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Abstract 

Neglected parasitic diseases (NPD) include some of the worst human infections and 

are caused by pathogens including T. brucei (human African trypanosomiasis or 

sleeping sickness), T. cruzi (American trypanosomiasis or Chagas disease), 

Leishmania spp (leishmaniasis), which cause large disease burdens, as well as high 

mortality and morbidity rates in afflicted countries. In the absence of effective 

vaccines against any trypanosomatid diseases, chemotherapy is the main mechanism 

to combat them. Many anti-protozoal drugs are inherently cytotoxic but derive their 

selectivity from preferential uptake by the pathogen rather than by the host. 

Conversely, loss of the specific drug transporters is a main cause of drug resistance. 

Identification of parasite-specific targets and uptake mechanisms is critical for the 

development of new therapeutic agents. In this project, the aim of the research is 

to understand the roles of kinetoplastid aquaporins (AQPs) in trypanosomatid 

parasites with respect to drug resistance and transport. 

The observed cross-resistance between melarsoprol and pentamidine (MPXR) of the 

parasite threatens the status of the latter as a viable drug. There is clear consensus 

that a membrane transporter protein, T. brucei aquaglyceroporin-2 (TbAQP2), is 

implicated in the uptake of both drugs and therefore appears a likely basis for MPXR 

emergence. What has remained, unclear is weather the TbAQP2 protein is acting as 

transmembrane transporter, while situated in the T. brucei flagellar pocket, with 

pentamidine being a permeant, or if the protein simply acts as a receptor for 

pentamidine to then be internalised together via receptor-mediated endocytosis or 

the natural turnover of TbAQP2.  

Investigations on TbAQP2 were conducted to determine how the structure of TbAQP2 

allows it to transport pentamidine. In T. brucei, AQP2 and AQP3 are closely related, 

but AQP2 has unusual selectivity filter amino acids residues in and around the pore 

(NSA/NPS/IVLL), compared to the latter (NPA/NPA/WGYR) in AQP3, and it also lacks 

the “aromatic/arginine (a/R)” motif. Using site-directed mutagenesis approaches, 

the TbAQP2 and TbAQP3 selectivity filter residues were therefore swapped with the 

goal of determining the effects of each amino acid on the uptake of drugs by 

Trypanosoma brucei. The results showed that the selectivity filter differences 
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between TbAQP2 and TbAQP3 are largely responsible for their differences in 

pentamidine sensitivity and transport rates. Moreover, the TbAQP2 pore width was 

constricted using amino acids of different sizes, in order to test whether size 

restrictions at the cytoplasmic end of TbAQP2, i.e. below the selectivity filter, 

would impact on pentamidine transport. Through a combination of drug sensitivity 

determinations and uptake assays, the results of the introduction of different-sized 

amino acids at selected positions showed that it is likely that the effect depended 

on the residue size at the cytoplasmic end of the TbAQP2 pore. In addition, the 

potential correlation between the T. brucei endocytosis rate and the rate of 

pentamidine uptake was investigated in order to distinguish between pentamidine 

uptake by transporters and via endocytosis. The combined evidence of the observed 

results strongly suggests that pentamidine is not taken up by endocytosis, and does 

not induce endocytosis of TbAQP2. To conclude, the obtained results highlight a 

clear, direct role for the TbAQP2 membrane transporter in pentamidine uptake, with 

the drug most likely traversing the protein’s channel to enter the cell.  

The Leishmania major AQP1 was also investigated for the uptake of heavy metals 

antimony and arsenic. For this aim, LmAQP1 was cloned and expressed into the 

TbAQP1-3 null and LmAQP1 null cell lines, which were then tested for changes in 

sensitivity to antimony and arsenic. The results show that LmAQP1 is able to sensitise 

cells to heavy metals. These findings could help to confirm and advance the 

understanding of a role of Leishmania AQP1 in the sensitivity and resistance to first-

line antimonial drugs such as Glucantime and Pentostam. 
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Definitions/Abbreviations 

°C   degree celsius 

AAT   African Animal trypanosomiasis 

ABC                        ATP-binding cassette  

BBB   blood-brain barrier  

bp   Base pairs 

BSF   Bloodstream form 

CCCP   Carbonyl cyanide m-chlorophenyl hydrazone 

CNS                        central nervous system 

dH2O            distilled water 

DRC   Democratic Republic of Congo 

E. coli   Escherichia coli 

EC50   50% effective concentration 

FBS            Foetal bovine serum 

g   Gravity force  

gDNA   Genomic DNA 

h   Hour 

HAPT1   High Affinity Pentamidine Transporter  

HAT   Human African Trypanosomiasis 

HMI-9   Hirumi’s medium 9 

IC50   50% inhibitory concentration 

ISG75   Surface Molecule Invariant Surface Glycoprotein 75 

Kb   Kilobase 

Km   Michaelis-Menten constant 

KO   Double Knockout 
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L   Litre 

LAPT1   Low Affinity Pentamidine Transporter  

LB   Luria broth 

LDL                        Low-Density Lipoprotein 

LmAQP1                  Leishmania major aquaporin-1 gene 

LS   Long slender 

M   Molar concentration 

MDR1   Multi-drug resistant transporter 1 

MFST   Major Facilitator Superfamily Transporter 

mg   Milligram      

min            Minute 

ml            Millilitre 

mM            Millimolar 

MMP                       Membrane potential 

MPXR                      Melarsoprol and pentamidine cross resistance 

mRNA            Messenger-ribonucleic acid 

MRPA                      Multidrug resistance protein A 

NECT            Nifurtimox-Eflornithine Combination Therapy 

ng   Nanogram 

nM   Nanomolar 

NPDs   Neglected Parasitic Diseases 

NTDs   Neglected Tropical Diseases 

ORF   Open reading frame 

P2                          Amino purine transporter 

PAT                        Potassium Antimony Tartrate 
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PBS   Phosphate-buffered saline 

PCF   Procyclic form 

PCF                        Procyclic form 

PCR   Polymerase chain reaction 

PMF                        proton-motive force 

pmol   Picomol 

PSG                        Promastigote secretory gel 

QRT-PCR                 Quantitative Reverse Transcription PCR 

RNA                        Ribonucleic acid 

RNAi   RNA interference 

rpm                        Revolutions per minute 

s                             Second 

SBIII                        Trivalent antimonials 

SbV   Pentavalent antimonials 

SDS                        Sodium Dodecyl Sulphate 

SEM                        Standard error of mean 

SNP                        Single Nucleotide Polymorphism 

SS                          Short Stumpy 

T. b. b                   Trypanosoma brucei brucei 

Tb427                     Trypanosoma brucei strain 427 

TbAQP1                  Trypanosoma brucei aquaporin-1gene 

TbAQP2                  Trypanosoma brucei aquaporin-2 gene 

TbAQP3                  Trypanosoma brucei aquaporin-3 gene 

TbAT1                     Trypanosoma brucei adenosine transporter 

Tet                        Tetracycline 
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TM                        Trans-membrane 

UTRs                     Untranslated regions 

UV                        Ultraviolet light 

Vmax                    Maximal velocity 

VSG                      variant surface glycoprotein Vmax 

WHO                     World Health Organization 

WT                        Wild type 

ΔG0                      Gibbs free energy 

µg                         Microgram     
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Chapter 1 General introduction 
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1.1. Kinetoplastid parasites and disease 

By definition, Kinetoplastids are a group of flagellated, unicellular, and motile 

protozoans whose specific characteristic is the presence of a kinetoplast. The 

kinetoplast is located in a single large mitochondrion, and is a term originally coined 

by Alexeieff in 1917 (Maslov et al., 2001). The Kinetoplastida belong to the larger 

group of phylum Euglenozoa, along with Diplomonads and Euglenids. Based on their 

morphological criteria, there is a division of Kinetoplastida into two major groups 

namely the biflagellate Bodonina and the uniflagellate Trypanosomatina (Dolezel et 

al., 2000). 

Trypanosoma species cause Chagas disease and sleeping sickness while Leishmania 

species cause leishmaniasis are among the most common human diseases (Stuart et 

al., 2008). Substantial morbidity is the major outcome associated with these 

diseases, especially in the world’s subtropical areas and amongst the poorest 

populations. These diseases, together with other bacterial, viral, and parasitic 

infections, are regarded to be NTDs (neglected tropical diseases) based on the 

consideration that there is inadequate donor funding tailored towards their control 

and are too often left untreated (Fidalgo & Gille., 2011).  

 
1.2. African Trypanosomiasis  

Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis (AAT), 

known more commonly as sleeping sickness and nagana, respectively, are vector-

borne diseases which pose serious health problems to people and animals throughout 

sub-Saharan Africa (SSA) causing physical suffering, food security issues and large 

economic losses (Bacchi, 2009; Holt et al., 2016). HAT is the result of infection by 

subspecies of the protozoan parasite Trypanosoma brucei, but AAT can also be 

caused by other species such as T. vivax, T. congolense, T. suis, and T. evansi 

(Birhanu, 2015; Giordani et al., 2016). The parasite is spread by an insect vector, 

which in this case is the tsetse fly of the genus Glossina spp. (Kennedy, 2013). 
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1.2.1. Life cycle of Trypanosoma brucei 

The complex life cycle of T. brucei (Figure 1.1) begins when the infected tsetse fly 

injects metacyclic trypomastigotes into a mammalian host skin and pass into the 

bloodstream during the fly blood meal. Within the bloodstream, T. brucei remains 

extracellular and enters a haemolymphatic stage, differentiating into a bloodstream 

long slender (LS) form that proliferates in both blood and lymph (Langousis & Hill, 

2014). To evade detection in the bloodstream, the protozoan parasite uses antigenic 

variation through its dense variant surface glycoprotein (VSG) coat (Pinger et al, 

2017). The coat has a stochastic switching expression pattern from a genomic 

repertoire of over 1000 VSG sequences, making a mounted host immune response 

difficult to achieve (Hutchinson et al, 2007). Early on in infection in mice, T. brucei 

has been shown to accumulate and replicate within adipose tissue, and evidence has 

revealed that parasites from within the adipose tissue are capable of infecting other 

naïve mice (Trindade et al., 2016). As the infection progresses, parasites in the blood 

breaches vessel walls, enabling access to extravascular tissue including the central 

nervous system (CNS) (Langousis & Hill, 2014). As the level of parasitaemia rises in 

the body, a quorum-sensing signal triggers non-reversible differentiation of LS forms, 

through a transition form, into non-dividing short stumpy (SS) forms of the parasite 

that are pre-adapted for survival inside a tsetse fly (Langousis & Hill, 2014; Seed & 

Wenck, 2003). It is thought the transition to non- dividing form is also a deliberate 

method of prolonging host survival until tsetse fly uptake by controlling parasitaemia 

in any given host (Seed & Wenck, 2003). Upon the next blood meal of a tsetse fly, 

SS and LS trypanosomes are taken up into the midgut of the tsetse fly. The role of 

the dermis and subcutis layers of the skin as a reservoir of vector-borne infection 

has often been overlooked. However, research from animal models has shown that 

sufficiently abundant populations of live, extravascular T. brucei residing in this 

organ play an important role in maximal parasite transmission (Capewell et al., 

2016). 

The new surrounding environment, with different pH, temperature and nutrient 

availability (Silvester et al, 2017) triggers changes in parasite gene expression and 

morphology leading to differentiation from the SS form to procyclic forms that 

proliferate in the tsetse fly midgut (Rico et al, 2013) whilst LS forms die out in the 
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midgut (Ooi & Bastin, 2013). Procyclic trypomastigote then migrate the length of 

the tsetse fly, first passing the proventriculus from where the procyclic 

trypomastigote asymmetrically divides, producing longer and shorter daughter cells. 

The latter is the epimastigote form of the trypanosome, which traverses to the 

salivary gland. On the other hand, the longer form appears to die shortly after being 

produced (Sharma et al., 2008). Upon arrival at the salivary gland, the epimastigote 

proliferates through two simultaneous cycles. The first involves symmetric division 

into daughter cells which bind to the gland epithelium and allows for the gland to 

be compromised for current and future infections. Meanwhile, the second form 

involves asymmetric division, giving rise to the infective metacyclic form of the 

parasite that is able to infect the host upon the next blood meal (Rotureau et al., 

2012).  

 

Figure 1.1: Life cycle of Trypanosoma brucei, the causative parasite of African trypanosomiasis.  
The figure highlights the important steps involved in the life cycle of the parasite in both tsetse fly and 
human stages. (Adapted from Bonnet et al., 2015) 

Short-stumpy 
bloodstream 

trypomastigote

Long-slender 
bloodstream 

trypomastigote
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1.2.2. Morphology of Trypanosoma brucei 

The African trypanosome has two main morphologies: the trypomastigote and the 

epimastigote (Figure 1.2) which follow the same basic cellular architecture: a single 

copy set of organelles including a flagellum and flagellar pocket, a kinetoplast, a 

mitochondrion and a nucleus. Throughout the life cycle, the flagellar pocket is a 

crucial part of the cell as it remains the exclusive site for all endo- and exocytosis. 

Many of the cell organelle structures, including the kinetoplast, mitochondrion and 

nucleus, in all T. brucei cell forms appear to be skewed towards the posterior and 

central parts of the cell. (Matthews, 2005). 

At the posterior of the cell body the kinetoplast and the nucleus are hallmark 

features of the trypomastigote form (Figure 1.2A). The flagellum allows LS 

trypomastigote to be motile in the mammalian blood and spread to other areas of 

the body, including the CNS (Matthews, 2005). However, as the parasite 

differentiates into a non-dividing SS form in the mammalian bloodstream, the 

flagellum length decreases, which is possibly a sign of pre-adaptation to the tsetse 

fly, giving preference to environmental sensory functions over motility, akin to the 

Leishmania amastigote whilst in macrophages (Gluenz et al., 2010). As procyclic 

forms establish in the vector midgut, and differentiate into longer mesocyclic forms, 

the flagellum once again becomes a useful feature for propelling and migrating cells 

across the midgut (Ooi & Bastin, 2013; Langousis & Hill, 2014). Reaching the 

proventriculus, the mesocyclic form undergoes significant cell nucleus repositioning 

in the process to become epimastigotes (Schuster et al., 2017).  

The epimastigote morphology resembles cells with kinetoplasts that are anterior to 

the nucleus, effectively switching positions as it undergoes changes in cell length, 

width, as well as flagellar length (Ooi & Bastin, 2013). The asymmetric division by 

the proventricular epimastigote form, leading to both short and long forms, provides 

striking differences in all of these features (Figure 1.2B). However, this does not 

appear to be a hindrance, as it has thought the poorly motile short epimastigotes 

with short flagella are compensated by facilitated delivery to the SG by elongated 



 27 

epimastigotes forms that are instead highly motile with long flagella (Van den 

Abbeele et al., 1999).  

 

Figure 1.2: Trypomastigote and epimastigote morphologies of Trypanosoma brucei.  
The figure shows the forms of the parasite that have the trypomastigote morphology, including the long 
slender bloodstream form, the short stumpy bloodstream form, the procyclic form and the mesocyclic 
form (mesocyclic is not shown in the legend) (a). The epimastigote forms that include the proventricular 
long epimastigote form and the short epimastigote form created as a result of asymmetric divison (b). 
Key cell organelles and structures, as well as relative subcellular locations within each form, are shown 
(adapted from Sunter & Gull, 2016, not drawn to scale). 
 
 

1.2.3. Epidemiology of African trypanosomiasis  

An encouraging decline has been observed in the numbers of new individuals 

contracting HAT over the last two decades, and in 2018, WHO reported only 977 

cases of HAT (Franco et al., 2020). However, HAT mostly occurs in more rural areas 

of Africa where efforts towards disease detection and surveillance are poorer 

(Franco et al, 2014b) and interventions must be continued to combat the disease as 

just under 50 million people are estimated to remain at risk (Franco et al., 2020). 

The two subspecies of T. brucei that cause HAT, Trypanosoma brucei gambiense and 

Trypanosoma brucei rhodesiense, still remain active in spreading HAT in Africa but 

only occur in highly selective foci where the parasite, host, reservoir, and vector co-

exist (Franco et al., 2014a). 
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T. b. gambiense causes a chronic form of the disease in both western and central 

Africa, with the worst affected countries including the Democratic Republic of Congo 

(DRC) and Guinea (Figure 1.3A; WHO, 2020d). Animal reservoirs play a minimal role 

in the transmission of T. b. gambiense HAT. Instead, hotspots of transmission via 

anthroponosis tend to be areas where there is humid forest, woodland, savannas and 

mangroves, or where these areas have been exploited by humans for agriculture 

such as coffee and cocoa plantations, as these are favourable habitations for tsetse 

fly vectors like Glossina palpalis gambiensis and Glossina palpalis palpalis. Here, 

proximate human-fly contact is at its greatest (Franco et al., 2014a). HAT control 

programmes like targeted screening of human populations for the infection have 

made a significant impact towards declining numbers of HAT cases in these regions 

of Africa. However, there are many rural areas that are hard to reach, leading to 

misrepresentation of numbers affected by the disease. This can be a result of regions 

in Africa with difficult terrain or with security threats that are more difficult to 

cover through programmes, resulting in less than 10% of the population being 

screened in endemic regions (Barrett et al., 2003; Franco et al., 2014a; Franco et 

al., 2014b; Steinmann et al., 2015). 

On the other hand, HAT caused by the subspecies T. b. rhodesiense has an acute 

form of progression, and exclusively affects eastern and southern African countries 

like Malawi and Zambia (Figure 1.3B; WHO, 2020d). Notably, an overlap of T. b. 

gambiense infection in Uganda exists, making human co-infection possible (Figure 

2.3) (Kennedy, 2013). T. b. rhodesiense disease is predominantly transmitted as a 

zoonosis and wildlife ranging from giraffes to impalas, as well as livestock such as 

cattle, play an important role as reservoirs that spread the parasite via vectors like 

Glossina morsitans that are found in East Africa. As a zoonosis, spread of the disease 

has proven more difficult to control, particularly as contact with domestic animals 

increases with human dependency on activities such as livestock husbandry (Franco 

et al., 2014a; Kennedy & Rodgers, 2019).  
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Figure 1.3: Map of Africa showing distribution of human African trypanosomiasis in 2018.  
(A) Countries in Africa coloured based on the number of reported cases of HAT caused by subspecies 
T. b. gambiense. Areas with most reported cases include the Democratic Republic of the Congo, 
Angola, the Central African Republic and Guinea (B) countries in the world coloured based on the 
number of reported cases of HAT caused by subspecies T. b. rhodesiense. Areas with most reported 
cases include Malawi, Zambia and Uganda (adapted from WHO, 2020d). 
 
 
1.2.4. Clinical manifestations 

The course of overall clinical manifestation of HAT that a patient may experience is 

dependent on the form of disease; exhibited by either T. b. gambiense or T. b. 

rhodesiense forms. Initial clinical manifestations in rhodesiense HAT involve a lesion 

(e.g. an ulcer) appearing at the site of the tsetse fly bite. As bloodstream forms of 

the parasite proliferate in the bloodstream, patients can experience headaches and 

enlarged lymph nodes, and on the skin, reddish rashes may begin to appear with 

both forms of the disease (Rodgers, 2009; MacLean et al., 2010). As previously 

mentioned, stages of the T. brucei life cycle in the host include a breach to the 

blood vessels into extravascular tissue including in organs such as the heart and liver, 

(B) (A) 
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and the effects of parasite invasion and proliferation manifest, including 

cardiovascular inflammation and fibrosis (Blum et al., 2007) as well as hepatomegaly 

(Kennedy & Rodgers, 2019). Even if the parasite has yet to cross the blood-brain 

barrier (BBB), neurological symptoms can appear in the earlier stages of the disease 

as well, though the underlying mechanisms for this warrant further research 

(Kennedy & Rodgers, 2019). 

The later development of the disease, otherwise termed the encephalitic stage, 

concerns the disruption of a wide range of neural activities, caused as T. brucei 

progresses into the CNS after crossing the BBB. This can ultimately lead to 

meningoencephalitis (inflammation of the brain), as well as disruption to sensory 

processes (particularly visual features), as well as involuntary muscle twitching and 

seizures caused by irregular and disrupted nerve signalling (Bentivoglio et al., 1994). 

There are also characteristic sleeping disorders that give the disease the label 

‘sleeping sickness’, which refers to daytime hypersomnia and night-time insomnia 

experienced by patients feeling continuously fatigued. Unless treated, or a rarer 

asymptomatic form of T. b. gambiense disease has occurred, patients with HAT 

almost always experience death from recurring symptoms (Kennedy & Rodgers, 

2019).  

Though these clinical presentations are common for both forms of HAT, important 

differences exist depending on the causative species of the disease. As previously 

mentioned, the T. b. rhodesiense form of HAT has an acute progression compared 

to the chronic T. b. gambiense form, and thus HAT duration in patients living in East 

and South Africa ranges typically from a few weeks to months whereas those in T. 

b. gambiense endemic areas have slow onset trypanosomiasis ranging from months 

to years. In the case of T. b. rhodesiense infection, shorter disease duration goes 

hand-in-hand with quicker progression to second-stage symptoms (Rodgers, 2009), 

though studies show geographical differences in clinical presentation here, such as 

less frequent presentations of T. b. rhodesiense second stage neuropathy in patients 

from Uganda compared to patients in Tanzania (Kuepfer et al., 2011). 
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1.2.5. Treatments available 

A wide range of trypanocidal chemotherapy has been explored as early as the 19th 

century (Steverding, 2010). However, treatment options in the 21st century consist 

of only few approved drugs: suramin, pentamidine, eflornithine and nifurtimox-

eflornithine combination therapy (NECT), melarsoprol, and fexinidazole. Clinical 

choice of treatment is dependent on the stage of HAT disease progression, and 

whether the disease takes the rhodesiense or gambiense form (Legros et al., 2002). 

However, despite the fatality of HAT, none of these options provide the ideal 

solution for HAT treatment, with either no means of oral administration, underlying 

toxic effects, low efficacy, a lack of knowledge on specific intracellular drug targets, 

as well as resistance to some of these existing drugs, particularly melarsoprol 

(Kennedy, 2013; de Koning, 2020).Treatment options reaching the end of the 

development pipeline are few and far between; until recent approval of fexinidazole 

in 2018 (Deeks, 2019) the last approved drug dates back to the 1970s. This reflects 

the real challenge faced with research and development for getting newer, more 

effective trialled therapies on the ground (Steverding, 2010). 

1.2.5.1. Suramin 

Suramin has been used as a first-line treatment for the haemolymphatic early stages 

of HAT caused by T. b. rhodesiense since the 1920s. It is administered intravenously, 

with five injections given to the patient every 3 to 7 days, usually over a 4 weeks 

treatment course (Barrett et al., 2007). The large size and negative charge of 

suramin prevents passive cell transport into the parasite (de Koning, 2020). Instead, 

the negative charge allows suramin to bind to the bloodstream trypanosomes 

glycolytic enzymes by means of electrostatic interactions, and in circulation almost 

all of the drug is bound to serum proteins (Barrett et al., 2007; Nok, 2003; Morgan 

et al., 2011). Multiple bodies of evidence have previously pointed towards the 

compound entering by a receptor-mediated endocytosis mechanism (Alsford et al., 

2012; Pal et al., 2002), and it is more recently apparent that the major mediator in 

this process is the surface molecule invariant surface glycoprotein 75 (ISG75), as 

well as major facilitator superfamily transporter (MFST). In turn, there is a high 

selectivity and rapid accumulation of suramin in the cell (Zoltner et al., 2015). It is 
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thought that once inside the trypanosome cell, suramin can inhibit positively 

charged glycolytic enzymes, as well as interfere with cytokinesis of parasite cells. 

Suramin can also interfere with multiple metabolic pathways, including low-density 

lipoprotein (LDL) uptake and disruption of lysosomes (Nok, 2003; Thomas et al., 

2018). A most recent study has shown that in addition to complex changes to 

metabolic pathways, a major collapse in cellular ATP levels found in suramin treated 

cells likely causes cell death (Zoltner et al., 2020). 

Perhaps unique amongst HAT treatment options, suramin has shown very rare 

treatment failure when used for early stage rhodesiense HAT, and there are almost 

no reports of drug resistance from the field (Barrett et al., 2007). However, 

administration of suramin comes with the risk of a wealth of adverse effects in some 

patients. Neurotoxic effects have been observed even at lower concentrations of 

drug administration (Barrett et al., 2007), as well as side effects including renal 

failure, anaphylactic shock, fatigue and bone marrow toxicity (Barrett et al., 2007; 

Kennedy, 2013). 

 

1.2.5.2. Pentamidine 

Pentamidine is an aromatic diamidine used as an alternative for early-stage HAT 

treatment. Though it is more commonly used against gambiense infection, it can 

also be used as a second-line treatment for rhodesiense disease (Kennedy, 2013) as 

well as against antimonial-resistant Leishmania (Chakravarty & Sundar, 2010). 

Pentamidine is administered intramuscularly to affected HAT patients, typically with 

seven to ten injections at doses of 4 mg kg-1 given on a daily basis (Barrett et al., 

2007; de Koning, 2020). 

The drug enters parasite cells through multiple transport channels. Partial transport 

is achieved by the aminopurine transporter P2, often referred to as Trypanosoma 

brucei AT1 (TbAT1), which has been evidenced by reduced pentamidine sensitivity 

after knockout of the encoding gene (TbAT1) (Matovu et al., 2003), as well as partial 

inhibition of pentamidine transport by adenine, a known substrate of TbAT1 (Carter 

et al., 1995). The bulk of pentamidine transport is facilitated by the presence of 

two other channels, a High Affinity Pentamidine Transporter (HAPT1) and a Low 

Affinity Pentamidine Transporter (LAPT1), discovered in 2001. This has been further 
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supported by competitive inhibition work using radiolabelled [3H]-pentamidine with 

increasing concentrations of unlabelled pentamidine substrate, causing significant 

biphasic uptake inhibition in tbat1-null mutants (de Koning, 2001; Matovu et al., 

2003). The former channel, HAPT1, has since been identified as Trypanosoma brucei 

aquaglyceroporin 2 (TbAQP2) located at the flagellar pockets of T. brucei cells 

(Munday et al., 2014). 

Though the exact mode of action of the drug is yet to be fully elucidated, recent 

research suggests pentamidine involvement in loss of kinetoplast DNA in 

trypanosome cells, as well as disruption mitochondrial membrane transport 

gradients (Thomas et al., 2018).  

The high potency for pentamidine in killing T. brucei cells has been demonstrated, 

with low nanomolar 50% effective growth-inhibitory concentration (EC50) levels, 

matched only by the toxic melaminophenyl arsenical, melarsoprol (Baker et al., 

2013). It has been established for some time now that intracellular concentrations 

of more than 1 mM pentamidine can be measured before parasite cell death (de 

Koning & Jarvis, 2001). However, like suramin, use of pentamidine can come with 

side-effects including abnormal glucose metabolism, as well as renal and GI 

disruption (Kennedy & Rodgers, 2019).  

1.2.5.3. Eflornithine and NECT Therapies 

Though both suramin and pentamidine have proven effective in the treatment of 

those affected by early-stage HAT, diagnosis of the disease is often too late, 

corresponding with when the parasite progresses into the later meningoencephalitic 

stages (Wastling & Welburn, 2011). Both suramin and pentamidine are ineffective at 

treating later stages of the disease, which is thought to be the result of difficulty in 

the drugs crossing the BBB to reach T. brucei cells. Even where possible, suramin 

and pentamidine either do not accumulate in sufficient quantities in the CNS or 

become trapped in capillary endothelia respectively, leading to little to no patient 

response against the developing infection (Sanderson et al., 2007; Sanderson et al., 

2009). 

Eflornithine is the one of the more recent registered and approved monotherapies 

for HAT, which being discovered back in the mid-1980s (De Koning, 2020). At the 
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start of the 2000s, eflornithine was most often used for the gambiense form of the 

disease, to treat later stages with a usual course comprising a dosage of 150 mg kg-

1 of body weight (for adults) or 100 mg kg-1 body weight (for children) slow 

intravenous infusions for 6 hours for 2 weeks (Burri & Bun, 2003).  

Eflornithine works by inhibiting ornithine decarboxylase, which plays a vital role in 

T. brucei polyamine synthesis and in turn, cell multiplication and differentiation 

(Priotto et al., 2007). Though initially developed for the treatment of cancers, the 

drug is thought to be particularly effective against gambiense infection as parasite 

versions of the enzyme are more stable and cannot gather polyamines from their 

external environment (De Koning, 2020). However, the short half-life of eflornithine 

makes administration difficult. Additionally, monotherapy treatment of eflornithine 

is often poorly tolerated, and causes toxicity in patients, for example in the bone 

marrow (Brun et al., 2010). 

With a push for efforts to find efficacious and safer alternatives, T. b. gambiense 

infections are now preferably treated in patients using a nifurtimox-eflornithine 

combination therapy (NECT). This involves giving 400 mg kg-1 eflornithine 

intravenously on a 7 day course, combined with nifurtimox, an oral drug usually used 

in the treatment of American trypanosomiasis (Chagas’ disease), at a dose of 15 mg 

kg-1 for 10 days (Priotto et al., 2009). Nifurtimox has the added benefit as a powerful 

oxidative agent against eflornithine-treated trypanosomes with a weakened 

oxidative stress defence because of the reduced synthesis of trypanothione 

(Babokhov et al., 2013). 

NECT has shown a range of key benefits that has led to it replacing eflornithine 

monotherapy, as evidenced from initial trials in both Uganda (Checchi et al., 2007) 

and the DRC (Priotto et al., 2009): 4-fold fewer infusions required (and therefore 

shorter hospitalisation and costs), reduced bone marrow toxicity is experienced from 

lower eflornithine doses, and combinations can delay emergence of future 

trypanosome drug resistance (Priotto et al., 2007; Priotto et al., 2009). NECT 

appears to be as efficacious in gambiense treatment as eflornithine monotherapy, 

however both eflornithine and NECT are ineffective against the rhodesiense form of 

infection due to a higher ornithine decarboxylase turnover than in the gambiense 
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form (Burri & Brun, 2003; Babokhov et al., 2013; Kennedy, 2013), leaving a more 

dangerous HAT treatment as the only treatment option. 

1.2.5.4. Melarsoprol 

Melarsoprol is an organic melaminophenyl arsenical drug, introduced as a second-

stage HAT treatment in the late 1940s due to its ability to penetrate the BBB. To 

this day, it remains first-line treatment for second-stage T. b. rhodesiense infection 

(Babokhov et al., 2013; De Koning, 2020), and although also effective for gambiense 

forms of the disease in Central and West African countries, the development of NECT 

therapy in 2009 provides a much safer and equally effective method of patients 

being treated in recent times, as explained above. The typical regime for affected 

patients currently involves the administration of melarsoprol intravenously to 

patients at 2.2 mg kg-1 every 24 hours for 10 days (Brun et al., 2010). 

After penetrating the patient BBB and reaching trypanosomes, melarsoprol enters 

the trypanosome cell via more than one transport channel. By studying resistant 

strains of T. brucei, Carter and Fairlamb (1993) established one of these as the 

adenosine TbAT1/P2 transporter, and clinical isolates and laboratory strain studies 

of the African trypanosome have demonstrated the additional importance of the 

TbAQP2 transporter, exhibiting HAPT1 activity, in melarsoprol uptake and 

trypanosome susceptibility to the drug (Bridges et al., 2007; Baker et al., 2012; Graf 

et al., 2013). Hence, both TbAT1/P2 and TbAQP2 play pivotal roles in both 

melarsoprol and pentamidine influx. 

Once in the T. brucei cell, the specific mode of melarsoprol remains unclear. 

Cunningham et al. (1994) showed that a melarsoprol derivative formed from 

subsequent intracellular reactions can disrupt activity of the antioxidant enzyme 

trypanothione reductase, most likely leading to toxicity to the parasite (Fairlamb & 

Horn, 2018). However, specific pathways are yet to be established, as well as other 

mechanisms such as underlying causes behind cell lysis of trypanosome cells that are 

observed in treated patients (Fairlamb & Horn, 2018).  

The current regime of melarsoprol treatment has proven particularly effective 

against rhodesiense forms of the disease, with cure rates as high as 96% one year 

after treatment in a study looking at T. b. rhodesiense foci in Tanzania and Uganda 
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(Kuepfer et al., 2012). Melarsoprol also has a high potency like pentamidine (i.e. 

low EC50). However, there are a number of drawbacks to melarsoprol use. Most 

striking is that 5-10% of patients exhibit post-treatment reactive encephalopathy 

(PTRE), which is fatal for around half of them. PTRE in itself is thought to be caused 

by major cytokine recruitment to neural regions in response to rapid lysis of T. 

brucei cells from melarsoprol treatment (Kennedy & Rodgers, 2019; De Koning 2020). 

However, melarsoprol can also lead to other adverse effects, such as cardiotoxicity, 

peripheral neuropathy and mild to severe skin rashes in the patient (Kennedy & 

Rodgers, 2019). 

1.2.5.5. Fexinidazole 

A new treatment option for first-stage and second-stage T. b. gambiense infection 

recently received approval from the European Medicines Agency (Deeks, 2019). It is 

the first treatment to receive approval for use since the 1970s, having entered phase 

1 clinical trials around a decade ago (Torreele et al., 2010). Fexinidazole appears to 

overcome two main obstacles of other current alternative treatments. Firstly, it is 

the first all-orally administered drug for gambiense HAT, making the treatment more 

widely available to remote and rural areas where gambiense HAT is prevalent 

(Deeks, 2019).  Secondly, adverse effects from the drug are described as minimal 

(WHO, 2019). 

Fexinidazole and its primary sulfoxide and sulfone metabolites are nitroimidazoles, 

which represent a group of compounds that bind DNA and inhibit nucleic acid and 

protein synthesis (Mital, 2009; Torreele et al., 2010). Effective treatment involves 

one dose administered orally each day over ten days (Lindner et al., 2020).  

Though a 21st century success in relation to treatments against HAT, further work 

with fexinidazole is needed refine the treatment and overcome some linked 

drawbacks, including higher treatment failure rates observed in patients with more 

severe CNS involvement in late second-stage gambiense HAT (European Medicines 

Agency, 2018).  
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1.2.5.6. Acoziborole 

On the back of fexinidazole, focus has intensified on bringing more oral therapies 

for HAT through the development pipeline. The Drugs for Neglected Disease 

initiative has developed a promising benzoxaborole named acoziborole (Dickie et 

al., 2020). Through initial murine model studies, the orally administered drug has 

shown potential to cure second stage (Nare et al., 2010) HAT in a single dosing, and 

the success of initial clinical trials with acoziborole has now pushed the progression 

of trials to phase II/III since 2016. Efficacy and safety of the candidate drug is 

currently being assessed for HAT patients across a number of SSA countries, and 

trials are due for completion by the end of 2020 (Drugs for Neglected Diseases 

Initiative, 2020). 

1.2.6. Drug resistance 

Since Ehrlich’s early observations in the early 1900s, the underlying mechanisms 

behind African trypanosome drug resistance has been area of great research interest 

(Baker et al., 2013). By the very definition of a parasite, African trypanosomes are 

typical examples of host nutrient and ion scavengers, using transporters to take up 

substrates important for cell survival and viability from the host. Examples of such 

transporter substrates that get taken up by T. brucei transporters include adenine, 

adenosine and glucose (Schmidt et al., 2018), but also important trypanocidal 

agents, including: melaminophenyl arsenicals like melarsoprol, diamidines like 

pentamidine, eflornithine that cannot enter the cell by other means, such as passive 

diffusion (Baker et al., 2013; Schmidt et al., 2018). The study of transporters is 

therefore critical to elucidate how resistance and sensitivity to current trypanosome 

treatments has, or could, emerge (Munday et al., 2015). 

1.2.6.1. Resistance to melarsoprol and pentamidine 

The fact of melarsoprol-resistant HAT has been apparent for approximately half a 

century (Fairlamb & Horn, 2018), which only reflects the decades of over-

dependence on the arsenical for treating second-stage form of the disease (Munday 

et al., 2015). Melarsoprol treatment failure rates were around 5% in the 1990s. 

However, at the turn of the 21st century, refractoriness has accelerated, ranging 
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from 20%-30% in South Sudan, Angola and Northern Uganda and even up to 50% in 

the DRC (Fairlamb & Horn, 2018). On the other hand, field treatment failures for 

the drug pentamidine are rare. In most exceptions to this, cases are instead the 

result of misdiagnoses of the second-stage disease, to which pentamidine is not 

effective. Despite this, pentamidine-resistant strains can, and have been, generated 

in vitro (Bridges et al., 2007; Delespaux & De Koning, 2007). 

One of the clearest and most well-identified patterns from T. brucei drug resistance 

work is that of melarsoprol and pentamidine cross resistance (MPXR). The 

phenomenon has since been associated with the reduced uptake of both drugs from 

MPXR-resistant trypanosome cells, either through genetic changes to, or loss of, key 

transporter proteins (Baker et al., 2013).  

The first transporter protein implicated in this manner was the TbAT1/P2 

transporter that has unusual specificity for adenine and adenosine (Carter & 

Fairlamb, 1993; de Koning & Jarvis, 2001). TbAT1/P2 has a role to play in both 

melarsoprol (Carter & Fairlamb, 1993) and pentamidine (Carter et al., 1995; De 

Koning, 2001) uptake. For example: knockout of the encoding gene, TbAT1, has been 

shown to decrease both melarsoprol and pentamidine sensitivity in T. brucei cells in 

vitro (Matovu et al., 2003; Bridges et al., 2007); heterologous expression of TbAT1 

in Saccharomyces cerevisiae confers melarsoprol sensitivity, amongst other 

melaminophenyl arsenicals (Mäser et al., 1999) and T. b. gambiense clinical isolates 

have been identified that possess mutant versions of TbAT1,  exhibiting reduced 

pentamidine sensitivity (Graf et al., 2013). However, the levels of resistance 

reported from these studies, for example resistance factors of 2.3 (melarsoprol) and 

2.4-fold (pentamidine) (Matovu et al., 2003), do not match the high resistance levels 

achieved with MPXR strains in vitro, indicating other transporters are involved in 

creating the high resistance profile of MPXR (Baker et al., 2013).  

