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Abstract   

This thesis focuses on two fields of machine learning in quantitative trading. The first field 

uses machine learning to forecast financial time series (Chapters 2 and 3), and then builds a 

simple trading strategy based on the forecast results. The second (Chapter 4) applies machine 

learning to optimize decision-making for pairs trading.  

 

In Chapter 2, a hybrid Support Vector Machine (SVM) model is proposed and applied to the 

task of forecasting the daily returns of five popular stock indices in the world, including the 

S&P500, NKY, CAC, FTSE100 and DAX. The trading application covers the 1997 Asian 

financial crisis and 2007-2008 global financial crisis. The originality of this work is that the 

Binary Gravity Search Algorithm (BGSA) is utilized, in order to optimize the parameters 

and inputs of SVM. The results show that the forecasts made by this model are significantly 

better than the Random Walk (RW), SVM, best predictors and Buy-and-Hold. The average 

accuracy of BGSA-SVM for five stock indices is 52.6%-53.1%. The performance of the 

BGSA-SVM model is not affected by the market crisis, which shows the robustness of this 

model. In general, this study proves that a profitable trading strategy based on BGSA-SVM 

prediction can be realized in a real stock market. 

 

Chapter 3 focuses on the application of Artificial Neural Networks (ANNs) in forecasting 

stock indices. It applies the Multi-layer Perceptron (MLP), Convolution Neural Network 

(CNN) and Long Short-Term Memory (LSTM) neural network to the task of forecasting and 

trading FTSE100 and INDU indices. The forecasting accuracy and trading performances of 

MLP, CNN and LSTM are compared under the binary classifications architecture and eight 

classifications architecture. Then, Chapter 3 combines the forecasts of three ANNs (MLP, 

CNN and LSTM) by Simple Average, Granger-Ramanathan’s Regression Approach (GRR) 

and the Least Absolute Shrinkage and Selection Operator (LASSO). Finally, this chapter 

uses different leverage ratios in trading according to the different daily forecasting 

probability to improve the trading performance. In Chapter 3, the statistical and trading 

performances are estimated throughout the period 2000-2018. LSTM slightly outperforms 

MLP and CNN in terms of average accuracy and average annualized returns. The 

combination methods do not present improved empirical evidence. Trading using different 

leverage ratios improves the annualized average return, while the volatility increases.  
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Chapter 4 uses five pairs trading strategies to conduct in-sample training and backtesting on 

35 commodities in the major commodity markets from 1980 to 2018. The Distance Method 

(DIM) and the Co-integration Approach (CA) are used for pairs formation. The Simple 

Thresholds (ST) strategy, Genetic Algorithm (GA) and Deep Reinforcement Learning (DRL) 

are employed to determine trading actions. Traditional DIM-ST, CA-ST and CA-DIM-ST 

are used as benchmark models. The GA is used to optimize the trading thresholds in ST 

strategy, which is called the CA-GA-ST strategy. Chapter 4 proposes a novel DRL structure 

for determining trading actions, which replaces the ST decision method. This novel DRL 

structure is then combined with CA and called the CA-DRL trading strategy. The average 

annualized returns of the traditional DIM-ST, CA-ST and CA-DIM-ST methods are close to 

zero. CA-GA-ST uses GA to optimize searches for thresholds. GA selects a smaller range of 

thresholds, which improves the in-sample performance. However, the average out-of-sample 

performance only improves slightly, with an average annual return of 1.84% but an increased 

risk. CA-DRL strategy uses CA to select pairs and then employs DRL to trade the pairs, 

providing a satisfactory trading performance: the average annualized return reaches 12.49%; 

the Sharpe Ratio reaches 1.853. Thus, the CA-DRL trading strategy is significantly superior 

to traditional methods and to CA-GA-ST.  
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Chapter 1 Introduction  

1.1 Background and motivation 

The performance of quantitative trading is mainly affected by two factors: the forecast of the 

future and the rules of trading strategies. A high forecasting accuracy rate provides the 

potential to establish a profitable portfolio for quantitative trading. A reasonable trading 

strategy further enhances the trading performance and even brings portfolios close to 

arbitrage. In the above steps, the keys to improving the quantitative trading performance are 

making a valid forecast and making the optimum trading decisions in trading strategies. For 

traders, the trading process can also be divided into these two steps, to judge the trend of 

future asset prices and make trading decisions based on experience and established rules. 

These jobs require traders to accumulate extensive experience. Machine learning provides a 

possibility that inexperienced traders can complete these two key steps of trading and gain 

profits relying on machine learning algorithms. 

 

Machine learning techniques have two significant improvements in recent decades. The first 

was in the late 1970s when MLP was proven to be able to fit non-linear functions, which 

theoretically implies that machine learning algorithms can learn any type of functions and 

have the potential to solve many complex problems. The second was in the last two decades, 

machine learning algorithms are more advanced and have wide applications with the 

improvement of computer hardware technology. The application of machine learning 

algorithms improves productivity. Machine learning techniques provide unparalleled 

efficiency in carrying out a large number of repetitive tasks, such as image and text 

recognition. For example, the classification of thousands of images is time-consuming for 

humans, while machine learning algorithms can quickly classify images. Additionally, 

machine learning has also made progress in dealing with complex and fuzzy problems in the 

past decade, such as AlphaGo (which is proficient at playing the game Go). The capability 

of performing challenging tasks further broadens the applications of machine learning 

algorithms.  

 

The prediction and decision-making in financial markets are complex and fuzzy tasks, which 
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are also the focuses of machine learning algorithms. This study uses machine learning 

algorithms to complete the two crucial steps in quantitative trading: financial time series 

forecasting (Chapters 2 and 3) and trading decision-making (Chapter 4). Financial time 

series forecasting is a task with multi-constraints and various objectives, as it needs to take 

into account high-dimensional financial data, behavioural factors and other exogenous 

effects. Therefore, linear models often face challenges in processing high-dimensional and 

non-linear data. It is also difficult for traders to forecast asset prices based on their experience, 

since they are incapable of making accurate calculations on a large amount of messy data. 

However, machine learning-based techniques have had promising performances in trading 

applications (Van-Gestel et al., 2001; Kim, 2003; Sermpinis et al., 2016, etc.). Many studies 

use machine learning techniques, such as clustering algorithms (Shen et al., 2011; Lai et al., 

2009), SVMs (Kim, 2003; Huang, 2005; Dunis et al., 2013, etc.) and ANN (Guresen et al., 

2011; Kim & Han, 2000; Fernandez-Rodrıguez et al., 2000; Jasic, 2004) to predict financial 

time series.  

 

Chapters 2 and 3 focus on two main types of machine learning methods: hybrid SVMs and 

Deep Neural Networks (DNNs). Although these two methods are widely used in forecasting 

financial time series, there are gaps in the model improvement that need to be filled. As 

SVM’s performance is significantly affected by parameters and inputs, Chapter 2 improves 

SVM’s performance by optimizing the parameters and inputs with BGSA, and then forecasts 

the sign of return for stock indices. Regarding DNN, although previous studies apply various 

types of DNNs to the task of stock indices forecasting, they use a relatively small number of 

layers in DNNs and do not compare mainstream DNNs under the same inputs, which are the 

gaps when using DNN in stock indices forecasting. Chapter 3 uses MLP, CNN, LSTM and 

their combined method to forecast stock indices. The aims of Chapter 3 are to adjust the 

structure of those Neural Networks (NNs) to fit the financial time series data, achieve higher 

accuracy, and compare the performances of different NNs to fill the gap of the literature. 

 

In respect of trading strategy optimization, the use of machine learning methods to optimize 

trading actions is a promising and cutting-edge field. Two reasons for choosing machine 

learning methods to optimize trading strategies are worth noting. First, the optimization of 

trading actions is difficult for traditional methods, while machine learning methods are adept 

in solving this type of problem. The second reason is that the trigger conditions of the trading 

actions of the traditional trading strategy are relatively inflexible, and thus a smarter ‘brain’ 
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is required to make reasonable trading actions. Compared with conventional learning tasks, 

dynamic action optimization is more challenging due to the lack of supervised information 

from human experts. Among different kinds of machine learning algorithms, DRL provides 

an excellent model framework for dynamic action optimization tasks, and has made a good 

performance in playing games (Guo et al., 2014; Mnih et al., 2015; Levine et al., 2016; 

Watter et al., 2015). In recent years, DRL has gradually been applied to the field of 

quantitative trading (Deng et al., 2016; Buehler et al., 2019; Xiong et al., 2018).  

 

Chapter 4 focuses on optimizing the trading strategy for pairs trading by DRL and GA. Pair 

trading is a relatively mature trading method, which has been used as early as the 1980s.  

Although the traditional pairs trading methods, such as CA-ST and DIM-ST, have been 

successfully applied previously, there are still several questions to be addressed. Can these 

traditional methods achieve statistical arbitrage in the recent futures market? How can 

investors tap the potential of pairs trading strategies and get higher returns? There is no 

literature on using DRL in pairs trading portfolios, can DRL outperform traditional methods 

for pair trading? The superiority of machine learning techniques in optimizing trading 

strategies and these questions motivate Chapter 4. 

 

1.2 Structure and contribution  

The main focus of this thesis is to develop machine learning models for forecasting tasks 

and trading decision-making tasks. Chapters 2 and 3 improve the SVMs and NNs to solve 

the forecasting task of financial time series, and successfully improve the forecasting 

accuracy and returns. In Chapter 4, GA and DRL are used to optimize the trading actions of 

pairs trading. Compared with the traditional method, DRL successfully improves the return 

under the same risk. Chapter 5 makes a conclusion for the thesis and explains the limitations 

and future works.  

