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Abstract 

Sensory consequences of one’s own voluntary action are perceived as less intense than 

externally initiated sensations. This process is referred to as sensory attenuation. This 

sensory attenuation has been identified in humans and animals across various modalities, 

including visual, auditory and somatosensory domains. The auditory sensory attenuation is 

explored by comparing the auditory N/M100 amplitude between self- and external-initiated 

conditions. The focus of auditory sensory attenuation is mainly on the primary auditory 

cortex and the superior temporal cortex, while emerging evidence indicates that the sensory 

attenuation is present in broader brain area. Moreover, the generation of sensory attenuation 

relies upon the precise coordination of the motor system with sensory areas. However, 

sensory attenuation across the whole brain and the underlying neural interaction between 

brain areas remain underexplored. Importantly, failure in sensory attenuation is considered 

to play a role in clinical psychotic symptoms, such as auditory hallucination and illusion. 

This has been confirmed in chronic schizophrenia (ScZ), possibly resulting from disrupted 

frontal-temporal coordination during generating sensory attenuation. However, it currently 

remains unclear whether deficits in sensory attenuation emerge before the prodromal phase 

of psychosis, as well as what aberrant neural mechanism underlie emerging psychosis. 

 

Given previous studies based on electroencephalogram(EEG) technology, the current thesis 

aimed to employ magnetoencephalography (MEG) to examine auditory M100 sensory 

attenuation. MEG-data were collected from 48 healthy controls (HC), 110 clinical high-risk 

psychosis (CHR), and 26 first-episode psychosis (FEP) participants during an auditory task 

in which pure tones were either elicited through a button press or passively presented. 

Auditory M100 event-related fields (ERFs) were recorded to assess auditory M100 sensory 

attenuation at the sensor- and source-level. The first aim was to map the sensory attenuation 

effect across the whole brain and further explore the association between motor-related 

activity and auditory sensory attenuation. Dynamic causal modelling (DCM) was also 

employed to determine the top-down and bottom-up modulation to determine the 

underpinning neural mechanism during sensory attenuation generation (Chapter 3). 

Subsequently, we focused on the auditory regions to address the sensory attenuation 

characteristics in emerging psychosis and its association with clinical features and cognitive 

functions. The goal was to address whether the sensory attenuation deficit could be regarded 

as a potential biomarker for early identification of psychosis  
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(Chapter 4). Finally, DCM was employed to explore the alteration of neural interactions 

across the sensory attenuation network in emerging psychosis and investigate the aberrant 

neural mechanism of sensory attenuation (Chapter 5). 

 

The findings in Chapter 3 revealed that auditory M100 sensory attenuation was present in 

spatially distributed brain areas, involving various subcortical-cortical areas. In addition, the 

current results supported the modulation of motor-related activity with auditory sensory 

attenuation. The results from DCM further indicated the role of both top-down and bottom-

up modulation of a thalamo-cortical network in generating auditory sensory attenuation. The 

results in Chapter 4 demonstrated impaired auditory M100 sensory attenuation in FEP and 

indicated that aberrant sensory attenuation emerged in the prodromal phase of psychosis. 

Moreover, the sensory attenuation effect in the auditory cortex was linearly associated with 

clinical symptom severity and cognitive performance. Finally, the DCM results in Chapter 

5 suggested that the impaired sensory attenuation in FEP-participants originated from 

imprecise top-down control and subsequently enhanced bottom-up input (prediction error). 

The deficits in top-down control in CHR-individuals were not strong, while CHR 

participants were characterized by increased bottom-up inputs, which was intermediate 

between HC and FEP. Collectively, the results of this thesis suggested impaired auditory 

sensory attenuation in emerging psychosis, resulting from aberrant top-down and bottom-up 

interaction. This provides evidence that the auditory M100 sensory attenuation could be a 

potential candidate for the early detection of psychosis.  
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 A general introduction to 
schizophrenia and clinical high-risk psychosis 

1.1 Introduction  

Schizophrenia (ScZ) is a chronic and disabling mental disorder affecting 20 million people 

worldwide (James et al., 2018). The lifetime prevalence of ScZ is approximately 1% with a 

peak onset during adolescence or early adulthood in males and 3-4 years later in females 

(Gore et al., 2011). Quantitative and qualitative analyses revealed that sustained recovery 

for at least 2 years in ScZ was about 13.5% (8.1%–20.0%). Less than 20% of ScZ patients 

were employed in Europe (Marwaha et al., 2007) and data from the USA suggested that 20% 

of ScZ patients became homeless after a one-year follow-up (Folsom et al., 2005). 

Consequently, ScZ causes significant social and economic costs (Cloutier et al., 2016). In 

2010, psychotic disorders cost the UK and EU economies €16,717 and €93,927 respectively 

(in million € purchasing power parity (PPP)) (Gustavsson et al., 2011).  

 

ScZ was first described as ‘dementia praecox’ (Kraepelin, 1971) and Bleuler coined the 

name ScZ in the early twentieth century (Bleuler, 1950). The International Classification of 

Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders (DSM) 

categories the symptoms of ScZ into positive and negative symptoms (Association, 2013). 

Positive symptoms include hallucinations and delusions, while negative symptoms include 

affective blunting, alogia (poverty of speech), avolition (an inability to initiate and persist in 

goal-directed activities), and anhedonia. Additionally, a third cluster has been proposed in 

DSM-V, a disorganization syndrome, consisting of poor attention, mannerisms and 

posturing, conceptual disorganization, difficulty in abstract thinking, and disorientation 

(Brekke, DeBonis, & Graham, 1994; Liddle, 1987). Both negative and disorganization 

symptoms are more strongly associated with cognitive impairments than positive symptoms 

(Cuesta & Peralta, 1995).  

 

1.2   Pathogenesis of ScZ  

1.2.1 Pathophysiology of ScZ 

The pathophysiology of ScZ involves alterations in several neurotransmitter systems. 

Among these, the dopamine hypothesis has received considerable attention, and medications 

targeting aberrant dopaminergic activity remain the main pharmacological intervention. 
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However, during the last two decades, the interaction of the dopamine system with other 

neurotransmitter systems, such as the glutamate and γ-Aminobutyric acid (GABA) system 

has given way to a more comprehensive and diverse view on aberrant neurotransmitter-

systems in ScZ.   

 

 Dopamine hypothesis 

Evidence of dopamine (DA) involvement in ScZ developed in the 1950s with the discovery 

of reserpine, from the plant Rauwolfia serpentina that was approved for antipsychotic use in 

1955 (Hollister, Krieger, Kringel, & Roberts, 1955) and it was soon discovered to block the 

accumulation of DA (Carlsson, Lindqvist, & Magnusson, 1957). As a result, Carlsson et al 

(1959) speculated an imbalance in DA release might underlie psychosis. Further support for 

this hypothesis came from studies with the dopamine agonist amphetamine, which could 

induce psychotic symptoms similar to those in ScZ (for a review see (Lieberman, Kane, & 

Alvir, 1987)).   

 

Substantial evidence from genetic, molecular, and post-mortem studies have implicated 

hyperactivity of dopamine in ScZ, particularly in subcortical brain regions, including striatal 

areas, ventral tegmental area, and substantia nigra. With the aid of autoradiographic 

techniques, post-mortem studies revealed altered DA receptors in  ScZ patients, located in 

nucleus caudate, putamen, and nucleus accumbens (Owen et al., 1978), particularly 

involving D2 receptors (Cross, Crow, & Owen, 1981). Moreover, modifications to the 

dopamine theory have implicated reduced dopaminergic neurotransmission in the neocortex, 

particularly in prefrontal regions, to account for the negative symptoms and impairments in 

cognition (Davis, Kahn, Ko, & Davidson, 1991; Goldman-Rakic, Castner, Svensson, Siever, 

& Williams, 2004; Tamminga, 2006). Consistent with post-mortem studies, studies using 

positron emission tomography (PET) and single-photon emission computed tomography 

(SPECT) confirmed increased D2 receptor density in subcortical areas (e.g., striatum) (Abi-

Dargham et al., 1998; Davis et al., 1991; Laruelle, 1998; Laruelle, Abi-Dargham, Gil, 

Kegeles, & Innis, 1999).  

 

Furthermore, increased dopamine activity in patients with ScZ could result from increased 

DA synthesis, DA receptors, or DA projection (Howes, McCutcheon, & Stone, 2015).  

Advanced neuroimaging techniques provided alternative approaches to explore dopamine-

related neurochemical features in the DA system. Accumulation of [18F] or [11C]-labelled 

3,4-dihydroxyphenylalanine (DOPA) was used to test DA synthesis. Although inconsistent 

https://www.sciencedirect.com/topics/neuroscience/ventral-tegmental-area
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results of increased dopamine were reported, Lyon et al. (2009)  found enhanced 

accumulation of [18F] DOPA or [11C] DOPA in the striatum, caudate, and putamen of 

patients providing evidence of increased synthesis (Lindström et al., 1999) and release of 

dopamine at the presynaptic level (Howes & Kapur, 2009) in ScZ patients. Interestingly, 

studies revealed increased subcortical synaptic dopamine density and basal dopamine 

synthesis in participants at clinical high-risk for psychosis (CHR) (Egerton et al., 2013; P 

Fusar-Poli et al., 2011; Fusar-Poli et al., 2010). Moreover, CHR individuals who converted 

to psychosis displayed greater dopamine synthesis capacity relative to non-converters 

(Howes et al., 2011).  

 

 Glutamate hypothesis  

 In addition to alterations in dopaminergic neurotransmission, aberrant glutamatergic 

activity has been implicated in ScZ (Olney & Farber, 1995), partly through interactions with 

other neurotransmitters, such as dopamine and gamma-aminobutyric acid (GABA)(for a 

review see (Kantrowitz & Javitt, 2010; Poels et al., 2014)).  

 

The principle glutamatergic receptors associated with the pathophysiology of ScZ are 

NMDA- (Stone, Morrison, & Pilowsky, 2007)  and AMPA-receptors (Meador-Woodruff & 

Healy, 2000). The initial studies with NMDA receptor antagonists phencyclidine and 

ketamine demonstrated the clinical positive, negative, and cognitive symptoms of ScZ in 

healthy volunteers (Javitt & Zukin, 1991; Luby, Gottlieb, Cohen, Rosenbaum, & Domino, 

1962). PET/SPECT provided an alternative window to examine the NMDA receptors in 

patients with ScZ, highlighting lower binding rates of specific and nonspecific NMDA 

receptors (Poels et al., 2014), thus indicating hypofunction of NMDA receptors.   

 

In addition to the involvement of the NMDA-receptors in ScZ, the abnormal functioning of 

the AMPA-receptors was also noticed. Harrison et al (1991) and Eastwood et al (1995) 

(1997) reported decreased expression of the mRNA encoding the gluR1 subunit in the medial 

temporal lobe and hippocampal regions. However, findings for the alteration of AMPA-

receptors in cortical (frontal, anterior cingulate cortex) and other subcortical regions 

(caudate, putamen, and accumbens) have yielded inconsistent results (Healy et al., 1998; 

Meador-Woodruff & Healy, 2000; Sokolov, 1998).  
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1.2.2 Genetics hypothesis 

Data from family, adoption, and twin studies provided evidence that ScZ is highly heritable 

(Gejman, Sanders, & Kendler, 2011; Ingraham & Kety, 2000; Franz Josef Kallmann, 1938; 

Franz J Kallmann, 1946).  For example, the offspring of patients with ScZ are 10 times more 

likely to develop psychosis than the general population (for a review see (Kendler & Diehl, 

1993)). Furthermore, twin studies have revealed concordance rates of 40% to 50% for 

monozygotic twins and 11% (3% to 19%)  for dizygotic twins (for a review see (Sullivan, 

Kendler, & Neale, 2003)). With the advent of molecular genetics in the early 1980s, several 

candidate genes were identified. These findings, however, based on affected families or a 

priori-hypotheses, could only test a small number of genes (Risch & Merikangas, 1996), 

resulting in small effect sizes and difficulties in replications (Gejman et al., 2011). The 

ability to map and identify millions of common single nucleotide polymorphisms (SNPs) led 

to the genome-wide association study (GWAS) approach. A recent study with 34,241 cases 

and 45,604 controls identified 108 genes involved in dopamine synthesis, calcium channel 

regulation, immune responses, and glutamate receptors (Ripke et al., 2014).  

 

1.2.3 Neurodevelopmental hypothesis 

Weinberger et al (1987) and Murray & Lewis et al  (1987)  proposed that ScZ has its origins 

in aberrant brain development. This is supported by findings indicating aberrant 

cytoarchitectural data, altered left-right hemispheric asymmetry, and maternal infection (for 

reviews see (Rapoport, 2005, 2012).  

 

One important risk factor during the prenatal period is obstetric complications (OCs) which 

are associated with an odds ratio of 2.0 to develop ScZ (Geddes & Lawrie, 1995; Geddes et 

al., 1999). Furthermore, maternal exposure to infection also increases the susceptibility to 

ScZ (Brown & Derkits, 2009; Mortensen et al., 2007; Pedersen, Stevens, Pedersen, 

Nørgaard-Pedersen, & Mortensen, 2011). In addition, maternal famine during prenatal 

periods is associated with increased risk (St Clair et al., 2005; Xu et al., 2009). Finally, 

longitudinal studies investigating early-onset ScZ, and CHR participants revealed alterations 

of grey matter in frontal, temporal, and subcortical regions, as well as widespread white 

matter abnormalities prominently in the prefrontal regions(Rapoport, 2012). 
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1.2.4 Environmental factors 

A growing body of evidence has offered a new insight into the important role of 

environmental factors in ScZ, particularly involving urbanicity, minorities, trauma, and drug 

abuse. Specifically, there is consistent evidence for a close association between childhood 

trauma and the development of ScZ. For example, both physically and sexual abuse, as well 

as neglecting childhood have been associated with psychotic symptoms, such as auditory 

hallucinations and delusions (Read, van Os, Morrison, & Ross, 2005). In terms of the 

mediating effect of trauma on psychosis, a model has been proposed which integrates the 

hypothalamic–pituitary–adrenal (HPA) axis (Nemeroff, 2004; Read, Perry, Moskowitz, & 

Connolly, 2001) with psycho-social processes (Read, 1997; Read et al., 2005).  

 

Moreover, substance use, including cannabis, alcohol, amphetamine, and cocaine, can 

induce transient psychotic symptoms. The fact that individuals with ScZ have a high 

prevalence of substance use raises the question of whether substance abuse is a causative 

factor for psychosis (Koskinen, Löhönen, Koponen, Isohanni, & Miettunen, 2009; Toftdahl, 

Nordentoft, & Hjorthøj, 2016). Evidence from a Dutch nationwide sample reported robust 

evidence that substance abuse increased the overall risk for ScZ, particularly cannabis and 

alcohol (Nielsen, Toftdahl, Nordentoft, & Hjorthøj, 2017), possibly through increasing 

striatal dopamine level (Jordaan, Warwick, Nel, Hewlett, & Emsley, 2012). In addition, it 

has been suggested that cannabis, in particular the psychotropic component delta-9-

tetrahydrocannabinol (THC), induces acute psychotic symptoms (D'Souza, Cho, Perry, & 

Krystal, 2004) and even exacerbates existing psychotic symptoms (Mathers & Ghodse, 

1992; Thornicroft, 1990).  

 

Interestingly, early evidence indicated that geographical variation, such as urbanicity, 

impacts upon the incidence of ScZ (Hare, 1956a, 1956b). Recent evidence has confirmed 

this association, including several meta-analyses (Kelly et al., 2010; Krabbendam & Van Os, 

2005; March et al., 2008). This association remained even after controlling for various 

confounds, such as social and economic variables (Kelly et al., 2010; Krabbendam & Van 

Os, 2005; March et al., 2008). Although it is not clear which specific factors mediate the 

relationship between urbanicity and ScZ, it is conceivable that environmental factors impact 

childhood and adolescence development in a continuous or repeated exposure pattern  

(Krabbendam & Van Os, 2005). Building upon this evidence, Van Os et al (2009) proposed 

the psychosis proneness–persistence–impairment model of psychotic disorders, whereby 
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exposure to environmental factors shifts individuals from ‘psychosis proneness to ‘psychosis 

persistence’ and subsequently, repeated exposure results in ‘psychosis impairment’.    

 

Finally, the link between immigration and ScZ was first proposed by Ødegaard (1973) 

landmark study investigating Norwegian migrants to the USA. Meta-analyses have 

presented consistency for the correspondence between migration and the risk of ScZ across 

a wide range of approaches, endpoints, settings, and cultural group definitions (Bourque, 

van der Ven, & Malla, 2011; Cantor-Graae & Selten, 2005). The mediating effect of 

migration is not yet explained, although it has been proposed that post-migration factors (e.g. 

cultural bias, the ethnic density of the areas) (Bourque et al., 2011; Cantor-Graae & Selten, 

2005; Veling et al., 2008) and social adversity (Veling et al., 2008) could facilitate the 

development of ScZ.  

 

1.3 Clinical high-risk for psychosis (CHR) 

It has long been acknowledged that the symptoms of ScZ are present before the first 

psychotic episode(Sullivan, 1927), emerging late adolescence, or early adulthood. The 

prodromal phase can be up to 5 years, featured by attenuated subthreshold psychotic 

symptoms (Klosterkötter, Hellmich, Steinmeyer, & Schultze-Lutter, 2001). During the last 

two decades, the clinical view of psychosis has transitioned to characterize the prodromal 

phase of psychosis with the aim of early recognition and prevention of psychosis. More 

specifically, the introduction of  high-risk psychosis criteria in the 1996 formed the milestone 

to operationally identify pre-psychotic phase(Yung et al., 1996), giving rise to ‘at-risk mental 

state’, ‘ultra-high risk’,’ clinical high-risk’ status. The foundation of criteria facilitates to 

identify young individuals (14 to 35 years) who have the risk of developing psychosis.  

Meta-analysis suggests that the median prevalence of subclinical psychotic symptoms in the 

general population is about 5% (Van Os, 2009). In comparison, the rate is a little higher 

among children (9 to12 years old) and adolescents (13 to18 years old) with 17% and 7.5% 

(Kelleher et al., 2012), respectively. The trajectory of developing first-episode psychosis 

(FEP) proceeds through the early at-risk psychosis and later at-risk psychosis state (Häfner 

et al., 2004), which was subsequently refined to the premorbid phase, prodromal phase, and 

psychotic phase (Fusar-Poli et al., 2013) (Figure 1.1). Specifically, the prodromal phase of 

psychosis is defined by basic symptom (BS) criteria and ultra-high risk (UHR) criteria, 

respectively (Fusar-Poli et al., 2013). There is suggestive evidence that BS and UHR are 

proposed sequence of symptom development in the at-risk phase (Schultze-Lutter, 
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Ruhrmann, Berning, Maier, & Klosterkötter, 2010). A few studies compared the different 

characteristics of individuals at various stages of high-risk psychosis, suggestive of 

individuals with BS displayed intermediate neurocognitive performance between healthy 

control (HC) and UHR individual (Frommann et al., 2011), as well as the P300 impairment 

was more pronounced in the later at-risk state than in early at-risk state (Frommann et al., 

2008). Furthermore, the BS and UHR criteria were well-accepted to early recognize CHR 

for the benefit to improve the detection of individuals at risk state of psychosis. Existing 

evidence from meta-analysis suggested that participants who met both BS and UHR criteria 

have more risk to convert to psychosis than UHR criteria only(Fusar-Poli, Cappucciati, 

Bonoldi, et al., 2016).  

 

  

Figure 1.1  The trajectory of psychosis 

The higher the line on the y-axis, the higher the symptom severity(Fusar-Poli et al., 2013). 

 

The concept of BS was proposed by Huber and Gross (1989). BS are self-experienced 

symptoms that involve alterations in perception, thought processes, speech, and attention. 

The first instrument was the Bonn Scale for the Assessment of Basic Symptoms (BSABS) 

(Ziermans, Schothorst, Sprong, & van Engeland, 2011), followed by the Schizophrenia 

Proneness Instrument, adult version (SPI-A)(Schultze-Lutter, Addington, Ruhrmann, & 

Klosterkötter, 2007). The SPI-A classifies BS criteria into two subsets: 1) Cognitive-

Perceptive Basic Symptoms(COPER)(10 cognitive-perceptive BS) and 2) High-risk 

criterion Cognitive Disturbances(COGDIS)(9 cognitive BS) (Schultze-Lutter, Klosterkötter, 

Picker, Steinmeyer, & Ruhrmann, 2007)(Table 1.1).  For COGDIS criteria, the participant 
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has at least two of nine cognitive disturbance BS during the last three months. For COPER 

criteria, the subject has at least one of ten cognitive perceptive BS, which first occurred more 

than 12 months ago and presented within the last three months(Schultze-Lutter, Addington, 

et al., 2007). 

Table 1.1  COGDIS and COPER criteria of SPI-A 

 

Moreover, UHR-criteria includes attenuated psychotic symptoms (APS), brief limited 

intermittent psychotic symptoms (BLIPS), and trait vulnerability plus a marked decline in 

psychosocial functioning (genetic risk and deterioration syndrome, GRD). Several 

instruments have been developed to examine attenuated psychotic experiences, such as the 

companion Scale of Prodromal Symptoms (SOPS) (Lencz, Smith, Auther, Correll, & 

Cornblatt, 2003), the Basel Screening Instrument for Psychosis (BSIP), the Structured 

Interview for Prodromal Syndromes (SIPS) (McGlashan et al., 2001; Miller et al., 1999) and 

the Comprehensive Assessment of At-Risk Mental State (CAARMS) (Yung et al., 2005). In 

addition to the Schizotypal Personality Disorder Checklist, family history questionnaire, and 

global assessment of functioning scale (GAF), SIPS contains 19 items designed to measure 

the severity of prodromal symptoms of psychosis, including 5 positive, 6 negative, 4 

disorganization, and 4 general symptom items.   

 

COGDIS Criteria  COPER Criteria  

Inability to divide attention  Thought interference  

Thought interference  Thought preservation  

Thought pressure  Thought pressure  

Thought blockages  Thought blockages  

Disturbance of receptive speech  Disturbance of receptive speech  

Disturbance of expressive speech  Decreased ability to discriminate between 

ideas/perception, fantasy/true memories  

Unstable ideas of reference Unstable ideas of reference 

Disturbances of abstract thinking  Derealisation 

Captivation of attention by details of 

the visual field  

Captivation of attention by details of the visual 

field  

 Acoustic perception disturbances  
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1.3.1 Clinical outcome of CHR individuals    

The establishment of CHR criteria facilitates to capture CHR in both clinical service and the 

general public population. However, only a few CHR will eventually develop to psychosis 

over time. The quantitative studies unveiled approximately 20 to 35% of CHR participants 

will develop psychosis most likely within 2 years (Fusar-Poli, Bonoldi, et al., 2012; Fusar-

Poli, Cappucciati, Borgwardt, et al., 2016; Kempton, Bonoldi, Valmaggia, McGuire, & 

Fusar-Poli, 2015; Schultze-Lutter et al., 2015b), and the newest transmission rate is about 

20% (Fusar-Poli et al., 2016). After two years, the transition risk tends to plateau. For 

example, the risk to psychosis was about 3.2%  from 6 years follow-up onwards for subjects 

who were referred to secondary mental health services for specialized assessment and 

treatment (Fusar-Poli et al., 2017), and the overall transition rate was around 35% over a 10 

years follow-up (Nelson et al., 2013).  

 

Efforts have been made to explore the predictive factors of the onset of psychosis. Among 

these factors, the heterogeneity subgroups of CHR may present different transition risk to 

psychosis. Schultze-Lutter et al. (2015a) suggested that the conversation rate of CHR is 

relatively similar between those meeting the APS-criteria and the COGDIS subset of SPI-A 

until 2-year follow-up, while the conversation rate of COGDIS is significantly higher 

thereafter. Later on, the prognostic validity of BS and UHR was initially investigated by 

using the areas under the curve (AUC), suggesting that the predictive accuracy of BS for 

psychosis over three years was beyond mere chance and of UHR criteria was poor 

(Hengartner et al., 2017). Additionally, the reliability and prediction ability of UHR 

subgroup criteria was further estimated by meta-analysis. The proportion of CHR individuals 

meeting APS criteria (85%) was much larger than those meeting BLIPS criteria (10%). 