Since then, two other transporters have been linked with the transport of both 

melarsoprol and pentamidine; namely TbAQP2 (previously known as HAPT1) and 

LAPT1 (De Koning, 2001). The former shows a high affinity (Km: ~36 nM) and low 

capacity for pentamidine transport, whilst the latter displays a low affinity (Km: ~56 

µM) and high capacity for pentamidine transport (De Koning, 2020). An in vitro study 

found a highly adapted pentamidine and melarsoprol tbat1-null strain, B48, had lost 
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HAPT1 activity (implying additional loss or disruption to the TbAQP2 transporter as 

well as TbAT1) and had, as a result, become 130-fold resistant to pentamidine, 

whilst LAPT1 activity was retained unchanged. In this study, melaminophenyl 

arsenicals similar to melarsoprol showed similar patterns of resistance (Bridges et 

al., 2007). This shows a marked difference of the impact on resistance with the 

combined functional removal of TbAT1 and TbAQP2 transporters. Support for the 

critical role that TbAQP2 plays in melarsoprol and pentamidine uptake has been 

demonstrated in other bodies of work, for example in a double-gene-knockout study 

of AQP2 and neighbouring gene AQP3 (aqp2-3 null). Here, increases of 15-fold 

resistance to pentamidine and 2-fold resistance to melarsoprol were observed when 

compared with wild-type AQP2 expressed in a AQP1-3 null background cells as a 

reference (Alsford et al., 2012). Additionally, RNAi library screening has shown re-

introduction and expression of TbAQP2 to aqp2-aqp3 null cells controlled both 

pentamidine and melaminophenyl arsenical sensitivity (Baker et al., 2012). From the 

same study, the specific role of TbAQP3 was not as apparent as TbAQP2 which 

seemed to be the deciding factor between normal sensitivity and MPXR (Baker et 

al., 2012). 

1.2.6.2. Resistance to suramin 

Despite being one of the oldest anti-HAT treatments still in use, the evidence for 

suramin treatment failure in the field remains scarce. Along with pentamidine as a 

fellow first-stage treatment, suramin failure is reported in patients with 

misdiagnosed second-stage HAT, as the drug cannot reach the parasite after it 

crosses the BBB (De Koning, 2020). Inducible resistance of factors 20-140 have been 

shown in vivo after selection with the drug, but the phenotypic effect is short-lived 

and normal suramin sensitivity levels are restored once the parasite re-enters the 

tsetse fly stages (Scott et al., 1996). However, use of transcriptomics and reverse 

genetics has recently revealed that T. brucei cell lines selected with high suramin 

doses can develop resistance from a switch in expression of their outer membrane 

VSG coat to a particular glycoprotein called VSGSur. The resistance developed is over 

90-fold, and takes a matter of days to achieve in bloodstream forms in vitro 

(Wiedemar et al., 2018). 
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1.2.6.3. Eflornithine resistance 

Similar to pentamidine and suramin, reports of field eflornithine treatment failures 

are rare, but underlying mechanisms to understand future risks of resistance have 

been explored (Vincent et al., 2010). Eflornithine-resistant procyclic trypomasigotes 

were first observed to have a reduced uptake and accumulation of eflornithine 

compared to wild-type cells, implicating a potential transporter as part of an 

underlying mechanism (Bellofatto et al., 1987; Philips & Wang, 1987). Indeed, 

deletion of the gene encoding the amino acid transporter TbAAT6 was identified in 

2010 with two separate resistant T. brucei lines, which concurred with findings from 

RNA interference analysis (Alsford and Horn, 2008) that removal of TbAAT6 from 

wild-type lines, and re-expression from resistant lines ultimately determined 

eflornithine sensitivity (Vincent et al., 2010). 

 

1.3. Leishmaniasis 

Leishmaniasis is a neglected tropical disease caused by at least 21 species of an 

obligate intracellular parasite of the genus Leishmania. The parasite relies upon a 

sand fly vector as a form of transmission between human and mammal hosts, and to 

complete an essential stage of its life cycle development (Rodrigues et al., 2014). 

Leishmania species are classified into two subgenera based on their location in the 

vector's intestine: Leishmania (found in both the Old and New Worlds) and Viannia 

(restricted to the New World) (Stevens et al., 2001). In tropical and subtropical areas 

across the globe, Leishmania spp. infect humans and mammals with two major forms 

of disease: cutaneous (CL) and visceral leishmaniasis (VL), as well as rarer forms 

such as mucocutaneous leishmaniasis (MCL) (Barrett & Croft, 2012). Though 

leishmaniasis was discovered in the early 20th century by William Leishman and 

Charles Donovan, the parasite’s reliance on a vertebrate host to complete its life 

cycle has shaped the evolution and spread of the disease ever since early human 

activity (Steverding, 2017). 



 41 

1.3.1. Life cycle of Leishmania 

Completion of the complex digenetic Leishmania life cycle (Figure 1.4) requires both 

a female sand fly and mammalian host (Handman, 1999).  The life cycle of the 

Leishmania parasite begins with the regurgitation of infectious metacyclic 

promastigotes into a mammal’s skin by an infected female sand fly. There is little 

understanding of how the regurgitation of gut content occurs during blood-feeding, 

however it is indicated that it happens as a result of the blockage produced by the 

promastigote secretory gel (PSG) (Rogers, 2012). Consequently, parasite inoculation 

involves the transmission of several components, including vector saliva, released 

parasite proteophosphoglycans, exosomes, and the insect gut microbiota. Together 

these facilitate the establishment and survival of the parasite by modulating the host 

immune response at the bite site (Gomes & Oliveira, 2012; Rogers, 2012; Atayde et 

al., 2015; Dey et al., 2018).        

It has been shown that once in the wound metacyclic promastigotes are either directly 

phagocytised by skin macrophages (primary target cells) or engulphed by neutrophils 

("trojan" cells). The activation signals originate from components of the alternative 

complement pathway of the host (C3bi and C3b), which promote parasite uptake by 

macrophages via CR3 and CR1 receptors (Peters & Sacks, 2006). When the 

Leishmania parasites are ingested by neutrophils, the parasite activates the 

programmed cell death of the polymorphonuclear cells which are then ingested by 

macrophage cells (Ritter et al., 2009; Dey et al., 2018). Irrespective of the infection 

route, once inside macrophages the metacyclic promastigotes enter the 

phagolysosome, which is a hostile environment for the parasite. Next, the metacyclic 

parasite transforms to the amastigote stage and multiplies by binary division to infect 

other macrophage cells.        

When the Leishmania amastigote is returned by the sand fly within its blood meal, it 

transforms into procyclic promastigotes (first replicative stage). Following this, 

promastigotes replicate in the gut of the sand fly until they transform into non-dividing 

motile nectomonads; these then escape the peritrophic matrix via the posterior 

opening and attach to midgut microvilli in the anterior midgut. Nectomonads then 

develop into leptomonads (second replicative stage) in the sand fly’s anterior midgut 
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and then differentiate into metacyclic promastigotes, they can then produce 

Promastigote Secretory Gel (PSG) which alters the feeding behaviour of the fly 

(Rogers et al., 2002). Infected sand flies usually have difficulty with feeding because 

of the action of PSG stimulating regurgitation after the blood meal is mixed in their gut, 

this ensures transmission of the metacyclic-promastigote. Multiple blood feeds are 

known to be fundamental in Leishmania transmission by inducing sand fly 

infectiousness, this is achieved by enhancing Leishmania amplification. It is of interest 

that the ingestion of a second uninfected blood meal triggers "reverse differentiation" 

of the metacyclic promastigotes into retroleptomonad promastigotes, these then 

rapidly multiply and progressively differentiate back to metacyclic promastigotes 

(Serafim et al., 2018).         

 

Figure 1.4: The Leishmania life cycle.  
Metacyclic promastigotes enter the mammalian host skin when a sand fly bites a mammalian host 
during a blood meal. The parasites become internalised by means of phagocytosis by several host 
cells, including tissue-resident macrophages. Within, they are then delivered to a phagolysosome where 
they transform into intracellular amastigotes that proliferate leading to lysis of the cell, either reinvading 
other phagocytes or being taken up in the next sand fly bite. The first stage as showed in the diagram 
involves the sand fly feeding on a vertebrate mammal, and introduction of different vector’s components 
from vector to facilitate the migration of metacyclic promastigotes. Afterwards the vector’s components 
multiply within the mammal’s host cells inform of amastigotes as showed in process 1. The life cycle 
continues as another sand fly feeds on the infected blood to continue the development to procyclic 
promastigotes stage as showed in process 2 in the diagram. As labelled in the diagram, process 3 
involves the development of the parasite life cycle to long motile nectomonads. Process 4 on the other 
hand illustrates escape of the necomonads and their attachment to the midgut microvilli, which are later 
transformed to Leptomondas. Process 5 in the diagram involves the transformation of the Leptomonads 
to infective metacyclic promastigotes and 6 shows transformation to haptomonads. The Leptomonads 
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as illustrated in the diagram play an imperative role in the production of Promastigote Secretory Gel 
(PSG) which fills the thoracic midgut of the sand fly. Once inside the sand fly, amastigotes transform 
into procyclic promastigotes that proliferate in the midgut, and then move to the anterior of the sand fly 
where they become the infective and highly motile metacyclic promastigotes ready to infect another 
host (Dostalova and Volf, 2012; Serafim et al, 2018; Kaye & Scott, 2011).  
 
1.3.2. Morphology 

Over the span of its life cycle, the single-celled Leishmania parasite possesses two 

main cell morphologies as it traverses between vectors and hosts – a promastigote 

and amastigote morphology. The architecture of the cell is mostly conserved 

throughout both, for example, single copies of organelles; a flagellar pocket; a 

kinetoplast (containing mitochondrial DNA) anterior to the nucleus; and the 

attachment of the kinetoplast to the flagellar basal body (Ogbadoyi et al., 2003; 

Ambit et al., 2011; Sunter & Gull, 2017). However, notable differences lie in the 

cell’s shape, flagellum length and distance between the nucleus and kinetoplast. 

Whilst the promastigote is elongated, has an extended flagellum protruding from 

the basal body at its anterior end, and a segregated nucleus and kinetoplast, the 

amastigote is ovoid, has a rudimentary flagellum and its nucleus proximal to the 

kinetoplast (Gluenz et al., 2010; Sunter & Gull, 2017) (Figure 1.5). 

Precise morphologies in promastigote and amastigote forms translate directly into 

important functions for the parasite during different stages of the life cycle. During 

the time spent within the sand fly, the Leishmania procyclic promastigote uses its 

elongated cell shape with a long, motile flagellum to propel itself across different 

parts of the sand fly’s digestive tract, and to attach to the midgut epithelium (Bates, 

2008). Meanwhile, the much-reduced size of the amastigote relative to the 

promastigote reduces overall exposure to hostile conditions within the 

phagolysosome of host phagocytes (Sunter & Gull, 2017). The amastigote’s short 

flagellum highlights the lack of a need for high motility through the host; however, 

there is evidence to suggest that this feature holds a sensory function within the 

macrophage (Gluenz et al., 2010). 

 

 



 44 

 
 

Figure 1.5: Schematic comparing the morphology of Leishmania promastigote and amastigote 
forms.  
Showing from the posterior end of the parasite cell to the anterior end. Key cell organelles and 
structures, as well as relative subcellular locations within each form, are shown (Sunter & Gull, 2017).  

 

1.3.3. Epidemiology of leishmaniasis  

Leishmaniasis remains a global threat to many people around the world; from over 

89 countries known to have had the disease, 12 to 15 million people become infected 

by the leishmaniases at any given time (Georgiadou et al., 2015; Torres-Guerrero et 

al., 2017). Meanwhile, 700,000 to 1 million new cases are collectively reported every 

year (WHO, 2020a) and over 350 million remain at risk of contracting one form or 

another (Torres-Guerrero et al., 2017).  In areas where the leishmaniases are 

endemic, as high as 9% of the entire healthy population can test positive for the 

disease (Bari, 2006). 

Over 10 years ago, it was reported that 90% of new cases of VL were located to 

Brazil, Sudan, South Sudan, as well as India and neighbouring countries (Blackwell 

et al., 2009).  These regions remain hotspots of burden of VL today, but this now 

also includes Ethiopia, which has experienced a substantial increase in cases over 

the past decade (Tadese et al., 2019) (Figure 1.6A). The two major species of the 

parasite that cause VL are Leishmania (Leishmania) donovani and Leishmania 

(Leishmania) infantum. In almost all cases, L. donovani infection remains exclusive 

to Africa, Asia and Europe. In India it is alternatively labelled ‘Kala-Azar’ or ‘Black 
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Fever’, because of a blackening of skin that is associated with this disease there, 

and spreads as an anthroponosis. On the other hand,  L. infantum infection extends 

to both the Old World and Latin America and spreads as a zoonosis (Ready, 2014), 

resulting from the well-studied domestic dog as the natural reservoir, but also 

including other important reservoirs such as cats and opossums (Ready, 2014; Roque 

& Jensen, 2014). There are now been reports of human immunodeficiency virus (HIV) 

that co-infects leishmaniasis patients in over 35 countries. Increased risk of 

developing VL in areas that are HIV endemic comes as no surprise, given that HIV 

severely compromises the immune system. Indeed, patients who are co-infected 

often have high parasite load, a sign that the compromised immune system has 

become overwhelmed (Sundar et al., 2019). 

Clinical CL is more common and more widely distributed than VL (Georgiadou et al., 

2015), impacting almost all Latin American countries including Brazil, Peru, 

Colombia and Costa Rica, as well as Algeria, North Sudan and Ethiopia in Africa, and 

Iran and Syria in the Middle East (WHO, 2020b) (Figure 1.6B). Although there has 

been a decline in reported CL cases in Saudi Arabia, the country still stands as the 

fourth most endemic for the disease in western Asia (Alvar et al., 2012; Abuzaid et 

al., 2017). Over 20 species of Leishmania can cause CL, and the predominant 

aetiological agents in the Old World are the species Leishmania major and 

Leishmania tropica, whilst in the Americas, this applies to the complexes Leishmania 

mexicana and Leishmania braziliensis (Torres-Guerrero et al., 2017). Whilst it is 

understood that L. tropica related disease spreads as an anthroponosis, and L. major 

disease as a zoonosis, there is no defined natural reservoir at present for the latter, 

though the domestic dog has been the most extensively studied and associated 

(Roque & Jensen, 2014; Bamorovat et al., 2018). Another cutaneous form, MCL, is 

found in Bolivia, Brazil, Peru and Ethiopia which collectively accounts for over 90% 

of known cases (WHO, 2020a) and is caused by species such as L. braziliensis and 

Leishmania amazonensis with show more regional distribution patterns (Torres-

Guerrero et al., 2017). 
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Figure 1.6: Maps showing endemicity status of leishmaniasis in 2018.  
(A) Countries in the world coloured based on the number of new cases of visceral leishmaniasis (VL). 
Areas with highest endemicity include Brazil, Sudan, South Sudan, Ethiopia and southern Asia (B) 
countries in the world coloured based on the number of new cases of cutaneous and mucocutaneous 
leishmaniasis (CL). Areas with highest endemicity include: Central and South America, North Africa 
and the Middle East (adapted from WHO, 2020b). 

(A)

(B)



 47 

 
The spread and persistence of the leishmaniases is exacerbated by a range of 

political and socioeconomic factors. Conflict outbreaks in Afghanistan (Ahmad, 

2002) and Syria (Al-Salem et al., 2016), poor housing and irregular garbage 

collections in Latin American countries (which in turn promote sand fly resting 

grounds and breeding) as well as delays in access to healthcare in India (Okwor & 

Uzonna, 2016) have all been shown to contribute towards increased incidence of the 

leishmaniases. 

1.3.4. Clinical manifestations 

The leishmaniases can range from asymptomatic to clearly visible clinical 

presentations (Figure 1.7). Manifestations are normally distinguished between the 

two most common forms CL and VL, as well as the rarer MCL form.  

 

 

Figure 1.7: Different clinical presentations of the leishmaniases.  
(Left panel) Child affected by visceral leishmaniasis, with a striking protruding abdomen, (middle panel) 
a man afflicted with mucocutaneous leishmaniasis, with almost total destruction to the mucous 
membranes of his nose and mouth (right panel) human skin with an ulcer lesion, characteristic of 
cutaneous leishmaniasis (Stanford University, 2008). 
 

1.3.4.1. Cutaneous Leishmaniases 

CL, caused by species such as L. major and L. tropica, leads to lesions on exposed 

areas of the skin, and are typically ulcers (WHO, 2020a) as shown in Figure 1.7 (right 

panel). The type of lesion can vary depending on the causative species of Leishmania 

and host immune response to infection (Torres-Guerrero et al., 2017). For example, 

L. tropica infection leads to a manifestation of large, scaly oriental sores on many 
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areas of the skin, which are commonly identified in Middle Eastern, North African 

and Central Asian countries (Cairns, 1968). In comparison, Chiclero’s ulcer, which 

appears exclusive to the ear region, is the result of infection by L. mexicana that 

are endemic to areas like Mexico (Andrade-Narváez et al., 2001) and Ecuador 

(Calvopiña et al., 2013). In any case, self-healing of the lesion eventually leaves 

depressed scarring (WHO, 2020c). The approximate incubation period of CL varies 

based on parasite species from weeks to months (Weiss et al, 2009) with L. major 

usually taking less than 4 months to present symptoms, and L. tropica infection 

usually manifesting after between 2 to 8 months (WHO, 2020c). A large proportion 

of those asymptomatic for CL in endemic regions are able to control the infection, 

though the underlying mechanisms behind this are yet to be fully elucidated 

(Bahrami et al., 2018). 

Particularly in the Americas, MCL can also occur where the nasal and oral cavities 

become partially or fully eroded as pictured in Figure 1.7 (middle panel). This form 

of the disease, which disfigures the host, either takes place after resolution of 

previous CL lesions, or a co-existing presentation on the skin. MCL appears to be 

primarily the consequence of L. braziliensis infection (Handler et al., 2015).   

1.3.4.2. Visceral Leishmaniasis 

In the case of VL, the disease itself gains its name because of the causative parasite’s 

ability to progress away from the skin and infect, survive, and proliferate in several 

of the host’s visceral organs, most of all the liver and spleen. VL is therefore fatal 

if left untreated. Pathogenesis ensues from parasite proliferation within the viscera, 

ultimately causing hepatosplenomegaly (enlargement of the spleen and liver) which 

gives rise to the presentation of a distended abdomen as shown in Figure 1.7 (left 

panel) (McCall et al., 2013). Other features include pancytopenia (destruction of 

blood cells) thought to be the result of causative Leishmania species triggering over-

activation of the host macrophage and T-cell response (Gagnaire et al., 2000), as 

well as polyclonal hyper-gammaglobulinemia (a marked increase in production of 

immunoglobulins in the bloodstream) (Makaritsis et al., 2009). VL has an incubation 

period of around 3 to 8 months (Weiss et al., 2009).  
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In some cases, both during and after a course of VL infection, a complication called 

post-kala-azar dermal leishmaniasis (PKDL) can develop. This is particularly the case 

in L. donovani endemic regions like Sudan and India, and affects 5%-60% of patients 

whereby papular, micropapular or nodular lesions appear as a rash, spreading from 

the mouth area to other areas of the body if the patient’s case of PKDL is more 

severe. The lesions are created as a result of an inflammatory reaction to the 

parasite, but interestingly lack plasma cells unlike lesions with CL (Zijlstra et al., 

2003). Incidence of asymptomatic VL has been vastly underestimated in the past, 

mainly due to remaining poorly understood. Carriers can be diagnosed by means of 

PCR or leishmaniasis skin testing, which estimated that a large number of people in 

VL endemic areas are asymptomatic. One such example is Sudan where 

asymptomatic L. donovani and L. infantum VL infections form around 30% of all cases 

(Singh et al., 2014).  

1.3.5. Treatments available  

Due to the variety of clinical manifestations and the number of causative Leishmania 

parasite species causing the disease, there is no one general first choice of 

treatment for leishmaniasis. Instead, treatment options must be considered in line 

with the challenges that disease forms pose in each affected area (Moore & 

Lockwood, 2010). The options to treat both major forms of the disease, CL and VL, 

are limited by several factors, for example: local availability of the drug, efficacy 

rates impacted by levels of resistance at the regional level, and side effects that 

can range from mild to adverse depending on the patient (Miranda-Verastegui et al., 

2009; Moore & Lockwood, 2010). Leishmaniasis being mostly a disease of developing 

countries, cost of the medication can also be an important factor. 

1.3.5.1. Pentavalent antimonials (Sbv) 

For over 60 years, antimonial drugs (Sbv), such as sodium stibogluconate (SSG) and 

meglumine antimoniate (MA), have been used as first line of treatments for all forms 

of leishmaniasis (Haldar et al., 2011). The standard treatment prescribed for 

affected VL patients is either a daily intravenous (SSG) or intramuscular injection 

(MA) of 20 mg kg-1 body weight for up to 30 days, whilst for CL patients antimonials 
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are administered intralesionally (1-5ml of Sbv every 3 to 7 days) and systemically (20 

mg kg-1 for 20 days) (Sundar & Chakravarty, 2015).  

There have been three models proposing the mechanism of action for Sbv activity, 

including a stage-specific thiol-mediated process of reducing Sbv to the more lethal 

trivalent antimony SbIII in amastigotes once engulfed within macrophages. In turn, 

SbIII would target, bind and inhibit trypanothione reductase and zinc-finger proteins 

to kill the cell from within by compromising the cell to oxidative damage and metal 

toxicity. The second model proposes that Sbv may directly inhibit macromolecular 

synthesis by disturbing intracellular metabolic pathways, though this model has not 

evidenced a specific target in the process of disruption. The third model suggests 

that Sbv may activate innate and adaptive immune responses by the host by 

influencing host effector and signalling pathways that can lead to eventual parasite 

cell death. One such example is generation of host reactive oxygen species and 

nitrogen oxide within infected macrophage cells by means of the PI3K-PKC-Ras/Raf 

and P13K/Akt pathways respectively (Haldar et al., 2011).   

To this day, Sbv compounds are the treatment of choice in many areas of the world 

affected by CL and VL, particularly developing countries in Africa and South 

America, as well as central and some southern Asian countries including Bangladesh, 

Nepal and most of India (Haldar et al., 2011; WHO, 2020b). Despite this, the efficacy 

of the chosen SSG drug for patients in India has gradually declined over the last few 

decades, with the greatest apparent loss in the eastern state of India, Bihar, where 

cure rates between 1994-1997 were as low as 35% (Sundar et al., 2000; Rijal et al, 

2003). 

Success of Sbv treatment to CL conditions is not as clear cut, as sensitivity levels to 

Sbv sensitivity vary greatly, correlating with mixed CL patient response to treatment 

(Haldar et al., 2011). However, a 28 day course of Sbv remains highly recommended 

against L. braziliensis infection in America, achieving 75% cure rates for those with 

mild to moderate MCL, and to prevent disfiguration from mucosal lesions from an 

earlier onset of CL (Torres-Guerrero et al., 2017).  

Though Sbv remains one of the more popular choices of leishmaniasis treatment 

across affected nations, with exceptions to Bihar, the drug is by no means ideal due 
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to adverse effects like high toxicity (such as nephrotoxicity and cardiotoxicity), poor 

tolerability presented by some patients and high recurrence rates in patients who 

relapse (Elmahallawy & Agil, 2015). 

 

1.3.5.2. Amphotericin B 

The polyene antifungal drug Amphotericin B (AmB) has been a major treatment for 

cases of VL, and was the only ‘rescue treatment’ for patients who didn’t respond 

successfully to Sbv or relapsed, at the beginning of the 2000s (Alves et al., 2018). It 

was previously used in its conventional form, sodium deoxycholate, but due to its 

high toxicity, alternative formulations were desired. Fortunately, a lipid-associated 

formulation has been developed since then, known as liposomal amphotericin (L-

AmB), and successfully contains the drug until it reaches target parasite cells, 

making it a preferred option in order to significantly reduce exposure, and thus toxic 

effects, particularly to the kidneys (Aguirre & Hamid, 2015). L-AmB therapy has been 

the recommended choice of VL treatment by the National Program of Nepal, after 

increasing rates of local VL treatment failure with Sbv as well as areas of India like 

Bihar where Sbv  drug resistance is already firmly established (Torres-Guerrero et 

al., 2017) whilst conventional AmB appears to be reserved mostly for teaching and 

district hospitals (Alves et al., 2019), and L-AmB remains unaffordable for the many 

affected (Barrett & Croft, 2012). Whilst conventional AmB is administered 

intravenously at 0.75-1 mg kg-1 either daily or on alternating days for 15-20 days, 

patients co-infected with HIV on L-AmB therapy courses can afford extended courses 

of periodic infusions up to total doses of 40 mg kg-1, which provide less chances of 

patient relapse without significantly increasing the risk of adverse effects (Sundar & 

Chakravarty, 2010). 

Similar to their action on fungal cell membranes, AmB is understood to bind to 

ergosterol in Leishmania cell membranes and increase permeability of the cell to 

metabolites, by forming pores (Saha et al., 1986). L-AmB has been shown to be 

rapidly taken up by parasite-loaded phagocytes that are located in vital organs, 

effectively killing the parasite ‘from within’ and preventing further development of 

disease to the viscera (Adler-Moore & Proffitt, 2003).  
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With this mode of action, L-AmB has proven to be highly effective at treating VL, 

with over 95% efficacy shown from a study in India using the treatment, regardless 

of slight variations in dose regimens (Thakur et al., 1996). Though data on L-AmB 

treatment is less available for other forms of leishmaniasis, it does appear to also 

be highly effective in systemic forms of particular forms of CL and treatment of MCL 

in the New World (Alvar et al., 2006; Cunha et al., 2015). Despite this effectiveness, 

the drug is not usually administered except where challenges are faced with Sbv 

administration, given the high costs to buy sufficient quantities to effectively treat 

the disease. In addition, clinical studies indicate that VL patient response rates to 

L-AmB are lower in East Africa and South America than India (Barrett and Croft, 

2012).   

1.3.5.3. Paromomycin 

Paromomycin is an aminoglycoside antibiotic identified in the 1960s as a potential 

treatment for leishmaniasis. However, it only became clinically available in the mid-

2000s after patient response rates were found to be over 90% for topical treatment 

of Old World CL (Asilian & Davami, 2006) and comparable with efficacy rates of AmB 

in VL treatment, passing phase III trials (Sundar et al., 2007).  

During phase III trials, a treatment course consisting of 15 mg kg-1 paromomycin for 

21 days with intramuscular administration delivered 95% efficacy, and is now the 

licensed dose for VL patients in India, and standard for VL treatment in the 

surrounding regions (Sundar et al., 2007). However, similar efficacy could not be 

replicated with paromomycin in East Africa and the World Health Organisation 

(WHO) now recommends combination therapies with Sbv, allowing for shorter VL 

treatment courses to Sbv monotherapy with similar levels of efficacy (Uliana et al., 

2018). 

The mechanism of paromomycin against Leishmania cells is similar to those 

described against bacteria such as Staphylococcus strains (Ibrahim et al., 2019); it 

plays a major inhibitory role on protein synthesis at the ribosome by binding to the 

30S ribosomal subunit and disrupting polypeptide chain initiation and elongation 

from subsequent mRNA misreading (Sundar & Chakravarty, 2008). This mechanism 
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has also been supported by proteomic studies based on paromomycin-resistant L. 

donovani (Jhingran et al., 2009). 

So far, paromomycin is one of the cheapest anti-leishmanial treatments, costing as 

little as $10 per course (Barrett & Croft, 2012) and without major, non-reversible 

side effects (Sundar & Chakravarty, 2008). However, it has little efficacy for 

systemic treatment of CL or MCL, with the exception of New World CL in Brazil 

(Sundar & Chakravarty, 2015). Therefore, it seems likely that current recommended 

combination regimens with Sbv for VL treatments will be the only way it is used for 

the future. 

1.3.5.4. Miltefosine 

The alkyl phospholipid, miltefosine, became the first orally available VL treatment 

in 2002 when registered in India, two decades after being identified for possessing 

anti-leishmaniasis properties in the 1980s with L. donovani (Barrett & Croft, 2012; 

Uliana et al., 2018). A 94% VL cure rate was found from one phase III trial with a 28 

day treatment course (Sundar et al., 2002). Since, it has also shown promise as an 

orally administered CL treatment in some regions. However, there is large 

geographical variation in response rates, for example a phase II-III clinical trial in 

Brazil reported a 71.4% cure rate for L. guyanensis New World CL compared to a 

53.6% cure rate with Sbv treatment (Chrusciak-Talhari et al., 2011), whilst a phase 

III trial in Colombia reported a 69.8% cure rate for L. braziliensis and L. panamensis 

New World CL compared to 85.1% cure rate with Sbv  treatment (Vélez et al., 2010). 

The treatment was also shown to be non-inferior to Sbv treatment for L. major Old 

World CL from Iran.  

Current recommendations point to the same 28 day treatment course with a dosage 

dependent on the individual patient’s body weight: daily doses of 2.5 mg kg-1 for 2-

11 year olds, 50 mg for patients over 12 years of age but less than 25 kg, 100 mg for 

patients between 25 kg and 50 kg and 150 mg for patients over 50 kg (Dorlo et al., 

2012). 

As a drug that is also used to target human cancers, miltefosine has multiple targets 

and effects on Leishmania cells that influence cell multiplication. The drug targets 

an enzyme called phosphocholine cytidylyltransferase, preventing intracellular 
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phosphatidylcholine biosynthesis pathways. The presence of phosphatyidylcholine is 

critical for cell survival, with the miltefosine intervention instead resulting in the 

triggering of apoptosis (Braga, 2019). Apoptotic programmed cell death also seems 

to be triggered by miltefosine causing overexpression of methionine aminopeptidase 

2 (MAP2) in Leishmania cells treated in vitro (Kumar et al., 2017). Another target 

appears to be the replication machinery of the Leishmania cell, with RNA synthesis 

being downregulated by over 96%, triggering a ‘domino effect’ on protein and DNA 

synthesis in the cell (Braga, 2019). 

The discovery of miltefosine has been praised as a success on the path to a wider 

range of accessible options for treating leishmaniasis. However, it hasn’t completely 

met expectations on the ground, with inefficient drug supply chains and limited 

access to the drug from availability of the drug and high price tags, making it 

inaccessible for patients most in need but living in poverty (Sunyoto et al., 2018). 

Miltefosine also involves a much longer course of treatment in comparison to other 

treatment options, and has been shown to exhibit teratogenicity (defects to, or 

death of, an embryo or foetus). Additionally, phase IV trials have also revealed toxic 

side effects in the gastro-intestinal (GI) tract, kidneys and liver (Singh et al., 2016).  

1.3.5.5. Pentamidine  

Pentamidine is a diamidine drug synthesised in the late 1930s, and became a 

treatment of Sbv-refractory VL in India in the early 1940s for patients who did not 

respond to treatment. After the 1980s, the frequency of pentamidine use for VL 

treatment declined due to poor efficacy rates, combined with patient relapses and 

high frequency of adverse reactions including cardiotoxicity, diabetes mellitus onset 

and disruption to metabolic processes (Sundar & Chakravarty, 2015; Uliana et al., 

2018). 

Pentamidine, however, still has a role in treating particular CL forms, particularly 

in South America with New World CL (Barrett & Croft, 2012). Studies from South 

America have reported 90% (Suriname) and 95% (Colombia) cure rates against L. 

guyanensis and L. panamensis infections respectively (Soto et al., 1994; Lai et al., 

2002). Pentamidine has also shown to be effective for treating MCL lesions in Brazil, 

reporting 90-94% cure rates for affected patients with treatment courses of 2 - 4 mg 
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kg-1 given on alternate days usually over a week to two weeks (Sundar & Chakravarty, 

2015).  

Electron microscopy of pentamidine-treated Leishmania cells, in addition to L. 

mexicana diamidine-resistant strain studies suggest pentamidine works by 

accumulating in the mitochondria of Leishmania and thereby causing disintegration 

of the mitochondrion and its membrane potential (MMP) (Basselin et al., 2002). 

Disintegration of the kinetoplast is also observed through electron microscopy, 

which a study suggests may be due to the accumulation of pentamidine leading to 

disruption of kinetoplast DNA replication (Yang et al., 2016). 

1.3.6. Leishmania drug resistance 

Pathogen resistance to drug treatments is normally the result of changes to uptake, 

efflux, the way a drug is metabolised, or interactions between drugs and their target 

(Baker et al., 2013). The use of current anti-leishmaniasis drugs is constantly under 

threat from an underlying emergence of Leishmania drug resistance, particularly in 

the Indian sub-continent where VL treatment refractory rates have been the most 

apparent. Whilst in many affected countries, Sbv remain the preferred drugs for the 

range of clinical forms, use of Sbv as well as other second-line treatments are met 

with increasing treatment failure, compromising future dependence on the existing 

line of treatments (Ponte-Sucre et al., 2017).  

1.3.6.1. Resistance to pentavalent antimonials (Sbv) 

Antimonial-resistant Leishmania has been studied over the sixty-year course of Sbv 

treatment of VL. Reports of resistance first came in Bihar in India, where treatment 

failure rates were ~30% in the 1980s. Although WHO recommendations to increase 

both dosage and duration of the Sbv treatment course to 20 mg kg-1 for 20 days had 

a modest short-term impact on helping to revive cure rates, a progressive decline 

was monitored in the region (Croft et al., 2006), with Sundar et al. (2000) reporting 

treatment failure rates as high as ~65% in North Bihar in one study. In neighbouring 

regions and countries, there is variation in the patient response; whilst some areas 

are largely unaffected, such as 2% failure rates reported in Uttar Pradesh, patient 

refractoriness in the Nepalese Terai regions were near 24% (Rijal et al., 2003). 
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Treatment failure is strongly associated with the emergence of L. donovani 

resistance in Bihar in vitro, where a three-fold lower sensitivity has been shown in 

L. donovani amastigote stage isolates in non-responsive patients compared with 

patients who responded to treatment (Lira et al., 1999). 

Historically, the emergence of Sbv resistance in sub-continental India has been a 

result of widespread misuse of the drug. It had become easily accessible to many in 

the population without qualified medical diagnosis for guidance on Sbv use. 

Additionally, regimens that had an increasing dose progression or with intervals were 

previously recommended and thought to boost chances of treatment success. 

Pronounced Sbv treatment failure in newly treated patients appears to be almost 

exclusive to sub-continental India and surrounding regions, with the anthroponotic 

nature of VL transmission in this area accelerating the spread of drug resistance 

once acquired by the parasite (Haldar et al., 2011). 

Various cellular processes have been pinpointed as possible underlying causes for Sbv 

resistance, including: reduced conversion of Sbv into its trivalent more active and 

toxic form SbIII; increased levels of thiols such as trypanothione that have been 

shown to protect Leishmania cells from oxygen radical attack caused by antimonials, 

and overexpression of ATP-binding cassette (ABC) and of multidrug resistance 

protein A (MRPA) transporters that boost efflux and sequestration of Sbv metabolites 

respectively and lower drug accumulation inside the cell (Mandal et al., 2007; Singh 

et al., 2014; Ponte-Sucre et al., 2017). Another Leishmania transporter, 

aquaglyceroporin 1 (AQP1), has been implicated in the facilitated uptake of SbIII in 

Leishmania species. In vitro, greater Leishmania cell sensitivity and resistance to 

SbIII can be altered with over-expression or deletion of the encoding gene, AQP1, 

respectively (Gourbal et al., 2004; Richard et al., 2004), and in VL and PKDL L. 

donovani field isolates, down-regulation of AQP1 RNA levels have been found to 

correlate with reduced accumulation of SbIII and drug resistance in the area (Mandal 

et al, 2010). 

1.3.6.2. Resistance to amphotericin B 

Reports of Leishmania treatment failure and resistance to the antifungal drug AmB 

have been relatively rare, posing a low threat over the last 60 years of use as an 
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anti-leishmaniasis agent (Ponte-Sucre et al., 2017). Despite this, there are some 

sparse cases of treatment failure that have been identified. For example, L. 

donovani isolates from a patient who relapsed in a non-endemic region of India were 

reported to exhibit in vivo drug tolerance (Srivastava et al., 2011) and an 

immunosuppressed patient in Switzerland was identified with L-AmB primary 

treatment failure. Cases from non-endemic regions may be the result of increasing 

migration and travel globally (Eichenberger et al., 2017) though future AmB 

resistance in endemic areas is equally probable. One factor that may exacerbate 

this is single-shot minimal dosage L-AmB regimens supported by WHO, widely used 

across India which have the effect of facilitatating selection of less AmB sensitive 

forms of the parasite (Ponte-Sucre et al., 2017). 

Several mechanisms have been linked with AmB resistance from laboratory studies. 

One study showed that L. donovani isolates selected for 8-fold AmB resistance 

circumvented AmB binding cell membranes from loss of ergosterol. Instead, the 

sterol was replaced with the precursor cholesta-5,7,24-trien-3β-ol, thereby 

decreasing AmB action on membrane permeability (Purkait et al., 2012). Secondly, 

the efflux transporter multi-drug resistant transporter 1 (MDR1), was shown to have 

been 3-fold overexpressed in resistant promastigotes, with treatment of a MDR1 

inhibitor beforehand partially reversing the AmB resistance phenotype (Purkait et 

al., 2012). Separate studies have also identified that mutations to the gene sterol 

14α-demethylase can result in ergosterol loss and changes to sterol metabolism 

(Mwenechanya et al., 2017). Resistant parasites also appear to upregulate a range 

of defence mechanisms against AmB oxidative stress (Sundar et al., 2019). 

1.3.6.3. Resistance to miltefosine 

Miltefosine has been a promising drug alternative to replace traditional Sbv in the 

Indian sub-continent for nearly two decades, with high initial cure rates of around 

94% (Ponte-Sucre et al., 2017). However, in as little as a decade, increasing patient 

relapses in India, Nepal and Bangladesh reflect a cure rate decline down to 85% in 

these areas (Rahman et al., 2011; Sundar et al., 2012; Rijal et al., 2013). Low 

efficacy rates have been more recently identified for VL treatment in Kenya and 

Sudan with standard miltefosine monotherapy regimens (Wasunna et al., 2016). Risk 

of resistance to the drug is compounded by the long elimination half-life of 
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miltefosine in the body (~120 h), causing long-lingering low concentrations of the 

drug that promote parasite resistance selection whilst being largely ineffective for 

parasite cell death. This problem is exacerbated where patients don’t comply with 

the full medication regimen (Ponte-Sucre et al., 2017; Sundar et al., 2019).   

