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Abstract 
Nitrogen is an essential element for all forms of life on earth. Since the beginning of the 

industrial revolution, nitrogen has become a major pollutant of marine and coastal ecosystems 

due to the huge rise in the use of inorganic fertiliser. Like many other nutrients, the 

transformations of the nitrogen cycle are mainly controlled by the activity of microorganisms. 

Understanding the factors influencing the activity of microbes involved in the biochemical 

transformation of nitrogen in the environment is therefore crucial.   

 

The aim of this thesis is to establish a robust workflow for the study of microbial activity in 

coastal sediment using transcriptomics. In particular, this work focuses on nitrification, the 

aerobic chemo-litho-autotrophic oxidation of ammonia to nitrite carried out by ammonia 

oxidizing bacteria and archaea (AOB and AOA respectively).   

 

The First part of the thesis (Chapter I) will consist of a review of the literature on the nitrogen 

cycle, with a particular focus on nitrification. A review of the techniques used to measure 

microbial activity in natural environment will also be presented and the knowledge gap that 

exist in transcriptomic workflow in environmental microbiology identified alongside current 

understanding of active nitrifiers in coastal sediments.  

 

The second part of the thesis (Chapters II and III) will present the first experimental work 

package which consists of the optimisation of reverse-transcription (RT)- based protocol for 

the study of microbial activity via transcriptomics. First, a new technique to evaluate RNA 

integrity, extracted from environmental samples, based mRNA will be developed and tested in 

a controlled-RNA degradation experiment. We show that this technique can provide a useful 

complement to the commercial approaches that evaluate RNA integrity mainly through the 

16S/23S rRNA ratio. Then, the effect of the RT protocol itself on RT-Q-PCR and RT-PCR-

sequencing results will be evaluated by testing a combination of four different RT enzymes and 

two priming strategies. We show that the choice of the correct protocol can greatly improve 

accuracy and precision of RT-based results. 

 

The third part (Chapters IV) will present the application of the optimised protocol to study the 

effects of sedimentary structures (ridge/runnel) on microbial nitrification activity measured via 

reverse-transcriptase quantitative PCR (RT-Q-PCR) and reverse-transcriptase PCR-

sequencing. Here, the work developed in part two to ensure RNA integrity and optimal RT-



 V 

PCR protocols will be applied to ensure robust and reliable measure of nitrifier mRNA from 

within coastal sediments to inform ecological understanding of the active organisms and 

controls of nitrification. The study site chosen was the Montportail-Brouage intertidal mudflat, 

located along the French Atlantic coast. This site has been shown to display interesting 

characteristics in term of microbial dynamics, with the sedimentary structures (ridges/runnels) 

significantly influencing microbial nitrification rates. The hypothesis proposed previously to 

explain the differences in nitrification rates is that AOB are more abundant in the runnels, where 

the higher nitrification rates had been measured. Here, we will show that these differences are 

explained by the presence of low abundance but highly active AOB groups that drive ammonia 

oxidation. Furthermore, we show the inadequacy of DNA studies as stand alone methods to 

explore nitrification activity, with a negative correlation between abundance of AOB amoA 

genes and nitrification rates, due to the presence of a highly abundant but inactive AOB cluster.    
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Chapter I General Introduction 
1.1 Coastal ecosystems 
1.1.1 Definitions 

Coastal ecosystems are transition zones between land and marine ecosystems where the spatial 

and temporal alternation of contrasting conditions creates zones of remarkable biological 

diversity and activities (McClain et al., 2003; Foster et al., 2013; Yang, 2014). They encompass 

different types of ecosystems such as wetlands, mangroves, estuaries, marshes, lagoons, rocky 

or muddy intertidal areas, beaches and dunes, coral reef systems, and nearshore coastal waters 

of the continental shelves. A general definition of coastal systems is: "the line where land-

based influences dominate up to a maximum of 100 kilometres from the coastline or 50-meter 

elevation and with the outward extent as the 50-meter depth contour" (Agardy et al., 2005).  

 

Tidal flats are defined as coastal ecosystems that undergo regular tidal inundations. These 

coastal wetlands, often found in sheltered estuaries with high sediment deposition, are strongly 

affected by tidal dynamics. It is estimated that tidal flats cover at least 127,921 km2 of the 

earth's surface (Murray et al., 2019). Three types can be distinguished depending on the 

latitude: 1) low-latitudes mudflats (arid, wet tropical, and subtropical), 2) mid-latitudes 

mudflats of temperate regions and 3) high-latitudes mudflats, influenced by ice (Dyer et al., 

2000). Depending on the climate, tidal level, substrate, hydrology, and salinity, mudflats can 

be inhabited by mangroves, sea-grass, or algal/microbial mats (Semeniuk, 2019). Intertidal 

mudflat's sediments are generally composed of mud and sand with a high mud content which 

makes them cohesive. They are also often characterized by high contents of organic matter, 

which degradation by deposit feeders and microbes stimulates primary production in the water 

columns (Dissanayake et al., 2018).  

 

1.1.2 Importance 

Coastal ecosystems are recognised as important areas, both from an ecological and economical 

point of view: these ecosystems are crucial, for example, for flood control and protection, 

prevention of coastline erosion, nutrient recycling, and food production. It is estimated that the 

goods and services they provide are higher per unit area than terrestrial habitats (Costanza et 

al., 2014). These transition zones between marine and terrestrial systems are among the most 

productive habitats on the planet and provide important services to wildlife. For example, 
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mudflats and saltmarshes are the living space for numerous invertebrates and provide nursery 

and feeding ground for fishes, therefore supporting global fisheries. They also provide feeding, 

nesting, and roosting areas for migrating birds and wildfowl (Foster et al., 2013; Seitz et al., 

2014). Finally, they protect the coastline from erosion due to wave energy, protect from 

flooding, and process nutrients coming from the land (Foster et al., 2013). It is therefore 

important to better understand and protect these ecosystems, especially since it is estimated 

that up to 86% of the European coast is under moderate to high risk due to human activities 

(Seitz et al., 2014). In a global survey, it has been estimated that 16.02% of tidal flats have 

been lost since 1984 due to the combined negative effect of increased anthropogenic coastal 

development, reduced sedimentation, erosion, and sea-level rise (Murray et al., 2019).  

 

1.1.3 Anthropogenic impacts  

Coastal ecosystems are experiencing rapid changes due to the increase in atmospheric CO2 

concentration caused by human activities. This results in general acidification of marine waters 

and a general increase in temperatures. Probably the most known example of the effect of ocean 

acidification on coastal ecosystems is on coral reefs where acidification reduces the 

concentration of carbonate ions in water, making it harder for corals to construct their 

skeletons. This in turns affects fish populations that use coral reefs as nursery and feeding 

grounds (Hall-Spencer and Harvey, 2019). This effect is also felt in temperate coasts with an 

overall deterioration in conditions for coralline algae, which are considered habitat-forming 

species, and the favouring of non-calcified algae. This in turn will likely have a strong negative 

effect on the capacity of coastal ecosystems to mitigate erosion and reduce habitat for many 

crustaceans and fishes. Furthermore, some algae that proliferate in more acidic waters are toxic 

to fish, which could pose a serious threat to fish production (Godbold and Calosi, 2013; Hall-

Spencer and Harvey, 2019).  

 

Coastal ecosystems are also affected by terrestrial pollutants transported by freshwater to the 

coast. It is estimated that nearly 80% of pollutants reaching the oceans come from terrestrial 

sources (Agardy et al., 2005). A pollutant is a generic term that refers to objects, for example, 

plastics (Harse, 2011), chemicals, for example, mercury, (Gworek et al., 2016) nutrients, and 

living organisms (Bianchi, 2007). Nitrogen is naturally present in coastal environments, and 

together with phosphorous supports the growth of algae, aquatic plants, and phytoplankton, 

which are at the basis of the food chain. However, it can be considered a pollutant when too 

concentrated in the system. Urban wastewater and fertilizers used in agriculture are the two 
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main sources of the increased amount of nitrogen entering marine systems via rivers and 

estuaries (Seitzinger et al., 2002). Another important source is nitrogen from atmospheric 

depositions. Combustion of hydrocarbons (industry, transports) is a major source of nitrogen-

containing gas emission (Paerl and Whitall 1999). These sources have drastically increased 

since the industrial revolution (5-10 times) (Paerl and Whitall 1999) and have major 

consequences on the functioning of coastal systems (Bianchi, 2007). Nitrogen, together with 

phosphorous is the major nutrient responsible for algal blooms, leading to eutrophication and 

subsequently to a reduction of oxygen concentration in the water column (Bianchi 2007; 

Howarth and Marino 2006). Because of their high levels of biological activity, estuaries behave 

as active channels that strongly interact with this excess nitrogen. These changes in nitrogen 

redox states (i.e. the nitrogen cycle) are mainly controlled by microbial activities which can 

either result in a mitigation of the pollution via removal or storage of excess nitrogen or indeed 

an aggravation of the problem by the creation of more harmful nitrogen species such as nitrous 

oxide (N2O), a major ozone-depleting gas. A recent review found that overall, coastal 

environments are sources of nitrous oxide to the atmosphere (0.15–0.91 Tg N2O.yr-1) (Murray 

et al., 2015). This figure is relatively small compared to emissions from agricultural soils (4.5–

6 Tg N2O.yr-1) (Shakoor et al., 2020), however, it is predicted that coastal ecosystems will 

strongly respond to increase nitrogen loadings, with an estimated increase in N2O production 

of 190% if nitrate concentration doubles in the next decades (Murray et al., 2015). 

 

Coastal systems and wetlands are among the most valued ecosystems on earth based on the 

services and benefits they provide (Costanza et al., 2014). As discussed previously, they are 

also one of the most threatened by human activities. Understanding nitrogen cycling in coastal 

and wetland systems is therefore imperative for setting up efficient monitoring and remediation 

strategies.  

 

1.2 Nitrogen cycle 
1.2.1 General background  

Nitrogen is an essential element for all forms of life. It is a constituent of proteins, nucleic acids 

and many other organic and inorganic compounds found in living cells. Like most elements, 

nitrogen is transformed from one redox state to another via biological activities and chemical 

reactions (Figure 1.1), numerous steps being catalysed by microorganisms.  
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Nearly 80% of the atmosphere is composed of nitrogen (dinitrogen; N2) which is unavailable 

to most living organisms including animals and plants. A wide range of prokaryotes that 

possess the nitrogenase enzyme can fix dinitrogen, by reduction the strong triple bond of the 

dinitrogen molecule. These prokaryotes often form symbioses with higher organisms such as 

plants (Biswas and Gresshoff 2014) and insects (Douglas 1998; Kneip et al., 2007). Although 

represented occurring in the oxic part (Figure 1.1), nitrogen fixation is O2 sensitive and is 

performed by organisms living in anoxic environments or in oxic environments but capable of 

creating anoxic sub-environments (Bianchi, 2007). 
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Figure 1.1 Schematic representation of the major processes of the nitrogen cycle. 
Microbial processes are written in orange and genes involved in blue. Slash bars (/) indicate 
alternative genes. Black arrows represent biochemical transformations of nitrogen species. 
Interrupted grey arrows represent transport of nitrogen species. nas: prokaryotic assimilatory 
nitrate reductase; nr: eukaryotic assimilatory nitrate reductase; gln: glutamine synthetase; gdh: 
glutamate dehydrogenase; nar/nap: dissimilatory nitrate reductases; nir: nitrite reductase; nrf: 
nitrite reductase (associated with napA) nor: nitric oxide reductase; nos: nitrous oxide 
reductase; nif: nitrogenase; nxr: nitrite oxidoreductase; amo: ammonia monooxygenase hao: 
hydroxylamine oxidoreductase; hh: hydrazine hydrolase; hzo: hydrazine oxidoreductase; nod: 
nitric oxide dismutase. Ammonia Ox: ammonia oxidation; Nitrite Ox: nitrite oxidation; 
COMAMMOX: complete ammonia oxidation; ANR: assimilatory nitrate reduction; ND: 
nitrifier denitrification; IAMO: Intra-Aerobic Methane Oxidation; DNRA: dissimilatory nitrate 
reduction to ammonia; ARMN: anaerobic oxidation of methane via reverse methanogenesis 
using nitrate; ANAMMOX: anaerobic ammonium oxidation. N-orga: nitrogen in organic 
matter. (Adapted from : Arrigo 2005; Canfield et al.,  2010; Gruber and Galloway 2008; 
Karlsson et al., 2009; Kuenen 2008; Kuypers et al., 2018; Moreno-vivián et al., 1999; Simon 
and Klotz 2013).  
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After being incorporated into organic matter, nitrogen can be released into the environment by 

mineralization, mainly as ammonia (Bolle et al., 1982; Bothe et al., 2007). This reduced form 

of nitrogen can be re-incorporated into organic matter by assimilation. Two pathways can be 

used by prokaryotes for ammonia assimilation: a high-affinity pathway, prevalent in 

oligotrophic environments, whereby ammonia is combined with glutamate to form glutamine; 

this pathway is catalysed by the glutamine synthetase enzyme (encoded by gln genes). In the 

low-affinity pathway ammonia is combined with α-ketoglutarate to produce glutamate. This 

pathway is catalysed by the glutamate dehydrogenase enzyme (encoded by ghd genes) 

(Damashek and Francis, 2018). Ammonia can also be oxidized by a one or two-step process 

called nitrification. In nitrification, ammonia is first oxidized to nitrite (ammonia oxidation or 

nitritation) and then to nitrate (nitrite oxidation or nitratation) by two distinct groups of 

microorganisms, or directly converted from ammonia to nitrite and then nitrate by a single 

microorganism, the complete ammonia oxidizers COMAMMOX. These reactions require 

oxygen and are catalysed by specialised groups of microbes: ammonia-oxidation is carried out 

by ammonia-oxidizing bacteria (AOB) and archaea (AOA) while nitrite-oxidation is carried 

out by nitrite-oxidizing bacteria (NOB). COMAMMOX is carried out by a specific group of 

bacteria closely related to NOB. Nitrite and nitrate both have a negative charge and are 

therefore less bound to soil/sediment particles than ammonia. They dissolve easily in the water 

phase and can reach the anoxic zone where they are used by anaerobes that are capable of 

replacing oxygen with nitrate or nitrite as terminal electron acceptors. Many are only 

facultative anaerobes and are capable of respiring oxygen in oxic conditions (Damashek and 

Francis, 2018). They are several pathways by which oxidized forms of nitrogen are used as 

electron acceptors for respiration: the most simple one is the reduction of nitrate to nitrite, 

carried out, for example, by the ubiquitous marine clade SAR11 (Kuypers et al., 2018). Other 

reactions involving nitrate reduction result in the production of more reduced forms of nitrogen, 

such as dinitrogen, and are called denitrification. Denitrification is carried out by organo-

heterotrophs that couple organic matter oxidation to nitrate/nitrite reduction and by litho-

autotrophs that couple the oxidation of inorganic compounds (e.g. sulfur or iron) with nitrate 

reduction. NB: in Figure 1.1 the denitrification pathway is shown to occur in the anoxic zone 

but aerobic denitrification can also happen, although it generally results in the production of 

nitrous oxide rather than dinitrogen (Stein and Klotz 2011; Zumft 1997). It should also be noted 

that, although in Figure 1.1 nitrate is reduced all the way to N2 via nitrite, nitric oxide and 

nitrous oxide, many denitrifiers possess only a partial pathway with some genes missing and 

therefore reduce nitrate only partially. Another pathway is the anaerobic ammonia oxidation 
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(ANAMMOX) carried out by autotrophs, where ammonia is oxidized using nitrite to produce 

energy and reductive power; both denitrification and ANAMMOX produce dinitrogen. Other 

electrons acceptors such as Iron (Fe3+) (FEAMMOX (Li et al., 2015; Yao et al., 2019)) and 

possibly sulphate (SULFAMMOX (Liu et al., 2021)) or even manganese-oxide (Mn-

ANAMMOX (Mogollón et al., 2016)) can replace nitrite as the electron acceptor. Organisms 

carrying out denitrification and ANAMMOX are in direct competition for nitrite and the power 

struggle between the two is dependent on organic matter availability. Indeed, denitrifiers are 

generally heterotrophs, requiring an external carbon source whereas ANAMMOX are 

autotrophs. Consequently, denitrifiers are favoured in organic matter-rich environments where 

they can outcompete ANAMMOX. Furthermore, the two processes require different nitrogen 

substrates, with ANAMMOX also using ammonia, whereas denitrification only requires 

nitrate/nitrite. Percent ANAMMOX should therefore be higher in environments with higher 

ammonia availability (Damashek and Francis, 2018).  

 

Another fate for nitrate is dissimilatory nitrate reduction to ammonia (DNRA), a nitrate 

reduction pathway similar to denitrification except that nitrate is reduced to ammonia instead 

of dinitrogen. Like denitrification, DNRA can be either organotrophic (coupled to organic 

matter oxidation) or lithotrophic (coupled to inorganic compounds oxidation (Eisenmann et al., 

1995; Otte et al., 1999)). DNRA can be favoured over denitrification in anoxic environments 

with both excess electron donors and limiting nitrate as DNRA can generate a greater number 

of electrons per molecules of nitrate. It has also been observed that DNRA is enhanced in 

sulphide-rich environments, either because it can be used as an electron donor or because 

DNRA organisms have a higher sulphide tolerance compared to denitrifiers (Damashek and 

Francis, 2018). 

 

Recently, a pathway called Intra-Aerobic Methane Oxidation (coupled with denitrification) 

(IAMO) was discovered (Ettwig et al., 2010). In this pathway, the anaerobic methane-oxidizing 

Bacteria M. oxyfera couples anaerobic oxidation of methane with the reduction of nitrite to 

dinitrogen. To do so, the bacterium uses a dismutase to convert two molecules of nitric oxide 

to dinitrogen and oxygen, the latter being used to oxidize methane under anoxic conditions. 

Similarly, an anaerobic methanotrophic archaeon (Candidatus 'Methanoperedens 

nitroreducens') is capable of anaerobic oxidation of methane via reverse methanogenesis using 

nitrate (ARMN) as the terminal electron acceptor to produce nitrite. An ANAMMOX 

syntrophic partner then reduces this nitrite to dinitrogen. Comparative genomics shows that the 
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gene for nitrate reduction (nar) in M.nitroreducens was acquired via lateral transfer from a 

bacterial donor (Haroon et al., 2013).  

 

Finally, nitrate can be assimilated into organic matter via Assimilatory Nitrate Reduction 

(ANR). Understanding the factors controlling the biogeochemical nitrogen cycle is of primary 

importance as several steps of the nitrogen cycle produce nitrogen oxides, which are 

greenhouse gases. These steps include nitrification, denitrification and nitrifier denitrification 

(ND) (Figure 1.1). 

 

In Figure 1.1, a clear separation between the oxic and anoxic zone is represented. In reality, 

environments typically display a gradual decrease in oxygen, creating sub-oxic zones. 

Anaerobic processes such as denitrification have been shown to be at the highest in these 

transition zones in tidal sediments an in fact might not be entirely inhibited even in the oxygen 

rich zones (Schutte et al., 2018). Similarly, in the ocean, sub-oxic zones are found in between 

the upper oxygenated water column and the lower oxygen minimum zone (OMZ). These zones 

of low oxygen concentration can still support ammonia oxidation by aerobic marine archaeal 

nitrifier, providing nitrite that fuels ANAMMOX (Wakeham, 2020). There is therefore not a 

clear delimitation between processes occurring in the oxic and anoxic zones. A recent study 

showed that denitrifiers (i.e. "anaerobes") were abundant throughout the oxic, suboxic and 

anoxic oceanic water column whereas autotrophic ammonia and nitrite oxidizers (i.e. 

"aerobes") were transcriptionally active even at suboxic and anoxic depths, suggesting a tight 

coupling between nitrogen oxidizing and reducing metabolisms at low-oxygen depths (Suter 

et al., 2020).  

 

1.2.2 Nitrogen cycle in estuaries  

All biogeochemical transformations of nitrogen species presented in Figure 1.1 are found in 

coastal sediments (Bianchi, 2007). Indeed, as environments displaying both oxic and anoxic 

compartments, coastal systems can support both oxidation (mainly oxic zone) and reduction 

(mainly anoxic zones) of nitrogen species. The limit between the oxic and anoxic zone depends 

on the type of sediment: sandy sediments generally display higher oxygen penetration that 

muddy ones (Bianchi, 2007).  Nitrogen-related microbial processes occurring in coastal 

systems are of primary importance as they modify the chemical state of nitrogen 

(organic/inorganic; oxidized/reduced; dissolved in the water phase/bound to sediment/in the 

gaseous phase) subsequently impacting nitrogen chemistry and bioavailability. These 
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transformations have an important impact on a local scale for organisms living there but also 

on a larger scale as they control the amount of nutrient that reach marine waters and control 

the production of nitrogen gases that affect climate change (Crutzen, 1970; Yung et al., 1976). 

 

In natural environments, the major biogeochemical cycles are linked together via microbial 

metabolism. Different type of coupling between element cycles can be distinguished: 1) direct 

assimilatory coupling: elements such as nitrogen, carbon, phosphate etc. are all incorporated 

into biomass and subsequently released together through mineralisation. 2) Direct dissimilatory 

coupling: bacteria and archaea possess the most diverse range of metabolism compared to other 

kingdoms of life. Their energy-releasing metabolisms often involve the change in the oxidation 

state of different elements (e.g. denitrifiers use organic carbon as electron source and nitrate as 

electron acceptors). Finally, indirectly coupling occurs via the reaction of the products of 

microbial metabolisms, which can affect other biogeochemical processes (e.g. hydrogen 

sulphide produced by sulphate respiration can inhibit nitrification) (Burgin et al., 2011). As 

discussed previously, estuaries are complex environments where all major elements are found 

and are therefore places where the nitrogen cycle is tightly coupled with other major cycles.  

 

1.2.2.a Links with the carbon cycle 

The nitrogen cycle is closely coupled to the carbon cycle. Autotrophic nitrification and 

ANAMMOX are coupled to CO2 fixation, transforming inorganic carbon into an organic form. 

Nitrate and nitrite respiration are carried out by heterotrophs. These organisms oxidize organic 

carbon into CO2 to generate energy. Nitrate/nitrite are then used as terminal electrons acceptors 

of the respiratory chain. Methanogenesis, the conversion of simple organic compounds and 

CO2 to methane is an important process in coastal sediments that has received great attention, 

as methane is a potent greenhouse gas (Ferry and Lessner, 2008; Jameson et al., 2019). 

Methanotrophic organisms can use methane as carbon and energy sources and some use 

nitrogen species to carry out their metabolisms. As discussed in section 1.2.1, NO is used in 

the IAMO metabolism to generate oxygen in anoxic zones to oxidize methane. Furthermore, 

M.nitroreducen is capable of direct anaerobic oxidation of methane using nitrate. Nitrogen 

fixators in symbiosis with plants are also tightly linked to the carbon cycle, as their rate of 

fixation influences the growth rate of the plant and therefore the CO2 fixation rate of the 

autotrophic partner (Schindler and Bayley 1993). The same applies to CO2 fixation by 

phytoplankton in coastal water and sediments being limited by nitrogen fixation (Gruber 2004). 
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Thus, the nitrogen cycle is strongly linked to both fixation and mineralization of carbon (Bolle 

et al., 1982; Bothe et al., 2007). 

 

Carbon and nitrogen cycles are also indirectly linked as some nitrogen related metabolisms are 

pH-sensitive, for example, nitrification. An increase in atmospheric CO2 concentrations leads 

to an increase in CO2 concentrations in oceans due to the diffusion of gas in waters. This 

acidification can result in a lower autotrophic nitrification rate and therefore to a lower CO2 

fixation by nitrifiers. 

 

1.2.2.b Links with the sulphur cycle 

Sulphur is an important element in natural ecosystems. Like nitrogen, it is an essential 

component of living cells as part of some amino acids. Sulphur also changes its redox states, 

due to abiotic and biotic reactions, many of which are catalysed by microorganisms for their 

energy yielding metabolisms. The sulphur cycle in marine sediment is dominated by the 

dissimilatory reduction of sulphate to sulphide (DSR) by anaerobes. The majority of this 

sulphide is then re-oxidized to sulphate via different biochemical reactions including microbial 

processes that use oxidized nitrogen species as oxidants (Jørgensen et al., 2019). These Sulphur 

Oxidizing Microbes (SOM) can perform anaerobic lithotrophic denitrification coupled with the 

oxidation of sulphide (Baker et al., 2015). One striking example of SOM includes members of 

the genus Thioploca that have been shown to display high motility enabling them to move 

within the sediment column and even escape into the water column to capture and store nitrate 

for subsequent use in deeper sediment layers to oxidise sulphide (Schulz and Jørgensen, 2001; 

Zopfi et al., 2001).  

 

Another example of direct coupling between the nitrogen and sulphur cycles is the 

SULFAMMOX process, an analogue of the ANAMMOX where nitrite is replaced by sulphate 

to oxidize ammonia anaerobically. The exact mechanism of SULFAMMOX is not clear and 

three possible pathways have been proposed: 1) SO42- is reduced to S and NH4+ is oxidized to 

N2; 2) NH4+ is oxidized to NO2- by SO42- and part of this NO2- is reduced to N2 by S2- and 

finally NO2- and NH4+ are converted to N2, like in the conventional ANAMMOX process; 3) 

NH4+ is partially oxidized to NO2- by SO42- then NO2- and NH4+ are converted to N2 (Liu et al., 

2021). In coastal sediment, it has been proposed that the sulphate dependant denitrification and 

SULFAMOX/ ANAMMOX processes are linked: in the case where nitrate is only partially 

reduced to nitrite, it is used for ANAMMOX. However, when nitrate is completely reduced to 
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dinitrogen gas, the sulphates originating from sulphide oxidation replaces nitrite inducing a 

switch from ANAMMOX to SULFAMOX (Rios-Del Toro and Cervantes, 2016; Liu et al., 

2021).  

 

1.2.2.c Links with the iron cycle 

Iron rapidly changes between its Fe2+ and Fe3+ oxidation states in the environment. This 

fluctuation between redox states has been named the "FeII-FeIII redox wheel" and has been 

shown to interact with the major nutrient cycles including carbon, nitrogen, phosphorus and 

sulphur in numerous environments including coastal sediments (Burgin et al., 2011; Li et al., 

2012). As previously described for the sulphur cycle, lithotrophic denitrifying microorganisms 

can directly link the nitrogen and iron cycles by using Fe2+ as an electron source to reduce 

nitrate, generating nitrite, nitrous oxide or dinitrogen and Fe3+(Burgin et al., 2011; Li et al., 

2012). Similarly, Fe2+ can be used as an electron source for lithotrophic DNRA. Incubations of 

estuarine sediments with added Fe2+ has been shown to enhance DNRA and reduce 

denitrification, indicating that Fe2+ availability may be a significant factor controlling the fate 

of nitrogen: either loss via denitrification or retention via DNRA. Another important Fe3+ 

generating mechanism is the aerobic iron oxidation carried out in upper sediment layers by 

autotrophic microorganisms (Burgin et al., 2011). 

 

The second part of the FeII-FeIII redox wheel is the reduction Fe3+ to Fe2+. In marine sediment, 

heterotrophic anaerobes can replace oxygen by Fe3+ as the terminal electron acceptor to oxidize 

organic carbon, generating Fe2+ (Burgin et al., 2011; Li et al., 2012). Another iron-reducing 

pathway is an analogue to ANAMMOX, but replaces nitrite with Fe3+ as an oxidant. This 

process, called FEAMMOX, has been shown to play an important role in nitrogen loss in 

intertidal wetlands by oxidation of the soluble ammonia to dinitrogen gas (Li et al., 2015). 

 

1.2.2.d links with the manganese cycle 

Manganese oxide (MnO2) is another potential electron acceptor that is present in marine 

sediments and the anaerobic oxidation of ammonia by MnO2, leading to either nitrate or 

dinitrogen, is thermodynamically favourable (Hulth et al., 2005). Incubation experiments and 

strain isolation have revealed that anaerobic oxidation of ammonia to nitrate with MnO2 is a 

relevant process in marine sediments (Hulth et al., 2005; Bartlett et al., 2008; Javanaud et al., 

2011; Lin and Taillefert, 2014). This process, however, might be only significant in Mn-rich 

sediments and when sulphate reduction is absent (Lin and Taillefert, 2014) which may apply 
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to only a minority of coastal marine ecosystems and be more relevant to deep-sea sediments 

(Mogollón et al., 2016).  

 

A schematic representation of the major interactions between the nitrogen cycle and other 

major biochemical cycles is presented in Figure 1.2. This figure represents a simplified 

situation with a gradient of concentration of the major electrons acceptors: because of the 

decrease in energy yield obtained by respiration from O2 to NO3- to Fe3+ and then SO42-, these 

oxidants are successively depleted in the sediment column from top to bottom. Picks of NO3- 

and SO42- are due to microbial nitrification and sulfur oxidation, respectively. 
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Figure 1.2 Schematic representation of the major interactions between the nitrogen cycle 
and the carbon, iron, sulfur and manganese cycles in marine sediments. Microbial 
processes are indicated in white bubbles showing how they couple the nitrogen cycle (green 
arrows), carbon cycle (grey arrows), iron cycle (red arrows), sulfur cycle (yellow arrows) and 
manganese cycle (purple arrows). Dashed lines represent transport of elements. Microbial 
processes drawn in a white dashed hexagon are actively coupled i.e. the product of one 
metabolism feeds the other. Concentration profiles of the major electron acceptors along the 
sediment depth are represented by dashed line-plots on the right of the figure. Corga: carbon 
stored in organic matter. DSR: dissimilatory sulphate reduction. IAMO/ARMN: see 1.2.1. 
 

1.2.3 Production of nitrous oxide by nitrogen cycle-related organisms in coastal sediments 

Nitrous oxide (N2O) is a major atmospheric pollutant and contributes significantly to global 

climate change (Crutzen, 1970; Yung et al., 1976). Nitrous oxide has a global warming 

potential (GWP) approximately 300 times higher than carbon dioxide (Table. 1.1). GWP is a 

measure of a greenhouse gas effect on climate and depends on a) its atmospheric concentration, 

b) how strongly and where in the infrared spectrum it absorbs energy and c) its lifetime in the 

atmosphere (CO2 as a reference with GWP=1) (Elrod, 1999). Emissions from soils, sediments 

and waters are due to both biotic and abiotic processes. The major biotic processes are driven 

by microorganisms and among them, the most prominent are nitrification, denitrification and 

nitrifier-denitrification (Hu et al., 2015). 

 

Denitrification-derived N2O is generally recognised as the major biotic source in marine 

sediment. The importance of this N2O production is dependent on the amount of dissolved 

inorganic nitrogen (DIN) and oxygen concentration (Murray et al., 2015). The expected 

increase in nitrogen loadings and the resulting eutrophication of coastal environments could 

result in an overall increase in N2O production in marine sediments in future (Naqvi et al., 

2010). As discussed in 1.2.1, nitrification controls the amount of nitrite and nitrate produced, 

which then feeds denitrification. Nitrification is therefore important for its direct and indirect 

link to N2O production in coastal sediments.   
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Table 1.1 Global Warming Potentials (GWP) and atmospheric lifetimes (years) of some 
of the major greenhouse gases. Source: U.S. Environmental Protection Agency 2002. 

Gas Atmospheric lifetime GWP (over 100 year) 

Carbon dioxide 50-200 1 

Methane 12±3 21 

Nitrous oxide 120 310 

Hydrofluorocarbons 1.5-209 140-11,700 

Sulfur hexafluoride 3,200 16,300 

 

1.2.3.a Nitrification  

During the nitrification process, chemical reactions can occur with intermediates between NH3 

and NO2- (and NO2- itself) leading to the production of N2O. Incomplete oxidation of 

hydroxylamine is also a source of N2O in AOB. AOA also produce N2O but the mechanism is 

unclear. Indeed, the intermediate redox forms between NH3 and NO2- during AOA ammonia 

oxidation are uncertain. A better understanding of AOA's metabolism is therefore crucial as 

AOA are believed to be largely responsible for oceanic N2O production (Hu et al., 2015). In 

agricultural soils, the relative contribution of AOA and AOB to N2O production is linked to 

the source of nitrogen: under unamended conditions, where ammonia mainly originated from 

mineralisation, N2O production is lower and is mainly due to AOA; on the other hand, when 

high amounts of inorganic ammonia are supplied, N2O production is higher and is mainly due 

to AOB activity (Hink et al., 2017).   

 

1.2.3.b Denitrification  

Denitrification is a chemo-heterotrophic or chemo-autotrophic anaerobic respiratory 

metabolism in which nitrate is used as a terminal electron acceptor. Nitrogen oxides are formed 

during the sequential reduction of nitrate to dinitrogen and can be released into the atmosphere 

(Pilegaard, 2013; Wrage et al., 2001):  

 

NO3- à NO2- à NO à N2O à N2 

 

Another pathway called nitrification-coupled denitrification (a combination of autotrophic 

nitrification and heterotrophic denitrification) is responsible for the production of nitrogen 

oxides; it takes place when denitrifiers directly reduce nitrite and nitrate produced by 
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autotrophic nitrifiers. The mechanisms responsible for N2O production are the same as the ones 

involved in nitrification and denitrification (Pilegaard, 2013; Wrage et al., 2001). 

 

1.2.3.c Chemodenitrification  

The abiotic reactions of nitrite in soils and sediments can also be a source of nitrogen oxides 

(NOx). Chemical decomposition of nitrite can be important in environments with low pH and 

include the reactions with protons (a, b), ferrous iron (c) and hydroxylamine (d) (Pilegaard, 

2013; Wrage et al., 2001). 

 

(a) 3NO2- + 2H+ à 2NO + NO3- + H2O 

(b) NO2- + H+ à HNO2 à HONO 

(c) NO2- + Fe2+ + 2H+ à NO + Fe3+ + H2O 

(d) NH2OH + NO2- + H+ à N2O + 2H2O 

 

1.2.3.d Nitrifier denitrification  

Nitrifier denitrification (ND) is a pathway carried out by autotrophic ammonia oxidizers in 

which the oxidation of ammonia is followed by the reduction of nitrite to nitrous oxide and 

eventually dinitrogen (Wrage et al., 2001). This pathway is not coupled to the oxidation of 

organic compounds and thus differs from classical heterotrophic denitrification (Stein, 2011). 

Using pure cultures (and cell-free extracts), of Nitrosomonas europaea Ritchie and Nicholas, 

(1972) found that N2O was produced by reduction of nitrite with hydroxylamine as an electron 

donor under both oxic and anoxic conditions. Poth and Focht, (1985) also found that 

Nitrosomonas europaea was able to produce N2O via reduction of nitrite but only under 

oxygen-limited conditions. ND is now believed to be a common trait in ammonia-oxidizing β-

proteobacteria (Shaw et al., 2006) and a major contributor to N2O production in soils and 

sediments (Baggs, 2008; Firestone and Davidson, 1989; Kool et al., 2011; Muller et al., 2014; 

Poth and Focht, 1985; Venterea, 2007; Webster and Hopkins, 1996; Wrage et al., 2005; Wrage 

et al., 2004; Wrage et al., 2001; Zhu et al., 2013). Factors controlling N2O production by ND 

are still unclear, but it seems that soil moisture/O2 availability is an important one (the two are 

related: when moisture increases, O2 availability generally decreases). Using a combined 18O 

and 15N tracing method (developed by Wrage et al. (2005)) to differentiate the sources of N2O 

production from the soil, Zhu et al. (2013) and Kool et al. (2011) found that ND was the major 

source of N2O at low O2 concentration (0.5% and 3%) and high moisture (50 and 70% WFPS 

(Water Fill Pore Space)); heterotrophic denitrification being the major source at lower O2 
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concentration (0%) and higher WFPS (90%). Despite differences in measurement, both studies 

showed that ND could be a major contributor to N2O production from the soil where O2 

availability is low. WFPS also influences nutrients diffusion and transport. Its influence on 

N2O production may involve more complex mechanisms than only O2 availability (Hu et al., 

2015). Other soil parameters such as carbon and nitrogen content, pH, temperature (Wrage et 

al., 2001) and trance metals availability (Glass and Orphan 2012) are key factors regulating 

ND and N2O production. 

 

Also unclear is the reason for autotrophic nitrifiers to carried out ND. Oxidation of ammonia 

by nitrite could be used to conserve oxygen from the initial step and be linked to energy 

production, as the energy gained when oxidizing ammonia with dioxygen or nitrite as an 

electron acceptor is similar (Kool et al., 2011; Poth and Focht, 1985; Wrage et al., 2001). ND 

could also be used to eliminate nitrite, which is toxic for cells (Beaumont et al., 2004; Kool et 

al., 2011; Poth and Focht, 1985; Stein and Arp, 1998; Wrage et al., 2001). Other possible 

explanations for the occurrence of ND include the possible decreasing competition for oxygen 

by consuming the substrate of nitrite oxidizers (Poth and Focht 1985) and the production of N2 

as a mean of transport (upward motion) for nitrifiers out of the oxygen-depleted sediment to 

reach the water column (Philips et al., 2002). Finally, at least in N. europaea, ND could serve 

as an electron sink to speed the oxidation of hydroxylamine during aerobic metabolism (Stein, 

2011). 

 

In AOB, at least two enzymes seem to be involved in nitrifier denitrification: a nitrite reductase 

(Nir) and a nitric oxide reductase (Nor). The first one is believed to reduce nitrite to nitric oxide 

and the second one to reduce nitric oxide to nitrous oxide (Garbeva et al., 2007; Kozlowski et 

al., 2014). Most AOB possesses genes encoding nirK and nor (B and/or Y) in their genomes. 

It has been shown that NorB but not NirK is required for the production of N2O by N.europaea, 

suggesting that there could be an alternate (unidentified) nitrite reductase responsible for this 

activity (Kozlowski et al., 2016; Kozlowski et al., 2014).  In the new NH3 oxidation pathway 

proposed by Caranto and Lancaster (2017) NO is an obligate intermediate produced by the 

oxidation of NH2OH by the HAO enzyme. The authors proposed that at low O2 concentrations, 

the rate of NO oxidation to NO2- is slower than its rate of production. The resulting 

accumulation of NO would lead to NO emission or its conversion to N2O. The production of 

N2O from AOB in oxygen limiting conditions could therefore have a double origin: reduction 

of NO2- and incomplete oxidation of NH2OH.  
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Studies of metagenomes (Bartossek et al., 2010; Treusch et al., 2005), metatranscriptomes 

(Hollibaugh et al., 2011) and sequencing of genomes from pure cultures (Blainey et al., 2011; 

Walker et al., 2010) have revealed the presence of copper-containing nitrite reductases genes 

in AOA. However, none of the other genes required to carry out the nitrifier denitrification 

pathway (e.g. nor genes) has been characterized (Lund et al., 2012). Consequently, the ability 

of AOA to carry out ND is still controversial (Jung et al. 2014 vs. Stieglmeier et al. 2014). 

Regardless of the biochemical pathway used, pure and enrichment cultures of AOA do produce 

nitrogen oxides (Jung et al., 2011; Jung et al., 2014; Stieglmeier et al., 2014). And AOA are 

now designated as the main organisms responsible for N2O production in the ocean (Löscher 

et al., 2012; Santoro et al., 2011). In terrestrial environments, AOA could also be responsible 

for N2O production, especially in low-ammonia conditions, such as unfertilized or acidic soils. 

In agricultural land, however, where high amounts of inorganic nitrogen fertilizers are applied, 

AOB remains the main N2O producer (Hink et al., 2016). 

 

1.3 Nitrification 
The step that transforms ammonia, the most reduced form of nitrogen to nitrate, the most 

oxidized form, is called nitrification. In natural environments, nitrification is mainly a 

biological process (Stein and Klotz 2011), catalysed by three functionally distinct groups of 

organisms: the ammonia oxidizers that oxidize ammonia to nitrite, the nitrite oxidizers that 

oxidize nitrite to nitrate and the complete ammonia oxidizers that can oxidize both ammonia 

to nitrite and nitrite nitrate. Although nitrification does not directly change the total amount of 

nitrogen in a given ecosystem, the oxidation of ammonia to nitrate often results in the loss of 

total nitrogen. Indeed, ammonia generally remains bound to soil particles whereas nitrate is 

more easily dissolved into ground and surface water and can be washed away. Nitrification can 

therefore be the cause of important input of nitrate into fresh and seawater causing 

eutrophication (Bianchi 2007; Howarth and Marino 2006). Plants generally depend on soil 

nitrogen, as they are unable to directly use atmospheric N2. Some are better able to incorporate 

ammonia than nitrate (and vice versa). Nitrification, therefore, has a major impact on plants 

and is of central importance in agriculture. Nitrification has another important impact on soils: 

acidification. The production of H+ by this process can cause a decrease in pH in non-buffered 

soils resulting for example in the mobilisation of toxic metals. Nitrification is also a key step 

in some wastewater treatments to eliminate excess nitrogen via feeding of denitrifiers. Finally, 
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nitrification has been shown as an important source of the greenhouse gas N2O contributing to 

global climate change (Stein and Klotz 2011). 

 

1.3.1 Ammonia oxidation 

1.3.1.a Autotrophic ammonia oxidizers 

i) Diversity of Ammonia Oxidizing Microorganisms (AOM) 

Autotrophic ammonia oxidizers are represented by both Bacteria (AOB) and Archaea (AOA). 

Bacterial ammonia oxidation was discovered long before Archaeal ammonia oxidation. 

Biological oxidation of ammonia was first discovered by Houzeau (1872) and Muller (1873) 

and further investigated by Warington (1878 and 1891). The first isolation of an AOB was 

achieved by Frankland and Frankland (1890). Initially, AOB were classified based on 

morphological criteria (arrangement of internal membranes, cell shape and size, flagella, etc.) 

(Monteiro et al., 2014) but subsequently, analyses based on 16S rRNA and amoA gene 

sequences have been used to resolve the phylogeny of this group: there are two monophyletic 

lineages among proteobacteria: one affiliated to the subdivision β-proteobacteria (β-AOB) and 

includes genera Nitrosospira, Nitrosomonas and one representative of Nitrosococcus (N. 

mobilis). The other is placed within the γ-proteobacteria subdivision (γ-AOB) and includes 

representatives of the Nitrosococcus genera (Nitrosococcus oceani, Nitrosococcus halophilus 

and Nitrosococcus watsonii) (Monteiro et al., 2014; Prosser, 2005; Robertson and Groffman 

2015; Campbell et al., 2011b) and the newly discovered Nitrosoglobus (Hayatsu et al., 2017).  

 

The discovery of AOA is more recent. The first clues of their existence came from 

metagenomic studies where genes related to ammonia oxidation were found in DNA libraries 

from soil (Treusch et al., 2005) and seawater (Treusch et al., 2005; Venter et al., 2004). AOA 

were first isolated by Könneke et al. (2005) from a seawater aquarium. The isolation of AOA 

allowed whole genome sequencing which provided further insights into the nitrogen 

metabolism of AOA (Blainey et al., 2011; Walker et al., 2010). These discoveries lead to a 

rearrangement of archaeal phylogenetic classification with the creation of a third phylum 

containing all AOA, the Thaumarchaeota (Brochier-Armanet et al., 2008). All AOA are now 

included in the class Nitrososphaeria of this phylum, with a proposed division into 4 (or 5) 

order-level lineage, based on the phylogeny of the amoA gene: Ca. Nitrosocaldales, 

Nitrososphaerales, Ca. Nitrosotaleales, Nitrosopumilales, the fifth group Nitrosotaleales or 

Nitrosopumilales-Incertae sedis could not be assigned to Nitrosotaleales or Nitrosopumilales 

(Alves et al., 2018). 
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ii) Biochemistry of autotrophic ammonia oxidation  

AOB and AOA are chemolithoautotrophic microorganisms that oxidize ammonia using 

dioxygen to produce energy and reducing power to fix CO2 (Ward, 2013). 

 

In AOB, nitritation starts with the exergonic oxidation of ammonia with oxygen, producing 

hydroxylamine (1). This is catalysed by the ammonia monooxygenase (Amo), a membrane-

bound enzyme composed of three subunits (Amo A, B and C) (Arp et al., 2002; González-

Cabaleiro et al., 2019):  

 

NH3 + O2 + 2H+ +2e- à NH2OH + H2O; ∆G01 = -170.49 kJ/mol NH3  (1) 

 

The 2 electrons necessary for the reaction are thought to be provided by ubiquinol, however, 

this hypothesis is still to be verified (González-Cabaleiro et al., 2019). While one O from O2 is 

used to form NH2OH, the other one is reduced to H2O (Arp et al., 2002) in an exergonic reaction 

(2). The final step is the endergonic oxidation of hydroxylamine to nitrite using water (3) 

(González-Cabaleiro et al., 2019). This reaction is catalysed in AOB by the hydroxylamine 

oxidoreductase (HAO), a homotrimer periplasmic enzyme (each subunits containing eight c-

types hemes) (Arp et al., 2002; Robertson and Groffman, 2015). Overall, the oxidation of 

ammonia to nitrite should result in a highly exergonic reaction (4).   

 

0.5O2 + 2H+ +2e- à H2O;    ∆G01 = -165.46 kJ/mol NH3  (2) 

 

NH2OH + H2O à NO2- + 5H+ + 4e-;  ∆G01 = 28.60 kJ/mol NO2-  (3) 

 

NH3 + 1.5O2 à NO2- + H2O + H+;   ∆G01 = -307.35 kJ/mol NH3  (4) 

 

Recently, Caranto and Lancaster (2017) proposed a revised pathway in which ammonia is 

oxidized in a three-steps process to nitrite, with NO as an obligate intermediate. In this model, 

HAO oxidizes NH2OH to NO, which is then further oxidized to NO2- by a NO-oxidoreductase 

(possibly NirK). The latest findings and remaining questions regarding NH3 oxidation by AOM 

were recently reviewed (Lancaster et al., 2018). 

 

Regardless of the number of steps required, oxidation of NH3 to NO2- results in an electron 

flow which is then channelled through cytochrome c554 to cytochrome cm552 (Arp et al., 
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2002; González-Cabaleiro et al., 2019): of the four electrons produced by hydroxylamine 

oxidation (3) 2 return to Amo via ubiquinol (1) (Prosser, 2005; González-Cabaleiro et al., 

2019). On average, 1.65 of the 2 remaining electrons pass through the terminal oxidase, using 

½ O2 as terminal electron acceptor (2). The other 0.35 electrons are used to reduce NAD+ to 

NADH via a reverse electron transfer catalysed by an NADH dehydrogenase (Figure 1.3). 

Electrons for reaction (2) and the reduction of NAD+ to NADH are also provided by ubiquinol. 