There was a higher risk of psychosis in BLIPS groups than APS groups after 24-, 36- and 

48- months of follow-up. In contrast, the GRD subgroup is not strongly associated with an 

increased risk of psychosis relative to APS and BLIPS (Fusar-Poli, Cappucciati, Borgwardt, 

et al., 2016). Moreover, one crucial consequence of the various criteria of CHR could 

eventually hinder the identification of reliable clinical biomarkers for clinical practice(Fusar-

Poli, 2017). It is thus essential to further explore the risk factor to psychosis in CHR 

subgroups.  
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1.3.2 Cognitive impairment in CHR-participants 

Cognitive impairment is a core feature of ScZ, involving a broad range of malfunction that 

encompass deficits in social cognition (Elvevag & Goldberg, 2000) and neurocognition. The 

importance of cognitive deficits in ScZ is due to their close association with functional 

outcomes. 

 

Evidence from a large body of work established that disturbances in cognition in patients 

with ScZ were associated with large effect sizes (d= 0.90–1.08) and in remitted ScZ patients 

(d = 0.80) (Bora, Yucel, & Pantelis, 2009; Brüne, 2005). Importantly, cognitive deficits 

encompassing both neurocognition and social cognitive measures are present before the 

onset of psychosis (Addington, Penn, Woods, Addington, & Perkins, 2008; Thompson, 

Bartholomeusz, & Yung, 2011), in children who later developed to psychosis (Cornblatt, 

Obuchowski, Roberts, Pollack, & Erlenmeyer–Kimling, 1999; Jones, Murray, Rodgers, & 

Marmot, 1994), as well as in the offspring and siblings of individuals with ScZ (Agnew-

Blais & Seidman, 2013; Meijer, Simons, Quee, Verweij, & Investigators, 2012; Sitskoorn, 

Aleman, Ebisch, Appels, & Kahn, 2004; Snitz, MacDonald III, & Carter, 2005) 

 

Neurocognitive deficits are also present in CHR-individuals, involving impairments in 

attention, executive functions, verbal fluency, and working memory (Fusar-Poli, Deste, et 

al., 2012), and the effect size was between those observed in ScZ and HC(Giuliano et al., 

2012; Pukrop & Klosterkötter, 2010). In addition, longitudinal studies have revealed an 

association between cognition deficits at baseline and clinical outcomes as well as functional 

outcomes (Addington & Barbato, 2012; Carrión et al., 2013). Specifically, verbal fluency 

and memory impairments were linked to conversion to psychosis in CHR-participants (for a 

review see (Fusar-Poli, Deste, et al., 2012)).   

 

In addition, CHR-participants display moderate deficits in affect recognition and affect 

discrimination (Edwards, Pattison, Jackson, & Wales, 2001), as well as deficits in Theory of 

Mind (TOM) (Brüne, 2005). In comparison to neurocognition, a meta-analysis suggests that 

social cognitive deficits are not strong predictors of conversion to psychosis (Van 

Donkersgoed, Wunderink, Nieboer, Aleman, & Pijnenborg, 2015). Given the crucial role of 

cognitive deficits in clinical outcomes as well as social and role function in CHR-

participants, several studies have investigated the possibility to target impairments in 

neurocognition through cognitive remediation (Loewy et al., 2016; Piskulic, Barbato, Liu, 

& Addington, 2015). 
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1.3.3 Sensory processing deficits across different stages of 
psychosis  

As aforementioned, various cognitive impairments across different domains were reported 

in ScZ, while last several decades brought a renewed interest in sensory processing deficits. 

The sensory processing deficits could affect the sensory experience in individuals with ScZ 

(Javitt, 2009a). Furthermore, evidence indicated that the early sensory information 

processing potentially impacts the following cognitive processing (Hamilton et al., 2018). 

Event-related potentials/fields (ERP/Fs) are time-locked brain response to evoked stimuli, 

described by its amplitude and latency. ERP/Fs are reflective of the perceptual and cognitive 

process in neurophysiological mechanism in the brain. Several ERP/Fs components have 

consistently been found to be abnormal in ScZ, including those involved in early stages of 

sensory processing (Hornix, Havekes, & Kas, 2018). 

 

The Mismatch Negativity (MMN) does not require attention during tasks, a negative-

potential with a peak around 150 to 250 ms after the onset of a deviant stimulus, (Näätänen 

& Kähkönen, 2009). Although normal MMN amplitude has been reported (Erickson, Ruffle, 

& Gold, 2016), substantial evidence has highlighted reduced MMN amplitudes in CHR 

samples in response to duration as well as frequency deviants compared to HC. Furthermore, 

the reduction of MMN amplitude in CHR who converted to psychosis was larger in 

comparison to non-converters.  

The earlier ERP components, such as the P50 and N100/M100, have also been probed in 

ScZ. The P50 is a pre-attentive potential and has frequently been studied in the context of 

sensory gating. Sensory gating is typically explored by a paired-click paradigm in which two 

consecutive clicks are presented with an inter-stimulus interval (ISI). The difference (S1-S2) 

in amplitude between the first click (S1) and the second click (S2), or the S2/S1 ratio, 

provides an index of sensory gating. Besides the P50,  the N100, a negative deflection 

peaking around 100 ms following stimulus onset, is also used to assess sensory gating 

(Oranje, Geyer, Bocker, Kenemans, & Verbaten, 2006). Although P50 and N100 sensory 

gating were consistently reduced in ScZ patients, findings in CHR-participants are mixed 

(Brockhaus-Dumke et al., 2008; Del Re et al., 2015; Hsieh et al., 2012; Shin et al., 2012; 

Van Tricht et al., 2015). Regarding the N100, several studies reported decreased N100 

amplitudes in CHR-participants (Del Re et al., 2015; Gonzalez-Heydrich et al., 2015).  
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Furthermore, the early auditory sensory component N100 has been used to explore the 

phenomenon of sensory attenuation, which was estimated by comparing N/M100 amplitude 

between self-initiated and externally-generated sensation. Theoretically, the N100 amplitude 

is suppressed during self-induced tone in contrast to externally-initiated tone. The particular 

interest of sensory attenuation in psychiatry is that it can fundamentally alter the sensory 

experience of own voluntary action. Currently, the auditory N100 sensory attenuation is 

elicited by the action-auditory experiment paradigm that comparing N100 amplitude 

between self-initiated tone (self-talking) and externall-generated tone (Eliades & Wang, 

2003; Horváth, 2015). 

 

1.3.4 Dysconnectivity in psychosis 

It is noteworthy that sufficient findings from neuroimaging data indicated that ScZ is a 

disorder of dysconnectivity (Friston, 2002; Stephan, Friston, & Frith, 2009). The abnormal 

neural circuits underlying task-positive network (Li, Chan, McAlonan, & Gong, 2010; 

Sheffield & Barch, 2016) and task-negative network (Giraldo-Chica & Woodward, 2017; 

Shenton, Dickey, Frumin, & McCarley, 2001) have been robustly confirmed in ScZ. 

Importantly, accumulating evidence proposed that pathophysiological processes in ScZ 

started before the full-blown of clinical symptoms (Yung & McGorry, 1996), presented with 

disrupted functional integration (Andreou & Borgwardt, 2020).   

A substantial work revealed impaired functional coupling in CHR, including for working 

memory(Crossley et al., 2009; Schmidt et al., 2013), verbal-related task (Allen et al., 2010; 

Dauvermann et al., 2013), and resting-state (Du et al., 2018; Satterthwaite et al., 2015; Shim 

et al., 2010; Yoon et al., 2015). For instance, disrupted frontotemporal and frontoparietal 

connection have been reported in  CHR (Crossley et al., 2009; Schmidt et al., 2013). Of note, 

such abnormalities were more prominent in CHR converters than CHR non-converters (Cao 

et al., 2018; Collin et al., 2018). Although various evidence indicated malfunction of neural 

interaction in CHR,  there is no consensus of a comprehensive framework in CHR, possibly 

due to various tasks and sample heterogeneity(Andreou & Borgwardt, 2020). However, 

limited research explored the neural substrate of sensory processing deficits in CHR 

although accumulative evidence revealed the abnormal electrophysiological process in 

emerging psychosis.   
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1.4 Sensory attenuation  

1.4.1 The concept of sensory attenuation  

Conceptually, sensory attenuation can be described as reduced intensity of a sensation 

caused by voluntary movement compared to externally-generated inputs (Blakemore, 

Wolpert, & Frith, 1998a). It reflected the suppression of predictable self-initiated sensory 

consequence. One typical example in our daily lives is that we cannot be tickled by ourselves 

(Blakemore, Wolpert, & Frith, 2000) because the sensation induced by our voluntary 

movement was more predictable than externally initiated tickling. One advantage of sensory 

attenuation enables the brain to work more efficiently to deal with more alarming stimuli in 

the environment. Moreover, sensory attenuation facilitates the brain to distinguish self and 

nonself successfully. If we can’t precisely identify self-initiated stimuli, this would lead to 

failure to distinguish internally- and externally-generated stimuli that have been linked to 

the generation of certain symptoms of psychosis, such as auditory hallucination and 

delusions (Feinberg, 1978; Feinberg & Guazzelli, 1999).   

 

1.4.2 The sensory attenuation mechanism 

Regarding the underlying mechanism of sensory attenuation, several frameworks have been 

proposed to interpret sensory attenuation. The efference copy model was first put forward 

by Vol Host and Mittelstaedt in 1950(von Holst & Mittelstaedt, 1950). The theory pointed 

out that during self-initiated sensation, efference copy of motor command is utilized to 

inform sensory cortex of the forthcoming sensory consequence of voluntary action, which 

was used to compare to actual sensory feedback (Von Holst, 1954). If there is a match 

between predicted and actual sensory outcome, leading to cancellation of afference signal, 

the organism will perceive the incoming sensation as less intense (Figure 1.2).   
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Figure 1.2  A model for determining the sensory consequences of a movement 

Refer to (Blakemore et al., 2000). 

 

Meanwhile, Sperry (1950b) independently put forward the corollary discharge to explain the 

process from the motor-related cortex to the sensory cortex. The fundamental idea of the 

corollary discharge theory is similar to the efference copy model, and the terms are used 

interchangeably. The distinction between the two theories is that the corollary discharge 

(efference copy) signal can arise from all levels of the motor pathway and target different 

levels of the sensory processing stream (Crapse & Sommer, 2008a, 2008b) (Figure 1.3). The 

term ‘efference copy’ indicates an actual copy of motor command to target the sensory 

cortex, while Sperry utilized the ‘corollary discharge’ to imply the signals from the motor 

cortex to the sensory cortex can be arose from different level of motor control. The efference 

copy/corollary discharge is interchangeable and has been adapted to interpret different 

systems in the brain. For example, the concept of an internal model, based on efference 

copy/corollary discharge frame, was proposed to illustrate the causal interaction between 

motor actions and their consequences in the human sensorimotor loop (Miall & Wolpert, 

1996; Wolpert & Ghahramani, 2000).  The efference copy of the motor command is used by 

the forward model to predict the forthcoming sensory state, and the feedback controller 

(inverse model) worked to adjust the motor command according to the mismatch between 

the estimated and real sensory states (Miall & Wolpert, 1996; Wolpert & Ghahramani, 

2000).  
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Figure 1.3  A schematic comparison of a sensorimotor circuit between efference copy and corollary 

discharge 

The circuit comprises a sensory pathway (shown in orange) and a motor pathway (shown in brown) in the 

theory of efference copy and corollary discharge, respectively. Compared to efference copy theory, the motor 

to sensory signal in corollary discharge can arise from all levels of the motor pathway rather than a specific 

pathway(Crapse & Sommer, 2008a).  

 

Furthermore, with the development of computational neuroscience, predictive coding 

account was proposed to explain sensory attenuation within the Bayesian inference 

principle(Friston & S. Kiebel, 2009; Rao & Ballard, 1999). Predictive coding account on 

perceptual inference was highlighted by Maher that the failure to integrate sensory input 

with learned expectation(Maher, 1974). Later, Gray (1991) and Hemsley and 

Garety(Hemsley & Garety, 1986)  first interpreted the Bayesian analysis of delusions that 

how belief, evidence, and their disrupted interaction contribute to aberrant inference. 

Embedded in the predictive coding frame is the assumption that the brain is hierarchically 

organized and that predictions from higher levels are used to predict the sensory outcome of 

an action. For example, when there is a mismatch between the predicted and real sensory 

outcome, a prediction error signal is sent to the higher level to update the prediction model. 

To optimize the prediction, Bayesian inferences estimate the conditional and probabilistic 

occurrence of an event (posterior probability), which is based on the probability distribution 

of prior events and the probability that the event occurred given the evidence (likelihood). 

https://www.sciencedirect.com/topics/neuroscience/delusion
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In turn, the posterior probability becomes the prior distribution of the next event (Apps & 

Tsakiris, 2014; Friston & S. Kiebel, 2009). Therefore, it has been suggested that sensory 

attenuation was associated with an imbalance in a precision shift of the posterior data 

towards the sensory data and away from prior (Sterzer et al., 2018). One strength of the 

predictive coding account is that it is compatible with neurobiological data by providing a 

generic framework.  

   

1.4.3 Sensory attenuation in HC  

Sensory attenuation has been confirmed in humans (Blakemore et al., 1998a; Ford & 

Mathalon, 2004) and in simple and more complex organisms in a variety of modalities 

(Crapse & Sommer, 2008a), particularly in the auditory, visual, and tactile domains. In 

humans, behavioural studies related to auditory loudness perception reported a reduction in 

subjective loudness intensity when tones were self-initiated in comparison to externally 

generated sounds (Sato, Mengarelli, Riggio, Gallese, & Buccino, 2008) , in line with 

following studies with better control for predictivity component between two conditions  

(Sato, Mengarelli, Riggio, Gallese, & Buccino, 2008; Stenner et al., 2014; Weiss, Herwig, 

& Schütz-Bosbach, 2011). Furthermore, one study found that the reduced tone intensity 

during self-initiated stimuli was associated with the feeling of controlling over their action 

consequence (Stenner et al., 2014), in support of the motor origin of attenuated sensation.  

 

In line with behavioural studies, the neuroimage studies demonstrated the sensory 

attenuation effect. Reduced hemodynamic activation in the temporal cortex was  present 

during self-generated words compared to externally generated words in healthy 

volunteers(Warburton et al., 1996). The first study from electroencephalography (EEG) 

reported auditory N100 sensory attenuation in 1973(Schafer & Marcus, 1973), which was 

repetitively confirmed in the following EEG/magnetoencephalography (MEG) studies (Aliu, 

Houde, & Nagarajan, 2009; Baess, Horváth, Jacobsen, & Schröger, 2011; Cao, Thut, & 

Gross, 2017; Eliades & Wang, 2003).  

 

1.4.4 Sensory attenuation in psychosis 

As one perspective of sensory attenuation facilitates the brain to distinguish self and nonself, 

the failure of sensory attenuation was posited to account for clinical psychotic symptoms, 

such as ScZ patients often report sensory disturbance with the idea of being control or being 

persecuted. The underlying deficits in sensory attenuation were well-interpreted by the 
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failure of efference copy/corollary discharge mechanism. In other words, if an efference 

copy of an intended action(thought) does not produce a precise efference copy/corollary 

discharge of the expected experience, patients may fail to distinguish between their own 

thoughts and external generated stimuli, resulting in auditory hallucination or passivity 

experience (Feinberg, 1978; Feinberg & Guazzelli, 1999). 

 

The dysfunction of corollary discharge in ScZ has been explored in visual and auditory 

domains during both behavioural and electrophysiological studies. Efference copy/corollary 

discharge has been confirmed to play an important role in sustaining visual stability during 

saccadic eye movement by predicting the post-saccadic retinal image(Zaretsky & ROWELL, 

1979). Findings suggested that ScZ cannot precisely judge the direction of visual target 

according to the pre-saccadic visual target location during a saccadic double-step task(Rösler 

et al., 2015), in line with the findings from Thakkar (2015).  Moreover, the disrupted 

corollary discharge existed in the auditory system in ScZ by employing self-generated 

speech paradigm, in which they demonstrated the failure to suppress self-initiated auditory 

N100 in patients with ScZ(Ford & Mathalon, 2004). The underlying neural mechanism of 

aberrant auditory N100 attenuation was due to disrupted gamma coherence between frontal 

and temporal areas(Ford, Gray, Faustman, Heinks, & Mathalon, 2005). This was putatively 

because of the damage to the white-matter (WM) fasciculus connecting the sites of discharge 

initiation and destination(Whitford et al., 2011). Importantly, the impairment of corollary 

discharge was associated with psychotic symptom severity(Heinks-Maldonado et al., 2007; 

Rösler et al., 2015).  

 

In addition, the aberrant corollary discharge is also observed in schizotypy (Oestreich et al., 

2015), first-degree relatives of ScZ patients(Ford et al., 2013), patients with schizoaffective 

disorder (Ford et al., 2013; Ford, Palzes, Roach, & Mathalon, 2014), as well as bipolar 

disorder patients with psychotic symptoms (Ford et al., 2013). However, there is currently 

limited evidence whether impairments in sensory attenuation are present before the onset of 

psychosis, such as in participants meeting clinical high-risk psychosis criteria(Mathalon et 

al., 2019; Perez et al., 2012; Poletti, Tortorella, & Raballo, 2019; Whitford et al., 2018). First 

evidence had indicated mixed evidence for impairments in CHR participants with some 

studies showing intact (Perez et al., 2011; Whitford et al., 2018), while a study from the same 

group but with a larger sample size did report a deficit in CHP (Mathalon et al., 2019). 

Therefore, it remains questionable whether sensory attenuation emerged before the full-

blown of psychosis. In addition, current studies have utilized the technology of EEG to 
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investigate the auditory sensory attenuation. While in comparison to EEG, MEG detects the 

magnetic fields of primary current without deterioration along with the distance or brain 

tissue. The main advantage of MEG is good spatial resolution in separating cortical sources 

due to less spatial smearing. Therefore, MEG is suitable for precisely localising in the 

auditory region and further exploring the underlying neural mechanism in generating sensory 

attenuation.  

 

1.4.5 Neurobiological mechanism of sensory attenuation  

  The neurobiological mechanism of sensory attenuation in HC   

The generation of sensory attenuation involves in the precise coordination of the 

sensorimotor network. According to the efference copy theory, the efference copy is 

generated from motor-related areas. Existing evidence from neuroimaging studies implied 

several regions associated with the origin of efference copy, including the primary motor 

cortex (Abbasi & Gross, 2020; Chronicle & Glover, 2003), the supplementary motor 

cortex(SMA) (Haggard & Whitford, 2004), and the premotor cortex (PreM) (Christensen et 

al., 2007; Ellaway, Prochazka, Chan, & Gauthier, 2004). In particular, the repetitive 

transcranial magnetic stimulation (rTMS) study found that the alteration of SAM was closely 

associated with the suppression of sensory attenuation during voluntary action. They 

interfered the SMA activity by delivering a conditioning pre-pulse over the SMA before 

motor evoked potential was delivered over the left motor cortex(Haggard & Whitford, 2004), 

which could give rise to similar effect by intervening PreM with pre-pulse TMS (Christensen 

et al., 2007; Haggard & Whitford, 2004). 

 

Furthermore, the cerebellum appears to play an important prediction role in the internal 

forward model during motor learning and motor control (Miall, Weir, Wolpert, & Stein, 

1993; Wolpert, Miall, & Kawato, 1998). Accumulating evidence from HC (Blakemore, 

Frith, & Wolpert, 2001; Blakemore et al., 1998a; Blakemore, Wolpert, & Frith, 1999) and 

patients with focal cerebellum lesions suggested that the cerebellum was involved in 

predicting the sensory consequence of the voluntary movement(Knolle, Schröger, Baess, & 

Kotz, 2012; Knolle, Schröger, & Kotz, 2013; Roth, Synofzik, & Lindner, 2013). Recent 

evidence investigating the functional connectivity between the cerebellum and the 

somatosensory cortex indicates that the cerebellum is engaged in sensory prediction during 

self-generated sensations (Kilteni & Ehrsson, 2019). Moreover, the parietal cortex is also 

involved in the sensory prediction process through interaction with the cerebellum 
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(Blakemore & A. Sirigu, 2003; Pollok, Gross, Kamp, & Schnitzler, 2008). According to 

predictive coding framework, the interaction among sensory attenuation network is 

hierarchical. However, it remains underexplored regarding the hierarchical neural 

interaction during generating sensory attenuation in HC.  

 

Apart from areas involving in generating sensory attenuation, researchers were interested in 

when the efference copy was generated. Existing evidence indicate that the efference copy 

is sent out during motor execution (Schneider, Nelson, & Mooney, 2014; Stenner, Bauer, 

Heinze, Haggard, & Dolan, 2015). However, animal studies suggests that vocalization-

induced suppression begins several hundred milliseconds before the onset of vocalization 

(Eliades & Wang, 2003), supported by study from HC (Voss, Ingram, Haggard, & Wolpert, 

2006). Furthermore, re-afference stage of motor action has been reported to impact the 

sensory attenuation (Burin et al., 2017; Kilteni & Ehrsson, 2017a, 2017b). These findings 

provided a cue that the prediction signal could originate from different stages of motor-

related action.  

 

 The neurobiological mechanism of sensory attenuation in emerging 
psychosis  

As frontal regions are associated with speech generation and responsible for modulating 

auditory cortex during vocalization (Creutzfeldt, Ojemann, & Lettich, 1989), evidence 

indicated that HC displayed increased gamma-band oscillations (25-40 Hz) between frontal 

and temporal regions during self-talking in comparison to passive listening to self-

talking(Ford et al., 2005). However, the frontal regulation in temporal cortex was disrupted 

in ScZ patients during vocalization (Ford et al., 2005). Similarly, the communication  

between frontal and temporal region in the gamma oscillations was impaired in ScZ patients 

when there was a distortion between expected and actual sounds during speech, indicating 

malfunction of top-down control in frontal area(Ford & Mathalon, 2005) (Figure 1.4). 

Moreover, disturbed frontal-temporal coherence possibly resulted from abnormal 

myelination in frontal areas of ScZ patients as the N100 sensory attenuation was linearly 

related to fractional anisotropy of arcuate fasciculus due to delayed propagation of efference 

copy feedback (Whitford, Ford, Mathalon, Kubicki, & Shenton, 2010; Whitford et al., 2011). 

However, it remains unknown about the aberrant underlying neural interaction mechanism 

in CHR during generating sensory attenuation.  
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Figure 1.4  The operation of the corollary discharge/efference copy in ScZ 

This panel shows the regular operation of the hypothesized efference copy/corollary discharge mechanism 

during speech (left) and its possible dysfunction in ScZ (right)(Ford & Mathalon, 2005). The speech originates 

in the frontal areas as shown in green circle. The frontal areas send efference copy (green ribbon) to the auditory 

cortex where it becomes a corollary discharge (green splash). At the same time, the talking is initiated and the 

speech sounds arrive at auditory cortex (red ribbon) as the auditory reafference (red splash). If the corollary 

discharge matches the auditory, then the auditory sensory experience is suppressed (blue). Otherwise, the 

failure to suppress auditory cortex is marked in red in ScZ patients.  

 

 Dynamic causal modelling in psychosis 

According to the predictive coding account, successful generation of sensory attenuation 

yielded to the precise top-down and bottom-up modulation among the sensorimotor network. 

Functional connection estimated the temporal correlation between geographically 

distributed brain regions, providing insights about the large-scale neural 

communication(Friston, 2011). One of the functional connection approaches, effective 

connectivity, was designed to measure the hierarchical interaction between brain areas, 

including dynamic causal modelling (DCM), granger causal modelling (GCM) and 

structural equation modelling (SEM). Unlike SEM and GCM, DCM constructed a 

reasonably realistic neuronal model to estimate the relationship between brain areas. 

DCM was first introduced in 2003 (Friston, Harrison, & Penny, 2003). The basic idea behind 

DCM is that the data could be modelled as a dynamic input-state-output system to estimate 

the experimental modulation on effective connections as DCM regards an experiment as a 

designed perturbation of neuronal dynamics are promulgated and distributed throughout the 

network to produce source‐specific responses. In particular, DCM is a model-based approach 

https://www.sciencedirect.com/topics/neuroscience/dementia-praecox
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to compare numerous competing hypothesis about how observed data were generated by 

various models based on different connection patterns. Given EEG and MEG are distinctive 

to measure the excitability of neuronal populations with millisecond (ms) resolution 

(Uhlhaas et al., 2009), DCM for EEG/MEG are neurobiologically plausible to estimate the 

neural parameters based on the architecture underlying the neural dynamics.  