Miltefosine resistance can be induced in vitro, with the first evidence emerging from 

a paper in 2003. Here, defects to internal protein-dependent phospholipid 

translocation of the drug were suggested as a possible causative resistance 

mechanism (Pérez-Victoria et al., 2003). The proteins implicated as part of the 

translocation machinery have now been identified as the L. donovani miltefosine 

transporter (LdMT) and the L. donovani subunit for LdMT (LdRos3), which appear to 

both be required for Leishmania miltefosine uptake and sensitivity (Pérez-Victoria 

et al., 2006). Both in vitro and in vivo assays have demonstrated that mutations or 

deletions to encoding genes that compromise the function of LdMT and LdRoS3 lead 

to high-fold increases in miltefosine resistance levels by L. donovani cells (Ponte-

Sucre et al., 2017). It is also now clear that LdMT function, whilst essential, does 

not fully account for wild-type or drug-induced levels of sensitivity or resistance 

respectively. To this end, additional mechanisms, such as overexpression of ABC 

transporters MDR1, ABCG4 and ABCG6 increase efflux of miltefosine, reducing 

accumulation of the drug in the parasite to achieve sufficient potency (Pérez-

Victoria et al., 2006; Sundar et al., 2019).  

Though recent studies using ‘omics’ technology have revealed that Leishmania 

miltefosine resistance is in fact multifaceted and beyond the scope of just LdMT and 

ABC efflux transporters, the roles that other components play are yet to be 

elucidated (Ponte-Sucre et al., 2017). 

1.3.6.4. Resistance to pentamidine 

Historically, pentamidine had been used to successfully combat VL in the North Bihar 

region, with cure rates of 99%. In the short space of time of only two decades, 

however, treatment failures up to ~30% were reported. This led pentamidine to be 

abandoned in the surrounding region as a second-line treatment in favour of more 

effective currently used treatments such as miltefosine (Chakravarty & Sundar, 

2010). As a first-line treatment it is now almost exclusively used for specific forms 
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of CL and MCL in the New World, and for this it has retained a relatively high efficacy 

(Barrett & Croft, 2012). Its current limited use in South America for Leishmania 

species that spread by zoonotic transmission has fortunately reduced the possible 

risk and burden of acquired drug resistance on treatment failures with new world 

leishmaniasis (Croft et al., 2006). However, the situation in India suggested from 

early on that selection against pentamidine could be easily achieved by the parasite, 

especially by anthroponotic transmission and widespread use (Uliana et al., 2017).  

Early work showed that pentamidine resistance can be quickly obtained in multiple 

parasite species in vitro, including: L. major (Ellenberger & Beverley 1986) L. 

mexicana (Basselin et al., 2002) and L. amazonensis (Coelho et al., 2008).  A study 

using L. mexicana showed that the resistance phenotype corresponds with a 

substantially lower intracellular pentamidine accumulation than wild-type lines, 

particularly within the mitochondria as shown by fluorescent labelling (Basselin et 

al., 2002). This may be partly due to alterations made to AT-rich regions of 

kinetoplast DNA in resistant lines that are understood to be necessary for 

pentamidine binding (Basselin et al., 1998). As a result of a higher proportion of 

pentamidine in the cytosol as opposed to organelles, more of the drug is available 

for efflux (Basselin et al., 2002; Bray et al., 2003). Reduced accumulation was 

suggested to be at least partly the result of reduced uptake by a transport-carrier 

mechanism (Basselin et al., 1996; 2002) which is supported by observed 18-fold and 

75-fold reduced uptake rates of pentamidine in L. donovani and L. amazonensis 

promastigote clones respectively (Croft et al., 2006). However, the exact 

mechanism for resistance remains unclear, although one proposed involves reduced 

uptake through a Leishmania high-affinity plasma membrane transporter, driven by 

reduced MMP rather than a change to the transporter itself. This has been supported 

by findings that the membrane transport carrier remains unaltered despite 

resistance, and that the use of MMP inhibitors is able to reduce wild-type cell 

pentamidine uptake (Basselin et al., 2002; Bray et al., 2003). Moreover, the 

expression of a pentamidine transporter, TbAQP1, in L. mexicana promastigotes, 

increased rates of uptake as well as pentamidine sensitivity (Munday et al., 2014).  

Efflux of pentamidine in resistant lines of L. major and L. infantum promastigotes 

and amastigotes are likely mediated by the ABC transporter pentamidine resistance 
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protein 1, PRP1, that was identified through functional cloning. Overexpression by 

transfection of PRP1 conferred resistance to pentamidine in both promastigotes and 

amastigotes (Coelho et al., 2003; Coelho et al., 2007). Though a specific mechanism 

for efflux is not established, it has suggested that PRP1 may transport pentamidine 

into vesicles that then exit the cell via exocytosis from the flagellar pocket (Coelho 

et al., 2007). However, the role of PRP1 in pentamidine resistance does not appear 

to be shared in all Leishmania species, for example in L. amazonensis (Coelho et al., 

2008). 

1.4. Trypanosomatid aquaporins: as new drug targets  

The presence of aquaporins (AQP), which are integral membrane protein 

transporters, is critical in playing the role tailored towards facilitating the regulated 

and rapid movement of non-polar solutes such as water in and out the cells (Borgnia 

et al., 1999; Gourbal et al., 2004). AQPs belong to the Major Intrinsic Protein (MIPs), 

a super-family of integral membrane proteins present throughout the kingdoms of 

viruses, bacteria, plantae, animalia, archaea, fungi, and protista (Thomas et al., 

2010). With aquaporin monomers comprising six transmembrane helical segments 

and two short helical segments covering cytoplasmic and extracellular vestibules 

bound by a narrow aqueous pore, they have a similar basic structure (Verkman, 

2013).  It is possible to functionally classify these small channels of integral 

membrane protein into two primary sub-groups namely the aquaglyceroporins 

(which are responsible for the transportation of different small, uncharged solutes 

as well as water) and orthodox aquaporins (which chiefly serve as water specific 

channels). Uncharged solutes transported by aquaglyceroporins include 

methylglyoxal, dihydroxyacetone, urea, polyols, glycerol, and metalloids such as 

antimony (SbIII) and trivalent arsenic (AsIII) (Bhattacharjee et al., 2009).  

It has been determined that the success of kinetoplastid parasites such as 

Trypanosoma brucei and Leishmania major is dependent on their respective abilities 

to meet the diverse challenges presented by different environments both in insects 

and mammals. Following the nature of trypanosomatid parasites to be frequently 

traveling between the mammalian and insect hosts, they are often exposed to the 

risk of facing severe osmotic challenges (Rohloff & Docampo, 2008). Therefore, 
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there is an interface that exists between the kinetoplastid cells and its respective 

environment, which is in part constituted of numerous membrane transporter 

proteins and glycoproteins, and this serves in overcoming diverse unavoidable 

biological barriers. Several aquaporins have been identified in trypanosomatid 

parasites (Chen et al., 2005; Beitz et al., 2006; Montalvetti et al., 2004; Figarella et 

al., 2007). In comparison, it has been generally determined that parasite AQPs have 

a higher level of transporting water than mammalian and E. coli aquaporins. 

Aquaglyceroporins of protozoan parasites have also been reported to be bifunctional 

and thus serve to improve the conduction of glycerol and water at reasonable rates 

(Beitz et al., 2005). 

 

1.4.1. Role of AQPs in drug response in Trypanosoma brucei: Human African 
Trypanosomiasis (HAT) 

In the T. brucei genome there exist three aquaglyceroporins, namely TbAQP1, 

TbAQP2 and TbAQP3 (Uzcategui et al., 2004; Beitz, 2005). These aquaglyceroporins 

are differentially involved in the regulation of the localization and abundance of the 

different AQPs depending on the unique developmental stages of T. brucei (Baker 

et al., 2012). In the case of TbAQP1, it is localized in the flagellar membrane, 

whereas the localization of TbAQP3 occurs in the pellicular membrane, independent 

of the developmental stage (Bassarak et al., 2011; Baker et al., 2012). Interestingly, 

the situation is different when it comes to the case of TbAQP2, whose redistribution 

occurs over the pellicular membrane in insect stage form but it is located to the 

flagellar pocket in bloodstream forms (Baker et al., 2012). The characterized AQPs 

from T. brucei are aquaglyceroporins, and as a result, they are explicitly responsible 

for the transportation of water in addition to other small molecules that are 

uncharged as trivalent metalloids, urea, and glycerol (Uzcategui et al., 2004; 2013). 

Unlike the cases of other aquaglyceroporins, TbAQP2 has been implicated in the 

transportation of larger compounds such as melarsoprol (398 Da) and pentamidine 

(340 Da). Both melarsoprol (398 Da) and pentamidine (340 Da) are trypanocides, 

which are three-fold larger than glycerol, widely considered as the largest substrate 

of TbAQP2 (Baker et al., 2012). The arsenical and diamidine resistant parasites are 

reported to be cross-resistant and have shown reduced uptakes of both drugs in HAT. 
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Many studies have found that there is that the TbAT1 (purine transporter 2 - P2) and 

TbAQP2 transporters (Baker et al, 2013; Figure 1.8) are implicated in determining 

the rate of uptake of pentamidine and melarsoprol, as well as in the emergence of 

MPXR in T. brucei (Mäser et al., 1999; Munday et al., 2014; Munday et al., 2015b; 

Carter & Fairlamb, 1993; Baker et al., 2012, 2013).  

       

 
 

Figure 1.8: A depiction of the model explaining the pentamidine and melarsoprol transport in T. 
brucei.  

There is the linkage of four T. brucei transporters to the pentamidine susceptibility and melarsoprol 
control. The entrance of both drugs into the cell occurs through AQP2 (Tb927.10.14170) and AT1/P2 
(Tb927.5.286b). HAI-3 (Tb927.10.12500-10, with only two of them reflected through annotation in the 
reference genome) has been specifically associated with the susceptibility of pentamidine. It is 
suggested that there is requirement for pentamidine symport via AQP2 for the generation of the proton 
motive force (De Koning, 2001). MRPA (Tb927.8.2160) is the channel through which the efflux of the 
Mel T, a toxic melarsoprol-trypanothione adduct. AQP2 and AT1/P2 channels are responsible for the 
transportation of the drugs with different efficiencies, indicated by the weight arrows in the figure. (Baker 
et al., 2013). 
 

There is a close relation between TbAQP2 and TbAQP3, which have close sequence 

similarity and are adjacent to each other on the chromosome. In comparison to 

TbAQP3, TbAQP2 is characterized by unusual selectivity filter amino acids residues 

in comparison with TbAQP3. The TbAQP2 exhibits unusual selectivity pore amino 
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acids residues, (NSA/NPS/IVLL) in the pore, unlike the latter which has the usual 

motifs (NPA/NPA/WGYR) (Baker et al., 2012; Figure 1.9). TbAQP2 also does not have 

the aromatic/arginine (a/R) motif in comparison with TbAQP3 (Baker et al., 2012).  

Aquaporins usually have a selectivity filter which usually defined by two constrictions 

in the channel: one formed by extremely conserved of two of "NPA" motifs within the 

half helices, the other one is usually narrower, created by an "aromatic arginine" (ar/R) 

motif (de Groot et al., 2001; Sui et al., 2001). These two regions have been suggested 

as filters that block solutes larger than water and charged molecules from moving 

through. The two NPA motifs in the narrow central constriction of the pore, according 

to crystallographic studies, contribute to a monomeric pore structure that enables 

selective, bi-directional, and single-file transport of water in classical AQPs (Sui et al., 

2001) and water and glycerol in aquaglyceroporins (Jensen et al., 2001). The 

aromatic-arginine region, which is narrower than the central NPA constriction and acts 

as a selectivity filter on the extracellular side of the AQP channel, blocks the entry of 

molecules larger than water (de Groot & Grubmu; 2005, 2001). (The selectivity filter 

of TbAQP2 and TbAQP3 will be further discussed in Chapter 3). 

 

 
 

Figure 1.9: Schematic representation of AQP2 (Tb927.10.14170) and AQP3 (Tb927.10.14160). 
The selectivity filter residues are indicated; the unique NSA/NPS/IVLL in AQP2 and the classical 
NPA/NPA/WGYR in AQP3 (adapted from Baker et al., 2012). 
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It has been demonstrated that the genetic knockout of TbAQP2 results in MPXR, 

while the re-expression of this gene causes a full reversal of the phenomenon. 

However, the expression or deletion of TbAQP3 did not have any measurable effects 

on the uptake of (or sensitivity to) pentamidine or melaminophenyl arsenicals. 

Therefore, these findings show that TbAQP2 is undeniably a genetic determinant of 

MPXR. Thus, owing to the unique selectivity of its filter functions, TbAQP2 is not 

only a water channel but also a potential drug transporter (Baker et al., 2012). The 

area of dispute remains the specific translocation mechanism for the TbAQP2-

mediated internalisation of pentamidine. The study by Song et al. (2016) challenged 

the drug uptake model through the uniquely permissive aquaglyceroporin by positing 

the argument that instead of traversing the pore of TbAQP2, there is the mere 

binding of pentamidine to an aspartate residue (Asp265) above the selectivity filter 

and close to the pore’s extracellular end, followed by the process of endocytosis 

(Song et al., 2016). Based on this understanding, it is necessary to conduct further 

studies with the specific aim tailored towards determining the TbAQP2-mediated 

drug transport mechanisms in the trypanosomes.  

 

1.4.2. Role of AQPs in drug response and resistance in Leishmania spp.: 
Leishmaniasis  

Drugs containing pentavalent antimony, such as meglumine antimonate 

(Glucantime) and stibogluconate (Pentostam), are used as the first treatment choice 

against all leishmaniasis forms. There have been reports of clinical resistance from 

diverse parts of the world when it comes to this class of drugs (Guerin et al., 2002). 

As membrane support proteins, aquaglyceroporins play critical functions in the life 

cycle of parasites as they serve roles in controlling transmembrane nutrient (or 

waste product) flux, alleviating osmotic stress, and releasing metabolites (Verkman 

et al., 2014; Brochu et al., 2003; Gourbal et al., 2004; Freźard et al., 2014; Nilsen 

et al., 2016). One of markers that is commonly linked to antimonial resistance and 

most frequently identified in Leishmania is AQP1 (Marquis et al., 2005; Decuypere 

et al., 2005; Mandal et al., 2010; Maharjan et al., 2008; Kazemi-Rad et al., 2013). 

Pentavalent antimonials [SbV] chiefly serve as pro-drugs and in order for the drugs 

to be in its active form, they are usually reduced to trivalent antimony [SbIII] (Ephros 
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et al., 1999). Shaked et al. (2001) acknowledges that the process of how pentavalent 

antimony is reduced to a trivalent compound in the parasites is still not known, and 

also, it has not yet been determined how the entry of antimonials mechanisms into 

macrophages and from there into the phagolysosomes takes place. 

However, Gourbal, et al. (2004) suggested that the first SbIII facilitator that has been 

identified in Leishmania is aquaglyceroporin 1 (LmAQP1) (Figure 1.10) and 

determined that it embodies a direct relationship to both the resistance and uptake 

of antimonite [SbIII] (Gourbal et al., 2004; Marquis et al., 2005). The level of 

expression of AQP1 in cultured promastigotes and intra-macrophage amastigotes in 

vitro was found to correlate with the levels of susceptibility exhibited in different 

Leishmania species; AQP1 of L. major was reported to facilitate the highest level of 

sensitivity to Sb (III) (Mandal et al., 2015). It was found that five different aquaporins 

are expressed by the genome of Leishmania major species: LmAQP1, LmAQPα, 

LmAQPβ, LmAQPγ, and LmAQPδ. LmAQP1 showed a strong degree of similarity to 

human AQP9 and to bacterial aquaglyceroporin GlpF, while the remaining water-

transporting proteins (LmAQP α-δ) operated as classic aquaporins, reflecting 

similarity to the ones that are found in plants (Figarella et al., 2007; Biyani et al., 

2011; Maurel et al., 2015).There has been proof supporting the permeability of 

LmAQP1 to glycerol and how it effectively functions as a route of drug-delivery for 

antimonial compounds as well as performing a critical role in osmotaxis (Figarella et 

al., 2007). 

In promastigotes there is the exclusive localisation of LmAQP1 to the flagellum, 

while in amastigotes, its presence is within the contractile vacuoles, the 

rudimentary flagellum, and the flagellar pocket. LmAQP1 serves a significant 

physiological role in osmotaxis, volume regulation, and the transportation of solutes 

and water. Resistance to SbIII could be increased when one of the two LmAQP1 alleles 

in L. major is disrupted (Marquis et al., 2005). There are significantly lower levels 

of LmAQP1 mRNA in As (III) or Sb (III) resistant Leishmania tarentolae and L. major 

cells, which is an indication of how drug resistance is caused by the downregulation 

of LmAQP1 (Marquis et al., 2005). Later there was a corroboration of these findings 

in the field isolates from Nepal (Decuypere et al., 2005) and India (Mandal et al., 

2010). The drug resistance and cellular physiology of Leishmania were amongst the 
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major roles played by the LmAQP1. As a result of all findings, there is the need for 

further work to be conducted with the specific goal focused on understanding the 

role performed by Leishmania particularly as drug transporter.    

 
 

 
Figure 1.10: Representation of proposed antimonial transport mechanism diagrammatically for 
an infected macrophage in Leishmania.  
The figure shows a potential mechanism of antimonial transport an infected macrophage in Leishmania. 
There is transportation of pentavalent antimony [Sb (V)] into the macrophage, which is then 
subsequently reduced to trivalent antimony [Sb (III)] prior to its transportation into the phagolysosome. 
Finally, the transportation of Sb (III) into the cytoplasm of the parasite is facilitated by LmAQP1 (adapted 
from Mandal et al., 2013). 

 
 

1.5. Objectives and aims of the project: 

Neglected parasitic diseases (NPD) include some of the worst human infections and 

are caused by pathogens including T. brucei (human African trypanosomiasis or 

sleeping sickness), Leishmania spp (leishmaniasis), which lead to large disease 

burden, high mortality and morbidity rates in afflicted countries. In the absence of 

effective vaccines against any trypanosomatid diseases, chemotherapy takes the 

centre stage to combat them. Many anti-protozoal drugs are inherently cytotoxic 

but derive their selectivity from preferential uptake by the pathogen rather than 
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the host. Conversely, loss of the specific drug transporters is a main cause of drug 

resistance.  

Identification of parasite-specific targets and uptake mechanisms is critical for the 

development of new agents. Within two decades of discovery, significant 

advancement has been achieved with regard to mammalian AQPs. However, 

knowledge about AQPs from other living systems, especially in protozoa is lagging 

far behind. Therefore, further exploration of parasite AQP structures and functions, 

including their regulatory mechanisms, will eventually reveal their real potential for 

novel chemotherapeutic approaches and/or transmission intervention(s). The 

general aim of my research is to understand the roles of kinetoplastid AQPs in 

trypanosomatid parasites with respect to drug resistance and transport. For 

Leishmania AQP1 there have been credible reports of its involvement in antimony 

(stibogluconate, pentostam) resistance and for T. brucei spp the hypothesis is that 

AQP2 is involved in pentamidine and melaminophenyl sensitivity. In both cases, 

mutations in the AQPs are believed to be responsible, at least in part, for resistance 

to the drugs. 

The first and largest aim of my project was to determine how the structure of 

TbAQP2 allows it to transport pentamidine, whereas the closely related TbAQP3 does 

not. The working hypothesis was that the pore of TbAQP2 was wider than that of 

TbAQP3 and that the cation filter in the form of a pore-located arginine must be one 

of the determining factors, the hypothesis was tested by conducting mutational and 

functional analyses of TbAQP2 including: 

• Swapping residues of TbAQP2 and TbAQP3, particularly in the selectivity filters 

with the goal of determining their effects on the uptake of pentamidine drug by 

Trypanosoma brucei.  

• Investigating the effect of the size of amino acids at the cytoplasmic end of the 

TbAQP2 pore to test the hypothesis that bulky residues would block the passage 

of pentamidine.  

• Testing whether the constructed variants of TbAQP2 exhibited different abilities 

to transport, and sensitise to, pentamidine and melaminophenyl-arsenicals. 
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• To determine the degree of their functional effectiveness as aquaglyceroporins, 

especially the ability to transport glycerol. 

• To investigate whether the alternative hypothesis, of pentamidine uptake via 

endocytosis of a pentamidine-AQP2 complex, is compatible with all available 

data. 

 

The second and last aim of my project is to get insight in the role of Leishmania 

major AQP1 in drug transport. Here, the hypothesis is that Sb(III) traverses the pore 

of AQP1 and that loss of functionality of this aquaporin contributes to antimonial 

resistance, which is a first-line treatment of leishmaniasis but is not used against 

any of trypanosomiasis. For this, a systematic examination on the LmAQP1 was 

achieved by: 

Cloning, functional expression, and characterisation of LmAQP1 in appropriate 

trypanosomatidae cells, with the aim of obtaining insights in the explicit role that 

AQP1 plays in drug transportation. 
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Chapter 2 Materials and methods 
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2.1. Materials 

2.1.1. Media and growth chemicals 

T. b. brucei bloodstream was cultured in Hirumi's modified Iscove’s (HMI-9) powder, 

obtained from Gibco (Life Technologies, Paisley, United Kingdom). Heat-inactivated 

Fetal Bovine Serum (FBS) was obtained from PAA Laboratories (Linz, Austria). Sodium 

bicarbonate (NaHCO3) and β-mercaptoethanol were obtained from BDH and Sigma 

respectively (Dorset, United Kingdom).  

Leishmania promastigotes were cultured in Eagle’s Minimal Essential Medium 

(HOMEM) purchased from Gibco (Paisley, United Kingdom). Penicillin/Streptomycin 

antibiotic was also purchased from Gibco. 

2.1.2. Radiolabelled compounds 

Three radiolabelled drugs were used throughout the project, which enabled the 

characterisation of our transporters of interest. [3H]-pentamidine was custom-made 

by GE Healthcare Life Sciences (Cardiff, UK) with a specific activity of 88 Ci/mmol. 

[3H]-suramin; 20 Ci/mmol, and [3H]-glycerol; 40Ci/mmol were both obtained from 

American Radiolabeled Chemicals, Inc (Arc Drive, St. Louis, USA). 

2.1.3. Chemicals and compounds 

Most chemicals and compounds, as well as antibodies, were obtained from Sigma. 

However, Potassium chloride, Sodium dihydrogen phosphate hydrate and (4-(2-

hydroxyethyl)-1- piperazineethanesulfonic acid (HEPES) were all purchased from 

BDH Prolabo Chemicals (United Kingdom). Scintillation fluid [Optiphase HiSafe III] 

was purchased from Perkin-Elmer. 2-Thiouridine and 4-thiouridine were both 

obtained from Carbosynth Limited (Berkshire, United Kingdom).  

The pGEM-T Easy sub-cloning vector, Go-Taq polymerase and dNTPs were all 

obtained from Promega (Madison, WI, USA). All primers used in the study were 

synthesized by Sigma-Aldrich Limited (Dorset, UK). The Q5 Site-Directed 

Mutagenesis Kits (#E0554S), High-fidelity proofreading polymerase Phusion and 
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Restriction enzymes were acquired from New England Biolabs (Hitchin, United 

Kingdom). The ultra-pure agarose was sourced from Invitrogen (Paisley, United 

Kingdom). All the extraction kits for plasmid, gel, DNA and RNA were obtained from 

Macherey-Nagel (Du ̈ren, Germany). 

The Nanodrop ND 1000 spectrophotometer was obtained from ThermoFisher 

Scientific (UK), and was used to measure the concentrations of DNA and RNA in 

solution. The XL1-Blue competent cells of E. coli were supplied by Agilent 

Technologies (United Kingdom), while the 5-alpha competent cells of E. coli were 

supplied by New England BioLabs. A Neubauer haemocytometer was sourced from 

Weber Scientific (Teddington, Middlesex, United Kingdom). 

2.2. Methods 

 

2.2.1. Parasite cultures 

2.2.1.1. Culturing of T. b. brucei bloodstream forms (BSF)  

T. b. brucei 2T1 cells (Alsford et al., 2005) were used for all the work as control cell 

line. The tbaqp2/tbaqp3 null cells (Baker et al., 2012) and tbaqp1-2-3 null cells 

(Jeacock et al., 2017) (both obtained from David Horn, University of Dundee, UK) 

are derived from the 2T1 strain of T. b. brucei (Alsford & Horn, 2008). The CRK12 

RNAi cell line (Monnerat et al., 2013) was obtained from Dr. Tansy Hammarton 

(University of Glasgow, UK) and is also based on the 2T1 cell line; RNAi expression 

was induced with 1 µg/ml tetracycline in the medium. All experiments were 

performed with bloodstream form (BSF) trypanosomes grown in vitro in HMI-9 

medium supplemented with 10% FBS and 2 mM β-mercaptoethanol (pH 7.4) at 37 ºC 

and 5% CO2 as described (Bridges et al., 2007) and maintained in the log-phase of 

growth. Cultures were routinely grown in 10 ml of this medium, being seeded at 1 × 

105 cells/ml and passed to fresh medium at reaching approximately 1.5 – 2 × 106 

cells/ml. The 2T1 strain was grown in the media under two selective pressure of 

antibiotics (0.5 µg/ml phleomycin) and (0.2 µg/ml of puromycin) to maintain the 

tetracycline repressor (TetR) constructs for selection of correct integration. The 
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CRK12 RNAi cell line was routinely grown in the media with two antibiotics 

(phleomycin 0.5 ug/ml & hygromycin .2.5 ug/ml).  All the AQP mutant cell lines 

were routinely maintained with a selection antibiotic (2.5 µg/ml hygromycin) and 

were induced with 1 µg/ml of tetracycline for 24 hours prior to the sensitivity and 

transporter assays to ensure expression of the test construct. For transport 

experiments 150 or 200 ml of culture was seeded, again at ~5×104 cells/ml, in large, 

vented tissue culture flasks and incubated until the culture reached late-log phase.  

The growth curves of bloodstream form trypanosomes were performed in the HMI-9 

standard medium. Dilution of a preliminary culture was made to achieve a density 

of 1 × 105 cells/ml. Counting of cells was done using a haemocytometer in triplicate, 

every 4 h for CRK12 RNAi and every 24 h for 2T1 and all mutant cell lines. 

2.2.1.2. Culturing of L. major promastigotes 

Wild type L. major strain LV39, L. major AQP1 null mutant (Plourde et al., 2015) 

(kind gift from Professor Marc Ouellette, Laval University, Quebec, Canada), and our 

mutant cell lines (L. major AQP1 null + L. major AQP1) were used in this project. 

The promastigotes of L. major strains were cultured in HOMEM medium obtained 

from Gibco (Paisley, United Kingdom) with 10% FBS and 1% Streptomycin antibiotic 

at a pH of 7.4. The culturing was performed in non-vented plastic flasks 25 cm² at 

temperature of 25 ºC according to Al-Salabi et al. (2003). Every 3 days, the growing 

cells were passaged and exposed to antibiotics whenever necessary. The selection 

of antibiotics included: Hygromycin at 100 µg/ml for L. major AQP1 null, and 

Neomycin (G418) at 50 µg/ml for mutant cells.  

To perform the growth curves of Leishmania promastigotes strains, 1×105 cells/ml 

were seeded in HOMEM medium added with the required antibiotics. Using a 

haemocytometer, the cells were counted in triplicate every 24 hours. 

2.2.1.3. Establishing stabilates  

Stabilates were made from cells in the log phase. For T. brucei, for each cryovial 

0.5 ml of log phase culture was added to 0.5 ml of HMI-9 supplemented with 10% 

FBS and 30% glycerol (resulting in a final concentration of 15% glycerol). For L. 
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major, 0.8 ml of log phase culture was added to 0.8 ml of HOMEM supplemented 

with 10% FBS and 30% of glycerol per cryovial (resulting in a final concentration of 

15% glycerol). The cryovials were stored at -80 ºC for a period of 24-48 hours before 

transferring them to a liquid nitrogen storage tank. 

2.2.1.4. Preparation and recovery of stabilates 

Stabilates were recovered by removing cryovial tubes from the liquid nitrogen where 

they were stored and defrosting the cells rapidly in the hood at room temperature. 

For T. brucei, the cells were first transferred from stabilate into 5 ml of pre-warmed 

media, followed by centrifugation at 1300 x g for 5 min at room temperature. This 

process enabled the removal of glycerol which may otherwise affect the recovery of 

cells. The supernatant was very carefully decanted off, and the pellet re-suspended 

and transferred into a vented flask with 5 ml of fresh HMI-9/10% FBS. Flasks were 

then incubated in a 5% CO2 atmosphere at a temperature of 37 ºC during the study. 

For Leishmania spp, the cells were transferred into non-vented plastic flasks 

containing 5 ml pre-warmed (25 ºC) HOMEM medium with 10% FBS. The flasks were 

then incubated horizontally at 25 ºC. Cells were renewed after about 20 passages by 

taking another stabilates from the liquid nitrogen storage tank. 

2.2.2. Bacterial cultures 

2.2.2.1. Bacterial components and culturing 

XL1-Blue competent cells (Agilent Technologies®, UK), and 5-alpha competent cells 

(New England BioLabs, E0554S) of E. coli were used for plasmid amplification 

throughout the project. The XL1-Blue competent cells were used for routine cloning, 

while the NEB 5-alpha competent cells were used after site-directed mutation, in 

order to obtain high efficiency transformation. Both types of E. coli cells were 

cultured overnight at 37 ºC, either in LB broth (Appendix 1) (shaking incubator) or 

on LB agar (Appendix 1) (incubator).  
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2.3. Molecular techniques  

2.3.1 Genomic DNA Extraction 

Genomic DNA from T. brucei and L. major cells was extracted using the Nucleospin 

Tissue kit (Macherey-Nagel) according to the manufacturer’s instructions. Briefly, 5 

ml of cell culture was transferred to a 15-ml tube and centrifuged for 10 min at 1000 

x g. The medium was discarded by inversion and the rim of the tube was cleaned 

with tissue paper. The cell pellet was then resuspended in 200 µl of buffer T1, 

followed by addition of 20 µl of Proteinase solution from the kit. 200 µl of buffer B3 

was added and the tube was vigorously vortexed and incubated at 70 ºC for 10 

minutes. 210 µl of absolute ethanol was then added to the mixture, vortexed and 

then transferred onto the NucleoSpin® tissue column followed by centrifugation at 

11,000 x g for 1 min. The column was washed with 500 µl of buffer BW, centrifuged 

and then washed again with 600 µL of buffer B5 and centrifuged at 11,000 x g for 1 

min. The column was then transferred to a new 1.5 ml tube and incubated at 70 ºC 

for 5 min. Finally, the DNA was eluted with 50 µl of elution buffer at room 

temperature for 20 min and the eluate collected by centrifugation at 11,000 x g for 

2 min. The DNA concentration was measured on the NanoDrop ND 1000 

spectrophotometer (ThermoFisher Scientific), and the samples were stored at -20 

ºC until use. 

2.3.2. Primer design 

All the primers used in the study for PCR amplification for the purpose of screening 

and cloning were designed to flank the gene of interest with 18 to 25 nucleotide 

regions using the CLC Genomic workbench software (version 7.0, developed by CLC 

bio). Restriction sites were introduced in the primer 3’ flank whenever it was 

necessary, preceded by six random nucleotides, so that the PCR product could be 

directly digested by restriction enzymes, and ligated into the relevant vector. For a 

point mutation, NEBaseChanger tools were used in the production of primer series 

and an annealing temperature for the anticipated mutation. 
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2.3.3. Polymerase chain reaction (PCR)  

Prior to the amplification of a DNA fragment, the annealing temperatures were 

usually optimized for each pair of primers by evaluating 12 PCR reactions using 

different annealing temperatures ranging from 50 ºC to 70 ºC (Gradient PCR) 

(Appendix 2). All PCR reactions were performed on G-Storm thermocyclers (Gene 

Technologies).  

Q5 Hot Start High-Fidelity (NEB) was used to generate the desired mutations. The 

25 µl PCR mixtures contained 12.5 µl 2× Q5 Hot Start High-Fidelity Master Mix, 1.25 

ul of each primer (taken from a 10 µM stock solution), 1 ul template DNA (conc. 1–

25 ng/µl), and 9 ul nuclease-free water. The cycling conditions included an initial 

denaturation for 30 s at 98 ºC, followed by 24 cycles of denaturation for 10 s at 98 

ºC, annealing for 20 s at 61 ºC, an extension for 4:05 min at 72 ºC, and a final 

extension at 72 ºC for 2 min.  

The GoTaq polymerase (Promega) was used for routine PCR screening. The 50 µl PCR 

mixtures contained 10 µl Go Taq Reaction buffer (5 x), 5 ul MgCl2 (25 mM), 1ul dNTPs 

mix (10 mM), 1 ul of each primer (taken from a 10 µM stock solution), 0.5 ul template 

DNA (conc. ~200 ng/µl), and 31 ul distilled water. The cycling conditions included 

an initial denaturation for 3 min at 95 ºC, followed by 34 cycles of denaturation for 

40 s at 95 ºC, annealing for 30 s at melting temperatures (Tm) based on the gradient 

PCR, an extension for 1 min at 72 ºC, and a final extension at 72 ºC for 10 min.   

The High-fidelity Phusion polymerase (NEB) was employed when high fidelity 

amplification was required to amplify the gene of interest (GOI) from a genome. The 

50 µl PCR mixtures contained 10 µl Phusion GC buffer (5 x), 2 ul dNTPs mix (10 mM), 

2 ul of each primer (taken from a 10 µM stock solution), 0.5 ul template DNA (conc. 

~200 ng/µl), and 33.3 ul distilled water. The cycling conditions included an initial 

denaturation for 30 s at 98 ºC, followed by 34 cycles of denaturation for 10 s at 98 

ºC, annealing for 20 s at melting temperatures (Tm) based on the gradient PCR, an 

extension for 30 s at 72 ºC, and a final extension at 72 ºC for 10 min.   
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2.3.4. Plasmids constructions 

2.3.4.1. Generation of AQP2 mutants 

All mutations in the TbAQP2 gene were introduced to the backbone WT pRPaGFP-AQP2 

vector (Baker et al., 2012), by Site-Directed Mutagenesis Kit (New England BioLabs), 

according to manufacturer’s instructions.  

To generate the named TbAQP2 mutations into WT pRPaGFP-AQP2 vector, the primer 

pairs (itemised in Table 2.1) were used and amplified by PCR using Q5 site-directed 

mutagenesis kit protocol (New England BioLabs, E0554), following the 

manufacturer’s instructions. The plasmids were then introduced into NEB 5-alpha 

Competent E. coli cells by transformation, exactly as described in the Q5 Site-

Directed Mutagenesis Standard Protocol (E0554). Briefly, NEB 5-alpha Competent E. 

coli cells were thawed on ice in an Eppendorf tube, for approximately 15 min. 5 µl 

of the Kinase, Ligase & DpnI (KLD) mix were added to the tube for assembling. The 

tube was gently flicked 4-5 times to mix. The mixture was placed on ice for 30 min, 

followed by a heat shock for 30 s at 42 ºC. The mixture was then placed on ice for 5 

min. A volume of 950 µl of Super Optimal broth with Catabolite (SOC) repression 

medium was added into the mixture, which was then incubated at 37 ºC for 1 h with 

shaking at 250 rpm. The tubes were carefully flicked and a volume of 50-100 µl was 

spread onto a selection plate and incubated at 37 ºC overnight. The next day, 

colonies from the overnight transformation were screened by PCR using GoTaq 

polymerase (PCR mixture and programme conditions in section 2.3.3), with HDK529 

and HDK209 primers (Table 2.2) to confirm the presence of the AQP2 gene. Positive 

colonies with the correct band size were incubated overnight in LB containing 100 

µg/ml ampicillin, at 37 ºC. The plasmid extraction kit (Macherey-Nagel) was used to 

purify the plasmid DNA from the culture according to the manufacturer’s 

instructions. Using the primers of HDK1011 and HDK430 (both present in the plasmid; 

table 2.2), the whole gene sequence checked by Sanger Sequencing by Source 

BioScience (Nottingham, UK) to check for additional unwanted mutations, the 

presence of the correct mutation(s) and correct cassette for integration. Plasmids 
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produced (Figure 2.1) were digested with AscI (NEB, Hitchin, UK) prior to 

transfection into the tbaqp2/tbaqp3 null cells and tbaqp1-2-3 null cells. 

 

Table 2.1: Primers used to create mutations in TbAQP2. 

 

Mutation Primer Sequence 5`-3` (altered base(s) 
underlined) 

Generated 
Plasmid 

Original 
Template 

L84W 

HDK1276 AAACTTCGTCTGGATATATATCGCTAA
GGG 

pHDK210 pRPaGFP-AQP2 

HDK1277 CCCAGAAATTCAGCCACG 

L118W 
HDK1274 CACCGCAGTGTGGCTGCTCTGTG 

pHDK208 pRPaGFP-AQP2 

HDK1275 GAAATGAGTTCAGCAAAAATTG 

L218W 
HDK1272 CACGATGGCTTGGTATGTTTCACTG 

pHDK209 pRPaGFP-AQP2 

HDK1273 ACAGCCACACCAATACCA 

L84W/ 
L118W 

HDK1276 AAACTTCGTCTGGATATATATCGCTAA
GGG 

pHDK227 pHDK208 

HDK1277 CCCAGAAATTCAGCCACG 

L84M 

HDK1364 AAACTTCGTCATGATATATATCGCTAA
GG 

pHDK234 
pHDK210 

 

HDK1367 GAAATGAGTTCAGCAAAAATTGGATAA
AATATAC 

L118M 

HDK1365 CACGATGGCTATGTATGTTTCAC 

pHDK235 pHDK208 

HDK1367 GAAATGAGTTCAGCAAAAATTGGATAA
AATATAC 

L218M 

HDK1366 CACCGCAGTGATGCTGCTCTGTG 

pHDK236 pHDK209 

HDK1367 GAAATGAGTTCAGCAAAAATTGGATAA
AATATAC 
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Table 2.2: Primers for confirmation of pRPaGFP-AQP2 mutant constructs used before and after 
transfection. 

