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Abstract

Recommender systems are of vital importance, in the era of the Web, to address
the problem of information overload. It can benefit both users by recommend-
ing personalized interesting items and service providers by increasing their site
traffic. Plenty of use cases have emerged as applied recommender systems, includ-
ing but not limited to multimedia recommendation (e.g., news, movies, music,
and videos) and e-commerce recommendation. A recommendation agent can be
trained from user-item interaction data which can be categorized as explicit feed-
back and implicit feedback. Compared with explicit ratings which depict the user
preference explicitly, implicit feedback data like clicks, purchases, and dwell time
is more prevalent in the real-world scenario. On the other hand, deep learning has
achieved great success recently due to the high model expressiveness and fidelity.
In this thesis, we investigate deep learning techniques for recommendation from
implicit feedback data. We focus on two learning perspectives: deep supervised
learning and deep reinforcement learning.

Supervised learning tries to infer knowledge from implicit historical interac-
tions. From this perspective, two models namely Convolutional Factorization Ma-
chines (CFM) and Relational Collaborative Filtering (RCF) are proposed. CFM
tackles the implicit user-item interactions with side information as feature vectors
and utilizes convolutional neural networks to learn high-order interaction signals.
RCF considers multiple item relations into the recommendation model and tack-
les the implicit feedback as relation-enriched data. The two models investigate
deep learning techniques for recommendation by tackling the data as two different
structures: feature vectors and relations. Experimental results demonstrate that
the proposed deep learning models are effective to improve the recommendation
accuracy. Besides, RCF also helps to provide explainable recommendation and
get a better comprehension of user behaviors.
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Reinforcement learning is reward-driven and focuses on long-term optimiza-
tion in a whole interaction session, which conforms more with the objective of
recommender systems. From this perspective, we first formulate the next-item
recommendation task from implicit feedback data as a Markov Decision Process
(MDP). Then we analyzed that directly utilizing reinforcement learning algo-
rithms for recommendation is infeasible due to the challenge of pure off-policy
setting and the lack of negative reward signals. To address the problems, we pro-
posed Self-Supervised Q-learning (SQN) and Self-Supervised Actor-Critic (SAC).
The key insight is to combine reinforcement learning with supervised learning and
perform knowledge transfer between the two components. Based on SQN and
SAC, we further proposed Self-Supervised Negative Q-learning (SNQN) and Self-
Supervised Advantage Actor-Critic (SA2C) to introduce the negative sampling
strategy to enhance the learning of the reinforcement component. Experimental
results demonstrate that the proposed learning frameworks are effective when
integrated with different existing base models. Moreover, we show that com-
bining supervised learning and reinforcement learning is a promising direction
for future recommender systems. In that case, reinforcement learning introduces
reward-driven objectives and long-term optimization perspectives into supervised
learning, while supervised learning helps to improve the data efficiency of rein-
forcement learning.
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Part I
Introduction and Preliminary

This thesis focuses on developing deep learning-based recom-
mendation methods for implicit feedback data, including deep
supervised learning and deep reinforcement learning. This
part includes Chapter 1 for introduction and Chapter 2 for
introducing preliminaries and reviewing relevant literature.
In Chapter 1, we described the background of item recom-
mendation from implicit feedback data and then provided the
motivation, thesis statement and contributions. In Chapter
2, we provided the preliminary and literature review of ex-
isting work, including the training objective and procedure
for supervised learning methods and the preliminary of rein-
forcement learning for recommendation. We also described
the evaluation metrics for implicit feedback recommendation.
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Chapter 1

Introduction

1.1 Background on Recommendation

Recently, plenty of online services with the growth of Web technology dramati-
cally introduce a huge amount of information, including texts, images, videos as
well as physical items. For example, music platforms such as Spotify1 provide mil-
lions of songs available online. Youtube2 and Netflix3 deliver videos and movies as
services to people. E-commerce platforms such as Amazon4 and Taobao5 provide
all kinds of items for online shopping. This huge volume of online information
could easily overwhelm users and causes difficulty to find useful information,
which is known as the information overload problem 6.

To help users get access to his/her interested information more effectively,
retrieval and recommendation play a very important role in both academia and
industry (Belkin and Croft, 1992). From the perspective of an information re-
trieval (IR) system, users are expected to provide a query to a search engine, then
a list of matched documents are returned to the user according to certain rank-
ing algorithms (Belkin and Croft, 1992). However, recommender systems (RS)
aim to automatically generate interesting items according to user preferences and
push the recommendation results to users (Costa and Roda, 2011). The main
difference is that in an IR system, users are expected to explicitly present their
needs as queries, while users in RS are more likely to passively receive the pushed

1https://www.spotify.com/us/
2https://www.youtube.com
3https://www.netflix.com/
4https://www.amazon.co.uk/
5https://www.taobao.com/
6https://en.wikipedia.org/wiki/Information_overload
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1.2 Implicit Feedback for Recommendation

information from the recommendation agents (Shi, 2013). Recently, RS have
become the keystone for plenty of online service providers in different kinds of
domains (Sheth et al., 2010), such as music recommendation of Spotify, movie
recommendation in Netflix, item recommendation in Amazon, and so on. In this
thesis, our focus is RS and the research is developing new recommendation meth-
ods for RS based on advances in deep learning, including deep supervised learning
and deep reinforcement learning.

1.2 Implicit Feedback for Recommendation

The definition of a RS can be formally given as “a subclass of information filtering
system that seeks to predict the ‘rating’ or ‘preference’ a user would give to an
item” (Ricci et al., 2011). The task of a recommendation agent can thus be
divided into rating prediction and item ranking.

For the rating prediction task, the input data for the recommendation agent is
usually user-item ratings which are also referred to as explicit feedback, such as 1-
to-5 scores. The user-item ratings can explicitly represent the user preference on
this item. The training of the recommendation agent using explicit feedback can
be seen as a regression task that aims to predict the missing ratings, as shown
in Figure 1.1(a). Then the recommendation list can be generated by selecting
unvisited items which have the highest estimated ratings.

However, in the real-world scenario, explicit feedback is extremely sparse
because users commonly do not provide ratings (Rendle et al., 2009b; Ren-
dle and Freudenthaler, 2014). On the contrary, implicit feedback such as user
clicks/purchases, watching history, and dwell time are much easier to track au-
tomatically and collect. Figure 1.1(b) shows an example of a simple implicit
user-item interaction matrix. Compared with explicit feedback, implicit feedback
is much more common and inexpensive. Besides, when characterizing implicit
user-item interactions, plenty of side information such as item attributes, con-
texts of location, daytime can also be collected. This side information-enriched
implicit feedback composes the major data source to train a recommendation
agent. When input data is implicit feedback, the task of the recommendation
agent is usually formulated as item ranking (Rendle et al., 2009b). The agent is

3



1.3 Deep Learning for Recommendation

5 ? 2 2 

? 4 ? 1 

4 3 3 2 

4 ? 2 ? 
u

se
r 

item 

u1 

u2 

u3 

u4 

i1 i2 i3 i4 

(a) Explicit rating matrix

+ ? + ? 

+ ? ? ? 

+ ? ? + 

? ? + ? 

u
se

r 

item 

u1 

u2 

u3 

u4 

i1 i2 i3 i4 

(b) Implicit feedback

Figure 1.1: Examples for explicit ratings (a) and implicit feedback (b) from Yuan
(2018). u and i denote users and items, respectively. The numerical scores in (a)
represent explicit ratings that users assigned to items, while for implicit feedback,
explicit ratings are not provided. “+” and “?” in (b) denote positive (e.g., a click)
and unobserved feedback, respectively.

expected to return a ranking list of unvisited items according to the predicted
user preference without rating regression.

This thesis focuses on developing recommendation methods based on implicit
feedback data without explicit ratings, which is more close to the real-world use
cases.

1.3 Deep Learning for Recommendation

Implicit feedback data is much more prevalent to train a recommender system.
However, implicit feedback also poses new challenges to learn user preference.
Unlike explicit ratings, we can not directly infer the real user preference from
implicit feedback (Rendle et al., 2009b). Besides, rich side-information can also
be collected to depict the detail of user-item interactions (Rendle, 2010). Under
this situation, conventional shadow recommendation models may encounter dif-
ficulties to mine the real user preference and thus lead to sub-optimal solutions
(He et al., 2017b). This motivates us to develop recommendation methods that
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have more expressiveness and model fidelity.
Deep learning has achieved great success in fields like computer vision (He

et al., 2016b,a) and natural language processing (Vaswani et al., 2017; Brown
et al., 2020; Devlin et al., 2018). For example, He et al. (2016a) proposed ResNet
which has hundreds of convolutional layers for image classification and achieved
promising results. Brown et al. (2020) builds powerful language pre-training mod-
els with billions of parameters that can be used for plenty of downstream tasks.
The non-linearity and deep structure of neural networks make deep learning have
great expressiveness to fit the training data. This also motivates the use of deep
learning for the recommendation scenario. He et al. (2017b) proposed neural
collaborative filtering to extend the inner product of matrix factorization (Koren
et al., 2009) to multi-layer perceptrons (MLP). He and Chua (2017) proposed
neural factorization machines to use MLP for click-through ratio (CTR) predic-
tion. A more detailed literature review can be found in Section 2. Based on these
attempts, this thesis focuses on developing deep learning-based recommendation
methods for implicit feedback recommendation.

The work contains two aspects: deep supervised learning and deep reinforce-
ment learning for recommendation. For deep supervised learning, this thesis
developed two deep models for implicit feedback with side information. The deep
supervised learning models are optimized by minimizing a loss function which is
defined as the discrepancy between the model prediction and the ground truth.
However, such a loss function may not completely fit the demand of recommender
systems (e.g., long-term user satisfaction in a whole session). On the other hand,
deep reinforcement learning (e.g., Deep Q-learning (DQN) (Mnih et al., 2015))
has shown an advantage to optimize the long-term cumulative reward. In this the-
sis, the second point of our work focuses on utilizing deep reinforcement learning
for recommendation.

The main research challenges of the thesis are summarized as follows:

• Given the implicit feedback data, how do we tackle the accompanied side
information? How to design deep supervised learning models to better learn
knowledge from implicit feedback? How to use deep models to better learn
high-order interaction signals from the data?
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• Given the implicit feedback data with side information, how to design deep
learning models to generate more reasonable and convincing recommen-
dation? Can we utilize deep learning models to better understand user
behavior patterns?

• Recommender systems should focus on long-term cumulative gains in a
whole interaction session. In that situation, how to utilize deep reinforce-
ment learning to introduce cumulative reward-based training objectives?
How to tackle the specific difficulties when utilizing reinforcement learning
for recommendation, such as off-line training and lack of reward signals.

The thesis targets at above three research challenges and proposes a series of
solutions to address them.

1.4 Thesis Statements

The overall statement of the thesis is that applying deep learning methods, both
deep supervised learning and deep reinforcement learning, will lead to the im-
provement of recommendation quality. Firstly, deep supervised models can in-
crease the expressiveness and model fidelity to learn more complex interaction
signals from implicit feedback data with side information, leading to more accu-
rate context-aware recommendation. Secondly, applying deep supervised models
can also help to integrate multiple item relations into recommendation. This can
be used to generate explainable recommendation and get a better comprehension
of user behavior. Then deep reinforcement learning is expected to improve recom-
mendation towards long-term cumulative rewards. However, deep reinforcement
learning cannot be directly used under the recommendation setting due to some
specific conditions. The final important statement is that combining supervised
learning and reinforcement learning provides us a solution to integrate deep re-
inforcement learning for recommendation.

More precisely, the statements of this thesis are shown as follows:

• Statement (1): Deep supervised learning will help to capture more com-
plex signals from implicit user-item interactions which cannot be learned
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by conventional shadow models. The implicit feedback with various side in-
formation needs deep models with higher model expressiveness to generate
more accurate recommendation.

• Statement (2): Deep supervised learning can be used to model semantic
meaningful item relations for recommendation. This helps to get a better
comprehension of user behavior patterns and generate more explainable and
convincing recommendation results.

• Statement (3): Deep reinforcement learning will introduce long-term ob-
jectives into recommendation but directly utilizing it is problematic. The
reason is that the deep reinforcement learning agent is trained through an
“error-and-correction” fashion with huge training examples but we can not
afford the price to make many errors under recommendation settings. Com-
bining deep supervised learning and deep reinforcement learning provides
a solution to successfully integrate reinforcement learning for recommenda-
tion. In that case, deep supervised learning can help deep reinforcement
learning to learn better representations with higher sample efficiency while
deep reinforcement learning can introduce the long-term reward properties
into deep supervised learning.

1.5 Thesis Structures and Contributions

The contribution of this thesis lies in two folds. Firstly, for deep supervised learn-
ing, we propose two deep recommendation models for implicit feedback data,
showing improved recommendation accuracy or more explainable recommenda-
tion. For deep reinforcement, we proposed to combine supervised learning and
reinforcement learning to introduce long-term rewards into the recommendation.
The thesis contains the following four parts:

• Part I Introduction: This part contains Chapters 1 and 2. It provides
the background, preliminary and related work of this thesis.

• Part II Deep Supervised Learning for Recommendation: This part
contains Chapter 3 and Chapter 4. Chapter 3 proposed a deep model for
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implicit feedback data with side information. The data is handled as feature
vectors. Then, semantic meaningful item relations can be inferred from the
side information and Chapter 4 proposed a deep model to handle this re-
lational data for more accurate and explainable recommendation. Detailed
contribution and extensive experiments are provided in corresponding chap-
ters.

• Part III Deep Reinforcement Learning for Recommendation: This
part comprises Chapter 5 and Chapter 6. The technical contribution of
Chapter 5 is that we combine supervised learning and reinforcement learn-
ing for recommendation. The reinforcement learning component serves as
a regularizer to introduce the expected rewards into the supervised learn-
ing part. Based on Chapter 5, Chapter 6 further improves reinforcement
learning with the negative sampling strategy. Then the reinforcement learn-
ing component is not only a regularizer but also a good ranking player to
directly generate recommendation. This part sheds light on providing a
promising direction for off-policy sample efficient reinforcement learning.

• Part V Conclusion: This part includes Chapter 7 with conclusion and
future work.

1.6 Supporting Publications

The thesis generalizes and builds on the following publications (* denotes equal
contribution):

1. Xin Xin*, Fajie Yuan*, Xiangnan He, Joemon Jose. Batch IS NOT Heavy:
Learning Word Representations From All Samples. 56th Annual Meeting of
the Association for Computational Linguistics. (ACL’18)(Part 1) (Fajie
provided the ideas and I implemented the methods and conduct all experi-
ments. I wrote the paper.)

2. Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua
Tat-Seng, Joemon Jose. fBGD: Learning embeddings from positive unla-
beled data with BGD. 2018 Conference on Uncertainty in Artificial Intelli-
gence. (UAI’18)(Part 1)
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3. Xin Xin*, Bo Chen*, Xiangnan He, Dong Wang, Yue Ding, and Joe-
mon Jose. CFM: Convolutional Factorization Machines for Context-Aware
Recommendation. 28th International Joint Conference on Artificial Intel-
ligence. (IJCAI’19)(Part 2) (I came up with the idea and wrote almost
part of the paper. Bo Chen implemented the model.)

4. Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, Joemon Jose.
Relational Collaborative Filtering: Modeling Multiple Item Relations for
Recommendation. 42th International ACM SIGIR conference on Research
and Development in Information Retrieval. (SIGIR’19)(Part 2)

5. Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Joemon Jose. Self-
Supervised Reinforcement Learning for Recommender Systems. 43th Inter-
national ACM SIGIR conference on Research and Development in Informa-
tion Retrieval. (SIGIR’20)(Part 3)

6. Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis and Joemon Jose.
Self-Supervised Advantage Actor-Critic for Recommender Systems. 30th
International World Wide Web Conference. (SIGIR’21) (under-review)
(Part 3)

7. Gaoming Zhang*, Xin Xin*, Li Shen, Xiangnan He and Guibing Guo.
Reinforced Teacher Agent for Recommendation. 30th International World
Wide Web Conference. (SIGIR’21)(under-review)(Part 3 and Part 4)

8. Bo Chen, Wei Guo, Ruiming Tang, Xin Xin, Yue Ding, Xiuqiang He, and
Dong Wang. TGCN: Tag Graph Convolutional Network for Tag-Aware
Recommendation. 29th ACM International Conference on Information and
Knowledge Management. (CIKM’20)(Part 4)

9. Hao Chen, Xin Xin, Yue Ding, Dong Wang. Decomposed Collaborative
Filtering: Modeling Explicit and Implicit Factors For Recommender Sys-
tems. 14th ACMConference onWeb Search and Data Mining (WSDM’21)
(Part 4)
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Chapter 2

Preliminaries and Related Work

In this chapter, we provide preliminaries and related work on implicit feedback
recommendation. We first introduce the general overview of implicit feedback
recommendation, including the type of recommender, the training objective and
procedure, and the evaluation method. We then provide a literature review of
notable recommendation models. Finally, we describe the motivation to include
reinforcement learning for recommendation and introduce the preliminaries of
deep reinforcement learning algorithms.

2.1 Review on Implicit Feedback Recommenders

As discussed in section 1.2, when learning a recommendation agent from implicit
feedback data, the task is usually defined as item ranking. In this case, a user
is recommended with items that are at the top-N (e.g., top-10) positions of the
final ranking list.

2.1.1 Types of Recommendation Algorithms

The recommender algorithms can be generally classified into three categories: col-
laborative filtering methods, content-based methods, and hybrid methods (Ado-
mavicius and Tuzhilin, 2005).

2.1.1.1 Collaborative Filtering Methods

Collaborative filtering (CF) plays the most important role in the field of recom-
mender systems. The basic idea of CF is that the unknown user preference over
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2.1 Review on Implicit Feedback Recommenders

items can be inferred from similar users (items). It can be further classified as
user-based CF and item-based CF.

User-based CF serves the most early-stage of online recommender systems
(Linden et al., 2003). It is a method of “making automatic predictions (filtering)
about the interests of a user by collecting preferences or taste information from
many users (collaborating)1”. One typical example of user-based CF can be pro-
vided as “users who are similar to you also liked/viewed/bought...”. The first-step
of user-based CF is to calculate the similarity between users. Then the prefer-
ence of a user over an item is aggregated from the preference of the most similar
users with him/her. Although user-based CF is widely adopted in the early-stage
of recommendation, the user similarity is highly dynamic (Linden et al., 2003).
Besides, it’s also hard to calculate preference for cold-start users with too few
interactions to identify the user similarity.

Compared with user-based CF, item-based CF is built on the similarity be-
tween items. Item similarity is much more static than user similarity. The meta-
information of items also provides solutions for cold-start items. One typical
example of item-based CF can be given as “users who liked/viewed/bought this
also liked/viewed/bought...". Due to the effectiveness and scalability of item-
based CF, it has achieved great success in industry recommender systems, such
as Amazon’s online recommender system (Linden et al., 2003). The idea of ICF
is that the user preference on a target item i can be inferred from the similarity of
i to all items the user has interacted with in the past (Sarwar et al., 2001; Linden
et al., 2003; He et al., 2018c; Kabbur et al., 2013). Under this case, the relation
between items is referred to as the collaborative similarity, which measures the
co-occurrence in the user interaction history.

From the perspective of similarity calculation, CF methods can be classified
as memory-based methods and model-based methods.

Memory-based CF methods, also known as neighborhood-based CF and heuristic-
based CF, are mainly used in the early literature (Sarwar et al., 2001; Linden
et al., 2003). More precisely, a pre-defined similarity metric is used to calculate
the user (item) similarity, such as cosine similarity (Linden et al., 2003), Pearson

1https://en.wikipedia.org/wiki/Collaborative_filtering
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correlation (Sheugh and Alizadeh, 2015) and Jaccard coefficient1 from user-item
interaction history. Then, the preference prediction can be calculated from the
aggregation of most similar users or items (e.g., nearest neighborhood). This is
the basic idea of the well-known userKNN (itemKNN) algorithms. Memory-based
CF methods are simple to implement but the pre-defined similarity metrics are
not date-driven and may not reflect the complex knowledge of the training data.

On the contrary to memory-based CF, model-based CF methods are data-
driven and usually utilize machine learning models to automatically optimize
parameters in the learning space according to certain objective loss functions.
Among model-based CF, one of the most successful methods is matrix factor-
ization (Koren et al., 2009) which first factorizes users and items to a common
latent space (e.g., embeddings or representations) and then the preference is de-
fined by the inner product between user and item embeddings. Based on matrix
factorization, factorization machines (Rendle, 2010) extend the user-item matrix
to side-information enriched interaction data. Recently, deep learning has shown
a great advantage in representation learning. Using deep learning models to ex-
tract feature representations such as images, reviews (texts) and then incorporate
them into the recommendation model has become a common use case. Such kind
usage of deep learning is more like feature engineering. While in this thesis, we
mainly focus on developing deep learning-based methods for better interaction
modeling, other than feature engineering.

2.1.1.2 Content-Based Methods and Hybrid Methods

CF-based methods calculate the user (item) similarity according to historical
user-item interaction data. However, in practical cases, there is also plenty of side
information. For example, in many practical recommender systems, items can be
characterized by a set of features (e.g., actors, directors, and genres of a movie)
while users also have their profile (e.g., gender, age, and occupation) (Wit, 2008).
Such features can also be utilized to calculate similarity, especially for cold-start
users and items in which CF-based methods may not have sufficient interaction
data to learn good collaborative signals. Content-based approaches have their
roots in the field of information retrieval (Adomavicius and Tuzhilin, 2005). The

1http://ase.tufts.edu/chemistry/walt/sepa/Activities/jaccardPractice.pdf
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2.1 Review on Implicit Feedback Recommenders

early advancements from text-based retrieval (e.g. document retrieval) encour-
age the application of text-content for text-oriented recommendation (e.g., news
recommendation). This further motivates the use of other content features for
better recommendation. Although there may be a variety of features in the
training data, we can generally divide them into three classes: user profile, item
features, and other context features (e.g., time and location of the interaction).
This is useful to perform negative sampling for implicit feedback data. We will
describe this in more detail in related chapters.

In a real-world recommender system, the agent usually combines both the
idea of collaborative filtering and content information (De Campos et al., 2010).
This kind of method can be referred to as the hybrid method. For example, the
well-known factorization machines use inner products between the embedding of
input (content) features to capture the collaborative signal, which is a hybrid
approach. In this thesis, we proposed three deep supervised learning models for
recommendation. All of the three models use both content features and collabo-
rative filtering and thus can be regarded as hybrid recommendation methods.

2.1.2 Training for Implicit Feedback Recommendation

This thesis focuses on developing recommendation methods for implicit feedback.
One of the most important characteristics of implicit feedback is that negative
feedback is not provided. From implicit feedback, we can only know which items
the user has interacted with before but have no knowledge of negative signals.
However, if we perform learning only on the observed positive feedback without
negative comparison, the predicted values will have a positive bias and the ranking
performance would be very poor. Because the task is item ranking, so we need
to tell the model in our training data that one item is better than the other(s)
for a user. To provide negative signals for implicit feedback data, there are two
kinds of methods: sampling-based approaches (i.e., negative sampling) and non-
sampling methods. In this section, we provide an overview of these two kinds of
approaches.
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2.1.2.1 Sampling-Based Training

Sampling-based approaches use a sampler to sample negative examples from the
unobserved interactions for negative comparison. One of the most successful
sampling-based approaches for implicit feedback is Bayesian personalized rank-
ing (BPR) (Rendle et al., 2009b) which is a pairwise learning to rank training
objective function.

The basic idea of BPR is that the observed positive items for a user should
be ranked higher than the sampled negative ones, under the rule of a Bayesian
maximum posterior probability (MAP) estimation (Rendle et al., 2009b; Yuan,
2018). The loss function of BPR can be formulated as

L(Θ) = −
∑

(u,i,j)∈Ds

lnσ(ŷuij) + λΘ||Θ||2, (2.1)

where Θ is the total learning space, σ is the sigmoid function which is defined
as σ(x) = 1/(1 + e−x), λΘ is the regularization weight and Ds is the obtained
from the training data. If we use I+

u to denote the set of interacted (positive)
items for user u, then Ds = {(u, i, j)|i ∈ I+

u ∧ j ∈ I\I+
u }. It represents the set

of all pair-wise comparison between two items. ŷuij denotes the logits difference
between positive examples and the sampled negative ones (i.e., ŷuij = ŷui − ŷuj
where ŷui denotes the predicted scores of user u on item i).

When training the BPR objective function, we randomly sample mini-batches
from Ds and update the learnable parameters according to the loss function
shown in Eq.(2.1) until the model converges. We can see that by minimizing
Eq.(2.1), the model will try to push the positive ŷui to high values while decrease
the negative ŷuj. When generating recommendations, we select top-N unvisited
items according to ŷui. The original BPR utilizes a uniform sampler to sample
negative ones. Future work (Chen et al., 2018; Rendle and Freudenthaler, 2014)
claims that a carefully designed sampler (e.g., an adaptive sampler) can help BPR
to achieve faster convergence and better results. In this thesis, we use the simple
uniform negative sampler for a comparison of our proposed methods. Designing
a better negative sampler doesn’t fall into the scope of this thesis.

While BPR is a pair-wise loss function, we can also use point-wise loss func-
tions for implicit feedback recommendation. For implicit feedback data, we can
assign the label “1” for positive interactions and label “0” for unobserved ones.
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The point-wise square loss under this setting can be formulated as

L(Θ) =
∑
u∈U

(
∑
i∈I+u

(ŷui − 1)2 +
∑
j∈I−u

ŷ2
uj) + λΘ||Θ||2, (2.2)

where U is the whole user set and I−u denotes the set of sampled negative examples
for user u. This point-wise square loss function has also been used in the literature
(Xin et al., 2016; Kabbur et al., 2013). Besides the square loss, binary cross-
entropy can also be used as the point-wise loss function for implicit feedback
data. In this case, the recommendation problem can be considered as a binary
classification task. The positive examples and sampled negative examples are
regarded as the two binary classes. The binary cross-entropy loss function is
formulated as

L(Θ) = −
∑
u∈U

(
∑
i∈I+u

log(σ(ŷui)) +
∑
j∈I−u

log(1− σ(ŷuj))) + λΘ||Θ||2. (2.3)

We can see that the binary cross-entropy loss will try to push the positive ŷui
to high values while decreasing the sampled negative ŷuj. As a result, when we
perform item ranking according to ŷui, the (potential) positive examples will be
ranked higher in top positions. Besides, Shi et al. (2012) proposed a list-wise
training approach to train recommenders from implicit feedback, which aims to
directly optimize the mean reciprocal rank of the top-k recommended list.

Note that we do not specify the recommendation model for the described
loss functions, which means that these loss functions are generic solutions and
can be used for various recommendation models. For example, when we use
these sampling-based loss functions to factorization machines, we can consider the
observed interactions as positive examples. Based on positive examples, we can
keep the user profile and the other context features unchanged and replace positive
item features with the sampled negative ones. The fixed user profile, context
features, and negative item features compose negative examples, which are further
fed to the described training loss functions for pair-wise comparison or point-wise
learning. All the described sampling-based loss functions are differentiable and
can be trained through gradient descent and back-propagation.
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2.1.2.2 Non-Sampling Methods

Sampling-based methods have been widely used in both academia and industry
due to their effectiveness and scalability. However, these kinds of methods still
have shortcomings. For example, the performance of these methods is highly
influenced by the sampling distribution and sample size (Yuan et al., 2018; Xin
et al., 2018). Besides, sampling-based methods can’t provide all kinds of negative
signals.

To address these issues, the other solution is to consider all unobserved inter-
actions as negative examples (Pan et al., 2008; Hu et al., 2008; He et al., 2016d;
Bayer et al., 2017). We can refer this kind of approached as non-sampling meth-
ods. Obviously, treating all unobserved interactions as negative examples is also
problematic because the unobserved items could also be positive. The reason for
the missed interactions may just because they are not exposed to the user. There-
fore, when using non-sampling methods, we usually utilize a flexible re-weighting
schema for negative examples. The square loss function for non-sampling ap-
proaches can be formulated as

L(Θ) =
∑
u∈U

(
∑
i∈I+u

(ŷui − y+)2 +
∑

j∈I\I+u

αuj(ŷuj − y−)2) + λΘ||Θ||2, (2.4)

where y+ and y− denote the positive and negative labels respectively (e.g., y+ = 1

and y− = 0), I is the whole item set and αuj is the weighting for negative example
(u, j).