DCM has been applied to psychiatric disorders to examine the neural mechanism underlying 

perceptual and cognitive disturbances. The constrained top-down control from the inferior 

frontal cortex to the occipital cortex was reported within ScZ patients, potentially associated 

with the malfunction of face perception (Dima, Dietrich, Dillo, & Emrich, 2010a). Similarly, 

the inability to increase backward modulation from right intraparietal sulcus to 

temporoparietal was associated with attention deficits in patients with ScZ when attended 

stimuli changed (Roiser et al., 2013). Regarding predictive processing, finding indicated 

malfunction of both top-down modulation (increased) and bottom-up input (attenuation)  in 

ScZ during predicting the visual target (Fogelson, Litvak, Peled, Fernandez-del-Olmo, & 

Friston, 2014). In addition, supporting evidence from the auditory system revealed impaired 

top-down control from inferior frontal gyrus to superior temporal gyrus in ScZ during 

generating MMN(Dima, Frangou, Burge, Braeutigam, & James, 2012a). Furthermore, 

altered effective connectivity strength was associated with clinical psychotic experience in 

ScZ during the auditory oddball task, featured by impaired intrinsic connectivity between 

the left primary auditory cortex and the inferior frontal gyrus (Dzafic et al., 2021). Altogether, 

these results indicated that dysconnectivity in ScZ involves both top-down and bottom-up 

modulation.  

Although a limited study investigated the aberrant effective connection in CHR, a sample of 

24 patients with psychosis and 25 of their unaffected relatives displayed similar decreased 

intrinsic inhibitory self-connectivity in the inferior frontal gyrus. The aberrant intrinsic 

connectivity was reflective of excitability of the superior pyramidal cell population in the 

inferior frontal gyrus, indicating that increased prediction error was sent to the prefrontal 

cortex during generating MMN (Ranlund et al., 2016). One more DCM study investigated 

the psychotic patients and their unaffected relatives during generating P300, characterized 

by  altered excitability synaptic gain in frontal and parietal sources during generating 

P300(Diez et al., 2017).  These findings suggested that the abnormal neural interaction was 

presented in patients with psychosis and individuals with a genetic risk of psychosis. 

However, rare studies studied the disrupted hierarchical interaction of sensory attenuation 

network in emerging psychosis. 
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1.5 Research aim and hypothesis 

As aforementioned, sensory attenuation deficits contribute to clinical psychotic symptoms, 

which has been confirmed in chronic ScZ and first-degree relatives of ScZ. However, it 

remains unanswered whether the impaired sensory attenuation is present before the onset of 

psychosis. Therefore, our current thesis attempted to investigate the sensory attenuation 

characteristics as indexed by auditory M100 in a large sample of individuals at clinical high-

risk state and a smaller sample of FEP and HC participants. The goal was to examine the 

impaired sensory attenuation in emerging psychosis and to investigate whether the deficit in 

sensory attenuation could be a potential biomarker of psychosis. Furthermore, I sought to 

discuss the neural mechanism underlying the impaired sensory attenuation in psychosis by 

employing a DCM approach.  

Before examining sensory attenuation in clinical samples, the first aim of this thesis was to 

explore the neurophysiological correlates of auditory sensory attenuation across the whole 

brain in HC with MEG technology. Given that attenuated brain activity has been observed 

beyond the sensory cortex, such as the thalamus and the inferior parietal cortex(Blakemore 

& Sirigu, 2003; Blakemore et al., 1998a), I first explored the sensory attenuation effect in 

the whole brain at the sensor- and source-level in HC in Chapter 3. In addition, the activity 

in the motor-related cortex was analysed to examine the association between motor-related 

activity and auditory sensory attenuation. Finally, DCM was employed to primarily examine 

the top-down and bottom-up interaction across the sensory attenuation network. I predicted 

that auditory sensory attenuation in HC involved not only in the auditory cortex, but also in 

cortical-subcortical areas, including thalamus and inferior parietal cortex. Moreover, I 

expected that the auditory sensory attenuation would be modulated by motor-related activity 

and resulting from the precise feedforward and feedback interaction among the sensory 

attenuation network. 

In Chapter 4, my primary goal was to examine auditory sensory attenuation in patients with 

FEP and a sample of participants meeting CHR-criteria. I sought to investigate whether the 

impaired sensory attenuation is present before the onset of psychosis, as well as the 

association between auditory sensory attenuation and clinical psychotic symptoms and 

cognitive function. In addition, the M100 amplitudes in the active and passive condition 

were examined across groups to discuss the potential contribution of M100 malfunction to 

impaired sensory attenuation in emerging psychosis. Moreover, the sensory attenuation 

difference between CHR subgroups was investigated to address the potential impact of 
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heterogeneity of CHR-samples on impaired sensory attenuation, for example, different 

clinical staging and the different clinical outcome at 12 months. According to previous 

studies in ScZ, I predicted that FEP displayed sensory attenuation deficits, and that the 

deficits in CHR-individuals were intermediate between HC and FEP. In addition, the 

impaired sensory attenuation was related to clinical psychotic symptoms and cognitive 

functioning in emerging psychosis. Importantly, I predicted that impaired sensory 

attenuation was irrelevant to the basic M100 function, in support of the dysfunction of 

corollary discharge in ScZ(Ford & Mathalon, 2005).  

In Chapter 5, the aim was to examine the aberrant neural interaction underlying sensory 

attenuation in emerging psychosis. As I primarily explored the dynamic interaction across 

cortical-subcortical circuits in HC with the DCM approach in Chapter 3, various competing 

DCM models were again built in Chapter 5 to examine the possible hierarchical interaction 

among cortical-subcortical areas, followed by Bayesian model selection to determine the 

winning model. I hypothesized that sensory attenuation deficits in CHR- and FEP-

participants would result from disrupted causal interaction among the sensory attenuation 

network. In particular, the impaired sensory attenuation in FEP-individuals was possibly due 

to reduced top-down control and enhanced bottom-up input (prediction error), while the 

impaired interaction among sensory attenuation network in CHR was intermediate between 

FEP and HC. 
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 Participants and Methods 

2.1 Recruitment 

The data of this thesis was collected as part of the Youth Mental Health Risk and Resilience 

Study (YouR-Study), funded by the Medical Research Council (MRC). This project was 

approved by the West of Scotland Research Ethics Committee, and supported by 

community-based services, NHS Greater Glasgow & Clyde (NHS GG& C) and NHS 

Lothian. The CHR and FEP participants were recruited from clinical referrals and the general 

population in Glasgow and Edinburgh via email invitations, and public transport 

advertisements. The HC were enrolled from the subject pool of the School of Psychology at 

the University of Glasgow.  

For CHR- and FEP-individuals, all participants were included between September 2014 and 

November 2019. Participants were first assessed for risk of psychosis online with: 1) the 16-

item Prodromal Questionnaire (PQ-16) (Ising et al., 2012) and 2) a 9-item scale of perceptual 

and cognitive anomalies (PCA) which was developed to assess basic symptoms. If they met 

the criteria of PQ-16 or PCA, they were invited to take part in the following procedures.   

During their first visit, they were made aware of the research purpose and research 

procedures of this study before they signed consent forms. The general demographic and 

treatment information were obtained, including age, education, citizenship, marital status, 

employment, physical, and mental health history of participants and their family, treatment, 

and substance use. In particular, suicide and self-harm risk were also assessed to ensure the 

safety of participants in this study, otherwise, they were suggested to an appropriate referral.   

CHR for psychosis was estimated based on two semi-structured scales, the positive symptom 

items of the CAARMS(Yung et al., 2005) and SPI-A(Schultze-Lutter, Addington, et al., 

2007). The initial assessment was carried out by two trained research assistants and/or 

MSc/PhD researchers, followed by symptom discussion in team-meeting. Additionally, the 

subjects who met the SPI-A criteria were further verified by Schultze-Lutter. Therefore, the 

CHR-participants in this study were confirmed to either SPI-A criteria, CAARMS criteria, 

or both.   

The participants were enrolled as CHR-group if they met the following SPI-A criteria:  1) 

Cognitive Perceptive Basic Symptoms (COPER) or/and 2) Cognitive Disturbances 
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(COGDIS). Additionally, they were included if they met the following CAARMS criteria: 

1) Genetic risk of family history and 30% drop of functional deterioration according to GAF; 

2) Attenuated psychosis symptoms (APS); 3) Brief Limited Intermittent Psychotic 

Symptoms (BLIPS).  FEP participants were assessed with the Structured Clinical Interview 

for DSM-IV and the  Positive and Negative Syndrome Scale (PANSS)(Kay, Fiszbein, & 

Opler, 1987).  

The exclusion criteria for all subjects are as follow: an existing neurological disorder, the 

age is less than 16 years old or larger than 35 years old, metal implants in body parts, 

pregnancy, and suicidal intent. The exclusion criteria of CHR include: 1) current or past 

diagnosis with Axis I psychotic disorders; 2) other co-morbid Axis I diagnoses, such as mood 

or anxiety disorders. The inclusion of the FEP group were participants who met CAARMS 

criteria for psychosis threshold and the diagnostic criteria for FEP on DSM-IV, as well as 

the Structured Clinical Interview for DSM-IV-TR AXIS I disorders (SCID-I)(First, 

Williams, Karg, & Spitzer, 2015). Additionally, HC were assessed by CAARMS and SPI-A 

during the first visit to exclude CHR for psychosis.  

CHR- and HC-samples were assessed with the Premorbid Adjustment Scale (PAS) (Cannon-

Spoor, Potkin, & Wyatt, 1982) and the Mini International Neuropsychiatric Interview 

(MINI)(Sheehan et al., 1998). In addition, all participants were assessed with social and role 

functioning scales (Cornblatt et al., 2007) and a neuropsychological evaluation, consisting 

of the Brief Assessment of Cognition in Schizophrenia (BACS)(Keefe et al., 2004) and the 

Penn Computerized Neurocognitive Battery (CNB) (Moore, Reise, Gur, Hakonarson, & 

Gur, 2015). After the assessment, 110 CHR- and 26 FEP-participants were included in this 

study, and 48 age-matched HC-participants were enrolled as a comparison group in Chapter 

4 and Chapter 5. Notably, given that we were interested in the association between 

movement-related potential and auditory sensory attenuation in Chapter 3, we included 35 

HC with right handedness to avoid handedness impact on movement-relate activity. The HC 

in Chapter 4 and Chapter 5 were overlapped with Chapter 3.  

Subsequently, CHR participants were further invited to do follow-up at 3, 6, 9, 12, 18, 24, 

36 months by CAARMS to estimate their CHR status. In addition, SPI-A and SCID were 

administrated at 24 and 36 months (refer to the assessment list in the supplementary 

materials).  
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2.2 Data Acquisition  

MEG data were collected at the Center for Cognitive Neuroimage at the University of 

Glasgow. Participants were instructed to sit still in magnetically shielded room. MEG-data 

were acquired with a 248-magnetometers whole-head MEG system (MAGNES 3600 WH, 

4-D Neuroimaging) at a sample rate of 1017.25 Hz. Prior to the MEG-recording, the head-

shape was digitized using a Polhemus Fastrack digitizer and the head position was digitally 

registered. Head position was recorded at the beginning and the end of the MEG session 

using five head position indicator (HPI) coils. Participants with head movement exceeding 

1 cm was asked to repeat the block to limit source reconstruction error. 

 

The MRI data were obtained from a Siemens 3T scanner after MEG scanning. A 10-minute 

duration anatomical T1 weighted magnetic resonance imaging (MRI) scan was recorded to 

do source reconstruction with parameters: 192 slices, voxel size 1 mm3, FOV=256*256*176 

mm3, TR=2250 ms, TE=2.6 ms, FA=9°. 

 

2.2.1 Experiment paradigm 

The experiment paradigm of this thesis is part of Your-study Project. The whole experiment 

paradigms were designed to estimate the brain function in emerging psychosis from four 

perspectives, including the resting-state, visual gamma experiment paradigm, auditory 

MMN, and auditory steady-state response paradigm. The current experiment paradigm was 

designed based on 40 Hz auditory steady state response to explore the auditory sensory 

attenuation.  

 

A 1,000 Hz flat tone of constant intensity (2000 ms duration, 93, dB) and a 40 Hz amplitude‐

modulated 1,000 Hz tone (‘ripple’ tone, 2000 ms duration, 87 dB) were presented binaurally 

in two blocks with 100 trials each: 1) A ‘passive’ condition block compromising of 100 

ripple tones and 10 flat tones with a jittered stimulus‐onset‐asynchrony (SOA) between 

3,500 and 4,500 ms. Participants were instructed to press a button with their right index 

finger when a flat tone occurred and 2) A self‐generated condition (‘active’ condition) that 

required participants to elicit a ripple tone via button press with their right index finger at 

approximate 4,000 ms SOA. A flat tone was presented if the participant responded earlier 

than 3,000 ms or later than 5,000 ms SOA (Figure 2.1). Prior to the beginning of the 

experiment, participants were given practice runs to familiarize themselves with the task. 
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Figure 2.1  Experiment paradigm 

 

2.2.2 Data pre-processing at the sensor level 

All analyses were conducted with the Fieldtrip-toolbox (Oostenveld, Fries, Maris, & 

Schoffelen, 2011). Only trials that contained a ripple tone were included in sensor- and 

source- space analysis.  For the pre-processing of MEG-data, recordings were filtered to 

remove line noise in 50, 100, 150 Hz using a discrete Fourier transform filter, and were cut 

from -1000 ms to 3000 ms. Then trials with artifacts were detected manually and rejected 

from further analysis. Faulty sensors with large signal variance or whose signals were flat 

were removed and interpolated using the nearest-neighbor averaging procedure. 

 

Independent component analysis (ICA, runica) was applied to remove variance from 

artifacts such as heartbeat, saccade and eye blinks. Prior to trial averaging, MEG-data was 

band-pass filtered from the 1 to 30 Hz with a baseline correction, followed by averaging of 

individual trials in each condition. Filtered neuromagnetic data were transformed from an 

axial magnetometer to planar gradient signals (Bastiaansen & Knösche, 2000). For sensor-

level analysis, the time window of interest was 110-140 ms according to the grand average 

ERP data from the combined condition dataset, which covered the peak latency of the M100 

component. The detailed process at the sensor level was depicted in individual Chapter when 

there was a difference. 

 

2.2.3 Data pre-processing at the source level 

Source-space (virtual channel) data were extracted based upon the centroids of 116 available 

AAL atlas regions from BrainNet Viewer software (Xia, Wang, & He, 2013), followed by 

normalizing the central coordinates into the same template grid with source reconstruction. 

The linear constraint minimum variance (LCMV) beamformer was used to compute the 
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source-space data with the covariance matrix based on the time window from pre-stimuli 

1000 ms to post-stimuli 3000 ms. The regularization value was set to 5%. Finally, the 

singular value decomposition (SVD) was used to decompose and extract the data vector 

representing the dominant source orientation, used to reconstruct the source-space data. 

Source-space data were averaged across trials to obtain the evoked activity at each individual 

source areas. The detailed process at the source level was described in individual Chapter. 

 

2.2.4 Dynamic casual modelling (DCM)  

DCM was employed to explore the causal interactions between brain regions that explain 

differences between observed ERFs (David et al., 2006; Friston et al., 2003). Conceptually, 

the interactions between neural nodes in DCM consist of 1) Structural forward, backward 

and lateral connections between nodes which convey changes in brain activity elicited by a 

stimulus (i.e. a driving input) and 2) Modulatory connections which estimate the effect of 

experimental factors (context-dependent) on neural interactions, including forward and 

backward connections to investigate whether sensory attenuation was driven by bottom-up 

message passing, top-down predictions, or both. In addition, self-modulation within each 

source was added to test the role of intrinsic changes in neural excitability (Kiebel, Garrido, 

& Friston, 2007) as well as the contribution of lateral connections given their role in auditory 

processing (Boly et al., 2011; Phillips, Blenkmann, Hughes, Bekinschtein, & Rowe, 2015).  

 

DCM-analysis of evoked responses uses excitatory and inhibitory neuronal subpopulations 

in a neural mass model which was applied to auditory ERF responses between -100 ms and 

200 ms. Source-space data were entered into the DCM analysis and local-field potentials 

(LFP) were utilized to model ERF data without spatial reconstruction. Given that we were 

interested in the change in connection strengths during sensory attenuation relative to a 

baseline condition (auditory input without sensory attenuation), between-condition effects 

were set to 0 (baseline) and 1. DCM was performed based on Statistical Parametric Mapping 

12 (SPM 12,v7487) (https://www.fil.ion.ucl.ac.uk/spm/). 

 

2.2.5 Statistics 

For demographic and clinical features, one-way analysis of variance (ANOVA) or an 

independent t-test was performed to continuous variables, and a chi-square test for 

categorical variables to test the potential group difference at baseline and follow-up data.  

https://www.fil.ion.ucl.ac.uk/spm/
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At the sensor level, cluster-based non-parametric permutation from fieldtrip platform was 

utilized to examine the sensory attenuation effect within group and between groups within 

interested time window. At the source level, the sensory attenuation effect was investigated 

by paired t-test or F-test in each individual ROIs within group and between groups, followed 

by false discovery rate (FDR) correction with 4 auditory regions.  

2.2.6 Correlation 

To investigate whether the dependent variables were predicted by independent variables, 

multiple regression model was conducted in SPSS 19.0 version. Spearman correlation was 

conducted to investigate the association between auditory sensory attenuation and clinical 

features.  

2.3 Demographic information 

The features of 35 HC were listed in Chapter 3. The current demographic information was 

from 48 HC, 110 CHR, 26 FEP for Chapter 4 and Chapter 5. There was no significant 

difference in age and sex across three groups (Table 2.1). 

Of 110 CHR individuals, 30 participants met CAAMRS criteria, 30 subjects met SPI-A 

criteria and 50 of participants met both criteria. Of those who met CAARMS criteria 

(80/110), almost all CHR-participants (96.25%, 77 out of 80) were classified into the APS 

subgroup. Two out of 80 CHR-participants were identified with GRD, and only one CHR-

participant was included with the criteria of BLIPS. Regarding those who met SPI-A criteria, 

15.18% of them met COGIDS sub-criteria, 44.17% of them met COPER sub-criteria and 

43.03 % of them met both COGIDS and COPPER criteria.  

Regarding the sub-symptom meeting CAARMS criteria, 42.7% of CHR samples met the 

inclusion criteria of unusual thought content. 70.9% of the sample experienced non-bizarre 

ideas, 73.6% of them described perception abnormality experience, and 60.9% of subjects 

reported disorganized speech symptoms. Of those who were rated as having a psychotic 

experience, 53.3% of them reported that they were at least moderate distress (> 50% out of 

100%) of those symptoms. Furthermore, a total CAARMS severity score was calculated for 

each participant by multiplying the global score by the frequency score for each of the four 

symptom groups and calculating the sum of these four numbers(Morrison et al., 2012). There 

was a significant group effect of total CAARMS severity score and GAF score across three 

groups (p < 0.05). 
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Table 2.1  Demographic information of subjects 

   

Note: * p<0.05.       
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2.4 Neuropsychological result 

The statistical results of BACS across groups were presented below (Table 2.2). 

Table 2.2  The BACS statistical results across the three groups   

 

Note: p < 0.05*. 
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 The role of thalamo-cortical circuits 
and movement-related cortical potentials in 
auditory sensory attenuation: A combined MEG-
DCM Study 

3.1 Introduction 

An important goal of organisms is to distinguish between sensory information originating 

from the external environment vs sensations caused by the organism’s own actions (Schafer 

& Marcus, 1973; von Holst & Mittelstaedt, 1950). One example to illustrate this 

phenomenon is sensory attenuation whereby sensations that are caused by the organism’s 

own action are decreased in intensity compared to externally-generated stimuli (von Holst 

& Mittelstaedt, 1950).  

The first framework to account for sensory attenuation was proposed by von Holst and 

Mittelstaedt (1950) who suggested that an efference copy of the motor command is used to 

predict the forthcoming sensory outcome, followed by a comparison with the afferent 

information (corollary discharge) (Sperry, 1950a). In this framework, sensory attenuation 

occurs if the predicted sensory feedback matches the incoming sensory stimulus. More 

recent accounts have highlighted the role of hierarchical inferences in sensory attenuation 

from a predictive coding perspective (Brown, Adams, Parees, Edwards, & Friston, 2013; 

Friston & S. Kiebel, 2009).   

Sensory attenuation has been observed in tactile, auditory, and visual domains in a range of 

species (Nelson et al., 2013; Poulet & Hedwig, 2002), including humans (Blakemore et al., 

2000; Limanowski, Sarasso, & Blankenburg, 2018; Synofzik, Lindner, & Thier, 2008), 

suggesting an evolutionarily conserved mechanism. In  EEG/MEG recordings, sensory 

attenuation is characterized by the suppression of the auditory N/M100 ERP/ERF during 

self-generated speech or tones (Cao, Thut, et al., 2017; Heinks-Maldonado, Nagarajan, & 

Houde, 2006; Martikainen, Kaneko, & Hari, 2005a). Analysis of the underlying generators 

through source localization identified the superior temporal cortex (ST) as the primary 

auditory region contributing to the attenuation of the M100 (Aliu et al., 2009; Martikainen 

et al., 2005a). Additional brain regions that have been shown to be involved in the sensory 

attenuation during self-generated speech are the cerebellum (Cao, Thut, et al., 2017; Pollok 

et al., 2008), the parietal cortex (Pollok et al., 2008), and the anterior cingulate cortex 

(Simons et al., 2010). Moreover, impaired sensory attenuation has been linked to psychiatric 
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disorders, such as ScZ (Ford, Gray, Faustman, Roach, & Mathalon, 2007; Ford et al., 2001; 

Whitford et al., 2017), to account for disturbances in the sense of agency that could 

potentially underlie the emergence of hallucinations and delusions (Ford & D. H. Mathalon, 

2005). 

von Holst and Mittelstaedt (1950) proposed that motor areas generate the efference copy that 

is compared to the incoming sensory signal. This is supported by studies with TMS showing 

that interference with motor regions is associated with reduced sensory attenuation in the 

auditory cortex (Haggard & Whitford, 2004). It is currently unclear, however, at which stage 

motor information impacts sensory processing as this could occur before motor execution 

(Schneider et al., 2014; Timm, SanMiguel, Keil, Schröger, & Schönwiesner, 2014), during 

motor action (Schneider et al., 2014; Stenner et al., 2015)  or following the re-afference stage 

of motor action (Burin et al., 2017; Kilteni & Ehrsson, 2017a, 2017b).  

An additional question concerns the role of the parietal cortex as well as the thalamus and 

their interactions with auditory regions during sensory attenuation. There is evidence to 

suggest that the inferior parietal cortex together with the cerebellum is involved in the 

prediction of sensory outcomes of actions (Blakemore & A. Sirigu, 2003; Pollok et al., 

2008). The thalamus, on the other hand, has been postulated to be involved in the relay of 

the efference copy generated in motor areas to auditory regions (Sherman, 2016). This 

hypothesis is supported by findings from visual perception where lesions in the thalamus 

lead to impaired saccade orientation, possibly through interfering with updating the corollary 

discharge signal (Bellebaum, Daum, Koch, Schwarz, & Hoffmann, 2005; Sommer & Wurtz, 

2004).  

In the current study, we aimed to provide novel insights into the contributions of cortical and 

subcortical regions as well as their interactions toward auditory sensory attenuation through 

the combination of advanced source reconstruction of MEG data together with 

computational modelling. To address these questions, we first compared M100 responses 

during self versus non self‐generated 40 Hz amplitude modulated (AM) tones. We then 

identified movement‐related magnetic fields (MRMFs) in order to identify potential efferent 

motor signal contributions to sensory attenuation. MRMFs have not been investigated within 

this paradigm, but can be identified and extracted from MEG data (Nagamine et al., 1994). 

Multiple regression analyses were used to identify the contribution of motor cortical regions 

towards the attenuation of the M100 amplitude in auditory areas. Finally, we employed DCM 

(Friston et al., 2003) to study the interactions between sources in the thalamus as well as 
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auditory and parietal regions to identify the network parameters that capture sensory 

attenuation in MEG-data.  

Based on existing evidence and theoretical models, we predicted that, in addition to the 

auditory cortex, sensory attenuation would engage in a distributed network, including the 

thalamus as well as parietal and motor regions. Moreover, we anticipated that this network 

would involve both bottom-up as well as top-down mediated interactions, providing support 

for the role of predictive processes in sensory attenuation.   