The reducing power (NADH) is used for autotrophic fixation of HCO3- into organic matter 

(González-Cabaleiro et al., 2019). The energy for ATP synthesis comes from the translocation 

of protons from the cytoplasm to the periplasm by the terminal oxidase: The complex III 

(ubiquinol-cytochrome c reductase) and complex IV (cytochrome c oxidase) likely translocate 

four and two protons, respectively, into the periplasm for every two electrons initially provided 

by ubiquinol. On the other hand, the protons generated by hydroxylamine oxidation in the 

periplasm might not contribute to the proton gradient as they are consumed for the reduction 

of ubiquinone to ubiquinol. Interestingly, only reaction (2) has been proven to be coupled with 

proton translocation and the highly exergonic energy of the oxidation of ammonia to 

hydroxylamine (1) could be fully dissipated as heat (González-Cabaleiro et al., 2019). 

 

It has also been demonstrated that Amo can oxidize different types of organic substrates, 

transforming C-H bound to alcohol, C=C bound to epoxides and sulphides to sulfoxides (Arp 

et al., 2002; Sayavedra-Soto et al., 2010). This secondary activity is attributed to the low 

selectivity of Amo and, according to the current biochemical understanding of AOB, might not 

be linked to any energy harvesting system (González-Cabaleiro et al., 2019). 
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Figure 1.3 Catabolic process of AOB. Biochemical reactions and electron flow are 
represented by curved and straight arrows, respectively. AMO: Ammonia monooxygenase; 
HAO: Hydroxylamine oxidoreductase; E?: putative NO-oxidoreductase; Cyt c: Cytochrome c; 
Cyt c m552 = membrane cytochrome 552. NB: ATP synthase is not represented. Cyt c554:  
cytochrome c554. III: complex III (ubiquinol-cytochrome c reductase); IV: complex IV 
(cytochrome c oxidase). Copied from (González-Cabaleiro et al., 2019). 
 

An alternative pathway for ammonia oxidation involves nitrogen dioxide instead of dioxygen 

as an oxidant of ammonia under both oxic and anoxic conditions (Figure 1.4) (Kampschreur et 

al., 2006; Schmidt et al., 2001). This theory is based on the study of the capacity of 

Nitrosomonas to oxidize ammonia under different culture conditions. Authors suggest that in 

both oxic and anoxic conditions, Nitrosomonas-like organisms oxidise ammonia using nitrogen 

tetraoxide (dimer of nitrogen dioxide). This reaction is catalysed by Amo and produces 

hydroxylamine and NO. Then, hydroxylamine is further oxidised to nitrite by Hao. 
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Figure 1.4 Alternative pathways for ammonia oxidation in Nitrosomonas. Under oxic 
conditions (B) O2 is used to re-oxidise 2NO into N2O4, the oxidizing agent and as terminal 
electron acceptor. Under anoxic conditions (A), nitrite is partially used as electron acceptor 
leading to the production of N2. Under oxic conditions with low NOx concentrations, nitrite is 
also used as electron acceptor for ammonia oxidation leading to the production of N2 and N2O 
(traces). Copied from Kampschreur et al. (2006). 
 

The authors cited the following observations to support this model:  

 

1) Nitrosomonas-like organisms are inhibited when gaseous NO was removed from the 

cultures by intensive aeration; nitrification started again when NO was added to the gas.  

2) The lag phase during the recovery of ammonia oxidation in starved cells can be reduced 

when NOx as added.  

3) Cells produce NO via denitrification when external NOx is not available. 

4) NOx addition to pure cultures of N. eutropha resulted in an increase in nitrification rate, 

cell density and aerobic denitrification capacity.  

5) Different species of ammonia oxidizers (e.g., Nitrosomonas europaea, Nitrosolobus 

multiformis) were able to oxidize ammonia under anoxic conditions when NO2 was 

present, and the aerobic ammonia oxidation activity was increased in the presence of 

NO and NO2.  
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Interestingly, Schmidt et al. (2001) showed that acetylene, which blocks Amo activity by 

covalent binding, didn't have any effect on anaerobic NO2-dependant ammonia oxidation by 

N. europaea. Furthermore, they showed that both the inhibition and the labelling of AMO by 

acetylene is O2 dependant in N. europaea. 

 

In AOA, there is no evidence of the presence of HAO, which implies that either another enzyme 

is responsible for hydroxylamine oxidation or that another pathway is used. Walker et al., 

(2010) proposed a pathway that involves nitroxyl hydride (HNO) but Vajrala et al., (2013) 

showed the production and consumption of hydroxylamine during the oxidation of ammonia 

to nitrite by N. maritimus. Later, the observation that NO is essential to NH3 oxidation in AOA 

lead to a proposed mechanism where both NH2OH and NO are oxidized by a putative "Cu-

HAO" to form 2 molecules of NO2- (Figure 1.5) (Kozlowski et al., 2016). One possible 

candidate for the production of NO in AOA is the copper-containing nitrite reductase NirK, 

which is widely distributed in marine and soil AOA. However, no nirK homolog was found in 

genomes of the thermophilic Ca. Nitrosocaldales despite the observation that NO is essential 

for its ammonia-oxidizing metabolism. The role of NirK in the nitrification pathway of AOA 

therefore remains unclear (Qin et al., 2020). Alternatively, this dependency upon NO could 

indicate that, as for the revised pathway in AOB, AOA oxidize NH3 in a three steps process, 

with NO as an obligate intermediate (Lancaster et al., 2018).  

 
Figure 1.5 Proposed pathway for NH3 oxidation in AOA. This revised pathway highlights 
the role of NO as a co-substrate for NH2OH oxidation and its contribution to N2O production. 
AMO/Cu-MMO, ammonia monooxygenase; c552, cytochrome c redox carrier; CytS: 
cytochrome c’-beta; HAO, hydroxylamine dehydrogenase; HCO, heme-copper oxidase; 
HURM, hydroxylamine:ubiquinone redox module; NirK, Cu-containing NO-forming nitrite 
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reductase; NOR, nitric oxide reductase; P460, tetraheme cytochrome c protein P460 (CytL); 
pcy, plastocyanin; pmf, proton-motive force; Q/QH2, quinone/quinol pool. Copied from 
Kozlowski et al. 2016. 
 

Finally, in both AOA and AOB, NADH and ATP generated by ammonia oxidation are used to 

fix CO2 into organic matter. In AOB, this is carried out via the Calvin-Benson-Bassham cycle 

(CBB) (Ward, 2013) whereas AOA use a modified version of the 

hydroxypropionate/hydroxybutyrate (HP/HB) cycle of the Crenarchaeota, which is more 

efficient than any other metabolism for aerobic carbon fixation (Könneke et al., 2014). 

 

iii) Kinetic considerations of autotrophic ammonia oxidation 

The high abundance of AOA in the ocean can be surprising considering the low ammonia 

concentration in seawater (≈10 nM). The key feature of the AOA metabolism that enables them 

to survive in such oligotrophic environments is the high affinity of their Amo enzyme for 

ammonia. Martens-Habbena et al. (2009) showed that the half-saturation constant of the 

mesophilic AOA 'Candidatus Nitrosopumilus maritimus' strain SCM1 is the lowest of all AOM 

studied (Km=133nM total ammonium) which closely matches the kinetics of in situ nitrification 

in the ocean. Because the first cultivated AOA had a much higher affinity for ammonia than 

AOB (lower Km), it was first assumed that AOA would always outcompete AOB in low 

ammonia environments whereas AOB would be more competitive when ammonia is not 

limiting. However, this depends on the specific growth rate (µmax: the amount of biomass 

produced per unit of time) of AOA and AOB: as explained in Prosser and Nicol (2012), AOB 

(with low ammonia affinity/high Km) will outcompete AOA in high ammonia environments 

only if they display a higher specific growth rate. Otherwise, AOA will be more competitive, 

regardless of the ammonia concentration. Since the study of AOA isolated from soils show that 

they possess a higher µmax than AOB, the dominance of AOB in most eutrophic environments 

cannot be explained by substrate affinity alone (Prosser and Nicol 2012). Furthermore, recent 

studies indicate similar Km for some Nitrosomonas AOB and some soil AOA (Kits et al., 2017; 

Hink et al., 2017). 

 

 

iv) Genetic basis of autotrophic ammonia oxidation amo genes  

amoA genes: The Amo protein is composed of at least three polypeptides (Amo A, B and C), 

encoded by three contiguous genes (amoA, amoB and amoC respectively). The three amo 

genes are regrouped into a single operon in the amoCAB order in AOB and the number of 
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operons varies from 1 to 3 copies (Norton et al., 2002; Lehtovirta-Morley, 2018) (Figure 1.6). 

Two copies of amoA are found in the genome of N. europaea (99% identity between each 

other). The genome of N. europaea also contains a third copy of amoC (≈60% similarity with 

the other two). Interestingly, it was found by Alzerreca et al., (1999) that the amino acid 

sequence of the Amo protein from Nitrosococcus oceani (a γ-AOB) is more similar to the 

pMMO found in γ-proteobacterial methanotrophs than to the Amo of β-AOB. This observation 

suggests that the amo and pmmo genes may have evolved from an ancestral gene cluster before 

the divergence of α proteobacteria from the γ and β proteobacteria. Recently, new amo genes 

were discovered: the amoD, which encodes a potential membrane protein and a likely 

duplicated orthologue amoE. Their function(s) is still unknown but, interestingly, they differ 

both in number and regulation between γ-AOB and β-AOB (Simon and Klotz 2013). In N. 

europaea, the amoC, A and B genes are co-transcribed into a single mRNA amoCAB, but amoC 

and amoAB mRNA can also be detected possibly resulting from the processing of the amoCAB 

mRNA or differential transcription start positions (Sayavedra-Soto et al., 1998). The 

transcription of amoAB and amoCAB is triggered by ammonia, even in the presence of Amo 

inhibitor (Sayavedra-Soto et al., 1996). 

 

In most AOA, a single copy of amoA, amoB, amoC and amoX is generally found, grouped 

together in the genome in the amoAXCB arrangement but in some cases (e.g. Nitrososphaera 

viennensis) multiple open reading frames are interjected between the amo genes (Walker et al., 

2010; Zhalnina et al., 2014; Berg et al., 2015; Lehtovirta-Morley, 2018). Interestingly, the N- 

terminus of amoC and C-terminus of amoB are truncated in archaea compared to bacteria. The 

amoX reading frame has been found in all genomes of sequenced AOA, adjacent to amoA, 

possibly encoding an additional subunit of the Amo enzyme. Other AOA have multiple copies 

of isolated amoA or amoC in their genomes and some Nitrososphaerales species possess extra 

copies of amoC homologs, possibly acting as chaperons to maintain the structural integrity of 

the Amo enzyme in low-nutrient environments (Qin et al., 2020) (Figure 1.6). Herbold et al. 

(2017) showed that the second amoA copy in Candidatus Nitrosotalea okcheonensis genome, 

located >400 kb upstream from the amoAXCB gene cluster, has an unclear role in the AOA's 

metabolism as it is not transcribed during growth in batch culture. Candidatus Nitrosopumilus 

piranensis DC3 possess a second amoB (amoB2) copy, which is highly divergent from the 

amoB copy in the amoAXCB cluster (48% amino-acid identity) and might have an additional 

catalytic function, potentially enabling further metabolic versatility to the marine AOA (Bayer 

et al., 2016). 
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Figure 1.6 Organisation of the amo genes in AOB and AOA. The N- terminus of amoC and 
C-terminus of amoB are truncated in archaea (indicated by stripes in bacteria). Copied from 
Lehtovirta-Morley (2018). 
 

hao genes: Hao is encoded by a 1,710 bp gene in N. europaea, and present in three copies 

widely separated in the genome. They are identical to each other except for one nucleotide 

difference in one gene copy (Arp et al., 2002). As for amo, the number of copies varies among 

AOB, for example, only one copy is found in Nitrosococcus oceani (Arp et al., 2002). The 

study of the upstream regions of this gene in N. europaea revealed that they are nearly identical 

for two copies whereas the sequence of the third diverged shortly upstream of the start codon 

(Hommes et al., 2001), suggesting potential differences in the transcription regulation systems. 

Hao is a homologue of the Hzo enzyme of ANAMMOX organisms, both belonging to the 

multiheme cytochrome c (MCC) superfamily, which also includes NrfA (Simon and Klotz 

2013). hao mRNA is monocistronic (Arp et al., 2002) and expressed upon ammonia addition, 

however to a lower extent than amo (Sayavedra-Soto et al., 1996). 
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Carbon assimilation genes: Utåker et al. (2002) compared the rubisCO amino acid sequences 

of 14 AOB strains. They found that the rubisco from the β subgroup AOB showed a high level 

of identity to the one found in R. eutropha indicating that these bacteria have red-like type 

rubisco. The only exception was Nitrosomonas europaea that apparently possess a green-like 

rubisCO. Interestingly, the sequence of the rubisCO in Nitrosomonas europaea is closer to the 

one in Nitrosococcus halophilus (γ-proteobacteria also containing a green-like rubisCO) than 

the sequences in other β-proteobacteria.  

 

As mentioned before, AOA use a modified version of the HP/HB cycle that allows for a very 

efficient CO2 assimilation. One of the characteristics that make it different is the fact that two 

key enzymes of the cycle (3-hydroxypropionate synthase and 4-hydroxybutyrate synthase) are 

ADP forming enzymes whereas in crenarchaeota they are AMP forming. One "loop" of the 

thaumarchaeal HP/HB cycle, therefore, requires two fewer energy bonds compared to the 

crenarchaeal one. Furthermore, some of the enzymes are able to catalyse multiple steps of the 

cycle, therefore reducing the cost of biosynthesis (Könneke et al., 2014). 

 

Other genes: Cytochromes involved in electron transfer from HAO (cytochrome c554 and 

cm552) are encoded by the hcy or cyc genes and are present in multiple copies and are probably 

co-transcribed (Arp et al., 2002).  

 

Some AOM also possess urease genes that allow them to produce ammonia and carbon dioxide 

from urea. This capacity may be the curtail for nitrification in acidic environments where 

ammonia availability is low (Burton and Prosser 2001; Lu et al., 2012). Furthermore, at least 

one AOM, the archaea Nitrososphaera gargensis, possess a cyanase gene and uses it to produce 

ammonia from cyanate. As all other sequenced AOM genomes do not contain cyanase genes, 

it was proposed that N. gargensis acquired this gene through lateral transfer from a Nitrospira 

(NOB) strain (Palatinszky et al., 2015). 

 

1.3.1.b Heterotrophic nitrification  

Heterotrophic nitrification (HN) is carried out by a wide range of heterotrophic bacteria and 

fungi. HN is not related to ATP production and, in fungi, is linked to lignin degradation 

(Prosser, 2005). There are two pathways for HN, the first one is similar to autotrophic 

nitrification (involves ammonia- and hydroxylamine-oxidizing enzymes). The second one 

carries out the oxidation of amines or amides of organic molecules (Robertson and Groffman 
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2015). The physiological role of HN is not clear but it could play a significant role in acidic 

soils (Hayatsu et al., 2008). In some bacteria, it is linked to aerobic denitrification (Robertson 

and Kuenen, 1990). The capacity for HN could be an advantage for denitrifying in an 

environment where O2 partial pressure fluctuate: HN could be used to generate nitrite or nitrate 

under oxic conditions which would then be available for denitrification when anoxic conditions 

are re-established (Castignetti and Hollocher 1984).  

 

1.3.2 Nitrite oxidation  

1.3.2.a Organisms involved in nitrite oxidation  

The second part of biological nitrification is the oxidation of nitrite to nitrate and is carried out 

by Nitrite Oxidizing Bacteria (NOB), which are, like AOM, (chemo)-lithoautotrophes. NOB 

use nitrite as a source of electrons and CO2 as a source of carbon although some strains possess 

heterotrophic capabilities (Ward, 2013). Recently, strains belonging to the genera Thiocapsa 

and Rhodopseudomonas capable of anoxygenic phototrophic nitrite oxidation to nitrate were 

discovered (Griffin et al., 2007; Schott et al., 2010). These phototrophic nitrite-oxidizing 

bacteria (pNOB) couple the photo-oxidation of nitrite to the fixation of CO2 in organic 

compounds. The sequencing of Thiocapsa KS1's genome revealed a diverse set of nitrogen 

utilization genes including nxr nitrite oxidoreductases, a complete set of nitrogen fixation nif 

genes and ammonia - and nitrite/nitrate-assimilating genes. The bacterium also possesses the 

genomic potential for sulfur, thiosulfate and sulphide photo-oxidation, making a direct link 

between the nitrogen and the sulfur cycles (Hemp et al., 2016). Relatively little is known about 

pNOBs, the rest of this section will therefore focus on chemo-autotrophic nitrite oxidation.  

 

Nitrite oxidation has received relatively little attention compared to other nitrogen-related 

microbial processes (e.g. ammonia oxidation). However, new discoveries have proven that this 

process is much more complicated and interesting than previously thought. Representatives of 

chemo-autotrophic NOB are widely distributed in the bacterial phylogenetic tree, including 

gram-negative and gram-positive (one known) strains. NOB belong to seven genera shared 

between four phyla (Daims et al., 2016) :  

- Phylum Proteobacteria: genus Nitrobacter (α-proteobacteria), genus Nitrotoga (β-

proteobacteria) and genus Nitrococcus (γ-proteobacteria);   

- Phylum Chloroflexi: genus Nitrolancea 

- Phylum Nitrospinae: genus Nitrospina and genus “Candidatus Nitromaritima”  

- Phylum Nitrospirae: genus Nitrospira 
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1.3.2.b Biochemistry of autotrophic nitrite oxidation  

NOB oxidize nitrite to nitrate:  

 

NO2- + H2O à NO3- + 2H+ +2e-  ∆G0’ = -74 kJ/mol NO2- 

 

This reaction is catalysed by nitrite oxidoreductase (Nxr), probably composed of three subunits 

(NxrA, NxrB and NxrC) with a possible α2β2γ1 stoichiometry (Lücker et al., 2010). It has been 

proposed that in Nitrobacter, the Nxr is composed of four subunits (ABIC) (Simon and Klotz 

2013). They are two phylogenetically distinct types of Nxr: periplasmic and cytoplasmic 

(Figure 1.7).  

 

 
Figure 1.7 Schematic representation of the periplasmic (A) and cytoplasmic (B) Nitrite 
Oxidoreductase of NOB. Subunits of the Nxr protein are designated with Greek letters (α for 
NxrA, β for NxrB and γ for NxrC). Processes involving consumption or production of protons 
are highlighted in red. Electron flow from Nxr is represented with black arrows. Copied from 
Daims et al., (2016). 
 

The α-subunit is the catalytic one and contains the molybdenum bis molybdopterin guanine 

dinucleotide (Mo-bis-MGD) cofactor and several iron-sulfur (Fe-S) clusters. The β subunit also 

contains Fe-S clusters and transfers the electrons from the α to the γ subunit. Then the γ subunit 

channels the electrons to and from the electron-transport chain via heme(s). The γ subunit also 

serves as a membrane anchor for the enzyme (Lücker et al., 2013).  
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The location of the Nxr (periplasmic or cytoplasmic) has a crucial impact on the biochemical 

reaction of nitrite oxidation: with a periplasmic Nxr, protons produced by the reaction are 

released in the periplasmic space, contributing positively to the proton motive force (PMF) at 

the origin of ATP production. On the other hand, a cytoplasmic Nxr imply that protons 

contribute negatively to PMF making nitrite oxidation less energetically attractive. Plus, with 

cytoplasmic Nxr, nitrite must be brought into the cell via a nitrite/nitrate transporter, which can 

constitute another limiting step depending on substrate affinity and turnover rate of the 

transporter (Daims et al., 2016).  

 

Like in AOM, electrons are used for generating the PMF force via a terminal oxidase and to 

reduce NAD+ to NADH via a reverse electron transfer. NADH and ATP are used for fixing 

CO2 into organic matter via the CBB cycle or via the reductive tricarboxylic acid pathway 

(Ward, 2013).  

 

1.3.2.c Metabolic versatility of NOB  

Although the presence of NOB in the environment has generally been linked to nitrification, it 

is now known that they are very versatile organisms. For example, Nitrospira moscoviensis, 

besides having a classical aerobic nitrite-oxidizing metabolism, can grow anaerobically using 

H2 and nitrate as electron donor and acceptor respectively. This "nitrifier" is therefore also able 

to consume nitrate (Ehrich et al., 1995). Furthermore, Koch et al. (2014) showed that Nitrospira 

moscoviensis can grow chemotropically using H2 and O2 as sole electron source and acceptor, 

respectively. They also linked this reaction to autotrophy by quantifying [13C]HCO3- uptake of 

N. moscoviensis during H2-dependant growth. Finally, N. moscoviensis can perform a chemo-

organotrophic metabolism using formate as an electron source with NO3-, O2 or both as 

oxidants. As no genes encoding a dissimilatory nitrate reductase could be found in the genome 

of N. moscoviensis, it was proposed that the Nxr enzyme can operate in the reverse direction 

(NO3- to NO2-) (Koch et al., 2015). Together these studies show a rather large metabolic 

flexibility of N. moscoviensis with potentially four metabolisms 1: "classical" nitrification, 2: 

Aerobic oxidation of H2 using O2, 3: anaerobic oxidation of H2 using NO3- 4: oxidation of 

formate with NO3-, O2 or both as oxidants). This high versatility could be advantageous for 

surviving in oxic-anoxic transition zones (biofilms, flocs, sediments and soils). Some 

Nitrobacter and Nitrospira members can also have a mixotrophic metabolism, i.e. using simple 

organic carbon for heterotrophic growth together with autotrophic nitrite oxidation. Other 

strains of Nitrobacter can grow completely heterotrophically (Daims et al., 2016). The concept 
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of NOB as a functional group could therefore be questioned as these organisms have other 

major activities (beside autotrophic nitrite oxidation) depending on the environmental 

conditions of their habitats.  

 

1.3.2.d Genetic basis of NOB  

Nitrite-oxidation related genes: The α, β and γ subunits of Nxr are encoded by nxrA, nrxB 

and nxrC respectively. The number of copies and the organisation of these genes depends on 

the organism. Starkenburg et al. (2006) found two copies of nxrA and nxrB in the genome of 

Nitrobacter Winogradsky Nb-255. They identified a putative operon composed of one copy of 

nxrA and one of nxrB, together with genes associated with electron transport. Lücker et al. 

(2010) detected two clusters nxrA1B1 and nxrA2B2 in the genome of "Candidatus Nitrospira 

defluvii", with protein sequence identity between the two copies of 86.6% for nxrA and 100% 

for nxrB. They also found two putative genes encoding a nitrite reductase NirK suggesting that 

this organism might denitrify, and eventually from nitrate if the Nxr can catalyse the reverse 

reaction (nitrate to nitrite). However, it hasn't been proved in pure cultures. Lücker et al. (2013) 

studied the marine NOB Nitrospina gracilis and found two putative operons nxrABC. The 

protein sequences of α (NxrA), β (NxrB), and γ (NxrC) subunits have identities of 94.9%, 

100%, and 87.5%, respectively. They also found several other putative NxrC encoding genes 

in the genome, some could be involved in the mechanism of nitrite oxidation. It is interesting 

to notice that Lücker et al. (2010) and Lücker et al. (2013) found that NrxB is highly conserved 

whereas NrxA slightly differs within a genome. The importance of the amino acids that differ 

between copies of NxrA (and NxrC) is however not known. Finally, Sorokin et al. (2012) 

studied the genome of Nitrolancea hollandicus (phylum Chloroflexi) and found four highly 

similar copies of nxrA, one of nxrB and one of nxrC. Three copies of nxrA were found to form 

a cluster also containing a two-component response regulator. The other one is located in a 

potential functional unit with the nxrB gene, a narJ homologue and nxrC.  

 

Phylogenetic comparison of gene sequences of nxr revealed an interesting and complicated 

evolutionary history of nitrite oxidation. There are apparently two different phylogenetic 

origins of nitrite oxidation, reflected by the two orientations of the Nxr enzyme (cytoplasmic 

vs. periplasmic). In Nitrobacter and Nitrococcus, Nxr is oriented toward the cytoplasm. This 

type of Nxr resembles the one found in phototrophic purple proteobacteria. It was thus 

postulated that Nitrobacter and Nitrococcus evolved from phototrophic ancestors where nitrite 

was used as an electron donor for anoxygenic photosynthesis (Lücker et al., 2010; Lücker et 
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al., 2013). Recent phylogenetic analysis of the genome of the phototrophic nitrite oxidizer 

Thiocapsa KS1 however didn't confirm the hypothetical phototrophic origin of Nxr in 

Nitrobacter and Nitrococcus (Hemp et al., 2016). On the other hand, the periplasmic Nxr found 

in NOB of the genera Nitrospira and Nitrospina show a closer relationship with nitrite 

oxidoreductase of ANAMMOX organisms. ANAMMOX are Planctomycetes and are not 

closely related to Nitrospira or Nitrospina, suggesting that these genes were horizontally 

transferred during the evolution of these lineages (Lücker et al., 2013). The Nxr in Nitrolancea 

hollandicus is oriented toward the cytoplasm but seems to be more closely related to the one 

found in nitrite dependant anaerobic methane oxidizer "Candidatus Methylo-mirabilis oxyfera" 

and, apparently, did not evolve from the same ancestors as the other known NOB (Sorokin et 

al., 2012).  

 

Autotrophy: NOB are capable of autotrophic growth, using reducing power generated by the 

oxidation of nitrite to incorporate CO2 into organic compounds. Genomic studies of 

representative NOB identified two different pathways for the fixation of CO2: members of the 

genera Nitrobacter, Nitrococcus and Nitrolancea possess genes necessary for the CBB cycle 

(Sorokin et al., 2012; Starkenburg et al., 2006) whereas for members of the genera Nitrospira 

and Nitrospina, genes of the reductive Tri Carboxylic Acid (rTCA) cycle were found instead 

(Lücker et al., 2010; Lücker et al., 2013).   

 

Other genes: NOB generally possess a rather wide metabolic versatility, and some are capable 

of heterotrophic growth. These observations on pure culture were in accordance with 

observations resulting from the sequencing of full genomes of NOB:  Starkenburg et al. (2006) 

found genes encoding enzymes necessary for pyruvate, acetate, and glycerol metabolism in the 

genome of Nitrobacter winogradskyi. Lücker et al. (2010) showed that the genome of 

Nitrospira contains genes encoding enzymes for catabolic degradation and the assimilation of 

acetate, pyruvate, and formate; and candidate genes were found for the degradation of branched 

amino acids. They also found genes for the complete Embden–Meyerhof–Parnas pathway and 

putative sugar transporters. Sorokin et al. (2012) showed that Nitrolancea hollandicus can use 

H2 as an electron donor and to use formate. Indeed, genomic annotation revealed the presence 

of hydrogenase genes (for the use of H2), formate transporter and formate dehydrogenase in 

the genome of Nitrolancea. Another interesting feature of NOB genomes is the presence of 

ureases and cyanase genes, most likely involved in reciprocal feeding with AOM. NOB are 

able to produce ammonia from urea (Koch et al., 2015) and cyanate (Palatinszky et al., 2015). 
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A model of reciprocal feeding between ureolytic NOB and urease/cyanase-negative AOM was 

proposed, where NOB hydrolyses urea/cyanate to produce ammonia, which is used to feed the 

AOM. Nitrite is then produced by ammonia oxidation and is used by the NOB as an electron 

donor.  

 

1.3.3 COMAMMOX  

So far, nitrification has been presented as a two-step pathway with ammonia and nitrite 

oxidation as two distinct steps. Recently, another pathway, by which ammonia is successively 

converted to hydroxylamine, nitrite and nitrate was shown to occur in a single organism from 

the genus Nitrospira (Daims et al., 2015; van Kessel et al., 2015). Before these discoveries, 

complete oxidation of ammonia to nitrate was only hypothesised as it theoretically provides 

more energy than the two separate oxidations (Costa et al., 2006). 

 

COMAMMOX Nitrospira possess Amo and Hao enzymes for the oxidation of ammonia to 

hydroxylamine and nitrite respectively. Interestingly, there is a higher similarity level between 

the Amo and Hao protein sequences between COMAMMOX Nitrospira and β-AOB (≈60% 

amino acid sequence identity for AmoA and ≈66% for HaoA) than between β-AOB and γ-

AOB (≈45% for AmoA and ≈53% for HaoA), indicating a possible horizontal gene transfer 

(HGT) from β-AOB to an ancestor of COMAMMOX Nitrospira. They also possess an Nxr 

enzyme, for the oxidation of nitrite to nitrate, which is highly similar to the one found in nitrite 

oxidizing Nitrospira (Daims et al., 2016). The number of nxr gene copies varies from one to 

two in most COMAMMOX genomes to four (Ca. N. nitrificans) and five (N. moscoviensis) 

(Palomo et al., 2018).  

 

Like ammonia and nitrite oxidizers, COMAMMOX are able to grow autotrophically using the 

reducing power generated by the oxidation of ammonia and nitrite to fix CO2 into organic 

matter. Like the NOB Nitrospira, COMAMMOX use the reductive TCA cycle (Koch et al., 

2019). As reported for NOB, the presence of organic carbon degradation genes in 

COMAMMOX genomes suggests that they have the potential to grow mixotrophically but the 

environmental importance of this metabolic capacity is still to be fully understood (Koch et al., 

2019). 

 

The recent studies of ammonia oxidation kinetics of Nitrospira inopinata revealed that the 

Comammox bacteria possess a lower Km (0.84 µM total ammonia) than any other kinetically 
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characterized non-marine ammonia oxidizer, suggesting an adaptation to slow growth in 

oligotrophic environments (Kits et al., 2017; Koch et al., 2019). However, generalisation to all 

members of the group is difficult as other factors such as metabolic versatility and the ability 

to obtain nitrogen from other sources (e.g. urea, cyanate) also influence niche partitioning of 

nitrifiers (Kits et al., 2017). Furthermore, the presence of COMAMMOX-like genes (amoA, 

amoB, amoC and hao) in metagenomic datasets from freshwater, wastewater treatment plants 

(WWTPs) and drinking water could suggest that these organisms are widespread in the 

environment (Daims et al., 2016).  

 

1.3.4 Nitrification in the environment  

1.3.4.a Factors influencing AOM  

The abundance and diversity of AOM are determined by environmental physio-chemical 

parameters. Nitrogen substrate is an important one. NH3 rather than NH4+ is the substrate for 

AOM. If NH3 concentration is too high, it can be toxic for cells but if it is too low it can cause 

substrate limitation (Prosser, 2005; Robertson and Groffman, 2015). NH3 availability is 

controlled by different other parameters (e.g. salinity, temperature, pH):  

 

F=1/(1+10pks –pH-S) 

and  

pKs= 2792.92/(TC +273.16) + 0.09018 

 

(Where F = free ammonia fraction of NHx; TC= temperature in °C; S = salinity factor (Bower 

and Bidwell 1978; Groeneweg et al., 1994)) 

 

Nitrifiers are in competitions with plants and heterotrophs for ammonia. In environments with 

low nitrogen mineralisation or fixation, the competition with plants and heterotrophs for the 

same substrate can be a major limitation, especially given that nitrifiers are relatively poor 

competitors for ammonia (Robertson and Groffman, 2015). 

 

By controlling the balance NH4+/NH3, pH is of primary importance for nitrifiers’ metabolisms. 

Acidification of oceans due to the increase in atmospheric concentrations of CO2 could 

therefore have a major impact on nitrification rates, influencing both the nitrogen and carbon 

cycle in oceans (Ward, 2013).  
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As nitrification requires oxygen, AOM are limited to oxic environments, although 

microaerophilic environments could also support autotrophic ammonia oxidation (Ward, 

2013). Other important parameters are salinity, temperature and light (Ward, 2013). Salinity 

affects ammonia availability: high salinities release ammonia bound to sediments whereas low 

salinity tends to increase its absorption to sediments particles (Boatman and Murray 1982; 

Rysgaard et al. 1999; Seitzinger et al., 1991), but also causes osmotic and toxicity stress to 

cells. The effect of temperature on AOM is not clear as different results are reported in the 

literature. For example, Horak et al. (2013) examined the effect of temperature on nitrification 

rates of natural marine water samples and found that these rates were not significantly different 

in the 8°-20°C range. On the contrary, Berounsky and Nixon (1990), who measured 

nitrification rates over an annual cycle, found that it was strongly correlated with temperature 

(higher during summer). Likewise, Urakawa et al. (2008) reported that lower temperatures 

resulted in a lower diversity of AOA and AOB in aquarium biofilter systems. In soils, the 

temperature optimum for nitrification is often 30°C (Taylor et al., 2017). 

 

The presence of inhibitors also affects nitrification. A wide range of synthetic compounds 

(McCarty, 1999; Kim et al., 2008) or naturally occurring molecules such as sulphide can inhibit 

nitrifiers. It is also possible that natural chemicals produced by plant roots, such as polyphenols, 

can inhibit nitrifier growth and activity (Hättenschwiler and Vitousek, 2000; Lodhi, 2016). On 

the other hand, some studies suggest that AOM, and in particular AOA, could benefit from 

plant root exudations (Chen et al., 2008; Herrmann et al., 2008; Ke et al., 2013; Wei et al., 

2011). AOA and AOB do not respond equally to changes in these parameters and, although co-

existing in the same environment, present a certain degree of niche differentiation. 

 

1.3.4.b Interactions between AOM and NOB  

Nitrite rarely accumulates in natural environments because nitrite oxidizers rapidly consume 

it. This partnership between AOM and NOB necessitates a microscale-spatial interaction 

between the two groups in biofilms to facilitate nitrite exchange (Arp and Bottomley 2006; 

Schramm et al., 1999). These interactions might not be limited to nitrite: NOB could stimulate 

the biofilm formation by nitric oxide (NO) production, as NO stimulates biofilm formation by 

N. europaea. This NO production by NOB could therefore be a means to recruit NO sensitive 

AOB to form nitrifying aggregates (Daims et al., 2016). Other cooperation may occur in these 

aggregates, for example, N. europaea doesn't possess siderophore-encoding genes but has 

siderophore receptors. It is therefore possible that N. europaea utilises siderophores produced 
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by NOB for iron uptake (Daims et al., 2016). Koch et al. (2015) also proposed a model of 

reciprocal feeding where ureolytic NOB hydrolyses urea to produce ammonia, which is used 

to feed non-ureolytic AOM. NOB then benefit from nitrite produced by AOM for growth. 

Finally, both NOB and AOB produce Quorum Sensing (QS) autoinducers, and N. europaea 

produces at least one autoinducer that is also produced by the NOB N. winogradskyi (Mellbye 

et al., 2015). An interspecies communication system might exist between NOB and AOM in 

order, for example, to synchronise extracellular polymeric substances (EPS) production to form 

biofilms (Daims et al., 2016; Mellbye et al., 2015).  

 

1.3.4.c Niche differentiation  

i) Identification of key environmental parameters 

The relatively recent discovery of AOA has been a major breakthrough in the understanding of 

nitrification in the environment. The high level of difference in AOA and AOB physiologies 

has fuelled the search for evidence of niche differentiation, i.e. the processes that drive the 

natural selection between competitive species (Prosser et al., 2019). The first clue for niche 

differentiation is the fact that AOA dominate the AOM community in the open ocean (Francis 

et al., 2005; Wuchter et al., 2006; Agogué et al., 2008; Schleper and Nicol, 2010; Kitzinger et 

al., 2020) whereas AOB usually dominates in WWTP (Kumwimba and Meng, 2019). Because 

the first isolated AOA and AOB displayed high and low affinities (low and high Km) for 

ammonia, respectively, the niche differentiation of AOM was first proposed to be driven by 

environmental ammonia concentration. Although this provides a good explanation for the 

dominance of the AOM with the lowest measured Km (the AOA Nitrosopumilus maritimus) in 

the ocean where the concentration of ammonia typically ranges in the nM, it is more 

questionable for the general dominance of AOA in soils, where the typical ammonia 

concentration is above the Km of both AOA and AOB (Hink et al., 2018). Furthermore, the 

reported Km for some recently isolated soil AOA is similar to that of Nitrosomonas indicating 

that differences in substrate affinity might not be the explanation for niche differentiation in 

soils (Kits et al., 2017; Hink et al., 2017).   

 

Further investigation in soils have however pointed to key factors that could explain the 

patterns of dominance: i) pH: AOA is generally more active in soils with pH < 6 which might 

be due to the existence of obligate acidophilic AOA (Gubry-Rangin et al., 2010; Shen et al., 

2012; Aigle et al., 2019); ii) Ammonia supply source: AOA is preferentially active in soils 

where ammonia is supplied via mineralisation of organic matter whereas AOB prefers soils 
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with high inputs of inorganic fertilisers (Di et al., 2010); iii) Temperature: AOA seems to prefer 

higher temperatures than AOB with optima differences of ≈10°C (Ouyang et al., 2017; Taylor 

et al., 2017); iv) Competition: it appears that AOA and AOB can be more active than 

anticipated under unfavourable conditions if the other is inhibited (Hink et al., 2018; Zhao, 

Bello, et al., 2020). Aigle et al. (2020) experimentally tested these hypotheses by measuring 

the response (growth and activity) of AOA and AOB following perturbations in pH and 

temperature in agricultural soil microcosms. The authors showed that both AOA and AOB 

activity increased with temperature and confirmed AOB optimum at temperature <30°C. 

Furthermore, they showed that AOA dominated in their experimental conditions where 

ammonium was mainly supplied via mineralisation of organic matter and AOB was favoured 

when ammonia accumulated, which tend to confirm the hypothesis of ammonia supply 

preference between the two groups of AOM. They also showed that, as anticipated, one group 

is more active when the other one is inhibited. Interestingly, they also showed that AOA adapts 

faster to increase rather than decrease in pH. On the other hand, they surprisingly found no 

activity of AOA at low pH (4.5) but indicated this might be due to the insufficient incubation 

time. AOB, however, showed activity under these acidic conditions, which contradicts the 

hypothesis that their activity should increase at higher pH. 

 

ii) AOA vs. AOB in estuaries and coastal sediments 

Estuaries are interesting ecosystems to study AOM niche differentiation as they typically 

encompass zones of low and high salinity. Several studies have reported a clear shift in AOA 

and AOB abundance in sediments along salinity gradients, with a general trend of AOA and 

AOB more abundant in the low and high salinity parts of the estuary, respectively. In a study 

of two bays along the Irish coast, Zhang et al. (2018) showed a clear shift in AOA/AOB 

abundance with AOA dominant in the low salinity soil whereas AOB dominated in the high 

salinity sediments of the estuaries. The authors also pointed out the potential role of pH (low 

in soils/ higher in sediments) as an additional driver of this shift. Mosier and Francis (2008) 

showed a similar trend in the San Francisco Bay estuary with salinity as a major driver of the 

AOA/AOB dominance whereas ammonia concentration was not. Similarly, Santoro et al. 

(2008) showed AOA 10 times more abundant at the freshwater site of a subterranean estuary 

whereas AOB was 30 times more abundant at the marine site, with a possible combined effect 

of salinity and oxygen availability. These findings are consistent with other studies reporting 

the overall dominance of AOB in high salinity estuary sediments (Wankel et al., 2011; Zheng, 

et al., 2013a; Lee et al., 2018; Zhou et al., 2018). In contrast, other studies have reported AOB 
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always more abundant than AOA regardless of the salinity, with a general trend of AOB 

abundance increasing from low to high salinity sites (Magalhaes et al., 2009; Li et al., 2015; 

Liu et al., 2018; Zheng et al., 2020). In a study of temporal and spatial change in AOA and 

AOB abundance along the Yangtze estuarine Zheng et al. (2013b) showed that, while AOA 

abundance was generally higher at low salinity, AOB was generally more abundant than AOA 

regardless of the salinity. Then, in the same estuary, Gao et al. (2018) recorded, in summer, the 

lowest AOA abundance at the low salinity site and the lowest AOB abundance at the high 

salinity site, while highest abundance for both were recorded at the intermediate salinity site 

and overall AOB more abundant than AOA along the salinity gradient. Similarly, Puthiya 

Veettil et al. (2015) showed that AOB was always more abundant that AOA in the Cochin 

estuary, including at sites of low salinity. This tends to indicate that other physiochemical 

parameters than salinity are controlling the AOA/AOB dominance in estuary sediments.  

 

Indeed, conflicting reports have found AOA more abundant than AOB in estuary sediments 

including marine sites (Caffrey et al., 2007; Marton et al., 2015; Bernhard et al., 2019; He et 

al., 2018) and along estuaries salinity gradient (Bernhard et al., 2010; Urakawa et al., 2014; 

Hou et al., 2018; Sanders and Laanbroek, 2018; Ming et al., 2020). Li et al. (2018) reported 

AOA more abundant than AOB in sediment and water from the Yellow River estuary, 

including sites of high salinity. The authors suggested that the relatively low ammonia 

concentration in their samples (<30 μg.g-1) could explain why AOA was dominant. However, 

this value was higher than the ones reported in Zheng et al. (2013a,b) and these authors reported 

a dominance of AOB vs. AOA. Furthermore, the dominance of AOA in estuary sediments with 

high salinity and high ammonia concentration has been reported elsewhere (Moin et al., 2009; 

Cao et al., 2011). Overall, it therefore seems that ammonia and salinity alone might not be 

enough to explain the patterns of the dominance of AOA vs. AOB in estuaries and that other 

parameters could affect AOM abundances including pH (Zhang et al., 2018) and oxygen 

availability (Santoro et al., 2008; Magalhaes et al., 2009). 

 

iii) Knowledge gap 

Several questions therefore remain regarding the effect of key physiochemical parameters such 

as salinity, pH and ammonia concentration on niche differentiation of AOA and AOB in 

estuaries and coastal environments. Also, many published research has focussed on the 

numerical dominance of AOA vs. AOB (i.e. differences in gene copy number) but the 

correspondence between abundance and activity is unclear. For example, Zheng et al. (2013a) 
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found AOB dominant over AOA in most of their samples but they found no changes in PNR 

with or without ampicillin (bacterial inhibitor) suggesting that AOB, although being dominant, 

might not play an important role in ammonia oxidation. Duff et al. (2017) reported 10 fold 

differences in PNR between two bays that displayed similar amoA gene abundances. Therefore 

abundances alone have to be interpreted carefully in the context of complex environmental 

samples. Alternatively, this could reflect the inadequacy of the potential rate measurements 

methods that typically employ incubation conditions that do not reflect in situ physiochemical 

contexts.  

 

Another caveat of measuring abundances alone is that it does not inform on the community 

composition. As different species within AOA and AOB likely have different tolerance for 

salinity, ammonia, high/low pH and different cell-specific ammonia-oxidizing rates, the 

question "how is there?" is arguably as important as "how abundant are they?". Zheng et al. 

(2020), for example, showed that although salinity was positively correlated with AOB 

abundance in the Yangtze estuary sediments, it was also correlated with a decrease in richness 

and inversely for AOA. Similarly, Gao et al. (2018) found a higher number of AOA OTUs in 

the samples with the lowest abundance of archaeal amoA genes, indicating that abundance 

(gene copy number) and richness (number of different OTUs) are not always correlated. 

Finally, Ming et al. (2020) found that the community composition but not the abundance of 

AOB was correlated to salinity changes along the Liaohe estuary. Together, these results 

illustrate the importance of AOM community composition together with abundance to 

determining their dynamics in the environment. 

 

Finally, an important remaining question is how do changes in AOM gene abundance and 

composition actually reflect their dynamics compared to changes in their transcriptome? Indeed 

several studies report different responses of AOM communities at DNA and RNA levels when 

subjected to artificial or natural physiochemical gradients. For example, when following 

changes in AOM abundance and activity along two estuaries, Happel et al. (2018) found that 

although AOA was more abundant at both sites, AOB were more transcriptionally active. Duff 

et al. (2017) showed changes of up to 2 orders of magnitude in AOA amoA transcription 

between samples while gene abundance remained constant. In the same samples, they also 

found different patterns for AOB gene and transcript abundance. In a microcosms study of the 

effect of forced salinity on AOM from coastal sediment Zhang et al. (2015a) showed that, at 

DNA level, AOB was generally not affected by the increase in salinity with no significant 
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differences in amoA gene abundance from 5 to 15 and 30 PSU, while on the other hand, a 

significant decrease in AOB amoA transcript was observed at increased salinities. In a 

subsequent study, Zhang et al. (2015b) showed that AOA gene abundance generally dropped 

after 28 days of incubation under increased ammonia concentration (from 5.7µM up to 

1142µM) but generally recovered to their initial number after 56 days. Gene abundance alone 

would therefore suggest that AOA is able to cope with an extreme increase in ammonia 

concentrations. However, no AOA amoA transcripts were detected at the highest ammonia 

concentration after 56 days indicating that these AOA were not transcriptionally active. 

Furthermore, DNA-SIP revealed that AOA was not incorporating 13CO2 under these conditions 

suggesting the absence of autotrophic growth. This illustrates again how abundance based on 

gene copy number and activity based on transcripts abundance and/or SIP, when considered on 

their own, could lead to different conclusions. In this same study, AOB gene abundance and 

transcript/SIP data were more concordant, both showing a preference for higher ammonia 

conditions. However, gene abundance data revealed the strongest increase in abundance after 

56 days under 685µM ammonia whereas transcript data revealed that AOB was more active at 

114µM ammonia. These results again, if analysed individually, would lead to different 

conclusions regarding AOB adaptation to ammonia concentration. It is worth noting that the 

authors showed an increase in AOA amoA transcription between 5µM and 343µM ammonia 

and similar transcription between 5µM and 685µM ammonia. Both values are much higher 

than the Km NH3 reported for any AOA or AOB showing that inference of niche differentiation 

based ammonia affinity of pure culture might not be directly applicable when considering 

complex environments. Also, the authors concluded that AOA prefer ammonia limited 

environments; however, this study started from a low ammonia environment that was subjected 

to increases. Therefore it could be argued that their data instead indicated that the native AOA 

in their samples (Nitrosopumilus maritimus) prefers ammonia limited environments while it is 

still possible that other AOA, native from higher ammonia environments, might behave 

differently. 

 

The often-recorded discrepancies between gene abundance and activity, as described above, 

could indicate that a high proportion of AOM present at a given time are not actively 

transcribing their nitrification genes. Indeed, in a survey of amoA gene and transcript 

abundances in relation to PNR, He et al. (2018) found ratios of active AOM to total AOM 

lower than 1% indicating that the majority of AOA and AOB genes were amplified from 

inactive cells. This strongly puts into question the validity of indexes such as the AOA/AOB 
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gene abundance ratio. Therefore, studies that link biochemical rate with microbial community 

compositions are needed (Damashek and Francis, 2018) but cannot be limited to the 

quantification and sequencing of genes alone. Identifying the main microbial drivers of 

nitrification in the environment requires studying AOM activities rather than their presence 

alone to gain insight into the parameters that regulate them. 

 

1.4 Accessing Microbial Activity in the Environment 
1.4.1 Rates measurement 

One of the most common methods for assessing microbial activity is the measurement of 

biological activity rates. This technique is based on the measurement of the differences in the 

concentrations of nitrogen species (ammonia, nitrite, nitrate…) between the beginning and the 

end of the incubation period; the differences are then used to calculate a rate of oxidation or 

reduction per unit of time. If the sample was incubated in optimal substrate concentration, a 

potential rate is measured, if the sample was incubated in the same conditions as in the 

environment, an actual rate is measured (e.g. Eriksson et al., 2003; Laima et al. 1999). 

