ
∑m

k=1wkj + 1− ρ

)
∝
[
exp(x(Gj)>β + φ(Gj))

]Y (Gj) × exp[− exp(x(Gj)>β + φ(Gj))]

× exp

[
− 1

2σ2
j

(φ(Gj)− µj)2

]
.

Update φ(Gj) using the Metropolis-Hastings algorithm, with a proposal φ∗(Gj)

randomly sampled from the distribution φ∗(Gj) ∼ N
(
φ(t)(Gj), vφ(Gj)

)
, where φ(t)(Gj)

is the current value. The acceptance probability of φ∗(Gj) is given by

min
[
1,

f(φ∗(Gj)|Y (Gj),β)
f(φ(t)(Gj)|Y (Gj),β)

]
. The proposal variance vφ(Gj) can be adapted to keep

an acceptance rate between 15% and 35%.

• Update τ 2.

The full conditional distribution for τ 2 is as follows:

f(τ 2|φ(G), ρ) ∝ N(φ(G)|0, τ 2Q−1)× Inverse-Gamma(τ 2|a, b)

∝ |τ 2Q−1|−
1
2 exp

(
− 1

2τ 2
φ(G)>Qφ(G)

)
× (τ 2)−(a+1) exp

(
− b

τ 2

)
∝ (τ 2)−

m
2 exp

(
− 1

2τ 2
φ(G)>Qφ(G)

)
× (τ 2)−(a+1) exp

(
− b

τ 2

)
∝ (τ 2)−(a+m

2
+1) exp

(
− 1

τ 2

[
b+

1

2
φ(G)>Qφ(G)

])
∼ Inverse-Gamma

(
a+

m

2
, b+

1

2
φ(G)>Qφ(G)

)
,

where Q = ρ[diag(W1)−W ]+(1−ρ)I as described in the CAR model proposed

by Leroux et al. (2000) and given in (4.2.12). Gibbs sampling can be used to

sample directly from this full conditional distribution.
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• Update ρ.

The full conditional distribution for ρ is as follows:

f(ρ|φ(G), τ 2) ∝ N(0, τ 2Q−1)× Uniform(ρ|0, 1)

∝ |Q|−
1
2 exp

(
− 1

2τ 2
φ(G)>Qφ(G)

)
I[ρ∈[0,1]].

Update ρ using the Metropolis-Hastings algorithm, with a proposal ρ∗ draw from

the distribution ρ∗ ∼ N
(
ρ(t), vρ

)
with 0 ≤ ρ∗ ≤ 1, where ρ(t) is the current value.

The acceptance probability of ρ∗ is given by min
[
1,

f(ρ∗|φ(G),τ2)

f(ρ(t)|φ(G),τ2)

]
. The proposal

variance vρ can be adapted to keep an acceptance rate between 40% and 60% for

parameter of low dimension (Roberts et al., 1997).

4.3 Simulation study

4.3.1 Aim

Model (4.2.12) aims to estimate disease risk at the grid level based on data from

the areal unit level, and interest lies in estimating disease risk, R(Gj), and regression

parameters, β. Therefore, a simulation study is conducted to determine how accurately

this model can estimate disease risk and regression parameters at the grid level.

4.3.2 General approach

This simulation study consists of four steps. First, I generate observed disease case

counts, expected disease case counts and their covariates at the grid level [Y (Gj), e(Gj),

x(Gj)]. The method of generating the data will be discussed in Section 4.3.3. Next,

I aggregate the grid level data from step one to the areal unit level, because that

is what I have for the real data. Then, I fit the model to the grid level data with

different scenarios to estimate disease risk and regression parameters at the grid level.

Finally, I repeat steps one to three for r simulated datasets and measure how accurate

the estimates of disease risk and the regression parameters are. The methods for

quantifying these estimates are outlined in Section 4.3.4.
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4.3.3 Grid level data generation

To make the simulated data realistic, I base this study on the disease data from the

Greater Glasgow and Clyde Health Board which I will use in my application. This data

set contains covariates, for example measures of air pollution and poverty. Furthermore,

I also know the population at the grid level, P (Gj), the area of intersection between

region Ai and grid square Gj, a(Ai ∩ Gj), and the neighbourhood matrix at the grid

level, W . Using this information, I can simulate grid level data, which consist of a

disease count Y (Gj), an expected count e(Gj) and covariate data x1(Gj), x2(Gj) for each

of m grid squares. In this study I create grids using squares with sides of lengths 1,000

and 500 metres, which respectively give 853 and 3,106 grid squares in total. The data

are generated from model (4.2.12), with two covariates as follows:

Y (Gj) ∼ Poisson[e(Gj)R(Gj)] j = 1, ...,m

ln[R(Gj)] = β1x1(Gj) + β2x2(Gj) + φ(Gj).
(4.3.1)

Here, I want to generate Y (Gj), which means I must first generate e(Gj) and R(Gj). To

generate R(Gj), I have to set the regression parameters (β1, β2), and generate covari-

ates and random effects [x1(Gj), x2(Gj), φ(Gj)]. In general, real data have two types of

covariates, those available at the areal unit level (e.g. poverty) and those available at

the grid level (e.g. air pollution). Therefore, two covariates are used when generating

the data, one where the true grid level values x1(Gj) are unknown, only aggregated

areal level values are known [x1(Ai)] and the other where the true grid level values

[x2(Gj)] are known. Moreover, after I generate these covariates and fit the model in the

simulation study, I can compare the estimates of these regression parameters to see if

there are differences in how the model performs in estimating these terms.

When generating the covariates, they are assumed to be normally distributed with

mean zero and variance one, [x1(Gj) ∼ N(0, 1), x2(Gj) ∼ N(0, 1)]. The vector of ran-

dom effects, φ(G) is generated from a multivariate normal distribution with mean zero

and variance τ 2Q−1,
[
φ(G) ∼ N (0, τ 2Q−1)

]
which corresponds to the spatial random

effects from the conditional autoregressive model proposed by Leroux et al. (2000),

with Q = ρ[diag(W1) −W ] + (1 − ρ)I. Here W is the neighbourhood matrix at
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Table 4.1: The scenarios used in the simulation study.

Scenario ρ τ 2 ψ
1 0.99 0.01 0.01
2 0.99 0.01 0.05
3 0.5 0.01 0.01
4 0.5 0.01 0.05
5 0.99 0.05 0.01
6 0.99 0.05 0.05
7 0.5 0.05 0.01
8 0.5 0.05 0.05

the grid level, and W1 is a vector containing the number of neighbours for each grid

square. In the simulation study ρ and τ 2 are varied in the simulation design, while β1

and β2 are fixed at 0.1 (β1 = β2 = 0.1).

Next, I want to estimate e(Gj), the expected disease count for grid square Gj. Here I use

the adjusted population in each grid square, P (Gj), and assume that e(Gj) = ψP (Gj),

where ψ is the proportion of the population who have the disease event. The value of ψ

was varied in the simulation study as well as ρ and τ 2. I simulate data under different

scenarios as can be seen in Table 4.1.

I simulate data under different scenarios with different level of prevalence of the disease

and different level of variation in disease risk in order to explore the effects when

increasing the prevalence and variation in disease risks across the region has on the

estimation. the variety of scenarios which might occur in real data. Here, ρ = 0.99 and

0.5 respectively represent strong and moderate spatial dependence. I use τ 2 = 0.01

and 0.05 to compare the accuracy of the estimates under different levels of variation.

I compare ψ = 0.01 and 0.05 to test the model under different disease frequencies.

note that, the minimal spatial autocorrelation is rarely found in real situation (disease

risk) and the results from Chapter 3 indicate that the spatial autocorrelation is strong

(rho = 0.74) therefore the minimal autocorrelation is not included in the simulation

studies. Now all the grid level data [Y (Gj), e(Gj), R(Gj), x1(Gj), x2(Gj), φ(Gj)] needed

for this simulation study are set.
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4.3.4 Data aggregation

In section 4.3.3, I generated grid level data, and now I must aggregate them to the

areal unit level to create the data appropriate for the proposed method. The disease

cases at the areal unit level e(Ai) can be estimated as

e(Ai) =
m∑
j=1

e(Ai ∩ Gj) =
m∑
j=1

a(Ai ∩ Gj)∑n
k=1 a(Ak ∩ Gj)

e(Gj), (4.3.2)

so that the expected cases for each grid square are allocated to regions based on the

proportion of the grid square that lies in that region. This is a weighted average based

on the area of intersection between region Ai and grid square Gj. It is straightforward

to show that
∑m

j=1 e(Gj) =
∑n

i=1 e(Ai). Next I must quantify the disease count in

region Ai, Y (Ai). This follows a very similar argument to e(Ai), except that the

disease counts must be a non-negative integer. Therefore I set

Y (Ai) =

⌊
m∑
j=1

a(Ai ∩ Gj)∑n
k=1 a(Ak ∩ Gj)

Y (Gj)

⌉
, (4.3.3)

where b·e denotes rounding to the nearest integer. Note that,
∑n

i=1 Y (Ai) may not

exactly equal
∑m

j=1 Y (Gj) due to this rounding but they will be similar. Finally, I have

to aggregate the covariate, x1(Gj) to the areal unit level. Here I have a continuous

covariate, and I can therefore aggregate it as follows:

x1(Ai) =
m∑
j=1

P (Ai ∩ Gj)∑m
k=1 P (Ai ∩ Gk)

x1(Gj). (4.3.4)

This is a weighted average based on the population in the intersection area between

region Ai and grid square Gj, so that grid squares with larger populations have greater

weight. However, P (Ai∩Gj) is unknown, so I estimate it based on the assumption of a

common population density across each grid square. Therefore, under this assumption,

I estimate P (Ai∩Gj) = P (Gj)a(Ai∩Gj)/
∑n

q=1 a(Aq∩Gj), the population in grid square

Gj multiplied by the proportion of region Ai in grid square Gj. I therefore have

x1(Ai) =
m∑
j=1

P (Gj) a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)∑m

k=1 P (Gk) a(Ai∩Gk)∑n
q=1 a(Aq∩Gj)

x1(Gj). (4.3.5)
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I assume x2(Gj) is known when fitting the grid level model, hence no data aggregation

is needed for x2(Gj).

I have now generated the aggregated data [Y (Ai), e(Ai), x1(Ai)]. In my application, I

would only have access to this data plus the grid level covariate x2(Gj), and the goal

would be to estimate Y (Gj), R(Gj), β1 and β2. Here, I fit the model to the aggregated

data to test the accuracy of this estimation.

4.3.5 Fitting the model

The next step is to fit model (4.2.12) under two different test scenarios. In scenario one

(Model 1), I fit the model to the true grid level data [Y (Gj), e(Gj), x1(Gj), x2(Gj)]. In

scenario two, I have the aggregated data [Y (Ai), e(Ai), x1(Ai)], and x2(Gj), as would

be the case in the real study. In this case I need to disaggregate them to the grid level

[Ỹ (Gj), ẽ(Gj), x̃1(Gj), x2(Gj)]. There are however, two different methods to estimate

Y (Gj) as described in Section 4.2.3. Model 2 uses (4.2.9) and Model 3 uses (4.2.11) to

estimate Y (Gj) via multinomial steps. In summary, the three models are described as

follows

• Model 1 - fit the model to the true grid level data.

• Model 2 - fit the model to the disaggregated data at grid level with R̂(Gj) = 1

for all j.

• Model 3 - fit the model to the disaggregated data at grid level with disease risk,

R̂(Gj) estimated via kriging.

Model 1 should perform the best of the three models since it is fitted to the true grid

level data. It therefore acts as a reference model to compare the performance of Models

2 and 3. I repeat steps one to three outlined in Section 4.3.2 to generate r datasets,

and fit each model to each dataset.

In this study, I generate 100 simulated datasets (r = 100), and for each of them I gen-

erate 10 imputed datasets. Then fit the models to each imputed datasets, and the final

step is to combine the results for all imputed datasets to make a model inference. The
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aim is to estimate the regression parameters and disease risk [β̂hl, R̂l(Gj)] for h =

1, 2 and l = 1, ..., r, from the posterior median of the parameters estimates from the

MCMC iterations of the lth dataset. I also wish to measure variation and therefore

observe the upper and lower limits of the 95% credible interval. These are the 2.5th and

97.5th percentile from the MCMC iterations of the lth dataset. Here inference will be

based on 200,000 MCMC samples with 50,000 burn-in iterations, with the remaining

150,000 samples thinned by a factor of 15. Therefore, a total of 100,000 samples are

used for model inference, with 10,000 samples for each imputed dataset. I compare the

results from Model 1, Model 2 and Model 3 to see how accurate each model is.

4.3.6 Summarising the results

To measure how accurately each model estimates disease risk and regression parameters

at the grid level, I use four metrics; bias, root mean square error (RMSE), credible

interval (CI) coverage, and average width.

Bias

Bias is used to quantify the average difference between the estimated values and the

true value. These individual differences are also called residuals. The bias of the

regression parameters, (β1, β2), and disease risk at the grid level, R(G), are given by

Bias(βh) =
1

r

r∑
l=1

(
β̂hl − βh

)
Bias(R(G)) =

1

rm

m∑
j=1

r∑
l=1

[
R̂l(Gj)−Rl(Gj)

]
,

(4.3.6)

where (β̂hl, R̂l(Gj)) represent estimates of the true values (βh, Rl(Gj)) for the lth sim-

ulated data set. Bias measures whether the average of the estimates is greater or less

than the true value. It does not tell us about the precision of the estimates. For ex-

ample, suppose I generate two data sets and fit the model, and I obtain residuals of

-10 and 10: the bias in this case is equal to zero which I expect from a good model

but these estimates are not precise. Therefore, I need to consider other measurements

simultaneously to quantify the precision of the estimates.
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Root mean square error (RMSE)

RMSE measures the variation in the estimated values around the true value by taking

the mean of the square of the residuals. Smaller RMSE values indicate more precise

estimation. The RMSE of (β1, β2) and R(G) are given by

RMSE(βh) =

√√√√1

r

r∑
l=1

(
β̂hl − βh

)2

RMSE(R(G)) =

√√√√ 1

rm

m∑
j=1

r∑
l=1

[
R̂l(Gj)−Ri(Gj)

]2

.

(4.3.7)

CI coverage

I am also interested in measuring how accurately a model accounts for uncertainty. I

can measure this by looking at how often the true value lies within the 95% credible

interval from the model. For data set l, I can denote the upper and lower bounds of the

95% credible interval respectively by Ul(·) and Ll(·). Next, I compute the proportion

of these credible interval which contain the true value for each parameter. If the

proportion is close to 0.95 then the model is appropriately quantifying uncertainty.

This can be written as,

CI coverage(βh) = p
(
Ll(β̂h) ≤ βh ≤ Ul(β̂h)

)
CI coverage(R(G)) = p

(
Ll(R̂(Gj)) ≤ R(Gj) ≤ Ul(R̂(Gj))

)
,

for l = 1, ..., r and j = 1, ...,m,

(4.3.8)

where p(·) denotes the proportion of the 95% credible intervals that contain the true

value.

Average width

The average width of a credible interval can be used to compare models in terms of the

precision of interval estimation. If I have two models with similar CI coverages, the

model with a narrower average width provides more precise estimation. The average
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width of (β1, β2) and R(G) are given by

Average width(βh) =
1

r

r∑
l=1

[
Ul(β̂h)− Ll(β̂h)

]
Average width(R(G)) =

1

rm

m∑
j=1

r∑
l=1

[
Ul(R̂(Gj))− Ll(R̂(Gj))

]
.