3.2 Methods 

Given the potential impact of handedness on movement-related potential, it was noteworthy 

to mention that 35 HC were selected in the current Chapter with pure right handedness(26 

females; mean (SD) age: 22.31±3.10). Handedness was assessed with Edinburgh 

Handedness Inventory (Oldfield, 1971). The experiment paradigm, data collection, data 

analysis of auditory M100 and DCM approach were described in Chapter 2. 

 

3.2.1 Movement‐related magnetic fields (MRMFs) 

In addition to identify the motor areas involved in sensory attenuation, we averaged the 

source-space data across trials and identified evoked potentials that corresponding to motor-

related magnetic fields (MRMFs) through the visual identification of peaks (Jankelowitz & 

Colebatch, 2002; Nagamine et al., 1994) at each individual source from  -100 ms to the onset 

of tone. These were then used in a regression analysis to examine the relationship with the 

attenuation of the M100 in auditory regions. Motor-related cortical areas were not used in 

the DCM analyses as DCM requires the driving input to be the same between experimental 

conditions (see below).  

 

3.2.2 Statistics  

 Sensory attenuation effect  

Sensor-level sensory attenuation effects were examined with a cluster-based non-parametric 

t-test implemented in Fieldtrip (Maris & Oostenveld, 2007) within a 110-140 ms window 

aligned to the peak of the M100 component from the grand-average data. The significant 

clusters were calculated with the Monte Carlo method with 1000 permutations (p < 0.05, 

alpha-level = 0.05, two-tailed).  
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At the source-space level, dependent sample t-tests were applied to examine the difference 

between the active and passive condition between 90 and 140 ms as this was the time window 

in sensory attenuation occurred across sources. A false discovery rate (FDR) was applied to 

correct for multiple comparisons across 116 source regions (p<0.05, alpha-level = 0.05, two-

tailed).  

 

 Regression analysis 

A stepwise multiple regression method was employed to identify the relationship between 

MRMFs and attenuation of the M100 amplitude. The dependent variables were M100 

sensory attenuation in the right HES and right ST which was calculated through the root 

mean square (RMS) of M100 amplitude. Due to the fact that sensory attenuation effects were 

characterized by negative values, the sign of the effect was reversed and entered into the 

regression analysis. The independent variables were MRMFs amplitude from motor‐related 

regions, including precentral gyrus, postcentral gyrus, anterior and posterior cingulate 

cortex, inferior parietal cortex, and cerebellum‐related areas. To avoid potential auditory 

activity in motor‐related areas, MRMFs in the active condition were subtracted from the 

passive condition data using the same time latency of each peak. Two factors of tolerance 

and the variance inflation factor (VIF) were employed to identify the multicollinearity of 

independent variables. We confirmed that the predictors in final regression models have no 

collinearity based on tolerance > 0.1 and VIF <10. 

 DCM: Bayesian model selection (BMS) 

For DCM model-analysis, fixed-effects Bayesian model selection (FFX-BMS) was used to 

determine the winning DCM-model. The metric of model performance was the free energy 

approximation to the model evidence: the probability of the observed data given the model 

(integrating over all possible parameter values). This free energy metric is improved by 

model accuracy but penalized by model complexity. Each model inversion also derived the 

posterior distributions of the parameters given the observed data. 
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3.3 Results 

3.3.1 Sensory attenuation effect 

At the sensor level, a smaller amplitude M100 component was observed over temporal and 

parietal channels in the active condition than in the passive condition ( p <0.05, Figure 3.1A). 

At the source level, M100 sensory attenuation was present in the right thalamus, right HES, 

right ST, right rolandic operculum (ROL) as well as in parietal regions, located in the right 

inferior parietal cortex (IPL) and right precuneus(Figure 3.1B).  

3.3.2 MRMFs 

We observed the following MRMFs: (a) Motor preparation potentials, (b) Motor potential 

peak, and (c) Motor re‐afference peak. The motor‐readiness potential was not included in 

the further analysis as it could be confounded by attention, anticipation, and task load (for a 

review see (Hughes, Desantis, & Waszak, 2013). Given the fact that we observed 

contralateral (left hemisphere) and ipsilateral (right hemisphere) MRMFs, we identified 4 

MRMF‐related peaks, including a contralateral MRMF with a peak latency between -50 

and -20 ms (Peak 1) and a similar MRMF in the ipsilateral hemisphere with a peak latency 

between -25 and 5 ms (Peak 2). Additionally, the re‐afference potential in contralateral and 

ipsilateral hemisphere constituted Peak 3 and Peak 4 with a time latency from 20 to 50 ms 

and from 50 to 80 ms, respectively (Figure 3.2). The mean amplitude of each peak within 

above mentioned time window was entered into the following regression model. 
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Figure 3.1  Sensory attenuation effect at sensor- and source-space level 

Panel A depicts the topographic map of the M100 in the active and passive conditions between 110 and 140 

ms. Statistically significant channels are highlighted with white stars. Panel B plotted the mean and standard 

deviation of auditory ERFs in active and passive condition and attenuation effect in parietal, auditory, and 

subcortical areas (after FDR correction) at the source-space level. The grey shadow indicates interested 

statistical time-window between 90 and140 ms. THA: Thalamus; HES: Heschl’s Gyrus; ST: Superior 
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Temporal Cortex; IPL: Inferior Parietal Cortex; PCUN: Precuneus; ROL: Rolandic Operculum; L: Left; R: 

Right. 

 

Figure 3.2  MRMFs peaks at the source level 

Regions of interest of MRMFs from Peak 1 to Peak 4 and the pink shadows highlight the analysis time 

windows (Peak 1: -50 to -20 ms; Peak 2: -25 to 5 ms; Peak 3:20 to 50 ms; Peak 4:50 to 80 ms). PreCG: 

Precentral Gyrus, PoCG: Postcentral Gyrus; IPL, Inferior Parietal Cortex; ACC, Anterior Cingulate Cortex; 

PCC, Posterior Cingulate Cortex; CRB3, Lobe III of Cerebellum; CRB45, Lobe IV, V of Cerebellum; HES, 

Heschl's Gryus; ST, Superior Temporal Cortex; L, left; R, right. 

3.3.3 Regression Analysis 

Table 3.1  Summary of multiple regression results 

  Coefficient  
Std.err 

Std.coff 
beta  

t Sig Collinearity  
Torenlence  

VIF 

Right HES Sensory Attenuation 

 Peak2_PoCG.R  0.10 0.42 3.2 0.004* 0.99 1.00 

 Peak3_PreCG.L  0.19 0.47 3.5 0.001* 0.99 1.00 
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Right ST Sensory Attenuation 

 Peak2_PoCG.R  0.12 0.37 2.6 0.014* 0.96 1.01 

 Peak3_PreCG.L  0.15 0.40 2.8 0.008* 0.98 1.01 

Notes: The dependant variables are the reverse value of sensory attenuation in the right HES, right ST, 

respectively. The independent variables are movement-related activity at each peak. Sig: Significance; VIF: 

Variance inflation factor; PreCG: Precentral Gyrus; PoCG: Postcentral Gyrus; Tha: Thalamus; IPL: Inferior 

Parietal Lobe; HES: Heschl’s Gyrus; ST: Superior Temporal Cortex;L: left; R: right. *(p < 0.05). 

3.3.4 DCM results 

 DCM model structures 

For the DCM-model, we wished to implement a model as parsimonious as possible and thus 

concentrated on the following brain regions: 1) Bilateral thalamus 2) Bilateral HES and 3) 

fright IPL. Bilateral thalamus and HES were included due to the fact that auditory stimuli 

were presented binaurally. Moreover, we only included HES as the ST is anatomically close 

to the HES and sensory attenuation in both regions was highly correlated (r= 0.88, p <0.001). 

Although the attenuation of the M100 was also observed in ROL and precuneus, we did not 

include these regions into the DCM model because additional brain regions substantially 

increase the complexity of the DCM exponentially, in particular, if the areas are distant (in 

hierarchical terms) from the input. Finally, as mentioned previously, MRCPs were not 

included as DCM requires that the driving input for both experimental conditions is the same.  

DCM was then used to test the contribution of each brain area (HES, IPL and Thalamus) 

towards sensory attenuation as well as the interactions between nodes to examine the role of 

feedback and feedforward message passing as well as the importance of intrinsic 

connectivity. Family 1 included bilateral thalamus and HES to test whether sensory 

attenuation was mediated by a thalamo-cortical network. The right IPL was then added into 

Family 2 to examine the potential role of top-down predictions on auditory areas. In all cases, 

driving inputs into the bilateral thalamus perturbs the brain and conveyed to higher-order 

cortex, which is modulated by condition-specific effects on forward, backward or intrinsic 

connections. Models with or without intrinsic (self-inhibitory) and lateral connections at 

each level were also included (Figure 3.3). 
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Figure 3.3  DCM-model structures 

Panel A displays the structure of Family 1 and panel B shows the structure of Family 2. The rows displays 

forward (F, orange solid line), backward (B, green solid line), and bi-direction (FB) connection pattern in each 

family, which are then varied within or without intrinsic and lateral connection. Grey dotted line shows the 

lateral connection, and the yellow dotted line represents the self-modulated connection. Tha: Thalamus; HES: 

Heschl’s Gyrus; IPL: Inferior Parietal Lobe; L: Left; R: Right.  
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 Fixed effect factors of Bayesian model selection 

At the family level, FFX favoured Family 2 with nodes in IPL, thalamus, and HES. At the 

model level, Model 23 won with almost 100% posterior probability, involving both bottom-

up and top-down modulation connections as well as self-modulation in each node but 

without lateral connections (Figure 3.4ABC). Additionally, we re-organized the models into 

three alternative families according to the connections modulated by sensory attenuation in 

forward, backward, and bidirectional modulation connection patterns. FFX results suggested 

that the family with both forward and backward modulated connections had the most 

evidence with 100% probability (Figure 3.4D). The winning model fitted the data well with 

the observed and predicted waveforms closely aligned in all areas (the exceptions being 

effects occurring prior to 0 ms (the input onset) which cannot be modelled using this 

approach) (Figure 3.4E).  

 

Finally, the modulatory parameters were averaged across participants after Bayesian model 

averaging (BMA) over the winning family in order to identify the connections that were 

modulated in the sensory attenuation condition. Only connections with a posterior 

probability (of being modulated during sensory attenuation) of over 95% are reported. For 

the winning model, the self-inhibition was decreased during sensory attenuation (i.e. 

implying increased excitability or ‘gain’) in bilateral thalamus and right HES, and the 

bottom-up (excitatory) connection strength from right thalamus to right HES was likewise 

increased. Conversely, the bottom-up connection strength from right HES to right IPL was 

reduced, and top-down (inhibitory) connection strengths between right IPL, right HES and 

right thalamus were increased (Figure 3.4C).  
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Figure 3.4  Dynamical causal modelling results 

BMS results based on fixed effect (FFX) and the grand-average ERF of predicted and observed evoked 

potential response in five nodes. Panel 5A displays the posterior probability at the family level. Panel 5B 

displays the log-evidence of individual models. Panel 5C shows the winning models across all the constructed 

models with almost 100% posterior probability. Simultaneously, condition inference (more than 95% posterior 

probability) of the modulatory connection of the winning model is marked in panel 5C. The connection 

parameters are described with the gain coupling and the probability that the coupling is increased (gain 

coupling >1) or decreased (gain coupling <1) in the active condition. Panel 5D displays the BMS results based 
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on the forward, backward, bidirectional modulatory connection pattern in each family. Panel 5E plots the 

grand-average ERFs of predicted and observed evoked potential response in five nodes. The solid and dotted 

line represents the predicted and observed ERF in the active (red line) and passive condition (blue line). The 

x-axis is the time (ms), and the y-axis is the ERF amplitude.  Tha: Thalamus; HES: Heslchl’s Gyrus; IPL: 

Inferior Parietal Lobe; L:left; R: Right. 

3.4 Discussion 

The current study aimed to identify the brain regions and network interactions underlying 

sensory attenuation of the M100 in auditory cortices. Our MEG data show that sensory 

attenuation was shown in the right HES and ST, ROL and parietal areas as well as in the 

thalamus. Moreover, our analysis revealed that the motor-related ERFs from right PoCG and 

the left PreCG positively predicted sensory attenuation in the right HES and ST. Finally, 

DCM results suggest that the auditory sensory attenuation involved both top-down and 

bottom-up modulations in a thalamo-cortical network.  

 

The involvement of the HES and ST is consistent with invasive electrophysiological data 

indicating that sensory attenuation occurs in both primary and secondary auditory cortices 

(Rummell, Klee, & Sigurdsson, 2016). In contrast, previous MEG studies (Aliu et al., 2009; 

Martikainen et al., 2005a), only localized sensory attenuation to secondary auditory regions. 

One reason for these divergent findings may be differences in the source localization 

approach employed. In the current study, we identified generators with a LCMV 

beamforming approach while the previous study employed an equivalent current dipole 

(ECD) technique. 

 

Previous fMRI and EEG/MEG studies have observed reduced parietal cortex (Benazet, 

Thénault, Whittingstall, & Bernier, 2016; Blakemore, D. M. Wolpert, & C. D. Frith, 1998b; 

Hughes & Waszak, 2011) and precuneus activity (Cao, Thut, et al., 2017)  during self‐

induced sensations. The IPL is a core area for the integration of auditory‐motor information 

(Alain, He, & Grady, 2008) (Hickok, Okada, & Serences, 2009; Pa & Hickok, 2008). 

Moreover, existing evidence supports that IPL plays an important role through interactions 

with the cerebellum (Pollok et al., 2008) in the prediction of motor outcomes (Blakemore & 

A. Sirigu, 2003). Accordingly, the involvement of IPL in the current task may index a role 

in the mapping of integrated auditory and motor responses. 

 

An alternative explanation is that the IPL reflects the participants' covert analysis of time‐

intervals between sounds as a strategy to respond to task demands. In either case, the 
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observed suppression of IPL activity to self‐generated sounds may be discussed in the 

context of motor predictive signals, resulting in a suppression of self‐generated auditory‐

motor or temporal representations. Future studies assessing the involvement of efferent 

motor signals during auditory sensory attenuation should therefore further address the role 

of predictive signals in the attenuation of IPL activity. 

 

A novel observation in our MEG‐study is the presence of sensory attenuation in the thalamus 

and ROL. Modulation of thalamic activity has been described during sensory attenuation in 

previous fMRI‐data (Blakemore et al., 1998b; Boehme, Hauser, Gerling, Heilig, & Olausson, 

2019; Fu et al., 2005), but the functional role of the thalamus has remained unclear. As 

previously highlighted, one possibility is that the thalamus underlies the relay of the 

efference copy generated in motor areas to auditory regions (Sherman, 2016), which is 

supported by evidence from visual perception (Bellebaum et al., 2005; Sommer & Wurtz, 

2004). In contrast, sensory attenuation in the ROL is likely to reflect the role of executive 

motor functions (Penfield & Roberts, 2014) and somatosensory processing (for a review see 

(Mălîia et al., 2018)). 

 

Regression analyses highlighted the contribution of the right PoCG and the left PreCG in the 

modulation of the M100 sensory attenuation in HES and ST. The involvement of the PoCG, 

a region of the somatosensory cortex, is a novel observation compared to previous evidence 

that has highlighted the role of motor-related areas influence, including the supplementary 

motor cortex and premotor cortex, in sensory attenuation (Haggard & Whitford, 2004; 

Whitford et al., 2018). The contribution of the PoCG, towards sensory attenuation is 

consistent, however, with emerging evidence that activation of the somatosensory cortex is 

mediated by motor-related cortex during voluntary movement (Christensen et al., 2007).  

 

Moreover, the left PreCG also positively predicted auditory sensory attenuation. The re-

afference potential of the PreCG reflects proprioceptive afferents of motor actions (Naito, 

2004) and thus could contribute to body ownership (Walsh, Moseley, Taylor, & Gandevia, 

2011). Indeed, it has been proposed that body ownership mediates sensory attenuation via 

updating the internal body state that in turn provides input to generate sensory prediction 

(Kilteni & Ehrsson, 2017a). This perspective is in line with the predictive coding account 

that has highlighted the importance of proprioceptive afferents to guide and predict motor 

outcomes (Adams, Shipp, & Friston, 2013; Brown et al., 2013).  
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Finally, DCM analysis in our study revealed that the sensory attenuation involved reciprocal 

feedforward and feedback loops between the thalamus, HES, and right IPL as well as 

intrinsic modulation within each source. Notably, Bayesian model selection preferred the 

family model which involved the right IPL contributed via interactions with bilateral HES. 

The involvement of the IPL in auditory sensory attenuation supports the view that parietal 

cortices provide a top-down modulation of sensory regions (Auksztulewicz & Friston, 2015).   

 

In terms of the extrinsic modulation of connections between sources, our DCM parameter 

supports the enhancement of both top‐down and bottom‐up connections in the active 

condition, particularly in the right hemisphere. Moreover, the winning DCM model involved 

modulation of intrinsic (self‐inhibitory) connections, increasing local synaptic gain 

following the actively produced sound. Taken together, these results imply that the self‐

generated stimuli entail an initial amplification of the sensory input through the thalamus 

that is then suppressed by increased inhibition of this input by top‐down connections. This 

pattern is consistent with the source‐space data, where the active condition causes a greater 

deflection than the passive condition in the early right thalamic response (around 70 ms), 

which is subsequently damped, especially in higher-order auditory areas at around 110 ms. 

Interestingly, a similar pattern was observed in an auditory oddball paradigm containing 

manipulations of attention and expectations (Auksztulewicz & Friston, 2015). In this study, 

attention had an early enhancing effect on the ERP (~50 ms), in part by changing the gain 

(self‐inhibition) in HES, whereas expectations had a later inhibitory effect on the ERP 

(~140 ms), accounted for by changes in backward (and forward) connectivity Thus, from a 

predictive coding account, self‐generated sensations may similarly produce an initial boost 

(as the precision of the predicted sensations is high) but then a subsequent dampening (as 

this sensory input is better predicted, reducing the prediction error).  

3.5 Limitations 

One potential limitation of our findings is the detection of thalamic activity with MEG. 

However, emerging evidence supports the ability of MEG to detect activity in deeper brain 

areas, such as the thalamus (Cornwell et al., 2008; Roux, Wibral, Singer, Aru, & Uhlhaas, 

2013) and hippocampus (Recasens, Gross, & Uhlhaas, 2018a). In addition, we did not 

include a motor-only condition as a baseline for the sensorimotor-system. This is because 

previous studies showed that sensory attenuation remains present after ruling out the motor 

contamination by subtracting motor activity from motor-auditory activity(Horváth, 2014; 

Martikainen et al., 2005a).  



60 
 
In addition, the DCM-analysis only compromised a subsection of brain regions that showed 

sensory attenuation effects. We intentionally selected only the HES, IPL, and Thalamus 

since a larger number of sources would have increased the complexity of the DCM-model 

significantly. Secondly, we did not include motor-regions as indicated above as the driving 

input for both experimental conditions need to be similar in DCM.  

 

3.6  Summary 

Taken together, our results provide novel evidence to suggest that auditory sensory 

attenuation involves a distributed network in cortical (motor, parietal, and auditory regions) 

as well as subcortical (thalamus) regions. Furthermore, DCM analysis revealed that self-

produced sensations are associated with information flow in a thalamo-cortical network that 

involves bottom-up, top-down, and local self-inhibitory connections. Specifically, the 

winning DCM model highlights the crucial role of the thalamus in amplifying self-generated 

sensations, before this activity is then attenuated (in both cortex and thalamus) by top-down 

projections from auditory and parietal areas. In addition to the relevance for understanding 

during normal brain functioning, these data provide a potential framework for the 

investigation of alterations in psychiatric syndromes, such as ScZ, where abnormal sensory 

attenuation may provide clues to the symptoms of psychosis (Ford & D. H. Mathalon, 2005).  
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 Sensory attenuation in participants at 
clinical high-risk for psychosis and in patients 
with first-episode psychosis 

4.1 Introduction 

The distinction between self-generated and nonself generated sensations is an important 

mechanism for establishing a sense of agency(Haggard & Chambon, 2012). One example to 

illustrate this phenomenon is sensory attenuation whereby self-initiated sensation is  

decreased in intensity compared with externally-generated stimuli(von Holst & Mittelstaedt, 

1950).von Holst and Mittelstaedt (1950) suggested that an efference copy of the motor 

command is used to predict the forthcoming sensory outcome, followed by a comparison 

with the afferent information  (corollary discharge)(Sperry, 1950a). From this perspective, 

sensory attenuation occurs if the predicted sensory feedback matches the incoming sensory 

stimulus. 

Sensory attenuation has been explored in ScZ with both behavioural and neuroimage 

approaches. Evidence from behavioural studies has revealed that ScZ patients were impaired 

in distinguishing self from nonself generated sensations (Rösler et al., 2015; Thakkar, 2015), 

particularly in ScZ patients with delusion or auditory hallucinations (Daprati et al., 1997; 

Franck et al., 2001). The auditory N100 has been utilized to investigate sensory attenuation 

during a self-generated speech that overt talking suppressed N100 amplitudes compared to 

passive listening (Eliades & Wang, 2003). Ford and colleagues (Ford & Mathalon, 2004; 

Ford et al., 2001) primarily examined auditory sensory attenuation in ScZ patients by 

comparing the N100 amplitude between overt talking and listening to self-generated speech. 

During normal brain functioning, self-generated auditory input is associated with a reduction 

in the N100 amplitude compared to passively perceived sounds (Curio, Neuloh, Numminen, 

Jousmäki, & Hari, 2000; Ford et al., 2001), while the attenuation of N100 is reduced in ScZ 

(Ford & Mathalon, 2004; Ford et al., 2001).  

Abnormalities in sensory attenuation have been observed in schizotypy (Oestreich et al., 

2015, 2016), first-degree relatives of ScZ patients (Ford et al., 2013), in patients with 

schizoaffective disorder (Ford et al., 2013; Ford, Palzes, Roach, & Mathalon, 2014), as well 

as in bipolar disorder (Ford et al., 2013), indicating that deficits in sensory attenuation occur 

across the psychosis spectrum. First evidence had indicated mixed findings for impairments 

in  CHR participants with some studies showing intact (Perez et al., 2011; Whitford et al., 
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2018), while a study from the same group but with a larger sample size did report a deficit  

in CHR (Mathalon et al., 2019). However, it is currently unclear whether sensory attenuation 

could represent a biomarker for early detection and diagnosis. 

Of note, it has been suggested that early auditory sensory processing was linked to cognitive 

functioning, including the social functioning, the global functioning outcome in ScZ patients 

(Fulham et al., 2014; Kim et al., 2014), in suggestive of  the cascade information processing 

model that early auditory information has a flow-on impact on the following cognitive 

functioning (Javitt, 2009a). Interestingly, a large sample size of ScZ patients provided robust 

evidence that impaired early auditory information processing contributed to functional 

outcome by impacting the cognitive function and negative symptoms, indicating the lower 

auditory processing influence the higher cognitive processing(Thomas et al., 2017). 

However, it remains unclear about the potential association between auditory sensory 

attenuation and cognitive function. Furthermore, it has been suggested that altered auditory 

sensory attenuation was linked to clinical psychotic symptoms, such as usual thought 

disorder(Mathalon et al., 2019). However, this result has not been replicated(Perez et al., 

2011).  

In the current study, I explored sensory attenuation alterations in a sample of CHR 

participants (n=110) and FEP patients (n=26). We hypothesized that FEP-patients would 

exhibit impaired sensory attenuation in auditory areas and that CHR-group deficits would 

be intermediate between HC and FEP. Secondly,  the relationship between auditory sensory 

attenuation and clinical features was examined as existing evidence suggested that sensory 

attenuation deficits are linked to the auditory hallucination and the formal thought disorder 

(Feinberg & Guazzelli, 1999).  

Furthermore, regarding the intermixed results of neuroimaging studies in CHR, one of  the 

potential factor could be the heterogeneity of CHR(Fusar-Poli, Cappucciati, Borgwardt, et 

al., 2016). Several researches suggested the different risk of inclusive criteria of CHR to 

develop psychosis(Fusar-Poli, Cappucciati, Borgwardt, et al., 2016; Schultze-Lutter et al., 

2015a), however, limited studies addressed the neural features according to different 

inclusion criteria. Additionally, different CHR clinical outcomes gave rise to distinct neural 

features at baseline(Addington et al., 2019; Tang et al., 2020), we primarily explored sensory 

attenuation features in CHR-participants at baseline according to the different CHR status at 

12 months. According to whether the CHR still met the CAARMS criteria at 12 months, the 

CHR status was defined to CHR-persistent or CHR-nonpersistent state.  
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4.2 Methods 

4.2.1 Participants 

Data was collected as part of the Youth Mental Health Risk and Resilience Study (YouR-

Study). A sample of 110 CHR, 48 HC, and 26 FEP were included in the present analysis. 