 

The main contribution of Chapter 2 is that it introduces a novel BGSA-SVM machine 

learning model that is suitable for forecasting financial time series. The parameters and 

inputs of SVM are optimized by BGSA for the first time and have achieved a better 

performance than SVM. Much literature focuses on optimizing SVM (especially with 

heuristic methods), as previous literature emphasizes that SVM’s performance is 
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significantly affected by parameters. Compared with hybrid SVM models of prior literature, 

the advantage of BGSA-SVM is that it can forecast the financial time series with high-

dimensional inputs while losing less information. This means that BGSA-SVM is more 

promising to have a higher performance. Another contribution of Chapter 2 is to successfully 

improve the forecasting accuracy of stock indices, proving that BGSA-SVM is significantly 

better than benchmark models with Diebold-Mariano (DM) and Giacomini-White (GW) 

tests. Trading performances show that BGSA-SVM beats all other benchmark models in 

average returns and the Sharpe Ratio. The high forecasting accuracy and the best trading 

performance prove the ability of BGSA-SVM for stock index forecasting. The results of 

BGSA-SVM support the view that SVM’s forecasting performance can be significantly 

improved by optimizing the parameters and inputs of SVM.  

 

The contributions of Chapter 3 are described in three aspects. The first is that it uses MLP, 

CNN, and LSTM to forecast stock indices in the same inputs pool, and improves the 

structures of MLP, and CNN for stock indices forecasting. The results indicate that LSTM is 

slightly better than the other two NNs in terms of average performance. This phenomenon 

shows that the improvement of neural networks’ algorithms only has a small impact on stock 

indices forecasting, which is due to the limitation of the information contained in the inputs. 

A significant increase in forecasting accuracy requires the selection of better inputs. Second, 

Chapter 3 provides evidence that the pre-processing of inputs affects the performances of 

NNs. It uses different inputs for MLP, finding that more inputs do not lead to a better result 

as inefficient inputs reduce the model’s forecasting accuracy. Third, a leverage rule is 

designed in Chapter 3 based on the daily forecast probabilities given by NNs, which 

improves the average annualized return and Sharpe Ratio. 

 

Chapter 4 makes three main contributions. First, it uses a novel CA-DRL for the first time 

to trade a large number of commodities and successfully improves the trading performance. 

The empirical results show that traditional methods only generate very small returns, while 

CA-DRL yields significantly higher annualized returns with similar risks. Second, Chapter 

4 solves two crucial problems in the DRL for pairs trading: 1) falling into the local optimum; 

2) the huge amount of calculation. The pre-training technique is adopted to solve these two 

problems and enable DRL to form portfolios with a great number of pairs. In the pre-training 

process, one selected pair (as the pre-training sample) is trained multiple times to obtain both 

good in-sample and out-of-sample performances. The connection weights of the DNN (the 
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brain of DRL) in the pre-trained model are used as the initial connection weights of DNNs 

for all other DRL models. The pre-training method makes the training repeatable and reduces 

the training times for other DRL models. Third, GA is applied to optimize the parameters in 

ST, which slightly improves the annualized returns. The performance of CA-GA-ST 

indicates that even if the traditional method obtains the optimal in-sample solution, it still 

cannot significantly improve out-of-sample performance. Chapter 4 has been modified to a 

paper and submitted to a journal.  
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Chapter 2 A stock index trading strategy based on Binary 

Gravity Search Algorithm and Support Vector Machine 

2.1 Introduction  

In this chapter, a hybrid Support Vector Machine (SVM) model is proposed and applied to 

the task of forecasting daily returns of five popular stock indices in the world, including 

S&P500, NKY, CAC, FTSE100 and DAX. The trading application covers the 1997 Asian 

financial crisis and 2007-2008 global financial crisis. The originality of this work is that the 

Binary Gravity Search Algorithm (BGSA) is utilized, in order to optimize the parameters 

and the inputs of SVM. The results show that the prediction of this model is distinctly better 

than the RW, SVM, best predictors and Buy-and-Hold. The average accuracy of BGSA-

SVM for five stock indices is 52.6%-53.1%. The performance of BGSA-SVM model is not 

affected by the market crisis, which shows the robustness of this model. In general, this 

chapter proves that a profitable trading strategy based on BGSA-SVM prediction can be 

realized in a real stock market. 

 

As one kind of the most widely used machine learning algorithms, SVMs are expected to 

forecast the financial market based on the feature of SVMs, particularly in stock index 

prediction. For example, the daily return of a stock index is determined by many factors and 

some of them are vague. Additionally, the relationship between these factors with the daily 

return is non-linear. When using related historical features and some samples to train SVMs, 

the SVMs are able to forecast the stock index. However, their forecasting performances are 

significantly affected by inputs and parameters (Mukherjee et al., 1997; Trafalis & Huseyin, 

2000; Kim, 2003). Unsuitable inputs and parameters cause over-fitting, under-fitting or low 

accuracy in the out-of-sample. Thus, selecting proper inputs and parameters is essential in 

SVM training. This study employs a heuristic search algorithm called Binary Gravity Search 

Algorithm to optimize the inputs and parameters of the SVM classifier. Heuristic search 

algorithms have a great deal of potential when it comes to dealing with high-dimensional 

optimization problems with multiple parameters. The optimization of the SVM classifier is 

a task with multiple discontinuous parameters with multi-peak. BGSA yields superior 

performance in solving this kind of problem (Rashedi & Nezamabadi-pour, 2012). Hence, a 
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hybrid BGSA-SVM model is adopted here that aims to forecast the sign for the log return of 

stock indices. 

 

One motivation for this chapter is to provide an effective prediction model that can be 

utilized as a basis for trading strategies. The expected accuracy of RW is 50%. An effective 

prediction model can significantly impact the trading performance and bring a sizable 

increase in returns by obtaining above 50% expected accuracy. The other motivation is to 

introduce a novel hybrid SVM model that improves the SVM model in financial time series 

forecasting. 

 

The rest of the chapter is organized as follows. The literature review on SVMs to predict 

financial time series and heuristics is presented in section 2.2. Section 2.3 describes the 

dataset employed for this study. The algorithms and the model structure are examined in 

section 2.4. Then the statistical evaluation, trading performance and the conclusion are 

respectively presented in sections 2.5, 2.6 and 2.7. 

 

2.2 Literature Review of SVM and heuristic methods in finance 

2.2.1 Support Vector Machines 

The original SVM was generated by Vapnik in 1979. Since Vapink improved it in 1995, 

SVMs have been applied in various research fields as the non-linear classifier and non-linear 

regression, such as pattern recognition, speaker identification, density estimation, 

benchmark time series prediction, credit rating prediction and bankruptcy prediction. SVMs 

adapt to solve classification and regression problems with high-dimensional inputs, 

especially in picture recognition and text classification (Schuldt et al., 2004). The soft margin 

method and the kernel function are implemented to address the problem of linear 

inseparability in SVM optimization. SVM can successfully deal with a small number of 

training sets with higher classification accuracy than the traditional technique (Mantero et 

al., 2005). The learning process of SVM follows structural risk minimization, which allows 

it to minimize errors on unseen data without probability distribution assumptions, whereas 

statistical methods usually need to have prior assumptions of data distribution such as 

maximum likelihood estimation (Mountrakis et al., 2011).  
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SVMs have generally been used in time series forecasting. For instance, Mukherjee et al. 

(1997) apply a Support Vector Regression (SVR) in chaotic time series forecasting as a new 

regression technique at that time. Comparing the performance of SVR with different 

approximation techniques, they find that the SVR outperforms neural networks, polynomial 

and rational approximation, local polynomial techniques and Radial Basis Functions. In 

addition, they conclude that the SVR is a very promising regression technique. Mukherjee 

et al. (1997) also discuss the sensitivity of SVR to parameters and inputs dimension. 

However, they do not offer any specific solutions for determining the dimensions of 

parameters and inputs. Similarly, Trafalis & Huseyin (2000) apply SVR to predict the stock 

prices of AOL, IBM and YAHOO. They state that SVR is a robust method for function 

approximation, compared with Radial Basis Function Networks and Back-propagation 

algorithm (BP) in financial time series. With regard to the selection of parameters, in contrast 

to Mukherjee et al. (1997), Trafalis & Huseyin (2000) fix two parameters in SVR and adjust 

only one to observe the final predictive performance of SVR. The impact of the number of 

inputs on the forecasting performance is not considered by Trafalis & Huseyin (2000). The 

kernel functions used in both studies are Radial Basis Function (RBF). 

 

After many studies in financial time series, Cao & Tay (2001; 2002; 2003) conclude that 

SVMs have better performances than the BP neural networks, with the criteria including 

directional symmetry, normalized mean square error, mean absolute error and weighted 

directional symmetry. In addition, they analyze four reasons for this superior performance: 

the structural risk minimization principle, fewer free parameters, converging to global 

solutions, less care and experience required than for the validation set in BP networks. They 

also indicate that the selection of parameters has a significant impact on forecasting accuracy 

and therefore, they continue to research the selection of the kernel function and parameters 

of SVMs.  

 

Kim (2003) has a similar view as he adopts SVMs to forecast stock indices and compares 

them with BP neural networks and Case Based Reasoning (CBR). He also stresses the 

importance of selecting parameters. Ince & Trafalis (2006) predict exchange rates with a 

hybrid two-stage forecasting model, concluding that the hybrid SVM model and 

Autoregressive Integrated Moving Average (ARIMA) or Vector Autoregressive (VAR) 

outperform the hybrid model of the ANN with these two techniques. However, it is not 
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enough to judge the pros and cons of SVMs and neural networks just on the accuracy and 

peak value. The classification hyper-plane of SVMs is continuous and smooth, while it is 

discontinuous in BP neural networks, which leads to the result that BP neural networks are 

more sensitive to the interference of noise. SVMs and neural networks are both excellent 

classification tools. Their performances depend on the way they are used; for instance, in the 

above research, the inputs used are beneficial for SVMs, which cannot indicate that SVMs 

are more adaptable than BP neural networks in terms of financial time series forecasting. 