(4.3.9)

4.3.7 Simulation results

I created grid square with sides of lengths 1,000 and 500 metres and simulated one

hundred data sets for each model and for each of these simulations I recorded bias,

RMSE, CI coverage, and average width of CI. The simulation results for the grid

squares with 1,000 metres length are shown in Tables 4.2, 4.3 and 4.4, while for the

grid squares with 500 metres length are shown in Tables 4.5, 4.6 and 4.7.
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Table 4.2: Results from the simulation study for the regression parameter β1 = 0.1
with the estimated covariate at the grid level x1(Gj).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 -0.0012 -0.0019 0.0074
2 0.0009 0.0021 0.0119
3 0.0011 -0.0046 0.0048
4 -0.0003 0.0003 0.0067
5 0.0001 0.0020 0.0178
6 -0.0021 0.0039 0.0228
7 0.00022 -0.0014 0.0088
8 -0.0006 -0.0007 0.0095

RMSE

1 0.0110 0.0213 0.0241
2 0.0057 0.0099 0.0162
3 0.0092 0.0187 0.0223
4 0.0056 0.0120 0.0169
5 0.0129 0.0180 0.0277
6 0.0068 0.0177 0.0318
7 0.0144 0.0213 0.0247
8 0.0083 0.0176 0.0229

CI coverage

1 0.94 0.98 0.98
2 0.94 0.98 0.86
3 0.94 0.98 0.98
4 0.92 0.96 0.86
5 0.94 1.00 1.00
6 0.99 0.94 0.72
7 0.90 0.96 0.96
8 0.96 0.94 0.82

Average width

1 0.0401 0.0958 0.0977
2 0.0211 0.0527 0.0553
3 0.0398 0.0917 0.0942
4 0.0219 0.0501 0.0515
5 0.0468 0.1119 0.1188
6 0.0301 0.0695 0.0761
7 0.0492 0.1032 0.1096
8 0.0338 0.0647 0.0698
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Table 4.3: Results from the simulation study for the regression parameter β2 = 0.1
with the true covariate at the grid level x2(Gj).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 0.0003 -0.0682 -0.0657
2 -0.0003 -0.0711 -0.0685
3 0.0004 -0.0662 -0.0628
4 0.0005 -0.0706 -0.0687
5 -0.0016 -0.0719 -0.0676
6 0.0002 -0.0760 -0.0719
7 0.0030 -0.0689 -0.0659
8 0.0015 -0.0754 -0.0729

RMSE

1 0.0117 0.0685 0.0661
2 0.0058 0.0711 0.0686
3 0.0101 0.0665 0.0631
4 0.0047 0.0707 0.0688
5 0.0104 0.0721 0.0679
6 0.0064 0.0762 0.0720
7 0.0131 0.0693 0.0663
8 0.0092 0.0755 0.0731

CI coverage

1 0.96 0 0
2 0.92 0 0
3 0.98 0 0
4 1.00 0 0
5 0.98 0 0
6 0.97 0 0
7 0.94 0 0
8 0.92 0 0

Average width

1 0.0406 0.0501 0.0496
2 0.0209 0.0245 0.0249
3 0.0402 0.0494 0.0495
4 0.0220 0.0243 0.0248
5 0.0471 0.0522 0.0543
6 0.0301 0.0280 0.0295
7 0.0486 0.0509 0.0528
8 0.0339 0.0269 0.0289
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Table 4.4: Results from the simulation study for the disease risk at the grid level R(Gj).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 -0.0045 -0.0068 -0.0069
2 0.0000 -0.0018 -0.0019
3 0.0012 -0.0008 -0.0012
4 0.0004 -0.0017 -0.0019
5 -0.0021 -0.0109 -0.0123
6 -0.0015 -0.0081 -0.0081
7 0.0014 -0.0037 -0.0054
8 0.0025 -0.0015 -0.0023

RMSE

1 0.0802 0.1438 0.1423
2 0.0649 0.1394 0.1376
3 0.0713 0.1361 0.1345
4 0.0633 0.1371 0.1362
5 0.1506 0.2023 0.1976
6 0.1236 0.1948 0.1899
7 0.1437 0.1948 0.1926
8 0.1246 0.1920 0.1900

CI coverage

1 0.95 0.67 0.72
2 0.95 0.57 0.62
3 0.94 0.57 0.63
4 0.95 0.51 0.55
5 0.95 0.74 0.82
6 0.95 0.64 0.71
7 0.94 0.62 0.71
8 0.95 0.59 0.65

Average width

1 0.3173 0.2728 0.2995
2 0.2479 0.2182 0.2401
3 0.2695 0.2154 0.2403
4 0.2459 0.1871 0.2031
5 0.5634 0.4439 0.5134
6 0.4443 0.3397 0.3840
7 0.5462 0.3406 0.4050
8 0.4602 0.3132 0.3468
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The results for all metrics and models for the grid squares with sides of length 1,000

metres are presented in Tables 4.2, 4.3 and 4.4. The results show consistent messages

across all scenarios, which are described below. Overall, Model 1 performs the best

for all regression parameters and disease risk [β1, β2 and R(Gj)]. All biases are close to

zero, and Model 1 produces the smallest RMSE values across the 3 models which indi-

cates more precise estimation. In addition, the CI coverages are close to 0.95 so they

suggest the model is appropriate to quantify uncertainty. Collectively these results are

not surprising, as Model 1 is fitted to the true grid level data which is thus expected to

be the best model. The magnitude of the differences differs depending on the metric,

but roughly the RMSE for β1 and R(Gj) doubles from Model 1 compared to Models 2

and 3, whereas for β2 the increase is between a factor of 5 and 15.

In order to compare the results from the proposed models (Model 2 and Model 3), I

consider all metrics for the regression parameters and disease risk. I found that both

models produce close to unbiased estimates of β1 which is the parameter relating to

the estimated covariate x1(Gj), while they produce biased estimates of β2 which is the

parameter relating to the true known covariate x2(Gj). This is resulting in zero per-

centage of CI coverages for all scenarios. This result is initially surprising because the

true covariate data would be expected to perform better than the estimated covariate.

However, the reason for this is because the disease counts at the grid level Y (Gj) are

unknown but x2(Gj) is known, therefore we need to estimate grid level disease counts

based on the areal unit disease counts but we do not do this process to x2(Gj). Hence,

the level of the relationship between Y (Gj) and x2(Gj) might be changed. Unlike the

unknown covariate at the grid level x1(Gj), we do the transformation process based on

areal data for both Y (Gj) and x1(Gj)and therefore the relationship between these two

variables is still maintained at the similar level as the areal data.

Model 3 performs better than Model 2 in term of RMSE for β2 as shown in Table 4.3,

since Model 3 has RMSE values slightly smaller than Model 2 for all scenarios. This

is because in Model 3 the disease risk at the grid level R(Gj) is estimated via kriging,

and that make the estimated numbers of disease cases Y (Gj) closer to the true grid

level data than when one assumes that R̂(Gj) = 1 (Model 2). Thus as x2(Gj) is the
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true grid level values one has smaller error in the parameter estimate than if smoothed

disease cases (via R̂(Gj) = 1) are used in the regression. On the other hand, Model

3 performs worse than Model 2 for β1 as shown in Table 4.2. This is because Y (Gj)

is disaggregated from the areal level data Y (Ai) and is hence spatially smoother than

the true grid level disease counts, which thus aligns better with the spatial smoothing

induced by assuming R̂(Gj) = 1 in Model 2.

Furthermore, Model 3 has better estimates of disease risk than Model 2 as measured

by RMSE, even though they both produce close to unbiased estimates. This again

is likely to be because the Kriging of the risk in Model 3 results in grid level disease

counts (via a multinomial sampling step) that are closer to the true values than naively

assuming that R̂(Gj) = 1. Additionally this results in coverages that are slightly higher

than for Model 2.
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Table 4.5: Results from the simulation study for the regression parameter β1 = 0.1
with the estimated covariate at the grid level x1(Gj) (grid size = 500 m).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 -0.0018 0.0006 0.0020
2 -0.0003 0.0052 0.0070
3 -0.0038 -0.0040 -0.0030
4 -0.0011 0.0021 0.0037
5 0.0001 -0.0019 -0.0011
6 0.0009 0.0022 0.0075
7 -0.0013 -0.0010 0.0026
8 0.0009 -0.0005 0.0027

RMSE

1 0.0046 0.0192 0.0193
2 0.0046 0.0167 0.0174
3 0.0089 0.0240 0.0252
4 0.0045 0.0122 0.0134
5 0.0102 0.0252 0.0257
6 0.0046 0.0194 0.0223
7 0.0105 0.0261 0.0282
8 0.0055 0.0205 0.0209

CI coverage

1 1.00 1.00 1.00
2 0.93 1.00 0.97
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 0.97 1.00 1.00
6 1.00 0.94 0.91
7 0.94 1.00 1.00
8 0.98 0.90 0.91

Average width

1 0.0380 0.1368 0.1374
2 0.0180 0.0717 0.0730
3 0.0377 0.1368 0.1349
4 0.0181 0.0652 0.0658
5 0.0400 0.1541 0.1597
6 0.0214 0.0842 0.0863
7 0.0402 0.1357 0.1378
8 0.0229 0.0753 0.0771
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Table 4.6: Results from the simulation study for the regression parameter β2 = 0.1
with the true covariate at the grid level x2(Gj) (grid size = 500 m).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 0.0001 -0.0867 -0.0867
2 -0.0007 -0.0894 -0.0889
3 -0.0018 -0.0868 -0.0861
4 0.0000 -0.0878 -0.0879
5 -0.0013 -0.0898 -0.0880
6 0.0005 -0.0910 -0.0908
7 0.0020 -0.0866 -0.0867
8 -0.0010 -0.0896 -0.0897

RMSE

1 0.0101 0.0868 0.0868
2 0.0043 0.0895 0.0889
3 0.0096 0.0869 0.0862
4 0.0053 0.0879 0.0879
5 0.0098 0.0899 0.0881
6 0.0054 0.0910 0.0908
7 0.0106 0.0867 0.0869
8 0.0055 0.0897 0.0898

CI coverage

1 0.96 0 0
2 1.00 0 0
3 0.98 0 0
4 0.95 0 0
5 1.00 0 0
6 0.96 0 0
7 0.93 0 0
8 0.94 0 0

Average width

1 0.0380 0.0479 0.0501
2 0.0182 0.0233 0.0228
3 0.0378 0.0470 0.0478
4 0.0182 0.0221 0.0228
5 0.0403 0.0505 0.0492
6 0.0214 0.0233 0.0237
7 0.0405 0.0491 0.0507
8 0.0230 0.0227 0.0242
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Table 4.7: Results from the simulation study for the disease risk at the grid level R(Gj)
(grid size = 500 m).

Metric Scenario Model 1
(True data)

Model 2
(R̂(Gj) = 1)

Model 3(R̂(Gj)
via kriging)

Bias

1 -0.0025 -0.0053 -0.0055
2 0.0007 -0.0011 -0.0006
3 0.0027 0.0016 0.0016
4 0.0005 -0.0002 -0.0004
5 -0.0022 -0.0112 -0.0120
6 0.0030 -0.0043 -0.0051
7 -0.0001 -0.0027 -0.0033
8 -0.0008 -0.0039 -0.0041

RMSE

1 0.0923 0.1635 0.1630
2 0.0795 0.1587 0.1582
3 0.0737 0.1515 0.1511
4 0.0693 0.1517 0.1517
5 0.1840 0.2399 0.2380
6 0.1591 0.2322 0.2287
7 0.1567 0.2110 0.2109
8 0.1410 0.2096 0.2095

CI coverage

1 0.92 0.61 0.64
2 0.95 0.57 0.59
3 0.94 0.57 0.58
4 0.95 0.46 0.47
5 0.95 0.72 0.77
6 0.95 0.64 0.67
7 0.94 0.53 0.56
8 0.95 0.53 0.55

Average width

1 0.3241 0.2772 0.2954
2 0.2987 0.2510 0.2628
3 0.2880 0.2363 0.2384
4 0.2744 0.1863 0.1926
5 0.6639 0.5079 0.5515
6 0.5589 0.4067 0.4358
7 0.5825 0.3010 0.3276
8 0.5363 0.3006 0.3136
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To assess the robustness of these results to grid square size, I re-ran the simulation

study with grid squares with sides of lengths 500 metres. The results from all metrics

and models are presented in Tables 4.5, 4.6 and 4.7. The general pattern of the results

is similar to the 1,000 metres grid square results, as the grid square size has not changed

the main findings outlined above. However, the results from the models fitted to data

with grid square size 500 metres are worse than grid square size 1,000 metres for all

metrics. This is true for all models (even Model 1), with for example the RMSEs in

disease risk for scenario 1 being: Model 1 - 0.0802 (1,000m) vs 0.0923 (500m); Model 2 -

0.1438 (1,000m) vs 0.1635 (500m); Model 3 -0.1423 (1,000m) vs 0.1630 (500m). This is

because the number of grid squares with size 1,000 metres is fewer than the number of

grid squares with size 500 metres, which means that I have to estimate more grid level

disease counts and risk estimates for the latter, resulting in less accurate estimates.

4.4 Application to real data

In order to illustrate the proposed methodology in this chapter, these models from

Section 4.3.5 are applied to data on respiratory disease in the Greater Glasgow and

Clyde Health Board for January 2015 to December 2016. Note that only Models 2 and

3 are used in the application, since Model 1 is fitted to the true grid level data which

I do not have for the real data.

4.4.1 Data description

The study region is the Greater Glasgow and Clyde Health Board area which is the

same region to the previous chapter. The health board is split up into n = 257

administrative units called intermediate zones (IZ), containing populations between

1,321 and 9,008 people with a median population of 4,306 (Scottish Government,

2019). They are the same units used in the simulation study. The disease data,

Y (A) = [Y (A1), ..., Y (An)], are obtained from the Scottish Statistics website https:

//statistics.gov.scot, where Y (Ai) denotes the number of hospital admissions with

respiratory disease in region i. The expected disease cases, e(A) = [e(A1), ..., e(An)],

are the expected hospital admission numbers of respiratory disease for each region

and is computed by indirect standardisation. Figure 4.5 presents the Standardised
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Incidence Ratio (SIR) for the respiratory hospital admissions, which is the ratio of the

observed disease data to the expected disease cases in each region [SIR = Y (Ai)/e(Ai)].

It shows that the regions of high risk are located on the east of the city centre and also

the south of the Clyde river. In contrast, the regions of low risk are located on the

area of the West End (just the north of the Clyde river) and also on the far south of

the city centre.

Figure 4.5: The standardised incidence ratio for respiratory disease hospitalisation in
Greater Glasgow.

4.4.2 Results

In order to see the performance of the proposed models to the real data, Models 2 and

3 mentioned in Section 4.3.5 are fitted to the respiratory disease data in the Greater

Glasgow and Clyde Health Board. Here the grid level data are estimated at the grid

squares of sizes of 1,000 and 500 metres via multiple imputation approach, with ten

imputed datasets. Markov Chain Monte Carlo inference is used to obtain the results,

and the models are run three times to generate MCMC samples from three independent

Markov chains. Each chain is run for 200,000 samples, with 50,000 burn-in period and

the remaining 150,000 are thinned by a factor of 15. This leaves 300,000 samples for
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the model inference overall, with 10,000 for each chain and 30,000 for each imputed

dataset.

Convergence diagnostic

The convergence of the posterior distribution is diagnosed via the method proposed

by Gelman and Rubin (1992), and trace plots assessment. Figures 4.6 to 4.9 present

trace plots of each model parameter from the proposed models (Models 2 and 3) with

the grid square of sizes of 1,000 and 500 meters from one imputed dataset. The figures

show that all the chains appear to have converged as there is no clear pattern in the

plots. In addition, the trace plots of each parameter for the other nine datasets are

very similar to Figures 4.6 to 4.9, therefore they are not shown. An additional check

is the Gelman-Rubin (Gelman and Rubin, 1992) diagnostic, which relies on multiple

chains and they suggest that less than 1.1 of the value indicates good mixing of the

chain. The Gelman-Rubin statistics for all selected parameters are less than 1.1, which

indicate that the posterior samples are well mixed.

(a) β (b) τ2

(c) ρ (d) φ(G1)

Figure 4.6: Traceplots of MCMC samples for each parameter from Model 2 (grid of
size 1,000m).
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(a) β (b) τ2

(c) ρ (d) φ(G1)

Figure 4.7: Traceplots of MCMC samples for each parameter from Model 3 (grid of
size 1,000m).

(a) β (b) τ2

(c) ρ (d) φ(G1)

Figure 4.8: Traceplots of MCMC samples for each parameter from Model 2 (grid of
size 500m).
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(a) β (b) τ2

(c) ρ (d) φ(G1)

Figure 4.9: Traceplots of MCMC samples for each parameter from Model 3 (grid of
size 500m).

Sensitivity analysis

Sensitivity analysis is conducted in order to examine if changes in the model settings,

resulting in changes in posterior inferences. There are three hyperpriors for the variance

of random effects τ 2 from 4.2.12 being used in the model settings, which are the same

as the previous chapter.

1. Scenario 1 - τ 2 ∼ Inverse-Gamma(1, 0.01).

2. Scenario 2 - τ 2 ∼ Inverse-Gamma(0.01, 0.01).

3. Scenario 3 - τ 2 ∼ Inverse-Gamma(0.05, 0.0005).

Figures 4.10 and 4.11 present the relationship plots of the estimated risks between the

choices of hyperpriors for grid squares of sizes of 1,000 and 500 metres respectively. The

figures show that the estimated risks among the scenarios lie on the straight line. It

means that the choice of hyperpriors does not affect the posterior inferences. Therefore

only one hyperprior setting is used for model inference, hence Scenario 1 is randomly

selected.
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(a) Model2 (b) Model3

Figure 4.10: The estimated risks scatter plots of scenarios 1 - 3 for Models 2 and 3
(grid of size 1,000m).