CHR participants either met criteria of the positive symptoms of CAARMS (Yung et al., 

2004), or SPI-A(Schultze-Lutter, Addington, et al., 2007), or both. The criteria of CAARMS 

was utilized to estimate the ultra-high risk (UHR) of psychosis, and SPI-A is related to BS 

at an earlier phase of UHR. FEP-participants met the psychosis criteria of the fourth edition 

of DSM as assessed by SCID-I (First, Spitzer, Gibbon, & Williams, 1995). HC were 

recruited without an axis I diagnosis or family history of psychosis diagnosis, and HCs in 

this Chapter were overlapped with Chapter 3. All participants were assessed with the 

BACS(Keefe et al., 2004). 

 

Following the assessment of CHR, CHR-participants were divided into three subgroups, 

including meeting only SPI-A (CHR-SPI), only CAARMS (CHR-CAM), or both (CHR-

both) criteria. Furthermore, the CHR-participants were followed-up at 3,6,9,12 month by 

CARRMS. In the current Chapter, we followed up to 12 months and identified the CHR 

status into a persistent and non-persistent state according to whether CHR met CAARMS 

criteria at 12 months. Not all the CHR individuals have 12 months data, therefore, the last 

assessment state within 12 months was used in this Chapter. The follow-up assessment was 

listed in the supplementary materials. 

4.2.2 Neuroimaging data collection   

The MEG data collection was depicted in Chapter 2.  

4.2.3 MEG-data pre-processing at the sensor level 

The MEG data pre-processing was performed as the description in Chapter 2. Following the 

pre-processing, the available average number of trials did not differ significantly between 

groups (p > 0.05). The mean number of trials in HC for the active condition was 

94.1(standard deviation [SD] = 2.9) and for the passive condition was 94.2 (SD=3.0). In the 

CHR group, the mean number of trials in the active condition was 92.8 (SD=5.6), and in the 

passive condition was 93.5 (SD = 2.5). The mean value of trials in the active and in the 

passive conditions was 92.5 (SD = 9.7) and 92.5 (SD = 3.3) for the FEP group separately. 
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Prior to trial averaging, MEG-data was band-pass filtered from 1 to 30 Hz with a butterworth 

filter. The filter direction is two-pass and the filter order is set to default value 6. 

Subsequently, all trials were baseline corrected by subtracting the mean value of the baseline 

time window from -600 ms to -400 ms. Filtered neuromagnetic data were transformed from 

the axial magnetometer to planar gradient signals (Bastiaansen & Knösche, 2000). 

According to the grand-average ERP-data, the time window of interested M100 was 110-

140 ms at the sensor level.  

4.2.4 MEG-data analysis at the source level 

T1-weighted MRI data were manually aligned with MEG data with three anatomical 

landmarks (the nasion, the left and right ears), followed by the automatic co-registration 

procedure with the ICP algorithm (Besl & McKay, 1992). The individual MRI data were 

applied to construct head models after segmenting the individual MRI-data into grey matter, 

white matter, and the cerebro-spinal fluid (CSF) compartments, followed by normalizing 

into a template MRI (Montreal Neurological Institute, MNI) to reduce individual differences. 

A single-shell volume conductor model was utilized to generate a head model. 

The LCMV beamformer (Van Veen, Van Drongelen, Yuchtman, & Suzuki, 1997) was 

applied to reconstruct source-space data with a priori defined central coordinates for the left 

HES  ([-41.99,-18.88,9.9]), the right HES ([45.86,-17.15,10.41]), the left ST ([-53.16,-

20.68,7.13]) and the right ST ([58.15,-21.78,6.8]), which were obtained from BrainNet 

Viewer software (Xia et al., 2013).   

Common spatial filters were first generated by the covariance matrices from -1000 ms to 

3000 ms, and then applied to generate the wholetime course of each trial in active and passive 

conditions separately. The covariance matrix was regularized by 5% of its eigenvalues. 

Finally, the SVD was used to decompose and extract the data vector representing the 

dominant source orientation. The extracted time series were filtered from 0.1 Hz to 30 Hz 

and a baseline correction was applied in a time window between -600 ms and -400ms before 

averaging across trials. The analysis time window for M100 sensory attenuation was 

determined by a cluster-based non-parametric approach across auditory regions between 50 

to 200 ms at the source level. Moreover, given that the spatial orientation of the M100 was 

flipped in some individuals, the absolute value of M100 amplitude between 90 and 150 ms 

was averaged for further statistical analysis. 
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4.2.5 Statistics  

For demographic and neuropsychological variables, continuous normal distributed data were 

analysed with a one-way ANOVA or t-test; otherwise, a non-parametric permutation test 

was performed. Categorical data were assessed with a chi-squared test. BACS-scores of both 

CHR- and FEP-groups were standardized (z-scores) by using mean and stand deviation 

values from the HC group.  

Sensor-level sensory attenuation effects were examined with a cluster-based non-parametric 

Monte Carlo  permutation (Maris & Oostenveld, 2007) (permutation=1000, p < 0.05, alpha-

level = 0.05, two-tailed). At the source level, non-parametric permutation test was employed 

in regions of interest (left and right HES/ST) (permutation=1000, p < 0.05, alpha-level = 

0.05, two-tailed). A false discovery rate (FDR) was applied to correct for multiple 

comparisons across the 4 auditory nodes (p < 0.05, alpha-level = 0.05, two-tailed).  

Correlations were performed with Spearman’s rank correlation to test the association 

between sensory attenuation in four auditory nodes and clinical features across CHR- and 

FEP-participants, including GAF, clinical symptoms, and BACS-tests. The total CAARMS 

severity, total CAARMS distress, total SPI-A severity, and total SPI-A distress were 

calculated individually based on the mean value of sum scores of each scale.  

4.3 Results 

4.3.1 Demographic and neuropsychological data 

There was a significant difference in years of education across three groups (Table 2.1). 

Furthermore, group difference in the cognitive dimension of motor speed, processing speed 

and attention, and BACS composite scores were presented below(Table 2.2). In addition, the 

demographic information of the different criteria of CHR subgroup was calculated (Table 

4.1), as well as the demographic information for CHR-persistent and CHR-nonpersistent 

state at 12 months (Table 4.2). CHR-both group displayed more severe global functioning 

and the CAARMS symptom severity than BS-criteria group or UHR-criteria group, while 

there was no significant group difference in cognitive function across three subgroups 

(Supplementary Table 1). Regarding the clinical outcome status at 12 months follow-ups, 

44.5 % of CHR-participants at 12 months still met the UHR criteria with more severe global 

functioning and CAARMS symptom severity than individuals with non-persistence of CHR 

state. CHR-persistent participants displayed more severe CAARMS symptoms and GAF 
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impairment at baseline than CHR-nonpersistent individuals (Table 4.2), while the cognitive 

function was similar to CHR-nonpersistent group (Supplementary Table 2). 

Table 4.1  Demographic information in subgroups of CHR and HC 

Notes: Abbreviations: y: year; SD: Standard Deviation; HC: Healthy Controls; CHR: Clinical High-risk 

Psychosis; CHR-CAM: CHR subjects who only met the criteria of the Comprehensive Assessment of At-Risk 

Mental States(CAARMS); CHR-SPI: CHR subjects who only met the criteria of  Schizophrenia Proneness 

Instrument, Adult Version(SPI-A); CHR-both: CHR subjects who met the criteria of both SPI-A and 

CAARMS.  FEP: First-episode Psychosis; ScZ; Schizophrenia; BACS: Brief Assessment of Cognition n 

Schizophrenia. * p<0.05, a non-parametric permutation statistics. 
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Table 4.2  Demographic information in CHR-persistent and CHR-nonpersistent at 12 months 

Notes: Abbreviations: y: year; SD: Standard Deviation; HC: Healthy Controls; CHR: Clinical High-risk 

Psychosis; FEP: First-episode Psychosis; ScZ; Schizophrenia. * p<0.05, a non-parametric permutation 

statistics. 

4.3.2 MEG-data results 

  Sensory attenuation effect at the sensor Level   

At the sensor level, there was a significant M100 amplitude difference between active and 

passive conditions (p < 0.05, two-tailed) over frontal and temporal-parietal sensors across 

all participants (Figure 4.1A). The significant clusters between the active and the passive 

conditions were located over bilateral temporal-parietal and frontal sensors in HC (Figure 

4.1B). In CHR-participants, condition differences were identified over frontal and right 

temporal-parietal sensors. In the FEP group, significant differences between conditions were 

only found over the right temporal-parietal sensors (Figure 4.1B).  

 

There was no statistically significant group difference in sensory attenuation effect across 

three groups at sensor level (p > 0.05, two-tailed). Furthermore, M100 amplitudes in active 
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and passive conditions were separately examined across groups.  The results showed no 

significant group differences in the M100 amplitude in either the active or the passive 

condition (p > 0.05, two-tailed). 

 

Figure 4.1  Sensory attenuation effect at the sensor level 

A) Grand average butterfly ERF time series are computed for all 248 sensors and baselined corrected (-600 

and -400 ms) and plot separately for each group. The right top panel of ERFs are topographical distribution 

plots of the M100 component in axial-magnetometer representation, plotted for data averaged over the 110-

140 ms latency window highlighted in grey for the sensory attenuation effect. B) Topographical distributions 

in planar-magnetometer representation t-values for the SAP effect across and within groups. Significant 

clusters of sensors (p < 0.05, two-tailed) are highlighted with white dots. Abbreviations: HC: Healthy Controls; 

CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis.  

 

 Sensory attenuation effect at the source Level   

  Condition effect across groups and within the group 

At the source level, there was a significant M100 amplitude difference between active and 

passive conditions in the left HES, right HES, and right ST across all participants (corrected 



69 
 
p < 0.05, two-tailed, Figure 4.2), indicating a smaller M100 amplitude in the active 

condition. The condition effect (sensory attenuation effect) in HC involved left HES, right 

HES and right ST (corrected p < 0.05, two-tailed). In contrast, CHR-participants showed 

sensory attenuation only in left ST (without correction), while the FEP group showed no 

significant sensory attenuation effect in both hemispheres (p > 0.05, two-tailed). On the 

contrary, FEP-participants displayed larger M100 amplitudes in the active condition than in 

the passive condition in left HES and left ST(corrected p < 0.05,two-tailed) (Table 4.3).  

 

Additional analysis for the CHR subgroup revealed that the condition effect was disappeared 

in 4 auditory regions in the CHR-both group. In contrast, CHR-SPI and CHR-CAM groups 

displayed absence of sensory attenuation in part of the auditory cortex (Table 4.4). 

Moreover, the condition effect (sensory attenuation effect) was disappeared in  CHR-

persistent and CHR-nonpersistent group at 12 months (Table 4.5).  

 

 

Figure 4.2  Virtual-channel level data 

Source-reconstructed grand-average virtual channel ERF traces show separately for the 4 main ROIs (left and 

right HES and ST) and the sensory attenuation across groups (bottom row). Traces for the active condition are 

plotted in the red line, passive condition in the blue line, and the difference between two conditions in the green 

line. The bottom row shows the sensory attenuation effects per virtual channel per group (HC: black, CHR: 

blue, FEP:  red).  Shaded error-bars represent the standard error of the mean. Black asterisks mark significant 

condition effect within each group (false discovery rate corrected) in the top three rows. In the bottom row, 

black asterisks represent the significant sensory attenuation across the three groups, while the red asterisk 



70 
 
indicates a significant sensory attenuation group effect between HC and FEP, and the blue asterisk a significant 

sensory attenuation difference between CHR and FEP. The significant statistical p-value was 0.05. 

Abbreviations: HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; HC: Healthy Controls; CHR: Clinical 

High-risk Psychosis; FEP: First-episode Psychosis. 

 

Table 4.3  Condition effect of M100 amplitude across groups and within group at source level for 

active and passive conditions 

Upper panel: Main condition effects of M100 amplitude across groups. Lower panel: M100 condition effect 

within the group. Abbreviations: HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; HC: Healthy 

Controls; CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis; SD: Standard Deviation; CI-

range: Confidence Interval Range. * survive after false discovery rate (FDR) correction. 
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Table 4.4  Condition effect of M100 amplitude within CHR subgroups at the virtual-channel level 

Notes: Main condition effects of M100 amplitude across groups. Lower panel: M100 condition effect within 

groups. Abbreviations: HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; HC: Healthy Controls; CHR: 

Clinical High-risk Psychosis; FEP: First-episode Psychosis; SD: Standard Deviation; CI-range: Confidence 

Interval Range. * survive after false discovery rate (FDR) correction. 

Table 4.5  Condition effect of M100 amplitude in CHR-persistent and CHR-nonpersistent at the 

virtual-channel level 
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Notes: The condition effect is tested within an interesting time window between 90 ms and 150 ms. The 

condition effect is disappeared in either CHR-persistent or CHR-nonpersistent group at 12 months. 

Abbreviations: HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; HC: Healthy Controls; CHR: Clinical 

High-risk Psychosis; FEP: First-episode Psychosis; SD: Standard Deviation; CI-range: Confidence Interval 

Range. * survive after false discovery rate (FDR) correction. 

 M100 sensory attenuation difference across groups 

There was a group effect in the left HES and ST (corrected p < 0.05, two-tailed) and in the 

right HES/ST (uncorrected p < 0.05, two-tailed). The post-hoc test suggested a significant 

sensory attenuation difference between HC- and CHR- participants in the right HES and 

right ST (uncorrected p < 0.05, two-tailed). In addition, both CHR and FEP groups showed 

a significant reduction of sensory attenuation in the left HES and the left ST compared to 

HC (corrected p < 0.05, two-tailed) (Table 4.6).  

 

Regarding CHR subgroups, the result suggested that the sensory attenuation effect was 

impaired in the CHR-both group (uncorrected p < 0.05, two-tailed). Furthermore, according 

to different clinical state at 12 months in CHR-participants, the CHR-persistent group 

displayed impaired sensory attenuation effect in the right HES (uncorrected p < 0.05, one-

tailed), and there was a trend of deficits in right ST(Figure 4.3). 
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Table 4.6  Group effects of auditory sensory attenuation at the source level 

 

Notes: The upper table displays the group effect of sensory attenuation in the left and right HES, ST with non-

parametric permutation tests, followed by post-hoc test of sensory attenuation between groups. The degree of 

freedom is shown in the bracket of t-value (or F-value). The p-value with black asterisk indicates the survival 

of multiple corrections with a false discovery rate (FDR) correction method across four nodes. The significant 

statistical p-value is 0.05. Abbreviations: HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; HC: Healthy 

Controls; CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis. CI-range: Confidence Interval 

Range. * survive after FDR correction. 

 

 

 

 

 

 

 

 

 

 

 



74 
 
Figure 4.3  Sensory attenuation of CHR-persistent and CHR-nonpersistent group at 12 months at the 

virtual-channel level 

 

This figure plots sensory attenuation waves in 4 ROIs per group (HC: black, CHR: blue, FEP: red; CHR-

nonpersistent: green; CHR-persistent: magenta). The interested time window of M100 is highlighted with the 

grey shadow (between 90 and 150 ms). Non-parametric permutation tests find no strong group difference 

across five groups. In addition, the differences between HC and participants with different clinical outcome of 

CHR are examined, separately. The red asterisk indicates the group difference between HC and CHR-

nonpersistent, and the black asterisk marks the difference between HC and CHR-persistent. The statistically 

significant p-value is 0.05 (uncorrected, one-tailed). Abbreviations: HES: Heschl’s Gyrus; ST: Superior 

Temporal Cortex; HC: Healthy Controls; CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis; 

ROI: Region of Interest. 

 

 M100 amplitude differences in the passive and active condition 

Group effects for the M100 amplitude in the active and passive conditions were investigated 

(corrected p < 0.05, two-tailed). There was a significant group difference in the M100 

amplitude in the passive condition in the left HES and left ST (corrected p < 0.05, two-

tailed). The post-hoc analysis revealed that the difference has resulted from the reduction of 

the M100 amplitude for the contrast between HC vs FEP groups (corrected p < 0.05,two-

tailed), as well as between FEP vs CHR groups (corrected p < 0.05,two-tailed, Table 4.7). 

There were no significant M100 amplitude difference in the active condition (p > 0.05, two-

tailed). 
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4.3.1 Correlations 

 Correlations between sensory attenuation, psychopathology and 
cognition 

Correlations between sensory attenuation in the auditory cortex, psychopathology, and 

CAARMS-ratings were examined (Table 4.8). There was a significant correlation between 

GAF and sensory attenuation effects in the left HES across CHR- and FEP-groups. 

Furthermore, ratings on the unusual thought content and disorganized speech subscales of 

the CAARMS were significantly correlated with sensory attenuation in left HES (Figure 

4.4). 

Table 4.7  Group effects of M100 at the source level 

  

Notes: M100 amplitudes are tested across three groups and between groups. The degree of freedom is shown 

in the bracket of t-value(F-value). The p-value with black asterisk indicates the survival of multiple corrections 

with a false discovery rate (FDR) correction method across four nodes. Abbreviations: HES: Heschl’s gyrus; 
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ST: Superior Temporal Cortex; HC: Healthy Controls; CHR: Clinical High-risk Psychosis; FEP: First-episode 

Psychosis.CI-range: Confidence Interval Range. * survive after FDR correction. 

Table 4.8  Correlations between sensory attenuation, clinical variables, and cognition across groups 

 

Notes: Spearman rank correlations (p < 0.05). *FDR corrected. Abbreviations: GAF: Global Assessment of 

Functioning; CAARMS: Comprehensive Assessment of At-Risk Mental States; SPI-A: Schizophrenia 

Proneness Instrument, Adult Version; UTC_global: Global Score of Unusual Thought Content; NBI_global: 

global score of the non-bizarre idea; PA_global: global score of perceptual abnormality; DS_global: Global 

Score of Disorganized Speech; CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis. HES: 

Heschl’s Gyrus; ST: Superior Temporal Cortex.  
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Figure 4.4  Correlation between sensory attenuation in left HES and clinical features across CHR- and 

FEP-participants 

Abbreviations: HES: Heschl’s Gyrus; UTC_global: Global Score of Unusual Thought Content; DS_global: 

Global Score of Disorganized Speech. GAF: Global Assessment of Functioning; R: correlation coefficient; p 

< 0.05.    

4.4 Discussion 

This study examined whether deficits in auditory M100 sensory attenuation are present in 

emerging psychosis. Also, we explored the association between impaired sensory 

attenuation and clinical as well as cognitive variables. The results indicated that auditory 

sensory attenuation was impaired in both CHR and FEP groups. Moreover, auditory sensory 

attenuation deficits were linked to the severity of CAARMS symptoms, GAF-ratings, and 

cognitive functions.  

Consistent with previous studies (Baess, Widmann, Roye, Schröger, & Jacobsen, 2009), we 

observed sensory attenuation of the M100 within a  40 Hz ASSR paradigm at both sensor 

and source level that was particularly prominent over the right hemisphere. This finding is 

in line with previous evidence that simple tones are preferentially processed in the right 

hemisphere (Zatorre, Bouffard, Ahad, & Belin, 2002; Zatorre, Evans, Meyer, & Gjedde, 

1992).  
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The FEP-group was featured by reduced M100 sensory attenuation in the bilateral HES and 

ST compared to the HC-group. In addition, FEP-patients were characterized by impaired 

M100 suppression in the left HES and ST relative to CHR-participants. The finding of 

reduced sensory attenuation in FEP-patients is consistent with previous studies that 

employed paradigms involving speech stimuli (Ford & Mathalon, 2004; Perez et al., 2012).  

In combination with source reconstruction, the MEG-approach in the current study identified 

the impairment of M100 sensory attenuation was present in the bilateral auditory cortex in 

FEP. Intriguingly, the M100 amplitude in the left HES and ST in FEP-individuals during 

self-generated conditions was significantly enhanced compared to passive listening 

conditions. The increased contralateral auditory activity during self-generated sounds have 

been reported in previous fMRI studies in HC-participants (Reznik, Henkin, Schadel, & 

Mukamel, 2014; Reznik, Ossmy, & Mukamel, 2015). The increased contralateral auditory 

cortex activity in FEP-participants was modulated by the motor-related cortex (Reznik et al., 

2015)  to increase perceptual sensitivity (Reznik et al., 2014) in FEP-participants. However, 

this needs further exploration in future studies.  

Importantly, we observed deficits in M100 sensory attenuation in CHR-participants. 

Previous results revealed a trend-level impairment in CHR that was intermediate between 

HC and ScZ (Perez et al., 2012; Whitford et al., 2018). In line with our current findings, the 

impairment in N100 sensory attenuation was significantly different between HC and CHR 

with a relatively larger sample size(Mathalon et al., 2019). However, with a MEG-approach, 

our current finding showed that sensory attenuation deficits involved the right auditory 

cortex, while the sensory attenuation in the left HES and ST were intact and intermediate 

between HC and FEP. Dysfunctions in sensory attenuation in the right auditory cortex are 

supported by structural MRI-data that have highlighted reduced grey matter in CHR-

participants (Fusar-Poli et al., 2011). In combination with the alteration of sensory 

attenuation in genetically vulnerable individuals of ScZ(Ford et al., 2013) and schizotypy 

subjects (Oestreich et al., 2015, 2016), it is therefore likely that dysfunction of N100/M100 

suppression is a marker for psychosis vulnerability.  

Consistent with previous finding (Simon et al., 2006), current findings suggested that CHR-

participants who met both BS and UHR criteria were linked to greater CAARMS symptom 

and more severe global functioning outcome than participants meeting UHR criteria alone. 

Furthermore, CHR with both UHR and BS threshold displayed impaired sensory attenuation 

rather than in CHR met BS or UHR. BS criteria is often used as a complementary approach 
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to identify individuals of high risk to develop psychosis. Simultaneously, the meta-analysis 

concluded that individuals who met both UHR and BS criteria have a higher risk to develop 

psychosis than UHR criteria along (Fusar-Poli, Cappucciati, Bonoldi, et al., 2016). It is 

therefore suggested that the BS criteria improves the sensitivity to detect individuals with 

the risk to develop psychosis.  Moreover, the follow-ups results indicated that approximately 

45% of CHR met the UHR criteria at 12 months, possibly because the sample was from the 

community. The individuals still met the CHR criteria at 12 months displayed impaired 

sensory attenuation at baseline, while the CHR-nonpersistent individuals were interact at 

baseline, indicating the different clinical outcome could potentially contribute to the 

alteration of auditory sensory attenuation. 

We also examined whether sensory attenuation deficits in CHR- and FEP-groups could 

involve more basic impairments in the M100. The reduced M100 amplitude in the passive 

condition in FEP participants was consistent with previous data that have shown reduced 

M100 responses in the auditory cortex in FEP (Del Re et al., 2015) and ScZ-patients (for a 

review see(Rosburg, Boutros, & Ford, 2008)), possibly due to impaired attention in FEP(Ren, 

Fribance, Coffman, & Salisbury, 2021). Interestingly, the M100 amplitude in the active 

condition was interact in FEP. The account that can be taken was that attention-related 

reduction of M100 amplitude in active condition was possibly compensated by increased 

prediction error due to the inability to suppress M100 amplitude in FEP. Furthermore, 

although the sensory attenuation in the right auditory cortex was impaired in CHR, the M100 

amplitude in the bilateral auditory cortex in the active and passive conditions were intact in 

CHR individuals. Therefore, no strong evidence in the current Chapter revealed that the basic 

M100 impairment could account for impaired sensory attenuation, while it remains further 

demonstration in the future study.  