However, we can see that directly optimizing Eq.(2.4) has a time complexity
of O(|U × I|), which is extremely large for real-world recommender systems. To
achieve efficient computation of non-sampling methods, plenty of research has
been conducted (Yuan et al., 2017; He et al., 2016d; Xin et al., 2018; Bayer et al.,
2017). For example, Xin et al. (2018); Yuan et al. (2018) have shown that if
the weight αuj is defined item-oriented (i.e., αuj = αj) or user-oriented (i.e.,
αuj = αu) and the prediction model of ŷui is a linear model, the time complexity
to compute loss function Eq.(2.4) can be reduced to a complexity which is only
related to the number of positive examples without any approximation. The key
idea is to use commutative laws which enable us to perform pre-computation and
further improve the time complexity. We have conducted related research in the
supporting publication Xin et al. (2018) and Yuan et al. (2018). While because
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the focus of this thesis is deep learning-based methods and the proposed methods
in Xin et al. (2018) and Yuan et al. (2018) are limited to the linear model, so we
don’t elaborate on these approaches in detail here.

As described above, methods to optimize the non-sampling square loss (i.e.,
Eq(2.4)) are usually limited to the linear model. For deep learning-based recom-
mendation models, another solution of the non-sampling loss function is the full
softmax cross-entropy loss function (Yuan et al., 2019; Xin et al., 2020). In that
case, the recommendation problem is considered as a multi-class classification
task. Each candidate item corresponds to a class. Through a deep recommenda-
tion model, we can get the classification logits for each class (item), and then a
softmax cross-entropy loss function can be applied upon these logits, which will
push the logit of the correct class (interacted item) toward a higher value while
decreasing the logits of the other classes (items). We will describe these methods
in respective chapters.

2.1.3 Evaluation of Implicit Feedback Recommendation

As stated in section 1.2, the task on explicit feedback is usually rating prediction
while on implicit feedback data, the task is item ranking. The evaluation of
explicit ratings is relatively simple and usually defined as the difference between
the predicted ratings and the ground-truth ones. The evaluation metrics for
explicit recommendation data include but are not limited to mean absolute error
(MAE) and root mean squared error (RMSE). Because in this thesis we focus on
implicit feedback recommendation, so in the following sections we will describe the
evaluation procedure for implicit feedback more precisely. Please note that in this
thesis, we only consider off-line evaluation. Online A/B test is not in our research
scope because it often requires access to a working commercial recommender
system.

2.1.3.1 Evaluation Protocols

For the evaluation purpose, the whole data is usually divided into training sets,
validation sets, and test sets. The training sets are used to train the model. The
validation sets are used to tune the model (e.g., selecting hyper-parameters and
performing early-stop). The final performance is obtained in test sets. In some
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cases, there may also be just training sets and test sets. Generally speaking, the
data split strategy includes the following two folds:

• k-fold cross-validation: k-fold cross-validation first splits the whole datasets
into k groups. Each group will be taken as the test sets iteratively and the
model is trained on the remaining groups. As a result, the model will be
trained k times and the average scores are considered as the final results.

• Leave-one-out evaluation: Leave-one-out evaluation only leaves one sample
per user for test purpose (two samples (i.e., one for validation set and one for
test set) if there is a validation set). This strategy is often used if the data
contains time information. In that case, the latest one or two samples per
user are held out for validation and test. The remaining data is considered
as the training set. This naturally fits the recommendation scenario, since
what we care about is which item will be interacted with by the user in the
next timestamp.

The detailed evaluation procedure for each proposed method in this thesis is given
in the corresponding chapter.

2.1.3.2 Evaluation Metrics

The target of a recommender system can be elaborated from two perspectives.
Firstly, from the user’s perspective, a recommender system aims to help the user
find the most interesting items from a large volume of information. Secondly,
from the perspective of service providers, they expect the recommender system
can help to increase traffic and further improve the profit. Generally speaking,
a recommender system usually considers several factors to optimize, such as ac-
curacy, novelty, and diversity. In the following, we provide a brief description of
these factors.

• Accuracy. Accuracy may be the most basic and important factor for a
recommender system (Castells et al., 2011; Vargas and Castells, 2011). It
measures whether the recommended items match the user’s interests. It
is usually defined according to whether there are interactions between the
user and the recommended items. We will provide more details later.
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• Novelty. Novelty is usually defined as whether the agent can provide un-
usual or novel items for recommendation (Hurley and Zhang, 2011). It is
also an important factor for a real-world recommender system. From the
user perspective, novelty can help to prevent the user from being bored
and also explore new user interests. There is a trade-off between explo-
ration and exploitation in recommendation. Accuracy can be regarded as
exploitation while novelty serves as exploration. From the perspective of
service providers, novel recommendation can also help to promote new items
and increase product sales.

• Diversity. The accuracy factor could result in a case that similar items
or one kind of item account for the most positions in the recommendation
list. However, a recommender system should generate recommendation that
contains more diverse items so the user would have more choices and thus
have a larger probability to interact with the recommendation list (Aggarwal
et al., 2016). The novelty factor focuses on the comparison between the
current recommendation and previous recommendations while the diversity
is usually defined as the difference within one recommendation list (Vargas
and Castells, 2011).

Although the recommendation community has recognized that novelty and di-
versity are important for a real-world recommender system, the research on this
topic is still in the early-stage. Benchmark evaluation metrics about novelty and
diversity are also not well-established. In this thesis, we focus on the most im-
portant evaluation factor: accuracy, which is also the main research line in the
recommendation community.

Since the task of implicit recommendation is item ranking, so the ranking-
based metrics such as Hit Ratio (HR), Mean Reciprocal Rank (MRR) (Shi et al.,
2012) and Normalized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläi-
nen, 2002) are commonly used. Besides, as classification-based training objectives
can also be used for implicit feedback data, Precision, Recall, and Area Under
ROC Curve (AUC) can also be used as evaluation metrics. In the following
sections, we will introduce the detail of these evaluation metrics.

• Hit ratio. HR@N measures whether the user interact with items which are
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in the top-N positions of the recommendation list. It is usually adopted in
the leave-one-out evaluation protocol. In that case, it can be formulated as

HR@N =
#hits

|U |
. (2.5)

A hit means the ground-truth item is in the top-N positions of the recom-
mendation list for a user.

• Reciprocal Rank (Shi et al., 2012) is defined on the rank of the first relevant
item in the recommendation list of a user, which can be formulated as

RR = 1/rank (2.6)

The Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks
of all users.

MRR =
1

|U |

|U |∑
u=1

1/rank (2.7)

Under leave-one-out evaluation settings, MRR can be seen as a weighted
version of HR, by assigning the weight 1/rank to the hit records.

• NDCG is a popular ranking-based evaluation metric. It measures the ac-
curacy of a recommendation agent based on the graded relevance of the
recommended items (Järvelin and Kekäläinen, 2002). NDCG is formulated
as

NDCG@N =
DCG@N

IDCG@N
,whereDCG@N =

N∑
i=1

2reli − 1

log2 (i+ 1)
(2.8)

where reli indicates whether the i-th item in the recommendation list is
relevant to the user (i.e., interacted by the user). Usually a binary indicator
function is used for reli as reli = 1 if the i-th item is relevant, otherwise reli =

0. IDCG@N is similar with DCG@N but it is calculated from the ground-
truth data. For example, assuming for a ranked item list, the ground-truth
data is {1, 0, 1, 0, 0} while the model prediction is {1, 1, 0, 0, 0}, where ‘1’
and ‘0’ denote positive and negative labels. IDCG will be computed as

1
log2 (1+1)

+ 1
log2 (3+1)

= 1.5 while DCG will be computed as 1
log2 (1+1)

= 1. So
NDCG in this example is calculated as 1/1.5 = 0.67.

• Precision and recall are usually used for the binary classification task. Be-
cause in implicit feedback there are positive examples and (sampled) neg-
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ative examples and binary classification loss function can also be used to
train the recommendation model, so precision and recall can also be used
to measure the recommendation accuracy.

Precision and Recall are defined as:

Precision@N =
#TP

#TP + #FP
, Recall@N =

#TP

#TP + #FN
(2.9)

where #TP is the number of items that are positive examples and occurs
in the top-N recommendation list, #FP is the number of items that occur
in the list but are actually not interacted with by the user. #FN is the
number of items that don’t occur in the top-N list but are interacted by
the user according to the ground-truth data. The final reported precision
and recall are usually the average across all users in the test set. Note that
in the setting of leave-one-out evaluation, the average recall is equivalent to
HR.

• AUC (Rendle et al., 2009a) is also a classification-based metric. It measures
whether the model has a good ability to rank positive examples higher than
negative examples. The average AUC can be formulated as

1

|U |
∑
u

1

|I+
u ||I−u |

∑
i∈I+u

∑
j∈I−u

I(ŷui > ŷuj) (2.10)

where I(·) is an indicator function as

I(ŷui > ŷuj) =

1, ŷui > ŷuj

0, else
(2.11)

2.2 Recommendation Model Overview

In this section, we provide a brief literature review of several notable recommen-
dation models, including (shadow) factorization models and deep learning models.
The detailed review of related work is provided in each contribution chapter.

2.2.1 Factorization Models

Factorization models, also known as latent factor models, are the most successful
methods in the recommendation field, due to their effectiveness and efficiency. In
this subsection, we briefly introduce several most notable factorization models.
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2.2.1.1 Matrix Factorization

Matrix factorization (MF) (Koren et al., 2009) achieved great success in both
academia and industry. It serves as the most widely adopted model in the early-
stage of the model-based recommender system. Even nowadays, MF still plays
an important role in most serving recommendation agents. MF is also a hot
research topic in other machine learning fields like natural language processing
(Pennington et al., 2014).

The basic idea of MF is to map users and items to latent representations (i.e.,
embeddings) in a common latent space. Then the user preference is defined as
the inner product between user embeddings and item embeddings.

Let qi ∈ Rk denotes the latent representation of item i and pu ∈ Rk denotes
the latent presentation of user u. The latent representation indicates the item
(user) feature with respect to certain factors. While we couldn’t tell the specific
semantic meaning of these factors, so they are called “latent” factors. Then the
predicted user preference is defined as how much relevance are the user and item
latent representations, which is formulated as the inner product:

ŷui = qTi pu =
k∑

f=1

pufqif (2.12)

where higher value of ŷui denotes a higher user preference.
Besides the inner product between user and item embeddings, Gogna and

Majumdar (2015) proposed that the prediction should also contain certain biases.
For example, a tedious user may tend to assign a smaller preference to all items
while a good item may receive a large preference from all kinds of users. When
taking these biases into consideration, BiasedMF (Gogna and Majumdar, 2015)
defined the prediction logits as

ŷui = b+ bu + bi + qTi pu (2.13)

where bu, bi and b are user bias, item bias, and the average bias on the training
data. BiasedMF is usually used to perform rating prediction on explicit feedback
data. For implicit feedback, bu and b can be removed because the two biases will
not affect the ranking of items for the same user.

FISM (Kabbur et al., 2013) is an item-based factorization model. Unlike
MF and BiasedMF which factorize the user-item interaction matrix, FISM using
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factorization techniques on item-item similarity matrix. The prediction rule of
FISM can be formulated as

ŷui = b+ bu + bi + (|I+
u | − 1)−α

∑
j∈I+u \{i}

qTj pi. (2.14)

The inner product qTj pj can be regarded as the similarity between the target
item i and historical item j. It conforms with the basic idea of collaborative
filtering: user preference can be inferred from interacted (similar) items. In the
FISM model, there is no user embedding, the user is directly modeled as his/her
interacted items. FISM is a widely adopted item-based collaborative filtering
method. Plenty of work has been done following the research line of FISM,
such as incorporating user information (Elbadrawy and Karypis, 2015; Xin et al.,
2016), neural network-enhanced approaches (Wu et al., 2016; He et al., 2018c,b)
and involving local latent space (Christakopoulou and Karypis, 2018; Lee et al.,
2013).

Although these methods have improved the performance of FISM, all of them
are based solely on the collaborative similarity between items. This item relation
is coarse-grained and lacks semantic meaning, introducing the bottleneck of the
model and the difficulty of generating convincing results.

SVD++ (Koren, 2008) is a more advanced matrix factorization models. It
extends the naive matrix factorization by considering both explicit and implicit
feedback. For the modeling of users, besides the user embedding, SVD++ also
considers the interacted items from the users’ interaction history. According to
the results of Koren and Bell (2015), SVD++ achieves a better accuracy compared
with naive MF and BiasedMF. The prediction rule of SVD++ is formulated as

ŷui = bu + bi + b+ qTi (pu + |I+
u |
− 1

2

∑
j∈I+u

zj), (2.15)

where zj ∈ Rk is another item embedding, representing the implicit collabora-
tive signal. We can see that for the user modeling of SVD++, despite the user
embedding pu, a second term

∑
j∈I+u zj is considered. The second term is the

aggregation of the user’s historical interacted items, which is actually the inner
product part of FISM. So SVD++ can be seen as the combination of BiasedMF
and FISM.

The naive MF and SVD++ are designed to tackle data which has no side
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information. However, despite the essential user ID and item ID, plenty of side
information is also available, which may further help to improve the recommen-
dation accuracy. SVDFeature (Chen et al., 2012) is a recommendation model
which are designed for feature-enhanced recommendation. The prediction rule of
SVDFeature is formulated as

ŷui =
s∑

d=1

γdb
g
d +

n1∑
d=1

αdb
u
d +

n2∑
d=1

βdb
i
d + (

n1∑
d=1

pdαd)
T (

n2∑
d=1

qdβd), (2.16)

where αd, βd and γd denote user features, item features and global features,
respectively. bg,bu,bi are the bias vectors for global features, user features and
item features, correspondingly. p and q are embeddings of user features and
item features. The total learning space is Θ = {bg, bu, bi,p,q}. Despite the bias
terms, we can see that SVDFeature models the users as the sum of user feature
embeddings (i.e.,

∑n1

d=1 pdαd) while items are modeled similarity as the sum of
item feature embeddings (i.e.,

∑n2

d=1 qdβd). The interaction between users and
items is still modeled as the inner product between users and items. As a result,
SVDFeature can recover the BiasedMF model if the feature vector only includes
user ID and item ID.

We can see that SVDFeature models the interaction between user-field fea-
tures and item-field features while the feature interaction within each field is not
considered. Another successful feature-based recommendation model is factoriza-
tion machines, which model all pair-wise feature interactions (Rendle, 2010).

2.2.1.2 Factorization Machines

Factorization Machine (Rendle, 2010, 2012) is a generic framework that integrates
the advantages of flexible feature engineering and high-accuracy prediction of
latent factor models. In FM, every transaction (interaction) is represented by
a multi-field categorical feature vector x ∈ Rm which utilizes one-hot/multi-hot
encoding to depict contextual information. An example is illustrated as follows
with three feature fields.

[0, 0, 0, 1, 0, 0, 0]︸ ︷︷ ︸
weekday=Thursday

[0, 1, ..., 0]︸ ︷︷ ︸
location=London

[1, 1, 0, ..., 0]︸ ︷︷ ︸
historical items (multi-hot)
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The scoring function of FM is defined as

ŷFM (x) = w0 +
m∑
i=1

wixi +
m∑
i=1

m∑
j=i+1

xixj · 〈vi,vj〉, (2.17)

where w0 represents the global bias, wi represents the bias factor for the i-th
variable. The pairwise interaction of feature xi and xj is captured by a factorized
parametrization 〈vi,vj〉 =

∑d
f=1 vifvjf , where 〈·, ·〉 denotes the inner product of

two vectors. vi ∈ Rd can be seen as the embedding vector for feature xi. Directly
calculating Eq.(2.17) has a time complexity of O(m2), which is inefficient when
m is large. To reduce the time complexity, Rendle (2010) reformulate Eq.(2.17)
as:

ŷFM (x) = w0 +
m∑
i=1

wixi +
1

2
(〈

m∑
i=1

xivi,
m∑
i=1

xivi〉 −
m∑
i=1

〈xivi, xivi〉). (2.18)

Eq.(2.18) can be calculated with the time complexity of O(m), which is a linear
time complexity with respect to m.

The original FM is designed for rating prediction tasks (Rendle, 2010), while
the task of implicit recommendation is item ranking. Previous research (Cre-
monesi et al., 2010) has demonstrated that rating prediction-based recommenda-
tion algorithms are not well suited to perform the ranking for item recommenda-
tions. To tackle this problem, Guo et al. (2016) proposed pair-wise ranking fac-
torization machines (PRFM) which combine pair-wise learning to ranking (LTR)
techniques with original FM. Besides, Yuan et al. (2016) proposed LambdaFM
to sample more informative negative examples for pair-wise ranking.

Some other research has also been done to improve FM, including accelerating
the training speed (Freudenthaler et al., 2011; Rendle, 2013), selecting better
features (Cheng et al., 2014) and distributed factorization machines (Li et al.,
2016; Rendle et al., 2016).

2.2.1.3 Tensor Decomposition

Matrix factorization represents the input user-item interaction as a two-dimensional
matrix while tensor decomposition is usually used to tackle multi-dimensional ten-
sors. For example, a three-dimensional tensor can be used to represent sequential
user-item interactions with time as the third dimension. Tag-based recommenda-
tion (Rendle et al., 2009a) may also utilize tags as an additional input dimension.
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Context-aware recommendation can use tensors to represent the interactions be-
tween users, items, and contexts (Karatzoglou et al., 2010).

Tucker decomposition (Tucker, 1966) is one of the most adopted tensor de-
composition methods. It decomposes a tensor into a set of matrices and one small
core tensor. For example, for a three-dimensional tensor, the prediction rule is
formulated by multiplying three matrices with the core tensor:

Y = Ĉ ×u Û ×i Î ×t T̂ (2.19)

where Ĉ is the core tensor. Û , Î, and T̂ are the three matrices for users, items,
and the third dimension, correspondingly. ×x denotes the tensor product that
multiples a matrix on dimension x of a tensor. The parameters in the learning
space are shown as:

Θ = {Ĉ ∈ RkU×kI×kT , Û ∈ R|U |×kU , Î ∈ R|I|×kI , T̂ ∈ R|T |×kT }
where kU , kI and kT are the dimension of the core tensor with respect to the
user dimension, item dimension and the third dimension. T is the size of the
third dimension. The predicted result Y is also a third-dimension tensor as
Y ∈ R|U |×|I|×|T |. For a specific element ŷuit in tensor Y , the predicted value
is formulated as:

ŷuit =

kU∑
f1=1

kI∑
f2=1

kT∑
f3=1

cf1,f2,f3ûu,f1 îi,f2 t̂t,f3 (2.20)

Although tensor decomposition can be used for multi-dimensional tensors, the
factorization of three-dimensional tensors is the most common case. More di-
mensions would lead to the overfitting problem and much more time complexity.

2.2.2 Deep Learning Models

Although factorization models have achieved great success in both industry and
academia, they are still limited to the shadow structure and model linearity, which
encounters difficulties to model complex user-item interactions (He et al., 2017b).
The implicit feedback motivates researchers to develop recommendation methods
with better model expressiveness and fidelity to capture more complex interaction
signals. On the other hand, deep learning methods have shown a great advantage
to learn knowledge from complex data, such as images (He et al., 2016b) and lan-
guages (Vaswani et al., 2017). The community of recommender systems has also
paid attention to utilizing deep learning models for recommendation. In this sub-
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section, we provide a brief review of related deep learning-based recommendation
models, including neural collaborative filtering (NCF), deep learning-enhanced
factorization machines, convolutional neural network-based recommendation, at-
tention mechanism for recommendation, graph convolution matrix completion
(GCMC), and next-item recommendation.

2.2.2.1 Neural Collaborative Filtering

NCF (He et al., 2017b) is one of the earliest attempts to use deep learning meth-
ods for recommendation. The key point of NCF is that the linear inner product
cannot model complex user-item interactions. NCF proposed to use a neural net-
work to replace the inner product to introduce non-linearity and improve model
expressiveness. The NCF model contains two modules: a generalized matrix fac-
torization (GMF) model and a multi-layer perceptron (MLP). More precisely,
GMF extends MF by adding another layer and an activation function. The pre-
diction rule of GMF is formulated as

ŷui = δ(hT (pu � qi)) (2.21)

where h ∈ Rk is the parameters of the added layer and δ is the activation function
(e,g., sigmoid function in the original paper). � is the element-wise product. We
can see that if we use an identity function as the activation function and define h
as a constant vector of 1, GMF will recover the basic matrix factorization. From
this perspective, MF is a special case of GMF. Generally speaking, GMF can
be seen as a model which reweights the latent factors of MF and then adds an
activation function.

The MLP component is built upon the concatenation of user embeddings and
item embeddings. To improve the model expressiveness, the authors of NCF
stacked more hidden layers on the concatenation vector to learn high-order in-
teraction signals. According to He et al. (2017b), the MLP model of NCF is
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formulated as
z1 = [pu,qi]

ψ2(z1) = δ2(WT
2 z1 + b2)

...

ψL(zL−1) = δL(WT
LzL−1 + bL),

ŷui = δ(hTψL(zL−1))

(2.22)

where [·] denotes the concatenation operation,Wx, bx and δx represent the weight
matrix, bias vector and activation function for x-th layer respectively. Finally,
NCF combines GMF and MLP through the final output layer. The prediction
rule of NCF is formulated as

ŷui = δ(hT [(pu � qi), ψL(zL−1)]) (2.23)

In the original NCF paper, GMF and MLP use separate embedding tables. The
author argues that two separate embedding tables will help the NCF model to
achieve best performance on both GMF component and MLP component.

2.2.2.2 Neural Network-based Factorization Machines

The NCF model is designed for recommendation with only user IDs and item
IDs, while the FM model (Rendle, 2010) are tailed for recommendation with side
information as feature vectors. The limitation of FM is that it only models the
second-order feature interactions in a linear way1, while the advantage of deep
neural network (DNN) is that it can learn non-linear inherent structures from
input data (LeCun et al., 2015). As a result, plenty of neural network-based
factorization machines are proposed to overcome the limitations of FM.

NFM extend the idea of NCF (i.e., using deep neural networks to capture
interaction signals) to factorization machines. The most important contribution
of NFM is the proposed Bilinear Interaction (Bi-Interaction) pooling operation
which is used to model pair-wise feature interactions. The Bi-Interaction pooling
function is formulated as

fBI(x) =
n∑
i=1

n∑
j=i+1

(vi � vj)xixj (2.24)

where x is the input sparse feature vector, vi and vj are the embedding vectors
1Although FM has high-order formulations (Rendle, 2010), it still belongs to linear models

and is proved to be difficult to estimate.
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of feature xi and xj, respectively and n is the number of features. Computing
such a function requires a time complexity of O(n2). The authors of NFM utilize
the similar techniques of FM to reduce the time complexity. The mathematical
transformation is formulated as

n∑
i=1

n∑
j=i+1

(vi � vj)xixj =
1

2
((

n∑
i=1

xivi)� (
n∑
i=1

xivi)−
n∑
i=1

(xivi � xivi)). (2.25)

This reformulation enables a time complexity of O(n). The output of the Bi-
Interaction layer is still a vector. Then NFM stacks a MLP upon the Bi-Interaction
layer to learn complex and high-order interaction signals. The prediction rule of
NFM is shown as:

ŷ(x) = w0 +
n∑
i=1

wixi + hT δL(WL(...σ1W1fBI(x) + b1)...) + bL (2.26)

where Wl,bl and δl are the weight matrix, bias vector and activation function
for the l-th layer of the MLP, correspondingly. h is the weight vector of the final
output layer.

Besides, Zhang et al. (2016b) proposed factorization machine supported neu-
ral network (FNN) which uses FM as the bottom layer of a DNN. Guo et al.
(2017) borrowed the idea from Wide&Deep (Cheng et al., 2016) and formulated
the scoring function as the sum of FM and a DNN. Although these proposed
models have a more expressive capability, the way they modeling feature inter-
actions (e.g., inner product, element-wise product, and concatenation) assumes
that embedding dimensions are independent of each other. However, it has been
proven to be an impractical assumption (Zhang et al., 2014). Besides, they all
use an implicit manner (e.g, simple hidden layers) to learn high-order interaction
signals. Finally, the architecture they used (i.e., MLP) also makes them harder
to train and go deeper (He et al., 2018a).

2.2.2.3 Convolutional Neural Networks for Recommendation

Unlike MLP which suffers from a large number of parameters and low general-
ization ability, CNN is much easier to train and go deeper because of the shared
parameters. The power of CNN in feature extraction makes it widely used to
learn signals from images and text (Zhang et al., 2017). Plenty of research has
been done in that fashion. For example, He and McAuley (2016b) proposed to
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use CNN to learn item visual latent factors and improve the pair-wise ranking
(Rendle et al., 2009b). Zheng et al. (2017) adopt two parallel CNN to model
user behaviors and item properties by abstracting review comments, then FM is
applied in the final layer to perform scoring. Yu et al. (2018) proposed to use
CNN to extract aesthetic features when generating clothing recommendations.

Although CNN is usually used to model local patterns from images, it can ac-
tually serve as a general signal learner. Compared with MLP, CNN is much easier
to train with fewer parameters and potential deeper structures (He et al., 2018a).
Plenty of research about using CNN on embedding maps also emerged recently.
Liu et al. (2015) proposed to directly apply CNN on feature map to perform click
prediction. Tang and Wang (2018) utilized CNN to capture sequential signals
from the item embedding map. He et al. (2018a); Du et al. (2019) proposed to
use CNN to learn the user-item interaction patterns from an outer product-based
interaction map. This research motivates us to further explore CNN to learn
high-order feature interaction signals for implicit feedback recommendation in
Chapter 3.

2.2.2.4 Attention Mechanism for Recommendation

The attention mechanism has become very popular in the fields of computer vi-
sion (Mnih et al., 2014; Xu et al., 2015) and natural language processing (Vaswani
et al., 2017; Bahdanau et al., 2014) because of its enhanced performance and the
resulting interpretability for deep learning models. The key insight of attention is
that human tends to pay different weights to different parts of the whole percep-
tion space. Based on this motivation, He et al. (2018c) improved FISM by replac-
ing the mean aggregation with the attention-based summation, also known as the
NAIS model. Chen et al. (2017) proposed to utilize the attention mechanism to
generate multimedia recommendation. Kang and McAuley (2018) exploited self-
attention for sequential recommendation. There are many other works focusing
on involving attention mechanism for better recommendation (Xiao et al., 2017;
Tay et al., 2018).
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2.2.2.5 Next Item Recommendation

Next-item recommendation aims to provide sequential recommendation for next
timestamps given the user-item interaction sequence, which is one of the most
common use cases in the real-world scenario. Early work focusing on next item
recommendation mainly rely on Markov Chain (MC) models (He and McAuley,
2016a; Cheng et al., 2013; Rendle et al., 2010) and factorization-based methods
(Rendle, 2010; Hidasi and Tikk, 2016). Rendle et. al (Rendle et al., 2010) intro-
duced to use first-order MC to capture short-term user preferences and combined
the MC with matrix factorization (MF) (Koren et al., 2009) to model long-term
preferences. Methods with high-order MCs that consider more longer interac-
tion sequences were also proposed in (He and McAuley, 2016a; He et al., 2016c).
Factorization-based methods such as factorization machines (FM) (Rendle, 2010)
can utilize the previous items a user has interacted with as context features. The
general factorization framework (GFF) (Hidasi and Tikk, 2016) models a session
as the average of the items that the user interacted within that session.

MC-based methods face challenges in modeling complex sequential signals
such as skip behaviors in the user-item sequences (Tang and Wang, 2018; Yuan
et al., 2019) while factorization-based methods do not model the order of user-
item interactions. As a result, plenty of deep learning-based approaches have been
proposed to model the interaction sequences more effectively. Hidasi et al. (2015)
proposed to utilize gated recurrent units (GRU) (Cho et al., 2014) to model the
session. Tang and Wang (2018) and Yuan et al. (2019) utilized convolutional
neural networks (CNN) to capture sequential signals. Kang and McAuley (2018)
exploited the well-known Transformer (Vaswani et al., 2017) in the field of next
item recommendation with promising results. Generally speaking, all of these
models can serve as models which aim to map a sequence of user-item interactions
to a latent representation that describes the corresponding user state in that
timestamp.

2.2.2.6 Graph Convolution Matrix Completion

GCMC (Berg et al., 2017) is one of the earliest attempts to utilize graph convolu-
tion for recommendation. The user-item interactions can be naturally represented
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Figure 2.1: The model structure of GCMC from Berg et al. (2017). The rating
matrix of user-item interactions can be considered as a bipartite graph. Users
and items are nodes, edges correspond to interactions. Numbers on edges denote
the rating a user has given to a particular item. The prediction for unobserved
interactions can be seen as a link prediction problem.

as an interaction graph. The procedure of GCMC is shown in Figure 2.1. Each
rating corresponds to one kind of edge and then the rating prediction task can
be regarded as a link prediction task. The model is trained using an end-to-end
trainable graph auto-encoder.