Generally, these rates are compared with rates obtained in samples incubated with inhibitors of 

the biological processes to take into account the abiotic transformations and/or to differentiate 

between pathways (van Groenigen et al., 2015; McCarty 1999; Prosser 2005; Rusmana and 

Nedwell 2004).  

 

Heavy isotopes can also be used to determine the relative participation of different pathways 

to the production of a particular compound. 15N-labelling techniques are used for example for 

determining the role of different microbial metabolisms in the production of nitrogen oxide 

species (e.g. Kool et al., 2011; Wrage et al., 2005; Zhu et al., 2013).  

 

1.4.2 Functional genes as biomarkers  

Phylogenetic studies based on the 16S rRNA gene are useful techniques in microbial ecology 

to identify bacteria and archaea in natural systems much more accurately than culture-based 

approaches (Torsvik and Øvreås, 2002).  The use of quantitative PCR (Q-PCR) facilitates the 

quantification of total bacteria and archaea from phylum to species level (Smith and Osborn, 

2009). The nitrogen cycle genes encoding the enzymes directly involved in the biochemical 

reactions of the nitrogen cycle are also widely used as biomarkers (Table 1.2). Q-PCR based 

techniques are widely used to determining the relative importance of AOA vs. AOB in the first 
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step of ammonia oxidation (although this has its limitations when gene abundance is considered 

alone, as discussed previously). Several genes encoding enzymatic pathways of the nitrogen 

cycle are subjected to horizontal gene transfer (HGT) and, consequently, their phylogeny 

doesn't exactly match that of the 16S rRNA genes (Fuhrman 2009; Wellington et al., 2003). 

Therefore, for surveying a specific reaction (e.g. nitrification), an approach based on functional 

genes is better suited than one based on 16S rRNA genes. Table 1.2 lists a suite of commonly 

targeted functional genes of the nitrogen cycle that are used to differentiate different pathways 

(Figure 1.1). Following the distribution, diversity and abundance of functional genes in 

ecosystems helps understand the factors influencing microbial functioning. For example, 

changes in genomic potentials within a system reveal long-term adaptations of the community 

whereas short-term responses occur at the transcriptional level and can be assessed from the 

transcriptome.  
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Table 1.2 Summary of functional genes used as biomarkers for studding nitrogen cycle 
microbial processes. (*: Reference associated with Comammox) 

Function Target gene Reference 
Nitrogen fixation nifH Levy-Booth et al. (2014); Smith and 

Osborn (2009) 

Autotrophic ammonia oxidation 
(Nitritation and Comammox*) 

amoA Daims et al. (2015)*; Junier et al. 
(2010); Levy-Booth et al. (2014); 

(Pinto et al., 2016); Smith and 
Osborn (2009) 

 
Autotrophic nitrite oxidation nxrA/ nxrB Pester et al. (2014) 

 
Nitrate reduction 

 
narG 
napA 

Smith and Osborn (2009) 
 
 

Nitrite reduction nirS 
nirK 

Smith and Osborn (2009) 
 
 

Nitric oxide reduction norB Smith and Osborn (2009) 
 

Nitrous oxide reduction nosZ Smith and Osborn (2009) 
 

DNRA nrfA Smith and Osborn (2009) 
 

Anammox hzo Junier et al. (2010) 

 

1.4.3 Transcriptomics  

Transcriptomics studies are used to study microorganisms in natural environments, and in 

particular, which fraction of the community is actively contributing to a specific process. 

Although the level of expression of a given mRNA might not always correlate with the level 

of the corresponding protein (Wang et al., 2012), these techniques are meaningful tools because 

responses of microbial communities to environmental changes may be better reflected by the 

transcriptome than the proteome (Carvalhais et al., 2012). Environmental transcripts cannot be 

directly quantified, and a step of Reverse Transcription (RT) is required to generate 

complementary DNA (cDNA). The RT reaction occurs as follows: A reverse-transcriptase 

enzyme (enzyme able to generate DNA using and RNA template), oligonucleotide DNA 

(primer) and the RNA preparation containing the transcript(s) of interest are mixed together. 

The oligonucleotide then binds to the RNA and the reverse transcriptase enzyme generates a 

complementary DNA strand, starting from the 3' end of the primers. At the end of the RT step, 

an RNA-cDNA structure is then generated, which can be subsequently be used in the same way 

as a DNA template. The RT step is therefore crucial, as it needs to faithfully convert the starting 

RNA targets into cDNA. Once the cDNA has been generated, several techniques can be used 

to identify and quantify the target transcript(s).  
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1.4.3.a Microarray  

This technique is based on the hybridization of the target cDNA on an array containing multiple 

probes (i.e. a complementary sequence to the target). The intensity of the hybridisation then 

correlates to the level of expression of the transcript of interest. This technique has the 

advantage of being able to survey a large number of transcripts at once. Furthermore, 

amplification techniques can be used to overcome the limitations posed by the low 

concentrations of RNA typically obtained from natural environments. As such, microarray can 

be used to detect activities of microbial communities in natural environments (Gao et al., 2007). 

However, the degrees of sequence variation can be high among environmental samples, which 

can negatively affect the probe-target hybridisation. Furthermore, environmental samples such 

as soil and sediments can contain high levels of organic inhibitors that will also affect the assay 

(Saleh-Lakha et al., 2005; Parro et al., 2007). 

 

1.4.3.b Metatranscriptomics  

Recent advances in sequencing technologies and bioinformatics pipelines have allowed for the 

genome-scale investigation of complex microbial communities. The shotgun sequencing of all 

DNA and cDNA available from a sample provides information about the overall genes present 

(metagenomics) and expressed (metatranscriptomics), respectively, in the community. As 

such, metatranscriptomics permits an insight into the metabolic pathways that are triggered by 

environmental changes. It is now widely used in microbiology and is used to characterize the 

interaction between biogeochemical cycles (Hollibaugh et al., 2011), identify active members 

of the microbial community, detect regulatory antisense RNA or determine microbe-virus 

interactions (Carvalhais et al., 2012; Gutleben et al., 2018; Shakya et al., 2019). However, 

metatranscriptomics generally comes at a high cost and requires extensive computational 

power. Plus, as a non-targeted approach, it might miss the rare transcripts, depending on 

sequencing depth and removal of rRNA.   

 

1.4.3.c RT-(Q)-PCR  

Specific genes within the cDNA pool can also be quantified using Quantitative PCR (RT-Q-

PCR). In RT-Q-PCR, only a single target from the cDNA is quantified in a given Q-PCR 

reaction. Alternatively, the amplicon generated by PCR amplification on the cDNA can 

undergo sequencing to characterize the active fraction of the microbial population. These 

methods are less high throughput compared to metatranscriptomics in terms of the number of 
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target transcripts that can be surveyed but has the advantage of being specific and more 

sensitive having lower detection limits. Plus, it generally comes at a lower cost, does not require 

high computational power and, for RT-Q-PCR, are quantitative unlike metatranscriptomics 

(only semi-quantitative). RT-Q-PCR and RT-PCR have therefore been extensively used in 

environmental microbiology to link gene expression to ecosystem processes (Smith and 

Osborn, 2009; Saleh-Lakha et al., 2011; Gadkar and Filion, 2013).  

 

1.4.3.d Limitations of transcriptomics studies 

Some limitations of RNA based techniques come from the extraction, storage, sequencing 

protocol and sequence analysis step (Carvalhais et al., 2012; McCarthy et al., 2015; Wang et 

al., 2012), as in DNA based studies, but an additional problem with RNA is its instability: the 

half- life is much shorter than DNA, within the range of seconds to minutes (Carvalhais et al., 

2012; Steiner et al., 2019). The transcriptomic profile of cells might therefore be significantly 

affected by the changing conditions imposed by sampling. The determination of the quality of 

RNA before further processing is essential as the quantification of a transcript from degraded 

samples could bias the results (Die and Román 2012; Jahn et al., 2008). Another limitation of 

transcriptome-based studies is that mRNA levels might not always reflect protein 

concentrations due to post-translational events such as delay in protein synthesis and protein 

stabilisation. In the latter case, the organism might be active because the enzyme is still present 

long after transcription has stopped (Liu et al., 2016). 

 

Further to the quality and integrity of the RNA samples, several different parameters such as 

the extraction/purification method (e.g. Lloyd, et al., 2010; Tournier et al., 2015) and the matrix 

from where the RNA is extracted can affect the result of the subsequent RT-Q-PCR (Carvalhais 

et al., 2012; Wang et al., 2012). The comparison of expression levels between different 

conditions or different time point can therefore be complicated. It is important to ensure that 

difference observed are due to actual differences in the environment and are not influenced by, 

for example, sample preparation. Some authors (e.g. Die and Román 2012; Fleige and Pfaffl 

2006) suggested normalising the copy number of the transcript studied with the copy number 

of some reference transcript (Rocha et al., 2015). This approach generates more accurate results 

but, as shown by (Pérez-Novo et al., 2005), the comparison of gene expression levels between 

samples with very different RNA integrity will still be biased, even when using such 

normalizations. Therefore, a measure of RNA integrity of samples being compared is required. 
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The reverse transcription step can also have an influence on the level of transcripts detected. It 

is still unclear to what extent the variations generated by this step on the transcriptome of 

complex microbial communities are, but studies from the medical field have shown that the 

priming strategy (Bustin and Nolan 2004; Ståhlberg et al., 2004; Stangegaard et al., 2006), the 

enzyme (reverse transcriptase) (Bustin and Nolan 2004; Levesque-Sergerie et al., 2007) and 

the quantity of RNA used (Bustin and Nolan 2004; Ståhlberg et al., 2004; Levesque-Sergerie 

et al., 2007) have an effect on the level of transcripts detected. Therefore, gene expression 

levels determined with different RT techniques are generally not comparable. 

 

1.4.4 Stable Isotope Probing  

Stable Isotope Probing (SIP) is a method that allows the identification of functional groups that 

incorporate/degrade a particular substrate: First, stable isotopes of carbon (13C) or nitrogen 

(15N) are incorporated in a substrate and added to the environment of interest. Microbial groups 

that are able to utilise this substrate will incorporate it into their organic matter including their 

DNA if they are growing (i.e. replicating their genetic material and creating new cells) and into 

their RNA if they are active (i.e. transcribing their genes and producing enzymes). Nucleic 

acids are then extracted from this environment and labelled and unlabelled DNA/RNA are 

separated via a density gradient. The identification of source organisms within the labelled 

(heavy) fractions of the density gradient allows for the linking between the phylogeny of 

organisms and their function (Neufeld et al., 2007).  

 

SIP has been widely used to study nitrification in the environment: Jia and Conrad (2009) used 

SIP to show that ammonia fertilization only stimulated CO2 fixation by AOB and not AOA in 

agricultural soils. Later, in a study of this same soil environment, Pratscher et al. (2011) 

reported similar results with the absence of labelling of AOA DNA in soils under different 

ammonia fertilisation treatments. RNA-SIP on the other hand revealed that AOA were actively 

fixing CO2, coupled to ammonia oxidation. The labelling was higher at the lower fertilisation 

used (15µg N.g-1) and incomplete at 100µgN.g-1. Bacterial amoA was labelled in RNA and 

DNA SIP and the labelling was stronger at the highest fertilization. From these results, the 

authors concluded that AOB are better adapted to ammonia-rich environments and could be 

the most important ammonia oxidizers in fertilised environments such as agricultural soils. 

These results are in good agreement with a long term study where DNA-SIP was used to show 

the differential selection of AOM in agricultural soils depending on the fertilisation practice: 

AOB and AOA were selected by the application of inorganic and organic fertilisers, 
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respectively (Jia et al., 2020), consistent with results from Xia et al. (2011) who showed AOA, 

AOB and NOB labelled in agricultural soils upon ammonia fertilisation, however to a lower 

extend for AOA after 28 days. Other studies have shown the preferential labelling of AOA in 

soils including paddy (Wang et al., 2015) and agricultural soils (Zhang et al., 2010) and to 

show that they respond more to warming compared to AOB (Hu et al., 2016). SIP has also been 

used to demonstrate the growth of COMAMMOX alongside AOA and AOB in soils (Zhao et 

al., 2020) and to study AOM in coastal ecosystems; for example, Wang et al. (2020) were able 

to determine the ratio between total and labelled gene copy number to estimate the ratio of 

active and inactive cells in coastal wetland and showed, overall, AOA more active than AOB. 

 

1.5 Aims and Objectives 
The first aim of this thesis is to address knowledge gaps in environmental transcriptomics 

related to the impact of RNA degradation and the RT workflow on subsequent quantification 

and sequencing results. The overall aim is to establish a robust and reproducible experimental 

workflow for transcripts extracted from complex environmental samples, in an effort to match 

the guidelines published in the molecular clinical research field (e.g. MIQE guidelines: 

http://miqe.gene-quantification.info/). Then, the second aim is to apply this knowledge to 

evaluate the effect of sedimentary structures on the distribution and activity of nitrifying 

microorganisms in coastal sediments, using the Montportail-Brouage intertidal mudflat, 

located on the French Atlantic coast, as a model ecosystem. This site was chosen due to its 

characteristic display of ridge/runnels sedimentary structures, which have been shown to 

significantly affect microbial nitrification (Laima et al., 1999, 2002) as measured by PNR 

assay. This site has also been the focus of microbial ecology studies investing carbon and 

nitrogen cycling (Lavergne et al., 2017; Lavergne et al., 2018 a,b), but never using 

transcriptomics based approaches to further link structure and function in an effort to explain 

the observed differences in nitrification rates. Studies that link microbial communities and 

biochemical rates are needed to identify the microbes driving nitrogen transformations in the 

environment, which requires robust transcriptomics workflows in order to target the active 

portion of the microbiome. Both these topics will be covered in this thesis, in experimental part 

II, and I respectively. 

 

To address the first aim, two methodological studies are presented. The first study (Chapter II) 

aims to develop a novel method to measure RNA integrity and evaluate the effect of RNA 
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degradation on the quantification and sequencing of environmental transcripts. RNA integrity 

refers to how intact the RNA is after sample collection, storage and extraction (i.e. strand breaks 

and base degradation). As stated in Bustin and Nolan (2017), ensuring that the integrity of RNA 

extracted from different samples being compared is similar is paramount to ensuring the 

validity of biological results. In other words, ensuring that differences observed are biological 

and not methodological due to degraded RNA. Specifically, the following hypothesis will be 

tested: 

 

Hypothesis 1: Current approaches to monitor RNA integrity (RIN/RQI) are based on 

ribosomal RNA (rRNA). However, results from the clinical filed (Brisco and Morley, 2012; 

Björkman et al., 2016) and our understanding of the robustness and stability of rRNA (e.g. 

Sidova et al., 2015) indicate that it is not a suitable proxy for messenger RNA (mRNA) 

integrity. We therefore hypothesise that direct measure of messenger RNA is a better 

proxy for its integrity than rRNA. This hypothesis will be tested in chapter II. To do so, we 

developed a method based on the differential amplification of mRNA targets of different length 

from the same transcripts as an indicator of the overall transcriptome integrity. The premise 

being that longer mRNA degrades more easily. We validate our approach by gradually 

degrading RNA using different methods (heat, UV, RNase) and comparing this approach with 

the commercial method (RIN). We also hypothesise that the same sample with different 

degrees of degradation will result in different transcript quantification and alpha and 

beta diversity compared to the original sample.  

 

Next, in the second study (Chapter III), the methodological approach to generate 

complementary DNA (cDNA) from the extracted RNA is examined. The aim of the reverse-

transcription (RT) reaction is to faithfully represent, quantitatively and qualitatively, the 

mRNA community structure and abundance. Specifically, the following hypothesis will be 

tested:  

 

Hypothesis 2: Bustin and Nolan (2017), in their review of the use of RT in the molecular 

clinical field, recorded that the RT reaction can introduce differences of up to 100 fold for the 

same sample being reverse transcribed using different enzymes and priming. Consequently, 

authors declare: "[…] the majority of published RT-qPCR data are likely to represent technical 

noise". There is a complete lack of understanding of the effect of cDNA preparation in 

environmental transcriptomics and the impact it has on the subsequent ecological 
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interpretation. In this context, it is essential to establish the errors introduced by the RT reaction 

and identify what the most accurate and precise methodology is. As the target template is 

typically present at low abundances within a high background of other untargeted RNA, the 

RT priming strategy and the dynamic range of the enzyme used will affect the accuracy and 

precision of the recovery of transcripts. Therefore, we hypothesise that the RT protocol 

(reverse transcriptase enzyme and priming strategy) used will significantly affect the 

quantification and sequencing results of environmental transcripts. To test this, a 

combination of four commercial enzymes and two priming strategies were tested for their 

abilities to faithfully reverse-transcribe RNA into cDNA.  

 

In Chapter IV, the optimised workflow for the quantification and sequencing of environmental 

transcripts is applied to reveal the impact of sedimentary structures on microbial activity and 

more generally, to understand if such heterogeneity in terrain characteristics are important 

when calculating overall nutrient processing at the ecosystem scale. Here, we focus on 

identifying the active microbial nitrifiers that are responsible for the previously observed 

differences in nitrification rates between ridges and runnels of the Montportail-Brouage 

intertidal mudflat, France. Specifically, the following hypothesis will be tested: 

 

Hypothesis 3: Nitrification in coastal sediments is linked with the removal of excess nitrogen 

derived from anthropogenic activities inland and N2O production. In this context, it is crucial 

to understand how community composition informs activity and what are the major 

environmental parameters to be taken into account when estimating global budgets. Previous 

studies have shown that the physical arrangement of the sediment in ridges and runnels can 

significantly enhance nitrification rates, which are higher in the runnels. Yet this is not taken 

into account when calculating global rates at the ecosystem scale. Due to the close proximity 

between the semi-permanent ridges and runnels, we hypothesise that the higher 

nitrification in runnels is explained by a higher nitrifier activity (i.e. higher transcription 

of nitrification genes) as opposed to differences in nitrifier abundance or community 

composition. To test this hypothesis, a sampling campaign on the Montportail-Brouage 

mudflat was carried out in summer 2019, with a focus on the differences in nitrification 

measured between ridges and runnels. Here, potential nitrification rates were measured in 

ridges and runnels, from three different sites. Differences in total and active microbial nitrifier 

were determined, using the optimised protocol developed in Chapters II and III. Finally, we 
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propose hypotheses to link the differences observed in physio-chemical conditions, active 

nitrifiers and nitrification rates in the Montportail-Brouage mudflat. 
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Experimental Part I: Development of a Robust 
Workflow for Environmental Transcriptomics 
 

General Introduction 
A key question in environmental microbiology is to determine the functioning and activity of 

microbial communities. While genomic approaches have resulted in an unprecedented 

understanding of their structure and complexity (Medini et al., 2008), they do not inform of the 

activity and functioning at a given time. In this case, targeting the transcriptome, which is the 

subset of genes that are actively transcribed at a given time, is more informative. While there 

can be substantial post-translational regulation that may prevent final protein synthesis and/or 

activity, gene expression is the direct link between the genome and the function it encodes and, 

therefore, a stronger link to activity than DNA approaches alone (Moran et al., 2013). 

 

In environmental microbiology, transcriptomics is therefore essential to understanding which 

biochemical pathways are triggered by environmental conditions at a given time. RNAseq 

approaches facilitate primer free metatranscriptomics to reveal global gene expression profiles. 

It is now a widely used method in environmental microbiology and has allowed scientists to 

gain formidable insight into the genome-scale mechanisms used by microbes to adapt to 

changing environmental conditions (Shakya et al., 2013; Gutleben et al., 2018). However, it 

generally comes at a high cost and requires extensive data analysis. Plus, as an untargeted 

approach, it may require enrichment of the mRNA (via removal of ribosomal RNA) and will 

be dependent on sequencing depth to reveal rare transcripts among the diverse array of 

transcripts expressed in complex environmental samples. In contrast, Reverse-Transcriptase-

Quantitative PCR (RT-Q-PCR) is directed via primers towards a single target. While this is 

much lower throughput in terms of a global overview of transcription, this approach facilitates 

transcript quantification that is specific, with high-sensitivity and low-detection limits over a 

wide dynamic range (Sanders et al., 2014). RT-Q-PCR is high-throughput in terms of sample 

numbers, cost-effective (in comparison to metatranscriptomics) and subsequent data 

processing is fast without the requirement for high computational power and bioinformatics 

expertise needed for metatranscriptomics analysis. As a consequence, RT-(Q)-PCR is routinely 

used in most life science research fields including environmental microbiology to target and 

quantify specific transcripts. 
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Figure I.1 Schematic representation of the RT-(Q)-PCR workflow, including RT-Q-PCR 
and cDNA amplicon sequencing. Steps highlighted in red represent the knowledge gaps in 
environmental microbiology that will be addressed to ensure reliable approaches to generate 
robust data from environmental samples.  
 

As a result, the approach has been widely used to quantify transcripts to distinguish different 

pathways of the nitrogen cycle in sediments (Santoro et al., 2010; Smith et al., 2007; Zheng et 

al., 2013; Damashek et al., 2015; Duff et al., 2017; Santos et al., 2018; Zhang et al., 2018), 

soil (Leininger, et al., 2006; Graham et al., 2011; Wang, Nagaoka, et al., 2012; Li et al., 2017; 

Pierre et al., 2017), water column (Tolar et al., 2016; Santoro et al., 2010; Kapoor et al., 2015; 

Posman et al., 2017; Feng et al., 2018; Gonçalves et al., 2018; Liu et al., 2018; Christiansen et 

al., 2019) and other microbial processes including water treatment (Gadkar and Filion, 2013; 

Botes et al., 2013; Wang et al., 2016; Pelissari et al., 2017, 2018) and bioremediation (Gadkar 

and Filion, 2013; Marzorati et al., 2010; Yergeau et al., 2009). In addition to this, cDNA from 

mRNA or rRNA can undergo PCR for amplicon sequencing to reveal actively transcribing 

organisms within the environment (Zhang et al., 2018; Duff et al., 2017). 
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The drawback of transcriptomics methods is that they are highly dependant on a robust 

methodology and require extra care compared to DNA-based methods. One of the main 

challenges of the RT-Q-PCR workflow (Figure I.1) is to efficiently extract the fragile RNA 

from the samples while preserving its integrity. Secondly, because the RNA cannot directly be 

quantified or sequenced, it has to be reverse-transcribed into complementary DNA (cDNA) 

before undergoing Q-PCR and PCR-sequencing. A reverse-transcription (RT) protocol that is 

accurate, precise and sensitive is thus essential to ensure that the information contained in the 

initial RNA has been conserved in the cDNA. In the field of clinical microbiology and cellular 

biology, these issues have been long recognised and addressed, leading to the publication of a 

list of recommendations for best practice when performing Q-PCR and RT-Q-PCR, the 

Minimal Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 

guideline (http://miqe.gene-quantification.info/). In environmental microbiology, efforts have 

been made to improve the extraction procedure and prove the robustness of subsequent Q-PCR 

(Smith et al 2006; Smith & Osborn, 2009), and PCR for amplicon sequencing (Marotz et 

al., 2019). However, significant knowledge gaps remain in environmental microbiology if we 

want to reach similar standards of the MIQE guidelines (see Figure I.1); The work presented 

in the next two chapters is a much needed first step toward reaching such standards for 

microbial ecology studies. First, we develop an approach to monitor RNA integrity to evaluate 

mRNA quality prior to downstream processing and then we examine the impact of different 

RT approaches (enzyme and priming) on the quantification of RNA and mRNA transcripts. 

Based on these results, a number of recommendations for best practice in environmental 

microbiology transcriptomics will be presented that we hope will constitute the basis for 

establishing standards that match the ones expected in clinical transcriptomics studies.  
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Chapter II Differential Ratio Amplicon for the Evaluation 
of RNA Integrity Extracted from Complex Environmental 
Samples  
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Differential ratio amplicons (Ramp) for the evaluation
of RNA integrity extracted from complex environmental
samples

Fabien Cholet ,* Umer Z. Ijaz and Cindy J. Smith
Infrastructure and Environment Research Division,
School of Engineering, University of Glasgow, Glasgow,
G12 8LT, UK.

Summary

Reliability and reproducibility of transcriptomics-based
studies are dependent on RNA integrity. In microbial
ecology, microfluidics-based techniques, such as the
Ribosomal Integrity Number (RIN), targeting rRNA are
currently the only approaches to evaluate RNA integ-
rity. However, the relationship between rRNA and
mRNA integrity is unknown. Here, we present an integ-
rity index, the Ratio Amplicon, Ramp, adapted from
human clinical studies, to directly monitor mRNA integ-
rity from complex environmental samples. We show, in
a suite of experimental degradations of RNA extracted
from sediment, that while the RIN generally reflected
the degradation status of RNA the Ramp mapped mRNA
degradation better. Furthermore, we examined the
effect of degradation on transcript community struc-
ture by amplicon sequencing of 16S rRNA, amoA and
glnA transcripts. We successfully sequenced tran-
scripts for all three targets even from highly-degraded
RNA samples. While RNA degradation changed the
community structure of the mRNA profiles, no changes
were observed for the 16S rRNA transcript profiles.
Since both RT-Q-PCR and sequencing results were
obtained, even from highly degraded samples, we
strongly recommend evaluating RNA integrity prior to
downstream processing to ensure meaningful results.
For this, both the RIN and Ramp are useful, with the
Ramp better evaluating mRNA integrity in this study.

Introduction

A key question in environmental microbiology is to deter-
mine the functioning and activity of microbial communities.

While genomic approaches have resulted in an unprece-
dented understanding of their structure and complexity
(Medini et al., 2008), they do not inform of the activity and
functioning at a given time. In this case, targeting the
transcriptome, that is the subset of genes that are actively
transcribed at a given time, is more informative. While there
can be substantial post-translational regulation that may
prevent final protein synthesis and/or activity, gene expres-
sion is the direct link between the genome and the function
it encodes and, therefore, a stronger link to activity than
DNA approaches alone (Moran et al., 2013). As a result,
transcriptomics-based approaches are widely used to
assess microbial activity and functioning in the environment
(Smith et al., 2006; Evans, 2015). The premise is that mes-
senger RNA (mRNA) turn-over within cells is rapid, ranging
from a few minutes to less than an hour (Laalami et al.,
2014). As such, a snap-shot of the transcriptome reflects
the cells transcriptional response to its surrounding envi-
ronment and metabolic needs at a given time.

A challenge for all transcript-based studies, not least
for those from environmental samples, is to ensure the
quality and integrity of the RNA on which the results are
based. Extracted RNA is prone to degradation both dur-
ing the extraction procedure, post-extraction handling
and over time. Factors such as RNase activity, physical
degradation during extraction procedures and even
storage can degrade RNA. If there is significant post-
extraction degradation among different samples that are
to be compared, the interpretation of results may be com-
promised. In other words, differences between samples
may arise as a result of post-extraction degradation,
as opposed to representing actual difference in gene
expression. Indeed, meaningful and reproducible results
can only be obtained when working with good quality,
intact RNA, whether it is eukaryotic RNA (Fleige and
Pfaffl, 2006; Fleige et al., 2006; Copois et al., 2007; Die
and Román, 2012) or Prokaryotic RNA (Jahn et al.,
2008). As such an initial quality check of extracted RNA,
not least from complex environmental microbial commu-
nities should be the essential first step before proceeding
to any downstream applications. This quality check would
help to ensure that any differences observed between
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2.1 On the Issue of RNA Integrity 
A challenge for all transcript-based studies, not least for those from environmental samples, is 

to ensure the quality and integrity of the RNA on which the results are based. Extracted RNA 

is prone to degradation both during the extraction procedure, post-extraction handling and over 

time. Factors such as RNase activity, physical degradation during extraction procedures and 

even storage can degrade RNA. If there is significant post-extraction degradation among 

different samples that are to be compared, the interpretation of results may be compromised. 

In other words, differences between samples may arise as a result of post-extraction 

degradation, as opposed to representing actual difference in gene expression. Indeed, 

meaningful and reproducible results can only be obtained when working with good quality, 

intact RNA, whether it is eukaryotic RNA (Fleige and Pfaffl, 2006; Fleige et al., 2006; Copois 

et al., 2007; Die and Román, 2012) or Prokaryotic RNA (Jahn et al., 2008). As such an initial 

quality check of extracted RNA, not least from complex environmental microbial communities 

should be the essential first step before proceeding to any downstream applications. This 

quality check would help to ensure that any differences observed between samples are due to 

actual changes in gene expression rather than differences in samples integrity as a result of 

degradation.  

 

In microbial ecology, current methods to evaluate the integrity of extracted RNA are based on 

ribosomal RNA (rRNA). These approaches evaluate integrity as a ratio between the 23S and 

16S ribosomal RNA: 23S, 16S and 5S rRNA are synthetized as one primary transcript and are 

separated upon maturation (Kaczanowska and Ryden-Aulin, 2007). The 23S and 16S 

ribosome should therefore be present at a ratio 1:1. However, as the 23S ribosome is 

approximately twice as long as the 16S ribosome, for intact, non-degraded RNA, the expected 

ratio of 23S:16S RNA is 2:1. However, the caveat of this approach is the assumption that the 

integrity of rRNA reflects that of the overall RNA, including mRNA. The relationship between 

the integrity of rRNA and that of mRNA has not been demonstrated (Die and Román, 2012). 

Indeed, the formation of secondary structures and the interaction with ribosomal proteins may 

help protect ribosomes from degradation and could explain the more stable properties of rRNA 

compared with mRNA (Bonincontro et al., 1998; McKillip et al., 1998; 1999; Fontaine and 

Guillot, 2003; Rathnayaka and Rakshit, 2010; Rhodes et al., 2012; Sunyer-Figueres et al., 

2018). As such, the usefulness of this ratio to assess mRNA integrity is still unclear.  
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In its simplest form, evaluating ribosomal RNA integrity is an electrophoretic separation of 

RNA in a gel matrix. Essentially, a visual check for the presence of the characteristic bands 

corresponding to 23S and 16S rRNA. More advanced techniques based on microfluidics are 

better suited for assessing RNA quality, allowing for the calculation of integrity indexes, such 

as the RNA Integrity Number, RIN (Agilent Technologies) or the RNA Quality Score, RQS 

(BioRad). These scores vary between 0 (RNA totally degraded) and 10 (‘perfect’ RNA). A 

value of seven has been suggested as a limit between ‘good’ and ‘bad’ quality RNA extracted 

from bacterial pure cultures (Jahn et al., 2008). However, RNA extracted from natural 

environments such as soil or sediment will likely have lower quality due to the more complex 

matrixes and often harsh extraction techniques routinely used, for example bead beating (Hurt 

et al., 2001), but this information is not widely reported in the literature. Nevertheless, as 

highlighted above, even if reported, a shortcoming for RIN/RQI algorithms is that they are 

primarily based on rRNA (16S/23S ratio), which may degrade differently from mRNAs; the 

relevance of such indexes for gene expression analysis is therefore unknown.  

 

In Eukaryotic gene expression studies, an alternative index often used to evaluate mRNA 

degradation is the 3′-5′ ratio (Die et al., 2011). This technique is based on the observation that 

Eukaryotic mRNAs generally degrade from the 5′ to the 3′ end, with the 3′ poly(A) tail acting 

as a protective agent. As a result, Reverse Transcriptase-PCR (RT-PCR) targeting the 5′ end 

of the transcript is less likely to produce amplicons than those targeting the 3′ end. A high 3′:5′ 

ratio (low 5′ copy number) is therefore an indication of mRNA degradation. This technique 

cannot be applied to prokaryotic mRNAs as they generally do not possess poly(A) tails, and 

when they do, the tail enhances mRNA degradation (Dreyfus and Régnier, 2002). Recently, a 

new approach called differential amplicon (Δamp) has been developed (Björkman et al., 2016). 

This technique is based on the differential amplification of RT-PCR amplicons of different 

lengths from the same mRNA target as a new means to determine RNA integrity (see also 

Karlsson et al., 2016). Here, it was observed that the copy number of long RT-Q-PCR targets 

correlated with mRNA degradation whereas short targets were more stable. Since this approach 

does not rely on the presence of the poly(A) tail, it could theoretically be adapted to prokaryotic 

mRNA. Although degradation of longer transcripts, faster, has not been directly observed 

previously in prokaryotes, Reck and colleagues (2015) showed a similar response of an 

exogenous green-fluorescent-protein mRNA (GFP), spiked into stool RNA, to monitor its 

integrity when subjected to different storage conditions. They showed that the copy number of 
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the spiked exogenous GFP correlated well with RNA integrity when targeting long amplicon 

(≥500 bp), whereas the short amplicon (≤100 bp) remained constant, even in highly degraded 

RNA preparations. This indicated that, as was observed by Björkman and colleagues, longer 

mRNA targets reflect degradation better. As such, the difference in RT-Q-PCR performance, 

reflected by the difference in cycle threshold (Ct) between a short and a long amplicon from 

the same cDNA target could be used as an index to reflect mRNA integrity.  

 

Here, we propose to exploit the differential amplicon approach, initially developed by 

Björkman and colleagues, to develop a ratio of long to short amplicons of Bacterial mRNA 

transcripts using universal primers targeting conserved regions of the ubiquitous bacterial 

glutamine synthetase A transcript (glnA) as an indicator of overall mRNA integrity. Glutamine 

synthetase is a ubiquitous gene, found in Bacteria and Archaea (Kumada et al., 1993; Brown 

et al., 1994), with a role in assimilating inorganic nitrogen (ammonia) into amino acids 

(Reitzer, 2003). The glnA transcript has been used previously in RT-(Q)-PCR approaches to 

evaluate RNA extraction yield from soils (Sessitsch et al., 2002; Costa et al., 2004; Sharma et 

al., 2012). However, as the expression of glnA is regulated by ammonia concentration 

(Atkinson et al., 2002; Hua et al., 2004; Leigh and Dodsworth, 2007), the copy number of this 

transcript can vary making comparison between samples difficult. Our approach overcomes 

this difficulty by calculating the ratio of long to short glnA transcripts. We designate this the 

Ratio Amplicon (Ramp), and propose it as an indicator of mRNA integrity, independent of 

absolute gene expression.  

 

Specifically, this study aims to design and test the Ratio Amplicon (Ramp) approach to evaluate 

bacterial mRNA integrity extracted from marine surface mud samples (0 to 2 cm; Rusheen 

Bay, Ireland) using a phenol-chloroform/bead-beating co-extraction method. Furthermore, 

we aim to compare and evaluate this approach against the conventional ribosomal based RNA 

Integrity Number, RIN. Comparison between the two approaches was conducted by monitoring 

how well both indexes reflected experimental RNA degradation (UV, heat, RNase, freeze/thaw 

and long-term storage). The impact of RNA degradation and the ability of the two indexes to 

predict ribosomal and mRNA integrity was evaluated via quantification of two commonly 

surveyed bacterial transcripts, the highly abundant ribosomal 16S rRNA and mRNA from the 

less abundant bacterial ammonia monooxygenase (amoA). Finally, the effect of RNA 

degradation on transcript community structure was evaluated by amplicon sequencing of the 



 59 

cDNA obtained from sequentially degraded samples. A schematic representation of the 

experimental workflow undertaken in this chapter is presented in Figure 2.1. 

 

We hypothesized that (i) the Ramp would be a better predictor of mRNA integrity than the RIN 

and (ii) RNA degradation would adversely affect both transcript quantification and community 

composition. 
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Figure 2.1 Schematic representation of the experimental workflow followed in chapter II. 
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2.2 Material and Methods  
2.2.1 Sediment samples 

Surface mud samples (0 to 2 cm) were collected on 11/01/2017 from Rusheen Bay, Ireland 

(53.2589° N, 9.1203° W) (presence of amoA genes/transcripts previously established (Duff et 

al., 2017; Zhang et al., 2018) in sterile 50ml Eppendorf tubes, flash frozen and stored at -80°C 

until subsequent use. Three biological replicate were used to test the effect of RNA degradation 

on the Ramp, RIN and amoA and 16SrRNA Q-PCR/ PCR sequencing.  

 

2.2.2 Design of new glnA primers 

To design new primers, bacterial glnA sequences were downloaded from the GeneBank 

database (Clark et al., 2016). Sequences related to environmental bacteria were subjected to 

BLAST search (Altschul et al., 1990) in order to gather additional sequences. In total, 84 

sequences (Supplementary Information 1) were aligned using MUSCLE (Edgar, 2004) and a 

phylogenetic neighbour joining tree was drawn in MEGA 7 (Kumar et al., 2016). Based on 

sequence similarity, eight groups could be distinguished (Figure S.1). Primer sequences from 

Hurt and colleagues (2001) were aligned in each individual group to determine coverage and 

new primers were designed based on conserved regions to target the same groups with varying 

length primers.  

 

Primers were tested on DNA and cDNA using environmental DNA/RNA extractions and 

environmental cDNA, as template. glnA genes were amplified (BIOTAQ DNA polymerase kit; 

Bioline) in a 25 μl final volume composed of 2.5 μl BioTaq10x buffer, 18 μl water, 1.5 μl 

MgCl2 (50 mM), 0.5 μl of each primer (10 μM), 0.5 μl dNTPs (10 μM each), 0.5 μl Taq DNA 

polymerase and 1 μl of template. PCR conditions were as follow: 95°C 5 min, (94°C 30 s, 60°C 

30 s, 72°C 30 s) × 30 and 72°C 5 min.  

 

2.2.3 RNA preparation from sediment 

All surfaces and equipment were cleaned with 70% ethanol and RNase Zap (Ambion) before 

sample processing. All glassware and stirrers used for solutions were baked at 180°C overnight 

to inactivate RNases. All plastic ware was soaked overnight in RNase away solution 

(ThermoFisher Scientific). Consumables used, including tubes and pipette tips were RNase 

free. All solutions were prepared using Diethylpyrocarbonate (DEPC) treated Milli-Q water. 

A simultaneous DNA/RNA extraction method, based on that of Griffiths and co-workers 
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(Griffiths et al., 2000) was used to recover nucleic acids from sediment. Briefly, 0.5g of 

sediments were extracted using bead beating lysing tubes (Matrix tube E; MP Biomedical) and 

homogenised in 0.5ml CTAB/phosphate buffer (composition for 120 ml: 2.58g K2HPO4.3H2O; 

0.10g KH2PO4; 5.0g CTAB; 2.05g NaCl) plus 0.5ml Phenol:Chlorophorm:Isoamyl alcohol 

(25:24:1 v:v:v). Lysis was carried out on the FastPrep system (MP Biomedical) (S: 6.0; 40sec) 

followed by a centrifugation at 12,000g for 20 min 4°C). The top aqueous layer was transferred 

to a fresh 1.5ml tube and mixed with 0.5ml chloroform:isoamyl alcohol (24:1 v:v). The mixture 

was centrifuged at 16,000g for 5 min (4°C) and the top aqueous layer was transferred to a new 

1.5ml tube. Nucleic acids were precipitated by adding two volumes of a solution containing 

30% poly(etlyleneglycol)6000 (PEG6000) and 1.6M NaCl for 2 hours on ice and subsequently 

recovered by centrifugation at 16,000 x g for 30 min (4°C). The pellet was washed with 1ml 

ice-cold 70% ethanol and centrifuged at 16,000g for 30 min (4°C). The ethanol wash was 

discarded, and the pellet was air dried and re-suspended in 40µl DEPC treated water. 

DNA/RNA preparations were stored at -80°C if not used immediately. RNA was prepared from 

the DNA/RNA co-extraction by DNase treating with Turbo DNase Kit (Ambion) using the 

extended protocol: half the recommended DNase volume is added to the sample and incubated 

for 30 min at 37°C, after which the second half of DNase is added, and the sample is re-

incubated at 37°C for 1 hour. Success of the DNase treatment was checked by no PCR 

amplification of the V1-V3 Bacterial 16S rRNA gene (Smith et al., 2006). 

 

2.2.4 RNA degradation experiments 

2.2.4.a Physical degradation 

To obtain RNA with controlled degradation status, DNA free RNA preparations (≈8 μl) were 

aliquoted from an initial extraction in separate 0.2 ml RNase free tubes and incubated at 90°C 

or under a UV lamp for 0, 10, 45 or 90 min. To determine the potential effect of repeated 

freeze–thaw on RNA preparations, the same 15 μl DNA-free RNA was exposed to cycles of 

freezing (at −80°C) and thawing (on ice) as follows – 0, 1, 3, 5, 7 and 10 freeze–thaw cycles. 

cDNA was then generated for each individual aliquot as described later. Aliquots of RNA were 

stored at −80°C for up to 4 months, at time 0, 1 month and 4 months samples were removed 

from the freezer to determine RNA integrity.  
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2.2.4.b Enzymatic degradation by RNase I 

For RNAse I degradation experiment, 40 μl aliquots of DNA-free RNA were incubated at 37°C 

for 40 min in the presence of increasing concentrations of RNase I (Ambion): 0 (buffer only), 

2, 10, 20 and 40 Units RNase I μg−1 RNA. The reaction was stopped by adding 10 μl β-
mercaptoethanol and RNA was recovered by ethanol precipitation: 5 μl of 7.5 M ammonium 

acetate and 137.5 μl 100% ethanol was added and the mixture was precipitated overnight at 

−20°C. RNA was pelleted by centrifugation 16 000g for 40 min at 4°C and the pellet was 

washed with 480 μl ice cold 70% ethanol and pelleted by centrifugation at 16 000g for 30 min 

at 4°C. The pellet was air-dried and re-suspended in 40 μl of DEPC-treated water. An aliquot 

of RNA that did not undergo ethanol precipitation was also included for comparison 

(designated NT: ‘Not Treated’).  

 

2.2.5 Reverse-Transcription 

DNA-free RNA was used for glnA cDNA synthesis using Superscript III kit (Invitrogen) and 

gene specific priming. The initial RT mixture containing 3 μl water, 1 μl reverse primer 

GS1_new (10 μM), 1 μl dNTP’s (10 mM each) and 5 μl template was incubated at 65 C for 5 

min and quickly transferred on ice for 1 min. A second mix composed of 4 μl 5X first-strand 

buffer, 1 μl 0.1 mM dithiothreitol (DTT) and 1 μl SuperScript III (200 units /μl) was added and 

the resulting mixture was incubated at 55 C for 50 min and then at 72 C for 15 min. The primers 

and PCR conditions for the amplification of glnA targets from cDNA were similar to those 

used for DNA. For 16S rRNA and amoA genes, Superscript III kit (Invitrogen) and random 

hexamers priming was used. The initial RT mixture containing 3 μl water, 1 μl random hexamer 

(50 μM), 1 μl dNTP’s (10 mM each) and 5 μl template was incubated at 65 C for 5 min and 

quickly transferred to ice for 1 min. A second mix composed of 4 μl 5X first-strand buffer, 1 

μl 0.1 mM dithiothreitol (DTT) and 1 μl SuperScript III (200 units /μl) and 1 μl RNase inhibitor 

(40 U /μl) was added and the resulting mixture was incubated at 25 C for 5 min, 55 C for 50 

min and then at 72 C for 15 min.  

 

2.2.6 amoA and 16S rRNA Q-PCR 

For all degradation experiments, the Cts of the Bacterial amoA and the Bacterial 16S rRNA 

was determined by Q-PCR of the cDNA preparations. The amoA Q-PCR was carried out in a 

20 μl reaction volume composed of 10 μl EVAGreen Supermixes (SsoFast; Bio-Rad), 0.4 μl 

of each primer (BacamoA-1F and BacamoA-2R) (10 μM each), 7.2 μl water and 2 μl of cDNA 
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template (1/10 diluted). The Q-PCR cycle was as follows: 95°C-5 min, (95°C-30sec, 47°C-

30sec, 72°C-1min, 81°C-1sec and plate read) × 40 cycles. Melt curve analysis was performed 

from 65 C to 95 C with 0.5 C increment every 5 s. 16S rRNA cDNA targets were quantified in 

a 20 μl reaction volume composed of 10 μl Itaq Universal Probes Super- mix (Bio-Rad), 1.8 μl 

each primer (1369F and 1492r) (10 μM each), 0.4 μl probe (1389P) (10 μM), 5 μl water and 1 

μl cDNA template (1/10 diluted). The Q-PCR cycle was as follows: 95 C-10 min, (95 C-10s, 

60 C-30s) × 40 cycles and 40 C-10 min. All primers and PCR conditions are detailed in Table 

2.1.  

 

2.2.7 RNA integrity evaluation 

2.2.7.a RNA integrity number 

RINs were determined at all degradation points, using the automated 2100 Bioanalyser 

platform (Agilent Technologies) with the Prokaryote total RNA Nano chip, following the 

manufacturer's instructions. 

 

2.2.7.b glnA Q-PCR and ratio amp (Ramp) calculation 

glnA cDNA underwent Q-PCR, to amplify varying length amplicon fragments with primer 

combination as detailed in Table 2.2. Three glnA amplicons were produced (Figure 2.2), a 120 

bp amplicon (amplicon 1) generated using the primer pair GS1_new/GSFw1200, a 170 bp 

amplicon (amplicon 2) generated using the primer pair GS1_new/GS2_new and a 380 bp 

amplicon (amplicon 3) generated using the primer pair GS1_new/GSFw900. Q-PCR reaction 

(10 μl) was composed of 5 μl EVAGreen Supermixes (SsoFast; Bio-Rad), 0.3 μl of each 

primers (10 μM) and 1 μl of cDNA template (1/10 diluted). The Q-PCR condition was as 

follows: 95°C-30s, (95°C-10s; 65°C-10 s) × 35 cycles; plate read at 65°C. Melt curve analysis 

was performed from 65°C to 95°C with 0.5°C increment every 5 s.  

The Ct value of each assay was recorded and the differential amplicon ratios (Ramp) were 

calculated for each degradation point as follows:  

 

 
 

The value of 35 was chosen as the maximum number of Q-PCR cycles the reaction underwent. 

A transformation of the differential amplicon was applied in order to have a theoretical 
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maximal value of 1 (no degradation of RNA) and a theoretical minimal value close to 0 (totally 

degraded RNA). 
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Table 2.1 List of primers used and corresponding (Q)-PCR conditions used in Chapter 
II. 

Primer Sequence (5’à3’) Orientation Target Experiment 
condition 

Reference 

BacamoA-
1F 

GGGGHTTYTACTGGTGGT Forward 

Bacterial 

amoA 

gene 

(485bp) 

PCR: 95°C-15min; 
(94°C-30sec; 55°C-30sec; 
72°C-30sec) x 32 cycles 

and 72°C-10min 

Q-PCR: 95°C-5 min; 
(95°C-30sec; 47°C-30 
sec; 72°C-1min; 81°C-
1secà plate read) x 40; 

melt curve: 65°à95° 0.5° 
increment/ 5sec 

 

 

 

Hornek et al., 
2006 

BacamoA-
2R 

CCCCTCBGSAAAVCCTTCTTC Reverse 

1369F CGGTGAATACGTTCYCGG Forward Bacterial 

16S 
rRNA 

gene 

(123 bp) 

 

 

Q-PCR: 95°C-10min; 
(95°C-10sec; 60°C-30sec) 

x 40; 40°C-10min. 