In addition, our results suggested that auditory M100 attenuation in the left HES and ST was 

negatively associated with GAF-ratings, indicating that more pronounced impairments in 

sensory attenuation were correlated with poorer functioning. Moreover, the impaired sensory 

attenuation showed a significant relationship with unusual thought content and disorganized 

speech symptoms across CHR- and FEP-participants. Although such correlation between 

M100 suppression and clinical symptoms is not found in precious studies (Ford et al., 2007; 

Ford, Mathalon, Whitfield, Faustman, & Roth, 2002), our finding is consistent with previous 

results in the literature (Mathalon et al., 2019; Perez et al., 2012), in support of the notion 

that sensory attenuation helps to illustrate clinical psychotic symptoms(Feinberg & 

Guazzelli, 1999),  
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In summary, the current findings implicate that sensory attenuation is impaired in both CHR- 

and FEP-participants, which cannot be interpreted by the basic M100 malfunction in the 

active and passive condition. Furthermore, sensory attenuation of the M100-response 

correlated with the severity of subthreshold attenuated psychotic symptoms and general 

functioning, highlighting the potential relevance of dysfunctional sensory attenuation to 

account for core features of emerging psychosis. 
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 Effective connectivity during sensory 
attenuation in clinical high-risk participants and 
first-episode psychosis: A Dynamic Causal 
Modelling approach 

5.1 Introduction  

Brain is organized into functionally separated areas that dynamically cooperate during 

processing sensory and cognitive functions. The interaction between brain areas arises from 

anatomical and functional connections (Friston, 2011; Peterson & Fling, 2018). The 

disrupted interaction can give rise to clinical symptoms, such as auditory hallucinations and 

delusions in ScZ (Friston, 1999; Friston & Frith, 1995). One potential neuropsychological 

mechanism for auditory hallucinations/delusions is the failure to predict the sensory 

consequence of actions, resulting in an inability to distinguish between internal- and 

external-generated sensations. Successfully distinguishing between internal- and external-

induced sensations leads to sensory attenuation. One neurophysiological index of sensory 

attenuation is the auditory N/M100 (see Chapter 3).     

 

The generation of auditory sensory attenuation is resulted from precise interaction among 

the sensory system with motor network in the normal brain. Specifically, frontal motor-

related areas have been proposed to underlie the generation of the efference copy signal 

(Christensen et al., 2007; Haggard & Whitford, 2004), while the thalamus may act as a hub 

to propagate efference copy signals to higher-order cortical areas (Sherman, 2016). In 

addition, the cerebellum plays a key role in comparing predicted and forthcoming signals 

(Blakemore & A. Sirigu, 2003). The parietal cortex may contribute towards sensory 

attenuation (Blakemore & A. Sirigu, 2003) through its role in combing sensory and motor 

information (Anderson, Glibert, & Burkholder, 2002).  

According to the predictive coding account (Friston & Kiebel, 2009), the sensorimotor 

network of auditory sensory attenuation integrates into a hierarchical modulation pattern 

where the top-down information transmits the prediction signal and the bottom-up conveys 

the prediction error(Ford & Mathalon, 2019). Of note, DCM is one of the effective 

connectivity approaches, designed to explore causal interaction between brain areas (Friston 

et al., 2003) by testing numerous competing models with different types of connections 

(forward, backward and lateral). Notably, DCM was employed to examine neural 

mechanism underlying perceptual and cognitive functions in psychiatric disorder(Heinzle & 

https://link.springer.com/chapter/10.1007/978-3-030-34784-0_8#CR001
https://link.springer.com/chapter/10.1007/978-3-030-34784-0_8#CR002
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Stephan, 2018). Studies by using fMRI and EEG demonstrated an imbalance of top-down 

and bottom-up communication in ScZ individuals (Dima et al., 2010a; Tso et al., 2020), 

supporting the notion of dysconnectivity in ScZ (Friston, 2002). Specially, DCM  of evoked 

response has been widely used to explore auditory MMN  and visual N100 response (Dima 

et al., 2012a; Dima et al., 2009) in ScZ-patients. For instance, the study employed DCM to 

discuss the aberrant connectivity in ScZ during an auditory oddball MMN paradigm. ScZ 

patients displayed abnormal top-down connectivity from the right inferior frontal cortex to 

the right ST, and a decreased intrinsic inhibitory self-connectivity within the right ST(Dima 

et al., 2012a).  

Moreover, the alteration of effective connectivity has been investigated in different stages 

of psychosis. DCM provides new insights in the development of psychotic symptoms and 

effective disconnection at the network level in the subjects of risk to develop 

psychosis(Schmidt & Borgwardt, 2013). CHR individuals revealed greater modulation of 

connectivity from the ventral striatum to the midbrain than HC, and the connection strength 

in CHR-participants was associated with the severity of psychotic symptoms(Winton-Brown 

et al., 2017). One more DCM study suggested similar intrinsic connection impairment within 

the right inferior frontal cortex in psychotic patients and their unaffected relatives during 

auditory MMN (Ranlund et al., 2016), indicating the abnormality of connection emerged at 

the risk state of psychosis.   

DCM method has been applied to investigate the hierarchical interaction of top-down 

prediction and bottom-up sensory input related to sensory prediction in healthy controls, 

particularly in the visual (Summerfield et al., 2006) and auditory cortices (Dürschmid et al., 

2016; Garrido et al., 2008). In Chapter 3, we employed DCM to investigate hierarchical 

interaction of sensory attenuation network among thalamo-cortical circuit in the normal 

brain, indicating that successful generation of auditory sensory attenuation resulted in 

enhanced top-down control and subsequently reduced bottom-up prediction error. 

Importantly, it has been suggested that aberrant top-down prediction and bottom-up sensory 

input potentially contributed to the illusory perception in psychosis(Rao & Ballard, 1999). 

Moreover, supporting evidence from ScZ found that the impaired auditory N100 sensory 

attenuation has resulted from disrupted communication between frontal and temporal 

cortices during voluntary-initiated auditory stimuli (Ford et al., 2002), particularly in the 

gamma oscillations(Ford et al., 2005). 
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However, hierarchical interactions in a sensory attenuation network across different stages 

of psychosis illness has not been explored so far. Therefore, in our current Chapter, we 

employed DCM to explore sensory attenuation networks during emerging psychosis. I 

hypothesized that FEP-patients would display impaired top-down and bottom-up 

interactions within the sensory attenuation network, while such dysfunction in CHR was 

assumed to be intermediate between HC and FEP. 

5.2 Methods 

5.2.1 Participants 

Forty-eight HC, 110 CHR-participants, and 26 FEP-participants were included in this study. 

The detailed recruitment process and demographic information were described in Chapter 2 

and Chapter 4.  

 

5.2.2 Data collection and pre-processing  

MEG data were collected and processed by following Chapter 4.  

 

5.2.3 DCM analysis  

ROIs for DCM analysis consisted of the left and right thalamus (left: [-10.85, -17.56, 7.98]，

right: [13, -17.55, 8.09]), HES (left: [-41.99, -18.88, 9.98], right: [45.86, -17.15, 10.41]), 

right IPL ([46.46, -46.29, 49.54]), and right IFG ([50.2, 14.98, 21.41])(Figure 5.1). Apart 

from the ROIs in Chapter 3, right IFG was additionally included in model structures as 

evidence suggested the role of IFG in sensory prediction (Garrido et al., 2008), as well as 

the malfunction of the IFG in psychosis and first-degree unaffected relatives (Ranlund et al., 

2016). Because the operculum part of the IFG is related to auditory processing (Opitz, Rinne, 

Mecklinger, Von Cramon, & Schröger, 2002) and was activated in our study, it was chosen 

as our interested frontal regions. 

 

MEG data of ROIs were pre-processed and extracted based on the central coordinates of the 

AAL atlas template (Xia et al., 2013). After baseline correction and averaging across trials, 

the ROIs were converted to the SPM merged format.  
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Figure 5.1  Nodes include in DCM analysis at the coronal and axial direction 

Abbreviations: Tha: Thalamus; HES: Heschl’s Gyrus; IPL: Inferior Parietal Lobe; IFG: Inferior Frontal 

Cortex; L: Left; R: Right.  

 

Finally, ROIs were utilized to specify DCM models into three families for all participants. 

To test the contribution of the right IFG, Family A was characterized by switching off the 

connection between IFG and other ROIs in order to investigate whether IFG was involved 

in generating sensory attenuation. Compared to Family A, the unique feature of Family B 

was the hierarchical relationship between IPL and IFG, while the relationship between IPL 

and IFG in Family C was lateral. In particular, each family was designed with three sub-

families, characterized by the forward, backward, and bidirectional modulation connection 

between ROIs. Within each sub-family, the modulatory connection patterns varied in 

combination with self-modulation and lateral modulation (4 models for each sub-family) 

(Figure 5.2). Also, we built up a null DCM model within only intrinsic connections for Family 

A, Family B, and Family C, separately. In total, 39 models were constructed for all 

participants. 

 

DCM-analysis of evoked responses uses excitatory and inhibitory neuronal subpopulations 

in a neural mass model that was applied to auditory ERF responses between -100 ms and 

200 ms. Source-space data were entered into the DCM analysis and local-field potentials 

(LFP, use to model real or virtual electrode data) were used to model ERF data without 

spatial reconstruction. Given that we were interested in the changes in connection strengths 

during sensory attenuation relative to a baseline condition (auditory input without sensory 

attenuation), between-condition effects were set to 0 (baseline) and 1. DCM was performed 

based on Statistical Parametric Mapping 12 (SPM 12,v7487) 

(https://www.fil.ion.ucl.ac.uk/spm/). 

https://www.fil.ion.ucl.ac.uk/spm/
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Figure 5.2  DCM-model structures 

This figure shows the model structure of Family A. Each family is split into three sub-families, referring to 

forward, backward and bidirectional family. Each sub-family are varied within or without self- and lateral-

modulatory connections. The orange lines represent forward modulatory connections, and the green lines show 

backward modulatory connections. Besides, the grey dotted lines show the lateral modulatory connections, and 

the yellow dotted lines represent the self-modulated connections. The distinctive features of Family B and 

Family C are the causal interaction between IFG and IPL. The IFG occupy a higher hierarchical position than 

IPL in family B, while the relationship between IFG and IPL is lateral in Family C. Tha: Thalamus; HES: 

Heschl’s Gyrus; IPL: Inferior Parietal Lobe; IFG: Inferior Frontal Cortex; L: Left; R: Right. 

 

5.2.4 Statistics  

 Model structure: Bayesian modelling selection (BMS) 

As DCM is a framework for constructing models to estimate the parameters of effective 

connectivity, the first step is a Bayesian model inversion to detect the optimal posterior 

parameters that balance the accuracy (the precision of predicted data to the observed data) 

and the complexity of each model for every single participant. The quantification of model 

performance was the free energy approximation to the model evidence: the probability of 
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the observed data given the model (integrating over all possible parameter values). Finally, 

the posterior probability and exceedance probability were computed at the group level. The 

exceedance probability denotes the probability that this model is more likely than any other 

model in a given dataset.  

 

Regarding the model structure comparisons, random-effects Bayesian model selection 

(RFX-BMS) was employed to detect the winning DCM-model across three groups and three 

model families to examine: 1) whether IFG is important in generating sensory attenuation 

and to explore the hierarchical relationship between IFG and IPL; 2) to investigate the 

modulatory connection contributing towards sensory attenuation. The reason to choose 

RFX-BMS is that the winning model was assumed to vary across individual subjects. 

Furthermore, RFX-BMS across all participants first determined the winning family, then 

fixed-effects BMS(FFX-BMS) was applied to examine models from the winning family to 

test the optimal model within each group, assuming that the winning model was identical.  

 

Our first performance of RFX-BMS results (Supplementary Figure 2) supported the 

involvement of IFG in generating sensory attenuation across all participants. Although the 

exceedance probability of the winning Family C (0.54) was not better than Family B (0.46), 

the overall model evidence in Family C was larger than in Family B. The distinctive 

difference between Family B and Family C was the relationship between IPL and IFG, 

namely whether the relationship was lateral or hierarchical. Although the model structure in 

Family C was more complex than in Family B, model evidence in our dataset preferred 

Family C after trading off between the accuracy and complexity of the models. Hence, the 

following analysis was based on Family C. 

 

 Connectivity parameter estimation: parametric empirical bayes (PEB) 

The posterior parameter from Bayesian model reversion can be estimated directly by a t-test 

or ANOVA. However, the potential impact of covariance on the connection strength is not 

estimated in classic statistics. Currently, the PEB framework is proposed to estimate 

parameter difference at the group-level (between-subject), aiming to quantify the 

commonalities and differences across groups (Friston, Litvak, et al., 2016).  The PEB 

scheme is distinctive in several aspects in conducting group-level inference (between-subject) 

in SPM 12. One of the benefits of PEB is to increase the robustness of the DCM connection 

to a random (uncertain) effect. Specifically, PEB takes account of both expected values and 
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covariance of parameters. Moreover, the PEB framework is efficient, particularly when 

estimating a large number of models (for further details see (Zeidman et al., 2019).  

 

In brief, PEB assumes that all participants have identical model structures, but with different 

connection strength. The posterior parameters (including posterior expectation and 

covariance) estimate from the first level (Bayesian model inversion) are collated and 

modelled by using a general linear model (GLM) to compute averaged group-level 

parameters. Meanwhile, the unexplained covariance or uncertain random effect of 

parameters are captured by a covariance component model. Specifically, the average group-

level parameters are weighted by estimated precision of individual connection (from 

Bayesian model inversion), which are then used as empirical priors to estimate a full-model 

to obtain all free parameters of interest. Having calculated all free parameters, Bayesian 

model reduction (BMR) automatically searches over all reduced models, and iteratively 

discards connection parameters by switching off the connection that cannot ascribe to the 

model evidence. BMR procedure stops when disregarding parameters reduces model 

evidence, aiming to find the optimal reduced models. Finally, Bayesian model averaging 

(BMA) is applied to average the posterior parameter over 256 models from the final iteration 

of BMR, weighted by the posterior model probability across models. 

 

Apart from the interest in modulatory connection, we were interested in examining whether 

the deficits in sensory attenuation also arose from the dysconnectivity at the level of intrinsic 

connection corresponding to early auditory ERFs generation in the passive condition. We 

conducted a similar PEB procedure for intrinsic connection (matrix A).  

 

Of note, the GLM matrix was assigned to -1, 0, 1 to investigate between-participants 

differences. Given the imbalance of sample size across groups, the GLM matrix was 

designed with mean-centred regressors to set the first regressor to explain the group mean 

value of connection strength. As the design matrix in GLM is rank deficient, we designed 

the GLM matrix twice to examine between-group differences. Namely, one specific 

hypothesis was that there was a linear group effect in connection strength. Accordingly, the 

GLM matrix was designed with two regressors: 1) the overall mean; 2) the difference 

between HC and FEP. Secondly, commonalities and between-group differences (without 

linear effect) with three regressors were explored: 1) the overall mean across all participants; 

2) the difference between HC and CHR and 3) the difference between CHR- and FEP-groups. 
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The random effect at the between-subject level was set to the default value with 1/16 of prior 

variance. 

 

Finally, we identified the candidate-modulatory connections that could distinguish between 

groups during sensory attenuation from the PEB procedures. Furthermore, the predictive 

validity of the candidate connections was performed by the approach of leave-one-out cross-

validation to test the effect size of candidate connections based on whether they can 

significantly classify a subject into a specific group(for a detailed description of the 

procedure see (Zeidman et al., 2019)).  

 

5.3 Results 

5.3.1 Model structures 

The results from RFX-BMS suggested that the IFG contributed towards the sensory 

attenuation. Furthermore, the exceedance probability in Family C (0.52) was slightly better 

than in Family B (0.48) (Supplementary Figure 2). Hence, all the following analyses were 

based upon Family C.  The winning model across all participants was model 12 with an 

exceedance probability of 100%, which compromised bidirectional, lateral, and self-

modulation connections (Figure 5.3). Within each group, the winning model within Family 

C for HC- and CHR-groups was model 12. In contrast, FEP-participants preferred model 8 

from the backward modulation family without feedforward-modulatory connections (Figure 

5.4).  Additionally, the observed and predicted ERFs from the winning model across all the 

subjects were plotted (Figure 5.5). 
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Figure 5.3  BMS results of DCM-models across and within groups 

This panel displays the results of the RFX-BMS across all participants among models in Family C (12 models 

without null model). Family C is further split into three subfamilies according to forward, backward, bi-

direction modulatory connections. Panel A displays the expected and exceedance posterior probability at the 

family- and model- level for all participants separately. The winning model 12 across all the constructed models 

is presented on the right side with almost 100% posterior probability. RFX: Random Effect. Tha: Thalamus; 

HES: Heschl’s Gyrus; IPL: Inferior Parietal Lobe; IFG: Inferior Frontal Cortex; L: left; R: Right. 
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Figure 5.4  BMS results of DCM-models across and within groups 

This panel displays the FFX-BMS results of winning family and model within each group in each column. 

Both HC and CHR group prefer the family with bi-directional modulatory connection, and the winning model 

is model 12. In contrast, FEP-patients prefer the family that incorporated backward modulatory connections. 

The structure of winning model 8 in the FEP group is presented in panel A. FFX: Fixed Effect; HC: Healthy 

Controls; CHR: Clinical High-risk Psychosis; FEP: First-episode Psychosis.  

 

Figure 5.5  Predicted and observed ERFs of winning model 12 across all groups 

The grand-average ERFs of predicted and observed evoked-potential response within the 

winning model 12 (Family C) are present in 6 nodes. The solid and dotted lines represent 

the predicted and observed ERFs in the active (red line) and passive condition (blue line). 

The x-axis is the time (ms), and the y-axis is the ERFs amplitude. Tha: Thalamus; HES: 

Heschl’s Gyrus; IPL: Inferior Parietal Lobe; IFG: Inferior Frontal Cortex; L: left; R: Right. 
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5.3.2 Connection parameter comparison between groups with 
PEB 

The PEB procedure estimated the parameter difference of modulatory connection across 

groups within a GLM matrix. The averaged group-level GLM parameters for every 

modulatory connection (Figure 5.6, left panel), and the connections corresponding to sensory 

attenuation for all participants were calculated (Figure 5.6, middle panel).   

 

GLM with a linear effect of the group revealed that, compared to the HC group, there was a 

linearly increased connection strength from CHR- to FEP-patients, characterized by an 

increased connection strength from the right HES to the right IPL and right IFG, which 

differed between HC and FEP with 95% posterior probability. In addition, the GLM analysis 

without the group's linear effect showed elevated effective connectivity strength between 

right HES to right IPL in CHR-participants compared to the HC group. Moreover, the CHR-

group displayed reduced connection strength from the right IPL to the left  HES compared 

to FEP-patients (Figure 5.6). Moreover, the leave-one-out cross-validation approach 

revealed that this connection's effect size could significantly predict group membership (r= 

0.30, p =0.00002) (Figure 5.7).  

 

We also estimated the intrinsic connection (matrix A) strength related to auditory ERFs in 

the passive condition. The averaged group connection strengths indicated a reduced input 

from the HES to the high-order cortex in the IPL and the IFG. In contrast, the top-down 

controls from the IPL and the IFG to the auditory cortex were increased for all participants. 

Furthermore, there was a significant reduction between the HES and the IPL for both CHR- 

and FEP-groups compared to HC. Moreover, The FEP-group was also characterized by 

impaired lateral connections (Figure 5.8).  
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Figure 5.6  Group-level GLM parameters and BMA of parameters 

The left plot in panel A depicts the parameters of group-level Bayesian GLM across all participants.  The 

parameter for every connection (22 modulatory connections in total) was plotted with an averaged value and 

95% Bayesian confidence intervals of the connection strength (unit: Hz). The middle column in panel A 

displays the Bayesian model average (BMA) of connection parameters relating to sensory attenuation, which 

is averaged the group parameters over 256 reduced models. Decreased connection strengths (blue arrow) and 

increased connection strengths (orange arrow) are displayed in the right model structure. Asterisks indicate a 

connection with more than 95% posterior probability (one asterisk: 95%; two asterisks: 99%). Panel B, C, and 

Panel D displayed PEB estimation of differences of modulatory connections between groups (Panel B: FEP vs 

HC; Panel C: CHR vs HC; Panel D: FEP vs CHR) during sensory attenuation. The negative value indicates 

decreased connection (blue arrow) and the positive value indicates increased connection (orange arrow) in the 

right model structure. Of note, panel B is the result of the GLM matrix with a linear effect of the group, and 

the results in Panel C and Panel D are the findings of the GLM matrix without the linear effect of the group.  

The left column in panel B, C, D shows the averaged group parameters within the GLM matrix. The middle 

panel exhibits effective connections that contributed to group differences. Asterisks indicate connections with 

more than 95% posterior probability that contributes to group differences (one asterisk: 95%, two asterisks: 

99%). In Panel B and C, the connection in CHR- or FEP-group is compared to HC (baseline), while in Panel 

D, the connection in the FEP-groups is compared to CHR-participants (baseline).GLM: General Linear Model; 
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PEB: Parametric Empirical Bayesian; HC: Healthy Controls; CHR: Clinical High-risk Psychosis; FEP: First-

episode Psychosis. 

 

Figure 5.7  Leave-one-out cross-validation results 

The left panel displays the out-of-sample estimation (mean-centre) of effective connectivity from the right IPL 

to the left HES for each participant (red line) with a 95% credible(confidence) interval (grey shadowed area). 

The right panel shows the correlation between the actual subject effect and the expected subject effect (r=0.30, 

p= 0.00002).  

 

Figure 5.8  Group-level GLM parameters of intrinsic connections and BMA of parameters in the 

passive condition 
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The left column in panel A displays averaged group-level GLM connections across all the participants. The 

middle column of panel A shows the intrinsic connection that differed from zero, indicating the connection in 

generating auditory ERFs. The intrinsic connections with more than 95% posterior probability are marked with 

the asterisks and further exhibited in the right model structure (one asterisk: 95%; two asterisks: 99%). Panel 

B and panel C display the difference of intrinsic connection between groups during generating auditory ERFs 

(Panel B: CHR vs HC; Panel C: FEP vs HC). The left pictures in Panel B and Panel C display the overall 

connection strength for both groups. The middle panel displays the estimation of intrinsic connection that 

differed between groups. The connections with the asterisk have more than 95% posterior probability that 

differed between two groups (one asterisk: 95%; twoasterisks:99%). The connections are displayed on the right 

model structure with the blue arrows (decreased connection strength) and orange arrows (increased connection 

strength) in FEP (Panel B) or CHR (Panel C) compared to the HC group during generating auditory ERFs. 

5.4 Discussion 

In the current Chapter, I employed DCM to explore the features of hierarchical interactions 

during generating sensory attenuation in emerging psychosis. The RFX-BMS results 

revealed effective connectivity patterns across three groups and indicated that FEP-patients 

displayed modulatory connections with a lack of top-down modulation during sensory 

attenuation. CHR- and FEP-participants shared an impaired bottom-up connection from the 

HES to the IPL. Furthermore, the distinctive feature between CHR- and FEP-groups was the 

top-down connection from the IPL to the auditory cortex. In particular, the effect size of the 

connection from the right IPL to the left HES was robust enough to distinguish between 

groups.   

 

After a balance between accuracy and complexity of the models, RFX-BMS results 

supported the involvement of the IFG in sensory attenuation networks across groups. The 

bi-directional modulation connections among thalamus, HES, IPL, and IFG, as well as the 

self-modulation and lateral modulation, have the highest exceedance probability (100%) to 

explain sensory attenuation in both HC and CHR groups. This is in line with current theories 

that highlighted the contribution of both top-down control and bottom-up information flow 

in the generation of sensory attenuation (Friston & S. Kiebel, 2009). Interestingly, the 

winning family and model in FEP-patients did not include top-down mediated effective 

connectivity, which is consistent with findings from the DCM studies in ScZ using auditory 

mismatch negativity (MMN) paradigms  (Dima, S. Frangou, L. Burge, S. Braeutigam, & A. 

James, 2012b) and during the perception of illusory stimuli (Dima et al., 2010a).  

 

Moreover, the BMR-analysis process revealed that effective connections were associated 

with sensory attenuation mostly involved reduced bottom-up connections from the auditory 
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cortex to the IPL and IFG during sensory attenuation for all subjects. We found a linearly 

increased bottom-up connection strength from the right HES to the right IPL and the right 

IFG in CHR and FEP groups compared to HC. Importantly, this connection strength differed 

between HC and FEP with 99% posterior probability, as well as between HC and CHR with 

95% posterior probability. This increased connection pattern was in line with existing 

functional coupling studies that abnormalities in CHR were intermediate between HC and  

FEP(Crossley et al., 2009). In light of the predictive coding account that bottom-up 

information flow transmits a prediction error to update the higher level that in turn predicts 

the forthcoming sensory consequence (Friston & S. Kiebel, 2009), this enhanced bottom-up 

connection strength is suggestive of an increased prediction error when predicting the 

consequence of voluntary action.    