 

The SVM classifier is also used to classify stocks. Fan & Palaniswami (2001) use the SVM 

to classify the stocks on the Australian Stock Exchange. They seek to select outperforming 

stocks that beat the market. They seem to get a good result, as the portfolio of selected stocks 

remarkably outperforms the benchmark during five test years, reaching 207% compared with 

the result (71%) of the benchmark. However, Fan & Palaniswami use data from 1992-2000 

when the stock market kept rising, which throws doubt on their result. The stocks they select 

are partial to high market risk, which means the portfolio tends to lose more than the 

benchmark when the whole market goes down. 

 

2.2.2 Data pre-processing methods for SVMs 

Data pre-processing is an important component in a supervised learning model. In a training 

set, many variables are related, or vary greatly in order of magnitude, which is 

disadvantageous for learning algorithms. Therefore, data pre-processing methods are needed 

to optimize the data matrix with a higher information repetition rate, such as dimensionality 

reduction, normalization and so on. Some research improves the accuracy of SVM models 

by optimizing the training set. For example, Lu et al. (2009) indicate that inherent high noise 

is a key problem for financial time series forecasting. To reduce the impact of inherent noise, 

they use Independent Component Analysis (ICA) to optimize the inputs of the SVR model. 

Their empirical results show that the model that pre-processes data with ICA performs better 

than the model with a non-filtered training set and an RW model. In addition to ICA, 

Principal Components Analysis (PCA) is also used to optimize the inputs.  

 

PCA is an exploratory multivariable technique for transferring correlated variables to a 

smaller number of uncorrelated variables (Jackson, 2005). Principal components are the 

linear combination of variables with different weights (called eigenvectors). PCA represents 
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intricate multi-dimensional data with fewer principal components without losing much 

valuable information. As a dimensionality reduction method, PCA can reduce the inputs of 

a machine learning model significantly, which makes the whole algorithm faster and more 

effective while losing less information. 

 

In Neumann’s (2002) software risk categorization model, PCA is used to provide a way of 

normalizing the input data and making it orthogonal, thus eliminating the negative impacts 

of multicollinearity. The machine learning algorithm used for Neumann’s model is ANN, 

which classifies high-risk software successfully. Similarly, Yetilmezsoy & Demirel (2008) 

use PCA-ANN to predict the efficiency of Pb (II) ions’ removal from an aqueous solution 

by Antep pistachio shells. Although they are different fields, the algorithms used in these 

two studies are the same. In the study of Yetilmezsoy & Demirel (2008), PCA is also utilized 

to pre-process training data. In addition, Choi & Park (2001) apply multivariate regression, 

ANN and a hybrid method that combines PCA as a pre-processing stage to data from 

industrial wastewater processes. Actually, the hybrid technology used in their research is 

PCA-ANN. Their empirical results show that PCA-ANN enhances prediction capability and 

decreases the overfitting problem of neural networks. Moreover, PCA-ANN has the best 

information extraction capability in its benchmark model. 

 

The hybrid prediction model of PCA and SVM is also applied in many fields. Cao et al. 

(2003) use PCA, Kernel Principal Component Analysis (KPCA) and ICA to extract features 

and then use SVM for training and forecasting. They examine the sunspot data, Santa Fe 

data set A and five real futures contracts. Their result indicates that SVM with feature 

extraction, by PCA, KPCA or ICA, performs better than without feature extraction. Among 

these three hybrid techniques, they also find KPCA-SVM performs best in their time series 

tests, but do not explain which of these three pre-processing methods is best for different 

types of data. In the signal recognition field, Subasi & Gursoy (2010) use SVM to predict 

seizures and apply PCA, ICA and Linear Discriminant Analysis (LDA) to reduce data 

dimensions. In their research, there is not much difference among the performances of the 

three data pre-processing methods, while LDA-SVM has the best predictive performance.  

 

In financial time series forecasting, there are many examples of using PCA as a data pre-

processing method and using SVMs for prediction (Yu et al., 2014; Sermpinis & Stasinakis, 

2017). In stock forecasts, Zahedi & Rounaghi (2015) accurately predict stock prices on the 
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Tehran Stock Exchange with artificial neural networks and PCA. Additionally, Yu et al. 

(2014) use SVM with PCA to select stocks on the Shanghai Stock Exchange market. The 

return of their portfolio is higher than the stock index. However, Yu et al. (2014) do not 

mention the parameter selection. The over-fitting of Mean-standardization PCA-SVM in 

their paper is very likely to have occurred.  

 

2.2.3 Heuristics 

Heuristic algorithms are optimization methods that can be used to optimize the inputs and 

parameters of SVMs. Many hybrid SVM algorithms have been used to predict financial 

prices and have achieved better results than classical SVMs. The use of heuristics in 

conjunction with SVMs in these hybrid algorithms is widespread.  

 

Heuristics are techniques that aim to control the computational cost at an acceptable level 

while seeking good (near-optimal) solutions. However, heuristics cannot guarantee 

feasibility or optimality (Russell & Norvig, 2003). The typical algorithms of heuristic 

algorithms include Artificial Immune System (AIS) (Farmer et al., 1986), Ant Colony 

Optimization (ACO), GA (Tang et al., 1996), Bacterial Foraging Algorithm (BFA) (Gazi & 

Passino, 2004), Particle Swarm Optimization (PSO) (Kennedy, 2011), and Simulated 

Annealing (SA) (Kirkpatrick et al., 1983).  

 

Heuristic algorithms mimic physical or biological processes to find solutions that come close 

to the optimum. For example, AIS mimics the biological immune system. GA is inspired by 

Darwin’s theory of evolution. ACO simulates ants searching for food (Dorigo & Caro, 1999). 

PSO mimics the movement of a flock of birds (Bergh & Engelbrecht, 2006). Central Force 

Optimization (CFO), established by Formato (2007), is a deterministic heuristic search 

algorithm based on gravitational kinematics to initialize several random particles, iterate and 

find the optimal solution. These heuristic algorithms are widely used to solve optimization 

problems with great computational demands and optimization problems without analytical 

solutions in various fields. 

 

The Gravity Search Algorithm (GSA) has similar principles to CFO. In GSA, the solutions 

are also called agents. Due to gravity, they interact with others and move towards those with 

heavier mass, and the best solution is the one with the heaviest mass. Rashedi et al. (2009) 
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propose GSA based on gravity and mass interactions. They find GSA is a strong search 

algorithm that outperforms CFO, PSO and the Real Genetic Algorithm (RGA) in most cases, 

for both unimodal and multimodal functions. Rashedi et al. (2009) also generalize the GSA 

to a binary system in 2010 and introduce BGSA, which is more suitable for solving discrete 

problems.  

 

Recently, GSA and BGSA have been successfully applied to solve optimization problems in 

many fields. Bahrololoum et al. (2012) use GSA to solve classification problems and find 

the best positions for the representatives in a UCI machine learning repository. In their tests, 

GSA’s performance is better than that of an artificial bee colony and particle swarm 

optimization. Duman et al. (2012) use GSA to find the optimal solution for an Optimal Power 

Flow (OPF) problem in a power system. Their simulation results indicate that “GSA provides 

an effective and robust high-quality solution for OPF problem.” BGSA is proposed to select 

features to improve the precision of Content-based image retrieval by Rashedi & 

Nezamabadi-pour (2012). Their tests confirm the efficiency of BGSA in selecting features.  

 

In addition to BGSA, other derivative algorithms of GSA are also applied to solve some 

specific problems. Li & Zhou (2011) propose an Improved Gravitational Search Algorithm 

(IGSA) and apply it to the parameter identification of a hydraulic turbine governing system. 

The IGSA proposed by Li & Zhou (2011) is the combination of the search strategy of PSO 

and GSA. In their experiments, IGSA is better than GSA, GA and PSO in terms of 

convergence speed and parameter accuracy. Similarly, Mirjalili, Hashim & Sardroudi (2012) 

propose a hybrid of PSO and GSA (PSOGSA), which is used as new training techniques for 

feedforward neural networks in order to examine the efficiency of the algorithm in 

decreasing the dilemma of getting trapped in local minima and the converging speed of the 

learning algorithm. Their PSOGSA algorithm improves the searching speed in the final 

iterations. For the problem of slow searching speed in the final iterations, Shaw, Mukherjee 

& Ghoshal (2012) also propose an opposition-based GSA to accelerate the performance of 

GSA. Their research employs opposite numbers to improve the convergence speed of GSA 

and obtains promising results. 

 

In summary, most heuristic search algorithms use multiple initial points to search in parallel, 

including BGSA and GSA. In an algorithm based on a parallel search with multiple initial 

points, each individual takes a series of special operations and shares the information with 
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other individuals. The operation of each individual is simple, but their collective impact, 

called swarm intelligence (Tarasewich & McMullen, 2002), generates astonishing results. 

 

2.2.4 Combination of SVMs with Heuristics in finance 

Parameters and inputs have a significant impact on the forecasting performance of SVMs, 

and this causes SVMs to be sensitive to parameters’ optimization. Therefore, in many studies, 

hybrid machine learning methods that combine heuristic algorithms (used as optimization 

techniques) and SVMs are utilized as prediction methods. In the financial field, these hybrid 

models are widely proven to have higher predictive accuracy than classical SVMs. 