Primer 
name Direction Position Sequence (5’ – 3’) 

HDK529 Forward  TbAQP2 gene CAGCTGCGAACTGACGGAAGTTGGT 

HDK209 Reverse TbAQP2 gene AAGCTTCGTAGTGTCCAACTGTGCAC 

HDK1011 Forward 

located 143 bp 
upstream of the open 
reading frame (ORF) of 
the gene of interest 
(GOI) in the plasmid 
backbone 

TGCCCGACAACCACTACCTG 

HDK430 Reverse 

located 83 bp 
downstream of the open 
reading frame (ORF) of 
the gene of interest 
(GOI) in the plasmid 
backbone 

GGATCCCGTGAGCCTGGTTGACGAAG 

HDK713 Forward 

located 989 bp 
upstream of the AscI 
site in the plasmid 
backbone 

ATGCAAGCTAGGCCACACCT 

HDK991 Reverse 

located 90 bp 
downstream of the AscI 
site in the plasmid 
backbone 

CCGAACGACCGAGCGCAGCG 

HDK535 Reverse 

located 338 bp 
downstream of the AscI 
site in the plasmid 
backbone 

CGGACAGGTATCCGGTAAGC 
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Figure 2.1: Plasmid map of T. brucei expression vector pRPaGFP-TbAQP2 WT (pHDK80).  
The map shows the TbAQP2 WT gene and the vector confers hygromycin resistance to the transfected 
cells. The rRNA targeting fragment and Hygromycin B phosphotransferase ensures that the constructs 
are located to the tagged locus in the T. brucei genome. This plasmid was used throughout the study 
as an original template to generate mutation(s) in the TbAQP2WT. The positions of used primers and 
restriction sites are highlighted. The plasmid maps were generated by the CLC Genomics Workbench 
program (QIAGEN Bioinformatics). 
 

2.3.4.2. Cloning of PCR products into pGEM-T Easy vector (subcloning vector) 

In order to clone the Leishmania major aquaglyceroporin 1 wild-type (LmAQP1 WT) 

into the final destination vectors (either pRPa or pNUS), the gene was initially 

subcloned into pGEM-T Easy subcloning vectors (Promega). The LmAQP1 WT gene 

(LmjF.31.0020) was amplified from gDNA using primers with the required restriction 

sites using High-fidelity proofreading polymerase Phusion (NEB) (Primers in table 

2.3). The PCR product was A-tailed using 2 µl 10 mM dATP, 10 µl GoTaq reaction 

buffer and 0.2 µl GoTaq polymerase (Promega). A-tailing was achieved by incubating 
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the reaction mix at 72 ºC for 15 min. After incubation, the product was then 

separated by electrophoresis, using a 1% agarose gel, and visualized with SYBR Safe 

DNA gel stain (Invitrogen) under a UV light transilluminator (UVP Inc). The expected 

band size at 959 bp (LmAQP1 WT) was cut out from the agarose gel under ultraviolet 

(UV) light. The DNA was purified using the NucleoSpin Gel and PCR clean-up Kit 

(Macherey-Nagel) exactly as recommended by the manufacturer, and ligated into 

the pGEMT Easy in 10 µl reaction for a ratio of 3:1 insert:vector using the following 

conditions: 5 µl 2× rapid ligation buffer, 1 µl vector (50 ng), 1 µl T4 DNA Ligase (3 

Weiss units/µl), 3 µl insert DNA (50 ng). The mixture was incubated overnight at 4 

ºC.  

Following ligation, the pGEM-T Easy subcloning vector containing our gene of 

interest (GOI) was transformed into XL1-Blue competent E. coli cells using a heat 

shock, as follows. The XL1-Blue competent E. coli cells were thawed on ice in a 1.5 

ml tube (Eppendorf) for ~15 min. 5 µl of the ligation production was added to the 

tube. The tube was gently flicked 4-5 times to mix. The mixture was placed on ice 

for 30 min, following by a heat shock for 45 s at 42 ºC. The mixture was then placed 

on ice for 2 min. 200 µl of room temperature SOC was added into the mixture and 

was incubated at 37 °C for one h with shaking at 250 rpm. The cells were gently 

flicked and a volume of 50-100 µl was spread onto a selection plate (LB agar 

containing 100 µg/ml ampicillin) and incubated at 37 ºC overnight. Next day, 

colonies from the overnight transformation were screened by PCR using forward 

primer M13F (5’-CAGGAAACAGCTATGAC-3’) and reverse primer M13R (5’-

GTAAAACGACGGCCAG-3’) to confirm the presence of the target gene. Positive 

colonies with the correct band size were incubated overnight at 37 ºC in LB 

containing 100 µg/ml ampicillin. The plasmid extraction kit (Macherey-Nagel) was 

used to purify the plasmid DNA from the culture according to the manufacturer’s 

instructions, and was sent for Sanger sequencing (Source BioSciences, Glasgow, UK) 

for sequence confirmation.  
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Table 2.3: Primers used for cloning of LmAQP1 gene into pGEM-T Easy vector. 
 

Lower case sequence: Random nucleotides, to facilitate directly digestion by restriction enzymes. 
Underlining sequence: Restriction site. 
Upper case sequence: Gene of interest primer. 
 

2.3.4.3. Generation of pRPa construct (final vector) for T. b. brucei expression 

The verified, correct DNA sequences of the inserted LmAQP1 gene in the pGEM-T 

Easy subcloning vector were digested using appropriate restriction enzymes and 

ligated into the expression vector pRPa (final vector). LmAQP1 was digested out 

from the plasmid pHDK269 (Appendix 3) (based on the pGEM-T subcloning vector) 

and was ligated to the backbone of pRPa vector after dropping out the TbAQP2 gene 

from the plasmid pHDK80 to give pHDK271 (Figure 2.2). The procedure was 

performed as follows: from bacterial cultures, the vector DNA obtained by miniprep 

was digested with the required restriction enzymes HindIII and Xbal (NEB, Hitchin, 

UK) overnight at 37 ºC. The reaction was made in a total volume of 100 µl, containing 

approximately 25 µg of purified DNA, 1× restriction buffer and 2 µl of restriction 

enzyme and ddH2O. The digested products were run on a 1% agarose gel and 

separated by electrophoresis, at 120 V for 45 min. The desired bands were identified 

by viewing the gel under ultraviolet (UV) light. Bands of the correct size for the DNA 

fragments for each of the backbone (pRPa) and the gene (LmAQP1) were cut out 

Gene Primer Direction 
Res. 

Site 
Sequence 5’ – 3’ 

LmAQP1 HDK1515 Forward BglII ggccAGATCTATGAACTCTCCTACAAC 

LmAQP1 HDK1516 Reverse Xhol CTCGAGCTAACAGCTGGGCGGAA 

LmAQP1 HDK1517 Forward HindIII ggccAAGCTTATGAACTCTCCTACAAC 

LmAQP1 HDK1518 Reverse Xbal aatcTCTAGACTAACAGCTGGGCGGAA 

LmAQP1 HDK1519 Forward - ATGAACTCTCCTACAACCATGCC 

LmAQP1 HDK1520 Reverse - CTAACAGCTGGGCGGAATGAT 
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from the agarose gel and the DNA was purified using the NuceoSpin gel extraction 

kit. The ligation reactions were performed exactly as described in section (2.3.4.2) 

keeping the same ratio (3:1 insert:vector). Ligation productions were then 

transformed into E. coli XL1-Blue cells exactly as explained in section (2.3.4.2). 

Colonies were screened by PCR using forward primer HDK1011 and HDK430 (Table 

2.4) to confirm insertion. Positive clones were cultured in 10 ml LB broth at 37 ºC 

overnight in the shaking incubator. For confirmation of correct integration in the 

vector, plasmids were extracted by miniprep (Macherey-Nagel) according to the 

manufacturer’s instructions, and sent for sequencing with primers HDK1519 and 

HDK1520 (Table 2.4). After sequence confirmation, positive clones of the plasmid 

were linearised with AscI (NEB, Hitchin, UK) prior to transfection into the tbaqp1-2-

3 null cells. For this, the DNA samples were run on a 1% agarose gel in order to 

extract the desired band. The samples were cleaned up using the NucleoSpin Gel 

extraction kit (Macherey-Nagel) according to the manufacturer’s instructions, and 

kept at – 20 ºC until use.  

Table 2.4: Primers for confirmation of the pRPaLmAQP1 WT expression construct used before and 
after the transfection. 

 

Primer name Direction Position Sequence (5’ – 3’) 

HDK1519 Forward LmAQP1 WT gene ATGAACTCTCCTACAACCATGCC 

HDK1520 Reverse LmAQP1 WT gene CTAACAGCTGGGCGGAATCAT 

HDK1011 Forward 

located 205 bp upstream 
of the open reading 
frame (ORF) of the gene 
of interest (GOI) in the 
plasmid backbone 

TGCCCGACAACCACTACCTG 

HDK430 Reverse 

located 100 bp 
downstream of the open 
reading frame (ORF) of 
the gene of interest 
(GOI) in the plasmid 
backbone 

TAACCAACCTGCAGGCG 
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Figure 2.2: The pHDK271 (pRPa+LmAQP1) plasmid map.  
The map shows the full LmAQP1 gene, primers, restriction sites and the hygromycin antibiotic cassette. 

 
2.3.4.4. Generation of pNUS-HcN plasmid (final vector) for L. major expression 

The pNUS-HcN is a non-integrative vector (episomal) and was used to express gene 

of interest into the LmAQP1 null strain. After verification of the pHDK270 (Appendix 

4) (pGEMT containing LmAQP1 WT) by Sanger sequencing, the LmAQP1 gene was 

digested from the pHDK270 using the BglII and XhoI restriction enzymes (NEB), and 

cloned into pNUS-HcN using the restriction enzymes BglII on the 5′ end and XhoI on 

the 3′. The gene was then ligated into the pNUS-HcN backbone to give pHDK272 

(Figure 2.3). The procedure of the digestion, ligation and transformation was 

performed exactly as described in (section 2.3.4.2), except for the digestion with 

the BglII and XhoI restriction enzymes. Colonies of transformants (containing 
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plasmids) were confirmed by PCR using HDK1519 and HDK1520 primers (Table 2.5) 

to confirm insertion. Positive clones were cultured in 10 ml LB broth overnight in 

the shaking incubator at 37 ºC. The generated plasmids were extracted by miniprep 

(Macherey-Nagel) according to the manufacturer’s instructions, and sent for Sanger 

sequencing (Source BioScience, Nottingham, UK) with HDK851 and HDK340 primers 

(Table 2.5) to check the sequence and correct integration in the vector. 

 

Table 2.5: Primers for confirmation of the pNUSLmAQP1 WT expression construct used before 
and after the transfection. 

Primer 
name Direction Position Sequence (5’ – 3’) 

HDK1519 Forward  LmAQP1 WT gene ATGAACTCTCCTACAACCATGCC 

HDK1520 Reverse LmAQP1 WT gene CTAACAGCTGGGCGGAATCAT 

HDK851 Forward  

located 152 bp 
upstream of the open 
reading frame (ORF) of 
the gene of interest 
(GOI) in the plasmid 
backbone. 

GCGCGTGTCCTTTTCGAGCAAACAG
C 

HDK340 Reverse 

located 71 bp  
downstream of the open 
reading frame (ORF) of 
the gene of interest 
(GOI) in the plasmid 
backbone. 

CGTGGAGCAGCTGAAGGACA 
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Figure 2.3: The pHDK272 (pNUS+LmAQP1) plasmid map. 
The map shows the full LmAQP1 gene, primers, restriction sites and the neomycin antibiotic cassette.  
 

2.4. DNA sequencing 

2.4.1. Preparation of sample for sequencing 

In order to prepare samples for sequencing, DNA samples were cleaned up using the 

purification kit (Macherey-Nagel). Volume of the sample 1-2µl was placed onto the 

pedestal of a Nanodrop spectrophotometer (ThermoFisher Scientific) to measure the 

purity and the concentration of the DNA. The DNA samples were then prepared 

exactly as recommended by Source Bioscience as following. For sequencing of 

plasmid, 5 µl per reaction of both primers at 3.2 pmol/µl and plasmid DNA at 100 
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ng/µl was used. For PCR product sequence confirmation, 5 µl per reaction was also 

sent for both primers, at 3.2 pmol/µl, and DNA at 10 ng/µl per 500 bp of the PCR 

product.  

2.4.2. Sequence analysis and alignments  

The nucleotide and amino acid sequences for gene of interest (GOI) were imported 

from TriTrypDB (tritrypdb.org/tritrypdb) or GeneDB (genedb.org) databases. The 

CLC Genomic workbench software (version 7.0, developed by CLC bio) was routinely 

used to create alignments and sequence analysis.  

2.5. Transfection 

2.5.1. In Trypanosoma brucei 

Prior to transfection, the generated expression construct pRPa (containing our gene 

of interest and a hygromycin resistance cassette) was digested with AscI (NEB) to 

linearize the plasmid. Following the digestion, the products were run on 1% agarose 

gels to confirm the correct length of the desired fragment of the plasmid which was 

estimated to be around 5.3 kb for the DNA expression cassette. The DNA samples 

(expression cassette) were extracted from the gel and cleaned up using the 

NucleoSpin Gel extraction kit (Macherey-Nagel) according to the manufacturer’s 

instructions. The samples were then precipitated with ethanol overnight at 20 ºC, 

dried and resuspended in 10 µl of sterile water. Bloodstream form of the desired cell 

line either aqp2/aqp3 null or aqp1/aqp2/aqp3 null were cultured and density of 

1×107 cells/ml were washed in 100 µl Human T-Cell solution and resuspended in 10 

µg of the digested plasmid. The mixture was transferred into a cuvette (Amaxa) for 

transfection. Using an Amaxa Nucleofector (Amaxa AG, Cologne, Germany), the 

program X-001 was used for electroporation of the cells, which were immediately 

transferred to a warm medium of HMI-9 and left to recover for 6-18 hours at 37 ºC 

and 5% CO2. Appropriate antibiotic (2.5 µg/ml hygromycin) was added before the 

cells were cloned out using limiting dilutions of (1/10, 1/25 and 1/100) into 96-well 

plates into 96-well. After around seven days of incubation with the selection 
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antibiotic, clones (surviving cells) were picked up from the plates, cultured in 5 ml 

fresh media with the antibiotic (2.5 µg/ml hygromycin). After several passages (3 - 

5 passage), the gDNA of clones was extracted using the standard protocol and the 

Nucleospin tissue kit (Macherey-Nagel). The positive clones were assessed by PCR to 

confirm correct integration, and to check for the presence of the desired gene. The 

PCR products cleaned up using the PCR purification kit (Macherey-Nagel). Sanger 

Sequencing was used to confirm the sequence (SourceBioscience, Glasgow, Scotland, 

UK). 

2.5.2. In Leishmania major  

Since the plasmid pNUS-HcN was for episomal expression, the generated plasmid 

DNA (pHDK272) was directly transfected without digestion (As circular plasmid). 20 

µg of plasmid DNA was precipitated with ethanol and resuspended in 20 µl of sterile 

water. Log phase cells of L. major AQP1 null promastigotes (5×107 cells) were 

pelleted by centrifugation at 1000 × g for 10 min. The pellet was then resuspended 

in 100 µl Human T-cell buffer, and mixed with the 10 µl precipitated DNA. To 

electroporate the cells, the program U-033 of the Amaxa Nucleofector II 

electroporator (Amaxa Biosystems) was used to create the desired strains. Cells 

were then transferred to pre-warmed HOMEM medium containing 10% FBS and were 

left to recover overnight in 25 ºC incubator. In the following day, Neomycin G418 

(50 µg/ml) was added and the cells were plated out using limited dilutions (1:20, 

1:100, 1:200) to generate individual clones. Positive clones produced from this 

transfection were cells that were resistant to antibiotic Neomycin (G418). The gDNA 

of the generated clones were extracted using Nucleospin Tissue kit (Macherey-Nagel) 

according to the manufacturer’s instructions. PCR confirmations were performed to 

confirm correct integration, and to check for the presence of the desired gene. 
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2.6. Quantitative real-time PCR (qRT-PCR) 

2.6.1. Preparation of RNA from T. brucei 

Following the instructions provided by the manufacturer of the NucleoSpin RNA kit, 

RNA purifications were prepared from T. brucei 2T1 and CRK12 cell lines. Briefly, 5 

x 106 cells were centrifuged for about 10 minutes at 1300 × g, and the supernatant 

was discarded. This was followed by lysing the cells by addition of 350 µl Buffer RA1 

and 3.5 µl β-mercaptoethanol reducing agent, before vortexing vigorously. In order 

to adjust the RNA binding conditions, 350 µl of 70% ethanol was added to the samples 

and the contents were pipetted up and down to homogenize. This was followed by 

loading the samples onto the NucleoSpin column for DNA binding, by centrifuging 

the contents at 11,000 × g for about 30 s. To prevent contamination with DNA, it 

was necessary to intermittently change gloves and collection tube. To desalt the 

silica membrane, 350 µl of Membrane Desalting Buffer was added into the tube, and 

centrifuged at 11,000 × g for one minute. The remaining DNA in the mix were 

removed by applying rDNase reaction mixture on the column, followed by incubation 

at room temperature for about 15 minutes. A washing buffer was used to clean the 

column before leaving it to dry. Elution of the RNA was done using nuclease-free 

water, and placing the tubes on ice to prevent RNA degradation. The concentration 

of RNA was then checked using the NanoDrop spectrophotometer (ThermoFisher 

Scientific). All samples were collected and stored at -20 ºC for later use. 

2.6.2. Complementary DNA synthesis from RNA 

Conversion of RNA to complementary DNA (cDNA) was accomplished by the use of 

SuperScript III Reverse Transcriptase (RT, Invitrogen) as described by Ali and Field 

(2013). Control samples in which there was no RT added were performed in parallel. 

There were three phases involved in the production of cDNA. In the first phase, 500 

ng of Random primers (Invitrogen), 2 µl of 10 mM dNTPs, 1 µg RNA template and 

sterile water were mixed to a volume of 29 µl for hot mixing at 65 ºC for 5 minutes. 

In the second phase, 8 µl of 5× First-Strand Buffer, 1 µl of SuperScript III RT and 2 µl 

0.1 M DTT were added to the mixture. Water was added to samples without RT 

instead of SuperScript III RT. All the samples were then incubated at a temperature 
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of 25 ºC for 5 min, followed by incubation at 50 ºC for 45 minutes, and then at 70 ºC 

for 15 minutes. In the third phase, any remaining template of RNA were removed by 

adding 1 µl (2U) of E. coli RNase H, followed by incubation at a temperature of 37 

ºC for 20 minutes. This resulted in pure cDNA that was stored at -20 ºC until use.  

2.6.3. Quantitative RT-PCR 

Upon generating the required cDNA, quantitative real time PCR (qRT-PCR) was 

performed using the GoTaq qPCR Master mix (Promega). Using Primer3®, primers 

were designed (Table 2.6), and efficiency evaluated using the previously described 

method (Pfaffl, 2001). Endogenous gene GPI8 (housekeeping gene) with its primers 

was deployed as control (Table 2.6). The reaction was performed in 25 µl, made up 

of 12.5 µl of GoTaq master mix, 3.5 µl of water, 2 µl each of 2.5 mM forward and 

reverse primer, and 5 µl of cDNA where the ratio of dilution of the converted cDNA 

is 1:10. The samples were then subjected to a very brief vortex and centrifuge 

before putting them into the machine. The DNA amplification was done in a 7500 

Real Time PCR System (Applied Biosystems). The specific reaction conditions were 

as follows: 50 ºC for 2 min, 95 ºC for 10 min, 45 cycles of 95 ºC for 15 sand 60 ºC for 

1 min. A dissociation curve was used to show the amplification of only one product 

at a time. Samples in which reverse transcriptase was not added or lacked cDNA 

served as controls. The whole experiment was performed independently on three 

occasions, from culturing of the cell lines to isolation of RNA.  

Table 2.6: Primers used to quantify gene expression by qRT-PCR. 

Gene Primer Direction Sequence 

CRK12 HDK1779 Forward 5’-AGCGGTCTTGGTCTGTGAAC-3' 

CRK12 HDK1780 Reverse 5’-GACATCCAACGGTTTATCTG-3' 

GPI8 HDK131 Forward   5’-CGAAGCGCATTTGGATAG-3' 

GPI8 HDK132 Reverse 5’-AGCGGTCTTGGTCTGTGAAC-3' 
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2.7. Drug sensitivity assay 

As described by Gould et al. (2008), sensitivity assays of both Trypanosoma and 

Leishmania species to various drugs using the viability dye resazurin (Alamar Blue) 

are based on the reduction of resazurin sodium salt (blue, non-fluorescent) to 

resorufin (pink, fluorescent) by surviving but not by dead cells.  

For T. brucei strains, in 96-well plates containing doubling dilutions of test 

compounds were set up in 100 µl HMI-9/FBS medium, each over 2 rows (23 

concentrations) The top concentrations were usually 100 µM in culture medium; the 

last well received 100 µl medium as no- drug control. To each well, 100 µl of 2×105 

cells/ml were added, and the plates were incubated for 48 h at 37 ºC in 5% CO2, 

after which 20 µl of 0.5 mM of resazurin was added and the plates incubated under 

the same conditions for a further 24 h. Fluorescence intensity was read using a 

FLUOstar OPTIMA (BMG Labtech, Germany) at wavelengths of 544 nm for excitation 

and 620 nm for emission.  

For Leishmania promastigotes strains, cultured in HOMEM/10% FBS, the procedure 

was identical, except that 100 µl of 2×106 cells/ml was added per well, the 

incubation time before addition of resazurin was 72 h at 25 ºC, and incubation with 

resazurin was for a further period of 48 hours. Data was plotted to a sigmoid curve 

with variable slope using Prism 6.0 (GraphPad) and 50% effective concentrations 

(EC50) were determined for all compounds in 3 – 5 independent experiments. 

 

2.8. Transport Assay 

Transport assays - Transport of [3H]-pentamidine was performed exactly as 

previously described for various permeants (Wallace et al., 2002; Bridges et al., 

2007; Teka et al., 2011) in a defined assay buffer (AB; 33 mM HEPES, 98 mM NaCl, 

4.6 mM KCl, 0.55 mM CaCl2, 0.07 mM MgSO4, 5.8 mM NaH2PO4, 0.3 mM MgCl2, 23 mM 

NaHCO3, 14 mM glucose, pH 7.3). [3H]-pentamidine was custom-made by GE 

Healthcare Life Sciences (Cardiff, UK) with a specific activity of 88 Ci/mmol. 

Incubations of bloodstream form trypanosomes with 30 nM of this label (unless 
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otherwise indicated) were performed in AB at room temperature for 60 s (unless 

otherwise indicated) and terminated by addition of 1 ml ice-cold ‘stop’ solution (1 

mM unlabelled pentamidine (Sigma) in AB) and immediate centrifugation through oil 

(7:1 dibutylphthalate:mineral oil v/v (both from Sigma)) to separate the cells from 

the aqueous buffer. Transport was assessed in the presence of 1 mM adenosine to 

block uptake through the P2 aminopurine transporter; adenosine does not affect 

HAPT1-mediated transport (De Koning, 2001a; Bridges et al., 2007). This mixture 

was incubated for predetermined times. The reaction was stopped by the addition 

of 750 µl of an ice-cold 1 mM solution of unlabelled permeant. The tubes were 

centrifuged at 13,000 ×g for 1 min. The microfuge tube was then placed in liquid 

nitrogen for flash freezing; the bottom of the frozen tubes, containing the cell 

pellet, was cut off and collected in a scintillation vial. 250 µl of 2% sodium dodecyl 

sulphate (SDS) was added to the vial to solubilise the cells. The scientillation vials 

with cell pellets and SDS were left at room temperature for 30 min. A volume of 3 

ml scintillation fluid (Optiphase HiSafe III) was added to each vial, which were then 

incubated overnight at room temperature. Inhibition assays were performed 

routinely with 6 - 10 different concentrations of inhibitor over the relevant range, 

diluting stepwise by one third each time, in order to obtain a well-defined and 

accurate sigmoid plot and IC50 value (inhibitor concentration giving 50% inhibition of 

pentamidine transport; calculated by non-linear regression using Prism 6.0 

(GraphPad), using the equation for a sigmoid curve with variable slope). Highest 

concentration was usually 1 mM unless this was shown to be insufficient for good 

inhibition, or when limited by solubility. Ki values were obtained from IC50 values 

using: Ki = IC50/[1 + (L + Km), in which L is the [3H]-pentamidine concentration and 

Km the Michaelis-Menten constant for pentamidine uptake by HAPT1 (Wallace et al, 

2002). The Gibbs Free energy of interaction ΔG0 was calculated from ΔG0 = -RTlnKi, 

in which R is the gas constant and T is the absolute temperature (Wallace et al, 

2002).  

Transport of [3H]-glycerol and [3H]-suramin was performed essentially as for [3H]-

pentamidine. For [3H]-glycerol (American Radiolabeled Chemicals, 40.0 Ci/mmol), 

107 BSF T. brucei were incubated with radiolabel at a final concentration of 0.25 

µM, for one minute. When the effect of Carbonyl cyanide m-chlorophenyl hydrazone 
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(CCCP) was studied, CCCP was added 3 minutes prior to the addition of the 

radiolabel. [3H]-suramin (American Radiolabeled Chemicals, 20.0 Ci/mmol) was also 

used at 0.25 µM final concentration, using 15 min incubations I the presence and 

absence of 100 µM unlabelled suramin (used as saturation) control. 

2.9. Protein Model  

To facilitate visualisation of the TbAQP2 channel and the relative proximity of amino 

acid residue sites to the selectivity filter (Baker et al., 2013), a 3D homology model 

of the TbAQP2 protein structure was generated.  The FASTA format of the protein 

sequence was obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/). 

Best representation of the protein was sought considering the FASTA sequence using 

the NCBI BLAST tool (https://blast.ncbi.nlm.nih.gov/), with ‘chimeric 

aquaglyceroporin 2/3 [Trypanosoma brucei gambiense]’ selected as the most similar 

template to the TbAQP2 protein based on a zero ‘e-value’, and the highest sequence 

percentage identity and query coverage. Cross-reference with the SWISS-MODEL 

software (Waterhouse et al., 2018) ensured that a model had already been 

generated for this homologous protein structure (UniProtKB AC: U5NJF5). The model 

was then visualised with PyMOL 2.2 (Schrödinger), with only the original FASTA 

sequence highlighted in the images produced. Amino acid residue sites were 

highlighted, along with residue sites that have already been established to 

constitute the selectivity filter of TbAQP2 (Baker et al., 2013). 
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Chapter 3 Mutations in TbAQP2 and TbAQP3 affect 
pentamidine uptake by Trypanosoma brucei 
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3.1. Introduction 

Species belonging to the Trypanosoma brucei-group can lead to severe infections 

such as sleeping sickness (humans) and nagana (animals) (Giordani et al., 2016); 

Bu ̈scher et al., 2017). The treatment is determined by the trypanosome subspecies 

that causes the disease, the host, and the stage of the disease (Giordani et al., 2016; 

De Koning, 2020). However, various anti-protozoan medications are considered 

intrinsically cytotoxic, and they are believed to obtain their selectivity through 

favoured uptake by the pathogen rather than of the host cells (Munday et al., 2015a; 

De Koning, 2020). In contrast, drug resistance is attributed to the loss of specific 

drug transporters (Barrett et al., 2011; Baker et a.l, 2013; Munday et al., 2015a; and 

De Koning, 2020). Drug resistance has been observed in a wide range of trypanocides, 

such as the fluorinated amino acid analog eflornithine used to treat human cerebral 

trypanosomiasis (Vincent et al, 2010), melaminophenyl arsenicals (melarsoprol for 

cerebral stage human and cymelarsan for animal trypanosomiasis (Carter & 

Fairlamb, 1993; Bridges et al., 2007), and diamidines (pentamidine, diminazene) 

(Carter et al., 1995; De Koning, 2001a; De Koning et al., 2004; and Bridges et a.l, 

2007). Consequently, it is imperative to explore transporters when studying the anti-

protozoal drug discovery, as well as when investigating drug resistance (Lu ̈scher et 

al., 2007; Munday et al., 2015a). 

 

Several researchers have conducted various studies to gain more insights into anti-

protozoal drug resistance. For instance, Rollo & William (1951) first identified 

melarsoprol-pentamidine cross-resistance (MPXR) in Trypanosoma brucei, and was 

connected MPXR to decreased uptake instead of shared intracellular target(s) 

(Frommel & Balber, 1987). The aminopurine transporter TbAT1/P2 was the first 

transporter associated with the MPXR (Carter & Fairlamb, 1993; Ma ̈ser et al., 1999; 

Munday et al., 2015b). However, two other transporters have been affiliated with 

melarsoprol-pentamidine cross-resistance to include Low-Affinity Pentamidine 

Transporter (LAPT1) and High-Affinity Pentamidine Transporter (HAPT1) (De Koning, 

2001a; De Koning & Jarvis, 2001; Bridges et al., 2007). HAPT1 is considered the main 

determinant of MPXR and was identified as Aquaglyceroporin 2 (TbAQP2) through an 

RNAi library screen (Baker et al., 2012, 2013; Munday et al., 2014). The two motifs 
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of the asparagine-proline-alanine sequences (NPA), and the aromatic-arginine 

(ar/R), in the aquaporin water channel family, are the most important structural 

domains that play a crucial role in water-selective permeation. These two regions 

have been proposed as filters that block solutes larger than water and charged 

molecules from moving through. According to crystallographic studies, the two NPA 

motifs in the narrow central constriction of the pore, contribute to a monomeric 

pore structure that enables selective, bi-directional, and single-file transport of 

water in classical AQPs (Sui et al., 2001) and water and glycerol in aquaglyceroporins 

(Jensen et al., 2001). The aromatic-arginine region, which is narrower than the 

central NPA constriction and acts as a selectivity filter on the extracellular side of 

the AQP channel, blocks the entry of molecules larger than water (de Groot & 

Grubmu; 2005, 2001). Uniquely, TbAQP2 allows substance with high molecular 

weight due to its highly unusual selectivity filter that is deemed to lack the canonical 

aromatic/arginine (ar/R) and full NPA/NPA motifs, which make it become a much 

wider pore (Baker et al., 2012; Munday et al., 2014, 2015a). Introducing TbAQP2 

into Leishmania promastigotes significantly increased their sensitivity to 

pentamidine and melarsen oxide (Munday et al., 2014). Moreover, studies have 

demonstrated various MPXR laboratory strains of T. brucei to have deleted the AQP2 

gene and strains with a chimeric AQP2/TbAQP3 gene that is regarded to be different 

from the AQP2 gene (Munday et al., 2014).  This chimeric AQP2/TbAQP3 gene 

consists of the full, classical ar/R and NPA/NPA selectivity filter motifs, in addition 

to lacking the capability of transporting either pentamidine or melaminophenyl 

arsenicals (Munday et al., 2014). Correspondingly, such deletions and chimeric genes 

have been noted and isolated from individuals with sleeping sickness resistant to 

melarsoprol treatment (Graf et al., 2013; Pyana Pati et al., 2014). These chimeric 

genes and deletions also failed to show pentamidine sensitivity when expressed in a 

tbaqp2-tbaqp3 null cell line (however, the wild-type TbAQP2 conferred sensitivity) 

(Munday et al., 2014; Graf et al., 2015). Nevertheless, the mechanism associated 

with TbAQP2-mediated drug transport in the trypanosomes is still unclear. 

Therefore, this study aimed to conduct a mutational analysis to determine any role 

of amino acids along the TbAQP2 pore in assisting in sensitivity and/or uptake of 

pentamidine. To resolve this, mutation(s) related to TbAQP2 and TbAQP3 genes were 
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synthesized, expressed, and preserved for characterization focusing on drug 

sensitivity and uptake capability. 

 
 

3.2. Results 

3.2.1. Positive selection for investigation of the structural determinants of AQP2 
for pentamidine transport 

Three aquaglyceroporins (TbAQP1-3) exist in the T. brucei and are deemed to 

contribute to the transport of various small solutes, including urea, glycerol, and 

water (Benga G, 2009; Jeacock et al., 2017). The TbAQP2 and TbAQP3 are 74% amino 

acids identical and appear as a tandem pair on chromosome 10. However, TbAQP2 

facilitates the uptake of pentamidine, which is not observed in TbAQP3 (Baker et 

al., 2012; Munday et al., 2014) and in a variety of chimeric AQP2/3 changes that 

result in pentamidine resistance (Munday et al., 2014; Graf et al., 2015). A 

phylogenetic analysis of AQPs in African trypanosomes was conducted (kindly 

created by Dr. Mark Carrington, University of Cambridge). Based on the tree 

considered consistent with the four species' evolutionary history (Hutchinson & 

Gibson, 2015) (Figure 3.1), APQ1 was found to be the ancestral AQP as it was 

expressed in all trypanosome species. A duplication was observed in the common 

ancestor of T. suis and T. brucei, following divergence from T. congolense and a 

further duplication to form AQP2 and AQP3 in the ancestor of T. brucei after 

divergence from T. suis. On the other hand, there was a variation in the number of 

aquaporins, where one aquaporin was noted in T. vivax and T. congolense, two in T. 

suis, and three in T. brucei and its derivatives. 
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Figure 3.1: Phylogenetic tree of AQPs in African trypanosomes; T. congolense, T. b. brucei and 
T. suis. The tree is a Neighbour-joining tree produced with the lengths of the horizontals proportional 
to the differences. (Created by Dr. Mark Carrington). 

 

With the exception of T. brucei AQP2, all other APQs were found to have the classical 

NPA/NPA and ar/R AQP selectivity filter elements, indicated by multiple alignments 

(Figure 3.2). The TbAQP2 and TbAQP3 were observed to be closely related except 

that TbAQP2 lacks the “aromatic/arginine (a/R)” motif and contains unusual 

selectivity pore amino acids residues (NSA/NPS/IVLL), unlike TbAQP3 

(NPA/NPA/WGYR) (Baker et al., 2013; Figure 3.3). The NPA/NPA is one highly 

conserved motif of aquaporins and is found in TbAQP3 (not in TbAQP2), where they 

are deemed to play a significant role in permeant selectivity. The ar/R motif is found 

in both TbAQP1 and TbAQP3 and is argued to be a part of the larger selectivity filter, 

mainly WGYR, and distinctively contains I110V249L258L264 in TbAQP2 (Baker et al., 

2013). In contrast, the AQP3 Tyr-250 accounts for half of the highly conserved 

aromatic/arginine (ar/R) motif and plays a role in pore restriction as well as proton 

exclusion (Wu et al., 2009). 
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Tco       MTSPTVPNPMSTVPMTEM----TE-ANGTTNPPIPDAGERTAV---NFDTEQCK-TKEIL 51 
Tbr1      MSD--EKINVHQYPSETDVRGLKARNGGACEVPFEENN-EPIPNRSANPQEKNE--NELV 55 
Tsu1      MSS--EPVNVHRYTAEGDRSGLKDRHGKTCEVCVGDESAAAVPSAVYNPQEQSGDGPEVK 58 
Tsu2      MQN--QPDAMTH-STAVQMV-NKNPEDGTGGADTERSDEMTAP--------TTRTGDAQK 48 
Tbr2      MQS--QPDNVAY-PMELQAV-NKDGT---VEVRVQGNVDNSSN--------ERWDADVQK 45 
Tbr3      MQS--QPDNVAY-PMELQAV-NKDGT---VEVRVQGNDDSS----------------NRK 37 
          * .      :            .                                      
 
 

Tco       -AGEGEAPHGPMDINYWPLRNLRMDFREYVGEFLGTFVLLFMGNGVVATTLLDNNLGFLS 110 
Tbr1      GDNADNEAHDAVDVNYWAPRQLRLDYRNYMGEFLGTFVLLFMGNGVVATTILDKDLGFLS 115 
Tsu1      AGGGEAEVQNAADVNNWAPRRLRLDYRDYMGEFLGTFVLLFMGNGVVATTMLDDGLGFLS 118 
Tsu2      CETTNTPKEGAGGINYWAPRELRLKYRDYMGELLGTFVLLLMGNGVVATVVVDGKLGFLS 108 
Tbr2      HEVAEAQEKPVGGINFWAPRELRLNYRDYVAEFLGNFVLIYIAKGAVITSLLVPDFGLLG 105 
Tbr3      HEVAEAQEEVPGGINFWAPRELRLNYRDYMGELLGTFVLLFMGNGVVATVIIDGKLGFLS 97 
                  .   .:* *  *.**:.:*:*:.*:**.***: :.:*.* * ::   :*:*. 
 
