
 
 
 
 
 
 
 
Galiñanes Reyes, Sabrina Lynn (2021) Cell-free protein systems and in vitro 
display methods as compelling tools for high-throughput screening.  
PhD thesis. 
 
 
 
http://theses.gla.ac.uk/82169/  
  
 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 
title, awarding institution and date of the thesis must be given 

 
 
 
 
 
 
 

Enlighten: Theses 
https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://theses.gla.ac.uk/82169/
mailto:research-enlighten@glasgow.ac.uk


 

 

Cell-free protein systems and in 

vitro display methods as 

compelling tools for high-

throughput screening 

 
 

A thesis submitted to the University of Glasgow for 
the degree of Doctor of Philosophy 

 

School of Engineering 

College of Science and Engineering 

 

Sabrina Lynn Galiñanes Reyes 



October 2020 

 
 

“Progress is made by trial and failure; the failures 
are generally a hundred times more numerous 

than the successes, yet they are usually left 
unchronicled. The reason is that the investigator 
feels that even though he has failed in achieving 
an expected result, some other more fortunate 
experimenter may succeed, and it is unwise to 

discourage his attempts.” 
  
 
 

William Ramsay 

 

 

From 'Radium and its Products', Harper’s 

Magazine (Dec 1904), 110, No. 655, 52. 

 

 



Table of Contents 
 

Acknowledgements .................................................................................................... 9 

Publications ................................................................................................................ 16 

Abstract ...................................................................................................................... 18 

Author’s Declaration ................................................................................................ 20 

Abbreviations ............................................................................................................. 21 

Thesis Summary ........................................................................................................ 24 

Chapter 1. General Introduction .............................................................................. 26 

1.1 Thesis Outline and Summary ........................................................................... 26 

1.2 Synthetic Biology .............................................................................................. 28 

1.2.1 Origins and Characteristics........................................................................ 28 

1.2.2 Synthetic Biology Applications: Protein Engineering .............................. 32 

1.2.3 Synthetic Biology Applications: Biosensors .............................................. 36 

1.2.4 Synthetic Biology Applications: Artificial Life and Artificial Cells.......... 38 

1.3 Cell-Free Protein Systems ................................................................................ 44 

1.3.1 Properties and Characteristics ................................................................... 44 

1.3.2 Types of Cell-Free Systems: Cell-extract vs Purified Components .......... 46 

1.3.3 Cell-Free Protein Systems Applications ..................................................... 51 

1.4 In vitro and in vivo Display Techniques .......................................................... 55 

1.4.1 Properties and Drug Screening .................................................................. 55 

1.4.2 mRNA Display and cDNA Display ............................................................ 57 

1.4.3 Ribosome Display ...................................................................................... 62 

1.4.4 Phage Display ............................................................................................ 65 

1.4.5 Cell Display: Bacterial and Yeast Display ................................................. 67 



1.4.6 Liposome Display ...................................................................................... 69 

1.5 Artificial Lipid Membranes and Membrane Proteins ...................................... 71 

1.5.1 Artificial Lipid Membranes Composition, Characteristics and Uses. ....... 71 

1.5.2 Membrane Proteins: G-Protein Coupled Receptors (GPCRs) and their 

Applications for Drug Screening. ...................................................................... 76 

1.6 Thesis Aims ....................................................................................................... 81 

1.7 Chapter 1 References ........................................................................................ 85 

Chapter 2. Materials and Methodology .................................................................. 106 

2.1 Experiments for Chapter 3 .............................................................................. 106 

2.1.1 General Materials and Verification Procedures ....................................... 106 

2.1.2 Plasmid Stock and Production ................................................................. 107 

2.1.3 Linear DNA Constructs ............................................................................ 107 

2.1.4 Spinach RNA Aptamer Constructs ........................................................... 112 

2.1.5 Cell-Free Transcription-Translation Reaction ......................................... 113 

2.1.6 RNA Spinach Aptamer Cell-Free Transcription Reaction ....................... 113 

2.1.7 Mathematical Analysis and Modelling .................................................... 114 

2.2 Experiments for Chapter 4 ............................................................................. 114 

2.2.1 General Materials and Verification Procedures ...................................... 114 

2.2.2 Linear DNA Library Construction ............................................................ 117 

2.2.3 In vitro Transcription and DNA-tag Ligation ......................................... 118 

2.2.4 Sample Product Purification: Electroelution and Ethanol Precipitation

 ........................................................................................................................... 118 

2.2.5 In vitro Translation Using Cell-free System for mRNA Display ............ 119 

2.2.6 Optimisation of mRNA-peptide Conjugate Formation ......................... 120 

2.2.7 Trypsin Digestion ..................................................................................... 120 



2.2.8 Reverse Transcription for cDNA Synthesis.............................................. 121 

2.2.9 Western Blot Analysis ............................................................................... 121 

2.2.10 Selection Using Anti-FLAG M2 Antibody ............................................. 122 

2.2.11 RT-PCR for Amplifying Selected Sequences .......................................... 123 

2.2.12 Next-Generation Sequencing ................................................................. 124 

2.2.13 Sequence Analysis ................................................................................... 124 

2.3 Experiments for Chapter 5 ............................................................................. 125 

2.3.1 General Materials and Verification Procedures ...................................... 125 

2.3.2 DNA Constructs, Primers and PCR ......................................................... 126 

2.3.3 Giant Unilamellar Vesicles (GUVs) Preparation ..................................... 128 

2.3.4 Fluorescence-Activated Cell Sorting (FACS) .......................................... 130 

2.3.5 Membrane Scaffold Protein (MSP) Production, PUREfrex2.0 ............... 130 

2.3.6 Membrane Scaffold Protein (MSP) Purification, MagneHis Ni-Particles

 ............................................................................................................................ 131 

2.3.7 Membrane Scaffold Protein (MSP) Concentration and Verification ..... 132 

2.3.8 Nanodiscs Production, Bio-Beads ........................................................... 133 

2.3.9 Nanodiscs Purification and Concentration, AKTA Chromatography ... 135 

2.3.10 G Protein-Coupled Receptors (GPCR) Production, PUREfrex 2.1 and DS 

Supplement ....................................................................................................... 135 

2.3.11 G Protein-Coupled Receptors (GPCR) Purification, Anti-HA-tag mAb-

Magnetic Beads. ................................................................................................ 136 

2.3.12 Radiolabelling .......................................................................................... 137 

2.4 References for Chapter 2 ................................................................................ 139 

Chapter 3. Cell-free protein expression systems and promoter library mutants: 

uncovering their dynamics and tackling optimization processes ......................... 141 



3.1 Chapter 3 Aims and Summary ........................................................................ 141 

3.2 Preparation of T7 Promoter Library Variants Constructs ............................ 143 

3.3 The PURE System vs. the Expressway System .............................................. 144 

3.4 mRNA and Protein Degradation ................................................................... 146 

3.5 Reproducibility ................................................................................................ 151 

3.6 Substitution Location within the Promoter Region ..................................... 153 

3.7 Effects of Extended Sequence Length ............................................................ 154 

3.8 Absolute Fluorescence Levels and Rate of Reaction ..................................... 157 

3.9 Cell-Free Systems Mathematical Models ...................................................... 163 

3.10 RNA Spinach Aptamer ................................................................................... 171 

3.11 Conclusions .................................................................................................... 173 

3.12 References for Chapter 3 ............................................................................... 175 

Chapter 4. In vitro display techniques and cell-free systems: a refined and clean 

method for in vitro selection of drug targeted peptides ........................................ 177 

4.1 Chapter 4 Aims and Summary ....................................................................... 177 

4.2 Method Overview ........................................................................................... 179 

4.3 DNA Library Design with Random Sequences ............................................. 181 

4.4. T7 RNAP In vitro Transcription and T4 RNA Ligation ............................... 182 

4.5 PURE system in vitro Translation Optimization .......................................... 183 

4.6 Reverse Transcription for cDNA Display and Verification of mRNA-peptide 

and mRNA/cDNA-peptide Conjugates ............................................................... 186 

4.7 In vitro Selection Assay and Reverse Transcription PCR ............................. 188 

4.8 High-throughput Miseq Sequencing Analysis ..............................................189 

4.9 Conclusions ....................................................................................................196 

4.10 References for Chapter 4 ............................................................................. 199 



Chapter 5: Production of Lipid Vesicles and Nanodiscs Synthetic Membranes and 

G-protein-coupled receptors (GPCRs) using the PURE Cell-free System ............ 201 

5.1 Chapter 5 Aims and Summary ........................................................................ 201 

5.2 Liposomes as Synthetic Membranes for GPCRs Production and Assembly: 

Microscope Visualisation and FACS Analysis. ................................................... 204 

5.3 Nanodiscs as Synthetic Membranes for GPCRs Production and Assembly: 

MagneHis Purification and Western Blot Analysis. .......................................... 209 

5.4 DNA Library Design for Screening and Selection of Peptides as Drug Targets 

for GPCRs. ............................................................................................................. 215 

5.5 Outline and Conclusions ................................................................................ 218 

5.6 Chapter 5 References ..................................................................................... 220 

Chapter 6: Conclusions and Future work .............................................................. 222 

6.1 Conclusions and Discussion .......................................................................... 222 

6.2 Future Work .................................................................................................. 228 

6.3 Chapter 6 References .................................................................................... 234 

Appendix ................................................................................................................. 235 

A.1 Appendix for Chapter 3 ................................................................................. 235 

A.1.1 Single mutation plots .............................................................................. 235 

A.1.2 Reproducibility plots ............................................................................... 243 

A.1.3 Absolute expression levels ...................................................................... 244 

A.1.4 Modelling plots ....................................................................................... 246 

A.2 Appendix for Chapter 4 ................................................................................ 248 

A.2.1 DNA Sequences ....................................................................................... 248 

A.2.1 Gel images ................................................................................................ 251 

A.3 Appendix for Chapter 5 ................................................................................ 253 



A.3.1 Microscope visualization ........................................................................ 253 

 

 

 

  



 Acknowledgements 
 

9 
 

Acknowledgements 
 

The research carried to write this thesis started in October 2016 and ended in April 

2020. My research allowed me to work in two countries, Scotland and Japan. Inside 

Japan, I had the pleasure to work in three different organizations: Earth-Life 

Science Institute (ELSI) (Tokyo Institute of Technology), University of Osaka, and 

Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This amazing 

opportunity allowed me to meet incredible people with so many different 

backgrounds, beliefs, and points of views and coming from different parts of the 

world. This part of my PhD made me grow as a professional but also as a person. 

All of the people I met left a mark in me, some more than others, but every single 

interaction helped to shape me into the person I am today. To start with, I want to 

thank everyone that I have had the pleasure to meet during my life, because 

whether it was good or bad, they all taught me something, and it is that knowledge 

that I use every day to advance through life. As for the people that I want to thank 

more personally: 

 

Dr Soichiro Tsuda, as I would not have had this opportunity without him. When 

I started my MSc with him back in 2014 I admired his hard work and novel ideas 

and projects in mind, which led me to start my PhD with him. It was thanks to him 

I had the amazing opportunity to do part of my research in Japan and during that, 

fulfilling one of my time long dreams of visiting such an amazing country. He was 

always a caring person that took care of me and taught me so many useful and 



 Acknowledgements 
 

10 
 

practical skills. Even after his departure, he did his best to support me. I wish you 

and your family all the best in the future. 

 

Prof. Leroy Cronin, for giving Dr Tsuda and I some much-needed laboratory 

space to perform our experiments. Also for providing all his valuable feedback and 

guidance to help solve the problems we encountered. His impressive mind and 

ideas will always be a model for me to look to.  

 

Dr Yutetsu Kuruma, for being my other guiding light during my PhD, especially 

when big changes came along and I felt lost. You were the one who taught me the 

main block of my laboratory skills and you were always there when I had questions 

and was stuck. I always enjoyed our science and non-science talks, especially when 

they happened over a glass of sake at an izakaya. You are a great person with a 

heart of gold, never change! 

 

Sumie Eto and Mai Fujimi, for being the best laboratories buddies I could have 

ever had. Laboratory work is always hard, especially after so many hours, but you 

two made it much smoother. I loved our talks filled with laughter, going for sashimi 

lunch together and always having a snack on my table from both of you. Also thank 

you for being there with all my laboratory questions, even when I made mistakes. 

You are both wonderful people and I am so glad you are in my life. You will both 

do marvellous in your new path in life. 



 Acknowledgements 
 

11 
 

 

Dr Kosuke Fujishima, for allowing me to work with you and take part in another 

amazing project. I truthfully enjoyed collaborating with you and your team, you 

were always so nice and tactful that it was a pleasure discussing science and just 

talking in general. You always listened to what I had to say, even when I felt like 

an inexperienced student. You have great potential as a supervisor and a big heart. 

You are a marvellous scientist, father and husband, you have a wonderful family 

and I am completely sure Sana-chan will grow up to be as amazing as her father. 

 

Dr Julien Reboud, for taking care of me and all the paperwork and problems I 

drag along. I was dropped onto you midway through the PhD, but you took me 

under your wings and helped me a great deal, especially with the writing thesis 

part. This shows your dedication to your students and that is one of the best skills 

a supervisor can have.  

 

I want to also personally thank the Lord Kelvin Adam Smith (LKAS) PhD 

Scholarship for funding me through all the research. Also the ELSI Origins 

Network (EON) for giving me the opportunity at the beginning of performing part 

of my research in Japan.  

In this section, I want to put an asterisk for a very big thanks. I want to thank the 

millions of people who helped during the COVID-19 pandemic crisis. To all the 

health and sanitary people who worked endlessly to treat patients and save lives, 



 Acknowledgements 
 

12 
 

even when it meant risking themselves. To all the scientists and researchers who 

pulled long working shifts to bring treatment and understanding of this 

unpredicted virus. To all the personnel that had to continue working and getting 

exposed to maintain necessities running and prevent societies from collapsing. You 

are all our saviours, and you deserve all our respect and be recognized as the 

amazing people you all are.  

 

All of the work behind research and endless investigation could not be possible 

without the help and dedication of some people that make all the paperwork, 

answering endless questions and way too often mistakes get resolved in the blink 

of an eye. I want to thank all the personnel from the organizations I have been in. 

The University of Glasgow, especially Rebekah Derrett, for your help with the 

scholarships process and inquiries; to Julia Deans for all her patience with my 

non-ending questions; to the Finance Office for always making sure I get my 

money back as soon as possible; and to the Insurance Office, for covering me when 

I was abroad. To the staff from ELSI that helped so much with all the visa 

paperwork along with my accommodation, stipend and laboratory equipment, 

Kyoko Akiyama, Reiko Nagano, Harumi Tanaka and Kanako Yagame. Also 

my special gratitude to the supporting staff from the University of Osaka and 

JAMSTEC.  



 Acknowledgements 
 

13 
 

This journey would have not been possible without the constant support of all my 

close friends. Even if are all now scattered around the world, we continue to keep 

in contact and remember the great memories we made together.  

To my Glasgow gang, Brynley Pearlstone, Joe Hennell, Steph Woodings, 

Christopher Delaney, Daniel Rosner and Shijoy Mathew; ever since we all met 

at the university student residence we have had a blast. All those meetings at our 

flats, the restaurant runs for delicious food, the super fun board games evenings 

and of course the annual Eurovision gathering. It all made for superb memories 

and really fun moments. I am very proud of what all of you have accomplished so 

far, so keep it up. Even if I haven’t been able to see her for a very long time, I always 

carry Maria Rosa Castro Gonzalez in my thoughts and heart as she is always 

there, one call away, when I need to talk and have a great laugh. I had the time of 

my life during our Thailand trip and I am happy you got to tie the knot to a great 

man that adores you. To my best Italian buddy, Lucia Gastoldi. We have always 

found in each other great confidants to let go of things and say everything that was 

on our mind. A friendship that started with coffee breaks in Tokyo and that will 

last forever. I know I can count on you and we will always be there for each other. 

Life has amazing experiences reserved for such an amazing person as you. Never 

give up, I believe in you. 

A very special thanks to my brother from another mother, Vasilis Ntouros, for 

being the best friend/brother/confident that anyone could ever ask for. You have 

one of the biggest and strongest hearts and souls I have ever seen in a person. You 



 Acknowledgements 
 

14 
 

are a magnificent guy and you deserve all the best life can give you. I am forever in 

debt to you from your kindness.  

To my Japan princesses gang, Irene Bonati, Tony Jia and Alexandre Baccouche. 

You were always there to make sure we would enjoy the finest afternoon tea Tokyo 

had to offer and to propose super fun trips when we would play kiwi and eat mikans 

like there was no tomorrow. And while the pandemic lockdown was on place, to 

our bi-weekly zoom meeting full of laughter and online board games. Along with 

them, a big thanks to the other members of the Tokyo gang, Aishwarya Paknikar, 

Chaitanya Giri and Richard Gilliams. I will always cherish our late nights of 

izakayas and karaoke, and of course the strong friendship we developed over that 

year that continues and overcomes any distance. Continuing on the same country, 

I want to express my gratitude to Hugo Villanúa Vega for making me part of his 

life and all the help he provided me. Also for all the video gaming sessions we had 

and the not so successful Japanese studying sessions that turned to hours long 

chatting about everything filled with Simpson’s references. Of course also to his 

partner in life, Yang Zhang, for making me laugh and feel relaxed with her 

adorable unexpected comments and actions and her sweet and adorable 

personality. I wish you both all the best in this new chapter in your life! 

To my longest lasting friends from my motherland, Enrique León Calvo y Dunia 

Escribano. From the very beginning to the very end, through the good and the 

bad, through the long-lasting distance, you were always there. To listen to me, to 

give me good advice, and to make me laugh. You were my anchor when I was 



 Acknowledgements 
 

15 
 

homesick and constantly made sure I would wake up to hundreds of text messages 

of very funny memes to start my day with a smile. I love you both with all my heart.  

For the big finale, it is time for the most important people of my existence. To my 

everything, Maia Kokawa. I never imagined I would find everything I ever dream 

of on the opposite side of the world, but life gives you such pleasant surprises once 

in a while. You are the definition of perfection in my eyes. You are caring, patient, 

loving and hardworking. You are adorable and beautiful in equal parts. We share 

so many things that every day by your side is wonderful. To many more years of 

restaurant hunting for the best food and travelling as far as we can go. Of course, 

none of this would have ever been possible without the unconditional love and 

support from my parents, Evelyn Reyes Gonzalez and Jaime Galiñanes 

Mondelo. You are the best parents any person in the entire universe could have 

ever asked for. We have had a difficult life, you more than me, but you never 

stopped supporting me and making me grow and advance as a person and 

professional. No matter how hard the situation was, you always had time for me 

and made sure to fill me with love and endless opportunities to me make my path 

in life. Everything I am today is because of you. I love you both more than words 

can express.  

  



 Publications 
 

16 
 

Publications 
 

At the date of thesis submission, this paper has been submitted and reviewed in 

ACS Synthetic Biology and Biotechnology and Bioengineering and was 

resubmitted to Biotechnology and Bioengineering and accepted in January 2021. 

The results of this paper form the basis of chapter 4. 

  
- Reyes, SG, Kuruma, Y, Fujimi, M, et al. PURE mRNA display and cDNA 

display provide rapid detection of core epitope motif via high-throughput 

sequencing. Biotechnol Bioeng. 118: 1702-1715 (2021). 

https://doi.org/10.1002/bit.27696 

 

At the date of thesis submission, this paper has been submitted and reviewed in 

ACS Synthetic Biology and is being submitted to PLOS One in the upcoming 

months after discussion with the corresponding author. The results of this paper 

form the basis of chapter 3. 

 

- Uncovering cell-free protein expression dynamics by a promoter library 

with diverse strengths. Sabrina Galiñanes Reyes, Yutetsu Kuruma, 

Soichiro Tsuda. bioRxiv 214593; doi: https://doi.org/10.1101/214593 

 

 

 

 

https://doi.org/10.1002/bit.27696


 Publications 
 

17 
 

During the research carried out in this thesis, collaborative work was also 

performed and two publications resulted from this: 

 

 

- Yoshida, M., Hinkley, T., Tsuda, S., Abul-Haija, Y. M., McBurney, R. T., 

Kulikov V., Mathieson, J. S., Reyes, S. G., Castro, M. D., Cronin, L. Using 

Evolutionary Algorithms and Machine Learning to Explore Sequence Space 

for the Discovery of Antimicrobial Peptides. Chem. 4, 533-543 (2018). 

https://doi.org/10.1016/j.chempr.2018.01.005 

 

- Yoshida, M., Reyes, S., Tsuda, S. et al. Time-programmable drug dosing 

allows the manipulation, suppression and reversal of antibiotic drug 

resistance in vitro. Nat Commun. 8, 15589 (2017). 

https://doi.org/10.1038/ncomms15589   

https://doi.org/10.1016/j.chempr.2018.01.005


 Abstract 
 

18 
 

Abstract 
 

Synthetic biology has become a promising field that aims at developing and using 

tools to work with recombinant DNA. In this field, cell-free protein expression 

systems have become a valuable asset to enable the in vitro transcription-

translation of recombinant proteins, as functional elements of synthetic biology. 

These systems are not dependent on a living organism and consequently offer full 

control of the reactions’ composition and environment, thus enabling protein 

expression in situations where in vivo systems would not perform efficiently. In this 

work, we aimed to explore their applications for in vitro display techniques, for 

protein and peptide evolution in drug discovery. Cell-free systems have the 

potential to allow for a higher number of library candidates to be selected and to 

enable the use of recombinant or unnatural candidates. These unnatural 

candidates are elements not used by organisms naturally, whether because they 

are toxic, they don’t have the metabolisms to process them or just because they are 

fully synthetic. The most researched targets for drugs are membrane proteins, but 

they are also some of the most challenging, as they require a proper lipid 

membrane to fold and settle correctly.  

The work presented in this thesis is focused on linking cell-free systems, in vitro 

display methods and membrane proteins, by characterising the effects of specific 

components on performance in a systematic step-by-step manner. The thesis first 

describes the uncovering of the underlying dynamics of protein expression in two 
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different types of cell-free systems, namely cell-extracts and purified components. 

A set of T7 promoter variants was constructed and tested in both systems, and the 

protein expression levels recorded and analysed. Both systems are driven by 

different expression dynamics for protein and mRNA. These expression dynamics 

represent the behaviour of certain parameters involved in synthesis, regulation, 

degradation, bottlenecks, etc … The limiting factors of both systems were identified 

for optimization of protein expression. Following conclusions from this analysis, 

purified components for protein translation were adopted and applied to both 

mRNA and cDNA display techniques. The results demonstrated the ability of the 

cell-free systems to provide a screening/selection method producing highly stable 

peptide conjugates and high sample purification. This proof of concept was tested 

and verified with the FLAG epitope, as a thoroughly characterised system. Several 

motifs with high affinity were obtained after 4 rounds of selection and further 

sequenced. Building further on these developments, cell-free systems were used to 

produce CX3CR1, a membrane protein from the G-protein-coupled receptors 

(GPCRs) family, within two types of synthetic lipid membranes, liposomes and 

nanodiscs. The thesis finishes by providing potential directions for the possible use 

of the cell-free expression systems, mRNA display and GPCR proteins for the 

creation of a peptide screening and selection method that could be used in the 

future for drug screening of membrane proteins.  
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Thesis Summary 
 

This thesis explores the applications of cell-free protein expression systems in 

synthetic biology together with in vitro display methods and synthetic membranes 

for membrane protein production.  

 

As a quick summary of the thesis chapters:  

 

Chapter 1: Introduction.  This section is a literature review of the background 

information necessary to understand and follow this thesis.  

 

Chapter 2. Materials and Methodology. This chapter explains in detail the 

procedures and protocols carried out during the experimental part of this thesis. 

 

Chapter 3. Cell-free protein expression systems and promoter library 

mutants: uncovering their dynamics and tackling optimization processes. 

This topic covers research done on two different cell-free systems in order to 

discover how they behave and how can they be optimized using data analysis and 

mathematical modelling. 
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Chapter 4. In vitro display techniques and cell-free systems: a refined and 

clean method for in vitro selection of drug targeted peptides. Explanation of 

a methodology that could be used for screening of peptide candidates for drug 

discovery using cell-free systems and mutant libraries. 

 

Chapter 5: Production of Lipid Vesicles and Nanodiscs Synthetic 

Membranes and G-protein-coupled receptors (GPCRs) using the PURE Cell-

free System. Expression of membrane proteins using cell-free system and two 

different types of synthetic membranes, liposomes and nanodiscs.  

 

Chapter 6: Conclusions and Future work. Conclusions of the thesis and 

explanation of posterior work that could be carried out to continue the research 

performed.  

 

Further explanation of the thesis aims and how all chapters come together will be 

done in section 1.6 Thesis Aims and Summary so as to provide reader first with a 

background knowledge of the research field of the thesis.   
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Chapter 1. General Introduction 
 

1.1 Introduction Outline 

Major research and understanding of several topics were necessary prior in order 

to carry out the work in this thesis. The introduction of this thesis will focus on all 

the theoretical work and investigation performed before the experimental part. It 

has been divided into several sections for better explanation.  

The first section will focus on synthetic biology (Section 1.2); then, cell-free systems 

(Section 1.3); in vitro display techniques (Section 1.4); artificial lipid membranes 

and membrane proteins (Section 1.5); and to finalise, and outline of the thesis 

(Section 1.6). 

Section 1.2 will start with a summary of synthetic biology origins and their 

characteristics (Section 1.2.1). Then, it will go deeper into the major uses for 

synthetic biology, like protein engineering (Section 1.2.2), biosensors (Section 1.2.3), 

and artificial cells (Section 1.2.4). 

In Section 1.3, cell-free protein systems will be discussed. To start with, a quick 

explanation of their characteristics and origins (Section 1.3.1); then, it will continue 

to explore the two main types of cell-free systems (Section 1.3.2); and to finalise, a 

segment to explore their applications (Section 1.3.3). 

Section 1.4 will explain in detail different types of display methods. The first part 

(Section 1.4.1) will talk about display methods, their properties and uses in drug 
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screening. Then several types will be explained: mRNA and cDNA display (Section 

1.4.2), ribosome display (Section 1.4.3), phage display (Section 1.4.4), cell display 

(Section 1.4.5) and liposome display (Section 1.4.6).  

In Section 1.5, artificial lipids membranes (Section 1.5.1) and GPCR membrane 

proteins will be the major focus (Section 1.5.2).  

To conclude, Section 1.6, will be an outline of the thesis.  
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1.2 Synthetic Biology 

1.2.1 Origins and Characteristics 

In the last few years, there has been an increasing demand for research tools that 

offer a broad area to work with to solve very specific problems in short periods. In 

this context, synthetic biology has gained popularity for meeting those criteria, 

since it offers a great range of available options to work with recombinant DNA 1. 

Synthetic biology involves redesigning organisms for different goals. It focuses on 

the basics of genetic engineering to create new biological parts and/or systems, or 

redesign aspects already present in nature to give organisms new abilities. For 

example, it has been possible to engineer organisms that produce biofuels 2. As 

these features come very handy for multiple purposes, researchers and companies 

are harvesting this field to tackle many problems. Some areas where it is being used, 

for example,  are agriculture 3, food industry 4, and medicine5. Furthermore, thanks 

to the advancements in genetic engineering and the lower price for DNA synthesis 

and sequencing, this field is rapidly growing. Also, standardisation, regulation, and 

registration of biological parts and genes have been a great asset 6. This aspect 

allows anyone accesses to a collection of genetic parts that are the genetic building 

bricks (BioBricks) 7 (Figure 1.A) for the assembly of biological systems. The 

catalogue includes many different types of elements, such as backbones, promoters, 

terminators, reporters, and protein domains. Also, the Synthetic gene database 

(SGDB) gives access to artificially engineered genes 8. 

https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Standardization
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Within synthetic biology, there are two traditional ways of building new biological 

systems 9,10. The top-down approach has been the more common way to perform 

synthetic biology for years. This path seeks to insert new biological functions into 

unmodified organisms, using external elements (Figure 1.B). The newly added 

features range from inserting genes that proportionate new properties, to 

producing pathways that trigger a response from an external signal. Although it 

uses mechanisms similar to those in single gene manipulation, the overall process 

tends to be more complex. Integrating new functions into host cells without any 

side effects is challenging. Some of the mechanisms used to perform this are 

BioBricks 7, the Cas9-CRISPR system 11, or artificial DNA 12. An excellent example 

of this approach can be seen in yeast cells producing the precursor to antimalarial 

drug 13. This achievement alone serves a high purpose, as it brings the possibility 

for affordable mass production of the drug.  
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Figure 1.A: Step by step on how to build a biological genetic circuit from BioBricks. (1) The 

first step is to select the appropriate BioBricks from the catalogue and make sure their restriction 

sites match; (2) then both samples are cut with the same restriction enzymes; (3) and to finish, both 

cut samples are ligated together to get the final genetic circuit.  

 

On the opposite side of this approach, is the bottom-up way. This method focuses 

on using individual parts ('non-living' components) to create full functional 

organisms or new biological systems, with specific desired properties 14 (Figure 1.B). 

The building blocks can be natural, modified, and/or synthetic in nature. One of 

the main ways this approach is used is to construct proto-cells or artificial cells 15 

(Section 1.2.4). These cells try to mimic the structure and functions of real cells by 

encapsulating certain components in a synthetic membrane. Emphasis is being put 
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to achieve segregation within the cell, like organelles 16. Although it is a good way 

to avoid the complexity of full organisms, like ensuring cell survival, this is also 

more challenging than the top-down approach, as the most appealing general 

objective involves creating life from scratch. A way to ease the difficulties this 

approach brings is to use extracts from lysed cells since they already contain almost 

all the necessary components for protein production. These are called a cell-free 

system (Section 1.3). The bottom-up approach is quite challenging and still 

relatively new, so most of the advancements done are still basic and in the early 

stages, such as DNA replication in an enclosed space 17. Achievement of a fully 

synthetic cell includes the inclusion to sense and adapt to external and internal 

changes, and/or having the capability of full autonomous replication.  

 

 

Figure 1.B. Synthetic biology approaches: top-down and bottom-up. Both pathways show 

possible courses to reach a minimum system. The top-down approach can eliminate non-essential 

genes from already existing organisms and/or add additional elements. The bottom-down pathway 

uses simple non-living components together to make them function in sync.  
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For both approaches, a clear challenge is knowing which minimal components are 

necessary for basic cell functions (cell division, energy regeneration, sensing and 

adapting, etc …). Making all these pathways work together in a non-natural in vitro 

environment can be challenging. As already mentioned, the majority of work that 

is being carried out uses the top-down approach in vivo. This brings some 

limitations, being the most problematic one, interferences between the host 

system and the introduced one. Other disadvantages include long production 

periods, weak environment monitoring, or laborious sample uptake. These 

constraints are to be expected when working with living organisms since noxious 

metabolites in the cell, unbalanced growth or low product yields are common 

factors.  

1.2.2 Synthetic Biology Applications: Protein Engineering  

Synthetic biology can build novel biomolecular elements, systems, and pathways, 

to modify organisms. De novo engineering of synthetic circuits is a promising way 

to tackle difficulties in industry and academic research  18. 