(a) Model2 (b) Model3

Figure 4.11: The estimated risks scatter plots of scenarios 1 - 3 of Models 2 and 3 (grid
of size 500m).

Posterior predictive check

The predictive posterior checking is also carried out to verify whether the models

appropriate for data. If the model fits the data well, then replicated data generated

under the model should have the similar characteristic to observed data. However, the

observed data at the grid level are unknown, therefore the observed data at the areal

unit level are used to compare to the simulated data (grid level) from the fitted model

that aggregate to the areal unit level. Figure 4.12 indicates that the observed data and

the aggregated simulated data are not different since the data fairly lie on the straight

line in both models and grid square sizes. There are however some outliers appearing

in the plot. This is likely because the data are rescaled twice (disaggregate to the grid

level and aggregate back to the areal unit level). These results suggest that the models

fit the data well and the inferences are appropriate to carry out.
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(a) 1,000 m

(b) 500 m

Figure 4.12: Posterior predictive model checks.
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Main results

Figures 4.13 and 4.14 display the estimated disease risks from Models 2 and 3 with

grid square sizes of 1,000 and 500 metres. Overall, the disease maps of grid square

sizes 1,000 and 500 metres have the same pattern. Consequently, the regions with the

higher risks are located on the east of Glasgow city centre and in the north, north-east

and south-east such as Easterhouse, Shettieston, Possilpark, Drumchapel, Nitshill, and

Castlemilk. These regions are amongst the least wealthy areas in Glasgow. In contrast,

the regions of lower risks include Whitecraigs, West End, Netherlee, Newton Mearns,

which are more wealthy areas. This suggests that people in poorer areas are more

likely to be hospitalised for respiratory disease than those in richer areas. People in

these areas are more likely to smoke, drink, have the unhealthy food consumption,

and lack an exercise, which are the main causes of respiratory disease (Pampel et al.,

2010; World Health Organization and others, 2007). Furthermore, I also notice that

the areas with higher risks are located near motorway or a big roads. This might be

because people who can afford to live anywhere, so they normally avoid living in noisy

places with high pollution. The house prices in these areas are also less than areas

further away from big roads.

Model 2 and Model 3 produce the similar disease maps, as can be seen in Figures 4.13

and 4.14. To quantify this similarity, Figure 4.15 presents the correlation of the esti-

mated risks from these models. With grid square of size 1,000 metres, the correlation

between the estimated risks from the models was 0.98. With grid square of size 500

metres, the correlation between the estimated risks from the models was 0.99. This

means Models 2 and 3 estimate approximately similar disease risks, which is also illus-

trated by the maps of the estimated diffrence in disease risks between these two models

in Figures 4.16 and 4.17. However, the differences between the models are bigger when

the average estimated disease risks are more extreme. This can be seen from Figure

4.17 where the biggest difference occurs in poor areas. The biggest differences are for

Branchton and Gilshochill for the grid square size 1,000 metres, and Castlemilk for the

grid square size 500 metres.

92



4. Multiple Imputation approach

The Mean Absolute Difference (MAD) is calculated to measure the variability between

the models. It can be computed as 1
n

∑m
j=1 |R3(Gj) − R2(Gj)|, where Ri(Gj), i = 2, 3.

denotes the estimated disease risks of Model i. The MAD for grid square size 1,000

metres is 0.048, while the grid square size of 500 metres has a MAD of 0.034. The

small values suggest that Model 2 and Model 3 produce very similar disease risks.

Figure 4.15: Correlation between the estimated disease risk of Models 2 and 3.

Figure 4.16: Plots of the absolute estimated disease risk difference between Models 2
and 3 versus the average of the estimated disease risk.
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(a) Model 2 (1,000m)

(b) Model 3 (1,000m)

Figure 4.13: Estimated disease risks from the proposed models on grid square size
1,000 metres.
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(a) Model 2 (500m)

(b) Model 3 (500m)

Figure 4.14: Estimated disease risks from the proposed models on grid square size 500
metres.
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(a) Grid size 1,000 metres

(b) Grid size 500 metres

Figure 4.17: The estimates disease risk difference between Models 2 and 3.
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4.5 Conclusion

In this chapter, pseudo continuous inference from areal unit data has been produced.

I created grid squares over the areas of Greater Glasgow and Clyde Health Board and

transformed the areal unit data into grid square level data. The expected disease cases

in each grid square can be computed by assuming proportionality to the population

density in each grid square. The observed disease case at the grid level can be esti-

mated via multinomial sampling, here I consider two possible approaches. The first

assumes equal risk for every grid square (Model 2) and the second estimates the risks

by using kriging (Model 3).

In this study the CAR model proposed by Leroux (Leroux et al., 2000) is used to

estimate the spatial variation in the disease risk. The simulation study is conducted

to determine how accurately the proposed model can estimate the disease risk and re-

gression parameters at the grid level. In this simulation study, I propose three models

. Model 1 is fitted to the true grid level data, Model 2 is fitted to the disaggregated

data at the grid level by assuming all grid squares have constant disease risk, while

Model 3 estimates the disease risks via kriging. Furthermore, the grid level data are

fitted to all models with grid squares sides of lengths 1,000 and 500 metres.

The results show consistent findings across all scenarios. Model 1 performs the best

for all metrics and scenarios, which is expected as it is fitted to the true grid level

data. Model 2 and Model 3 produce close to unbiased estimates of regression parame-

ters when areal level covariates are disaggregated to the grid level, while they produce

biased estimates when they are true grid level covariates. This result is surprising be-

cause the true covariate data should perform better than the estimated covariate data.

The reason is that disease case data at the areal unit level and the estimated covariate

data are both transformed to the grid level data by the same process, therefore they

have similar levels of spatial smoothness.

Model 3 has a better estimation of regression parameters corresponding to the true

known covariate and the disease risks than Model 2 in terms of RMSE. This is because
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Model 3 estimates the disease risk at the grid level via kriging, which leads the esti-

mated number of disease cases being closer to the true grid level data than Model 2

which assumes disease risk at the grid level is constant. The results of the grid square

1,000 and 500 metres generally have the similar patterns, however, the grid square size

of 1,000 metres is better than grid square size of 500 metres for all metrics. This is

because the number of grid square size of 1,000 metres is fewer than the number of

grid square size of 500 metres (853 vs 3,106 grid squares), which means that I have to

estimate more grid level data than the latter, hence the results are less accurate.

The respiratory disease data in the Greater Glasgow and Clyde Health Board are ap-

plied to the proposed models (Model 2 and Model 3). Overall, the disease maps from

all models fitted to data with grid square sizes of 1,000 and 500 metres have the similar

pattern. The areas with higher risk are Easterhouse, Shettieston, Possilpark, Drum-

chapel, Nitshill, and Castlemilk which are less wealthy. In contrast, the regions of lower

risk are Whitecraigs, West End, Netherlee, Newton Mearns, which are more wealthy

areas. The people who live in poor areas are more likely to smoke, drink, unhealthy

food consumption, and exercise less, which are the main factors responsible for the

respiratory disease.

There is however, some limitations to this methodology. First, the SIRs at the grid

square level were predicted by using kriging, and the SIR is an unstable estimated of

risks, hence the predictions may be affected. Second, the need to store and process

each of multiple imputed datasets, since the final step of this approach is combining the

results from all imputed datasets. Finally, this approach allows for limited amount of

uncertainty when estimating disease counts at the grid level, since they are generated

for ten datasets so ten different realisations of disease counts at the grid level are used

to fit the models. Therefore, in the next chapter I will introduce a new method to

estimate the disease cases at the grid level which allows for higher level of uncertainty.
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Chapter 5

Grid level inference with data

augmentation

5.1 Introduction

In the previous chapter, a method for estimating disease risk at the grid square level

was introduced. This approach consisted of two steps, the first step involved estimating

disease cases at the grid level via multiple imputation, and the second step involved

fitting the conditional autoregressive model proposed by Leroux et al. (2000) to these

imputed data. I considered two approaches for imputing the disease cases; the first

assumed equal risk across all the grid squares and the second estimated the disease

risks via kriging. The latter approach performed better and therefore in this chapter

only the second approach will be used as a comparator to that proposed here.

There are, however, some disadvantages to this method of estimating disease cases at

the grid level. I estimated the disease cases via a single multiple imputation step prior

to fitting a spatial model and repeated these steps for ten times then combined the

results in order to estimate disease risk at the grid level. Therefore, there was limited

level of uncertainty in the disease counts when estimating the model parameters. Fur-

thermore, disease risk at the grid level needs to be estimated in a preliminary manner

before I estimate the numbers of disease cases in each grid square via multiple imputa-

tion. Thus if these initial grid level estimated risks are not accurate then the results of
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model fitting are unlikely to be accurate either. This could easily be the case in some

scenarios, because the SIR that is then kriged is an unstable estimate of disease risk.

In this chapter, I will attempt to address these issues by using a data augmentation

approach.

Data augmentation was proposed by Tanner and Wong (1987), and is generally used

to handle censored or unobserved data. It is commonly applied in Bayesian statistics,

especially in the application of Markov chain Monte Carlo (MCMC) simulation (Neal

and Kypraios, 2015). The general idea of data augmentation in this context is based

on two iterative steps. In the first step, given the current values of the parameters of

interest and the disease counts at the areal unit level, I estimate the disease counts at

the grid square level by drawing from a multinomial distribution. In the second step,

I update the parameters from their full conditional posterior distribution based on the

newly estimated grid level disease counts from the previous step. These two steps are

repeated within an MCMC algorithm to allow for uncertainty in both the data and the

parameters. More detail about this data augmentation algorithm will be presented in

Section 5.2.1.

The remainder of this chapter will be organised as follows. Section 5.2 outlines the

proposed model, and Section 5.3 uses simulated data to test this proposed model

against the model from the previous chapter. Section 5.4 presents an application of

this methodology, based on respiratory hospital admissions in the Greater Glasgow

and Clyde Health Board from January 2015 to December 2016. Finally, Section 5.5

discusses the advantages and disadvantages of this methodology.
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5.2 Methodology

5.2.1 Data augmentation

Recall that grid level inference is based on the model

Y (Gj) ∼ Poisson[e(Gj)R(Gj)] for j = 1, ...,m

ln(R(Gj)) = x(Gj)>β + φ(Gj)

φ(Gj)|φ(G−j) ∼ N
(

ρ
∑m

k=1wkjφ(Gk)
ρ
∑m

k=1 wkj + 1− ρ
,

τ 2

ρ
∑m

k=1 wkj + 1− ρ

)
τ 2 ∼ Inverse-Gamma(a, b)

ρ ∼ Uniform(0, 1),

(5.2.1)

where e(Gj) and R(Gj) denote expected disease cases and disease risk at grid square

Gj respectively, x(Gj) is the vector of covariates for grid square Gj, β is the set of grid

level regression parameters and φ(Gj) is the spatially autocorrelated random effect for

grid square Gj. Y (G) = [Y (G1), ..., Y (Gm)] is the vector of disease counts at the grid

square level, which can be estimated by multinomial sampling steps. Let us denote

Y (Ai∩Gj) as the number of disease counts in the intersection area between Ai and Gj.

Then Y (Gj) can be computed by

Y (Gj) =
n∑
i=1

Y (Ai ∩ Gj). (5.2.2)

We can estimate Y (Ai ∩Gj) by partitioning the disease counts in area Ai across the m

grid squares intersections {Ai∩G1, ...,Ai∩Gm} using a multinomial sampling. Therefore

given Y (Ai), Y (Ai ∩ Gj) can be estimated as follows

[Y (Ai ∩ G1), ..., Y (Ai ∩ Gm)] ∼ Multinomial(n = Y (Ai)|ωi1, ..., ωim). (5.2.3)

In the final step, combine Y (Ai∩Gj) via (5.2.2) to estimate Y (Gj) for each grid square

Gj. However Y (Ai ∩ Gj) should be drawn multiple times to reduce the variability in

the sampled data. Therefore the data are drawn for L iterations from the multinomial

step 5.2.3, [Y (l)(Ai ∩ G1), ..., Y (l)(Ai ∩ Gm)] for l = 1, ..., L and then take the mean;
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Y (Gj) =
1

L

L∑
l=1

Y (l)(Gj) for j = 1, ...,m. (5.2.4)

There are some issues occur in the estimation of Y (Gj), which are Y (Gj) is not neces-

sarily an integer and the sum of disease count at the grid level is not necessarily equal

to the areal unit level, i.e.
∑m

j=1 Y (Gj) 6=
∑n

i=1 Y (Ai). The methodology to overcome

these problems are outlined in Section 4.2.2. However, the multinomial samples cannot

be drawn if we do not know the probability (ωij) of each disease case in area Ai that

lie in the intersection area Ai ∩ Gj. The probability can be defined similar to Chapter

4 as follows;

ωij =
e(Gj)R̂(Gj) a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)∑m
k=1 e(Gk)R̂(Gk) a(Ai∩Gk)∑n

q=1 a(Aq∩Gk)

, (5.2.5)

where R̂(Gj) is the estimated risk at the grid level which can be estimated via kriging.

Full details of kriging method are outlined in Sections 2.3.5 and 4.2.3.

In the previous chapter, I estimated disease counts at the grid square level, Y (G) =

[Y (G1), ..., Y (Gm)] via multiple imputation steps, and then based on these data, fitted

a spatial model to estimate disease risks at the grid level, R(G) = [R(G1), ..., R(Gm)].

However, this approach allows for a limited amount of uncertainty when estimating

the model parameters based on the imputed values of Y (G), since I estimate Y (Gj) by

multiple imputation and kriging once and then keep these estimates for every MCMC

iteration when fitting (5.2.1) for each dataset, and then pool the results for model in-

ference. Additionally, the model inference is dependent on the accuracy of the original

estimates of R̂(G) obtained by kriging. If the model is fitted to less accurate data,

then it follows that the model inference will be less reliable.

One way to overcome these problems is via data augmentation. This approach allows

the model to update the disease count in each grid square, Y (Gj), within the MCMC

algorithm, which means that Y (G) will be updated when estimating the model param-

eters at the same time. This allows uncertainty when estimating Y (Gj), and should

improve the accuracy of the estimates of R(G) and Y (G). In order to obtain more sta-
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ble estimates of R(G), I only update Y (G) at every K MCMC iterations, and average

over these when carrying out the multinomial step. This has the additional benefit

of reducing computational time, because it reduces the number of multinomial draws

needed. The data augmentation algorithm is as follows

Data augmentation algorithm

1. Generate initial values for all model parameters, Θ(0) = [β(0),φ(0)(G), τ 2(0), ρ(0)]

and disease counts at the grid level, Y (0)(G).

2. Iterate the following steps for t = 1, ..., T iterations.

a) Update each model parameter in turn via MCMC steps using Gibbs sam-

pling or Metropolis-Hastings steps.

- Update β(t)|Y (t−1)(G),φ(t−1)(G).

- Update φ(t)(G)|Y (t−1)(G),β(t), τ 2(t−1), ρ(t−1).

- Update τ 2(t)|φ(t)(G), ρ(t−1).

- Update ρ(t)|φ(t)(G), τ 2(t).

b) If t is a multiple of K, update disease counts at the grid level

Y (t)(G)|β(t),φ(t)(G), τ 2(t), ρ(t) via multinomial sampling as

Y (t)(Gj) =
n∑
i=1

Y (t)(Ai ∩ Gj), (5.2.6)

where

[
Y (t)(Ai ∩ G1), ..., Y (t)(Ai ∩ Gm)

]
∼ Multinomial(n = Y (Ai)|ωi1, ..., ωim),

(5.2.7)

the weight ωij is the probability of each disease case in region Ai occurring

in the intersection area between grid square Gj and region Ai, a(Ai ∩ Gj).

Here, I assume that ωij is dependent on the expectation of the disease count

in the intersection area (ωij ∝ E[Y (Ai ∩ Gj)]). However, E[Y (Ai ∩ Gj)] is

unknown, therefore I estimate it by

E[Y (Ai ∩ Gj)] ≈ E[Y (Gj)]×
a(Ai ∩ Gj)∑n
q=1 a(Aq ∩ Gj)

,
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which is proportional to the area of grid square Gj which lies in region Ai.

From the model 5.2.1, I know that E[Y (Gj)] = e(Gj)R(Gj), so that

E[Y (Ai ∩ Gj)] ≈ e(Gj)R(Gj)
a(Ai ∩ Gj)∑n
q=1 a(Aq ∩ Gj)

.

As before, e(Gj) and R(Gj) are the expected disease count and the disease

risk in grid square Gj respectively. Therefore I have

ωij =
e(Gj)R̃(Gj) a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)∑m
k=1 e(Gk)R̃(Gk) a(Ai∩Gk)∑n

q=1 a(Aq∩Gk)

, (5.2.8)

the denominator is used to ensure that
∑m

j=1 ωij = 1 for all i = 1, ..., n.