 

Suzuki et al., 
2000 

1492R GGWTACCTTGTTACGACTT Reverse 

1389P CTTGTACACACCGCCCGTC 
Probe 

 

515F GTGYCAGCMGCCGC GTAA Forward 
Bacterial 

16S 
rRNA V4 

(291bp) 

PCR: 95°C-15min; 
(94°C-45sec; 50°C-30sec; 
72°C-40sec) x 25; 72°C-

10min 

Parada et al., 
2016 Caporaso 

et al., 2010 806R GGACTACNVGGGTWTCTAAT 
Reverse 

 

 

2.2.8 Illumina MiSeq amplicon library preparation 

The qualitative effect of RNA degradation on the community composition of the three bacterial 

genes (amoA, glnA and 16S rRNA) was determined by sequencing the amplicons generated 

from the cDNA preparations obtained after RNAse I degradation. For each PCR, amplification 

was carried out using the HotStartTaq PCR kit (Qiagen) in the following mix 25 μl volume: 

19.8 μl water, 0.5 μl of each primer (10 μM each), 0.5 μl dNTPs (10 μM each), 0.2 μl 

HotStartTaq, 2.5 μl of 10x PCR buffer and 1 μl cDNA template (10−1 and 10−3 diluted for 

functional genes and 16S rRNA respectively). Primers used for sequencing were modified by 

adding Illumina adaptors at the 5’ end: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG 

AGA CAG (forward adaptor); 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG 

ACA G (reverse adaptor). The use of vector-targeting forward primer ensured that only the 

spiked mock communities were amplified. The specificity of this PCR assay was verified by 

the absence of amplification from the un-spiked reverse transcribed background. The PCR was 

carried out using the HotStartTaq PCR kit (Qiagen) in a 25µl volume: 19.8µl water, 0.5µl of 

each primer (10µM each), 0.5µl dNTPs (10µM each), 0.2µl HotStartTaq, 2.5µl of 10x PCR 
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buffer and 1µl cDNA template (10-1). The PCR conditions for each target are detailed in Table 

2.1. For the sequencing of amoA, PCR were carried out in triplicate and pooled together for 

cleaning. PCR amplicons were cleaned using the Agencourt AMPure XP beads (Beckman 

Coulter) following the manufacturer’s recommendations. Illumina indexes were attached using 

the Nextera XT Index Kit with the following PCR condition: 95°C-15min, (95°C-30sec, 55°C-

30sec, 72°C-30sec) x 8 cycles and 72°C-5min. The resulting amplicons were purified using the 

Agencourt AMPure XP beads (Beckman Coulter) and eluted in 25µl water. After this step, 

some preparations were randomly chosen (two per gene target) and analysed on the Bioanalyser 

using the DNA 1000 Assay protocol (Agilent Technologies) to determine the average length 

of the amplicons and to check for the presence of unspecific products. Finally, DNA 

concentration was determined using fluorometric quantification method (Qubit) and molarity 

was calculated using the following equation:  

(concentration in ng/μl) × 106 = (660 g/mol × average library size). 

 

Libraries were pooled in equimolar amount and checked again on the Bioanalyser and the final 

library was sent to the Earlham Institute (Norwich Research Park, Norwich, UK) for Illumina 

MiSeq amplicon sequencing (300PE, 22 millions reads/ lane). 

 

2.2.9 Processing of amplicon sequences 

Construction of the reference databases  

The following sequences were downloaded: amoA sequences from Fungene 

(http://fungene.cme.msu.edu/) alongside NCBI sequences (n = 642); and bacterial glnA 

sequences (n = 1330) as FASTA files from Microbial Genome Database 

(http://mbgd.genome.ad.jp). For amoA sequences, the NCBI taxonomy was given in the 

FASTA headers whereas for glnA sequences, the MBGD Archive 

(http://mbgd.genome.ad.jp/htbin/view_arch.cgi) was used to download annotations 

(mbgd_2016_01) associated with the sequences, and a custom script was written to identify 

and tag the sequences with NCBI taxonomy. Subsequently, R's rentrez (Winter, 2017) package 

was used to get taxonomic information at different levels to generate a taxonomy file for glnA 

sequences. The FASTA file and the corresponding taxonomy file was then formatted to work 

with Qiime. For 16S rRNA we used the SILVA SSU Ref NR database release v123. (More 

details in Supplementary Information 2). 

Bioinformatics pipeline 
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Abundance tables were obtained by constructing operational taxonomic units (OTUs) as 

follows. Paired-end reads were trimmed and filtered using Sickle v1.2 (Joshi & Sickle, 

2011) by applying a sliding window approach and trimming regions where the average base 

quality drops below 20. Following this we apply a 10 bp length threshold to discard reads that 

fall below this length. We then used BayesHammer (Joshi & Sickle, 2011) from the Spades 

v2.5.0 assembler to error correct the paired-end reads followed by pandaseq v(2.4) with a 

minimum overlap of 20 bp to assemble the forward and reverse reads into a single sequence. 

The above choice of software was as a result of author's recent work (Schirmer et al., 2015; 

D’Amore et al., 2016) where it was shown that the above strategy of read trimming followed 

by error correction and overlapping reads reduces the substitution rates significantly. After 

having obtained the consensus sequences from each sample, the VSEARCH (v2.3.4) pipeline 

(all these steps are documented in https://github.com/torognes/vsearch/wiki/VSEARCH-

pipeline) was used for OTU construction. The approach is as follows:  the reads are pooled 

from different samples together and barcodes added to keep an account of the samples these 

reads originate from. Reads are then de-replicated and sorted by decreasing abundance and 

singletons discarded. In the next step, the reads are clustered based on 97% similarity, followed 

by removing clusters that have chimeric models built from more abundant reads (--

uchime_denovo option in vsearch). A few chimeras may be missed, especially if they have 

parents that are absent from the reads or are present with very low abundance. Therefore, in 

the next step, we use a reference-based chimera-filtering step (--uchime_ref option in vsearch) 

using a gold database (https://www.mothur.org/w/images/f/f1/Silva.gold.bacteria.zip) for 16S 

rRNA sequences, and the above created reference databases for amoA genes. The original 

barcoded reads were matched against clean OTUs with 97% similarity to generate OTU 

tables.  The representative OTUs were then taxonomically classified using 

assign_taxonomy.py script from Qiime (Caporaso et al., 2010) against the reference databases. 

To find the phylogenetic distances between OTUs, we first multi sequence aligned the OTUs 

against each other using Mafft (Katoh et al., 2009) and then used FastTree v2.1.7 (Price et al., 

2010) to generate the phylogenetic tree in NEWICK format. Finally, make_otu_table.py from 

Qiime workflow was employed to combine abundance table with taxonomy information to 

generate biome file for OTUs.  

 

2.2.10 Statistical analysis 

All statistical analysis was carried out in R (R Development Core Team, 2008). For degradation 

experiments, RIN and Ramp values were compared between time points with one-way 
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ANOVA, when the ANOVA test was significant, differences between time points were 

investigated using Tuckey HSD post hoc test. For community analysis (including alpha and 

beta diversity analyses), the vegan package was used (Oksanen et al., 2005). To find OTUs 

that are significantly different between multiple conditions (Degradation), 

DESeqDataSetFromMatrix() function from DESeq2 (Love et al., 2014) package with the 

adjusted p-value significance cut-off of 0.05 and log2 fold change cut-off of 2 was used. 

Vegan's adonis() was used for analysis of variance (henceforth referred to as PERMANOVA) 

using distance matrices (BrayCurtis/Unweighted Unifrac/Weighted Unifrac for gene 

sequences) i.e., partitioning distance matrices among sources of variation (Degradation). The 

scripts for above analysis can be found at 

http://userweb.eng.gla.ac.uk/umer.ijaz/#bioinformatics. 

 

2.3 Results 
2.3.1 Design and optimization of glnA primers 

Three new forward glnA primers (GSFw1200, GSFw900 and GSFw800) were designed to 

target a conserved region in groups 3, 4, 5, 7 and 8 of the glnA alignment (Table 2.2, Figure 

S.1) at ≈120 bp, ≈380 bp and ≈500 bp, respectively, in front (closer to the 5′ end of the gene) 

of an updated reverse primer from Hurt and colleagues (2001) named, GS1_new primer. This 

resulted in three amplicon sizes to derive a ratio amplicon (Ramp) from (Figure 2.2). The newly 

designed primers (Table 2.2) were optimized for PCR and RT-PCR resulting in amplicons of 

the expected size for all primer pairs. Assays were subsequently optimized for SYBR Green 

Q-PCR. All primers except for GSFw800, producing the 500 bp amplicon were successfully 

optimized with diagnostic single peak melt curves. As such we preceded with two Ramp ratio 

primer sets the Ramp 380/120 and the Ramp 380/170.  
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Table 2.2 List of glnA primers used. 

Primer Sequence (5’ à 3’) Orientation Target Experiment Reference 

GS1_new GCTTGAGGATGCCGCCGATGT Reverse 
Bacterial glnA, 

all amplicons 

Q-PCR and 

sequencing 

This study, 

modified 

from Hurt et 

al., 2001 

GSFw1200 GTTCGGGCATGCACGTGCA Forward 

Bacterial glnA, 

amplicon 1 (120 

bp) 

Q-PCR This study 

GS2_new AAGACCGCGACCTTNATGCC Forward 

Bacterial glnA, 

amplicon 2 (170 

bp) 

Q-PCR 

This study, 

modified 

from Hurt et 

al.,2001 

GSfw900 GTCAARGGCGGYTAYTTCCC Forward 

Bacterial glnA, 

amplicon 3 (380 

bp 

Q-PCR and 

sequencing 
This study 

GSFw800 
GAAGCCGAGTTCTTCSTCTTC

G Forward 

Bacterial glnA, 

amplicon 4 (540 

bp) 

PCR This study 

 

 

 
 
Figure 2.2 Schematic representation of primer binding sites along the Bacterial glnA 
gene. Primers are represented by arrows pointing to the right (forward primers) or to the left 
(reverse primer). The amplicons (Amp) generated by the different primer combinations are 
represented as coloured lines. The formulas used to calculate the two Ramp indexes are detailed 
under the figure. 
 

2.3.2 Heat degradation 

Incubation of RNA at 90°C had a strong and rapid impact on its integrity with a drop in the 

RIN from 7.5 to 4.7 after 10 min. At this point, the band corresponding to 23S rRNA had almost 

completely disappeared. Further exposure resulted in more pronounced degradation with 

accumulation of short RNA fragments and a RIN around 2 for both 45 min and 90 min exposure 

(Figure 2.3 A and C). One-way ANOVA revealed significant difference between all time 

points, except 45 and 90 min. A low and non-significant decrease in both Ramp indexes was 
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observed (−0.07 for 380/120 and − 0.11 for 380/170) between 0 and 10 min (Figure 2.3 C). 

This would tend to indicate that the Ramp was less sensitive than the RIN for monitoring RNA 

degradation by heat. However, interestingly the increase in Ct was also not significant for both 

amoA and 16S rRNA between 0 and 10 min (Figure 2.3 B), showing that the Ramp reflected the 

outcome of the RT-Q-PCR assays better than the RIN. Further exposure to heat induced a more 

pronounced decrease in both Ramp (≈ −0.4 for 380/120 and ≈ −0.3 for 380/170) at 45 min 

compared with 0 min. Both Ramp indexes reached values around 0.15 at 90 min, which mapped 

well the behaviour of amoA, with a sharp increase in the Ct for this transcript between 10 and 

45 min (≈4cts) and between 45 and 90 min (another ≈4cts). The 16S rRNA transcript was also 

affected but to a smaller extent (increase in Ct of only ≈3ct between 0 and 90 min). Yet, in this 

case too, the increase was quite low between 0 and 10 min and sharper between 10 and 45 min 

and 45 and 90 min.  
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Figure 2.3 Effect of heat 
degradation on RNA 
integrity measured via the 
RIN (A), with RT-Q-PCR 
(B) and RIN versus Ramp 
(C). For RIN, RNA 
integrity visualized in 
virtual gels (A; left) and 
electropherogram (A; right) 
are displayed against 
incubation period at 90°C. 
RNA ladder shows size in 
nucleotides (nt). B. Effect 
of degradation on transcript 
quantification; Amp 1–3: 
average Ct (n = 3) of one of 
the three possible glnA 
amplicons; amoA: average 
amoA Ct (n = 3) of the 
Bacterial amoA transcript; 
16S rRNA: average 16S 
rRNA Ct (n = 3) of the 
bacterial 16S rRNA 
transcript. Effect of RNA 
degradation on Ramp index 
is presented in figure C; for 
comparison, RIN values 
were also plotted. Greek 
Letters indicate the result of 
TukeyHSD tests (points 
with different letters had 
values significantly 
different from each other 
using 0.05 as threshold for 
the p value). 
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2.3.3 UV degradation 

The RIN was almost insensitive to UV radiation with an overall decrease of ≈1 at 90 min 

compared with 0 min (Figure 2.4 A and C). In contrast, UV radiation had a more pronounced 

effect on transcript quantification than heat as reflected by a quasi-linear increase in Ct of the 

amoA transcript between 0 and 45 min (Figure 2.4 B). Unlike heat exposure, 10 min under UV 

induced strong and significant increase in amoA Ct values (≈4cts). At 45 min, the Ct had 

increased by ≈9 compared with the starting point. After 90 min, the Ct of the amoA transcript 

almost reached 35, close to the detection limit. The Ct for 16S rRNA transcript increased 

steadily from 18 at 0 min to 20 at 90 min, showing that this assay/transcript was less sensitive 

to UV degradation. The behaviour of the Ramp, again, mapped well onto amoA behaviour with 

a decrease of ≈0.2 after 10 min exposure for both indexes (although this was not significant) 

(Figure 2.4 C). A net decrease was observed at 45 min (≈ −0.6 compared with 0 min) and at 90 

min both Ramp almost reached 0 since the Ct of the amplicon 3 glnA (380 bp) was very close to 

35.  
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Figure 2.4 Effect of UV 
degradation on RNA 
integrity measured via 
the RIN (A), with RT-Q-
PCR (B) and RIN versus 
Ramp (C). For RIN, RNA 
integrity visualized in 
virtual gels (A; left) and 
electropherogram (A; 
right) are displayed 
against incubation period 
under UV. RNA ladder 
shows size in nucleotides 
(nt).B. Effect of 
degradation on transcript 
quantification; Amp 1–3: 
average Ct (n = 3) of one 
of the three possible glnA 
amplicons; amoA: average 
amoA Ct (n = 3) of the 
Bacterial amoA transcript; 
16S rRNA: average 16S 
rRNA Ct (n = 3) of the 
bacterial 16S rRNA 
transcript. Effect of RNA 
degradation on Ramp index 
is presented in figure C; 
for comparison, RIN 
values were also plotted. 
Greek Letters indicate the 
result of TukeyHSD tests 
(points with different 
letters had values 
significantly different 
from each other using 0.05 
as threshold for the p 
value). 
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2.3.4 Degradation by RNase I  

The RIN showed a rapid response to RNase I degradation with a decrease from 7.1 to 6 between 

0 and 2 U μg−1 (Figure 2.5 A and C.) as seen on virtual gels and electropherograms with an 

almost complete disappearance of the 23S rRNA. When using 10 U μg−1 and higher 

concentrations, the RIN decreased and remained stable at approximately 2.5 indicating 

advanced/almost complete degradation of the RNA. Complete destruction of both rRNA and 

an accumulation of small size RNA molecules on the electropherogram can be observed 

(Figure 2.5 A). In contrast, enzymatic degradation by RNase I had a relatively small effect on 

the Ct of the amoA transcript at low concentration (only 0.2 Ct increase between 0 and 2 U 

μg−1 treatments) (Figure 2.5 B). Ct values for amoA increased with greater degradation of the 

parent RNA (3 Cts difference at 10 and 20 U μg−1 and 5 Cts at 40 U μg−1 compared with 0 U 

μg−1 control). Of note, amoA transcripts were still quantified from the degraded 40 U μg−1 

treatment with a mean Ct of 31.8. RNase I seemed to be the most effective treatment for the 

destruction of rRNA. Indeed, an increase of ≈ 3.2 Cts for the 16S rRNA transcript was observed 

between 0 and 40 U μg−1 treatments whereas an increase of only 2.2 Cts was observed between 

0 and 90 min for both physical degradation techniques (heat and UV). Ramp indexes were only 

slightly affected by 2 U RNase I μg−1 (decrease of ≈0.015 for 380/120 and ≈0.03 for 380/170) 

(Figure 2.5 C). The decrease was more pronounced for both Ramp at higher concentrations of 

RNase I (≈0.25 decrease at 20 U μg−1 compared with 0 U control). Even at concentrations as 

high as 40 U μg−1, the Ramp indexes only reached 0.3. This indicated that at the high nuclease 

concentrations, even the small amplicons (120 and 170 bp) were starting to degrade. In this 

experiment, the Ramp 380/170 seemed to be more sensitive than the Ramp 380/120 in mapping 

RNA degradation, with significant differences between 0 and 10 U μg−1 treatments whereas 

Ramp 380/120 values only became significantly different from 0 U control from 20 U μg−1. 

Again, as observed in the other degradation experiments, the behaviour of the amoA Ct was 

better reflected by changes in Ramp, especially Ramp 380/170, rather than by changes in the RIN.  
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Figure 2.5 Effect of RNase I degradation on RNA integrity measured via the RIN (A), 
with RT-Q-PCR (B) and RIN versus Ramp (C). For RIN, RNA integrity visualized in 
virtual gels (A; left) and electropherogram (A; right) are displayed against incubation period 
with RNase I. RNA ladder shows size in nucleotides (nt). B. Effect of degradation on 
transcript quantification; Amp 1–3: average Ct (n = 3) of one of the three possible glnA 
amplicons; amoA: average amoA Ct (n = 3) of the Bacterial amoA transcript; 16S rRNA: 
average 16S rRNA Ct (n = 3) of the bacterial 16S rRNA transcript. Effect of RNA degradation 
on Ramp index is presented in figure C; for comparison, RIN values were also plotted. Greek 
letters indicate the result of TukeyHSD tests (points with different letters had values 
significantly different from each other using 0.05 as threshold for the p value). 
 
 



 77 

2.3.5 Effect of freeze/thaw cycles and storage 

The effect of repeated cycles of freeze thaw on RNA is still poorly understood (and rarely 

studied) as conflicting results are reported, yet this is a common cause for concern when 

working with RNA. In our experiments, repeated freeze/thaw cycle (up to 10) did not induce 

any noticeable effects on RNA integrity, whether monitored via RIN or Ramp (data not shown). 

The effect of long-term storage was also investigated, by monitoring the RIN and Ramp of the 

same RNA after 0, 1 and 4 months stored at −80°C. No statistically significant change in RIN 

or Ramp was observed (data not shown).  

 

2.3.6 Comparison between Ramp and RIN 

Data generated from all of the degradation experiments undertaken (UV, heat and RNase I) 

was compiled to determine which of the two integrity indexes (RIN vs. Ramp) reflected the 

degradation status of the amoA and 16S rRNA transcripts more closely as determined by RT-

Q-PCR. This was done by calculating Kendall correlations between either the Ramp or the RIN 

and the Cts of the two gene transcript targets (Figure 2.6). When considering all three 

degradation experiments, that is UV, heat and RNase I, the RIN was not significantly correlated 

with 16S rRNA nor amoA Ct values (p value > 0.05). In contrast, both Ramp ratios resulted in a 

significant correlation with both amoA and 16S rRNA transcripts (Figure 2.6). However, as the 

RIN was almost insensitive to UV, with a decrease of only about ≈1 after 90 min exposure 

(Figure 2.4), Kendall correlations were repeated without the inclusion of the UV data set. In 

this case, both the RIN and the Ramp were significantly correlated with 16S rRNA and amoA 

transcript abundances within the degraded RNA samples (Figure 2.6). In fact, the RIN was 

better correlated with amoA than 16S rRNA Cts. Nevertheless, both Ramp ratios were more 

highly correlated with amoA Cts than the RIN. Furthermore, the Ramp ratios were more highly 

correlated with the 16S rRNA than the RIN. Taken together, these two observations confirm 

that the Ramp indexes better reflected RT-Q-PCR changes induced by RNA degradation than 

the RIN.  
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Figure 2.6 Kendall correlations between integrity indexes and Cts of the two reference 
gene used in this study. The correlations coefficients were calculated using all data generated 
from UV, heat and RNase I degradation experiments (left) and from the heat and RNase I only 
(right). The colour of squares represents the value of the correlation coefficients as explained 
on the colour scale. Black crosses indicate absence of significant correlation (threshold: p value 
> 0.05). 
 

2.3.7 Effect of RNA degradation on transcript community composition 

RNA degradation impacted upon amoA, glnA and 16S rRNA gene quantification, as 

demonstrated previously. However, whether all members of the community were affected 

equally was still to be determined. To answer this question, cDNA amplicons of the Bacterial 

16S rRNA, amoA and glnA transcripts underwent Illumina MISeq amplicon sequencing from 

all degradation points of the RNase I experiment representing RNA with RIN values from 7.5 

to 2.4 and Ramp values from ≈0.8 to ≈0.3 and from ≈0.7 to ≈0.3 for Ramp 380/170 and Ramp 

380/120 respectively. The effect of RNase I treatment on community evenness was tested using 

PERMANOVA. Results are presented in Figures 2.7, 2.8 and 2.9. Interestingly, the community 

structure of the three transcripts studied responded differently.  

 

Strikingly, RNase I treatment had little effect on 16S rRNA transcript community evenness 

(Figure 2.7). Indeed, for individual OTU, none of the members of the community were 

significantly differentially represented (p value log2 difference > 0.05) within highly degraded 

samples in comparison to controls (Figure 2.7). For individual OTU, at least 90% had their 

relative expression change over the degradation experiment fall within the [−log2(1.5); 

log2(1.5)] interval, even when comparing controls to the completely degraded 40 U RNase I 

sample (Figure 2.7 B). This indicates that 16S rRNA OTU transcript community was 

responding evenly to degradation, with each member having the same chance to be affected 

regardless of its abundance or sequence.  
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For bacterial amoA transcript community, there was no change in the overall composition with 

increasing degradation as reflected by the non-significant PERMANOVA (p value > 0.05) 

(Figure 2.8). However, with increasing degradation, there was an increasing difference in the 

community evenness among replicates. Furthermore, unlike 16S rRNA transcripts, when 

examining individual amoA OTUs it was evident that in the degraded samples some OTUs 

were differentially represented at a significant level compared with controls (Figure 2.8 B). In 

fact, some OTUs in the highly degraded samples (10, 20 and 40 U RNase I) had a fold change 

difference of up to two orders of magnitude compared with the controls and in most cases, 

resulting in their over representation in degraded samples. Moreover, in the more highly 

degraded treatments (10, 20 and 40 U RNase I), up to 44% of amoA OTUs had their relative 

expression outside the [−log2(1.5); log2(1.5)] interval, compared with the starting RNA 

(Figure 2.8 B). So, while there was not an overall significant difference in amoA community 

structure with increasing RNA degradation, there were changes in the relative expression of 

individual OTU. The overall lower numbers of amoA OTUs for comparison and the increasing 

difference among replicates in the degraded samples may in fact explain the lack of overall 

statistical significance in community structure.  

 

The effect of RNase I treatment was much more pronounced for glnA transcripts, than for 

amoA, and a significant change in community composition with increasing degradation was 

observed (p value < 0.05 for PERMANOVA with both Bray-Curtis and Unifrac distances) 

(Figure 2.9 A and B). As seen with amoA, the difference in community composition between 

replicates also increased with increasing RNase I treatment. Moreover, this effect was also 

observed at individual OTU level with a large fraction of the individual OTU showing different 

expression levels in treated samples compared with controls (Figure 2.9 B). As seen for amoA, 

some glnA OTUs were highly over represented in degraded samples by 2 to 3 orders of 

magnitudes, e.g. when comparing the untreated samples (NT) to the 40URNase samples, 0.28% 

(3 sequences) were over represented by two orders of magnitude. When comparing the samples 

treated with buffer only to the 40URNase samples, 2.43% (19 sequences) were over represented 

by two orders of magnitude and 0.13% (1 sequence) by three orders of magnitude.  
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Figure 2.7 Effect of RNase I treatment on 16S 
rRNA transcript composition. Bar charts (A) 
represent changes in community composition of the 
50 most abundant taxa. Scatterplots (B) represent 
log2 changes of individual taxa along the degradation 
gradient relative to control experiments (no treatment 
control (NT) or buffer only control (0URNase I μl−1)) 
as indicated by black arrows. Taxa with a significant 
difference (p value < 0.05) in expression greater than 
or equal to a twofold change (positively or 
negatively) relative to controls are indicated in red. 
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Figure 2.8 Effect of RNase I treatment on 
amoA transcript composition. Bar charts (A) 
represent changes in community composition of 
the 50 most abundant taxa. Scatterplots (B) 
represent log2 changes of individual taxa along 
the degradation gradient relative to control 
experiments (no treatment control (NT) or buffer 
only control (0URNase I μl−1)) as indicated by 
black arrows. Taxa with a significant difference 
(p value < 0.05) in expression greater than or 
equal to a twofold change (positively or 
negatively) relative to controls are indicated in 
red. 
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Figure 2.9 Effect of RNase I treatment on glnA 
transcript composition. Bar charts (A) represent 
changes in community composition of the 50 most 
abundant taxa. Scatterplots (B) represent log2 
changes of individual taxa along the degradation 
gradient relative to control experiments (no 
treatment control (NT) or buffer only control 
(0URNase I μl−1)) as indicated by black arrows. 
Taxa with a significant difference (p value < 0.05) 
in expression greater than or equal to a twofold 
change (positively or negatively) relative to 
controls are indicated in red. 
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2.4 Discussion 
Here, we successfully designed and tested the Ratio Amplicon, Ramp, index. The concept is that 

as RNA degrades, longer strands are preferentially affected and the abundance of the longer 

amplicon relative to the shorter amplicon will decrease with increasing RNA degradation 

(Björkman et al., 2016). Using experimentally degraded environmental RNA, we have shown 

that the newly developed Ramp index was a better predictor of the Ct of the target mRNA 

transcript used in this study, amoA, than the ribosome-based RIN approach. In fact, when data 

from the three degradation experiments carried out was considered together only the Ramp 

statistically correlated with amoA Cts. As the RIN failed to detect UV degradation, we removed 

this data from the correlation calculation to determine if this data set was biasing the results 

towards the Ramp approach. In this case, there was also a significant correlation between the 

RIN and amoA Ct (−0.51). However, the Ramp index still reflected the fate of the mRNA better 

than the RIN (−0.72 and −0.77 for Ramp 380/120 and Ramp 380/170 respectively).  

 

Taking the different RNA degradation approaches used individually, the RIN and Ramp ratios 

responded differently. As noted above, the RIN did not change over a 90-min exposure to UV. 

UV causes intramolecular cross-linking of thymines but does not cause strand breaks 

(Kladwang et al., 2012) while the RIN monitors stand break. Similar results were obtained by 

Bjorkman et al (Björkman et al., 2016) who reported a lack of response for the RIN and the 

RQI when human RNA preparations were degraded by UV radiation, even after 120 min of 

exposure. As such RNA damage by UV cannot be detected by electrophoresis separation but 

is recorded by RT-Q-PCR Ramp index. Other RNA degradation processes that result in base 

destruction but not necessarily strand break include oxidative damage (Rhee et al., 1995) or 

chemically-induced radical formation (Hawkins and Davies, 2002).  

 

In contrast, the RIN was the most efficient method to detect heat degradation. There was a 

strong and significant decrease in this index after 10 min whereas the Ramp indexes only became 

significantly different from the controls after 45 min. Moreover, there was very little effect on 

the direct quantification of the transcripts by RT-Q-PCR with very little change in the Ct of 

either amoA or 16S rRNA in the first 10 min at 90°C. Initially, heat degradation caused a rapid 

decrease in the RIN. However, at this point the RT-Q-PCR targets were actually responding 

more slowly and were more closely mapped by the Ramp than the RIN. Björkman et al., 2016 

showed a similar response of their differential amplicon, the ΔΔamp index, that did not change 
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much between 2 and 10 min at 95°C whereas the RIN rapidly reduced from 7 to 2. Moreover, 

Gingrich et al (Gingrich et al., 2008) showed that transcripts could be quantified from RNA 

preparations incubated at 90°C for several hours. This relatively low impact of heat on RNA 

quantification may be due to modification of RNA secondary structures which could result in 

more efficient cDNA synthesis and mask the effect of the heat-induced reduction of RNA 

integrity. More likely it is due to the small amplicon size of the targets that are unaffected by 

degradation. This essentially illustrates the difference in the methods used to monitor RNA 

degradation – the RIN detects strand break no matter where the fracture occurs along the 

transcript while the Ramp will only detect degradation if the break occurs between primer 

binding sites.  

 

RNA degradation using the nuclease enzyme RNase I was monitored using both RIN and Ramp. 

A similar behaviour could be observed here as in the heat degradation experiment with the RIN 

responding more quickly but loosing sensitivity when RNA was highly degraded whereas the 

Ramp responded slightly later but remained sensitive when RNA was extensively degraded. 

RNase I was the degradation method that had the strongest effect on the 16S rRNA Ct. RNase 

I activity is dependent on the concentration of the substrate. If rRNA and mRNA are considered 

as two distinct substrates, it can be expected that RNase I will have a greater impact on 

ribosomes as they constitute 80%–85% of total RNA. Furthermore, cDNA synthesis from 

mRNA would be enhanced in preparations where rRNA was depleted (Petrova et al., 2017). 

This dynamic may mask and change the effect of degradation over time, which would explain 

the relatively low increase in Ct for amoA at the beginning of the RNase I degradation 

experiment. Nevertheless, in this experiment and generally, for all degradation tests carried 

out, the behaviour of the amoA Ct was better predicted by the Ramp, as reflected by the higher 

correlation coefficient between Ramp indexes and amoA Ct than the RIN (Figure 2.6). As the in 

vitro half-life of different transcripts is not well-understood and has been shown to vary 

(Selinger et al., 2003; Belasco, 2010; Evguenieva-Hackenberg and Klug, 2011) further work 

is required to test the correlation of the Ramp against a larger range of mRNAs. For ribosomal 

RNA, while the correlation between the Ramp index and 16S rRNA Ct was lower than for amoA, 

it still correlated better with RNA degradation than the RIN. This indicates that the outcome of 

16S rRNA analysis was less affected by degradation than our mRNA targets. There are two 

factors that may contribute to this, the reported greater robustness of ribosomal RNA than 

mRNA and the shorter (~103 bp) 16S rRNA amplicon. That ribosomal RNAs behave the same 

as mRNA has never been proven. On the contrary, Sidova and colleagues (2015) showed that 
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when natural post mortem degradation occurs, rRNA is more stable than mRNA. In this case, 

rRNA is a poor predictor of degradation of the mRNA fraction, as supported by this work. As 

mRNA is subjected to more rapid decay to adjust to the needs of the cell whereas rRNA are 

degraded only under certain stress conditions or when defective (Deutscher, 2006), then these 

intrinsic differences in stability properties may also affect degradation rates of the different 

class of RNA post-extraction. Therefore, based on this work we can conclude that the Ramp was 

a better predictor of mRNA integrity than the RIN. However, as we and others (Björkman et 

al., 2016) have shown RNA responds differently to different types of degradation e.g. strand 

break versus intramolecular cross-linking of thymines, and as the exact and likely multiple 

causes of post-extraction degradation are unknown, we recommend that the RIN is used in 

conjunction with the Ramp to monitor RNA integrity.  

 
Which Ramp to use? 

In theory, the greater the difference between the two amplicons the more sensitive the Ramp 

index. However, as the Ramp approach is based on RT-Q-PCR it is restricted by the presence of 

conserved sites for primer design, and the success and efficiency of the RT and qPCR reactions. 

We initially designed a 500 bp glnA PCR amplicon however, the Q-PCR assay failed to 

produce a single diagnostic melt curve analysis. Of the remaining shorter Ramp sets, in practice, 

only one Ramp index is necessary, we recommend using the Ramp 380/170. The Ramp 380/170 

always had a higher value than the Ramp 380/120, which would indicate that the number of 170 

bp targets is higher than the 120 bp. Since both are amplified from the same target, this is not 

possible and the explanation for this observation is the lower efficiency of the 120 bp Q-PCR 

compared with the 170 bp assay. In spite of this, both Ramp correlated similarly well overall 

with each degradation experiment, with Ramp 380/170 slightly more sensitive in the RNase I 

experiment.  

 

Impact of experimental degradation of environmental RNA on ribosomal (16S rRNA) and 

mRNA (amoA and glnA) community diversity 

For complex environmental communities, the integrity of RNA is not only important to 

evaluate quantitative gene expression but is also of significance if it adversely affects the 

relative abundance of transcript diversity. To examine this, we assessed changes in the 

community structure of the 16S rRNA, amoA and glnA transcripts from all fractions of the 

RNase I sequentially degraded RNA.  
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The results were surprising with successful amplicon sequencing even from highly degraded 

samples. Nevertheless, the data did suggest a different response of 16S rRNA and mRNA 

transcripts to degradation, with 16S rRNA community structure unaffected over the range of 

degraded RNA samples. That is a statistically similar community was present in the control 

non-degraded samples as in the totally destroyed 40 Units RNase I (with a mean RIN of 2.5 

and Ramp of 0.32 and 0.27 for Ramp 380/120 and Ramp 38/170 respectively). This indicates that 

while total RNA was degraded, the small transcript fragments required for RT-PCR and 

amplicon sequencing remained intact. In fact, so much so that no significant change in the 

relative abundance of individual OTU was observed.  

 

On the other hand, RNA degradation had a greater influence on both amoA and glnA mRNA 

targets. While, again surprisingly, transcript amplicons were successfully detected from all 

degradation status samples, greater variability between degraded replicates was observed. This 

resulted in statistically different communities for glnA but not amoA when compared with the 

same non-degraded control samples. However, the low number of amoA OTUs and increased 

variability between replicates contributed to the lower statistical power resulting in no 

statistical difference between treatments (Figure 2.8). Furthermore, there were significant, 

sometimes up to two to three orders of magnitude change in the relative abundance of 

individual glnA and amoA OTUs in the degraded samples versus control samples. So, while we 

could successfully amplify mRNA transcripts from degraded environmental samples, we have 

shown that the relative composition of the community members was adversely affected by 

degradation and was not representative of the initial starting point. While further work is 

needed to determine the impact of degradation across the entire transcriptome to see if all 

mRNAs respond in a similar manner, it is clear from our mRNA amplicon sequencing that 

RNA degradation will alter the outcome of community analysis. It is therefore necessary to 

ensure the RNA integrity of the sample is known prior to interpretation of results. For this, our 

data indicates that a combination of approach targeting both ribosomal (the RIN) and mRNA 

(the Ramp) is needed.  
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Summary

Reverse-transcriptase-quantitative PCR (RT-Q-PCR)
and RT-PCR amplicon sequencing, provide a conve-
nient, target-specific, high-sensitivity approach for
gene expression studies and are widely used in envi-
ronmental microbiology. Yet, the effectiveness and
reproducibility of the reverse transcription step has
not been evaluated. Therefore, we tested a combina-
tion of four commercial reverse transcriptases with
two priming techniques to faithfully transcribe 16S
rRNA and amoA transcripts from marine sediments.
Both enzyme and priming strategy greatly affected
quantification of the exact same target with differ-
ences of up to 600-fold. Furthermore, the choice of
RT system significantly changed the communities
recovered. For 16S rRNA, both enzyme and priming
had a significant effect with enzyme having a stron-
ger impact than priming. Inversely, for amoA only the
change in priming strategy resulted in significant dif-
ferences between the same samples. Specifically,
more OTUs and better coverage of amoA transcripts
diversity were obtained with GS priming indicating
this approach was better at recovering the diversity
of amoA transcripts. Moreover, sequencing of RNA
mock communities revealed that, even though tran-
script α diversities (i.e., OTU counts within a sample)
can be biased by the RT, the comparison of β diversi-
ties (i.e., differences in OTU counts between sam-
ples) is reliable as those biases are reproducible
between environments.

Introduction

Whereas modifications of the genome can reflect adapta-
tions of living organisms over evolutionary time scales,
changes in the transcriptome reflect short-term
responses of cells (López-Maury et al., 2008; Browning
and Busby, 2016). In environmental microbiology, trans-
criptomics is essential to understanding which biochemi-
cal pathways are triggered by environmental conditions
at a given time. RNAseq approaches facilitate primer free
metatranscriptomics to reveal global gene expression
profiles. It is now a widely used method in environmental
microbiology and has allowed scientists to gain formida-
ble insight into the genome-scale mechanisms used by
microbes to adapt to changing environmental conditions
(Shakya et al., 2013; Gutleben et al., 2018). However, it
generally comes at high cost and requires extensive data
analysis. Plus, as an untargeted approach, it may require
enrichment of the mRNA (via removal of ribosomal RNA)
and will be dependent on sequencing depth to reveal rare
transcripts among the diverse array of transcripts
expressed in complex environmental samples. In con-
trast, reverse-transcriptase-quantitative PCR (RT-Q-
PCR) is directed via primers towards a single target.
While this is much lower throughput in terms of a global
overview of transcription, this approach facilitates tran-
script quantification that is specific, with high-sensitivity
and low-detection limits over a wide dynamic range
(Sanders et al., 2014). RT-Q-PCR is high-throughput in
terms of sample numbers, cost effective (in comparison
to metatranscriptomics) and subsequent data processing
is fast without the requirement for high computational
power and bioinformatic expertise needed for
metatranscriptomics analysis. As a consequence, RT-
(Q)-PCR is routinely used in most life science research
fields including environmental microbiology to target and
quantify specific transcripts.

In environmental microbiology it is an invaluable
approach to further link microbial activity, via gene
expression, to microbial and ecosystem processes, com-
pared to DNA approaches alone (Smith and Osborn,
2009; Saleh-Lakha et al., 2011; Gadkar and Filion,
2013). As a result the approach has been used to
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3.1 Reverse-Transcription: the Information Conservation Challenge 
In the previous chapter, we have shown that RNA degradation is a major issue in environmental 

microbiology. Only RNA of high quality should be used as template for the RT reaction. Still, 

RNA extractions are complex mixtures of ribosomal, messenger, transfer and small RNAs. 

This represents a huge amount of information, of which only a small and diverse fraction, the 

mRNAs, informs on gene expression. The challenge when converting RNA into cDNA via the 

Reverse-Transcription (RT) reaction, is therefore to conserve this information as best as 

possible, both quantitatively (The proportions of different RNAs should be represented in the 

cDNA) and qualitatively (the same nucleotides that constitute the RNA should be found in the 

cDNA) (Figure 3.1). 

 

Figure 3.1 The information conservation challenge of the RT reaction. In this figure, 
perfect quantitative (A) and qualitative (B) information conservation is represented.  

 

RNA	1	
RNA	2	
RNA	3	
RNA	4	

cDNA	1	
cDNA	2	
cDNA	3	
cDNA	4	

RT	

RN
A	

cD
N
A	

	
AUG	UUC	CCA	GUA…	
	
AUG	UCC	AAA	UGG…	
	
	
AUG	CCC	AUA	UGG…	
	
	
AUG	GGC	AGA	AAG…	

	
TAC	AAG	GGT	CAT…	
	
TAC	AGG	TTT	ACC…	
	
	
TAC	GGG	TAT	ACC…	
	
	
TAC	CCG	TCT	TTC…	

Pr
op

or
3o

ns
	

0	

100	

50	

25	

75	

RT	

RN
A	

cD
N
A	

1x	

10x	

100x	

1000x	

1x	

10x	

100x	

1000x	

A	

B	

Ta
rg
et
	c
on

ce
nt
ra
3o

n	



 89 

The RT reaction requires a reverse transcriptase enzyme, of which there are a number 

commercially available, and a reverse primer to initiate the RT reaction. There are two main 

priming strategies, random or gene specific priming. For random priming, short 

oligonucleotides (e.g. hexamer or decamer) consisting of all possible sequence combinations 

for that size, are used to randomly initiate the RT across the entire transcriptome. Gene specific, 

as the name implies, target specific transcripts of interest. A number of studies in the wider 

field of molecular biology indicate that the RT reaction has a significant impact on the final 

results for the same sample.  Indeed within clinical studies, the inherent variability of cDNA 

synthesis has been reported in some cases to be greater than the differences between biological 

samples (Sanders et al., 2014). This level of variability implies that comparison of results 

between different studies using different approaches is near impossible (Bustin, 2002). 

Moreover, the sources of RT variability have been attributed to a wide range of factors 

including: the choice of reverse transcriptase (Ståhlberg et al., 2004; Stangegaard et al., 2006; 

Levesque-Sergerie et al., 2007; Werbrouck et al., 2007; Okello et al., 2010; Sieber et al., 2010; 

Miranda and Steward, 2017); priming (Lekanne Deprez et al., 2002; Ståhlberg et al., 2004; 

Stangegaard et al., 2006; Werbrouck et al., 2007; Sieber et al., 2010; Miranda and Steward, 

2017); background RNA concentration (Bustin & Nolan, 2004; Levesque-Sergerie et al., 2007; 

Miranda & Steward, 2017); cleaning of the RT reaction (Okello et al., 2010); RNaseH 

treatment (Polumuri et al., 2002); RT reaction composition and conditions (Ståhlberg et al., 

2004; Werbrouck et al., 2007) and dilution of cDNA (Smith et al 2006).  

 

In environmental microbiology applications, the effect of the initial RT reaction on 

quantification and amplicon sequencing of environmental transcripts has yet to be determined. 

Indeed environmental samples may provide a number of further challenges for efficient and 

reproducible RT reactions due to the presence of co-extracted inhibitors; variable target 

expression (high to low) in a background of high non-target template concentration and low 

RNA quality and integrity (Cholet et al., 2019).  Moreover, there is the need for the RT reaction 

to faithfully transcribe the diversity of target of interest.  A small number of studies 

investigating primer-free approaches to characterise 16S rRNA transcripts revealed better 

accuracy (Mäki and Tiirola, 2018) and sensitivity (Hoshino and Inagaki, 2013) with primer-

free approaches for amplicon sequencing than PCR of the cDNA.  Nonetheless, these primer-

free approaches still rely on an initial RT reaction, which could impact the outcome of the 16S 

rRNA transcript sequencing.  Moreover, our own personal observations in the laboratory have 

indicated that RT enzyme and priming strategy greatly impact the results of environmental 
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transcript studies, often meaning the difference between detection or not of a given transcript 

that in turn results in different ecological interpretation. 

 

Therefore, to improve reproducibility and inform best practice and standardisation of RT-(Q)-

PCR approaches in environmental microbiology, we have undertaken a detailed study of the 

effect of the RT reaction on RNA extracted from environmental samples. We aimed to 

determine the impact of enzyme and priming strategy on quantification and amplicon 

sequencing of transcripts (spiked artificial RNA, 16S rRNA and ammonia monooxygenase 

(amoA)).  We therefore examined a combination of four commonly used commercial reverse 

transcriptases (Superscript III, Superscript IV, Omniscript and Sensiscript; designated SSIII, 

SSIV, Omni and Sensi, respectively, thereafter) and two priming strategies (random hexamer 

and gene specific; designated RH and GS, respectively, thereafter). We hypothesized that both 

quantification and alpha diversity (i.e. OTU counts within a sample) of transcripts from the 

same samples will be affected by RT enzyme and priming strategy.  

. 
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Figure 3.2 Schematic representation of the experimental workflow followed in chapter 
III. The effect of the RT reaction was evaluated on: A) the quantification of an exogenous 
transcript spiked at known concentrations; B) the quantification of two endogenous transcripts 
and the subsequent sequencing of these transcripts and C) the sequencing of mock communities 
composed of 12 transcripts with known sequences for this last experiment, DNA mocks were 
also included as controls. Replicates are indicated by “n=”. 
 

3.2 Methods 
3.2.1 Sediment Samples 

[See 2.3.1 for origin of the samples]. Five biological replicate sediments, designated Env1, 

Env2, Env3, Env4 and Env5 respectively were used for testing the effect of the RT reaction on 

RT-Q-PCR and RT-amplicon sequencing of the endogenous amoA and 16S rRNA transcripts. 

An additional sample was used for preparing the RNA background for the sfGFP spiking 

experiment 

 

3.2.2 RNA Preparation from Sediment  

[Same as 2.3.3] 

 

3.2.3 RNA quality check  

The quality, purity and integrity of extracted environmental RNA was determined as follows: 

Quantity/purity: Total RNA was quantified using three different approaches: 

spectrophotometry (NanoDrop; Life Technologies), fluorometry (Qubit broad Range RNA; 

Life Technologies) and microfluidics (Bioanalyser 2100 RNA Nano; Agilent Technologies). 

Purity was determined by spectrophotometry (NanoDrop; Life Technologies) with the 

260nm/230nm and 260nm/280nm band absorption ratios.  

 

Integrity: RNA integrity was determined using two different approaches: the RNA Integrity 

Number (RIN), based on the 23S/16S rRNA ratio and the electropherogram of the extracted 

RNA (Bioanalyser 2100 RNA Nano; Agilent Technologies) and the Ramp approach, based on 

the differential amplification of glnA mRNA amplicons of different length  (Chapter II and 

Cholet et al., 2019).  
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3.2.4 Evaluation of RT reaction on transcript quantification via a sfGFP RNA spike  

3.2.4.a Preparation of the sfGFP RNA spike and standard curves 

A plasmid containing the sfGFP gene (designed by Segall-Shapiro et al. (2014)) was ordered 

from the Addgene plasmid repository web site (https://www.addgene.org/59948/) as a bacterial 

stab (E. coli). The bacterial stab was streaked on LB agar + Ampicillin (100 µg/ml) and 

incubated overnight at 37°C. A single colony was re-grown in LB ampicillin (100 µg/ml) and 

used to generate glycerol stocks and subsequently used for PCR and Q-PCR validation of the 

primers (see main document). For all PCR amplifications, three negative control were included: 

E. coli DNA, environmental DNA and a no template control. The primer sF500_R (used for 

gene specific reverse transcription) was also tested at PCR level to ensure its specificity for 

subsequent RT experiments. After validation of the primers, a fragment of the plasmid 

including the T7 promoter site and the quasi full-length sfGFP gene (40 bp at the 3’ end was 

not included) was PCR amplified using primers pBRforEco and GFP-Frc (reverse complement 

of GFP-F) (Table 3.1). The PCR product was purified using Agencourt AMPure XP beads 

(Beckman Coulter) following the manufacturer’s recommendations and then used for in vitro 

transcription using the MEGAscript T7 transcription kit (Invitrogen) to prepare sfGFP RNA. 