The graph auto-encoder is based on the message passing schema of graph
convolution. Taking a user node i as an example, µj→i,r denotes the message
from item j to user u through link type r and is formulated as

µj→i,r =
1

cij
Wrxj. (2.27)

where xj ∈ Rk is the initial embedding of item j. Wr ∈ Rk×k′ is the weight
matrix with respect to the link type r, mapping the initial node embedding to
the latent space. cij is the normalization constant. Let di denote the degree
of node i, cij is usually formulated as 1/di or 1/

√
didj. Based on this message

passing rule, the new user representation ui can be formulated as

ui = δ1(Wδ2(accum(
∑
j∈Ni,1

µj→i,1, ...,
∑
j∈Ni,R

µj→i,R))), (2.28)

where Ni,r denotes the neighbourhood of user u, under the specific link type
r. accum(·) is the accumulation operation, such as concatenation of vectors or
summation of all messages. W ∈ Rk′×o is the trainable weight matrix. δ1 and δ2

are activation functions. Figure 2.2 demonstrates an illustration of this message
passing schema.
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Figure 2.2: The message passing schema of GCMC.

The new item representation vj can be calculated analogously. The final
rating prediction is a link prediction task, which aims to predict the edge between
user i and item j belongs to which link type:

p(ŷij = r) =
eu

T
i Qrvj∑

s∈R e
uT
i Qsvj

, (2.29)

where Qr ∈ Ro×o is a trainable parameter matrix with respect to the link type r.
Although GCMC achieves promising performance compared with MF (Berg

et al., 2017), we can see that the GCMC model is proposed for the rating pre-
diction task on explicit data. Also, GCMC can not incorporate the context
information.

2.3 Preliminaries of Reinforcement Learning

The described training procedure in section 2.1.2 belongs to the scope of su-
pervised learning. Actually, most state-of-the-art recommendation methods are
based on supervised learning. The agent is trained to optimize a loss function,
which is defined as the discrepancy between model predictions and ground-truth
values. However, such a loss function may not reflect certain expectations of
service providers, for example, to gain profits from long-term user interactions.

On the other hand, reinforcement learning has achieved great success in the
field of game control. A RL agent is trained to interact with the environment to
obtain the maximum long-term cumulative reward, as shown in Figure 2.3. It
naturally fits the demand of recommender systems (i.e., maximizing cumulative
gains in a whole interaction session). As a result, exploiting RL for recommenda-
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Figure 2.3: A RL example. The RL agent is trained to interact with the envi-
ronment by taking actions. The environment will update the state and return a
reward according to the taken action. The target of the RL agent is to get the
maximum cumulative reward in a whole interaction session.

tion has become a promising research direction. In this section, we provide the
basic preliminaries of RL.

2.3.1 Markov Decision Process

The interaction procedure between an agent and the environment can be referred
to as a Markov Decision Process (MDP). RL algorithms are actually the methods
to solve a MDP to find the optimal solution in which the agent can obtain the
maximum cumulative reward. The Markov property of MDP means that only the
current state of the environment will affect the decision making of the agent other
than all historical states. A MDP is formulated as tuples of (S,A,P, R, ρ0, γ)

where

• S: the space to describe the environment state.

• A: the action space of the agent.

• P: S × A× S → R is the state transition probability, describing the state
update by taking actions.

• R: S ×A → R is the reward function, where r(s, a) denotes the immediate
reward by taking action a at state s.

• ρ0 is the initial state distribution.
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2.3 Preliminaries of Reinforcement Learning

• γ is the discount factor for future rewards.

The solution for a given MDP is a policy π(a|s), which maps the given state s to
(the distribution of) the action a ∈ A. When the agent takes actions according
to π(a|s), we want to get the maximum expectation of discounted cumulative
rewards, as shown in Eq.(2.30).

max
π

Eτ∼π[R(τ)], where R(τ) =

|τ |∑
t=0

γtr(st, at). (2.30)

To find the optimal solution of a MDP, we first introduce two value-based con-
cepts: state-value function and action-value function.

The state-value function Vπ(s) of an MDP is the expected return starting from
state s and then following policy π. It can be formulated as:

Vπ(s) = Eπ[Gt|st = s],where Gt = rt+1 + γrt+2 + γ2rt+3 + · · · (2.31)

We can see that the value-function Vπ(s) can be decomposed into the sum of
immediate reward and discounted value of successor state, as shown in Eq.(2.32).

Vπ(s) = Eπ[rt+1 + γVπ(st+1)] (2.32)
The action-value function Qπ(s, a), aka Q-value, is the expected return start-

ing from state s, taking action a, and then following policy π. It can be formulated
as

Qπ(s, a) = Eπ[Gt|st = s, at = a]. (2.33)
Similarly, the Q-value can also be decomposed as

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)]. (2.34)

We further define the optimal V∗(s, a) and Q∗(s, a) as

V∗(s) = max
π

Vπ(s), Q∗(s, a) = max
π

Qπ(s, a). (2.35)

2.3.2 Value-Based Reinforcement Learning

According to the above definition, to get the maximum cumulative reward, an
optimal policy should take actions that will lead to the highest optimal Q-values
given the state s. If we know Q∗(s, a), we can immediately get the optimal policy
by

π∗(a|s) =

1 ifa = argmaxaQ∗(s, a)

0 otherwise
(2.36)
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Value-based RL aims to learn the optimal Q-values and then takes actions with
highest optimal Q-values. The Bellman Equation (Bellman, 1966) provides the
solution to learn the optimal Q-values. The Bellman Equation for optimal Q-
values is defined as

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

pass′ max
a′

Q∗(s
′, a′) (2.37)

where pass′ is the probability of s′ if action a is taken under state s.
Deep Q-learning (DQN) (Mnih et al., 2015) is one of the most successful

value-based RL algorithms. DQN utilizes a replay buffer to store the interaction
experience between the agent and the environment. Q-values are approximated
through a deep learning model (i.e., deep neural network), aka Q-network. Based
on the replay buffer and Eq.(2.37), DQN approximates the optimal Q-values as

Qθ(st, a) = r(st, a) + γmaxQθ(st+1, a
′) (2.38)

where st and st+1 are sampled from the replay buffer, θ denotes the parameter of
the Q-network. Then DQN trains the Q-network through time-difference (TD)
learning. The loss function of one-step TD learning is formulated as

Lθ = Qθ(st, a)− (r(st, a) + γmaxQθ(st+1, a
′))2. (2.39)

This is a recursive learning procedure. In practical usage, to enhance stability,
we usually use a fixed network (target network) to calculate Qθ(st+1, a

′) and
synchronize the target network and the main network after certain training steps.
Plenty of work has been done based on DQN. For example, Double Q-learning
(Hasselt, 2010) proposed to use two Q-networks and iteratively train one of them
to further enhance the training stability.

2.3.3 Policy-Gradient Approaches

Value-based RL algorithms need to calculate the value functions firstly and then
choose the actions by selecting the highest Q-values while policy gradient-based
methods aim to directly optimize the parameters of the policy network. This is
especially helpful when the action space is continuous, in which there are infinite
Q-values to be computed for value-based methods.

For policy gradient-based methods, the policy is directly parameterized through
a neural network, aka policy network. We use πθ(a|s) to denote the policy net-
work parameterized by θ. The expected cumulative reward then will also be
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parameterized by θ as
J(θ) = Eτ∼πθ [R(τ)]. (2.40)

Then the parameter θ can be updated directly by

θ ← θ + αOθJ(θ). (2.41)

By using the “log-trick", the gradient of J(θ) can be derived as

OθJ(θ) = OθEτ∼πθ [R(τ)] = Oθ

∫
πθ(τ)R(τ)dτ =

∫
Oθπθ(τ)R(τ)dτ

=

∫
πθ(τ)Oθ log πθ(τ)R(τ)dτ = Eτ∼πθ [Oθ log πθ(τ)R(τ)]

= Eτ∼πθ [R(τ)(
T∑
t=1

log πθ(at|st))]

(2.42)

We can see that the R(τ) term in OθJ(θ) contains T sources of variance. This
may cause the instability of the learning. Instead, we can use the return Gt to
replace R(τ) since rewards of the past interactions should not contribute to the
future gradient. It can also help to reduce the high variance. Hence, OθJ(θ) can
be further reformulated as

OθJ(θ) ≈ Eτ∼πθ [(
T∑
t=1

Gt log πθ(at|st))]. (2.43)

This is the key point of the notable REINFORCE algorithm (Williams, 1992).
We can see from Eq.(2.43) that if Gt is high, it means that on average we have
taken actions that lead to high cumulative rewards. We then want to push the
probabilities of these actions. On the other hand, if Gt is low, we want to push
down the probabilities of these actions.

Policy gradient-based approaches have drawn much attention recently. Plenty
of following work has been conducted to improve the basic REINFORCE algo-
rithm. For example, Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015) improves the REINFORCE algorithm by defining a trust-region and mak-
ing sure that the policy will not move too far away from the last timestamp.
This is achieved through a constrained training using the KL-divergence. Proxi-
mal Policy Optimisation (PPO) (Schulman et al., 2017) converts the constrained
training of TRPO to a penalty term, which enables much simpler computation
and training.

Based on value-based methods and policy gradient, the more advanced “actor-
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critic” architecture is proposed (Konda and Tsitsiklis, 2000). Actor-critic methods
combine value-based approaches and policy gradient. There are two components
in actor-critic architecture. The actor is usually defined as a policy network,
which is actually used to generate the action. While the critic is used to evaluate
the goodness of the action and is usually trained through value-based methods
(e.g., DQN). Successful actor-citric methods include but not limited to Advan-
tage actor-critic (A2C) (Mnih et al., 2016), Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2015) and Soft Actor-Critic (Haarnoja et al., 2018).

2.3.4 On-Policy and Off-Policy Training

The RL algorithms can also be divided into on-policy methods and off-policy
methods. We can see from Eq.(2.43) that for policy gradient methods, the ex-
pectation is taken over τ ∼ πθ. It indicates that for the training purpose, we
need to collect interaction experience (i.e., take actions and observe the reward)
according to πθ. This kind of method is referred to as the on-policy method.
Obviously, the REINFORCE algorithm is on-policy.

On the other hand, we can see from Eq.(2.38) that for value-based Q-learning,
we need to calculate maxQ(st+1, a). It indicates that the action a is taken accord-
ing to a fixed greedy policy other than the target policy. This kind of method is
referred to as the off-policy method. Q-learning is a typical off-policy algorithm.

Generally speaking, for policy gradient methods, the expectation is calculated
through Monte Carlo (MC) methods. It usually needs a large volume of on-policy
examples to converge, resulting in large sample complexity.

The critic of actor-critic methods is usually defined with Q-learning which is
off-policy and uses a replay buffer to store historical experience. This may help
to reduce the sample complexity of actor-critic methods. As a result, plenty of
actor-critic methods are claimed to be off-policy such as DDPG and Soft Actor-
Critic. However, the actor component of these algorithms is still on-policy and
needs to collect on-policy examples for training (Fujimoto et al., 2018). In a
nutshell, for actor-critic methods, the critic component can be off-policy but the
actor component which is finally used to generate actions is usually on-policy.

For the off-policy Q-learning, although the action is taken according to a
fixed greedy policy, we can see from Eq.(2.37) that there is a term of

∑
s′∈S p

a
ss′ .
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While from Eq.(2.38), we can see that Q-learning removes this distribution of
pss′ and directly sample s′ from the replay buffer. This indicates that Q-learning
also needs plenty of training examples to achieve a good performance. Besides,
Fujimoto et al. (2018) have shown that the state distribution in the replay buffer
of Q-learning can not be decorrelated with the target policy. Otherwise, the
“extrapolation error” (Fujimoto et al., 2018) may occur.

RL has achieved great success in the field of game control (Mnih et al.,
2015). The reason is that the RL agent is actually trained through an “error-
and-correction” manner. The game control field can offer an environment to let
the agent make “errors”. However, in plenty of practical scenarios, making errors
in the environment is risky. As a result, perform off-policy training is especially
common. But designing efficient and effective off-policy RL algorithms is still an
open research question.

2.3.5 Reinforcement Learning for Recommendation

Attempts to utilize RL for recommendation have also been made. To address
the problem of distribution discrepancy under the off-policy settings, Chen et al.
(2019a) proposed to utilize propensity scores to perform the off-policy correction.
However, the estimation of propensity scores has high variances and there is a
trade-off between bias and variance, which introduces additional training diffi-
culties. Zhao et al. (2018) proposed to utilize negative sampling along with Q-
learning. But their method doesn’t address the off-policy problem. Model-based
RL approaches (Chen et al., 2019b; Shang et al., 2019; Zou et al., 2019) firstly
build a model to simulate the environment to avoid any issues with off-policy
training. However, these two-stage approaches heavily depend on the accuracy
of the simulator. Moreover, recent work has also been done on providing slate-
based recommendations (Ie et al., 2019; Gong et al., 2019; Chen et al., 2019a,b)
in which actions are considered to be sets (slates) of items to be recommended.
This assumption creates an even larger action space as a slate of items is regarded
as one single action.

Bandit algorithms that share the same reward schema and long-term expec-
tation with RL have also been investigated for recommendation (Li et al., 2011,
2010). Bandit algorithms assume that taking actions does not affect the state
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(Li et al., 2010) while in full RL the assumption is that the state is affected
by the actions. Generally speaking, recommendations actually have an effect on
user behavior (Rohde et al., 2018) and hence RL is more suitable for modeling
the recommendation task. Another related field is imitation learning where the
policy is learned from expert demonstrations (Ho and Ermon, 2016; Ho et al.,
2016; Torabi et al., 2018). In the recommendation field, the interacted items in
the recommendation list can be seen as expert behaviors to perform imitation
learning.

2.4 Review Findings

Through the literature review, the following findings can be obtained, which
motivates the method development of this thesis:

• Deep learning has shown improved performance on the recommendation
task. This finding motivates us to continue researching to further develop
deep learning-based approaches for recommendation.

• Although some works have been proposed to use deep learning for recom-
mendation, they still suffer from certain limitations. For example, NCF can
not tackle side information; NFMmodels high-order feature interactions in a
rather implicit manner. This finding motivates us to develop more effective
deep learning-based approaches to learn complex and high-order interaction
signals from implicit feedback data.

• Although the attention mechanism has been used in some literature, all
of them do not aim to model the multiple item relations in recommenda-
tion. In fact, users tend to pay different weights on different item relations
and it’s a promising direction to utilize attention mechanism under such
circumstances for more explainable results.

• Using reinforcement learning is a promising direction to encourage long-
term cumulative gains in recommendation. However, how to addressing
the specific challenges when using RL for recommendation (e.g., off-policy
training) is still an open research problem.
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Part II
Deep Supervised Learning for

Recommendation

In this part, two models based on deep supervised learning are
proposed for implicit feedback recommendation. More pre-
cisely, in Chapter 3, we proposed Convolutional Factorization
Machines (CFM) for feature-based input data. In Chapter 4,
Relational Collaborative Filtering (RCF) is proposed for re-
lational input data. Extensive experiments are conducted to
evaluate the performance of each model. The results demon-
strate that deep supervised learning can not only improve
recommendation accuracy but also generate more reasonable
recommendation.
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Chapter 3

Convolutional Factorization
Machines

In this chapter, we introduce Convolutional Factorization Machines, which ex-
tends the notable Factorization Machines with deep convolutional networks for
complex and high-order feature interaction modeling. This chapter is mainly
based on my work “CFM: Convolutional Factorization Machines for Context-
Aware Recommendation” published in International Joint Conferences on Arti-
ficial Intelligence (IJCAI) 2019 with DOI: https://doi.org/10.24963/ijcai.
2019/545.

Factorization Machine (FM) is an effective solution for feature-based context-
aware recommender systems (CARS) which models second-order feature inter-
actions by the inner product. However, it is insufficient to capture high-order
and nonlinear interaction signals for complex real-world implicit feedback data.
While several recent efforts have enhanced FM with neural networks (He and
Chua, 2017; Guo et al., 2017), they assume the embedding dimensions are in-
dependent of each other and model high-order interactions in a rather implicit
manner. In this chapter, we propose Convolutional Factorization Machine (CFM)
to address the above limitations. Specifically, CFM models second-order inter-
actions with the outer product, resulting in “images” which capture correlations
between embedding dimensions. Then all generated “images” are stacked, forming
an interaction cube. 3D convolution is applied above it to learn high-order inter-
action signals in an explicit approach. Besides, we also leverage a self-attention
mechanism to perform the pooling of features to reduce time complexity. We
conduct extensive experiments on three real-world datasets, demonstrating sig-
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nificant improvement of CFM over competing methods for context-aware top-N
recommendation from implicit feedback data. The results conform with our thesis
statement (1).

3.1 Introduction

Generating recommendation from implicit feedback such as click/purchase on
products is extremely common in practical applications. When characterizing
the implicit user-item interactions, besides the most essential information of user
ID and item ID, rich side (context) information is also available. Examples
of contexts include but are not limited to user demographics, item attributes,
time/location of the current transaction, historical records, and the information of
last transactions (Bayer et al., 2017; Wu et al., 2019). To learn from such context-
rich data, a typical solution is to first convert it into high-dimensional generic fea-
ture vectors (e.g., by using one-hot/multi-hot encoding on univalent/multivalent
categorical variables) (Zhou et al., 2018), and then build predictive models on the
featured inputs (He and Chua, 2017). Distinct from continuous real-valued fea-
tures that are naturally found in images and audios, the featured inputs of CARS
are mostly categorical, resulting in high-dimensional yet sparse feature vectors.
This poses difficulties to build predictive models, such that traditional supervised
learning solutions such as SVMs and deep neural networks are sub-optimal and
less efficient since they are not tailored for learning from sparse data.

To design effective models for sparse feature inputs, the key ingredient is
to account for the interactions among features (Wang et al., 2017). Existing
solutions to feature interaction modeling can be categorized into two types:

• Manually constructing cross features: This type of method manually con-
structs combinatorial features, which explicitly encode feature interactions.
Then the cross features are fed into predictive models such as logistic re-
gression (Cheng et al., 2016) and deep neural networks (Wang et al., 2018c).
Apparently, the cross feature construction process requires heavy engineer-
ing efforts and domain knowledge, making the solution less adaptable to
other domains. In addition, another drawback is that it cannot generalize
to cold-start feature interactions that are unseen in training data.
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• Automatically learning feature interactions: This type of method learns fea-
ture interactions and their effects in a unified model. A typical paradigm is
to associate each feature with an embedding, expressing the feature inter-
action as a function over feature embeddings. For example, FM (Rendle,
2010) models the interaction of two features as the inner product of their
embeddings, and Deep Crossing (Shan et al., 2016) concatenates feature
embeddings and feeds them into a multi-layer perceptron (MLP) to learn
high-order interactions. However, these methods implicitly assume em-
bedding dimensions are independent of each other, which goes against the
semantics of latent dimensions (Zhang et al., 2014) and limits the model
expressiveness. Moreover, MLP upon embedding concatenation captures
feature interactions in a rather implicit manner, which has been manifested
inefficient to model multiplicative relations (Beutel et al., 2018).

In this chapter, we focus on developing methods for implicit feedback data as
sparse feature vectors with the aim of addressing the above-mentioned drawbacks
of existing solutions. To reduce engineering efforts in constructing cross features,
we explore embedding-based methods and propose Convolutional Factorization
Machine (CFM) which automatically learns feature interactions. More precisely,
feature embeddings are firstly fed to a self-attention pooling layer, which can
dramatically reduce the computational cost and debilitate the influence of noisy
features. Then, we model second-order interactions with the outer product, re-
sulting in a list of 2D matrices, which is more effective to capture correlations
between embedding dimensions compared with the inner product. After that, we
stack the generated matrices and obtain a 3D interactions cube that encodes all
second-order interactions. To explicitly learn high-order signals, we propose to
employ 3D convolution on the interaction cube, stacking a multi-layer 3D con-
volution neural network (CNN) above it. As a result, CFM addresses the major
limitations of state-of-the-art feature-based methods — independent embedding
dimensions and implicit high-order interaction modeling. The main contributions
of this chapter are as follows:

• We propose to utilize an interaction cube to represent feature interactions,
which encodes both interaction signals and embedding dimension correla-
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tions.

• We propose to employ 3D CNN above the interaction cube, which can
effectively capture high-order interactions in an explicit way. To the best
of our knowledge, this is the first attempt to explore 3D CNN in feature
interaction modeling.

• We leverage a self-attention mechanism to perform pooling operations for
features, reducing computational complexity.

• We conduct comprehensive experiments on publicly accessible datasets to
comparatively evaluate and demonstrate the effectiveness of the proposed
method.

3.2 The Proposed Method

In this section, we present the detail of the model and the training procedure of
the proposed CFM. We also analyze the relationship between CFM and similar
research approaches. Before diving into the technical details, we first introduce
some basic notations (work only within this chapter).

Throughout this chapter, we use bold uppercase letter (e.g., M) to denote
a matrix, bold lowercase letter to denote a vector (e.g., x), and calligraphic
uppercase letter to denote a 3D tensor (e.g., C). Scalar is represented by lowercase
letters (e.g., y). The target of CFM is to generate a ranked item list for given
user profiles and context features.

3.2.1 The CFM Model

It can been seen from Eq.(2.17) that the original FM only accounts for second-
order feature interactions in a linear way by inner product, which fails to learn
complex signals. To address this problem, the prediction rule of CFM is formu-
lated as Eq.(3.1):

ŷCFM (x) = w0 +
m∑
i=1

wixi + gθ(x), (3.1)

where gθ(x) denotes the core component to model feature interactions. In the fol-
lowing parts, we will elaborate how to learn gθ(x) by outer product and 3D CNN,
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Figure 3.1: CFM model structure. Field 1 and Field p contain multi-hot features.
Field 2 is one-hot in which e2=vn.

which explicitly captures high-order interaction signals. Figure 3.1 illustrates the
overall structure of the proposed CFM model.

3.2.1.1 Input and Embedding Layer

The input layer is fed with a sparse contextual vector x, which may contain
both one-hot features (e.g., userID) and multi-hot features (e.g., historical items)
to describe a specific user context and item attributes. Then each feature xi
is projected into a d-dimensional dense vector representation vi ∈ Rd by the
embedding layer. Due to the sparsity of x, we only need to consider the non-zero
features (i.e., xi 6= 0). This can be easily achieved through an embedding table
lookup.
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3.2.1.2 Self-Attention Pooling Layer

In the real-world scenario, the number of non-zero features in xmay be very large,
especially with various multi-hot features (e.g., historical items). The original
time complexity to account for all pairwise feature interactions is O(m2). Then,
FM utilizes a reformulation to rewrite Eq.(2.17) and makes the time complexity
to be linear with m. However, the involved reformulation can only suit the inner
product.

Compared with the large number of features, it’s obvious that the number
of fields is much smaller. As a result, another solution to reduce computational
cost is to perform the pooling operation on features and learn a single embedding
for each field. Intuitive approaches include max-pooling and average-pooling.
However, we argue that this kind of method is sub-optimal due to the lack of a
learning process. To capture the intuition that different features have varying im-
portance, we propose to use an attention mechanism to compute the importance
of each feature and perform the pooling operation.

Suppose the set of non-zero features in field j is Xj, we parameterize the
attention score of feature xi ∈ Xj with a MLP, which is defined as

ai = hTj tanh(Wjvi + bj), (3.2)

where Wj and bj are corresponding weight matrix and bias vector that project
the input embedding into a hidden state, and hTj is the vector which projects
the hidden state into the attention score. The size of hidden state is termed as
“attention factor”. Then, the importance of xi is calculated by normalizing the
attention score through the softmax function:

αi = softmax(ai) =
exp(ai)∑

xi′∈Xj
exp(ai′)

. (3.3)

Finally, the after-pooling embedding ej for field j is formulated as

ej =
∑
xi∈Xj

αivi. (3.4)

In fact, the self-attention pooling layer not only reduces the computational cost
but also debilitates the influence of noisy features and redundant feature interac-
tions.
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3.2.1.3 Interaction Cube

After the pooling layer, we propose to use a 3D interaction cube to represent
feature interactions. Specifically, the interaction between ei and ej is modeled by
an outer product operation between them, as shown in Eq.(3.5).

Mi,j = ei ⊗ ej =


ei1ej1 ei1ej2 · · · ei1ejd

ei2ej1 ei2ej2 · · · ei2ejd
...

...
...

...
eidej1 eidej2 · · · eidejd

 (3.5)

The above d× d matrix can be seen as a two-dimensional “image” which contains
both interaction signals and embedding dimension correlations. Suppose the con-
textual vector x contains p feature fields, the total number of generated “images”
is p(p− 1)/2. All these “images” are stacked to form a 3D tensor C which is the
input of the following 3D CNN.

C = [M1,2,M1,3, · · · ,Mi,j, · · · ,Mp−1,p] (3.6)

The major advantage of using this cube to represent feature interactions lies in
the following points:

• The outer product matrix is more effective to capture dimension correlations
compared with conventional inner and element-wise product, which assume
that embedding dimensions are independent with each other.

• The 3D structure provides an explicit solution to model high-order inter-
actions, which can be seen as interactions between different “floors” of this
cube. For example, in Figure 3.1, the interaction between the first floor
(e1 ⊗ e2) and the second floor (e1 ⊗ e3) can be considered as a third-order
interaction among e1, e2 and e3.

• The 3D format also provides a good input for the well-developed 3D CNN.
The 3D architecture can benefit the modeling of high-order interactions,
which can be regarded as convolutions in the depth direction.
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Figure 3.2: The architecture of 3D convolution layers for CFM with the embed-
ding size d = 64 and p = 10.

3.2.1.4 3D Convolution Layers

In order to tackle the 3D interaction cube and extract signals more effectively,
a multi-layer 3D CNN is applied to learn feature interaction patterns1. The
motivation of using CNN to learn feature interaction signals can be summarized
as follows:

• CNN has been widely adopted in the field of computer vision to learn from
images. The CNN is trained with a hierarchy fashion (i.e., convolution is
performed to aggregate low-level features to high-level representations). In
the field of recommendation, high-order feature interaction signals should
also be modeled with similar hierarchy approaches. For example, the third-
order interaction is actually the interaction between a single feature and
another second-order cross feature.

• Utilizing CNN to learn from feature map has been widely adopted in the
literature (He et al., 2018a; Yuan et al., 2019; Du et al., 2019; Tang and
Wang, 2018; Liu et al., 2015) and has shown promising performance. In that
case, CNN is regarded as a general signal extractor which is much easier to
train with deep architectures compared with naive MLP (He et al., 2018a).

The convolution process can be abstracted as

g = 3DCNN(C). (3.7)
1Although multi-channel 2D CNN can also be used to process the interaction cube, the 3D

CNN is a more effective approach. Experimental results are shown in the following part.
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Suppose the embedding size d = 64 and the number of feature fields p = 10, the
size of the interaction cube is 64 × 64 × 45. Figure 3.2 illustrates the structure
of the stacked 3D CNN with 6 hidden layers, where each hidden layer has 32
channels and convolution operations are performed in all three directions (i.e.,
width, height, and depth).

In each layer, we first perform 3D convolutions between a 3D kernel and the
input cube, after which we add a bias and perform a nonlinear transformation by
using ReLU (Hahnloser et al., 2000) as the activation function to obtain a new
output cube. It’s obvious that the convolution in the depth direction captures
high-order feature interactions in a rather explicit manner. According to Figure
3.2, the filter shape in the first layer is [2,2,14] and the stride is [2,2,1], which is
corresponding to width, height, and depth. In the subsequent layers, the filter
shape and stride are both [2,2,2].

The output of the 3D convolution layers is a vector g. After that, we adopt a
fully-connected layer to re-weight each dimension of g and calculate a real-valued
scalar as gθ(x):

gθ(x) = wTg + b. (3.8)

3.2.2 Training Detail

The focus of CFM is generating top-N recommendation for implicit feedback data
other than rating prediction. Therefore, we optimize the proposed CFM model
with the BPR framework (Rendle et al., 2009b):

L =
∑
− lnσ(ŷCFM(x+)− ŷCFM(x−)), (3.9)

where x− is the sampled negative transaction corresponding to the positive one
x+, and σ is the sigmoid function. More detailly, we first sample a mini-batch of
positive user-item transactions (i.e., x+), which contain feature vectors to describe
specific user contexts and item attributes. Thereafter, for every specific user
context, negative items are randomly sampled from a uniform distribution. Then
we combine the features of the sampled negative items and the corresponding
user context features to form negative user-item transactions (i.e., x−). Finally,
both positive and negative transactions are fed to train the loss function defined
in Eq.(3.9).

The embedding layer is pre-trained with FM using BPR loss. To avoid over-
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fitting, we involve L2 regularization on the embedding layer, convolution layers,
and the fully-connected layer. Besides, before the final fully-connected layer, a
drop-out layer is also inserted.

3.2.3 Discussion
3.2.3.1 Time Complexity

As described above, the depth of the interaction cube is p(p − 1)/2. Given the
embedding size d, the time complexity to perform 3D convolution is O(p2d2).
Given the situation that p � m, we can see that the major complexity comes
from d2 which is introduced by the convolution. However, this burden can be
largely reduced through GPU acceleration.