R̃(Gj) is obtained by averaging over the previous K MCMC iterations. Here

let R(t)(Gj) denote the current estimate of disease risk in grid square Gj
which can be estimated as follows

R(t)(G) = [R(t)(G1), ..., R(t)(Gm)] = exp[X(G)>β(t) + φ(t)(G)]. (5.2.9)

Then I can compute the average of the last K R(t)(G) values, which is given

by

R̃(Gj) =
1

K

t∑
r=t−K+1

R(r)(Gj). (5.2.10)

Unlike the previous imputation approach, here I simultaneously estimate both the data

Y (Gj) and the parameters controlling the spatial surface φ(Gj), which allows for un-

certainty in the former. However, initial results showed that to guarantee a spatially

smooth surface I needed to fix ρ = 1 to enforce strong spatial smoothness for the dis-

ease risk. Note that the Leroux CAR model with ρ = 1 corresponds to the Intrinsic

CAR model proposed by Besag et al. (1991).

I carried out a preliminary simulation study and established that for a relatively small

number of simulated datasets, τ 2 is massively overestimated, leading to very poor dis-

ease risk estimation at the grid level, because the estimated disease risks have too

104



5. Data augmentation approach

much variation. This is due to a lack of identifiability, since this approach requires me

to update Y (Gj) and model parameter φ(Gj) at the same time and some parameters

converge to the wrong values. This is different from the multiple imputation approach

I proposed in the previous chapter, where Y (Gj) is updated independently prior to

estimating the model parameters.

To avoid this identifiability problem, I fix τ 2 in (5.2.1), thus ensuring that the values

of φ(Gj), R̃(G), and the data augmented disease count, Y (Gj) remain stable. In order

to find an appropriate value for τ 2, I use an empirical Bayes approach (Casella, 1985).

Consider the original grid level model (5.2.1)

Y (Gj) ∼ Poisson[e(Gj)R(Gj)] for j = 1, ...,m

ln[R(Gj)] = x(Gj)>β + φ(Gj)

φ(G) ∼ N(0, τ 2Q−),

(5.2.11)

where φ(G) ∼ N(0, τ 2Q−) is the multivariate analogue of the univariate conditional

distributions given by (5.2.1) with ρ = 1. Here Q = diag(W1) −W , and Q− is the

generalised inverse as Q is singular. Thus I replace the singular matrix Q with the

invertible matrix, Q̃ (Lee et al., 2014) by adding a small constant (ε = 0.001) onto the

diagonal terms ofQ to make it invertible, i.e. Q̃ = Q+εI. This model has expectation,

E[Y (G)] = e(G)R(G)

= e(G)exp[X(G)β + φ(G)].

Thus

ln
(
E
[
Y (G)

e(G)

])
= X(G)β + φ(G).

I therefore see that,

ln
(
E
[
Y (G)

e(G)

])
∼ approx N(X(G)β, τ 2Q̃

−1
). (5.2.12)

The values of ln
(
E
[
Y (G)
e(G)

])
are the logged expected SIR values for the m grid squares,

which from the previous chapter (multiple imputation approach) can be estimated via

kriging. Thus I can denote the vector of logged expected SIR for all grid square
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locations based on kriging by Z(G) = ln[SIR(G)]. The maximum likelihood estimates

of β and τ 2 from 5.2.12 are therefore given by

β̂ = [X>(G)Q̃X(G)]−1X>(G)Q̃Z(G)

τ̂ 2 =
1

m− p
[Z(G)−X(G)β̂]>Q̃[Z(G)−X(G)β̂].

(5.2.13)

Thus, when fitting (5.2.1), I fix τ 2 = τ̂ 2 to prevent unrealistic values of R(Gj) being

estimated.

5.3 Simulation study

5.3.1 Aim

A simulation study is conducted to establish the efficacy of the data augmentation

modelling approach outlined in the previous section, and to compare the model to the

multiple imputation modelling approach outlined in the previous chapter.

5.3.2 General approach

This simulation study follows a similar approach to the previous chapter, and comprises

four main steps. First, I generate disease counts, expected disease cases, and covariates

[Y (Gj), e(Gj),x(Gj)] at the grid level. Second, the generated grid level data in step one

are aggregated to the areal unit level to reflect the type of data that normally occur

in practice. Then, the models are fitted under eight different scenarios to reflect the

variety of real life scenarios that may arise. Finally, I repeat steps one to three for 100

simulated datasets and summarise the results to measure the accuracy of the models.

5.3.3 Grid level data generation

Grid level data are generated for the Greater Glasgow and Clyde Health Board region

with grid squares of sizes 1,000 and 500 metres, giving 853 and 3,106 grid squares

respectively (after removing grid squares where no people live). The data genera-

tion is carried out in the same manner as described in Section 4.3.3. Specifically, the

data are generated from model (5.2.1), which involves a disease count, Y (Gj), an ex-
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Table 5.1: The scenarios used in the simulation study.

Scenario ρ τ 2 ψ
1 0.99 0.01 0.01
2 0.99 0.01 0.05
3 0.5 0.01 0.01
4 0.5 0.01 0.05
5 0.99 0.05 0.01
6 0.99 0.05 0.05
7 0.5 0.05 0.01
8 0.5 0.05 0.05

pected disease count, e(Gj), disease risk in grid square Gj, R(Gj), regression parameters

(β1, β2), covariates [x1(Gj), x2(Gj)], spatial random effect, φ(Gj) and additional param-

eters (ρ, τ 2).

The expected disease count for grid square Gj can be generated via e(Gj) = ψP (Gj),

where ψ is the proportion of people who have the disease event in grid square Gj
and P (Gj) is the adjusted population for grid square Gj. Note that the value of ψ

is varied in the simulation study to see how disease prevalence affects model per-

formance. Next, I want to generate R(Gj), which means I have to first generate

β1, β2, x1(Gj), x2(Gj), φ(Gj) and (ρ, τ 2). Here I fix β1 and β2 at 0.1 as in the previ-

ous chapter, and x1(Gj) and x2(Gj) are generated from normal distributions with mean

zero and variance one, [x1(Gj) ∼ N(0, 1), x2(Gj) ∼ N(0, 1)]. Finally, the vector of spa-

tial random effects, φ(G) is generated from a multivariate normal distribution with

mean zero and variance τ 2Q−1, where Q = ρ[diag(W1−W ] + (1− ρ)I, and W is a

neighbourhood matrix at the grid level. This model corresponds to the random effects

from the conditional autoregressive (CAR) model proposed by Leroux et al. (2000),

which is the same model I used in the previous chapter. In this simulation study τ 2

and ρ are varied as well as ψ. The 100 datasets are generated under the same set of

scenarios as the previous chapter, these are outlined in Table 5.1

5.3.4 Data aggregation

Next, I have to aggregate the grid level data, [Y (Gj), e(Gj), x1(Gj), x2(Gj)] to the areal

unit level [Y (Ai), e(Ai), x1(Ai)], to reflect the data I typically have in real applications.
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Note that I do not aggregate x2(Gj) to the areal level, since it represents real data

which are available at the grid level e.g. air pollution concentrations. More detail of

the aggregation methods for these grid level data is provided in Section 4.3.4.

5.3.5 Fitting the model

I compare three different models in this chapter. In Model 1, I fit a CAR model to

the true grid level data [Y (G)j, e(Gj), x1(Gi), x2(Gj)]. This acts as a reference model

to compare to the others. Next, Model 3 from the previous chapter is fitted to the

estimated disaggregated grid level data [Ỹ (Gj), ẽ(Gj), x̃1(Gj)] and the grid level covariate

[x2(Gj)]. It was the best performing multiple imputation model, and thus acts as a

comparison between multiple imputation and data augmentation. Finally, I fit the

extended model with the data augmentation approach described in this chapter. I

consider two variants of the data augmentation approach; Model 4 is the standard

approach, where τ 2, the variance of the spatial random effects, is estimated when

fitting the model, while Model 5 fixes τ 2 using empirical Bayes. In summary, the four

models are outlined as follows (note that the numbering used maintains consistency

with the previous chapter)

• Model 1 - fit the model to the true grid level data (reference model).

• Model 3 - fit the model to the disaggregated data at the grid level with disease

risk, R̂(Gj) estimated via kriging.

• Model 4 - fit the data augmentation model without fixing τ 2.

• Model 5 - fit the data augmentation model with τ 2 fixed.

Model 1 is included as a reference model to compare the performance to other models.

It is fitted to the true grid level data, and therefore should perform the best of the four

models. I am primarily interested in which of Models 3, 4, or 5 perform best, and how

close their estimates are to those from Model 1.

In this study, I generate r = 100 datasets to estimate the regression parameters and

disease risk at the grid level. Parameters β1, β2, τ
2 and φ(G) are estimated by the
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posterior median obtained via the MCMC samples for each simulated data set. In

addition, the uncertainty associated with these estimates is represented by the upper

and lower limits of the 95% credible interval for each parameter, which are respectively

the 2.5th and 97.5th percentile from the MCMC samples for each dataset. Inference

for each dataset is based on 200,000 MCMC samples where I discard the first 50,000

samples as burn-in. I thin the remaining 150,000 samples by a factor of 15, leaving a

total of 10,000 samples for model inference. Convergence diagnostic is done by using

the method introduced by Geweke et al. (1991) and traceplots.

5.3.6 Summarising the results

To measure the performance of the four models in terms of estimating regression pa-

rameters and disease risk at the grid level, I use the four metrics outlined in Section

3.3.6 which are bias, root mean square error (RMSE), credible interval (CI) coverage,

and average width of CI. More detail about these four metrics is provided in Section

4.3.6.

5.3.7 Simulation results

There are 100 simulated datasets in this study, under two different grid square sizes;

with sides of lengths 1,000 and 500 metres. The simulation results for the grid square

with 1,000 metres length are shown in Tables 5.2, 5.3, and 5.4, while those for the grid

square with 500 metres length are shown in Table 5.5, 5.6, and 5.7. Note that I have

run extra datasets for Model 4 to obtain 100 converged datasets since the results for

Model 4 are unstable and it produces some extreme values for the estimated risks at

the grid level due to some MCMC chains do not converge.
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Table 5.2: Results from the simulation study for the regression parameter β1 = 0.1
with the estimated covariate at the grid level x1(Gj).

Metric Scenario Model 1 Model 3 Model 4 Model 5

Bias

1 -0.0006 0.0074 0.0127 0.0124
2 -0.0005 0.0119 0.0172 0.0094
3 0.0007 0.0048 0.0081 0.0039
4 0.0004 0.0067 0.0127 0.0093
5 0.0002 0.0178 0.0150 0.0087
6 0.0004 0.0228 0.0261 0.0105
7 0.0013 0.0088 0.0148 0.0075
8 0.0020 0.0095 0.0270 0.0148

RMSE

1 0.0091 0.0241 0.0218 0.0288
2 0.0050 0.0162 0.0246 0.0209
3 0.0118 0.0223 0.0258 0.0277
4 0.0059 0.0169 0.0220 0.0214
5 0.0111 0.0277 0.0324 0.0316
6 0.0075 0.0318 0.0348 0.0313
7 0.0110 0.0247 0.0331 0.0335
8 0.0094 0.0229 0.0440 0.0309

CI coverage

1 0.899 0.98 0.84 0.81
2 0.98 0.86 0.68 0.64
3 0.90 0.98 0.90 0.86
4 0.94 0.86 0.69 0.58
5 0.96 1.00 0.87 0.81
6 0.96 0.72 0.70 0.57
7 1.00 0.96 0.84 0.78
8 0.964 0.82 0.63 0.47

Average width

1 0.0403 0.0977 0.0862 0.0784
2 0.0211 0.0553 0.0473 0.0317
3 0.0399 0.0942 0.0816 0.0761
4 0.0220 0.0515 0.0453 0.0358
5 0.0469 0.1188 0.1015 0.0810
6 0.0318 0.0761 0.0792 0.0452
7 0.0493 0.1096 0.0949 0.0813
8 0.0369 0.0698 0.0796 0.0398
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Table 5.3: Results from the simulation study for the regression parameter β2 = 0.1
with the true covariate at the grid level x2(Gj).

Metric Scenario Model 1 Model 3 Model 4 Model 5

Bias

1 -0.0017 -0.0657 0.0011 -0.0030
2 -0.0012 -0.0685 0.0001 -0.0020
3 0.0001 -0.0628 0.0004 0.0009
4 0.0003 -0.0687 0.0008 -0.0002
5 0.0024 -0.0676 0.0014 0.0029
6 -0.0004 -0.0719 0.0032 -0.0010
7 -0.0020 -0.0659 0.0010 -0.0026
8 0.0002 -0.0729 0.0016 -0.0002

RMSE

1 0.0101 0.0661 0.0154 0.0176
2 0.0060 0.0686 0.0089 0.0108
3 0.0103 0.0631 0.0159 0.0206
4 0.0054 0.0688 0.0107 0.0105
5 0.0135 0.0679 0.0181 0.0208
6 0.0088 0.0720 0.0173 0.0156
7 0.0127 0.0663 0.0199 0.0210
8 0.0090 0.0731 0.0149 0.0175

CI coverage

1 0.95 0 0.94 0.87
2 0.93 0 0.91 0.90
3 0.97 0 0.93 0.87
4 0.97 0 0.84 0.75
5 0.91 0 0.92 0.80
6 0.91 0 0.84 0.74
7 0.92 0 0.87 0.81
8 0.95 0 0.87 0.54

Average width

1 0.0402 0.0496 0.0579 0.0556
2 0.0212 0.0249 0.0303 0.0262
3 0.0398 0.0495 0.0582 0.0561
4 0.0220 0.0248 0.0294 0.0255
5 0.0471 0.0543 0.0647 0.0574
6 0.0316 0.0295 0.0428 0.0292
7 0.0489 0.0528 0.0618 0.0570
8 0.0373 0.0289 0.0426 0.0275

111



5. Data augmentation approach

Table 5.4: Results from the simulation study for the disease risk at the grid level R(Gj).

Metric Scenario Model 1 Model 3 Model 4 Model 5

Bias

1 -0.0005 -0.0069 -0.0035 -0.0025
2 0.0006 -0.0019 -0.0020 -0.0008
3 0.0004 -0.0012 -0.0021 -0.0006
4 0.0003 -0.0019 -0.0027 0.0002
5 0.0010 -0.0123 -0.0106 -0.0025
6 0.0015 -0.0081 -0.0054 -0.0022
7 -0.0011 -0.0054 -0.0058 -0.0040
8 0.0006 -0.0023 -0.0063 -0.0009

RMSE

1 0.0819 0.1423 0.1225 0.1825
2 0.0658 0.1376 0.1158 0.1292
3 0.0719 0.1345 0.1206 0.2037
4 0.0641 0.1362 0.1164 0.1352
5 0.1507 0.1976 0.1861 0.2067
6 0.1216 0.1899 0.1713 0.1770
7 0.1450 0.1926 0.1840 0.2145
8 0.1261 0.1900 0.1748 0.1843

CI coverage

1 0.94 0.72 0.75 0.41
2 0.95 0.62 0.69 0.37
3 0.93 0.63 0.69 0.35
4 0.95 0.55 0.64 0.29
5 0.95 0.82 0.82 0.50
6 0.95 0.71 0.83 0.47
7 0.94 0.71 0.70 0.40
8 0.95 0.65 0.80 0.34

Average width

1 0.3052 0.2995 0.2791 0.1595
2 0.2468 0.2401 0.2308 0.1151
3 0.2640 0.2403 0.2450 0.1383
4 0.2439 0.2031 0.2130 0.0928
5 0.5596 0.5134 0.4746 0.2625
6 0.4444 0.3840 0.4433 0.2127
7 0.5443 0.4050 0.3835 0.2089
8 0.4741 0.3468 0.4348 0.1558
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The results for all metrics and models for the grid square with size 1,000 metres are

presented in Table 5.2, 5.3, and 5.4. Overall Model 1 performs the best for regression

parameters [β1, β2], and disease risk [R(Gj)], which is not surprising since it is fitted to

the true grid level data and is thus expected to be the best model. Model 1 produces

unbiased estimates across all scenarios, and it also produces the smallest RMSE, which

suggests accurate estimation. Furthermore, the CI coverages for the regression param-

eters and disease risk are close to 0.95, which indicate Model 1 is able to accurately

quantify uncertainty.

In order to compare the results from the model proposed in the previous chapter (Model

3) and this chapter (Models 4 and 5), I consider all four metrics for the regression pa-

rameter (β1, β2) and disease risk R(Gj). Firstly, let us consider the regression parameter

β1, which corresponds to the estimated covariate x1(Gj) disaggregated to the grid level.