The RNA preparation was treated with the Turbo DNase kit (Ambion) and the full digestion of 

the DNA template was confirmed by the absence of PCR amplification of a 300bp sfGFP 

fragment using the sF300_F and sF300_R primer pair (Table 3.1). Production of target RNA 

of the correct length was confirmed on the 2100 Bioanalyser RNA nano (Agilent) and 

concentration determined using fluorometric quantification method (Qubit RNA BR assay; 

ThermoFisher Scientific). The number of RNA transcripts was calculated using EndMemo 

RNA copy number Calculator (http://endmemo.com/bio/dnacopynum.php). A 10 points serial 

dilution was prepared by successive 1/10 dilutions. RNA dilutions were reverse transcribed 

using the combination of four enzymes and two priming (Table 3.2) and the resulting cDNA 

was diluted 1/10 before Q-PCR amplification. 

 

3.2.4.b sfGFP Q-PCR standard curves 

sfGFP RNA dilutions (1010à101 transcript copies/µl) were prepared and individually reverse 

transcribed (RT) using four different enzymes: Superscript IV (SSIV), Superscript III (SSIII) 

(Invitrogen), Sensiscript (Sensi) and Omniscript (Omni) (Qiagen) and two priming strategies - 

gene specific (GS) and random hexamer (RH). Each RT was done in duplicate. A summary of 

the protocol for each system is presented in Table 3.2. The resulting cDNA preparations 

underwent Q-PCR using the primer pair sF300_Fand sF300_R (Table 3.1).  
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3.2.4.c Spiking experiment 

In order to determine which enzyme/priming combination was the most accurate, the 

exogenous RNA spike (sfGFP RNA) was seeded into a background of environmental RNA 

([RNA]background =70.7 ng/µl; ratio 260/280background = 1.63; ratio 260/230background = 0.87) at 

known concentrations: 103, 5 x 103, 2 x 106 and 107 copies/µl. The RNA background was same 

for all spikes. These concentrations were chosen to mimic five-fold changes in gene expression 

at both low and high expression level. After the sfGFP spike was added, total RNA was reverse 

transcribed in triplicate, using different combinations of enzymes and priming (four different 

RT enzymes; two different priming strategies) in the same manner as illustrated in Figure 3.2 

and Table 3.2. A 300bp fragment of the sfGFP cDNA was then quantified from the cDNA 

preparations using quantitative PCR (one Q-PCR reaction for each of the 3 RT replicates) with 

the primer pair sF300_F/ sF300_R. The Q-PCR mix was composed of 10µl EVAGreen 

Supermixes 2X (SsoFast; Bio-Rad), 0.5µl each primer (10µM each), 8µl water and 1µl cDNA 

template.  

 

3.2.4.d Differential Expression (DE) between consecutive spike concentrations  

The fold difference between consecutive spike concentrations was then calculated as the ratio 

of the mean copies/µl exogenous spike detected: DE “Low” corresponds to the ratio of mean 

copies/µl detected in the 103 spike versus the 5 x 103 spike. DE “High” corresponds to the ratio 

of mean copies/µl detected in the 2 x 106 spike versus the 107 spike. The standard deviations of 

the ratios were calculated as: 

 

sd 
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where m1 is the mean copies/µl at concentration C and m2 the mean copies/µl at concentration 

C x 5; sd1 and sd2 the standard deviations of m1 and m2 respectively 

  

3.2.5 Effect of RT reaction on quantification of endogenous amoA and 16S rRNA transcripts 

3.2.5.a amoA and 16S rRNA Q-PCR standard curves  

RNA standard curves were constructed by serial dilution of the target RNA, reverse 

transcription of the individual dilutions and Q-PCR amplification of the resulting cDNA: First, 

the genes of interest (Bacterial amoA and 16S rRNA; Table 3.1) were amplified and cloned into 
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the pGem-T-Easy Vector Systems (Promega). The resulting ligation was transformed into the 

competent cell E.coli JM109 by heat shock according to manufacturer’s instruction. White 

colonies were then PCR screened using T7 (5’-TAATACGACTCACTATAGGG–3’) forward 

and gene specific reverse primer to ensure the amplicon had been cloned in the 5’ à 3’ 

orientation. Colonies that gave positive results were re-amplified using M13F (5’-

GTAAAACGACGGCCAGT-3’) and M13R (5’-CAGGAAACAGCTATGAC-3’) and the 

resulting PCR products were purified using the SureClean Plus DNA purification kit (Bioline), 

then quantified using Qubit DNA High Sensitivity (ThermoFisher Scientific) and used as 

template for in-vitro transcription using the MEGAscript T7 transcription kit (ThermoFisher 

Scientific). RNA was then purified using the RNA clean-up protocol of the RNeasy Mini Kit 

(Qiagen) and DNase treated using an extended protocol: for 20µl purified RNA, 1µl DNase 

was added and incubated for 1h at 37°C. Then, another 1µl DNase was added and further 

incubated for 1h at 37°C. RNA was recovered using the phenol-chlorophorm/Isopropanol 

method (as recommended by the MEGAscript instruction manual) and complete digestion of 

the DNA template was confirmed by no amplification of the insert using T7F and M13R 

primers. The concentration and size of the DNA-free RNA were then checked using the 

Bioanalyzer 6000 RNA Nano (Agilent) assay. The number of RNA transcripts was calculated 

using EndMemo RNA copy number Calculator (http://endmemo.com/bio/dnacopynum.php). 

For amoA, an eight points serial dilution (510 to 53 copies/µl) was prepared by successive 1/5 

dilutions. For 16SrRNA, a five points serial dilution (109 to 105 copies/µl) was prepared by 

successive 1/10 dilutions. RNA dilutions were reverse transcribed using the combination of 

four enzymes and two priming (Table 3.2) and the resulting cDNA was diluted 1/10 before Q-

PCR amplification. 

 

3.2.5.b RT-Q-PCR endogenous amoA and 16S rRNA transcripts 

RNA extracted from the five biological replicates was reverse transcribed using eight different 

RT protocols (four enzymes and two priming strategies) as detailed in Table 3.2. The 

endogenous amoA and 16S rRNA targets were then quantified from the resulting cDNA via Q-

PCR [same Q-PCR protocol as in section 2.3.7]. 

 
3.2.6 Evaluation of RT reaction on transcript community composition  

3.2.6.a Effect of reverse transcription on sequencing of endogenous transcripts  

Besides evaluating the effect of the RT enzyme and priming strategy on the quantification of 

the endogenous amoA and 16S rRNA transcripts, the effect of these on community composition, 
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as determined by amplicon sequencing of cDNA was also studied. To this end, amoA and 16Sr 

RNA amplicons were generated from the cDNA preparations used in the previous experiment 

(Figure 3.2 B). For the amoA transcript, only SSIII and SSIV enzymes with both random 

hexamer and gene specific priming strategy were considered, as the other enzyme systems 

failed to work. For 16S rRNA all four enzymes and both priming strategies produced amplicons 

and were therefore tested. Details for MiSeq-Illumina amplicon library preparation are 

provided in the section “MiSeq Illumina sequencing”.  
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Table 3.1 List of primers used and corresponding (Q)-PCR conditions used in Chapter III. 
Primer Sequence (5’à3’) Orientation Target Experiment condition Reference 

pBRforEco AATAGGCGTATCACGAGGC Forward 
sfGFP with T7 

promoter 

 
 

PCR: 95°-5min; (94°-30sec; 56°-30sec; 72°-
30sec) x 30; 72° -10 min 

https://www.addgene 
org/browse/sequence 

/95181/ 
 

GFP-Frc GTTACAAACTCAAGAAGGCC 
Reverse 

 

sF300_F TCACATGAAACGGCATGACT Forward 

 
Portions of the sfGFP 

gene 

 
 
 

PCR: 95°-5min; (94°30sec; 55.3°-30sec; 72°-
15sec) x 30; 72° -5min 

Q-PCR: 95°-3min; (95°-10sec ; 60°-15sec) x 40; 
melt curve: 65°à95° 0.5° increment/ 5sec 

 
 
 

Reck et al., 2015 

sF300_R GAACGGAACCATCTTCAACG Reverse 

sF500_R TAAAAGGACAGGGCCATCGC 
Reverse 

 
BacamoA-1F GGGGHTTYTACTGGTGGT Forward 

Bacterial amoA gene 
(485bp) 

PCR: 95°C-15min; (94°C-30sec; 55°C-30sec; 
72°C-30sec) x 32 cycles and 72°C-10min 

Q-PCR: 95°C-5 min; (95°C-30sec; 47°C-30 sec; 
72°C-1min; 81°C-1secà plate read) x 40; melt 

curve: 65°à95° 0.5° increment/ 5sec 

 
Hornek et al., 2006 

BacamoA-2R CCCCTCBGSAAAVCCTTCTTC Reverse 

1369F CGGTGAATACGTTCYCGG Forward Bacterial 16S rRNA 
gene (123 bp) 

 

 
 

Q-PCR: 95°C-10min; (95°C-10sec; 60°C-30sec) 
x 40; 40°C-10min. 

 
 

Suzuki et al., 2000 
1492R GGWTACCTTGTTACGACTT Reverse 
1389P CTTGTACACACCGCCCGTC Probe 

 
515F GTGYCAGCMGCCGC GTAA Forward 

Bacterial 16S rRNA 
V4 (291bp) 

 
 
 
 
 
 

PCR: 95°C-15min; (94°C-45sec; 50°C-30sec; 
72°C-40sec) x 25; 72°C-10min 

Parada et al., 2016 
Caporaso et al., 2010 806R GGACTACNVGGGTWTCTAAT Reverse 

 

pGEMT_FW2 CGGCCGCGGGAATTCGAT 
Forward 

 
pGEM-T Easy vector 

(60 to 77) 
This study 

M13 Forward GTAAAACGACGGCCAGT Forward pGEM-T Easy vector 
(Forward: 2976 to 

2993; Reverse: 176 to 
193) 

 
https://openwetware.org/
wiki/Common_primer_s

equences 

M13 Reverse CAGGAAACAGCTATGAC Reverse 

T7 Forward TAATACGACTCACTATAGGG Forward pGEM-T Easy vector 
(1 to 20) 
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Table 3.2 Summary of the Reverse-transcription protocols tested. The black arrow 
indicates the procedure through time. RH = Random Hexamer; GS = Gene Specific. Provider 
for Superscript Enzymes: ThermoFisher Scientific; Provider for Sensiscript and Omniscript: 
Qiagen 

Superscript III and IV 
(named SSIII and SSIV respectively thereafter) 

Sensiscript and Omniscript 
(named Omni and Sensi respectively 

thereafter) 
Cocktail 1:  
- 1µl primer (10µM GS; 50µM RH) 
- 1µl dNTPs (10µM each) 
- 5µl template RNA 
- 6µl water  

Template RNA: 
65°C-5min; ice-1min 

Cocktail: 
- 2µl buffer 10x 

- 1µl primer (10µM GS; 50µM 
RH) 

- 5µl template RNA 
- 1µM dNTPs (10µM each) 

- 1µl enzyme (80U/µl) 
- 1µl RNAse inhibitor (40U/µl) 

- 9µl water 

65°-5min; ice-1min 

Cocktail 2:  
- 4µl Buffer 5X 
- 1µl DTT (0.1mM) 
- 1µl enzyme (200U/µl) 
- 1µl RNAse inhibitor (40U/µl) 

RH GS RH and GS 

- 25°C (SSIII)/ 
23°C(SSIV) for 10min 
- 50°C for 50min (SSIII)/ 
55°C for 10min (SSIV) 
- 72°C for 15min (SSIII)/ 
80°C for 10min (SSIV) 

- 55°C for 50min (SSIII)/ 
55°C for 10min (SSIV) 

- 72°C for 15min (SSIII)/ 
80°C for 10min (SSIV) 

 
 

37°C for 60min 

 

3.2.6.b Effect of reverse transcription on sequencing of exogenous tagged-mock community 

Preparation of the mock communities. 16S rRNA amplicons were generated by PCR 

amplification of the V4 region of the Bacterial 16S rRNA gene from environmental samples 

using primers 515F and 806R (Table 3.1). PCR products were purified using the SureClean 

Plus kit (Bioline) and ligated into the pGEM-T Easy Vector using the pGEM-T Easy Vector 

System I (Promega) following manufacturer’s instructions. The resulting constructions were 

transformed into E.coli MDS42 competent cells using the heat shock method (50µl E.coli 

MDS42 competent cells culture was incubated with 2µl of the ligation reaction on ice for 20min 

and transferred at 42°C for 50sec, then back on ice for 2min). The transformation solution was 

then added to 950µl SOC medium and incubated at 37°C for 1 hour. 100µl was then plated on 

LB agar/ampicillin (100µg/ml)/Xgal (20µg/ml)/IPTG (0.5 mM). After overnight incubation at 

37°C, white colonies were picked up from the plates and grown for 2h30min in LB ampicillin 

(100µg/ml). A colony PCR was then carried using the BiotaqRed kit (Bioline) in a 50µl final 

reaction composed of 25µl 2X BiotaqRed Buffer, 1µl T7 forward primer (10µM), 1µl 806 
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reverse primer (10µM) and 1µl Bacterial culture (the T7 forward primer was used instead of 

the 515 forward to ensure that the amplicon had been cloned in the 5’à3’ orientation relative 

to the T7 promoter). The rest of the culture was stored as glycerol stock at -80°C. When band 

of the expected size were detected on agarose gels, the PCR reaction was purified using the 

SureClean Plus kit (Bioline) and send for Sanger sequencing. In total 47 purified PCR products 

were sent for Sanger sequencing.  

 

The sequences obtained were submitted to BLAST (Altschul et al., 1990) search and then 

clustered at 97% similarity. A phylogenetic tree was constructed using MEGA7 (Kumar et al., 

2016) and the twelve most dissimilar sequences were selected for the mock community 

construction. Colony PCRs were then carried out using the glycerol stock of these 12 clones as 

template. The amplicons were generated using M13 forward and M13 reverse primers (Table 

3.1). The resulting amplicons were composed of the full-length insert (≈290bp) plus a vector 

sequence of 100bp at the 5’ end containing the T7 promoter site, and 137bp at the 3’ end. After 

purification, the twelve PCR products were quantified using fluorometric quantification 

method (Qubit DNA High Sensitivity assay) and the corresponding copy number was 

calculated using EndMemo DNA copy number Calculator 

(http://endmemo.com/bio/dnacopynum.php).  Finally, they were pooled together as explained 

in Figure 3.2 and Table 3.3 to generate the DNA Even (EM) and Uneven (UM) mock 

communities. Once pooled together, the DNA mock communities were diluted in order to reach 

≈108 copies/µl for each sequence.  

 

The RNA mock communities were constructed by in-vitro transcription of the individual 12 

PCR products (from DNA mock) using the MEGAscript T7 transcription kit (Invitrogen). The 

resulting RNAs were then gel-purified and DNase treated using the Turbo DNase Kit 

(Ambion). Complete digestion of the DNA template was confirmed by the absence of PCR 

amplification (using 515F and 806R primers; Table 3.1). The 12 individual RNA preparations 

were quantified using fluorometric quantification method (Qubit RNA broad range assay) and 

the corresponding copy number was calculated using EndMemo RNA copy number Calculator 

(http://endmemo.com/bio/dnacopynum.php). Each RNA preparation was diluted to 1010 

copies/µl. Even (EM) and Uneven (UM) RNA mock communities were prepared as explained 

in Table 3.3 and Figure 3.2. C. Once pooled together, the RNA mock communities were diluted 

to reach ≈108 copies/µl for each sequence. 
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Table 3.3 Composition of the mock communities. 

 
Sequence ID 

Even Mock (EM) Uneven Mock (UM) 
µl into pool % of the 

community 
µl into pool % of the 

community 
1  

 
 
 
 
1 

 
 
 
 
 

100/12≈ 8.33 

0.523 4.36 
2 0.407 3.39 
3 1.020 8.57 
4 0.880 7.33 
5 0.662 5.52 
6 0.815 6.79 
7 1.452 12.1 
8 2.170 18.08 
9 1.490 12.41 
10 0.690 5.73 
11 0.955 7.96 
12 0.931 7.76 

 

Spiking and recovery of the RNA mock communities. Once constructed, the RNA mock 

communities (EM and UM) were diluted 1/10 into environmental RNA background 

(background: [RNA] = 102.3 ng/µl; 260/280 = 1.65; 260/230 = 1.28). This step was repeated 

five times. Once seeded with the mock communities, the environmental RNA preparations 

were reverse transcribed using two different enzymes (SSIII and SSIV) and two different 

priming strategies (RH and GS) (Figure 3.2. C). The GS priming was carried out using the 

806R primer (Table 3.1). The procedure followed was the same as described in Table 3.2. After 

reverse transcription, the spiked mocks sequences were recovered from the total RNA pool by 

PCR amplification using the 806R reverse primer and a custom vector-specific forward primer 

pGEMT_FW2 (Table 3.1), designed to amplifying pGEMT vector sequence located between 

the T7 promoter site and the beginning of the insert, hence insuring the specific amplification 

of the mock sequences from the background (Figure 3.2). The specificity of the pGEMT_FW2 

forward primer was checked by the absence of amplification of environmental 16Sr RNA genes 

when used in combination with 806R. 

 

3.2.7 Illumina MISeq amplicon library preparation 

[see section 2.2.8].  

 

3.2.8 Processing of amplicon sequences 

[see section 2.2.9]. 
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In this chapter, to ensure all amoA OTUs were valid amoA sequences they were translated using 

BLASTx to proteins and the match recorded for each individual OTU. Results of this search 

were used to filter the OTU_table before further processing, and non-translated amplicons 

removed from further analysis.  

 

3.2.9 Statistical analysis  

All statistical analyses were carried out in R (R Core team 2013). The effect of enzyme and 

priming on RT-Q-PCR result were tested after a log10 transformation of copy number data for 

2-way ANOVA tests because the assumption of homogeneity of variances between groups was 

violated when using copy number directly. When the two-way ANOVA was significant, 

differences between enzymes/priming strategies were investigated using Tuckey HSD post-

hoc test.  

 

3.3 Results 
3.3.1 Effect of enzyme and priming on the detection of exogenous spike  

First, the impact of enzyme and priming on the quantification of RNA was determined for an 

exogenous target that was spiked at known concentrations into a background of environmental 

RNA. Artificial RNA (sfGFP RNA) that could be distinguished from environmental RNA 

background, was produced by in vitro transcription of a PCR product amplified from the 

pTHSSd_8 plasmid (Segall-Shapiro et al., 2014). The resulting RNA was mixed with 

environmental RNA at different concentrations (103, 5 x 103, 2 x 106 and 107 copies/µl) and 

quantified using RT-Q-PCR (Figure 3.2 A).  

 

3.3.2 sfGFP standard curves  

Artificial RNA (sfGFP RNA) that could be distinguished from environmental RNA, was 

produced by in vitro transcription of a PCR product amplified from the pTHSSd_8 plasmid. 

Standard curves were constructed using 10-fold dilutions of sfGFP RNA from 1010 to 101 

copies/µl that underwent individual reverse transcription in duplicate using each of the four RT 

enzymes with two priming strategies. The Cycle thresholds (Cts) of the same sample derived 

from different enzyme/priming strategies were obtained by Q-PCR amplification of the 

resulting cDNA. Amplification of the no template controls and log10[sfGFP]= 1 and 2 gave no 

signal. The Limit of Detection (LD) and Quantification (Forootan et al., 2017) was 

log10[sfGFP]= 3 for all RT systems except for Sensi-RH which had a LD at log10[sfGFP]= 4. 
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Excluding the Cts obtained for log10[sfGFP]=10 resulted in an improvement of the regression 

fit (slopes closer to the expected -3.332 and R squared closer to 1; data not shown). As such 

standard curves ranged between log10[sfGFP] = [3;9] (or [4;9] for Sensi-RH). For all enzymes, 

the use of RH resulted in higher Cts than GS at all sfGFP concentrations. SSIV-GS resulted in 

the best efficiency (99.3%) while the lowest was obtained by Sensi-RH (84.2%) (Table 3.4). 

 

Table 3.4 Description of the sfGFP standard curve regressions. 

Enzyme Priming Slope Efficiency (%) Y-Intercept R squared LD 

SSIV 
GS −3.34 99.3 43.55 0.993 103 

RH −3.57 90.6 45.44 0.993 103 

SSIII 
GS −3.39 97.2 43.62 0.996 103 

RH −3.49 93.4 44.9 0.996 103 

Sensi 
GS −3.61 89.2 43.87 0.999 103 

RH −3.77 84.2 49.51 0.998 104 

Omni 
GS −3.63 88.6 43.68 0.998 103 

RH −3.67 87.3 46.23 0.997 103 

The regressions coefficients were calculated based on the linear model (y= ax+b; a=Slope and 
b=Intercept). The fit of the regression is represented by the R squared values. Efficiency of the 
Q-PCR was calculated as Efficiency (%) = 100 x (10-1/slope – 1). LD = Limit of Detection. 
 

Comparison of regressions between RT methods (enzyme/priming) revealed significant 

difference between slopes (F=3.29; Df=7; p.value=0.0036) (GraphPad Prism6, 

www.graphpad.com).   The effect of the RT approach on standard curve construction was 

further investigated using multilevel linear model analysis. Three different models were tested 

where 1) intercepts only, 2) slopes only and 3) slopes and intercepts varied between groups 

(i.e. RT method). Models 1 and 2 were then tested against model 3 using an ANOVA. Model 

3, allowing for variations in both slopes and intercepts, resulted in a better fit than model 1 

(intercept only) or model 2 (slopes) (Table 3.5) indicating that the effect of enzyme and priming 

impacted both the slope (i.e. efficiency) and the intercept (i.e. signal at No Template Control 

(NTC)) of the standard curves.  
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Table 3.5 Comparison of models for standard curve.  
Model Random 

Effect 
df Fit Criteria Comparison ChiSq Df Pr(>ChiSq) 

AIC BIC logLik Deviance 

Model1 Intercept 4 227 238 -109 219 1 VS 3 7.38 2 0.025 

Model2 Slope 4 301 312 -146 293 2 VS 3 80.86 2 2.2-16 

 

Model3 

Intercept 
and 

Slope 

 

6 

 

224 

 

240 

 

-106 

 

212 

    

For each model, the fit was assessed using four criteria namely; AIC (Akaike Information 
Criteria), BIC (Bayesian Information Criteria), LogLik (log Likelihood) and deviance. Models 
1 and 2 were compared to model 3 and the statistic of the test is reported in the last column 
(Pr(>ChiSq)) 
 

3.2.3. RT-Q-PCR detection of the RNA sfGFP spike 

The exogenous RNA spike, sfGFP, was added to environmental RNA at known concentrations 

and the resulting preparations were reverse-transcribed using the eight different combinations 

of RT enzymes and priming strategies (Figure 3.2 A). Four different concentrations of spike 

were added to environmental RNA background: two low and two high, with a five-fold 

difference in sfGFP copy number between the two low and the two high spikes respectively 

(103 and 5 x103 copies/µl for low spikes; 2 x106 and 107 copies/µl for high spikes). After cDNA 

synthesis, the spiked target was quantified by Q-PCR and Cycle thresholds (Ct) were converted 

to copies/µl using standard curves.  

 

Both enzyme and priming had a strong effect on the copy number of exogenous target detected 

(log10 transformed) at all spike concentrations (Table 3.6; Figure 3.3). Overall, SSIII and SSIV 

enzymes were the closest to the expected value. SSIV was slightly more accurate than SSIII, 

especially at spike concentrations > 5 x 103. The use of Omni resulted in an underestimation of 

the spike concentration with factors ≈4 to ≈50 depending on the concentration of the target 

(higher differences at higher concentrations). Similarly, the use of Sensi also resulted in an 

underestimation of the exogenous target concentration with factors ≈3 to ≈30 (higher 

differences at higher concentrations) (Figure 3.3). 
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Figure 3.3 Effect of reverse-transcriptase enzyme and priming on the quantification of the same sfGFP spike in environmental RNA 
background.  The concentration of the RNA spike (log[GFP]= 3; 3.7; 6.3and 7) inoculated is indicated at the top of each plot. The results of the 

two-way ANOVA, showing statistical differences between priming and enzyme for the same template, are presented as vertical and horizontal 

lines respectively. *: p.value <0.05; **: p.value <0.01; ***: p.value <0.001. A green dashed line indicates the actual concentration of spike for each 

experiment. GS = gene specific; RH = Random Hexamer 
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Table 3.6 Two-way ANOVA showing the impact of RT system on the quantification of 
the sfGFP spike.  
Spike concentration (copies/µl) Enz Prim Enz:prim 

1 x 103 6.62 x10-8  2.57 x10-3 3.45 x10-3 

5 x103 5.92 x10-12 0.08 2.94 x10-4 

2 x 106 <2 x10-16 4.98 x10-10 7.38 x10-9 

1 x 107 <2 x10-16 1.24 x10-10 1.35 x10-8 

 

The use of GS priming resulted in more accurate quantification for all enzymes except Omni 

for which it had no effect.  For Sensi, RH priming failed at the low spike concentrations while 

at the high concentration of spike, RH was significantly lower (6-fold) than GS. For the 

Superscript enzymes, the use of RH versus GS generally resulted in lower quantification of the 

same target, except when using SSIV at low concentrations where the priming strategy had no 

effect. Of the two Superscript enzymes, SSIII with GS always overestimated the concentration 

of spike whereas RH always underestimated it (≈2 fold or less).  Priming had the least effect 

with SSVI, but more accurate quantification was achieved when using GS priming (Figure 3.3).  

 

Next, we tested the ability of the RT systems to faithfully report a 5-fold difference in the 

sfGFP spike concentration between the two low and two high concentrations respectively.  For 

this, the differential expression (DE), i.e. the ratio of the average transcript number/µl between 

the two low or the two high spikes respectively, was calculated (Figure 3.4). The DE does not 

report how accurately the system quantifies the spike but rather its ability to reflect the 5-fold 

change.  Again, the choice of enzyme and priming had an effect on the observed DE. All 

systems were better at detecting actual differences (DE closer to 5) at high spike concentrations. 

The most accurate system, i.e. giving DE values closer to the expected 5, at high spike 

concentration was SSIII-GS (DE = 5.03), followed by SSIV-GS (DE = 4.96) and Omni-GS 

(DE = 4.91). All enzymes gave less accurate results when used in combination with RH priming 

at high spike concentration. Still, SSIII and SSIV were the most accurate enzymes, with SSIII 

better than SSIV. At low spike concentration, SSIII always overestimated the DE whereas 

SSIV always underestimated it. The use of RH made SSIII slightly more accurate (DE=5.64 

with RH versus 5.75 with RH) whereas it made SSIV slightly less accurate (DE=3.94 with RH 

versus 4.16 with GS). Interestingly, Sensi performed the best at low spike concentration when 

used with GS priming (DE = 5.03) whereas Omni performed the worst (DE = 1.47). Both Sensi 

and Omni failed at low spike concentrations when used with RH priming. Therefore, the 
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superscript enzymes preformed best overall, and the DE was improved when SSIII and IV were 

used in combination with GS priming (Figure 3.4).  

 

 
Figure 3.4 Ability of the RT systems to detect a 5-fold difference of target at low or high 
concentration in a background of environmental RNA. Differential expression (DE) is the 
ratio of the average copies/µl between “Low” (1 x 103 and 5 x 103 copies/µl) or “High” (2 x 
106 and 1 x 107 copies/µl) sfGFP spikes. The expected DE is represented by the horizontal 
black line at y=5 while the measured DE by each RT system is shown by the bar-plot. GS = 
gene specific; RH = random hexamer 

 

3.3.4 Effect of standard curve construction on sfGFP quantification  

As there are two approaches to constructing RNA standard curves (Smith et al., 2006), we 

tested if this had any impact on quantification of the spike and the above results.  A standard 

curve can be made by serial dilution of RNA with individual RTs or via a single RT of RNA 

followed by serial dilution of cDNA. Standard curves for each enzyme and primer combination 

were made using these two approaches to quantify the spiked sfGFP (Figure 3.2. A).  The 

percentage error was calculated between the observed and expected copies/µl for each sfGFP 

spike generated from each standard curve. The standard curve constructed from the dilution of 

cDNA generally increased the percentage error, and therefore dilutions of RNA for individual 

RTs were used for subsequent standard curves (Figure 3.5). 
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3.3.5 Effect of enzyme and priming on the quantification of endogenous environmental 

transcripts 

3.3.5.a RNA Quality check  

Before proceeding with the quantification of endogenous transcripts, RNA extracted from 

sediment underwent a quality check (Table 3.7) (Chapter II; Cholet et al., 2019). All samples 

had good integrity as shown by the RIN (always > 7) and Ramp (Ramp 380/120 ≈ 0.8 or higher 

and Ramp 380/170 ≈ 0.7 or higher).  

 

3.3.5.b Quantification of endogenous transcripts 

Next, the effect of RT enzyme and priming strategy on the quantification of transcripts from 

the same sediment sample were tested. For this we targeted in situ highly abundant 16S rRNA 

and less abundant mRNA from the bacterial ammonia monooxygenase subunit A, amoA, for 

quantification from cDNA generated using the different combinations of reverse transcriptases 

and priming (Figure 3.2. B). Results were converted into copies/µl using paired standard 

curves, normalized per µg of extracted RNA and log10 transformed (for parametric 2-ways 

ANOVA tests). The results clearly showed the effect of the RT system was target dependent: 

for 16S rRNA both enzyme and priming significantly affected the results whereas for amoA 

only the effect of enzyme was significant (Figure 3.6; Table 3.8).  

 

For amoA, the choice of RT system resulted in differences of up to 600-fold in the detected 

copies/µg RNA in the samples tested (Omni-RH versus SSIV-RH) and, in the most extreme 

case, the difference between detection of the target or not (Sensi). For this assay, only the 

choice of enzyme significantly affected the results whereas priming did not. A clear difference 

between Omni/Sensi and the Superscript enzymes (SSIII and SSIV) was observed with, on 

average, 150 times more amoA transcripts per µg RNA with the Superscript enzymes. For Sensi 

and Omni, the choice of GS priming resulted in better results, especially for Sensi, which failed 

at producing reliable results with RH. For Omni, the use of GS priming resulted in 6 times 

more copies of amoA transcripts compared to RH, although this difference was not statistically 

significant. SSIII and SSIV performed relatively similarly, with no statistical differences 

between the two, although the use of SSIV resulted in higher numbers of amoA transcripts 

detected (≈+2.4 fold with GS and ≈+1.7 fold for RH; p.value=0.512). Interestingly, although 

the use of RH priming resulted in higher Cts on Q-PCR (i.e. lower quantification), conversion 

to copies/µg RNA via the standard curve resulted in a higher quantification than that achieved 
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with GS priming (≈+1.2fold for SSIV (p.value=0.99) and ≈+1.7fold for SSIII (p.value=0.99)). 

In summary, SSIV was the best choice for the detection of amoA transcripts as it resulted the 

highest numbers of transcripts detected and produced consistent results between GS and RH. 

When used in combination with GS as opposed to RH the results were more precise (i.e. lower 

standard deviation) (Figure 3.6).  

 

Table 3.7 Sediment RNA quality check.  

 

Sample 

Quantity (ng/µl) Purity Integrity 

[RNA] 

NanoDrop 

[RNA] 

Qubit 

[RNA] 

Bioanalyser 

260/280 260/230 RIN Ramp 

380/120 

Ramp 

380/170 

Env1 87.8 54.6 55.8 1.69 1.51 7.85 1.01 0.77 

Env2 301.2 196 135 1.74 2.02 7.6 0.88 0.73 

Env3 164 117 67 1.74 1.73 7.9 0.92 0.73 

Env4 201 140 91.5 1.76 1.87 7.9 0.78 0.65 

Env5 218.2 156 91.5 1.78 1.84 7.1 0.82 0.72 

Extracted RNA quantity, purity and integrity were determined. RIN = RNA Integrity Number, 
as determined from Agilent Bioanalyser; Ramp was calculated as described in Cholet et al., 
2019. 
 

For 16S rRNA, both enzyme and priming had a strong effect on quantification (Figure 3.6; 

Table 3.8). The choice of RT system resulted in differences of ≈4000, ≈3500 and ≈2300 fold 

between highest (Omni-RH) and lowest quantification (SSIV-RH > SSIII-RH > Sensi-RH). 

Omni actually behaved differently from the other enzymes as it was the only one for which the 

use of RH resulted in higher detected copies/µg RNA compared to GS and indeed, statistical 

differences were found only between Omni and the other three enzymes. For SSIV, SSIII and 

Sensi, the use of RH always resulted in lower detected copies 16S rRNA/µg RNA (≈ -120fold 

for SSIV and Sensi; ≈ -400fold for SSIII). Results between enzymes were more consistent 

when used with GS priming, with an average difference in detected copies/µg RNA between 

enzymes of 2.18-fold (max: 4.01-fold between SSIII and SSIV; min: 1-fold between Sensi and 

Omni). With this priming, SSIII resulted in the highest number of copies of 16S rRNA/µg RNA 

(+4.01fold versus SSIV and +2.22fold versus Omni and Sensi). It is worth mentioning that, 

even though the use of Omni-GS and Sensi-GS resulted in more copies 16S rRNA/µg RNA on 

average compared to SSIV-GS (≈+1.8fold), SSIV-GS was more precise (i.e. lower standard 

deviation), as was the SSIII-GS combination (Figure 3.6). 
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Table 3.8 Two-ways ANOVA showing the impact of RT system on the quantification of 
endogenous transcripts.  

Transcript Enz Prim Enz:Prim 

amoA 6.61 x10-13 0.26  0.03 

16S rRNA 2.24 x10-8 7.55 x10-8 2.31 x10-9 

p.value for the effect of enzyme (Enz), priming (Prim) and the interaction between the two 

(Enz:prim) on the Ct of the target transcript. 
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Figure 3.5 Percentage 
error in the detected 
copies/µl of spike 
sfGFP. The percentage 
error has been calculated 
for the three replicates 
and expressed in 
absolute value regardless 
of the type of error (over 
or under estimation of 
the expected value), for 
GS (top) and RH 
(bottom) priming. 
Standard curve RNA: 
standard curve made by 
serial dilution of RNA 
and individual RT, 
Standard curve cDNA: 
standard curve made by a 
single RT and serial 
dilution of cDNA. 
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Figure 3.6 Impact of RT system quantification of two endogenous transcripts from 
environmental samples. The effect of the RT system on quantification of Bacterial amoA (left) 
and 16S rRNA (right) transcripts. The results of the two-way ANOVA, showing statistical 
differences between priming and enzyme for the same template, are presented as vertical and 
horizontal lines respectively. *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001.  
 

3.3.6 Effect of enzyme and priming on cDNA amplicon sequencing data 

While the quantitative work clearly shows dramatic and significant differences when using 

different RT enzyme and priming strategies for quantification of the same template, it does not 

inform if these impact upon community transcript diversity. To examine this, RNA and DNA 

mock communities of known composition were examined in addition to endogenous 16S rRNA 

and amoA transcripts from marine sediments.  

 

3.3.6.a Effect on mock community composition   

As the actual composition of the transcriptome of the environmental samples is unknown, it is 

virtually impossible to determine which RT system most closely represents the starting RNA. 

We thus tested the effect of enzyme and priming on known RNA mock communities. Two 

mocks community (one even, with all 12 sequences at the same relative proportion, designated 

EM and one uneven, with the 12 sequences at different relative proportions, designated UM, 

Table 3.3), each composed of twelve different 16S rRNA transcripts were constructed as 

detailed in Figure 3.2. C. To further tease apart the effects of the PCR from the RT, both DNA 

and RNA mock communities were constructed. Of the twelve mock community sequences, one 
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(S9) was over-represented in the DNA mock community but under-represented in the RNA 

mock community sequencing data. In contrast sequence S10 showed the opposite trend (over-

represented in the RNA mock community but under-represented in the DNA mock community). 

As a result, sequences (S9 & S10) were removed from further analysis. 

 

DNA mock. In the EM community, there were variations from the expected proportions (10%).  

Some members of the community: S1, S2, S4, S8 and S12 were underrepresented whereas S3, 

S5, S6, S7, S11 were overrepresented. The most underrepresented member, S4, represented 

only 4% of the total community whereas the most overrepresented, S7, represented 14%. Yet, 

even though the observed proportions deviated from the expected 10%, they were within the 

same order of magnitude (Figure 3.7. A). For the UM mock communities, the observed 

proportion of each member was plotted against the expected proportion (Figure 3.7. B). A 

regression line with equation y=x is expected if each sequence is faithfully represented. The 

UM community results were consistent with those of the EM, with S6, S7, S11 overrepresented 

and S1, S2, S4 and S12 underrepresented. S5 was at the correct proportion in both EM and UM. 

For most sequences, the errors of representations were consistent between EM and UM (i.e. a 

sequence overrepresented in the EM was generally also over-represented in the UM and vice 

versa) indicating a sequence specific bias of the PCR/sequencing workflow. And indeed, when 

the proportions of the UM were corrected by those of the EM, the fit of the regression improved 

(Figure 3.7.C). 

 

RNA mock. As seen for the DNA mock community, the proportions observed in the RNA EM 

differed from the expected 10% (Figure 3.7. D, G, J, M). When analysing the sequences 

abundances in the EM using PERMANOVA test (Bray-Curtis distances), it was found that the 

priming strategy used had a significant effect on the proportions retrieved (p.value = 0.001), 

with RH being more accurate than GS (proportions closer to the expected 10%). On the other 

hand, neither enzyme nor the interaction between enzyme and priming had a significant effect 

(p.value=0.208 and p.value=0.194 respectively). The data set containing the highest errors was 

SSIII GS, followed by SSIV GS, SSIII RH and the lowest errors were found for SSIV RH 

(similar amount of error than for the DNA mock) (Figure 3.7 and Figure 3.8).  For individual 

sequences, there was a sequence-specific bias: some sequences (S1, S2 and S6) were always 

over-represented in the data sets but this was different depending on the priming used 

(proportion S1 < proportion S2 with GS and inversely with RH). Other members of the mock 

communities (S3, S4, S7 and S8) had proportions lower than the expected 10%; Though S7 was 
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very close to the expected 10% with SSIV RH. Finally, the results from the other members of 

the mock community were dependent on the enzyme and priming strategy used. For example, 

S5 and S12 were always over-represented in the RH-prepared libraries but not in the GS ones. 

Inversely, S11 was over-represented in the GS libraries (especially with SSIII) and its 

proportions decreased in the RH ones 
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Figure 3.7 Impact of RT system on the reproducibility of mock community composition. 
Row EM: observed proportions of each sequence within the Even Mock (EM) communities. 
The dashed red line indicates the expected proportion. Row UM: regression of observed versus 
expected proportions of each sequence within the Uneven Mock (UM) communities. Row 
UM/EM: the observed proportion of each sequence in the UM has been divided by its observed 
proportion in the EM and plotted against its actual ratio. Row UM and UM/EM the expected 
regression (y=x) is represented by a dashed red line. The actual regression is represented by a 
solid blue line with the 95% confidence interval (grey area). Individual regression statistics are 
reported on individual plot 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.8 Errors in the sequencing of the cDNA even mocks. The errors are represented as 
the standard deviations (sd) of the 5 EM replicates. For reference, the mean sd observed in the 
DNA mock is indicated as a red dashed line. 
 

As for the EM, the proportions retrieved for the UM mocks differed from the expected 

proportions (y=x) (Figure 3.7. E, H, K, N). As for the EM, RH seemed to perform better than 

GS with better fits for the regressions (for SSIII: R-squared GS = 0.177 versus 0.402 for RH; 

for SSIV: R-squared GS = 0.163 versus 0.373 for RH). The use of RH priming also resulted in 

slopes closer to the expected value of 1 compared to GS indicating a better conservation of the 

relative proportions using this priming strategy.  

However, as observed for the DNA mock, the errors were consistent between EM and UM: A 

sequence over-represented in the EM would also be over-represented in the UM and inversely. 

As a consequence, when UM reads were corrected by EM reads (Figure 3.7. F, I, L and O), the 

calculated slopes were very close to the expected value (y=x) and the R-squared values also 
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improved (close to 1) indicating a better fit of the regression. This observation indicates that 

the same sequences were misrepresented in both EM and UM communities.  

 

3.3.6.b Effect of RT enzyme and priming strategy on endogenous community composition   

16S rRNA and (Bacterial) amoA PCR amplicons were generated from cDNA prepared using 

the different combinations of enzymes and priming (Figure 3.2. B). For amoA, only SSIII and 

SSIV were compared as the Sensi and Omni enzymes failed to produce PCR amplicons for 

sequencing (as reflected by Ct values above 30). The combination of Sensi and RH priming 

also failed to reliably amplify 16S rRNA transcripts and was therefore also excluded from 

further analysis.  

 

Effect on 16S rRNA community composition. When all four enzymes were taken into account, 

the effect of enzyme on OTU community composition was always significant (Table 3.9 and 

Figure 3.9). In addition, the priming strategy had a significant effect on community composition 

but only when the Bray-Curtis dissimilarity matrix was considered (Table 3.9 and Figure 3.9). 

Still, the choice of priming strategy had less of an effect on 16S rRNA community composition 

than for amoA, (Figure 3.9) as GS priming did not systematically result in more OTUs (Figure 

3.10). For the 16S rRNA dataset, the combined effect of enzyme and priming depended on the 

specific combination. Specifically, for SSIII and SSIV, there was no difference between 

enzymes, but there was a significant difference in the Bray-Curtis distance matrix due to 

priming (richness RH>richness GS for SSIII and inversely for SSIV (Figure 3.9, 3.10, Table 

3.9)) albeit marginally significant (p.value = 0.047). When Sensi and Omni were compared, 

both enzyme and priming had an effect on community composition (Table 3.7, Table 3.9).  
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Figure 3.9 Effect of enzyme and priming on amoA and 16S rRNA transcript community 
composition. NMDS clustering of 16S rRNA (top) and amoA (bottom) cDNA community 
composition of the same sample derived from different enzyme and primer strategies, using 
Bray-Curtis (left), Unifrac (middle) and WUnifrac (right) distances. Corresponding groups are 
indicated in the legend. 
 

We further tested the effect of the RT system on the recovery of the 16S rRNA transcripts at 

different taxonomic levels (Table 3.10). The effect of enzyme was stronger than priming and 

was more important when the individual OTUs had well resolved taxonomy (at Family, Order 

and Class level). On the other hand, at lower taxonomic levels, the effect of the RT system 

became non-significant as a lot of OTUs could not be assigned to a species or genus and were 

therefore classified as unknown. Interestingly, the effect of both enzyme and priming became 

significant again at the kingdom level (Table 3.10). 

amoA OTU check. amoA OTUs sequences were checked by BLASTx to ensure they translated 

into AMO A proteins.  Results of this search revealed that, out of the 202 amoA OTUs, 63 did 

not correctly translate (e.g. “hypothetical protein” or “low quality protein”) and were therefore 

removed from the data set.  In terms of percentage of reads, these non-translating OTUs 

represented 0.017% to 4.6% of the total. As shown in Figure 3.11, the amount of “incorrect 

OTUs” found was higher in the data set obtained when using GS priming. However, as the 

number of reads obtained with GS was generally higher, they did not represent a significantly 

higher percentage of the community, except for the replicate 1 and 3 with SSIV GS where the 

percentage of incorrect OTUs represented 4.6% and 1.3% respectively (Figure 3.11). These 

OTUs were removed before further processing, and therefore didn’t impact on the subsequent 

analysis. 
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Figure 3.10 Effect of enzyme and priming on OTU richness. The number of OTUs detected for 16S rRNA (left) and amoA (right) transcripts for 
the same sample using different RT systems was compared using two-way ANOVA. Results of the statistical tests are represented as lines on top 
of the plots. *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001. 
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Table 3.9 Effect of enzyme and priming on amoA and 16S rRNA community composition: 
summary of 2-ways PERMANOVA tests. 
 Bray-Curtis  Unifrac  WUnifrac  
  Df F.model Pr(>F) R2 Df F.model Pr(>F) R2 Df F.model Pr(>F) R2 

 
amoA 

Enz 1 0.36 NSD 0.01 1 0.60 NSD 0.02 1 0.36 NSD 0.01 
Prim 1 21.58 0.001 0.60 1 10.52 0.001 0.41 1 21.58 0.001 0.60 

Enz:Prim 1 0.19 NSD 0.005 1 0.50 NSD 0.02 1 0.19 NSD 0.005 
 

16S rRNA 
Enz 3 2.42 0.001 0.20 3 1.42 0.001 0.14 3 2.47 0.007 0.20 
Prim 1 1.97 0.03 0.06 1 1.13 NSD 0.04 1 1.79 NSD 0.05 

Enz:Prim 2 1.22 NSD 0.07 2 1.08 NSD 0.07 2 1.64 NSD 0.09 
16S rRNA 

(SSIII/SSIV) 
Enz 1 0.87 NSD 0.05 1 1.05 NSD 0.06 1 0.95 NSD 0.05 
Prim 1 1.86 0.047 0.10 1 1.17 NSD 0.06 1 2.34 NSD 0.12 

Enz:Prim 1 0.82 NSD 0.04 1 0.97 NSD 0.05 1 0.86 NSD 0.05 
16S rRNA 

(Sensi/Omni) 
Enz 1 1.84 0.04 0.15 1 1.19 NSD 0.11 1 1.91 NSD 0.15 
Prim 1 1.71 0.04 0.14 1 1.16 NSD 0.10 1 1.88 NSD 0.15 

NSD: Not Significantly Different; *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001. 
 

 

 

Figure 3.11 Wrong OTUs detected in the amoA libraries. The average number of OTUs with 
no assignment or wrong assignment when ran on BLASTx was plotted for each enzyme (SSIII 
= Superscript III; SSIV = Superscript IV) and each priming strategy (GS = Gene Specific; RH 
= Random Hexamer). The colour scale indicates the percentage of reads that these wrong OTUs 
represent compared to the total number of reads of each individual library. 
 