The other part of complexity comes from feature pooling. Assuming the atten-
tion factor is n, the time complexity to calculate attention is O(mnd). Therefore,
the total time complexity of CFM is O(p2d2 +mnd).

3.2.3.2 Relationship with Other Models

In this subsection, we provide an analysis to demonstrate the relationship between
the proposed CFM with some other related deep learning-based models.

Neural factorization machine (NFM) (He and Chua, 2017) is also proposed
to address the linearity problem of FM. The difference between CFM and NFM
mainly lies in the modeling of feature interactions. NFM uses an inner product-
based Bi-interaction pooling vector to represent feature interactions. After that,
a MLP is utilized to learn signals from the pooling vector. Although the Bi-
interaction pooling enables the involvement of MLP, we argue that this pooling
operation makes no difference with the original FM. The point is that NFM uses
a MLP to learn non-linear combinations of the pooling vector’s dimensions, while
FM just sums all dimensions of the vector. On the other hand, even if NFM is
claimed to support the learning of high-order interactions, we argue that the way
NFM used (simple hidden layers) is too implicit to capture the complex signals
effectively. However, our CFM uses an outer product-based interaction cube and
3D CNN to model the feature interactions. Firstly, the outer product-based cube
contains much more signals than the one-dimensional pooling vector. Secondly,
the 3D structure also provides a more explicit manner to model high-order in-
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teractions. Besides, 3D CNN is also easier to train compared with the naive
MLP which needs more parameters and even suffers from detrimental perfor-
mance when the network goes deeper (He et al., 2018a). Another similar research
is outer product-based neural collaborative filtering (ONCF) (He et al., 2018a),
which also utilizes outer product to model user-item interactions. The main dif-
ference between ONCF and CFM lies in the following three points:

• ONCF uses outer-product to model interactions between users and items
while CFM models the interactions between features. In this view, the
relationship between CFM and ONCF is something like the relationship
between SVDfeature (Chen et al., 2012) and FM.

• ONCF uses a two-dimensional interaction map while CFM involves a three-
dimensional cube when modeling feature interactions. Although ONCF can
also integrate contextual information, the user (item) embedding it learns
is just a linear sum of the corresponding user (item) feature embeddings.
However, there is no concept of user (item) embeddings in CFM but only
the concept of feature embeddings. At this point, ONCF can be seen as
a special case of CFM in which all user (item) feature embeddings are
aggregated linearly to formulate a user (item) embedding.

• ONCF uses conventional 2D CNN while CFM utilizes 3D CNN when ex-
tracting the signal of interactions. The latter is more effective to capture
high-order interactions, which can be seen as the convolution between dif-
ferent “floors” of the interaction cube.

3.3 Experiments

In this section, we conduct experiments to verify the effectiveness of the pro-
posed CFM. We need to observe the model performance, efficiency, and ablation
study. As a result, the experiments are conducted based on the following research
questions.

RQ1: Does the CFM model outperform state-of-the-art methods for feature-
based top-N recommendation?
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Table 3.1: Datasets statistics for Chapter 3.

Dataset #users #items #transactions #fields

Frappe 957 4,082 96,203 10
Last.fm 1,000 20,301 214,574 4
MovieLens 6,040 3,665 939,809 4

RQ2: How do the special designs of CFM (i.e., interaction cube and 3DCNN)
affect the model performance?

RQ3: What’s the effect of the attention-based feature pooling?

3.3.1 Experimental Settings
3.3.1.1 Data Description

To evaluate the performance of the proposed CFMmodel, we conduct comprehen-
sive experiments on three real-world implicit feedback datasets: Frappe1, Last.fm2

and MovieLens3. Table 3.1 summarizes the statistics of these datasets.
Frappe: This dataset is conducted by Baltrunas et al. (2015) to generate right

app recommendation for right moments. Frappe contains 96, 203 app usage logs
of different user contexts. Each log contains 10 contextual feature fields (i.e.,
p = 10) including user ID, item ID, daytime and some other information.

Last.fm: The Last.fm dataset is for music recommendation. We extract the
latest one-day listening history of 1,000 users. The user context is described by
user ID and the last music ID that the user has listened to within 90 minutes.
The item attributes include music ID and artist ID.

MovieLens: The original MovieLens dataset is designed for explicit rating pre-
diction. Here we binarize it into implicit feedback. The user context is described
by user ID and historical items (multi-hot). The item feature is composed of
movie ID and movie genres (multi-hot).

1http://baltrunas.info/research-menu/frappe
2http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset
3https://grouplens.org/datasets/movielens/latest/
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3.3.1.2 Evaluation Protocols

We adopt the leave-one-out evaluation to test the performance of models, which
has been widely used in literature (He et al., 2017b; Yuan et al., 2016; He et al.,
2018c). More specifically, for Last.fm and MovieLens, the latest transaction of
each user is held out for testing and the remaining data is treated as the training
set. For the Frappe dataset, because there is no timestamp information so we
randomly select one transaction for each specific user context as the test example.

The recommendation quality is evaluated by Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). HR@N is a recall-based metric, measuring
whether the test item is in the top-N positions of the recommendation list (1
for yes and 0 otherwise). NDCG@N are weighted versions that assign higher
scores to the top-ranked items (Järvelin and Kekäläinen, 2002). These measures
are described precisely in section 2.1.3.2. All experiments are run 5 times with
different random seeds and the average performance is reported.

3.3.1.3 Baselines

We implemented CFM1 using TensorFlow. We compare the performance of CFM
with the following baselines:

• PopRank: This method returns top-N most popular items. It acts as a
basic benchmark.

• FM: The original factorization machine (Rendle, 2010) trained by BPR loss
(Rendle et al., 2009b).

• NFM: Neural factorization machine (He and Chua, 2017) is a strong baseline
that uses a MLP to learn nonlinear and high-order interaction signals.

• DeepFM: This method (Guo et al., 2017) ensembles the original FM and a
MLP to generate recommendation.

• ONCF: This method (He et al., 2018a) is a newly proposed algorithm that
improves MF with the outer product.

1Codes are available at https://github.com/chenboability/CFM
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3.3.1.4 Parameter Settings

We implemented Poprank, FM, and DeepFM by Tensorflow1. NFM and ONCF
are based on the author’s implementation. To fairly compare the performance of
models, we train all of them by optimizing the BPR loss with mini-batch Adagrad
(Duchi et al., 2011). The learning rate is searched between [0.01,0.02,0.05] for all
models. The batch size is set as 256. For all models except PopRank and FM, we
pre-train them using the original FM with 500 iterations. The dropout ratio for
NFM, DeepFM, ONCF, and CFM is tuned in [0.1,0.2,· · ·,0.9]. The embedding
size and attention factor are set as 64 and 32, respectively. The output channels
of CNN-based models (i.e., ONCF and CFM) are set as 32. Regarding NFM, the
number of MLP layers is set as 1 with 64 neurons, which is the recommended
setting of their original paper (He and Chua, 2017). For the deep component of
DeepFM, we set the MLP according to their original paper (Guo et al., 2017),
which has 3 layers and 200 neurons in each layer.

Because the number of feature fields p differs between different datasets, the
sizes of interaction cubes are also different, resulting in different kernel sizes and
strides of 3D convolution layers2. More specifically, we use the structure illus-
trated in Figure 3.2 on the Frappe dataset. For Last.fm and MovieLens, the filter
shape is [2,2,2] and the stride is [2,2,1] for all six layers.

3.3.2 Performance Comparison (RQ1)

Table 3.2 shows the top-N recommendation performance on all three datasets.
It’s obvious that CFM achieves the best performance on all datasets regarding
both HR and NDCG, with a significant difference. This observation provides
strong support for the thesis statement (1). We argue that this significant im-
provement lies in the following two points:

• The outer product-based interaction cube is a fairly good approach to rep-
resent feature interactions. This can be seen from the comparison between
CFM and NFM, which uses inner product-based pooling vectors to present
feature interactions.

1https://www.tensorflow.org/
2Another approach is to use padding so that the settings of CNN layers can be fixed.
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Table 3.2: Comparison between different models of Chapter 3 when generating
top-N recommendation. N ∈ {5, 10, 20}. Boldface denotes the highest score. ∗
denotes the statistical significance for p < 0.05 compared with the best baseline.

Top-5 Frappe Last.fm Movielens

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

PopRank 0.2539 0.1595 0.0013 0.0007 0.0121 0.0071
FM 0.4204 0.3054 0.1658 0.1142 0.0512 0.0295
DeepFM 0.4632 0.3308 0.1773 0.1204 0.0563 0.0355
NFM 0.4798 0.3469 0.1827 0.1235 0.0634 0.0374
ONCF 0.5359 0.3940 0.2183 0.1493 0.0579 0.0343
CFM∗ 0.5462 0.4153 0.2375 0.1573 0.0697 0.0426

Top-10 Frappe Last.fm Movielens

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

PopRank 0.3493 0.1898 0.0023 0.0011 0.0235 0.0107
FM 0.5486 0.3469 0.2382 0.1374 0.0998 0.0452
DeepFM 0.6035 0.3765 0.2612 0.1473 0.1170 0.0526
NFM 0.6197 0.3924 0.2676 0.1488 0.1192 0.0553
ONCF 0.6531 0.4320 0.3208 0.1823 0.1110 0.0514
CFM∗ 0.6720 0.4560 0.3538 0.1948 0.1323 0.0627

Top-20 Frappe Last.fm Movielens

HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

PopRank 0.4136 0.2060 0.0032 0.0013 0.0429 0.0156
FM 0.6590 0.3750 0.3537 0.1665 0.1762 0.0644
DeepFM 0.7322 0.4092 0.3799 0.1772 0.2033 0.0723
NFM 0.7382 0.4225 0.3783 0.1765 0.2029 0.0748
ONCF 0.7691 0.4614 0.4611 0.2176 0.2002 0.0738
CFM∗ 0.7774 0.4859 0.4841 0.2277 0.2248 0.0858
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(a) Effect of outer product (b) 3D architecture study (c) Effect of 3D CNN

Figure 3.3: Study of the interaction cube and 3D CNN of CFM.

• The involved 3D CNN is more effective to extract signals compared with
2D CNN (ONCF) and MLP (NFM, DeepFM), especially for high-order
interactions.

Among the baselines, we can see that ONCF achieves the best performance
while the improvement of NFM and DeepFM over original FM is relatively
marginal. The reason is that ONCF uses the outer product to model user-item
interactions while NFM and DeepFM are still inner product-based, which cannot
capture the correlations between embedding dimensions. Besides, ONCF utilizes
2D CNN to extract signals, which is much more effective compared with the MLP
of NFM and DeepFM.

3.3.3 Model Investigation (RQ2)
3.3.3.1 Study of the interaction cube.

In this part, we conduct experiments to further demonstrate the effectiveness of
special designs of the introduced interaction cube, including the outer product
and the stacked 3D architecture.

• Outer product: To show the effectiveness of the outer product, we replace it
with an alternative solution — element-wise product (element). Each pair-
wise feature interaction is represented by an element-wise product between
feature embeddings, resulting in a vector. All these vectors are aggregated
as a matrix and we use a six-layers 2D CNN to learn signals from it. Figure
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3.3(a) shows the results on Frappe dataset. It’s obvious that CFM overper-
forms the element-wise product-based method when both of them use CNN
to extract signals. This is because the element-wise product assumes that
embedding dimensions are independent of each other while the outer prod-
uct eliminates this assumption and captures the dimension correlations.

• 3D architecture: To show the effect of the 3D architecture, we convert
the interaction cube to a 2D feature map through two different operations.
The first is to tile each feature interaction image to form a bigger feature
map (tiled)1. The second is to use a max-pooling operation on the depth
direction of the interaction cube (pooling). Then we use a six-layers 2D
CNN to learn signals from the map. Figure 3.3(b) shows the results on
Frappe. We can see that CFM achieves better performance than the tiled
method. We argue that the reason is the stacked 3D architecture provides
a rather explicit manner to model high-order interactions. However, the
tiled feature map can only support implicit high-order interaction modeling.
Besides, we can also see that the max pooling operation will downgrade the
performance because it only considers the most important second-order
interactions. However, the performance is still better than the original FM,
which demonstrates the effectiveness of the outer product and the strong
learning capability of CNN.

3.3.3.2 Study of 3D CNN

To tackle the 3D interaction cube, another solution is to use multi-channel 2D
CNN (MCNN). Here, we also conduct experiments to make a comparison between
them. Figure 3.3(c) illustrates the results on the Frappe dataset. Results on
other datasets show the same trend. We can see that compared with MCNN,
our CFM achieves better performance. The reason is that the convolution in the
depth direction of 3DCNN explicitly models high-order feature interactions while
MCNN cannot achieve this in such an explicit manner.

1For Frappe, the size of the feature map is 320× 576 = 64× 64× 45.
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Table 3.3: Effect of self-attention on CFM. Max and
Mean denote replacing the self-attention with max-
pooling and mean-pooling, respectively.

Model HR@10 HR@20 NDCG@10 NDCG@20

Max 0.1257 0.2142 0.0591 0.0813
Mean 0.1291 0.2212 0.0603 0.0833
CFM 0.1323 0.2248 0.0627 0.0858

Table 3.4: Effect of feature pooling on CFM. CFM-
wfp denotes the CFM model without feature pooling.
Time denotes the running time for one single iteration.

Indicator FM CFM CFM-wfp

Time 0.53m 4.63m 50.52m
HR@10 0.0998 0.1323 0.1297
NGCG@10 0.0452 0.0627 0.0605

3.3.4 Study of Feature Pooling (RQ3)

The proposed CFM leverages a self-attention mechanism to perform feature pool-
ing. To demonstrate the effectiveness of the involved attention mechanism, we
replace it with max-pooling and mean-pooling. Table 3.3 shows the results on
MovieLens1. We can see that mean-pooling achieves better performance than
max-pooling because max-pooling only considers the most important feature and
lots of information is discarded. However, the attention-based CFM achieves the
best performance. In fact, the attention-based feature pooling automatically as-
signs different importance to different features. It can not only retain the rich
feature information but also debilitate the noise influence.

Table 3.4 shows the comparison between CFM with and without feature pool-
ing on MovieLens dataset. We can see that the attention-based feature pooling
can dramatically reduce the training time without affecting the model perfor-
mance. It can even result in better recommendation quality.

1The other two datasets only contain one-hot features and we don’t use feature pooling on
them.
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3.4 Chapter Summary

In this chapter, we propose a deep supervised recommendation model CFM for
implicit feedback data, which seamlessly combines automatic feature interaction
modeling of FM and the strong learning capability of CNN. The key design of
CFM is to use an outer product-based interaction cube to represent feature inter-
actions and then utilize deep CNN to extract signals from it. As a result, correla-
tions among embedding dimensions can be effectively captured and higher-order
interaction signals can also be learned in a rather explicit approach. Besides,
we also utilize a self-attention mechanism to perform feature pooling and reduce
computational cost. Extensive experiments on three datasets demonstrate that
CFM has superior performance compared with state-of-the-art models when gen-
erating top-N recommendation from implicit feedback data. This observation
provides support for the thesis statement (1). Generally speaking, all the fea-
tures can be divided into the user-related field, item-related field, and the (other)
context field. If we perform feature pooling among the three fields, the depth
of the interaction cube would be three, corresponding to user-item interactions,
user-context interactions, and item-context interactions, respectively. It shows a
similar property with the three RGB colors of images. As a result, we think CFM
will provide some hints to further utilize the advances in the computer vision field
for recommendation.
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Relational Collaborative Filtering

In Chapter 3, we developed CFM for feature-based implicit feedback data. CFM
has shown improved performance compared with the state-of-the-art baselines.
However, the CFM model can be seen as a black box, which has limitations to
generate explainable recommendation. In this chapter, we introduce Relational
Collaborative filtering, which targets utilizing multiple item relations to generate
more reasonable recommendation results. This chapter is mainly based on my
previous work “Relational Collaborative Filtering: Modeling Multiple Item Rela-
tions for Recommendation” published in International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR) 2019 with DOI:
https://doi.org/10.1145/3331184.3331188.

Item-based collaborative filtering (ICF) methods leverage only the relation of
collaborative similarity — i.e., the item similarity evidenced by user interactions.
Nevertheless, there exist multiple relations between items in real-world scenarios,
e.g., two movies share the same director, two products complement each other,
etc. Distinct from the collaborative similarity that implies co-interact patterns
from the user’s perspective, these relations reveal fine-grained knowledge on items
from different perspectives of meta-data, functionality, etc. However, how to
incorporate multiple item relations is less explored in recommendation research.

In this chapter, we propose Relational Collaborative Filtering (RCF) to ex-
ploit multiple item relations for implicit feedback recommendation. We find that
both the relation type (e.g., shared director) and the relation value (e.g., Steven
Spielberg) are crucial in inferring user preference. To this end, we develop a
two-level hierarchical attention mechanism to model user preference — the first-
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level attention discriminates which types of relations are more important, and
the second-level attention considers the specific relation values to estimate the
contribution of a historical item. To make the item embeddings be reflective of
the relational structure between items, we further formulate a task to preserve
the item relations and jointly train it with user preference modeling.

Empirical results on two real datasets demonstrate the strong performance of
RCF. Furthermore, we also conduct qualitative analyses to show the benefits of
explanations brought by RCF’s modeling of multiple item relations. The results
provide strong support for the thesis statement (2).

4.1 Introduction

Item-based collaborative filtering (ICF) is one of the most successful recommen-
dation methods owing to its interpretability and effectiveness (Kabbur et al.,
2013; He et al., 2018c), being highly preferred in industrial applications (Smith
and Linden, 2017; Covington et al., 2016; Eksombatchai et al., 2018). The key
assumption of ICF is that a user shall prefer the items that are similar to her
historically interacted items (Linden et al., 2003; Xue et al., 2018; Wang et al.,
2019a). The similarity is typically judged from user interactions — how likely
two items are co-interacted by users in the past.

Despite prevalence and effectiveness, we argue that existing ICF methods are
insufficient since they only consider the collaborative similarity relation, which is
macro-level, coarse-grained, and lacks concrete semantics. In real-world applica-
tions, there typically exist multiple relations between items that have concrete
semantics, and they are particularly helpful to understand user behaviors. For ex-
ample, in the movie domain, some movies may share the same director, actors, or
other attributes; in E-commerce, some products may have the same functionality,
similar image, etc. These relations reflect the similarity of items from different
perspectives, and more importantly, they could affect the decisions of different
users differently. For example, after two users (u1 and u2) watch the same movie
“E.T. the Extra-Terrestrial”, u1 likes the director and chooses “Schindler’s List”
to watch next, while u2 likes the fiction theme and watches “The Avenger” in the
next. Without explicitly modeling such micro-level and fine-grained relations be-
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tween items, it is conceptually difficult to reveal the true reasons behind a user’s
decision, not to mention to recommend desired items with persuasive explana-
tions like “The Avenger” is recommended to you because it is a fiction movie like
“E.T. the Extra-Terrestrial” you watched before for the user u2.

In this chapter, we develop Relational Collaborative Filtering (RCF) to inte-
grate multiple item relations for implicit feedback recommendation. To retain the
fine-grained semantics of relations and facilitate the reasoning on user preference,
we represent a relation as a concept with a two-level hierarchy:

1. Relation type, which can be shared director or genre in the above movie
example, or functionality or visual similarity for E-commerce products. It
describes how items are related to each other in an abstract way. The
collaborative similarity is also a relation type from the macro view of user
behaviors.

2. Relation value, which gives details on the shared relation of two items.
For example, the value of relation shared director for “E.T. the Extra-
Terrestrial” and “Schindler’s List” is Steven Spielberg, and the values for
relation shared genre include fiction, action, romantic, etc. The relation
values provide important clues for scrutinizing a user’s preference since a
user could weigh different values of a relation type differently when making
decisions.

Figure 4.1 gives an illustrative example on the item relations. Note that
multiple relations may exist between two items; for example, badminton birdies
balls and badminton rackets have two relations of complementary functionality
and shared category. Moreover, a relation value may occur in multiple relations
of different types; for example, a director can also be the leading actor of other
movies, thus it is likely that two types of relations have the same value which refers
to the same stuff. When designing a method to handle multiple item relations,
these factors should be taken into account, making the problem more complicated
than the standard ICF.

To integrate such relational data into ICF, we devise a two-level neural at-
tention mechanism (Bahdanau et al., 2014) to model the historically interacted
items. Specifically, to predict a user’s preference on a target item, the first-level
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Figure 4.1: An example of multiple item relations. Each relation is described with
a two-level hierarchy of type and value. Multiple relations may exist between two
items and the same value may occur in relations of different types.

attention examines the types of relations that connect the interacted items with
the target item and discriminates which types affect more on the user. The
second-level attention is operated on the interacted items under each relation
type, so as to estimate the contribution of an interacted item in recommending
the target item. The two-level attention outputs a weight for each interacted
item, which is used to aggregate the embeddings of all interacted items to obtain
the user’s representation. Furthermore, to enhance the item embeddings with the
multi-relational data, we formulate another learning task that preserves the item
relations with embedding operations. Finally, we jointly optimize the two tasks
to make maximum usage of multiple relations between items.

To summarize, this chapter makes the key contributions as follows:

• We propose a new and general item-based implicit feedback recommen-
dation task, that is incorporating the multiple relations between items to
better predict user preference.

• We devise a new method RCF, which leverages the relations in two ways:
constructing user embeddings by improved modeling of historically inter-
acted items and enhancing item embeddings by preserving the relational
structure.
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Figure 4.2: Comparison between ICF and RCF. The links between items of ICF
are implicit and single, which denote the collaborative similarity. However, the
links between items of RCF are explicit and multiple.

• We conduct experiments on two datasets to validate our proposal. Quan-
titative results show RCF outperforms several recently proposed methods,
and qualitative analyses demonstrate the recommendation explanations of
RCF with multiple item relations.

4.2 Methodology

We first introduce the problem of using multiple item relations for implicit feed-
back recommendation and then elaborate on our proposed RCF method.

4.2.1 Problem Formulation

Given a user and his interaction history, conventional ICF methods aim at gen-
erating recommendations based on the collaborative similarity which encode the
co-interact patterns of items. Its interaction graph can be shown as the left part
of Figure 4.2, where the links between items are just the implicit collaborative
similarity. However, there are multiple item relations in the real world that have
meaningful semantics. In this chapter, we define the item relations as:

Definition 1. Given an item pair (i, j), the relations between them are defined
as a set of r =< t, v > where t denotes the relation type and v is the relation
value.
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Table 4.1: Notations for Chapter 4

Notation Description

U , I the set of users and items
T the set of relation types
V the set of relation values
I+
u the item set which user u has interacted with
Itu,i the items in I+

u that have the relation of type t with the
target item i

Ir(i, j) an indicator function where Ir(i, j) = 1 if relation r
holds for item i and j, otherwise 0

pu ∈ Rd the ID embedding for user u ∈ U , which represents the
user’s inherent interests

qi ∈ Rd the embedding for item i ∈ I
xt ∈ Rd the embedding for relation type t ∈ T
zv ∈ Rd the embedding for relation value v ∈ V

The target of RCF is to generate recommendations based on both the implicit
user-item interaction history and item relational data. Generally speaking, the
links between items in the interaction graph of RCF contain not only the implicit
collaborative similarity but also the explicit multiple item relations, which are
represented by the heterogeneous edges in the right part of Figure 4.2. The
notations for this chapter are summarized in Table 4.1.

In the remainder of this section, we first present the attention-based model to
infer user-item preference. We then illustrate how to model the item relational
data to introduce the relational structure between item embeddings. Based on
that, we propose to integrate the two parts in an end-to-end fashion through a
multi-task learning framework. Finally, we provide a discussion on the relation-
ship between RCF and some other models.

4.2.2 User-Item Preference Modeling

An intuitive motivation when modeling user preference is that users tend to pay
different weights to relations of different types (e.g., some users may prefer movies
that share the same actors, some users may prefer movies that fall into the same
genres). Given multiple item relations which consist of relation types and relation
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Figure 4.3: Illustration of the proposed RCF model. The target-aware user em-
bedding (mu,i) is modeled with a two-level hierarchy attention mechanism. The
input of the first level attention contains the user ID embedding and relation
types. The second level attention is used to calculate the weights of specific his-
torical items. There are three inputs during this state, including the target item,
the historical item, and the relation value. Note that one historical item (e.g., i1)
can occur in different Itu,i when there are multiple relations between it and the
target item.

values, we propose to use a hierarchy attention mechanism to model the user
preference. Figure 4.3 demonstrates the overall structure of our model.

Given the item relational data, we first divide the interacted items of user u
(i.e., I+

u ) into different sets (i.e., Itu,i) according to the relation types between
these items and the target item. Note that a single item may occur in different
Itu,i when there are multiple relations between this item and i. Besides, there
may be some items which have no explicit relation with the target item. To
tackle with these items, we introduce a latent relation r0 =< t0, v0 > and put
these items into It0u,i, as shown in Figure 4.3. Here r0 can be regarded as the
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collaborative similarity which just indicates the item co-interact patterns. Then
the target-aware user embedding can be formulated as

mu,i = pu +
∑
t∈T

α(u, t) · stu,i , (4.1)

where α(u, t) is the first-level attention which aims to calculate the importance
of different relation types for this user and stu,i describes the user’s profile based
on the items in Itu,i. More precisely, we define α(u, t) with the standard softmax
function:

α(u, t) =
exp(a(pu,xt))∑
t′∈T exp(a(pu,xt′))

, (4.2)

where a(pu,xt) is the attention score between user u and relation type t. We
define it with a feedforward neural network, as shown in Eq.(4.3)

a(pu,xt) = hT1 (ReLU(W1(pu ⊗ xt) + b1)). (4.3)

W1 and b1 are corresponding weight matrix and bias vector that project the
input into a hidden state, and hT1 is the vector which projects the hidden state
into the attention score. We term the size of hidden state as “attention factor”,
for which a larger value brings a stronger representation power for the attention
network. ⊗ denotes the element-wise product.

The next step is to model stu,i. It’s obvious that the relation value accounts
for an important part of this process. For example, a user may pay attention
to genres when watching a movie. However, among all the genres, he is most
interested in fiction other than romantic. As a result, we should consider both
the items and the corresponding relation values when modeling the second-level
attentions. From that view, we define stu,i as

stu,i =
∑
j∈Itu,i

βt(i, j, v) · qj , (4.4)

where βt(i, j, v) represents the specific weight of item j. Similar to Eq.(4.2),
a straight-forward solution to calculate βt(i, j, v) is to use the softmax function.
However we found that such a simple solution would lead to bad performance. The
reason is that the number of items between different Itu,i vary greatly. For those
items in large Itu,i, the standard softmax function will have very big denominator,
causing the gradient vanishing problem of corresponding qj. Same observations
can also be found in He et al. (2018c) under similar circumstances.

To tackle with this problem, we utilize a smoothed softmax function to replace
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the standard solution. As a result, the weight βt(i, j, v) is formulated as

βt(i, j, v) =
exp(bt(qi,qj, zv))

[
∑

j′∈Itu,i
exp(bt(qi,qj′ , zv′ ]ρ

, (4.5)

where ρ is a smoothing factor between (0,1] and is commonly set as 0.5 (He et al.,
2018c). bt(qi,qj, zv) is the second-level attention score which is defined as

bt(qi,qj, zv) = hT2,t(ReLU(W2,t[qi,qj, zv] + b2,t)), (4.6)

where [·] denotes the vector concatenation. W2,t, b2,t and h2,t are corresponding
attention parameters. Different from Eq.(4.3) which utilizes element-wise product
to learn signals from inputs, here we concatenate the input embeddings and send
them to a feedforward neural network. The reason is that there are three inputs
when modeling the second-level attention. Utilizing the element-wise product
under such a situation would have a high risk of suffering from vanishing or
exploding gradients.

Now we have completed the modeling of the target-aware user embedding
mu,i. Based on that, we utilize a multilayer perceptron (MLP) to calculate the
final predicted score of user u on item i, which is shown as:1

ŷui = MLP (mu,i ⊗ qi), (4.7)

Given the final predicted score ŷui, we want the positive items to have a higher
rank than negative ones. We utilize the BPR pairwise learning framework (Rendle
et al., 2009b) to define the objective function, which is shown as

Lrec = −
∑

(u,i,k)∈DI

lnσ(ŷui − ŷuk), (4.8)

where σ denotes the sigmoid function and DI is the set of training triplets:

DI =
{

(u, i, k)|u ∈ U ∧ i ∈ I+
u ∧ k ∈ I\I+

u

}
. (4.9)

4.2.3 Item-Item Relational Data Modeling

The second task of RCF is to model the item relational data. Typically, the
relational data is organized as knowledge graphs (KG). A knowledge graph is a
directed heterogeneous graph in which nodes correspond to entities and edges
correspond to relations. It can be represented by a set of triplets (e1, r, e2) where
e1 denotes the head entity, r is the relation and e2 represents the tail entity.