 

GA-SVM is the most common hybrid Heuristic-SVM model in the financial field. Min, Lee 

& Han (2006) use GA to optimize both parameters of SVM and a feature subset 

simultaneously for bankruptcy prediction. Wu et al. (2007) also use GA-SVM to predict 

bankruptcy. Nevertheless, in the study by Wu et al. (2007), the GA only optimizes two 

parameters of the SVM. Compared with the work of Min, Lee & Han (2006), the efficiency 

of GA in Wu et al.’s model is low. This is because, in the case of a small number of optimized 

parameters (Wu et al. only optimize two parameters), GA requires more calculation times 

than grid search. Hong (2006) uses the same algorithm to predict exchange rates. He uses 

the GA to select the parameters of linear and non-linear SVM. These three papers all show 

that the out-of-sample accuracy of GA-SVM is higher than that of SVM. Additionally, Dunis 

et al. (2013) use a method similar to Hong’s (2006) to predict stock indices (FTSE100 and 

ASE20). They compare GA-SVM with the moving average, high order neural network, 

naive Bayesian classifier, etc. and find that GA-SVM outperforms the above benchmark 

models.  

 

In recent years, in addition to GA-SVM, more and more other heuristic optimization 

algorithms have been used in conjunction with SVM and applied in financial research. Zhao 

et al. (2015) use VAR to measure the relationship between oil price and both market factors 

and non-market factors, in order to obtain a more accurate prediction for crude oil prices. 

They combine VAR and SVM to build a VAR-SVM model, finding that their VAR-SVM 

model is superior in accuracy compared with the ANN, Component GARCH (CGARCH) 

and VAR models. Sermpinis & Stasinakis (2013; 2014; 2015; 2017) have conducted 

abundant research on financial forecasting with hybrid SVMs. GA-SVM is utilized to predict 
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inflation, unemployment (Sermpinis et al., 2014) and EUR exchange rates (Sermpinis et al., 

2015). Sermpinis, Stasinakis & Hassanniakalager (2017) apply a novel heuristic algorithm 

called the Kill Herd algorithm to combine with SVR and Locally weighted SVR (LSVR) for 

forecasting and trading exchange traded funds. In their study, Krill Herd-LSVR shows 

superior predicting power over GA-LSVR and SVR. 

 

Chen et al. (2013) use the Artificial Bee Colony (ABC) algorithm in conjunction with SVM 

to predict corporate credit rating problems for the USA during the period 2001-2008. 

Likewise, Zhiqiang et al. (2013) forecast the Shanghai stock market index and Dow Jones 

index with Locality Preserving Projection (LPP) and SVM optimized by PSO. They use LPP 

to reduce the dimension of the training data and PSO to optimize the parameter of SVM. 

However, the data collected by Zhiqiang et al. (2013) do not include the financial crisis 

(Shanghai stock market index data is collected from 2000 to 2004; Dow Jones index data is 

collected from 1996 to 1998), so there can be no proof of the robustness of their model.  

 

The combinations of GSA or BGSA with SVM have been used in some research, such as 

Sarafrazi & Nezamabadi-pou (2013) and Li et al. (2015). As one of the inventors of GSA 

and BGSA, Nezamabadi-pour and his collaborators tested the classification capabilities of 

BGSA-SVM in 2013. They tested the BGSA-SVM with eight sets of well-known machine 

learning data repository of the University of California UCI Machine Learning Repository 

(Center for Machine Learning and Intelligent Systems) and compared the BGSA-SVM with 

GA-SVM and PSO-SVM. Ultimately BGSA-SVM performs better than GA-SVM and PSO-

SVM. Sarafrazi & Nezamabadi-pour (2013) conclude that BGSA is more efficient in feature 

subset selection than benchmark models. Li et al. (2015) propose another improved GSA 

and combine it with SVM to predict 14 sets of UCI data. Their chaos-embedded GSA-SVM 

also successfully performs better than GA-SVM and PSO-SVM in their experiments. 

 

However, this BGSA-SVM has not been applied in financial forecasting. Therefore, this 

study uses the BGSA-SVM algorithm and fills this gap. BGSA is employed to select the 

parameters and inputs of SVM classifiers. BGSA performs better than some earlier 

developed heuristic optimization methods such as ant colony optimization and GA in solving 

the high-dimensional multiple-peak disperse function, while the mapping of the parameters 

and inputs of SVM to the SVM predictive performance is a high-dimensional multi-peak 

disperse function. These are the reasons for adopting BGSA in this study. 
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2.3 Dataset  

This study uses BGSA-SVM to predict the sign of log return of 5 stock indices, including 

S&P500, NKY, FTSE100, CAC40 and DAX. The sign of log return is the output 𝑦. If the 

daily return is positive, then 𝑦 = 1. If the daily return is negative, 𝑦 = −1. The data were 

collected from 1990-2016, which includes the 1997 Asian financial crisis and financial crisis 

of 2007–2008. Thus, the performance of this model in extremely poor financial situations is 

investigated. The summary of log returns is shown in Table 2.1.  

 

Table 2.1: The summary of log returns 

 S&P500 FTSE100 NKY CAC40 DAX 

Mean of return 0.000133% 0.00328% 0.00212% 0.00159% 0.0138% 

Standard deviation of return 0.012267 0.12061 0.015396 0.014741 0.015174 

Skewness of return -0.183518 -0.149663 -0.391722 -0.028207 -0.053529 

Kurtosis of return 11.45306 9.145355 9.158393 7.827611 7.327344 

Jarque-Bera of return (p 

value) 

0.0000 0.0000 0.0000 0.0000 0.0000 

ADF (p value) 0.0001*** 0.0000*** 0.0001*** 0.0000*** 0.0001*** 

Note: The model aims to predict the sign of the log returns. ∗∗∗ denotes that the hypothesis of ADF test is 

rejected at the 1% significance level. 

 

Table 2.1 indicates that the five stock indices time series are non-normal and stationary, while 

the skewness is all negative and the kurtoses are all high. All returns series exhibit small 

skewness and high kurtosis. The Jarque–Bera statistic confirms that the five return series are 

non-normal at the 99% confidence level. The Augmented Dickey–Fuller (ADF) reports that 

the null hypothesis of a unit root is rejected at the 99% statistical level for all stock indices. 

 

The total number of independent variables is 189. I select some of the parameters used by 

Kim (2003), Trafalis & Ince (2000), Cao & Tay (2003), Dunis et al. (2013) and Sermpinis et 

al. (2017), which are given in Appendix A.1.1. The final model for training and predicting 

uses 15 to 25 dimensional data that are processed by PCA and BGSA, rather than 189-

dimension vectors.  

 

Due to some missing independent variables in the dataset, I remove the days of missing data 

to guarantee train set intensity. This model runs 11 tests of each stock index from 1997 

except the UK FTSE100 index. For every test, the start and end dates of the training set, test 

set, and out-of-sample are all shown in Appendix A.1.2. It groups 252 trading days as a 

trading year for all five indices. Six trading years are regarded as an in-sample, and the 
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subsequent year (the seventh year) is an out-of-sample. Owing to the different missing data 

in the five stock indices, the amounts of processed data are different, and the FTSE100 index 

has the most missing data. Therefore, the FTSE100 index has only nine tests. The start and 

end dates of each stock index are also different because of the different missing data in the 

five stock indices. This means that the time of training and forecasting is not completely 

identical in the five stock indices. This data-processing method does not influence the 

accuracy of tests in the model, and it reduces the usage of data, simplifying the process of 

the training model.  

 

Compared with employing the demarcation of the financial crisis to decide different periods 

of prediction and analyses, using the fixed period here is more practical for two reasons. 

First, the financial crisis is defined after having happened, and cannot be predicted. Therefore, 

when using historical data, there is no need to regard the financial crisis as the boundary for 

splitting into three parts: before, during and after the financial crisis. Before the crisis 

happens, people do not know when it will start and end. Second, the fixed prediction period 

in this chapter increases the number of tests and has the advantage of batch-processing the 

data.  

 

In order to obtain higher forecasting accuracy, it is better to update the in-sample in this 

model on a daily basis. However, if the in-sample used here updates daily rather than yearly, 

the calculation amount will increase significantly (252 times the current calculation amount). 

The calculation time for personal computers is probably over several months, and therefore, 

this study selects the method involving much less calculation. Nevertheless, in real trading, 

it is possible to train a new model every day, which can generally improve the accuracy and 

make the annualized return more stable. 

 

2.4 Theoretical framework and Model building  

2.4.1 Support Vector Machines  

The SVM classifier is a continuous multiple non-linear classifier. In terms of two groups of 

samples that can be linearly classified in two-dimensional space, the linear perceptron, which 

is the original format of SVM, can separate two groups of samples with a straight line. 
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Extending to high-dimensional space, samples can be separated by a hyper-plane. However, 

it is common that samples cannot be differentiated by a hyper-plane. With the method of 

mapping data in low-dimensional space to high-dimensional space, SVMs can make the 

sample tend to be linearly separable and use a kernel function to achieve this process. 

Additionally, soft margin SVM classifiers strengthen the generalization performance. SVMs 

have different hybrids, which can be used to classify various kinds of problems, as well as 

regressions. This chapter only needs to classify two classes. The SVM model this chapter 

uses is introduced as follows. 

 

The vector 𝑥𝑖  is the input of day i , while 𝑦𝑖  is the output. Thus, the training set can be 

written as {(𝑥1,𝑦1), (𝑥2,𝑦2)…, (𝑥𝑛,𝑦𝑛)}, where 𝑛 is the total number of the training sample. 

The aim of SVM is to find a hyper-plane to classify the two different 𝑦 (𝑦 = 1, 𝑦 = −1) in 

the training sample.  

 

The hyper-plane can be considered as a linear form: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (2.1) 

where 𝑤 is a column vector with the same dimensions as 𝑥. 

 

The hyper-plane is not unique. Thus, the optimum classification hyper-plane needs to be 

defined. A common definition is that the optimum hyper-plane gets the biggest geometry 

distance Υ between the hyper-plane and two different sets as shown in Figure 2.1.  

 

Figure 2.1: The geometry distance of the training set 

 

Notes: ‘x’ and ‘o’ are two different types of points. Υ is the largest geometry distance between 𝑓(𝑥) =
𝑤𝑇𝑥 + 𝑏 and the two types of points.  
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The calculation of the hyper-plane is: 

𝑀𝑖𝑛    ‖𝑤‖ 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (2.2) 

when Υ is a constant 1.  