Effect on amoA community composition. The outcome of amoA amplicon sequencing was more 

strongly influenced by the choice of priming (RH versus GS) than enzyme (SSIII versus SSIV) 

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

SSIII SSIV

GS RH GS RH

10

20

W
ro

ng
 O

TU
s

1

2

3

4

Percent



 121 

(Figure 3.9, Table 3.9). In fact, the effect of enzyme on community composition was not 

significant. On the other hand, priming strategy resulted in a clear, statistically significant 

clustering of samples (Figure 3.9, Table 3.9).  One sample, Env1, when prepared using RH 

priming for both SSIII and SSIV, failed to produce sufficient reads (more than 5000) to proceed 

and was removed from the analysis pipeline. In contrast, when GS priming was used, sufficient 

reads were produced to pass this quality step in the analysis pipeline.  Indeed, GS priming 

always resulted in greater OTU richness (Figure 3.10) than RH (+13 and +21 OTUs on average 

for SSIII and SSIV respectively), indicating that this priming option was better at recovering 

the diversity of amoA transcripts in the samples. This observation supports the Q-PCR results 

where GS priming always resulted in lower Cts. To determine if the “missing OTUs” in the RH 

sequencing data sets were dominant or rare phylotypes, the mean abundance of OTUs present 

only in the GS data set was plotted for each individual OTU (Figure 3.12), revealing that most 

of the OTUs missing in the RH data set were low abundance OTUs. On the other hand, 

interestingly, a very small number of rare OTUs were only detected in the RH data set (Figure 

3.12). Moreover, the choice of priming also affected the representation of OTUs present in both 

GS and RH datasets (Figure 3.12): with SSIII, 39 OTUs were significantly differentially 

expressed between GS and RH. With SSIV, it was found that 23 OTUs were significantly 

differentially expressed between GS and RH (Figure 3.12). 
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Figure 3.12 Differences in the 
expression and number of 
amoA OTUs detected by GS 
and RH priming. The Venn 
Diagrams on top of the plots 
show: the number of OTUs found 
in the GS data set only (blue), in 
both the GS and Rh data set 
(purple) and in the RH data set 
only (red). Results are presented 
as the average differences in 
proportions between GS and RH 
data sets (OTUs with positive 
values are overexpressed in the 
GS and inversely). When OTUs 
were found in only one data set, 
the results are presented as the 
average proportion of the OTU, 
with positive and negative value 
for GS and RH respectively. For 
the OTUs shared between GS and 
RH, the colour of the points 
indicates if the difference in 
expression is significant or not as 
explained in the legend (sig). 
ND= Not Determined. 
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Table 3.10 Effect of the RT system (Enzyme and Priming) on the community composition 
of the 16SrRNA libraries at different taxonomic levels. Enz = enzyme; Prim = priming; 
p.values < 0.05 in bold; NSD = Not Statistically Different 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxonomic level  Bray-Curtis 
 
OTU 

Enz ** 
Prim * 
Enz:Prim NSD 

 
Species 

Enz NSD 
NSD 
NSD 

Prim 
Enz:Prim 

 
Genus 

Enz NSD 
NSD 
NSD 

Prim 
Enz:Prim 

 
Family 

Enz ** 
Prim NSD 

NSD Enz:Prim 
 
Order 

Enz ** 
Prim NSD 

NSD Enz:Prim 
 
Class 

Enz ** 
Prim NSD 

NSD Enz:Prim 
 
Phylum 

Enz NSD 
NSD 
NSD 

Prim 
Enz:Prim 

 
Kingdom 

Enz *** 
Prim * 
Enz:Prim * 
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Figure 3.13 Rarefaction curves obtained from the sequencing of amoA transcripts from 
environmental samples using different RT protocols. The RT protocol used is indicated on 
the plots (SSIII= Superscript III; SSIV= Superscript IV/ RH= random hexamer; GS= gene 
specific). The rarefaction curves were drawn for each replicate as indicated on the legend. 
 

3.4 Discussion  
While RT-Q-PCR, and to a lesser extent RT-PCR amplicon sequencing, is widely used in 

environmental microbiology to quantify and determine the diversity of transcripts from 

environmental samples, the effectiveness and reproducibility of the reverse transcription step 

has not been evaluated. In particular, in complex environmental samples, to the best of our 

knowledge, there have not been any studies investigating the efficiency of the reverse 

transcriptase reaction to transcribe RNA to cDNA, despite this being a critical step informing 

the overall result. Furthermore, based on our own observations in the laboratory, we often noted 

the impact of different enzyme and primer choice on the same template. Therefore, we assessed 

the effect of the RT system (enzyme and priming strategy) on RT-Q-PCR and RT-PCR-

amplicon sequencing and showed that the choice of enzyme and priming strategy can result in 

significant difference in both quantitative and qualitative results from the exact same sample. 

These methodological effects can bias and even alter final conclusions and interpretations of 

the underlying biological and ecological questions.  

 

Figure S.3. rarefaction curves obtained from the sequencing of amoA transcripts from 
environmental samples using different RT protocols. The RT protocol used is indicated on the plots 
(SSIII= Superscript III; SSIV= Superscript IV/ RH= random hexamer; GS= gene specific). The 
rarefaction curves were drawn for each replicate as indicated on the legend. 
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From the sfGFP spike experiments (Figures 3.3 and 3.4), we showed that the choice of enzyme 

and priming greatly affected the results of the RT-Q-PCR. When the sfGFP transcript was 

spiked into an environmental RNA background, it was found that the Superscript enzymes 

performed better than the Sensiscript and Omniscript enzymes.  The Superscript enzymes 

systematically produced higher detected copy numbers, with values closer to the expected ones 

and, generally, differential expressions closer to the expected 5-fold difference. In a study by 

Levesque-Sergerie and co-workers (Levesque-Sergerie et al., 2007) it was found that the 

Sensiscript and Omniscript enzymes had a dynamic range >50ng RNA versus >0.01ng RNA 

for Superscript III. Results obtained here are in accordance, with a better detection of the low 

concentration target by the Superscript enzymes compared to Sensiscript/Omniscript, 

especially when RH priming was used. Yet, the RT reactions for standard curves constructed 

using Sensiscript and Omniscript produced reliable Cts at target concentrations as low as 103 

copies/µl, similar to that observed for SSIV and SSIII (except for Sensi-RH: lower limit at 104 

copies/µl). This indicates that the lower performances observed for Sensiscript and Omniscript 

in the environmental spike experiment could be due to inhibition of the enzymes from co-

extracted components in environmental RNA (Hata et al., 2015) and/or the presence of 

background RNA. The later explanation contrasts with the results obtained by Levesque-

Sergerie and co-workers (Levesque-Sergerie et al., 2007) who observed a general increase in 

the recovered copies of a spike (i.e. lower Cts) as the concentration of background RNA from 

bovine tissue increased. 

 

In this study, GS priming always performed better than RH for RT-Q-PCR, with higher copy 

numbers and values closer to the expected ones for the exogenous RNA spike. For the 

endogenous targets (amoA and 16S rRNA) a similar trend was observed, with GS priming 

resulting in higher detected average copy numbers, except for SSIII, in the amoA assay and 

Omni in the 16S rRNA assay. The differences between priming were particularly strong with 

the use of Sensiscript, where the combination of this enzyme and RH was clearly the least 

efficient RT strategy. Interestingly, small differences were observed between GS and RH when 

used with SSIV for the quantification of both the spiked sfGFP and the endogenous amoA 

showing that this enzyme reliably reverse-transcribed mRNAs. This was also supported by the 

differential expressions of the exogenous spiked sfGFP always being close to the expected 5-

fold difference when using SSIV.  
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Differences in the performances of the RT enzymes and the priming strategies were similar 

between the sfGFP spike and the endogenous amoA mRNA with Superscript enzymes 

performing better than Sensiscript/Omniscript and GS generally performing better that RH. In 

contrast, for 16S rRNA significant differences were detected only between Omniscript and the 

other three enzymes (no statistically significant differences between SSIII, SSIV and 

Sensiscript) and the effect of priming was very important for all four enzymes. For this assay, 

Omniscript in combination with RH priming yielded the highest copies/µg RNA. These 

differences could be a reflection of target concentration, i.e. highly abundant 16S rRNA verses 

low abundance amoA transcripts, or indeed could be target dependant (i.e. ribosomal VS 

mRNA) reflecting for example the complex secondary structure of the RNA molecule.  

 

Overall this study showed that the combination of Superscript IV with GS priming was the most 

accurate for the quantification of the exogenous sfGFP spike and showed the lowest variation 

in quantification when priming was changed to RH. SSIV GS was also the RT system yielding, 

on average, the highest copy number for the quantification of amoA mRNAs by RT-Q-PCR, 

coupled with the best precision (lowest standard deviation). This fits with our previous 

observations, where we would routinely achieve better results (e.g. detection verses no 

detection) and our subsequent choice of the Superscript enzyme with gene specific priming to 

quantify a range of N-cycle mRNA targets (Duff et al., 2017, Smith et al., 2015, 2007).  

 

Next, we investigated the effect of the RT strategy on cDNA sequencing.  The result from 

cDNA sequencing demonstrated that the enzyme and priming strategy employed has an impact 

on cDNA amplicon diversity. As Sensiscript and Omniscript failed to reliably produce 

sufficient cDNA to produce PCR amplicons for amoA, they were not included, nor was the 

combination of Sensiscript and RH for the 16S rRNA diversity study. We have shown that for 

amoA transcripts, priming is an important consideration (Figures 3.9, 3.12, 3.13; Table 3.9). 

Most notably, the use of RH for sample Env1, resulted in too few sequencing reads (<5000) for 

further analysis.  We attribute this to the lower abundance of the amoA transcript in a high 

background of RNA. In this case, the choice of priming made the difference between the success 

or not of the amplicon sequencing of the transcript. This result was in line with observations 

from the RT-Q-PCR for amoA (Figure 3.6). Overall more OTUs (Figures 3.10) and better 

coverage of amoA transcript diversity (Figure 3.13) were obtained when GS priming was used. 

The differences in the number of OTUs detected was particularly important for low-abundance 

OTUs indicating that GS priming was better for the reverse transcription of rare members of 
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the amoA community (Figure 3.12). A possible explanation is that, for GS priming, all the RT 

resources (enzyme and dNTPs) are directed to the reverse transcription of the target transcript. 

On the other hand, when using RH priming, random priming may not be sufficient to prime 

rare mRNA target.  

 

This observation is further supported by the results from the 16S rRNA assay, where the choice 

of priming strategy was seen to be less important. In fact, here most of the differences observed 

were due to enzyme choice and not priming strategy. In contrast to the amoA results, for 16S 

rRNA the use of GS priming did not necessarily result in a higher number of OTUs compared 

to RH even though GS priming resulted in a higher number of 16S rRNA copies detected by Q-

PCR. It may be that differences in RT performances are abundance or target molecule 

dependant (i.e. very abundant ribosomal RNA with complex secondary structures versus rare 

messenger RNA).  

As the true representation of our transcripts in the environmental samples was unknown, we 

tested the RT systems against artificial defined RNA mock communities seeded into 

background environmental RNA. These artificial sequences were derived from target inserts 

with additional cloning vector sequence added, which allowed for their selective amplification 

from the background. To evaluate the bias introduced by the PCR/sequencing steps and separate 

them from the RT, a similar experiment was carried out using DNA mock communities. This 

experiment revealed that, for all RT systems, biases were introduced in both the RT and the 

subsequent PCR step of the reaction as the recovered proportions deviated from the expected 

ones (Figure 3.7; Figure 3.8). When testing a new approach for 16S rRNA transcript sequencing 

based on ligation of an adapter to the end of the gene prior to RT with random hexamers, Yan 

et al., 2017, found errors in the observed ratios of their RNA mock communities of up to 3-fold 

compared to the expected proportions. These results are comparable to those found in this study. 

Here, we found that the smallest amount of variation from the expected EM composition was 

observed with SSIV RH. In fact, surprisingly, RH priming always conserved the actual 

proportions better than GS priming in the seeded mock communities, as seen by lower standard 

deviations (Figure 3.8). Considering that the RNA template for the mock community 

construction went through both in vitro-transcription and a RT reaction prior to PCR, each of 

which could introduce errors, the standard deviation observed in the RNA mock communities 

(i.e. both GS and RH) was low and in fact, for RH, the same as the DNA mock (4.97 for SSIII 

GS; 3.31 for SSIII RH; 3.89 for SSIV GS; 3.15 for SSIV RH and 3.34 for DNA) (Figure 3.8).  
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As anticipated, errors were also seen in the UM resulting in observed regressions deviating 

from the expected. Interestingly, the errors were consistent between EM and UM (i.e. a 

sequence over-represented in the EM would also be over-represented in the UM and vice versa). 

As a result, when the UM proportions were corrected with the EM ones, the observed 

regressions were close to the expected y=x (Figure 3.7). Since the mock communities were 

constructed separately (Figure 3.2), this indicated that: 1) these errors are a reflection of 

sequence specific bias of the RT-PCR workflow and not attributed to user error such as 

pipetting; 2) Since artificial over/under representations is likely introduced by sequence specific 

bias, the relative abundance of transcripts within a sample (α diversity) might not always be 

absolute when small differences (e.g. ≈ 4-fold as in this study) in expression are observed; 3) 

However, as these biases are reproducible (UM reads corrected by EM reads), comparison 

between samples (i.e. β diversity) can be undertaken. 

 

General Conclusion: Best Practice for Environmental RNA 

The challenge when working with environmental samples will always be to retrieve RNA of a 

high enough quality and integrity. Here, we started with RNA extracted from marine sediments 

that had an average RIN of ≈7 and Ramp of ≈0.8. This is the best quality RNA we could produce 

with this bead-beating co-extraction method (Griffiths et al., 2000) and it already falls at the 

lower end of acceptable RIN for pure culture (Jahn et al., 2008). Therefore, methods to improve 

the initial quality of RNA extractions should also be a high priority, although this will be easier 

in some environments than others. Improvement of extraction methods is crucial as it can lead 

to important differences in the results. For example, Feike et al (Feike et al., 2012) showed that 

different sampling techniques influenced the relative abundance of transcripts retrieved from 

the suboxic zone of the Baltic Sea.  

 

Another consideration raised by this work is in the very fact that the differential amplicon 

approach works. This shows that small cDNA amplicons can still be produced from highly 

degraded RNA samples whereas long amplicons tend to disappear quickly. When using RNA 

samples of poor quality, the comparison of expression levels between different targets might be 

irrelevant if the difference in length of the RT-Q-PCR targets between genes is large. In this 

case, it would be better to use only small amplicons, that are less sensitive to degradation 

(Antonov et al., 2005). An alternative, to deal with samples with different degradation status, 
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potentially could be to normalize RT-Q-PCR data to RNA integrity. A RIN based algorithm 

has been proposed by Ho-Pun-Cheung et al (Ho-Pun-Cheung et al., 2009) to reduce RT-Q-PCR 

errors due to RNA degradation in cancer biopsies. In our case, however, Ramp indexes correlated 

better than the RIN with amoA and 16S rRNA Cts, making them better potential candidates as 

normalization metrics. Therefore, we tested a normalization coefficient based on the Ramp 

(Table I.1, Figure I.2). As in Ho-Pun-Cheung et al., 2009, we assumed a linear relationship 

between the integrity index and the changes in transcript Cts (i.e. change in Ct = α × change in 

Ramp). This assumption facilitated the calculation of a regression coefficient α that was used to 

normalize Cts as explained in Figure I.2. Although the use of such normalization reduced the 

errors attributable to RNA degradation (Figure I.2), several limitations remain: (i) the linear 

relationship between changes in Cts and Ramp might not always be true depending on the 

transcript tested, (ii) the regression coefficient α depends on the degradation technique (Table 

I.1), (iii) the regression coefficient α depends on the transcript tested (Table I.1) and (iv) the 

regression coefficient α may depend on the environment from which RNA was extracted.  
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Table I.1 Summary of the regression coefficients associated with the equation:  change in 
Ct = f(change in Ramp). The coefficients are calculated assuming a linear relationship. 

 
Gene 

 
Degradation 

Ramp 380/120 Ramp 380/170 
Slope (α) (p-

value) 
Adjusted R-

squared 
Slope (α) (p-

value) 
Adjusted R-

squared 
 

amoA 
Heat 12.75 (0.007) 0.98 14.31 (0.007) 0.98 
UV 12.07 (0.007) 0.98 13.56 (0.007) 0.98 

RNase 11.34 (0.002) 0.90 12.50 (0.0009) 0.94 
 

16S rRNA 
Heat 4.03 (0.0445) 0.87 4.52 (0.0441) 0.87 
UV 2.78 (0.0050) 0.99 3.12 (0.0045) 0.99 

RNase 6.50 (0.0007) 0.95 7.09 (0.0004) 0.96 
 

In a recent review about the use of RT-Q-PCR, Bustin and Nolan (Bustin & Nolan, 2017) stated 

that “the majority of published RT-Q-PCR data are likely to represent technical noise”. The 

intrinsic variability of the RT step and the lack of information on protocols used were key points 

that lead them to this striking conclusion. This is likely to be similar, if not further amplified in 

complex environmental samples, from which ecosystem conclusions are drawn. In Chapter III 

we have shown that primer and RT system choice can range from no detection to a 600-fold 

difference in transcripts for the same template. In environmental studies, this is the difference 

between no gene expression to the presence of a highly active transcript – striking difference 

leading to opposite ecosystem conclusions.  There is therefore an urgent need to ensure that the 

approaches we use are tested and recommendations as far as possible for best practice are made, 

followed and reported in future studies. Our studies show that the choice of correct enzyme and 

priming can improve the reliability and reproducibility of RT-Q-PCR and RT-sequencing data, 

facilitating insight into the transcriptionally active microbial communities directly from the 

environment. This, taken together with steps to monitor the purity and integrity of the extracted 

RNA prior to downstream analysis (Bustin and Nolan, 2017; Chapter II) and detailed 

documentation of the RT approach used should greatly improve the reliability and 

reproducibility of transcript based studies in environmental microbiology. 
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Figure I.2 Normalisation of amoA and 16s rRNA RT-qPCR results to RNA integrity. The 
correction of the Cts was done by assuming linear relationship between the change in Cts and 
the change in Ramp index along the degradation gradient i.e. change in Ct = α x change in Ramp. 
Cts corrected for RNA integrity was then calculated as follows:  
 

corrected Ct = Ct – (α x (RamptX - Rampt0)) 

 

with RamptX corresponding to the Ramp at a degradation point X and Rampt0 corresponding to the 

Ramp at the initial point. Both Ramp 380/120 and Ramp 380/170 were used to calculate the 

correction coefficient α. 

 

Based on the results obtained in chapter II and III, we propose a set of recommendations to 

improve transcriptomics results in microbial ecology: 

 

1: Evaluate and report RNA quality and integrity  

It was shown in chapter II that both quantitative (RT-Q-PCR) and qualitative (sequencing) 

results can be obtained, even from very degraded samples. Comparison of gene expression level 

between preparations with different degradation levels can therefore lead to false conclusions 

if integrity is not checked prior to analysis. Assessing RNA quality is therefore essential for 
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obtaining meaningful transcriptomic results. The current approach to monitor RNA integrity 

includes the RIN and RQI. These are useful techniques that are widely under-used (or reported) 

in microbial transcriptomics studies, to give an overview of total RNA quality based on a ratio 

between the 23S and 16S ribosomes. Since most transcriptomics studies are interested in the 

metabolic function and therefore mRNA, it is preferable to have an integrity index to target the 

mRNA. Furthermore, it is unknown if degradation of rRNA reflects mRNA degradation. We 

therefore recommend using the Ramp index is complementation to the RIN/RQI as it performed 

better at predicting the outcome of RT-Q-PCR of a functional gene (amoA).  

 

2: RT-Q-PCR  

i) Gene specific priming was more accurate, precise and sensitive than random hexamer 

priming for mRNA.  

ii) Of the enzymes tested, Superscript IV was accurate, precise and sensitive, and 

therefore we recommend its use for the detection of transcripts in complex environmental RNA 

matrixes.  

iii) The incorporation of an exogenous RNA target at known concentration into the 

environmental RNA being tested is an efficient way to validate RT-Q-PCR protocols. 

  iv) When converting Ct results into copy number, we advise the use of an RNA standard 

curve (i.e. serial dilution of the target RNA and individual RT-Q-PCR) rather than a cDNA 

standard curve (i.e. reverse transcription of a fixed concentration of RNA, dilution of the cDNA 

and Q-PCR). 

  v) Fully report the RT protocol used.  

 

3: RT-amplicon sequencing 

i) For RT-amplicon sequencing of mRNA targets, we recommend the use of gene 

specific priming as it resulted in better coverage and higher OTU richness of the bacterial amoA 

transcript. For 16S rRNA RT-sequencing, the choice of priming is less important.  

ii) The addition of RNA mock communities into environmental RNA (before reverse 

transcription) can aid interpret sequencing results: in our case, we deduced from our RNA mock 

communities that even though relative proportions of individual OTUs within a sample (α 

diversity) can be biased, the comparisons of changes in OTU composition between samples (β-

diversity) are reliable.   
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Experimental Part II Application of the 
Optimised Workflow: Effect of Self-Organised 
Sedimentary Structures on Microbial 
Communities and Nitrogen-Cycle Related 
Activities in an Intertidal Mudflat 
 

Contributions: Chapter IV will start by presenting some data that was not carried out within 

the context of this PhD thesis: Initial samples from the mudflats were collected by Agatha Lisik 

(AL) (National University of Ireland, Galway) in July 2016 for a MSc project, with the help of 

Philippe Pineau (PP), Hélène Agogué (HA) and Nicolas Lachaussée (NL) (LIENSs - La 

Rochelle Université). Nutrient Analysis was carried out by AL and PP. Potential rates 

measurement was carried out by AL with the help of Cindy Smith (CJ) (University of Glasgow). 

Chlorophyll measurement was carried out by AL with the help of Martine Bréret (MB) (LIENSs 

- La Rochelle Université). The data analysis from the generated data sets was carried out by 

Fabien Cholet (FC). In addition, all the molecular analysis on this data set was carried out by 

FC (University of Glasgow) as part of this PhD thesis. Sequencing data processing was carried 

out by FC with the help of Umer Ijaz (UI) (University of Glasgow). Statistical analyses and 

report writing were carried out by FC. 

 

The 2019 sampling campaign and associated work presented later in chapter IV was entirely 

carried out within the context of this PhD thesis. FC carried out the sample collecting and 

processing in 2019 with the help of PP, HA, NL and CS. Nutrient Analysis was carried out by 

FC and PP. Potential Nitrification Rates were carried out by FC with the help of CS. 

Chlorophyll and pheophytin measurement were carried out by FC with the help of MB. 

DNA/RNA extractions and subsequent molecular work were carried out by FC. Sequencing 

data processing was carried out by FC with the help UI. Statistical analyses and report writing 

were carried out by FC. 

  



134 

Chapter IV Effect of the Ridge/Runnel Sedimentary 

Structure on Microbial Composition and Nitrifiers’ 

Activity in the Marennes-Oléron Bay, France 

 

Based on the preliminary results obtained in the 2016 sampling campaign and the molecular 

work carried out during this PhD thesis, we decided to further investigate the differences in 

ammonia oxidizers’ activity between ridges and runnels. Indeed, as seen in this preliminary 

study, AOB abundances and PNR show negative correlations, with AOB more abundant in 

ridges while PNR was higher in runnels (Figure 4.1), thus indicating that gene quantification 

alone is not a valid proxy to estimate ammonia oxidation in this environment: 

 

 
Figure 4.1: Summary of the findings of the 2016 sampling campaign and the subsequent 
molecular work carried out during this PhD thesis. The plot at the middle represents the 
significant differences in AOM abundances (left) and PNR (right) between ridges (orange) and 
runnels (blue). The circle on the left represents the difference in AOA and AOB abundances 
(AOB ≈ 300 times more abundant). 
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We therefore hypothesised that AOB, despite being less abundant in runnels, will be more 

active. To obtain samples suitable for transcriptomic analyses, a new sampling campaign was 

set-up in summer 2019. PNR and physiochemical parameters have also been measured. To 

increase the resolution of this study three different sites were surveyed and 10 biological 

replicates (5ridges /5 runnels) were collected at each site. We hypothesise that the observed 

differences in rates can be explained by differences in nitrogen cycle-related transcript quantity 

and/or composition between ridges and runnels. 

 

4.1 General Introduction 
Estuaries are transition zones where freshwater from the continent meets saline water from the 

ocean. These coastal ecosystems are among the most valuable environments as they provide 

both economical (Costanza et al., 2014) and ecological services. They are used as feeding 

grounds for a wide variety of animals including invertebrates, fishes and migratory birds. They 

also provide nursery ground for economically relevant fishes and shellfishes (Foster et al., 2013; 

Seitz et al., 2014). On intertidal mudflats, the alternation of very different conditions due to the 

tidal and diurnal cycles combined with the concentration of a high amount of nutrients in a 

small area produces very diverse habitats displaying a high level of biological activity 

(McClain et al., 2003). Estuaries are therefore important on a global scale as they control the 

budget of nutrients transferred from land to the sea and the atmosphere (Foster et al., 2013). 

 

These ecosystems are also very impacted by human activities, as they are the recipients of most 

of the pollutants generated inland (Agardy et al., 2005; Seitz et al., 2014). Among those 

pollutants, which loading has greatly increased since the beginning of the industrial area, is 

nitrogen, especially since the invention of the Haber-Bosh process in 1906 that permitted the 

man-made conversion of gaseous nitrogen into reactive forms to generate vast quantities of 

inorganic fertilizer. Nitrogen is an essential element for life and supports primary production in 

the natural environment, but excess concentration leads to problems such as eutrophication and 

global acidification (Gruber and Galloway, 2008). In the environment, nitrogen transformation 

is largely mediated by microorganisms. The major steps of the microbial nitrogen cycle 

include: Fixation, the reduction of inorganic atmospheric nitrogen (N2) into ammonia and the 

subsequent assimilation into organic matter; Nitrification, the chemo-litho-autotrophic process 

that results in the oxidation of ammonia to nitrate, which can be carried out as a one or two 

steps process (complete nitrification or nitritation/nitratation); Denitrification, the reduction of 

oxidized forms of nitrogen back to N2 or intermediary forms such as NO or N2O. Denitrification 
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is generally a chemo-organo-heterotrophic process carried out by microbes able to replace 

oxygen with nitrate or nitrite as the terminal electron acceptor. Alternative forms of oxidized-

nitrogen utilisation for metabolism include the Dissimilatory Nitrate Reduction to Ammonia 

(DNRA) and the Anaerobic Ammonia Oxidation (ANAMMOX) pathways (Bianchi, 2007; 

Damashek and Francis, 2018). Each of these steps is controlled by different microbial groups 

that possess specific enzymatic machinery to catalyse a given process. For the two-step 

ammonia oxidation pathway, nitritation is carried out by both Archaea (Ammonia Oxidizing 

Archaea; AOA) and Bacteria (Ammonia Oxidizing Bacteria; AOB), possessing 

the amo (ammonia monooxygenase) and hao (hydroxylamine oxidoreductase) genes, whereas 

nitratation is carried out specifically by Bacteria (Nitrite Oxidizing Bacteria; NOB) possessing 

the nxr (nitrite oxydoreductase) genes (Arp et al., 2002; Prosser, 2005; Bianchi, 2007; Prosser 

and Nicol, 2012; Ward, 2013). Denitrification and DNRA are carried out by a wide range of 

phylogenetically unrelated groups of microorganisms and require numerous genes, including 

the nar/nap (nitrate reductases), nir (nitrite reductase), nor (nitric oxide 

reductase), nos (nitrous oxide reductase) and nrf (napA-associated nitrite reductase) genes 

(Hayatsu et al., 2008; Hallin et al., 2009; Giblin et al., 2013). ANAMMOX is restricted to five 

Candidatus genera affiliated with a monophyletic group in the phylum Planctomycetes. Several 

genes are involved in this process including a nitrite reductase nir and two genes specific to 

ANAMMOX bacteria, the hzs (hydrazine synthase) and hzo (hydrazine oxidoreductase) genes 

(Damashek and Francis, 2018).  

 

Microbial denitrification can attenuate the excess load of nitrogen via the conversion of 

dissolved nitrite/nitrate to gaseous N2. (Hou et al., 2012; Damashek et al., 2015). Nitrification, 

the conversion of ammonia to nitrate, therefore plays a central role as it controls the 

concentration of available substrate for denitrification (Seitzinger et al., 2006). Identifying 

active nitrifiers in the environment and understanding what factors regulate their metabolisms 

is therefore of great importance. In estuarine sediment, the main environmental drivers of 

nitrifiers activity include salinity (Freitag et al., 2006; Jane M Caffrey et al., 2007; Zhang, 

Chen, Dai, Tian, et al., 2015; Duff et al., 2017; Santos et al., 2018; Zhang et al., 2018), 

ammonia concentration (Urakawa et al., 2014; Damashek et al., 2015; Duff et al., 2017), 

oxygen availability (Abell et al., 2011), temperature (Zheng, Hou, Liu, et al., 2013), pH 

(Zhang et al., 2018), light intensity (Merbt et al., 2017), sulphide and iron concentration 

(Dollhopf et al., 2005; Jane M Caffrey et al., 2007) and the presence of phototrophs (Risgaard-

Petersen et al., 2004). On the Montportail-Brouage mudflat located in the Marennes-Oléron 
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bay, the physical arrangement of the sediment in ridges and runnels structures has been shown 

to significantly affect microbial nitrification with higher rates measured in runnels compared to 

ridges (Laima et al., 1999, 2002). The authors hypothesised that these differences could be 

explained by a higher abundance of AOB in runnels, driven by higher ammonia availability. 

 

The Marennes-Oléron bay covers a 150 km2 area in the middle of the French Atlantic coast. 

This intertidal bay is characterized by a gentle slope (1:1,000) and receives input of mixed 

turbid water from the Charente River and seawater from the Atlantic ocean. The eastern part of 

the bay is composed of two large intertidal mudflats, Montportail-Brouage (north) and 

Mérignac (south). Together, they cover a 10 km region from north to south, about 3-4 km wide. 

On these mudflats, three zones can be distinguished: 1) the upper mudflat, extending ≈600m 

from the shore, that  presents either flat or pseudo ridge/runnels structures depending on 

meteorological conditions and 2) the middle mudflat found between ≈600m to ≈3600m from 

the shore. The middle mudflat is composed of three parts, the uppermost, middle and lower 

parts, 700m, 1000m and 1300m long respectively. Ridges and runnels structures, with the same 

NW-SE direction, are found on all parts of the middle mudflat and get wider and deeper further 

from the shore. Channels are observed in this part of the mudflat and together with the 

ridge/runnel structures, constitute the major drainage systems in the Bay. Finally, 3) the lower 

mudflat, ≈3600m to ≈4500m from the shore characterized by reduced hydrodynamic energy 

and wider channels (Gouleau et al., 2000). The Montportail-Brouage is an important site both 

from an economic (oyster and mussel farming) and ecological point of view. Indeed, the bare 

mudflat is a zone of high primary production, carried out by the microphytobenthos composed 

of diatoms. At low tide, the abundant diatoms and associated bacteria form a biofilm in the 

upper layers of the sediment, which constitute the basis of the benthic and pelagic food web. 

Indeed, this biofilm is consumed by the macrofauna, like the gastropod Hydrobia ulvae, the 

bivalves Macoma balthica and Scrobicularia plana, nematodes and copepods which then 

constitute the basis of the diet for shorebirds and fishes. The Montportail-Brouage is considered 

one of the major stopover site for migratory birds in France (Haubois et al., 2005; Pascal et al., 

2009; Saint-Béat et al., 2013, 2014). 

 

The microbial communities in the Montportail-Brouage mudflat present a high degree of 

stratification and their distribution is strongly affected by salinity and nutrient and to a lesser 

extent, by the consumers (meiofauna) (Lavergne et al., 2017). Interestingly, Lavergne et al 

(2018) also showed that the distribution of prokaryotes in the sediment layers is not affected by 
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diel and tidal rhythms. However, 16S rRNA might not fully describe the changes in active 

microbial populations (Blazewicz et al., 2013).  

 

The aim of the next chapter is to further investigate the influence of the ridge/runnel structure 

on microbial composition and activity related to nitrification and nitrite oxidation. This chapter 

will focus on the main results and findings of the 2019 campaign that was carried out during 

the course of this thesis to test hypothesis drawn from the results obtained during the previous 

campaign. Here, we will focus on the effect of the ridge/runnel structures on ammonia oxidizers 

communities and activities. Specifically, we hypothesised that the same communities are 

present in both structures but are more active in the runnels, explaining the differences in 

nitrification rates. 

 

4.2 Material and Methods 
4.2.1 Sampling and field measurement 

Sediment sampling was carried out at low tide on the 1st, 2nd and 3rd of July 2019 on the North 

station, VASIREMI station and south station, respectively (Figure 4.2). For each day, 10 

biological replicates were collected from 5 ridges and 5 corresponding runnels structures 

(Figure 4.2 and 4.3) covering and area of approximately 100m2. The sample labelling thereafter 

is as follows: 

Dx(B/S)y 

With D the sampling day (x=1, 2 or 3 for sampling days 1st, 2nd and 3rd of July respectively); 

B/S the type of sample (B for ridges and S for runnels) and y the biological replicate (“a” to “e” 

for biological replicate 1 to 5 respectively).  

 

For each biological replicate, approximately 6 cores were taken along a distance of 

approximately 2-3 meters. Only the top 1cm of the sediment cores were collected and brought 

back to the beach in boxes at in situ temperature (Figure 4.4 and 4.5). Sediment temperature 

was determined on site. For every biological replicate, sediment from the different cores was 

homogenised by mixing, then: 

 

For DNA/RNA extraction: approximately 2g of sediments were flash frozen in syringes using 

liquid nitrogen. They were transported from the sampling site to the laboratory using a dry 

shipper, then stored at -80°C.  
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For Flow cytometry: approximately 2g of sediment was mixed with 2ml of 2% glutaraldehyde. 

They were transported from the sampling site to the laboratory in cold boxes (≈0°C), then stored 

at -20°C.  

 

 
Figure 4.2 Map of the Montportail-Brouage mudflat along the French Atlantic coast. 
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Figure 4.3 Photography of ridge/ runnel structures in the Brouage Mudflat. The 
photography shows the succession of ridges (Ba) and runnels (Si) perpendicularly to the shore 
line (Sh). Photography taken on July 2019 (credit: Philippe Pineau, LIENSs, Université de 
LaRochelle). 
 

For PNR and other bio-physico-chemical analysis: Sediment samples were transported to the 

laboratory in a cold box (≈4°C) temperature. Samples were stored at -20°C if not used 

immediately except for the granulometry analysis (samples stored at room temperature).  

 

4.2.2 Biological and physio-chemical analysis  

Nutrient analysis  

Nutrient content was determined on pore water extracted by centrifugation of the sediment 

samples and filtration through 0.2µm cellulose nitrate filters (samples diluted 1/10 for 

ammonia): ammonium, nitrite, nitrate, phosphate and silicates concentrations were determined 

using an autoanalyzer (Seal Analytical, GmbH Nordertedt, Germany) equipped with an XY-2 

sampler. Salinity and pH were measured directly on unfiltered pore water. 

 

Density and Water content 

Ba	 Si	

Sh	
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Density was determined by weighting a known volume of sample. Water content was 

determined by weight loss before and after incubation at 60°C for 48h. 

 

TOC, DOC, DON and TN  

Sediment Total Organic Carbon (TOC) was determined by weight loss of dried samples 

incubated at 450°C for 12h. Pore water TOC, Dissolved Organic Carbon (DOC) and Total 

Nitrogen (TN) were measured on a Shimadzu TOC-L Analyzer. TOC was measured on 

unfiltered and DOC on filtered samples after acidification with HCl to pH below 2 and flushing 

with air for 5 minutes to remove inorganic carbon. Pore water total carbon/ total nitrogen ratio 

was calculated as (pore water TOC + pore water DOC)/ (pore water total nitrogen). 

 

Granulometry 

Sediment granulometry was measured on a Mastersizer laser granulometer 2000 equipped with 

a Hydro MU sampler. Clay was defined as particles with diameter smaller than 2µm, silt as 

particles with diameter between 2µm and 63µm and sand as particles with diameter higher than 

63µm.  

 

 

Figure 4.4 Schematic representation of the procedure for sediment sampling. 
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Figure 4.5 Photograph of the sampling procedure. 1: Sample in 2: collection pot; 3: platform 
to push the sediment core; 4: sampling core (in sediment); 5: sediment core after sampling; 6: 
shovel used to cut the top 1st cm of sediment; 7: 1cm thick ring; 8: slay used to bring the material 
back to shore.  
 

Chlorophyll and pheophytin content 

Chlorophyll and pheophytin pigments were extracted from lyophilised and homogenised 

sediments using acetone (8ml 90% acetone for 50mg sample). Extraction was carried out for 

12h in the dark at 4°C, shaking. After centrifugation at 2000rmp for 10min, top aqueous phase 

was collected and the absorbance at 665nm was measured before and after acidification (80µl 

HCL 1M) of the samples. The concentration of chlorophyll and pheophytin were the calculated 

as: 

 

[Chlorophyll] (µg/g sample) = 
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With V the volume of acetone used for extraction of a mass m of dried sample. F and Fa the 

absorbance read before and after acidification respectively; K and Ka the calibration values of 

the fluorometer measured before and after acidification respectively.  
 

Potential Nitrification Rates  

Potential Nitrification Rates (PNR) were measured using 5g of fresh sediments incubated in 

30ml of artificial seawater (in g.L-1: Nacl-24.6; KCl-0.67; CaCl2.2H2O-1.36; MgSO4.7H2O-

6.29; MgCl2.6H2O-4.66; NaH2CO3-0.18à 37.76ppm salts) supplemented with 24µM NaN3 

and 0µM or 250µM of (NH4)2SO4 in 100ml glass bottles. After 24h in the dark at room 

temperature (≈20°C), shaking 100rpm, the incubation was stopped by addition of 30ml KCl 

(2M). After another 1h shaking (100rpm), the samples were filtered with Whatman paper and 

the concentration of nitrite was measured using an autoanalyzer (see Nutrient analysis). The 

accumulation of nitrite was determined by subtraction the initial nitrite concentration (see 

Nutrient analysis). Effect of salinity was tested by also incubating the sediment from day 1 in 

artificial seawater with reduced salts concentration (22.6ppm) 

 

Flow cytometry 

Prokaryote enumeration in the sediment samples was carried out using a 2-extractions protocol 

(Lavergne et al., 2014). 

 

1st extraction: Samples fixed in glutaraldehyde (see Sampling and field measurement) were 

diluted 1/1000 in a solution of sodium pyrophosphate (0.01M) + Tween 80 (0.1%), resulting in 

a final dilution of 1/2000 of the original sediment. The 1/2000 dilution were incubated at 4°C 

in the dark shaking. A separation step was then performed by sonication (60W for 30sec) and 

a 500µl aliquot of the sample was stained with 10µl of a solution of SYBR (1:100). Samples 

were then incubated for 15min in the dark before flow cytometry analysis. 

 

2nd extraction: The remaining sample was centrifuged at 100rpm for 1min at 4°C. The pellet 

was resuspended in a volume of Tween pyrophosphate equal to the volume of sample before 

centrifugation, incubated 30min in the dark at 4°C shaking and sonicated (60W for 30sec). A 

200µl aliquot of the sample was stained with 4µl of a solution of SYBR (1:100) and incubated 

for 15min in the dark before flow cytometry analysis. 
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4.2.3 DNA/RNA extraction 

All surfaces and equipment were cleaned with 70% ethanol and RNase Zap (Ambion) before 

sample processing. Consumables used, including tubes and pipette tips were RNase free. DNA 

and RNA extraction were carried out on ≈2g frozen samples using the RNeasy PowerSoil RNA 

kit together with the RNeasy PowerSoil DNA elution kit (Qiagen). DNA/RNA preparations 

were stored at -80°C if not used immediately. The RNA extractions were further DNase treated 

using the Turbo DNase Kit (Ambion) to ensure the absence of DNA carryover. To do so, an 

extended protocol was used: half the recommended DNase volume is added to the sample and 

incubated for 30 min at 37°C, after which the second half of DNase is added, and the sample is 

re-incubated at 37°C for 1 hour. Success of the DNase treatment was checked by no PCR 

amplification of the V1-V3 Bacterial 16S rRNA gene (Smith et al., 2006) 

 

4.2.4 Nucleic acid extraction quality check  

Nucleic acids quantification: The quantity of extracted environmental nucleic acids was 

determined as follows: Total RNA was quantified using the Bioanalyser 2100 RNA Nano kit 

(Agilent Technologies); Total DNA was quantified using the Qubit High Sensitivity Kit (Life 

Technologies).  

 

Nucleic acids quality check: RNA integrity was determined using two different approaches: 

microfluidics (RIN: Bioanalyser 2100 RNA Nano; Agilent Technologies) according to the 

manufacturer’s instructions and the Ramp differential amplicons approach (Chapter II; Cholet et 

al., 2019). DNA and RNA purity were evaluated with a NanoDrop spectrophotometer (Life 

Technologies). 

 

4.2.5 Reverse-Transcription  

DNA-free RNA was used for cDNA synthesis using Superscript IV kit (Invitrogen) and gene 

specific priming. The initial RT mixture containing 6µl water, 1µl reverse primer (10µM), 1µl 

dNTP’s (10mM each) and 5µl template was incubated at 65°C for 5 min and quickly transferred 

on ice for 1 min. A second mix composed of 4 µl 5X first-strand buffer, 1 µl 0.1 mM 

dithiothreitol (DTT), and 1µl SuperScript IV (200 units/µl) was added and the resulting mixture 

was incubated at 55°C for 10 min and then at 80°C for 10 min. 
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4.2.6 Quantitative PCR  

Construction of standard curves  

DNA standard curves were constructed by amplifying the gene of interest and cloning the 

amplicons using pGem-T-Easy Vector Systems (Promega). The resulting ligation was 

transformed into the competent cell E.coli JM109 by heat shock according to manufacturer’s 

instruction. White colonies were then PCR screened using T7 (5’-

TAATACGACTCACTATAGGG–3’) forward and gene specific reverse primer. Colonies that 

gave positive results were re-amplified using M13F (5’-GTAAAACGACGGCCAGT-3’) and 

M13R (5’-CAGGAAACAGCTATGAC-3’) and the resulting PCR products were purified 

using the SureClean Plus DNA purification kit (Bioline) then quantified using Qubit DNA High 

Sensitivity (ThermoFisher Scientific). The corresponding number of DNA amplicons was 

determined using the EndMemo RNA copy number Calculator 

(http://endmemo.com/bio/dnacopynum.php). An eight points serial dilution (510 à 53 copies.µl-

1) was prepared by successive 1/5 dilutions for each gene and was used as standard curve for 

Q-PCR. To ensure the cloned DNA sequence was the correct target gene, inserts were 

sequenced by Sanger sequencing and the identity was confirmed by a BLAST search (Altschul 

et al., 1990). 

 

Q-PCR 

Phylogenetic markers (18S rRNA and 16S rRNA) were amplified from extracted DNA diluted 

1/10 using iTaq Universal Probes Supermix (Bio-Rad) in a 20µl final volume composed of 10µl 

iTaq Universal Probes Supermix buffer, 1.8µl each primers (10µM), 0.4µl probe (10µM), 5µl 

PCR grade water and 1µl template. 

 

Functional genes and transcripts were quantified from the DNA and cDNA preparations diluted 

1/10, respectively by quantitative PCR using the QuantiTech SYBR Green kit (Qiagen) as 

detailed in Table 4.1. 

 

4.2.7 Illumina MiSeq amplicon libraries preparation  

Libraries for Illumina sequencing were prepared by PCR amplification with primers listed in 

Table 4.1 using the same protocol as detailed in section 2.2.8. 
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4.2.8 Processing of amplicon sequences  

To avoid the construction of operational taxonomic units (OTUs) based on an arbitrary 

similarity threshold, the amplicon sequence variants (ASVs) method was employed to identify 

single nucleotide differences (Callahan et al., 2017) in order to construct abundance tables. To 

do so, the DADA2 pipeline (Callahan et al., 2016a) was used on Qiime2, and the full pipeline 

can be found at https://github.com/umerijaz/tutorials/blob/master/qiime2_tutorial.md. Briefly, 

reads were demultiplexed using qiime demux emp-paired and denoised/quality trimmed using 

qiime dada2 denoise-paired. Forward reads were trimmed at 240bp and reverse reads at 200bp. 

ASVs were then constructed by merging the forward and reverse ASVs together and 

dereplicated to generate abundance files (ASVs counts in each samples) generated. To find the 

phylogenetic distances between ASVs, they were aligned using Maftt (Katoh et al., 2009) and 

the phylogenetic tree was constructed using FastTree (Price et al., 2010). 

 

For the Bacterial amoA and nxrB and nirK, datasets forward and reverse reads did not merge 

properly when using the previous method. Therefore, demultiplexed reads were processed in R 

using R’s DADA2 package (Callahan et al., 2016b). First, quality trimming was done using the 

filterAndTrim function. Forward reads were trimmed at 275bp and 230bp, 213bp and 215bp 

for the reverse reads of amoA and nxrB and nirK respectively, allowing for a maximum of 2 

errors in the forward and reverse reads to merge. Error models were generated using the 

learnErrors function. Reads were dereplicated using the derepFastq function and ASVs were 

inferred using the dada function. Forward and reverse reads were merged using mergePairs 

function allowing for a minimum overlap of 10bp. A sequence table was generated using the 

makeSequenceTable function and chimeras were removed using the removeBimeraDenovo 

function. A count table was then generated and distances between the representative ASVs were 

inferred by aligning the sequences using Maftt (Katoh et al., 2009) and constructing a 

phylogenetic tree using FastTree (Price et al., 2010).  

 

For AOA and AOB amoA amplicon sequences, further steps were undertaken to ensure the 

reliability of the data. First, sequences were filtered based on their length in R using the seqinr 

package (Charif and Lobry, 2007). For AOA and AOB, sequences that were not 256bp and 

491bp respectively were deleted from the data set. The sequences that passed this step were 

then translated to protein using MEGA7 (Kumar et al., 2016). Resulting sequences were 

checked using BLASTp to ensure they were translated in the correct dataframe. ASVs that 

translated to the same protein sequence were considered the same and their abundances were 
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added together. Finally, a phylogenetic tree was constructed using only those ASVs with the 

correct length that translated to unique proteins: the sequences were aligned using Maft and the 

phylogenetic tree drawn using FastTree. The tree was visualised and coloured in R using the 

ggtree package (Yu et al., 2017). 

 

Taxonomic assignation  

To assign the taxonomy to the representative ASVs, two different approaches were used: first,  

representative ASVs were taxonomically classified using qiime feature-classifier classify-

sklearn against the reference databases constructed as follows: for the functional genes 

(Bacterial amoA, Archaeal amoA, nxrB, nirS, nirK and nrfA), the sequences available on the 

Fungene database (http://fungene.cme.msu.edu/) were downloaded as fasta files. The 

annotations from the fasta headers were used to get the taxonomic details for each sequence 

using R’s rentrez package (Winter, 2017) and used to generate a taxonomy file. The FASTA 

file and the corresponding taxonomy file were then formatted to work with Qiime. For 16S 

rRNA and 18S rRNA, the SILVA SSU Ref NR database release v123 was used. Biom files were 

then generated (containing the abundance and taxonomy tables) to be used in R with the 

plyloseq package (McMurdie and Holmes, 2013). 

 

For the functional genes, the Bayesian Lowest Common Ancestor (BLCA) approach was also 

used (Gao et al., 2017) as described here https://github.com/qunfengdong/BLCA. First, curated 

databases were constructed, including only the sequences from Fungene for which the 

taxonomy was known to species level. For AOA and AOB, additional sequences from 

previously defined marine sediment clusters (Duff et al., 2017; Zhang et al., 2018) were also 

added. The names of these clusters were used instead of the species name in the reference 

taxonomy. BLAST formatted databases were then generated using the makeblastdb function 

(python3) and the curated databases as input. The output of the makeblastdb function was 

formatted to work with the BCLA software using a custom awk script. The BCLA software 

was then ran using the 2.blca_main.py function, with the representative ASVs and the databases 

(reference taxonomy and sequences) as input. The output taxonomy file was then used with the 

abundance tables to generate the biom files. 