The more widespread application of synthetic biology is synthesis and production 

of products; both in vivo and in vitro. For in vivo production, the traditional 

approach involves the engineering of an organism by introducing foreign genes 

and posteriorly optimizing the production by directed evolution. For this case, the 

most used organisms are yeast (Saccharomyces being the dominant genus) and 

bacteria (mostly, Escherichia coli (E. coli)) are the preferred targets to work with 

for commercial production. Although the main industry objective is product 
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production, this is not always the case, as sometimes plants can be engineered 

directly, for example to improve their nutritional value, add new components for 

a better diet 19; or just to withstand harsh environments 20. 

Protein engineering, or modification, is another application of synthetic biology. 

Natural proteins can be modified; for example, by performing changes to their 

DNA sequence and recording protein efficiency and function. These modifications 

can be specific or random, like for example directed evolution, which tries to 

perform natural selection on the proteins to make them evolve into a specific path 

for a specific goal. The changes performed will create a mutant protein library in 

which candidates can be selected through screening methods (Figure 1.C). But also 

just de novo proteins can be created for new, mimicked, or better functions 21,22. 

This is done mostly in the industry field, as companies look to produce industrial 

enzymes with high activity, to optimise the yield and make them more effective. 

These new versions of enzymes can help in making specific products, like lactose-

free milk 23, or just lower the prices of the final product 24. 

But the industry is not the only one taking advantage of recombinant proteins. 

Microreactors can be engineered to produce components in specific places at any 

given time. This can be done without the need for complex equipment and using 

simple elements. NASA recently started to research the prospect of astronauts 

producing resources where they are located to eliminate the need for shuttle 

delivery from Earth 25. On Mars, in particular, synthetic biology could lead to 

production processes based on local resources, making it a powerful tool in the 

https://en.wikipedia.org/wiki/Industrial_enzymes
https://en.wikipedia.org/wiki/Industrial_enzymes
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development of manned outposts with less dependence on Earth. Work has gone 

into developing plant strains that can cope with the harsh Martian environment, 

using similar techniques to those employed to increase resilience to certain 

environmental factors in crops 26. 

When it comes to creating a new protein function or modifying existing ones, the 

process can be laborious and time-consuming. For this, computational techniques 

have started to be used, such as bioinformatics, mathematical models, databases 

and algorithms (Figure 1.C). When performed properly, the results can yield 

enzymes having an exponential increase in non-natural product specificity 27. 

Modifications can also be done to expand the natural elements used by organisms. 

For example, generally, only 20 amino acids are coded genetically to be used for 

protein production, but by modifying the genetic code, alternative unnatural 

amino acids can be present and used (like L-2-Aminobutyric acid ) 28,29. To do this, 

tRNAs and tRNA synthetases, from other organisms, are engineered into the host 

cell. Just as adding more amino acids to the genetic code is possible, the opposite 

also happens. By limiting the number or types of amino acids used by a certain 

organism, information can be gathered from certain proteins and enzymes and 

their functionality 30. 

 

 

 

https://www.sigmaaldrich.com/catalog/product/sigma/a1879?lang=es&region=ES
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Figure 1.C: Two different approaches to protein engineering. Parting from an original gene 

and its protein, two different paths can be taken for the engineering of new features: (Left) Directed 

Evolution, in which a DNA library is made and screening of each protein is done individually to 

select a potential candidate; (Right) Computational Design, uses several computational tools to 

search in extensive DNA and protein databases and predicts a potential candidate.  

 

Just as proteins can be designed, so can nucleic acids. It is possible to insert 

information into the sequence of a synthetic DNA molecule 31. Usually, the use of 

certain algorithms enables the design of these types of genetic systems. As it 

happens with unnatural amino acids, the same is possible with unnatural nucleic 

acids 32. This is usually done by genetically modifying an organism to allow the 

absorption and integration of said nucleic acids. 
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1.2.3 Synthetic Biology Applications: Biosensors 

A sensor is a device that detects events or changes in its environment and sends 

the information to other devices to process it. Sensors are used frequently 

everywhere; especially in biological organisms as they have a multitude of 

regulatory circuits for sensing and responding to environmental changes. By taking 

advantage of these characteristics, biosensors can be engineered. A biosensor is an 

engineered organism that can sense a certain phenomenon in their surroundings 

and respond accordingly. A basic example of this is the capability of the bacteria 

Aliivibrio fischeri to detect and regulate the production of the luciferin enzyme, 

which produces light (bioluminescence). A more advanced example is an 

engineered E.coli  bacteria that can detect TNT (trinitrotoluene ) and DNT 

(dinitro), and posteriorly produce GFP (green fluorescence protein) 33. When it 

comes to engineering organisms as biosensors, it can be done at the transcriptional, 

translational or post-translational level (Figure 1.D; A). The first stage in gene 

expression is the transcription, and all the elements involved in it can serve as 

biosensors. The main focus is on the promoters and their associated factors. This 

is mostly because there is already a great number of known promoters that respond 

to environmental changes, like for example, the lac operon. When done at the 

translational level, RNA molecules are the main target, especially non-coding RNA 

(Figure 1.D; B). These have a wide variety of important functions in the cell; like 

editing or cutting other RNA molecules or even regulating gene expression directly 

34. Since their ability to regulate depends on their particular sequence, they are 

https://en.wikipedia.org/wiki/Aliivibrio_fischeri
https://en.wikipedia.org/wiki/TNT
https://en.wikipedia.org/wiki/2,4-Dinitrotoluene
https://en.wikipedia.org/wiki/Green_fluorescent_protein
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highly flexible and can have a broad range of targets, therefore allowing for fine-

tuning of the biosensor system. Post-translational biosensing (Figure 1.D; C), is 

characterised by its high diversity and complexity. It depends on a high number of 

factors and interacting components, such as the connection between molecules or 

the ramifications of protein cascades. In this case, the main element to be used is 

protein receptors. While promoters and RNA molecules are mainly selected from 

naturally found ones, protein receptors can be designed de novo 18,33. 

When these genetic circuits are present in more intricate patterns, they can be 

used to build biological computers 35. These encircle a variety of genetic pathways 

with logical gates (e.g. AND, NOT, OR) that perform operations similar to those 

that computers do. Each pathway usually produces a molecule that induces or 

represses another pathway (activator, repressor sites), therefore creating an 

intricate web of systems interacting and working together. Studies have used this 

approach to make a proof-of-concept therapy that can detect and kill cancer cells 

36.  
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Figure 1.D: Types of synthetic biosensors. (A) Transcriptional biosensors mainly focus on 

environment responsive promoters linked to genetic circuits. (B) Translational biosensors are 

typically built by linking RNA aptamers to regulatory domains. (C) Post-translational biosensors 

are done by using protein receptors (usually in the membrane) that trigger signal cascades. Image 

used is from Khalil et al. (Nature Reviews, 2010) 18. 

 

1.2.4 Synthetic Biology Applications: Artificial Life and Artificial Cells 

Another use of synthetic biology is the possibility to create artificial life. This is 

based on the in vitro creation of organisms from non-living biomolecules. The two 

pathways of synthetic life are: understanding the origins of life and what makes 

something “alive” 37 and to use them as engineered cells, for drug delivery 38, as 

bioreactors 39, pollution treatment organisms, etc 40. For the definition of what 

makes something “alive”, some characteristics have to be all present in an 
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organism: 1. Presence of metabolic reactions that allow for all the other 

characteristics listed here to perform, 2. Organization and coordination of all the 

parts that constitute the organism, 3. Ability to perform regulated growth and 

therefore reproduction to create new organism, 4. The capability to sense and 

respond to signals and changes in the environment, and 5. Being able to undergo 

evolution.  

When it comes to creating synthetic cells that are “alive”, being able to sustain their 

metabolism on their own is essential. This can be done by up-taking elements 

found in their environment; creating ion gradients and recycling energy molecules. 

Additionally, the ability to store genetic information for all these processes is 

necessary along with the capability to mutate and reproduce. But so far this has 

not been possible 41. The closest anyone came to this, was by creating a full 

synthetic bacterial genome and introducing it to a bacterial host with no genome 

42. This experiment was aimed to reveal the minimal genes necessary for life. The 

resulting bacteria cells came were created by inserting and deleting genes until a 

viable genome was obtained. The bacteria was called Mycoplasma mycoides JCVI-

syn3.0 (Syn3.0), it had a total of 473 genes (Figure 1.E) 43 and was able to grow and 

reproduce itself (for comparison, E. coli has 4,500 genes). One peculiar aspect of 

this experiment is that only 80% of the original genes (from the donor) were 

essential. Apart from helping understand the minimal requirements for “life”, 

Syn3.0 became very practical for laboratory use since its small genome made it 

possible to grow and reproduce much faster than many laboratory strains. Due to 
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its reduced genome, the time and nutrients the bacteria use to duplicate, and 

therefore reproduce, is lesser than the average bacterial strains, making it save time 

and resources when working with it. But most important, the creation of Syn3.0 

helped in propelling the research of artificial cells, along with its development and 

customisation. It showed that even the simplest of cells can still be quite complex 

in nature and that the current reach of synthetic biology is not enough yet and 

needs to be improved.  

 

 

 

 

Figure 1.E: Pie chart of the different types of genes that encompass the first artificial species, 

Mycoplasma laboratorium. The organism, also called Syn3.0, had a total of 473 genes. The type 

of gene distribution is shown in the chart. It is important to note that a significant amount of genes 

are of unknown function. 
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Another close call in creating artificial life was done when scientists managed to 

create a completely artificial genome for E. coli, in which they reduced the natural 

number of codons from 64 to 59 44. In most cases, when it comes to synthesising 

an artificial organism, Mycoplasma genitalium (the original organism used for 

Syn3.0) or Escherichia coli with reduced genes, are used as starting points. These 

bacteria already have reduced genomes and can be easily cultivated in laboratory 

conditions. 

So far all the examples explained were performed in vivo, using organisms as 

backbones for the synthetic genomes, so in other words, a top-down approach. 

When it comes to the bottom-up path, building a de novo artificial cell involves 

using non-living elements. The most basic cell model would involve: a 

phospholipid bilayer vesicle (lipid membrane), encapsulated synthetic DNA, and 

many biological systems to self-maintain and reproduce (Figure 1.F). When it 

comes to self-maintenance, active transport of energy molecules, cofactors and 

building blocks (nucleotides and amino acids) through the membrane from 

outside to the inside is necessary 45–47. The main challenge encountered has been 

the synthesis of a minimal genome that includes all necessary genes for the 

production of the components involved in the protocell’s development. Although 

it has not been possible yet, slowly these encountered issues are being mitigated 

48,49. One way to discover the minimum requirements for a protocell is to try and 

recreate the conditions believed to be present when the first cells arose. By re-

enacting prebiotic conditions, synthetic cells can be formed “naturally” on their 

https://en.wikipedia.org/wiki/Mycoplasma_genitalium
https://en.wikipedia.org/wiki/Escherichia_coli
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own, for example, by allowing RNA polymers to be encapsulated by lipid vesicles 

through chemical reactions 50. 

 

Figure 1.F: Scheme of the minimum requirements of an artificial cell. The protocell, needs of 

a lipid membrane (dark yellow) encapsulating a cytosol (light yellow) and all the necessary 

elements. The cell needs to able to sustain a metabolism (1) of DNA replication; RNA, enzyme and 

metabolites production and their transportation. Also, a system of DNA encapsulation through 

lipid membrane growth (2) for cell division. Finally, an active transportation system (3) permits the 

movement of all crucial components inside the cell.  

 

Since artificial cells are minimal versions of organisms, it is quite possible to 

engineer them to eliminate all the drawbacks of using living organisms. For 

example, they can be used as bioreactors, biosensors and drug transporters at the 

same time. Since they are of biological origin, rejection risks if used on humans are 

reduced, as well as the production costs and time. Some studies have managed to 

engineer bacteria that, upon the detection of cancer cells (with protein to protein 

interaction) or the detection of a cancerous environment (for example, hypoxia), 

produce therapeutic molecules 51–53. But since the treatment of diseases with living 
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organisms is not recommended for fear of infection and off-target side effects; 

researchers are trying to work more with more bottom-up approaches for artificial 

cells. Another way to avoid using foreign organisms is to engineer directly cells 

from the immune system (for example, T-cells) to make them more receptive to 

tumours 54. 

 

 

 

Figure 1.G: The two different ways artificial cells can be used for therapy. The first way (left) 

is to create de novo protocells with a piece of transcription-translation machinery and genetic code 

to create the appropriate proteins and enzymes for the detection and elimination of the target cell. 

The second method (right) is the removal, from the patient, of cells from the immune system (like 

T-cells) and engineer them to enhance their functionality. Whether they are de novo or engineered, 

both types of cells are applied to the patient for illness treatment.  
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1.3 Cell-Free Protein Systems 

1.3.1 Properties and Characteristics 

Cell-free (CF) systems, also called transcription-translation (TX-TL) systems, are a 

type of in vitro mechanism. They are used to research and recreate a biological 

system that happens inside cells, but without using living organisms (Figure 1.H). 

They have been increasingly popular for synthetic biology and metabolic 

engineering applications in recent years 55–57. They bring certain advantages to 

reduce or eliminate issues that happen when working with complex living 

organisms. They prevail especially in the most influential fields of protein 

evolution and drug delivery therapy 58–64. Some of the benefits of CF synthetic 

biology are the decreased amount of total experimental time 65 since it does not 

require to grow and maintain live organisms. It also reduces the efforts on analysis 

and reaction optimisation, mainly as the reaction can be easily modified and 

monitored. Other positive aspects of CF systems are the ability to avoid the 

production of by-products or the presence of unwanted cell mass 66. One of the 

most appealing advantages is the ability to incorporate reactions that are not 

possible with living organisms, like, production of toxic compounds 67 or reactions 

in extreme conditions 68, which are conditions (temperature, pH, etc …)  which fall 

outside the range in which an organism can survive naturally.  

These systems often produce a substantial yield of protein products; however, 

some issues remain. One of them is the lack of an energy regeneration system. This 

leads to the use of expensive phosphoenolpyruvate (PEP) as a supplement for the 

https://en.wikipedia.org/wiki/In_vitro
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reaction. Although PEP improves the ATP regeneration issue, the final costs of the 

reactions increase significantly. Due to this, a good amount of research is focusing 

on finding more affordable energy sources 69,70, such as glucose and glucose-6-

phosphate, while avoiding the decrease in protein yield. Even though several 

studies managed to achieve this 71, and decrease even further the cell-free reaction 

costs 72, PEP remains the most extensively used energy source. Apart from that, the 

quality of several reaction components is an issue. This happens due to their origin, 

mostly from prokaryote cell extracts. But this is also been researched and improved 

greatly with the use of recombinant purified components 59. While ongoing 

research continues to mitigate these issues and some others 73,74, cell-free systems 

using recombinant protein elements 59,75,76, offer a contaminant-free alternative 

with a final significant protein yield 77.  

One of the main and most important components of CF systems are the proteins 

and enzymes that carry out most reactions. They can be obtained through different 

types of methods, such as cell lysis to obtain cell extracts; or from purified 

components protein expression.  All these ways to obtain a CF system provide a 

wide assortment of experimental diversity and high reaction customisation. Also, 

CF reactions can be performed with basic affordable laboratory equipment. 

Whether it comes from cell extracts or purified components, obtaining the main 

proportion of enzymes and proteins takes up a high amount of time and cost, so 

this is another aspect being improved in CF systems 78. 
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Figure 1.H: Scheme showing the necessary components for a cell-free expression system. 

There are three main factors for a CF reaction. A cell extract (or purified components) that contains 

the machinery necessary for TX-TL. A genetic component for the production of the desired product. 

And a reaction buffer containing cofactors, amino acids, salts, etc so the system can work properly 

and the enzymes have an energy source.  

 

1.3.2 Types of Cell-Free Systems: Cell-extract vs Purified Components 

The first CF systems were obtained through cell extract lysates. These lysates come 

from a living organism, such as bacteria, yeast, fall armyworm, wheat germ, 

tobacco, rabbit reticulocytes or HeLa cell line 79–85. These lysates are taken from 

their intracellular fluid (ICF), which contains water, ions and macromolecules. It 

is mainly the TX-TL molecules that are necessary, like RNA polymerase, ribosomes, 
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tRNA synthetases, etc. All the other necessary components are usually added to 

the lysate, such as amino acids, nucleotides and buffers (Figure 1.H). These lysates, 

or subcellular fractions, can be obtained through several cell disruption methods 

(Figure 1.I) 86, like mechanical grinding 82, ultrasonic waves 87, high pressure88, 

thermal lysis 89, biochemical rupture 90, enzymatic disruption 91 etc.  

Some methods are dependent on what type of elements are being isolated, if they 

are temperature sensitive, thermal lysis is not adequate. Others might be used for 

very specific organisms, such as the enzymatic disruption using the chitinase 

enzyme for yeast cells. And some even use a mixture of several methods to 

overcome certain problems, such as the lower cell rupture efficiency by chemical 

methods, in which case, it is combined with a mechanical way 92. 

The CF systems that use cell lysates are more affected by certain problems, like 

degradation of DNA, RNA and proteins due to nucleases and proteases found in 

the extracts. Degradation is a controlled way used by organisms to maintain a 

balance, but outside the host, there is no control of this process and these enzymes 

degenerate their targets without any regulation. Because of these issues, some of 

the most modern CF systems do not use cell lysates, instead, they use purified 

components 75.  
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Figure 1.I: Detailed overview of some types of cell lysis methods. The “Methods” column 

makes a distinction between techniques that rely or not on mechanical disruption. The “Sub-

method” column provides additional details whether the technique is physical, chemical or 

biological. The “Technique” column gives some examples of each category, and the “Advantages” 

(green) and “Disadvantages” (red) column explains some of the techniques’ benefits and restrains 

respectively.  

 

E. coli - based systems are the most well-established systems due to the high yield 

for protein expression. But they are still being actively improved to simplify the 
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preparation methods 93–97 and obtain even better yield 69,98. Protein synthesis Using 

Recombinant Elements (PURE) system is another type of cell-free system 59,99. In 

contrast to the extract-based cell-free systems, purified components were 

reconstituted for protein synthesis (Figure 1.J). 

The PURE system 59,100 is made of several components that are used for 

transcription (e.g., MetRS), translation (e.g., IF3 factor), aminoacylation (e.g., 

amino acyl-tRNA synthetase), and energy regeneration (e.g., creatine phosphate). 

All factors are purified individually to a high degree and assembled with substrates 

in a buffer ready to use. Since all the components are produced and purified 

individually, only the ones involved in the transcription/translation system are 

included. This removes from the system unwanted components like proteases and 

nucleases. Furthermore, the system allows for adjustments to the composition of 

each reaction individually. PUREfrex 1.0 is the commercial version of the PURE 

system. Lately, more research has focused on simplification, robustness and low-

cost for reconstruction 101 as well as alternative energy sources 102 in the PURE 

system. As the concentrations of all the components in the PURE system are 

known, it is suitable for systematic studies of cell-free protein expression, such as 

optimisation of component concentrations for better yield 103.   
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Figure 1.J: Comparison of three different ways for protein expression. The left column shows 

the in vivo way, in which organisms are transformed with a DNA molecule so it produces the desired 

protein, after the product can be obtained by cell lysis (optional if external protein) and purified. 

The middle column shows a cell extract-based cell-free system that takes advantage of a cell cytosol 

machinery to produce the desired product in vitro. The right column is also a cell-free system but 

based on purified components, that will also be used in vitro to obtain the desired product. 

 

A recent computational study pointed out that there are more than 240 

components and nearly 1000 reactions involved in the translation process of the 

PURE system 104. The complex cell-free expression dynamics can be an issue 

especially when multiple proteins are being expressed, such as the reconstitution 

of the Sec translocon 105 or ATP synthase 99. The correct balance of each synthesised 

proteins needs to be adjusted for the whole complex to be functional. Although 
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this is usually done by titrating the amount of each DNA input, protein expression 

levels do not linearly correlate with the amount of DNA 106,107, especially when a 

strong promoter is used 108. Because of this nonlinear nature of cell-free protein 

expression, finding an optimal balance for multiple proteins can be a daunting 

challenge.  

1.3.3 Cell-Free Protein Systems Applications 

Using cell-free systems quickly gained popularity as it tackled constraints 

encountered when using living organisms,  like cellular toxicity or unnatural 

environment conditions 67,109,110. They are also starting to be used as a more 

economical way to synthesise biological elements instead of the traditional 

microbial fermentation 111. They have a wide range of applications (Figure 1.K) from 

the rapid characterisation of genetic constructs (typically linear DNA constructs) 

112 to protein expression in microcompartments for in vitro evolution 113,114. 

The most straightforward use for CF systems is protein synthesis. In vitro reactions 

can very easily be controlled and monitored since they are not enclosed by 

membranes. From the production of proteins with tagged amino acids 115 to 

establishing a stable protein production system with a continuous flow of 

resources and removal of products 116. Apart from these examples, fusion proteins 

made by CF systems are being an asset in the medicinal field to use as possible 

vaccines 117.  
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Another use for CF systems is real-time monitoring and alteration of metabolic 

pathways and their components. By using certain enzymes in an in vitro 

environment, it is possible to track the synthesis of products, the depletion of 

resources and each elements concentration at any given moment. Furthermore, 

the reaction can be altered anytime by adding, removing or altering the 

components. This can be very useful to optimise metabolic pathways and product 

synthesis 118,119. 

As it was previously mentioned (Section 1.2.2) the incorporation of certain 

elements, like non-natural amino acids, is one of the uses for synthetic biology, but 

when working inside a cell it can be challenging. CF systems can be used when the 

amino acid metabolism is lacking or has been altered inside an organism. This way 

amino acids can be labelled for protein characterisation using NRM spectroscopy 

120. 

Directed evolution is another way CF systems come in handy. This method has 

been used for high throughput engineering, screening and selection of proteins. 

Using CF systems in this stance can be useful when dealing with difficult proteins 

(multimeric proteins, membrane proteins, and proteins with expanded amino 

acids) 121. One of the main advantages of using both cell-free systems and directed 

evolution are that it allows for the use of large libraries (up to 1013 variants to test) 

since there are limitations of transformation efficiency when using living 

organisms (around 109 variants). It also allows to control the conditions of the 

reaction. When it comes to membrane proteins, this combination, along with lipid 
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vesicles, can be really useful as membrane proteins are quite difficult to 

characterise and screen since they are dependent on a membrane 122.  

 

Figure 1.K: Applications of cell-free protein system. Cell-free systems have a wide variety of 

uses. (Top-left) in vitro protein evolution, (top-middle) protein synthesis for industry and research, 

(top-right) real-time monitoring and alteration for optimisation of metabolic pathways, (bottom-

left) in situ drug delivery when encapsulated in lipid vesicles, (bottom-middle) as portable methods 

for illness diagnosis and, (bottom-right) for protein characterisation of membrane proteins. 

 

A major characteristic of cell-free systems is the lack of engineered organisms and 

all the difficulties working with them brings. As a result, these systems have started 

to be quite promising when it comes to performing experimental research and 

diagnosis in remote locations where delivery, manufacturing or handling of 

laboratory products is impossible. Still, some issues remain with reagents’ stability, 

durability and safety, requiring them to be in perpetual cold storage. Some studies 
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have been focusing on making a cell-free system more durable and stable at 

elevated temperatures 123,124 so they could be used as portable diagnosis tools. 

Encapsulating CF systems inside lipid vesicles allows the creation of microreactors 

125,126. This method is being used frequently to study the origin of life since these 

artificial protocells could show how the first cells on Earth appeared 37. Also, these 

microreactors are useful as vehicles for specific targeted drug delivery 127–130. These 

liposome delivery systems are quite “trendy” as they overcome several problems 

found in delivery systems such as the possibility to deliver both hydrophobic and 

hydrophilic drugs and the insulation it provides to the encapsulated drug. They 

can prolong the drug’s lifetime and decreases the probability of degradation 131. 

Although liposomes seem like very suitable tools when delivering drugs, they still 

have their downsides like short half-life or premature rupture 131. To overcome 

these difficulties, studies have focused on making hybrid vesicles with lipids and 

polymers to improve their stability 132. 
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1.4 In vitro and in vivo Display Techniques 

1.4.1 Properties and Drug Screening 

There has always been a high constant demand for the discovery and production 

of antibodies. One of the most established methods for antibody selection is 

hybridomas. This method produces a large number of antibodies by injecting 

mammals (usual mice) with a certain antigen that starts an immune response. 

Antibodies, produced by B lymphocytes, are then harvested from the animal and 

fused with B cell cancer cells. This new cell line, called hybridoma, can produce the 

monoclonal antibodies and be grown in the laboratory. But as it can be expected, 

this method is time-consuming, needs high resources, and is a disadvantage when 

it comes to animal ethics.  

A different approach to antibody screening and production are in vitro display 

techniques. This technology encompasses a multitude of different methods to 

screen, select and optimise many antibodies from large libraries. The core of the 

technique is based on the fact that for each different antibody (phenotype) there 

is a specific genetic sequence (genotype). So by testing the capabilities of one 

specific antibody, its genetic sequence can be known and even evolved to enhance 

its function. When compared to the conventional techniques (hybridomas), 

display techniques stand out in their ability to test new (de novo) sequences, which 

immediately brings a much wider diversity of candidates to select from 133. 

Furthermore, in vitro techniques are not restrained by the in vivo experimental 
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constraints, and are faster and more economical than working with animals (Figure 

1.L). 

 

 

Figure 1.L: In vitro and in vivo antibody screening and selection techniques. The left side of 

the image shows a general way to perform in vitro selection of antibodies. This starts with a library 

and through rounds of testing and selection, the desired antibody is found and its DNA sequence 

obtained to produce more of it. The right side of the image shows the traditional in vivo 

(hybridoma) method, in which mice are injected with a specific antigen and the antibodies they 

produce are harvested. These antibodies are fused with B cancer cells to make a new cell line that 

can be used to harvest antibodies.  
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Different display techniques are available to choose from:  phage display 134, yeast 

display 135,136, ribosome display 137, liposome display 138, DNA display 139–141, cDNA 

display 142,143, mRNA display 144–146. Although the majority of them are performed in 

vitro, some still are performed by using microorganisms (yeast display, bacteria 

display, etc …). But even so, they all use different strategies for the same purpose: 

to couple genotype to phenotype; and therefore all have become indispensable 

tools for directed evolution. Among the display methods, in vitro approaches can 

screen the highest number of molecules, up to 1015  for mRNA, cDNA, and ribosome 

display. For both phage and bacterial display, the library size is around 1011 

sequences (yeast display is even smaller), since they are dependent on the 

transformation efficiency. Furthermore, cell-based display methods are restricted 

to the use of natural elements. Using bigger libraries helps with the probability to 

select rare and unusual sequences and improves the total diversity. Moreover, in 

vitro reactions can be easily modified to suit a specific environment for functional 

screening 147. Whether one or another display technique is used, if it very important 

to link one genotype to its one phenotype, otherwise, false positives could occur.  

1.4.2 mRNA Display and cDNA Display 

This method (Figure 1.M), is used primarily for in vitro protein, 

and/or peptide evolution. The main procedure starts with a DNA library for 

proteins or the peptide of interest. Depending on both the in vitro transcription 

and the translation systems to be used, the specific elements (promoter, RBS, etc 

…) need to be included in the DNA constructs. This library is first transcribed into 

https://en.wikipedia.org/wiki/In_vitro
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Peptide
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an mRNA library and further purified with a gel to be later ligated to a puromycin 

molecule using a T4 ligase system.  

 

Figure 1.M: mRNA display overview. Parting from a DNA library, the molecules are transcribed 

into mRNA and then puromycin molecules attached to them. Later, the mRNA library is translated 

and the resulting product is a library of mRNA-protein conjugates. The proteins with the highest 

affinity, are selected and separated from the rest. The selected variants are reverse transcribed to 

cDNA and their numbers increased by PCR. Several further rounds of selection are performed to 

minimise the number of undesired proteins. Image used is from Blanco et al. (Physical Chemistry 

Chemical Physics, 2020) 148. 

 

These ligated mRNA molecules are then translated, and their resulting peptides 

(or proteins) become attached to their coding mRNA molecules, by a covalent link 

to the puromycin molecule. The mRNA-peptide complexes can be further 

immobilised through a selection step, such as affinity chromatography, in which 

the sample attaches itself to a column, a well plate or magnetic beads coated with 

the immobilized ligand.  The ones that do bind are then chosen to go through 

reverse transcription which gives a cDNA molecule sequence for each specific 

https://en.wikipedia.org/wiki/Affinity_chromatography
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bound peptide. Error-prone PCR can be also performed to increase the diversity 

for posterior cycles. If several cycles of selection are performed, the number of 

molecules with a weak affinity can be minimised. Afterwards, by sequencing the 

obtained cDNA molecules, the sequences of the peptides with high affinity to a 

specific molecule can be known. 

Puromycin is the molecule used to bind the mRNA to the peptide. It is an antibiotic 

protein synthesis inhibitor that causes early translation termination. Puromycin is 

an analogue of the 3’ end of a tyrosyl-tRNA with a part of its structure similar 

to adenosine, and the other to tyrosine (Figure 1.N) As a result, it causes a 

premature release of translation products. Puromycin is connected to the 3’ end of 

each mRNA molecule after the transcription from DNA; so, when it comes to the 

translation step, once the ribosome reaches the 3’ end of the mRNA molecule, the 

fused puromycin will enter the ribosome’s A site and be incorporated into the 

peptide that is being formed. The mRNA-polypeptide conjugate is then released 

from the ribosome. The puromycin attachment in itself is usually not enough, and 

some other modifications are needed. Extra oligonucleotides and spacers are 

needed, in the DNA sequence, to provide flexibility and enough space for the 

puromycin to enter the A site of the ribosome 149. 

 

 

https://en.wikipedia.org/wiki/Antibiotic
https://en.wikipedia.org/wiki/Protein_synthesis_inhibitor
https://en.wikipedia.org/wiki/Adenosine
https://en.wikipedia.org/wiki/Tyrosine
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Figure 1.N: Molecular structure of the puromycin molecule. Puromycin is an analogue of the 

3’ end of a tyrosyl-tRNA with a part of its structure similar to adenosine, and the other to tyrosine. 

 

As mentioned in the previous section, there are other different display methods, 

but mRNA brings certain advantages in comparison to them 150,151. To start with, 

since it is an in vitro method, it already avoids the problems when working with 

yeast or bacteria cells, like reduced library size or increased method time and cost. 

When it comes to comparing mRNA display to other in vitro methods a unique 

advantage observed is the use of a covalent bond of the mRNA molecule and its 

peptide. For example, ribosome display has a non-covalent bond between the 

ribosome, the mRNA and the peptide, which hinders the complex stability and in 

return reduces the efficiency of the binding process. Apart from that, the mRNA-

peptide complex is much smaller than that of its ribosome display counterpart, 

which helps reduce greatly the probability of unwanted peptide interactions (like 

https://en.wikipedia.org/wiki/Adenosine
https://en.wikipedia.org/wiki/Tyrosine


 Chapter 1 
 

61 
 

peptide to ribosome). So in this sense, mRNA display has the potential for fast 

evolution and selection of high-affinity diagnostic and therapeutic antibodies 152.  

Cell-free systems offer a great advantage when it comes to tight control over the 

reaction environment, so when coupled with display techniques, they are useful 

for high-throughput screening and directed evolution of peptide/proteins 122,153,154. 