 

However, reduced top-down modulation from the high-order cortex to the right auditory 

cortex in CHR and FEP was not strong enough to differ from HC.  Interestingly, the 

enhanced top-down modulation from the right IPL to the left auditory cortex was robustly 

increased in FEP than in CHR with 99% posterior probability. The enhanced connection 

between the high-order cortex (frontal cortex) and the auditory cortex has been reported in 

normal brain functioning during self-initiated speech (Ford et al., 2005), while this pattern 

was disrupted in chronic ScZ with the feature of reduction (Ford et al., 2002). Interestingly, 

they noticed that ScZ patients with auditory hallucinations displayed increased connection 

strength than those without auditory hallucinations (Ford et al., 2002), indicating the 

association between enhanced top-down modulation and clinical symptoms. Furthermore, 

the top-down prediction was calibrated by the bottom-up input (Friston & S. Kiebel, 2009) 

during voluntary action, possibly through mediating the parietal cortex(Della-Maggiore, 

Malfait, Ostry, & Paus, 2004; Savoie, Thénault, Whittingstall, & Bernier, 2018). Therefore, 

this increased connection was possibly due to enhanced motor command adjustment when 

responding to increased bottom-up input. Furthermore, the increased connection strength 

was large enough to classify the new subject into HC, CHR, or FEP, confirmed by the leave-

one-out cross-validation approach. 

 

Finally, the analysis of intrinsic connections at the group-level revealed an interaction among 

the Tha, HES, IPL, and IFG. The top-down connections from the higher-order areas in the 

IPL and IFG to the auditory cortex and Tha were increased in the passive condition, in line 

with the notion of top-down control in sensory processing (for a review see(Gilbert & 

Sigman, 2007)). Specifically, reduced bottom-up connections and increased top-down 
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connections were involved in the generating early auditory ERF components. Moreover, we 

observed reduced connections from the auditory cortex to the high-order cortex in the IPL 

and the IFG. One possible explanation for this finding is the auditory adaptation theory 

which posits that repeated auditory stimuli alter the neural plasticity within auditory areas, 

resulting in the reduced intrinsic connection between sources (Garrido et al., 2009). 

Regarding alterations of effective connectivity in clinical groups, both CHR- and FEP-

participants exhibited changes in intrinsic connection patterns compared to HC. Specifically, 

these changes involved increased bottom-up connections from the auditory cortex to IFG 

and/ or IPL, while top-down control over the auditory cortex was reduced. As we observed 

impaired M100 in the passive condition in FEP in Chapter 4, the impaired interaction 

between the auditory cortex and high-order cortex from IPL and IFG possibly contributed to 

the abnormal generation of auditory M100 in FEP in Chapter 4.  

 

In summary, this is the first DCM study to investigate the sensory attenuation network in 

CHR- and FEP-groups. BMS results of DCM found an aberrant modulation structure in FEP-

patients when compared to HC and CHR groups, while the PEB procedure provided 

evidence for impaired top-down and bottom-up interactions in FEP-patients. Furthermore, 

aberrant bottom-up neural interactions in CHR-participants was intermediate between HC 

and FEP, suggesting common but progressive impairment in emerging psychosis. Overall, 

our current results indicated abnormal neural substrates of sensory attenuation in CHR and 

FEP, indicating the emergence of abnormal neural interaction in the early stage of psychosis.  
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  General discussion 

6.1 Overview  

ScZ is a debilitating psychiatric condition that it is associated with profound cognitive 

deficits (Heinrichs & Zakzanis, 1998)  as well as early sensory information processing 

impairments (Javitt, 2009a). Furthermore, research suggests that such deficits are detectable 

before illness onset in childhood and adolescents (Gur et al., 2014).  

 

Recent approaches have highlighted the importance of internally generated predictions for 

sensory and higher cognitive processes (Picard & Friston, 2014) that involve a continuous 

updating of an internal model against which incoming sensory information is compared.  

Event-Related Potential/Field (ERP/ERF) components, such as the auditory M/N100, are 

potentially informative to explore such predictive processes, for example, in the context of 

sensory attenuation(Aliu et al., 2009; Cao, Veniero, Thut, & Gross, 2017), the suppression 

of the evoked M/N100 response to self-initiated sounds. Sensory attenuation has been 

consistently observed in healthy individuals (Aliu et al., 2009; Cao et al., 2017). However, 

despite existing models attempting to explain this phenomenon, the actual underlying neural 

networks and their interactions are still largely unknown.  

 

Moreover, impairments in sensory attenuation, as evidenced by impaired auditory N100 

suppression, have been observed in psychosis-spectrum disorders including, 

schizotypy(Oestreich et al., 2015, 2016), schizoaffective disorder (Ford et al., 2013), and in 

chronic-ScZ (Ford & Mathalon, 2004; Ford et al., 2001) as well as in first-degree relatives 

of ScZ(Ford et al., 2013). However, it is currently unclear whether they also exist prior to 

the onset of the disorder, in the at-risk state (CHR). Because the failure of sensory attenuation 

could theoretically underly psychotic symptoms such as auditory hallucinations and 

illusions, as suggested by Feinberg and Guazzelli (1999) and (Ford & D. H. Mathalon, 2005), 

studying this phenomenon in CHR participants could provide a sensitive marker for the 

detection of those individuals at the highest risk for the development of a psychotic disorder.   

 

Accordingly, the main goal was to study sensory attenuation in the CHR population. As a 

first step, in order to gain more insights into the underlying mechanism of potential 

impairments, the precise network and interactions between network nodes underlying 

sensory attenuation were investigated in HC (Chapter 3), using a DCM-approach. Using a 

comparable framework, I then explored the deficits of M100 sensory attenuation in emerging 
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psychosis as well as the underlying neurocognitive and clinical correlates. These 

investigations are reported in Chapter 4. Finally, in Chapter 5, I reported on the results of 

DCM applied to the data from the two main clinical groups (CHR and FEP individuals) to 

investigate more precisely potential impairments in effective connectivity underlying the 

observed aberrant sensory attenuation.  

 

6.2 Key findings and their implications 

6.2.1 The sensory attenuation in HC  

Auditory sensory attenuation has been widely explored in both human and animal studies 

with neurophysiological techniques (Aliu et al., 2009; Rummell et al., 2016). By employing 

MEG, we observed M100 sensory attenuation over temporal-parietal sensors in HC, which 

we could localize to a network of temporal, parietal, and subcortical areas, including the 

thalamus. The effect was most pronounced in right HES and ST, in line with evidence 

suggesting the dominance of the right hemisphere in simple tone processing and the left 

hemisphere in speech-related tone processing(Zatorre et al., 2002; Zatorre et al., 1992). The 

finding of sensory attenuation effects being strongest in the primary (HES) and secondary 

auditory cortex (ST) also replicates previous EEG/MEG studies(Cao, Thut, et al., 2017; 

Heinks-Maldonado et al., 2006; Martikainen et al., 2005a). Moreover, our current findings 

suggest that reduced neural activity during self-initiated action is not limited to early 

auditory-processing areas but is detectable in a much wider network of brain areas, including 

the parietal cortex (IPL and precuneus), the thalamus, and the rolandic operculum during 

auditory perception. This indicates that motor-related signals could influence many sites in 

the brain during auditory processing and change its early responses to incoming signals.  

 

One important finding of our study is that the sensory attenuation effect is present in the 

parietal cortex, including the IPL and the precuneus, at early latencies (i.e., prior to the onset 

of SAP effects in the primary auditory cortex). Sensory attenuation in parietal areas has been 

reported in the visual domain(Benazet et al., 2016), as well as in the auditory domain 

(precuneus) during voluntary actions(Cao, Veniero, et al., 2017). The IPL plays an important 

role in the integration of auditory‐motor information (Alain, He, & Grady, 2008; Hickok, 

Okada, & Serences, 2009; Pa & Hickok, 2008)  through interactions with the cerebellum 

(Pollok et al., 2008) and in the prediction of motor outcomes (Blakemore & A. Sirigu, 2003). 

Accordingly, it is plausible that the IPL integrates auditory and motor responses in the 

https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25134#hbm25134-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25134#hbm25134-bib-0030
https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25134#hbm25134-bib-0048
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current task. However, more work is necessary to precisely elucidate the role of the IPL in 

sensory attenuation. 

 

Another important finding is the involvement of the thalamus in sensory attenuation. There 

is evidence of suppression of midbrain areas during vocal production in bats (Suga & 

Schlegel, 1972; Suga & Shimozawa, 1974). Importantly, such altered response has been 

noticed in humans at the subcortical level during auditory processing (Mukerji, Windsor, & 

Lee, 2010), although during self-initiated speech (Curio et al., 2000) a change in thalamic 

activity was not seen. However, reduced thalamus activity has been reported during self-

produced tactile stimulation via fMRI (Blakemore et al., 2001), although it is unclear what 

the timing of this effect is due to fMRI-recording’s low temporal resolution (i.e., it could 

also reflect activity following the early M100 response). More specifically, the traditional 

role of the thalamus during auditory processing was seen as limited to the function of a relay 

centre for external sensory inputs(Alitto & Usrey, 2003), but there is now general consensus 

about its important role also in higher-level processing (Sherman & Guillery, 2006). For 

example, the thalamus can provide stimulus-specific information to the cortex by thalamus-

cortical circuitry that goes beyond simple relaying the bottom-up signal. In particular, the 

afferent sensory information to the thalamus can be modulated by motor cortex activity(Lee, 

Carvell, & Simons, 2008; Zagha, Casale, Sachdev, McGinley, & McCormick, 2013), and 

then the output from the thalamus serves as an efference copy to the cortical area(Sherman, 

2016), possibly by corticocortical communication(Zagha et al., 2013) or by contacting the 

subcortical motor centres via branch axons(Sommer & Wurtz, 2008). Altogether, our current 

MEG findings reveal the involvement of the thalamus in sensory attenuation, but replication 

of this effect and determination of its exact role requires more investigation. 

 

The fact that sensory attenuation is a multi-level network response is important with respect 

to the evaluation of its proposed underlying mechanisms. For example, according to the 

empirical framework of efference copy, the reduced brain activity during self-initiated 

conditions should be primarily observed in the sensory cortex (Von Holst, 1954; von Holst 

& Mittelstaedt, 1950). In other words, an outflow of an actual copy (efference copy) of motor 

command was expected to directly target the sensory cortex to predict the consequence of 

voluntary action (von Holst & Mittelstaedt, 1950). We found some evidence for this in our 

regression models, showing strong predictive relationships between early PoCG/PreCG 

activity and later reduction of the auditory cortex M100 response (SAP effect). There is also 

evidence from rats supporting the direct projection from the motor cortex to the auditory 
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cortex (Budinger & Scheich, 2009; Nelson et al., 2013). However, whether such direct 

pathways also exist in humans is currently unknown(Morillon, Hackett, Kajikawa, & 

Schroeder, 2015). An important question, therefore, is how to explain the suppressed activity 

in brain areas other than the primary auditory cortex. Theoretically, the corollary discharge 

model is similar to the efference copy theory in that the efferent copy was proposed to be 

generated in motor-related areas, but distinct in its prediction of the efference copy signal 

targeting a network of areas involved in higher- and lower- order processing of sensory 

information(Crapse & Sommer, 2008a, 2008b). Such areas could include both thalamus and 

IPL. Therefore, the corollary discharge framework would better predict our network 

findings. 

 

In summary, our current findings provide electrophysiological evidence that self-initiated 

sounds attenuate neural activity in a wide network of brain areas, with initial predictive 

processes of the motor action influencing responses in multiple brain areas before it 

expresses itself in the attenuation of the M100 amplitude in primary auditory cortex. 

 

6.2.2 The sensory attenuation in CHR and FEP  

In Chapter 4, we reported sensory attenuation effects over the bilateral auditory-parietal 

areas in HC at the sensor level, while this effect was absent in CHR- and FEP-groups over 

the left hemisphere. In line with sensor-level results, sensory attenuation was shown in the 

bilateral HES and ST in HC at the source level. Consistent with previous ScZ findings 

utilizing a speech-related experimental paradigm(Ford & Mathalon, 2004), we could show 

sensory dysfunctions in FEP during auditory tone stimuli, particularly involving bilateral 

HES and ST. Interestingly, aberrant sensory attenuation in CHR-participants was limited to 

the right auditory cortex. In line with our current finding, the work from  Mathalon et al. 

(2019) identified impairments of sensory attenuation in CHR, although they did not capture 

this effect with a smaller sample size(Perez et al., 2012; Whitford et al., 2018).  

 

The deficits found in CHR and FEP provide evidence that impairments of sensory 

attenuation are also present in the at-risk state, in individuals who potentially develop a 

psychotic disorder. Furthermore, these deficits could not be explained by impairments in the 

auditory M100 component itself and thus reflect a true impairment in attenuation of the 

M100 as a result of higher-prediction accuracy of sound onset in the self-initiated condition. 

The general consensus is that generation of sensory attenuation entails successful motor-

sensory integration, with the cancellation of auditory M100 during voluntary action relying 



101 
 
on the precision of top-down prediction signals(Sperry, 1950b; von Holst & Mittelstaedt, 

1950). Our cognitive data indicated specific deficits in processing speed and attention and 

motor speed in CHR and FEP participants. lt is therefore conceivable that the deficits of 

sensory attenuation are reflective of disrupted sensorimotor integration in CHR and FEP.  

Interestingly, in contrast to the impaired sensory attenuation, the FEP group showed an 

increased M100 amplitude in the left auditory cortex. In line with these results, increased 

left-lateralized auditory N100 activity during the active condition was also found in an EEG 

study, including ScZ patients (Ford et al., 2007). Such increased auditory activity was further 

shown to be modulated by motor-cortex movement-related signals, presumably in order to 

maintain the sensitivity to self-initiated tone (Reznik et al., 2014; Reznik et al., 2015). 

According to the predictive coding framework (Friston & S. Kiebel, 2009), this enhanced 

auditory cortex is thought to be the consequence of the misperception of self-generated 

tones. Moreover, the left auditory cortex impairments have been reported to correlate with 

auditory hallucinations in ScZ (for a review see((Allen, Larøi, McGuire, & Aleman, 2008))  

and with formal thought disorder (Feinberg & Guazzelli, 1999) and thus represents a 

potential treatment target of rTMS (for a review see (Slotema, Blom, van Lutterveld, Hoek, 

& Sommer, 2014)). In support of this, sensory attenuation in the left auditory cortex was 

closely linked to clinical symptoms in CHRs, indicating the clinical relevance of left-

lateralized sensory attenuation impairments.  

 

Moreover, the sensory attenuation effect in the left auditory cortex could discriminate 

between CHR and FEP individuals, suggesting a progressive alteration of sensory 

attenuation from initial right impairments to bilateral auditory cortex impairments over the 

subsequent stages of psychosis development. Supporting evidence from structural anatomy 

revealed progressive alteration of reduced grey matter in the left HES  and ST during the 

transition to psychosis(Kasai et al., 2003). The extent of deficits of sensory attenuation in 

the CHR-group was comparable to FEP in the right auditory cortex, indicating that sensory 

attenuation in the right auditory cortex could be an index of risk state of psychosis, in line 

with a meta-analytical finding of reduced grey matter in the right ST  in CHR (Fusar-Poli, 

Radua, McGuire, & Borgwardt, 2011). 

   

Finally, hemispheric impairment in the auditory cortex remains controversial even in 

ScZ(Corballis & Häberling, 2017; Mitchell & Crow, 2005), as various factors could 

contribute to the reported inconsistency of such findings. In contrast, our current findings 

provide clinically meaningful evidence for a progression from only right-sided impairments 
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in the at-risk state to bilateral impairments after the onset of FEP. It is thus of importance to 

recognize the distinct role of the bilateral auditory cortex during the development of 

psychosis, for example, for potential prevention. Such lateralization effects could potentially 

also be used as a marker for detecting those individuals that are at the highest risk for 

psychosis development.  

 

6.2.3 Effective connectivity during sensory attention in the 
development of psychosis 

One of our main goals was to investigate effective connectivity during sensory attenuation 

in both CHR- and FEP-groups. First of all, we identified the networks underlying sensory 

attenuation in HC, which we subsequently applied to the CHR- and FEP-groups to 

investigate aberrant neural interaction that contributed to their impaired sensory attenuation 

effect. As far as we know, this is the first DCM study to probe the neural substrate explaining 

sensory attenuation in both healthy individuals and in clinical samples. 

Our modelling approach showed a winning family that included bilateral thalamus and HES, 

as well as the right IPL. Furthermore, the winning model indicated that auditory sensory 

attenuation in the right HES was shaped by both descending and ascending modulatory 

influences from the subcortical thalamus and high-order cortex IPL in HC individuals. So 

far, limited evidence exists for the contribution of the thalamus in sensory 

attenuation(Adams et al., 2013). As the thalamus has been implemented as a crucial structure 

driving abnormal brain activity and behaviour/symptomatology in ScZ(Pratt et al., 2017), 

one of the strengths of our model is that it explores the potential role of the thalamus in 

sensory attenuation. DCM results showed an initially enhanced connectivity from the right 

thalamus to the right HES, followed by a reduction of information transmission from the 

auditory cortex to the high-order IPL area. The reduced communication between the auditory 

cortex and the high-order cortex could indicate the reduction of prediction error. 

Furthermore, we identified increased top-down modulation from the IPL to the lower-level 

sensory cortex, particularly in the right hemisphere. Conceptually, this could represent the 

feedback connectivity that serves to predict the sensory consequences of voluntary 

action(Friston & S. Kiebel, 2009). Accordingly, our winning DCM model in HC individuals 

supports a hierarchical interaction pattern underlying sensory attenuation generation.  

For the DCM-analysis of the CHR- and FEP-data, we expanded the model structure with 

IFG as existing evidence from auditory MMN-impairments has indicated a role of the IFG 
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in impaired top-down predictions in ScZ (Dima et al., 2012b; Michie, Malmierca, Harms, & 

Todd, 2016). The DCM-modelling supported the role of IFG in sensory attenuation networks 

across all groups. Moreover, in agreement with the model structure in Chapter 3, the winning 

family and model showed reciprocal modulatory connections in combination with self-

modulation, and lateral connections were crucial for sensory attenuation. However, it is 

important to highlight that the features of the winning family and model in the FEP-group 

were different from HC- and CHR-groups. Specifically, the FEP-group was characterized 

by lacking feedback control. This is in line with previous MMN-DCM studies in ScZ(Dima 

et al., 2012b) and during the perception of illusory stimuli (Dima, D. E. Dietrich, W. Dillo, 

& H. M. Emrich, 2010b), indicating deficits of high-order cognitive function in psychosis 

(Zakzanis & Hansen, 1998). 

 

Furthermore, the bottom-up connections, particularly the connection from right HES to right 

IPL, was enhanced in CHR and FEP individuals, with the strongest increase found in the 

FEP group. As mentioned earlier, as the connection strength from right HES to right IPL 

declined in HC, the increased connection strength in CHR and FEP implies enhanced 

prediction error input, which could thus explain the failure of sensory attenuation in the CHR 

and FEP. This intermediate connection strength of CHR in between HC and FEP is in 

agreement with existing effective connectivity studies in CHR during working memory 

(Crossley et al., 2009; Schmidt et al., 2013) and resting-state (Andreou et al., 2015; Wang et 

al., 2016),  and shows that the impairment might precede the onset of psychosis.  

 

The impaired sensory attenuation in CHR (Chapter 4), particularly in the right auditory 

cortex, was expected to result from an imbalance between feedforward and backward 

communication, particularly the high-level modulation. In contrast to our expectation, 

however, there was only a trend toward decreased top-down modulation from the right IPL 

to the right HES in CHR and FEP. Nonetheless, it provides cues of potential impairment of 

top-down modulation in the right hemisphere during sensory attenuation in emerging 

psychosis.  

 

In contrast to reduced top-down modulation in the right auditory cortex, the connection 

strength from the right IPL to the left auditory cortex connection was weakly increased in 

CHR, compared to HCs. Importantly, this aspect allowed us to distinguish between CHR 

and FEP individuals. This enhanced connection strength presumably accounts for the 

overactivated left auditory cortex during the self-initiated condition in FEP, compared to 



104 
 
CHR, and might indicate a compensatory mechanism (Su et al., 2015; Wang et al., 2016)to 

adjust motor command(Della-Maggiore et al., 2004; Savoie et al., 2018). In contrast, reduced 

frontotemporal coupling in chronic ScZ during talking compared to listening was found in 

the left hemisphere (Ford, Mathalon, Whitfield, Faustman, & Roth, 2002). As they observed 

that ScZ patients with auditory hallucinations displayed stronger connection strength than 

those without, this could indicate a relationship with symptom severity. Similarly, such 

hyper-connectivity patterns have been reported in  FEP or early illness of ScZ (Crossley et 

al., 2009; Yoon et al., 2015). In addition, this increased top-down connection is robust 

enough to significantly categorize CHR, FEP, HC individuals by our leave-one-out cross-

validation. Notably, in line with our sensory attenuation findings that it was in the left 

auditory cortex discriminating between CHR and FEP, the increased top-down modulation 

from the right IPL to the left auditory cortex instead of the right auditory cortex again 

highlighted the different role of the bilateral auditory cortices in developing psychosis. It 

will be important to explore this alteration in follow-up data to elucidate whether the left 

auditory cortex is a biomarker of onset of psychosis.  

 

Our current DCM results provide evidence of bottom-up deficits during sensory processing 

that is comparable in CHRs and FEP patients, but increase in strength from CHR to FEP 

status, whereas top-down modulation impairments are more likely related to psychosis, as it 

was only impaired in FEP patients. Existing studies of functional coupling in CHR mainly 

focused on higher-order cognitive function. For example, several lines of evidence have 

shown aberrant functional coupling in CHR and FEP, including frontal, temporal, parietal, 

cerebellum areas, and the thalamus(Andreou et al., 2015; Collin et al., 2018; Du et al., 2018; 

Schmidt et al., 2013; Shim et al., 2010; Wang et al., 2016). However, limited evidence is 

available showing disrupted neural interaction during early sensory processing. According 

to current neurophysiological models that ScZ is associated with both top-down and bottom-

up dysfunction, the bottom-up deficits in sensory processing could subsequently drive the 

disruption of high-order processing(Javitt, 2009b). It is thus important to investigate the 

underlying deficit of functional coupling during early sensory processing, particularly in 

light of understanding of abnormalities in high-order processing areas. Comparable work 

from our project also revealed deficits of functional coupling during visual processing in 

CHR(Gajwani et al., 2020), although no significant impairment was detected in auditory 

MMN (Mikanmaa, 2020).  
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6.2.4 The sensory attenuation in CHR subgroups 

Given that the CHR-phenotype involves distinct clinical criteria and outcomes (Fusar-Poli, 

2017; Fusar-Poli, Cappucciati, Borgwardt, et al., 2016; Schultze-Lutter et al., 2015a), it is 

important to address the heterogeneity of CHR.  Hence, CHR-participants in our study were 

initially divided into three sub-groups: 1) SPI-A only criteria (BS); 2) CAARMS only criteria 

(CHR-CAM, or UHR); 3) SPI-A/CAARMS combined (see supplementary materials for 

Chapter 4). Notably, 96% (3/80) of our UHR participants met the criteria of APS. Although 

we did not capture any significant group differences of sensory attenuation across three sub-

groups, each sub-group displayed a unique feature. More specifically, CHR-both and BS 

groups displayed an absence of sensory attenuation in the auditory regions, while the sensory 

attenuation was present in the UHR group. Furthermore, among the three subgroups, only 

the CHR-both group displayed impairment of sensory attenuation in comparison to HC 

participants. This is in support of the notion that meeting both UHR and BS threshold criteria 

is linked to greater clinical symptom severity than meeting  UHR or BS threshold criteria 

alone (Simon et al., 2006). Also, meeting both criteria have been shown to improve the 

prediction of clinical outcomes of CHR individuals, both in the short term(Ruhrmann et al., 

2010) and over longer periods (Schultze-Lutter, Klosterkötter, & Ruhrmann, 2014). 

Therefore, our current results provide neuroimaging evidence that those individuals meeting 

UHR and BS criteria display robust neural abnormalities, whereas this was not so clear for 

the BS or UHR only groups.  