 

4.2.9 Statistical analysis 

To test if the conditions in ridges and runnels were significant drivers of the communities 

retrieved from the sequencing of functional and marker genes, a canonical correspondence 
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analysis (CCA) was carried out in R. First, the abundance tables (i.e. the ASVs counts for each 

targets in each samples) were normalized using the Hellinger transformation (Legendre and 

Gallagher, 2001). Secondly, the parameter table (i.e. the table containing the bio-physico-

chemical parameters for each samples) was normalized by centring and reduction. The CCA 

was then computed using the cca function from R’s vegan package (Oksanen et al., 2005) with 

the standardized parameter table as the explanatory table and the Hellinger-transformed ASV 

abundance table as the response table. Variable selection was then carried out using the ordistep 

function (vegan package) with the option direction=”both”, allowing for a simultaneous 

backward and forward selection to find significant drivers for each target genes. 
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Table 4.1 List of primers used in this study. 
Primer Sequence (5’à3’) Orientation Target 

(length) 
 Experiment 

condition 
Q-PCR Reference  

(for primer sequence) Slope/ 
Efficiency  

Intercept R2 

 
 

BacamoA-
1F 

 
 

GGGGHTTYTACTGGTGGT 

 
 

Forward 

 
 
 
 

Bacterial amoA 
gene (491bp) 

PCR: 95°C-15min; [94°C-30sec; 
47°C(DNA) or 55°C(cDNA) -
30sec; 72°C-30sec]x32; 72°C-

10min 
----- 

Q-PCR: 95°C-15 min; [95°C-
30sec; 47°C(DNA) or 

55°C(cDNA)-30 sec; 72°C-1min; 
79.5°C-2sec à plate read]x40; melt 

curve 65°à95° 0.5° increment/ 
5sec 

 
 

cDNA: 
-3.94/ 

79.39% 
DNA: 
-4.07/ 

76.08% 

 
 

cDNA: 
41.02 
DNA: 
41.8 

 
 

cDNA: 
0.995 
DNA: 
0.999 

 
 
 

(Hornek et al., 2006) 

BacamoA-
2R 

CCCCTCBGSAAAVCCTTCTTC Reverse 

Arch-
amoWAF 

 
CTGAYTGGGCYTGGACATC 

 
Forward 

 
 

Archaeal amoA 
gene (256bp) 

PCR: 95°C-15min; [95°C-30sec; 
58°C-40sec, 72°C-1min]x35; 72°C-

10min 
----- 

Q-PCR: 95°C-15min; [95°C-30sec; 
58°C-40sec, 72°C-10sec à plate 

read]x40; melt curve 65°à95° 0.5° 
increment/ 5sec 

 
 

-4.46/ 
67.58% 

 
 

43.97s 

 
 

0.999 

 
 

(Wuchter et al., 2006) 

Arch-
amoWAR 

 
 

TTCTTCTTTGTTGCCCAGTA 

 
 

Reverse 

nxrBqF 
 

TGTGGTGGAACAACGTGGAA 
 

Forward 
 
 

Nitrospira nxrB 
(180bp) 

 
Q-PCR: 95°C-15min; [95°C-20sec; 

56°C-20sec; 72°C-30sec à plate 
read]x40; melt curve 65°à95° 0.5° 

increment/ 5sec 

 
cDNA: 

-3.9/ 
80.47% 
DNA: 
-3.74/ 

85.09% 

 
cDNA: 
38.16 
DNA: 
37.72 

 
cDNA: 
0.996 
DNA: 
0.999 

 
 

(Feng et al., 2016) 

nxrbqR 
 

CCCGGCATCGAAAATGGTCA 
 

Reverse 

515F GTGYCAGCMGCCGCGGTAA Forward Bacterial/Arche
al 16S rRNA 

(V4-V5; 411bp) 

PCR: 95°C-15min; [94°C-45sec, 
50°C-30sec, 72°C-40sec]x25; 

72°C-10min 

 
NA 

 
(Walters et al., 2015) 926R CCGYCAATTYMTTTRAGTTT Reverse 

1369F CGGTGAATACGTTCYCGG Forward Bacterial/Arche
al 16S rRNA 
(V9; 123bp) 

Q-PCR: 95°C-10min; [95°C-10sec, 
60°C-30sec]x40; 40°C-10min 

-3.25/ 
103.09% 

39.87 0.989 (Suzuki et al., 2000) 
1492R GGWTACCTTGTTACGACTT Reverse 
1389P CTTGTACACACCGCCCGTC Probe 
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4.3 Results  
4.3.1 Bio-physico-chemical parameters 

Figure 4.6 Principal Component Analysis of the physio-chemical and biological 
parameters measured in the ridge/runnels structures. "pw”: parameter measured on pore 
water; Water.C: water content; TOC: Total Organic Carbon; ChlA: Chlorophyll A; Pheop: 
Pheophytin; CN.pw: Total Carbon/ Total Nitrogen ratio in pore water. ProK_abund: Prokarote 
abundance measured by flow cytometry. 
 

Conditions in ridges and runnels were strongly different, based on the bio-physico-chemical 

parameters measured in this study (p.value PERMANOVA<0.001) as observed by the 

clustering of the two different sediment structures (Figure 4.6). Indeed, 44.5% of the variance 

displayed along PC1, separated ridge and runnel samples. A further 14.6% of the variance 

displayed along PC2, separated samples from Day1 (more positive values along PC2) and 

sample from Day2 and 3 (more negative values along PC2) in ridges whereas in runnels, 

samples from Day1 and 2 were more similar between each other and samples from day 3 more 

scattered. The effect of the sampling day on the parameters measured was also significant 

(p.value PERMANOVA<0.01). Overall, sediment in ridges was finer (more clay, less sand), 

dryer (lower water content) and slightly more acidic. Salinity was found higher in ridges, which 

could be linked to more evaporation of the seawater explaining the lower water content as well. 

Ridges sediment was less rich in nutrient, with lower ammonia (≈+5fold in runnels) and 
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phosphate (≈+2fold in runnels). Only nitrate was found higher in ridges. Nitrite concentrations 

were also determined but no statistical differences were observed between ridges and runnels 

(≈0.07µM in average in both). Results on pore water were in accordance with measures of the 

sediment, with an observed higher CN ratio in pore water in ridges than in runnels. 

Interestingly, photosynthetic pigments (chlorophyll A and pheophytin) were found in higher 

concentration in runnels (Table 4.2).  

 

Table 4.2 Differences in bio-physico-chemical parameters between Ridges and Runnels 

Parameter Mean Ridges (sd) Mean Runnels (sd) Type Day 
Salinity.pw (‰) 36.47 (1.12) 33.81 (0.66) *** *** 
pH.pw 7.02 (0.08) 7.21 (0.06) *** *** 
Nitrate.pw (µM) 1.56 (1.2) 0.7 (0.18) ** * 
Nitrite.pw (µM) 0.07 (0.03) 0.07 (0.02) - - 
Ammonia.pw (µM) 44.1 (15.49) 203.89 (85.87) *** - 
Phosphate.pw (µM) 0.07 (0.05) 0.13 (0.09) ** *** 
Silicate.pw (µM) 163.27 (21.36) 176.19 (37.37) - *** 
Water.C (%) 43.36 (1.64) 50.62 (2.23) *** - 
TOC (%) 14.79 (2.62) 10.89 (2.43) *** - 
ChllA (µg/g) 10.32 (3.12) 20.13 (6.24) *** - 
Pheop (µg/g) 15.39 (1.6) 20.72 (9.3) ** *** 
ProK abundance 6.6x106 (8.5x105) 7.0x106 (1.3x106) - - 
CN.pw 5.9 (0.53) 2.96 (0.96) *** - 
Sand (%) 7.82 (1.03) 14.51 (3.95) *** - 
Silt (%) 81.14 (1.76) 78.22 (3.67) * - 
Clay (%) 11.04 (1.19) 7.27 (0.81) *** - 

Mean values (standard deviation) are presented. Effect of sediment type (Effect.Type) and 
sampling Day (Effect.Day) are reported. -: No Statistical Differences; .: 0.05< p.value<0.1; *: 
p.value<0.05; **: p.value<0.01; ***: p.value<0.001. "pw”: parameter measured on pore water; 
Water.C: water content; TOC: Total Organic Carbon; ChlA: Chlorophyll A; Pheop: 
Pheophytin; CN.pw: Total Carbon/ Total Nitrogen ration in pore water. 
 

4.3.2 Potential Nitrification Rates 

PNR was found to be significantly higher in runnels than ridges for all three sampling days, 

with PNR being ≈22, ≈40 and ≈17 fold higher in runnels at day 1, 2 and 3, respectively. These 

differences were still significant when ammonia was added prior to the incubation but the 

observed differences were smaller (≈+1.8fold and ≈+2.5fold in runnel VS ridges at day 1 and 

day 2 respectively), and actually became non-significant for the incubation at day 3. Relative 

to the PNR measured at in situ ammonia concentration (+0µM ammonia), the addition of 

ammonia induced a stronger response in ridges (+15.7fold day1; +26.8fold day2; +15.1fold 

day3) than in runnels (+1.3fold day1; +1.7fold day2; no difference for day3). However, even 
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when comparing the PNR from runnels incubated at in situ ammonia concentration with the 

ridges incubated with 500µM ammonia, the PNR in runnels was still higher (Figure 4.7). 

 

Changes in salinity had little effect on the PNR (Figure 4.8) The only significant effect was 

detected for the ridge sediment without addition of ammonia, with an decrease of 1.7fold in 

PNR when salinity was increased from 22.6‰ to 37.76‰ (p.value<0.05).  

 

 

Figure 4.7 Potential Nitrification Rates (PNR) in ridges and runnel. PNR was calculated 
by the accumulation of nitrite, with (right) and without (left) addition of 500µM ammonia in 
the sediment. D1, D2 and D3 refer to the sampling Day 1, Day 2 and Day 3 respectively. Results 
are reported in nmol nitrite per g sample per day. *: p.value<0.05; **: p.value<0.01; ***: 
p.value<0.001. 
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Figure 4.8 Effect of Salinity on PNR in ridges and runnels. PNR was calculated by the 
accumulation of nitrite, with (right) and without (left) addition of 500µM ammonia in the 
sediment from day 1 incubated at two different salinities (22.6 ‰ and 37.76 ‰). 
 

4.3.3 RNA integrity check 

Table 4.3 RNA integrity check. 

Sample: D1Ba D1Bb D1Bc D1Bd D1Be D1Sa D1Sb D1Sc D1Sd D1Se 

RIN 7 6.4 6.9 ND 6.8 7.1 4.3 6.4 6.4 NA 

Ramp 0.72 0.66 0.74 ND 0.77 0.60 0.56 0.64 0.65 0.64 

Sample: D2Ba D2Bb D2Bc D2Bd D2Be D2Sa D2Sb D2Sc D2Sd D2Se 

RIN NA 8.1 7.8 7.3 7.3 6.7 7 6.7 7.2 7.1 

Ramp 0.64 0.69 0.75 0.72 0.62 0.64 0.69 0.77 0.78 0.79 

Sample: D3Ba D3Bb D3Bc D3Bd D3Be D3Sa D3Sb D3Sc D3Sd D3Se 

RIN 7.3 7 7.2 7 7.8 7.2 8 7.3 7.1 NA 

Ramp 0.75 0.81 0.75 0.78 0.73 0.65 0.63 0.64 0.82 0.80 

RIN: RNA Integrity Number (Bioanalyser; Agilent Technologies); Ramp: Ratio Amplicon 
(Cholet et al., 2019). NA: No value generated; ND: Not determined 
 

Except for D1Bd and D1Sb, all samples showed good RNA integrity with RIN values ranging 

from 6.4 to 8.1 and Ramp values ranging from 0.63 to 0.81 (Table 4.3). Sample D1Bd was lost 

during processing and therefore no integrity values were calculated. Sample D1Sb showed 
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lower integrity values for both the RIN and Ramp indexes and was therefore not used for RNA 

analysis. 

 

4.3.4 Differences in gene and transcript abundance 

16S rRNA: A high number of 16S rRNA genes was detected, sometimes up to 1010 copies/g 

samples, with overall, a higher number found in runnels than in ridges. This difference was 

however not statistically significant (p.value = 0.052). The abundance at day 3 was lower 

compared to day 1 and 2 for both ridges and runnels (≈5fold lower) and indeed, the effect of 

the sampling day on the abundance of 16S rRNA genes was significant (p.value>0.001) and 

the abundance in 16S rRNA genes in the samples from ridges day 3 was statistically different 

from all other samples except for runnel day 3 (Figure 4.9; Table 4.4).  

 

Archaeal amoA: The number of AOA amoA genes copies was higher in ridges than in runnels 

at day 1 and 2 but the differences were not statistically significant. For AOA amoA transcripts, 

the detected signal on Q-PCR was too weak to be clearly distinguished from the no template 

control and the results are therefore not reported (Figure 4.9; Table 4.4). 

 

Bacterial amoA: The effect of the sediment type on AOB amoA gene copy number was 

important (p.value<0.001) with AOB amoA genes more abundant in ridges overall. When 

considering day-by-day comparison, significant differences were only observed at day 2 

(p.value<0.01), but the differences at Day 1 were still important (p.value=0.06). The ridge 

samples from day 2 were the ones with the highest copy number of AOB amoA genes 

(statistical differences with all runnel samples; Table 4.4). Results for AOB amoA transcripts 

Q-PCR strongly contrasted with the DNA ones: the effect of both the sediment type and 

sampling day were significant (p.value<0.05) but the AOB amoA transcripts were more 

abundant in runnels than in ridges, except for day 3. Differences between the transcript copy 

number in the runnels at day 1 and all other samples were significant (Figure 4.9; Table 4.4). 

AOB/AOA ratio (DNA): In all samples, AOB were dominant over AOA but the ratio of 

AOB/AOA gene copy number varied between ridges and runnels: ≈50 in ridges at day 1 and 2 

(i.e. 50 times more AOB amoA gene than AOA amoA) and ≈40 at day 3. The ratio decreased 

to ≈30 in runnels at all sampling days and these differences were statistically significant 

(p.value<0.001) (Figure 4.10). 
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nxrB: A similar trend as seen for AOB amoA was observed, with the gene copy numbers higher 

in ridges whereas transcripts were more abundant in the runnels. Statistically significant 

differences were observed only between the gene copy number in the ridges at day 2 and the 

runnel samples (Figure 4.9; Table 4.4). 
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Figure 4.9 Differences in gene and transcript abundance in ridges and runnels. The target 
gene (DNA)/transcript (RNA) is indicated on top of each plot. Only statistical differences 
between sediment types from the same sampling day are reported. .: 0.05< p.value<0.1; *: 
p.value<0.05; **: p.value<0.01; ***: p.value<0.001. 
 

Table 4.4 Summary of the TukeyHSD multiple comparison tests for Q-PCR 
quantification of target genes and transcripts. 

 Comparison p.value 
16S rRNA D1 ridge - D3 ridge * 

D1 runnel - D3 ridge ** 
D3 ridge - D2 ridge ** 
D3 ridge - D2 runnel *** 
D3 runnel - D2 runnel ** 

AOB amoA DNA D2 ridge - D1 runnel ** 
D2 ridge - D2 runnel ** 
D3 runnel - D2 ridge ** 

AOB amoA RNA D1 ridge - D1 runnel ** 
D1 runnel - D2 ridge *** 
D1 runnel - D2 runnel  ** 
D1 runnel - D3 ridge ** 
D1 runnel - D3 runnel ** 

nxrB DNA D2 ridge - D1 runnel * 
D2 ridge - D2 runnel * 
D3 runnel - D2 ridge * 

Only the comparisons for which p.value<0.05 are shown. *: p.value<0.05; **: p.value<0.01; 
***. 
 

 
Figure 4.10 Ratio of AOB/AOA amoA gene copy number in ridges and runnels.  
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4.3.5 Differences in transcription ratio 

For AOB amoA and nxrB, the transcript ratios were calculated as the ratio between the gene 

and transcript copy numbers. For both genes, the ratios were always >1 and sometimes up to 

≈25 (i.e. 25 transcripts per gene copy), indicating active transcription of bacterial nitrification 

genes in these samples. Overall, for both AOB amoA and nxrB, the transcription ratios were 

higher in runnels than in ridges, and indeed, the effect of the sediment type was significant 

(p.value<0.001 for AOB amoA and p.value<0.01 for nxrB). When comparing ridges and 

runnels day by day, significant differences were observed only at day 1 for AOB amoA. The 

lowest differences between ridges and runnels were observed for day 3 (Figure 4.11). 

 

 

Figure 4.11 Transcription ratio of the Bacterial amoA (top) and nxrB (bottom) transcripts 
in ridges and runnels. The ratios were calculated as copy number mRNA/ copy number DNA. 
.: 0.05< p.value<0.1; *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001.  
 

4.3.6 Potential nitrification rates per AOB cells 

The number of AOB cells per gram of sample was estimated by dividing the amoA gene 

abundance (per gram of sample) by 2.5 (the average number of amoA gene per AOB cells). 

PNR values reported in Figure 4.7 were then divided by the estimated number of cells per gram 

of sediment to calculate the PNR per AOB cells. The estimated PNR per AOB cells was much 

higher in runnels than in ridges when no ammonia was added prior to incubation (40, 105 and 

20 fold at day 1,2 and 3, respectively). When ammonia was added, the PNR per AOB cells 

increased slightly in runnels (1.3 and 1.5 fold at day 1 and 2, respectively; no change at day 3) 

and increased more in ridges (17, 26 and 15 fold at day 1,2 and 3, respectively). However, the 

values in runnels were still higher than in ridges, except at day 3. Interestingly, the PNR per 
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cells in ridges with ammonia added was still lower than in runnels without ammonia added 

(Figure 4.12). 

 

Figure 4.12 PNR per AOB cells in ridges and runnels. PNR values calculated previously 
were divided by the estimated number of AOB cells per gram of sediments. Only statistical 
differences between sediment types from the same sampling day are reported. .: 0.05< 
p.value<0.1; *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001. 
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4.3.7 Differences in microbial communities between ridges and runnels 

The effect of the sediment type (ridge/runnel) and sampling day were tested on the overall 

prokaryote structure (16S rRNA) and the ammonia oxidizer communities (Bacterial and 

Archaeal amoA) by two-ways PERMANOVA test on the Bray-Curtis dissimilatory and 

Unifrac/WUnifrac distance matrixes. To determine which bio-physiochemical parameters were 

significant drivers of the communities, a canonical correspondence analysis (CCA) was carried 

out using the ASVs abundance table as response table and the bio-physiochemical table as 

explanatory table. Variable selection was done using a combined forward and backward 

selection. 

 

As shown in Figure 4.13 the sediment type significantly impacted the overall microbial 

community (p.value PERMANOVA<0.01). Clustering between ridges and runnels could be 

observed on the PCoA plots for all three β diversity indexes tested. When considering 

WUnifrac distances, the sediment type explained 34% of the total variance indicating a 

significant differentiation of the microbial communities between sediment types. On the other 

hand, there was no significant effect of the sampling day on the microbial communities 

recovered, which accounted for only 6% to 8% of the total variance in the β diversity distances 

matrices. Result from the CCA indicated that the 16S rRNA ASV composition was significantly 

driven by pH, TOC (in the pore water) and the sediment grain size (% of silt+clay) (Table 4.5). 

Next, the effect of the sediment type and sampling day was tested on the overall prokaryote 

structure after grouping the ASVs abundances at relevant taxonomic level (Family, Order, 

Class). At all taxonomic level tested, the sediment structure had a strong effect on the 

community structure (Bray-Curtis) and explained 38%, 43% and 50% of the total variance in 

microbial Families, Orders and Classes respectively between samples. Again, the sampling day 

did not have a significant impact. In both ridges and runnels, the microbial community was 

dominated by the Proteobacteria phylum, with gamma-, delta- and alpha- proteobacteria being 

the first, third and fourth most abundant Classes, respectively, in both ridges and runnels; 

Bacteroidia was the second most abundant Class. Interestingly, families Nitrosomonadaceae, 

Nitrospiraceae and Nitrosococcaceae were detected among the top most abundant 30 families 

(Figure 4.14).  



160 

Table 4.5 Drivers of the microbial communities at DNA level as determined by variable 
selection of CCA models. For all targets, the p.value of the variables retained and the overall 
model are reported; .: 0.05< p.value<0.1; *: p.value<0.05; **: p.value<0.01; ***: 
p.value<0.001. Numbers in italic below the variables indicate their VIF. SGS: sediment grain 
size (% silt+clay)  

 pH 

2.38 

NO3
- 

1.41 

NO2
- 

1.24 

NH4
+ 

2.72 

PO4
2- 

1.76 

TOC 

1.34 

SGS 

2.75 

   Overall 

16S rRNA **     * **    *** 

 pH 

3.73 

NO3
- 

1.46 

NO2
- 

1.34 

NH4
+ 

2.98 

PO4
2- 

2.35 

TOC 

1.54 

SGS 

3.06 

ChllA 

2.02 

Pheop 

1.58 

Cyano 

1.35 

 

B amoA    **     *  *** 

A amoA .   .   .    * 
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Figure 4.13 Principal Component Analysis (PCoA) showing the effect of the 
Ridge/Runnel structure on the overall microbial community and ammonia oxidizers at 
the ASV level. Result of the PERMANOVA test for all three beta diversity indexes is shown 
on top of each plot. NSD: No Significant Differences; *: p.value<0.05; **: p.value<0.01; ***: 
p.value<0.001. R2: proportion of variance explained. 
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The sediment structure also had a significant effect on the ammonia oxidiser communities, for 

all three β diversity indexes measured (Figure 4.13). The effect of the sediment structure was 

always stronger when considering WUnifrac distances than Unifrac or Bray-Curtis as shown 

by more significant p.values, higher R2 values and clearer clustering on the PCoA plots. 

Interestingly, the sampling day had a significant effect on the AOB community (Bray-Curtis 

and WUnifrac) but not on the AOA community. Result from the CCA indicated that these 

differences in AOA and AOB communities were driven in part by the ammonia concentration, 

with a stronger effect on AOB than AOA. Interestingly, pH was found to be a driver for the 

AOA community but not for AOB. On the other hand, AOB seemed to be influenced by the 

phototrophs present in the samples, with the pheophytin content as drivers of the AOB 

community (Table 4.5).  

 

Table 4.6 ASVs in the DNA libraries not shared between ridges and runnels.  

For each target, the total number of ASVs detected in the DNA libraries (ridges and runnels) 
is reported (Total) along with the number of ASVs that are unique to ridges and runnels 
respectively. The proportions that those unique ASVs represent relative to the abundance in 
ridges or runnels and relative to the total community are also reported. 

 Total Unique ASVs Ridges Unique ASVs Runnels 

Count Abund Ridges Abund Total Count Abund Runnels Abund Total 

16S rRNA 14408 5223 35% 16.1% 6266 37.2% 20.3% 

AOB 112 21 1.8% 0.9% 33 3.1% 1.6% 

AOA 107 32 28.1% 11% 34 16% 9.8% 
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Figure 4.14 Taxabars of the microbial communities in ridges and runnels. The proportions 
are shown as the average over the three sampling days, at three different taxonomic levels 
(Family, Order and Class). The PCoA on the right of each taxabars shows the clustering 
between ridges and runnels. Results of the PERMANOVA test on the Bray-Curtis dissimilatory 
matrices calculated at each taxonomic level are shown on top of the plots. NSD: No Significant 
Differences; *: p.value<0.05; **: p.value<0.01; ***: p.value<0.001. R2: proportion of variance 
explained. 
 

4.3.8 Differences in total and active ammonia oxidizers in ridges and runnels 

4.3.8.a AOB 

Total AOB: To identify the AOB present in ridges and runnels, a phylogenetic tree of ASVs 

detected at DNA level was drawn and their relative abundances (log2 transformed) was 
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the AOB phylogenetic tree: cluster C1, mainly containing ASVs that could be assigned to 

Nitrosomonas Cluster Group A and B and some unknown ASVs; cluster C2: mainly containing 

unknown ASVs one representative of Nitrosomonas oligotropha, Nitrosomonas aestuarii and 

Nitrosomonas eutropha; cluster C3: containing unknown ASVs and representative of 

Nitrosospira. 

 

When considering abundances, both ridges and runnels were dominated by ASV_2 (identified 

as Nitrosomonas group A) representing 55.5% and 52.2% of the total abundance in ridges and 

runnels, respectively. The next most abundant member was ASV_1 (also identified as 

Nitrosomonas group A), representing 27.3% and 23% of the total abundance in ridges and 

runnels, respectively; both belonged to cluster C1. The next three most abundant ASVs 

(ASV_8, ASV_12 and ASV_18) represented a total of 12.3% and 12.9% in ridges and runnels, 

respectively and were also identified as Nitrosomonas group A and belonged to cluster C1. To 

summarize, the overall community present in ridges and runnels were similar and dominated 

by Nitrosomonas Cluster group A, with the majority of ASVs (in terms of number of individual 

ASVs and relative abundance) shared between ridges and runnels (Figure 4.15 and Table 4.6).  

 

Active AOB: To estimate the activity of individual AOB members, the ratio of abundance 

between the RNA and DNA libraries was calculated for each individual ASV (a positive value 

for the RNA/DNA ration indicates high activity while a negative ratio indicates low activity). 

In both ridges and runnels, two clusters could be distinguished: a low activity cluster, 

containing members of the C1 cluster (as defined in Figure 4.15) and a high activity cluster, 

containing members of the C2 cluster. The activity (abundance in RNA library) of the highly 

active cluster generally correlated positively with PNR measured in individual structure (ridges 

or runnels). It is interesting to note that the ASVs dominant at DNA level (ASV_1, ASV_2, 

ASV_8, ASV_12 and ASV_18) were found in the low activity cluster in both ridges and 

runnels (Figure 4.16).  

 

When comparing ridges and runnels, there were more highly active ASVs in runnels (53 ASVs) 

compared to ridges (18 ASVs) and all but 3 ASVs (ASV_220, ASV_242 and ASV_297) highly 

active in ridges were also active in runnels (Figure 4.16). Also, differences in activity of 

individual ASVs (i.e. differences in abundances at RNA level) revealed that out of the 40 ASVs 

whose activities were significantly different between ridges and runnels, 35 were more active 



165 

in runnels; 30 out of these 35 ASVs had activities that positively correlated with overall PNR 

(Figure 4.17).  

 

As seen in Figure 4.18, 32 out of the 35 ASVs that were significantly more active in runnels 

compared to ridges were also identified as highly active ASVs (significantly more abundant in 

the RNA library compared to DNA). Interestingly, these ASVs represented a small proportion 

of the community at DNA level in both ridges (1.21%) and runnels (4.19%) and their taxonomy 

could not be assigned. A further 21 ASVs, identified as highly active, were not significantly 

more active in runnels and also represented a small proportion of the community at DNA level 

(0.06% in ridges and 0.19% runnels). Finally, 3 ASVs were found to be more active in runnels 

compared to ridges but did not belong to the highly active group. Surprisingly, they were more 

abundant than the ASVs from the highly active group and represented a combined 6.30% and 

7.74% of the community at DNA level in ridges and runnels, respectively (Figure 4.18).  
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Figure 4.15 AOB community in ridges and runnels. Colour of tips represents the taxonomy attributed to ASVs using the BLCA method. The heatmap represents 
the relative abundance of each ASV in % in ridges and runnels (log2 transformed: red indicates relative abundance >1% and darker red indicates higher abundance; 
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blue indicates relative abundance <1% and darker blue indicates lower abundance; white indicates that the ASV is absent). Venn diagram on top of the heatmap 
represents the number of ASVs present in ridges only (orange oval), present in runnels only (blue oval) and shared (intercept). The three AOB clusters discussed 
in the text are indicated by C1, C2 and C3. Phylogenetic tree was drawn using FastTree, from Maftt-aligned ASVs sequences and rooted using the particulate 
methane monooxygenase (pmoA) gene. Tree colouring and heatmap was done in R using ggtree.  
 

Figure 4.16 Identification of highly active AOB in ridges (A) and runnels (B). Colour of tips represents the taxonomy attributed to ASVs using the BLCA 
method. The first heatmap represents the log2 fold change (i.e. fold change, log2 transformed) in abundance of individual ASV between the DNA and RNA 
libraries (only ASVs with significant differences in abundance between DNA and RNA libraries are represented; red indicates higher abundance in DNA and 
green indicates higher abundance in RNA). The second heatmap represents the correlation between activity of individual ASV (abundance in the RNA library) 
and PNR in each separate structure (PNR +0µM ammonia; only positive values are represented). Phylogenetic tree was drawn using FastTree, from Maftt-aligned 
ASVs sequences and rooted using the particulate methane monooxygenase (pmoA) gene. Tree colouring and heatmap was done in R using ggtree. 
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Figure 4.17 AOB ASVs differentially active between ridges and runnels. Colour of tips 

represents the taxonomy attributed to ASVs using the BLCA method. The first heatmap 

represents the log2 fold change (i.e. fold change, log2 transformed) in activity (abundance in 

the RNA library) of individual ASV between ridges and runnels (only ASVs with significant 

differences are represented; blue indicates higher activity in runnels and orange indicates 

higher activity in ridges). The second heatmap represents the correlation between activity of 

individual ASV and PNR (PNR +0µM ammonia; only positive values are represented). Size of 

tips represents the mean activity (log2 transformed) between ridges and runnels. Phylogenetic 

tree was drawn using FastTree, from Maftt-aligned ASVs sequences and rooted using the 

particulate methane monooxygenase (pmoA) gene. Tree colouring and heatmap was done in R 

using ggtree. 
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Figure 4.18 Identification AOB ASVs driving differences in nitrification between ridges 
and runnels. The Venn diagram shows AOB ASVs that are more active in runnels compared 

to ridges (blue circle) and those more identified as highly active (more abundant in the RNA 

library compared to the DNA one; green circle). Those at the intersection of the two circles are 

therefore likely drivers of the nitrification process. Taxonomy of the ASVs is indicated by the 

colour of the points. Percentages reported are the combined abundances of the ASVs in the 

DNA library in ridges (Abund_ridges) and in the runnels (Abund_runnels). 

 

4.3.8.b AOA 

Total AOA: AOA communities were dominated by ASV_1, representing 64.7% and 66.7% of 

the total community in ridges and runnels, respectively. Interestingly, the taxonomy could not 

be resolved for this sequence. However, based on the phylogenetic tree, ASV_1 seemed to be 

closely related to other Nitrosopumilus ASVs. The second most abundant ASV was ASV_5 

(Nitrosopumilus) representing 13.2% and 13.5% of the total abundance in ridges and runnels, 

respectively. The next five most abundant were ASV_9 (Nitrosopumilus oxyclinae), ASV_8 

(Nitrosopumilus), ASV_16 (unknown), ASV_26 (unknown) and ASV_37 (Nitrosopumilus 

salaria) represented a combined 19% and 17.2% of the total community in ridges and runnels, 

respectively. Nitrosopumilus therefore largely dominated the AOA community in both 

sediment structures. Two representatives of Nitrosomarinus (Nitrosomarinus catalina) were 

also detected in rides and runnels albeit at a very low level. Interestingly, more unique ASVs 

(not shared between ridges and runnels) were detected compared to AOB and these unique 

ASVs represented a higher percentage of the total community (Figure 4.19 and Table 4.6). 

Σ=21	ASVs	
	

Abund	Ridges	=0.06%	
Abund	Runnels	=0.19%	

Highly	ac*ve	in	runnels	
(RNA/DNA	ra*o	>	1)	

More	ac*ve	in	
runnels	than	ridges	

Σ=32	ASVs	
	

Abund	Ridges	=1.21%	
Abund	Runnels	=4.19%	

Unknown	

Taxonomy	

Nitrosomonas	Cluster	Group	A	

Σ=3	ASVs	
	

Abund	Ridges	=6.30%	
Abund	Runnels	=7.74%	
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Active AOA: Like for AOB, the activity of individual AOA ASVs was estimated by calculating 

the RNA/DNA ratio in ridges and runnels. As seen in Figure 4.20 only a small number of ASVs 

were found to be highly active (RNA/DNA ratio>0) in ridges (6 ASVs) and in runnels (10 

ASVs). All ASVs highly active in ridges were also active in runnels. Unlike for AOB, there 

was no evident link between activity of individual AOA ASVs and PNR measured in individual 

structure (Figure 4.20). When comparing ridges and runnels, it was observed that out of 11 

ASVs with significantly different activities, 10 were more active in runnels and their activities 

correlated well with overall PNR (Figure 4.21). 5 out of these 10 ASVs were also identified as 

highly active in runnels (ASV_175: Unknown Nitrosopumilus, ASV_238: Nitrosopumilus 

oxyclinae, ASV_377: unknown, ASV_230: Nitrosopumilus spD3C, and ASV_7: 

Nitrosopumilus spD3C).  
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Figure 4.19 AOA community in ridges and runnels. Colour of tips represents the taxonomy attributed to ASVs using the BLCA method. The heatmap represents 

the relative abundance of each ASV in % (log2 transformed: red indicates relative abundance >1% and darker red indicates higher abundance; blue indicates 
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relative abundance <1% and darker blue indicates lower abundance; white indicated that the ASV is absent) in ridges and runnels. Venn diagram on top of the 

heatmap represents the number of ASVs present in ridges only (orange oval), present in runnels only (blue oval) and shared (intercept). Phylogenetic tree was 

drawn using FastTree, from Maftt-aligned ASVs sequences and rooted using the amoA gene from N.yellowstonii. Tree colouring and heatmap was done in R 

using ggtree.  

 

Figure 4.20 Identification of highly active AOA in ridges (A) and runnels (B). Colour of tips represents the taxonomy attributed to ASVs using the BLCA 

method. The first heatmap represents the log2 fold change (i.e. fold change, log2 transformed) in abundance of individual ASV between the DNA and RNA 

libraries (only ASVs with significant differences in abundance between DNA and RNA libraries are represented; red indicates higher abundance in DNA and 

green indicates higher abundance in RNA). The second heatmap represents the correlation between activity of individual ASV (abundance in the RNA library) 
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and PNR in each separate structure (PNR +0µM ammonia; only positive values are represented). Phylogenetic tree was drawn using FastTree, from Maftt-aligned 

ASVs sequences and rooted using the amoA gene from N.yellowstonii. Tree colouring and heatmap was done in R using ggtree. 
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Figure 4.21 AOA ASVs differentially active between ridges and runnels. Colour of tips 

represents the taxonomy attributed to ASVs using the BLCA method. The first heatmap 

represents the log2 fold change (i.e. fold change, log2 transformed) in activity (abundance in 

the RNA library) of individual ASV between ridges and runnels (only ASVs with significant 

differences are represented; blue indicates higher activity in runnels and orange indicates 

higher activity in ridges). The second heatmap represents the correlation between activity of 

individual ASV and PNR (PNR +0µM ammonia; only positive values are represented). Size of 

tips represents the mean activity (log2 transformed) between ridges and runnels. Phylogenetic 

tree was drawn using FastTree, from Maftt-aligned ASVs sequences and rooted using the 

amoA gene from N.yellowstonii. Tree colouring and heatmap was done in R using ggtree. 

 

4.4 Discussion 
The ridges/runnels formation are sedimentary structures caused by the combined action of 

waves, sediment deposition and, possibly, bio-stabilisation. Because they are located on an 

intertidal mudflat, it can be expected that at high tide the conditions experienced by the 

communities in both structures are identical. Since the physio-chemical conditions are probably 

only different at low tide and the structures themselves only semi-permanent (Gouleau et al., 

2000), we first hypothesised that the microbial communities hosted in ridges and runnels would 

be identical. However, results obtained from sequencing of the 16S rRNA amplicons showed 

that the communities are, in fact, different between the two structures. This is an important 
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finding as it shows that when interested in the distribution of microbial communities in an 

ecosystem, small-scale physical differences in the physical arrangement of the sediment can be 

significant. Significant differences were found when considering the Bray-Curtis distances 

between ridges and runnels. The Bray-Curtis dissimilarity index is based on the differences in 

ASVs proportions between conditions being compared. A significant difference in the Bray-

Curtis index therefore indicates that the ridges/runnels structure affects the proportions of 

ASVs found in ridges and runnels but does not inform on their phylogenetic distances. On the 

other hand, the Unifrac distance is measured as the proportion of branch length that are not 

shared between conditions relative to the total branch length in the phylogenetic tree. For 16S 

rRNA, a high number of ASVs was not shared between ridges and runnels explaining the highly 

significant effect of the ridges/runnels on the Unifrac distances. Finally, the Weighted Unifrac 

is similar to the Unifrac but weights branches by the differences in abundances between 

conditions being compared. In other words, the Unifrac distance between two communities 

with the same members but at different proportions is zero but the WUnifrac is not (Chang et 

al., 2011). For, 16S rRNA the ridges/runnels structures affect both the proportions of ASVs 

(Bray-Curtis) and the number of unique branches in the phylogenetic tree (Unifrac). Combined 

together, this results in strong differences in the WUnifrac distance. The majority of ASVs 

(80%) were not shared between ridges and runnels. However, these unique ASVs only 

represented 36% of the total abundance indicating that most were low-abundance ASVs (Table 

4.6). This could be the reflection of the new approaches used here. Indeed, the construction of 

ASVs is based on single differences between sequences (i.e. 100% similarity threshold) as 

opposed to the OTU where sequences are clustered at a defined similarity threshold, usually 

97%. By constructing OTUs, more sequences are therefore merged together, and fewer 

differences are likely to be found. It is debatable whether beta-diversity measures should be 

undertaken at the single ASV level, especially given the possibility of errors introduced during 

the PCR and sequencing steps. We then merged ASVs at higher taxonomic levels and evaluated 

the effect of the ridges/runnels structures using the Bray-Curtis dissimilarly index (Figure 

4.13). At all phylogenetic level tested (Family, Order and Class), the effect was significant 

(p.value PERMANOVA<0.001) confirming that the ridges/runnels structures do affect the 

overall microbial community assemblages in the Montportail-Brouage mudflat. In contrast, the 

effect of the sampling day was not significant, indicating that the microbial communities were 

homogenous among sample type between different locations. Further investigation using CCA 

revealed that pH, TOC and the sediment grain size (% of silt+ clay) are the possible drivers of 

the differences observed in the microbial communities. To explain the lower pH in the ridges, 
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it can be hypothesised that the higher organic content found in the ridges favours heterotrophic 

metabolisms, which in turn results in higher production of CO2, inducing acidification of the 

sediment.  

 

AOB were found to be dominant over AOA in both ridges and runnels and were found to also 

be more active. This is in accordance with previous studies showing the dominance of AOB in 

ammonia-rich/high salinity estuarine sediment (Mosier and Francis, 2008; Santoro et al., 2008; 

Magãlhaes et al., 2009; Zheng et al., 2013; Smith et al., 2014; Urakawa et al., 2014; Li et al., 

2015; Damashek et al., 2015; Duff et al., 2017; Zhang et al., 2018) but contradicts other reports 

of AOA dominating the AOM communities in marine sites (Caffrey et al., 2007; Marton et al., 

2015; Bernhard et al., 2019; He et al., 2018), including high ammonia marine sediments sites 

(Moin et al., 2009; Cao et al., 2011). AOA were however active, as some 

AOA amoA transcripts could be amplified and sequenced. This could reflect the ability of AOA 

to remain active in AOB dominated environments, albeit to a much lower level. Interestingly, 

it was observed that the ratio of AOB/AOA gene abundance was significantly influenced by 

the ridges/runnels structures, with a higher ratio observed in the ridges (≈50 in ridges vs. ≈30 

in runnels), indicating an influence of the ridges/runnels structures on AOB/AOA niche 

differentiation. Additionally, this study shows that the ridges/runnels structures strongly 

influence the nitrifiers’ communities. Interestingly, a lower proportion of the variance was 

explained by the ridges/runnels structures when considering Unifrac distances (Figure 4.13) 

indicating a lower number of unique branches in the phylogenetic tree. Nevertheless, highly 

significant differences were found when considering WUnifrac distances indicating an overall 

strong effect of the sediment type on AOA and AOB communities. Plus, for AOA, a high 

number of ASVs, representing a significant proportion of the total abundance, were not shared 

between ridges and runnels (Table 4.6). For AOA and AOB, ASVs sequences were checked 

for length and sequence and combined together if they translated to the same protein. It is 

therefore likely that these differences have a real ecological significance, indicating a real 

impact of the ridge/runnel structures on nitrifier communities. CCA analysis indicates a 

possible role of SGS, ammonia and pH for AOA and ammonia and pheophytin for AOB. 

Ammonia is a well-known parameter that shapes the distribution of nitrifiers in natural 

environments (Erguder et al., 2009; Schleper and Nicol, 2010; Shen et al., 2012; Sims et al., 

2012) and in particular in estuaries (Urakawa et al., 2014; Damashek et al., 2015; Damashek 

and Francis, 2018; Zhang et al., 2018). Indeed, different concentrations of the substrate will 

advantage different AOA/AOB species based on the affinity of their enzymes for ammonia. 
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pH is also a known factor influencing nitrifiers (Nicol et al., 2008; Wessén et al., 2010) in part 

because it controls the NH4+/NH3 balance. The effect of SGS could link to the oxygenation 

of the sediment. Indeed, finer and more compact sediment will likely reduce O2 penetration in 

the top layers, impeding aerobic metabolisms such as nitrification. The role of pheophytin on 

AOB communities could possibly indicate an interaction between phototrophs and AOB in the 

Montportail-Brouage mudflat. Dense mats of microbial phototrophs form on the surface of the 

sediment in ridges at low tide (Lavergne et al., 2017) but not in the runnels. In can therefore be 

hypothesised that in ridges a negative interaction takes place between phototrophs and AOB 

through competition for ammonia. It has been shown before that the presence of phototrophs 

can strongly inhibit bacterial nitrification in sediments (Laima et al., 2002; Risgaard-Petersen, 

2003; Risgaard-Petersen et al., 2004) and bioreactors (Choi et al., 2010) due to the reduction 

of available ammonia as these phototrophs exhibit higher uptake ability. Plus, the formation of 

dense microalgae mats can lessen O2 penetration in the sediment, further reducing the available 

reactant pools for AOB metabolisms (Risgaard-Petersen, 2003). On the other hand, in runnels, 

it can be expected that the competition between AOB and phototrophs is reduced due to the 

much higher ammonia concentration. In fact, in this type of non-nitrogen-limiting conditions, 

positive interaction can be expected via the production of O2 as a by-product of photosynthesis 

that can be consumed by AOB as shown before to occur in estuarine sediments (Petersen et al., 

1994; Joy, 2001). 

 

Despite the intensive effort deployed here to monitor relevant physio-chemical parameters to 

explain the difference in nitrification rates, it should be noted that other factors might play a 

role but have not been measured. For example, sulphide concentration has been shown to 

significantly inhibit nitrification in pure cultures of AOB (Juliette et al., 1993), sludge 

(Bejarano-Ortiz et al., 2015; Delgado Vela et al., 2018) and sediment (Joye and Hollibaugh, 

1995; Erguder et al., 2009). During the campaign to collect the samples used in this study, a 

black colouration was observed in the sediment of the Montportail-Brouage mudflat at a few 

centimetres below the surface (data not shown), which is an indicator of the presence of iron 

sulphide due to the likely production of sulphide in the lower anoxic layers of the sediment. 

Laima et al. (2002) showed that the desiccation of ridges during emersion (low tide) induces 

an increase in salinity and a flow of pore water from the bottom layer of the sediment to the 

surface layer. If sulphide is present in those bottom sediment layers, it is possible that it will be 

transported to the top layers via this mechanism and inhibits AOB activity in ridges. Whether 

sulphide significantly affects nitrification in this environment should be further investigated in 
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future studies. As discussed previously, another important parameter influencing nitrifier 

activity, and that wasn’t measured here, is the O2 penetration in the sediment. During the 2016 

campaign, a higher O2 penetration was measured in the runnels compared to the ridges (Figure 

S.2). Laima et al. (2002) also showed a higher O2 penetration in runnels compared to ridges in 

the Montportail-Brouage mudflat sediment. This is in accordance with the higher measured 

PNR rates and higher amoA transcription measured in the runnels here. It would therefore be 

interesting to test how sulphide and oxygen concentration change in these sediments following 

sediment exposure at low tide. For example, to determine if a flow of sulphide-rich water from 

the bottom layers upon sediment drying at low tide is occurring, sulphide concentration 

changes at different depth and different time points could be recorded using micro-sensors. A 

similar depth/time approach could be used to investigate how oxygen penetration changes in 

sediments (especially ridges) at low tide. Finally, differences in sediment erodability and 

macro-fauna composition between the two sediment structures could have an impact on 

sediment mixing, organic matter remineralisation and ammonia release, both of which could 

affect microbial assemblages and activities (Gouleau et al., 2000; Laima et al., 2002). It would 

be interesting to construct ridges and runnels microcosms with and without native macrofauna 

and measure PNR/AOB activity to see how a phenomenon such as bioturbation influences 

nitrification. A summary of the main findings and hypotheses generated by this study is 

presented in Figure 4.22. 

 

Previously, the ridge/runnel structures present in the Montportail-Brouage mudflat have been 

shown to significantly impact the rates of microbial nitrification (Laima et al., 1999, 2002) and 

this observation was further confirmed in this study. Other studies have shown the importance 

of soil physical arrangement to boost microbial nitrogen cycle metabolisms in constructed 

wetlands (Su et al., 2018; Wang et al., 2018). In these studies, authors reported the presence of 

nitrogen cycle hotspots in riparian zones and were able to increase microbial nitrogen 

metabolisms, especially nitrification, by increasing the interface between land and water (Su et 

al., 2018). Together with our present study, these results indicate that landscape morphology 

is important to create hotspots of microbial activity.  

 

Interestingly, Su et al. (2018) found that higher activity in their engineered systems did not 

correlate with total AOB abundance. Similarly, when comparing nitrification rates between 

two different estuaries, Duff et al. (2017) showed significant differences that were not 

correlated with nitrifiers abundances. Here, we found that the abundance of AOB was higher 
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in ridges compared to runnels, in contradiction with the measured PNR. On the other hand, a 

comparison of bacterial amoA transcript abundances revealed an opposite trend with higher 

abundance in runnels compared to ridges. A similar trend was observed for nxrB (higher 

abundance in ridges compared to runnels at the DNA level and inversely at cDNA level). This 

shows the importance of quantifying functional genes at the transcript level to obtain a better 

understanding of microbial processes in the natural environment (see also Graham et al., 2011). 

The success of transcript-based studies depends on the integrity of the starting RNA material 

after extraction from the environment (Chapter II; Cholet et al., 2019) and on an RT protocol 

that faithfully produces cDNA (Chapter III; Cholet et al., 2020). In this study, one sample was 

excluded because it showed lower integrity compared to other samples, illustrating how to use 

RNA integrity indexes in concrete situations. 