 

Considering the generalization performance, SVM introduces 𝜉𝑖  which makes 

misclassification possible. Assuming that we do not allow misclassification to occur, then 

overfitting in the training set is almost inevitable. The 𝜉𝑖 for 𝑥𝑖: 

𝜉𝑖 = max(0,1 − 𝑦𝑖(𝑤𝑥𝑖 + 𝑏)) (2.3) 

 

Figure 2.2: Soft variable in classification problems 

 

Notes: 𝜉(𝑖) 𝑎𝑛𝑑 𝜉(𝑗) are distances of misclassifications. 

 

Figure 2.2 gives an example of a soft variable in classification problems. The soft variable 

is the allowed misclassification point. After the introduction of soft variables, we only need 

to penalize soft variables in the optimization process. The optimization problem turns to: 

min  ‖𝑤‖ + 𝑐 ∑ 𝜉𝑖

𝐼

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑦𝑖(𝑤𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (2.4) 

Where 𝑐 is the punish parameter for SVM.  

 

The SVM above is still linear. The kernel function is introduced to make the SVM non-linear 

next. The whole problem is seeking the 𝑤 accurately. The 𝑤 can be expressed as a linear 

combination of the training set: 

𝑤 = 𝑎1𝑦1𝑥1 + 𝑎2𝑦2𝑥2 + ⋯ + 𝑎𝑛𝑦𝑛𝑥𝑛 (2.5) 

Where 𝑎𝑖  is a natural number, which is called Lagrange Multipliers. Most Lagrange 
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Multipliers are 0, for only minority samples determine the classification hyper-plane. Thus, 

the function 𝑓(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 can be written as: 

𝑓(𝑥) = ∑ 𝑎𝑖𝑦𝑖⟨𝑥𝑖 , 𝑥⟩ + 𝑏

𝑛

𝑖=1

(2.6) 

 

Two linearly inseparable sets in low-dimensional space can tend to be linearly separable in 

high-dimensional space by function mapping. There are those kinds of function 𝐾(𝑤, 𝑥), 

which accept the inputs from low-dimensional space with the output of inner product 

⟨𝑤′, 𝑥′⟩ in a high-dimensional space, where 𝑤′ and 𝑥′ are mapped from a low dimension. 

Thus, the training function in a high dimension is:  

𝑔(𝑥′) = ∑ 𝑎𝑖𝑦𝑖⟨𝑥𝑖
′, 𝑥′⟩ + 𝑏

𝑛

𝑖=1

(2.7) 

 

In summary, though this problem is linearly inseparable, we can consider it as a linearly 

separable problem as Figure 2.3. However, the selected kernel function needs to be used to 

calculate the dot product. In this way, the calculated 𝑎 and kernel function can be used to 

calculate the hyper-plane. 

 

Figure 2.3: Mapping a linearly inseparable problem to a linearly separable problem by a 

kernel function 

 

Notes: K is the kernel function, which transfers the low-dimensional space to high-dimensional space. It 

makes the sets linearly separable in high-dimensional space. 

 

Here, the kernel function is RBF. The reason is that RBFs require only one parameter 𝜎 and 

provide good forecasting results in similar SVM applications (Yeh et al., 2011; Kao et al., 

2013). Thus, the SVM used here has two parameters, 𝑐 and 𝜎. What remains to be done is 

to optimize the two parameters and the inputs. 
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2.4.2 Gravity Search Algorithm  

Heuristic algorithms have been widely used in optimization, and one of these is GSA which 

is proposed by Rashedi et al. in 2009. Its main purpose is to solve the problem of optimizing 

the curse of dimensionality and discontinuous functions. Compared with the gradient descent 

algorithm, GSA not only concerns the position of each agent, but also adds the mass of 

different agents, which enables mass interaction between agents and finds the global solution 

more efficiently, while the movements of agents in the gradient descent algorithm only 

considers the position of each agent. Moreover, the gradient descent algorithm can only be 

used to solve continuous optimization problems, while GSA is capable of optimizing 

discontinuous problems. Additionally, compared with another similar agent-based search 

algorithm PSO, the difference between GSA and PSO is that agents of GSA receive the 

information of their own positions and all of the others, while agents in PSO receive the 

information of their own best positions and the best global solution position by far. With 

regard to algorithms, the convergent speed of PSO is faster than GSA, but PSO is more likely 

to fall into the trap of local solutions.  

 

The structure of GSA is shown in Figure 2.4. First, considering a parameter space with N 

agents (masses) and 𝑛 dimensions, the position and speed of the agent 𝑖 is defined by:   

𝑋𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … 𝑥𝑖
𝑛) (2.8) 

𝑉𝑖 = (𝑣𝑖
1, 𝑣𝑖

2, … 𝑣𝑖
𝑛) (2.9) 

where 𝑋𝑖 presents the position and 𝑉𝑖 presents the speed of the agent 𝑖. 

 

The mass of the agent 𝑖 is defined by: 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
(2.10) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

(2.11) 

where 𝑓𝑖𝑡𝑖(𝑡) and 𝑀𝑖(𝑡) respectively present the fitness value and mass of the agent 𝑖 at 

time 𝑡. 𝑏𝑒𝑠𝑡(𝑡) and 𝑤𝑜𝑟𝑠𝑡(𝑡) are respectively the best fitness value and the worst fitness 

value at time 𝑡, which are defined as follows. 

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑛}

𝑓𝑖𝑡𝑗 (𝑡) (2.12) 

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑁}

𝑓𝑖𝑡𝑗 (𝑡) (2.13) 
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Figure 2.4: The structure of GSA 

 

 

Notes: This figure displays the workflow of GSA. GSA uses the gravity determined by the agents’ current 

position to decide the position and gravity of the next iteration, and finds the optimal solution during the 

movement of the agents. 

 

This algorithm originates in the simulation of universal gravitation. However, it is not limited 

to the precise universal gravitation function in physics. At dimension 𝑑, the force that acts 

on mass 𝑗 from 𝑖 is defined as follows: 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡) × 𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
(𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡)) (2.14) 

where 𝐺𝑡  presents the gravitational constant at time 𝑡 . In fact, the value of 𝐺𝑡   can be a 

general constant instead of a gravitational constant. 𝐺 is a function of 𝐺0 (initial value) and 

𝑡.  

𝐺𝑡 = 𝐺(𝐺0, 𝑡) (2.15) 

 

Here, 𝐺𝑡 is as follows: 

Initialization 𝑥𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, ⋯ 𝑥𝑖
𝑛) 

For agent 𝑖 = 1, 2, ⋯ 𝑛 

Calculate the fitness value 

For example, if the optimization aim function is 𝑦 = 𝑥1
2 + 𝑥2

2, 

For agent , the fitness value is 𝑓𝑖𝑡𝑖(𝑡) = 𝑥𝑖
12

+ 𝑥𝑖
22

 

Calculate the inertial mass based on function (2.10) and function 

(2.11) 

Calculate force for agents by function (2.14) and (2.18) 

Calculate acceleration and speed for agents by function (2.19; 2.20) 

Update the place for agents by function (2.21) 

Update the optimal fitness 

If it reaches the time? 

Record the optimal solution 

No 

Yes 
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𝐺𝑡 = 𝐺0 ∗ 𝑒−
20∗𝑡

𝑇 (2.16) 

𝑇 is maximum 𝑡. 

 

𝑅𝑖𝑗(𝑡) is the Euclidian distance between two agents and 𝜀 is a small constant that prevents 

the denominator from becoming zero.  

𝑅𝑖𝑗(𝑡) = ‖𝑋𝑖(𝑡), 𝑋𝑗(𝑡)‖
2

(2.17) 

The total force that acts on agent 𝑖 in the dimension 𝑑 is as follows: 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗𝐹𝑖𝑗

𝑑(𝑡)

𝑁

𝑗=kbest.𝑗≠𝑖

(2.18) 

where 𝑘𝑏𝑒𝑠𝑡 is the set of first K agents with the best fitness value. The element number K 

of the 𝑘𝑏𝑒𝑠𝑡 decreases linearly with time (iterations), which begins with the initial value 

𝑘0=N and linearly decreases with time to 𝑘𝑇 =1. All agents apply the force initially and 

decrease gradually, and at the end, only one agent applies force to the other agents. In this 

way, getting trapped in a local optimum can be effectively avoided. 

 

Then the acceleration is calculated. According to Newton's second law of motion, in the 

dimension 𝑑, the acceleration of the agent 𝑖 at time 𝑡 is defined as follows: 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
(2.19) 

Furthermore, the position and velocity need to be updated as follows: 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (2.20) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑗

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (2.21) 

where 𝑟𝑎𝑛𝑑𝑖 is a uniform random variable in the interval [0,1]. This random number is 

used to give a randomized characteristic to the search. 

 

Then this study compares the optimal agent for this iteration and the historically optimal 

agent, selects the agent with better fitness between them as the new historically optimal agent 

and records its location and fitness. At this point, an iteration is completed, the new locations 

of all agents are used to iterate until the preset iteration time is reached. 

 

2.4.3 Proposed Methodology: BGSA with SVM 

This chapter applies the BGSA to optimize the parameters and inputs of SVM. BGSA is 
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modified from GSA. In GSA, if the velocity of an agent is large, it means the current position 

of the agent is not proper and a great movement is required to make it leave its position. In 

contrast, a small absolute value of the velocity indicates that the current position of the agent 

is close to the optimum position and the movement of the agent should be small to reach the 

optimum position. Furthermore, if the agent finds the optimal solution, its velocity should 

be zero. 