But some problems arise due to the instability of the mRNA-protein conjugates, 

which makes cell lysate-based translation systems have limited utility for mRNA 

display 155–157. While this issue is usually addressed by using of RNAse inhibitors 

and nuclease-free chemicals, to minimise RNA degradation 144,158, advancements of 

reconstituted contaminant-free “PURE” translation system have made in vitro 

display methods more popular for screening antibodies 159,160 and functional 

peptidomimetics 161. Since the PURE system operates primarily with reconstituted 

components, it offers increased stability of mRNA-protein conjugates and also 

allows for greater flexibility in selection condition when combined with the mRNA 

display.  

In addition to the already mentioned ways to improve the stability of the mRNA 

molecule, a variation of the mRNA display can be used. The cDNA display method 

(Figure 1.O), converts unstable mRNA-peptide conjugates into mRNA/cDNA-

peptide conjugates. This new conjugate is advantageous under conditions where 

RNA instability is an issue during the selection step, such as targeting cell surface 

antigens under the presence of cellular ribonucleases 142,162.  
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Figure 1.O: cDNA display overview. Almost identical to the mRNA display, this method helps 

with the stabilisation of the mRNA molecule by going through a reverse transcription step after the 

translation process. This mRNA/cDNA duplex is stronger to the formation of secondary structures 

and unwanted interactions with other elements. Image used is from Ong et al. (Current Topics in 

Medicinal Chemistry, 2020) 163. 

 

1.4.3 Ribosome Display 

Ribosome display (Figure 1.P) is an in vitro selection process for proteins and 

peptides. Much like mRNA display, it involves the translated peptide being bound 

to its mRNA molecule, but it does so through the ribosome. The mRNA-protein-

ribosome complex uses the ribosome as the connection molecule between the 

other two components. These complexes also go through a binding process in 

which those with high affinity are selected so that later the mRNA can be 
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transformed into cDNA by reverse-transcription. The cDNA molecule is later 

amplified and sequenced to obtain the desired peptide sequence. Ribosome display 

is suitable for displaying big libraries and working with special requirements, such 

as amino acid modification, and unstable proteins.  

This method also begins with a library of DNA sequences, but the constructs have 

a spacer sequence lacking a stop codon at their 3’ end. The library then goes 

through transcription and translation, but the absence of a stop codon prevents 

the binding of release factors and therefore the mRNA-ribosome-peptide 

conjugate cannot be dismantled. The stability of the mRNA-ribosome-peptide is 

usually aided by lowering the temperature of the reaction and the addition of 

cations (like Mg2+). The spacer sequence in the mRNA molecule gets attached to 

the peptidyl tRNA allowing the peptide to go out of the ribosome and fold. 

Posteriorly, the complexes go through a binding process and once the peptides are 

attached to their ligands and restrained from movement, elution of the mRNA 

molecules is performed using high salt concentrations, chelating agents, or ligands. 

The mRNA is then reverse transcribed back into cDNA which goes through further 

selection cycles. 
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Figure 1.P: Ribosome display overview. Starting from a DNA library, and after being transcribed 

and translated, an mRNA-ribosome-peptide complex is formed. This conjugate goes through a 

selection process in which the mRNA molecules of the bound peptides are eluted and reverse 

transcribed to obtain cDNA sequences. Image used is from www.creative-biolabs.com. 

 

Ribosome display provides a fast way to identify and produce the proteins that are 

selected, whether their sequence is known or not. Furthermore, as with all the in 

vitro methods, large pools of sequences can be made and analysed rapidly and the 

mRNA-ribosome-peptide complex keeps them from degrading or interacting with 

each other. Although it has a few drawbacks, like the lack of a stable enough link 

within the ribosomal complex or the higher probability of the peptides interacting 
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with the ribosome, it is still widely used for antibody and protein engineering 

regarding therapeutic approaches 164. 

1.4.4 Phage Display 

Phage display (Figure 1.Q) is the most widely used in vivo display technique for 

protein-protein, protein-peptide, and protein-DNA interactions. It uses 

bacteriophage viruses as a way to create a link between the genetic information 

encoded inside them, and the proteins that they display. A specific target gene, 

that codes for a certain protein, is inserted inside the reading frame for the virus 

coat proteins. This results in the phage displaying on its surface the protein of 

interest while retaining the inserted gene inside. Since the displayed protein is on 

the outside of the phage, it can be easily used for binding and selection processes. 

Depending on the protein, peptide or antibody of interest, different phage viruses 

can be used, such as M13, T4, T7, and λ 165. 

Phage display starts with a DNA gene library which is cloned into the virus coat 

proteins. Different cloning sites are used at the same time to ensure the desired 

genes are inserted in all available reading frames and no problems arise during the 

translation process. This hybrid library (gene of interest and coat protein gene) is 

inserted inside bacteria cells, usually, E. coli, though transduction so the assembly 

of the hybrid DNA into the virus particles can be done. Sometimes, depending on 

the type of genetic construct made, a helper phage (or a bacterial packaging cell 

line) might be needed to aid with the assembly process. Once the viruses are 

assembled, they are released from the bacteria and can then be used for binding 

https://en.wikipedia.org/wiki/Bacteriophage
https://en.wikipedia.org/wiki/M13_bacteriophage
https://en.wikipedia.org/wiki/Enterobacteria_phage_T4
https://en.wikipedia.org/wiki/T7_phage
https://en.wikipedia.org/wiki/Lambda_phage
https://en.wikipedia.org/wiki/Protein_of_the_viral_capsid
https://en.wikipedia.org/wiki/Protein_of_the_viral_capsid
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processes. Since the displayed protein is on the virus surface, they will bind to the 

protein target and stay immobilised, while the ones that do not bind, are washed 

away. Posteriorly, the selected viruses can be eluted using a low-pH 

elution buffer along with sonication and used to transfect bacteria cells again to 

produce more phage. In this case, performing several selection cycles is called 

“panning”. After several cycles of panning, the final phage can be used to recover 

the DNA sequence for sequencing and identification of the target protein.   

 

Figure 1.Q. Phage display overview. The process starts with a virus library in which the inserted 

gene encodes for a surface protein. Then through amplification of the virus numbers by bacteria 

transfection, posterior selection processes, and repetition through a round of selection, a protein 

candidate is selected and its encoding gene sequenced. Image used is from www.sinobiological.com. 

 

Applications of phage display are bound to the same principle of display methods, 

to create a link between the displayed protein (phenotype) and its encoding gene 

(genotype). This method is widely used for in vitro protein evolution and therefore 

a popular tool for finding new ligands to certain target proteins (drug discovery). 

https://en.wikipedia.org/wiki/Buffering_agent
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It has been used to find, for example, antigens to tumours cells so that they can aid 

in diagnosis 166 but also antibodies for cancer treatment 167. The main reasons phage 

display became so popular for antibody screening, when compared to hybridomas, 

is the ability to do large scale production, the high speed and easiness of the 

method, but also the lack of animal use. Furthermore, it is also possible to screen 

for toxic antigens as the viability of the bacteria cells is only necessary for a short 

period.  

1.4.5 Cell Display: Bacterial and Yeast Display 

Organisms can be used to perform in vivo display. As all display techniques, it is 

used for the discovery and selection of peptides, proteins and antibodies. This 

process can mainly be separated into two types of cells used: yeast and bacteria. 

Yeast display (Figure 1.R), as its name suggests, uses yeast cells to display a library 

of recombinant proteins on the cell wall surface 168. The gene, of the protein of 

interest, is encoded with the Aga2p protein gene, so the result is a fusion protein. 

The Aga2p protein is used by yeast to interact with other cells during reproduction 

cycles, and as such, it is displayed on the cell surface and away from other proteins. 

The selection process is done mainly through magnetic-activated cell sorting 

(MACS) or fluorescence-activated cell sorting (FACS) techniques, which both are 

performed in real-time. When it comes to the advantages of yeast display, it is 

worth mentioning that since eukaryotic cells are being used, it is a more suitable 

environment for the folding, post-translational modification, and translocation of 

human proteins. But even if beneficial for human protein screening, this method 
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has one of the lowest library sizes to work with (~108) and glycosylation of proteins 

is different in yeast and mammalian cells.  

 

 

Figure 1.R: Yeast display overview. This display method starts with the coding of the gene of 

interest with the gene of the Aga2p surface protein. As a fusion protein, it is directed to the cell 

surface where it can be screened and selected using cell sorting methods. Image used is from 

www.creative-biolabs.com. 

 

Bacterial display, on the other hand, uses bacteria cells instead of displaying 

engineered proteins. Much like yeast display, it starts with a DNA library, but in 

this case, the genes are coded with any surface protein (called a scaffold). These 

surface proteins are used for a wide range of functions, like cell recognition, 
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interaction, and signalling; and as with all surface proteins, they are translocated 

from the cytoplasm to the membrane. Since gram-negative bacteria have a 

periplasmic space (not found in gram-positive bacteria), they have a more difficult 

time translocating proteins to the surface. Once the fusion protein is displayed on 

the bacterial surface, cell sorting methods can be used for the selection process 

(FACS or MACS). The bacterial display can be used for all the typical applications 

of display methods: antibody mapping, peptide, and protein screening, etc. But 

there is a specific application used with this method, called vaccine delivery, in 

which they use the bacteria cells (with the displayed surface protein) as a delivery 

system directly for the vaccine. To do this, the bacteria cell has to be weakened so 

it is no longer pathogenic, or safe bacteria are used instead (food-grade bacteria). 

This way of delivery brings some advantages, such as the use of other proteins 

expressed on the bacteria surface as adjuvants (an agent that improves the immune 

response of a vaccine).  

1.4.6 Liposome Display 

Liposome display (Figure 1.S) is a recently discovered in vitro technique that 

involves the use of liposome and cell-free systems for the screening and selection 

of membrane proteins. This approach uses the liposome and cell-free system 

combination to create a micro-reactor or an artificial cell. Inside the liposome, the 

gene of interest, such for example a DNA molecule, is transcribed and translated 

by a cell-free system. The produced membrane protein is translocated to the 

liposome membrane and displayed there. These liposomes, as with bacteria and 

https://en.wikipedia.org/wiki/Cell_signalling
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yeast, can be screened and selected using cell sorting techniques (like FACS). The 

DNA encoding the membrane protein can be easily recovered from the liposomes 

to forgo more rounds of selection 122.  

 

Figure 1.S: Liposome display overview. A novel method based on the use of both liposomes and 

cell-free systems to create artificial cells so membrane proteins can be expressed and displayed on 

the surface of the liposome. TA647 is a fluorescent molecule used in the inner solution of the 

liposome as a volume marker to know the size of the liposomes. The sorting and collection 

processes are performed by FACS analysis. Image used is from Fujii et al.122. 

 

Although the number of the DNA library is not as big as other display methods 

(~108), this technique offers speed in the selection process and the benefits of both 

in vitro and in vivo processes. Since it is an in vitro process, it allows for a high 
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degree of protein engineering and reaction environment control. But since the 

liposome mimics an artificial cell, it makes it possible to work with membrane 

proteins (and not only soluble globular proteins) and use cell-sorting methods for 

the screening and selection process. 

 

1.5 Artificial Lipid Membranes and Membrane Proteins 

1.5.1 Artificial Lipid Membranes Composition, Characteristics and Uses. 

Artificial lipid membranes, or model lipid bilayers, are composed of a double layer 

of lipid molecules, that were assembled in vitro, and that try to mimic the natural 

cell membranes found in cells 169. These synthetic membranes can be used to study 

the properties of biological membranes in a simple controlled in vitro environment 

170 or just to construct artificial cells 171. Furthermore, since they can be constructed 

with natural or synthetic elements, with one or several lipid mixtures, these 

membranes models are useful tools for the study and discovery of novel lipids. 

These advantages provide easier ways to improve the stability and fluidity of 

membranes. Furthermore, a wide range of model membranes can be constructed 

for different experimental demands. When these synthetic membranes are 

produced, they can stay in a soluble state or be anchored to a solid surface or 

substrate. If they are static, their stability increases making them more ideal to 

work with. 
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The simplest model bilayer is called black lipid membrane (BLM). To make them, 

first, a small fissure is made in a layer of a hydrophobic material, then the area 

around this fissure is coated with a solution of lipids (in a hydrophobic solvent). 

After drying, a salt solution is added on both sides and another lipid solution is 

coated for a second time. Between the organic and the aqueous phase, two lipid 

monolayer form which ends up fusing creating a bilayer (Figure 1.T, A). This bilayer 

separates two opposite chambers, which makes it ideal to study membrane 

proteins like ion channels and transportation proteins 172. Membrane proteins can 

be spontaneously inserted into the bilayer by solubilising the protein into the 

aqueous solution. The main disadvantage of this membrane model is its short 

lifespan (measured in hours) and the contamination of the bilayer with unwanted 

solvents that can be trapped in-between the two monolayers.  

A variation of the BLM model is the tethered bilayer lipid membrane (t-BLM). This 

method uses a BLM and anchors it to a solid surface to increase the membrane 

stability. Since unwanted interactions between the membrane (or the membrane 

protein) and the surface are a possibility, a material with inert chemistry is usually 

used, for example, gold. For the binding between the surface material and the 

membrane, thiolipids (lipid derivatives) are used (Figure 1.T, B). The bilayer is 

formed after the lipid monolayer is tethered to the gold surface by exposing it to a 

lipid solution 173. The space between the hydrophobic head is usually bigger than 

in the BLM model, which makes it beneficial to work with bigger membrane 

proteins.  
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When the synthetic membrane is not attached to a solid surface by thiolipids or 

any other components, and just by the hydrophobic heads of one of the layers, it 

is called supported lipid bilayers (SLB) 174. Due to the configuration of this model, 

only one of the monolayers is exposed. This characteristic brings enhanced 

stability to the membrane lasting weeks, which helps when using certain 

characterisation methods that use vibrations or movements that may break the 

bilayer.  

If the lipid bilayer closes around itself, creating a sphere, and leaving a solution 

inside, it is a vesicle. Since they mimic very well the physiology of a cell, vesicles 

have been used widely to study the dynamics of cell membranes. They are 

produced in a very easy straightforward way, by exposing dehydrated lipids to a 

polar solution, which in turn makes the lipids close around themselves by creating 

an orb (Figure 1.T, C). Since the creation of the vesicles happens spontaneously, 

these tend to be of various sizes and contain several monolayers, reason why they 

are called multilamellar vesicles (MLV). Different methods, such as sonication, can 

be used to break these initial vesicles (or liposomes) into smaller unilamellar ones 

(SUVs). Since they can be prepared economically and fast, they are preferred for 

bulk studies and long term storage. SUVs are sometimes too small for certain 

studies, such as detailed fluorescence microscope imaging, and as a result, bigger 

versions can also be created, called giant unilamellar vesicle (GUV). But GUVs do 

take more manufacturing time, are more fragile to work with, and produce fewer 

numbers of total vesicles than SUVs. Another possible way to obtain vesicles is to 
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just isolate them from organisms or cells 175, but since they are of natural origin, 

they have pre-determined compositions and so this is not usually the preferred 

method. Since liposomes can be used to enclose markers or drugs inside 

themselves or to just express membrane proteins on their surfaces, they are widely 

used as tools for diagnosis and treatment 176. Vesicles can help in the correct 

temporal delivery of drugs (chemicals, oligonucleotides, genes, and recombinant 

proteins) without compromising their quality, and providing reduced toxicity to 

the host. Another practical use for these liposome microreactors is to take 

advantage of their lipid bilayer as a location for membrane proteins to get attached 

to. This method is mainly used as a way to study membrane proteins and their 

properties 177. Studying this type of proteins has proven to be challenging, mainly 

due to the difficulty in trying to find optimal conditions in vitro that would allow 

membrane proteins to keep their original correct conformation and functionality 

178. Liposomes provide an enclosed environment for the membrane protein to be 

produced and, at the same time, allow for its insertion and correct conformation 

into the liposome membrane. The liposomes’ membrane offers a natural 

environment for the membrane proteins to be studied in terms of their structure 

and functionality 179. The correct composition of the liposome’s lipid bilayer is 

fundamental for the membrane protein and therefore the optimisation of this 

process is necessary for each different membrane protein produced 180. Although 

liposome-based vesicles seem like a favourable drug delivery method and an easy 

and fast way to study membrane proteins, they have some fundamental issues due 
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to the heterogenous multilamellar condition of the liposomes. This issue can lead 

to different heterogeneous conformations of the same proteins and when it comes 

to oligomer proteins, differences in their monomers 181.  

 

Figure 1.T: Types of synthetic lipid bilayers. (A) The simplest model bilayer, black lipid 

membrane (BLM); (B) an anchored version of a synthetic lipid membrane, tethered bilayer lipid 

membrane (t-BLM); (C) a liposome or vesicle; and (D) a figure of an empty nanodisc and one with 

an embedded membrane protein. Images used are from: (A) Hąc-Wydro et al.182, (B) Andersson et 

al.173, (C) Lee 183, and (D) Zoghbi et al.184. 

 

As an alternative, nanometric lipid bilayers, or nanodiscs, have started to gain 

popularity to perform in vitro experiments of membrane proteins 185. These 

nanodiscs are also synthetic model membranes composed of a phospholipid 

bilayer and two membrane scaffold proteins (MSP) surrounding the hydrophobic 

region of the phospholipids (Figure 1.T, D). The popularity of these nanodiscs 
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comes from the fact that they offer a favourable and flexible way to study 

membrane proteins (MP) as the size and lipid composition can be easily adjusted. 

But also due to the increased stability which allows for elongated storage and 

analysis of the MP-nanodisc complex 181. Another convenience is that, because of 

the aforementioned advantages, it is possible to regulate the oligomerisation of 

oligomeric proteins 185. The membrane proteins produced in nanodiscs have shown 

to be quite stable for further analysis such as Nuclear Magnetic Resonance (NMR) 

185–187. Small drawbacks when working with nanodiscs can be some issues with loss 

of lipids when compared to liposomes, 188 and the time-consuming process of 

producing the MSP and finding the optimal lipid composition. But once these 

issues are dealt with, the nanodiscs can be produced in big quantities and stored 

for very long periods which makes them eventually very convenient in saving time. 

1.5.2 Membrane Proteins: G-Protein Coupled Receptors (GPCRs) and their 

Applications for Drug Screening. 

When a protein interacts or is part of a biological membrane, it falls into the 

membrane protein category. Almost 1/3 of all the human proteins are membrane 

proteins, so they play an important role in drug targeting. These proteins are quite 

difficult to characterise since they always depend on a lipid bilayer to properly 

localise to, and therefore determining the optimal conditions to ensure the correct 

conformation of the membrane proteins is a challenge. These membrane proteins 

play important roles for the cell 189. One of their main functions is to serve as 

receptors, they help cells communicate between themselves and identify each 
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other, but also respond to external signals. Another function is that they help 

transport molecules and ions through the membrane in either direction. Apart 

from those two main roles of being receptors and transporters, membrane proteins 

can carry out a variety of other activities (enzymes, connectors, anchors, etc). 

Independently of their functions, they also fall into two categories according to 

their localisation on the cell membrane: Integral and peripheral. Both types usually 

go through post-translation modifications so that they can bind to the lipid 

membrane. 

Integral membrane proteins are always located on the membrane and they tend to 

cross the whole membrane from one side to the other (Figure 1.V). Since they are 

fully integrated in the membrane, it is quite difficult to isolate them, as it would 

require to free them from the membrane using detergents or nonpolar solvents, 

which tends to damage the protein. If they cross more than once the membrane, 

they are called polytopic, and if they only cross it once they are called bitopic. Some 

do not fully cross the membrane all the way and are only attached to one of the 

monolayers, these are called monotopic. Another way to classify integral 

membrane proteins is depending on the motifs found in their secondary structure 

and how they assemble in their tertiary structure: alpha-helical (single or as a 

bundle) and beta-barrels (Figure 1.U). They can also be classified depending on 

which side of the membrane their C- and N- terminus ends up.  

https://en.wikipedia.org/wiki/Alpha-helix
https://en.wikipedia.org/wiki/Beta-barrel
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Figure 1.U. Types of membrane proteins. The main division of membrane protein is whether 

they are integral or peripheral. Inside the integral proteins, depending on the conformation they 

take, they can be part of the alpha-helix (single or bundle) or the beta-barrel. All membrane 

proteins have a wide verity of different functions. Image used is from www.ib.bioninja.com 

 

Peripheral membrane proteins are only temporarily attached to one end of the 

lipid membrane or they are attached to integral proteins (Figure 1.U). Since they 

are not embedded in the membrane, they are much easier to isolate, only requiring 

treatment with a polar solution.  They attach themselves to the lipid membrane 

through a mixture of hydrophobic, electrostatic, and other non-covalent links. Just 

as with the integral membrane proteins, they have a wide variety of functions, from 

transporters to acting as enzymes. 

One of the main reasons membrane proteins are so important to study is that they 

are optimal targets for clinical and drug treatments of various diseases, especially 

for cancer, since they tend to overexpress themselves 190 and/or alter their post-
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translational modifications 191 in cancerous cells. Also, they are easy targets as they 

are found in the surface of every cell which makes them accessible from the outside, 

but also because they have numerous antibodies as targets 192. The family of 

membrane proteins most important as pharmaceutical targets are the G protein-

coupled receptors (GPCR). The GPCR family of receptors is found in the surface of 

the lipid membrane of eukaryotic cells. They have specific roles to sense external 

stimuli and send an internal cascade of signals that will alter the gene expression 

of the cell (Figure 1.V).  These proteins, the largest membrane receptors family, can 

recognise a huge variety of different ligands: neurotransmitters, mediators, 

hormones, peptides, lipids, amino acids and nucleic acids, as well as being able to 

respond to light. All these ligands can either way bind to the extracellular loops 

and N-terminus end, or the intramembrane helices. Since they cross the lipid 

membrane seven times, they are also known as seven-transmembrane receptors. 

As the name suggests, they are coupled to G proteins (signal transmitters). Once a 

ligand binds to the GPCR, it causes a conformational change which in return 

activates the G protein. Since they are receptors to so many different types of 

ligands and they are involved in many of the cell’s signaling pathways, they tend 

to be highly involved in many diseases (cancerous, endocrinal, immunological, etc) 

when they suffer mutations or polymorphisms 193. Around half of the commercial 

drugs in the market act as targets of GPCRs.  
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Figure 1.V. Different signalling pathways of GPCRs. The image shows details of the GPCRs 

reacting to external stimuli and all the possible ways they induce a cascade of signals inside the cell 

which has the ultimate goal of altering gene expression to adapt to the new signal. Image used is 

from www. gpcr.co.kr. 

 

GPCRs are of great importance due to their involvement in human 

pathophysiology and because they are easily handled in the pharmaceutical 

industry 194. Their genetic variation, along with the fact that they are attractive 

targets for pharmaceutical drugs, leads to a constant necessity to find new possible 

antibodies and proteins to target GPCRs.  
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1.6 Thesis Aims  

The main aim of this thesis is to understand in vitro cell-free systems and display 

techniques that could help create a novel interaction of both methods to screen 

and select from a wide library of peptides so that possible drug targets against 

GPCRs protein (expressed in synthetic membranes) could be found. In order to 

carry out this, several objectives were followed. 

 

Chapter 3 starts by performing a study of two different types of cell-free systems: 

based on cell extracts and based on purified components. This study was done to 

understand the dynamics behind each system and how they behave with a library 

of different samples, as well as to find ways to improve their weak spots. From this 

chapter, an optimal cell-free system (PURE system) was selected to work with for 

the rest of the chapters. For this chapter, two objectives were in mind: 

 

1. Data analysis and modelling of the performance of two cell-free protein 

expression systems by using a promoter mutant library, for the optimization 

of product yield and minimization of degradation. 

 

Cell-free protein expression systems are widely used for many applications 

regarding synthetic biology and metabolic engineering. More information was 

gathered from the dynamics of protein expression within these systems, including 
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on the impact of feedback loops and possible bottlenecks. A systems approach was 

used to uncover the underlying dynamics of protein expression in cell-free systems.  

 

2. Design and analysis of mutant libraries in cell-free systems, to better 

understand relevant interacting nucleotides or sections within the 

promoter and identify beneficial mutants. 

 

Coupled with the previous objective, a mutant library of a promoter displayed a 

range of protein level expression. This information could be valuable for 

performing cell-free system reactions in which individual tuning of protein 

expression is needed due to the presence of several genetic circuits. Also, beneficial 

mutants could enhance the final protein yield. The results obtained could also 

feedback into the first objective by feeding the model information about changes 

during transcription. Further exploration of the interactions of each mutant 

nucleotide (single nucleotide changes within the promoter) with the polymerase 

protein provided a starting point for the discovery of enhanced promoter 

sequences.  

 

Continuing, chapter 4 shows a possible method for the screening and selection of 

peptides using the cell-free system chosen in chapter 3, the PURE system, and two 

different in vitro display methods, mRNA and cDNA display. The main objective 

was: 
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3. Determination of a methodology that could be used for clean and efficient 

sequence screening of candidates for drug screening using in vitro display 

techniques with cell-free systems (objective 1) and mutant libraries 

(objective 2). 

 

The use of an appropriate cell-free system improved the efficiency of in vitro 

display techniques to prolong the stability of peptide conjugates. Also, it 

diminished the presence of components that could create undesired interactions 

with the ligand candidates. These advantages could provide a faster enrichment 

rate and a higher number of selected peptide candidates than traditional 

methodologies. These two aspects may prove useful when working with time-

constraints of difficult proteins (like membrane proteins). 

 

Chapter 5 is aimed at exploring synthetic lipid membranes and cell-free systems, 

for the production of G-protein-coupled receptors (GPCRs) membrane protein, a 

receptor from the G protein-coupled receptors (GPCRs) family, which are highly 

researched targets for drug screening in medical therapy. By using the PURE 

system, the CX3CR1 membrane protein receptor was produced in their natural 

conformation in vitro, in two types of synthetic membranes: liposomes and 

nanodiscs. This chapter also proposes a type of DNA library that could be used to 



 Chapter 1 
 

84 
 

screen for possible candidates for CX3CR1 when using an in vitro display method. 

The main objective of this chapter was: 

 

4. Expression of membrane proteins with the PURE cell-free system using two 

different types of synthetic membranes: liposomes and nanodiscs.  

 

Synthesis and purification of membrane proteins using different synthetic 

membranes provided insight into the difficulties encountered when working with 

membrane proteins and how to overcome them. The use of an appropriate cell-

free system could enhance the protein yield, stability of the membrane-protein 

complex and efficiency of the purification steps.   

 

In summary, this thesis presents research made in-depth to analyse the dynamics 

of cell-free systems and screening selection methods. The combination of a 

transcription-translation system from purified components with in vitro selection 

allowed the production of highly stable peptide conjugates from a DNA library. All 

the proposed objectives could further be combined into an efficient and rapid 

method to screen and select for possible drug targets against membrane proteins.  

This could overcome the difficulties found in high throughput screening of these 

types of proteins. 
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Chapter 2. Materials and Methodology 
 

2.1 Experiments for Chapter 3 

2.1.1 General Materials and Verification Procedures 

Unless otherwise specified, all the reagents, bacterial growth mediums, nucleotides 

sequences, primers and constructs, were acquired from Thermo Fisher Scientific. 

The PUREfrex 1.0 cell-free system was purchased from GeneFrontier and the 

Expressway system (Expressway™ Maxi Cell-Free E. coli Expression System) from 

Thermo Fisher Scientific. The Zyppy Plasmid Miniprep and ZymoPURE Plasmid 

Midiprep kits were acquired from Zymo Research; the Wizard SV Gel and PCR 

Clean-Up System were bought from Promega, and the (5Z)-5-[(3,5-Difluoro-4-

hydroxyphenyl)methylene]-3,5-dihydro-2,3-dimethyl-4H-Imidazol-4-one 

(DFHBI) fluorophore from Sigma Aldrich. The competent bacteria cells used were 

E. coli BL21-CodonPlus (DE3)-RIPL, from Agilent Technologies. All the PCR 

reactions were performed using KOD Hot Start Master Mix, by EMD Millipore. 

A thermocycler (T100 Thermocycler, BioRad) was used for the incubation of all 

PCR reactions, which were subsequently verified for size in a 1.5% agarose Tris-

Acetate-EDTA (TAE) gel (UltraPure Agarose), with a constant voltage of 100V. For 

staining DNA products in the agarose gels, SYBR Gold Nucleic Acid Stain was used 

along with 1 kb DNA Ladder (NEB) for size comparison. 

DNA quantification was performed by UV-Vis spectrophotometry (Nanodrop 

2000c, Thermo Fisher Scientific). All the cell-free reactions were incubated in a 
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plate reader (Infinite 200 PRO, Tecan) and the incubation steps for the competent 

bacteria cells were performed in an incubator (BioShaker BR-43FL, Taitec). 

Centrifugation steps were performed in a microcentrifuge (model 5415 R, 

Eppendorf), with different tubes adaptors depending on the size of the tubes used.  

2.1.2 Plasmid Stock and Production 

The plasmid sfGFP-pET32b (supplied by Yoshihiro Shimizu’s laboratory group, 

RIKEN) containing sfGFP (Superfolder Green Fluorescent Protein) as the reporter 

gene, was used as the template to create all the genetic constructs. E. coli BL21-

CodonPlus(DE3)-RIPL competent cells were transformed with the plasmid sfGFP-

pET32b following the manufacturer protocol, and after, grown overnight at 37°C in 

LB (Lysogeny Broth) agar plates with 50 µg/ml of ampicillin, for colony selection. 

The positive colonies were incubated in 10 ml of 2xYT medium, with 50 µg/ml of 

ampicillin, overnight at 37°C and 200 rpm. The plasmid, sfGFP-pET32b, was 

extracted from the bacterial colonies using the Zyppy Plasmid Miniprep and 

ZymoPURE Plasmid Midiprep Kits, and the remaining bacterial culture used as a 

plasmid stock by storing the cells with 70% glycerol at -80C.  

 2.1.3 Linear DNA Constructs 

The plasmid obtained was used to make a linear construct using the sfGFP gene 

along with an RBS (Ribosome Binding Site) and a T7 promoter. This was done by 

two-step PCR. The first one performed used the obtained sfGFP-pET32b plasmid 

as the DNA template, to add the RBS region using the primers RBS-sfGFP-F and sf-

GFP-R (Table 2.A). The PCR conditions were as follows: Initial Denaturation (94°C, 
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120 sec), 35 cycles of denaturation (98°C, 10 sec) and annealing/extension (68°C, 30 

sec), and Final Extension (68°C, 120 sec). The result constructs, called RBS-sfGFP, 

was then used as the DNA template for the second round of PCR using the primers 

T7-RBS-sfGFP-F and sfGFP-R (Table 2.A) with the following conditions: Initial 

denaturation (94°C, 120 sec), 35 cycles of denaturation (98°C, 10 sec), annealing 

(30°C, 30 sec) and extension (70°C, 30 sec), and final extension (70°C, 120 sec). The 

construct from this final PCR, T7-RBS-sfGFP, which contains the consensus T7 

promoter sequence, was used throughout the experiments as the reference 

sequence (also named as “WT” for Wild Type). 