The results are presented in Table 5.2. I found that Models 3, 4 and 5 produce close

to unbiased estimates for β1. Note that some datasets for Model 4 are not included

in the results since they produce non-converged MCMC chains, especially in scenarios

2, 4, 6, and 8 where I assumed 5% of population in each grid square have the disease

event (ψ = 0.05). Thus for a prevalent disease it seems that data augmentation with

τ 2 estimated in the model does not produce good results, as the variance τ 2 is over

estimated, leading to poor inference. In terms of RMSE, Model 5 performs similar to

Model 3. Furthermore, the CI coverages of Models 3 and 5 show no consistent pattern.

Next, consider regression parameter β2, which corresponds to the true known grid level

covariate x2(Gj). Models 4 and 5 produced unbiased estimates, while Model 3 pro-

duced biased estimates, which suggest the data augmentation approach is superior in

this regard. Model 5 produced similar RMSEs to Model 4 but smaller than Model 3

by the factors between 3 and 7, therefore data augmentation is outperform in terms

of RMSE. Furthermore, CI coverages for Model 3 are zero across all scenarios, this is

because Model 3 produce biased estimates of the regression parameter β2, and therefore

the 95% CIs of the estimates do not include the true value of β2.
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Finally, Models 3, 4, and 5 produce close to unbiased estimates for the disease risk

at the grid level R(Gj), as shown in Table 5.4, with RMSE values that are similar.

Model 4 is the worst model for estimating the disease risk across all metrics, again due

to overestimation of τ 2. Furthermore, it produces unstable results in some scenarios

with biased estimates and extremely high RMSE values, therefore it is needed extra

simulated datasets in order to obtain 100 converged datasets. Model 5 performs less

well than Model 3 in terms of the CI coverage, however the average width of CI for

Model 3 is approximately two times bigger than Model 5 across all scenarios. In

conclusion, when consider all metrics for the regression parameters and disease risk

at the grid level (grid of size 1,000 metres), I found that Model 5 performs the best,

followed by Model 3. From the overall results, Model 4 produced awful estimates of

disease risk at the grid level especially for a prevalence disease, therefore Model 4 will

be removed from the simulation study for the grid squares with sides of length 500

metres.
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Table 5.5: Results from the simulation study for the regression parameter β1 = 0.1
with the estimated covariate at the grid level x1(Gj) (grid size 500 m).

Metric Scenario Model 1 Model 3 Model 5

Bias

1 0.0018 0.1551 0.2469
2 -0.0011 0.1482 0.2802
3 0.0019 0.1737 0.3056
4 0.0004 0.1655 0.2877
5 0.0014 0.1725 0.3096
6 0.0009 0.1670 0.2842
7 -0.0007 0.1513 0.2633
8 -0.0008 0.1477 0.2581

RMSE

1 0.0090 0.1730 0.2922
2 0.0044 0.1583 0.2954
3 0.0085 0.1895 0.3418
4 0.0046 0.1728 0.3027
5 0.0091 0.2010 0.3722
6 0.0057 0.1801 0.3095
7 0.0101 0.1767 0.3047
8 0.0055 0.1650 0.2780

CI coverage

1 0.96 0.65 0.45
2 0.95 0.15 0.02
3 0.98 0.52 0.21
4 0.96 0.03 0.02
5 0.99 0.58 0.28
6 0.95 0.05 0.02
7 0.96 0.62 0.35
8 1.00 0.19 0.03

Average width

1 0.0378 0.3657 0.4174
2 0.0181 0.1726 0.1858
3 0.0375 0.3694 0.4294
4 0.0182 0.1686 0.1885
5 0.0401 0.3908 0.4281
6 0.0220 0.1956 0.1951
7 0.0402 0.3542 0.4071
8 0.0233 0.1778 0.1856
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Table 5.6: Results from the simulation study for the regression parameter β2 = 0.1
with the true covariate at the grid level x2(Gj) (grid size 500 m).

Metric Scenario Model 1 Model 3 Model 5

Bias

1 0.0005 -0.0860 0.0039
2 0.0003 -0.0881 -0.0022
3 0.0014 -0.0867 -0.0086
4 0.0004 -0.0866 -0.0002
5 0.0008 -0.0873 0.0007
6 -0.0009 -0.0889 -0.0015
7 0.0011 -0.0861 -0.0001
8 0.0015 -0.0876 0.0023

RMSE

1 0.0095 0.0861 0.0321
2 0.0048 0.0882 0.0200
3 0.0098 0.0867 0.0295
4 0.0045 0.0867 0.0195
5 0.0111 0.0874 0.0350
6 0.0055 0.0890 0.0281
7 0.0093 0.0862 0.0356
8 0.0053 0.0877 0.0230

CI coverage

1 0.95 0 0.83
2 0.93 0 0.71
3 0.92 0 0.81
4 0.97 0 0.67
5 0.91 0 0.74
6 0.96 0 0.37
7 0.96 0 0.77
8 0.97 0 0.55

Average width

1 0.0380 0.0370 0.0786
2 0.0181 0.0169 0.0353
3 0.0377 0.0371 0.0778
4 0.0182 0.0167 0.0349
5 0.0403 0.0376 0.0783
6 0.0220 0.0173 0.0349
7 0.0403 0.0370 0.0770
8 0.0234 0.0170 0.0351
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Table 5.7: Results from the simulation study for the disease risk at the grid level R(Gj)
(grid size 500 m).

Metric Scenario Model 1 Model 3 Model 5

Bias

1 0.0005 -0.0017 0.0112
2 -0.0002 -0.0045 0.0043
3 0.0001 -0.0005 0.0112
4 0.0001 -0.0009 0.0022
5 0.0000 -0.0109 0.0133
6 -0.0004 -0.0074 0.0018
7 0.0010 0.0006 0.0118
8 0.0007 -0.0021 0.0043

RMSE

1 0.0914 0.1615 0.2948
2 0.0797 0.1591 0.1903
3 0.0733 0.1514 0.6516
4 0.0693 0.1508 0.2133
5 0.1879 0.2439 1.1267
6 0.1379 0.2078 0.2319
7 0.1568 0.2110 0.5147
8 0.1406 0.2095 0.3271

CI coverage

1 0.94 0.44 0.18
2 0.95 0.39 0.13
3 0.92 0.36 0.18
4 0.94 0.28 0.10
5 0.94 0.53 0.20
6 0.95 0.43 0.14
7 0.93 0.29 0.14
8 0.95 0.33 0.10

Average width

1 0.3428 0.1874 0.0987
2 0.2980 0.1653 0.0574
3 0.2682 0.1408 0.1287
4 0.2653 0.1093 0.0484
5 0.6574 0.3401 0.1639
6 0.5235 0.2361 0.0771
7 0.5763 0.1557 0.1180
8 0.5380 0.1773 0.0618
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I repeat the simulation study with grid squares of size 500 metres to check whether

the size of grid square affects the general pattern of results. Since Model 4 performed

poorly for grid squares with side of length 1,000 metres, I removed it from this simu-

lation study. The results from all metrics and models are presented in Tables 5.5, 5.6

and 5.7. Model 3 is better than Model 5 for the estimated grid level covariate, x1(Gj),

and the disease risk, R(Gj) across all metrics and scenarios. Model 5 is better than

Model 3 for the true grid level covariate, x2(Gj), since it produced unbiased estimates

with smaller RMSE values and higher CI coverages.

The key findings of these results are broadly similar to those for grid squares of size

1,000 metres. However, the results from the models fitted to data with grid squares of

size 500 metres are worse than grid squares of size 1,000 metres for most metrics and

scenarios. For example, Model 5 produced biased estimates for the regression parameter

related to the estimated covariate [x1(Gj)], while it produced unbiased estimates for grid

squares of size 1,000 metres. Furthermore, in terms of RMSE in regression parameters

and disease risk across all scenarios, Models 3 and 5 have higher RMSE than the results

from grid squares of size 1,000 metres. This is because I have the same amount of actual

data at the areal unit level and then I use these data to estimate the disease risk and

model parameters at the grid level. The number of grid squares of size 500 metres is

greater than the number of grid squares of size 1,000 metres, which means that I have

to estimate more grid level parameters using the same amount of data, which leads to

less accurate estimation.

5.4 Application to real data

This section continues the analysis of the respiratory hospitalisation data presented in

Chapters 3 and 4.

5.4.1 Data description

As in the previous chapters, the study region is the Greater Glasgow and Clyde Health

Board area, and I use the respiratory hospital admission data presented in Section 3.2.

The response disease data Y (A) = [Y (A1), ..., Y (An)] are based on the period from
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January 2015 to December 2016, where Y (Ai) is the number of hospital admissions

with a primary diagnosis of respiratory disease in intermediate zone i. The expected

values, e(A) = [e(A1), ..., e(An)] are the expected hospital admission numbers for each

areal unit, which are computed via indirect standardisation as described in Section

2.3.1.

5.4.2 Results

In order to compare the performance of Model 3 from the previous chapter and the

proposed model (Model 5), Model 5 has been fitted to the respiratory disease data

with the grid square sides of lengths of 1,000 and 500 metres. The results are obtained

by using MCMC inference, based on 200,000 samples with 50,000 burn-in samples and

thinned by a factor of 15, leaving 10,000 samples for model inference. Note that the

sensitivity analysis is not carried out since the variance parameter of random effect

(τ 2) is fixed for Model 5.

Convergence diagnostic

The method of Gelman and Rubin (Gelman and Rubin, 1992) and trace plots assess-

ment are used to diagnose the convergence of the MCMC chains. Since there are a large

number of parameters in the model especially for the 500-metre grid size, therefore it

is infeasible to check all of them. In order to do this, ten parameters are randomly

checked for convergence of the chain and only selected parameters are presented. Fig-

ures 5.1 to 5.2 illustrate the plots of each model parameter from the model proposed

in this chapter (Model 5) with the grid square of sizes for both 1,000 and 500 meters.

While the diagnostic for Model 3 (multiple imputation) which is used as a comparative

model does not present here since it is similar to the previous chapter. The figures show

that there is no clear pattern appear in all selected parameters, which indicate that

the chains appear to have converged. In addition, the Gelman-Rubin diagnostic used

to diagnose convergence for multiple chains, the result shows that the Gelman-Rubin

values are less than 1.1. It is suggested that the posterior distributions are well mixed.
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(a) β (b) φ(G1)

(c) φ(G75) (d) φ(G289)

Figure 5.1: Traceplots of MCMC samples for selected parameter from Model 5 (grid
of size 1,000m).

(a) β (b) τ2

(c) ρ (d) φ(G1)

Figure 5.2: Traceplots of MCMC samples for each parameter from Model 2 (grid of
size 500m).
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Posterior predictive check

The predictive posterior model check is carried out in order to check the appropriateness

of the model for the data. Here, the observed data at the grid level are unknown,

therefore the observed data at the areal unit level have been applied to compare to

the simulated data (grid level) from the fitted model that aggregates to the areal unit

level. Figure 5.3 shows the relationship between the observed disease counts at the

areal unit level and the simulated data for the grid square sizes of 1,000 and 500

metres. The plots show that these two datasets are fairly similar since these data lie

on the straight line, however there are some outliers. This is because the simulated

data are transformed twice (disaggregate to the grid level and aggregate back to the

areal unit level), therefore some information might be lost during the process. Hence,

these results indicate that the models fit the data well and appropriately to make a

model inference.

Figure 5.3: Posterior predictive checks (Model 5)

Main results

Figures 5.4 and 5.5 display the estimated disease risk from Models 3 and 5 with the grid

squares of sizes of 1,000 and 500 metres. Model 3 is the model proposed in the previous
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chapter (multiple imputation), while Model 5 is the proposed model in this chapter

(data augmentation with fixed τ 2). Here τ̂ 2 is estimated by (5.2.13) and τ̂ 2 = 0.0158

for grid squares of size 1,000 metres and 0.0044 for 500 metres . Overall, Model 5

produces similar disease maps for both grid squares of sizes 1,000 and 500 metres, as

can be seen in Figures 5.4b and 5.5b. The regions with the higher disease risks tend

to be in the east (e.g. Easterhouse, Shettleston), and the north of Glasgow city centre

(e.g. Possilpark, Springburn), as well as the south-west (e.g. Priesthill, Govan) and

the north-west (e.g. Clydebank, Drumchapel). On the other hand, the regions of lower

risk tend to be in the south-west (e.g. Whitecraigs and Newton Mearns), and the West

End of the city centre (e.g. Kelvinside and Jordanhill). These results are similar to

the results of Model 3 which are presented in Figures 5.4a and 5.5a. As in the previous

chapter, I note that people in areas that are less wealthy are more likely to be hospi-

talised for respiratory disease than those in more wealthy areas.

Figures 5.4 and 5.5 show that Model 3 and Model 5 produce the similar pattern of

disease maps. However, Model 3 has more spatial variation than Model 5 because

Model 3 produces an estimated τ 2 which is greater than Model 5 with a similar es-

timated ρ. For example, the estimated τ 2 for grid squares of size 500 metres being:

0.0872 (Model 3) vs 0.0046 (Model 5), which in Model 3 is greater than Model 5 by

a factor of 20. Furthermore, there are different estimates between the two models in

some grid squares. To quantify the differences between the models, Figure 5.6 presents

the correlation of the estimated disease risks from these models. For the grid squares

of size 1,000 metres, the correlation between the estimates of Model 3 and Model 5 is

0.91. For the grid square of size 500 metres, the correlation between the estimates of

Model 3 and Model 5 is 0.89. This unsurprisingly suggests a strong correlation between

the models. Figure 5.7 shows the absolute estimated risk differences between Model 3

and Model 5 versus the average estimated risk for both grid squares of sizes 1,000 and

500 metres. These plots have a U-shaped pattern which suggest that these two models

tend to agree when the disease risk is between 0.75 and 1.75 but tend to disagree more

strongly outside this range.
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In order to select the better model, the standard Bayesian model selection criteria such

as Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) is inappropriate

in this study for a few reasons. In the multiple imputation approach, the results are

based on a combination of ten different datasets. While DIC is appropriate to compare

different models in the same dataset. Furthermore, the grid level disease counts are up-

dated in every 100th iterations for data augmentation and hence they are not a single

dataset. Consequently, in order to carry out the model selection, the sensible method

is to transform the estimate disease counts at the grid level from each model into the

areal unit level [Ŷ (Ai)] via 4.3.3, and then compare them to the observed disease counts

[Y (Ai)] using RMSE =
√

1
n

∑n
i=1[Y (Ai)− Ŷ (Ai)]2, where n is the number of areal

units.

Here I aim to compare the proposed models in this study to an existing model in

order to select the best model. The model proposed by Taylor et al. (2018) is initially

considered as a competitive model but there is an issue with software package that could

not be applied to the real data in this study. Therefore it is proposed for the simple

method: Kriging (Krige, 1951), a geostatistical process aims to predict unobserved data

at unobserved locations. Since the main aim of this study is to estimate disease risks

at the gird level, therefore Kriging is used as a competitive model for selecting the best

model. The detail of Kriging is presented in Section 2.3.5. Moreover, the SIR values

for each IZ are used to estimate the disease risk at the grid level by using (2.3.14). The

results show that these three models produce the similar patterns of estimated disease

risks at the grid level, as can be seen in Figures 5.4 and 5.5. However Model 3 (multiple

imputation) produces smallest RMSE followed by Model 5 (data augmentation) and

the method of Kriging as presented in Table 5.8, this is true for both sizes of the

grid square. Therefore, the best approach to estimate disease risks at the grid level is

multiple imputation which corresponds to the results from the simulation study. These

results are not surprising since Kriging assumes that the mean and variance of the SIRs

are constant across the study region (stationarity assumption), which is not met in this

application. In addition, Kriging is likely to perform badly because it assumes that the

areal unit SIR is represented by its centroid at a single point.
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Table 5.8: RMSE values of disease counts at the areal unit level.

Model RMSE
1,000 m 500 m

Model 3 62.99 39.67
Model 5 73.82 56.71
Kriging 77.73 61.61

Figure 5.6: Correlation between the estimated disease risk of Models 3 and 5.

Figure 5.7: Plots of the absolute estimated disease risk difference between Models 3
and 5 versus the average of the estimated disease risk.
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(a) Grid size 1,000 metres

(b) Grid size 500 metres

Figure 5.8: The estimated disease risk difference between Models 3 and 5.
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5.5 Conclusion

Here I have proposed statistical methodology which estimates the spatial pattern in

disease risk at the grid level via a data augmentation approach. This method allows for

uncertainty in the grid level disease counts when estimating grid level disease risk, un-

like the multiple imputation approach in the previous chapter. A Leroux CAR model

was initially used to estimate disease risk but this model contains a spatial smoothness

parameter, ρ, which allows the spatial autocorrelation in the data to range from very

weak to very strong. Exploratory analyses found this could lead to high variation in

the estimates of disease risk and disease cases at the grid level,which could lead to

unrealistic estimation. Therefore I enforce strong spatial autocorrelation of the disease

risk by setting ρ = 1, which corresponds to the intrinsic CAR model proposed by Besag

et al. (1991).