Interestingly, the SAP effect was absent in the BS group instead of in the UHR group. Our 

current findings seem contradictory to the clinical definition of BS and UHR that BS has 

been featured as an earlier phase of prodromal psychosis than UHR, constituting a 

continuum psychosis (Fusar-Poli et al., 2013). Some evidence exists suggesting no 

difference in cognitive function between BS and UHR(Simon et al., 2006), as well as similar 

long-term outcomes of BS and UHR groups(Schultze-Lutter et al., 2015a). Hence, it appears 

that the trajectory of clinical symptoms and cognitive functioning, as well as of clinical 

outcomes, do not fully align with each other. However, neuroimaging studies supporting 

such subgroup differences are scarce. In fact, in line with our finding previous work has 

addressed the aberrant neural substrates of BS, involving reduced grey matter in temporal-

limbic areas and disrupted functional coupling (for a review see (Schultze-Lutter et al., 

2016)), indicative of abnormalities of brain function in psychosis stemming from the earlier 

phase of psychosis (BS). Furthermore, one more work by employing auditory oddball task 

showed spatial distribution difference of reduced P300 amplitude in BS (particular 
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COPPER) and APS/BLIPS, indicating potential different neural substrates of BS and 

APS(Frommann et al., 2008). Overall,  our current findings provided some links between 

BS- and UHR-criteria in CHR patients that might be associated with different states of 

disturbed information processing(Schultze-Lutter et al., 2016).   

Moreover, heterogeneity of CHR individuals also appears to be related to heterogeneity in 

the long-term outcomes (Cross, Scott, Hermens, & Hickie, 2018; Fusar-Poli, Cappucciati, 

Borgwardt, et al., 2016; Suvisaari et al., 2018). As mentioned in the introduction, the 

transition rate to psychosis is about 20% within 24 months follow-up period, at least 

according to the latest data (Fusar-Poli et al., 2013). Therefore, the majority of individuals 

with CHR are not likely to develop frank psychosis, and approximately one-third of CHR-

positive psychosis can be expected to be remitted at the end of the study period(Michel, 

Ruhrmann, Schimmelmann, Klosterkötter, & Schultze-Lutter, 2018). Currently, major 

efforts are undertaken to try to predict conversion to psychosis, for example by trying to 

classify convertors among non-converters(Addington et al., 2011; Michel et al., 2018; Tang 

et al., 2019; Woods et al., 2014).  

So far, limited neuroimaging studies exist investigating potential neural differences between 

CHR-individuals that are later in remission and those who show the persistence of CHR 

symptoms. As follow-ups in our project were available at 12 months for most CHR 

participants, we explored separating them into CHR-persistent and CHR-nonpersistent at 12 

months according to CAARMS assessment (see supplementary materials for Chapter 4). Of 

note, we utilized the word persistent instead of non-remission as our follow-up time is not 

long enough to conclude CHR’s final status. It turned out that 44.5 % (54.5% remission) of 

CHR-participants at 12 months still met the criteria of UHR, higher than the rate from the 

meta-analysis that reported around 35 % remission at 2-year follow-up(Simon et al., 2013).  

This might be due to the fact that current persistent criteria were dependent only on 

symptoms rather than both symptom and functional remission. Notably,  in contrast to 

existing findings that captured differences in auditory MMN and P300 between CHR 

remitters and non-remitters(Kim, Lee, Yoon, Lee, & Kwon, 2018; Tang et al., 2019), our 

one-year follow-up data did not show differences in sensory attenuation between CHR-

persistent and CHR-nonpersistent in comparison to HC at baseline, in line with auditory 

MMN findings in our project(Mikanmaa, 2020). However, the visual gamma in our project 

did capture the significance of these two groups(Gajwani et al., 2020). This is possibly due 

to different experiment tasks and still relatively short follow-up period. Accordingly, it 
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remains to be seen whether or not sensory attenuation could be regarded as a potential 

biomarker for predicting future psychosis risk.  

6.2.5 Clinical features in CHR and correlation with sensory 
attenuation  

Demographic information, cognitive functioning, and clinical characteristics of all 

participants were presented in Chapter 2 and Chapter 4. Overall, age and sex were matched 

across three groups as existing evidence has suggested that age and sex potentially has an 

impact on the prevalence and clinical symptoms of CHR (Amminger et al., 2006; Bendfeldt 

et al., 2015; Romans & Seeman, 2006). In line with existing findings(Bora et al., 2014; 

Fusar-Poli et al., 2015), CHR- and FEP-participants displayed lower GAF scores than HC 

individuals although general functioning in the current sample was somewhat higher than in 

previous CHR-cohorts  (Fusar-Poli et al., 2015). One possible explanation for this finding is 

that the participants in the current project were largely recruited from the community (Fusar-

Poli, Schultze-Lutter, Cappucciati, et al., 2016; Fusar‐Poli, 2017). Related to this finding, 

circumscribed impairments in cognition were observed in our data, mainly involving motor 

speed, processing speed and attention when compared to previous findings(Carrión et al., 

2011; Fusar-Poli, Deste, et al., 2012). 

 

According to different CHR criteria, the CHR-both group had significantly lower GAF 

scores and more severe clinical symptoms than either the BS or UHR subgroup. This is in 

line with previous findings that a combined BS and UHR approach is associated with 

stronger impairments (Simon et al., 2006). Interestingly, despite BS being identified as an 

earlier stage than UHR(Fusar-Poli et al., 2013), we did not find differences in either GAF 

score or clinical symptoms between  BS and UHR groups. Furthermore, considering that 

previous evidence suggested a similar clinical outcome of CHR for BS and UHR 

subgroups(Schultze-Lutter et al., 2015b), identifying BS as a fairly sensitive marker of 

psychosis risk is validated. Nonetheless, more evidence from our longitudinal study in the 

future will be needed to confirm this. 

 

Given currently limited available follow-up data, we only investigated CHR status at 12 

months, aiming to illustrate differences in baseline clinical and neural features that predict 

future CHR status. Our current results support reported findings that CHR non-converters 

(Addington et al., 2011; Lee et al., 2014)  remained at a lower level of functioning at 12 

months in contrast to HC individuals by showing reduced GAF scores in both CHR-
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persistent and CHR-nonpersistent groups. Furthermore, in agreement with the study from 

Lee et al. (2014), impaired functioning is indeed more prominent in the CHR-persistent 

group than the non-persistent group, possibly due to more severe symptomatology already 

present in the CHR-persistent group at baseline. Furthermore, both CHR-persistent and CHR 

non-persistent groups displayed impaired cognitive function compared to HC individuals. 

However, in contrast to previous findings (Lee et al., 2014), the cognitive function difference 

was not significant between CHR-persistent and CHR-nonpersistent group in our results.  

Overall, our findings suggested that the clinical symptoms and functioning were more 

impaired at baseline in the CHR-persistent group, while a long-term investigation is 

necessary for both CHR-persistent and CHR-non persistent groups to clarify their final 

status.  

 

Moreover, I also investigated correlations between clinical features and sensory attenuation. 

The sensory attenuation effect in the left hemisphere was negatively associated with GAF 

scores in the CHR-group, indicating the lower GAF scores were linked to less sensory 

attenuation effect. Furthermore, the less sensory attenuation was related to more severe 

CAARMS symptoms, particularly in unusual thought content and disorganized speech, in 

line with previous EEG findings (Mathalon et al., 2019; Perez et al., 2012).  The correlation, 

to some extent, supports the theory that the deficits of sensory attenuation potentially 

contributed towards clinical symptoms (Feinberg & Guazzelli, 1999), due to failure to 

distinguish self- and external- generated thoughts.  In addition, the sensory attenuation in the 

right auditory cortex was independent of clinical symptoms, which could indicate that this 

is a more trait-like impairment in CHR.  

 

6.2.6 Early evoked M100 responses 

In order to test whether the sensory attenuation effect resulted from the aberrant early 

auditory information processing deficits, we investigated the M100 amplitude activity in the 

active and passive conditions. In contrast to previous findings (Del Re et al., 2015),  the 

current study did not support the M100 impairments in either the passive or active condition 

in CHR. In contrast, we did observe a reduced auditory M100 in the FEP group in the passive 

condition, particularly in the left auditory cortex, in line with previous findings in FEP-

patients(Del Re et al., 2015)  and a study including ScZ-patients (Rosburg et al., 2008). This 

reduced M100 amplitude in FEP/ScZ represents the dysfunction of early auditory 

information processing.  Conversely, the M100 amplitude in the active condition in the left 

auditory cortex was significantly increased instead of suppressed than in the passive 
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condition in FEP, indicative of the failure of suppressing self-initiated tone.  As the M100 

per se in the active condition was already impaired, the deficit of sensory attenuation in the 

left auditory cortex cannot be fully explained by the impaired auditory M100 in the passive 

condition.   

 

Furthermore, we also estimated the aberrant intrinsic connection patterns underpinning 

passively listening to auditory tones. The bottom-up connection from the HES to the high-

order cortex was reduced, while top-down modulation from the high-order cortex to HES 

was increased in averaged connection strength across all subjects. However, this modulation 

pattern was impaired in both CHR and FEP group, who displayed reduced top-down 

regulation from the IPL to the auditory cortex and enhanced bottom-up connection from the 

auditory cortex to IPL during generating auditory M100, mainly in the right hemisphere. 

Interestingly, we did not capture any M100 amplitude difference in the right auditory cortex 

in either CHR or FEP. A reasonable explanation could be that  ScZ is regarded as a 

disconnection disease that region-specific abnormalities are secondary to functional 

integration in ScZ (Friston, 2002; Friston & Frith, 1995). Therefore, it is plausible to assume 

that the connection abnormalities might subserve or precede the local activity changes. 

Additionally, FEP-participants exhibited more impairment between brain communication 

than CHR. Particularly, the augmented bottom-up connection from the left HES to right 

possibly accounted for impaired auditory M100 in the left auditory cortex in FEP. This 

enhanced bottom-up connection is reflective of the inability to attenuate sensory precision 

in ScZ(Friston, Brown, Siemerkus, & Stephan, 2016). In other words, they cannot recall 

prior beliefs (prediction) to predict the sensation, thus everything is surprising (statistical 

term), resulting in increased input (sensory prediction errors) to the high-order cortex. In 

summary, the DCM results revealed disrupted neural interaction during auditory M100 

generation in emerging psychosis. Importantly, this malfunction of neural interaction 

possibly existed before the alteration of local auditory activity. this needs confirmation in 

the longtidicual data who converted to FEP.   

 

6.3 Limitations and future directions 

Current thesis explored the sensory attenuation by employing the action-auditory paradigm 

with the technology of MEG. One potential concern of the experimental paradigm is that we 

did not include the motor-only condition to rule out the potential motor contamination on 

auditory sensory attenuation, while the existing paradigm disclosed the truth that motor 

activity has a subtle impact on auditory sensory attenuation(Horváth, 2014; Martikainen, K.-



110 
 
i. Kaneko, & R. Hari, 2005b). Furthermore, given the sensory attenuation could be resulted 

from various implicit factors, such as attention, temporal prediction, existing evidence 

confirmed the role of the prediction component in sensory attenuation after controlling those 

potential contributors(Klaffehn, Baess, Kunde, & Pfister, 2019; Martikainen et al., 2005b).  

 

MEG was applied to investigate the auditory M100 sensory attenuation. Indeed,  MEG has 

better spatial resolution than EEG, while MEG is more sensitive to orthogonal signals, 

namely the main signal from gyri(Ahlfors, Han, Belliveau, & Hämäläinen, 2010). Therefore, 

the biomagnetic signal detected by MEG is reflective of a part of brain activity. One 

consideration of our sensory attenuation results is the ability of MEG to detect deep sources, 

such as the subcortical thalamus. However, converging evidence suggested the capability of 

MEG to capture deep source activity(Attal & Schwartz, 2013; Recasens, Gross, & Uhlhaas, 

2018b).  

 

In addition, we employed DCM to initially explore the underlying neural interaction 

mechanisms of sensory attenuation, while due to the constrained DCM for ERP analysis that 

the driving input in two conditions should be identical, frontal motor-related areas were not 

involved in our DCM models. The involvement of motor-related areas in sensory prediction 

has been primarily explored by DCM(Ritterband-Rosenbaum, Nielsen, & Christensen, 

2014), therefore, future analysis to explore the role of motor activity in the sensory 

attenuation network will be necessary, possibly with DCM  or granger causal modelling 

approach by modelling the interaction of neural oscillations.  

 

In the current thesis, our CHR was community-based outreach in comparison to existing 

CHR centres that subjects were from clinical help-seeking centres. This possibly accounts 

for relatively good clinical functioning (GAF) and neurocognitive function (constrained 

impairment) in our study. One concern is that community-based enrolment possibly dilutes 

the effectiveness to detect  CHR(Fusar-Poli, Schultze-Lutter, & Addington, 2016), while our 

current data provided strong evidence of impaired global functioning, social function, 

cognitive function, and even brain function in community-based CHR. Given existing 

evidence revealed different features between these inclusion sources(Kelleher et al., 2012; 

Mills, Fusar‐Poli, Morgan, Azis, & McGuire, 2017; Schultze-Lutter, Michel, Ruhrmann, 

& Schimmelmann, 2018), our community-based enrolment helps to draw a full perspective 

picture for CHR from the general population. 
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Given the criteria to enrol CHR remain under discussion, the heterogeneous criteria of CHR 

potentially contributed to different CHR features and outcomes (Fusar-Poli, Cappucciati, et 

al., 2016). Our CHR samples were included by combining both BS and positive symptoms 

of UHR strategies, facilitating to depict a continuous map of prodromal psychosis. One 

strength of our project is the relatively homogeneous clinical symptoms in UHR, because 

we only estimated the positive symptoms of CAARMS in UHR, and 96% of UHR 

participants me the APS sub-criteria.  However, one consideration is that we did not estimate 

the negative symptoms in our CHR samples if they potentially exhibited negative symptoms. 

Raising attention has been paid to negative symptoms in CHR because it is linked to poor 

social functioning(Meyer et al., 2014; Schlosser et al., 2015), as well as poor community-

based functioning outcome(Strauss, Pelletier-Baldelli, Visser, Walker, & Mittal, 2020).   

 

Moreover, due to limited available longitudinal data in CHR at the analysis time, we only 

explored the clinical outcome at 12 months. Given a one-year follow-up is not long enough 

to estimate the final clinical outcomes, further investigation at 24 months and 36 months will 

help to eventually trace the CHR status. Furthermore, considering small numbers of CHR 

convertors at the analysis time, future work should also be conducted to explore the 

distinctive features between CHR converters and non-converters. 

 

6.4 Conclusions 

The features of sensory attenuation in the normal brain laid a foundation for exploring the 

abnormalities in emerging psychosis. Firstly, my current thesis indicates that the sensory 

attenuation is distributed beyond the auditory cortex, involving in cortical-subcortical areas 

in the normal brain. Importantly, the successful generation of sensory attenuation relies upon 

both feedforward and feedback modulation across the sensory attenuation network in HC. 

Furthermore, our analysis confirmed the dysfunction of sensory attenuation in FEP and 

provided evidence for the vulnerability of auditory M100 sensory attenuation in CHR, which 

was related to clinical psychotic symptoms and cognitive functioning. However, this thesis 

cannot strongly support the hypothesis that the heterogeneity of CHR-samples influence 

sensory attenuation features at baseline. Furthermore, the current thesis implies that the 

deficits in sensory attenuation result from imprecise interaction between top-down and 

bottom-up modulation in emerging psychosis. In summary, our findings suggested that the 

auditory sensory attenuation could be a candidate biomarker to early detect psychosis.  
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Appendices 

Appendix 1  

Supplementary materials for Chapter 4 

 

 

Supplementary Figure 1 The distribution and boxplot of sensory attenuation in 4 ROIs at the virtual-

channel level 

The sensory attenuation is extracted based on the mean value of an interesting time window of M100 between 

90 and 150 ms from individual subjects. The line in the boxplot displays the median value of the sensory 

attenuation effect within each group. ROIs: Region of Interest. HC: Healthy Controls; CHR: Clinical High-

risk Psychosis; FEP: First-episode Psychosis; HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; L: left; R: 

Right. 
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Supplementary Table 1 Cognitive variables in subgroups of CHR and HC  

 

Notes: Abbreviations: SD: Standard Deviation; HC: Healthy Controls; CHR: Clinical High-risk Psychosis; 

CHR-CAM: CHR subjects who only met the criteria of the Comprehensive Assessment of At-Risk Mental 

States(CAARMS); CHR-SPI: CHR subjects who only met the criteria of  Schizophrenia Proneness Instrument, 

Adult Version(SPI-A); CHR-both: CHR subjects who met the criteria of both SPI-A and CAARMS.  FEP: 

First-episode Psychosis; ScZ; Schizophrenia; BACS: Brief Assessment of Cognition n Schizophrenia.* p<0.05, 

a non-parametric permutation statistics. 

 

Supplementary Table 2 Cognitive variables in CHR-persistent and CHR non-persistent at 12 months 
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Notes: Abbreviations: y: year; SD: Standard Deviation; HC: Healthy Controls; CHR: Clinical High-risk 

Psychosis; FEP: First-episode Psychosis; ScZ; Schizophrenia; BACS: Brief Assessment of Cognition in 

Schizophrenia. * p<0.05, a non-parametric permutation statistics. 

Supplementary Table 3 The correlation between sensory attenuation and cognitive functions in HC 

Notes: There is no significant correlation between sensory attenuation and cognitive variables in HC  

(Spearman rank correlation, uncorrected p < 0.05).Abbreviations: GAF: Global Assessment of Functioning; 

CAARMS: Comprehensive Assessment of At-Risk Mental States; SPI-A: Schizophrenia Proneness 

Instrument, Adult Version; UTC_global: Global Score of Unusual Thought Content; NBI_global: Global Score 

of a Non-bizarre Idea; PA_global: Global Score of Perceptual Abnormality; DS_global: Global Score of 

Disorganized Speech; BACS: Brief Assessment of Cognition in Schizophrenia; CHR: Clinical High-risk 

Psychosis; FEP: First-episode Psychosis; HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; NaN: Not a 

number. 
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Supplementary Table 4 The correlation between sensory attenuation and cognitive functions in CHR 

and FEP 

Notes: The association between sensory attenuation and cognitive variables in CHR and FEP (Spearman rank 

correlation, uncorrected p <0.05).Abbreviations: GAF: Global Assessment of Functioning; CAARMS: 

Comprehensive Assessment of At-Risk Mental States; SPI-A: Schizophrenia Proneness Instrument, Adult 

Version; UTC_global: Global Score of Unusual Thought Content; NBI_global: Global Score of a Non-bizarre 

Idea; PA_global: Global Score of Perceptual Abnormality; DS_global: Global Score of Disorganized Speech; 

BACS: Brief Assessment of Cognition in Schizophrenia; CHR: Clinical High-risk Psychosis; FEP: First-

Episode Psychosis; HES: Heschl’s Gyrus; ST: Superior Temporal Cortex; NaN: Not a number. 
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Supplementary Material for Chapter 5 

 

Supplementary Figure 2  RFX-BMS of DCM across all the subjects 

The panel displays the results of RFX-BMS across all subjects in Family A, B, C (13 models in each family, 

39 models in all). The upper panel displays the expected probability at the family- and model-level. The 

bottom panel displays exceedance probability at the family- and model-level. The exceedance probability for 

Family B is 0.46 and from Family C is 0.54.  
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Appendix 2 

YouR-Study Assessment Checklist  

At-Risk Group 
Participant ID: _________ 
 

Visit 1: Date: ____________ 

______ At-risk Consent 

______ At-Risk Information sheet  

______ Demographics (including substance use, family 

history and risk asset.) 

______ Positive scale, CAARMS 

______ COGDIS/COPER, SPI-A 

 

Visit 2: Date: ___________ 

______ Debrief   

 

Visit 3: Date: ___________ 

______ COGDIS/COPER, SPI-A (Opt) 

______ Positive scale, CAARMS (Opt) 

______ M.I.N.I 

______ Scale for Premorbid Adjustment 

______ Social role scale 

______ Functional role scale 

 

Visit 4: Date: ___________ 

______ Brief Assessment of Cognition in                           

             Schizophrenia Battery (BACS) 

______ Neuropsychological Testing Battery  

______ Edinburgh Handedness Inventory 

______ National Adult Reading Test 

______ Beliefs About Paranoia Scale (BAPS) 

______ Brief Core Schema Scale (BCSS) 

______ Psychosis Attachment Measure  

             (PAM-SR) 

______ Adverse Childhood Experience Scale             

             (ACES) 

______ The Rust Inventory of Schizotypal  

              Cognitions (RISC) 

 

Visit 5: Date: ___________ 

______ MEG 

______ MRI 

______ Blood sample (opt) 

______ Urine sample (opt) 

______ Inventory of Interpersonal Problems 

______ Significant Others Scale 

______ International Positive and Negative  

             Affect Schedule (I-PANAS-SF)  

______ Social Interaction Anxiety Scale 

______ Assessment of Musicality 

______ Assessment of Video Gaming 

______ The Autism Symptom Self-report for  

              adolescents and adults (ASSERT)  

______ Early Symptomatic Syndromes  

              Eliciting Neurodevelopmental Clinical          

              Examinations (ESSENCE) 

______ Adult ADHD Self-Report Scale (ASRS) 

  

 Month 6: Date: ___________ 

______ Positive scale, CAARMS 

______ SCID I & II 

             IIP 

______ SOS  

______ I-PANAS-SF 

______ Social role scale 

______ Functional role scale 

 

Month 9: Date: ___________ 

______ Positive scale, CAARMS 

______ IIP 

______ SOS  

______ I-PANAS-SF 

 

Month 12: Date: ___________ 

______ Positive Scale, CAARMS 

______ SCID I & II 

______ IIP 

______ SOS  

______ I-PANAS-SF 

______ Social role scale 

______ Functional role scale 

 

 

Month 18: Date: ___________ 

______ Positive scale, CAARMS 

______ IIP 

______ SOS  

______ I-PANAS-SF 

 

 

Month 24: Date: ___________ 

______ Positive Scale, CAARMS 

             COGDIS/COPER, SPI-A 

______ SCID I & II 

______ IIP 

______ SOS  

______ I-PANAS-SF 

______ Social role scale 

______ Functional role scale 

             FROGS 

 

Month 30: Date: ___________ 

______ Positive scale, CAARMS 

______ IIP 

______ SOS  

______ I-PANAS-SF 

 

Month 36: Date: ___________ 

______ Positive scale, CAARMS 

             COGDIS/COPER, SPI-A 

______ IIP 

______ SOS  

______ I-PANAS-SF 
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YouR-Study Assessment Checklist  

FEP Group 
 

Participant ID: _________ 

 

Visit 1: Date: ____________ 

______ At-risk Information sheet  

______ At-risk Consent 

______ Demographics info (including substance use, family history and risk assessment) 

______ Positive scale, CAARMS 

______ COGDIS/COPER, SPI-A 

 

 

 

Visit 2: Date: ___________ 

______ Debrief 

______ Potential referral to services  

 

 

 

Visit 3: Date: ___________ 

______ SCID I & II 

______ PANSS  

______ Potential referral to services 

 

 

Visit 4: Date: ___________ 

______ MEG 

______ MRI 

______ Blood sample (opt)  

______ Urine sample (opt) 

______ Assessment of musicality 

______ Assessment of video gaming 

 

Month 3: Date: ___________ 

______ Brief Assessment of Cognition in Sz battery  

______ Neuropsychological battery   

______ PANSS 

______ Edinburgh Handedness Inventory 

______ National Adult Reading test 
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YouR-Study Assessment Checklist  

Control Group 
 

Participant ID: _________ 

 

Visit 1: Date: ____________ 

______ Control consent form 

______ Control information sheet 

______ Positive scale, CAARMS 

______ COGDIS/COPER, SPI-A 

______ M.I.N.I 

______ Premorbid Adjustment Scale 

______ Social role scale 

______ Functional role scale 

 

 

 

Visit 2: Date: ___________ 

______ Brief Assessment of Cognition in Sz battery  

______ Neuropsychological testing battery 

______ Edinburgh Handedness Inventory 

______ National Adult Reading Test   

______ Beliefs about Paranoia Scale  

______ Brief Core Schema Scale (BCSS) 

______ Psychosis Attachment Measure  

______ Adverse Childhood Experience Scale (ACES) 

______ Rust Inventory of Schizotypal Cognitions (RISC) 

______ Inventory of Interpersonal Problems – 32 items (IIP) 

______ Significant Others Scale (SOS) 

______ The International Positive and Negative Affect Schedule – short form (I-PANAS-SF) 

______ Social Interaction Anxiety Scale 

 

 

 

Visit 3: Date: ___________ 

______ MEG 

______ MRI 

______ Blood sample 

______ Urine sample  

______ Assessment of musicality 

______ Assessment of video gaming 

 

Follow-up: Date:_______ 

______ Psychophysical assessment 

______ MEG 
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