 

Tco       ITFGWGIAVTMGLYVSLGTSSGHLNPAVTVANAFFGGFPWKKVPGYIAMQMLGAFVGAAC 170 
Tbr1      ITLGWGIAVTMGLYISLGISCGHLNPAVTLANAVFGCFPWRRVPGYIAAQMLGAFVGAAC 175 
Tsu1      ITLGWGIAVTMGLYISLGTSCGHLNPAVTVANAVFGCFPWKKVAGYIAMQMLGAFVGAAC 178 
Tsu2      ITLGWGIAVTMALYISLGISSGHLNPAVTVGNAVFGDFPWRKVPGYIAAQMFGAFLGAAC 168 
Tbr2      LTIGIGVAVTMALYVSLGISGGHLNSAVTVGNAVFGDFPWRKVPGYIAAQMLGTFLGAAC 165 
Tbr3      ITLGWGIAVTMALYVSLGISSGHLNPAVTVGNAVFGDFPWRKVPGYIAAQMLGAFLGAAC 157 
          :*:* *:****.**:*** * **** ***:.**.** ***::* **** **:*:*:**** 
 
 

Tco       AYGVYADLLNKKVSDG----EIEDYAGMFSTYPRDGNSLFSCIFGEFICTAMLTFCVCGI 226 
Tbr1      AYGVYADLLKQHSGG-LVGFGDKGFAGMFSTYPREGNRLFYCIFSEFICTAILLFCVGGI 234 
Tsu1      AYGVFADLLKQHSGG-LIPFGDKGFAGMFSTYPRDGNRLFYCIFGEFICTAMLLFCVSGI 237 
Tsu2      AYGVFADLLKEYCGGKLLAFGAKGIAGVFSTYPKEANSVFACVFGEFICTAILLFCVCGI 228 
Tbr2      AYGVFADLLKAHGGGELIAFGEKGIAWVFAMYPAEGNGIFYPIFAELISTAVLLLCVCGI 225 
Tbr3      AYGVFADLLKAHGGGELIAFGEKGTAGVFSTYPRDSNGLFSCIFGEFICTAMLLFCVCGI 217 
          ****:****:   ..       :. * :*: ** :.* :*  :*.*:*.**:* :** ** 
 

Tco       FDTHNAPATGHEPLAVGALVFAIGNNVGYATGYAINPARDFGPRVFSAILYGSTVFTRGD 286 
Tbr1      FDPNNSPAKGHEPLAVGALVFAIGNNIGYASGYAINPARDFGPRVFSAILFGSEVFTTGN 294 
Tsu1      FDANNSPAKGHEPLAVGALVFAIGNNIGYATGYAINPARDFGPRLFSAILFGSEVFTAGN 297 
Tsu2      FDPNNSPAKKHEPLAVGSLIFAIGNNIGYSTGYAMNPARDFAPRVFSALLLGGEVFSHGN 288 
Tbr2      FDPNNSPAKGYETVAIGALVFVMVNNFGLASPLAMNPSLDFGPRVFGAILLGGEVFSHAN 285 
Tbr3      FDPNNSPAKGHEPLAVGALVFAIGNNIGYSTGYAINPARDFGPRVFSSFLYGGKVFSHAN 277 
          ** :*:**. :* :*:*:*:*.: **.* ::  *:**: **.**:*.::* *. **: .: 
Tco       YYFWVPLFIPLLGGIFGIILYKYFVPH 313 
Tbr1      YYFWVPLFIPFLGGIFGLFLYKYFVPY 321 
Tsu1      YYFWVPLFIPFLGGIFGLLLYKYFVPH 324 
Tsu2      YYFWVPLFIPFLGAIFGLFLYKYFVPH 315 
Tbr2      YYFWVPLVVPFFGAILGLFLYKYFLPH 312 
Tbr3      YYFWVPLVIPLFGGIFGLFLYKYFVPH 304 
          *******.:*::*.*:*::*****:*: 
 
Figure 3.2: Amino acid sequence alignment of aquaporins in African trypanosomes; T. 
congolense, T. b. brucei and T. suis. 
 

The figure shows the classical AQP selectivity filter elements that present in all of AQPs in African 
trypanosomes compared to the unique selectivity filter amino acids residues that present in T. brucei 
AQP2. The turquoise highlighting indicates the highly conserved motifs of aquaporins (NPA/NPA), and 
the red highlighting indicates the unusual motifs (NSA/NPS) present in T. brucei AQP2. The pink 
highlighting indicates the usual residues (WGYR) present in all aquaporins, and the bright green 
highlighting indicates the uniquely residues (IVLL) in TbAQP2. The yellow highlighting indicates the N-
terminus of the sequences used to determine non-synonymous v synonymous ratios (Table 3.1).  
*, indicates perfect alignment (fully conserved residue); :, indicates a strong similarity; ., indicates a 
weak similarity. (Alghamdi et al., 2020). 
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Figure 3.3: Homology models of the TbAQP2 and TbAQP3 protein structures.  
 

The figures show the selectivity filter residues in TbAQP2 (Tb927.10.14170) and TbAQP3 
(Tb927.10.14160). (A) top and side views of TbAQP2; the unique selectivity filter IVLL/NSA/NPS motifs 
are indicated. (B) top and side views of TbAQP3; the classical selectivity filter NPA/NPA/WGYR motifs 
are indicated. (adapted from Baker et al., 2012). 

 

Investigations were conducted to determine the divergence of T. brucei AQP2 and 

AQP3, which was achieved by calculating the non-synonymous/synonymous codon 

ratio (dN/dS) for different AQPs, as indicated in Table 3.1. For T. brucei versus T. 

suis AQP1, the dN/dS was found to be 0.21, while that of AQP3 to be 0.30, 

demonstrating purifying selection. Nonetheless, regarding T. brucei AQP2 versus T. 

brucei AQP3, the dN/dS was observed to be 2.0, signifying intense selection pressure 

for divergence on AQP2 towards an increased size aquaporin’s pore. 
 

Table 3.1: The non-synonymous/synonymous codon ratio (dN/dS) calculated for selected 
comparisons between T. brucei and T. suis AQPs. 
  

 

 

 

 
 

 
 

The ratios were calculated using a region of high confidence alignments from ~amino acid 60 
(highlighted in Figure 3.4) to the C-terminus. (calculation made by Dr. Mark Carrington). 

(A) (B)

top view

side view

top view

side view

Trypanosoma species dN/dS 

T. brucei AQP1 v T. suis AQP1 0.21 

T. brucei AQP3 v T. suis AQP3 0.30 

T. brucei AQP2 v T. brucei AQP3 2.00 
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3.2.2. Introduction of AQP3 selectivity residues in AQP2 disables pentamidine 
(and melarsoprol) uptake. 

3.2.2.1. Confirmation of the construction and transfection of AQP2 mutants 

Selected residues of the classical selectivity filter motifs of the TbAQP3 (ar/R and 

NPA/NPA) were introduced into the corresponding residues in the selectivity filter 

of the TbAQP2 pore to test the possible role of these in guiding pentamidine and 

cymelarsan. The NPA/NPA (TbAQP2S131P/S263A), WGYR (TbAQP2I110W/L264R) and the 

AQP3 Tyr-250 (TbAQP2L258Y) mutants were constructed and expressed into 

tbaqp2/tbaqp3 null cells by Dr. Jane Munday at the De Koning laboratory. To 

characterise these mutant(s), cells were retrieved from stabilates in liquid nitrogen 

storage, the presence of the TbAQP2 gene was verified by PCR and confirmed by 

sequencing for the correct mutation(s). For this, genomic DNA from each cell line 

was extracted and purified, followed by two PCR reactions that were set up for the 

confirmation. The first PCR was performed to solely amplify the full TbAQP2 gene 

using primers HDK529 and HDK209. The second was designed to amplify the gene 

with a partial fragment of the expression cassette using primers HDK1011 (located 

143 bp upstream of the open reading frame of the gene in the plasmid backbone) 

and HDK430 (located 83 bp downstream of the open reading frame the gene in the 

plasmid backbone). PCR products were then run on 1% an agarose gel with DNA 

staining. From the first reaction PCR products were at 950 bp (Figure 3.4 A-B), 

approximately the size of the TbAQP2 gene (936 bp). Product-sized bands from the 

second PCR reaction were at ~1250 bp, corresponding to the expected size of the 

gene with the partial plasmid fragment (1212 bp) (Figure 3.4 C-D). The expected 

amplification products from the two PCR reactions were indicating successful 

transfections (See plasmid map (figure 2.1) in section 2.3.4.1; for primers sites). 
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Figure 3.4: Agarose gel electrophoresis of PCR products reveals the presence of the integrated 
tbaqp2 (AQP3 selectivity residues) in transfected tbaqp2/tbaqp3 null cells.  
(A) and (B) amplified PCR products at ~939 bp present the full TbAQP2 gene. (A) L: 1kb DNA ladder; 
1: TbAQP2 (WT) positive control; 2: TbAQP2 (KO) negative control; 3: TbAQP2 (S131P/S263A); 4: 
TbAQP2 (L258Y); 5: TbAQP2 (I110W). (B) L: 1kb DNA ladder; 1: TbAQP2 (WT) positive control; 2: 
TbAQP2 (KO) negative control; 3: TbAQP2 (L264R); 4 (I110W/L264R). Bands in (C) and (D) display 
fragments at ~1250 bp (TbAQP2 and parts of the expression cassette neighbouring the gene). The 
order of the samples in (C) are as same as in (A). The order of the samples in (D) are as same as in 
(B). The positive control (lane 1) in C and D is pRPaGFP-AQP2 WT plasmid. 
 
 
Prior to performing the sensitivity and uptake assays, cell lines were also checked 

by sequencing. For this, the full TbAQP2 gene was amplified from the genomic DNA 

of each cell line using a high-fidelity DNA polymerase (New England BioLabs). The 

products from PCR reactions were purified using a DNA purification kit (Macherey-

Nagel) and were then sent for sequencing (SourceBioscience, Glasgow, Scotland, UK) 

using forward primer (HDK1011) and reverse primer (HDK340). Correct mutation(s) 

were checked by creating alignments of the amino acid of TbAQP2 WT and the 

generated TbAQP2 mutant(s) (Appendix 5). 
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3.2.2.2. Molecular characterization of the introduction of AQP3 residues into 
the AQP2 selectivity filter. 

To assess the effect of introducing the classical selectivity filter motifs of TbAQP3 

(ar/R and NPA/NPA) into the TbAQP2 on the pentamidine and cymelarsan 

susceptibility, the standard protocol of 48 h incubation with the drug, followed by a 

further 24 h in the presence of the resazurin indicator dye (Alamar blue assay), was 

performed to determine EC50 values. The assay was performed in parallel with the 

tbaqp2/tbaqp3 null strain (drug-resistant control) and the tbaqp2/tbaqp3 null strain 

possessing the re-expressed TbAQP2 WT cells (drug-sensitive control). Pentamidine 

and the melaminophenyl arsenical cymelarsan were the drugs assessed whilst 

diminazene aceturate and phenylarsine oxide (PAO), which are not TbAQP2 

permeants (Graf et al., 2015), were used as positive controls throughout the 

assessment. The TbAQP2S131P/S263A-expressing cells were strongly sensitised to 

pentamidine (P<0.0001 vs tbaqp2/tbaqp3 null) but the EC50 was again also 

significantly different from the TbAQP2WT control (P<0.05) (Figure 3.5A). A similar 

effect was observed for the melaminophenyl arsenical drug cymelarsan (Figure 

3.5A), but there was no change in sensitivity to diminazene or PAO. Diminazene is 

taken up by the TbAT1/P2 transporter (De Koning, 2004) whereas PAO is believed to 

diffuse directly across the membrane (Fairlamb et al., 1992) (Figure 3.5A). The EC50 

values of pentamidine and cymelarsan in the mutant L258Y, which has the AQP3 Tyr-

250 in the highly conserved aromatic/arginine (ar/R) motif, were also significantly 

different from both the TbAQP2WT and the tbaqp2/tbaqp3 null controls (Figure 

3.5B). Cell lines expressing mutations AQP2I110W and AQP2L264R, either alone or in 

combination, displayed pentamidine and cymelarsan EC50 values that were not 

significantly different from the tbaqp2/tbaqp3 null controls but highly significantly 

different from the TbAQP2WT drug-sensitive controls (Figure 3.5 C-E). 
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Figure 3.5: Sensitivity assay of TbAQP2 mutants cell lines (the introduction of TbAQP3 residues 
into the TbAQP2 selectivity filter). 
The figures of (A-E) show the EC50 values for the indicated test drugs; pentamidine, cymelarsan, and 
the control drugs diminazene and phenylarsine oxide (PAO), expressed as a percentage of the 
tbaqp2/tbaqp3 null (resistant control), against cell lines either expressing the indicated TbAQP2 mutant 
or TbAQP2WT (sensitive control). Red stars and green stars: comparison with tbaqp2/aqp3 null or 
TbAQP2WT-expressing cells, respectively, which were assessed in parallel in each experiment. (A-E) 
Shows the drug susceptibility of the indicated TbAQP2 mutants. (A) double mutants (S131P/S263A). 
(B) single mutant (L258Y). (C) single mutant (I110W). (D) single mutant (L264R). (E) double mutants 
(I110W/L264R). All experiments are the average and SEM of at least 3 independent experiments.  
*, P<0.05; **, P<0.01; ***, P<0.001, ****, P<0.0001 by unpaired Student’s t-test, two-tailed. (Alghamdi 
et al., 2020). 
 
 
 

Next, transport assays, using radiolabelled [3H]-pentamidine were performed to all 

derivative and control strains from the Alamar Blue assay over the course of a 

minute, to determine if the significant loss of pentamidine sensitivity in the cell 

lines expressing mutants were associated with alterations to pentamidine uptake 

into the cell. In the TbAQP2S131P/S263A cell line, the calculations recorded a reduction 

in the rate of uptake of 30 nM [3H]-pentamidine by 4.40 ± 0.71% (n=4) compared to 

the rate of the control cell line expressing TbAQP2WT (P<0.05, Student’s unpaired 

t-test). Correspondingly, this uptake of [3H]-pentamidine in the TbAQP2S131P/S263A cell 

line was also observed to be significantly different from the rate calculated in the 

tbaqp2/tbaqp3 null cells (P<0.01). Introducing L258Y into the TbAQP2 pore gave the 

drug transporter the phenotype similar to TbAQP2S131P/S263A. This led to a reduction 
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of the [3H]-pentamidine transport rate to 6.6 ± 1.4% of TbAQP2WT (P<0.01) but 

stayed considerably above the rate observed in the tbaqp2/tbaqp3 null cells 

(P<0.05) (Figure 3.9). However, cell lines with mutations AQP2I110W and AQP2L264R, 

showed pentamidine transport rates that were not significantly different from those 

observed in the tbaqp2/tbaqp3 null controls but highly significantly different from 

the TbAQP2WT drug-sensitive controls, showing that their ability to uptake 

pentamidine had been decreased to almost zero (Figure 3.6). 

 

  
 

Figure 3.6: Transport of 30 nM [3H]-pentamidineby tbaqp2/aqp3 null cells expressing TbAQP2-
WT or one of the TbAQP2 mutants (TbAQP3 selectivity filter residues) as indicated (blue bars). 

The corresponding brown bars are pentamidine transport in the control tbaqp2/aqp3 null cells assessed 
in parallel in each experiment. Transport was determined. Bars represent the average and SEM of at 
least three independent experiments, each performed in triplicate. Blue stars: statistical significance 
comparison, by two-tailed unpaired Student’s tests, between the cells expressing TbAQP2WT and 
mutants; red stars: statistical comparison between the AQP2-expressing cells and control cells; NS, not 
significant.  *, P<0.05; **, P<0.01; ***, P<0.001, ****, P<0.0001 by unpaired Student’s t-test, two-tailed. 
(Alghamdi et al., 2020). 
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3.2.3. Introduction of TbAQP2 selectivity filter residues into the AQP3 pore 
enables pentamidine transport. 

3.2.3.1. Confirmation of the construction and transfection of AQP3 mutants 

The effects of introducing some of the critical TbAQP2 residues in TbAQP3 were 

determined to see whether these mutants would give the latter the capability for 

pentamidine uptake. The mutants TbAQP3W102I/R256L and TbAQP3W102I/R256L/Y250L were 

constructed and expressed in tbaqp2/tbaqp3 null cells by Dr. Jane Munday at the 

De Koning laboratory. To characterise these generated mutants, I therefore followed 

Munday’s work by obtaining the cell lines from stabilate storage and maintaining the 

cells (3-5 passage) in the standard medium (HMI-9 with 10% FBS) with the addition 

of the right antibiotic for the transfectants (0.2 µg/ml hygromycin). Next, genomic 

DNA was extracted from each cell line, and two PCR reactions were then performed 

for confirmation. Forward primer HDK529 and reverse primer HDK329 (5’-

AGGATCTTAGTGTGGCACAAA-3’) were used to amplify the presence of the full 

TbAQP3 gene in the first PCR reaction, whereas the primer HDK1011 (located 143 bp 

upstream of the open reading frame of the gene in the plasmid backbone) and 

HDK430 (located 83 bp downstream of the open reading frame the gene in the 

plasmid backbone) were used to amplify the gene with a partial fragment of the 

expression cassette in the second PCR reaction. The PCR products were then run on 

an 1% agarose gel with DNA staining to confirm the correct size of the amplified 

fragments. PCR products from the first reaction were ~950 bp (Figure 3.7A), i.e. 

displayed the full size of the TbAQP3 (912 bp). The product-sized bands from the 

second PCR reaction were at ~1250 bp (Figure 3.7B) corresponding to the expected 

size of the gene with the partial plasmid fragment (1212 bp). The sizes of the PCR 

products indicate a successful transfection for each cell line. (See plasmid map in 

appendix 6). 
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Figure 3.7: Agarose gel electrophoresis of PCR products reveals the presence of the integrated 
TbAQP3 mutants (TbAQP2 selectivity filter residues) in transfected tbaqp2/tbaqp3 null cells.  
(A) Amplified PCR products at ~950 bp show the full TbAQP3 gene. L: 1kb DNA ladder; 1: TbAQP3 
(WT) positive control; 2: TbAQP3 (KO) negative control; 3: TbAQP3 (W102I/R256L); 4: TbAQP3 
(W102I/R256L/Y250L). (B) The bands at ~1250 bp displayed fragments containing TbAQP3 gene and 
part of the expression cassette neighbouring the gene. L: 1kb DNA ladder; 1: (pHDK70) positive control; 
2: TbAQP3 (KO) negative control; 3: TbAQP3 (W102I/R256L); 4 TbAQP3 (W102I/R256L/Y250L). 
 
 
 

Prior to use the cell lines for drug sensitivity and uptake assays, confirmation for 

correct mutation was verified by sequencing. The gDNA of the clones that exhibited 

successful transfection were used to amplify the full TbAQP3 gene using a high-

fidelity DNA polymerase (New England BioLabs). The products from PCR reactions 

were purified using a DNA purification kit (Macherey-Nagel) and were then sent for 

sequencing (SourceBioscience, Glasgow, Scotland, UK) with forward primer 

(HDK1011) and reverse primer (HDK430). Correct mutation(s) were checked by 

creating alignments of the amino acid sequences of TbAQP3 WT and the TbAQP3 

mutants (Appendix 7). 

 
 
 

3.2.3.2. Molecular characterization of the introduction of TbAQP2 selectivity 
filter residues into the AQP3 pore  

The aim of this study was to test the impacts of the unique selectivity filter elements 

of the TbAQP2 when introduced into the TbAQP3 selectivity filter on the drug's 

sensitivity and transport. The Alamar Blue assay was performed to test whether 

tbaqp2/tbaqp3 null cells transfected with these mutant aquaporins were able to 

sensitise expressing cells to pentamidine. The strain possessing the re-expressed 
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TbAQP3 WT cell line (drug-resistant control) was used in parallel with the mutant 

cell lines. In this study pentamidine was assessed and phenylarsine oxide (PAO) was 

used as positive control throughout the assays. There was no significant difference 

between the sensitivity to PAO for the cell lines expressing mutations 

TbAQP3W102I/R256L and TbAQP3W102I/R256L/Y250L and the TbAQP3 (control cell line) 

(Figure 3.8). But, when tested with pentamidine, TbAQP3W102I/R256L/Y250L conveyed 

significant sensitisation into tbaqp2/tbaqp3 null cells (P<0.0001; Figure 3.8). This 

indicates that this particular triple mutant (W102I, R256L and Y250L) in the 

TbAQP3WT can confer increased pentamidine sensitivity. 

 

 
Figure 3.8: Sensitivity assay of TbAQP3 mutants cell lines (the introduction of AQP2 selectivity 
filter residues).  
The figure shows the EC50 values of the pentamidine (red bars) and the control drug phenylarsine oxide 
(blue bars) against tbaqp2/aqp3 null cells expressing either TbAQP3 or a mutant thereof, expressed as 
percentage of tbaqp2/aqp3 null. All experiments are the average and SEM of at least 3 independent 
experiments. ****, P<0.0001 by unpaired Student’s t-test, two-tailed. (Alghamdi et al., 2020). 
 

Next, transport assays of [3H]-Pentamidine were performed to test whether 

tbaqp2/tbaqp3 null cells transfected with these mutant aquaporins were able to 

take up 30 nM [3H]-pentamidine in the presence of 1 mM adenosine (which blocks 

uptake via TbAT1/P2). Over a time course of 2 minutes, the pentamidine uptake in 
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the AQP3WT and mutant cell lines was very low compared to the same cells 

expressing TbAQP2WT (Figure 3.9).  

 

                     

Figure 3.9: The uptake of 30 nM [3H]-Pentamidine over 2 minutes by tbaqp2/aqp3 null cells 
expressing TbAQP2WT in comparison with the TbAQP3WT and the TbAQP3 mutant cell lines. 
Pentamidine uptake in the mutant cell lines, in the presence of 1 mM adenosine, when incubation time 
points at 0, 5, 10, 15 and 20 seconds for AQP2, and 0, 30, 60 and 120 seconds for the other strains.  

 

The [3H]-pentamidine uptake was reliably and reproducibly determined by 

measuring its accumulation in every cell line for 30 minutes (Figure 3.10 A,B). The 

results indicated uptake of TbAQP3W102I/R256L to trend to some extent upwards 

(P>0.05). On the other hand, the mutant AQP3 with all three AQP2 W(G)YR residues 

(W102I, R256L, and Y250L) had a significantly increased [3H]-pentamidine uptake 

compared to the tbaqp2/tbaqp3 null cells (P<0.01) or the null cells expressing 

TbAQP3WT (P=0.011). These results showed that introduction of the AQP2 filter 

residues in AQP3 expressively led to sensitization towards pentamidine in addition 

to facilitating its uptake by the cell lines. 
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Figure 3.10: Transport of 30 nM [3H]-pentamidine by tbaqp2/aqp3 null cells expressing TbAQP3 
or an TbAQP3 mutant as indicated.  
Pentamidine transport performed in 30 min incubation in the control tbaqp2/aqp3 null cells and 
assessed with the TbAQP3 mutant cell lines in parallel in each experiment. Transport was determined 
in the presence of 1 mM adenosine to block the TbAT1/P2 transporter. (A) Representative transport 
assay shows the accumulation of radiolabelled pentamidine in each cell line when incubation over 30 
minutes. (B) Bars represent the average and SEM of at least three independent experiments, each 
performed in triplicate. Red stars: statistical significance comparison, by two-tailed unpaired Student’s 
tests, between the cells expressing TbAQP2WT and mutants**, P<0.01 by unpaired Student’s t-test, 
two-tailed. (Alghamdi et al., 2020). 
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3.2.4. Mutations of amino acids modelled to potentially bind pentamidine or 
melarsoprol dramatically reduce pentamidine transport. 

3.2.4.1. Confirmation of the construction and transfection of AQP2 mutants  
 

Previous attempts made at the De Koning laboratory focusing on modelling the 

binding of pentamidine and melarsoprol into TbAQP2 pore led to identifying various 

residues associated with this activity (Munday et al., 2015a). Among these residues, 

two residues, Ile190 and Trp192, (Position shown in Figure 3.11) were chosen at the 

extracellular end of the channel and were predicted to interact with the substrate 

(s) with main-chain carbonyl oxygen atoms without the side chains affecting this 

interaction. 

 

 
Figure 3.11: Homology models of the predicted binding of pentamidine and melarsoprol in 
complex with a single TbAQP2 subunit (green).  
(A) Binding of pentamidine (cyan carbon atoms). (B) Binding of melarsoprol (orange carbon atoms). 
Key polar interactions are shown for both (A, B). The Ile190 and Trp192 (red) were the two selected 
residues which predicted to interact with the substrate(s) with main-chain carbonyl oxygen atoms. 
Models obtained from (Munday et al., 2015a). 
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To swap with the corresponding residues of TbAQP3, mutants of TbAQP2I190T, 

TbAQP2W192G and TbAQP2I190T/W192G were generated. These mutants were created and 

expressed into tbaqp2/tbaqp3 null cells by Dr. Jane Monday at the De Koning 

laboratory. This part was followed by characterising generated mutants. Firstly, the 

cell lines were retrieved form the stabilate storage and were growin in culture 

medium (HMI-9 + 10% FBS) supplemented with 2.5 µg/ml hygromycin. After passaging 

the cells (3-5 passages), genomic DNA from each cell line was extracted and two 

PCR reactions were performed for more confirmation prior to the sensitivity and 

transport assays. In the 1st PCR, the TbAQP2 gene from each cell line was amplified 

using the forward and reverse primers (HDK529 & HDK209) to check for the presence 

of the full TbAQP2 gene. Whilst, the 2nd PCR was used to amplify the gene with a 

partial fragment of the expression cassette using the primers HDK1011 & HDK430. 

The PCR products were then run on an agarose gel with DNA staining to confirm the 

correct size of the amplified fragments. PCR products from the first reaction were 

~950 bp (Figure 3.12A), indicating to the expected size of the full TbAQP2 gene (939 

bp). Whereas, product-sized bands from the second PCR reaction were ~1,250 bp 

presented the gene with the partial plasmid fragment (1212 bp) (Figure 3.12B). The 

correct product-sized bands of the amplified PCR products presenting correct 

transfections. (See plasmid map (figure 2.1) in section 2.3.4.1; for primers sites) 

 
 

 
 

 

 
 

Figure 3.12: PCR screening of the TbAQP2 mutant cell lines (TbAQP2 residues I190 and W192).  
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PCR products were separated by gel electrophoresis on 1% agarose gel. The expected size of each 
band was obtained with respect to the standard sizes of the 1kb molecular weight size Ladder (Left 
columns). (A) amplified PCR products at ~950 bp show the full TbAQP2 gene. (B) Bands at ~1250 bp 
displayed fragments containing TbAQP2 and part of the expression cassette neighbouring the gene. L: 
1kb DNA ladder; 1: TbAQP2 (WT) positive control; 2: TbAQP2 (KO) negative control; 3: TbAQP2 
(I190T); 4: TbAQP2 (W192G); 5: TbAQP2 (I190T/ W192G). 
 

 

The I190T and W192G mutations were verified using Sanger Sequencing (Source 

BioScience, Nottingham, UK). The TbAQP2 gene was amplified from the genomic 

DNA of cell lines that displayed successful transfections using a high-fidelity DNA 

polymerase (New England BioLabs). The products from PCR reactions were purified 

using a DNA purification kit (Macherey-Nagel) and were then sent for sequencing 

(SourceBioscience, Glasgow, Scotland, UK) with forward primer (HDK1011) and 

reverse primer (HDK430). Correct mutation(s) were checked by creating alignments 

of the amino acid sequences of TbAQP2WT and the TbAQP2 mutants (Appendix 8). 

 
 
3.2.4.2. Molecular characterizations of mutations of the amino acids modelled 
to potentially bind pentamidine or melarsoprol. 
 
The Alamar blue assay was performed to determine the EC50 values of the mutant 

cell lines (TbAQP2I190T), (TbAQP2W192G) and (TbAQPI190T/W192G) in parallel with the 

resistant control cell line (tbaqp2/tbaqp3 null), and the strain possessing the re-

expressed TbAQP2WT (drug-sensitive control). In this study, pentamidine and 

cymelarsan drugs were used to investigate the predicted binding model. 

Phenylarsine oxide (PAO) was used as positive control throughout the study. As 

previously noted from the information provided above regarding the selectivity of 

filter mutants, TbAQP2I190T was observed to show high pentamidine sensitivity in the 

standard resazurin test (P<0.0001) but with significantly less sensitization compared 

to TbAQP2WT (P<0.001). Besides, an intermediate sensitivity for pentamidine was 

also noted for cymelarsan (Figure 3.13A). The substitution of W192G resulted in 

producing intermediate sensitivity to both pentamidine and cymelarsan (Figure 

3.13B). However, the double substitution of TbAQPI190T/W192G led to no significant 

sensitization to either pentamidine or cymelarsan (Figure 3.13C). 
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Figure 3.13: Sensitivity assay of TbAQP2 mutant cell lines (TbAQP2 residues I190 and W192). 
(A) EC50 values for the indicated drugs against tbaqp2/tbaqp3 null cells, and against TbAQP2WT and 
TbAQP2 mutant cell lines; values were expressed as % of the tbaqp2/tbaqp3 null (resistant) control. 
Red stars, comparison with the resistant control; green stars, comparison with the internal sensitive 
control (TbAQP2WT). The assays for all three strains and all three drugs were done simultaneously on 
at least 3 different occasions. (B) As A but for TbAQP2W192G. (C) As A but for TbAQP2I190T/W192G.  
*, P<0.05; **, P<0.01; ***, P<0.001, ****, P<0.0001 by unpaired Student’s t-test. (Alghamdi et al., 2020). 

 
 

 

          The TbAQP2I190T presented intensely decreased uptake of [3H]-pentamidine at 

2.7 ± 0.7% (P<0.0001) of the TbAQP2WT control. However, this uptake rate was still 

significantly higher compared to the rate observed in the tbaqp2/tbaqp3 null 

negative control (P<0.05) (Figure 3.14). In contrast, the double substitution of 

TbAQPI190T/W192G demonstrated no significant uptake of pentamidine with reference 

to the tbaqp2/tbaqp3 null strain (Figure 3.14). 
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Figure 3.14: Transport of 30 nM [3H]-pentamidine by tbaqp2/tbaqp3 null cells or TbAQP2 variants 
(residues I190 and W192) expressed therein.  
Transport was expressed as a percentage of the rate of the TbAQP2WT control, performed in parallel. 
Blue stars are comparison with TbAQP2WT, red stars, comparison with the tbaqp2/tbaqp3 null control. 
NS, not significant. The assays for all three strains and all three drugs were done simultaneously on at 
least 3 different occasions. *, P<0.05; ****, P<0.0001 by unpaired Student’s t-test. (Alghamdi et al., 
2020). 
 

The I190T mutant was further investigated to see whether this substitution might 

have altered the Km of the high affinity pentamidine transport, as might be expected 

if the substitution disrupted a specific interaction with the substrate. Because of 

the very low rate of uptake in this mutant a 15 min incubation time was used to 

obtain a reproducible inhibition curve. (Figure 3.15) shows a biphasic double-

sigmoidal inhibition curve for a high affinity component with an average IC50 of 30.9 

± 12.2 nM (n=3) and a low affinity component. The latter could be converted to a 

Michaelis-Menten curve (Figure 3.15A., inset), yielding an average Km of 59.9 ± 9.1 

µM. Figure 3.15B., inset shows the corresponding experiment with the same cells, 

but expressing TbAQP2WT instead of the mutant and using 20 s incubations. In this 

case the high affinity component, although showing a very similar IC50 in the biphasic 

plot (41 ± 17 nM; P>0.05), was much more prominent, showing that the rate of 

TbAQP2-mediated transport, rather than the transporter affinity was altered in the 

mutant. The low affinity component was statistically identical in the two strains 

(TbAQP2WT Km = 82.7 ± 17.5 µM (n=3; P>0.05)). 
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Figure 3.15: The determination of Km and Vmax values for the TbAQP2I190T mutant and the 
tbaqp2/tbaqp3 null cells expressing TbAQP2WT.  
(A) Transport of 30 nM [3H]-pentamidine by TbAQP2I190T, in the presence of unlabelled pentamidine at 
the indicated concentrations. Incubation time was 15 min, required to ensure sufficient radiolabel for 
accurate quantification, and uptake was linear and through zero over this period. The inhibition data 
were plotted to a double sigmoidal curve (Prism 7.0) with the bottom value fixed at 0. The high affinity 
component displayed IC50 of 30.9 ± 12.2 nM (n = 3) and the lower affinity segment could be converted 
to a Michaelis-Menten plot for determination of Km and Vmax (inset), yielding an average Km of 59.9 ± 
9.1 µM (n = 3), consistent with the Low Affinity Pentamidine Transporter (LAPT1; Bridges et al, 2007). 
The plot shown is one representative experiment in triplicate of three independent experiments. (B) Like 
(A) but with tbaqp2/tbaqp3 null cells expressing TbAQP2WT. Incubation time was 20 s. The inset shows 
a zoom-in on the low-affinity part of the curve, with the dotted line representing a theoretical sigmoid 
plot for one inhibitor, with the upper limit fixed at the value obtained for 10 μM pentamidine. Note that 
the amount of [3H]-pentamidine taken up by the low affinity component is highly similar for the mutant 
(A) and control (B) cell lines, at approximately 0.0005 pmol(107 cells)-1s-1. 
Both frames show one representative experiment of three repeats, each performed in triplicate. Error 
bars are SEM, when not shown, fall within the symbol. (Alghamdi et al., 2020). 
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3.3. Discussion 

A vast agreement exists that the expression of TbAQP2 is related to the 

extraordinary sensitivity of T. brucei towards pentamidine, as well as towards 

melaminophenyl arsenicals, and that mutations and deletions associated with this 

locus can result in drug resistance (Baker et al., 2012, 2013; Graf et al., 2013, 2015, 

2016; Pyana Pati et al., 2014; Munday et al., 2014, 2015a; Unciti-Broceta et al., 

2015). However, the mechanisms explaining these phenomena are still unclear, and 

no current document exists outlining other examples of aquaporins in the 

transportation of such large molecules. TbAQP2 has evolved through positive 

selection, as indicated by the high dN/dS ratio, to eliminate all significant 

constriction points, such as the aromatic amino acids, cationic arginine of the 

selectivity filter, and the NPA/NPA motif, leading to enlarged pore size. The 

advantage of this phenomenon in T. b. brucei is still not known, but the adaptation 

is considered to be stable in the brucei group of trypanosomes, where it is found in 

T. b. rhodesiense (Munday et al., 2014; Graf et al., 2016), T. b. gambiense (Graf et 

al., 2013, 2015; Munday et al., 2014; Pyana Pati et al., 2014), T. equiperdum, and 

T. evansi (Philippe Bu ̈scher and Nick Van Reet, unpublished). Consequently, it is not 

incongruous to speculate that this enlarged TbAQP2 pore (i) permits the passage of 

materials that TbAQP1 and TbAQP3 do not transport; (ii) provides a yet unknown 

advantage to the cell; and (iii) that uptake of pentamidine is a by-product of this 

evolvement.  
 

In the current study, I demonstrated that modifications in the TbAQP2 WGYR and 

NPA/NPA motifs provide a passageway for these drugs into the cell, thereby 

supporting the parasite's very high sensitivity towards the drugs. The introduction of 

the AQP3 Arg residue in position 264 (TbAQP2L264R) disables the transport of 

pentamidine, which we concluded was due to the positively charged arginine located 

in the middle of the pore blocking all cations from passing through the pore (Beitz 

et al, 2006; Wu et al, 2009). Certainly, the W(G)YR filter residues seem to be critical 

determinants for pentamidine uptake by AQPs, and introducing all three TbAQP2 

residues into TbAQP3 (AQP3W102I/R256L/Y250L) was needed to generate an TbAQP3 with 

mild sensitization to pentamidine, and which enabled a measurable level of 

pentamidine uptake. On the other hand, any mutation (I110W, L258Y, or L264R) was 
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appropriate to all but abolish pentamidine transport by TbAQP2. Likewise, the 

conserved NPA/NPA motif (predominantly the Asp residues) found in TbAQP3 (but 

NSA/NPS in TbAQP2) is also affiliated with the blocking of the cations passage (Wree 

et al, 2011). The unique serine residues found in the TbAQP2 motif, halfway down 

the pore, might have the capacity to make hydrogen bonds with pentamidine 

because the reestablishment of the NPA/NPA motif created a TbAQP2 variant that 

demonstrated a 93.5% reduced rate of [3H]-pentamidine uptake. 
 

To conclude, the selectivity filter differences between TbAQP2 and TbAQP3 are 

largely responsible for their differences in pentamidine sensitivity and transport 

rates. The unique TbAQP2 replacement of the NPA/NPA motif and all of the WGYR 

selectivity filter mutations are necessary for the observed pentamidine and 

melaminophenyl arsenical sensitivity observed in cells expressing wild-type TbAQP2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

Chapter 4 Mutagenesis of leucine residues at the 
cytoplasmic end of the TbAQP2 pore affects the protein’s 
capacity to transport pentamidine 
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4.1. Introduction 

The drug uptake model suggests that pentamidine traversed through the uniquely 

permissive aquaglyceroporin (Munday et al., 2015a). However, this model was 

challenged by a study proposing that pentamidine does not traverse the TbAQP2 but 

binds to an aspartate residue (Asp265) located near the pore's end on the 

extracellular side, above the selectivity filter, before it is internalized through 

endocytosis (Song et al., 2016). Furthermore, the study supported their argument 

by showing the inability of TbAQP2 to transport organic cations, such as ammonium 

ions, when expressed in yeast. The study also went further to eliminate size as a 

factor affecting the transport of organic cation substrates; even for the 

pentamidine’s 44 Da end moiety known as formamidine (HN=CH=NH2), the 

transporter exhibited no permeability. Therefore, the authors of the study 

concluded that TbAQP2 does not directly transport pentamidine but acts as a high-

affinity receptor for this drug in addition to facilitating its passage in trypanosomes 

through non-selective endocytosis. This non-selective endocytosis was noted due to 

D265 residue significance, which is considered to have a strong electrostatic 

interaction with pentamidine, as indicated by figure 4.1. The flagellar pocket is the 

only site associated with endocytosis in trypanosomatids (Field & Carrington, 2009). 

TbAQP2 location in the flagellar pocket (Baker et al., 2012), has led to speculations 

that pentamidine is transported into the cell through a receptor-mediated 

endocytosis mechanism. However, no further experimental evidence has been 

presented or published to support these speculations. It is not typical for such a 

small-sized channel to control and facilitate the transport of relatively large drug 

molecules like pentamidine. Hence, more exploration regarding this gene would be 

imperative to comprehensively understand the mechanism behind this phenomenon 

and probably at the same time improve the associated treatments.  
 

The question thus remained whether to determine whether TbAQP2 is a fixed 

transmembrane transporter, with pentamidine acting as a permeant, or a receptor 

for pentamidine, which is then transported by other mean. Therefore, the 

hypothesis that the TbAQP2 channel allows the translocation of pentamidine through 

its pore was tested by investigation of a substitution of small and uncharged amino 



 123 

acid residues L84, L118 and L218, which reside in the transport channel below the 

unique T. brucei selectivity filter and are not interfering with the D265 residue, for 

tryptophan and methionine (Figure 4.2). In this study, the purpose of substituting 

L84, L118, and L218 with tryptophan residues near the pore's cytoplasmic end was 

to determine if the presence of bulky amino acids in that end would block the 

transport of pentamidine through the TbAQP2 pore. This study was followed by 

introducing a medium sized residue (methionine) instead of tryptophan into the 

same three selected positions of the leucine to allow further discrimination between 

the models of binding to the extracellular end of the pore (followed by endocytosis) 

and the requirement for the drug to traverse the full length of the channel.  
 