 

Based on the concepts of the GSA, BGSA’s concepts should consider that: “A large absolute 

value of velocity must provide a high probability of changing the position of the mass respect 

to its previous position (from 1 to 0 or vice versa). A small absolute value of the velocity 

must provide a small probability of changing the position. In other words, a zero value of 

the velocity represents that the mass position is good and must not be changed” (Rashedi et 

al., 2010, p.732). 

 

In BGSA, the rule of movement of GSA should be changed. 𝑆(𝑣𝑖
𝑑) is defined to transfer 

𝑣𝑖
𝑑 to a probability function. 

𝑆 (𝑣𝑖
𝑑(𝑡)) = |tanh (𝑣𝑖

𝑑(𝑡))| (2.22) 

Then, the agent movement function is modified as: 

𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑆(𝑣𝑖
𝑑(𝑡 + 1)     𝑡ℎ𝑒𝑛 𝑥𝑖

𝑑(𝑡 + 1) = 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝑥𝑖
𝑑(𝑡)) 

𝑒𝑙𝑠𝑒 𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) (2.23) 

Based on Rashedi’s paper (2010), the velocity limit here is lower than 6 (𝑣𝑖
𝑑 < 6). 

 

The structure of the whole model for forecasting is shown in Figure 2.5. This study pre-

processes initial data by PCA in the model. Then data is divided into three sets: the training 

set, the test set and the out-of-sample set. The training set is used to train some SVM 

classifiers with random inputs and parameters. After that, the test set is used to test those 

SVM classifiers. According to the performances of those classifiers and the iteration rules of 

BGSA, the inputs and parameters of those SVM classifiers are updated. The iteration 

continues until it reaches a certain maximum time. Finally, the SVM classifier with the best 

performance in the training set and test set during the iteration is utilized to predict the out-

of-sample set and obtain the final results.  
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Figure 2.5: Model structure of BGSA-SVM 

 

Notes: This figure describes the workflow of BGSA-SVM. The study divides the data into three sets: the 

training set, the test set and the out-of-sample set. The training set is employed to train the SVM model, 

the test set is used to modify inputs and parameters, and the out-of-sample set is used to obtain results.  

 

The contribution of this supervised machine learning model is that it provides an effective 

way to train high-dimensional financial data in a limited training set. In addition, this is the 

first time that BGSA-SVM has been used in the field of financial forecasting. 
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2.4.4 Benchmark models  

In this chapter, BGSA-SVM is compared with several traditional models, which include 

SVM, the Random Walk, the Buy-and-Hold, and the first and the second best inputs. Using 

SVM as a benchmark can show whether the conjunction of BGSA is effective. This study 

defines the Buy-and-Hold as the daily returns of stock indices over a specific period. The 

reason for establishing the Buy-and-Hold and the RW is to prove the overall validity of the 

prediction model. When the expected return of BGSA-SVM exceeds the Buy-and-Hold 

without increasing risks, we can state that it is valid to develop the trading strategy according 

to the prediction model. 

 

This chapter also uses inputs predictors with the top two performances in the in-sample set 

as benchmarks to test whether BGSA-SVM always outperforms the inputs used by itself. 

𝑏𝑒𝑠𝑡1 is the input with the best trading performance in the training sample and 𝑏𝑒𝑠𝑡2 is the 

second best input of all inputs. These two best-performing inputs are different for every test. 

𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2 are shown in Table 2.2 and Table 2.3. 

 

Table 2.2: The selected inputs for 𝑏𝑒𝑠𝑡1 in every test 

 FTSE SPX NKY CAC DAX 

F1 ARMA(8,10) K(1) ARMA(6,10) ARMA(1,3) ARMA(10,6) 

F2 ARMA(10,7) Return(17) ARMA(6,10) ARMA(6,8) ARMA(3,6) 

F3 ARMA(10,7) ARMA(9,8) ARMA(6,10) ARMA(6,8) ARMA(10,6) 

F4 ARMA(3,3) ARMA(9,7) ARMA(6,10) ARMA(6,8) ARMA(10,6) 

F5 ARMA(3,3) ARMA(9,7) Return(5) ARMA(6,8) ARMA(10,6) 

F6 ARMA(9,9) ARMA(9,7) Return(5) ARMA(6,8) ARMA(10,6) 

F7 ARMA(9,9) ARMA(9,7) Return(5) ARMA(9,7) AR(6) 

F8 ARMA(9,9) ARMA(9,7) Return(8) ARMA(10,8) ARMA(5,10) 

F9 ARMA(4,3) ARMA(4,3) Return(8) ARMA(9,9) ARMA(5,10) 

F10  ARMA(8,10) Return(8) ARMA(9,9) ARMA(10,9) 

F11  ARMA(3,2) Return(8) ARMA(9,9) ARMA(9,10) 

Note: Details of selected inputs are in Appendix A.1.1 Inputs pool. 

Table 2.3: The selected inputs for 𝑏𝑒𝑠𝑡2 in every test 

  FTSE SPX NKY CAC DAX 

F1 ARMA(9,9) K(2) ARMA(9,8) ARMA(6,8) ARMA(4,10) 

F2 ARMA(8,8) K(1) ARMA(8,6) ARMA(7,9) ARMA(10,6) 

F3 ARMA(8,7) M(1) ARMA(8,6) ARMA(7,7) ARMA(5,8) 

F4 ARMA(10,7) ARMA(9,8) ARMA(7,7) ARMA(7,5) AR(6) 

F5 ARMA(9,9) ARMA(9,8) ARMA(7,7) ARMA(5,8) AR(6) 

F6 ARMA(3,3) ARMA(9,8) Return(16) ARMA(8,7) ARMA(5,10) 

F7 ARMA(1,6) ARMA(9,8) Return(16) ARMA(9,9) ARMA(10,6) 

F8 ARMA(10,3) ARMA(7,9) Return(16) ARMA(10,6) ARMA(10,6) 

F9 ARMA(9,10) ARMA(6,7) Return(16) ARMA(10,8) ARMA(10,9) 

F10   ARMA(9,9) ARMA(7,8) ARMA(10,8) ARMA(9,10) 

F11   ARMA(9,9) ARMA(7,8) ARMA(10,6) ARMA(10,9) 

Note: Details of selected inputs are in Appendix A.1.1 Inputs pool. 
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2.5 Statistical evaluation 

This section provides the out-of-sample performances of the BGSA-SVM model and the 

benchmark models. The prediction accuracy of the BGSA-SVM model and the comparison 

with the benchmark models are described in Section 2.5.1. Section 2.5.2 evaluates the 

BGSA-SVM model and the benchmark models with the Diebold-Mariano and Giacomini-

White tests. 

 

 

2.5.1 Statistical accuracy 

The statistical accuracy of the prediction of BGSA-SVM is presented in Table 2.4. A direct 

way to show the effectiveness of prediction is to examine whether the out-of-sample 

accuracy is higher than 50%. Table 2.4 shows that the probability of the out-of-sample 

accuracy being lower than 50% is small (marked in bold in Table 2.4), occurring 7 times in 

all 53 forecasting times. The probability that the RW prediction accuracy is less than 50% is 

close to 50%, which means that the expectation in 53 experiments is 26.5 times. This also 

proves that the prediction accuracy of the BGSA-SVM model is significantly higher than 

that of the RW. The detailed performances of the benchmark models are presented in 

Appendix A.2. 
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Table 2.4: Accuracy of BGSA-SVM 

 Sample FTSE100 S&P500 NKY CAC40 DAX 

F1 Training sample 0.7173  0.7153  0.6726  0.6935  0.6190  

Test sample 0.6508  0.6171  0.6151  0.6329  0.6190  

Out-of-sample 0.5278  0.5516  0.5595  0.4881  0.4643  

F2 Training sample 0.7331  0.6052  0.6538  0.6448  0.6111  

Test sample 0.6329  0.6190  0.6190  0.6052  0.6052  

Out-of-sample 0.5317  0.5516  0.5476  0.5397  0.5278  

F3 Training sample 0.6171  0.6409  0.5952  0.6587  0.7063  

Test sample 0.6171  0.6528  0.6111  0.6052  0.6091  

Out-of-sample 0.5357  0.5437  0.5357  0.5040  0.4881  

F4 Training sample 0.6260  0.7123  0.6260  0.6607  0.7252  

Test sample 0.6171  0.6429  0.6270  0.6270  0.6310  

Out-of-sample 0.5357  0.4881  0.5079  0.5079  0.5992  

F5 Training sample 0.6339  0.5992  0.6270  0.6300  0.6875  

Test sample 0.6230  0.6270  0.5933  0.6091  0.6389  

Out-of-sample 0.5198  0.5238  0.5000  0.5476  0.5040  

F6 Training sample 0.6290  0.5883  0.6835  0.6012  0.7004  

Test sample 0.6131  0.5913  0.6091  0.5913  0.6190  

Out-of-sample 0.4762  0.5278  0.5379  0.4762  0.4921  

F7 Training sample 0.6696  0.6161  0.6528  0.7897  0.6300  

Test sample 0.6012  0.6171  0.6111  0.5933  0.6349  

Out-of-sample 0.5119  0.5119  0.5317  0.5714  0.5714  

F8 Training sample 0.6796  0.6409  0.6706  0.7083  0.7500  

Test sample 0.6111  0.6111  0.6290  0.6409  0.6290  

Out-of-sample 0.5119  0.5278  0.5238  0.5317  0.5357  

F9 Training sample 0.6012  0.6419  0.6329  0.6111  0.6389  

Test sample 0.6389  0.6369  0.6409  0.6270  0.6389  

Out-of-sample 0.5159  0.5595  0.5317  0.5833  0.5198  

F10 Training sample  0.6280  0.6875  0.6052  0.6667  

Test sample  0.6429  0.6369  0.6171  0.6131  

Out-of-sample  0.5159  0.5357  0.5278  0.5079  

F11 Training sample  0.7361  0.8095  0.6796  0.6806  

Test sample  0.6528  0.6190  0.5873  0.6091  

Out-of-sample  0.5437  0.5079  0.5159  0.5238  

Average Training sample 0.6563 0.6477 0.6647 0.6621 0.6742 

Test sample 0.6228 0.6283 0.6192 0.6124 0.6225 

Out-of-sample 0.5282 0.5314 0.5290 0.5267 0.5281 

Note: The accuracy of out-of-sample lower than 50% is marked in bold.  