Other linear DNA constructs containing variants of only the T7 promoter, along 

with consensus RBS and sfGFP gene sequences, were constructed using also a two-

step PCR by following the protocol for the cell-free system, PUREfrex 1.0: The first 

PCR, used the already obtained WT construct as the template DNA. A different 

forward primer was used for each variant (Table 2.A) but the reverse primer, sfGFP-

R, was common for them all. For making all the variants, the PCR conditions were: 

Initial denaturation (95°C, 120 sec), 35 cycles of denaturation (95°C, 20 sec), 

annealing (67°C, 10 sec) and extension (70°C, 15 sec), and final extension (70°C, 120 

sec).   
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Table 2.A: Sequences and names of the oligo primers used for creating the WT consensus and the 

promoter variants constructs. 

 

 

Name Sequence
T7-smut-17A GAAATAAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-17C GAAATCAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-17G GAAATGAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-16C GAAATTCATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-16G GAAATTGATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-16T GAAATTTATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-15C GAAATTACTACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-15G GAAATTAGTACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-15T GAAATTATTACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-14A GAAATTAAAACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-14C GAAATTAACACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-14G GAAATTAAGACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-13C GAAATTAATCCGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-13G GAAATTAATGCGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-13T GAAATTAATTCGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-12A GAAATTAATAAGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-12G GAAATTAATAGGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-12T GAAATTAATATGACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-11A GAAATTAATACAACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-11C GAAATTAATACCACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-11T GAAATTAATACTACTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-10C GAAATTAATACGCCTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-10G GAAATTAATACGGCTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-10T GAAATTAATACGTCTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-9A GAAATTAATACGAATCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-9G GAAATTAATACGAGTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-9T GAAATTAATACGATTCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-8A GAAATTAATACGACACACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-8C GAAATTAATACGACCCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-8G GAAATTAATACGACGCACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-7A GAAATTAATACGACTAACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-7G GAAATTAATACGACTGACTATAGGGAGACCACAACGGTTTCCCTC
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Using the original WT DNA construct, along with all its variations, extra bases were 

added at both the 5’ end and the 3’ end. The sequence attached at the 5’ end was a 

non-coding random sequence, and that at the 3’ end contained a T7 terminator 

sequence. Specific forward primers for each variant were used along with a 

common reverse primer, 5p3p_Common_R (Table 2.B). The PCR conditions were: 

Initial denaturation (95°C, 120 sec), 40 cycles of denaturation (95°C, 20 sec), 

T7-smut-7T GAAATTAATACGACTTACTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-6C GAAATTAATACGACTCCCTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-6G GAAATTAATACGACTCGCTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-6T GAAATTAATACGACTCTCTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-5A GAAATTAATACGACTCAATATAGGGAGACCACAACGGTTTCCCTC
T7-smut-5G GAAATTAATACGACTCAGTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-5T GAAATTAATACGACTCATTATAGGGAGACCACAACGGTTTCCCTC

T7-smut-4A GAAATTAATACGACTCACAATAGGGAGACCACAACGGTTTCCCTC

T7-smut-4C GAAATTAATACGACTCACCATAGGGAGACCACAACGGTTTCCCTC

T7-smut-4G GAAATTAATACGACTCACGATAGGGAGACCACAACGGTTTCCCTC

T7-smut-3C GAAATTAATACGACTCACTCTAGGGAGACCACAACGGTTTCCCTC

T7-smut-3G GAAATTAATACGACTCACTGTAGGGAGACCACAACGGTTTCCCTC

T7-smut-3T GAAATTAATACGACTCACTTTAGGGAGACCACAACGGTTTCCCTC

T7-smut-2A GAAATTAATACGACTCACTAAAGGGAGACCACAACGGTTTCCCTC

T7-smut-2C GAAATTAATACGACTCACTACAGGGAGACCACAACGGTTTCCCTC

T7-smut-2G GAAATTAATACGACTCACTAGAGGGAGACCACAACGGTTTCCCTC

T7-smut-1C GAAATTAATACGACTCACTATCGGGAGACCACAACGGTTTCCCTC

T7-smut-1G GAAATTAATACGACTCACTATGGGGAGACCACAACGGTTTCCCTC

T7-smut-1T GAAATTAATACGACTCACTATTGGGAGACCACAACGGTTTCCCTC

RBS-sfGFP-F AAGGAGATATACCAATGAGTAAAGGAGAAGAACTTTTCACTGGAG
TTGTCC

T7-RBS-sfGFP-F
GAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCT

AGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCA

sf-GFP-R
AAAGAGGAGAAATACTAGATGAGTAAAGGAGAAGAACTTTTCACT

GGAGTTGTC
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annealing (56°C, 10 sec) and extension (70°C, 30 sec), and final extension (70°C, 10 

min). For the WT sample with extra bases only at the 5’ end, its specific forward 

primer was used as described above with the difference of the reverse primer, 

which was 5p_Common2_R (Table 2.B). The PCR conditions were the same as 

those for the 5’ and 3’ extra bases sequences.  

 

Table 2.B: Sequences and names of the oligo primers used for creating the WT consensus and the 

promoter variants construct with additional bases at 3’ and 5’ and the ones with only additional 

bases at 5’. Also included are the oligo primers used for creating the RNA spinach aptamer 

constructs. 

 

 

Name Sequences

5p3p_WT_F TTCGTTTTATTTGATGCCGAAATTAATACGACTCACTATAGGG 

5p3p_17A_F TTCGTTTTATTTGATGCCGAAATAAATACGACTCACTATAGGG 

5p3p_17C_F TTCGTTTTATTTGATGCCGAAATCAATACGACTCACTATAGG 

5p3p_17G_F TTCGTTTTATTTGATGCCGAAATGAATACGACTCACTATAGGG 

5p3p_16C_F TTCGTTTTATTTGATGCCGAAATTCATACGACTCACTATAGG 

5p3p_16G_F TTCGTTTTATTTGATGCCGAAATTGATACGACTCACTATAGGG 

5p3p_16T_F TTCGTTTTATTTGATGCCGAAATTTATACGACTCACTATAGGG 

5p3p_15C_F TTCGTTTTATTTGATGCCGAAATTACTACGACTCACTATAGGG 

5p3p_15G_F TTCGTTTTATTTGATGCCGAAATTAGTACGACTCACTATAGGG 

5p3p_15T_F TTCGTTTTATTTGATGCCGAAATTATTACGACTCACTATAGGG 

5p3p_14A_F TTCGTTTTATTTGATGCCGAAATTAAAACGACTCACTATAGGG 

5p3p_14C_F TTCGTTTTATTTGATGCCGAAATTAACACGACTCACTATAGGG 

5p3p_14G_F TTCGTTTTATTTGATGCCGAAATTAAGACGACTCACTATAGGG 

5p3p_13C_F TTCGTTTTATTTGATGCCGAAATTAATCCGACTCACTATAGGG 

5p3p_13G_F TTCGTTTTATTTGATGCCGAAATTAATGCGACTCACTATAGGG 

5p3p_13T_F TTCGTTTTATTTGATGCCGAAATTAATTCGACTCACTATAGGG 

5p3p_12A_F TTCGTTTTATTTGATGCCGAAATTAATAAGACTCACTATAGGG 

5p3p_12G_F TTCGTTTTATTTGATGCCGAAATTAATAGGACTCACTATAGGG 

5p3p_12T_F TTCGTTTTATTTGATGCCGAAATTAATATGACTCACTATAGGG 

5p3p_11A_F TTCGTTTTATTTGATGCCGAAATTAATACAACTCACTATAGGG 

5p3p_11C_F TTCGTTTTATTTGATGCCGAAATTAATACCACTCACTATAGGG 
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2.1.4 Spinach RNA Aptamer Constructs 

Several linear DNA templates, containing the spinach aptamer, were constructed. 

A first PCR was performed using four primers at the same time: Aptamer1-F, 

Aptamer2-F, Aptamer3-R and Aptamer4-R (Table 2.B), to create the RNA aptamer 

and tRNA scaffold sequence. The PCR conditions were: Initial denaturation (95°C, 

120 sec), 40 cycles of denaturation (95°C, 20 sec), annealing phase (62°C, 10 sec) 

and extension (70°C, 5 sec), and final extension (70°C, 10 min). 

The PCR product obtained was purified and immediately used as a template for a 

second PCR to attach to it the promoter region of some of the constructs. The 

forward primers that were used to make the initial set of constructs (Table 1) and 

a common reverse primer, Aptamer4-R (Table 2), were used for this second PCR. 

The following conditions were used: Initial denaturation (95°C, 120 sec), 40 cycles 

5p3p_11T_F TTCGTTTTATTTGATGCCGAAATTAATACTACTCACTATAGGG 

5p3p_10C_F TTCGTTTTATTTGATGCCGAAATTAATACGCCTCACTATAGGG 

5p3p_10G_F TTCGTTTTATTTGATGCCGAAATTAATACGGCTCACTATAGGG 

5p3p_10T_F TTCGTTTTATTTGATGCCGAAATTAATACGTCTCACTATAGGG 

5p3p_Common_R TCAACAGGAGTCCAAGCAAAAAACCCCTCAAGACCCGTTTAGAGGC
CCCAAGGGGTTATGCTAGTATAAACGCAGAAAGGCC 

5p_Common2_R TATAAACGCAGAAAGGCCCACCC 

Aptamer1-F GGGAGACCACAACGGTTTCCCTCGCCCGGATAGCTCAGTCGGTAGA
GC

Aptamer2-F CGGATAGCTCAGTCGGTAGAGCAGCGGCCGGACGCAACTGAATGA
AATGGTGAAGGACGGGTCCAGGTGTGGCTGCTTCG 

Aptamer3-R GGACGCGACTAGTTACGGAGCTCACACTCTACTCAACAAGCTGCAC
TGCCGAAGCAGCCACACCTGGACCC 

Aptamer4-R TGGCGCCCGAACAGGGACTTGAACCCTGGACCCGCGGCCGGACGCG
ACTAGTTACGGAGCT 
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of denaturation (95°C, 20 sec), annealing phase (57°C, 10 sec) and extension (70°C, 

5 sec), and final extension (70°C, 10 min). The forward primers used were the ones 

for the WT construct and for the 17A, 17C, 16C, 16T and 11A variants.  

2.1.5 Cell-Free Transcription-Translation Reaction 

Unless otherwise indicated, all the reactions using the PURE system were 

performed with a final volume of 20 µl and using 24 ng (1 µl) of each linear DNA 

construct. For the reactions using the Expressway system, the total volume of each 

reaction was 26.6 µl with 235 ng (5 µl) of linear DNA. Stocks of DNA samples were 

made for accurate reproducibility and all experiments were performed in 

duplicate. The reaction components for both systems were assembled in a master 

mix for each one and then the specifically required volume added to the wells of a 

black flat-bottom 384 well-plate (Nunc 384 black well-plate) along with their 

corresponding amount of linear DNA template. The well-plates were covered with 

a transparent sealing membrane (Breath-Easy, Sigma-Aldrich) to avoid 

evaporation and afterwards incubated in a plate reader at 37°C for 12-20 h. During 

the incubation period, GFP fluorescence was measured and recorded every 15 min 

(excitation: 395 nm; emission: 509 nm). 

2.1.6 RNA Spinach Aptamer Cell-Free Transcription Reaction 

For the RNA spinach aptamer experiments, the reactions with the PURE and 

Expressway systems were performed the same as stipulated before and following 

the same conditions, but DFHBI fluorophore was added to each reaction to a final 
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concentration of 20 µM and its fluorescence measured instead (excitation: 460 nm; 

emission: 502 nm).  

2.1.7 Mathematical Analysis and Modelling  

A computer simulation was performed using custom programs written in Python 

and R1. For numerical simulation of differential equations, SciPy module2 was used. 

Nonlinear fitting of experimental data for the estimation of system parameters in 

the differential equations was performed by least-square fitting using leastsq 

function in the SciPy module. The rate of reaction and the maximum expression 

level for each time-course fluorescence data were calculated in R using 

growthcurver package 3.  

 

2.2 Experiments for Chapter 4 

2.2.1 General Materials and Verification Procedures 

Unless otherwise specified, all the reagents were acquired from Thermo Fisher 

Scientific. All the oligonucleotide sequences were ordered from FASMAC Inc., 

(Table 2.C). The DNA Polymerase I, Klenow Fragment (Large Fragment of the E. 

coli DNA Polymerase I) and PrimeScript One Step RT-PCR Kit Ver.2, were bought 

from Takara Bio; the Wizard SV Gel and PCR Clean-Up System from Promega; the 

HiScribe™ T7 Quick High Yield RNA Synthesis Kit and all the T4 DNA Ligase 

products from New England Biolabs (NEB); and both the NucleoSpin® RNA Clean-

up and the NucleoSpin RNA Clean-up XS kits, from Macherey-Nagel. The 

PUREfrex 1.0 cell-free system was purchased from GeneFrontier. 
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All DNA library samples transcribed mRNA libraries and their FITC-puromycin-

FITC DNA tag ligated products (mRNA-tag) were confirmed for the correct size 

before proceeding to the next steps. Unless otherwise stated, the DNA samples 

were run on a 2% agarose Tris-Acetate-EDTA gel (UltraPure Agarose), with a 

constant voltage of 100V; the transcribed mRNA (and mRNA-tag) samples were 

resolved using a mini size (8 ml) 8 M Urea 6% polyacrylamide Tris-borate-EDTA 

(TBE) gel at constant 50 mA; and the translated mRNA-peptide conjugate samples 

in a polyacrylamide SDS-PAGE gel, with a 3.5% stacking gel and a 10% resolving 

gel containing 8 M urea, at a constant 50 mA. For detecting both DNA and mRNA 

products, SYBR Gold Nucleic Acid Stain was used and the gels were visualised in a 

transilluminator (FUJIFILM Wako Pure Chemical). The electroelution processes 

were performed in an Electro-Eluter by Bio-Rad (model 422) along with all its 

components.  

The Western-blot reactions performed were done using polyvinylidene fluoride 

(PVDF) membranes (Bio-Rad), and a Trans-Blot SD Cell (Bio-Rad) apparatus in 

semi-dry conditions at 110 mA for 60 minutes. The blocking solution used was 

PVDF Blocking Reagent for Can Get Signal (Toyobo), and the incubation reagent 

was Can Get Signal, solution 2 (Toyobo). The membrane was revealed with 

chemiluminescence using ECL Select Western Blotting Detection Reagent (GE 

Healthcare). 

The peptide conjugate selection process was performed using Anti-FLAG M2 

Magnetic Beads and a DynaMag-2 magnetic stand, bought from Sigma-Aldrich and 
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Thermo Fisher Scientific respectively. All the incubation procedures were done in 

a circular rotator (Labinco L28, Salford Scientific Supplies). 

For next-generation sequencing (NGS), Illumina MiSeq was used. Quantification 

for sequencing was carried out using Qubit 2.0 Fluorometer and Qubit 1X dsDNA 

HS Assay Kit (Thermo Fisher Scientific). The sequencing products used were 

NEBNext Ultra II DNA Library Prep with Sample Purification Beads and NEBNext 

Multiplex Oligos for Illumina (Index Primers Set 1) (NEB). Agilent 2100 Bioanalyzer 

(Agilent Technologies) was used for length verification and the final samples run 

with the Miseq Reagent Kit v3 600 cycles. 

 

Table 2.C: Sequences and names of all the oligonucleotides for the DNA libraries’ construction, 

DNA-tag ligation, reverse transcription and real-time PCR procedures. Nomenclature is as follows: 

N = A, C, G and T; B = C, G and T; R = A and G; Y = C and T; p = 5'-phosphorylation; Spacer 18 = 

Hexaethylene glycol; F-dT = Fluorescein-dT and Puro = Puromycin. 

 

 

 

 

Name Sequence (5’ to 3’)

Display-F GTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAAT
AATTTTGTTTAACTTTAAGAAGGAGATATACCAATGGAC

Display-10aa-random-R TTTTTCACCTGATCCGCTGCCTTTCTGTTTACCNNBRNNNNBNNBRNN
NNBNNBRNNNNBNNBGTCCATTGGTATATCTCC

Display-FLAG-random-R TTTTTCACCTGATCCGCTGCCTTTCTGTTTACCNYYNYYNYYGTCGTCC
TTGTAGTCCATTGGTATATCTCC

FLAG-control-R TTTTTCACCTGATCCGCTGCCTTTCTGTTTACCCTTGTCATCGTCGTCCT
TGTAGTCCATTGGTATATCTCC

RTPCR-F GTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

RTPCR-R TTTTTCACCTGATCCGCTGCCTTTCTG

Puromycin-DNA tag pCCCTTCACCTGATCCGCTGAAAAAAAAAAAAAAAAAA(Spacer 18) 
(Spacer 18) (F-dT) (Spacer 18) CC (Puro)
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DNA quantification was performed by UV-Vis spectrophotometry (Nanodrop 

2000c, Thermo Fisher Scientific). All the cell-free reactions were incubated in a 

thermomixer (Eppendorf Thermomixer R, Eppendorf). Centrifugation steps were 

performed in a microcentrifuge (model 5415 R, Eppendorf), with different tubes 

adaptors depending on the size of the tubes used.  

2.2.2 Linear DNA Library Construction 

Linear DNA libraries were constructed by annealing and extension using the DNA 

Polymerase I, Klenow Fragment Kit and 3 μMof each of two single-stranded DNA 

(ssDNA) oligonucleotides. In the making of the two original libraries, the Display-

F and Display-FLAG-random-R oligos were used for the FLAG-random library 

while Display-F and Display-10aa-random-R oligos were used for the 10aa-random 

library. To make the fixed FLAG (DYKDDDDK) sequence, the oligos used were 

Display-F and FLAG-control-R. For all these reactions, each oligo pair was mixed 

with a final concentration of 200 μM dNTPs in Klenow buffer, and annealed by 

heating at 92℃ for 30 seconds followed by cooling to room temperature. Then 10U 

of the Klenow Fragment was added to the reaction mix and an extension step was 

performed at 37℃ for 1 hour, followed by inactivation of the enzyme at 50℃ for 15 

min. Both DNA libraries (FLAG-random and 10aa-random) were further purified 

by column using the Wizard SV Gel and PCR Clean-Up System and quantified by 

Nanodrop. 
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2.2.3 In vitro Transcription and DNA-tag Ligation 

In vitro transcription was performed using HiScribe™ T7 Quick High Yield RNA 

Synthesis Kit with approximately 500 ng (11 pmol, 6.6 x 1012 molecules) of each 

linear DNA library at 37℃ for 6 h according to the kit’s protocol. The transcribed 

product was cleaned up afterwards using the NucleoSpin® RNA Clean-up kit and 

measured with Nanodrop. To anneal the transcribed mRNA library with a 

puromycin-FITC DNA tag, first, a 100 µL reaction was set up consisting of final 

concentrations of 4 μM transcribed mRNA, 6 µM puromycin-FITC DNA tag (Table 

2.C) and 1 mM ATP in T4 ligation buffer. Second, the reaction was incubated at 

90℃ for 30 sec and cooled to room temperature with a 1℃/sec decline rate to 

correctly anneal the mRNA library with the puromycin-FITC DNA tag. And third, 

3U of T4 PNK and 20U of T4 RNA ligase were added to the reaction mixture and 

further incubated at 25℃ for 30 min. 

2.2.4 Sample Product Purification: Electroelution and Ethanol 

Precipitation 

The ligation product, mRNA-puromycin-FITC (mRNA-tag), was run on a 40 ml 

(8M Urea 6% polyacrylamide) TBE gel for purification before being used for in vitro 

translation. Using a clean scalpel and under a blue light LED transilluminator, the 

strips containing the mRNA-tag were cut from the Urea-TBE gel and followed by 

standard electroelution gel purification. First, the cut gel’s strips were crushed into 

small pieces and placed inside the Electro-Eluter tubes (Bio-Rad) with a membrane 

cap (12kDa cut-off) attached to the tubes. The tubes were filled with 1x TBE buffer 
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and run at 10 mA/tube for 30 min. Then, the polarity was reversed for 1 min to 

release the mRNA-tag from the membrane. The eluted sample solution was 

recovered and subjected to downstream ethanol precipitation, in which 10% 

sample volume of 3 M sodium acetate was added to the eluted sample solution, 

and after 3 volumes of 99.5% ethanol (FUJIFILM Wako Pure Chemical). The final 

solution was incubated overnight at -20℃ for increased yield and subsequently 

centrifuged at 4℃, 20,000 RCF for 60 min. The supernatant was carefully 

discarded, and 1 ml of 70% ethanol was added to the white pellet. A second 

centrifugation step was performed at 4℃, 20,000 x g for 15 min. The supernatant 

was again carefully discarded and the pellet was air-dried at room temperature for 

30 min. Finally, the pellet was re-suspended in RNase free water and quantified by 

Nanodrop.  

2.2.5 In vitro Translation Using Cell-free System for mRNA Display 

From the recovered mRNA-tag samples, a total of 2 μg was used for in vitro 

translation using PUREfrex 1.0 in a 100 µl final volume reaction mix. The optimised 

conditions for efficient mRNA-peptide conjugate formation are as follows: initial 

translation at 37℃ for 30 min, followed by addition of a salt mix to a final 

concentration of 32.5 mM MgCl2 and 375 mMKCl, and then a second incubation at 

37℃ for 60 min. After this step, an equal volume of 2x Laemmli sample buffer (Bio-

Rad) was added, mixed and centrifuged at 10,000 x g, 1 min and room temperature 

to remove the salt precipitant. The supernatant, containing the translated product 

(mRNA-peptide), was recovered and further resolved on a polyacrylamide SDS-
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PAGE gel (3.5% stacking gel and 8 M urea 10% resolving gel). Afterwards, the gel 

bands corresponding to mRNA-peptide conjugate were excised and purified by 

electroelution and ethanol precipitation. 

2.2.6 Optimisation of mRNA-peptide Conjugate Formation 

The formation of the mRNA-peptide conjugate using PUREfrex1.0 described in the 

paragraph 2.2.5, was firstly optimised through experimentation of three different 

reaction conditions: translation time, salt mix concentration, and incubation time 

after salt mix addition. All test reactions were performed at a 10 μl scale. For the 

translation time, 0, 5, 15, 30 and 60 minutes at 37℃ were tested, before the addition 

of a specific salt mix (final concentration, 32.5 mM MgCl2 and 375 mM KCl) 

followed by 60 minutes of incubation. For the optimisation of the salt mix 

concentration, firstly a 30 minutes translation was performed at 37℃, then either 

no salt or 1x, 1/2x, 1/4x, 1/8x concentrations of 65 mM MgCl2 and 750 mM KCl salt 

mixed added. These salt concentration parameters (65 mM MgCl2 and 750 mM 

KCl) were originally reported to promote a covalent bond between puromycin and 

polypeptide chain 4,5. For the incubation time after salt addition, a 30 minutes 

translation was initially performed, and then salt added to final 32.5 mM MgCl2, 

375 mM KCl concentration, then 0, 10, 30, 60 and 90 minutes of posterior 

incubation tested. 

2.2.7 Trypsin Digestion 

Trypsin digestion was carried out by using 75 ng mRNA-tag sample (with and 

without translation under optimal condition), 1 mM CaCl2, 50 mM ammonium 
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bicarbonate, and 0.5 µg of Trypsin Gold (Promega). Each reaction was incubated 

at 37℃ for 30 min and resolved on a polyacrylamide SDS-PAGE gel (3.5% stacking 

gel and 8 M urea 10% resolving gel). 

2.2.8 Reverse Transcription for cDNA Synthesis 

Reverse transcription (RT) was performed against purified mRNA-peptide 

conjugates to obtain mRNA/cDNA duplexes for cDNA display using PrimeScript 

One Step RT-PCR Kit Ver.2. The initial peptide library (0th round) was prepared 

by mixing both FLAG-random and 10aa-random mRNA-peptide conjugate samples 

on a 1:10,000 molar ratio respectively. Approximately 200 ng (~2 x 1012 molecules) 

of this initial peptide library was reverse transcribed in a 50 µl reaction with a final 

concentration of 0.4 µM of RTPCR-R primer (Table 2.C) in 1 step buffer. Tubes were 

incubated at 80℃ for 30 seconds, then cooled down to 4℃ for primer annealing. 

After, the PrimeScript 1 step Enzyme Mix was added and incubated at 48℃ for 20 

min. An “RT–“tube was also prepared as a negative control, without adding the 

enzyme mix. After the incubation, both samples (RT-: mRNA-peptide and RT+: 

mRNA/cDNA-peptide) were purified using the NucleoSpin RNA Clean-up XS kit 

and quantified by Nanodrop. 

2.2.9 Western Blot Analysis 

Western blot analysis was performed to confirm the physical bond between the 

peptide and their mRNA sequences in the mRNA-peptide or mRNA/cDNA-peptide 

conjugates. A control mRNA sequence (Table 2.C) encoding the FLAG epitope 

(DYKDDDDK) was ligated with the puromycin-FITC DNA tag and translated 
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under optimised conditions. Samples were run on a 10-20% polyacrylamide SDS-

PAGE gel (SuperSep Ace, FUJIFILM Wako) at constant 30 mA until the samples 

stack and reach the separating gel, and after at constant 50 mA for additional 40 

minutes. The samples in the gel were semi-dry transferred to a PDVF membrane, 

blocking was carried out using the PVDF Blocking Reagent for Can Get Signal and, 

the membrane was incubated using Anti DYKDDDDK tag monoclonal antibody 

peroxidase-conjugated (FUJIFILM Wako Pure Chemical) and Can Get Signal, 

solution 2 with a 1: 12,000 ratio, respectively. The membrane was then revealed with 

chemiluminescence using ECL Select Western Blotting Detection Reagent. 

2.2.10 Selection Using Anti-FLAG M2 Antibody 

First, the Anti-FLAG M2 Magnetic Beads needed to be washed, so 40 µl of beads 

were mixed with 1 ml of TBS-T buffer (50 mM Tris-HCl, pH 7.4, with 150 mM NaCl, 

1 mM EDTA, 0.2% Tween 20), incubated in a circular rotor for 5 min and then the 

supernatant extracted using the DynaMag-2 magnetic stand. This process was 

repeated two times. Afterwards, as two different samples, 100 ng of each initial 

library, the mRNA-peptide and the mRNA/cDNA-peptide, were diluted with 500 

µl of TBS-T buffer. These diluted samples were mixed with the already washed 

beads and incubated with gentle mixing in the circular rotator for 1 hour to allow 

strong binding. After the incubation process, the supernatant was removed again 

with the magnetic stand, and the beads were further washed first three times with 

TBS-T and then another three times with TBS buffer. The incubation time for each 

washing step in the circular rotor was 5 min each. Through the 1st to 3rd rounds, 
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beads were re-suspended in 50 µl of TBS buffer and solutions were directly applied 

to the RT-PCR reaction (see 2.2.11 section) to generate a double-strand DNA library 

for the next selection round and sequencing. For the 4th round samples though, 

the elution phase was performed in several steps using a FLAG Peptide (Sigma-

Aldrich) to compete and remove the conjugates, by increasing the FLAG Peptide 

concentrations from 4 μg/ml to 20 μg/ml and 100 μg/ml. Each of the eluted 

fractions, along with the remaining beads, were subjected to RT-PCR. 

2.2.11 RT-PCR for Amplifying Selected Sequences 

A total of 10 µl of re-suspended magnetic beads with bound mRNA-, mRNA/cDNA-

peptide conjugates (from round 1 to 3)were used as a substrate for a 50 µl RT-PCR 

reaction using PrimeScript One Step RT-PCR Kit Ver.2 with 0.4 µM of each RTPCR-

F and RTPCR-R primers (Table 2.C). The reaction mix was incubated at 80℃ for 30 

seconds, then cooled down to 4℃ for primer annealing, and afterwards followed 

by the addition of the PrimeScript enzyme with incubation at 48℃ for 20 min to 

complete the reverse transcription reaction. The reaction mixture was then split 

into a total 8 tubes to be able to recover the samples at different PCR cycles (0, 5, 

10, 15, 20, 25, 30 and 35 to be more specific), and this way, check the amplification 

efficiency and optimal numbers of cycles needed so over-amplification of the DNA 

could be avoided. PCR conditions were: initial denaturation at 94℃ for 60 seconds, 

followed by 30 cycles of 94℃ for 15 seconds, 62℃ for 30 seconds and 72℃ for 25 

seconds, then final extension at 68℃ for 30 seconds. The samples were run on a 2% 

TAE agarose gel stained by SYBR Gold and the optimal number of cycles was 
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determined based on the band intensity and the absence of extra bands which are 

caused by non-specific amplified products. Finally, 50 µl of the RT-PCR reaction 

was once again conducted with optimal PCR cycles (20 cycles for rounds 1 and 2, 

and 15 cycles for round 3) and the product was purified using Wizard SV Gel and 

PCR Clean-Up System for the next round of selection and posterior sequencing. 

2.2.12 Next-Generation Sequencing 

Sequencing was performed for every round of DNA library (0 to 4 rounds). Firstly, 

quantification of the samples was carried out using Qubit 2.0 Fluorometer and 

Qubit 1X dsDNA HS Assay Kit. A total of 50 ng of each DNA library sample was 

used as an input for the NEBNext Ultra II DNA Library Prep with Sample 

Purification Beads and also the NEBNext Multiplex Oligos for Illumina (Index 

Primers Set 1) were used to multiplex the samples. The length of the ready DNA 

Library samples was determined with Agilent 2100 Bioanalyzer, then quantified by 

Qubit 2.0 Fluorometer and finally run on the MiSeqillumina platform using the 

Miseq Reagent Kit v3 600 cycles. 

2.2.13 Sequence Analysis  

The sequence information, from the MiSeqillumina platform, was retrieved as raw 

FASTQ files. The sequencing part corresponding to the coding regions was 

extracted using a pattern search program written by Perl script and only the 

sequences with an 8 nucleotide perfect match upstream of the start codon and 

downstream of the random region, were considered for downstream analysis. The 

selected sequences, still in FASTQ format, were further processed using 
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FASTAptamer-count6 to rank sort the sequences based on their read counts. 

Consensus sequence logos were created using WebLogo 37 based on the top 50 

reads with specific conditions (fixed letter and position). 

 

2.3 Experiments for Chapter 5 

2.3.1 General Materials and Verification Procedures 

Unless otherwise specified, all the reagents, chemicals and vials were acquired 

from Thermo Fisher Scientific. The lipids were bought from Avanti Polar Lipids 

Inc; the PUREfrex systems (version 2.0, 2.1 and DS supplements) from Gene 

Frontiers. The Wizard Plus SV Minipreps DNA Purification System from Promega, 

the BL21 (DE3) Competent E. Coli cells and the Bio-Beads SM-2 Resin from New 

England Biolabs.  

Unless otherwise stated, size verification of DNA samples was performed on a 1.5% 

agarose Tris-Acetate-EDTA gel (UltraPure Agarose), with a constant voltage of 

100V; while for peptide and protein samples it was in a pre-cast 10-20% 

polyacrylamide SDS-PAGE gel (SuperSep Ace, FUJIFILM Wako) at constant 30 mA 

until the samples were stacked and reached the separating gel, and after that, at 

constant 50 mA for an additional 40 minutes. For detecting DNA products, SYBR 

Gold Nucleic Acid Stain was used and for proteins, the staining used was Oriole 

Fluorescent Gel Staining (Bio-Rad). DNA markers used for the agarose gel were 1 

kb DNA Ladder (NEB) and the protein ladder for the SDS-PAGE gel was Precision 

Plus Protein Dual ColorStandards (Bio-Rad). 
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DNA constructs were done using the KOD -Plus- Neo PCR Kit (Toyobo). All the 

primer sequences were ordered from FASMAC Inc., (Table 2.D).  