Site-directed mutagenesis was performed to code an amino acid substitution at the 

three selected positions of the leucine, expressed the mutant(s) into tbaqp2/tbaqp3 

null cells, assessed the sensitivity of the mutant cell lines to cymelarsan and 

pentamidine, and measured the rate at which the drug is taken up by these mutants.  

 
 

  
Figure 4.1: Model of the TbAQP2 protein structure.  
The figure shows the positions of the D265 residue, central to the theory that TbAQP2 acts as a 
pentamidine receptor (Song et al., 2016), relative to the selectivity filter (orange). The Song et al. model 
predicts that the pentamidine binds to the Aspartic Acid (D265) with high affinity which likely results 
from an electrostatic interaction between the pentamidine (positively charged) and the acidic nature of 

D265

Pentamidine
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the residue (negatively charged). This model suggested that the pentamidine internalised via 
endocytosis of TbAQP2 and the D265 binding is a starting point of receptor-mediated endocytosis. The 
model was generated using SWISS-MODEL software from the FASTA sequence of TbAQP2 
(TriTrypDB Gene ID: Tb927.10.14170) and images created with PyMOL 2.2 (Schrödinger). 
 

 
Figure 4.2: Schematic of our predicted model of pentamidine traversal through the TbAQP2 
channel.  
The model shows the positions of L84, L118 and L218 residues (red) at the cytoplasmic end relative to 
the selectivity filter (orange), and not interfering with the D265 residue (black). These Leucine residues, 
lining the pore, were selected for site-specific mutation and were investigated for effects on T. brucei 
sensitivity and pentamidine uptake. The model was generated using SWISS-MODEL software from the 
FASTA sequence of TbAQP2 (TriTrypDB Gene ID: Tb927.10.14170) and images created with PyMOL 
2.2 (Schrödinger). 
 

 
4.2. Results 

4.2.1. Introduction of a large sized amino acid (tryptophan) at the cytoplasmic 
end of the AQP2 pore displayed reduced sensitivity to pentamidine (and 
melarsoprol) uptake 
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4.2.1.1. Successful construction and transfection of AQP2 L-W mutants 

The L84W, L118W, and L218W were created by exchanging three leucine residues, 

each with tryptophan. This was aimed to determine the impact of bulky amino acids 

at the cytoplasmic end of TbAQP2 on pentamidine transport. Plasmid vectors 

containing (single or multiple amino acid substitutions) in the TbAQP2 were 

constructed. The plasmids pHD210 (TbAQP2L84W), pHD208 (TbAQP2L118W), pHD209 

(TbAQP2L218W) and pHDK227 (TbAQP2L84W/L118W) were all constructed by Q5 Site-

Directed Mutagenesis Kit (NEB), following the kit’s protocol. The single mutants 

were introduced by PCR (mixture and programme conditions in section 2.3.3; 

primers in table 2.1) using the pRPaGFP-AQP2 plasmid, which is under the control of a 

Tet-regulated RRNA promoter (Baker et al., 2012). The combination L84W/L118W 

mutants were generated based on template pHDK208, producing pHDK227. All the 

indicated plasmids were verified by Sanger Sequencing to check for the presence of 

full gene sequence, additional unwanted mutations, and the correct mutation(s), as 

well as the correct cassette for integration, using the primers HDK1011 and HDK430. 

Prior to the transfection, plasmids were linearised with AscI restriction enzyme to 

allow for correct integration of the expression cassette into the genome of 

tbaqp2/tbaqp3 null cells (Alsford et al., 2005). Products of the digested plasmid 

along with undigested plasmid (as control) of each of the generated plasmids were 

run on 1% agarose gel to confirm the correct fragment of the DNA expression cassette 

which should be around 5.3 kb long (Figure 4.3). (See plasmid map (figure 2.1) in 

section 2.3.4.1; for AscI restriction sites). 

 
Figure 4.3: Digestion of the produced plasmids (pRPaGFP-AQP2 L-W mutant) by AscI enzyme.  
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The figure shows a successful digestion of the produced plasmids by AscI enzyme prior to the 
transfection. The bands at ~ 5.3 kb represent the fragments (blue arrows indicate desired bands) of the 
DNA expression cassette that contain the TbAQP2 (L-W mutant) gene and a selection marker of the 
plasmid (hygromycin). The bands at ~ 2.6 kb represent the remaining (unwanted) part of the plasmid 
which containing only B-lactamase. Bands at ~ 7.9 kb represent the undigested plasmid (as control) of 
each generated plasmid. L: 1kb DNA ladder; 1: pHDK210 (digested plasmid); 2: control (pHDK210 
undigested); 3: pHDK208 (digested plasmid); 4: control (pHDK208 undigested); 5: pHDK209 (digested 
plasmid); 6: control (pHDK209 undigested); 7: pHDK227 (digested plasmid); 8: control (pHDK227 
undigested). 

 

Following the linearization, DNA cassettes (bands of approximately 5.3 kb) were 

extracted from the gel and cleaned up using the NucleoSpin Gel extraction kit 

(Macherey-Nagel) according to the manufacturer’s instructions, and were 

transfected into tbaqp2/aqp3 cells (Baker et al., 2012). Transfected cells were then 

selected and cloned out with the presence of hygromycin, and genomic DNA was 

extracted from the new cell lines using the NucleoSpin Tissue kit (Macherey-Nagel) 

following the manufacturer’s instructions. Clones were screened by PCR 

amplifications using Go Taq DNA polymerase (Promega) for the presence of the 

TbAQP2 gene and for the correct integration of the plasmid into the genome (Figure 

4.4). Three PCR reactions were set up to confirm this: the first PCR was used to 

amplify the TbAQP2 gene using primers HDK529 and HDK209. The second PCR was 

performed to amplify the gene with surrounding parts of the expression cassette 

using primers HDK1011 and HDK430. The third PCR was to assess whether the 

expression cassette was correctly linearised, thus integrated into the T. brucei 

genome using primers HDK713 and HDK991. PCR products were separated on a 1.5% 

agarose gel and visualised with SYBR™ Safe DNA gel stain. Figure 4.4A shows PCR 

products from the first reaction of ~950 bp, the expected size of the full-length 

TbAQP2 gene (939 bp). Product-sized bands from the second PCR reaction were 

~1250 bp corresponding to the expected size of gene with the partial plasmid 

fragment (1212 pb) (Figure 4.4B). The amplified PCR products of the clones from 

the third PCR reaction showed no bands to that of the undigested plasmid control 

(~1100 bp), suggesting correct linearization by AscI restriction enzyme, thus correct 

integration into the genome (Figure 4.4C) (See plasmid map (figure 2.1) in section 

2.3.4.1; for primers sites). 
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Figure 4.4: Agarose gel electrophoresis of PCR products reveals the presence of the integrated 
TbAQP2 mutants (L-W) transfected in aqp2/aqp3 null cells.  
Amplified PCR products shown of (A) the full TbAQP2 gene at ~950 bp, (B) shows fragment at ~1250 
bp containing TbAQP2 and parts of the expression cassette neighbouring the gene, (c) represent a 
fragment containing an AscI restriction site (~1100 bp). (A-B) L: 1kb Ladder; 1: pRPaGFP-AQP2 (positive 
control); 2: TbAQP2 (KO) negative control; 3: TbAQP2 (L84W); 4: TbAQP2 (L118W); 5: TbAQP2 
(L218W); 6: TbAQP2 (L218W/L118W). (C) L: 1Kb Ladder; 1: no DNA (negative control); 2: TbAQP2 
(L84W); 3: TbAQP2 (L118W); 4: TbAQP2 (L218W); 5: TbAQP2 (L218W/L118W); 6: pRPaGFP-AQP2 

(undigested). 
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Following the PCR confirmations, the TbAQP2 gene was then amplified from the 

genomic DNA of each strain using Phusion High-Fidelity DNA Polymerase (NEB). The 

PCR products were purified using the NucleoSpin PCR kit (Macherey-Nagel), and were 

sent for sequencing using the forward (HDK1011) and reverse primer (HDK430), to 

confirm that the generated cell lines have the correct introduction of the tryptophan 

residues into the three selected positions of leucine in the AQP2 (L84, L118, L218) 

(Appendix 9).  

 
 

 
4.2.1.2. Molecular investigation of the AQP2 L-W mutants  

After introducing all the mutants successfully into tbaqp2/tbaqp3 null cells, the L-

W mutants were tested for drug susceptibility and transport assays. The L-W mutants 

were initially evaluated through the standard Alamar Blue assay just as described 

(Wallace et al., 2002; Bridges et al., 2007) to determine their impact on the drug's 

sensitivity at the cytoplasmic end of TbAQP2. On the other hand, the resistant cells 

(tbaqp2/tbaqp3 null) and the sensitive cells (tbaqp2/tbaqp3 null re-expressed 

TbAQP2WT) were employed as controls of the experiment. This study used four drugs 

throughout the assay: pentamidine, cymelarsan, diminazene aceturate, and 

phenylarsine oxide (PAO). AQP2/HAPT1 transports both pentamidine and 

cymelarsan, and in this study were used for the drug susceptibility (Bridges et al., 

2007; Baker et al., 2012). In contrast, diminazene aceturate and phenylarsine oxide 

were used as positive controls because they are not AQP2’s substrates (Munday et 

al., 2014). The expression of each of the L-W mutants in tbaqp2/tbaqp3 null cells 

resulted in cells reducing their sensitivity to pentamidine compared to similar cells 

expressing TbAQP2WT, as shown by Figure 4.5A. Additionally, all the L-W mutants 

were observed to be more resistant to cymelarsan compared to resistance observed 

in the expressed TbAQP2WT cell line control, but not that different from the 

tbaqp2/tbaqp3 null control, as indicated by Figure 4.5B. On the other hand, none 

of the L-W mutants demonstrated any sensitivity to diminazene or PAO (Figure 4.5C-

D). Nonetheless, the L218W mutant showed slight sensitivity towards diminazene, 

which was considered to be less (~2-fold, P<0.05) compared to that of pentamidine 

(20-fold P<0.0001) (Figure 4.5C). 
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Figure 4.5: Sensitivity assay of TbAQP2 mutants (L-W) cell lines.  
(A-D) EC50 values of the tested drugs; pentamidine, cymelarsan, diminazene and phenylarsine oxide 
(PAO), against tbaqp2/tbaqp3 null (resistant control) and cell lines either expressing the TbAQP2 L-W 
mutants or TbAQP2WT (sensitive control). Red stars and green stars: comparison with tbaqp2/aqp3 
null or TbAQP2WT-expressing cells, respectively, which were assessed in parallel in each experiment 
showing the drug susceptibility of the indicated cell lines to; (A): pentamidine; (B): cymelarsan; (C): 
diminazene; (D): phenylarsine oxide (PAO). All experiments are the average and SEM of three 
independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001, ****, P<0.0001 by unpaired Student’s t-
test, two-tailed. 
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The [3H]-pentamidine transport assays were carried out to confirm the drug 

susceptibility phenotypes towards pentamidine with respect to control cell lines 

tbaqp2/tbaqp3 null, the re-expressed TbAQP2WT, as well as the L-W mutants. Also, 

these transport assays were conducted in the presence of 1 mM adenosine, which is 

considered to block the TbAT1/P2 transporter (De Koning and Jarvis, 1999). The data 

obtained were plotted to equations for linear regression using Prism 7.04 (GraphPad 

software). The two control cell lines were used to present the highest and the lowest 

slope rates for pentamidine uptake over up to 60 s as shown in (Figure 4.6A). The 

rate of transport of [3H]-pentamidine was measured in all mutants and showed 

strong reductions upon introduction of the tryptophan residues (Figure 4.6B). The 

L84W, L118W and L84W/L118W mutants showed a strongly diminished rate of 

pentamidine transport compared to the TbAQP2WT and the uptake rates of these 

cell lines were almost equal to the control resistant tbaqp2/tbaqp3 null cell line 

(Figure 4.6B). The L218W mutant showed a very low uptake rate of the radiolabelled 

substrate but still above the level of the knockout cell line (Figure 4.6A-B). 
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Figure 4.6: Transport of 25 nM [3H]-pentamidine by aqp2/aqp3 null, the expressing TbAQP2WT 
and the L-W mutant cell lines.  
Transport was determined in the presence of 1 mM adenosine to block the TbAT1/P2 transporter. (A) 
Pentamidine uptake over a time course of 60s. Uptake rate of re-expressed wild-type TbAQP2 strain 
plotted only to 30s due to depleted [3H]-pentamidine. Slope calculated based on linear regression using 
Prism 7.04 (GraphPad). (B) Bars represent the average and SEM Pentamidine uptake rates in mutant 
strains, relative to wild-type levels (set to 100%). Averages and SEM of three independent replicates. 
Significance determined by two-tailed unpaired Student’s tests in comparison to TbAQP2WT (green 
star) and tbaqp2/aqp3 null (red star) respectively: *, P<0.05; **, P<0.01; ***, P<0.001, ****, P<0.0001; 
ns, non-significant. 
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Based on the previous results of introducing bulky residues (tryptophan) to the 

cytoplasmic end of the AQP2 pore, I thought that it would be interesting to introduce 

a medium sized amino acid such a methionine, which is relatively similar in size to 

leucine, into the same selected positions (L84, L118 and L218). The combination of 

the effects of the Trp and Met mutations potentially allow to distinguish between 

an endocytosis model and a channel model for pentamidine. Therefore, genetic 
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following the kit’s protocol. The TbAQP2 L-M mutants were generated by PCR 

(mixture and programme conditions in section 2.3.3; primers in table 2.1) using 

three plasmid vectors: pHDK210, pHDK208 and pHDK209 as template plasmids to 

give pHDK234 (TbAQPL84M), pHDK235 (TbAQPL118M) and pHDK236 (TbAQPL218M), 

respectively. All the plasmids were originally based on the vector pRPaAQP2-WT which 

is under the control of a Tet-regulated RRNA promoter (Baker et al., 2012). The 

indicated plasmids were then verified by Sanger sequencing for the existence of the 

expected mutation using the primers HDK1011 and HDK430. Before transfecting the 

expression cassettes into the genome of tbaqp2/tbaqp3 null cells, plasmids were 

digested overnight with the AscI restriction enzyme (NEB) for linearization, to ensure 

correct integration in a prepared locus in the ribosomal rRNA spacer region of the 

(Alsford et al., 2005). The digested products along with undigested plasmids 

(control) were run on 1% agarose gel. (Figure 4.7) shows band- sized at around 5.3 

kb indicating to correct digestions. (See plasmid map (figure 2.1) in section 2.3.4.1 

for AscI restriction sites). 

 

 
Figure 4.7: Digestion of the produced plasmids (pRPaAQP2 L-M mutants) by AscI enzyme.  
The figure shows a successful digestion of the produced plasmids by AscI enzyme prior to the 
transfection. The bands at ~ 5.3 kb represent the fragments (blue arrows indicate desired bands) of the 
DNA expression cassette that contain the TbAQP2 (L-M mutant) gene and a selection marker of the 
plasmid (hygromycin). The bands at ~ 2.6 kb represent the remaining unwanted part of the plasmid 
which contain only B-lactamase. Bands at ~ 7.9 kb represent the undigested plasmid (as control) of 
each plasmid. L: 1kb DNA ladder; 1: pHDK234 (digested plasmid); 2: control (pHDK234 undigested); 
3: pHDK235 (digested plasmid); 4: control (pHDK235 undigested); 5: pHDK236 (digested plasmid); 6: 
control (pHDK236 undigested). 
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After the linearisation, DNA was extracted and transfected into tbaqp2/aqp3 null 

cells. Clones were grown up in the presence of hygromycin, gDNA from each cell 

lines were extracted using the NucleoSpin Tissue kit (Macherey-Nagel) following the 

manufacturer’s instructions, and PCR confirmation were carried out. Three PCR 

amplifications were performed using GoTaq polymerase (Promega), for the existing 

of the TbAQP2 gene and for the correct integration of the expression cassette into 

the genome (Figure 4.8A-C). 1st PCR was used to amplify the full TbAQP2 gene using 

forward primer (HDK529) and reverse primer (HDK209). Whereas, the forward primer 

(HDK1011) and the reverse primer (HDK430) both from the vector were used in the 

2nd PCR to amplify parts of the expression cassette containing the TbAQP2 gene. The 

3rd PCR was to confirm the correct integration of the expression cassette into the 

genome of the T. brucei using (HDK713) and (HDK991) primers. PCR products were 

then run on an 1% agarose gel with DNA staining to validate the correct size of the 

DNA amplified. From the first reaction, PCR products were ~950 bp (Figure 4.8A) 

displayed the full size of the TbAQP2 (939 bp). Whilst, product-sized bands from the 

second PCR reaction were at ~1250 bp (Figure 4.8B) indicating to the expected size 

of the gene with the partial plasmid fragments (1212 bp). (Figure 4.8C) presents PCR 

products from the 3rd PCR reaction showing no bands to that of the undigested 

plasmid control (~1110bp), suggestion a correct linearization and integration to the 

genome. The expected bands sizes of the PCR products that were obtained from the 

amplifications of the three PCR indicate to successful transfections (See plasmid 

map (figure 2.1) in section 2.3.4.1; for primers sites). 
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Figure 4.8: PCR evidence of plasmid integration of the TbAQP2 (L-M) mutants into the 
tbaqp2/tbaqp3 null cells.  
(A) is a gel using forward primer (HDK529) and revers primer (HDK209), shown the full TbAQP2 gene 
at ~950 bp. While (B) is gel using forward primer (HDK1011) and revers primer (HDK430) presents 
bands around 1250bp, indicated to fragments of the expression cassette containing the AQP2 gene. 
(C) is gel using forward primer (HDK713) and revers primer (HDK991), shown no bands to that of the 
undigested plasmid control at ~1100bp indicated to correct linearization and integration. (A-B) L: 1Kb 
Ladder; 1: pRPaAQP2WT (positive control); 2: TbAQP2 (KO) negative control; 3: TbAQP2 (L84M); 4: 
TbAQP2 (L118M); 5: TbAQP2 (L218M). (C) 1: no DNA (negative control); 2: TbAQP2 (L84M); 3: 
TbAQP2 (L118M); 4: TbAQP2 (L218M); 5: pRPaAQP2WT (undigested). 

 

Before testing the generated cell lines for drugs sensitivity and transport assays, the 

correct substitutions of leucine to methionine were confirmed by sequencing. The 

TbAQP2 gene was amplified from the genomic DNA of each cell lines using Phusion 

High-Fidelity DNA Polymerase (NEB); using the forward (HDK1011) and reverse 

primer (HDK430). The amplified products from the PCR reaction were purified using 

B.
L 1 2 3 4 5

10

1.5

3

1

0.5

kb
(B)

1 2 3 4 5L
10

1.5

kb

1

0.75

3

(B)

10

1.5

kb

1

0.75

3

L 1 2 3 4 5

10

1.5

3

1

0.5

kb
C. (C)(C)

1 2 3 4 5L

10

1.5

kb

1
0.75

3

(C)

10

1.5

kb

1
0.75

3



 136 

a DNA purification kit (Macherey-Nagel) and were then sent for sequencing 

(SourceBioscience, UK) using the mentioned primers. The DNA sequencing represent 

that the mutant cell lines contain TbAQP2 gene and carry the correct mutations (L-

M) at right positions (Appendix 10). 

4.2.2.2. Molecular investigation of the AQP2 L-M mutants 

To confirm the importance of the three selected positions of the leucine residues, 

substitution mutations to a medium-sized amino acide, L84M, L118M and L218M were 

created and expressed in the null-background strain tbaqp2/tbaqp3 (Baker et al., 

2012) using the tetracycline-inducible pRPa vector (Alsford et al., 2005). Sensitivity 

of the L-M mutants to pentamidine and the melaminophenyl arsenical cymelarsan 

was assessed using the Alamar Blue assay. Additionally, the mutant strains were 

assessed against diminazene and the control drug PAO, which is not a TbAQP2 

permeant (Graf et al., 2015). EC50 values obtained with the mutants were compared 

with values obtained with the tbaqp2/tbaqp3 null strain (drug-resistant control) and 

the strain possessing the re-expressed wild-type TbAQP2 (drug-sensitive control). 

Substituting the same leucine residues with methionine rather than tryptophan, 

variants L84M and L218M show no difference compared to TbAQP2WT in terms of 

pentamidine sensitivity with a significant difference with regards to tryptophan 

variants (Figure 4.9A). However, replacing Met at position 118 led to developing the 

same effects as observed with the Trp variant (Figure 4.9A). The L84M and L218M 

mutants also sensitised to cymelarsan (P<0.01) (Figure 4.9B). By the same 

comparison, there was no significant difference between the sensitivity of all the 

mutants to diminazene (Figure 4.9C) and PAO (Figure 4.9D), with exception of the 

L218M mutant that was, surprisingly, somewhat sensitised to diminazene (~2-fold, 

P<0.05). Thus, an amino acid substitution to the cytoplasmic end of L84, L118 and 

L218 residues is sufficient for determining sensitivity of T. brucei cells to TbAQP2-

transported pentamidine. 

 



 137 

 
 

 
 

 
 
 
 

aq
p2

/aq
p3

 nu
ll

+ AQP2 W
.T

L8
4M

L1
18

M
L2

18
M

0

2

4

20

40

60

80

100
Pe

nt
am

id
in

e 
EC

50
 (n

M
)

**** *** * *

***

**

t-test
vs aqp2/aqp3 null
vs AQP2WT

A.

**
vs Trp

ns

ns ns

(A)

aq
p2

/aq
p3

 nu
ll

+ AQP2 W
.T

L8
4M

L1
18

M
L2

18
M

0

10

20

30

C
ym

el
ar

sa
n 

EC
50

 (n
M

) **** *** ns **

****

**
t-test
vs aqp2/aqp3 null
vs AQP2WT

B.

*

vs Trp

****

**

(B)



 138 

 

 

 
Figure 4.9: Sensitivity assay of TbAQP2 mutants (L-M) cell lines. 
The controls and the L-M mutant cell lines and tbaqp2/tbaqp3 null (resistant control) and cell line 
expressing the TbAQP2WT (sensitive control) were assessed against a serial dilution of (a) 
pentamidine (b) cymelarsan (c) the control drug diminazene and (d) the control drug phenylarsine oxide 
(PAO). Bars represent the average and SEM of three independent replicates. Significance was 
determined by two-tailed unpaired Student’s tests in comparison to tbaqp2-tbaqp3 null cell line (red 
star), TbAQP2WT (green star) and tryptophan variants (black star), respectively: *, P<0.05; **, P<0.01; 
***, P<0.001, ****, P<0.0001; ns, non-significant. 
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In order to determine whether the significant changes of pentamidine sensitivity in 

the mutants expressing L-M were associated with alterations to pentamidine uptake 

into the cell, direct uptake assays of [3H]-pentamidine were performed to all 

derivative and control strains over the course of a minute. The transport assessment 

was conducted in triplicate and on three independent occasions in the presence of 

1 mM adenosine (for blocking the TbAT1/P2 transporter, De Koning and Jarvis, 1999). 

Observations indicated all expressed L-M mutants exhibited higher pentamidine 

uptake rates compared to the rate observed in the tbaqp2/tbaqp3 null strain in 60 

s (Figure 4.10A). The introduction of methionine residues into the L84, L118 and 

L218 sites in the TbAQP2 showed that in two out of the three cases (L84M and 

(L218M), the pentamidine uptake was largely restored, whereas L118M showed a 

very low uptake rate of the [3H]-pentamidine but still above the level of the 

knockout cell line (Figure 4.10A). The rate of [3H]-pentamidine uptake for the L84M 

and L218M mutants was significantly increased compared to the previous results of 

the (L-W) mutants, and were nearly normal to the rate of the TbAQP2WT, with an 

approximate rate of 50% for L84M and 68% for L218M, respectively (Figure 4.10B). 
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Figure 4.10: Transport of 25 nM [3H]-pentamidine by tbaqp2/aqp3 null cells, expressing TbAQP2 
WT and the L-M mutant cell lines as indicated.  
Transport was determined in the presence of 1 mM adenosine to block the TbAT1/P2 transporter. (A) 
Pentamidine uptake over a time course of 60s. Uptake rate of re-expressed wild-type TbAQP2 strain 
plotted only to 30s due to depleted [3H]-pentamidine. Slopes were calculated by linear regression using 
Prism 7.04 (GraphPad). (B) Bars represent the average and SEM Pentamidine uptake rates in mutant 
strains, relative to wild-type levels (set to 100%); averages and SEM of three independent replicates. 
Significance was determined by two-tailed unpaired Student’s tests in comparison to TbAQP2WT 
(green star), tbaqp2/aqp3 null (red star) and tryptophan variants (black star), respectively: *, P<0.05; **, 
P<0.01; ***, P<0.001, ****, P<0.0001; ns, non-significant. 
 
 

4.2.3. The TbAQP2 (L-W) and (L-M) variants are still functional 
aquaglyceroporins 

In aerobic conditions, the bloodstream-form trypanosomes (BSF) can survive by 
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of higher glycerol levels can result in harmful conditions to the parasites, need to 

be disposed from the cells through aquaglyceroporins (Jeacock et al, 2017). In 

contrast, T. brucei is considered to have a mitochondrial protein called the 

trypanosome alternative oxidase (TAO), which is believed to facilitate the 

respiration of the BSF parasites (Clarkson et al., 1989). It has proposed that the 
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Acid (SHAM) is a known TAO inhibitor that can simulate the case of growing 

trypanosomes under anaerobic conditions (Opperdoes et al.,1976). A very recent 

study noted that trypanosomes could not efficiently dispose glycerol in the absence 

of aquaglyceroporins, leading to higher SHAM susceptibility (Jeacock et al., 2017). 

The same study continued to propose that TbAQP2 has a more significant 

contribution to glycerol utilization and efflux compared to TbAQP1 and TbAQP3. 
 
 

From the above experiments, the results clearly showed that introducing large 

amino acids at the cytosolic end can block the pentamidine transport. The data also 

show the Leu-Met substitution mutants to be more sensitive towards pentamidine 

but not cymelarsan. In order to check whether these variants were still functional 

aquaglyceroporins, the observation of Jeacock et al. (2017) was used, that when T. 

brucei cells lack all three APQs, they become sensitized to (SHAM) Trypanosome 

Alternative Oxidase inhibitor (TAO) due to cellular glycerol accumulation. Here in 

this study, the TbAQP2 (L-W) and (L-M) mutants were assessed for their ability to 

transport glycerol as aquaglyceroporins. This was achieved by expressing the 

mutants into the T. brucei AQP null background (tbaqp1-3 null) and test them for 

SHAM sensitivity and glycerol uptake. 

 
4.2.3.1. Successful transfection of TbAQP2 variants into tbaqp1/tbaqp2/tbaqp3 
null cells 
 

In order to verify whether the L-W and L-M AQP2 mutants are still functional, the 

AQP2 variants were expressed in the tbaqp1-2-3 null cell line (Jeacock et al., 2017) 

(made available by David Horn, University of Dundee, UK). E. coli containing each 

of the plasmid constructs of the AQP2 (L-W) and (L-M) mutants, including the 

pRPaGFP-TbAQP2WT vector, were cultured overnight in LB broth and plasmids were 

isolated by miniprep kits (Macherey-Nagel) according to the manufacturer’s 

instructions. Prior to the transfection, the vectors were digested using AscI 

restriction enzyme (NEB) to linearise the expression cassette for correct integration 

into the T. brucei genome (Alsford et al., 2005). After the linearisation, the digested 

products, along with undigested plasmids (control), were loaded onto a 1% agarose 

gel. Figure 4.11 shows bands of the digested plasmids sized at 5.3 kb and 2.6 kb, 
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indicating the correct digestions of the DNA expression cassette. (See plasmid map 

(figure 2.1) in section 2.3.4.1 for AscI restriction sites). 

 

 

Figure 4.11: Confirmation of correct linearisation of the plasmids of (pRPaAQP2L-W) and 
(pRPaAQP2L-M) prior to the transfection.  
The plasmids were digested with AscI restriction enzyme, resulting in two distinct bands refenced to 1 
kb DNA ladder (L). Band at ~ 5.3 kb represent fragment of the DNA expression cassette that contain 
the gene of interest and the hygromycin resistance marker (blue arrows indicate desired band). The 
band at ~ 2.6 kb represent the remaining unwanted fragment of each plasmid that containing only B-
lactamase. (C) as a control (undigested plasmid of each L-W and L-M mutant) band at ~ 7.9 kb. 

 

For each of the digested plasmids, the DNA expression cassette (band at 5.3 kb) was 

extracted from the gel using the NucleoSpin Gel extraction kit (Macherey-Nagel) and 

was transfected into tbaqp1/tbaqp2/tbaqp3 null cells. The produced clones were 

grown up in the presence of hygromycin (2.5 µg /ml; selection for the expression 

cassette), followed by gDNA extraction from each cell line (after 5 passages with 

the selection marker) using the NucleoSpin Tissue kit (Macherey-Nagel). In order to 

use for the sensitivity and uptake assays, the positive clones were verified by PCR. 

Two PCR amplifications were set up using GoTaq polymerase (Promega), one to 

verify the existence of the TbAQP2 gene and one for the correct integration of the 

expression cassette into the genome. The 1st PCR was used to amplify the full 

TbAQP2 gene using forward primer HDK529 and reverse primer HDK209, whereas, 

for the 2nd PCR reaction forward primer HDK713 (located 989 bp upstream of the 

AscI site in the plasmid backbone) and the reverse primer HDK535 (located 338 bp 

downstream of the AscI site in the plasmid backbone) were used. PCR products were 
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then run on a 1% agarose gel with DNA staining to validate the correct size of the 

DNA amplified. From the 1st PCR reaction, PCR products were at ~950 bp (Figure 

4.12A), i.e. approximately the full size of the TbAQP2 gene (939 pb). Figure 4.12B 

represents PCR products from the 2nd PCR reaction showing no bands other than that 

of the undigested plasmid control (1384 bp), suggestion a correct linearization and 

integration into the genome. The PCR products of the two PCR reactions indicate a 

successful transfection of the TbAQP2 WT gene and its variants into the genome of 

the aqp1/aqp2/aqp3 null cells (See plasmid map (figure 2.1) in section 2.3.4.1; for 

primers sites). 

 
 

 

 

Figure 4.12: Gel images show the result of the PCR confirmation for the presence and the correct 
integration of the linearized expression constructs of the TbAQP2WT, the TbAQP2 L-W and L-M 
mutants into the tbaqp1/aqp2/aqp3 null cells.  
(A) PCR products of ~1 kb indicates the presence of the full TbAQP2 gene using primers HDK529 and 
HDK209. (B) No bands indicate to the complete linearisation of the circular plasmids that were 
confirmed by PCR using the primers HDK713 and HDK535. Bands at ~1400 bp represent the positive, 
circular control. L: 1 kb DNA ladder; -: no DNA (negative controls); P: plasmid of pRPaAQP2-WT (positive 
control). 
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4.2.3.2. Expressing the TbAQP2 variants into aqp1-3 null cells correlates with 
reversal of sensitisation to SHAM 

The assessment of both AQP2WT and the variants sensitivities towards the TAO 

inhibitor SHAM was conducted as a proxy for glycerol transport after the expression 

in tbaqp1-2-3 null cells (Jeacock et al., 2017). For this, the Alamar blue assays were 

used to determine the EC50 of the L-W and L-M mutants to verify whether these cells 

are resistant to SHAM. The assay was performed in parallel with the sensitive 

(tbaqp1-2-3 null) and the resistant (expressing TbAQP2WT) strains, which were used 

as controls (Jeacock et al., 2017). The sensitivity of these cells to pentamidine 

(control drug) was also determined throughout the assessment for more validation. 

For pentamidine, we found that all the mutants expressed in the triple 

tbaqp1/tbaqp2/tbaqp3 null cells behave almost in a same manner to that when they 

were previously expressed in the tbaqp2/tbaqp3 null cells (Figure 4.5A, 4,9A), 

showing similar EC50 profiles (Figure 4.13). This observation is consistent with 

TbAQP1 having no role in pentamidine uptake or activity. 

 

 

 

Figure 4.13:  Sensitivity assay of pentamidine by TbAQP2 variants with a leucine-to-tryptophan 
or leucine-to-methionine substitution near the cytoplasmic end of the pore.  
Pentamidine (control drug) EC50 values (nM) for mutant and WT TbAQP2 expressed in 
tbaqp1/tbaqp2/tbaqp3 cells (aqp1-3 null), performed in parallel with the determination of EC50 values 
for SHAM, shown in (Figure 6.4). The mutant AQPs contain either a Trp (blue bars) or Met (orange 
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bars) substitution at the indicated positions. The resistant control (aqp1-3 null) and sensitive control 
(AQP2WT) for the separate datasets (Trp or Met) are indicated as hatched bars in the same colours. 
All bars represent the average and SEM of at least three independent replicates. *, P<0.05; **, P<0.01; 
***, P<0.001, ****, P<0.0001 by unpaired Student’s t-test; ns, not significant; nd, not determined. 
 
 

On the other hand, cells expressing the variants all displayed highly significant 

reversal of the sensitisation to SHAM seen in the tbaqp1/tbaqp2/tbaqp3 null cells, 

although some showed an intermediate phenotype indicating a somewhat reduced 

ability to mediate glycerol efflux (Figure 4.14). This is not surprising considering the 

introduction of tryptophan at the narrow cytoplasmic end. At position 118 the 

substitutions with Trp and Met produced, surprisingly, a very similar, intermediate 

effect, which may indicate a particularly important role for this residue. All the Trp 

and Met mutants at positions 84, 118, and 218 were noted to have the capacity to 

transport glycerol as indicated by SHAM EC50 values that appear to be much higher 

than those observed in the tbaqp1-2-3 null cells (Figure 4.14). These mutants 

demonstrated an intermediate SHAM EC50, which was considerably different from 

that observed in TbAQP2WT, showing some reduction in those mutants' glycerol 

efflux capacity.  
 

 
Figure 4.14: Sensitivity assay of SHAM by TbAQP2 variants with a leucine-to-tryptophan or 
leucine-to-methionine substitution near the cytoplasmic end of the AQP2 pore.  
The figure shows SHAM EC50 values (µM) for mutant and WT TbAQP2 expressed in 
tbaqp1/tbaqp2/tbaqp3 cells (aqp1-3 null). The mutants are either a Trp (blue bars) or Met (orange bars) 
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substitution at the indicated positions. The resistant control (aqp1-3 null) and sensitive control 
(AQP2WT) for the separate datasets (Trp or Met) are indicated as hatched bars in the same colours. 
All mutants effectively reversed the increased SHAM-sensitivity of the aqp1-2-3 null cell line. All bars 
represent the average and SEM of at least three independent replicates. *, P<0.05; **, P<0.01; ***, 
P<0.001, ****, P<0.0001 by unpaired Student’s t-test; ns, not significant; nd, not determined. 
 

4.2.3.3. Expressing the TbAQP2 variants into aqp1-3 null cells displayed ability 
to mediate glycerol transport 

We then sought to determine if the mutant cells (both L-W and L-M) displayed 

measurable glycerol uptake capacity and the glycerol-efflux capability as observed 

from the above experiments. As a result, the assessment was conducted on the rate 

of radiolabelled glycerol uptake in aqp1/aqp2/aqp3 null cells expressing AQP2 

variants. Then, this rate was presented as a percentage of the transport rate of [3H]-

glycerol recorded in the TbAQP2WT control cells. The aqp1-2-3 cells were noted to 

have a low glycerol uptake rate (Figure 4.15), which was considered consistent with 

reduced glycerol diffusion across the plasma membrane. Based on this measure, 

glycerol's transport occurred in all Trp and Met mutants at 84, 118, and 218. 

However, this glycerol transport did not happen in the double mutants of 

L84W/L118W due to bulky residues (tryptophan) at the pore's lower point. Certainly, 

our results demonstrate the uptake of [3H]-glycerol reflected what was observed in 

SHAM (Figure 4.14). 
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Figure 4.15: [3H]-glycerol uptake by TbAQP2 variants with a leucine-to-tryptophan or leucine-to-
methionine substitution near the cytoplasmic end of the pore.  
The figure shows uptake of 0.25 µM [3H]-glycerol by aqp1/aqp2/aqp3 null cells expressing TbAQP2WT 
or an TbAQP2 variants as indicated, expressed as percentage (100%) of the transport rate in the 
TbAQP2 control cells. The resistant control (aqp1-3 null) and sensitive control (AQP2WT) for the 
separate datasets (Trp or Met) are indicated as hatched bars in the same colours. All bars represent 
the average and SEM of at least three independent replicates. *, P<0.05; **, P<0.01; ***, P<0.001, ****, 
P<0.0001 by unpaired Student’s t-test; ns, not significant; nd, not determined. 
 
 

4.3. Discussion 

TbAQP2 plays an essential role in pentamidine uptake in T. brucei. However, the 

mechanism by which it mediates and facilitates this uptake is still unclear. No 

adequate information has been provided to understand better whether TbAQP2 has 

direct transporter activity (Munday et al., 2014; Baker et al., 2013; Graf et al., 2013) 

or acts as a receptor with a high affinity for pentamidine (Song et al., 2016). Here, 

several genetic mutations (single or multiple amino acid substitutions) were 

constructed in the TbAQP2 pore to assess their effects on the ability of the gene for 

drug sensitivity and drug transport. This study replaced leucine residues with 

tryptophan and methionine at positions L84, L118, L218 near the cytoplasmic end of 

TbAQP2, potentially allowing to distinguish between an endocytosis model and a 

channel model for pentamidine.  

Introducing tryptophan in the selected three sites (L84, L116, and L218) at the 

cytoplasmic end of the TbAQP2 resulted in a loss of pentamidine sensitivity in L84 

and L118 mutants compared to the wild-type cells. On the other hand, the L218 

mutant demonstrated a sensitivity similar to that of the wild-types. The double 

mutant of L84W/L118W displayed an even greater loss of pentamidine susceptibility. 

In addition, the transport rates of [3H]-pentamidine were measured in all mutants 

and showed strong reductions upon introduction of the tryptophan residues. Thus, 

it can be concluded that the introduction of the bulky amino acids in the three 

selected positions at a low point in the aquaporin duct could block the passage of 

pentamidine through the TbAQP2 channel.  