A simulation study was conducted to examine how well the proposed models can es-

timate disease risk and model parameters at the grid level. In this simulation study,

I compared four models across two different grid sizes (1,000 and 500 metres). Model

1 was fitted to the true grid level data, which was used as a reference model since it

was expected to perform the best. Model 3 was the proposed model in the previous

chapter (multiple imputation). Model 4 and Model 5 were both data augmentation

approaches which were introduced in this chapter. In Model 4 the spatial random effect

variance, τ 2, was estimated as part of the MCMC algorithm, while in Model 5 τ 2 was

estimated by empirical Bayes methods prior to fitting the MCMC algorithm and was

held constant throughout.

The key results for grid squares sides of lengths 1,000 and 500 metres are roughly simi-

lar. Model 1 is the best model across all scenarios and metrics, which is expected since

it was fitted to the true grid level data. Model 4 performed worst in terms of estimating

disease risk at the grid level due to τ 2 being overestimated in some simulated datasets,

which leaded to extreme disease risk estimates at the grid level. This is likely because of

a lack of identifiability from estimating disease counts and model parameters together.

Model 4 is therefore not recommended; it is clear that a data augmentation approach
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needs to use Model 5, where τ 2 is estimated by empirical Bayes methods.

Model 3 and Model 5 generally produced similar results except for the regression pa-

rameter related to the true known grid level covariate, where Model 5 performed better

than Model 3. This is due to Model 3 producing biased estimates, which also leads

to poorer credible interval coverage across all metrics and scenarios. This is likely

because the true grid level covariate has not been transformed to the grid level via

an aggregation and disaggregation processes in the way that other variables have, and

consequently it has a different scale of spatial smoothness to the other variables. This

causes Model 3 to consistently underestimate the covariate effect, leading to biased

results. Model 3 is therefore not recommended for estimating the regression parameter

related to the true known grid level covariate; Model 5 must be used in such cases.

The overall pattern of the results from the models fitted to the data with grid squares

sides of length 500 metres is mainly similar to those with grid squares sides of length

1,000 metres. However, the RMSEs across all models and parameters for grid squares

of size 1,000 metres are smaller than grid squares of size 500 metres by a factor of be-

tween 1.3 and 12, which suggests that grid squares of size 1,000 metres produce more

precise estimation than grid squares of size 500 metres. This is because we have the

same number of data points regardless of how many grid squares we have. Therefore

to estimate on the 1,000 metres scale we need to estimate 853 grid square parameters

from 257 data points, while to estimate on the 500 metres scale we need to estimate

3,106 grid square parameters from the same 257 data points. It therefore follows that

estimation on the smaller grid squares leads to less accuracy. However, I note from

Figures 5.4 and 5.5 that as the size of the grid square increases, the disease risk map

can become less smooth and begins to look somewhat pixellated. This is a trade off

between accuracy of the estimation and smoother mapping visualisation, as if we make

the grid squares too large they might cover areas with significantly different disease

risk which could lead to less useful estimates. On the other hand if the grid squares are

too small, we will estimate too many grid squares too close together which will have

the same risk level. We would also need to estimate too many parameters which could

lead to less precise estimates as shown in the simulation study.
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Finally, I compare the performance of the reference model (Model 1) to the proposed

models in the previous chapter (Model 3) and this chapter (Model 5). Model 3 and

Model 5 produce higher RMSE values than Model 1 across all scenarios and parameters

by a factor of between 1.8 and 4. Although Model 3 and Model 5 perform less well

than Model 1, they have adequate ability in terms of estimating disease risk and model

parameters at the grid level, which is expected from these proposed models.
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Chapter 6

Spatio-temporal modelling of

respiratory disease in Glasgow

6.1 Introduction

The term “health inequalities” generally refers to differences in health status or in the

distribution of health determinants between individuals or population groups (World

Health Organization, 2013). For example, differences in morbidity between men and

women or between people from different social classes. There is sufficient evidence that

education, employment status, and income are influential factors on people’s health

(Mackenbach et al., 2008). These unfair and avoidable differences in people’s health

exist both within and between countries. For example, there are nearly 20% of children

in the UK who live in poverty areas that have much worse health outcomes than those

live in wealthier areas since they face multiple risks for future poor health e.g. diet

and lifestyle choices (The Lancet Respiratory Medicine, 2017). Furthermore, people in

low socioeconomic status countries exhibit lower lung function and more respiratory

symptoms than those in higher socioeconomic status countries (Pleasants et al., 2016).

The first major publication about health inequality in the UK was the Black report

by Black et al. (1982). The report showed that ill-health and death are unequally

distributed across the UK, and suggested that these inequalities were attributable to

socio-economic inequalities affecting health. This finding was confirmed by several
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studies e.g. Acheson (1998), Marmot et al. (2010), Bartley (2016). In addition, the

social class differences in mortality rates had widened within ten years of the Black

report (Smith et al., 1990). Life expectancy is widely used as a proxy indicator of

people’s health. Ellis and Fry (2010) argued that life expectancy in the North East of

England is consistency lower than other regions, and female life expectancy is higher

than males in all regions. Levin and Leyland (2006) compared health inequalities in

urban and rural areas in Scotland. They found that health inequalities in Scotland

have grown over time, and people in remote rural areas have witnessed a significant

rise in inequality, especially those aged over 65 years. A more recent study by Jack

et al. (2019) proposed a multivariate spatiotemporal model for estimating small area

variation in disease risk, and they concluded that health inequalities in cerebrovascu-

lar and coronary heart disease were reducing over time, but inequalities in respiratory

disease appear to be growing worse over time (2003 - 2012).

In this chapter, I focus on measuring health inequalities in the Greater Glasgow and

Clyde Health Board area. This is because the life expectancy for men in Glasgow is

the lowest of any major city in the UK, as presented in Figure 6.1 taken from Walsh

et al. (2016). Although the trend for Glasgow is slightly increasing, the gaps between

Glasgow and other cities are slightly widening. Additionally, life expectancies between

people in different areas in Glasgow are very different (NHS Health Scotland, 2015), as

is illustrated in Figure 6.2. Life expectancy for men living in Bridgeton, a less wealthy

area, is on average 14.3 years lower than for those living in Jordanhill, a wealthier

area, even though they live only seven stations apart from each other (15 minutes of

travelling). Similarly, this difference in life expectancy for women is 11.7 years. It

is therefore clear that Glasgow has large health inequalities, and it is of interest to

investigate these in more detail.

There were several previous research studies on health inequality in Glasgow, most of

them focused on either health inequality between intermediate zones within Glasgow

(Hanlon et al., 2006; McCartney, 2010) or compared Glasgow to other cities in the UK

Shelton (2009); Walsh et al. (2010, 2016). However, as described in previous chapters,

an IZ level analysis assumes that disease risk is constant within an IZ, which is not nec-
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essarily realistic. Therefore I extend the grid square level pseudo-continuous approach

presented in the previous chapters to the spatio-temporal domain, thus allowing risk

to vary pseudo-continuously over space. This chapter has two main aims. The first is

to estimate the spatio-temporal variation in disease risk at the grid square level, by ex-

tending the methodology developed in previous chapters. The second is to compare the

results obtained at the two grid square scales (sides of lengths 1,000 and 500 metres)

used in this thesis, with the commonly used approach of undertaking inference at the

areal unit IZ level. In undertaking the data analysis, the main motivating objectives

are to answer three questions of interest as follows:

i) What is the average trend over time of respiratory disease risk across the Greater

Glasgow and Clyde Health Board area?

ii) How has the respiratory disease risk in each part of Glasgow changed over time

in the Greater Glasgow and Clyde Health Board area from 2013 - 2016?

iii) How are the health inequalities changing over time in the Greater Glasgow and

Clyde Health Board area for respiratory disease risk?

I consider these three questions because I would like to estimate the trend in respira-

tory disease, whether it is increasing, decreasing, or stable, both in the whole Glasgow

health board area and by locality within the study region. Understanding these trends

would allow the health board to make a localised intervention in the part of Glasgow

with an increased trend, and also to investigate the factors that influence these trends.

Furthermore, estimating the changing level of health equality over time can provide

information as to whether their inequality reduction plans are working.

The remainder of this chapter is organised as follows. Section 6.2 outlines the data

being used in this chapter. Section 6.3 outlines the methods used to transform the areal

unit data into grid level data. Then Section 6.4 presents the spatio-temporal model

used in this study, and the results obtained from the model are shown in Section 6.5.

Finally Section 6.6 summaries the main finding from the model fitting and discusses

the advantages and disadvantages of this study.
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Figure 6.1: Male life expectancy for Glasgow compared with other UK cities, 1991-93
to 2007 - 09 (Walsh et al., 2016).

Figure 6.2: Part of the train map of Glasgow with life expectancy (NHS Health Scot-
land, 2015).
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6.2 Data

The study region is the Greater Glasgow and Clyde Health Board area, which is the

same area as studied in previous chapters. The disease data are yearly counts of

the number of hospital admissions with a primary diagnosis of respiratory disease for

the years 2013 to 2016 in each intermediate zone (IZ). Here I use four years of data

because they are the most recent data that I can obtain from NHS Scotland which

have the same spatial scale (IZ boundaries). The observed disease counts, Y t(A) =

[Yt(A1), ..., Yt(An)], represent the number of hospital admissions due to respiratory

disease, where Yt(Ai) denotes the disease count in region Ai in year t, where i = 1, ..., n

and t = 1, ..., N . The expected disease counts, e∗t (A) = [e∗t (A1), ..., e∗t (An)], are the

expected hospital admission numbers for each region and year, which are calculated

separately for each year via indirect standardisation based on age and sex adjusted

rates for the whole of Scotland. However, e∗t (Ai) should be averaged over the entire

period of time in order to explore the overall change in SIR over time across the entire

region. The formula of averaging e∗t (Ai) is as follows;

et(Ai) =

∑T
t=1 e

∗
t (Ai)

T
. (6.2.1)

Figure 6.3 shows bloxplots of the SIR in IZs between the years 2013 and 2016. It can

be seen that the median of the SIRs are slightly increasing. Figure 6.4 illustrates the

spatial map of the SIR for each IZ in the Greater Glasgow and Clyde Health Board in

2016. The areas with lower SIRs are mostly rural areas e.g. Milngavie, Bishopton and

Eagleshame and also areas in the south of the city centre of Glasgow e.g. Clarkston

and Newton Mearns. In contrast, the areas with higher SIRs are mostly located in the

east of the map, the airport areas e.g. Paisley and also areas in the north-west e.g.

Clydebank. The areas with lower SIR values tend to be the wealthy areas, but on the

other hand the areas with higher SIR values tend to be the less wealthy areas. In other

words, the affluent areas tend to have lower SIRs than the less affluent areas.
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Figure 6.3: Boxplots of the of the standardised incidence ratio (SIR) for respiratory
disease hospital admissions from 2013 to 2016.

Figure 6.4: The standardised incidence ratio (SIR) for respiratory disease for each IZ
in the Greater Glasgow and Clyde Health Board in 2016.
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6.3 Methodology

As the aim of this chapter is to make grid square level inference based on areal unit level

data, the observed and expected disease counts at the areal level [Yt(Ai), et(Ai)] have

to be transformed to the grid level [Yt(Gj), et(Gj)] before being modelled to estimate

the grid level pattern in disease risk. This is achieved in two stages, which are outlined

in sections 6.3.1 and 6.3.2 below. The approach adopted for this transformation is

similar to Chapter 4.

6.3.1 Grid level expected disease counts [et(Gj)]

First of all, I must allocate the average expected disease counts at the areal unit level,

et(Ai), to the m grid squares, et(Gj). When carrying out this process, one must ensure

that the total numbers of expected counts at the areal unit level and the grid square

level are the same, i.e.
∑n

i=1 et(Ai) =
∑m

j=1 et(Gj). Letting et(Ai ∩ Gj) represent the

expected count in the intersection area between region Ai and grid square Gj in year

t, it is clear that the expected disease count in grid square Gj is the sum of expected

disease counts in the intersection areas between grid square Gj and all regions Ai, that

is et(Gj) =
∑n

i=1 et(Ai∩Gj). Assuming then the expected disease counts are distributed

proportionally to the population density, an initial estimate of et(Gj) is

et(Gj) =
n∑
i=1

et(Ai ∩ Gj) =
n∑
i=1

P (Ai ∩ Gj)∑m
k=1 P (Ai ∩ Gk)

et(Ai), (6.3.1)

where P (Ai∩Gj) is the population in the intersection area between region Ai and grid

square Gj, which is unknown. This unknown population size can be estimated based

on multiplying the population size in grid square Gj, P (Gj), by the proportion of that

grid square that covers region Ai. Grid level population data can be obtained from

Reis et al. (2017). Therefore I estimate

P (Ai ∩ Gj) =
a(Ai ∩ Gj)∑n
q=1 a(Aq ∩ Gj)

P (Gj). (6.3.2)

This assumes that population density is constantly distributed across grid square Gj.

Finally, substitute P (Ai ∩ Gj) from (6.3.2) into (6.3.1), so that
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et(Gj) =
n∑
i=1

P (Gj) a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)∑m

k=1 P (Gk) a(Ai∩Gk)∑n
q=1 a(Aq∩Gk)

et(Ai). (6.3.3)

It is straightforward to show that the sum of the grid level expected counts is equal

to the sum of the areal unit level expected counts
(∑n

i=1 et(Ai) =
∑m

j=1 et(Gj)
)
. Note

that, the expected disease counts at the grid level in each grid square are similar for

every year.

6.3.2 Grid level disease counts [Yt(Gj)]

Disease counts in grid square Gj in year t, Yt(Gj), is estimated via a multiple imputation

approach which is similar to that described in Section 4.2.3. Then fit a spatio-temporal

model to these data to estimate disease risk at the grid level. This general approach is

implemented as follows.

Let us denote the disease count in the intersection area between region Ai and grid

square Gj in year t by Yt(Ai ∩ Gj). It is clear that

Yt(Gj) =
n∑
i=1

Yt(Ai ∩ Gj). (6.3.4)

Then Yt(Ai∩Gj) can be estimated by partitioning the disease count in region Ai, Yt(Ai)

into the m grid square intersections, {Yt(Ai ∩ G1), ..., Yt(Ai ∩ Gm)}, via a multinomial

sampling step as follows:

[Yt(Ai ∩ G1), ..., Yt(Ai ∩ Gm)] ∼ Multinomial(n = Yt(Ai)|ωi1, ..., ωim). (6.3.5)

Then Yt(Ai∩Gj) are combined via (6.3.4) to obtain the estimate of Yt(Gj) for each grid

square Gj. In addition, the weights ωij which are the probability that a disease event

in region Ai is assigned to the intersection area (Ai ∩ Gj), need to be specified. This

weight should depend on two quantities, the first being the size of the intersection area

between region Ai and grid square Gj, a(Ai ∩ Gj), compared to the other grid squares

areas of intersection
(

a(Ai∩Gj)∑n
q=1 a(Aq∩Gj)

)
, which is the proportion of grid square Gj that lies

in region Ai. The second is the number of disease cases one would expect to occur in

138



6. Spatio-temporal model at the grid level

grid square Gj, that is E[Yt(Gj)] = et(Gj)Rt(Gj), where Rt(Gj) is the estimated disease

risk in grid square Gj, which is unknown. Here I estimate Rt(Gj) separately for each

year via a purely spatial kriging approach instead of using a joint space and time kriging

approach, because the later approach assumes the trends are smooth (correlated) over

time. One of the goals of this chapter is to estimate the disease trends in Glasgow,

therefore any additional smoothing in this initial step should be avoided. Full details of

the kriging model used are given in Section 2.3.5. Then I can use the kriged estimates

of disease risk in grid square Gj, R̂t(Gj), to calculate the multinomial weights as follows:

ωij =
et(Gj)R̂t(Gj) a(Ai∩Gj)∑n

q=1 a(Aq∩Gj)∑m
k=1 et(Gk)R̂t(Gk) a(Ai∩Gk)∑n

q=1 a(Aq∩Gk)

, (6.3.6)

where the denominator is included to ensure
∑m

j=1 wij = 1 for all i = 1, ..., n.

Multiple imputation algorithm

1. Generate Y (L)
t (Gj) for L = 1, 2, ..., l based on Yt(Ai) via multinomial sampling

steps. Here ten datasets (l = 10) are generated to estimate disease risk at the

grid level.