Visualisation of vesicles was done by fluorescence microscopy using an Aarson 40x 

- 1000x Fluorescence Microscope (RSB-14, Aarson Scientific), and also by 

Fluorescence-Activated Cell Sorting (FACS) using a BD FACS Aria II (BD 

Biosciences). 

The protein purification process was performed using either MagneHIS Ni-

Particles (Promega) or Anti-HA-tag mAb-Magnetic Beads Monoclonal Antibody 

(MBL). Also, DynaMag-2 magnetic stand (Thermo Fisher Scientific) was used. All 

the incubation procedures were done in a circular rotator (Labinco L28, Salford 

Scientific Supplies). 

DNA quantification was performed by UV-Vis spectrophotometry (Nanodrop 

2000c, Thermo Fisher Scientific). All the cell-free reactions were incubated in a 

thermomixer (Eppendorf Thermomixer R, Eppendorf). Centrifugation steps were 

performed in a microcentrifuge (model 5415 R, Eppendorf), with different tubes 

adaptors depending on the size of the tubes used.  

2.3.2 DNA Constructs, Primers and PCR 

The plasmid for MSP1D1 protein was obtained from Addgene (#20061) and used as 

a circular construct for protein expression. The plasmid for the CX3CR1 receptor 

(pCX3CR1) was obtained from the Takuya Ueda Laboratory (University of Tokyo) 

8. The plasmid for sfGFP (psfGFP) was obtained from a colleague in the same 

laboratory (Earth-Life Science Institute). The CX3CR1 samples were used as linear 
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DNA templates for protein expression. The first fragment used a forward primer 

containing a T7 promoter (with a 17A mutation) and RBS sequence and a reverse 

primer with an HA-tag. For this, two-step PCR was performed using the plasmid, 

pCX3CR1, the forward primer T7_CX3CR1_HA_F1 and the reverse primers 

T7_CX3CR1_HA_R (Table 2.D) were used with the following the first PCR 

conditions: Initial Denaturation (94°C, 120 sec), 35 cycles of denaturation (98°C, 10 

sec) and annealing/extension (68°C, 40 sec), and Final Extension (68°C, 120 sec). 

The result constructs, called RBS-CX3CR1_HA, was then used as the DNA template 

for the second round of PCR using the primers T7_CX3CR1_HA_F2 and 

T7_CX3CR1_HA_R (Table 2.D) with the following second PCR conditions: Initial 

denaturation (94°C, 120 sec), 35 cycles of denaturation (98°C, 10 sec), annealing 

(58°C, 30 sec) and extension (68°C, 40 sec), and final extension (68°C, 120 sec). The 

construct from this final PCR was referred to as T7-CX3CR1_HA. 

The second fragment, CX3CR1-sfGFP was constructed by overlap PCR. It fused an 

sfGFP sequence to the C-terminus of a CX3CR1 fragment. The sfGFP fragment was 

done using the psfGFP plasmid, the sfGFP_F forward primer and the sfGFP_R 

reverse primer (Table 2.D) with the following PCR conditions: Initial denaturation 

(94°C, 120 sec), 35 cycles of denaturation (98°C, 10 sec), annealing (67°C, 30 sec) 

and extension (68°C, 27 sec), and final extension (68°C, 120 sec). The CX3CR1 

fragment was done using a DNA template, the RBS-CX3CR1_HA fragment 

mentioned above. A T7 promoter was added and the HA tag replaced with the 

overlapping sequence. The primers used were T7_CX3CR1_HA_F1 and 
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T7_CX3CR1_R (Table 2.D) with the following PCR conditions: Initial denaturation 

(94°C, 120 sec), 35 cycles of denaturation (98°C, 10 sec), annealing (58°C, 30 sec) 

and extension (68°C, 36 sec), and final extension (68°C, 120 sec). For the final 

overlapping PCR reaction, both sfGFP and CX3CR1 fragments were annealed with 

the following CPR conditions: Initial denaturation (94°C, 120 sec), 35 cycles of 

denaturation (98°C, 10 sec), annealing (63°C, 30 sec) and extension (68°C, 60 sec), 

and final extension (68°C, 120 sec). The construct from this final PCR was referred 

to as T7-CX3CR1_sfGFP. 

 

Table 2.D: Sequences and names of the oligo primers used for creating all the CX3CR1 constructs. 

 

 

 

 

2.3.3 Giant Unilamellar Vesicles (GUVs) Preparation 

Liposomes were, produced by water-in-oil (w/o) emulsion transfer 9. The lipid 

mixture used was POPC: Cholesterol (1: 1). First, a 6 cubic ml vial is cleaned 

thoroughly and all traces of dust inside it are removed with pressure air. Once 

completed, dry lipids and paraffin oil are put inside following the calculations for 

the desired molarity. On top of that, a small stirrer is introduced with a pincer to 

Name Sequence (5' to 3')
T7_CX3CR1_HA_F1 5’- TTTAAGAAGGAGATATACCAATGGATCAGTTCCCG – 3’

T7_CX3CR1_HA_R 5’- TGCTAGTTAAGCGTAATCTGGAACATCGTATGGGTACAGCAGCAGCAGTGC – 3’


T7_CX3CR1_HA_F2 
5' - 

GAAATAAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATT
TTGTTTAACTTTAAGAAGGAGATATACCA – 3’

sfGFP_F 5’- ACGGTCTCTGCGATCTCCCAATGAGTAAAGGAGAA – 3’
sfGFP_R 5’- GCGCCAGTGCGACGCTATTATTTGTAGAGCTCATC – 3’

T7_CX3CR1_R 5’- GCACTGCTGCTGCTGTGGGAGATCGCAGAGACCGT – 3’



 Chapter 2 
 

129 
 

avoid dust going inside. The solution is then mixed at room temperature and 1,000 

rpm for 2-3 h (or overnight at 4°C) in a magnetic stirrer (BT Lab Systems). In the 

meantime, the inner and outer solution of the liposomes is made. When testing 

new molarity, ratio or new lipids themselves, 200 mM of Glucose and 200 mM of 

Sucrose are used for the outer and inner solution respectively. Once good 

conditions are found, the PUREfrex system is used instead. For this, the inner 

solution is the normal PURE mixture as it is stipulated in the protocol, while the 

outer solution consists of the non-protein components of the PURE system, minus 

also the tRNAs, and complemented with 200 mM of Glucose.  

In an Eppendorf tube, first 200 µl of the outer solution is set at the bottom of the 

tube, then directly on top of it, 100 µl of the mixed lipid solution is poured slowly. 

In another Eppendorf tube, 200 µl of the lipid solution along 5 µl of the Inner 

solution is mixed by flicking the tube hard with a finger until the colour goes from 

transparent to slightly white. This lipid-inner solution mixture is slowly mixed 

inside the top layer of lipid solution from the first Eppendorf with a pipette. Once 

finished, the Eppendorf tube is centrifuged 300 g for 10 minutes, and then at 2,500 

g for another 10 minutes. After this step, a visible white pellet at the bottom of the 

tube appears. With the help of a pipette, the top layer of the lipid solution is slowly 

removed out of the tube and discarded until only the outer solution and the white 

pellet remain. From this point onwards, the white pellet can be slowly and carefully 

removed with a pipette and poured into another clean Eppendorf, or a small hole 

can be made at the bottom of the Eppendorf, where the while pellet is, with the 
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help of a needle, to let a couple of droplets containing the freshly made vesicles out 

of the tube with pressure by closing the lid. Whether one or the other procedure is 

performed, a clean tube will be containing the new vesicles with the as little 

amount of outer solution as possible, to dissolve the sample as little as possible.  

To check the vesicles by fluorescence microscope, a tape separator with a hole in 

the middle was put between the two glass slides, and 2 µl of vesicles sample were 

placed in the middle of the hole.  

2.3.4 Fluorescence-Activated Cell Sorting (FACS) 

For vesicle visualisation using FACS, around 50-100 µl of vesicles at a 1:10 dilution 

rate was used each time. The experiment was carried out at room temperature 

when testing the vesicles and at 4°C when using the PURE system to avoid more 

product being produced. The flow rate was set to 1.0 and the FSC (Forward 

Scattering) and SSC (Side Scattering) thresholds to 200 both (all arbitrary units). 

The voltage was set to variable values that would allow for vesicles’ visualisation in 

the plot graph.  

2.3.5 Membrane Scaffold Protein (MSP) Production, PUREfrex2.0 

For the making of the membrane scaffold protein, MSP1D1, some already stipulated 

protocols were followed 8,10 with some slight modifications. 

The DH5α E. coli bacteria containing the plasmid with the MSP1D1 gene (Addgene, 

#20061) was first grown in 10 ml of LB medium containing Kanamycin (50 µg/ ml) 

overnight at 37°C with moderate shaking. The plasmid was extracted using the 

Wizard Plus SV Minipreps DNA Purification System and quantified with 
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Nanodrop.  For storing and further plasmid expression purposes, the plasmid was 

transformed into E. coli BL21 (DE3) cells following the transformation protocol and 

the following day, selected colonies stored with 70% Glycerol at -80°C, while other 

colonies were grown in another 10 ml of LB medium containing Kanamycin (50 µg/ 

ml) for 6 h at 37°C with moderate shaking. The plasmid was again extruded using 

the aforementioned miniprep kit.  

The MSP1D1 proteins were expressed in PUREfrex 2.0 since it yields a higher 

protein output. The reaction was carried out in a final volume of 100 µl, using 10 ng 

of the MSP1D1 plasmid and following the company’s protocol by incubating the 

reaction at 37°C for 6 h.  

2.3.6 Membrane Scaffold Protein (MSP) Purification, MagneHis Ni-

Particles 

The MagneHis Ni-Particles were used to purify the MSP1D1 since these proteins 

have a 7-His tag at their N terminal. First, 50 µl of the beads were cleaned 

thoroughly two times with Lysis Buffer (50 mMTris HCl pH 8.07, 300 mM NaCl, 5 

mM MgCl2) by washing them with the mentioned buffer in a circular rotator for 5 

min each at room temperature.  

Parting from 100 µl of the PUREfrex 2.0 reaction, 5 µl of it were taken as the “PURE” 

fraction, for posterior analysis. The remaining 95 µl were mixed with 400 µl of Lysis 

Buffer and the 50 µl of the washed beads (with no liquid) in a circular rotator for 

30 min at room temperature, or overnight at 4°C. The tube was then placed in the 

Magnetic Stand for 2 min, and after the liquid taken out and put inside an 
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Eppendorf tube as the “Flow-Through” fraction. To the remaining beads, 500 µl of 

Lysis Buffer with 20 mM Imidazole was added and the sample further incubated in 

a circular rotor for 10 min. After placing the tube in the magnetic stand, the liquid 

was transferred to an Eppendorf tube as “Wash 1”. The washing process was 

repeated and a second fraction, “Wash 2” was obtained. The process was finalised 

by adding to the beads another 500 µl of Lysis Buffer but this time with 500 mM 

Imidazole. The mixture was incubated for the last time in the circular rotor for 

another 10 minutes and then placed in the magnetic stand where the liquid was 

taken as the “Elution” fraction. All the fractions were flash-frozen and stored at -

80°C. 

The “Elution” fraction was later used for dialysis to remove the imidazole. The 

sample was put inside a dialysis cassette (Micro Float-A-Lyzer, Repligen) which 

was left inside a tank filled with 1 L of Lysis Buffer, overnight at 4°C with mild 

rotation.  

2.3.7 Membrane Scaffold Protein (MSP) Concentration and Verification 

After the dialysis of the MSP1D1 sample (section 2.3.5), 5 µl were stored on ice. 

Buffer exchange was performed with PBS using Amicon Ultra Centrifugal Filters 

(Merck Millipore) and the sample was also concentrated to a total volume of 50 µl.  

All the fractions, along with the dialysis and buffer exchange samples were 

analysed on two different 10–20% SDS-PAGE gels, for the correct size verification, 

at constant 30 mA until the samples stack and reach the separating gel, and after 

at constant 50 mA for additional 40 minutes. One gel was stained with Oriole 
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Fluorescente Gel Stain for immediate visualisation and the other was subjected to 

semi-dry conditions and transferred to a PDVF membrane. Blocking was carried 

out using the PVDF Blocking Reagent for Can Get Signal and, the membrane was 

incubated using Anti 6xHistidine monoclonal antibody (9C11), Peroxidase-

conjugated (FUJIFILM Wako Chemicals) and Can Get Signal, solution 2 with a 1: 

10,000 ratio, respectively. The membrane was then revealed with 

chemiluminescence using ECL Select Western Blotting Detection Reagent. 

The sample was posteriorly flash-frozen for -80°C storage. The protein 

concentration for the MSP1D1 was calculated by Nanodrop.  

2.3.8 Nanodiscs Production, Bio-Beads  

The whole procedure was done following already stipulated protocols 11–14 with 

some modifications. When syringes were needed, metallic and glass ones were 

selected, instead of plastic, due to the use of chloroform. Syringes were pre-rinsed 

with chloroform and vials cleaned from dust with pressured air. The lipids used for 

the construction of the nanodiscs were POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) and 

Cholesterol in a 72: 20: 8 proportion respectively. The ratio of membrane scaffold 

protein to lipid mixture was 1: 60 (MSP1D1: lipid mixture). All the lipids were 

dissolved in Chloroform. 

First, the calculated volume of lipid mixture (POPC: POPS: Cholesterol) was 

poured into a 6 cc crystal vial and N2 gas was forced inside to dry the mixture, 

creating this way a dry film. The vial was then covered in aluminium foil and 
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further dried overnight by leaving it at room temperature in a vacuum so that all 

the humidity is removed. The next day, the dry film was hydrated with 

NanodiscBuffer (20 mMTris/HCl, pH 7.4 and 100 mM NaCl) containing 100 mM Na 

cholate. During the hydration process, the glass vial was put into a water bath at 

60°C with sonication to ensure all the lipid dry films are fully dissolved. The process 

was aided by vortexing and/or flicking. Once dissolved, the whole volume was 

passed into a 2 ml tube and the MSP1D1 proteins were added. The sample was 

further incubated at 4°C for 1 h and kept in ice afterwards.  

In the meantime, the Bio-Beads SM-2 Resin was prepared to be used with the 

sample. First, the top 5 cm of a 25 ml pipette was cut off with a saw and the tube 

cleaned well with pressured air. Cotton was then pushed down the cut pipette, to 

where the tip is. The cut pipette was supported vertically with a holder and 25 ml 

of MiliQ water was run through it. Then around 2.5 gr of beads (4-5 ml) was put 

inside the cut pipette with 25 ml of 100% methanol. Before all the liquid came out 

of the cut pipette, the beads were pipetted up and down the tube to wash them 

thoroughly. Posteriorly, the beads were further washed 3 times with MiliQ water 

and finally another 3 times with Nanodisc Buffer (without the detergent). During 

the last wash, again before all the liquid came out the bottom, the flow was stopped 

with paraffin wax paper and the beads in the Nanodisc Buffer (around 15 ml) were 

collected into a Falcon tube.  

For every microliter of sample 1 mg of dry beads (no liquid) is necessary. To the 

lipid-detergent-MSP1D1 sample, the dry bio-beads were added and the mixture was 
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mixed overnight at 4°C in a circular rotator. The following day, the mixed sample 

was centrifuged at 4°C for 10 minutes and 12,000 rpm. The supernatant was 

transferred into another Eppendorf tube and kept at 4°C.  

2.3.9 Nanodiscs Purification and Concentration, AKTA Chromatography 

Further purification of the nanodiscs was performed using AKTA chromatography 

(ÄKTA pure 25L, Cytiva) to separate the correctly assembled nanodiscs samples 

from the aberrant ones. The column used was HiLoad 16/600 Superdex 200 pg. 

The machine was cleaned and flushed with Nanodisc Buffer (20 mMTris/HCl, pH 

7.4 and 100 mMNaCl) before injecting the sample. The 500 µl tube line was used 

for running the sample through it and a flow rate of 0.2 ml/min was selected. The 

entire run lasted for 2h and a total of 24 fractions were collected, each one with 1 

ml of volume. A total of 10 fractions were selected to determine if they contain the 

purified nanodiscs from the AKTA plot. The gel was run with 5 µl from each 

selected fraction.  

A total of 5 fractions containing most of the purified nanodiscs were selected for 

concentration using Amicon Ultra-15 Centrifugal Filter (Merck). A final volume of 

1.3 ml was collected and stored at -80°C by flash freezing in 5 µl and 10 µl aliquots. 

The concentration of the Nanodiscs was determined by Nanodrop at 131 µM.  

2.3.10 G Protein-Coupled Receptors (GPCR) Production, PUREfrex 2.1 and 

DS Supplement 

The PUREfrex 2.1 version was selected first for its increase in product yield but 

more so, for the compatibility with the DS Supplement, which aids in the post-

https://www.bioprocessonline.com/doc/akta-pure-0001
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transcriptional formation of sulphur bonds between proteins or subsections to 

secure the protein functionality. In the case CX3CR1 (C-C Chemokine receptor), 

this supplement was necessary. The reducing agent used was reduced glutathione 

(GSH). For this reaction, the nanodiscs previously produced (section 2.4.8) were 

supplemented at a final concentration of 10 µM and the template DNA, T7-CX3CR1-

HA at a final concentration of 5 nM. The final volume of the reaction was 100 µl 

and it was incubated for 6 h at 37°C.  

2.3.11 G Protein-Coupled Receptors (GPCR) Purification, Anti-HA-tag 

mAb-Magnetic Beads. 

The Anti-HA-tag mAb-Magnetic Beads were used to purify the CX3CR1 receptors 

that assembled correctly, from the empty nanodiscs. First, 50 µl of the beads were 

cleaned thoroughly 2 times with PBS buffer by washing them in a circular rotator 

for 5 min each at room temperature. Parting from 100 µl of the PUREfrex 2.1 DS 

Supplement reaction, 5 µl of it were stored as the “PURE” fraction. The remaining 

95 µl were mixed with 400 µl of PBS Buffer and the 50 µl of the washed beads (with 

no liquid) in a circular rotator for 30 min at room temperature, or overnight at 4°C. 

The tube was then placed in a Magnetic Stand for 2 min. The liquid was taken out 

and put inside an Eppendorf tube as the “Flow-Through” fraction. To the beads, 

500 µl of PBS Buffer was added and the solution mixed in a circular rotor for 10 

min. After placing the tube in the magnetic stand, the liquid was then transferred 

to an Eppendorf tube as the “Wash 1” fraction. The washing process was repeated 

and a second fraction, “Wash 2” obtained. The process was finalised by adding to 
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the beads 200 µl of HA-peptide. The mixture was incubated in the rotor for another 

30 minutes and then placed in the magnetic stand where the liquid was removed 

and taken as the “Elution” fraction. All the fractions were flash-frozen and stored 

at -80°C. 

All the fractions were analysed on a 10–20% SDS-PAGE gel, for correct size 

verification, at constant 30 mA until the samples stack and reach the separating 

gel, and after at constant 50 mA for additional 40 minutes. The gel was stained 

with Oriole Fluorescent Gel Stain for immediate visualisation. 

2.3.12 Radiolabelling 

Radiolabelling was used to determine the concentration of CX3CR1 produced and 

the efficiency of the purification process. The radioactive amino acid used in this 

case was Methionine [S35] (Methionine L-[S35], PerkinElmer). 

Parting from 49 µl of PUREfrex 2.1 DS Supplement reaction, 1 µl of Methionine S35 

was added. The reaction was incubated at 37°C for 3 h. Afterwards, the samples 

were purified as stipulated in section 2.3.11.  

All the fractions obtained during the purification process were run in a pre-cast 10–

20% SDS-PAGE gel and run at constant 120 V for 60 min and then at 200 V for 

another 45 min. The gel was then incubated in Fixing Solution (30% Methanol and 

10% Acetic Acid) for 30 min with mild shaking. After the fixing step, the gel was 

dried to remove all radioactive water and humidity from it. Using a gel dryer (AE-

3711RapiDry mini, Atto), the gel was dehydrated at 80°C during 1 h.  
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In the meantime, several dilutions of the Methionine [S35] were made for a standard 

curve. The labelled amino acid was diluted with 50 mM HEPES pH 7.5 in the 

following dilutions: 1/500, 1/1,000, ½,000, 1/5,000, 1/10,000, 1/50,000, 1/100,000 and 

1/200,000. A total of 10 µl of each dilution was spotted onto a rectangular piece of 

filter paper and each dilution spots labelled. The spotted samples were then left to 

dry.  

Once the dilutions and the samples were dried in their respective filter papers, they 

were put inside an autoradiography cassette (Fisher Scientific) along with an 

intensifying screen (Fisher Scientific) and incubated in the dark for 2 days. After 

this period, the intensifying screen was revealed using a phosphorimager (Typhoon 

FLA 7000, GE Healthcare). 
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Chapter 3. Cell-free protein expression systems and 
promoter library mutants: uncovering their dynamics and 
tackling optimization processes 
 

 

3.1 Chapter 3 Aims and Summary 

Cell-free protein expression systems have been widely used for applications such 

as synthetic biology and metabolic engineering. But even if broadly used, little is 

known about how protein expression works in cell-free systems. Furthermore, 

there are gaps in understanding the molecular interactions taking place, their 

dynamics, and how these can contribute to bottlenecks in the process. This chapter 

describes a systems approach to uncovering the underlying dynamics of protein 

expression in cell-free systems.  

A set of T7 promoter variants was constructed to express superfolder GFP (sfGFP) 

in two different cell-free systems: one with reconstituted purified elements and the 

other based on E. coli extracts. The maximum expression level and the rate of 

protein synthesis as responses to the transcription rate change were different in 

the two cell-free systems, suggesting they could be driven by different expression 

dynamics. This observation was confirmed by a mathematical model for each cell-

free system. It revealed negative feedback in the mRNA-protein translation by the 

PURE system and also identified limiting factors that could be optimised to 

enhance protein expression in the two cell-free systems (Fig.3.A). For the PURE 

system, these dynamics can be extrapolated to other types of systems based on 
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purified components as long as they maintain the same level of contaminant-free 

environment. Differences could occur if different proteins and components were 

to be used. That is why the results obtained in this chapter would probably not 

match many other types of extract-based system. These systems differ much since 

they come from a wide range of different organisms, natural or modified.  

 

 

 

Figure 3.A: Summary of the experimental approach carried out for Chapter 3. From left to 

right, first, a series of T7 promoter variants are created and tested in two different cell-free systems. 

The protein expression of sfGFP is measured in both and mathematical models are run with the 

information gathered to reveal the dynamics of both systems.  
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3.2 Preparation of T7 Promoter Library Variants Constructs 

The T7 promoter has been universally used for in vitro and in vivo experiments 1,2, 

mostly due to the high promoter-specific strength of the T7 RNA Polymerase 

(RNAP).  

To gather information about its performance in cell-free systems, screens of the 

promoter sequence against transcription rates and translated product yield have 

been performed [3]. However such studies have focused on multiple mutations and 

high throughput screening, which prevented a systematic analysis that could 

generate rational understanding of the bottlenecks.  Here we used single mutations 

and studied the dynamics of two very different cell-free systems. 

Alterations were made to the 17 base-pair long recognition site of the T7 promoter 

sequence (TAATACGACTCACTATA) and a library constructed of T7 promoter 

variants, that encompassed all possible single base-pair alterations (Fig.3.B), 

yielding a total of 51 variants. Each of these variants was ligated downstream to a 

common ribosome binding site (RBS) and sfGFP. The original T7 promoter 

sequence will be referred in this chapter as the "core sequence" or “WT” from now 

on for easier referral.  
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Figure 3.B: Schematic of the linear DNA templates used for protein expression in this 

chapter. Each DNA sequence contains the consensus core sequence (or one of its 51 variants) 

(white), a ribosome binding site (RBS) (blue) and an sfGFP gene (green). Single base-pair 

substitutions in the T7 promoter variants are highlighted in red. 

 

3.3 The PURE System vs. the Expressway System 

To investigate the expression levels of sfGFP in each DNA construct, they needed 

to be tested in a cell-free system. The cell-free systems to be used with the 

constructs had to include the T7 RNA Polymerase protein as all of the DNA 

constructs use the T7 promoter (or variations of it). The cell-free systems, also 

called in vitro transcription-translation systems, were selected to represent the two 

competing approaches currently used in the field, namely either purified 

components (PURE system (PUREfrex 1.0, GeneFrontier)4) or cell extracts (E.coli 

extract-based cell-free system (Expressway™ Cell-Free E. coli Expression System, 

Thermo Fisher Scientific)) (Fig.3.C).  
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Figure 3.C: Schematics of both the PUREfrex 1.0 Cell-free System and the Expressway Cell-

free system. The PURE system (left) contains all the minimum necessary components to perform 

a transcription-translation reaction. All its protein and enzymatic components are recombinant 

and were produced in vitro to be later purified by chromatography. It is composed of three 

solutions: the protein mix contain all the proteins and enzymes necessary (minus the ribosomes); 

the energy mix contains all the chemical components, factors and co-factors and buffers for the 

proteins and enzymes to work; and the ribosome mix contains the purified ribosomes. The 

Expressway system (right) is based on an E. coli cell extract which contains a mixture of protein and 

enzymes, which is supplemented by buffers, amino acids and the T7 RNA Polymerase.  
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3.4 mRNA and Protein Degradation  

To measure the protein yield for all constructs and both cell-free systems, each 

sample was incubated with either PUREfrex 1.0 and Expressway and the sfGFP 

fluorescence measured every 15 min for at least for 12 h. All the experiments were 

performed at least in duplicate.  

A few constructs were selected to represent the wide variation of sfGFP 

fluorescence obtained from the DNA library. The results can be seen in Figure 3.D 

(A and B), where a time-course of the sfGFP fluorescence is plotted (the core 

sequence is denominated as “WT”). Results for all variants are provided in 

Appendix (Section A.1, Figure A.1.1.).  

 

 

 

Figure 3.D: Protein expression in the PURE and extract-based cell-free system using T7 

promoter variants. (A) PUREfrex System and (B) Expressway System. Fluorescence 

measurements of sfGFP expression were made every 15 min with the consensus promoter sequence 

(denoted as WT) and three variants.  
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In the PURE system, the reaction took an average of 7.5 h (± 1.5 h) for saturation, 

while for the extract-based system it took an average of 3.5 h (± 0.5 h) to saturate. 

The first thing to mention about the plots is the difference in sfGFP fluorescence 

achieved from each variant. This shows that each mutation performed in the T7 

promoter affected the final levels of protein expression. When looking at each plot, 

they all have the same shape. This includes a first exponential phase in which 

protein production is happening. But as resources are used and they eventually ran 

out, the plot comes to a saturation point in which the protein production halts.  

A possible reason for the difference between both systems can be the rate of both 

DNA and RNA degradation. Since the PURE system is made from recombinant 

elements, the reaction is expected to last longer as it is free from DNase and RNase5 

elements; without having into consideration possible contaminants that could fall 

into the reaction while performing it. This feature would allow the reaction to last 

longer as the substrates for both the T7 RNA polymerase and ribosome (DNA and 

mRNA respectively) would degrade at a much slower pace. On the other hand, 

since the majority of the extract-based system proteins and enzymes come from 

the E. coli cytoplasm (except for the T7 RNAP), it could also include components 

that are part of the bacteria metabolism. Some of those elements could be 

nucleases that degrade mRNA and DNA, which in return would cause early 

termination of the protein synthesis due to lack of the two main substrates. Also, 

as the sequences have only five additional base-pairs upstream of the T7 promoter 
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sequence, these linear DNA templates were probably digested by nucleases and 

lost the promoter sequence faster in the Expressway system. 

Furthermore, some promoter variants had higher final expression levels than those 

of the core sequence (e.g. 13G in PURE and 12A in Expressway). These 

improvements were not as common in previous studies with T7 promoter variants, 

whether in linear 6 or plasmid form 7.  

To better compare different variants and their expression levels, the final 

fluorescence numbers were normalized to that of the core sequence. This was done 

by averaging the two values obtained from each variant (duplicate experiment) and 

then dividing that value to that of the wild type. A value similar to 1 indicates a 

similar level of protein expression than that of the core sequence. A value above 1 

indicates a higher level of protein expression when compared to the wild type 

version and so on. When visualizing these normalized number in descending order 

(Figure 3.E, A and B), a spectrum of protein expression levels can be seen in both 

cases. This trait is ideal when trying to perform high throughput screening in a 

library of samples and for identifying an optimal candidate. Out of all the 51 

variants, some showed an improvement in expression levels, compared to the core 

sequence. In the PURE system, 12 of them did while in the extract-based system, 9 

did. The highest yield change averaged at a 1.5-fold increase for the PURE system 

(1.4 and 1.6 for each duplicate), while in the extract-based system it was a 3.6-fold 

increase (3.4 and 3.8 for each duplicate). 
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Although the protein expression increment in some variants in the extract-based 

system was high, the absolute expression level in the extract-based system was 

lower when compared to that in the PURE system (Figure 3.J). For example, using 

the core “WT” sequence in the PURE system led to fluorescence levels 3 times 

higher than in the extract (Figure 3.D). This could be due to proteases, mainly 

absent in the PURE system, but not specifically removed in the extract. These 

proteases degrade proteins, including the newly synthesized sfGFP, and therefore 

could limit the output. 
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Figure 3.E: Relative sfGFP fluorescence with 51 T7 promoter variants, normalized to that with the 

consensus sequence (indicated by the red line) for the PUREfrex System (A) and the Expressway 

System (B). Each variant was identified by the position and substituted base. For example, “17A” 

indicates a base at position -17 was substituted to adenine. The black bars represent the upper and 

lower values of the averaged value for each par of duplicates.  
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3.5 Reproducibility  

To test the reproducibility level of both system, two sets of values were obtained 

from experiments performed on two different days. This reproducibility level was 

calculated by plotting both normalized values against each other. The R-squared 

value (R2), represents how close the data are to the fitted regression line. This line 

represents the relationship between the x-scale value and the y-scale value. The 

closer the R2 value is to 1, the more similar both values are and the more 

reproducible the data is. The regression line does not necessarily have to pass 

through the 0-0 origin value. This is due to the fact that this line tries to 

accommodate as much as possible passing through all the data points, and since 

the blank was already subtracted from each point, there is not a 0-0 value.  

The extract-based system had higher reproducibility levels (R2=0.97) between the 

two experiments than the PURE system (R2=0.74). (Figure 3.F, A and B).  

In the PURE system, proteins are often partially translated and consequently 

functionally inactive due to ribosome stalling on the mRNA 8. On the other hand, 

the Expressway system is made from bacterial extracts and therefore it contains 

additional elements that can rescue stalled ribosomes; such as the alternative 

ribosome-rescue factor A (ArfA), release factor 2 (RF-2) 9 and the elongation factor 

P (EF-P) 10,11. These factors, among others, could help increase the quality of the 

produced proteins and therefore increases the level of reproducibility between 

experiments. 
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Figure 3.F: Scatter plots of the relative sfGFP fluorescence for each of the variants. (A and 

B) Scatter plots of duplicated experimental data for the PURE and extract-based systems, 

respectively. (C) Scatter plot of the averaged values (of both days) obtained with the PURE system 

against those of the extract-based system. The coefficient of determination R2 was shown in the 

upper left part of the plots. The blue line indicates the regression line.  