In contrast, introduction of the methionine residues into the same three positions 

showed that in two out of three cases, L84M and L218M were significantly sensitive 
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to pentamidine, as well as these two mutants were restored near-normal rates of 

pentamidine uptake of the AQP2 wild type. All L-W mutants were affiliated with 

reduced pentamidine and cymelarsan sensitivity with a >90% decrease in [3H]-

pentamidine uptake. This effect was dependent on size because the pentamidine 

transport rate associated with L84M and L218M was statistically similar to that 

observed in TbAQP2 cells. Besides, L118M demonstrated a higher transport rate 

compared to L118W (P<0.0001). 

From the homology protein model, the outcomes of the specific mutations of L84, 

L118 and L218 residues appear far below down the selectivity filter, indicating that 

pentamidine must traverse through the constriction points of the channel. The AQP2 

(L-W) and (L-M) mutants were also investigated for their ability to transport glycerol 

as aquaglyceroporins. The introduction of large amino acid residues at AQP2 

cytoplasmic end resulted in reducing the entry of pentamidine but maintained the 

glycerol flux. This implies that even though the TbAQP2 mutants lost their ability to 

transport pentamidine, they were still functional aquaglyceroporins because their 

expression in tbaqp1-2-3 null cells increased glycerol uptake and decreased 

sensitivity towards the TAO inhibitor SHAM. 

Together with the data from all mutants presented previously in chapter 3, these 

observations stand up for the conclusion that TbAQP2 is a conduit for pentamidine 

and the principal determinant of pentamidine and melarsoprol resistance (Munday 

et al., 2014).  
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Chapter 5 Partially blocking endocytosis does not alter 
the rate of pentamidine transport and pentamidine does 
not trigger AQP2 endocytosis in bloodstream form T. 
brucei 
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5.1. Introduction 

There are few licensed drugs for the treatment of Human African Trypanosomiasis 

(HAT): pentamidine, suramin, melarsoprol, eflornithine and nifurtimox (Migchelsen 

et al., 2011). The choice of the drug to treat sleeping sickness in humans is mainly 

based on the stage of the disease and the causative organism (Burri et al., 2010). 

The WHO recommends pentamidine for the treatment of the initial stage of sleeping 

sickness caused by T. b. gambiense. Pentamidine has the ability to access 

trypanosomes via different routes (Figure 5.1). The aminopurine transporter P2, also 

known as Trypanosoma brucei AT1 (TbAT1), facilitates partial transport as 

evidenced by reduction in knockout studies involving pentamidine sensitivity with 

encoding gene (TbAT1) (Matovu et al., 2003), as well as partial inhibition of 

pentamidine transport by adenine, a known substrate of TbAT1 (Carter and 

Fairlamb, 1993). The bulk of pentamidine transport is facilitated by two other 

channels discovered in 2001: a High Affinity Pentamidine Transporter (HAPT1) and a 

Low Affinity Pentamidine Transporter (LAPT1). This has been further supported by 

competitive inhibition work using radiolabelled [3H]-pentamidine with increasing 

concentrations of unlabelled pentamidine substrate, causing significant biphasic 

uptake inhibition in tbat1-null mutants (de Koning, 2001; Matovu et al., 2003). It has 

been documented that knock-down of the HA1–3 plasma membrane proton pumps of 

T. brucei (which are vital for preserving the potential of plasma membrane), confers 

the resistance against pentamidine (Alsford et al., 2012; Baker et al., 2013). The HA1-

3 pumps are thought to provide the proton motive force necessary for HAPT1 activity 

and pentamidine uptake (De Koning, 2001). The former channel, HAPT1, has since 

been identified as Trypanosoma brucei aquaglyceroporin 2 (TbAQP2), located at the 

flagellar pocket of T. brucei cells (Munday et al., 2014). 
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Figure 5.1: Overview of the transporters implicated in uptake of pentamidine in Trypanosoma 
brucei.  
Model shows known and putative mechanisms of the T. brucei AQP2 and P2 transporters thought to 
facilitate the uptake of pentamidine. Adenosine competitively inhibits pentamidine uptake by P2. The 
presence of the TbAQP2 gene appears to correlate with HAPT1 activity. The P-type H+ ATPases (HA1–
3) generates a proton motive force that could drive pentamidine uptake. (adapted from Molla-Herman 
et al., 2010; Baker et al., 2012). 
 
 
 
 

Suramin is one of the few drugs available for treating sleeping sickness in humans, 

exclusively to treat T. b. rhodesiense infections that occur at early stages (De 

Koning, 2001). The drug is relatively large in size and possesses a six-fold negative 

charge, which hinders passive cell transport into the parasite cells (De Koning, 

2020). Suramin was proposed to be taken up by T. brucei via receptor-mediated 

endocytosis (Stewart et al., 2005; Damper et al., 1967). Many pieces of evidence 

show that the drug enters the parasite cell by endocytosis mechanism facilitated by 

its receptor, the Invariant Surface Glycoprotein (ISG75) (Alsford et al., 2012; Pal et 

al., 2002). These findings were supported by later studies that revealed the current 

model of suramin uptake (Figure 5.2), which involves several stages of the 
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endocytosis process starting from the binding of the drug to the ISG75, until the 

release of the drug in the cytoplasm via a Major Facilitator Superfamily Transporter 

(MFST) (Zoltner et al., 2016; Alsford, 2013). 
 

 

 
Figure 5.2: A simplified schematic model of the trypanosome endosomal system.  
The figure shows the way in which the suramin drug enters the T. brucei cell via endocytosis 
mechanism. ISG75 has been proposed as the major surface receptor for suramin uptake but other cell-
surface proteins may make some contribution as well, since suramin is a prolific binder. The drug enters 
the cell by binding to ISG75 followed by uptake into the endosome by endocytosis (relies on four protein 
subunits that form adaptor protein complex 1, AP1) and transfers to the lysosome where it is broken 
down by proteolysis (involving the proteins UbH1, CatL, CBP1 and p67). The free drug is then released 
into the cytoplasm with the aid of transport protein MFST. (adapted from Alan et al., 2012).   
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In trypanosomes, endocytosis occurs rapidly, and is even more rapid in the flagellar 

pocket zone than in the mammalian cells (Allen et al., 2003). The knockdown of 

CRK12 kinase, an essential protein kinase (Mackey et al., 2011), is reported to cause 

a highly reproducible endocytosis defect in T. brucei (BSF) that affects approximately 

twenty percent of cells 12 hours after induction of RNAi and is eventually lethal 

(Monnerat et al., 2013). Therefore, to examine the conceivable existence of a 

connection between pentamidine transport and endocytosis, the CRK12 RNAi cell line 

was utilized. Parallel uptake experiments were performed involving [3H]-pentamidine 

and [3H]-suramin, with suramin as a positive control because it is known to bind to the 

ISG75 surface protein and enter bloodstream forms of T. brucei through endocytosis 

(Zoltner et al., 2016, 2020). This approach was chosen because no stable T. brucei 

cell lines with endocytosis defects are possible, as this rapidly leads to gross 

distortions of the cell (swelling of the flagellar pocket) and cell death (Monnerat et 

al., 2013; Allen et al., 2003; Field et al., 2009; García et al., 2004). However, 

induced knockdown of CRK12 is a relatively mild method to progressively reduce the 

endocytosis rate, and unambiguously distinguishes between endocytosis and 

secondary-active transporters.  

 

5.2. Results 

5.2.1. Growth analysis of CRK12 RNAi cells 

To determine the earliest time points at which endocytosis becomes disrupted, and 

without causing excessive cellular pathology or affecting cell viability when carrying 

out transport assays, growth analysis of the CRK12 RNAi cell line (Monnerat et al., 

2013), was performed in the presence and in the absence of tetracycline. Therefore, 

the initial step was to test the effect of the tetracycline based on varying 

concentrations of the antibiotic (tet 0.1 µg/ml, 0.5 µg/ml and 1 µg/ml) on the cell 

growth, in parallel with corresponding control (-tet). For the purpose of this test, 

the bloodstream parasites were seeded at 1 × 105 cells ml-1 both in the presence and 

in the absence of tetracycline, followed by incubation at 37 ºC with 5% carbon 

dioxide. After every 24 hours, a cell count was done using a haemocytometer, for 

three consecutive days. The experiments were conducted independently on three 
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separate occasions. It was observed that there was continued normal growth of 

CRK12 RNAi cell line when there was no addition of tetracycline to the media over 

the 72 hours (Figure 5.3). On the other hand, the rate of growth of the induced cells 

was lower in the first 24 hours in the presence of tetracycline in comparison to 

growth rate in the control (-tet). After day 1, there was a steep decline in cell 

density caused by cell death. Mackey et al., (2011) notes that this observation is 

because CRK12 is an important protein kinase in bloodstream form T. brucei. The 

growth curve indicates that the varying concentrations of tetracycline have a very 

similar effect on the cell growth.  

 

 

Figure 5.3: CRK12 RNAi cell growth curve in full HMI-9 medium by incubated at 37 ºC with 5% 
carbon dioxide, with and without tetracycline (tet).  
From this graph, there is no considerable difference in the CRK12 RNAi growth phenotype when 
induced with three different concentrations of 0.1 μg/ml tet, 0.5 μg/ml tet or 1 μg/ml tet. In the absence 
of tetracycline (-tet), CRK12 RNAi acted as a control. The results presented in the graph are based on 
the data obtained from three similar but independent experiments. (Alghamdi et al., 2020). 
 

Bloodstream Trypanosoma cells normally divide after about every 6 h under standard 

culture conditions, and reach a cell density of 1.5 - 2 × 106 cells/ml at late log phase 

after every 48 h, when seeded at 1 x 105 cells/ml (Vassella et al., 1997). Based on 

this, and on the growth analysis shown in figure 5.3, an additional growth analysis 

was performed on the CRK12 cells to determine the peak growth rate so that viable 

cells are harvested prior to apparent growth arrest. Hence, the cells were induced 

using the highest tetracycline concentration from the previous experiments over 24 
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hours to ensure as much inhibition from endocytosis as possible without affecting 

cell viability. The experiments were independently conducted on three different 

occasions. Cell induction with tetracycline 1 µg/ml was performed, followed by cell 

counts after every 4 h. For controls, un-induced CRK12 RNAi cells were used 

throughout the assay. From figure 5.4, it is evident that the induction of CRK12 blood 

stream form RNAi cell line using tetracycline arrested cell growth in the first 12 

hours, causing cell death after longer RNAi induction. These experimental findings 

were consistent with previous data published under the investigation of the function 

of CRK12 (Monnerat et al., 2013). Culture samples collected at this time point reveal 

an increased abundance of swelling cells, which is a characteristic of endocytosis 

defects in T.  brucei. However, it was difficult to quantify this characteristic since only 

a minority of cells was affected and to varying degrees, as intended at the 12 h time 

point selected for that very reason.  Our subsequent experiments of drug uptake were 

optimized on the basis of these growth assay. 

 

 

Figure 5.4: CRK12 RNAi cell growth curve in full HMI-9 medium at 37 ºC with 5% carbon dioxide, 
with or without 1 μg/m tetracycline (tet).  
The graph shows the growth curve of the CRK12 RNAi cells within a period of 24 hours, when induced 
with 1 μg/ml tetracycline. In the absence of tetracycline (-tet), CRK12 RNAi acted as a control. The cells 
were counted using a haemocytometer and the mean of duplicate determinations has been shown. 
(Alghamdi et al., 2020) 
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5.2.2. Quantitative RT-PCR on the CRK12 RNAi cell line 

Based on the growth analysis assay in figure 5.4, it was evident that in the presence 

of tetracycline, the cells experienced a steady growth until after 12 hours when a 

decline in growth was observed. Therefore, the mRNA expression of CRK12 was 

determined 12 h after induction with 1 µg/ml tetracycline. For the quantification of 

RNA, 5 x 106 cells were harvested from CRK12 RNAi cells induced with tetracycline 

and un-induced 2T1 parental cells which acted as the control. RNA was extracted 

from the cells by use of the NucleoSpin RNA extraction kit. After the extraction of 

RNA, the RNA was converted to cDNA by use of SuperScript III Reverse Transcriptase 

(Invitrogen). The RT-PCR process was performed using qRT-PCR primers specific for 

CRK12 gene, and using cDNA to measure the levels of mRNA normalized to GPI8 

expression which is usually used as a standard reference gene in T. brucei cell (Kang 

et al, 2002). The 2T1 cell line contains the two endogenous alleles of the CRK12 

gene and is therefore set to 100%. The levels of CRK12 mRNA were reduced by 42% 

(P<0.001) compared to un-induced controls as shown by qRT-PCR (Figure 5.5). Our 

analysis of the CRK12 transcript is closely consistent with the observations made by 

Monnerat et al, (2013) that mRNA transcript reduces by nearly 67% 18 hours after 

induction with tetracycline.  

 

 
Figure 5.5: Relative gene expression for the CRK12 RNAi cell line using qRT-PCR.  
Gene expression is normalised to housekeeping gene GPI8 (n=3) and the 2T1 parental cells (control) 
set at 100. Induction with 1 μg/ml tetracycline for 12 h. The error bar shows ± standard deviation. **, 
p=0.0027 by Student’s unpaired, two-tailed t-test. 
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5.2.3. Knockdown of CRK12 slows down endocytosis and suramin uptake but 
not pentamidine transport in T. brucei 

A study previously done on CRK12 kinase by Monnerat et al. (2013) showed that 

about 20% of population of the CRK12 RNAi cells in T. brucei tend to have 

enlargement of the flagellar pockets 12 hours after inducing the cells with 

tetracycline. Allen et al. (2003) also showed that there is a link between the 

enlarged T. brucei parasite flagellar pocket and defects in endocytosis. Therefore, 

this system was used to inhibit endocytosis in order to demonstrate that this does 

not impact pentamidine uptake. [3H]-suramin and [3H]-pentamidine were performed 

in two parallel experiments. [3H]-suramin was used as a positive control since, upon 

binding to the protein ISG755, it can reach T. brucei bloodstream forms via 

endocytosis (Zoltner et al, 2016, 2020). Transport of 0.025 μM [3H]-pentamidine, after 

12 h of CRK12 RNAi induction, was the same as that observed in the control (non-

induced) and was linear for at least 30 s at 0.00658 ± 0.00061 pmol (107 cells)-1 s-1 

and 0.00650 ± 0.00067 pmol (107 cells)-1 s-1, respectively. After 12 h of CRK12 RNAi 

induction, transport of 0.025 µM [3H]-pentamidine in the presence of 1 mM adenosine 

(to block the P2 transporter) was the same as that observed in the control (non-

induced) and was linear for at least 30 s at 0.00658 ± 0.00061 pmol (107 cells)-1 s-1 

and 0.00650 ± 0.00067 pmol (107 cells)-1 s-1, respectively. (Figure 5.6 A). The 

addition of 200 µM unlabelled pentamidine inhibited the uptake of [3H]- pentamidine 

for all the cells and was not significantly greater than 0 (P > 0.05). This indicates 

that [3H]-pentamidine uptake is transporter-mediated and is completely saturated 

at 200 µM pentamidine. There was no significant reduction in the rate of uptake of 

pentamidine (n=5) by the RNAi cells in comparison to the control cells (Figure 5.6 

B), indicating that partial inhibition on endocytosis does not impact on pentamidine 

uptake. 
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Figure 5.6: Transport of 0.025 µM [3H]-Pentamidine measured in control (non-induced) and 
CRK12 RNAi cell after exactly 12 h of tetracycline induction.  
Transport was measured over a course of 30 seconds in the presence of 1 mM adenosine to block 
P2/TbAT1 transporter. [A] Representative pentamidine uptake experiment, the slope was determined 
using linear regression with Prism 7.04 (GraphPad). [B] The bars represent the mean and SEM rates 
of pentamidine uptake in CRK12 RNAi, relative to the control. The means and SEM of five independent 
experiments were determined in triplicate. Using unpaired Student’s t-test, NS is not significant. 
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minutes. [3H]-suramin is a drug accumulated by endocytosis via the flagellar pockets 

in T. brucei (Zoltner et al., 2016), thus, it was used as a positive control. After 12 

hours of CRK12 RNAi induction, it was shown that the rate of labelled suramin was 

lower (0.001656 ± 0.00067 pmol (107 cells)-1 s-1) than in the control cells (0.00237 ± 

0.00061 pmol (107 cells)-1 s-1) (Figure 5.7A). 100 µM unlabeled suramin was used as 

a saturation control but did not fully out-compete the radiolabel, indicating that 

suramin binds with quite low affinity to its receptor, ISG75.  Hence, the uptake of 

0.25 µM [3H]-suramin by the two cells was significantly greater than zero, but not 

significantly different from each other. Considering the mean of five repeats, the 

[3H]-suramin uptake was inhibited by 32% in comparison to the control cells 

(P=0.019, n=5) (Figure 5.7B). Although this approach is limited to partially inhibited 

endocytosis in BSF T. brucei, the results obtained from these experiments show that 

inhibition on endocytosis has no impact on the uptake of pentamidine, but does 

reduce suramin uptake, consistent with current models.  
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Figure 5.7: Measurement of 0.25 µM [3H]-suramin over a time period of 15 minutes in the control 
and in CRK12 RNAi cells after exactly 12 h of tetracycline induction.  
(A) representative experiment of suramin uptake, the slope is determined by linear regression in Prism 
7.04 (GraphPad). (B) Bars represent the mean and SEM rates of suramin uptake in CRK12 RNAi in 
relation to the control. Means and SEM of five independent experiments were performed in 
quadruplicate. Using Student’s unpaired, two-tailed t-test, p =0.0027.  

 

5.2.4. The protonmotive force drives uptake of AQP2-mediated pentamidine 
uptake in bloodstream forms of T. brucei 

Studies by Alsford et al. (2012) and Baker et al. (2013) have reported that knock-

down of the HA1–3 proton pumps in T. brucei confers the resistance to pentamidine. 

The HA1–3 proton pumps are important in maintaining a stable plasma membrane 

potential. An interesting fact is that this locus conferred resistance to only 

pentamidine (dicationic), and not to melaminophenyl arsenicals (neutral), unlike 

the case with the knockdown of the TbAQP3/TbAQP2 locus, which gave resistance 

to both drugs (Alsford et al., 2012). Previous studies by De Koning (2001a) have 

reported that the uptake of pentamidine in T. brucei procyclics, mediated by HAPT 

has a strong correlation with the proton-motive force (PMF) in procyclic T. brucei. 

Many T. brucei transporters are associated with proton symporter-mediated nutrient 

uptake (De Koning & Jarvis, 1997a, b, 1998; De Koning et al., 1998). However, it is 

uncertain if this dependence means that pentamidine uptake is mediated by a proton 
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on sensitivity to neutral melaminophenyl arsenicals, a claim that strongly goes against 

a proton symport mechanism for HAPT1/AQP2, but if the substrate crosses the 

channel, there would be a partial dependence on HAPT1/AQP2-mediated dicationic 

pentamidine uptake on Vm or PMF, as opposes to a single Asp residue, according to 

the endocytosis model, binding on the extracellular side of the protein (Song et al, 

2016). Alghamdi et al. (2020) show that in T. brucei the same ionophores that dose-

dependently inhibit the uptake of hypoxanthine in procyclic (De Koning and Jarvis, 

1997a) and in BSF (De Koning and Jarvis, 1997b) also inhibit the transport of [3H]-

pentamidine in BSF and HAPT1-mediated pentamidine in procyclic cells. This is a 

confirmation that, as expected by the reliance on the HA1–3 proton pumps, a 

membrane potential must be present for rapid uptake of pentamidine. 

Zoltner et al. (2016) observe that [3H]-suramin, an endocytosed substrate, was also 

inhibited by 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), by about 

32.6% (P=0.029; 3 minutes pre-incubation, and suramin accumulation of more than 

10 minutes) (Figure 5.8). Although this means that the ionophore does not absolutely 

discriminate between trans-channel transport and endocytosis for di-cationic 

pentamidine, the inhibition of transport did not occur for neutral melaminophenyl 

arsenicals. That is, these neutral TbAQP2 substrates do not depend on the proton 

gradient as noted by Alsford et al. (2012), an indication that they are not 

endocytosed like suramin, nor driven thermodynamically by the negative membrane 

potential. 
 
 

 

Figure 5.8: The 0.25 µM [3H]-suramin uptake by T. b. brucei s427WT cells in just over 10 minutes. 
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Cells were incubated in the presence or in the absence of 20 µM CCCP (additional 3 minutes of pre-
incubation) and in parallel. The 100 µM unlabelled suramin (shown by the blue bars) was included to 
demonstrate saturation of the suramin-receptor interaction. The bars represent the mean and SEM of 
the three experiments which are independent of each other, all performed in quadruplicate. Following 
the Student’s unpaired t-test: *P<0.05; **P<0.01; ***P<0.001. (Alghamdi, et al., 2020) 
 
 

There is a good correlation between TbAQP2-mediated pentamidine transport and 

the proton-motive force (Figure 5.9), but CCCP has a stronger effect than expected 

from previously observations for the uptake of [3H]-hypoxanthine in T. brucei 

bloodstream forms as noted by De Koning and Jarvis (1997b).  

 

 
Figure 5.9: High affinity pentamidine uptake in T. b. brucei is sensitive to ionophores. 
The labels indicate the concentrations in µM. A plot showing the correlation between the rate of 
pentamidine transport and protonmotive force (PMF). The black points show several ionophores that 
strongly inhibited pentamidine uptake, including N-ethylmaleimide (NEM), nigericin and gramicidin. The 
red point shows the CCCP outlier and has not been used in the regression analysis. The data points 
represent the average of four or more independent repeats conducted in quadruplicate. The PMF 
values were taken from De Koning and Jarvis (1997b).  
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uptake. This shows that CCCP inhibits TbAQP2 directly, independent of the effects 

on the membrane potential.  
 
 

 
 

Figure 5.10: The 0.25 µM [3H]-glycerol uptake by aqp1/aqp2/aqp3 null cells expressing 
TbAQP2WT.  
Dose response of pentamidine (PMD) and CCCP based on an incubation time of 1 minute. The graph 
shown was performed in triplicate and representative of three independent repeats. (Alghamdi et al., 
2020) 
 

 
 

 
Figure 5.11: Uptake of 0.025 µM [3H]-pentamidine by aqp1/aqp2/aqp3 null cells expressing 
TbAQP2WT. 

The graph represents dose response with CCCP and pentamidine (PMD), using an incubation time of 
30 second. The graph shown was performed in triplicate and representative of three independent. 
(Alghamdi et al., 2020) 
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5.3. Discussion 

To investigate the independence from endocytosis, the tetracycline-inducible CRK12 

RNAi cell line that was employed to provide an endocytosis defect that is highly 

reproducible and progressive in T. brucei (Monnerat et al., 2013). The aim of this 

study was to distinguish between uptake by transporters and via endocytosis, since 

the current evidence (Morgan et al., 2002; Allen et al., 2003) suggest that all 

endocytosis in T. brucei exclusively occurring in the flagellar pocket is dependent 

on clathrin and independent of AP-2. The implication of this is that the endocytotic 

mechanisms of TbAQP2 and suramin receptor ISG75, which are both directed to the 

lysosome after ubiquitylation (Quintana et al., 2020; Zoltner et al., 2015), are likely 

to be similar enough for a direct comparison. After 12 h of CRK12 RNAi induction, 

pentamidine transport was not significantly reduced although uptake of [3H]-

suramin, which is accumulated by endocytosis through the T. brucei flagellar pocket 

(Zoltner et al., 2016), was reduced by 33% (P=0.0027), an indication that the 

experiment was successfully timed to the early stage of endocytosis slow-down.  
 

Similar to previous studies on protonmotive force-influenced transport processes in T. 

brucei (De Koning and Jarvis, 1997a, b, 1998; De Koning et al., 1998), ionophore 

CCCP strongly inhibited pentamidine uptake. This is most likely due to the internal 

negative membrane potential of -125 mV, which attracts the dicationic pentamidine 

(De Koning and Jarvis, 1997b). This result is in line with the prediction of molecular 

dynamics modelling (Alghamdi et al., 2020) and the role of HA1-3 proton pumps in 

pentamidine transport, as stated in previous studies, but not in the resistance of 

melarsoprol (Alsford et al., 2012; Baker et al., 2013). Even though CCCP inhibits 

pentamidine directly through competitive TbAQP2 inhibition, this only begins to 

have a major impact above ~5 µM (IC50 of 20.7 µM), while its effects after combined 

competitive inhibition and reduced protonmotive force (preincubation) shows 

pentamidine transport inhibition of about 63% at 1 µM and about 90% at 5 µM. This 

shows the important role of CCCP after PMF reduction. This is in agreement with the 

conclusion made on the molecular dynamics analysis (Alghamdi et al., 2020) that 

inward pentamidine flux depends on the inside-negative membrane potential.  
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For HAPT-mediated pentamidine uptake, the experimental Vmax in T. brucei BSF can 

be expressed as 9.5×105 molecules/cell/h, whereas that in procyclics is 8.5×106 

molecules/cell/h (De Koning, 2001). Given that the stoichiometric ratio of AQP2: 

pentamidine is 1:1, the endocytosis model would require as many units of TbAQP2 

as possible to be internalised and recycled, which seems impossible particularly in 

procyclic cells, since the half-life time for TbAQP2 turnover in BSF is almost 4 hours 

(Quintana et al., 2020). In addition, the rate of endocytosis in procyclic cells is 

lower, making it difficult to internalise the aquaporins spread over the surface of 

the cell as mentioned above. Based on the rates of uptake and turnover observed, 

about 4×106 TbAQP2 units would be required per BSF cell in the flagellar pocket. All 

these observations are not consistent with the argument that uptake of pentamidine 

by trypanosomes mainly depends on endocytosis. Even though AQP2-bound 

pentamidine is likely to be internalised as part of the protein’s natural turnover, 

this is unlikely to have a significant contribution to the overall rate of the drug’s 

uptake.  

Altogether, it can be concluded that the remarkably large pore of TbAQP2 is the 

primary entry of drugs melarsoprol and pentamidine into T. brucei spp. for 

treatment of sleeping sickness. This renders the parasite extra-sensitive to the drugs 

in comparison to Leishmania mexicana (Munday et al., 2014).   
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Chapter 6 Insights into the role of Leishmania major 
AQP1 gene in drug transport  
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6.1. Introduction 

Treatment of leishmaniasis is complicated because the disease is caused by different 

species of Leishmania parasite, which lead to varied clinical manifestations. 

Although there exist more than 25 compounds exhibiting anti-leishmanial effects, 

only a handful are actually used in treatment of the human disease (Fidalgo & Gille, 

2011). In the past six decades, the organic pentavalent antimonial compounds 

meglumine antimoniate (Glucantime), and stibogluconate (Pentostam) have been 

the most preferred first line treatment options against all forms of leishmaniasis, 

while pentamidine, amphotericin B, and Alkyl-lysophospholipids (ALP) such as 

edelfosine and miltefosine have been employed as options for the second line of 

treatments. However, with the emergence of acquired resistance, the clinical 

efficacy of these drugs in the treatment of leishmaniasis is being challenged 

(Ashutosh et al., 2007). For example, Sundar and Chakravarty (2012) report that 

more than 60% of Indian VL patients have shown no response against antimonial 

treatment. Pentavalent antimonials [Sb (V)] are pro-drugs which get reduced to the 

active form, trivalent antimony [Sb (III)] (Ephros et al., 1999). This process occurs 

in the parasite, but it is still not well understood, including the mechanism through 

which antimonials enter into macrophages and phagolysosomes (Shaked et al., 

2001). Yet, according to Gourbal, et al. (2004), Leishmania major aquaglyceroporin 

1 (LmAQP1) is the first Sb (III) facilitator in Leishmania. In 2014, Mukhopadhyay 

stated that AQP1 plays an essential role of accumulating metalloids, methylglyoxal, 

glyceraldehyde, glycerol, water, alongside other solutes in Leishmania amastigotes 

and promastigotes.  

It is thought that the Leishmania major genome encodes for five aquaporins: 

LmAQP1, LmAQPα, LmAQPβ, LmAQPγ, and LmAQPδ. Out of these five, it is only 

LmAQP1 that exhibits adventitious permeability to antimonite. Mukhopadhyay 

(2014) affirms that the roles of the other four aquaporins are not yet known. A 

growing amount of evidence suggests that changes to, or loss of LmAQP1, plays a 

vital role in L. major antimony resistance. Marquis, et al. (2005) reported that if one 

of the two AQP1 alleles present in Leishmania major is interrupted, a 10-fold 

decrease in sensitivity to Sb (III) is recorded compared to wild-type (WT) cells. 

Conversely, if LmAQP1 is overexpressed, then cells exhibit 100-fold higher sensitivity 
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to Sb (III) compared to WT cells. In addition, overexpression of LmAQP1 can possibly 

reverse the phenotype in isolates exhibiting drug resistance (Figarella et al., 2007). 

In a more recent study, generated LmAQP1-knockout L. major strains have been 

shown to exhibit 30-fold increases in resistance to Sb (III) compared to WT parent 

strains (Plourde et al., 2015). As well as the evidence focused on L. major, it appears 

that the strong association between AQP1 and Sb (III) mode of action is conserved in 

other Leishmania species. An example of this was highlighted in a study by Imamura 

et al. (2016) where L. donovani clinical isolates from areas of sub-continental India 

associated with high antimonial treatment failure were found to have acquired an 

insertion in the Leishmania donovani AQP1 gene, spread by means of genetic 

recombination.  
 

In this chapter, the Leishmania major AQP1 WT gene (LmAQP1 WT) was constructed 

into two expression vectors and then transfected in parasite cells for 

characterisation. The study aimed to carry out a systematic examination on the role 

LmAQP1 plays in drug sensitivity and response. This was achieved by cloning and 

expressing the encoding gene in two different trypanosomatidae systems: (i) L. 

major AQP1 null and the T. brucei AQP1-3 null cell lines in order to evaluate the 

effect of LmAQP1 on sensitivity to antimony and arsenic drugs. 

 

6.2. Results 

6.2.1. Successful cloning and expression of Leishmania major AQP1 in 
Trypanosoma cells  

6.2.1.1. Construction of plasmids and transfection 

Section 2.3.4.2, describes how pHDK269 plasmid was constructed by sub-cloning the 

LmAQP1 gene into the pGEM-T Easy subcloning vector (Appendix 3), which was to 

verify the DNA sequence prior to cloning the gene into the pRPa vector (Alsford and 

Horn, 2008). After verifying that the DNA sequence of LmAQP1 was correct, 

restriction enzymes HindIII and XbaI were used to digest the gene out from pHDK269 

plasmid, followed by ligating into the pRPa vector, which is the final destination, 

given pHDK271 plasmid (plasmid map in figure 2.2, section 2.3.4.3). Sanger 
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sequencing was used to verify the presence of the LmAQP1 gene on the pHDK721 

plasmid generated using HDK1519 and HDK430 primers. Further digestions were 

performed to validate the correct cloning (Figure 6.1). The presence of the LmAQP1 

gene was tested using restriction enzymes HindIII and XbaI, whereas AscI was used 

to verify whether the LmAQP1 gene and the pRPa plasmid are integrated correctly 

together. In Figure 6.1, the bands at ~950 bp indicate the presence of the full 

LmAQP1 gene (959 bp) when the generated plasmid was digested using the 

restriction enzymes HindIII and XbaI. The band at ~5.3 kb indicates the proper 

linearization of the plasmid when digested with AscI enzyme. (See plasmid map 

(figure 2.2) in section 2.3.4.3; for restriction sites). 

 

 

Figure 6.1: The generated pHDK271 plasmid was digested by restriction enzymes, prior to 
transfection to ensure correct cloning of LmAQP1 gene into pHDK271.  
L: 1 kb DNA ladder; 1:  arrow indicates expected band at ~950 bp for full LmAQP1 gene, whereas the 
band at ~7 kb represents the expected remaining backbone of the plasmid, when digested using 
restriction enzymes HindIII and Xbal; 2: arrow indicates expected band at ~5.3 kb for the DNA 
expression cassette (containing the LmAQP1 gene and hygromycin antibiotic marker), whereas the 
band at ~2.6 kb represents the expected remaining part of the plasmid, when digested with AscI 
restriction enzyme. 
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were run on 1% agarose gel to verify that the linearization was correct, and was 

expected to be at ~5.3 kilobases (kb) long (Figure 6.2). 

 

 

Figure 6.2: The generated plasmid (pHDK271) is digested by the AscI enzyme before 
transfection for proper integration of the expression cassette into the genome of 
tbaqp1/tbaqp2/tbaqp3 null cells. 
L: 1 kb DNA ladder; 1:  arrow indicates expected band at ~5.3 kb for the DNA expression cassette 
(containing the LmAQP1 gene and hygromycin antibiotic marker), whereas the band at ~2.6 kb 
represents the remaining part of the plasmid, when digested with AscI restriction enzyme; 2: control 
plasmid pHDK271 (undigested). 

 
After the linearization process, extraction of the DNA cassettes from the gel were 

performed, followed by cleaning the extracted DNA using the NucleoSpin Gel 

extraction kit (Macherey-Nagel) as per the manufacturer’s instructions. As described 

in section 2.7.1, the cleaned DNA cassettes were then transfected into the 

tbaqp1/tbaqp2/tbaqp3 null cell line (Jeacock et al., 2017) (kind gift from David 

Horn, University of Dundee, UK) which was derived from the 2T1 strain of T. b. 

brucei (Alsford & Horn, 2008). This was followed by selection and cloning of the 

transfected cells in the presence of 2.5 µg/ml hygromycin. The new cell line was 

then tested using PCR to determine the success of transfection. Here, genomic DNA 

obtained from the clones was screened, using Go Taq DNA polymerase (Promega) 

PCR amplifications, for proper integration of the plasmid into the genome of T. 

brucei and to establish the presence of the LmAQP1 gene. Correct transfection was 

confirmed by setting up two PCR reactions. The first PCR reaction was used to 
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amplify the full LmAQP1 gene based on the HDK1519 and HDK1520 primers. In the 

second PCR reaction, the LmAQP1 gene was amplified with surrounding part of the 

expression cassette using HDK1011 and HDK430 primers. Separation of the PCR 

products was done on a 1.5% agarose gel, and visualization was done using SYBR™ 

Safe DNA gel stain. The PCR products obtained from the first reaction are shown in 

Figure 3.3A, band at ~950 bp indicates the expected size of the full LmAQP1 gene 

(959 bp). The second PCR reaction gave product-sized bands at ~1250 bp, which 

corresponds to the expected size of the full LmAQP1 gene with a partially 

fragmented plasmid (1240 bp) (Figure 6.3B). Successful transfection of the clones 

with LmAQP1 was confirmed by the amplified PCR products (See plasmid map (figure 

2.2) in section 2.3.4.3; for primers sites). 

After confirming the PCR, Phusion High-Fidelity DNA Polymerase (NEB) was used to 

amplify the LmAQP1 gene from genomic DNA of each clone. The NucleoSpin PCR kit 

(Macherey-Nagel) was then used to purify the PCR products, and confirmed using 

the forward and reverse primer for HDK1519 and HDK1520 respectively by Sanger 

sequencing.  

 

 

Figure 6.3: PCR products electrophoresis using Agarose gel showing the LmAQP1 expression 
cassette integrated in tbaqp1/aqp2/aqp3 null cells.  
PCR product amplification of: (A) the full LmAQP1 gene at ~950 bp, (B) fragment at ~1250 bp 
represents LmAQP1 and parts of the expression cassette surrounding the gene. The size of each band 
was approximated with respect to the standard size of the 1Kb molecular weight Ladder. (A-B) L: 1Kb 
Ladder; 1: pRPaLmAQP1 (positive control); 2: TbAQP1-3 KO (negative control); 3: LmAQP1 (clone 1); 4: 
LmAQP1 (clone 2). 
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6.2.1.2. The impact of LmAQP1 on T.b aqp1-3 null strain growth 

Once it was confirmed that the clones were expressing the desired gene, the effect 

of introducing the LmAQP1 into the tbaqp1/tbaqp2/tbaqp3 null cells were 

examined. Growth of clones 1 and 2 were then determined and compared to the 

tbaqp1/tbaqp2/tbaqp3 null cells and 2T1 strains. The tbaqp1-3 null cell line shown 

in Figure 6.4 indicates a reduced rate of growth compared to 2T1, with a 

substantially reduced maximum cell density. In terms of maximum observed cell 

density, both clones expressing the LmAQP1 gene fall between the 2T1 and 

tbaqp1/tbaqp2/tbaqp3 null cell lines. These two clones remained at max cell 

density on day 4, which was already achieved on day 3 before they reduced on day 

5. 