1We introduce a dropout layer (Srivastava et al., 2014) before each layer of the MLP to
prevent overfitting.
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Knowledge graph embedding (KGE) is a popular approach to learn signals from
relational data which aims at embedding a knowledge graph into a continuous
vector space.

However, directly using techniques from KGE (Bordes et al., 2013; Lin et al.,
2015; Yang et al., 2014) to model the item relations of RCF is infeasible due to
the following challenges in our specific domain:

1. The item relation is defined with a two-level hierarchy: relation type and
relation value. As shown in Figure 4.1, the relation between “E.T. the Extra-
Terrestrial” and “The Avenger” is described as <shared genre, fiction>. To
represent this relation properly, we must consider both the first-level (i.e.,
shared genre) for type constraints and the second-level (i.e., fiction) for model
fidelity. As a result, we can not assign a single embedding for an item relation
r =< t, v >, which is a common case in the field of KGE (Bordes et al., 2013;
Lin et al., 2015; Yang et al., 2014).

2. Different from the conventional KG which is represented as a directed graph,
the item relations are reversible (i.e., the relation r holds for both (e1, e2)

and (e2, e1)), resulting in an undirected graph structure. Traditional KGE
methods (Bordes et al., 2013; Lin et al., 2015) may encounter difficulties under
such situations. For example, the most popular TransE (Bordes et al., 2013)
models the relation between two entities as a translation operation between
their embeddings, that is, e1 + r ≈ e2 when (e1, r, e2) holds, where e1, r, e2

are corresponding embeddings for head entity, relation and tail entity. Based
on that, TransE defines the scoring function for this triplet as f(e1, r, e2) =

‖e1 + r− e2‖2 where ‖ · ‖2 denotes the L2 norm of a vector. However, because
of the undirected structure, we will get both e1 +r ≈ e2 and e2 +r ≈ e1 on our
item relational data. Optimizing objective functions based on such equations
may lead to a trivial solution that r ≈ 0 and e1 ≈ e2.

To tackle the first challenge, we use the summation of the two-level hierar-
chy components as relation embeddings. More precisely, the representation of a
specific relation r =< t, v > is formulated as the following equation:

r = xt + zv. (4.10)

70



4.2 Methodology

By doing so, we can make sure that relations with the same type keep similar
with each other to some degree. Meanwhile, the model fidelity is also guaranteed
because of the value embedding. It also empowers the model with the ability to
tackle the situation that the same values occur in relations of different types.

To address the second challenge, we find that the source of the trivial solution
is the minus operation in TransE, which only suits for directed structures. To
model undirected graphs, we need the model which satisfies the commutative
law (i.e., f(e1, r, e2) = f(e2, r, e1)). Another state-of-the-art methods of KGE
is DistMult (Yang et al., 2014). It defines the scoring function as f(e1, r, e2) =

eT1 Mre2, where Mr is a matrix representation of r. It’s obvious that DistMult is
based on the multiply operation and satisfies the desired commutative property.
Based on that, given a triplet (i, r, j) which means item i and j has relation r,
we define the scoring function for this triplet as

f(i, r, j) = qTi · diag(r) · qj. (4.11)

Here diag(r) denotes a diagonal matrix whose diagonal elements equal to r cor-
respondingly.

Similar to the BPR loss used in the recommendation part, we want to max-
imize f(i, r, j) for positive examples and minimize it for negative ones. Based
on that, the objective function is defined by contrasting the scores of observed
triplets (i, r, j) versus unobserved ones (i, r, j−):

Lrel = −
∑

(i,r,j,j−)∈DR

lnσ(f(i, r, j)− f(i, r, j−)), (4.12)

where DR is defined as

DR =
{

(i, r, j, j−)|i, j, j− ∈ I ∧ Ir(i, j) = 1 ∧ Ir(i, j−) = 0 ∧ r 6= r0

}
. (4.13)

The above objective function encourages the positive item j to be ranked higher
than negative items j− given the context of the head item i and relation r.
Because r0 is defined as a latent relation so we don’t include it during this process.

4.2.4 Multi-Task Learning

To effectively learn parameters for recommendation, as well as preserve the re-
lational structure between item embeddings, we integrate the recommendation
part (i.e., Lrec) and the relation modeling part (i.e., Lrel) in an end-to-end fash-
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Algorithm 1 Learning algorithm for RCF
Input: user-item interaction data DI , item relationl data DR, learning rate η,

smoothing factor ρ, γ
Output: all parameters in the learning space Θ
1: Initialize all parameters in Θ
2: repeat
3: Draw a mini-batch of (u, i, k) from DI
4: Draw a mini-batch of (i, r, j, j−) from DR
5: Compute Lrec according to Eq.(4.1)-(4.9)
6: Compute Lrel according to Eq.(4.10)-(4.13)
7: L← Lrec + γLrel
8: for each parameter ϑ ∈ Θ do
9: Compute ∂L/∂ϑ on the mini-batch by back-propagation
10: Update ϑ← ϑ− η · ∂L/∂ϑ
11: end for
12: for θ ∈ {pu,qi,xt, zv} do
13: θ ← θ/max(1, ‖θ‖2)
14: end for
15: until converge
16: return all parameters in Θ
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ion through a multi-task learning framework. The total objective function of
RCF is defined as

min
Θ

L = Lrec + γLrel ,

s.t. ‖pu‖2 ≤ 1, ‖qi‖2 ≤ 1, ‖xt‖2 ≤ 1, ‖zv‖2 ≤ 1

∀u ∈ U , i ∈ I, t ∈ T , v ∈ V

(4.14)

where Θ is the total parameter space, including all embeddings and variables of
attention networks. It’s obvious that both Lrec and Lrel can be decreased by
simply scaling up the norm of corresponding embeddings. To avoid this problem
during the training process, we explicitly constrain the embeddings to fall into a
unit vector space. This constraint differs from traditional L2 regularization which
pushes parameters to the origin. It has been shown to be effective in both fields
of KGE (Bordes et al., 2013; Lin et al., 2015) and recommendation (He et al.,
2017a; Kang et al., 2018; Tay et al., 2018). The training procedure of RCF is
illustrated in Algorithm 1.

4.2.5 Discussion

Here we examine three types of related recommendation models and discuss the
relationship between RCF and them.

4.2.5.1 Conventional collaborative filtering

RCF extends the item relations from the collaborative similarity to multiple and
semantically meaningful relations. It can easily generalize the conventional CF
methods. If we downgrade the MLP in Eq.(4.7) to inner product and only consider
one item relation (i.e., the collaborative similarity), we can get the following
predicted score:

ŷui = pTuqi︸︷︷︸
MF

+qTi

 ∑
j∈I+u \{i}

β(i, j) · qj


︸ ︷︷ ︸

NAIS

, (4.15)

which can be regarded as an ensemble of matrix factorization (Koren et al., 2009)
and the item-based NAIS model (He et al., 2018c). In fact, compared with
conventional ICF methods, RCF captures item relations in an explicit and fine-
grained level, and thus enjoys much more expressiveness to model user preference.
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4.2.5.2 Knowledge graph enhanced recommendation

Recently, incorporating KG as an additional data source to enhance recommen-
dation has become a hot research topic. These works can be categorized into
embedding-based methods and path-based methods. Embedding-based methods
(Zhang et al., 2016a; Huang et al., 2018; Wang et al., 2018b; Cao et al., 2019)
utilize KG to guide the representation learning. However, the central part of ICF
is the item similarity and none of these methods is designed to explicitly model it.
On the contrary, RCF aims at directly modeling the item similarity from both the
collaborative perspective and the multiple concrete relations. Path-based meth-
ods (Wang et al., 2019b; Sun et al., 2018; Hu et al., 2018a; Wang et al., 2018a; Ai
et al., 2018) first construct paths to connect users and items, then the recommen-
dation is generated by reasoning over these paths. However, constructing paths
between users and items isn’t a scalable approach when the number of users and
items is very large. Under such a situation, sampling (Wang et al., 2018a; Ai
et al., 2018) and pruning (Wang et al., 2019b; Sun et al., 2018) must be involved.
However, RCF is free from this problem. Besides, the recommendation model of
RCF is totally different from the path-based methods.

4.2.5.3 Relation-aware recommendation

MCF (Park et al., 2017) proposed to utilize the “also-viewed” relation to enhance
rating prediction. However, the “also-viewed” relation is just a special case of the
item co-interact patterns and thus still belongs to the collaborative similarity.
Another work that considers heterogeneous item relations is MoHR (Kang et al.,
2018). But it only suits the sequential recommendation. The idea of MoHR is
to predict both the next item and the next relation. The major drawback of
MoHR is that it can only consider the relation between the last item of I+

u and
the target item. As a result, it fails to capture the long-term dependencies. On
the contrary, RCF models the user preference based on all items in I+

u . The
attention mechanism empowers RCF to be effective when capturing both long-
term and short-term dependencies.
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4.3 Experiments

In this section, we conduct experiments1 on two real-world datasets to evaluate
the proposed RCF model. We need to examine the performance of RCF and see
how the item relations affect the recommendation accuracy and interpretability.
Based on such motivation, we aim to answer the following research questions in
this section:

RQ1: Compared with state-of-the-art recommendation models, how does
RCF perform?

RQ2: How do the multiple item relations affect the model performance?
RQ3: How does RCF help to comprehend the user behavior? Can it generate

more explainable recommendation?
In the following parts, we will first present the experimental settings and then

answer the above research questions.

4.3.1 Experimental Settings
4.3.1.1 Datasets

We perform experiments with two publicly accessible datasets: MovieLens2 and
KKBox3, corresponding to movie and music recommendation, respectively. Table
4.2 summarizes the statistics of the two datasets.

1. MovieLens. This is the stable benchmark published by GroupLens
(Harper and Konstan, 2016), which contains 943 users and 1,682 movies. We
binarize the original user ratings to convert the dataset into implicit feedback.
To introduce item relations, we combine it with the IMBD dataset4. The two
datasets are linked by the titles and release dates of movies. The relation types
of this data contain genres5, directors, actors, and t0, which is the relation type
of the latent relation.

2. KKBox. This dataset is adopted from the WSDM Cup 2018 Challenge6

1Code can be found at https://github.com/XinGla/RCF
2https://grouplens.org/datasets/movielens/
3https://www.kaggle.com/c/kkbox-music-recommendation-challenge/data
4https://www.imdb.com/interfaces/
5Here, genres mean that two movies share at least one same genre, as shown in Figure 4.1.

The same definition also suits the following relation types.
6https://wsdm-cup-2018.kkbox.events/
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Table 4.2: Dataset statistics for Chapter 4.

Dataset MovieLens KKBox

User-Item
Interactions

#users 943 24,613
#items 1,682 61,877
#interactions 100,000 2,170,690

Item-Item
Relations

#types 4 5
#values 5,126 42,532
#triplets 924,759 70,237,773

and is provided by the music streaming service KKBox. Besides the user-item
interaction data, this dataset also contains the description of music, which can
help us to introduce the item relations. We process this dataset by removing the
songs that have a missing description. The final version contains 24,613 users,
61,877 items and 2,170,690 interactions. The relation types of this dataset contain
genre, artist, composer, lyricist, and t0.

4.3.1.2 Evaluation protocols

To evaluate the performance of item recommendation, we adopt the leave-one-out
evaluation, which has been widely used in literature (Kabbur et al., 2013; Chen
et al., 2017; He et al., 2018c). More precisely, for each user in MovieLens, we
leave his latest two interactions for validation and test and utilize the remaining
data for training. For the KKBox dataset, because of the lack of timestamps,
we randomly hold out two interactions for each user as the test example and the
validation example and keep the remaining for training. Because the number of
items is large in this dataset, it’s too time-consuming to rank all items for every
user. To evaluate the results more efficiently, we randomly sample 999 items that
have no interaction with the target user and rank the validation and test items
with respect to these 999 items. This has been widely used in many other works
(Chen et al., 2017; Tay et al., 2018; Wang et al., 2019b; He et al., 2018c).

The recommendation quality is measured by three metrics: hit ratio (HR),
mean reciprocal rank (MRR), and normalized discounted cumulative gain (NDCG).
HR@N is a recall-based metric, measuring whether the test item is in the top-N
positions of the recommendation list (1 for yes and 0 otherwise). MRR@N and
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NDCG@N are weighted versions that assign higher scores to the top-ranked items
in the recommendation list. Detailed definition of these metrics can be found in
section 2.1.3.2.

4.3.1.3 Compared methods

We compare the performance of the proposed RCF with the following baselines:

• MF (Koren et al., 2009): This is the standard matrix factorization which
models the user preference with the inner product between user and item
embeddings.

• FISM (Kabbur et al., 2013): This is a state-of-the-art ICF model which
characterizes the user with the mean aggregation of the embeddings of his
interacted items.

• NAIS (He et al., 2018c): This method enhances FISM through a neural
attention network. It replaces the mean aggregation of FISM with an
attention-based summation.

• FM (Rendle, 2010): Factorization machine is a feature-based baseline that
models the user preference with feature interactions. Here we treat the
auxiliary information of both datasets as additional input features.

• NFM (He and Chua, 2017): Neural factorization machine improves FM by
utilizing a MLP to model the high-order feature interactions.

• CKE (Zhang et al., 2016a): This is an embedding-based KG-enhanced rec-
ommendation method, which integrates the item embeddings from MF and
TransR (Lin et al., 2015).

• MoHR (Kang et al., 2018): This method is a state-of-the-art relation-aware
CF method. We only report its results on the MovieLens dataset because
it’s designed for sequential recommendation and the KKBox dataset con-
tains no timestamp information.
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4.3.1.4 Parameter settings

To fairly compare the performance of models, we train all of them by optimizing
the BPR loss with mini-batch Ada-grad (Duchi et al., 2011). The learning rate
is set as 0.05 and the batch size is set as 512. The embedding size is set as 64
for all models. For all the baselines, the L2 regularization coefficients are tuned
between [1e−5, 1e−4, 1e−3, 0]. For FISM, NAIS, and RCF, the smoothing factor ρ
is set as 0.5. We pre-train NAIS with 100 iterations of FISM. For the attention-
based RCF and NAIS, the attention factor is set as 32. Regarding NFM, we
use FM embeddings with 100 iterations as pre-training vectors. The number of
MLP layers is set as 1 with 64 neurons, which is the recommended setting of
their original paper (He and Chua, 2017). The dropout ratio is tuned between
[0, 0.1, · · ·, 0.9]. For the MLP of RCF, we adopt the same settings with NFM to
guarantee a fair comparison. For MoHR, we set the multi-task learning weights
as 1 and 0.1 according to their original paper (Kang et al., 2018). For RCF,
we find that it achieves satisfactory performance when γ = 0.01. We report the
results under this setting if there is no special mention.

4.3.2 Model Comparison (RQ1)

Table 4.3 demonstrates the comparison between all related methods when gen-
erating top-N recommendation. It’s obvious that the proposed RCF achieves
the best performance among all methods on both datasets regarding all differ-
ent top-N values. This observation also provides strong support for the thesis
statement (1). Both RCF and CFM show that deep supervised learning can help
to improve recommendation accuracy. However, RCF and CFM are designed
for different use cases. CFM is mainly tailored for feature-based context-aware
recommendation, which can be regarded as a black-box deep model. While RCF
aims to incorporate item-item relations for more convincing recommendation.

Compared with the conventional item-based FISM and NAIS which only con-
sider the collaborative similarity, our RCF is based on the multiple and concrete
item relations. We argue that this is the major source of improvement. From this
perspective, the results demonstrate the importance of multiple item relations
when modeling user preference.
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Table 4.3: Top-N recommendation performance comparison of different models
(N = 5, 10, 20) in Chapter 4. NG is short for NDCG. ∗ denotes the significance
p-value < 0.05 compared with the best baseline on the corresponding metric
(indicated by boldface).

Model MovieLens

HR@5 MRR@5 NG@5 HR@10 MRR@10NG@10 HR@20 MRR@20NG@20

MF 0.0774 0.0356 0.0458 0.1273 0.0430 0.0642 0.2110 0.0482 0.0833
FISM 0.0795 0.0404 0.0500 0.1325 0.0474 0.0671 0.2099 0.0526 0.0865
NAIS 0.0827 0.0405 0.0508 0.1367 0.0477 0.0683 0.2142 0.0528 0.0876
FM 0.0827 0.0421 0.0521 0.1410 0.0496 0.0707 0.1994 0.0535 0.0852
NFM 0.0880 0.0427 0.0529 0.1495 0.0495 0.0725 0.2153 0.0540 0.0889
CKE 0.0827 0.0414 0.0515 0.1404 0.0476 0.0688 0.2089 0.0528 0.0884
MoHR 0.0832 0.0490 0.0499 0.1463 0.0485 0.0733 0.2249 0.0554 0.0882
RCF 0.1039∗ 0.0517∗ 0.0646∗ 0.1591∗ 0.0598∗ 0.0821∗ 0.2354∗ 0.0642∗ 0.1015∗

Model KKBox

HR@5 MRR@5 NG@5 HR@10 MRR@10NG@10 HR@20 MRR@20NG@20

MF 0.5575 0.3916 0.4329 0.6691 0.4065 0.4690 0.7686 0.4135 0.4942
FISM 0.5676 0.4084 0.4356 0.6866 0.4103 0.4844 0.7654 0.4258 0.5244
NAIS 0.5862 0.4156 0.4409 0.6932 0.4153 0.4966 0.7810 0.4333 0.5315
FM 0.5793 0.4064 0.4495 0.6949 0.4219 0.4869 0.7941 0.4288 0.5121
NFM 0.5973 0.4183 0.4630 0.7178 0.4432 0.5088 0.7768 0.4476 0.5244
CKE 0.5883 0.4191 0.4613 0.6930 0.4332 0.4952 0.7865 0.4397 0.5389
RCF 0.7158∗ 0.5612∗ 0.5999∗ 0.7940∗ 0.5718∗ 0.6253∗ 0.8563∗ 0.5762∗ 0.6412∗
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Table 4.4: Performance of RCF when replacing the attention with
an average summation. Avg-1 denotes the first-level attention
(i.e.,a(u, t)) is replaced. Avg-2 means the second-level attention
(i.e., βt(i, j, v)) is replaced. Avg-both denotes replacing both at-
tentions. Dec is the average decrease of performance. ∗ denotes
the statistical significance for p < 0.05.

Models MovieLens

HR@10 MRR@10 NDCG@10 Dec

Avg-1 0.1478 0.0556 0.0746 -7.6%
Avg-2 0.1346 0.0501 0.0694 -15.6%
Avg-both 0.1294 0.0495 0.0684 -17.8%
RCF 0.1591∗ 0.0598∗ 0.0821∗

Models KKBox

HR@10 MRR@10 NDCG@10 Dec

Avg-1 0.7657 0.5484 0.5773 -5.0%
Avg-2 0.6983 0.4331 0.5249 -16.8%
Avg-both 0.6792 0.4103 0.4946 -20.4%
RCF 0.7940∗ 0.5718∗ 0.6253∗

Compared with the feature-based FM and NFM, RCF still achieves significant
improvement. The reason is that although FM and NFM also incorporate the
auxiliary information, they fail to explicitly model the item relations based on
that data. Besides, we can also see that NFM achieves better overall performance
than FM because it introduces a MLP to learn high-order interaction signals.
However, RCF achieves higher performance under the same MLP settings, which
confirms the effectiveness of modeling item relations.

Compared with CKE, we can see that although CKE utilizes KG to guide
the learning of item embeddings, it fails to directly model user preference based
on multiple item relations, resulting in lower performance than RCF. Besides,
we can see that although MoHR is also relation-aware, RCF still achieves better
results than it. The reason is that MoHR only considers the relation between the
last historical item and the target item, and thus fails to capture the long-term
dependencies among the user interaction history.
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Table 4.5: Modification of RCF. Single denotes only con-
sidering one relation (i.e., collaborative similarity). RCF-
type only considers relation types for the attention. RCF-
value only considers relation values. g denotes the atten-
tion function.

Modification

Single Eq.(4.1)⇒mu,i = pu +
∑

j∈I+u g(i, j) · qj
RCF-type Eq.(4.4)⇒ stu,i =

∑
j∈Itu,i

g(i, j) · qj
RCF-value Eq.(4.1)⇒mu,i = pu +

∑
j∈I+u g(i, j, v) · qj

4.3.3 Studies of Item Relations (RQ2)
4.3.3.1 Effect of the hierarchy attention

RCF utilizes a hierarchy attention mechanism to model user preference. In this
part, we conduct experiments to demonstrate the effect of the two-level atten-
tions. Table 4.4 shows the results of top-10 recommendation when replacing
the corresponding attention with average summation. It’s obvious that both the
first-level and the second-level attentions are necessary to capture user preference,
especially the second-level attention, which aims at calculating a specific weight
for every historical item and thus largely improves the model expressiveness.

4.3.3.2 Ablation studies on relation modeling

The proposed RCF defines the item relations with relation types and relation
values. To demonstrate the effectiveness of these two components, we modify the
proposed RCF by masking the corresponding parts. Table 4.5 shows the detail
of the masked models. Table 4.6 reports the performance when masking different
relation components. We can draw the following conclusions from this table.

1. RCF-type achieves better performance than the single model, demonstrating
the importance of relation types. Generally speaking, the type component
describes item relations at an abstract level. It helps to model the users’
preference on a class of items that share a particular similarity in some macro
perspectives.
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Table 4.6: Performance of different relation ablations when
generating top-10 recommendation. Dec is the average de-
crease of performance. ∗ denotes the statistical significance
for p < 0.05.

Ablations MovieLens

HR@10 MRR@10 NDCG@10 Dec

Single 0.1399 0.0481 0.0691 -14.6%
RCF-type 0.1484 0.0587 0.0804 -4.5%
RCF-value 0.1548 0.0558 0.0801 -3.4%
RCF 0.1591∗ 0.0598∗ 0.0821∗

Ablations KKBox

HR@10 MRR@10 NDCG@10 Dec

Single 0.6923 0.4666 0.5207 -15.7%
RCF-type 0.7523 0.5431 0.5723 -6.2%
RCF-value 0.7708 0.5579 0.5867 -3.8%
RCF 0.7940∗ 0.5718∗ 0.6253∗

2. The performance of RCF-value is also better than the single model. This
finding verifies the effectiveness of relation values, which describe the relation
between two specific items in a much fine-grained level. The relation value
increases the model fidelity and expressiveness largely through capturing the
user preference from a micro perspective.

3. RCF achieves the best performance. It demonstrates that both relation types
and relation values are necessary to model the user preference. Moreover, it
also confirms the effectiveness of the proposed two-level attention mechanism
to tackle the hierarchical item relations.

4.3.3.3 Effect of multi-task learning

RCF utilizes the item relational data in two ways: constructing the target-aware
user embeddings and introducing the relational structure between item embed-
dings through the multi-task learning framework. In this part, we conduct ex-
periments to show the effect of the latter.
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(a) MovieLens (b) KKBox

Figure 4.4: Effect of γ on the RCF model.

Figure 4.4 reports the results of MRR@10 and NDCG@10 when changing
the multi-task learning weight γ. It’s obvious the performance of RCF boosts
when γ increases from 0 to positive values on both two datasets. Because γ = 0

means only the recommendation task (i.e., Lrec) is considered, we can draw a
conclusion that jointly training Lrec and Lrel can definitely improve the model
performance. In fact, the function of Lrel is to introduce a constraint that if
there is a relation between two items, there must be an inherent structure among
their embeddings. This constraint explicitly guides the learning process of both
item and relation embeddings and thus helps to improve the model performance.
We can also see that with the increase of γ, the performance improves first and
then starts to decrease. Because the primary target of RCF is recommendation
other than predicting item relations, we must make sure that Lrec accounts for
the crucial part in the total loss. Actually, we can see from Table 4.2 that the
number of item-item relational triplets is much larger than the number of user-
item interactions, leading to a situation that γ is commonly set as a small value.

4.3.4 Qualitative Analyses (RQ3)

In this part, we conduct qualitative analyses to show how RCF helps us to com-
prehend user behaviors and generate more explainable recommendation.
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(a) MovieLens (b) KKBox

Figure 4.5: Average a(u, t) of RCF on two datasets. a(u, t) denotes the user u’s
attention on the relation type t.

4.3.4.1 Users as a whole

Figure 4.5 illustrates the average a(u, t) for all u ∈ U on the two datasets. We can
see that on the MovieLens dataset, the largest a(u, t) falls into the genre, which
means that users tend to watch movies that share the same genres. The second
position is an actor. This finding is in concert with common sense that genres
and actors are the most two important elements that affect the users’ choices on
movies. Director is in the third position. Moreover, we can see that all these
three relation types are more important than t0, which denotes the collaborative
similarity. It further confirms that only considering collaborative similarity is not
enough to model user preference. Multiple and fine-grained item relations should
be involved to generate better recommendation.

For the music domain, we can see that the most important relation type falls
into the artist. Following that is comp. (short for composer) and lyri. (short for
lyricist). They are the most three important factors that affect users when listen-
ing to music. Besides, compared with the movie domain, the attention a(u, t0) in
the music domain is much smaller. It indicates that user behavior patterns when
listening to music are more explicit than the ones when watching movies. As a
result, our proposed RCF achieves a bigger improvement on the KKBox dataset,
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Figure 4.6: Attention visualization of user u54 in MovieLens.

as shown in Table 4.3. This attention visualization shows that using deep learn-
ing can also help us to get a better comprehension of user behaviors, providing
supports for the thesis statement (2).

4.3.4.2 Individual case studies

We randomly select a user u54 in the MovieLens dataset to see how RCF helps
us to comprehend the individual user behavior. Figure 4.6 shows the attention
visualization of this user. We can see that this user pays the most attention
(0.4003) to the relation type “shared genres” when watching movies. Among the
second-level relation values, he is most interested in “crime” (0.4477) and “sci-fic”
(0.3928). Based on his historical interacted movies “Breakdown” and “The Fifth
Element”, the recommended movie is “Face/Off”. From this perspective, we can
also generate the explanation as “Face/Off” is recommended to you because it is
a crime movie like “Breakdown” you have watched before. It’s obvious that a side
benefit of RCF is that it can generate reasonable explanations for recommendation
results, providing strong support for the thesis statement (2).

85



4.4 Chapter Summary

4.4 Chapter Summary

In this chapter, we proposed a deep supervised learning model RCF to exploit
multiple item relations for implicit feedback recommendation. RCF extends the
item relations of ICF from collaborative similarity to fine-grained and concrete
relations. We found that both the relation type and the relation value are crucial
for capturing user preference. Based on that, we proposed to utilize a hierarchy
attention mechanism to construct user representations. Besides, to maximize the
usage of relational data, we further defined another task that aims to preserve
the relational structure between item embeddings. We jointly optimize it with
the recommendation task in an end-to-end fashion through a multi-task learning
framework. Extensive experiments on two real-world datasets show that RCF
achieves significant improvement over state-of-the-art baselines. Moreover, RCF
also provides us an approach to better comprehend user behaviors and gener-
ate more convincing recommendation. The experimental results provide strong
support for our thesis statement (1) and statement (2).
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Part III
Deep Reinforcement Learning for

Recommendation

In the previous part, two deep supervised learning models
for implicit feedback recommendation are proposed, namely
CFM and RCF. Through extensive experiments, we can see
that utilizing deep supervised learning models can not only
improve the recommendation accuracy but also increase the
recommendation interpretability. However, deep supervised
learning models are based on instant reward, without consid-
ering potential future gains. In this part, we will describe our
research on utilizing deep reinforcement learning methods for
implicit feedback recommendation, which aims at maximiz-
ing the cumulative gains in a whole interaction session. We
proposed to combine supervised learning and reinforcement
learning to perform more sample efficient off-policy reinforce-
ment learning for implicit recommendation. Experiments on
real-world datasets demonstrate the effectiveness of our pro-
posed methods.
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Chapter 5

Self-Supervised Reinforcement
Learning

For a real live recommender system, it is important to consider a number of
factors like long-term user engagement, multiple types of user-item interactions
such as clicks, purchases, etc. The current supervised approaches target instant
feedback and fail to model them appropriately. Casting the next-item recommen-
dation task as a reinforcement learning (RL) problem is a promising direction.
A major component of RL approaches is to train the agent through interactions
with the environment. However, it is often problematic to train a recommender
in an on-line fashion due to the requirement to expose users to irrelevant recom-
mendations. As a result, learning the policy from logged implicit feedback is of
vital importance, which is challenging due to the pure off-policy setting and lack
of negative rewards (feedback). This conforms with the thesis statement (3).