2. For each imputed dataset from the previous step, fit the spatio-temporal model

proposed by Bernardinelli et al. (1995) to obtain the posterior samples for all

model parameters.

3. Combine the results from step 2 in order to make a model inference.

6.4 Spatio-temporal modelling at the grid level

To estimate the disease risks across the Greater Glasgow and Clyde Health Board I

use the spatio-temporal model proposed by Bernardinelli et al. (1995). This model is

appropriate for a few reasons. Firstly, this model assumes that the change in disease

risk over time in each areal unit can be described by a linear relationship, which is

suitable for the trend in these data since I have only four time points for each areal

unit and therefore more complex trends are not advisable. Furthermore, the linear

predictor contains separate intercepts and temporal slopes, which allows for different
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risk trends in each area. In other words, the model can estimate the linear trend in

disease risk for Glasgow overall, whilst also allowing for separate trends in each area,

thus answering the questions of interest in Section 6.1. This model takes the form:

Yt(Gj)|et(Gj), Rt(Gj) ∼ Poisson[et(Gj)Rt(Gj)]

ln[Rt(Gj)] = [α + φ(Gj)] + [β + δ(Gj)]
(
t− t̄
N

)
,

(6.4.1)

where Yt(Gj) and et(Gj) respectively represent the observed and expected disease counts

for grid square Gj at time t for t = 1, ..., N , which are estimated in the previous section.

Rt(Gj) denotes disease risk for grid square Gj at time t. The global intercept term α is a

fixed effect that is common for all grid squares, while β is the overall time effect (slope)

and is also a fixed effect common to all grid squares. The random effects terms φ(Gj)

and δ(Gj) represent grid square specific intercepts and slopes respectively. In other

words, the intercept for grid square Gj can be computed by the sum α + φ(Gj), while

the slope or trend for grid square Gj is the sum β+δ(Gj). In both cases the random effect

terms sum to zero to aid parameter identifiability, that is
∑m

j=1 φ(Gj) =
∑m

j=1 δ(Gj) = 0.

Here, t̄ = (1/N)
∑N

t=1 t is the time point average, and the term (t − t̄)/N , is used to

centre time points to ensure that the intercept term represents the average disease risk

over time. The random effect terms are modelled using the Leroux CAR prior (Leroux

et al., 2000) given by

φ(Gj)|φ(G−j) ∼ N
(

ρ
∑m

k=1 wkjφ(Gk)
ρ
∑m

k=1wkj + 1− ρ
,

τ 2

ρ
∑m

k=1wkj + 1− ρ

)
δ(Gj)|δ(G−j) ∼ N

(
λ
∑m

k=1wkjδ(Gk)
λ
∑m

k=1wkj + 1− λ
,

σ2

λ
∑m

k=1wkj + 1− λ

)
τ 2, σ2 ∼ Inverse-Gamma(1, 0.01)

ρ, λ ∼ Uniform(0, 1),

(6.4.2)

where φ(G−j) = [φ(G1), ..., φ(Gj−1), φ(Gj+1), ..., φ(Gm)] and

δ(G−j) = [δ(G1), ..., δ(Gj−1), δ(Gj+1), ..., δ(Gm)]. The spatial autocorrelation parameters

(ρ, λ), which control the spatial smoothness in the intercepts and slopes, are common

to all time points. Spatial autocorrelation is induced via an m × m neighbourhood
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matrix, W . Note that I use the 4-nearest neighbours specification and set wkj = 1 if

grid square Gk is one of the four nearest neighbours of grid square Gj, and wkj = 0

otherwise. The 4-nearest neighbours specification is chosen because some grid squares

have no neighbours since the grid squares with zero population have been removed, as

discussed in more detail in Section 4.2.4. However, the neighbourhood matrix for the

areal unit level is constructed via the most commonly used sharing common border

where set wki = 1 if area Ak shares a common border with area Ai and wki = 0

otherwise.

6.5 Results

The above described methodology is applied to the data outlined in Section 6.2 with

the grid square sides of lengths 1,000 and 500 metres as in the previous chapters, and

these results are compared against the commonly used IZ level analysis. The latter

uses the same model as defined in Section 6.4, but it is applied to the areal unit level

data [Yt(Ai), et(Ai)] rather than the grid level estimated data [Yt(Gj), et(Gj)]. The

respiratory disease risk in each area or grid square can be estimated by using the

multiple imputation approach with ten imputed datasets. The Markov chain Monte

Carlo is used to obtain the results, and the model runs three times to generate MCMC

samples for three independent Markov chains. The model inferences are based on

200,000 iterations with a burn-in period of 50,000 and thinned by 15 for each chain.

This resulting in 300,000 samples for model inference overall with 10,000 samples for

each chain and 30,000 samples for each of imputed datasets. The MCMC algorithm is

implemented using the CARBayesST package (Lee et al., 2018) in R (R Core Team,

2014).

6.5.1 Convergence diagnostic

The method of Gelman-Rubin (Gelman and Rubin, 1992) and trace plots assessment

are used to diagnose the convergence of the posterior samples. Figures 6.5 and 6.6

illustrate trace plots of selected parameters from the models with two different grid

sizes from one imputed dataset. The figures show that there is no clear pattern in the

plots which indicates that the chains appear to have converged. Furthermore, the trace
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plots for the other parameters and other nine datasets are very similar, therefore they

are not shown. The results from the Gelman-Rubin are less than 1.1 for all selected

parameters, which indicate good mixing of the chain.

(a) β (b) τ2

(c) σ2 (d) ρ

(e) δ(G1) (f) φ(G1)

Figure 6.5: Traceplots of MCMC samples for selected parameter (grid of size 1,000m).
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(a) β (b) τ2

(c) σ2 (d) ρ

(e) δ(G1) (f) φ(G1)

Figure 6.6: Traceplots of MCMC samples for selected parameters (grid of size 500m).

6.5.2 Sensitivity analysis

In order to examine that the posterior samples are not affected by the choices of

hyperparameter, three sets of hyperpriors for the variances of random effects (τ 2, σ2)

from 6.4.2 are selected for sensitivity analysis as follows:

1. Scenario 1 - τ 2, σ2 ∼ Inverse-Gamma(1, 0.01).

2. Scenario 2 - τ 2, σ2 ∼ Inverse-Gamma(0.01, 0.01).

3. Scenario 3 - τ 2, σ2 ∼ Inverse-Gamma(0.05, 0.0005).
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Figures 6.7 and 6.8 show the relationship plots of the estimated risks among scenarios

in the years 2013 to 2016 for grid squares of sizes 1,000 and 500 metres. The figures

present that the estimated risks for each year lie on the straight line across scenarios,

which indicates that different hyperpriors do not change the posterior distributions.

Therefore only one hyperprior setting is used for the model inference, here Scenario 1

is randomly selected.

(a) 2013 (b) 2014

(c) 2015 (d) 2016

Figure 6.7: The estimated risks scatter plots of scenarios 1 - 3 for the years 2013 - 2016
(grid of size 1,000m).

6.5.3 Posterior predictive check

The predictive posterior checking is conducted in order to investigate an appropriate-

ness of the models to the data. Since the true data at the grid level are unknown,

therefore the simulated grid level data (from the model) are aggregated to the areal

unit level and compare to the observed data at the areal unit level. Figure 6.9 indicates

that the aggregated data and the observed data at the grid level are similar since the
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(a) 2013 (b) 2014

(c) 2015 (d) 2016

Figure 6.8: The estimated risks scatter plots of scenarios 1 - 3 of Models 2 and 3 (grid
of size 500m).

data fairly lie on the straight line for both grid square sizes. These results suggest that

the model fits the data quite well.

6.5.4 Main results

Recall that the three questions that I would like to address are:

i) What is the average trend over time of respiratory disease risk across the Greater

Glasgow and Clyde Health Board area?

ii) How has the respiratory disease risk in each part of Glasgow changed over time

in the Greater Glasgow and Clyde Health Board area from 2013 - 2016?

iii) How are the health inequalities changing over time in the Greater Glasgow and

Clyde Health Board area for respiratory disease risk?
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(a) grid of size 1,000m (b) grid of size 500m

Figure 6.9: Posterior predictive checks.

Figures 6.10 to 6.12 present the estimated respiratory disease risk in each area across

the Greater Glasgow and Clyde Health Board between the years 2013 and 2016 at

the IZ scale and grid scales (1,000 and 500 metres). Overall the spatial patterns of

the estimated disease risks are similar for all scales and for each year. The correlation

coefficients between the risk estimates for each year are between 0.94 and 0.99, suggest-

ing very similar spatial surfaces each year for all three spatial scales. The areas with

higher risk are amongst the most deprived areas in Glasgow, for example Clydebank

and Paisley. In contrast, the areas with lower risk correspond to the affluent areas such

as Clarkston and Newton Mearns.

Parameters estimation

Table 6.1 shows the estimates for the parameters from the model of Bernardinelli et al.

(1995) given by (6.4.1) and (6.4.2) and their 95% credible interval at the IZ level

and grid square level with grid sides of lengths 1,000 and 500 metres. The estimates

are obtained from the median of the posterior samples for each parameter, and the

95% credible intervals are taken from the 2.5% and 97.5% of their posterior samples.

Overall the variances of the random effects (τ 2, σ2) at the IZ level are greater than at

the grid square level (both sizes), which means that the spatial patterns in the risks

and risk trends are more similar to those in neighbouring units at the grid square scale

compared to the IZ level. This is because the finer spatial scales related to neighbours

that are closer together, hence are more similar. The estimates for ρ are larger at the
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6. Spatio-temporal model at the grid level

Table 6.1: Parameters estimates and their 95% credible interval at the areal unit level
and grid level (1,000 and 500 metres)

Parameter Scale
IZ 1000m 500m

τ 2 0.263 (0.209, 0.327) 0.188 (0.161, 0.220) 0.090 (0.081, 0.099)
σ2 0.069 (0.042, 0.114) 0.022 (0.012, 0.036) 0.014 (0.008, 0.022)
ρ 0.763 (0.559, 0.928) 0.979 (0.944, 0.997) 0.999 (0.995, 1.000)
λ 0.136 (0.105, 0.467) 0.949 (0.805, 0.994) 0.991 (0.961, 0.999)

grid scales than the IZ scale, suggesting on increased level of spatial smoothness due

to the units being smaller and hence closer together. Furthermore, the corresponding

estimates of the spatial autocorrelations (λ) in the time trends at the IZ level is only

0.136 compared to 0.991 for grid squares with sides of length 500 metres. This is again

because neighbouring units at the grid level are closer together than those at the IZ

level, and hence have more similar risk trends.

Temporal pattern over time

In order to answer Questions (i) and (ii) in Section 6.5, the relative risk (RR) is used

to measure how respiratory disease risk has changed in the Greater Glasgow and Clyde

Health Board area from 2013 to 2016. Here, I compute the relative risk for each grid

square Gj from year t to the next year t + 1 to estimate the relative change in risk

for a one year change, RR(t,t+1)(Gj). Based on the Bernardinelli model (6.4.1), the

RR(t,t+1)(Gj) is computed as
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RR(t,t+1)(Gj) =
R(t+1)(Gj)
Rt(Gj)

=
exp[α + φ(Gj)] exp

[
(β + δ(Gj))

(
t+1−t̄
N

)]
exp[α + φ(Gj)] exp

[
(β + δ(Gj))

(
t−t̄
N

)]
=

exp[α] exp[φ(Gj)] exp
[
β
(
t+1−t̄
N

)]
exp

[
δ(Gj)

(
t+1−t̄
N

)]
exp[α] exp[φ(Gj)] exp

[
β
(
t−t̄
N

)]
exp

[
δ(Gj)

(
t−t̄
N

)]
=

exp
[
βt
N

]
exp

[
β
N

]
exp

[
−βt̄
N

]
exp

[
δ(Gj)

(
t
N

)]
exp

[
δ(Gj)

N

]
exp

[
δ(Gj)

(
− t̄
N

)]
exp

[
βt
N

]
exp

[
−βt̄
N

]
exp

[
δ(Gj)

(
t
N

)]
exp

[
δ(Gj)

(
− t̄
N

)]
= exp

[
β

N

]
exp

[
δ(Gj)
N

]
.

(6.5.1)

This relative risk indicates the yearly rate change in the risk for respiratory disease

in each grid square. Therefore the overall trend in respiratory disease risk over time

[Question (i)] can be computed by averaging the relative risks over all grid squares

via 1
m

∑m
i=1

(
exp

[
β
N

]
exp

[
δ(Gj)

N

])
. The posterior distribution of this quantity can be

obtained by firstly computing the relative risk values from (6.5.1) for all grid squares

and posterior samples. Then compute the mean of those values over all grid squares as

above for each MCMC sample. Then compute the posterior median as a point estimate

and take the 2.5 and 97.5 percentiles as the 95% credible interval. Here I compare the

relative risk at the three scales which are IZ scale and grid scales of sides 1,000 and 500

metres. For the relative risk at the IZ level, it can be computed in the same manner

as the grid level via (6.5.1) but using the IZ data instead of grid data. Overall they

produce similar results which are presented in Table 6.2. The point estimate of the

yearly rate change in respiratory disease risk across the Greater Glasgow and Clyde

Health Board at the IZ level is 1.029 which means that the respiratory disease risk in

Glasgow is increasing by 2.9% every year. While the rate change at the grid level for

both sizes are similar which is approximately 1.04. In other words, the risk is rising by

4% which is slightly higher than the IZ level. However these increasing between two

scales are not statistically significant since their 95% CI overlap.
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Table 6.2: Annual changes in disease rates and their 95% credible interval.

Scale Relative risk
IZ 1.029 (1.023, 1.036)
1,000 m 1.042 (1.034, 1.051)
500 m 1.043 (1.035, 1.052)

In addition, the annual rate changes in the risk of respiratory disease in each area [Ques-

tion (ii)] are illustrated in Figure 6.13 which includes all three scales; IZ level and grid

square sides of lengths 1,000 and 500 metres. The spatial maps show similar patterns

of respiratory disease risk trend in Glasgow for all three scales. However, the IZ level

produces a discrete spatial map since it is assumed that the risk is constant within each

IZ. While the grid sides of lengths 1,000 and 500 metres produce closer approximation

to a pseudo continuous map over Glasgow with the latter being a closer approximation.

The spatial maps show that there are areas with increasing (RR(t,t+1) > 1) respiratory

disease risk trends and also areas with decreasing (RR(t,t+1) < 1) trends. The IZ level

produces the biggest range in the risk trend (0.900 - 1.153), while the grid scales at

1,000 and 500 metres produce smaller ranges by (0.948 - 1.111) and (0.983 - 1.071)

respectively. Furthermore 82.88% of the IZs have an increased trend in the risk, while

98.36% for the grid square size 1,000 metres and 98.97% for the grid square size 500

metres exhibit increased trends. However, these increases are considered statistical sig-

nificance by 22.57% for the IZ level and 28.02% and 32.03% for the grid squares of sizes

1,000 and 500 metres respectively. While there is no statistically significant decrease

for areas with decreased trend at all scales. These results indicate that roughly 30%

of all areas in Glasgow are getting worse in respiratory disease risk. In summary, the

areas with highest increased trend are Paisley, Bishopbriggs and Barrhead.

Health inequalities

In order to examine how health inequalities change over time in the Greater Glasgow

and Clyde Health Board area for respiratory disease risk [Question (iii)], Figure 6.14

shows boxplots of the yearly estimated respiratory disease risks for all three scales from

2013 to 2016. The numbers in red on the top of this figure are the spatial interquartile
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(a) Intermediate zones

(b) Grid sides of length 1000 metres

(c) Grid sides of length 500 metres

Figure 6.13: Maps of yearly rate change for respiratory disease risk across the Greater
Glasgow and Clyde Health Board.
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range (IQR) and their 95% credible intervals, which are used to measure the variabil-

ity in the risk for each year and can be calculated as the difference between upper

and lower quartiles. Therefore, I use IQR to measure health inequalities in this study.

These IQR values increase over time for all scales, for example the IQR for the grid

size 1,000 metres in 2013 is 0.585 compared to 0.638 for 2016. This means that health

inequalities in Glasgow are increasing over time, which is a consistent finding regardless

of the spatial scale considered. However, these increases are not statically significant

for all scales since their 95% CIs are overlapping.

The average estimated respiratory disease risks at the grid level in each year seem to

be lower than those at the IZ level as presented in Figure 6.14. This is because the

areal units with low values of SIR are more likely to be geographically large rural IZs,

while areas with high values of SIR tend to be geographically small urban IZs. Conse-

quently, when the areal disease data are imputed onto the grid square level, the areas

with low risk which are geographically large, have more grid squares to allocate the

areal disease counts to. Meanwhile, areas with high risk often tend to be geographi-

cally small, and thus have fewer grid squares to allocate the areal disease counts to.