 

 

Figure 6.4: T. brucei cell lines growth curves in HMI-9 medium, incubation with 5% CO2 at 37 °C. 
Clones 1 and 2 of of tbaqp1-3 null cells that expressing the LmAQP1 (+LmAQP1) were compared to 
2T1 and tbaqp1-3 null strains. On the first day, a culture of 1×105 cells/mL were set up for each cell 
line, with selective marker added to both clones (2.5 µg/ml hygromycin). Using a haemocytometer, live 
cells were counted every day for 5 days.  
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6.2.1.3. Expression of LmAQP1 in Trypanosoma brucei aqp1-3 null strain 
enables antimonial transport  

After expressing the LmAQP1 in tbaqp1/tbaqp2/tbaqp3 null cells, the sensitivity of 

the cells to arsenical and antimonial drugs were determined. Here, the Alamar blue 

assay was used to calculate EC50 of the clones to confirm whether the generated 

cells show sensitivity to the following compounds; Arsenic Oxide, Potassium 

Antimony Tartrate and Sodium Arsenite. The assay was performed alongside the 

aqp1-2-3 null and 2T1 strains, which both acted as controls. Phenylarsine oxide 

(PAO) and pentamidine were used as drug controls throughout the assessment. From 

Figure 3.5a and Figure 3.5e, it is clear that the value of EC50 of 

tbaqp1/tbaqp2/tbaqp3 null cells is significantly higher (276 ± 15.9 nM) and (71.7 ± 

8.6 nM) than that of 2T1 cells (40 ± 7.7 nM) and (4 ± 1.6 nM) for Potassium Antimony 

Tartrate and Pentamidine, respectively, an indication that the presence of 

aquaporins 1-3 influences the sensitivity of T. b. brucei to these drugs. On the other 

hand, the sensitivity of T. brucei to Arsenic Oxide, Sodium Arsenite and Phenylarsine 

Oxide is not significantly affected by these aquaporins (Figure 6.5B-D). For 

Potassium Antimony Tartrate (PAT), the two clones expressing the LmAQP1 show an 

almost 10-fold lower value of EC50 (P<0.001) compared to the 

tbaqp1/tbaqp2/tbaqp3 strain (Figure 6.5A). The EC50 is closely comparable to that 

of 2T1 cells, showing that that the LmAQP1 restores sensitivity to PAT. None of the 

tested cell lines were sensitised to Arsenic Oxide, Sodium Arsenite and PAO, all 

arsenic compounds, and all had nearly the same average values of EC50, i.e. no 

significant differences were observed (Figure 6.5B-D). Conversely, the clones 

expressing the LmAQP1 fails to restore sensitivity to pentamidine given that the EC50 

values (cl1= 61.2 ± 7.5, cl2= 55 ± 7.8) are significantly higher than the values of 2T1 

cells (EC50= 4.0±1.6), and are very similar to EC50 values of the 

tbaqp1/tbaqp2/tbaqp3 null strain (EC50= 71.7 ± 8.6; P>0.05) (Figure 6.5E). Following 

this outcome, it is suggested that expression of the LmAQP1 gene in T. brucei 

parasites only enables the cells to facilitate the transport of PAT. 
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Figure 6.5: Drug sensitivity of clones 1 and 2 that expressing LmAQP1 compared to tbaqp1-3 
null and 2T1 strains.  
The cells were incubated at 37 °C for 48 hours, with 5% CO2 and serial dilutions of: (A) Potassium 
Antimony Tartrate, (B) Sodium Arsenite, (C) Arsenic Oxide, (D) Phenylarsine Oxide (PAO) and (E) 
Pentamidine, followed by incubation with Alamar Blue dye for another 24 hours. All experiments are 
the average and SEM of three independent experiments. Significance was determined by two-tailed 
unpaired Student’s tests. ***, P<0.001, ns, non-significant. 
 

 

6.2.2. Successful cloning and expression of Leishmania major AQP1 in 
Leishmania cells  

6.2.2.1. Construction of plasmids and transfection  

The same techniques that were described in section 6.2.1.1 were applied in cloning 
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enzymes as a method of validating the proper cloning (Figure 6.6). Testing for the 

presence of the full LmAQP1 gene was accomplished by BgIII and XbaI, whereas BgIII 

and XhoI were used to check for correct integration of the gene into the PNUS-HcN 

plasmid. In Figure 6.6, the bands can be observed at 950 bp and 1500 bp, showing 

that LmAQP1 gene is present and correctly integrated into the pNUS-HcN plasmid 

(See plasmid map in figure 2.3 for restriction sites). The primers HDK1519 and 

HDK340 were used in Sanger sequencing to verify the plasmid pHDK272 prior to 

transfection into L. major AQP1 null strain. Following the confirmation of the 

sequence, pHDK272 was transfected, exactly as described in section 2.5.2, into 

LmAQP1 null cells (Marie et al., 2015) (obtained from Marc Ouellette lab). The 

generated clones were then grown in the presence of geneticin (G418), a neomycin 

analogue, at 50 µg/ml – an antibiotic for the neomycin resistance marker in the 

plasmid. After selecting surviving clones, gDNA was extracted for confirmation of 

the correct transfections by PCR. The presence of the LmAQP1 gene in the mutant 

null cells was confirmed by performing two PCR reactions. The results of PCR 1 are 

shown in Figure 6.7A; the expected bands appear at ~950 bp and they represent the 

full gene (942 bp) based on the forward primer (HDK1519) and reverse primer 

(HDK1520). PCR 2 was applied for gene amplification with the plasmid partially 

fragmented and using HDK851 and HDK340 primers (Figure 6.7B). The bands 

appeared as expected at 1228 bp of the fragment (See plasmid map (figure 2.3) in 

section 2.3.4.4 for primers sites). Based on the results of the two PCR amplifications, 

the transfection of the LmAQP1 gene into the mutant null cells is a success. After 

the PCR confirmations, the LmAQP1 gene was then amplified from the genomic DNA 

of each strain using Phusion High-Fidelity DNA Polymerase (NEB). The PCR products 

were purified using NucleoSpin PCR kit (Macherey-Nagel), and were confirmed by 

Sanger sequencing using the forward primer (HDK1519) and reverse primer 

(HDK1520). 
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Figure 6.6: The generated pHDK272 plasmid was digested by restriction enzymes, prior to 
transfection to ensure correct cloning of LmAQP1 gene into pHDK272.  
L: 1 kb DNA ladder; 1:  arrow indicates expected band at ~950 bp for full LmAQP1 gene, whereas the 
band at ~6.2 kb represents the remaining backbone of the plasmid, when digested using restriction 
enzymes BgllI and XhoI; 2: arrow indicates expected band at ~1.5 kb for the full LmAQP1 gene and 
parts of the expression cassette surrounding the gene, whereas the band at ~5.7 kb represents the 
remaining part of the plasmid, when digested with BgllI and XbaI restriction enzyme. 
 

 

Figure 6.7: PCR products electrophoresis using Agarose gel showing the LmAQP1 expression 
cassette integrated in LmAQP1 null cells.  
PCR product amplification of: (A) the full LmAQP1 gene at ~950 bp, (B) fragment at ~1250 bp 
represents LmAQP1 and parts of the expression cassette surrounding the gene. The size of each band 
was approximated with respect to the standard size of the 1Kb molecular weight Ladder. (A and B) L: 
1Kb Ladder; 1: LmAQP1 (clone 1); 2: gDNA LmAQP1 KO (negative control); 3: LmAQP1 (clone 2). 
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6.2.2.2. The impact of LmAQP1 on Leishmania major aqp1 null strain growth 
 

It was observed that the time between passages was longer for LmAQP1 null cells 

than for the L. major WT cells. Hence, cell counting was performed to establish 

whether reintroduction of LmAQP1 into the null mutant cells would reinstate cell 

growth as the WT strain. Cultures of the clones (+ LmAQP1) were established growth 

was compared with that of the L. major AQP1 null and L. major WT strains. These 

cell lines were cultured in HOMEM medium at a starting density of 1×105 cells/ml. 

Hygromycin B antibiotic was added to culture 100 ug/mL for the AQP1 null cells and 

G418 antibiotic (50 µg/ml) for the clones, necessary for cell selection based on 

hygromycin B and neomycin resistance markers present in the respective integrated 

cassettes (Plourde et al., 2015; Tetaud et al., 2002). Cell counts were performed in 

triplicate after every 24 h for 6 days. According to Figure 6.8, the rate of growth of 

the add-back clones is slightly higher than the rate of growth in the null mutant cell 

line, but it is however slower than in the WT cells. 

 

 

Figure 6.8: The growth curve for L. major cell lines in HMI-9 medium, incubation at 25 °C.  
The rate of growth of the clones (+ LmAQP1) was compared to that of L. major AQP1 null and L. major 
WT strains. For every cell line, a culture of 1×105 cells/mL was initially prepared. Each day, cells were 
counted using counting haemocytometer, for 6 days. 
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6.2.2.3. Reintroduction of LmAQP1 gene in Leishmania major aqp1 null strain 
restores antimonial and arsenical sensitivity 

The next step was to test our clones (+ LmAQP1) to find out if they can restore the 

sensitivity of antimonial and arsenical drugs when the LmAQP1 is re-introduced into 

the null mutant cells. In this case, the Alamar blue assay was used to determine the 

EC50 for Arsenic Oxide, Potassium Antimony Tartrate (PAT) and Sodium Arsenite in 

the add-back strain. This assay was carried simultaneously with the LmAQP1 null and 

L. major WT strains, which both acted as controls. Pentamidine was used as a control 

drug. As shown in figure 6.9A-C, the EC50 values of the aqp1-null strain are 

significantly higher (220 ± 2.7, 52.8 ± 0.6, and 75.4 ± 0.6) for PAT, Sodium Arsenite 

and Arsenic Oxide than those of the WT control or the AQP1 add-back clones. This 

suggests that AQP1 is a crucial factor on sensitivity to these heavy metals. 

Interestingly, the average values of EC50 of the two add-back clones was even much 

lower than those of the WT cell line, i.e., 0.18 ± 0.01, 0.6 ± 0.18 and 1.13 ± 0.3 

instead of 8.4 ± 0.2, 3.7 ± 0.20, and 5.2 ± 0.17 for PAT, Sodium Arsenite and Arsenic 

Oxide, respectively. In addition, it was surprising that the add-back strain appears 

to have lower sensitivity to pentamidine, which is significantly different in 

comparison to WT L. major strain (P<0.0001) (Figure 6.9D).  
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Figure 6.9: Sensitivity of L. major cell lines, evaluated by use of the Alamar blue assay.  
The cells were incubated at 25°C for 72 hours, with serial dilutions of: (A) Potassium Antimony Tartrate, 
(B) Sodium Arsenite, (C) Arsenic Oxide, and (D) Pentamidine. This was followed by incubation with 
Alamar Blue dye for another 48 hours. The experimental results are the average and SEM of three 
experiments performed independently. The significance was determined by use of two-tailed unpaired 
Student’s tests. ***, P<0.001, ****, P<0.001, ns, non-significant.  
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strains. PCR confirmed that the two expression vectors generated had the desired 

LmAQP1, before transfecting the vectors into Trypanosoma and Leishmania cell 

lines. Again, using PCR, it was confirmed that the transfection process was successful 

when LmAQP1 gene was correctly inserted into the genome of the parasites. The 

next step was to perform growth curve assays to establish if the removal or insertion 

of the LmAQP1 gene in Trypanosoma cell lines hindered or improved the rate of 

growth, given the important role LmAQP1 exhibits in Leishmania cellular physiology 

and drug response (Mandal et al., 2014; Plourde et al., 2015).  

It was observed that the AQP1 knockout (KO) in Leishmania major cells grew at a 
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that the absence of AQP1 in the KO cell line resulted in poor regulation of cell 

homeostasis and a subsequent slower growth rate as observed in a previous study 

(Plourde et al., 2015). Surprisingly, the WT phenotype was not restored in the 

transfected cell lines as expected. Rather than having a growth rate similar to the 

WT, the growth rates in the transfected clones were more or less the same with the 

AQP1 KO cell line with a very slight increase. One explanation for this result may be 

a much faster water recovery rate experienced by transfected cell lines compared 

to the WT or AQP1 null-lines, as described in Plourde et al. (2015). A faster water 

recovery rate may disrupt the osmoregulation abilities of cells previously 

compensating without a non-essential AQP1 transporter, and the sudden change in 

osmoregulation caused by fast water recovery may be subsequently hindering cell 

growth.  
 

The observation of the trypanosome cells revealed a much slower growth rate in the 

tbaqp1/tbaqp2/tbaqp3 null cells in comparison to 2T1 cells, most likely the result 

of reduced drug uptake and defects in transport, accumulation and metabolism of 

glycerol important for many cell activities including self-replication (Jeacock et al., 

2017). Additionally, it was observed that transfected cell lines with LmAQP1 

reintroduced showed a marginally increased cell growth rate, particularly after day 

2. Given that this cell line did not contain three different aquaporin genes, it is 

speculated that the introduction and expression of the LmAQP1 gene overcame a 

glycerol defect in these cells, and this subsequently led to higher growth rates. 

However, it is clear that LmAQP1 does not compensate for three lost T. brucei 

aquaporins, which would be required to create the cumulative restorative effect on 

glycerol uptake and metabolism in trypanosomes. In turn, this may be necessary for 

reaching the growth rate observed with 2T1 cells. 

In the subsequent steps, drug sensitivity Alamar blue assays were performed for the 

cell lines in attempt to establish the role played by AQP1 in the transportation of 

heavy metals antimony and arsenic. Leishmania infections are treated using 

antimonial drugs, which are transported via Leishmania AQP1 (Kell et al., 2014). As 

a matter of fact, AQP1 is the key route of entry of antimony in Leishmania parasites 

(Mandal et al., 2010). Additionally, previous research suggests that arsenic 

contamination in Indian subcontinent water has given rise to high treatment failures 
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with antimonial treatment, supported both with work in mouse models in vitro and 

in vivo, and from patients that contracted VL local to these areas (Perry et al., 2013; 

Perry et al., 2015). Hence, it was expected that the potassium antimony tartrate 

(PAT) drug assay would give interesting results. The experiments on the trypanosome 

parasites yielded some significant results. The tbaqp1/tbaqp2/tbaqp3 null cell line 

showed significant resistance to the PAT drug assay. It was observed that 

transfecting the LmAQP1 gene reversed the resistance, an observation that has been 

made in previous studies (Gourbal et al., 2004). As for arsenic oxide and sodium 

arsenate in the LmAQP1 null strain, it was observed that removal of the LmAQP1 

gene confers resistance to these compounds, which is reverted when the gene is 

reinstated, conferring a higher level of sensitivity in transfected cell lines compared 

to WT cells. These observations support previous conclusions that AQP1 plays an 

important role in the transportation of arsenic compounds, as well as antimonial 

compounds, in Leishmania (Gourbal et al., 2004; Plourde et al., 2015). These 

observations would also support reasoning that prolonged exposure to arsenic 

compounds through contaminated water, may have led to the long-term selection 

of antimonial resistant parasites as established by Perry et al. (2013, 2015). 

Therefore, changes to, or loss of, Leishmania AQP1 transporter functionality, from 

such selection have plausibly led to widespread antimonial drug resistance and high 

treatment failure rates observed in subcontinental India.  

Though AQPs, including AQP1, are known transport mediators of arsenite (As (III)) 

and Sb (III) (Uzcátegui et al., 2013), observations made on the effect of AQP1 of 

sensitivity to arsenic and antimonial compounds for Leishmania were not replicated 

in T. brucei. Instead, it was found that neither removal of AQP1-3 in T. brucei 2T1 

cells, nor transfection of LmAQP1 to tbaqp1/tbaqp2/tbaqp3 null cell line during T. 

brucei arsenic oxide and sodium arsenate assays made a significant difference to T. 

brucei sensitivity. Indeed, it is likely that T. brucei uptake of arsenic and antimonial 

compounds is dependent on other transport channels than just the AQPs, as has 

already been demonstrated with the uptake of the trivalent organoarsenical 

melarsoprol (Matovu et al., 2003). Therefore, the addition of LmAQP1 makes little 

change to levels of cell sensitivity as T. brucei cells remain sensitive despite the loss 

of AQPs.     
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Testing of Phenylarsine oxide (PAO) was only done with the Trypanosoma parasites. 

From the results obtained, AQP1 failed to show any impact on transportation of PAO. 

This was expected because PO diffuses freely across membranes (Fairlamb et al., 

1992) and was therefore an excellent control. Lastly, pentamidine (PMD), a drug 

that has been used in the treatment of Trypanosoma and Leishmania infections, was 

tested. The exact mechanism of PMD uptake in Leishmania is not well understood, 

but its actions include the disruption of the mitochondrial inner membrane potential 

of the parasite (Basselin et al., 1996; Coelho et al, 2007). In this observation, the 

loss and reinstatement of AQP1 in T. brucei did not substantially alter its sensitivity 

to PMD. Removal of AQP1-3 from T. brucei 2T1 cells resulted in a significant loss in 

PMD sensitivity compared to 2T1 cells, whilst transfection of LmAQP1 to 

tbaqp1/tbaqp2/tbaqp3 null cells made little impact in reversing the sensitivity 

profile of these cells. This was expected, as previous research has established AQP2, 

rather than AQP1, as the major determinant for PMD uptake in African trypanosomes 

(Baker et al., 2012). On the other hand, it was observed that Leishmania aqp1-null 

lines exhibited a significant loss in PMD sensitivity compared to WT cells. It appeared 

that re-introduction of LmAQP1 by transfection to aqp1-null cell lines made no 

impact towards restoring cells to the WT sensitivity phenotype. This observation may 

also be attributed to the significant increase in cell volume recovery rate observed 

when LmAQP1 is reintroduced to aqp-1 null cell lines (Plourde et al., 2015). This 

could have a possible disruptive effect on T. brucei cell osmoregulation activities, 

and in turn, disrupt pentamidine uptake in transfected cell lines leading to the 

resistance profiles observed. 
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Chapter 7 General discussion 
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Kinetoplastid parasites, particularly Leishmania and Trypanosoma species cause a 

range of diseases in humans, most of which are neglected in the world. Although the 

WHO and other non-governmental organisations have put significant efforts in 

fighting these insect-transmitted diseases, they remain a major challenge in public 

health, especially for the populations directly affected. The development of 

vaccines, which has proven to be a successful approach to management of many 

infectious diseases, has not been successful in the case of trypanosomatid diseases. 

This is because the parasites that cause these diseases possess immune-suppression 

and evasion mechanisms that are very efficient, such as intracellular locations for 

T. cruzi and for Leishmania spp. in the human host (Cardoso et al., 2016; McConville 

& Naderer, 2011), and antigenic variation by African trypanosomes (Gehrig & 

Efferth, 2008; Horn, 2014). Given the lack of vaccines, and the practical 

impossibility of vector control over enormous rural areas, the only viable alternative 

to control these diseases is chemotherapy. However, the drugs used in treating the 

diseases are far from ideal because they are ineffective at certain stages of the 

disease or to some parasite strains, or the routes of administering the drug are not 

convenient, have unacceptable toxicity, have induced resistance, and/or are not 

cost-effective (Kalel et al., 2017; Ranjbarian et al, 2017; Barrett & Croft, 2012; Field 

et al, 2017). With the rapid development of resistance, treatment efforts have 

diminished efficacy, and there is little or no financial incentive for the development 

of newer drugs to replace those against which resistance has developed (Fairlamb 

et al., 2016; Giordani et al., 2016). The major mechanisms of resistance involve: 

reducing the level of free drug at the target site, reducing the drug-binding affinity, 

reducing drug uptake, target overexpression, or failure to activate a prodrug (De 

Koning, 2017; Fairlamb et al., 2016). 

The key to the survival of kinetoplastid parasites such as Trypanosoma brucei and 

Leishmania major is the ability to overcome different environmental challenges in 

insect and mammalian hosts. Thus, the interface between the environment and the 

kinetoplastid cell, the plasma membrane, plays an important role in managing the 

survival in these different niches. Together with uptake of essential nutrients and 

outflow of metabolites, plasma membrane transporters sometimes also facilitate 



 188 

the entry of drug compounds of high clinical importance (Tetaud et al., 1997; 

Landfear, 2008; Munday et .al, 2015a). 

Aquaporins (AQPs) are integral membrane proteins, known to play an important role 

in allowing the movement of water into- and out of the cell in a rapid and regulated 

manner (Borgnia et al., 1999). Aquaglyceroporins are type of aquaporins, also known 

to conduct and some very small uncharged solutes such as glycerol, CO2, ammonia, 

and urea across the membrane (Gourbal et al., 2004, Verkman, 2014). Unlike most 

known aquaglyceroporins, TbAQP2 is responsible for the increased sensitivity of T. 

brucei to melarsoprol (398 Da) and pentamidine (340 Da) (Baker et al., 2012). 

Although TbAQP2 is described as the first aquaporin with the potential to transport 

drug-like molecules, the mechanism that underpins these phenomena remained 

unclear. However, a structural analysis described in Munday et al (2015) 

hypothesised that the key difference that allowed TbAQP2 to take up large drug-like 

molecules was the size of several of the selectivity filter residues, and the absence 

of the cation-repulsing arginine that sticks out into the pore. To investigate this 

hypothesis a mutational analysis, swapping TbAQP2 and TbAQP3 selectivity filter 

residues, and altering the pore width at the cytoplasmic end was performed.  

With the evolution of TbAQP2 by positive selection due to the high ratio of dN/dS, 

eliminating all points of constriction including the NPA/NPA motif, the cationic 

arginine of the ar/R selectivity filter, and the aromatic amino acids, the pore size 

has been enlarged to an unprecedent degree (Baker et al., 2012; Munday et al., 

2015). It is worth noting that this enlargement apparently stemmed from a copy of 

the existing AQP in the ancestor (now called TbAQP3), which itself was left 

unchanged and with a completely conventional selectivity and cation filter, while in 

the copy all those residues were systematically replaced towards a larger pore while 

keeping an otherwise strong homology. This could be interpreted as the species 

deriving a benefit from both genes - conventional AQP3 and enlarged-pore AQP2. 

This is consistent with the observation that the AQP2-AQP3 allele seems to be very 

stable. Hypothesising that it first evolved in Trypanosoma brucei (as far as evidence 

allows) the arrangement remained unchanged in the subsequent sub-speciation 

events to T. b. gambiense, T. b. rhodesiense, T. evansi and T. equiperdum. What 

remains completely unclear is what advantage the trypanosome derives from this 
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situation. Apart from the conventional AQP substrates such as small trioses and 

glycerol (Uzcategui et al., 2004; 2013) no metabolite substrate could be identified 

for TbAQP2 (Alghamdi et al., 2020), having tested everything from amino acids to 

polyamines, nucleosides and vitamins. It may well be that the gained function 

TbAQP2 is not related to uptake at all, but to the efflux of an unwanted metabolite. 

Untargeted metabolomics sampling the cells and medium of WT and tbaqp2-3 null 

cells did not identify any candidate substrates, however (Munday and De Koning, 

unpublished), but it is possible that the TbAQP2 function is not operational in vitro 

in rich culture medium, only in vivo; moreover, it may give an advantage in the 

tsetse fly stage or short-stumpy stage rather than the short-slender bloodstream 

form that is the only one present in culture with these strains. Nonetheless, chances 

are that the advantage is in the mammalian host rather than in the insect as TbAQP2 

is retained unchanged in T. evansi and T. equiperdum, which do not require passage 

and development in the tsetse fly. To address these issues, strains of WT and tbaqp2-

null T. b. brucei have been transfected with different fluorescent markers 

(collaboration with Mark Carrington, University of Cambridge) and will be co-

infected in mice, to see whether either gains an advantage in vivo. Should that not 

be the case, the experiment will be repeated with tsetse fly infections. 

It is thus reasonable to speculate that the widened pore of TbAQP2 allows for the 

passage of substances other than those transported by TbAQP1 and TbAQP3. The 

work on the W(G)YR filter residues shows that these residues indeed appear to be 

important determinants for the transport of pentamidine by AQPs, and introducing 

all three TbAQP2 residues into TbAQP3 was required to create an AQP3 that can at 

least facilitate mild sensitisation to pentamidine, and a detectable level of 

pentamidine uptake. On the other hand, any mutations in the unusual selectivity 

filter of the three amino acids residues I(V)LL of TbAQP2 was sufficient to all but 

eradicate the transport of pentamidine. Likewise, the conserved NPA/NPA motif in 

TbAQP3, which contains two serine residues NSA/NPS in TbAQP2, is also linked to 

the blockage of cations passage (Wree et al., 2011). The TbAQP2 motif has unique 

serine residues halfway down the pore, which could be able to make hydrogen bonds 

with pentamidine. Reinstating the NPA/NPA motif resulted in a TbAQP2 variant with 

a significant reduction in [3H]-pentamidine transport rate. 
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Yet, it could be argued that the selectivity filter of TbAQP2 allows access to a 

pentamidine binding site halfway in the pore and is still not clear evidence of the 

drug traversing the pore into the cytoplasm. In order to further investigate this, I 

engineered constrictions at the cytoplasmic end of the pore, well below the 

selectivity filter, by making a site-specific mutation to each of the cytoplasmic-end 

amino acids L84, L118 and L218 that reside in the transport channel below the 

unique T. brucei selectivity filter (Baker et al., 2012). The introduction of bulky 

tryptophan on the cytoplasmic end of the TbAQP2 pore showed a disabling of 

pentamidine transport. In contrast, the result of a swap back to a medium size amino 

acid (methionine) into the same three positions showed a significant increase in 

uptake rates of pentamidine. Altogether, with the presented results of glycerol 

efflux and uptake being maintained in the mutant strains, verifying that these 

mutant AQPs weather they still functional aquaglyceroporins, it is likely that this 

effect depended on the amino acid size at the cytoplasmic end of the TbAQP2 pore. 

Interestingly, the position of L118 showed an almost similar phenotype (significant 

pentamidine resistance) for substitution with either tryptophan or methionine, 

showing that the original leucine may be in a quite critical position for pentamidine 

passage. This should be further investigated with further mutagenesis and 

modelling. Altogether, it can be concluded that the remarkably large pore of 

TbAQP2 is the primary entry of drugs melarsoprol and pentamidine into T. brucei 

spp. for treatment of sleeping sickness.  

The project also aimed to distinguish between pentamidine uptake by transporters 

and via endocytosis. Indeed, it is not sufficient to prove that pentamidine can 

traverse the TbAQP2 pore, as it is not unthinkable that the total cellular entry of 

pentamidine via TbAQP2 is the sum of the two processes, in which case the division 

into the separate contributions becomes of interest. Current evidence (Morgan et 

al., 2002; Allen et al., 2003) suggest that all endocytosis in T. brucei exclusively 

occurs in the flagellar pocket, is clathrin-dependent and AP-2 independent. This 

means that the endocytotic mechanisms of TbAQP2 and suramin receptor ISG75, 

which are both directed to the lysosome after ubiquitylation (Quintana et al., 2020; 

Zoltner et al., 2015), are likely to be similar enough for a direct comparison. The 

tetracycline-inducible CRK12 RNAi cell line was employed to provide an endocytosis 
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defect. Although this approach is necessarily limited to partially inhibited 

endocytosis in BSF T. brucei, because full inhibition of endocytosis is lethal in 

bloodstream trypanosomes (Monnerat et al., 2013). The data obtained from this 

work showed that, inhibition on endocytosis has little or no impact on the uptake of 

pentamidine, but does reduce suramin uptake, consistent with current models that 

propose suramin uptake via edocytosis mechanism (Zoltner et al., 2016; Alsford, 

2013).  

The proton ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) has an 

obvious effect for the uptake of [3H]-hypoxanthine in T. brucei bloodstream forms 

(De Koning and Jarvis 1997b). Through a combination of competitive inhibition and 

reducing the protonmotive force, an investigation of whether the CCCP has a direct 

effect on TbAQP2-mediated pentamidine transport was conducted. The results 

showed an important role of CCCP after protonmotive force (PMF) reduction. This is 

in agreement with the conclusion made on the molecular dynamics analysis 

(Alghamdi et al., 2020) that inward pentamidine flux depends on the inside-negative 

membrane potential. It is also reported that the rate of endocytosis of TbAQP2 

would not be able to account for the amount of pentamidine internalised (Quintana 

et al., 2020). With the conducted investigation of the structure-activity relationship 

(SAR) of the interactions between pentamidine and TbAQP2 and the molecular 

dynamics (Alghamdi et al., 2020), which shows minimal energy to be associated with 

a near-elongated pentamidine centrally in the TbAQP2 pore, the current study offers 

detailed, multifarious evidence of the uptake of organic drugs with molecular 

weights of 340 and 398 by an aquaporin. 

Moreover, reconciling the literature on transport/resistance of pentamidine with 

uptake through endocytosis poses a challenge. For example, bloodstream 

trypanosomes exhibit a higher rate of endocytosis than the procyclic lifecycle forms 

(Langreth & Balber, 1975; Zoltner et al., 2016), but the rate of uptake of HAPT-

mediated [3H]-pentamidine in procyclics is nearly 10 times higher than that in 

bloodstream forms (De Koning, 2001a; Teka et al., 2011). This is despite the fact 

that the level of TbAQP2 expression is similar in both cases (Siegel et al., 2010; 

Jensen et al., 2014). In addition, TbAQP2 is spread out over the surface of procyclic 

cells (Baker et al., 2012), whereas endocytosis occurs exclusively in the flagellar 
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pocket (Field & Carrington, 2009), which is about three times smaller in procyclics 

compared to the bloodstream forms (Demmel et al., 2014), since the pellicular 

microtubule networks under the plasma membrane precludes endocytosis (Zoltner 

et al., 2016). This implies that the uptake of pentamidine mediated by TbAQP2 

should not be possible in procyclic T. brucei, if it all depends on endocytosis. 

Likewise, the TbAQP2 expression in Leishmania mexicana promastigotes showed a 

[3H]-pentamidine uptake rate of more than ten times higher than the rate observed 

in T. brucei BSF (Munday et al., 2014), despite the fact that these cells have a much 

lower rate of endocytosis (Langreth & Balber, 1975). There was no difference 

between the Km and the inhibitor profile of the pentamidine transport mediated by 

TbAQP2 in these promastigotes (Munday et al, 2014) and that of HAPT in bloodstream 

or procyclic form T. brucei (De Koning, 2001a). The endocytosis model would require 

the same number of units of TbAQP2 to be internalised and recycled, which seems 

impossible particularly in procyclic cells, since the half-life time for TbAQP2 

turnover in BSF is almost 4 hours (Quintana et al, 2020). In addition, the rate of 

endocytosis in procyclic cells is lower, making it difficult to internalise the 

aquaporins spread over the surface of the cell. All these observations are not 

consistent with the argument that uptake of pentamidine by trypanosomes mainly 

depends on endocytosis. Even though AQP2-bound pentamidine is likely to be 

internalised as part of the protein’s natural turnover, this is unlikely to have a 

significant contribution to the overall rate of the drug’s uptake. It should be noted 

that the paper by Song et al (2016) that proposed the endocytosis model did not 

actually measure any endocytosis or uptake of pentamidine, lacking a pentamidine 

radiolabel, but hypothesised it on the basis that other, smaller cations could not 

apparently pass through the channel. In a very recent paper the authors of that study 

stated that the method they use for measuring AQP permeation would not have been 

sensitive enough to detect pentamidine at the observed transport rate, which is of 

course much slower than that of water or glycerol (Petersen & Beitz, 2020). Thus, 

there is a strong suggestion, incorporating all these strands of data, that 

pentamidine is not taken up by endocytosis, nor does induce endocytosis of TbAQP2.  

The last part of my project was to get insight in the role of Leishmania major AQP1 

in drug transport. It has been reported that the Sb(III) traverses the pore of AQP1 
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and that loss of functionality of this aquaporin contributes to antimonial resistance. 

While pentavalent antimonials are still the first-line drugs against Leishmania spp., 

their effectiveness is hindered by high levels of toxicity and drug resistance 

(Ashutosh et al., 2007). Leishmania AQP1 was found to be one of markers that is 

commonly linked to antimonial resistance (Marquis et al., 2005; Decuypere et al., 

2005; Mandal et al., 2010; Maharjan et al., 2008; Kazemi-Rad et al., 2013). 

Therefore, a further exploration of LmAQP1 functions, including their regulatory 

mechanisms, will eventually reveal their real potential for novel chemotherapeutic 

approaches and/or transmission intervention(s). Herein, a systematic examination 

of the LmAQP1 in sensitivity and response to antimony and arsenic drugs was 

conducted. The results of expressing LmAQP1 into tbaqp1/tbaqp2/tbaqp3 null cells 

suggested that it is likely that T. brucei uptake of arsenic and antimonial compounds 

is dependent on other transport channels than just the AQPs. This conclusion has 

been demonstrated with the uptake of the trivalent organoarsenical melarsoprol 

(Matovu et al., 2003). On the other hand, the outcomes of the reintroduction of 

LmAQP1 into LmAQP1 null cells support previous conclusions that AQP1 plays an 

important role in the transportation of arsenic compounds, as well as antimonial 

compounds, in Leishmania (Gourbal et al., 2004; Plourde et al., 2015). Therefore, 

changes to, or loss of, Leishmania AQP1 transporter functionality, could lead to 

widespread antimonial drug resistance and high treatment failure rates. 

Due to time constraints, however, I was unable to make microscopy observations for 

the transfected cells (LmAQP1 null + LmAQP1). Thus, I recommend staining the cells 

with fluorescent probes such as Lyso Tracker and Mito Tracker, since the shape of 

the cells appear much rounder, which could be due to an enhanced water influx rate 

experienced by those cells, as previously described in Plourde et al. (2015). 

Fluorescence experiments would determine the organelle localizations and sizes in 

those cells. Importantly, with the knowledge about the characteristics that enable 

the transport of large, supple, molecules via TbAQP2, similar investigations should 

be also done on the LmAQP1 to gain insight into the structural determinants that 

enable it to transport Sb(III) and arsenic. 

In conclusion, the results of the TbAQP2 work provide strong evidence of 

pentamidine being able to permeate TbAQP2 directly, through the central pore. This 
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should now allow the evaluation of aquaporins in other species for similar 

adaptations. In addition, the cloning of the LmajAQP1 gene provides an essential 

molecular tool for studying the role of transporters in drug uptake and their 

potential involvement in the development of drug resistance. This might allow the 

identification and cloning of additional aquaporin members from additional species 

and give important new insights into the role of these important proteins in many 

organisms. Taken together, the outcomes of this thesis anticipate that better 

knowledge of the role of these AQPs will aid optimisation of future drugs and/or 

their delivery, as well as the development of diagnostic tools for drug resistance. 
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Appendices  
 
 
Appendix 1: General buffers and solutions  
 
Luria Bertani (LB) broth (pH 7) 
LB powder (Sigma-Aldrich) 12.5 g 
Distilled water 500 ml 
 
LB Agar 
Luria Agar (Sigma-Aldrich) 17.5 g 
Distilled water 500 ml 
 
 
Appendix 2: Protocol for gradient PCR 
 

PCR Mix:  52 µl GoTaq green buffer 

      13 µl 10 mM dNTPs 

      13 µl Forward primer (taken from a 10 µM stock solution) 

      13 µl Reverse primer (taken from a 10 µM stock solution) 

      2.6 µl gDNA (10 ng/µl conc) 

      2.6 µl GoTaq G2 polymerase 

      163.8 µl dH2O 

 

Put 20 µl of this mix into 12 tubes, and run the following PCR program: 

Put hot lid on 

Temperature step:  95°C - 3 min 

Start cycle x35 

 Temperature step:   95°C - 30s  

 Gradient step:   50°C to 70°C – 1.30s 

 Temperature step:  72°C - 3 min 

End cycle 

Temperature step:  72°C - 10 min 

Store: 10°C 
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Appendix 3 
 

 
 

The pHDK269 plasmid map showing the full LmAQP1gene sub-cloned into the pGEMT Easy 
sub-cloning vector prior to cloning the gene into the final destination (pRPa vector). 
 
 
 
Appendix 4 
 

 
 

The pHDK270 plasmid map showing the full LmAQP1 gene sub-cloned into the pGEMT Easy 
sub-cloning vector, prior to cloning the gene into the pNUS-NcH vector (final destination) 
to verify the sequence of DNA. 
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Appendix 5: Amino acid sequence alignments of TbAQP2 WT and the TbAQP2 

mutants (AQP3 selectivity filter residues).  

 
(A) 

 

 
 
(B) 
 

 
 
(C) 
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(D)  
 

 
 
(E) 

 

 
 

The figures show correct mutation(s) at the right position in the mutant cell lines. (A) Double 
mutations (S131P/S263A). (B) Single mutation (L258Y). (C) Single mutation (I110W). (D) 
Single mutation (L264R). (E) Double mutations (I110W/L264Y). Alignments were created 
using the CLC Genomic workbench software (version 7.0, developed by CLC bio). 
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Appendix 6: Plasmid map of pRPa+GFP-TbAQP3WT (pHDK070). 
 

 
 

The plasmid map shows the TbAQP3WT and the vector confers hygromycin resistance to the 
transfected cells. The rRNA targeting fragment and Hygromycin B phosphotransferase 
ensures that the constructs are located to the tagged locus of 2T1 cells. This plasmid was 
used as a template to generate mutation in the AQP3 throughout the project. The positions 
of the primers that were used for the amplification of the AQP3 gene (HDK0529, HDK0329), 
and for the gene with the partial plasmid fragment (HDK1011, HDK430) are highlighted. The 
plasmid maps were generated by the CLC Genomics Workbench program (QIAGEN 
Bioinformatics). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 200 

Appendix 7: Amino acid sequence alignments of TbAQP3WT and the TbAQP3 
mutants (the introduction of AQP2 selectivity filter residues). 
 

(A) 
 

 
 
(B) 
 

The figures show correct mutation at the right position in transfected tbaqp2/tbaqp3 null 
cells. (A) Sequence of the double mutation W102I/R256L. (B) Triplicate mutation 
W102I/R256L/Y250L. Alignments were created using the CLC Genomic workbench software 
(version 7.0, developed by CLC bio). 
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Appendix 8: Amino acid sequence alignments of TbAQP2WT and the TbAQP2 
mutants (TbAQP2 residues I190 and W192).  
 
(A) 
 

 
 

 
(B) 
 

 
 
(C) 
 

 
 

The figures show correct mutation at the right positions. (A) Single mutation I190T. (B) 
Single mutation W192G. (C) Double mutation I190T/W192G. The generated cell lines were 
checked by Sanger Sequencing (Source BioScience, Nottingham, UK) for the presence of 
TbAQP2 and the correct mutation(s). Alignments were created using the CLC Genomic 
workbench software (version 7.0, developed by CLC bio). 
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Appendix 9: Amino acid sequence alignments of TbAQP2WT and the TbAQP2 
mutants (L-W). 

(A) 
 

 
 
(B) 
 

 
 

 
(C) 
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(D) 
 

 
The figures show correct introduction of tryptophan into the positions of the three selected 
leucine. (A) single mutation (L84W). (B) single mutation (L118W). (C) single mutation 
(L218W). (D) double mutation (L84W/L118W). Alignments were created using the CLC 
Genomic workbench software (version 7.0, developed by CLC bio). 
 

Appendix 10: Amino acid sequence alignments of T.b AQP2 W.T and the T.b AQP2 
(L-M) mutants.  
 

(A) 
 

 
 
(B) 
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(C) 
 

 
 

The figures show correct substitution of leucine to methionine at the three selected 
positions. (A) single mutation (L84M). (B) single mutation (L118M). (C) single mutation 
(L218M). Alignments were created using the CLC Genomic workbench software (version 7.0, 
developed by CLC bio). 
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