In this chapter, we propose self-supervised reinforcement learning for recom-
mendation tasks. Our approach augments standard recommendation models with
two output layers: one for (self-)supervised learning, and the other for the RL
part. The RL part acts as a regularizer to drive the supervised layer focusing
on specific rewards (e.g., recommending items that may lead to purchases rather
than clicks) and long-term optimization perspective while the self-supervised layer
with cross-entropy loss provides strong gradient signals for parameter updates
and representation learning. Based on such an approach, we propose two frame-
works namely Self-Supervised Q-learning (SQN) and Self-Supervised Actor-Critic
(SAC). We integrate the proposed frameworks with four state-of-the-art recom-
mendation models. Experimental results on two real-world datasets demonstrate
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the effectiveness of our approach. The results provide strong support for the
thesis statement (3).

This chapter is mainly based on my previous work “Self-Supervised Reinforce-
ment Learning for Recommender Systems” published in International ACM SI-
GIR Conference on Research and Development in Information Retrieval (SIGIR)
2020 with DOI: https://doi.org/10.1145/3397271.3401147.

5.1 Introduction

Generating next item recommendation from sequential user-item implicit inter-
actions in a session (e.g., views, clicks, or purchases) is one of the most common
use cases of implicit feedback recommendation and occurs in various domains of
live systems, such as e-commerce (Hu et al., 2018b), video (Chen et al., 2019a)
and music recommendation (Yuan et al., 2019). Session-based (next item) recom-
mendation models have often been trained with self-supervised learning, in which
the model is trained to predict the data itself instead of some “external” labels.
For instance, in language modeling, the task is often formulated as predicting the
next word given the previousm words (Mikolov et al., 2013). The same procedure
can be utilized to predict the next item the user may be interested in given past
interactions, see e.g., Hidasi et al. (2015); Yuan et al. (2019); Kang and McAuley
(2018). However, this kind of approach can lead to sub-optimal recommendations
since the model is purely learned by a loss function defined on the discrepancy
between model predictions and the self-supervision signal. Such a loss may not
match the expectations from the perspective of recommendation systems (e.g.,
long-term engagement). Moreover, there can be multiple types of user signals
in one session, such as clicks, purchases, etc. How to leverage multiple types
of user-item interactions to improve recommendation objectives (e.g., providing
users recommendations that lead to real purchases) is also an important research
question.

Reinforcement Learning (RL) has achieved impressive advances in game con-
trol (Mnih et al., 2015; Silver et al., 2016) and related fields. An RL agent is
trained to take actions given the state of the environment it operates in with
the objective of getting the maximum long-term cumulative rewards. A recom-
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mender system aims (or should aim) to provide recommendations (actions) to
users (environment) with the objective of maximizing the long-term user satis-
faction (reward) with the system. For example, in one specific timestamp of an
interaction session, recommending a mouse to the user could only get small re-
wards. However, this mouse recommendation could affect the following state of
the user in the session and finally lead to the purchase of a new computer, which
brings much larger cumulative rewards. Since in principle the reward schema can
be designed at will, RL also allows creating models that can serve multiple objec-
tives such as diversity and novelty. As a result, exploiting RL for recommendation
has become a promising research direction.

There are two classes of RL methods: model-free RL algorithms and model-
based RL algorithms. Model-free RL algorithms need to interact with the envi-
ronment to observe the feedback and then optimize the policy. Doing this in an
on-line fashion is typically unfeasible in commercial recommender systems since
interactions with an under-trained policy would affect the user experience. A user
may quickly abandon the service if the recommendations don’t match her inter-
ests. A typical solution is learning off-policy from the logged implicit feedback.
However, this poses the following challenges for applying RL-based methods:

• Pure off-policy settings: The policy should be learned from fixed logged
data without interactions with the environment (users). Hence the data
from which the RL agent is trained (i.e., logged data) will not match its
policy. Chen et al. (2019a) proposed to use propensity scores to perform
off-policy correction but this kind of method can suffer from unbounded
high variances (Munos et al., 2016).

• Lack of data and negative rewards: RL algorithms are data-hungry, tradi-
tional techniques overcome this by either simulating the environments or
by running RL iterations in controlled environments (e.g. games, robots).
This is challenging in the case of recommendations especially considering a
large number of potential actions (available items). Moreover, in most cases,
learning happens from implicit feedback. The agent only knows which items
the user has interacted with but has no knowledge about what the user dis-
likes. In other words, simply regressing to the Bellman equation (Bellman,
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1966) (i.e., Q-learning) wouldn’t lead to good ranking performance when
there is no negative feedback since the model will be biased towards positive
relevance values.

An alternative to off-policy training for recommender systems is the use of model-
based RL algorithms. In model-based RL, one first builds a model to simulate
the environment. Then the agent can learn by interactions with the simulated
environment (Chen et al., 2019b; Shi et al., 2019). These two-stage methods
heavily depend on the constructed simulator. Although related methods like
generative adversarial networks (GANs) (Goodfellow et al., 2014) achieve good
performance when generating images, simulating users’ responses is a much more
complex task.

In this chapter, we propose self-supervised reinforcement learning for implicit
feedback recommendation. The proposed approach serves as a learning mecha-
nism and can be easily integrated with existing recommendation models. More
precisely, given a sequential or session-based recommendation model, the (final)
hidden state of this model can be seen as its output as this hidden state is multi-
plied with the last layer to generate recommendations (Hidasi et al., 2015; Yuan
et al., 2019; Kang and McAuley, 2018; Tang and Wang, 2018). We augment
these models with two final output layers (heads). One is the conventional self-
supervised head1 trained with cross-entropy loss to perform ranking while the
second is trained with RL based on the defined rewards such as long-term user
engagement, purchases, recommendation diversity, and so on. For the training
of the RL head, we adopt double Q-learning which is more stable and robust
in the off-policy setting (Hasselt, 2010). The two heads complement each other
during the learning process. The RL head serves as a regularizer to introduce de-
sired properties to the recommendations while the ranking-based supervised head
can provide negative signals for parameter updates and representation learning.
We propose two frameworks based on such an approach: (1) Self-Supervised Q-
learning (SQN) co-trains the two layers with a reply buffer generated from the
logged implicit feedback; (2) Self-Supervised Actor-Critic (SAC) treats the RL
head as a critic measuring the value of actions in a given state while the super-

1For simplicity, we use “self-supervised” and “supervised” interchangeable in this chapter.
Besides, “head” and “layer” are also interchangeable.
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vised head as an actor to perform the final ranking among candidate items. As
a result, the model focuses on the pre-defined rewards while maintaining high-
ranking performance. We verify the effectiveness of the proposed approaches by
integrating SQN and SAC on four state-of-the-art next item recommendation
models.

To summarize, this chapter makes the following contributions:

• We propose self-supervised reinforcement learning for the next item rec-
ommendation from implicit feedback data. Our approach extends existing
recommendation models with a RL layer which aims to introduce reward-
driven properties to the recommendation.

• We propose two frameworks SQN and SAC to co-train the supervised head
and the RL head. We integrate four state-of-the-art recommendation mod-
els into the proposed frameworks.

• We conduct experiments on two real-world e-commerce datasets with both
clicks and purchase interactions to validate our proposal. Experimental re-
sults demonstrate the proposed methods are effective to improve hit ratios,
especially when measured against recommending items that eventually got
purchased.

5.2 Preliminaries

In this section, we first describe the basic problem of generating next item recom-
mendations from session-based implicit feedback. We then introduce reinforce-
ment learning and analyze its limitations for recommendation. Lastly, we provide
a literature review on related work.

5.2.1 Next Item Recommendation

Let I denote the whole item set, then a user-item interaction sequence can be
represented as x1:t = {x1, x2, ..., xt−1, xt}, where xi ∈ I(0 < i ≤ t) is the index
of the interacted item at timestamp i. Note that in a real world scenario there
may be different kinds of interactions. For instance, in e-commerce use cases,
the interactions can be clicks, purchases, add to basket and so on. In video
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x0 x1 x2 x3 x4 xt−1 xt

hidden state st

....

y0 y1 yn

Cross-Entropy Loss

....

f(st)

Figure 5.1: The self-supervised learning procedure for next item recommendation
from implicit feedback.

recommendation systems, the interactions can be characterized by the watching
time of a video. The goal of next item recommendation is recommending the
most relevant item xt+1 to the user given the sequence of previous interactions
x1:t.

We can cast this task as a (self-supervised) multi-class classification prob-
lem and build a sequential model that generates the classification logits yt+1 =

[y1, y2, ...yn] ∈ Rn, where n is the number of candidate items. We can then choose
the top-N items from yt+1 as our recommendation list for timestamp t + 1. A
common procedure to train this type of recommender is shown in Figure 5.1.
Typically one can use a generative model G to map the input sequence into a
hidden state st as st = G(x1:t). This serves as a general encoder function. Plenty
of models have been proposed for this task and we have discussed prominent ones
in section 2.2.2.5. Based on the obtained hidden state, one can utilize a decoder
to map the hidden state to the classification logits as yt+1 = f(st). It is usually
defined as a simple fully connected layer or the inner product with candidate item
embeddings (Yuan et al., 2019; Hidasi et al., 2015; Tang and Wang, 2018; Kang
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and McAuley, 2018). Finally, we can train our recommendation model (agents)
by optimizing a loss function based on the logits yt+1, such as the cross-entropy
loss or the pair-wise ranking loss (Rendle et al., 2009b).

5.2.2 Reinforcement Learning

In terms of RL, we can formulate the next item recommendation problem as a
Markov Decision Process (MDP) (Shani et al., 2005), in which the recommen-
dation agent interacts with the environments E (users) by sequentially recom-
mending items to maximize the long-term cumulative rewards. More precisely,
the MDP can be defined by tuples consisting of (S,A,P, R, ρ0, γ) where

• S: a continuous state space to describe the user states. This is modeled
based on the user (sequential) interactions with the items. The state of the
user can be in fact represented by the hidden state of the sequential model
discussed in section 5.2.1. Hence the state of a user at timestamp t can be
represented as st = G(x1:t) ∈ S (t > 0).

• A: a discrete action space that contains candidate items. The action a

of the agent is the selected item to be recommended. In off-line data,
we can get the action at timestamp t from the user-item interaction (i.e.,
at = xt+1). There are also works that focus on generating slate (set)-based
recommendations as discussed in section 2.3.5.

• P: S ×A× S → R is the state transition probability.

• R: S ×A → R is the reward function, where r(s, a) denotes the immediate
reward by taking action a at user state s. The flexible reward scheme is
crucial in the utility of RL for recommender systems as it allows for opti-
mizing the recommendation models towards goals that are not captured by
conventional loss functions. For example, in the e-commerce scenario, we
can give a larger reward to purchase interactions compared with clicks to
build a model that assists the user in his purchase rather than the browsing
task. We can also set the reward according to item novelty (Bradley and
Smyth, 2001) to promote recommendation diversity. For video recommen-

94



5.2 Preliminaries

Figure 5.2: A typical RL-based recommender system example.

dation, we can set the rewards according to the watching time (Chen et al.,
2019a).

• ρ0 is the initial state distribution with s0 ∼ ρ0.

• γ is the discount factor for future rewards.

A typical RL-based recommendation framework can be shown as Figure 5.2.
RL seeks a target policy πθ(a|s) which translates the user state s ∈ S into

a distribution over actions a ∈ A, so as to maximize the expected cumulative
reward:

max
πθ

Eτ∼πθ [R(τ)], where R(τ) =

|τ |∑
t=0

γtr(st, at), (5.1)

where θ ∈ Rd denotes policy parameters. Note that the expectation is taken
over trajectories τ = (s0, a0, s1, ...), which are obtained by performing actions
according to the target policy: s0 ∼ ρ0, at ∼ πθ(·|st), st+1 ∼ P(·|st, at).

Solutions to find the optimal θ can be categorized into policy gradient-based
approaches (e.g., REINFORCE (Williams, 1992)) and value-based approaches
(e.g., Q-learning (Silver et al., 2016)).

Policy-gradient based approaches aim at directly learning the mapping func-
tion πθ. Using the “log-trick” (Williams, 1992), gradients of the expected cumu-
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lative rewards with respect to policy parameters θ can be derived as

Eτ∼πθ [R(τ)∇θ log πθ(τ)]. (5.2)

In on-line RL environments, it’s easy to estimate the expectation. However,
under the recommendation settings, to avoid recommending irrelevant items to
users, the agent must be trained using the historical logged data. Even if the
RL agent can interact with live users, the actions (recommended items) may be
controlled by other recommenders with different policies since many recommen-
dation models might be deployed in a real live recommender system. As a result,
what we can estimate from the batched (logged) data is

Eτ∼β[R(τ)∇θ log πθ(τ)], (5.3)

where β denotes the behavior policy that we follow when generating the training
data. Obviously, there is a distribution discrepancy between the target policy πθ
and the behavior policy β. Applying policy-gradient methods for recommendation
using this data is thus infeasible.

Value-based approaches first calculate the Q-values (i.e., Q(s, a), the value of
an action a at a given state s) according to the Bellman equation while the action
is taken by a = argmax Q(s, a). The one-step temporal difference (TD) update
rule formulates the target Q(st, at)as Eq.(2.38). One of the major limitations of
implicit feedback data is the lack of negative feedback (Rendle et al., 2009b; Yuan
et al., 2018), which means we only know which items the user has interacted with
but have no knowledge about the missing transactions. Thus there are limited
state-action pairs to learn from and Q-values learned purely on this data would
be sub-optimal as shown in Figure 5.3. As a result, taking actions using these
Q-values by a = argmax Q(s, a) would result in poor performance. Even though
the estimation of Q(s, a) is unbiased due to the greedy selection of Q-learning1,
the distribution of s in the logged data is biased. So the distribution discrepancy
problem of policy gradient-based methods still exists in Q-learning even though
the Q-learning algorithm is “off-policy” (Fujimoto et al., 2018).

From the above analysis, we can see that directly utilizing RL algorithms
for implicit recommendation is problematic. The above analysis supports thesis
statement (3).

1We don’t consider the bias introduced by the steps of TD learning. This is not related to
our work.
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Q(s0, x1) = reward of click +maxa Q(s1, a)

x1:t {x1, x2, ..., xt−1, xt}
click purchase click click

Q(s1, x2) = reward of purchase +maxa Q(s2, a)

Q(s0, x
−

1
) = ? Q(s1, x

−

2
) = ? ** no learning constraints **

argmaxQ(s, a) = ? ** fails to perform ranking **

Figure 5.3: Q-learning fails to learn a proper preference ranking because of data
sparsity and the lack of negative feedback. x−1 and x−2 are unseen (negative) items
for the corresponding timestamp.

5.3 The Proposed Methods

As discussed in section 5.2.2, directly applying standard RL algorithms to implicit
feedback data is essentially unfeasible. In this section, we propose to co-train a
RL output layer along with the self-supervised head. The reward can be designed
according to the specific demands of the recommendation setting. We first de-
scribe the proposed SQN algorithm and then extend it to SAC. Both algorithms
can be easily integrated with existing recommendation models.

5.3.1 Self-Supervised Q-learning

Given an input item sequence x1:t and an existing recommendation model G, the
self-supervised training loss can be defined as the cross-entropy over the classifi-
cation distribution:

Ls = −
n∑
i=1

Yilog(pi),where pi =
eyi∑n
i′=1 e

yi′
. (5.4)

Yi is an indicator function and Yi = 1 if the user interacted with the i-th item in
the next timestamp. Otherwise, Yi = 0. Due to the fact that the recommendation
model G has already encoded the input sequence into a latent representation st,
we can directly utilize st as the state for the RL part without introducing another
model. What we need is an additional final layer to calculate the Q-values. A
concise solution is stacking a fully-connected layer on the top of G:

Q(st, at) = δ(sth
T
t + b) = δ(G(x1:t)h

T
t + b), (5.5)
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x0 x1 x2 x3 x4 xt−1 xt

hidden state st

....

y0 y1 yn

Cross-Entropy Loss

....

f(st) Q(st, at)

TD error updates+

(a) SQN architecture.
x0 x1 x2 x3 x4 xt−1 xt

hidden state st

....

y0 y1 yn

CE ×Q(st, at)

....

f(st) Q(st, at)

TD error updates+

actor

stop gradient

critic

(b) SAC architecture. CE stands for cross-
entropy.

Figure 5.4: The proposed frameworks in Chapter 5.

where δ denotes the activation function, ht and b are trainable parameters of the
RL head.

After that, we can define the loss for the RL part based on the one-step TD
error:

Lq = (r(st, at) + γmax
a′

Q(st+1, a
′)−Q(st, at))

2 (5.6)
We jointly train the self-supervised loss and the RL loss on the replay buffer
generated from the implicit feedback data:

LSQN = Ls + Lq. (5.7)

Figure 5.4(a) demonstrates the architecture of SQN.
When generating recommendations, we still return the top-N items from the

supervised head. The RL head acts as a regularizer to fine-tune the recommen-
dation model G according to our reward settings. As discussed in section 5.2.2,
the state distribution in the logged data is biased, so generating recommenda-
tions using the Q-values is problematic. However, due to the greedy selection of
Q(st+1, ·), the estimation of Q(st, at) itself is unbiased. As a result, by utilizing
Q-learning as a regularizer and keeping the self-supervised layer as the source of
recommendations we avoid any off-policy correction issues. The lack of negative
rewards in Q-learning does also not affect the methods since the RL output layer
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Algorithm 2 Training procedure of SQN
Input: user-item interaction sequence set X , recommendation model G, rein-

forcement head Q, supervised head
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G′ and Q′ as copies of G and Q, respectively
3: repeat
4: Draw a mini-batch of (x1:t, at) from X , set rewards r
5: st = G(x1:t), s′t = G′(x1:t)
6: st+1 = G(x1:t+1), s′t+1 = G′(x1:t+1)
7: Generate random variable z ∈ (0, 1) uniformly
8: if z ≤ 0.5 then
9: a∗ = argmaxa Q(st+1, a)
10: Lq = (r + γQ′(s′t+1, a

∗)−Q(st, at))
2

11: Calculate Ls and LSQN according to Eq.(5.4) and Eq.(6.2)
12: Perform updates by ∇ΘLSQN
13: else
14: a∗ = argmaxa Q′(s′t+1, a)
15: Lq = (r + γQ(st+1, a

∗)−Q′(s′t, at))2

16: Calculate Ls and LSQN according to Eq.(5.4) and Eq.(6.2)
17: Perform updates by ∇ΘLSQN
18: end if
19: until converge
20: return all parameters in Θ
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is trained on positive actions and the supervised cross-entropy loss provides the
negative gradient signals which come from the denominator of Eq.(5.4).

To enhance the learning stability, we utilize double Q-learning (Hasselt, 2010)
to alternatively train two copies of learnable parameters. Algorithm 2 describes
the training procedure of SQN.

5.3.2 Self-Supervised Actor-Critic

In the previous subsection, we proposed SQN in which the Q-learning head acts
as a regularizer to fine-tune the model in line with the reward schema. The
learned Q-values are unbiased and learned from positive user-item interactions
(feedback). As a result, these values can be regarded as an unbiased measurement
of how the recommended item satisfies our defined rewards. Hence the actions
with high Q-values should get increased weight on the self-supervised loss, and
vice versa.

We can thus treat the self-supervised head which is used for generating rec-
ommendations as a type of “actor” and the Q-learning head as the “critic”. Based
on this observation, we can use the Q-values as weights for the self-supervised
loss:

LA = Ls ·Q(st, at). (5.8)
This is similar to what is used in the well-known Actor-Critic (AC) methods
(Konda and Tsitsiklis, 2000). However, the actor in AC is based on policy gradient
which is on-policy while the “actor” in our methods is essentially self-supervised.
Moreover, there is only one base model G in SAC while AC has two separate
networks for the actor and the critic. To enhance stability, we stop the gradient
flow and fix the Q-values when they are used in that case. We then train the
actor and critic jointly. Figure 5.4(b) illustrates the architecture of SAC.

In complex recommendation models (e.g., using the Transformer encoder as G
(Kang and McAuley, 2018)), the learning of Q-values can be unstable (Parisotto
et al., 2019), particularly in the early stages of training. To mitigate these issues,
we set a threshold T . When the number of update steps is smaller than T , we
perform normal SQN updates. After that, the Q-values become more stable and
we start to use the critic values in the self-supervised layer and perform updates
according to the architecture of Figure 5.4(b). The training procedure of SAC is
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demonstrated in Algorithm 3.

5.3.3 Discussion

The proposed training frameworks can be integrated with existing recommen-
dation models, as long as they follow the procedure of Figure 5.1 to generate
recommendations. This is the case for most session-based or sequential recom-
mendation models introduced over the last years. In this paper we utilize the
cross-entropy loss as the self-supervised loss, while the proposed methods also
work for other losses (Rendle et al., 2009b; Hidasi and Karatzoglou, 2017). The
proposed methods are for general purpose recommendation. One can design the
reward schema according to his/her own demands and recommendation objec-
tives.

Due to the biased state-action distribution in the off-line setting and the lack
of sufficient data, directly generating recommendations from RL is difficult. The
proposed SQN and SAC frameworks can be seen as attempts to exploit a RL
estimator to “reinforce” existing self-supervised recommendation models. Another
way of looking at the proposed approach is as a form of transfer learning whereby
the self-supervised model is used to “pretrain” parts of the Q-learning model and
vice versa.

5.4 Experiments

In this section, we conduct experiments1 on two real-world next item recom-
mendation datasets to evaluate the proposed SQN and SAC in the e-commerce
scenario. To support thesis statement (3), we need to justify whether the pro-
posed learning frameworks can improve the recommendation quality when they
are integrated with different base models. Then, we need to see how the re-
ward settings of the RL part affect the learning performance. Lastly, to further
demonstrate whether RL can be directly utilized for recommendation, we need
to verify the performance when there is only deep reinforcement learning without
the supervised part. Based on such motivations, we aim to answer the following
research questions:

1The implementation can be found at https://drive.google.com/open?id=1nLL3_knhj_
RbaP_IepBLkwaT6zNIeD5z
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Algorithm 3 Training procedure of SAC
Input: the interaction sequence set X , recommendation model G, reinforcement

head Q, supervised head, threshold T
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G′ and Q′ as copies of G and Q, t = 0
3: repeat
4: Draw a mini-batch of (x1:t, at) from X , set rewards r
5: st = G(x1:t), s′t = G′(x1:t)
6: st+1 = G(x1:t+1), s′t+1 = G′(x1:t+1)
7: Generate random variable z ∈ (0, 1) uniformly
8: if z ≤ 0.5 then
9: a∗ = argmaxa Q(st+1, a)
10: Lq = (r + γQ′(s′t+1, a

∗)−Q(st, at))
2

11: if t ≤ T then
12: Perform updates by ∇ΘLSQN
13: else
14: LA = Ls ×Q(st, at), LSAC = LA + Ls
15: Perform updates by ∇ΘLSAC
16: end if
17: else
18: a∗ = argmaxa Q′(s′t+1, a)
19: Lq = (r + γQ(st+1, a

∗)−Q′(s′t, at))2

20: if t ≤ T then
21: Perform updates by ∇ΘLSQN
22: else
23: LA = Ls ×Q′(s′t, at), LSAC = LA + Ls
24: Perform updates by ∇ΘLSAC
25: end if
26: end if
27: t = t+ 1
28: until converge
29: return all parameters in Θ
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RQ1: How do the proposed methods perform when integrated with existing
recommendation models?

RQ2: How does the RL component affect performance, including the reward
setting and the discount factor.

RQ3: What is the performance if we only use Q-leaning for recommendation?
In the following parts, we will describe the experimental settings and answer

the above research questions.

5.4.1 Experimental Settings
5.4.1.1 Datasets

We conduct experiments with two publicly accessible e-commerce datasets: RC151

and RetailRocket2.
RC15. This is based on the dataset of RecSys Challange 2015. The dataset

is session-based and each session contains a sequence of clicks and purchases. We
remove the sessions whose length is smaller than 3 and then sample 200k sessions,
resulting in a dataset that contains 1,110,965 clicks and 43,946 purchases over
26702 items. We sort the user-item interactions in one session according to the
timestamp.

RetailRocket. This dataset is collected from a real-world e-commerce web-
site. It contains sequential events of viewing and adding to the cart. To keep
in line with the RC15 dataset, we treat views as clicks and adding to cart as
purchases. We remove the items which are interacted less than 3 times and the
sequences whose length is smaller than 3. The final dataset contains 1,176,680
clicks and 57,269 purchases over 70852 items.

Table 5.1 summarizes the statistics of the two datasets.

5.4.1.2 Evaluation protocols

We adopt cross-validation to evaluate the performance of the proposed methods.
The ratio of training, validation, and test set are 8:1:1. We randomly sample 80%
of the sequences as the training set. For validation and test sets, the evaluation is
done by providing the events of a sequence one-by-one and checking the rank of

1https://recsys.acm.org/recsys15/challenge/
2https://www.kaggle.com/retailrocket/ecommerce-dataset

103

https://recsys.acm.org/recsys15/challenge/
https://www.kaggle.com/retailrocket/ecommerce-dataset


5.4 Experiments

Table 5.1: Dataset statistics for Chapter 5.

Dataset RC15 RetailRocket

#sequences 200,000 195,523
#items 26,702 70,852
#clicks 1,110,965 1,176,680
#purchase 43,946 57,269

the item of the next event. The ranking is performed among the whole item set.
Each experiment is repeated 5 times, and the average performance is reported.

The recommendation quality is measured with two metrics: hit ratio (HR)
and normalized discounted cumulative gain (NDCG). HR@N is a recall-based
metric, measuring whether the ground-truth item is in the top-N positions of the
recommendation list. We can define HR for clicks as:

HR(click) =
#hits among clicks

#clicks
. (5.9)

HR(purchase) is defined similarly with HR(click) by replacing the clicks with
purchases. NDCG is a rank-sensitive metric that assigns higher scores to top
positions in the recommendation list. The more detailed definition can be found
in section 2.1.3.2.

5.4.1.3 Baselines

We integrated the proposed SQN and SAC with four state-of-the-art (generative)
next item recommendation models:

• GRU (Hidasi et al., 2015): This method utilizes a GRU to model the input
sequences. The final hidden state of the GRU is treated as the latent
representation for the input sequence.

• Caser (Tang and Wang, 2018): This is a recently proposed CNN-based
method that captures sequential signals by applying convolution operations
on the embedding matrix of previous interacted items.

• NItNet (Yuan et al., 2019): This method utilizes dilated CNN to enlarge
the receptive field and residual connection to increase the network depth,
achieving good performance with high efficiency.
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• SASRec (Kang and McAuley, 2018): This baseline is motivated from self-
attention and uses the Transformer (Vaswani et al., 2017) architecture. The
output of the Transformer encoder is treated as the latent representation
for the input sequence.

All models are implemented with Tensorflow. More precisely, for NItNet and
SASRec, we use the original author implementation. For GRU and Caser, we use
the implementation from https://github.com/fajieyuan/nextitnet.

5.4.1.4 Parameter settings

For both of the datasets, the input sequences are composed of the last 10 items
before the target timestamp. If the sequence length is less than 10, we complement
the sequence with a padding item. We train all models with the Adam optimizer
(Kingma and Ba, 2014) through back-propagation. The mini-batch size is set as
256. The learning rate is set as 0.01 for RC15 and 0.005 for RetailRocket. We
evaluate the validation set every 2000 batches of updates. For a fair comparison,
the item embedding size is set as 64 for all models. For GRU4Rec, the size of
the hidden state is set as 64. For Caser, we use 1 vertical convolution filter and
16 horizontal filters whose heights are set from {2,3,4}. The drop-out ratio is set
as 0.1. For NextItNet, we utilize the code published by its authors and keep the
settings unchanged. For SASRec, the number of heads in self-attention is set as
1 according to its original paper (Kang and McAuley, 2018). For the proposed
SQN and SAC, if not mentioned otherwise, the discount factor γ is set as 0.5
while the ratio between the click reward (rc) and the purchase reward (rp) is set
as rp/rc = 5.

5.4.2 Performance Comparison (RQ1)

Table 5.2 and Table 5.3 show the performance of top-N recommendation on RC15
for purchase and click prediction, respectively. Table 5.4 and Table 5.5 show the
performance of top-N recommendation on RetailRocket for purchase and click
prediction, respectively.

We observe that on the RC15 dataset, the proposed SQN method achieves
consistently better performance than the corresponding baseline when predict-
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Table 5.2: Top-N recommendation performance comparison of different models
(N = 5, 10, 20) in Chapter 5 on RC15 dataset for purchase prediction. NG is
short for NDCG. Boldface denotes the highest score. ∗ denotes the significance
p-value < 0.01 compared with the corresponding baseline.