 

In addition, the average out-of-sample accuracy for all indices is higher than 50%. The 

average out-of-sample accuracy for FTSE, S&P500, NKY, CAC and DAX increases by 

2.6%-3.1% compared with the expected accuracy (50%) of random classification. In terms 

of the average accuracy of forecasting the five stock indices, the performance of BGSA-

SVM is stable.  

 

The sensitivity of BGSA-SVM in extreme situations is not very significant. As shown in 

Table 2.4, around 2008 (F6-F7), FTSE, CAC and DAX each have one failed forecast, but 
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S&P500 and NKY are normal. During the 1998 Asian financial crisis, there were no failed 

predictions with an accuracy lower than 50% in NKY.  

 

Table 2.4 also shows the performances of the training sample and the test sample. The 

average accuracy of the training sample is between 64% to 67.5%, whereas that of the test 

sample is 61% to 63%. The accuracy difference (around 10 percentage points) between the 

in-sample set and the out-of-sample set shows that there is still a slight over-fitting. BGSA-

SVM with more input information is able to increase the accuracy of the in-sample set and 

the out-of-sample set and reduce the over-fitting.  

 

In summary, BGSA-SVM increases the out-of-sample accuracy by two to three percentage 

points compared with the expectation of random classification. BGSA-SVM has the 

potential to increase accuracy further with more fundamental information.   

 

2.5.2 Diebold-Mariano test and Giacomini-White test 

This section uses the Diebold-Mariano test to compare the accuracy of BGSA-SVM with 

each benchmark model. A rejection of the null hypothesis suggests that the first forecast (the 

BGSA-SVM) is more accurate. 

 

Table 2.5 shows the results of the DM test for BGSA-SVM with all benchmark models. In 

the DM test, the probabilities of BGSA-SVM being significantly better than any benchmark 

models are 20.4%, 26.8%, and 30.6%, respectively, at the 1%, 5% and 10% significance 

levels. According to the results, the DM test cannot directly prove that BGSA-SVM is 

significantly better than other benchmark models. This may be because BGSA-SVM has no 

obvious advantage over the benchmark models in some forecasting tests. As mentioned 

above, BGSA-SVM only improves the average accuracy by two to three percentage points 

compared with the RW. In addition, it can be observed in Table 2.5 that in some tests (e.g. 

F1, CAC; F5, FTSE), BGSA-SVM shows the comprehensively superior performance over 

all benchmark models. This suggests that BGSA-SVM performs very well in certain trading 

years. 
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Table 2.5: DM test for BGSA-SVM with benchmark models    

 Index RW SVM 𝑏𝑒𝑠𝑡1 𝑏𝑒𝑠𝑡2 Buy-and-Hold 
F1 

 

FTSE 0.6959  0.8141  0.6901  0.3679  0.0280** 
S&P 0.0005*** 0.9998  0.0005*** 0.9998  0.0005*** 
NKY 0.3844  1.0000  0.1339  0.2466  0.0546* 

CAC 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 
DAX 0.0000*** 0.9795  0.0000*** 0.0000*** 0.0000*** 

F2 FTSE 0.6395  0.0707* 0.7370  0.9018  0.7488  

S&P 0.0040*** 1.0000  0.0001*** 0.0001*** 0.0001*** 
NKY 0.9875  1.0000  0.9994  0.9987  0.8932  

CAC 0.9121  1.0000  0.8472  0.8762  0.1567  
DAX 0.1721  0.9998  0.3056  0.3769  0.1174  

F3 FTSE 0.9999  1.0000  0.9998  1.0000  1.0000  

S&P 0.0648* 0.6447  0.6645  1.0000  0.0468** 
NKY 0.9936  1.0000  0.9039  0.9084  0.7853  

CAC 0.9637  1.0000  0.1688  0.2900  0.3473  
DAX 0.4609  0.1258  0.8725  0.3082  0.6433  

F4 FTSE 0.2878  0.6728  0.4767  0.0510* 0.1774  

S&P 0.9356  0.3419  0.7022  0.5575  0.9849  
NKY 0.8733  0.0000*** 0.9497  0.9402  0.9998  

CAC 0.9984  1.0000  0.9977  0.9970  0.9998  
DAX 0.0004*** 0.2878  0.0432** 0.0164** 0.0026*** 

F5 FTSE 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 
S&P 0.9997  1.0000  0.9999  0.9997  1.0000  

NKY 0.7059  0.2279  0.4523  0.1868  0.0520* 

CAC 0.0024*** 1.0000  0.0481** 0.0133** 0.4028  
DAX 0.6051  0.8848  0.8280  0.4497  0.7469  

F6 FTSE 0.023** 0.0001*** 0.0022*** 0.0241** 0.0000*** 
S&P 0.0023*** 0.0002*** 0.0056*** 0.013** 0.0036*** 

NKY 0.0469** 0.4490  0.1864  0.0773* 0.0242** 

CAC 0.9995  0.9847  0.9971  0.9969  0.9992  
DAX 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

F7 FTSE 0.2010  0.8058  0.0964* 0.3620  0.1461  
S&P 0.7465  0.0000*** 0.8071  0.8230  0.7499  

NKY 0.2512  0.0064*** 0.7459  0.0512* 0.4087  
CAC 0.9972  0.7477  0.6303  0.8324  0.5096  

DAX 0.4401  0.0916* 0.3907  0.0003*** 0.0004*** 

F8 FTSE 0.8401  0.4014  0.9864  0.9107  0.4680  
S&P 0.1359  0.1804  0.0442** 0.0106** 0.0046*** 

NKY 0.6053  0.1427  0.0843* 0.2403  0.0620* 
CAC 0.9992  0.0000*** 0.9968  0.9796  0.9833  

DAX 0.6466  0.9998  0.8235  0.9635  0.6367  

F9 FTSE 0.9978  0.8852  0.9994  0.9971  0.9911  
S&P 0.0002*** 1.0000  0.0014*** 0.0078*** 0.0005*** 

NKY 0.1849  0.4316  0.0615* 0.0438** 0.0893* 
CAC 0.0005*** 1.0000  0.6185  0.8333  0.0828* 

DAX 0.5691  0.8664  0.5153  0.5943  0.9321  

F10 S&P 0.0108** 0.8726  0.2998  0.4802  0.0112** 

NKY 0.6154  0.4098  0.7393  0.0719* 0.6144  

CAC 0.9677  0.4300  0.6662  0.9007  0.6770  
DAX 0.4250  0.9976  0.5776  0.9183  0.3618  

F11 S&P 0.0011*** 0.1242  0.0000*** 0.0000*** 0.7683 

NKY 0.8693  0.4445  0.9305  0.3785  0.8597  
CAC 0.7112  1.0000  0.0417** 0.5365  0.3385  

DAX 0.0000*** 1.0000  0.0000*** 0.0000*** 0.0000*** 

Note: ∗∗∗, ∗∗ and ∗ denote that the DM null hypothesis is rejected at the 1%, 5% and 10% significance levels 

respectively. 𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2  refer to the best individual predictors in terms of statistical and trading 

performances respectively in the in-sample period. 
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Table 2.6: GW test for BGSA-SVM with benchmark models 
 Index Best model RW SVM 𝑏𝑒𝑠𝑡1 𝑏𝑒𝑠𝑡2 Buy-and-

Hold 
F1 
 

FTSE BGSA-SVM 0.5018-  0.9086-  0.3943-  0.2101-  0.0102-** 
S&P BGSA-SVM 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 
NKY BGSA-SVM 0.2783-  0.0000-*** 0.1340-  0.5157-  0.0262-** 
CAC 𝑏𝑒𝑠𝑡2 0.0000-*** 0.0000-*** 0.0000+*** 0.0000+*** 0.0000-*** 
DAX RW 0.0000+*** 0.0034-*** 0.0000+*** 0.0000+*** 0.0000-*** 

F2 FTSE RW 0.6585+  0.0189-** 0.5562+  0.3025+  0.8910-  
S&P BGSA-SVM 0.0012-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 
NKY BGSA-SVM 0.0007-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0065-*** 
CAC BGSA-SVM 0.0033-*** 0.0000-*** 0.0884-* 0.0188-** 0.7892-  
DAX 𝑏𝑒𝑠𝑡2 0.1614-  0.0000-*** 0.5083+  0.5933+  0.0326-** 

F3 FTSE BGSA-SVM 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 
S&P 𝑏𝑒𝑠𝑡1 0.4383-  0.1817-  0.1685+  0.0000-*** 0.1881-  
NKY RW 0.0014+*** 0.0000-*** 0.0248-** 0.0465-** 0.0396-** 
CAC 𝑏𝑒𝑠𝑡1 0.0733-* 0.0000-*** 0.2535+  0.5456+  0.5534-  
DAX NR 0.7999+  0.0223-** 0.3673+  0.4061+  0.2924+ 

F4 FTSE NR 0.6341-  0.0572-* 0.9744-  0.0076-*** 0.9500+  
S&P NR 0.0242+** 0.7278+  0.2057+  0.1944+  0.0036+*** 
NKY NR 0.0323-** 0.0000-*** 0.0306-** 0.0129-** 0.0000+*** 
CAC SVM&NR 0.0000+*** 0.0000+*** 0.0000+*** 0.0005+*** 0.0000+*** 
DAX BGSA-SVM 0.0000-*** 0.3729-  0.0020-*** 0.0001-*** 0.0004-*** 