 

Results from the sequencing of the Bacterial amoA genes revealed the existence of three 

separate clusters (C1, C2 and C3) based on the phylogenetic tree (Figure 4.15): Cluster C1, 

which was dominant in terms of abundance in both ridges and runnels, and in particular ASVs 

1,2,8,12 and 18 which represented a cumulative 95.1% and 88.1% of the total abundance in 

ridges and runnels, respectively. Cluster C2: containing a majority of unknown ASVs, 

generally of low abundances and some representative of Nitrosomonas 

aestuarii, Nitrosomonas eutropha and Nitrosomonas oligotropha. C3: containing some 

unknown AOB and representatives of Nitrosospira, also low in abundance. Since clusters 

C1and C2 were more closely related to each other compared to C3 and that the known ASVs 

in C1 and C2 were only identified as Nitrosomonas, while those in C3 were only identified 

as Nitrosospira it can be hypothesised that the unknown ASVs in C1 and C2 are of the 

genus Nitrosomonas while the unknown in C3 is of the genus Nitrosospira.  

 

Strikingly, when looking at the RNA/DNA ratio of individual ASVs, it was found that the 

ASVs in C2 (the low abundant cluster; Figure 4.15 and 4.18) were generally highly active 

(RNA/DNA ratio>1) and their abundance at RNA generally correlated with PNR measured in 

each structure. On the other hand, the ASVs in C1 (the high abundance cluster; Figure 4.15) 

displayed low activity (RNA/DNA ratio<1) (Figure 4.16) indicating that, although present at 

high proportion, many did not transcribe their amoA genes. No transcripts form cluster C3 was 

recovered indicating that Nitrosospira likely does not play a significant role in nitrification in 

this ecosystem, or at least at the time of sampling. When comparing ridges and runnels, it was 

observed that the highly active AOB ASVs from C2 were generally more active in runnels and 
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that their abundance at RNA level correlated with overall PNR (Figure 4.17 and 4.18). From 

these observations, we therefore hypothesise that these highly active but low abundance ASVs 

are the drivers of the nitrification process in the Montportail-Brouage mudflat and that the 

higher AOB abundance in ridges reflects the higher presence of inactive Nitrosomonas in this 

structure, which is also reflected by the lower recorded PNR per AOB cells in ridges (Figure 

4.12). This, again, shows the importance to study microbial communities at both DNA and 

RNA level, including when doing amplicon sequencing, to get a better insight into their 

function. 

 

For AOA, the community (at DNA level) was also dominated by a few ASVs with ASV_1 

representing, on its own, 64.7% and 66.7% of the total community in ridges and runnels, 

respectively. When adding the next 6 most abundant ASVs (ASV 5,9,8,16,26 and 37), this 

accounted for a total of 96.9% and 97.4% in ridges and runnels, respectively. Interestingly, 

there were more unique AOA ASVs (not shared between ridges and runnels) compared to AOB 

and they represented a higher proportion of the community (Figure 4.19 and Table 4.6) 

indicating that some AOA might preferentially grow in ridges and others in runnels. However, 

overall, both ridges and runnels were dominated by Nitrosopumilus (which probably included 

ASV_1). When looking at the RNA/DNA ratio for individual AOA ASVs, it was observed 

that, like for AOB, some ASVs were highly active while others, including the dominant 

ASV_1, 5 and 8 and 26 were of low activity (Figure 4.20). Yet, despite their low RNA/DNA 

ratio, these ASVs were more active in runnels than in ridges and their abundance at RNA level 

correlated with PNR (Figure 4.21) indicating that they could still participate in the nitrification 

process, albeit to a much lower extent compared to AOB. 

 

Understanding which are the active microbial groups involved in the global nutrient cycle is of 

paramount importance to try to anticipate their responses to future environmental changes 

(Chapin et al., 2009; Dutta and Dutta, 2016; York, 2018; Cavicchioli et al., 2019). In particular, 

it is expected that nitrification could be substantially impacted, in both terrestrial and aquatic 

ecosystems by global climate change (Szukics et al., 2010; Beman et al., 2011; Liu et al., 2015; 

Hu et al., 2016; Breider et al., 2019). In this study, we found that the most active AOB, which 

likely drive the difference in nitrifications between ridges and runnels, were unknown (likely 

unknown Nitrosomonas) therefore indicating that could represent 

novel Nitrosomonas isolates. More efforts are therefore needed to directly identify active 

nitrifiers from the environments.  
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In conclusion, this study shows that the ridges/runnels sedimentary structures significantly 

impact the distributions of microorganisms in the Montportail-Brouage mudflat and highlights 

the importance of taking into consideration the sediment spatial heterogeneity in environmental 

microbiology studies. We also showed that the ridges/runnels structures have a strong impact 

on nitrification, with PNR significantly higher in runnels. Nitrification in this ecosystem is 

likely driven by a low abundance but highly active AOB cluster while the most abundant AOB 

cluster displayed low activity. AOA was also shown to be active in both ridges and runnels 

albeit to a lower level. Differences in nitrification rates are better explained by comparisons at 

RNA level illustrating the need for reliable and reproducible transcriptomic workflow when 

studying biogeochemical cycles. This study also highlights the need for the development of 

new techniques for the identification of active nitrifiers in natural environments. 
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Figure 4.22 Schematic representation of the hypothesised AOB dynamics in the 
Montportail-Brouage mudflat. The hypothesised higher ammonia uptake by microalgae in 

ridges (left) compared to AOB is represented by different arrow size. The dense microalgae 

mats on the top of the sediment also possibly reduce O2 penetration, as represented by a smaller 

arrow. The desiccation of the most upper sediment layer in ridges is represented by a pore 

water gradient (blue font), which results in a possible suction of H2S rich water form the bottom 

sediment layers (yellow arrow). The finer and denser sediment in ridges is represented by 

smaller grain size. In runnels (right) the higher ammonia availability reduces the competition 

between microalgae and AOB and a possible positive interaction via the O2 produced by the 

phototrophic metabolism. Combined with a higher O2 penetration, this creates a well-

oxygenated sediment (in the top layers). AOB are represented by circles in ridges and runnels 

and the proportion of active and inactive cells by green and red colours in the circles, 

respectively. The smaller circle in runnels represents the lower AOB abundance compared to 

ridges. Substrate consumption and production are represented by solid and dashed arrows 

respectively. The possible role of the macrofauna is represented in runnels with the creation of 

a worm burrow by a polychaete, inducing the diffusion of O2 in deeper sediment layer and the 

production of ammonia in dejections.   
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General Conclusion and Future Perspectives 
 
5.1 Importance of RNA Integrity and Possible Improvement of the Ramp 

In the first part of this thesis, the importance of measuring RNA integrity has been shown in a 

series of laboratory-controlled RNA degradation experiments. Indeed, RNA degradation 

significantly alters RT-Q-PCR results, inducing strong increases in the Ct of the target 

transcripts and significantly affected the community composition structure recovered by RT-

PCR-sequencing of functional transcripts. While both the RIN and the Ramp, reflected the 

degradation status of the RNA preparation, it was shown that the Ramp generally reflected the 

degradation status of the mRNA better.  

 

A drawback of the Ramp approach is the fact that it relies on the presence of multiple conserved 

regions along the target transcript (glnA) which poses several problems: i) primer design is 

restricted to these conserved regions which limit the size of the amplicons that can be produced 

and therefore, the possibilities for the length of both the long and small amplicons and ii) the 

degree of conservation of the different regions might vary among bacterial, which might result 

in the different primers having different binding efficiencies depending on the microbiome 

present in the sample. Furthermore, the use of Q-PCR limits the size for the long amplicon, 

with efficiencies generally reduced for amplicons >400 bp. Finally, the SYBR fluorescence 

detection method is affected by primer dimer when considering small amplicons.  

 

Figure 5.1 presents a possible method that would resolve some of the issues with the current 

Ramp method by adapting the 5’RACE method (Schaefer, 1995): This method starts with 1) the 

attachment of the reverse gene specific primer on the target mRNA and 2) the synthesis of 

cDNA 3) The RNA template is then degraded and the cDNA is purified. 4) A poly C tail is 

attached at the 3’ end of the cDNA which is used for 5) the attachment of an anchor sequence. 

The anchor contains a known sequence and a ploy G/I (deoxyino-sine) site 6) The anchor site 

and the gene specific sequences are used as forward and reverse sites respectively for PCR 

amplification. Finally, 7) the PCR is run on an electropherogram to check the size distribution 

of the PCR products. In the case of non-degraded RNA, only one size should be observed, 

equal to the distance between the binding site of the reverse primer and the transcription 

initiation site of the target gene. For degraded RNA, multiple peaks are observed with smaller 

lengths than the one expected.  
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The ratio of peak area of expected size to the total peak area can be used as a measure of RNA 

integrity, which should be bound between 1 (perfect RNA) and 0 (totally degraded RNA). In 

theory, this method has the advantage of relying on only one conserved site and the use of PCR 

instead of Q-PCR allows for the amplification of longer fragments making this approach, in 

theory, a more sensitive measure of RNA integrity. Developing new methods for the evaluation 

of RNA integrity, and in particular, mRNA is crucial and should be the focus of more studies 

future.  
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Figure 5.1 Schematic representation of the adaptation of the RACE technique for the 
evaluation of RNA integrity. Two different situation are presented: left: Intact RNA and right: 
degraded RNA, which are truncated at the 5’end. The target mRNA is represented as black 

arrows. Gene specific reverse primer is represented by the blue arrows and the cDNA by blue 
lines. Red numbers represent the different steps described in the text above. x (2; X; Y; Z)n: 

Expected copy number after PCR (X: Y; Z the efficiencies for the different lengths). In 7, the 

green dashed arrow represents the expected size.  
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Figure 5.1. (continued) 
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unlikely that a flawless method will ever be developed. The important is to understand the 

limits of the methods used and to use a consistent approach for all samples tested. In our case, 

this consistent approach means 1) to systematically measure RNA integrity and 2) use the SSIV 

enzyme and GS priming for functional gene studies. 

 

In order to compare the RT strategies, mock communities containing RNA with known 

sequences were constructed, seeded into environmental RNA background and retrieved via 

RT-PCR-sequencing (chapter III). Such validations should be more routinely carried out to 

ensure the validity of the results obtained. Here, it informed us that transcriptomics diversity 

comparison between samples (β diversity) is valid while, on the other hand, small differences 

in α diversity are not always meaningful. Such conclusion significantly helped interpret results 

obtained in Chapter IV, when an actual ecological hypothesis was being tested. 

 

This approach, although being unusually thorough in an environmental microbiology context, 

has limits that need to be discussed. The RNA used for the mock was obtained via in 

vitro transcription, which might be different from in vivo transcripts. Indeed, it is now 

recognised that bacteria use RNA modifications as post-transcriptional regulation mechanisms 

to modulate translation (Hoernes et al., 2016; Hör et al., 2018). These base-modifications have 

been shown to interfere with the RT reaction, introducing, base substitutions, 

insertions/deletions and truncation in the cDNA (Kietrys et al., 2018; Potapov et al., 2018). If 

we were to move from OTUs to ASVs, with single resolutions as the cut-off for distinguishing 

two sequences, the impact of these RNA modifications on the RT fidelity would also need to 

be determined. Furthermore, their significance as post-transcriptional regulations mechanisms 

in the environment as been yet to be explored and could constitute the next breakthrough in 

our understanding of microbial dynamics. Nevertheless, we aimed to introduce greater rigour 

into mRNA quantification from environmental samples, and introduce best practices that can 

be more widely adopted by the community to would improve the reliability of the approach 

and therefore translate to meaningful data from which ecological understanding can be 

derived.  

  



189 

5.3 Effect of the Ridge/Runnel Structures on Microbial Composition and 

Activity 
5.3.1 Limits of the primers for the detection of AOB 

In Chapters IV, members of the family Nitrosococcaceae (containing the genus of 

AOB Nitrosococcus in the SILVA taxonomy classification) were detected by sequencing of 

the 16S rRNA genes but were not detected by sequencing of the amoA gene. As discussed in 

4.5, this is due to the current AOB primers that were designed to specifically target beta-

proteobacterial AOB. This is a major drawback of this primer pair as Nitroscoccus oceani is 

distributed worldwide in the ocean (Ward and O’Mullan, 2002) and has been found in sediment 

(Zaccone et al., 1996; Dohra et al., 2019). It is therefore necessary to design new primers that 

allow the simultaneous detection of beta and gamma AOB to further our understanding of AOB 

dynamics in the environment.  

 

To determine if such primers could be designed, A list of full length or quasi full length 

(containing the start codon and length superior to 700bp) AOB amoA sequences were 

downloaded from NCBI including a representative of β-proteobacterial AOB 

(Nitrosomonas and Nitrosospia) and γ-proteobacterial AOB (Nitrosococcus). 

The amoA sequence of the newly discovered acid-tolerant γ-proteobacterial AOB was 

retrieved by blasting the amoA sequence of Nitrosococcus Halophilus (NC_013960) 

against Candidatus Nitrosoglobus Terrae (AP014836.1) full genome. A significant match was 

found (71.85% identity) between positions 1665209 and 1664496 on the minus strand of the 

genome and added to the database. Sequences were then aligned using Mafft and primers were 

searched using PrimerProspector with the default settings. DeNovo Primers were then aligned 

against the initial full-length AOB amoA sequences and compared based on the following 

criteria: i) the total number of perfectly matching bases ii) total number of perfectly matching 

bases at the 3’end of the primer iii) the total number of degeneracies and iv) the total number 

of unambiguous bases at the 3’end of the primer. When multiple primers were found at the 

same position, only the best candidate was chosen based on the above criteria.  

  

The PrimerProspector search returned four and two possible regions for the design of the 

forward and reverse primers respectively. Comparison of the different primers showed that 

primers 163f and 492r were the best candidates as universal AOB primers as they displayed 
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the higher number of perfectly matching bases (163f and 492r will be referred to as unAOBf 

and unAOBr, respectively, thereafter).  

 

To compare the newly designed primer pair to the existing ones, the WS of the unAOB primer 

pair was displayed as a heatmap on the phylogenetic tree of the AOB amoA sequences used for 

primer design, along with the BamoA primer pair and the 310.627 primer pair (specific 

to Nitrosococcus) (see Table 5.1 for the full list of Primers). The specificity of the primers was 

evaluated by calculating the WS of the primers against a list of full-length pmoA bacterial 

sequences downloaded from NCBI, including marine sediment methanotrophs such 

as Methylocaldum marinum, Methylomicrobium japanense and Methyloprofundus sediment.  

 

Table 5.1 Primers being compared for the amplification of AOB amoA. 
Primer Primer pair Sequence Orientation Reference Target 

BacamoA1-F  
BamoA 

GGGGHTTYTACTGGTG
GT 

Forward (Hornek et 
al., 2006) 

 
β-AOB BacamoA2-R CCCCTCBGSAAAVCCT

TCTTC 
Reverse 

310-F  
 

310.627 

GGTGAGTGGGCTAAC
CG 

Forward (Norton et 
al., 2002) 

 
γ-AOB 

627-R GGTACCTTTCTCAAYC
ATTC 

Reverse (Junier et 
al., 2008) 

uniAOB-F 
 

 
unAOB 

GWGACTGGGAYTTCT
GG 

 

Forward  
This study 

 
β and γ -

AOB uniAOB-R SCAAASAKCGGCCAGT
T 

Reverse 

Sequences are reported in 5’ to 3’ orientation. 

 

As expected, the BamoA primer pair had a low WS against the β-

proteobacterial amoA sequences and a high WS against the γ-proteobacterial AOB (and 

inversely for the 310.627 primer pair). The unAOB primer pair generally had a low WS against 

both β and γ AOB amoA sequences, indicating that they might be a good candidate as universal 

AOB primers. However, it is worth noticing that the unAOB primer pair generally had slightly 

higher WS against the β-proteobacterial amoA sequences compared to the BamoA primer pair 

and a high WS against the Nitrosoglobus amoA sequence (Figure 5.2). Furthermore, the 

unAOB primers generally had lower WS against the full-length pmoA compared to the BamoA 

primer pair, indicating that they could possibly generate unspecific amplification of 

the pmoA gene (Figure 5.3). 
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Figure 5.2 WS of the selected primers along the diversity of the AOB amoA sequences 
used for deNovo primer design. The Phylogenetic tree of the AOB amoA sequences is 
presented along with the WS of each primer as represented by the heatmap with green colours 

indicating lo WS and inversely for red colours. The Genus of the AOB amoA sequence is 
indicated by coloured points on the tips of the tree branches as indicated in the legend. Numbers 

on the tree represent bootstrap values (1000 repetitions). 
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Figure 
5.3 WS of the AOB primers against full-length pmoA sequences. The Phylogenetic tree of 

the pmoA sequences is presented along with the WS of each primer as represented by the 
heatmap with green colours indicating lo WS and inversely for red colours. The Genus and 

species of the pmoA sequence is indicated by coloured points on the tips of the tree branches 
as indicated in the legend. Numbers on the tree represent bootstrap values (1000 repetitions). 
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using the OTU method, the analysis was repeated but using OTU clustering (97% identity) 

rather than ASVs. 

 

As shown in Figure 5.4, although two separate clusters could be distinguished in ridges ad 

runnels (one cluster containing mainly Nitrosomonas Group A and Group B and a second 

cluster containing mostly Unknown AOB), there was no evidence for one of these clusters 

being the more active one. Interestingly, 10 out of the 11 OTUs found to be more abundant in 

the runnels at RNA level (Figure 5.5) were also highly active in runnels (Figure 5.4 B). This 

would significantly change the conclusions drawn in chapter IV, as it would indicate that 

both Nitrosomonas group A and B and the unknown AOB are responsible for the nitrification 

process in the Montportail-Brouage mudflat. This could indicate that the OTU method has less 

resolution than the ASV method. In other words, the clustering of sequences based on a 

similarity threshold most likely combines together sequences that are in fact different, masking 

relevant features of the microbial community. Indeed, it had previously been shown hat the 

ASV method is more accurate and sensitive compared to the OTU approach for marker-gene 

analysis (Callahan et al., 2017; Caruso et al., 2019). Here we propose a new method to analyse 

functional gene sequencing data based on ASV construction, sequences filtering for size and 

clustering at the protein level. We show that this approach reveals more differences between 

libraries (e.g. DNA vs. RNA and ridges vs. runnels) and we therefore hypothesise that this 

method is more resolutive than the OTU approach. However, more research should be done to 

compare the two approaches in future, especially for functional gene analysis. 
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Figure 5.4 Identification of highly active AOB in ridges (A) and runnels (B) based on OTU construction. Colour of tips represents the taxonomy attributed 
to OTUs using the BLCA method. The heatmap represents the log2 fold change in abundance of individual OTU between the DNA and RNA libraries (only 

OTUs with significant differences in abundance between DNA and RNA libraries are represented; red indicates higher abundance in DNA and green indicates 
higher abundance in RNA). Phylogenetic tree was drawn using FastTree, from Maftt-aligned OTUs sequences and rooted using the particulate methane 

monooxygenase (pmoA) gene. Tree colouring and heatmap was done in R using ggtree. 
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Figure 5.5 AOB OTUs differentially active between ridges and runnels. Colour of tips 

represents the taxonomy attributed to OTUs using the BLCA method. The heatmap represents 

the log2 fold change (i.e. fold change, log2 transformed) in activity (abundance in the RNA 

library) of individual OTU between ridges and runnels (only OTUs with significant differences 

are represented; blue indicates higher activity in runnels and orange indicates higher activity 

in ridges). Size of tips represents the mean activity (log2 transformed) between ridges and 

runnels. Phylogenetic tree was drawn using FastTree, from Maftt-aligned OTUs sequences and 

rooted using the particulate methane monooxygenase (pmoA) gene. Tree colouring and 

heatmap was done in R using ggtree. 
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By measuring differences in AOB amoA gene and transcripts abundances between ridges and 

runnels, it was concluded that nitrification in the Montportail-Brouage mudflat is likely driven 

by a group of AOB that are low in abundance but highly active. The use of the BCLA method 

could not resolve the phylogeny of this group, which limits hypotheses that can be made from 

this observation. We also showed that the PCR-based methods limit our ability to target the 

full diversity of sequences in the environment (Nitrosococcus not currently targeted). This 

highlights the need for new techniques that would allow the direct isolation of active organisms 

from the environment.  
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The RAMAN-activated cell sorting method allows for the isolation of carbon fixing 

microorganisms directly from the environment. In this method, cells that incorporate heavy 

isotopes such as 13C during autotrophic growth are separated from complex microbial 

communities. First, cells are separated from the matrix, like for flow cytometry, and passed on 

a microfluidic device and their single-cell RAMAN spectra are measured. Cells that have 

incorporated 13C will display a shift in their spectra, which is then used to separate them from 

the rest of the microbial community (Wang et al., 2013; McIlvenna et al., 2016). This method 

has been previously used to isolate phototrophs from the Yellow Sea, China. In combination 

with metagenomics, it can constitute a formidable tool for reconstructing full genomes of active 

carbon fixers in the environment (Jing et al., 2018). Since AOA and AOB grow 

autotrophically, it could in theory be possible to apply this method to isolate active nitrifiers, 

including AOM and NOB directly from the environment. This would constitute a major 

breakthrough for the discovery of the metabolic potential, microbe-microbe interactions and 

factors regulating the behaviour of nitrifiers in the environment. 

 

The presence of active and inactive AOB in the Montportail-Brouage mudflat probably reflects 

differences in nitrifiers’ physiologies that make them respond and adapt differently to 

environmental parameters. However, when using a targeted approach, as the sequencing of 

the amoA gene and transcript alone, it is impossible to identify what these differences might 

be, especially since the taxonomy of the active group could not be resolved. Untargeted 

approaches such as metagenomics, either from enrichment cultures or directly from 

environmental DNA, could help understand the genetic basis for these differences by 

reconstructing full genomes from representatives of the active and inactive clusters. Previously, 

the use of metagenomics has greatly helped expand knowledge on AOM and NOB by 

discovering the genetic potential to use alternative substrates as sources of energy such as the 

urease genes in Nitrosospira multiformis (Norton et al., 2008), Nitrosococcus oceani (Klotz et 

al., 2006) and the cyanase genes in the AOA Nitrososphaera gargensis and in NOB 

(Palatinszky, Herbold, Jehmlich, Pogoda, Han, Von Bergen, et al., 2015). 

 
5.3.4 Ecological and environmental implications  

In chapter IV, strong differences in potential nitrification rates were detected between ridges 

and runnels. These observations would need to be validated by measuring actual in situ rates. 

Whether small-scale variations in sediment morphology should be taken into account when 
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calculating nutrient-processing rates is important as it would affect global budgets. Beyond 

nitrification and the amount of ammonia that is transferred from land to sea, the effect of 

sediment structures on nitrogen processing rates is important to understand to accurately 

predict the amount of nitrogen oxides produced by estuaries. As discussed previously, nitrogen 

oxides (NOx) represent a global challenge in the context of climate change and, in natural 

environments, their production and consumption are mainly mediated by microorganisms. Are 

structures like runnels- where nitrification and potentially coupled nitrification-denitrification 

enhanced- hotspots for NOx production? Or, alternatively, are ridges producing more NOx than 

runnels because of oxygen limitation? What is the difference in production and consumption 

of NOx in ridges and runnels compared to mudflats without such structures? These questions 

are some examples of the ecological implications of the findings of this thesis and should be 

further investigated in future. 

 

Results from this thesis also have important ecological implications. Indeed, we also showed 

that AOB were more abundant in ridges while PNR was higher in runnels and hypothesise that 

the majority of AOB quantified at DNA level were actually of low activity. Alternatively, could 

this observation indicate that AOB are active and growing in ridges but simply “doing 

something else”? Whether AOB are able of heterotrophic growth in the environment is still 

under debate but results from pure cultures (Abeliovich et al., 1992; Hommes et al., 2003; 

Schmidt, 2009) and identification of genes involved in heterotrophic growth in AOM genomes 

suggest they might (Arp et al., 2007; Prosser and Nicol, 2012). Could it therefore be that the 

low-activity AOB cluster (Nitrosomonas Cluster group A and B) are only facultative 

autotrophs and are also able to gain energy and grow on organic carbon, while the high-activity-

unknown AOB cluster are obligate autotrophs? The ability of the AOB to use pyruvate as a 

carbon and energy source would theoretically increase their maximum growth yield from 0.13-

0.16 gBio/gN-NH3 (grams of biomass per gram of ammonia nitrogen) to 0.35-0.61 gBio/gN-

NH3 (González-Cabaleiro et al., 2019). Could this higher growth yield explain the higher 

abundance of AOB in ridges? If this is indeed the case, it would seriously put into question the 

utility of measuring amoA gene abundance alone and it’s correlation with PNR as this assumes 

that nitrification is the only energy source in AOM. This further illustrates the utility of 

transcriptomics when studying microbial function in the environment. The use of SIP would 

help identify the AOM clusters that actively fix CO2 in this environment and therefore grow 

autotrophically; by incubating ridges and runnels samples under nitrifying conditions (presence 

of ammonia; oxygenation), would it be possible to show the active cluster more labelled than 
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the inactive one, therefore showing that they are the main autotrophic nitrifiers? With the 

differential abundance and activity of AOB clusters in close proximity, the Montportail-

Brouage mudflat would be an ideal environment to test these hypotheses in future. 
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Annexes 
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Figure S.1 Evolutionary 
relationships of the 84 bacterial 
glnA genes used to design new 
primers. The evolutionary history 
was inferred using the Neighbor-
Joining method (Saitou & Nei, 
1987). The tree is drawn to scale, 
with branch lengths  in the same 
units as those of the evolutionary 
distances used to infer the 
phylogenetic tree. The 
evolutionary distances were 
computed using the Maximum 
Composite Likelihood method 
(Tamura et al., 2004) and are in the 
units of the number of base 
substitutions per site. The analysis 
involved 84 nucleotide sequences. 
Codon positions included were 
1st+2nd+3rd+Noncoding. All 
positions containing gaps and 
missing data were eliminated. 
There were a total of 690 positions 
in the final dataset. Evolutionary 
analyses were conducted in 
MEGA7 (Kumar et al., 2015). The 
different glanA groups are 
represented by coloured tips as 
indicated in the legend. 
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Figure S.2 Oxygen profiles measures in ridges and runnels on the Montportail-Brouage 
mudflat in 2016. 
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Supplementary Information 1: list of sequences used to design new glnA primers 
Sequence ID Group Genus/Species 
NZ HG322950.1 1 Pseudomonas knackmussii 
NZ LUCV01000019.1 1 Pseudomonas putida 
NZ CP007441.1 1 Pseudomonas stutzeri 
NZ CP009323.1 1 Burkholderia gladioli 
NZ CP012504.1 1 Aeromonas veronii 
NZ LCWP01000011.1 1 Chromobacterium subtsugae 
NZ CP015880.1 1 Ensifer adhaerens 
NC 007493.2 1 Rhodobacter sphaeroides 
NZ CP009048.1 2 Pseudomonas alkylphenolia 
NC 009439.1 2 Pseudomonas mendocina 
NC 014034.1 2 Rhodobacter capsulatus 
NZ CP007045.1 2 Rhizobium leguminosarum 
KX488606.1 2 Rhizobium leguminosarum 
CP009124.1 3 Streptomyces lividans 
NC 003888.3 3 Streptomyces coelicolor 
CP012949.1 3 Streptomyces ambofaciens 
LIAN01000232.1 3 Actinobacteria bacterium 
NC 003450.3 3 Corynebacterium glutamicum 
CP007790.1 3 Corynebacterium marinum 
LN885086.1 4 Nitrospira sp 
LT828648.1 4 Nitrospira japonica 
FP929003.1 4 Nitrospira defluvii 
CP011801.1 4 Nitrospira moscoviensis 
KR873367.1 4 Nitrospira lenta 
L05609.1 5 Calothrix 
X00147.1 5 Anabaena 
CP003642.1 5 Cylindrospermum stagnale 
KX035102.1 5 Mastigocladus 
LO018304.1 5 Planktothrix agardhii 
HM130917.1 5 Arthrospira platensis 
KY010035.1 5 Microcystis sp 
CP000815.1 5 Paulinella chromatophora 
NC 005042.1 5 Prochlorococcus marinus 
AF026393.1 5 Synechococcus 
AF026393.1 5 Synechococcus 
CP000859.1 6 Desulfococcus oleovorans 
NZ CP006951.1 6 Dehalococcoides mccartyi 
CP000027.1 6 Dehalococcoides ethenogenes 
X60160.1 6 Thiocapsa maritima 
NC 012039.1 6 Campylobacter lari 
NC 000964.3 6 Bacillus subtilis 
NZ CP009828.1 6 Staphylococcus aureus 
JX017366.1 6 Bacillus 
CP006863.1 6 Bacillus toyonensis 
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CP003687.1 6 Bacillus thuringiensis 
NC 000913.3 7 Escherichia coli 
CP017671.1 7 Providencia rettgeri 
NC 018632.1 7 Alteromonas macleodii 
LPB0090 7 Thalassotalea sp 
CP015411.1 7 Pseudoalteromonas luteoviolacea 
NC 007643.1 8 Rhodospirillum rubrum 
CP000744.1 8 Pseudomonas aeruginosa 
CP004143.1 8 Pseudomonas denitrificans 
JN676036.1 8 Pseudomonas nitroreducens 
HG322950.1 8 Pseudomonas knackmussii 
CP014158.1 8 Pseudomonas citronellolis 
CP015878.1 8 Pseudomonas citronellolis 
CP013923.1 8 Achromobacter denitrificans 
AM490508.1 8 Herbaspirillum seropedicae 
CP000267.1 8 Rhodoferax ferrireducens 
CP019239.1 8 Rhodoferax saidenbachensis 
CP016603.1 8 Comamonas aquatica 
JX017371.1 8 Comamonas 
HG326930.1 8 Rhizobium pusense 
HG326939.1 8 Agrobacterium genomosp 
HG326926.1 8 Agrobacterium fabrum 
HG326927.1 8 Agrobacterium genomosp 
JX017367.1 8 Rhizobium 
KX490616.1 8 Rhizobium leguminosarum 
AP014685.1 8 Bradyrhizobium diazoefficiens 
CP002826.1 8 Oligotropha carboxidovorans 
CP000319.1 8 Nitrobacter hamburgensis 
CP000115.1 8 Nitrobacter winogradskyi 
AP014854.2 8 Blastochloris viridis 
AJ459585.1 8 Mesorhizobium 
AJ459586.2 8 Mesorhizobium 
JX017367.1 8 Rhizobium 
KX490616.1 8 Rhizobium leguminosarum 
HG326934.1 8 Agrobacterium tumefaciens 
HG326941.1 8 Agrobacterium genomosp 
NC 004463.1 8 Bradyrhizobium japonicum 
AJ459590.1 8 Mesorhizobium 
JN636822.1 8 Rhizobium 
NC 003047.1 8 Sinorhizobium meliloti 
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Supplementary Information 2: Steps to generate glnA database and taxonomy file to 
work with Qiime 
To make a database from Microbial Genome Database (MGBD) http://mbgd.genome.ad.jp, 
we need to follow the following steps: 
 
Step 1: 
From MBDG downloaded sequences for a glnA bacterial sequences and save it in a FASTA 
file called glnA.fa. Then generate a new FASTA file that only has organism names 
awk '/>/{gsub("^>","",$0);gsub(":.*","",$0);$0=">F"++i"_"$0}1' glnA.fa > 
glnA_symbol.fa 
 
Step 2: Get the organism IDs and store them in IDs.csv 
awk '/>/{a=$0;sub("^>F[0-9]+_","",$0); print a","$0}' glnA_symbol.fa > 
IDs.csv 
 
Step 3: Get mapping to NCBI gids. For this purpose, download 
http://mbgd.genome.ad.jp/dist/mbgd_2016-01/mbgd_2016-01_gene.gz  from 
http://mbgd.genome.ad.jp/htbin/view_arch.cgi   
awk -F"\t" 'BEGIN{while((getline k < 
"IDs.csv")>0){split(k,a,",");m[a[1]]=a[2];o[a[2]]=1}}{if(o[$1]){if(length($
12)>1){o[$1]=$12}}}END{for(i in m){print i","o[m[i]]}}' mbgd_2016-01_gene > 
mapping.csv 
 
Step 4: Use the mapping file to change the FASTA headers 
awk 'BEGIN{while((getline k < 
"mapping.csv")>0){split(k,a,",");m[a[1]]=a[2]}}/^>/{b=$1;gsub("_.*","",b);$
0=b"_"m[$1]}1' glnA_symbol.fa > glnA_reference_db.fa 
 
Step 5: Extract a comma-delimited IDs along with GIDs 
awk -F"_" 'BEGIN{print "ID,GID"}/^>/{gsub(">","",$0);print $1","$2}' 
glnA_reference_db.fa > glnA_reference_db_id.csv 
 
Steps to generate amoA database and taxonomy file to work with Qiime 
To make a database from Fungene (http://fungene.cme.msu.edu/ ), download amoA 
sequences to amoA.fa. 
Step 1: Format so that we have >ID_GID 
awk '/^>/{gsub(" .*","",$0); gsub(">","",$0); $0=">F"++i"_"$0}1' amoA.fa > 
amoA_reference_db.fa 
 
Step 2: Extract a comma-delimited IDs along with GIDs so that we can use an R package 
(taxize) to get the complete taxonomy out 
awk -F"_" 'BEGIN{print "ID,GID"}/^>/{gsub(">","",$0);print $1","$2}' 
amoA_reference_db.fa > amoA_reference_db_id.csv 
 
R script to generate taxonomy files (common to both glnA and amoA): 
library(rentrez) 
#Load the mapping table up 
mapping_table<-read.csv("glnA_reference_db_id.csv",row.names=1,header=T) 
#extract gids 
gids<-mapping_table$GID 
taxa_levels<-NULL 
for(i in seq(1:length(gids))){ 
  print(paste("Processing",i,"/",length(gids))) 
  tmp<-tryCatch(paste(XML::xpathSApply(entrez_fetch(db="taxonomy", 
id=entrez_summary(db="nucleotide", id=gids[i])$taxid,rettype="xml",  
parsed=TRUE), "//LineageEx/Taxon/ScientificName",  
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XML::xmlValue),collapse=";"),error=function(e) "") 
  if(is.null(taxa_levels)){taxa_levels<-tmp}else{taxa_levels<- 
c(taxa_levels,tmp)} 
} 
taxa_levels[taxa_levels==""]<-"cellular organisms;unassigned"  
data_to_write<-data.frame(ID=paste(rownames(mapping_table), 
mapping_table[,1],sep="_"),Taxa=taxa_levels) 
write.table(data_to_write,"glnA_reference_db.tax",sep="\t", 
row.names=F,col.names=F,quote=F) 

 



231 

Supplementary Information 3:  List of nirS sequences used to re-design qPCR primers 

Phylum Class Order Familly Genus Species/ strain name 
Accesion number  
(Nucleotide/Protein) 

Aquificae Aquificae Aquificales Aquificaceae Hydrogenobacter thermophilus TK-6 CP002221/ADO44561 

Aquificae Aquificae Aquificales Hydrogenothermaceae Persephonella marina EX-H1 CP001230/ACO04194 

Aquificae Aquificae Aquificales Hydrogenothermaceae Sulfurihydrogenibium sp. YO3AOP1 CP001080/ACD66103 

            

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Thermanaerothrix daxensis LGKO01000004/KPL83147 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Anaerolinea thermophila AP012029/BAJ64797 

Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae Bellilinea caldifistulae LGHJ01000006/KPL78197 

            

Deinococcus-Thermus Deinococci Thermales Thermaceae Oceanithermus profundus DSM 14977 CP002361/ADR37584 

Deinococcus-Thermus Deinococci Thermales Thermaceae Thermus oshimai JL-2 CP003249/AFV76102 

Deinococcus-Thermus Deinococci Thermales Thermaceae Thermus scotoductus SA-01 CP001962/ADW22372 

Deinococcus-Thermus Deinococci Thermales Thermaceae Thermus thermophilus FN666415/CBJ34318 

            

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus pneumoniae CLJU01000018/CJL48784 

            

Proteobacteria Acidithiobacillia Acidithiobacillales Acidithiobacillaceae Acidithiobacillales bacterium SG8 45 LJTU01000018/KPK11659.1 

Proteobacteria Acidithiobacillia Acidithiobacillales   Acidithiobacillales bacterium SM23 46 LJUK01000134/KPK69514 

            

Proteobacteria Alphaproteobacteria     Polymorphum gilvum SL003B-26A1 CP002568/ADZ69009 

Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium oligotrophicum AP012603/BAM92788 

Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Prosthecomicrobium hirschii LJYW01000001/KPL55974 

Proteobacteria Alphaproteobacteria Rhodobacterales Litoreibacter Litoreibacter arenae DSM 19593 AONI01000011/EPX78564 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Aliiroseovarius crassostreae LKBA01000024/KPN61790 
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Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Dinoroseobacter shibae DFL 12 CP000830/ABV94913 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Labrenzia aggregata CXST01000004/CTQ46751 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Labrenzia alba CXWC01000007/CTQ69729 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus denitrificans U75413/AAB17878 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus denitrificans PD1222 CP000489/ABL70574 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus pantotrophus AJ401462/CAC03621 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus sanguinis JRKT01000018/KGJ14663 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus sp. MKU1 LLWQ01000193/KRW95054 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paucibacter aquatile strain CR182 NZ/POSP01000003.1/WP/10276
9553.1 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudovibrio axinellae LMCB01000159/KZL05178 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudovibrio sp. Ad14 LMCD01000020/KZL07807 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudovibrio sp. Ad13 LMCC01000003/KZK86619 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pseudovibrio sp. Ad5 LMCH01000004/KZL01520 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Rhodobacteraceae bacterium HLUCCO07 LJSU01000028/KPP83431 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Roseobacter denitrificans OCh 114 CP000362/ABG31193 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Roseobacter litoralis Och 149 CP002623/AEI95094 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ruegeria atlantica CYPU01000030/CUH47623 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ruegeria pomeroyi DSS-3 CP000032/AAV97354 

Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Thioclava sp. DT23-4 AUNB01000023/KEO60092 

Proteobacteria Alphaproteobacteria Rhodospirillales   Rhodospirillaceae Azospirillum brasilense CP012918/ALJ39431 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Caenispirillum salinarum ANHY01000019/EKV27616 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Magnetospirillum gryphiswaldense MSR-1 CU459003/CAM74253 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Magnetospirillum magneticum AMB-1 AP007255/BAE52969 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Magnetospirillum marisnigri LWQT01000048/OAN51092 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Magnetospirillum sp. SO-1 AONQ01000069/EME68346 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Thalassospira lucentensis LPVY01000002/KZB68956 
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Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Thalassospira permensis NBRC 106175 AUNC01000001/KEO59842 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Thalassospira xiamenensis LPXM01000045/KZD06045 

Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Thalassospira xiamenensis M-5 AMRQ01000004/EKF13195 

            

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter sp. DBTN3 GU122964/ACY92300 

Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Bordetella petrii AM902716/CAP44402 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus alkaliphilus FMAD01000008/SCB26603 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus metallidurans CH34 CP000352/ABF10044 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus nantongensis CP014845/AMR81885 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus necator LMVF01000024/KUE88587 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus necator N-1 CP002878/AEI81194 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus pauculus GQ504717/ADN28073 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus sp. HMR-1 ANKP01000138/EKZ97934 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus sp. SK-4 JFJW01000102/EYS87961 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Cupriavidus taiwanensis LMG 19424 CU633750/CAQ72627 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia eutropha H16 X91394/CAA62740 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia eutropha H16 AM260480/CAJ97059 

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia pickettii DTP0602 CP006668/AGW94840 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax sp. 2FB7 AY078273/AAL86942 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax sp. JS42 CP000539/ABM42092 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Alicycliphilus sp. B1 BBSJ01000051/GAO23488 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Brachymonas denitrificans DQ865925/ABI96831 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Comamonas denitrificans DQ865926/ABI96832 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Curvibacter sp. PAE-UM LKCX01000031/KRH99151/ 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Diaphorobacter polyhydroxybutyrativorans CP016278/ASI68082 

Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Diaphorobacter sp. J5-51 JSYI01000121/KLR56966 
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Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Pelomonas sp. Root1444 LMFP01000027/KQY82451 

Proteobacteria Betaproteobacteria Burkholderiales unclassified Burkholderiales Leptothrix cholodnii SP-6 CP001013/ACB33718 

Proteobacteria Betaproteobacteria Burkholderiales   Rubrivivax gelatinosus IL144 AB536930/BAJ16230 

Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae Methylobacillus sp. MM2 LXTQ01000001/OAJ71930 

Proteobacteria Betaproteobacteria Neisseriales Chromobacteriaceae Gulbenkiania indica CYHA01000002/CUA82351 

Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Chromobacterium sp. LK1 LDUI01000036/KMN32840 

Proteobacteria Betaproteobacteria Nitrosomonadales Gallionellaceae Sideroxydans lithotrophicus ES-1 CP001965/ADE11367 

Proteobacteria Betaproteobacteria Nitrosomonadales Gallionellaceae Sulfuricella denitrificans skB26 BAFJ01000007/GAB72194 

Proteobacteria Betaproteobacteria Nitrosomonadales Sterolibacteriaceae Sulfuritalea hydrogenivorans sk43H AP012547/BAO30669 

Proteobacteria Betaproteobacteria Nitrosomonadales Thiobacillaceae Thiobacillus denitrificans LDUG01000028/KVW95088 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Aromatoleum aromaticum CR555306/CAI06598 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Azoarcus evansii AY078269/AAL86938 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Azoarcus sp. CIB CP011072/AKU13501 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Azoarcus sp. KH32C AP012304/BAL25833 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Dechloromonas aromatica RCB CP000089/AAZ48052 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Dechloromonas denitrificans LODL01000010/KXB31613 

Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae Propionivibrio sp. S1 FLQY01000367/SBT10752 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thauera aminoaromatica S2 AMXD01000019/ENO87324 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thauera aromatica AY078256/AAL86925 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thauera chlorobenzoica AY078261/AAL86930 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thauera humireducens CP014646/AMO36595 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thaurea sp. 28 AMXA01000008/ENO93245 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thaurea sp. 27 AMXB01000001/ENO83228 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thaurea linaloolentis 47Lol AMXB01000080/EN085266 

Proteobacteria Betaproteobacteria Rhodocyclales Zoogloeaceae Thaurea Terpenica ATJV01000048/EPZ16013 
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Proteobacteria Deltaproteobacteria     Deltaproteobacteria bacterium GWC2 55 46 LVEI02000001/KYK97987 

            

Proteobacteria Delta/Epsilon subdivision Epsilonproteobacteria   Nitratiruptor sp. SB155-2 AP009178/BAF70899 

            

Proteobacteria Gammaproteobacteria Acidiferrobacterales Acidiferrobacteraceae Sulfuricaulis limicola AP014879/BAV32586 

Proteobacteria Gammaproteobacteria Acidiferrobacterales Acidiferrobacteraceae Sulfurifustis variabilis AP014936/BAU46932 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter hydrocarbonoclasticus KT877013/AMO65337 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter sp. AK21 ANIE01000004/KEF31766 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter sp. EhN04 LXYN01000008/OAN94133 

Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter sp. EhC06 LXYO01000033/OAN89896 

Proteobacteria Gammaproteobacteria Alteromonadales Colwelliaceae Colwellia psychrerythraea 34H CP000083/AAZ25602 

Proteobacteria Gammaproteobacteria Chromatiales Ectothiorhodospiraceae Thioalkalivibrio nitratireducens DSM 14787 CP003989/AGA33316 

Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter cloacae FKIY01000075/SAJ30203 

Proteobacteria Gammaproteobacteria Nevskiales Sinobacteraceae Steroidobacter denitrificans CP011971/AMN47484 

Proteobacteria Gammaproteobacteria Oceanospirillales Hahellaceae Hahella chejuensis KCTC 2396 CP000155/ABC31120 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas alimentaria FJ686149/ACN97377 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas campaniensis FJ686150/ACN97378 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas cerina GQ384052/ACV88083 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas chromatireducens CP014226/AMD00733 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas denitrificans GQ384047/ACV88078 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas fontilapidosi FJ686147/ACN97375 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas halodenitrificans FJ686155/ACN97381 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas nitroreducens FJ686148/ACN97376 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas shengliensis FJ686158/ACN97383 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas ventosae FJ686160/ACN97385 

Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas sp. PBN3 AXCA01000197/ERS82918 
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Proteobacteria Gammaproteobacteria Oceanospirillales Oleiphilaceae Oleiphilus sp. HI0043 LWEY01001511/KZY30905 

Proteobacteria Gammaproteobacteria Oceanospirillales Oleiphilaceae Oleiphilus sp. HI0050 LWFB01001229/KZY45670 

Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Oleispira antarctica RB-8 FO203512/CCK76416 

Proteobacteria Gammaproteobacteria     Sedimenticola thiotaurini CP011412/AKH19023 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas aeruginosa LLTT01000034/KSQ29041 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas aeruginosa VRFPA08 AZHU01000087/ETD48699 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas aeruginosa VRFPA04 CP008739/AID86920 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas aeruginosa SD9 AMVN01000080/OPF35317 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas balearica LONE01000028/KXO68010 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas bauzanensis JFHS01000001/EZQ19309 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas brassicacearum CP012680/ALQ04046 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas brenneri LVWZ01000003/OAE17393 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas chloritidismutans AJ884572/CAI56317/ 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas chlororaphis CP011020/AKJ99904 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas corrugata CP014262/AOE60879 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas flexibilis JTAK01000001/KHO66430 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas fluorescens AF197466/AAG34381 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas frederiksbergensis JQGJ02000001/KHK64801 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas kilonensis JZXC01000048/KA04128 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas libanensis LT629699/SDK81826 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas lini LFQO01000085/KNH44064 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas mandelii JR-1 CP005960/AHZ67536 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas silesiensis CP014870/ANJ56620 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas marginalis LKEG01000046/OAJ47348 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas sp. YS-1p JPYP01000033/KGD88478 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas stutzeri CP002881/AEJ06785 
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Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas stutzeri LDWB01000026/KOR09159 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas synxantha LT629786/SDU39534 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas syringae LFQK01000013/KNH28426 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas thivervalensis LT629691/SDF46790 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas veronii JYLL01000006/KRP79617 

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas xanthomarina MDEM01000020/OCX24666 

Proteobacteria Gammaproteobacteria Thiotrichales Thiotrichaceae Beggiatoa sp. PS ABBZ01001128/EDN67831 

Proteobacteria Gammaproteobacteria Thiotrichales Thiotrichaceae Thioploca ingrica AP014633/BAP57172 

Proteobacteria Hydrogenophilalia Hydrogenophilales Hydrogenophilaceae Tepidiphilus thermophilus CYHH01000010/CUB07681 

            

Unclassified  Candidatus Accumulibacter JDVG02000709/KFB70389 
   

Unclassified  

Candidatus Competibacter denitrificans CBTJ020000111/CDI04496 

Candidatus Kuenenia stuttgartiensis CT573071/CAJ74898 

Candidatus Methylomirabilis oxyfera FP565575/CBE69462 

Candidatus Thiomargarita nelsonii LUTY01001461/OAD21685 

Dechlorosoma suillum PS CP003153/AEV26447 
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