Models purchase

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.3994 0.2824 0.5183 0.3204 0.6067 0.3429
GRU-SQN 0.4228∗ 0.3016∗ 0.5333∗ 0.3376∗ 0.6233∗ 0.3605∗

GRU-SAC 0.4394∗ 0.3154∗ 0.5525∗ 0.3521∗ 0.6378∗ 0.3739∗

Caser 0.4475 0.3211 0.5559 0.3565 0.6393 0.3775
Caser-SQN 0.4553∗ 0.3302∗ 0.5637∗ 0.3653∗ 0.6417∗ 0.3862∗

Caser-SAC 0.4866∗ 0.3527∗ 0.5914∗ 0.3868∗ 0.6689∗ 0.4065∗

NItNet 0.3632 0.2547 0.4716 0.2900 0.5558 0.3114
NItNet-SQN 0.3845∗ 0.2736∗ 0.4945∗ 0.3094∗ 0.5766∗ 0.3302∗

NItNet-SAC 0.3914∗ 0.2813∗ 0.4964∗ 0.3155∗ 0.5763∗ 0.3357∗

SASRec 0.4228 0.2938 0.5418 0.3326 0.6329 0.3558
SASRec-SQN 0.4336 0.3067∗ 0.5505 0.3435∗ 0.6442∗ 0.3674∗

SASRec-SAC 0.4540∗ 0.3246∗ 0.5701∗ 0.3623∗ 0.6576∗ 0.3846∗

Table 5.3: Top-N recommendation performance comparison of different models
(N = 5, 10, 20) in Chapter 5 on RC15 dataset for click prediction. NG is short
for NDCG. Boldface denotes the highest score. ∗ denotes the significance p-value
< 0.01 compared with the corresponding baseline.

Models click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.2876 0.1982 0.3793 0.2279 0.4581 0.2478
GRU-SQN 0.3020∗ 0.2093∗ 0.3946∗ 0.2394∗ 0.4741∗ 0.2587∗

GRU-SAC 0.2863 0.1985 0.3764 0.2277 0.4541 0.2474
Caser 0.2728 0.1896 0.3593 0.2177 0.4371 0.2372
Caser-SQN 0.2742 0.1909 0.3613 0.2192 0.4381 0.2386
Caser-SAC 0.2726 0.1894 0.3580 0.2171 0.4340 0.2362
NItNet 0.2950 0.2030 0.3885 0.2332 0.4684 0.2535
NItNet-SQN 0.3091∗ 0.2137∗ 0.4037∗ 0.2442∗ 0.4835∗ 0.2645∗

NItNet-SAC 0.2977∗ 0.2055∗ 0.3906 0.2357∗ 0.4693 0.2557∗

SASRec 0.3187 0.2200 0.4164 0.2515 0.4974 0.2720
SASRec-SQN 0.3272∗ 0.2263∗ 0.4255∗ 0.2580∗ 0.5066∗ 0.2786∗

SASRec-SAC 0.3130 0.2161 0.4114 0.2480 0.4945 0.2691

106



5.4 Experiments

Table 5.4: Top-N recommendation performance comparison of different models
(N = 5, 10, 20) in Chapter 5 on RetailRocket for purchase prediction. NG is
short for NDCG. Boldface denotes the highest score. ∗ denotes the significance
p-value < 0.01 compared with the corresponding baseline.

Models purchase

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.4608 0.3834 0.5107 0.3995 0.5564 0.4111
GRU-SQN 0.5069∗ 0.4130∗ 0.5589∗ 0.4289∗ 0.5946∗ 0.4392∗

GRU-SAC 0.4942∗ 0.4179∗ 0.5464∗ 0.4341∗ 0.5870∗ 0.4428∗

Caser 0.3491 0.2935 0.3857 0.3053 0.4198 0.3141
Caser-SQN 0.3674∗ 0.3089∗ 0.4050∗ 0.3210∗ 0.4409∗ 0.3301∗

Caser-SAC 0.3871∗ 0.3234∗ 0.4336∗ 0.3386∗ 0.4763∗ 0.3494∗

NItNet 0.5630 0.4630 0.6127 0.4792 0.6477 0.4881
NItNet-SQN 0.5895∗ 0.4860∗ 0.6403∗ 0.5026∗ 0.6766∗ 0.5118∗

NItNet-SAC 0.5895∗ 0.4985∗ 0.6358∗ 0.5162∗ 0.6657∗ 0.5243∗

SASRec 0.5267 0.4298 0.5916 0.4510 0.6341 0.4618
SASRec-SQN 0.5681∗ 0.4617∗ 0.6203∗ 0.4806∗ 0.6619∗ 0.4914∗

SASRec-SAC 0.5623∗ 0.4679∗ 0.6127∗ 0.4844∗ 0.6505∗ 0.4940∗

Table 5.5: Top-N recommendation performance comparison of different models
(N = 5, 10, 20) in Chapter 5 on RetailRocket for click prediction. NG is short
for NDCG. Boldface denotes the highest score. ∗ denotes the significance p-value
< 0.01 compared with the corresponding baseline.

Models purchase

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.2233 0.1735 0.2673 0.1878 0.3082 0.1981
GRU-SQN 0.2487∗ 0.1939∗ 0.2967∗ 0.2094∗ 0.3406∗ 0.2205∗

GRU-SAC 0.2451∗ 0.1924∗ 0.2930∗ 0.2074∗ 0.3371∗ 0.2186∗

Caser 0.1966 0.1566 0.2302 0.1675 0.2628 0.1758
Caser-SQN 0.2089∗ 0.1661∗ 0.2454∗ 0.1778∗ 0.2803∗ 0.1867∗

Caser-SAC 0.2206∗ 0.1732∗ 0.2617∗ 0.1865∗ 0.2999∗ 0.1961∗

NItNet 0.2495 0.1906 0.2990 0.2067 0.3419 0.2175
NItNet-SQN 0.2610∗ 0.1982∗ 0.3129∗ 0.2150∗ 0.3586∗ 0.2266∗

NItNet-SAC 0.2529∗ 0.1964∗ 0.3010∗ 0.2119∗ 0.3458∗ 0.2233∗

SASRec 0.2541 0.1931 0.3085 0.2107 0.3570 0.2230
SASRec-SQN 0.2761∗ 0.2104∗ 0.3302∗ 0.2279∗ 0.3803∗ 0.2406∗

SASRec-SAC 0.2670∗ 0.2056∗ 0.3208∗ 0.2230∗ 0.3701∗ 0.2355∗
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ing both clicks and purchases. SQN introduces a Q-learning head that aims to
model the long-term cumulative reward. The additional learning signal from this
head improves both clicks and purchase recommendation performance because
the models are now trained to select actions that are optimized not only for the
current state but also for future interactions. We can see that on this dataset,
the best performance when predicting purchase interactions is achieved by SAC.
Since the learned Q-values are used as weights for the supervised loss function,
the model is ”reinforced” to focus more on purchases. As a result, the SAC
method achieves significantly better results when recommending purchases. We
can assume that the strong but sparse signal that comes with a purchase is better
utilized by SAC.

On the RetailRocket dataset, we can see that both SQN and SAC achieve
consistently better performance than the corresponding baseline in terms of pre-
dicting both clicks and purchases. This further verifies the effectiveness of the
proposed methods. Besides, we can also see that even though SQN sometimes
achieves the highest HR(purchase), SAC always achieves the best performance
with respect to the NDCG of purchase. This demonstrates that the proposed
SAC is actually more likely to push the items which may lead to purchase to the
top positions of the recommendation list.

To conclude, it’s obvious that the proposed SQN and SAC achieve consistent
improvement with respect to the selected baselines. This demonstrates the effec-
tiveness and the generalization ability of our methods, supporting thesis state-
ment (3).

5.4.3 RL Investigation(RQ2)
5.4.3.1 Effect of reward settings.

In this part, we conduct experiments to investigate how the reward setting of
RL affects the model performance. Figure 5.5 and Figure 5.6 show the results of
HR@10 and NDCG@10 when changing the ratio between rp and rc (i.e., rp/rc) on
RC15 and RetailRocket, respectively. We show the performance when choosing
GRU as the base model. We can see from Figure 5.5(a) and Figure 5.6(a) that
the performance of SQN when predicting purchase interactions start to improve
when rp/rc increases from 1. It shows that when we assign a higher reward
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Figure 5.5: Effect of reward settings on RC15
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Figure 5.6: Effect of reward settings on RetailRocket
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to purchases, the introduced RL head successfully drives the model to focus on
the desired rewards. Performance starts to decrease after reaching higher ratios.
The reason may be that high reward differences might cause instability in the
TD updates and thus affects the model performance. Figure 5.5(c) and Figure
5.6(c) shows that the performance of SAC when predicting purchase behaviors
also improves at the beginning and then drops with the increase of rp/rc. It’s
similar to SQN.

For click recommendation, we can see from Figure 5.5(b) and Figure 5.6(b)
that the performance of SQN is actually stable at the beginning (even increases
a little) and then starts to decrease. There are two factors for this performance
drop. The first is the instability of RL as discussed before. The second is that too
much reward discrepancy might diminish the relative importance of clicks which
constitute the vast majority of the data points. This also helps to explain the
performance drop of SAC as shown in Figure 5.5(d) and Figure 5.6(d).

In addition, observing the performance of SQN and SAC when rp/rc = 1,
we can find that they still perform better than the basic GRU. For example,
when predicting purchases on the RC15 dataset, the HR@10 of SAC is around
0.54 according to Figure 5.5(c) while the basic GRU method only achieves 0.5183
according to Table 5.2. This means that even if we don’t distinguish between
clicks and purchases, the proposed SQN and SAC still work better than the basic
model. The reason is that the introduced RL head successfully adds additional
learning signals for long-term rewards.

5.4.3.2 Effect of the discount factor

In this part, we show how the discount factor affects the recommendation per-
formance. Figure 5.7 illustrates the HR@10 and NDCG@10 of SQN and SAC
with different discount factors on the RC15 dataset. We choose GRU as the base
recommendation model. We can see that the performance of SQN and SAC im-
proves when the discount factor γ increases from 0. γ = 0 means that the model
doesn’t consider long-term reward and only focuses on immediate feedback. This
observation leads to the conclusion that taking long-term rewards into account
does improve the overall HR and NDCG on both click and purchase recommen-
dations. However, we can also see the performance decreases when the discount
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Figure 5.7: Effect of discount factor

factor is too large. Compared with the game control domain in which there may
be thousands of steps in one MDP, the user interaction sequence is much shorter.
The average sequence length of the two datasets is only 6. As a result, although
γ = 0.95 or 0.99 is a common setting for game control, a smaller discount factor
should be applied under the recommendation settings.

5.4.4 Q-learning for Recommendation (RQ3)

We also conduct experiments to examine the performance if we generate rec-
ommendations only using Q-learning. To make Q-learning more effective when
perform ranking, we explicitly introduce uniformly sampled unseen items to pro-
vide negative rewards (Rendle et al., 2009b; Zhao et al., 2018). Figure 5.8 and
Figure 5.9 show the results in terms of HR@10 and NDCG@10 on the RC15
dataset, respectively. The base model is GRU. We can see that the performance
of Q-learning is even worse than the basic GRU method. As discussed in sec-
tion 5.2.2, directly utilizing Q-learning for recommendation is problematic and
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Figure 5.8: Comparison of HR when only using Q-learning for recommendations.
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Figure 5.9: Comparison of NDCG when only using Q-learning for recommenda-
tions.

off-policy correction needs to be considered in that situation. This observation
provides support for the thesis statement (3). However, the estimation of Q-values
based on the given state is unbiased, and exploiting Q-learning as a regularizer
or critic doesn’t suffer from the above problem. Hence the proposed SQN and
SAC achieve better performance.

5.5 Chapter Summary

In this chapter, we propose self-supervised reinforcement learning for recom-
mender systems. We first formalize the next item recommendation task from
implicit feedback data and then analyze the difficulties when exploiting RL for
this task. The first is the pure off-policy setting which means the recommender
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agent must be trained from logged data without interactions between the envi-
ronment. The second is the lack of negative rewards. To address these problems,
we propose to augment the existing recommendation model with another RL
head. This head acts as a regularizer to introduce our specific desires into the
recommendation. The motivation is to utilize the unbiased estimator of RL to
fine-tune the recommendation model according to our own reward settings. Based
on that, we propose SQN and SAC to perform joint training of the supervised
head and the RL head. To verify the effectiveness of our methods, we integrate
them with four state-of-the-art recommendation models and conduct experiments
on two real-world e-commerce datasets. Experimental results demonstrate that
the proposed SQN and SAC are effective to improve the hit ratio, especially when
predicting the real purchase interactions. The experimental results and analysis
provide support for the thesis statement (3).
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Chapter 6

Self-Supervised Advantage
Actor-Critic

In Chapter 5, we have observed that using reinforcement learning (RL) for next-
item recommendation from implicit feedback through reward signals is a promis-
ing research direction towards recommender systems (RS) that maximize cu-
mulative gains. However, the direct use of RL algorithms in the RS setting is
impractical due to challenges like off-policy training, huge action spaces, and lack
of sufficient reward signals. Chapter 5 attempts to tackle these challenges by
combining RL and self-supervised learning, but the proposed methods still suffer
from certain limitations from e.g., biased estimation of the Q-values due to the
existence of only positive rewards and the length of the sequence.

To address such problems, in this chapter we propose to use negative sampling
for the RL training procedure and then combine it with self-supervised learning,
namely Self-Supervised Negative Q-learning (SNQN). Based on the sampled neg-
ative actions (items), we can then calculate the “advantage” of a positive action
over the average case, which can be further utilized as a normalized weight for
learning the self-supervised part. This leads to another learning framework: Self-
Supervised Advantage Actor-Critic (SA2C). We integrate SNQN and SA2C with
four state-of-the-art next-item recommendation models and conduct experiments
on two real-world datasets. Experimental results show that the proposed ap-
proaches achieve significantly better performance than state-of-the-art supervised
models and the methods proposed in Chapter 5 (i.e., SQN and SAC). The results
provide strong support for the thesis statement (3). This chapter is mainly based
on my under-review submission on SIGIR 2021.
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6.1 Introduction

6.1 Introduction

As described in section 5.1, generating next-item recommendation from implicit
user-item interaction sequences is a common use case of RS. Using RL for next-
item recommendation is a promising direction to introduce cumulative reward-
based optimization objectives. However, unlike game control and robotics, di-
rectly utilizing RL for RS comes with a set of unique difficulties and challenges,
like off-policy training and lack of sufficient reward signals.

In Chapter 5, we proposed self-supervised reinforcement learning for RS,
achieving promising results on off-line evaluation metrics. Two learning frame-
works namely Self-Supervised Q-learning (SQN) and Self-Supervised Actor-Critic
(SAC) are proposed. The key insight of self-supervised RL is to utilize the RL
component as a form of a regularizer to fine-tune the recommendation model
according to pre-defined rewards. Although SQN and SAC achieve good perfor-
mance, they still suffer from some limitations which need to be addressed. For
example, the RL head1 in SQN and SAC is only defined on positive (observed)
actions (items), so the negative comparison signals only come from the supervised
part. As a result, the RL head can only act as a regularizer but cannot be used
to generate recommendations, as it lacks negative feedback to remove the bias
introduced by the existence of only positive reward signals. Moreover, SAC uses
the output Q-values as the critic to re-weight the actor (supervised part). How-
ever, the Q-values depend heavily on the length of the sequence, which further
introduces bias to the learning procedure.

In this chapter, to address the above issues of SQN and SAC, we first propose
to introduce a negative sampling strategy for training RL in a RS setting and then
combine it with self-supervised learning. We call this Self-Supervised Negative
Q-learning (SNQN). Different from SQN, which only performs RL on positive
actions (clicks, views, etc.), the RL output head of SNQN is learned on both
positive actions and a set of sampled negative actions. This design allows the RL
part of the SNQN model to not only act as a regularizer but also as a good ranking
model, which can be used to generate recommendations. Based on the sampled

1For simplicity, in this chapter we make “head” and “output layer” interchangeable in this
paper. Moreover, “self-supervised” and “supervised” are also interchangeable.
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negative actions and the unbiased estimate of the Q values, we can moreover
calculate the “advantage” of a positive action over the other actions. We propose
the Self-Supervised Advantage Actor-Critic (SA2C), which uses this advantage
instead of the raw Q-values and re-weights the supervised output layer loss. The
advantage values can be seen as normalized Q-values that help us alleviate the
influence of sequence length on the estimate of the Q-values.

To summarize, this chapter makes the following contributions:

• We propose SNQN to introduce negative sampling into the RL training
of the RS model and then combine it with self-supervised learning. As a
result, both the supervised head and the RL head can be used to generate
recommendations. We show that joint training of the two heads with shared
base models helps to achieve better performance than independent learning.

• We propose SA2C to calculate the advantage of a positive action over the
others. This advantage can be seen as a normalized Q-value and is further
utilized to re-weight the supervised component.

• We integrate the proposed SNQN and SA2C with four state-of-the-art
recommendation models and conduct experiments on two real-world e-
commerce datasets. Experimental results demonstrate the proposed meth-
ods are effective and improve the performance of RS compared to existing
methods.

6.2 The Proposed Methods
6.2.1 Self-Supervised Negative Q-learning

Given an input user-item interaction sequence x1:t and an existing recommen-
dation model G(·), the self-supervised training loss can be defined as the cross-
entropy over the classification distribution, as shown in Eq.(5.4). The cross-
entropy loss will push the positive logits to high values. Meanwhile, the cross-
entropy loss can also provide negative learning signals by pushing down the output
values of items that the user has not interacted with. This is particularly helpful
in an RS setting where ranking items that are likely to be interacted by the user
in the top-N positions is the main goal.
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Figure 6.1: The learning framework architectures of SNQN and SA2C.

Since G(·) already encodes the input sequence into a latent state, we can
directly utilize Eq.(5.5) to calculate Q(st, at) given the state and action pair.
When learning from logged implicit feedback data, it’s often the case that there
are no negative reward signals (Rendle et al., 2009b). Performing Q-learning
solely based on positive reward signals (clicks, views, etc.), where the negative
interaction signals are not provided, would lead to a model with a positive bias.
As a result, the RL component of the model can only act as a regularizer but
can’t be used for generating recommendation. To address this issue, we propose
to introduce a negative reward sampling strategy for the RL training procedure.
More precisely, the Q-learning loss function of SNQN is defined not only on
positive actions and rewards but also on the sampled negative ones. Based on
this motivation, we define the one-step time difference (TD) Q-loss of SNQN as:

Lq = (r(st, a
+
t ) + γmax

a′
Q(st+1, a

′)−Q(st, a
+
t ))2︸ ︷︷ ︸

Lp: positive TD error

+
∑
a−t ∈Nt

(r(st, a
−
t ) + γmax

a′
Q(st, a

′)−Q(st, a
−
t ))2

︸ ︷︷ ︸
Ln: negative TD error

,
(6.1)

where a+
t and a−t are the positive action and negative action at timestamp t,
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respectively. Nt denotes the set of sampled unobserved (negative) actions.
Another interpretation of negative sampling in RL is imitation learning un-

der sparse reward settings (Reddy et al., 2019). Reddy et al. (2019) demon-
strated that imitation learning through expert demonstrations can be achieved
with promising performance, by assigning a constant positive reward for match-
ing the demonstrated actions and a constant negative reward for other behaviors.
In the recommendation settings, we can regard the observed (interacted) actions
as expert behaviors while sampled unobserved actions as non-expert behaviors
with a constant negative reward. From that perspective, the introduced negative
sampling strategy of SNQN makes the RL component a good imitation learning
agent. In our implementation, we assign a constant reward value rn for negative
actions (i.e.,r(st, a−t ) = rn).

Note that in the negative TD error, the maximum operation is performed
in Q(st, a

′). This is because when learning from off-line data, we can make an
assumption that only positive actions can affect the user state. In other words,
taking a negative (unobserved) action doesn’t update the user state. This is a
widely adopted assumption in the literature (Zhao et al., 2018; Ie et al., 2019;
Chen et al., 2019b). While for the positive reward r(st, a

+
t ), we can define ac-

cording to the specific demands of the recommendation domain. For example,
in e-commerce we can assign a higher reward to actions which lead to purchases
rather than just clicks. As in SQN, we jointly train the self-supervised loss and
the RL loss on the replay buffer generated from the implicit feedback data:

Lsnqn = Ls + Lq. (6.2)

Figure 6.1(a) demonstrates the architecture of SNQN.
We utilize double Q-learning for better learning stability (Hasselt, 2010) and

alternately train two copies of model parameters. Algorithm 4 describes the
training procedure of SNQN.

6.2.2 Self-Supervised Advantage Actor-Critic

Actor-Critic (AC) methods have been successfully used in the RL research area.
The key idea of AC methods is the introduction of a critic that evaluates the
goodness of an action taken and assigns higher weights to actions with high
cumulative rewards. In the proposed SNQN method, the supervised component

119



6.2 The Proposed Methods

Algorithm 4 Training procedure of SNQN
Input: user-item interaction sequence set X , recommendation model G(·), rein-

forcement head Q(·), supervised head f(·), pre-defined reward function r(s, a)
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G′(·) and Q′(·) as copies of G(·) and Q(·), respectively
3: repeat
4: Draw a mini-batch of (x1:t, a

+
t ) from X

5: Draw negative actions set Nt for x1:t

6: st = G(x1:t), s′t = G′(x1:t)
7: st+1 = G(x1:t+1), s′t+1 = G′(x1:t+1)
8: Generate random variable z ∈ (0, 1) uniformly
9: if z ≤ 0.5 then
10: a+

∗ = argmaxa Q(st+1, a), a−∗ = argmaxa Q(st, a)
11: Lp = (r(st, a

+
t ) + γQ′(s′t+1, a

+
∗ )−Q(st, a

+
t ))2

12: Ln =
∑

a−t ∈Nt
(r(st, a

−
t ) + γQ′(s′t, a

−
∗ )−Q(st, a

−
t ))2

13: Calculate Ls and Lsnqn = Ls + Lp + Ln
14: Perform updates by ∇ΘLsnqn
15: else
16: a+

∗ = argmaxa Q′(st+1, a), a−∗ = argmaxa Q′(st, a)
17: Lp = (r(st, a

+
t ) + γQ(st+1, a

+
∗ )−Q′(s′t, a+

t ))2

18: Ln =
∑

a−t ∈Nt
(r(st, a

−
t ) + γQ(st, a

−
∗ )−Q′(s′t, a−t ))2

19: Calculate Ls and Lsnqn = Ls + Lp + Ln
20: Perform updates by ∇ΘLsnqn
21: end if
22: until converge
23: return all parameters in Θ
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can be seen as the actor which aims at imitating the logged user behavior. A
simple solution for the critic is to use the output Q-values from the RL head,
as these Q-values measure the cumulative rewards the system gains given the
state-action pair. However, these Q-values are sensitive to the sequence length.
For example, a bad action in a long sequence could also have a high Q-value if
it occurs in an early position because Q-values have a bias with respect to the
sequence position.

Instead of the absolute Q-value, what we actually would like to measure is how
much “advantage” we can get by taking an action compared to the average case
(i.e. average Q-values). This advantage can help us alleviate the bias introduced
from the sequence length. However, calculating the average Q-values along the
whole action space would introduce additional computation cost, especially when
the candidate item set is large. Luckily, we have already introduced negative
samples in the proposed SNQN methods. As a result, a concise solution is to
calculate the average among the sampled actions (including both positive and
negative examples) as an approximation. Based on this motivation, the average
Q-values can be defined as:

Q(st, a) =

∑
a′∈a+t ∩Nt

Q(st, a
′)

|Nt|+ 1
. (6.3)

The advantage of an observed (positive) action is formulated as:

A(st, a
+
t ) = Q(st, a

+
t )−Q(st, a). (6.4)

We can then use this advantage to re-weight the actor (i.e. the supervised head).
If a positive action has higher advantage over the average, we increase its weight
in the supervised training procedure, and vice versa.

To enhance stability, we stop the gradient flow and fix the Q-values when they
are used to calculate the average and advantage. We then train the actor and
critic jointly. The training loss of SA2C is formulated as:

Lsa2c = La + Lq, where La = Ls · A(st, a
+
t ). (6.5)

Figure 6.1(b) illustrates the architecture of SA2C. During the training procedure,
the learning of Q-values can be unstable (Parisotto et al., 2019), particularly in
the early stage. To mitigate these issues, we pre-train the model using SNQN in
the first T training steps (batches). When the Q-values become more stable, we
start to use the advantage to re-weight the actor and perform updates according
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to the architecture of Figure 6.1(b). We also use double Q-learning and the
training procedure of SA2C is shown in Algorithm 5.

6.2.3 Discussion

We provide a brief discussion about the connections between our algorithms and
some related methods.

By assigning a negative reward rn to unobserved actions, SNQN explicitly
introduces negative action signals in the RL head. As a result, both the super-
vised head and the RL head of SNQN can be used to generate recommendations1.
Compared to SQN which can only use the supervised head to generate recom-
mendation, SNQN provides a more flexible choice to switch between the two
heads. For example, if we want the agent to imitate more the logged user data,
we can use the supervised head. On the contrary, if we want the RS to be more
reward-driven, we can use the RL head.

A related work to SA2C is (Chen et al., 2019a), in which the authors propose
the use of an off-policy corrected policy-gradient method. Policy-gradient uses
the cumulative reward to re-weight the cross-entropy loss. However, it’s a Monte
Carlo (MC)-based method which needs the interaction session to end first and
then calculate the cumulative rewards at each timestamp. In contrast, SA2C
calculates the advantage of an action through the RL output layer, which is a
more fine-grained estimate of the value of a potential action during the session.
Furthermore, the cumulative reward can also introduce bias from the sequence
length, while the advantage estimates in SA2C can be seen as normalized Q-
values which help to alleviate this influence. The effect of off-policy correction
will be discussed in the experimental section.

6.3 Experiments

In this section, we report experiments on two real-world datasets to evaluate the
proposed SNQN and SA2C in the e-commerce scenario. Both datasets contain
click and purchase interactions. We use the supervised head to generate recom-
mendations without special mention. To support thesis statement (3), we need

1Recommendation can be generated from the RL head by selecting highest Q-values.

122



6.3 Experiments

Algorithm 5 Training procedure of SA2C
Input: the interaction sequence set X , recommendation model G, reinforcement

head Q, supervised head, threshold T
Output: all parameters in the learning space Θ
1: Initialize all trainable parameters
2: Create G′ and Q′ as copies of G and Q, t = 0
3: repeat
4: Draw a mini-batch of (x1:t, at) from X , set rewards r
5: st = G(x1:t), s′t = G′(x1:t)
6: st+1 = G(x1:t+1), s′t+1 = G′(x1:t+1)
7: Generate random variable z ∈ (0, 1) uniformly
8: if z ≤ 0.5 then
9: a+

∗ = argmaxa Q(st+1, a), a−∗ = argmaxa Q(st, a)
10: Lp = (r(st, a

+
t ) + γQ′(s′t+1, a

+
∗ )−Q(st, a

+
t ))2

11: Ln =
∑

a−t ∈Nt
(r(st, a

−
t ) + γQ′(s′t, a

−
∗ )−Q(st, a

−
t ))2

12: Calculate Ls and Lsnqn = Ls + Lp + Ln
13: if t ≤ T then
14: Perform updates by ∇ΘLsnqn
15: else
16: Calculate A(st, a

+
t ) according to Eq.(6.3) and Eq.(6.4)

17: La = Ls × A(st, a
+
t ), Lsa2c = LA + Ls

18: Perform updates by ∇ΘLsa2c

19: end if
20: else
21: a+

∗ = argmaxa Q′(st+1, a), a−∗ = argmaxa Q′(st, a)
22: Lp = (r(st, a

+
t ) + γQ(st+1, a

+
∗ )−Q′(s′t, a+

t ))2

23: Ln =
∑

a−t ∈Nt
(r(st, a

−
t ) + γQ(st, a

−
∗ )−Q′(s′t, a−t ))2

24: Calculate Ls and Lsnqn = Ls + Lp + Ln
25: if t ≤ T then
26: Perform updates by ∇ΘLsnqn
27: else
28: Calculate A(st, a

+
t ) according to Eq.(6.3) and Eq.(6.4)

29: La = Ls × A(st, a
+
t ), Lsa2c = LA + Ls

30: Perform updates by ∇ΘLsa2c

31: end if
32: end if
33: t = t+ 1
34: until converge
35: return all parameters in Θ
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to see how the proposed learning frameworks perform when they are integrated
with existing based models, compared with the normal training and SQN, SAC.
Because the SQNQ enables the Q-learning head to generate recommendation, so
we also justify the performance when using Q-learning for recommendation. Fi-
nally, we show how the hyper-parameter setting affects the model performance.
Based on such motivations, in this section we aim to answer the following research
questions:

RQ1: How do the proposed methods perform when integrated with different
base models?

RQ2 What is the performance if we use the Q-leaning head to generate rec-
ommendation?