 

A previous study 5 pointed out that the PURE system could produce ~4-fold more 

protein than an E. coli extract-based system. Since some proteins in the PURE 

system were very likely incompletely translated or even non-functional and the 



 Chapter 3 
 

153 
 

reproducibility levels were not very high, our data shows consistency with the 

previous study by displaying approximately a 3-fold increase in protein expression 

levels compared to that with the extract-based system (Figure 3.J).  

These results also show that there is not much correlation between each variant’s 

promoter strength of both systems (Figure 3.F, C; R2=0.23), confirming our 

previous observation linked to the different compositions of each system. 

Although some outliers’ samples can be seen in the plot (more easily seen in Figure 

3.I), omitting these values will most likely result in different values for R2. In order 

to identify better if the outliers should be omitted or not, further experimental data 

should be obtained first, to confirm the reproducibility values obtained and to 

determine why they are outliers in the first place.  

 

3.6 Substitution Location within the Promoter Region 

To study the effect of the position of the substitutions in the variants, the data is 

also displayed as heat maps of relative protein expressions (Figure 3.G, A and B). 

This representation shows that most of the variants that show improvement in the 

levels of protein expression (higher levels than the core sequence) are the ones 

located in the upper region of the promoter. This region corresponds to the 

polymerase binding domain, where the T7 RNAP makes its first contact with the 

promoter sequence (position -17 to -13) 12. In contrast, substitutions that follow this 

mentioned region (-9 and -5 for PURE and -11 and -4 for the extract-based), 

significantly reduce the protein expression level. This is consistent with previous 
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studies that show that bases around the -12 to -5 region, are crucial for the T7 RNAP 

to recognize the promoter sequence 7,13, and thus, substitutions introduced around 

this area are prone to interfere negatively with the protein-promoter recognition. 

Even further downstream of the regions already mentioned, substitutions affected 

more negatively to protein expression in both cell-free systems, but substantially 

more in the Expressway System.  

 

 

Figure 3.G: Heat maps of the relative sfGFP fluorescence of the 51 T7 promoter variants. In 

the PURE (A) and extract-based systems (B). The normalized data is also presented in Figure 3.E (A 

and B). Colours represent fold change in the final expression level relative to that of the consensus 

promoter.  

 

3.7 Effects of Extended Sequence Length  

As mentioned in Section 3.3, one of the reasons believed to affect the lower general 

yield of the extract-based system, along with the shorter time it takes to saturate; 
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might be the presence of nucleases that could degrade the DNA (and mRNA) 

quickly by attacking the 5’ end where the promoter is located.  

To test this hypothesis further and investigate the behaviours of the variants, a new 

different type of DNA construct was produced. This new version included an 

additional 20 base-pair random sequence located upstream of the T7 promoter (at 

the 5’ end); and additional bases downstream the sfGFP gene (at the 3’ end). The 

sequence added at the 3’ end is that of the T7 promoter, to test if its presence can 

affect the overall protein yield. From this point, these new sequences will be 

referred to as “extended sequence” (Figure 3. H).  

Since the variants located in the regions -17 to -10 seemed to be more significant to 

the final protein expression levels (whether beneficial or deleterious), it was 

decided to only construct the extended versions of those variants.  

As done before with the non-extended sequences, a heat map of the normalized 

values of the new extended constructs was made (Figure 3.H). Overall, the 

fluorescence values of the variants decreased in most of the cases when being 

compared to the values of the core sequence.  
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Figure 3.H: Schematic of the extended linear DNA templates and heat maps of the relative 

GFP fluorescence of 21 T7 promoter variants with extended base pairs at 5’ and 3’ ends. 

(A)The extended version features the core sequence (Figure 3.B) with extra only bases at the 5’-end 

(red); or with those plus extra bases at the 3’-end (dark blue). The sequence attached at the 3’-end 

contains a T7 terminator sequence. Each DNA sequence contains the consensus core sequence (or 

one of its 51 variants) (white), a ribosome binding site (RBS) (light blue) and an sfGFP gene (green). 

(B) For the PURE system (upper) and extract-based system (lower). Colours represent fold change 

in the final expression level relative to that of the consensus promoter.  
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This data shows that the extra bases had a more positive outcome for the core 

sequence (10-fold increase) that it had for the rest of the variants (average 4-fold 

increase) (Appendix, Section A.1, Table A.1.1.), therefore making the normalized 

values lower than those of the sequences without extra bases. A possibility for the 

decrease in these values would be a more stable binding of the T7 RNAP to the 

linear DNA due to the extra bases. As mentioned in Section 3.3, most substitutions 

located in the -17 to -10 region in the T7 promoter could have helped the T7 TNAP 

attach itself more securely to the DNA; so, it could be that the extra bases added 

at the 5’-end also had a similar, but lower, effect on the T7 RNAP, therefore 

cancelling the greater beneficial effects of the base substitution. However, the 

correlation between extended and non-extended sequences showed good values 

when it comes to the protein expression levels for both cell-free systems 

(Appendix, Section A.1., Figure A.1.3). This suggests that the gene expression levels 

by the T7 variants are consistent overall. In general, the regression line value shows 

a positive correlation between protected and unprotected samples, therefore 

proving that the extra bases protection was universal for all variants. 

 

3.8 Absolute Fluorescence Levels and Rate of Reaction  

Even though each extended sequence variant’s normalized fluorescence levels 

decreased, in general, when comparing the absolute expression levels between 

protected and unprotected samples, the fluorescence values increased more than 

4-fold on average for the extract-based system when having extra bases (Figure 3.I, 
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A) (Appendix, Section A.1, Table A.1.1.). But for the PURE system, the sfGFP levels 

for the extended sequences were similar to those with no extra bases (Appendix, 

Section A.1, Table A.1.2.).  

 

 

Figure 3.I: (A) Boxplot of absolute sfGFP fluorescence for the normal and extended DNA constructs 

in the PURE and extract-based systems. (B) Boxplot of the rate of reaction from all DNA constructs. 

The rate was calculated as the slope of a logistic curve fitted to individual fluorescence time-course 

data. The black thick line represents the median, and the box shows the first and third quartile. 

The upper and lower whiskers indicate 50% of the values higher or lower than the median, 

respectively. Black dots are outliers. Notes: (A) fluorescence expression levels (a.u.) are the 

fluorescence levels (numbers) detected from the sfGFP protein. This correlates to the amount of 

mRNA being transcribed and therefore, to the strength of the promoter which participates in said 

transcription. (B) rate of reaction is the speed at which a reaction takes place, in this case, the speed 

at which the sfGFP protein is being produced. This is calculated by dividing the change in 

fluorescence values in a specific amount of time. The faster a protein is being produced, the higher 

this number will be.  
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Additional bases on each end of the extended sequenced could help to postpone 

the degradation by nucleases of the T7 promoter sequence as well as some coding 

regions of the sfGFP gene in the Expressway system. Since the PURE system does 

not contain DNases as it is made out of purified components, the added bases do 

not provide significant extra protection and therefore the expression levels remain 

the same. One way to test this theory could be to intentionally add nucleases to 

the PURE system and text whether the extended sequences do help in this case.  

Second, the T7 terminator introduced on the 3'-end of the extended sequence 

could have also helped in the increase of protein yield. It has already been reported 

that the T7 terminator improves the stability of transcribed mRNA in the E. coli-

based cell-free system by improving the expression yield more than 3-fold 14. To 

determine if the T7 terminator did influence the increase in protein expression, 

another construct was made with only extra added bases at the 5’-end. For the 

extract-based system, the results showed a small increase in protein expression 

(Figure 3.J, A), suggesting that even though the T7 promoter might help with the 

mRNA stabilization in this system, it is less significant than the extended random 

sequence at the 5’-end. In the case of the PURE system, the effect of T7 terminator 

appeared to be limited (Figure 3.J, B).  
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Figure 3.J: Time-course of GFP fluorescence over a period of 12 h using the T7 consensus 

sequence. Three different linear constructions, the core sequence (red squares), core sequence 

with extra bases at 5’-end (green diamonds) and core with extra bases at 5’ and 3’-ends (blue 

triangles). (A) GFP expression in the extract-based system, and (B) the PURE system. 

 

 

When looking at the rate of protein expression (Figure 3.I, B) of the normal and 

extended constructs in both cell-free systems, the extended sequence in the 

extract-based system showed a major increase compared to the non-extended 

sequence (1.3/h and 0.3/h respectively). In the PURE system, only a small increase 

was observed (0.8/h for extended and 0.6/h for non-extended).  

When the rate and absolute expression levels (Figure 3.I) are plotted against each 

other, they show different modes of protein expression dynamics (Figure 3.K, A 

and B). In the case of the PURE system, the plot shows an exponential-like profile; 

in the low expression region (weak promoter variants) whereas, in the high 

expression region (strong promoter variants), the variants showed a wide range of 
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expression rates, although it appeared to have a limit of maximum expression level 

around at 12,500. On the other hand, when it comes to the extract-based system, 

the plot shows a diagonally-rotated profile. That is, if we take the plot from the 

PURE system and rotate in a diagonal (from lower left to upper right), the plot 

from the Expressway System appears. The rate of reaction seems to have a limit 

around 2/h while several variants were showing no fluorescence and thus very low 

rates of expression.  

 

 

 

Figure 3.K: Scatter plots of the rate of protein expression against the absolute GFP 

fluorescence for the PURE (A) and extract-based systems (B). The same data as Figure 3.J. was 

used for the plots. Blue and red circles indicate the data for T7 promoter variants with the core and 

extended sequences, respectively. 
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To summarize the results obtained during the experimental part of the chapter: 

- T7 promoter variants were tested in two different cell-free systems: extract-

based and from purified components. The results showed a wide range of 

protein expression levels. Some of them showing higher levels than the core 

sequence, 1.5-fold and 3.6-fold increase in the PURE and Expressway system 

respectively.  

- The reproducibility level of both systems was quite different. The extract-

based system showed an R2 value of 0.97 while the PURE system had a value 

of 0.74. This is probably due to the lack of ribosome rescue systems in the 

PURE system, as opposed to the extract-based one. This causes early 

termination of proteins and decreases the reproducibility rate.  

- The mutations located around the -17 to -13 promoter region were most 

beneficial. This region is the polymerase binding site to the promoter. While 

mutations around the -11 to -4 region were mostly detrimental. This region 

is the polymerase recognition site of the promoter.  

- Extension of the DNA constructs was performed and their protein levels 

tested. In the PURE system, the fluorescence levels stayed mostly the same 

and so did the rate of reaction (from 0.6/h to 0.8/h). But in the Expressway 

system, there was a 4-fold increment in the fluorescence level and the 

reaction rate raised from 0.3/h to 1.3/h on average. The extended sequence 

most likely helps delay the degradation of the DNA and mRNA by nucleases 

found in the cell-extracts, which are not present in the PURE system. 
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3.9 Cell-Free Systems Mathematical Models  

Each sfGFP measurement time-course curve was fitted with model equations and 

the parameter values, 𝑘𝑘𝑇𝑇𝑇𝑇,𝑘𝑘𝑇𝑇𝑇𝑇,𝑑𝑑𝐷𝐷 ,𝑑𝑑𝑅𝑅  and 𝑑𝑑𝑃𝑃  estimated. This systems approach 

was performed to better understand the dynamics of protein expression in cell-free 

systems. Cell-free systems are considered a grey-box model, there is previous 

knowledge to feed the model.  A model of protein expression in a cell-free system 

can be described with the following equations (Equation 3.A, 1-3) 15–17. A modified 

equation (Equation 3.A, 3* instead of 3), was used instead, to fit the PURE system 

data. The use of equation 3* instead of 3 for PURE will be explained later on.  

 

(1) 𝐝𝐝[𝐃𝐃𝐃𝐃𝐃𝐃]
𝐝𝐝𝐝𝐝

=  −𝒅𝒅𝑫𝑫[𝑫𝑫𝑫𝑫𝑫𝑫] 

(2) 𝐝𝐝[𝐦𝐦𝐦𝐦𝐃𝐃𝐃𝐃]
𝐝𝐝𝐝𝐝

= 𝒌𝒌𝑻𝑻𝑻𝑻[𝑫𝑫𝑫𝑫𝑫𝑫] − 𝒅𝒅𝑹𝑹[𝒎𝒎𝑹𝑹𝑫𝑫𝑫𝑫] 

(3) 𝐝𝐝[𝐏𝐏𝐏𝐏𝐏𝐏𝐝𝐝𝐏𝐏𝐏𝐏𝐏𝐏]
𝐝𝐝𝐝𝐝

= 𝒌𝒌𝑻𝑻𝑻𝑻[𝒎𝒎𝑹𝑹𝑫𝑫𝑫𝑫] − 𝒅𝒅𝑷𝑷[𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷] 

(3*) 𝐝𝐝[𝐏𝐏𝐏𝐏𝐏𝐏𝐝𝐝𝐏𝐏𝐏𝐏𝐏𝐏]
𝐝𝐝𝐝𝐝

= 𝒌𝒌𝑻𝑻𝑻𝑻[𝒎𝒎𝑹𝑹𝑫𝑫𝑫𝑫](𝟏𝟏 − [𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷]
𝑲𝑲

) − 𝒅𝒅𝑷𝑷[𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷] 

 

Equation 3.A: Equations used for the mathematical models of protein expression for both 

cell-free systems. For the extract-based system, the equations used were 1 through 3; but for the 

PURE system the equations used were: 1, 2 and 3*. 

 

In these equations, [DNA], [mRNA] and [Protein] are the concentrations of DNA, 

mRNA, and protein in the cell-free reaction. kTX and kTL are reaction constants for 

transcription and translation, respectively. dD, dR, and dP are degradation constants 
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for DNA, mRNA, and protein, respectively. To estimate the system parameters, the 

inputs (concentration of template DNA) were varied and changes in protein 

expression levels were measured 16. However, it is also possible to modify other 

parameters by adding/removing system components. For example, the addition of 

GamS (RecBCD nuclease inhibitor) to a crude extract-based cell-free system 

prevents DNA degradation 18, which corresponds to decreasing 𝑑𝑑𝐷𝐷 in the equation 

(1) above (Equation 3.A). In this model, the transcription rate 𝑘𝑘𝑇𝑇𝑇𝑇 was modified 

and changes in protein expression levels measured. It is known that alterations to 

the consensus promoter sequence affect the binding affinity of T7 RNA polymerase 

(RNAP) to the promoter and thus changes the protein expression level 7,19,20. 

Protein expression dynamics of these two types of cell-free systems are considered 

to be different owing to the lack of supplementary components in the PURE system 

4,8,21. So it is possible that the two cell-free systems would give different protein 

expression patterns in response to the varied transcription rates 𝑘𝑘𝑇𝑇𝑇𝑇.  
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 Figure 3.L: Histograms of estimated parameter values. (A) Transcription constant 𝑘𝑘𝑇𝑇𝑇𝑇, (B) 

translation constant  𝑘𝑘𝑇𝑇𝑇𝑇 , (C-E) degradation constants for DNA  𝑑𝑑𝐷𝐷 , mRNA  𝑑𝑑𝑅𝑅 , and protein  𝑑𝑑𝑃𝑃 , 

respectively. Note that different models were used to fit the parameters for the PURE and extract-

based cell-free systems.  

 

The fitted parameter values were consistent with the possible mechanisms behind 

the observed protein expression discussed in previous sections. The transcription 

parameter 𝑘𝑘𝑇𝑇𝑇𝑇  showed a wide distribution (over three orders of magnitude) 

(Figure 3.L, A) since each substituted base in the T7 promoter sequence changes 

the binding affinity of the T7 RNAP. On the opposite side, most of the translation 

parameter 𝑘𝑘𝑇𝑇𝑇𝑇  (Figure 3.M, B) fit within the same order of magnitude. The 

DNA/mRNA degradation parameters, 𝑑𝑑𝐷𝐷  and  𝑑𝑑𝑅𝑅 , between the two cell-free 

systems are different (Figure 3.L, C and D). The extract-based system shows a wider 

distribution than the PURE system, which had only one single peak. This could 

indicate that both the DNA and mRNA degrade very slowly in the PURE system, 
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as it lacks nucleases; but since they are present in the extract-based system, both 

DNA and mRNA are quickly digested. In both systems, the protein degradation 

value 𝑑𝑑𝑃𝑃 (Figure 3.L, E) was close to zero. This is consistent with the experimental 

data as the measured GFP fluorescent signal did not decrease over a long period 

(Figure 3.D and Appendix, Section A.1, Figure A.1.1.).   

When looking at the histograms of figure 3.L, few parameter values, especially 

those of degradations are in the negative range. Since the mathematical model 

tends to change the parameters linearly, it is possible that if some of experimental 

observed values are quite close to 0, the error range of the model can go into 

negative values, even though it is not biologically possible. The presence of outliers 

also makes the error range bigger. Due to the simplicity of the, modifications are 

needed to include the characteristics of complex non-linear system and also setting 

up rational upper and lower limits. 

Altering the promoter sequence should correspond to modifying the transcription 

parameter 𝑘𝑘𝑇𝑇𝑇𝑇, since the substitution in bases of the promoter affects directly the 

binding affinity of the T7 polymerase to the promoter, and therefore the 

transcription process gets influenced. Consequently, to simulate the different 

protein expressions levels by all the promoter variants, the parameter values were 

fitted for the consensus promoter sequence and only 𝑘𝑘𝑇𝑇𝑇𝑇 was changed from zero 

to the maximum fitted value.  

The simulated protein expression in both systems is shown in Figure 3.M (left 

column for the extract-based system and the right column for the PURE system). 
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The simulation reproduces the behaviour of the protein expression in both 

systems; such as the halting of protein expression after 3-4 h in the extract-based 

system (Figure 3.M, A). For figure 3.M, the parameter Ktx was varied while the other 

remained fixed, since the Ktx represents the transcription constant and therefore is 

the value that most directly represent the effect the mutations on the T7 promoters 

had. The other parameters, can only be estimated and would have to be 

experimentally obtained to be able to vary then in the model more accurately.  

When calculations were made for the rate of reaction and the maximum protein 

expression level (Figure 3.N), by fitting the simulated data to a logistic curve, it 

displayed a similar profile as shown in Figure 3.K. 

The simulation which was performed for the PUREfrex system data was done with 

a modified version of the equation (Equation 3.A; 1, 2 and 3*) instead. When 

performed using the same equations used for the extract-based system (Appendix, 

Section A.1, Figure A.1.4), the temporal expression patterns obtained matched the 

observed temporal expression profiles, but it did not reproduce the unique scatter 

pattern in Figure 3.K, A. This result implied that some factors were not being taken 

into consideration in the already mentioned theoretical model.  
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Figure 3.M: Simulated cell-free protein expression. Simulated cell-free protein expression of 

the extract-based system (A) and the PURE system (B). DNA concentration (top), mRNA 

concentration (middle), and protein expression (bottom) were shown. The parameter 𝑘𝑘𝑇𝑇𝑇𝑇  was 

varied (colours) while the other parameters were fixed. A modified equation (see text for details) 

was used to simulate protein expression for the PURE system. 

 

As mentioned in Chapter 1, the main limitation concerning cell-free systems is the 

limited amount of energy sources and the accumulation of inhibitory by-products 

5. As further proof of this issue, when a cell-free reaction is being fed energy 

molecules and by-products are eliminated through dialysis, the final protein yield 

can increase up to 72-fold 22. Also, recycling of inorganic phosphate can improve 

the total protein yield 23. All these issues should be considered as negative feedback 
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to the protein production, so to incorporate this factor, the last equation was 

modified so that the term (1 − [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]/𝐾𝐾) represents the negative feedback. The 

proteins stop being produced as the protein expression level reaches the maximum 

defined by the carrying capacity constant 𝐾𝐾. Using the equations (1), (2), and (3*), 

the model was refitted for the experimental data to estimate the system 

parameters 𝑘𝑘𝑇𝑇𝑇𝑇,𝑘𝑘𝑇𝑇𝑇𝑇,𝑑𝑑𝐷𝐷 ,𝑑𝑑𝑅𝑅 ,𝑑𝑑𝑃𝑃, and the carrying capacity 𝐾𝐾. Figure 3.N (B) shows 

the simulation results performed with equation 3* for PURE and 3 for Expressway, 

for the rate of reaction against the maximum expression level.  

In the extract-based system, mRNA was produced very rapidly and peaked around 

at 30 min after the start of the reaction and then decreased exponentially since the 

template DNA was degraded by nucleases present in the reaction mixture, and 

eventually reached to the base level at around 4 h. Whereas in the PURE system, 

the template DNA gets degraded at a much slower rate, resulting in the rate of 

mRNA production to be slower. Most of transcribed mRNA was still present even 

after 12 h.  
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Figure 3.N: Scatter plots of the rate of protein expression against the maximum protein 

expression. The values were obtained by fitting the simulated data in Figure 3.N. (A and B) to a 

logistic curve. 

 

When the parameter 𝑘𝑘𝑇𝑇𝑇𝑇 was linearly varied, the protein expression yield in the 

extract-based system also changed linearly because there were no nonlinear terms 

in the model equation. In the PURE system though, the response to this linear 

change was nonlinear because of the negative feedback already explained. This 

makes the system very sensitive to small changes in parameter values, which 

implies that the maximum expression levels could be biased to the higher region. 

Combined time-course plots for both cell-free systems (Appendix, Section A.1, 

Figure A.1.2) show similar patterns as the simulated cases in Figure 3.M, especially 

the cases with the extended sequences. Although it was not possible to 

experimentally measure 𝑘𝑘𝑇𝑇𝑇𝑇  (the binding affinity of T7 RNAP to each promoter 

variant sequence), these results may also validate the models. 
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3.10 RNA Spinach Aptamer 

To look more deeply into the temporal dynamics of the mRNA, a final DNA 

construct was made. This consisted of two of the typical components, T7 promoter 

and RBS, but with an added Spinach aptamer (Figure 3.O), providing green 

fluorescence in the presence of a specific fluorophore, such as 3,5-difluoro-4-

hydroxybenzylidene imidazolinone (DFHBI) 24,25. Due to the green fluorescence of 

the aptamer, it was not possible to include the sfGFP gene in the DNA template as 

both peaks of emission wavelength overlap. Only a few constructs were selected 

for this experiment: the consensus T7 promoter sequence, two strong variants (17A 

and 11A for PURE; 17A and 16T for extract-based) and a weak variant (16C for both).  

 

 

 

 

Figure 3.O: Linear DNA template with Spinach aptamer. The sequence contains the T7 

promoter or its variant, RBS, and Spinach aptamer. It does not contain any genes to be expressed.  

 

The measured mRNA concentration profile (Figure 3.P) was similar to the 

simulated mRNA concentration in both cell-free systems. It should be noted that 

no experimental information about mRNA concentration was included when 
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fitting the differential equations to the protein expression data. Nevertheless, the 

time-courses of mRNA concentration in the simulation reproduced those in the 

experiments. This result validates the theoretical models as a representation of the 

dynamics behind the cell-free protein expression.  

Although it is known that the fluorescence of DFHBI molecules are sensitive to pH 

changed in the reaction, the pH was not monitored in this case. Therefore, the 

fluorescence levels obtained might not be fully representative of the mRNA levels.  

But since cell-free system try to mimic reactions that take place inside a cell, it is 

probable that the pH of the reaction did not vary too much outside a considerable 

range.  

 

Figure 3.P: Fluorescence measurements of Spinach aptamer with the consensus promoter 

sequence (denoted as WT) and other three variants in the PURE and extract-based systems, 

respectively.  
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3.11 Conclusions 

In this chapter, the behaviour of single base-pair substituted variants of the T7 

promoter in two different cell-free systems was characterized. Although further 

understanding of cell-free protein expression mechanism at the molecular level is 

required to fully explain the complex expression patterns observed here, the 

experiments revealed different modes of protein expression dynamics in the PURE 

and extract-based systems, which were confirmed by analytical models. It was 

shown that even simple time-course measurement data of cell-free systems 

contains rich information and the combination with systems approach helps 

uncover the dynamics behind it.  

These observations illustrate that the two cell-free systems have different limiting 

factors for improved protein expression. In the extract-based system, the protein 

expression was primarily limited by the availability of template DNA and 

transcribed mRNA. As they were quickly digested by nucleases in the reaction 

mixture, any method to prevent or slow down the degradation would improve the 

yield. For example, the addition of salmon sperm DNA could “occupy” the 

nucleases and slow down the degradation of the DNA as an easier and maybe more 

affordable way. But whenever possible, it is always better to keep the experimental 

reactions a simple as possible.  

This is consistent with the experimental results in previous sections that the 

extended sequence showed significantly improved yield. In the PURE system, the 

limiting factors lie within the mRNA-protein translation. In the current form, the 
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negative feedback term in the model is still ambiguous and needs further biological 

elaboration. However, it has been shown that supplementing certain components 

like amino acids, tRNAs, magnesium, and proteins involved in ribosome recycling 

to the PURE system improves the final yield 5. This is consistent with our model 

prediction.   

As it has been shown before by previous studies, the systems approach has proven 

effective for engineering synthetic genetic circuits in the cell-free system 16,26. This 

approach can also be effective to disentangle the complex dynamically-interacting 

factors in the cell-free systems and obtain deeper insights that are otherwise 

difficult to capture.  
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Chapter 4. In vitro display techniques and cell-free 
systems: a refined and clean method for in vitro selection 
of drug targeted peptides 
 

4.1 Chapter 4 Aims and Summary 

Cell-free transcription-translation systems are excellent tools for protein 

expression. The PURE system, based on recombinant elements, has been shown to 

present high purity and high yield, and therefore it has been used for expression of 

both native and de novo proteins, as well as in experiments involving various 

display methods to select for functional polypeptides 1–3. This chapter builds upon 

the knowledge gained in Chapter 3 to extend the use of cell-free systems with high-

throughput screening methods. 

A refined method was developed that involved the use of the PURE cell-free system 

and a display methodology for the preparation of stable mRNA and cDNA-peptide 

conjugates. The method was further validated for its use for in vitro selection 

processes. The conjugates of peptide-mRNA/cDNA obtained reached a formation 

efficiency of 40% (conjugation efficiency range is between 5% to 40% 4). This was 

followed by precise gel purification to minimize the existence of carry-over of 

components, from the translation system, in the conjugate samples. Strict 

purification steps allowed for posterior clean and efficient sequence screening of 

the random peptide library. To test the efficiency of the method, the anti-FLAG M2 

antibody was selected as a target for process validation. With a starting library of 

approximately 1.7 x 1012 random sequences and after 4 rounds of selection with two 
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defined display methods: mRNA and cDNA display; high-throughput sequencing 

showed enrichment of the FLAG epitope DYKDDD as well as a consensus FLAG 

epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Furthermore, both mRNA and cDNA 

display methods resulted in a similar overall performance.  

 

 

 

Figure 4.A: Summary of the experimental approach carried out for Chapter 4. From the 

bottom left corner, the 1st round of selection starts the experiment and it ends with the 4th round. 

Each round uses the PURE system for the translation step, meticulous cleaning of the constructs 

and two different display methods: mRNA and cDNA display. The selection process is performed 

using Anti-FLAG antibody beads. The final samples are sent for MiSeq sequencing and the results 

analysed. 
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4.2 Method Overview 

The experiments carried out encompassed the development and optimization of 

two display methods: mRNA and cDNA display; utilizing a commercial version of 

the PURE protein expression system (PUREfrex 1.0) 5,6. During each round of 

selection, approximately 1,000 peptides were sequenced.  

One of the important features of this method is the stability and high purity of 

both the mRNA-tag and mRNA/cDNA-peptide constructs, mainly due both the 

use of the PURE system during the translation step (as it is a nuclease- and 

protease-free environment) and the two-step gel purification performed (as it 

eliminates the majority of by-products).  

The elimination of specific components and by-products (RNA, enzymes, 

polyamines, cofactors, and ions) from the samples during the selection rounds 

minimized non-specific interactions; with either the mRNA and cDNA-peptide 

conjugates or with other components; especially during the binding assay steps. 

To test the validity of the method, a short FLAG epitope (DYKDDDDK) was 

selected due to its already known crystal structure 7. Several display methods 

(phage, DNA and ribosome display) have already been successful in enriching the 

FLAG epitope motif 8–11. One round of selection takes a minimum of 1 day (24 h) 

(Figure 4.B), which means the whole procedure can be completed in 1 week. 

Usually, for mRNA display, one round of selection takes around 2-7 days depending 

on the type of target. The high-throughput sequencing was performed after 
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collecting the DNA library samples from each round, to characterize the sequence 

variations after each round of selection. 

 

 

 

Figure 4.B: Schematic overview of one round of selection and the estimated time of each 

step. The initial round starts with a DNA library (designed with randomized sequences) that 

includes a T7 promoter upstream and a leader sequence (complementary to the puromycin-FITC-

DNA tag) downstream. The DNA library is in vitro transcribed to an mRNA library and later ligated 

to the puromycin-FITC DNA tag. The resulting product purified with a gel and translated using the 

PUREfrex 1.0 System. The resulting mRNA-peptide conjugate is purified a second time again by gel 

electrophoresis. The purified product could be used as it is (mRNA Display) or reverse transcribed 

(cDNA Display). Both products forego a binding assay against anti-FLAG M2 magnetic beads and 

the selected conjugates are further reverse transcribed to go into another round and later on, 

sequenced using the Illumina MiSeq system. Preparation time (hours) for each step is shown in red 

with exception of MiSeq sequencing (5 days) carried out only after all samples from all round were 

obtained. 
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4.3 DNA Library Design with Random Sequences  

To oversee the trajectory of various sequences in each round, two different DNA 

libraries were designed. The ‘FLAG-random library’ contained a fixed sequence for 

the first five amino acids of the FLAG epitope (DYKDDDDK); followed by three 

consecutive degenerate “RRN” codons corresponding to seven amino acids (Asn, 

Lys, Asp, Glu, Ser, Arg and Gly) (Appendix, Section A.2, Figure A.2.1). The ‘10aa-

random library’ contained ten degenerate codons (“VNN” and “NNY”) which 

corresponded to 16 and 17 different amino acids, respectively (Appendix, Section 

A.2, Figure A.2.1). The number of different sequences in both FLAG-random and 

10aa-random libraries was 343 and 1.7 x 1012, respectively. The FLAG-random library 

was used as a positive control to confirm the enrichment of the full FLAG epitope 

sequence in the early rounds. On the other hand, the 10aa-random library was used 

to validate the performance of the display method by exploring a wide range of 

random sequences to find several suitable ones that could bind to the anti-FLAG 

M2 antibody.  

Since this method was used with the PURE system, both DNA libraries contained 

upstream a T7 promoter and ribosome binding site (RBS). The leader sequence at 

the 3’ region was complementary to the puromycin-FITC DNA tag for an efficient 

ligation. The only difference between the two libraries was the randomized 

sequence regions.  
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4.4. T7 RNAP In vitro Transcription and T4 RNA Ligation 

Following the construction of both DNA libraries, in vitro transcription with T7 

RNA Polymerase was performed. After a purification step, the mRNA construct 

was ligated to the puromycin-FITC DNA tag with T4 Ligase enzyme. The ligation 

was carried out by the Y-ligation method 12 to connect the 3’ end from the single-

stranded mRNA construct to the phosphorylated 5’ end of the DNA tag (Appendix, 

Section A.2, Figure A.2.2). The ligation procedure was confirmed by running the 

ligated products on 6 % polyacrylamide TBE gel with 8 M Urea and visualizing the 

band shift using SYBR Gold staining for the mRNA molecule and FITC fluorescence 

detection of the puromycin-FITC DNA tag (Figure 4.C).  