Therefore, the proportion of grid squares which are estimated to have low risk will be

much larger than the proportion of IZs which have low SIRs. This results in the median

disease risk being lower when the areal unit level data are transformed to the grid level.

6.6 Conclusion

This chapter aimed to investigate the variation in respiratory disease risk at the grid

level over the Greater Glasgow and Clyde Health Board, and compare the results from

the grid level data with the commonly used technique to estimate disease risk at the

IZ level. The spatio-temporal model used to achieve these aims is proposed by Bernar-

dinelli et al. (1995). This model includes two pairs of parameters; one which controls

the spatial pattern and one which controls the temporal trend. Each pair consists of a

global fixed effect and a set of random effects which follow a conditional autoregressive

model. The model was applied to data on the annual numbers of hospital admissions
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(a) Intermediate zones

(b) Grid sides of length 1000 metres

(c) Grid sides of length 500 metres

Figure 6.14: Boxplots of respiratory disease risk at the grid level across the Greater
Glasgow and Clyde Health Board from 2013-2016.
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for respiratory disease in the Greater Glasgow and Clyde Health Board from 2013 to

2016. The results obtained at the IZ level indicate that the main drawback is the risk

estimates are assumed to be constant within each IZ, which is not necessary realistic.

Therefore I overcome these problems by proposing novel models which estimate the

disease risk on a pseudo-continuous spatial surface using a grid based approach. This

allows risk to vary within each IZ. As these grid squares get smaller this results in a

pseudo-continuous spatial risk surface.

In order to make inference at the grid square level, the IZ data were transformed onto

the grid level before fitting the model. The method of grid level transformation was

presented in Section 6.2. Overall the estimated spatial patterns in respiratory disease

risk are similar for all scales and also for each year, and the areas with higher risks tend

to be the more deprived areas. This finding is similar to those obtained in Chapters 3

- 5. However the IZ level produces the discrete spatial map of the risk estimates, while

the grid level produces the pseudo-continuous map which is smoother than the IZ level.

A relative risk is used to identify the overall trend in respiratory disease risk, as well as

individual trends for each grid square. The overall risk for the whole region is increas-

ing by 4% every year. Furthermore, more than 95% of all grid squares have increasing

disease risks, which means that the majority of areas in Glasgow are getting worse

in respiratory disease risk. Note that there are approximately 30% of grid squares

are statistically significant increase over time. In order to investigate how health in-

equalities change over time, the IQR is computed to measure these inequalities. The

results showed that health inequality in the Greater Glasgow and Clyde Health Board

remains unchanged over years 2013 to 2016 due to the 95% credible intervals of IQRs

are overlapping.

This methodology allows me to estimate the overall trend in disease risk, as well as

individual trends for each area. However there are only four time points for each grid

square, which is clearly a drawback of this study. Therefore the only relationship that

could sensibly be specified to describe change in the data over time is a linear relation-

ship, as more complex trends are not reasonable given the short temporal duration.
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Future work could include more time points to obtain more accurate results. This study

could also be adopted for other diseases, as a single disease does not comprehensively

measure health inequalities. Therefore multiple diseases could also be considered for

future study.
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Chapter 7

Conclusion

The main focus of this thesis was to measure health inequalities in the Greater Glasgow

and Clyde Health Board and examine how they changed over time. These issues have

been around for a long time and the Scottish Government and health authorities have

tried to minimise the health inequality gap. Glasgow was chosen since it has the

lowest life expectancy of all major cities in the UK (Walsh et al., 2016). There have

been several studies focusing on health inequality in Glasgow which were discussed in

Chapter 1. Generally, the study region is split into non-overlapping areal units and then

disease risk is estimated for people living in each areal unit, via different approaches

e.g. SIR and CAR models. The SIR approach generally produces an unstable estimates

disease risk when the population in the study areas is small or the disease being studied

is rare. To tackle this problem, a Poisson generalised linear model with random effects is

commonly used to estimate the disease risk in each area. These random effects account

for the spatial autocorrelation that typically present in spatial data and are normally

modelled via CAR models. Such an approach, however assumes a constant disease risk

within each area, which is not necessarily realistic especially in the rural areas which

normally have larger areal units than urban areas. In addition, boundaries of the

study region are arbitrary and can be changed over time, therefore the results cannot

be directly compared between these two (or multiple) sets of boundary. Moreover, this

existing approach estimates the risk where no people live e.g. mountain and field, which

is not reasonable. Therefore, this study aimed to overcome this challenge by creating

a set of grid squares over the study region and trying to make an inference only on

the grid square with non-zero population. This novel approach also overcomes the
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modifiable areal unit problem which is the most common issues related to aggregated

spatial data. Furthermore, when the grid squares become smaller the inference will get

closer to an individual level which avoid an ecological fallacy problem.

7.1 Summary

In Chapter 3, a spatial model was proposed for quantifying health inequalities in the

Greater Glasgow and Clyde Health Board at the areal unit level utilising Poisson log-

linear CAR models. This chapter presented the standard Leroux CAR method that is

commonly used in existing studies. This model was applied to the hospital admission

numbers for respiratory disease in the years 2015 - 2016. It was found that the areas

with higher risks were deprived areas such as Clydebank and Paisley. Conversely, the

areas with lower risk are wealthier areas such as, Bearsden, Clarkston, and Eaglesham.

These results indicated that people living in more deprived areas are more likely to

be hospitalised for respiratory disease than those living in wealthier areas. This is

because people in poor areas are more likely to drink, smoke, do less physical activity,

and consume unhealthy food which are the main factors related to respiratory disease

(Pampel et al., 2010; World Health Organization and others, 2007). There were how-

ever two main concerns in this study, which are that disease risks were estimated in

areas where no people live, and a constant disease risk within each area or IZ is assumed.

Chapter 4 tackled these challenges by estimating pseudo-continuous risk patterns over

the Greater Glasgow and Clyde Health Board. This approach created grid squares

across the study region, and aimed to estimate disease risks for each grid square. It

was not sensible to estimate the risk in areas where nobody lives, therefore grid squares

with zero population were removed. The areal unit data were transformed to the grid

level scale and then used to fit the spatial CAR model proposed by Leroux et al. (2000)

to quantify the spatial variation in disease risk at the grid level. The expected disease

counts at the grid level were estimated based on population density in each grid square,

while the disease counts were estimated via multinomial sampling steps. The proba-

bilities in the multinomial sampling depended on the expected disease counts in the

intersection areas between each IZ and each grid square, which were unknown. There-
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fore, they were estimated using the area of intersection between each grid square and

each IZ, and the expected counts and disease risks in each grid square. The latter were

unknown but were estimated by two possible methods; the naive method assumed a

constant risk over all grid squares (Model 2), and the second method estimated the

risks via kriging (Model 3). These proposed models were tested on their performance

via a simulation study including the reference model (Model 1) which was fitted to the

true simulated grid level data. Simulated data of grid squares sides of lengths 1,000

and 500 metres were used in the simulation study. According to the simulation results,

Model 3 was the better model to estimate disease risk at the grid level since it produced

unbiased estimates and smaller RMSE compared to Model 2. This is because the initial

estimates of disease risk for each grid square in the multinomial sampling steps were

estimated via kriging, which is more realistic than assuming constant risk across the

study region (Model 2). Hence, the number of disease cases in each grid square were

closer to the true grid level disease cases than the latter. Model 2 however produced

slightly less RMSE values than Model 3 when estimating regression parameter related

to unknown grid level covariate. In addition, both models produced bias estimates for

regression parameter related to the true grid level covariate, therefore multiple impu-

tation approach is not recommended when the aim of a study involves to the true grid

level data. Overall, Model 3 is the better choice when multiple imputation has been

chosen and it is therefore used as a comparative model in Chapter 5.

Chapter 5 introduced a novel data augmentation method to estimate the disease counts

at the grid level, which allowed for uncertainty when estimating disease risk and model

parameters. Data augmentation basically has two iterative steps. The first step esti-

mates disease counts at the grid level via multinomial sampling based on aggregated

disease counts at the areal unit level and the current values of the grid level model

parameters. Then in the second step, all model parameters are updated based on the

estimated grid level disease counts from the previous step. These two steps are iterated

within an MCMC algorithm to estimate the disease risks at the grid level. There were

two new models proposed in this chapter, the standard intrinsic CAR model (Model

4) was fitted to the estimated grid level data, while Model 5 estimates the variance

of random effects via empirical Bayes and fixes it throughout the process in order to
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reduce the variation in the estimated risks. The performance of each model was tested

via a simulation study in the same manner as Chapter 4 where 100 datasets were gener-

ated in this study. Since some simulated datasets for Model 4 produced non-converged

MCMC chains, leading to unstable results therefore more than 100 datasets were gen-

erated in order to obtain 100 converged datasets for this model. The results indicated

that Model 4 is not recommended when data augmentation is used since it produced

unstable disease risk estimates. Overall Model 5 (data augmentation) performed bet-

ter than Model 3 (multiple imputation) when estimating regression parameters since

it produced unbiased estimates and smaller RMSE values. While Model 3 performed

slightly better when estimating disease risk at the grid level since it produced smaller

RMSE values.

In Chapter 6, the spatial model was extended to measure health inequalities in the

Greater Glasgow and Clyde Health Board over time via a multiple imputation ap-

proach since the results in Chapter 5 suggested that such approach is better than data

augmentation if the main aim is to estimate disease risks. The spatio-temporal model

used to achieve the goal was proposed by Bernardinelli et al. (1995), which is appropri-

ate for spatial data over short time periods since the model assumes a linear trend in

the disease risks over time which is all that can sensibly be estimated with so few data

points over time. Therefore the model was suitable for data used in this chapter, which

were yearly counts of the hospital admission number for respiratory disease between

the years 2013 and 2016 (4 time points).

7.2 Main findings

The novel approach introduced in this thesis was pseudo-continuous grid level disease

risk modelling using both multiple imputation and data augmentation approaches.

Each approach has advantages in different circumstances according to the simulation

results. Data augmentation performed better when estimating regression parameters

in both types of covariate which are the true known covariate at the grid level and

a covariate that has been disaggregated to the grid level. While multiple imputation

performed better when estimating disease risks at the grid level. Therefore the choice
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of selection between these two approaches should be made based on the objectives of

the study. Data augmentation is likely to perform better when the main aim of the

study is to identify factors related to the disease risks in each area, while the multiple

imputation approach is likely to be more appropriate if the estimation of disease risk

is the main purpose.

Grid squares size of 500 metres generally produced similar risk patterns to the grid

squares size of 1,000 metres, however the latter produced better estimates for all model

parameters and disease risks at the grid level regarding RMSE values across scenar-

ios. This is because the grid square of size 1,000 metres have fewer data points to be

estimated than grid squares of size 500 metres (853 vs 3,106 grid squares), therefore

the results were more accurate than the latter. However, the finer grid squares pro-

duced closer to continuous disease maps, which means that when the grid size enlarges

it causes the disease maps to be more discrete and pixelated. There is a trade off

between a continuous disease map and more accurate estimates of disease risk, if the

grid squares are too big, they might cover two areas with completely different disease

risks. Conversely, if the grid squares are too small, they might cover too many areas

with homogeneous disease risks, which could lead to less accurate estimates and higher

computational demand.

Each model was applied to respiratory disease data in the Greater Glasgow and Clyde

Health Board area in order to illustrate the spatial variation in disease risks and identify

areas of higher and lower risks. Both approaches produced similar patterns of estimated

disease risks. The areas of higher risks are in the east and the north of Glasgow city

centre such as Easterhouse, Drumchapel and Possilpark, which are deprived areas of

the city. In contrast, the areas with lower risks are in south-west and west of the city

centre such as Newton Mearns, Kelvinside and Jordanhill which are prosperous parts

of the city. These results suggested that people living in poorer areas are facing higher

risks than those living in more affluent areas. Furthermore, the results from the spatio-

temporal model in Chapter 6 indicated that the overall disease risk was increased by 4%

per year, and approximately 30% of the areas in Glasgow were statistically significant

increased in the disease trend which means that they were getting worse in terms
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of respiratory disease. This is corresponding to the trend in respiratory mortality

rates for the years 2010 to 2016, which is slightly increasing, while other diseases (e.g.

cancer, Coronary heart disease, and Cerebrovascular disease) are decreasing over time

(National Records of Scotland, 2016a). It is the fact that people will die from some

diseases even after health care policies have been improved. Therefore when the trends

of other diseases risks decrease, it is more likely that respiratory disease risk increases

over time. Moreover, health inequality in respiratory disease in Glasgow was also

slightly widening every year which is measured by IQR. However these inequality is

not statistically significant increases due to their 95% credible interval are overlapping.

This result corresponds to the Scottish health survey in 2016 (National Records of

Scotland, 2016b) which shows that the gaps in the amount of tobacco smoking and

alcohol consumption between people living in the most and least deprived areas are

widening in Scotland.

7.3 Limitations and future work

There are some limitations to this study, both in terms of the proposed methods and

our data. From a data perspective, there were only four time points (2013 - 2016)

used in Chapter 6 which were purchased from NHS Scotland. Thus, the only trend

in disease risks over time that can be assumed was a linear relationship. If the data

could be obtained over a longer period of time, a more complex relationship could be

considered as well as a choice of spatio-temporal models. Furthermore, our disease

data are in the same original IZs every year but these novel methods can be utilised to

solve the modifiable unit areal unit problem that was described in Chapter 4, where

the boundaries of the IZs can be changed over time. Specifically, in the year 2011 the

Scottish Government decided to redraw the boundaries of the data zones and therefore

if the disease data could be obtained before 2013, our novel approaches could also be

used to carry out comparable inference across both set of IZs, something which has not

previously been easily possible.

Future work could involve extending these methods to larger areas e.g. Scotland and

the UK. However, there were already 3,106 grid squares (size of 500 metres) in the
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Greater Glasgow and Clyde Health Board alone and therefore the larger area scale

could lead to a huge number of grid squares. This could lead to computational infea-

sibility since there would be many data points and model parameters being estimated.

This is one reason that only one health board area was selected in this study. However

one way that we could overcome this problem is adopting an approach with non-uniform

grid square sizes. Specifically, IZs with small areas (e.g. in the cities) could be given

smaller grid squares (e.g. 500 metres), while IZs with large areas (e.g. rural) could be

given larger grid squares (e.g. 5,000 metres). This also reduces a problem relating to

computational demand. Note that the grids would not necessarily be a regular grid

square (e.g. rectangle).

For the multiple imputation approach, disease counts in each grid square were esti-

mated once before fitting a spatial model as described in Chapter 4. Therefore this

approach does not allow for uncertainty in disease counts at the grid square level,

hence if the estimated grid level disease counts are not accurate, this could lead to

unreliable results. However, this issue was tackled by the data augmentation approach

which is outlined in Chapter 5 by updating the disease cases and model parameters in

the MCMC steps simultaneously. These approaches can be applied to disease counts

relating to non-overlapping areas (e.g. IZ) since the estimation of grid level data are

based on the intersection areas between each grid square and each IZ. However, they

could not be utilised for data with overlapping areas or unknown boundary areas, for

example, general practice (GP) surgeries where doctors prescribe general medication

and provide a prescriptions for non-severe patients. Patients do not necessarily attend

the nearest surgeries, especially in urban areas where there are multiple competing

surgeries in close proximity. This could be studied in more details in a future study.

A validation analysis is an essential method to confirm the acceptable model inference,

however this analysis is not carried out since I do not have a second source of the data

that can measure the same thing as the data used in this study. Furthermore, in this

study a single disease was applied to measure health inequality in the Greater Glasgow

and Clyde Health Board. However, measuring health inequalities between populations

in difference areas is an extremely complex issue, therefore a single disease may not be
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sufficient to identify overall health inequalities. Future work could extend this simple

approach, univariate disease risk modelling to a more realistic multivariate approach

to further investigate how health inequalities change over time.

In conclusion, this thesis aims to measure health inequalities in the Greater Glasgow

and Clyde Health Board and investigate how they changed over time. The models

used in this study are based on the conditional autoregressive models and the proposed

approaches to estimate disease risks at the grid level which are multiple imputation and

data augmentation. These approaches are compared via simulation studies and then

applied to the real data which are the number of hospital admissions for respiratory

disease. The novelty of this work is to create a pseudo - continuous risk surface across

the study region in order to overcome the problems of the existing works such as the

areas with zero populations being removed before estimating disease risks and constant

risk in each area (intermediate zone) is not assumed. Multiple imputation outperforms

other options considered when the objective of the study is to estimate disease risks

at the grid level, while data augmentation is preferable for the study involving with

the grid level covariate. There are however some limitations of this work which are

mentioned above, as well as the future works that could overcome the limitations.
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