RQ3: What is the performance if we introduce an additional off-policy cor-
rection term in the actor of SA2C?

RQ4: How does the negative sampling strategy affect the performance?

6.3.1 Experimental Settings
6.3.1.1 Datasets

We conduct experiments with two publicly accessible datasets: RC15 and Retail-
Rocket. The two datasets are the same as the datasets used in Chapter 5. The
datasets detail and statistics can be found in section 5.4.1.1 and Table 5.1.

6.3.1.2 Evaluation protocols

We use the same cross-validation protocols as Chapter 5. The ratio of training,
validation, and test set are 8:1:1. The ranking is performed among the whole item
set. Each experiment is repeated 5 times with different random seeds, and the
average performance is reported. The recommendation quality is measured with
two metrics: hit ratio (HR) and normalized discounted cumulative gain (NDCG).
A more detailed procedure can be found in section 5.4.1.2.

6.3.1.3 Baselines

We integrated the proposed SNQN and SA2C with the same baseline models in
Chapter 5 which are GRU (Hidasi et al., 2015), Caser (Tang and Wang, 2018),
NItNet (Yuan et al., 2019) and SASRec (Kang and McAuley, 2018). A more
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detailed description of baseline models can be found in section 5.4.1.3. To further
demonstrate the effectiveness of the proposed methods, we also compare SNQN,
SA2C with SQN, SAC (Xin et al., 2020), respectively.

6.3.1.4 Parameter settings

For both datasets, the input sequences are composed of the last 10 interacted
items before the target timestamp. If the sequence length is less than 10, we
complement the sequence with a padding item. We train all models with the
Adam optimizer (Kingma and Ba, 2014). The mini-batch size is set as 256.
For SNQN, the learning rate is set as 0.01 on RC15 and 0.005 on RetailRocket,
which is the same setting as SQN (Xin et al., 2020). For SA2C, we use the same
learning rate with SNQN at the early pre-training stage. After that, the learning
rate is set as 0.001 on both datasets. For a fair comparison, we use the basic
uniform distribution to sample negative examples and eliminate influence from
the sampler. The item embedding size is set as 64 for all models. For GRU, the
size of the hidden state is set as 64. For Caser, we use 1 vertical convolution filter
and 16 horizontal filters whose heights are set from {2,3,4}. The drop-out ratio
is set as 0.1. For NextItNet, we use the published implementation (Yuan et al.,
2019) with the predefined settings. For SASRec, the number of heads in self-
attention is set as 1, according to the original paper (Kang and McAuley, 2018).
Note that, when SNQN and SA2C are integrated with a base model, the hyper-
parameter setting of the base model remains unchanged, for a fair comparison.

For the proposed SNQN and SA2C, the discount factor γ is set as 0.5. The
ratio between the click reward (rc) and the purchase reward (rp) is set as rp/rc = 5.
These settings are the same as Chapter 5 for a fair comparison. For one positive
action, we sample 10 negative actions in the training procedure, if without special
mention. The reward for negative actions is set as rn = 0.

6.3.2 Performance Comparison (RQ1)

Table 6.1 and Table 6.2 show the performance of top-N recommendations on
RC15 for purchase and click prediction, respectively. Table 6.3 and Table 6.4 show
the performance of top-N recommendations on RetailRocket. We can obtain the
following observations from the results.
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Table 6.1: Top-N recommendation performance comparison of different mod-
els in Chapter 6 (N = 5, 10, 20) on RC15 dataset for purchase prediction.
Recommendations are generated from the supervised head. NG is short for
NDCG. Boldface denotes the highest score.

Models purchase

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.3994 0.2824 0.5183 0.3204 0.6067 0.3429
GRU-SQN 0.4228 0.3016 0.5333 0.3376 0.6233 0.3605
GRU-SNQN 0.4368 0.3115 0.5428 0.3460 0.6316 0.3686
GRU-SAC 0.4394 0.3154 0.5525 0.3521 0.6378 0.3739
GRU-SA2C 0.4514 0.3297 0.5606 0.3652 0.6420 0.3859
Caser 0.4475 0.3211 0.5559 0.3565 0.6393 0.3775
Caser-SQN 0.4553 0.3302 0.5637 0.3653 0.6417 0.3862
Caser-SNQN 0.4781 0.3460 0.5876 0.3816 0.6657 0.4015
Caser-SAC 0.4866 0.3527 0.5914 0.3868 0.6689 0.4065
Caser-SA2C 0.4917 0.3635 0.6000 0.3989 0.6796 0.4192
NItNet 0.3632 0.2547 0.4716 0.2900 0.5558 0.3114
NItNet-SQN 0.3845 0.2736 0.4945 0.3094 0.5766 0.3302
NItNet-SNQN 0.3969 0.2803 0.5039 0.3152 0.5876 0.3363
NItNet-SAC 0.3914 0.2813 0.4964 0.3155 0.5763 0.3357
NItNet-SA2C 0.4382 0.3171 0.5403 0.3505 0.6259 0.3722
SASRec 0.4228 0.2938 0.5418 0.3326 0.6329 0.3558
SASRec-SQN 0.4336 0.3067 0.5505 0.3435 0.6442 0.3674
SASRec-SNQN 0.4435 0.3163 0.5581 0.3535 0.6450 0.3742
SASRec-SAC 0.4540 0.3246 0.5701 0.3623 0.6576 0.3846
SASRec-SA2C 0.4705 0.3385 0.5756 0.3728 0.6648 0.3956
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Table 6.2: Top-N recommendation performance comparison of different mod-
els (N = 5, 10, 20) in Chapter 6 on RC15 dataset for click prediction. Recom-
mendations are generated from the supervised head. NG is short for NDCG.
Boldface denotes the highest score.

Models click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.2876 0.1982 0.3793 0.2279 0.4581 0.2478
GRU-SQN 0.3020 0.2093 0.3946 0.2394 0.4741 0.2587
GRU-SNQN 0.3124 0.2164 0.4067 0.2469 0.4856 0.2669
GRU-SAC 0.2863 0.1985 0.3764 0.2277 0.4541 0.2474
GRU-SA2C 0.3287 0.2307 0.4214 0.2606 0.5000 0.2806
Caser 0.2728 0.1896 0.3593 0.2177 0.4371 0.2372
Caser-SQN 0.2742 0.1909 0.3613 0.2192 0.4381 0.2386
Caser-SNQN 0.2800 0.1951 0.3682 0.2237 0.4465 0.2436
Caser-SAC 0.2726 0.1894 0.3580 0.2171 0.4340 0.2362
Caser-SA2C 0.2948 0.2068 0.3835 0.2356 0.4596 0.2549
NItNet 0.2950 0.2030 0.3885 0.2332 0.4684 0.2535
NItNet-SQN 0.3091 0.2137 0.4037 0.2442 0.4835 0.2645
NItNet-SNQN 0.3153 0.2176 0.4098 0.2482 0.4896 0.2686
NItNet-SAC 0.2977 0.2055 0.3906 0.2357 0.4693 0.2557
NItNet-SA2C 0.3410 0.2395 0.4348 0.2699 0.5113 0.2897
SASRec 0.3187 0.2200 0.4164 0.2515 0.4974 0.2720
SASRec-SQN 0.3272 0.2263 0.4255 0.2580 0.5066 0.2786
SASRec-SNQN 0.3284 0.2267 0.4271 0.2588 0.5083 0.2794
SASRec-SAC 0.3130 0.2161 0.4114 0.2480 0.4945 0.2691
SASRec-SA2C 0.3444 0.2407 0.4402 0.2719 0.5194 0.2920
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Figure 6.2: Model convergence of SNQN on RC15.

(1) On both datasets, the proposed SNQN achieves consistently better perfor-
mance than the supervised base model and SQN, on both click and purchase rec-
ommendations. This demonstrates that the introduced negative sampling strat-
egy on the RL head does improve the learning performance also on the supervised
component. This can be attributed to the shared recommendation model G(·) be-
tween the supervised part and the RL part. We also observed in our experiments
that SNQN achieves faster convergence than SQN. Figure 6.2 shows the compar-
ison between model convergence under the same learning rate on the validation
set of RC15, using GRU as the base model G(·). This further demonstrates that
the introduced negative sampling helps the model to learn faster and improves
its performance.

(2) SA2C achieves better performance than SAC in most cases (except for
some HR values in RetailRocket with Caser as the base model). This demon-
strates that the advantage estimate used in SA2C is a more effective critic com-
pared with the raw Q-values used in SAC. This can be attributed to the fact that
the advantage estimation helps to alleviate the sequence length bias.

(3) SA2C achieves the best performance in most cases, except for a few values
of HR. However, SA2C always achieves the highest NDCG, which demonstrates
that SA2C is more effective in pushing good actions (recommended items) to
top-ranking positions. This is due to the fact that positive actions are weighted
(advantaged) in a more effective manner during the training procedure of SA2C.
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Table 6.3: Top-N recommendation performance comparison of different mod-
els (N = 5, 10, 20) in Chapter 6 on RetailRocket for purchase prediction.
Recommendations are generated from the supervised head. NG is short for
NDCG. Boldface denotes the highest score.

Models purchase

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.4608 0.3834 0.5107 0.3995 0.5564 0.4111
GRU-SQN 0.5069 0.4130 0.5589 0.4289 0.5946 0.4392
GRU-SNQN 0.5232 0.4376 0.5713 0.4544 0.6175 0.4650
GRU-SAC 0.4942 0.4179 0.5464 0.4341 0.5870 0.4428
GRU-SA2C 0.5526 0.4754 0.5963 0.4897 0.6313 0.4985
Caser 0.3491 0.2935 0.3857 0.3053 0.4198 0.3141
Caser-SQN 0.3674 0.3089 0.4050 0.3210 0.4409 0.3301
Caser-SNQN 0.3757 0.3179 0.4181 0.3317 0.4595 0.3422
Caser-SAC 0.3871 0.3234 0.4336 0.3386 0.4763 0.3494
Caser-SA2C 0.3971 0.3446 0.4381 0.3578 0.4733 0.3667
NItNet 0.5630 0.4630 0.6127 0.4792 0.6477 0.4881
NItNet-SQN 0.5895 0.4860 0.6403 0.5026 0.6766 0.5118
NItNet-SNQN 0.6016 0.5062 0.6543 0.5234 0.6921 0.5330
NItNet-SAC 0.5895 0.4985 0.6358 0.5162 0.6657 0.5243
NItNet-SA2C 0.6226 0.5422 0.6573 0.5534 0.6842 0.5603
SASRec 0.5267 0.4298 0.5916 0.4510 0.6341 0.4618
SASRec-SQN 0.5681 0.4617 0.6203 0.4806 0.6619 0.4914
SASRec-SNQN 0.5776 0.4846 0.6310 0.5020 0.6719 0.5123
SASRec-SAC 0.5623 0.4679 0.6127 0.4844 0.6505 0.4940
SASRec-SA2C 0.5929 0.5080 0.6437 0.5246 0.6798 0.5337

129



6.3 Experiments

Table 6.4: Top-N recommendation performance comparison of different mod-
els (N = 5, 10, 20) in Chapter 6 on RetailRocket for click prediction. Recom-
mendations are generated from the supervised head. NG is short for NDCG.
Boldface denotes the highest score.

Models click

HR@5 NG@5 HR@10 NG@10 HR@20 NG@20

GRU 0.2233 0.1735 0.2673 0.1878 0.3082 0.1981
GRU-SQN 0.2487 0.1939 0.2967 0.2094 0.3406 0.2205
GRU-SNQN 0.2662 0.2065 0.3181 0.2233 0.3656 0.2353
GRU-SAC 0.2451 0.1924 0.2930 0.2074 0.3371 0.2186
GRU-SA2C 0.2720 0.2150 0.3208 0.2308 0.3656 0.2422
Caser 0.1966 0.1566 0.2302 0.1675 0.2628 0.1758
Caser-SQN 0.2089 0.1661 0.2454 0.1778 0.2803 0.1867
Caser-SNQN 0.2160 0.1721 0.2530 0.1841 0.2895 0.1934
Caser-SAC 0.2206 0.1732 0.2617 0.1865 0.2999 0.1961
Caser-SA2C 0.2170 0.1759 0.2528 0.1875 0.2873 0.1963
NItNet 0.2495 0.1906 0.2990 0.2067 0.3419 0.2175
NItNet-SQN 0.2610 0.1982 0.3129 0.2150 0.3586 0.2266
NItNet-SNQN 0.2699 0.2065 0.3236 0.2240 0.3703 0.2358
NItNet-SAC 0.2529 0.1964 0.3010 0.2119 0.3458 0.2233
NItNet-SA2C 0.2787 0.2197 0.3271 0.2354 0.3719 0.2468
SASRec 0.2541 0.1931 0.3085 0.2107 0.3570 0.2230
SASRec-SQN 0.2761 0.2104 0.3302 0.2279 0.3803 0.2406
SASRec-SNQN 0.2815 0.2171 0.3381 0.2355 0.3888 0.2483
SASRec-SAC 0.2670 0.2056 0.3208 0.2230 0.3701 0.2355
SASRec-SA2C 0.2873 0.2242 0.3409 0.2416 0.3893 0.2538
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Table 6.5: Recommendation performance from the RL
head. NG is short for NDCG. Boldface denotes the high-
est score. DQN denotes only a Q-learning head is stacked
upon the base model without any supervised head.

Methods purchase click

HR@5 NG@5 HR@5 NG@5

RC15 DQN 0.3642 0.2476 0.2096 0.1353
SNQN 0.3698 0.2497 0.2286 0.1495

Retail
Rocket

DQN 0.2952 0.2204 0.1368 0.0961
SNQN 0.3124 0.2422 0.1546 0.1103

To conclude, the proposed SNQN and SA2C introduce significant improve-
ments compared to existing methods, especially SA2C which provides the best
performance in most cases.

6.3.3 Recommendation from Q-learning (RQ2)

Table 6.5 shows the performance comparison when we use the Q-learning head to
generate recommendations. We compare the performance of SNQN with a sim-
ple double Q-learning (DQN) algorithm with the same negative sampling strategy
but without a supervised head upon the base model. The performance of SA2C is
not significantly different from SNQN as the two methods are essentially identical
with regards to the Q-learning head. We use the same base model GRU and the
same hyper-parameters for DQN and SNQN. We observe that SNQN achieves
better performance than DQN in all evaluation metrics on both purchase and
click predictions. Combined with the results in section 6.3.2, we observe that
joint training of supervised learning and RL with shared base models helps to
improve the performance of each component. Based on this finding, we believe
that transfer learning between self-supervised learning and RL would be a promis-
ing research direction. RL makes supervised models be more reward-driven, while
supervised learning improves the data efficiency of RL. This observation provides
strong support for the thesis statement (3).
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6.3.4 Effect of Off-Policy Correction (RQ3)

Chen et al. (2019a) introduced an off-policy correction term (propensity score)
for the policy-gradient method. The propensity score is defined as ρ = πθ(a|s)

β(a|s) . In
this subsection, we investigate the effect of this propensity score when introduced
into the actor component of SA2C. In that case, the training loss of the actor
becomes:

La−off = Ls · A(st, a
+
t ) · ρ. (6.6)

We also introduce another NDCG-based off-policy corrected evaluation metric
(Vlassis et al., 2019) which is formulated as

NGoff =

∑
NDCG

β∑
1
β

. (6.7)

In this implementation, we use the item frequency to approximate the behavior
policy β, which is also adopted in Strehl et al. (2010). Table 6.6 shows the result
when generating top-10 recommendations with GRU as the base model. We note
the following observations:

(1) On the standard evaluation metric NDCG, the off-policy correction doesn’t
improve the score. The reason for this is that the normal NDCG is actually
defined on non-corrected data, so the non-corrected actor performs better at this
evaluation metric.

(2) On the metric NGoff , the off-policy correction helps the model to achieve
better performance for click predictions but not for purchases. The reason for
this is that clicks account for the biggest part of the dataset. Hence the off-policy
correction term is actually better defined to correct the click data, leading to a
better performance of NGoff for clicks, while the high variance of the off-policy
correction for the small portion of purchase data leads to less of an improvement.
This observation suggests that perhaps we should design different correction terms
for different kinds of interactions.

In our experiment, we found that computing the off-policy correction term
involves a lot of normalization techniques (e.g., clipping and smoothing) (Chen
et al., 2019a) and that the behavior policy β can also be a long-tail distribution
(Strehl et al., 2010). This introduces substantial noise and high variance into
the training procedure. Designing more effective and stable off-policy correction
terms remains an open research problem.
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Table 6.6: Effect of off-policy correction. w/o means with-
out off-policy correction in the actor while w means the
opposite. Boldface denotes the highest score.

Methods purchase click

NDCG NGoff NDCG NGoff

RC15 w/o 0.3652 0.1077 0.2606 0.0767
w 0.3551 0.1064 0.2595 0.0781

Retail
Rocket

w/o 0.4897 0.2171 0.2308 0.0861
w 0.4771 0.2147 0.2238 0.0872

6.3.5 Hyperparameter Study (RQ4)

In this section, we conduct a series of experiments to demonstrate the effect of
negative sampling on recommendation performance. Figure 6.3 and Figure 6.4
show the recommendation accuracy with different sizes of negative examples (i.e.
|Nt|) on RC15 and RetailRocket, respectively (the base model is GRU). Here, it
is evident that, on both click and purchase predictions, the recommendation per-
formance initially increases and then decreases (except in Figure 6.3(c)). When
more negative actions are introduced, the model has more data to learn from. By
introducing negative actions, the model does not only learn that actions leading
to purchases are better than actions leading to clicks but also learns to draw a
contrast between negative and positive actions. Increasing the sample size means
that the model can have access to more diverse negative signals and, thus, leads
to better performance. However, a very large negative sample size may bias the
model to negative values and degrade performance. Regarding Figure 6.3(c), we
observe that the model also achieves good performance with small sample sizes.
The reason could be attributed to that a small sample size would introduce more
noise into the estimation of the advantage. This noise may help the model to find
a better local optimal with higher performance but also requires more update
steps to converge. We have observed in our experiments that SA2C needs more
iterations to converge when the sample size is small.
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Figure 6.3: Effect of negative samples on RC15
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Figure 6.4: Effect of negative samples on Kaggle
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6.4 Chapter Summary

In this chapter, we propose two learning frameworks (SNQN and SA2C) to explore
the usage of RL under recommendation settings. SNQN combines supervised
learning and RL with the shared base model and introduces negative sampling
into the RL training procedure. The explicitly introduced negative compari-
son signals help the RL output layer to perform a good ranking. Based on the
sampled actions, SA2C first computes the advantage of actions which can be
seen as normalized Q-values, and then use this advantage estimate as a critic
to re-weight the actor. To verify the effectiveness of our methods, we integrate
them into four state-of-the-art recommendation models and conduct experiments
on two real-world e-commerce datasets. Our experimental findings demonstrate
that the proposed SNQN and SA2C are effective in further improving the recom-
mendation performance, compared to existing self-supervised RL methods. The
experimental results provide sufficient support for our thesis statement (3).

Generally speaking, we hold the belief that combining supervised learning and
reinforcement learning is a promising direction for off-line (off-policy) learning
solutions. Supervised learning can provide knowledge for representation learning,
which can help to reduce the sample complexity of RL. On the other hand, RL
can introduce the desired reward expectations to supervised learning. Recently,
Agarwal et al. (2020) also obtained similar observations.
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Part IV
Conclusion

In the previous chapters of this thesis, we have developed deep
learning-based recommendation methods for implicit feedback
data from two perspectives: supervised learning and rein-
forcement learning. For supervised learning, we proposed two
deep recommendation models, namely CFM and RCF which
tackle the implicit feedback data as feature vectors and rela-
tions, correspondingly. Both the proposed models have shown
improved recommendation accuracy compared with related
baselines. This demonstrates that a good use case of deep
learning techniques is effective to improve the recommenda-
tion accuracy. Besides, RCF also shows the advantage to
generate more explainable recommendation. For reinforce-
ment learning, we cast the recommendation task in one in-
teraction session as a reinforcement learning problem and an-
alyzed the challenges in that procedure. We then proposed
self-supervised reinforcement learning frameworks to address
the challenges. We show that combining supervised learning
and reinforcement learning is a promising direction for future
recommendation agents.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we focus on utilizing advanced deep learning techniques for top-k
recommendation on implicit feedback data. The recommendation quality is mea-
sured by the recommendation accuracy. The proposed recommendation methods
focus on perspectives of both conventional supervised learning and reinforcement
learning.

Firstly, from the perspective of supervised learning, we developed deep learn-
ing models for implicit feedback data with side information. To better describe
user-item interactions, besides the user ID and item ID, a lot of data also con-
tains rich side information, such as item attributes, location, and daytime of the
interaction. A concise solution to represent this kind of user-item interaction is
to use one/multi-hot feature vectors to encode the IDs and essential information.
Based on such feature vectors, previous models (Rendle, 2010) are limited to their
linearity and model fidelity to capture high-order feature interaction signals. This
motivates the proposed CFM (Xin et al., 2019a) model in Chapter 3. CFM uti-
lizes the outer product between feature embeddings to represent the interaction
of the two features. Then it stacks the pair-wise feature interactions to form an
interaction cube and utilizes convolutional neural networks to learn high-order
interaction signals. A pooling layer is also proposed to reduce the computational
cost. Experimental results demonstrated that CFM achieves better recommen-
dation accuracy compared with related baselines.

Given the rich side information, we can also infer multiple item relations. For
example, two movies may share the same director, two products may comple-
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ment each other. Compared with the collaborative signal which is indicated by
the co-interaction patterns, item relations inferred from side information are fine-
grained and contain more semantic meaning. Incorporating such item relations
may help to improve both the recommendation accuracy and recommendation
interpretability. Based on such motivation, we can re-organize the implicit feed-
back data as relational data. This leads to the proposed RCF (Xin et al., 2019b)
model in Chapter 4. In RCF, we define item relations as tuples consisting of re-
lation types and relation values. Relation types describe high-level relations such
as shared genres between movies while relation values depict more fine-grained
detail of which genres do they share. Then RCF utilizes two attention networks
to compute the importance of relation types and relation values for user decision
making. Experimental results on movie and music recommendation demonstrate
that RCF cannot only improve the recommendation accuracy but also help to bet-
ter understand the user behavior patterns and thus increase the interpretability
of recommendation.

The above sections focus on developing supervised deep learning models for
recommendation, through utilizing the implicit feedback data in different forms:
feature vectors and relations. The experimental results show that deep learning
methods can not only help to improve the recommendation accuracy but also
provide more explainable recommendation. This observation supports the thesis
statement (1) and statement (2).

However, there could be factors that can not be appropriately modeled by
simple supervised learning, such as long-term user engagement in one interaction
session and different recommendation objectives. This motivates the utilize of
reinforcement learning for recommendation.

Regarding reinforcement learning, we first formulated the session-based rec-
ommendation as a reinforcement learning task and gave the definition of the
corresponding MDP. We then analyzed the challenges to applying reinforcement
learning algorithms for implicit-feedback based recommendation. The major chal-
lenges come from the pure off-policy setting and the lack of negative feedback.
To address the problem, we proposed two self-supervised reinforcement learning
algorithms namely SQN and SAC for recommendation in Chapter 5. The main
idea is to utilize reinforcement learning as a regularizer to introduce the desired
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long-term reward to supervised learning and conduct transfer learning between
the two components. Based on SQN and SAC, we further developed SNQN and
SA2C in Chapter 6 to introduce the negative sampling strategy. In that case, the
reinforcement learning component is not just a regularizer but also a good ranking
player which can also be used to generate recommendation. We integrated the
proposed learning frameworks with different deep recommendation models and
conducted experiments on two real-world e-commerce implicit feedback datasets.
Experimental results demonstrated the effectiveness of the proposed methods,
which provides support for the thesis statement (3).

7.2 Future Work

In this section, we present several promising research directions for the deep
learning-based recommendation.

• Residual learning for recommendation: Recently, residual learning with skip
connections on convolutional neural networks has achieved great success in
the field of computer vision (He et al., 2016b). The introduced skip connec-
tions help to alleviate the gradient issue of deep networks. With residual
skip connection, ResNet (He et al., 2016a) can achieve an extreme deep
architecture of hundreds of layers with high performance. We are also in-
terested in introducing residual learning in the proposed CFM model. It
may help to improve the model fidelity and further improve the recommen-
dation accuracy. However, it may also introduce more computational costs.
How to improve the model performance and meanwhile keep high inference
efficiency is an interesting research direction.

• Multiple user relationships could further improve the proposed RCF model:
The proposed RCF model introduces item relations into recommendation.
This is motivated by item-based collaborative filtering. However, besides
the item relations, there are also multiple user relations in the real-world
scenario. Exploiting social relations have been verified to be effective to
improve the recommendation performance (Ma et al., 2011; Tang et al.,
2013, 2016; Guo et al., 2015). Compared with item relations, user relations
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are more complex and dynamic. How to incorporate user relations in the
framework of RCF is also a promising direction. When both item relations
and user relations are integrated, the user-item interactions can be repre-
sented as graphs whose nodes are users and items, links are interactions and
relations. We can then utilize graph neural networks for recommendation.
Besides, incorporating context information into the learning process and
then formulate the context-aware user-item relation graph learning could
be interesting. We have done some attempts in supporting publications 8
and 9. Because the first author of these publications is not me, so they are
not included in the main content of this thesis.

• Graphs and reinforcement learning for better negative sampler: Under the
setting of implicit feedback, plenty of state-of-the-art recommendation mod-
els utilize the negative sampling strategy to sample negative examples for
pair-wise comparison. Research (Chen et al., 2018; Yuan et al., 2016; Zhang
et al., 2013) has shown that a well-designed negative sampler can further
improve the model performance compared with the simple uniform sampler.
The major idea is to select hard and diverse negative examples for pair-wise
comparison. When the implicit feedback data is presented as interaction
graphs, the topology information of the graph can help us to infer the hard
training examples. On the other hand, reinforcement learning also provides
solutions for the design of a negative sampler. For example, we can re-
gard the selection of negative examples as the action of the reinforcement
learning problem and the gradient we get as the reward. By solving this
reinforcement learning problem, we aim to get the maximum cumulative
gradient updates. It conforms to the analysis in Rendle and Freudenthaler
(2014).

• Reinforcement learning as a teacher model: As discussed in Chapter 5,
directly utilizing reinforcement learning for recommendation is infeasible
due to the pure off-policy setting. Another solution is to use reinforcement
learning as a teacher model and supervised learning as a student model. For
example, in the training procedure, the supervised model (i.e., the student)
encodes the input into a hidden state, then the reinforcement learning model
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(i.e., the teacher) can update this hidden state to a new state. Then we
can generate two recommendation lists according to the above two hidden
states and the difference between them can be seen as the reward. In
that case, the teacher is trained to update the student’s outcome to fit the
defined reward. What’s more, because now the reinforcement learning is not
directly utilized to generate recommendation, we can avoid the off-policy
challenge. We have done some initial attempts on supporting publication 7
regarding this topic.

• Reinforcement learning for re-ranking: In an industry recommender system,
there are usually multiple recommendation models. Each model can gener-
ate a recommendation list and the final output is decided by a re-ranking
procedure. Utilizing reinforcement learning for this re-ranking procedure
is also a promising direction. Firstly, reward-driven reinforcement learning
provides more flexibility to customize the final recommendation list accord-
ing to the specific demands. Secondly, the re-ranking scenario provides
the potential possibility to perform on-policy learning. Because in the re-
ranking procedure, the candidate items have already been selected according
to the user preference. In that case, performing on-policy learning may not
affect the user experience too much. It means we can afford the price to
make the reinforcement learning agents interact with the environment (i.e.,
the users) and observe the rewards.

7.3 Closing Remarks

Recommender systems play an important role in Web life to solve the problem of
information overload. It can benefit both service providers by increasing traffic
and users by providing personalized items. Implicit feedback is one of the most
common data used to train an effective recommender agent. In recent years, deep
learning methods have achieved great success in a variety of fields due to their
high model fidelity and expressiveness. In this thesis, we conducted research to
develop deep learning-based methods for implicit feedback recommendation. We
focus on both conventional supervised learning and reinforcement learning. For
supervised learning, we developed two deep models to tackle implicit feedback
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as different data structures. For reinforcement learning, we analyzed the specific
challenges encountered in the field of recommendation and then provided solutions
by combing supervised learning and reinforcement learning. Generally speaking,
supervised learning methods focus on imitating the historical records and opti-
mizes the immediate feedback while reinforcement learning is more reward-driven
and optimizes the cumulative gains in a whole interaction session. We believe that
combing supervised learning and reinforcement learning is a promising direction
for future recommendation agents. In that case, supervised learning helps to
alleviate the data-hungry problem of reinforcement learning while reinforcement
learning introduces reward-driven properties and long-term optimization perspec-
tives into supervised learning.
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