After the ligation procedure, around 50% of the mRNA molecules were attached to 

the Puromycin-FITC DNA. The final product mRNA-tag product was further 

purified by gel using electroelution and ethanol precipitation to eliminate 

unligated products. The elimination of free non-ligated Puromycin-FITC DNA tag 

was important for the posterior translation of the mRNA-tag product since 

puromycin can interfere with the ribosomes.  
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Figure 4.C: Puromycin-FITC DNA tag ligation gel images. Image of ligated samples resolved in 

6 % polyacrylamide TBE with 8 M Urea gels with both SYBR GOLD staining and isothiocyanate 

fluorescence (FITC). The gels show both the FLAG-random and 10aa-random libraries samples with 

and without (negative control) the ligation process.  

 

4.5 PURE system in vitro Translation Optimization 

The recovered mRNA-tag from section 4.4 was posteriorly subjected to in vitro 

translation, to form mRNA-peptide conjugate constructs, using the commercial 

version of the cell-free PURE system, PUREfrex 1.0. The PUREfrex kit is known, as 

discussed in chapter 3, for its high purity as it does not contain nucleases and 

proteases and therefore is adapted for any display methods. The lack of nucleases 

already gives an important advantage for mRNA and cDNA display methods as it 
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allows for strong stability of the conjugates since their degradation in the reaction 

mixture is minimal. Since display methods and selection processes occur during 

the span of several days, the elimination of degradation, whether it is for 

nucleotides or peptides, is of high importance. Another important aspect of the 

PURE system is the high protein yield even if the rate of product formation 

depends greatly on other aspects, like incubation time and co-factors 

concentration. These conditions, if optimized, could help promote the efficient 

incorporation of the puromycin into the stalled ribosome at the mRNA-DNA 

border. Previous studies have tackled this by introducing rare codons at the 3’ end 

2 or by using long linkers in the puromycin-DNA tag 13. So in this study, a rare GGA 

codon was placed at the 3’ end and a polyA (18 nt) included in the puromycin-FITC 

DNA tag (Appendix, Section A.2, Figure A.2.2).  

But even with these optimizations, as already mentioned, more can be done in 

terms of the incubation conditions. So before continuing with the selection round, 

a series of experiments were performed to optimize this process by testing 3 sets of 

different conditions in the translation reaction with the PURE system. The sample 

used for the optimization was the purified 10aa-random library mRNA-tag, and the 

parameters tested were: translation time, salt mix concentration (KCl and MgCl2), 

and incubation time after salt addition.  

The total incubation (translation) time reflects the time for the ribosomes to 

prepare and perform the translation of the coding region, which since it lacks a 

STOP codon, makes the ribosome stall at the 3’ end of the mRNA. Since the optimal 
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incubation temperature for the PUREfrex 1.0 System is 37 °C, that parameter was 

not changed and stayed the same. What was first tested was the initial incubation 

time before the addition of the salt mixture; from 0 to 60 minutes. It was found 

that after just 5 min, already 40% of the samples were translated; and further 

incubation did not increase significantly this number (Figure 4.D; A).  

 

 

Figure 4.D: Gel images of the mRNA-peptide conjugate formation under various 

translation conditions. (A) The difference in length of translation before salt addition. The 

numbers indicate different incubation time (in minutes) carried out at 37 degrees Celsius.  (B) The 

difference in salt concentrations with original concentration (100%) as 750 mM KCl, 65 mM MgCl2 

used in previous studies 13,14 (C) Difference in lengths of incubation time (in minutes) after salt 

addition. 

 

The second thing that was tested was the concentration of salt mix to be added to 

the reaction after the initial incubation. Previous studies showed that high 

concentration of KCl improved the accessibility of the peptidyl-tRNA (bound to 

the ribosome) to the puromycin 15, and so this salt addition step has been adopted 

in recent mRNA and cDNA display methods 13,16,17. If the salt mixture is not added, 
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conjugate formation is less than 10%, however, adding 32.5 mM MgCl2 and 375 mM 

KCl to the mixture increases the formation rate to above 40% (Figure 4.D; B). 

Finally, the last parameter tested was the incubation time post-salt addition, as it 

helps the puromycin to react with the peptidyl-tRNA to form a covalent link 

between mRNA and peptide. A total of 60 minutes of incubation at 37℃ after 

adding the already mentioned salt mixture, yielded a conjugate formation rate of 

48.5% (Figure 4.D; C).  

After the optimized conditions were tested and confirmed, the mRNA-peptide 

conjugates were synthesized from both libraries mRNA-tag samples. Gel 

purification followed with an SDS-Urea polyacrylamide gel.  

 

4.6 Reverse Transcription for cDNA Display and Verification of 

mRNA-peptide and mRNA/cDNA-peptide Conjugates  

With the purified mRNA-peptide conjugates, reverse transcription (RT) was 

performed to obtain mRNA/cDNA-peptide conjugates, for cDNA Display. 

Purification was also performed on the resulted samples.  

Verification for both mRNA-peptide and mRNA/cDNA-peptide samples was done 

in two different ways: trypsin digestion and western blot. Trypsin digestion was 

performed since it targets lysine (Lys) and arginine (Arg) residues, and all peptides 

have 3 Lys resides close to the C-terminus region, where the DNA tag is (Appendix, 

Section A.2, Figure A.2.1). Therefore, after the digestion, the peptide is cut from the 

nucleotide part of the conjugate and a band shift in a Urea-SDS PAGE gel should 
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be visible. The digestion was applied for the 10aa-random mRNA-tag and mRNA-

tag-peptide products.  

After the digestion was performed for 30 min on the translated product, the upper 

band on the gel disappeared, indicating that the band corresponded to the mRNA-

tag-peptide conjugate (Figure 4.E; A).  

As for the western-blot, it was performed on the products (with and without RT) 

derived from the fixed FLAG-control library (Figure 4.E; B). FITC fluorescence 

signal was observed from the membrane transferred samples and the 

chemiluminescence signal was detected using an anti-FLAG-HRP antibody. Both 

signals overlap at the same position indicating the formation of peptides and their 

attachments to both mRNA-tag and mRNA/cDNA-tag samples. Under SDS-PAGE 

conditions, translated samples migrate more slowly (upper bands) than mRNA-tag 

products, as the peptide attachments make them heavier and bigger; but double-

stranded mRNA/cDNA-peptide conjugates migrate faster than the single-stranded 

mRNA-peptide conjugate, due to the double charge from the phosphate backbone 

(two nucleotide strands). 
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Figure 4.E: Confirmation of mRNA/cDNA-peptide conjugates. (A) Trypsin digestion of 10aa-

random library mRNA-tag and mRNA-peptide conjugate products. (B) Western blotting of FLAG-

random library mRNA-tag, mRNA-peptide and mRNA/cDNA-peptide conjugate products. For the 

western blot, the detection was done using FITC fluorescence for the DNA-tag located in all 

conjugate products (left); and chemiluminescent signal for the FLAG epitope. 

 

4.7 In vitro Selection Assay and Reverse Transcription PCR 

To validate the performance of both mRNA and cDNA display methods, a selection 

assay was conducted using anti-FLAG M2 antibody magnetic beads.  

To further test the selection ability of both methods, the two libraries (FLAG-

random and 10aa-random) conjugate peptide samples were mixed with a 1:10,000 

molar ratio respectively. After the binding selection process was finished and 

several washing steps were carried out, the recovered beads were directly subjected 

to reverse transcription PCR (RT-PCR) to produce cDNA sequences of the selected 

samples in the binding assay. Before this though, a test was done to determine the 

optimal number of cycles of the RT-PCR to avoid over-amplification of the 
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samples. For each round of selection, the amplified product was checked every 5 

cycles (from 0 to 35 cycles) (Appendix, Section A.2, Figure A.2.3).  

Amplified DNA products, from both display methods, started being seen at the 

15th cycle and were saturated at the 20th cycle. When looking at the band intensity 

of the 15th RT-PCR cycle, the final rounds showed a higher intensity, proving that 

the quantity of sample attached to the beads was higher as the rounds progressed. 

A non-specific band, probably from non-specific binding of primers, appeared in 

every lane at around 200 bp, but since it remained weak in intensity throughout 

multiple rounds, the rounds of selection were continued. The optimal number of 

cycles (for both display methods) for rounds 1 and 2 were settled at 20 cycles and 

for the 3 rd round, 16 cycles.  

 

4.8 High-throughput MiSeq Sequencing Analysis 

All the sequencing data from the MiSeq system (performed by the sequencing 

department of the Tokyo Institute of Technology) were collected and analysed 

with a Perl script to extract the coding regions. The extracted sequences were 

further evaluated by the FastAptamer software 18, to count and rank the unique 

sequences based on their total number of reads. The top 50 most abundant 

sequences from each round, of mRNA display, were further explored to confirm 

the enrichment of FLAG epitope during the selection. Sequences from the FLAG-

random library resulted in a fixed aspartic acid (D) amino acid residue at the 6th 

position just after the first round of selection; followed by two positively charged 
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arginine (R) and lysine (K) residues at the variables 7th and 8th positions 

respectively (Figure 4.F; A). For the 10aa-random library, after three rounds of 

selection, the sequences settled on a conserved core FLAG motif (DYKxxD) in two 

different positions: one starting at position 2 and the other at position 5 (Figure 

4.D; B). This binding motif has been reported previously to have a strong affinity 

to anti-FLAG M2 antibodies 8–11. Further analysis was put into those two conserved 

motifs and a few features were found; namely a weakly conserved glutamic acid (E) 

immediately before the FLAG motif, (D/L/N) and (D/F/L/N/Y) located between 

the conserved lysine (K) and aspartic acid (D) with over 80% probability followed 

by a downstream proline (P) residue (Figure 4.F; C and D).  

The next analysis performed was the enrichment rate of various FLAG motifs 

detected through both displays methods and their comparison. This step is 

important to determine the efficiency of both display methods.  

Although from the 1st round to the 3rd, the samples sequenced were obtained 

directly from the magnetic beads, for the final round, the 4th, a competitive elution 

with a FLAG peptide (DYKDDDDK) was done by increasing the concentration 

during the elution process, and the samples obtained sequenced as normal. 
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Figure 4.F: Consensus logo of top 50 abundant sequences from each selection round of 

mRNA display. A round-by-round consensus logo was created using Weblogo3 19 using the top 50 

most abundant sequences based on their RPM. Sequence logos derived from FLAG-random library 

(A), 10aa-random library (B), core FLAG motif bearing sequences within the 10aa-random library 

(C and D) are colour-coded based on their charge (negatively charged: red, positively charged: blue 

and others: black). For the 4th round, consensus logo was created using the sequences eluted with 

highest FLAG epitope tag concentration (100 μg/ml). 

 

The expected frequency for the full FLAG epitope sequence (DYKDDDDK) in the 

initial library (zero round) was 0.29 reads per million and it was indeed not 

detected (1,768,526 sequences). But as the rounds advanced, the observed 

frequency went up, to 1,479 and 198 reads per million (3rd round) for mRNA and 

cDNA display, respectively (Figure 4.G; A). When focused on the consensus FLAG 

motif (DYKDDDxx) with a fixed aspartic acid (D) at the sixth position, the 
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enrichment numbers were 261,982 and 31,689 reads per million (for mRNA and 

cDNA display, respectively) (Figure 4.G; B).  

 

 

Figure 4.G: Round-by-round read counts for the enriched FLAG motifs. Sequence reads from 

initial library (0th) to 3rd round selection, 4th round with competitive elution with FLAG epitope 

tag at 4, 20, 100 μg/ml concentration and remaining beads are counted for (A) DYKDDDDK, (B) 

DYKDDDxx, (C) xDYK(D/L/N)(D/F/L/N/Y)Dxxx and (D) xxxxDYK(D/L/N)(D/F/L/N/Y)D 

sequences. For each round, read counts for mRNA display method (orange) and cDNA display (dark 

blue) are presented side-by-side. 

 

This suggests that the 6th position is important as it enhances the binding of the 

sequence to the anti-FLAG M2 antibody. A majority of the sequences that were 

collected derived from the 10aa-random library, especially one type of consensus 

FLAG motifs: DYK(D/L/N)(D/F/L/N/Y)D, located at two different positions 

(Figure 4.G; C and D).  
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The highest enrichment of FLAG motifs was not seen from the sequences on the 

beads but from the elution done with the competitor FLAG peptide (20 or 100 

μg/ml), reaching total 325,917 and 135,913 RPM for mRNA and cDNA display, 

respectively (Table 4.A; B). With the selection conditions chosen, mRNA display 

shows a higher enrichment rate of the consensus FLAG motif over cDNA display 

(Table 4.A; C). Additionally, with mRNA display, the number of FLAG motifs in 

the sequences that remain bound to the beads, after the highest elution was done, 

was greater than with cDNA display (Figure 4.G and Table 4.A; A and B). These 

results suggest that the mRNA/cDNA conjugate is more easily eluted from the 

beads.  

  



 Chapter 4 
 

194 
 

Table 4.A: Read per million (RPM) counts of sequence motifs for each selection round. 
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A final analysis of the sequences was done to see how much importance some 

amino acids residues, from the FLAG motif, have over the binding strength to the 

anti-FLAG M2 antibody. Comparison of sequences lacking one of the four residues 

of the core FLAG motif (DYKxxD) was done (Figure 4.H). The lacking tyrosine (Y) 

or lysine (K) residues showed negative enrichment in the first round, indicating 

the importance of these residues for primary recognition of the anti-FLAG M2 

antibody and posterior binding. The observed result is consistent with the previous 

selections 8–10 and the obtained M2 antibody structural data 7. 

 

 

Figure 4.H: Round-by-round enrichment of the motifs lacking a single key residue from the 

core FLAG motif. Sequence reads for partial FLAG motif lacking each of the four key residues first 

D (yellow), Y (blue), K (green) and second D (dark red) are shown for each round during the (A) 

mRNA display and (B) cDNA display selection. 
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4.9 Conclusions 

In this chapter, two display methods (mRNA and cDNA) were tested using the 

commercially available PUREfrex 1.0 cell-free protein system. This purified cell-free 

system was chosen over cell-free systems based on cell lysates. This method proved 

efficient and stable in the synthesis and selection of mRNA and mRNA/cDNA-

peptide conjugate. The PURE systems lack of contaminants allowed for minimal 

degradation of the sample as it was shown by the high conjugation efficiency 

(40%). In existing methodologies, degradation causes the conjugation efficiency to 

range between 5-40% 4. Unwanted components during the cleaning steps were 

limited using electroelution to ensure the purity of the peptide conjugates and 

ethanol precipitation to secure as much sample recovery as possible. Although 

these latter two steps are common purification techniques, they could be 

important when selecting for a component of the PURE system such as 

components involved in the transcription and translations processes.  

mRNA and cDNA display methods were also compared. The overall performance 

was validated by searching for epitopes, from approximately 1,012 sequences, using 

the anti-FLAG M2 antibody 7. Posterior high-throughput sequencing, after three 

rounds of selection, led to the identification of the FLAG epitope (DYKDDDxx) and 

consensus FLAG motif sequences [DYK(DLN)(DFLNY)D]. This specific motif 

appeared in the only two sites where it could appear (if the restrictions imposed in 

the original library are taken into consideration) since only three sites in the 

mentioned library had degenerate codon sequences that can code for tyrosine, and 
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one of those three sites is too close to the C-terminal end of the random region and 

therefore cannot be part of the FLAG motif. 

When comparing the performance of both methods, similar results were obtained, 

with the mRNA display having slightly higher enrichment than the cDNA display 

(Figure 4.H). Although this has only been performed once, and repetition should 

be done to confirm this statement, this could prove the consistency of the method 

which will be useful for future studies to explore the sequence and functional space 

of diverse polypeptides. 

 One difference found was the elution speed of both FLAG motif sequences 

conjugates, mRNA-peptide and mRNA/cDNA-peptide, with the latter being eluted 

slower from the magnetic beads. One possible reason could be that the mRNA-

peptide conjugate is smaller in size (around 135 bp of cDNA lighter depending on 

the DNA library) and thus allows it to be more accessible to binding sites on the 

beads than the larger mRNA/cDNA-peptide conjugates. Also, the sequences from 

the cDNA display method appear to have more non-specific binding on the 

remaining beads after the elution process.  

By showing that through a round-by-round sequencing process and a stepwise 

competitive elution with FLAG peptide (at the final 4th round), the consensus 

FLAG motif prevailed over other sequence variants; the method gained a strong 

point in favour since high-throughput sequencing is being used more and more as 

a powerful approach for various in vitro selection and evolution experiments. 

Additional enrichment of several amino acids adjacent to the FLAG motif in a 
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library dependent manner (FLAG-random vs 10aa-random) were also observed. 

This suggests a mutual interaction between residues so an optimal binding 

conformation can be formed. Furthermore, by comparing the enrichment patterns 

of sequences with a single residue difference, it was possible to highlight the 

residues with the most influence with regards to the anti-FLAG M2 antibody 

recognition process. Enrichment of core FLAG motifs lacking one of the four key 

residues (DYKxxD) indicates that tyrosine (Y) and lysine (K) appear as the two key 

residues essential for binding. Although this has been studied before, it has been 

done on phage display 9. This pattern can be useful to further explore high-affinity 

epitope candidates and even discover “super epitopes variants”, based on recent 

advancements of array-based high-throughput and quantitative protein assay 20. 
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Chapter 5: Production of Lipid Vesicles and Nanodiscs 
Synthetic Membranes and G-protein-coupled receptors 
(GPCRs) using the PURE Cell-free System 
 

5.1 Chapter 5 Aims and Summary 

Chapter 3 presented studies focused on cell-free system’s dynamics whilst Chapter 

4 used this information to select a cell-free system from purified components to 

test two different display methods: mRNA and cDNA display.  

This Chapter focusses on using the PURE system within two different types of 

synthetic lipid membranes for the production of G-protein-coupled receptors 

(GPCRs). These types of membrane protein are attractive targets for drug screening 

since they are found in most cells. They perform a wide variety of functions and 

their localization, on the cell’s surface, provides easy access. But they are more 

challenging to study than soluble proteins since they are dependent on lipid 

membranes to fold and settle properly. The main elements of this chapter include 

the use of a cell-free system, the PURE system; the selection of a type GPCR 

membrane protein, CX3CR1; and the use of two different synthetic lipid 

membranes, vesicles and nanodiscs. The CX3CR1 protein (from the human GPCR 

family) was selected as a target because it is involved in a wide range of 

inflammatory diseases 1, which makes it a potential target for cancer therapy 2. It 

also has a known specific ligand, CX3CL1 3. This information could help check the 

veracity of the proposed method or design a peptide target library more readily. 
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CX3CR1 also has shown polymorphism, which offers targeted therapeutic options 

4.  

The chapter details the synthesis of the CX3CR1 protein in both lipid vesicles and 

nanodiscs (Figure 5.A). The design and production of a random peptide library will 

then be described to find suitable targets for the GPCR. This last section is the first 

step in performing screening and selection of peptide targets for GPCRs samples 

using display methods. The details of this will be outlined and expanded in Chapter 

6 (Future Work Section).   
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Figure 5.A: Summary of the experimental approach for Chapter 5. Experimental procedures 

carried out during this chapter. (A) Expression of GPCR in nanodiscs. The first step (1) used the 

PURE system to produce the MSP1D1 proteins, which are necessary to create nanodiscs, with a His-

tag for future selection and purification. The second step (2) involves the full creation of the 

nanodiscs using the MSP1D1 protein and a lipid mixture. The third step (3) uses the nanodiscs and 

again the PURE system to produce GPCRs. (B) Expression of GPCR in liposomes. The first step (1) 

encapsulates the cell-free system and GPCR DNA inside the liposome. The second step (2) 

incubates the liposomes so the GPCR is produced and automatically inserted in the membrane.  
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5.2 Liposomes as Synthetic Membranes for GPCRs Production 

and Assembly: Microscope Visualisation and FACS Analysis. 

The first lipid membrane model used for the production of GPCRs was liposomes 

and Giant unilamellar vesicles, (GUVs). Vesicles are usually more economical to 

produce and large quantities can be obtained in a single preparation process, and 

even stored for future use. The water-in-oil (w/o) emulsion transfer method 5–7 

(Figure 5.B) was chosen to produce the lipid vesicles since the liposomes produced 

with this method have already been studied and their stability optimized for 

protein production 8. The DNA of the product being synthesised, in this case, the 

GPCR membrane protein CX3CR1, is located in the inner solution, along with the 

PURE system. So when the liposomes are assembled, the membrane protein 

production occurs inside the liposome. It has been found that even though there 

are no translocon proteins located inside the liposome to carry the GPCRs to the 

membrane, membrane proteins can spontaneously integrate themselves on the 

liposome’s membrane 9,10. To visualize the GPCRs, these were cloned downstream 

with an sfGFP gene, so as a fusion protein when the GPCRs travels and assembles 

in the membrane, the sfGFP fluorescence should be visible on the liposome’s 

surface, instead of inside where some of the proteins that fail to interact with the 

membrane remain. Furthermore, when creating the DNA construct, the T7 

promoter had a mutation at the position 17, adenine (A) for tyrosine (T), since it 

was proven in chapter 3 that a few mutations in the T7 promoter enhance the final 

protein production. 
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Figure 5.B: Schematic of the water in oil (w/o) emulsion-transfer method for GUV 

production. The method starts with a water droplet suspended in the upper oil phase while being 

protected by a lipid monolayer, which later will become the inner monolayer of the vesicle. By 

performing centrifugation, the w/o droplet sinks further and settles in the lower aqueous phase, 

which is the outer solution in which the GUVs will be suspended. When the liposome passes from 

the oil phase to the aqueous phase, it crosses a layer of lipids which quickly link themselves to the 

droplet forming a lipid bilayer. Image used is from Tsuji et al. (Journal of Bioscience and 

Bioengineering, 2018) 7. 

 

To determine the optimal composition for the lipid, inner and outer solutions for 

the vesicles, a first test was performed. This consisted of producing vesicles 

according to Fujii et al. 6. The lipid composition used was POPC: Cholesterol (1: 1). 

The inner solution consisted of the PURE system and a DNA sequence for sfGFP 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lipid-monolayer
https://www.sciencedirect.com/science/journal/13891723
https://www.sciencedirect.com/science/journal/13891723
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(the WT construction from Chapter 3), to confirm the proper functioning of the 

transcription-translation system (Appendix, Section A.3, Figure A.3.1). The outer 

solution is composed of the non-protein elements of the PURE system but also 

without the tRNAs. This outer solution is also complemented with 200 mM glucose 

to maintain an osmosis balance. sfGFP was produced and visualized by microscope 

(Appendix, Figure A.3.1).  

The next step involved the direct production of the hybrid GPCR protein, CX3CR1-

sfGFP inside the vesicles and posterior analysis. The hybrid protein was seen on 

the surface of the vesicles under the microscope (Figure 5.C; A). The vesicles were 

also run through fluorescence-activated cell sorting (FACS) to analyse better the 

total population of the vesicles, along with their conformation and fluorescence 

level. FACS analysis was chosen to explore the characteristics of the whole 

population of liposomes. When plotting the liposomes, calculations can be 

performed to analyse the percentage of liposomes with certain characteristics and 

collect them to separate them from the rest of the population.  This is useful when 

performing further experiments with the liposomes in order to have a more 

homogenous population with high number of the protein of interest.  

When plotting the forward (FSC-A) and side (SSC-A) scattering values of each 

vesicle against each other, there is a certain region of the plot that corresponds to 

the unilamellar liposomes (Figure 5.C; B). These liposomes are usually of various 

sizes (wide range of FSC-A values) but with low SSC-A values since several 

monolayers divert the laser more and therefore increment the side scattering of 
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the vesicle, as it was shown in the Fujii et. al paper 6. Furthermore, when comparing 

the sfGFP fluorescence levels (FITC-A) of the vesicles with ones with no DNA, the 

plot shifted (Figure 5.C; B). It can be seen that the lower plots (negative control) 

show no fluorescence further than the 102, being this the background noise. While 

the upper graphs (those of the sample) show population of vesicles with FITC 

signal (to the right of the 102 mark). However, less than 25% of the total vesicle 

population showed sfGFP fluorescence in the FACS analysis. This could be due to 

the limited concentration of the inner phase when manufacturing the vesicles, 

resulting in depleted liposomes. Studies have also shown that the PURE system is 

prone to generate partially translated proteins or functionally inactive, due to 

ribosome stalling 11, which is more likely for hybrid proteins, such as  CX3CR1-sfGFP.  
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Figure 5.C: Lipid vesicles analysis using the PURE system and CX3CR1-sfGFP fusion protein. 

(A) Microscope images of vesicles with a lipid composition of POPC: Cholesterol (1: 1). The inner 

solution contains the PUREfrex 1.0 system and CX3CR1-sfGFP DNA. The images on the left column 

correspond to phase contrast and the ones on the right column to the green fluorescence of 

CX3CR1-sfGFP migrating to the liposome membrane. The bar size, on the right upper corners of 

the images, is 25 µm. (B) Plots in 2D of the lipid vesicles population when run through FACS. The 

upper graphs represent the CX3CR1-sfGFP sample while the bottom graphs represent a negative 

control (PURE system with no DNA). The forward scattering value is represented by FSC-A and the 

side scattering value by SSC-A. The sfGFP fluorescence is represented by FITC-A. The total number 

of vesicles plotted in each graph is 100,000.  

 

  



 Chapter 5 
 

209 
 

5.3 Nanodiscs as Synthetic Membranes for GPCRs Production 

and Assembly: MagneHis Purification and Western Blot Analysis. 

Another lipid model chosen for the production of GPCRs was nanodiscs 12,13. These 

are smaller than vesicles, and GPCRs inserted in them are accessible from both 

ends. This provides a significant advantage when performing selection methods as 

there is limited concern over the correct insertion of the protein in the membrane. 

Furthermore, detection can be easily be carried out by SDS-PAGE gel and western 

blot. Nanodiscs, like vesicles, remain stable when kept at low temperatures (4 to -

20 degree Celsius), so they are useful for long experiments.  

The first step in making nanodiscs is the expression and purification of the 

membrane scaffold proteins (MSP). In this case, the human MSP1D1 amphipathic 

protein was used since it has been shown to enable nanodiscs stabilization 14. The 

plasmid pMSP1D1, contains the MSP1D1 gene, a His-tag on the N-terminus and a 

T7 promoter. Using the PUREfrex 1.0 system, the proteins were produced. 

Purification was achieved using magnetic nickel particles attached to His-tag 

antibodies. Recovered MSP1D1-HisTag samples were then concentrated and stored. 

Quantification was determined by absorbance at 280 nm using a calculated 

coefficient of extinction of 21,430 (mg/ml)-1 cm-1, obtaining 3.8 mg/ml of purified 

product.  

Nanodiscs were prepared with a lipid mixture consisting of POPC, POPS and 

Cholesterol in a 72: 20: 8 ratio respectively. The lipid mixture was incubated with 

purified MSP1D1 protein in a 1: 60 ratio. The chosen ratios for the lipids and 
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proteins have been reported to form stable nanodiscs for GPCR insertion 12. 

Elimination of remaining detergent in the mixture (which is the Na cholate from 

the Nanodisc buffer), to aid correct nanodisc assembly, was achieved by SM2 bio 

beads. A two-step purification process was performed on the recovered nanodiscs 

samples to eliminate aggregation and aberrant nanodiscs. The first one was done 

by ultra-centrifugation for big lipid and protein aggregations, since the precipitate 

faster and at lower speed. The second one by AKTA Chromatography for better 

sample recovery and concentration. Bigger particles and aggregations elute faster 

from the column than single nanodiscs. From the chromatography peak obtained 

(Figure 5.D; A), 10 fractions were run on an SDS-PAGE gel for sample size 

verification (Figure 5.D; B). 5 fractions were selected for sample concentration, and 

when finished, another SDS-PAGE gel run was performed (Figure 5.D; C). 

 



 Chapter 5 
 

211 
 

 

 

Figure 5.D: Nanodisc purification and verification. (A) Plot graph of the nanodisc sample as it 

passes through the AKTA chromatography channels. The red and blue lines represent the 

absorbance at 260 and 280 nm respectively. The x-axis represents the millilitres of sample/buffer 

that have passed through the column and just on top of it, the number of each fraction collected. 

The y-axis represents the mili-absorbance units. The blue and red peaks both show the nanodiscs. 

(B) SDS-PAGE gel of the selected fractions from the AKTA chromatography purification step. A 

total of 10 fractions were run on the gel. The nanodiscs band can be appreciated at 26 kDa. From 

these fractions, only 5 were selected for sample concentration. (C) A second SDS-PAGE gel shows 

the final purified and concentrated nanodisc sample. 

 

  



 Chapter 5 
 

212 
 

For the final step, nanodiscs will be used along with the PURE system to produce 

CX3CR1. The DNA construct that encodes this protein gene, also contains a 

HaloTag sequence downstream the CX3CR1 gene. This tag will allow purification 

of the protein-nanodiscs complexes from those nanodiscs that are empty. The cell-

free system selected was PUREfrex 2.1 DS supplemented. This version differs from 

the basic PURE system in that it helps in the formation of disulphide bonds in the 

protein by replacing DTT for glutathione reduced (GSH). After the transcription-

translation reaction with nanodiscs, the sample was purified using magnetic nickel 

particles attached to HA-tag antibodies. This ensured only the CX3CR1 samples 

were selected and the empty nanodiscs left behind. The collected fractions were 

run on an SDS-PAGE gel for visualization (Figure 5.E; B). The samples visualized 

in the SDS-PAGE gel also included the PURE system components. It was 

challenging to estimate the purification efficiency since some bands were 

superposed over the CX3CR1 band in the PURE fraction lane (Figure 5.E; A). The 

process was repeated but with Methionine [S35] in the PURE system, (Figure 5E; B). 

The results showed that 0.021 mg of final purified CX3CR1 was obtained per ml of 

the PURE system. The purification efficiency was 63%. One important aspect to 

have in mind during the experiment is that the obtained bands in the gels 

corresponding to the CX3CR1 sample were lower than expected. The CX3CR1 

protein has a molecular weight of 41 kDa. But the obtained bands in both gels were 

in the 34 kDa mark. A possible explanation comes from the studies performed by 

Rath et al. 15. They showed that membrane proteins do not migrate in SDS-PAGE 
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gels accordingly to their molecular weight. Numerical factors have to be taken into 

consideration when calculating the molecular weight band on the gel. For proteins 

migrating faster, like CX3CR1, a correction factor of 0.82 has to be applied. In this 

case, the molecular weight of the observed band was divided by this factor, 

resulting in the expected original 41 kDa value.  

 

 

 

Figure 5.E: CX3CR1 purification and verification. Each lane represents a fraction from the 

purification process. From left to right: PURE fraction, flow-through fraction, 1st wash fraction, 2nd 

wash fraction, and elution fraction. (A) SDS-PAGE gel of the fractions from the HA-tag magnetic 

particles purification step. (B) SDS-PAGE gel of the fractions from the HA-tag magnetic 

particles purification step. The gel went through fixing and drying processes for posterior 

visualization of Methionine [S35] signal in the bands. 
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When analysing the efficiency of the HA-tag magnetic purification process, the 

majority of the sample that was not purified was located in the flow-through 

fraction, around 35%. This indicated that this purification process needs to be 

optimized, as a big portion of the sample does not bind to the HA-tagged particles 

during the incubation period. This can be solved by finding out the optimal 

number of magnetic particles needed and incubation time and temperature. 

Another possible cause could be the HA-tag located in the CX3CR1 proteins. If the 

tag is not available, due to a short linker sequence, it will not be able to find and 

bind to the anti-HA tag from the magnetic beads. Furthermore, if the HA-tag has 

a considerable amount of hydrophobic amino acids, it is more likely to interact and 

bind to the nanodiscs, making it unavailable for binding to the beads.  

The amount of CX3CR1 sample obtained, 0.021 mg, per ml of the PURE system is 

low when comparing to results obtained from previous studies, but still within an 

expected range (0.05 – 0.01 mg) 12. Nanodiscs play an important role when it comes 

to protein yield. Their final concentration and size can affect the right 

incorporation and stability of membrane proteins. Thus, this factor is to be taken 

into consideration when making improvements to this aspect of the reaction.  
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5.4 DNA Library Design for Screening and Selection of Peptides 

as Drug Targets for GPCRs.  

Following the successful production of CX3CR1 in both lipid vesicles and nanodiscs, 

these samples could be used for screening of peptide targets for GPCR interactions 

(important as drug targets).  

Using the designs introduced in Chapter 4 as a backbone, a new method could be 

made for peptide testing on CX3CR1 (expressed in both vesicles and nanodiscs). 

The first step in this process is the creation of a random peptide library that will 

provide targets for the protein of interest. Since the PURE system is the preferred 

cell-free system, the use of the T7 promoter is mandatory. Even more, from chapter 

2 several mutations on this promoter enhanced the product yield. A leader region 

on the 3’ end, which complements the puromycin-FITC-DNA tag, is also one of the 

components of the library, for posterior puromycin ligation to the mRNA molecule 

(for both mRNA and cDNA display). For the design of the random peptide part, it 

is important to understand the natural ligands of CX3CR1 and their properties and 

conformations. The chemokine protein CX3CL1 (FKN) is a ligand of the CX3CR1 

receptor. This ligand is around 400 amino acids long in humans, making it a long 

protein and not suitable for designing any random library. But the chemokine 

domain (FKN-CD) of CX3CL1 that binds to CX3CR1 16, with a length of 76 amino 

acids 17,18, can be used for the library design. This domain binds to the extracellular 

loops of the receptor 17. Even if the FKN-CD section of CX3CL1 is much shorter than 

the whole protein, it is still long if a full random library is to be made. The limit of 
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the number of sequences in vitro display methods can screen and select is around 

1015. This number corresponds to around a peptide 12 amino acids long, if all 

possible natural amino acids can be located in each spot. In the case of FKN-CD, 

this could be done by parts. Changing certain regions of the FKN-CD domain one 

at a time and analysing the dominant motifs in each region of the sequence (Figure 

5.F; middle). A final optimized ligand can be designed by using the top motifs. 

Another way could be to just create a random peptide library that is around 10 

amino acids long (Figure 5.F; bottom). Although the whole 76 amino acids FKN-

CD attaches to CX3CR1, shorter peptides could reveal important binding regions 

and sequences. This option also allows to produce the random library more 

economically using long primers and PCR. Long sequences, otherwise, have to be 

ordered. 

One last possibility could be to decrease the possible number of amino acids that 

can be inserted in each spot. By allowing, for example, 10 possible amino acids per 

spot, the maximum length of the random peptides increases to 15 amino acids. This 

could help save resources if some option is already known not to work for certain 

positions in the peptide. Whether one or another type of library is chosen, it is 

important to have a positive control (Figure 5.F; top). The untouched sequence of 

FKN-CD binds fully to CX3CR1. This can be used to test the veracity of the method 

like it was done in chapter 4.  
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Figure 5.F: Possible DNA libraries for the screening and selection of peptides targets for the 

CX3CR1 receptor. All libraries contain a T7 promoter, a ribosome binding site (RBS) and a leader 

region at the 3’ end that complements the puromycin-FITC-DNA tag. (Top) The control DNA 

library encodes the gene for the chemokine domain (FKN-CD) of the CX3CL1 ligand. This is the 

naturally found ligand of the CX3CR1 membrane protein. (Middle) The long version of the random 

peptide library. Only the first 12 amino acids are randomized to limit the total number of possible 

sequences. (Bottom) The short version of the random peptide library. This only contains 12 

randomized amino acids without the rest of the FKN-CD.  
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5.5 Outline and Conclusions 

In this chapter, a first experiment involved the production of the CX3CR1 receptor, 

a GPCR membrane protein, in lipid vesicles. Liposomes were chosen as the first 

model of synthetic lipid membranes. The receptor production was carried out 

inside the liposome using the PURE system. This system is based on purified 

components and includes only the minimum necessary components for 

transcription-translation. This helps increase the stability of liposomes as it keeps 

the concentration of the inner solution elements low, therefore minimizing the 

change of bursting due to pressure. The visualization of the protein on the 

liposome surface was done by fusing CX3CR1 to sfGFP. The use of liposome for 

expression of membrane proteins is widely used. Liposomes are produced quickly 

and economically. They can also be stored for future uses. The main issue 

encountered is the lack of knowledge on the membrane protein inclusion 

direction. In the case of GPCRs, most ligands interact with the extracellular loops. 

If the loops are found inside the vesicle, the ligands cannot reach them.  

The second synthetic membrane model used for CX3CR1 was nanodiscs. These 

have longer production time and require more laboratory equipment, so they may 

not be always affordable. But they are small which makes it possible to analyse 

them using methods as simple as an SDS-PAGE gel. They also permit the 

membrane protein to be reached by both sides. Storage for longer experimental 

periods is also possible. Although the efficiency of CX3CR1 production and 

purification was satisfactory, it can still be improved. For example by allowing 
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more free access to the HA-tag in the protein. Or by selecting a less hydrophobic 

tag to minimize interaction with the nanodisc. The amount of total protein 

produced, 0.021 mg/ml of PURE system, was on the low range. This issue is 

probably caused by several factors: the condition of the PURE system, the amount 

and size of the nanodiscs, and the design of the DNA construct used. All these 

parameters have room for optimization.  

CX3CR1 was chosen as the GPCR candidate for this chapter. This protein is related 

to several types of diseases, and mutations found in it can cause cell mortality 19.  

Since CX3CR1 shows polymorphisms, future treatments involving this protein 

could focus on individual targeted therapy. This membrane protein has a known 

natural ligand, CX3CL1. This knowledge comes in handy to design more specific 

sequences, or libraries, of possible targets for CX3CR1.  

The design of a random peptide library for CX3CR1 was hindered due to the size of 

its known ligand, CX3CL1. The chemokine domain of the ligand that binds to the 

target protein is quite long. This reduces the number of amino acids that can be 

randomized in the sequence as in vitro display methods has a limit of sequences. 

A bigger number than the limit will just interfere with the process and many 

sequences could be lost. Smaller random peptides could still be tested for finding 

binding sequences. Also, shorter regions of the chemokine domain can still be 

randomized and new motifs found that have higher specificity for CX3CR1.  
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Chapter 6: Conclusions and Future work 
 

6.1 Discussion and Conclusions 

Each of the chapters includes a summary of the work carried out described. This 

final chapter discusses conclusions jointly to form an overview of the whole thesis 

project. The main aim of this research was to explore the properties and boundaries 

of cell-free systems and in vitro display methods so that they could be used more 

extensively in conjunction.  

The explored features of two different cell-free systems gave an insight into their 

dynamics and disclosed two different patterns for protein expression. Model 

analysis of the experimental results confirmed distinct pathways taken for cell-free 

systems from cell extracts and purified components. Results were consistent with 

the hypothesis that the extract-based system is mainly hindered by the presence of 

naturally found contaminants that decrease the availability of substrates. Methods 

to prevent or minimize this feature could be implemented in this type of cell-free 

system. For example, engineering of a minimal cell (top-down or bottom-up 

approach) could help eliminate these contaminants and enhance productivity. 

Once established, the economical and time benefits of the extract-based cell-free 

system could benefit many. The purified components based system (PURE system) 

had its limitation during protein translation, including depletion of resources and 

ribosome stalling. Since one of the main features of the PURE system is its ability 

for unbounded reaction modification and monitoring, these issues could be 
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resolved further by supplementing resources (amino acids, energy molecules, etc) 

and mechanisms to assist the reaction processes (ribosome recycling and rescuing 

factors) into the reaction to improve the final yield.  

Apart from the cell-free discovered dynamics, single-base substitutions in a mutant 

library of T7 promoters allowed the discovery of variants with enhanced yield. 

With two simple, yet different, approaches, useful information could be obtained. 

Experiment data were recorded using straight forward time-course measurement 

of protein yield. Although a simple experimental approach, when combined with 

system modelling to create an interdisciplinary approach, useful information was 

revealed. Cell-free systems have potential and they are already used widely in 

different fields of synthetic biology. The dynamics of factor interaction could be 

easily disentangled with more effort.  

The information obtained from this experimental approach, which included the 

testing of mutant libraries and the building of a mathematical model, provided a 

knowledge of the strengths and limitations of each system. When exploring display 

methods, such as mRNA or ribosome display, several aspects become important. 

One is the security that during the screening and selection process, that the 

peptides samples have high purity levels. Any presence of contaminants or 

undesired molecules could hinder the interaction of the peptides with the binding 

target. Peptides and mRNA molecules could also be degraded. This lowers the 

possibility of finding a good candidate and reduces efficiency. So when working 

with display method, it is important to ensure the cleanliness of the experimental 
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reaction. Also, to provide an efficient method of purification and sample recovery. 

During this thesis, these aspects were put to test. The inclusion of the PURE cell-

free system into both mRNA and cDNA display was explored. The election of this 

cell-free system over others, especially cell extract-based ones, came down to the 

low levels of mRNA degradation. For both mRNA and cDNA display, an mRNA 

molecule is attached to each peptide. As a short unprotected single-strand 

molecule, its stability is already low and the probability for degradation high. Using 

the PURE system minimized the possibility of degradation by nucleases. It also 

reduced the interaction with other unnecessary elements that could in exchange 

destabilize the mRNA-peptide complex or disturb the selection process. The lack 

of contaminants and unwanted elements in the PURE system also allows efficient 

cleaning and purification procedures: the fewer components that need to be 

cleaned from the sample, the more efficient the procedure will be. The PURE 

system was used in both mRNA and cDNA display methods. Both of these were 

selected for their in vitro properties. They can process libraries up to 1015 in size. 

The complexes they form with the peptides are small and less prone to 

disassembly. And since they are performed in vitro, rounds of selection can be done 

much faster. When comparing both methods, their efficiencies almost matched. It 

was thought the cDNA display will show superior efficiency since the mRNA 

molecule becomes more stable by being attached to cDNA. And although in 

theory, this makes sense, in practice it was not seen. The most plausible 

explanation comes to the use of the PURE system and highly efficient cleaning 
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procedures. As it was already explained, these features improved the mRNA 

stability. With these conditions, the selection of mRNA display over cDNA display 

should be made. The mRNA-peptide complexes are smaller in size, which allows 

easier access to binding sites. But also by eliminating one single step, RT-PCR to 

form mRNA-cDNA, the number of extra components and procedures exposed to 

the mRNA-peptide complexes are reduced. And the whole selection process 

becomes faster. 

The combination of mRNA display and the PURE system resulted in satisfactory 

screening and selection of binding motifs from a random peptide library. Further 

exploration of this combined method could enhance the discovery of high-affinity 

peptide candidates for drug discovery.  

When it comes to the discovery of drug candidates for therapy treatment, one of 

the major candidates are membrane proteins. The location of these proteins, on 

the cell’s surface, makes them easily accessed by drug molecules. They are also 

involved in a wide variety of cellular processes and pathways, which in return 

results in various diseases appearing when they malfunction. G protein-coupled 

receptors (GPCRs) are the most promising candidates for membrane proteins drug 

discovery. They are found mostly every cell, in significant quantities and are 

involved in almost every signaling pathway.  

To research further into drug discovery for GPCRs, first more had to be understood 

about them. Since they are membrane proteins, they need the presence of 

synthetic lipid models to be produced and folded properly. The GPCR candidate 
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chosen to investigate this field of drug discovery in membrane proteins was the 

receptor CX3CR1. It is highly involved in several signalling pathways, making it 

important in disorders such as cancer, inflammatory syndromes and cell apoptosis. 

CX3CR1 also shows polymorphisms. This feature can be used in the future for 

individual therapy. Since different versions of the protein are found in a different 

individual, each one could answer differently to a specific antibody or peptide 

targets. The selection of synthetic membrane for CX3CR1 production came down 

to two choices: lipid vesicles and nanodiscs. Two options were used to investigate 

further how they both differ when being involved is screening and selection 

processes. Lipid vesicles act like bioreactors. They are basic synthetic lipid models 

that are affordable and quite fast to produce. But when it comes to the 

disadvantages of this model, the main aspect is the probability of wrong insertion 

direction of the membrane protein. The binding motif of the protein could end up 

being on the inside of the liposome. Nanodiscs do not have this problem, as they 

allow the membrane protein to be accessible from both ends. On the other hand, 

they are more costly to make and the process takes longer.  

Production of CX3CR1 in both lipid models was also carried out by the PURE 

system, for the reasons already mentioned during the thesis. But apart from that, 

it was chosen for its ability to supplement the reaction with external components. 

In this case, elements were added to help the formation of disulphide bonds in the 

protein.  
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The production of CX3CR1 membrane protein was satisfactory, and the final aim 

of the thesis involved the design of a method to screen and select possible peptide 

targets for this protein. The use of the PURE system and mRNA display would be 

part of this methodology as they have been proven during this thesis to be 

incredibly valuable. The whole concept of this method as one will be explained 

more in detail in the next section (Section 6.2 Future Work). CX3CR1 has a natural 

ligand, called CX3CL1. The knowledge of this molecule and its binding sequence 

helped in the design of a possible DNA library for CX3CR1 drug screening. The 

chemokine domain of CX3CL1 binds to CX3CR1. But this domain is still quite long 

at 76 amino acids. Complete randomization of the whole domain is not possible as 

the total number of possible variants would be too high for any display system. But 

a variation of some of the smaller domain motifs is possible.  In conjunction, all 

the motifs could give an idea of a variant chemokine domain protein with 

enhanced binding affinity for CX3CR1. Testing of smaller peptides instead of the 

whole domain is also possible and could yield important targets for the membrane 

protein.  

To finalize, this thesis has brought insight into the use of cell-free systems, display 

methods, membrane protein and synthetic lipid membranes. In a partnership, the 

possibility to create a screening and selection method of drug targets for 

membrane proteins is possible. This thesis has demonstrated the advantages and 

efficiency of all the elements discussed. The next step to be taken is to use this in 



 Chapter 6 
 

228 
 

conjunction in an interdisciplinary way to discover how far their possibilities can 

reach together.   

6.2 Future Work 

One important aspect that could be explored further is the molecular structure of 

the T7 promoter variants that both enhanced and lowered the final protein yield. 

The molecular aspect of the transcription process by the T7 RNA Polymerase (T7 

RNAP) has been studied before 1. And although explanations were hypothesised 

about the effect of the mutation’s position within the promoter, more can be 

explored with the information already available about the T7 RNAP. By looking 

individually at each substitution and the molecular interaction the new nucleotide 

has with the T7 RNA polymerase, more can be learned about why each specific 

mutation has certain effects on the transcription process like what has already been 

done with the core T7 promoter sequence 2. Combinations of more than one 

substitution in the promoter could enhance even more the activity of the T7 RNAP. 

Or just a random T7 promoter library could be further explored for intricate 

variations 3. The existence of a T7 promoter library with a spectrum of promoter 

strength is valuable when designing genetic circuits. As every pathway, whether 

natural or synthetic, has different yield outcomes, multiple combinations could be 

designed in the same reaction environment.  

When it comes to the membrane protein production in lipid vesicles, 

improvements are suggested here. The addition to the PURE system of certain 

elements can aid in the correct integration into the liposome surface. By 
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implementing the complex protein system known as translocation channel, the 

integration of GPCRs into the liposome membrane can be enhanced 4. This could 

be used in further studies with different types of membrane proteins and GPCRs 

for liposome display methods. 

The production and purification efficiency of CX3CR1 in nanodiscs is another 

aspect worth investing more time and resources. The purification carried out was 

performed using the HA-tag located in the CX3CR1 receptor. The first thing to 

improve would be to elongate the linker sequence between the receptor and the 

tag. This will allow better access of the HAtag to the antibody surface, and thus 

allowing more samples to be bound and not washed away. The second thing would 

be to test different tag. The HA tag has 44% hydrophobic amino acids. These are 

more prone to interact with the nanodiscs phospholipids and be unavailable for 

binding and selection. A possible option to use could be the FLAG-tag, as it has no 

hydrophobic amino acids. Apart from the attached tag, modification of both the 

PURE system components and size and amount of nanodiscs in the reaction, could 

improve the final product yield too. So these parameters also need optimization 

for each different membrane protein. 

Different types of GPCRs are also worth testing. Although CX3CR1 was chosen, 

many more are also suitable targets, like CCR5. Furthermore, modifications of this 

protein could aid in their production or stability, making them more suitable for 

research. For example, insertion of a rubredoxin into the third intracellular loop of 

CCR5 enhanced thermostability 5–7. 
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The lipid composition used for both liposomes and nanodiscs was already pre-

determined and for the expression of CX3CR1 it worked well. But this aspect has 

room to growth for the level of protein expression. Furthermore, if these samples 

were planned to be used in cells or for clinical trial, the composition is very 

important as the type of lipids used play an important role in membrane fluidity 

and absorption.  

The final and most important aspect of future work for this thesis is the integration 

of all the acquired knowledge. The creation of a method that could screen and 

select possible targets for membrane proteins is the final goal. During this thesis, 

it was learnt the beneficial aspect of the PURE system, of the use of mRNA display 

for screening and selection processes. The production of a G-coupled receptor 

protein was carried out in two different types of synthetic lipid membranes. Even 

a possible random DNA library of possible drug targets was designed. The 

proposed system (Figure 6.A) is based on the mRNA display method used in 

chapter 4.  It starts by using the PURE system to produce all the random mRNA-

peptides conjugates from the designed library. The selection process will use the 

produced membrane receptors, in both vesicles and nanodiscs, to scan for high-

affinity targets. By going through several rounds of selection, possible candidates 

and high binding motifs will be discovered.  

GPCRs, like most membrane proteins, are extremely difficult to produce and purify 

efficiently. Also, due to the difficulty in working with membrane proteins, 3D 

structures of most of them are not available 8. Screening of possible ligands for 
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membrane proteins not only can be performed for drug targeting purposes but also 

to understand better the binding and structures of the receptors they bind to. By 

analysing the sequences and motifs of the candidates with high affinity, patterns 

can be observed and hypothesis can be proposed about the membrane protein 

structure or binding regions. This approach could help dissect the structures of 

proteins from the same family or that have the same function. Predicting new 

candidates using computer modelling is limited by the lack of available data 9. So 

the more data collected the better the aid in predicting new candidates for the 

target protein or other similar proteins. Furthermore, this lack of available data 

puts more focus on using High-Throughput Screening (HTS) methods that can 

cope with a high number of candidates in libraries and perform rapid testing 10. 

Minimization of unwanted interactions of the candidates with other molecules is 

also necessary to increase as much as possible the efficiency of screening. The 

demanding conditions for drug screening of membrane proteins could be 

summary in categories: (1) Rapid and easy production and purification of 

membrane proteins, (2) high-throughput screening of big libraries and rapid 

testing, and (3) high efficiency and minimal side interactions of the candidates 

and/or membrane protein.  

The proposed method (Figure 6.A) could meet these conditions. The production 

and purification of the GPCR receptor in both vesicles and nanodiscs were 

performed successfully. It was not a challenging task and could be performed 

within 1 day, as long as stocks of nanodiscs are present. The efficiency of 
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purification was acceptable (63% efficiency showed in chapter 5) and the amount 

of protein obtained enough to perform further experiments (0.021 mg/ml CX3CR1 

quantification showed in chapter 5). But as already explained during this section, 

these parameters have the potential to be optimized. The use of mRNA display to 

screen and select for candidates already provides the possibility to test big libraries 

(1015). And the fact that it is performed in vitro already reduces the time needed to 

perform one round of selection (24 h) and minimizes the presence of unwanted 

components. Finally, the PURE system, as it is composed of purified components, 

minimizes contaminants in the reaction that could cause unwanted interactions. 

It also aids in the efficiency rate for mRNA-peptide conjugates (40% rate showed 

in chapter 4). Combining all these elements could create an optimal system for the 

screening and selection of membrane proteins.  
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Figure 6.A: Scheme of possible mRNA display method for membrane proteins. The diagram 

shows how the display could be performed using membrane proteins in nanodiscs (upper) and lipid 

vesicles (lower). It starts by a random DNA library, which after translation by a cell-free system, it 

creates mRNA-peptides complexes. These conjugates are incubated with the membrane proteins 

to screen for possible targets. After binding and washing steps, the selected candidates will be 

sequenced. Several rounds can be performed to enhance the number of candidates with high 

binding affinity.   
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Appendix 
 

A.1 Appendix for Chapter 3 

 

A.1.1 Single mutation plots 

The individual plots of each variant (Figure A.1.1) were used to determine the 

expression rate of each one. It also shows differently the data found in the 

heatmaps (Chapter 3, Figure 3.G) as it can be seen that as the mutation advance 

more into the promoter sequence, they become more detrimental. Combined 

time-course plots for both cell-free systems (Figure A.1.2) shows better the wide 

range of protein expression variation that a mutant library provides. It also shows 

similar patterns as the simulated cases (Chapter 3, Figure 3.M) especially the cases 

with the extended sequences.  
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Figure A.1.1 (next page): Time-course of GFP fluorescence over a period of 12 h for all the 51 

mutants. Each plot shows the time course of sfGFP expression by three variants for each position 

of the T7 promoter, along with that by the consensus sequence (denoted as WT) for comparison. 

(A, B, C) GFP expression in the PURE system, and (D, E, F) in the extract-based system. 

 

 

  



 Appendix 
 

237 
 

 

 

 

 

 

 

 

 

 



 Appendix 
 

238 
 

 

 

 

 

 

 

 

 

 



 Appendix 
 

239 
 

 

 

 

 

 

 

 

 



 Appendix 
 

240 
 

 

 

 

 

 

 

 

 



 Appendix 
 

241 
 

 

 

 

 

 
 

 

 



 Appendix 
 

242 
 

 

 

Figure A.1.2: Time-course of GFP fluorescence using the consensus T7 promoter sequence 

and its variants. The data used in Figure A.1.1 were plotted in one graph. (A) Time-course of 

protein expression for the core sequence variants in the PURE system, (B) the core sequence 

variants in the extract-based system, (C) the extended sequence variants in the PURE system, and 

(D) the extended variants in the extract-based system. 
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A.1.2 Reproducibility plots 

 

 

 

Figure A.1.3: Scatter plots for comparing two linear DNA templates. Normalized GFP 

fluorescence by the extended sequence (the core with extra bases at 5’ and 3’-ends, y-axis) was 

plotted against that by the core sequence (x-axis). (A) The PURE system. (B) The extract-based 

system. 

 

The reproducibility values (Figure A.1.2) comparing the core sequences and the 

extended versions show the difference in expression level that adding extra bases 

caused. The value is lower in the extract-based system proving that this base 

addition has a higher impact on this type of system. However, the correlation 

between extended and non-extended sequences showed good values suggesting 

that the gene expression levels are consistent overall.  
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A.1.3 Absolute expression levels 

 

Table A.1.1: Fold change of the maximum GFP fluorescence (right column) for each variant (left 

column) expressed in the extract-based system. Values in the middle column show the absolute 

maximum values of a variant in the core and extended sequence, respectively. 

 

Variant name Core Extended Fold change 
Consensus 2779 28456 10.24 

-17A 1739.5 13117 7.54 
-17C 10274.5 23652 2.30 
-17G 4457 10596 2.38 
-16C 579 2211 3.82 
-16G 1011 2373 2.35 
-16T 6066.5 17831 2.94 
-15C 799.5 1487 1.86 
-15G 714.5 1690 2.37 
-15T 5270 15626 2.96 
-14A 633 11837 18.70 
-14C 883.5 3428 3.88 
-14G 4148 1004 0.24 
-13C 1973.5 10131 5.13 
-13G 4316 12770 2.96 
-13T 5878.5 16383 2.79 
-12A 3950 12724 3.22 
-12G 2760.5 17495 6.34 
-12T 1105 10797 9.77 
-11A 1823.5 13436 7.37 
-11C 759.5 430 0.57 
-11T 640.5 505 0.79 
-10C 1132.5 7191 6.35 
-10G 418 1036 2.48 
-10T 696 3900 5.60 

Average 2592.34 9604.21 4.60 
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The absolute expression levels increased more than four-fold on average for the 

extract-based system (Table A.1.1). For the PURE system, the sfGFP levels of the 

extended sequences were similar to those with no extra bases (Table A.1.2). 

 

Table A.1.2: Fold change of the maximum GFP fluorescence (right column) for each variant (left 

column) expressed in the PURE system. Values in the middle column show the absolute maximum 

values of a variant in the core and extended sequence, respectively. 

 

Variant name Core Extended Fold change 
Consensus 7424 9160.5 1.23 

-17A 11243.5 9151 0.81 
-17C 8517 9336 1.10 
-17G 10274 10016.5 0.97 
-16C 5056 4528 0.90 
-16G 7906 5624 0.71 
-16T 10061 9036 0.90 
-15C 3821.5 2693.5 0.70 
-15G 4532 3233.5 0.71 
-15T 9436.5 9273.5 0.98 
-14A 7693 10279 1.34 
-14C 6153.5 6836.5 1.11 
-14G 3563.5 3991.5 1.12 
-13C 9738.5 9850 1.01 
-13G 11084.5 8245.5 0.74 
-13T 9304.5 9340.5 1.00 
-12A 9901.5 8811 0.89 
-12G 9132.5 9297 1.02 
-12T 8813 9612.5 1.09 
-11A 11248 9752.5 0.87 
-11C 5540.5 1554 0.28 
-11T 1675.5 208 0.12 
-10C 9629.5 9571 0.99 
-10G 6302.5 2913 0.46 
-10T 8077 9100.5 1.13 

Average 7845.16 7256.6 0.92 
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A.1.4 Modelling plots 

 

Figure A.1.4: (A) Simulated cell-free protein expression in the PURE system using the standard 

model. DNA concentration (top), mRNA concentration (middle), and protein expression 

(bottom) were shown. The parameter 𝑘𝑘𝑇𝑇𝑇𝑇 was varied (colours) while the other parameters were 

fixed. (B) Scatter plot of the rate of protein expression against the maximum protein expression. 

The values were obtained by fitting the simulated data in (A) to a logistic curve. 
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This plot (Figure A.1.3) shows the simulation performed on the PURE cell-free 

system with the same equations that were used for the extract-based system. Upon 

performing this simulation it could be seen that the expression patterns matched 

the observed ones, but the unique scatter pattern was not seen (Chapter 3, Figure 

3.K, A). This implied that some factors were not being taken into consideration in 

the theoretical model and thus it was adjusted for the PURE system (Chapter 3, 

Equation 3.A). 
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A.2 Appendix for Chapter 4 

A.2.1 DNA Sequences  

 

 

 

Figure A.2.1: DNA library design. Two DNA libraries (FLAG-random and 10aa-random) were 

designed to validate the performance of our newly refined mRNA, cDNA display method. FLAG-

control DNA is used specifically for western blot analysis of mRNA-peptide and mRNA/cDNA-

peptide conjugate confirmation. 
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The ‘FLAG-random library’ contained a fixed sequence for the first five amino acids 

of the FLAG epitope (DYKDDDDK); followed by three consecutive degenerate 

“RRN” codons corresponding to seven amino acids (Asn, Lys, Asp, Glu, Ser, Arg 

and Gly). The ‘10aa-random library’ contained ten degenerate codons (“VNN” and 

“NNY”) which corresponded to 16 and 17 different amino acids, respectively. The 

number of different sequences in both FLAG-random and 10aa-random libraries 

was 343 and 1.7 x 1012, respectively.  

Both DNA libraries contain a T7 promoter and ribosome binding site (RBS), for the 

use with a T7 RNA Polymerase. The leader sequence at the 3’ region was 

complementary to the puromycin-FITC DNA tag (Figure A.2.2) for posterior 

ligation.  
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Figure A.2.2: Detailed image of the puromycin-FITC DNA tag ligation process. Parting from 

the DNA library, in vitro transcription was performed obtaining mRNA constructs. Afterwards, 

puromycin tags (DNA puro-tag) were attached by T4 RNA Ligase ligation.    

 

The DNA Puro-tag (Figure A.2.2) is ligated to the mRNA sequence by the T4 RNA 

ligase by connecting the 3’ end from the single-stranded mRNA construct to the 

phosphorylated 5’ end of the DNA tag. This tag will later react with the peptidyl-

tRNA to form a covalent link between mRNA and peptide. to connect. A rare GGA 

codon was placed at the 3’ end and a polyA (18 nt) in the puromycin-FITC DNA tag 

to help the molecule incorporate into the stalled ribosome.  
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A.2.1 Gel images  

 

Figure A.2.3: Reverse transcription (RT)-PCR after selection. Affinity selected mRNA-peptide 

conjugates (mRNA display) and mRNA/cDNA-peptide conjugates (cDNA display) bound anti-

FLAG M2 antibody magnetic beads were subjected to RT-PCR. For each round, total 6 µl x 8 

reaction tubes were prepared for each display method to monitor the yield of amplified product for 

every 5 cycles (0 to 35 cycles). Expected size is a mixture of 141 bp (FLAG-random) and 150 bp (10aa-

random). 
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A test was performed (Figure A.2.3) to determine the optimal number of cycles for 

the RT-PCR. This is to avoid over-amplification of the samples. For each round of 

selection, the amplified product was checked every 5 cycles (from 0 to 35 cycles). 

Amplified DNA products, started being seen at the 15th cycle and were saturated 

at the 20th cycle. Band intensity of the 15th RT-PCR cycle was higher than previous 

rounds. This proves that the quantity of the sample was higher as the rounds 

progressed. A non-specific band, probably from non-specific binding of primers, 

appeared in every lane at around 200 bp. The optimal number of cycles for the first 

two wounds was 20 cycles and for the 3 rd round, 16.  
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A.3 Appendix for Chapter 5 

 

A.3.1 Microscope visualization  

 

 

Figure A.3.1: Microscope images of lipid vesicles using the PURE system and sfGFP as the 

reporter gene. Vesicles have a lipid composition of POPC: Cholesterol (1: 1). The inner solution 

contains the PUREfrex 1.0 system and sfGFP DNA. The image on the left is phase contrast. The one 

on the middle shows fluorescence of NileRed attached to the lipid membrane. The image of the 

right represents the green fluorescence of sfGFP being produced inside the vesicles by the PURE 

system. The bar size, on the left upper corner of each image, is 50 µm.  
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