F5 FTSE NR 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000+*** 
S&P SVM 0.0000-*** 0.0000+*** 0.0000-*** 0.0000-*** 0.0000-*** 
NKY SVM 0.7227-  0.3934+  0.7988-  0.0830-* 0.2190-  
CAC NR 0.0002-*** 0.0000-*** 0.0014+*** 0.0000-*** 0.0994+* 
DAX 𝑏𝑒𝑠𝑡1 0.9975-  0.6939-  0.7723+  0.3101+  0.3722+  

F6 FTSE 𝑏𝑒𝑠𝑡2 0.0000+*** 0.0000+*** 0.0000+*** 0.0000+*** 0.0000-*** 
S&P 𝑏𝑒𝑠𝑡2 0.0005-*** 0.0000+*** 0.0005+*** 0.0014+*** 0.0033-*** 
NKY BGSA-SVM 0.0272-** 0.9635-  0.3501-  0.0774-* 0.0704-* 
CAC SVM 0.0000-*** 0.0003+*** 0.0001+*** 0.0003+*** 0.0000+*** 
DAX NR 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000+*** 

F7 FTSE RW 0.7363+  0.1032-  0.4025-  0.1695+  0.3840-  
S&P 𝑏𝑒𝑠𝑡1 0.9596+  0.0000+*** 0.6456+  0.6179+  0.7435+  
NKY 𝑏𝑒𝑠𝑡2 0.9519+  0.0086+*** 0.3698-  0.1963+  0.6206-  
CAC RW 0.0022+*** 0.5809-  0.0346-** 0.0035-*** 0.1698-  
DAX BGSA-SVM 0.0152-** 0.0000-*** 0.0001-*** 0.0000-*** 0.0000-*** 

F8 FTSE BGSA-SVM 0.0778-* 0.9851-  0.0029-*** 0.0431-** 0.0781-* 
S&P 𝑏𝑒𝑠𝑡2 0.0317-** 0.0742-* 0.0099-*** 0.0020+*** 0.0033-*** 
NKY 𝑏𝑒𝑠𝑡1 0.4511-  0.2309-  0.4209+  0.6256+  0.3416-  
CAC BGSA-SVM 0.0018-*** 0.0000-*** 0.0076-*** 0.1042-  0.0302-** 
DAX BGSA-SVM 0.1798-  0.0000-*** 0.2476-  0.0136-** 0.5491-  

F9 FTSE BGSA-SVM 0.0000-*** 0.0091-*** 0.0000-*** 0.0001-*** 0.0000-*** 
S&P RW 0.0000+*** 0.0000-*** 0.0000+*** 0.0002+*** 0.0000-*** 
NKY 𝑏𝑒𝑠𝑡1 0.3973-  0.7979+  0.1155+  0.1091+  0.1777+  
CAC BGSA-SVM 0.0000-*** 0.0000-*** 0.2045-  0.4169-  0.0334-** 
DAX NR 0.1732-  0.0494-** 0.6076-  0.7430-  0.0179+** 

F10         
S&P SVM 0.0169-** 0.0747+* 0.2333-  0.7442-  0.1216-  
NKY NR 0.8586+  0.8876+  0.5028+  0.0202-** 0.6886+ 
CAC SVM 0.0391+** 0.7829+  0.3433+  0.0804+* 0.4273-  
DAX NR 0.2739-  0.0000+*** 0.9449+  0.1166+  0.7955+  

F11         
S&P NR 0.0000-*** 0.0771-* 0.0000-*** 0.0000-*** 0.0015+*** 
NKY NR 0.2612+  0.8859+  0.2428+  0.0000-***  0.0950+* 
CAC BGSA-SVM 0.1656-  0.0000-*** 0.0405-** 0.9924-  0.5249-  
DAX BGSA-SVM 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 0.0000-*** 

Note: ∗∗∗, ∗∗ and ∗ denote that the GW test is at the 1%, 5% and 10% significance levels respectively. 𝑏𝑒𝑠𝑡1 

and 𝑏𝑒𝑠𝑡2 refer to the best individual predictors in terms of statistical and trading performances respectively 

in the in-sample period. The best model list shows the best model in one test. Sign “-” means BGSA-SVM 

performs better than the benchmark model, “+” means benchmark model beats BGSA-SVM. 
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The unconditional Giacomini-White test is used for the out-of-sample predictive ability 

testing and forecast selection. According to Giacomini and White (2006), the null hypothesis 

of the GW test is equivalent in forecasting accuracy between two forecasting models. The 

sign of the test statistic specifies the superior model according to its forecasting performance. 

A positive realization of the GW test statistic indicates that the second model is more 

accurate than the first one, whereas a negative realization indicates the opposite. The GW 

test is calculated based on the Mean Squared Error loss function. 

 

Table 2.6 shows the results of the GW test for BGSA-SVM with all benchmark models, and 

it also indicates the model with the best performance in every test. BGSA-SVM can improve 

forecasting accuracy, whereas it cannot guarantee to beat the benchmark models every time. 

In 53 predictions, BGSA-SVM is the best of the six models 17 times. If BGSA-SVM is 

invalid, then the expectation that it would be the best model should be less than 8.83 (53/6) 

times. However, in this experiment, it appears up to 17 times, which indicates it is valid. If 

we assume that the return distributions of all benchmark models and the BGSA-SVM model 

are normal distributions, BGSA-SVM is the best of the six models under the 99% confidence 

level according to the chi-square test (Appendix A.3.2). 

 

2.6 Trading performance   

The trading method is as follows: when the prediction result is positive, buy a certain amount 

when the stock market opens and sell the same amount at the close; if the prediction result 

is negative, then sell a certain amount when the stock market opens and buy the same amount 

at the close. According to this trading method, the out-of-sample annualized returns of 

BGSA-SVM and the benchmark models are given in Table 2.7.  

 

Table 2.7 shows that the average annualized returns of BGSA-SVM are higher than five 

benchmark models (including the RW, SVM, best1, best2 and Buy-and-Hold) in all five 

stock indices. Moreover, the average returns of BGSA-SVM are all positive, at 11.12%, 

11.44%, 10.98%, 12.96% and 10.86% respectively of FTSE, S&P, NKY, CAC and DAX. 

The average annualized returns of BGSA-SVM are stable for different stock indices. This 

shows that BGSA-SVM forecasting is not affected by the performance of the stock index 

(Buy-and-Hold).  
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Table 2.7: Annualized returns of BGSA-SVM and benchmark models in out-of-sample (%) 

 Index BGSA-SVM RW SVM 𝑏𝑒𝑠𝑡1 𝑏𝑒𝑠𝑡2 Buy-and-Hold 

F1 
 

FTSE 15.98 -26.74 13.05 15.68 14.55 -13.12 
S&P 35.41 -15.08 16.67 16.67 16.67 16.67 
NKY 32.64 -24.36 -13.81 27.87 28.91 -47.78 
CAC -8.00 -19.21 -19.41 9.28 33.48 -25.51 
DAX -14.67 28.82 -27.35 19.73 17.18 -27.35 

F2 FTSE 19.07 36.39 15.61 33.80 19.69 -15.86 
S&P 30.09 -21.36 -19.26 -42.35 -19.26 -19.26 
NKY 15.08 11.50 2.29 -5.81 -21.24 -34.24 
CAC 34.20 2.58 -57.82 11.52 6.91 -57.82 
DAX -3.30 -11.15 -31.68 -1.33 3.81 -49.74 

F3 FTSE 24.42 0.86 -9.66 17.89 5.92 20.96 
S&P 9.92 -7.69 -30.44 22.28 4.19 -42.01 
NKY 3.25 7.80 -1.18 -27.71 -49.47 -1.18 
CAC 10.35 -15.76 -10.2 19.06 13.63 -10.25 
DAX 2.06 15.64 -19.89 11.56 8.80 25.50 

F4 FTSE 10.49 -0.74 6.81 -9.94 -10.57 11.07 
S&P -6.28 6.55 1.81 18.30 23.59 29.94 
NKY 10.92 10.68 -27.81 -1.30 -18.16 27.81 
CAC -8.39 7.35 16.22 12.80 9.52 16.22 
DAX 24.10 -18.44 19.17 17.88 -3.18 7.23 

F5 FTSE 10.72 9.84 -12.64 -10.05 3.31 14.03 
S&P 15.62 3.17 25.81 4.47 -2.84 10.99 
NKY 17.88 17.87 20.67 4.86 -13.94 -12.92 
CAC 16.39 5.57 6.60 20.07 9.20 20.19 
DAX -11.99 -3.12 -4.62 21.76 9.70 20.65 

F6 FTSE -16.18 16.85 10.59 12.51 22.43 -23.64 
S&P 5.19 4.97 8.99 15.41 15.77 3.03 
NKY 25.61 9.60 24.81 3.03 14.42 -16.31 
CAC -0.82 -8.81 21.26 5.29 0.59 13.75 
DAX 12.43 -10.20 10.79 -9.79 -10.99 15.05 

F7 FTSE 22.45 25.50 19.34 16.10 24.32 -8.97 
S&P -13.44 -2.97 -8.92 23.36 15.11 8.92 
NKY -4.17 9.25 22.94 -9.06 49.17 -48.35 
CAC 24.23 51.01 14.38 9.78 3.61 -17.63 
DAX 31.00 2.90 -22.37 -5.38 25.25 0.15 

F8 FTSE 3.96 -11.72 0.89 -2.37 -22.54 -8.31 
S&P 14.71 -5.23 -3.36 14.50 21.68 -5.59 
NKY 10.84 -9.35 6.55 27.94 11.80 -9.93 
CAC 35.46 -5.22 23.78 18.55 14.72 -33.14 
DAX 41.76 -1.86 7.25 6.89 3.27 -46.73 

F9 FTSE 9.13 3.25 0.44 -11.03 -19.09 -2.08 
S&P 16.06 33.50 -7.39 20.87 23.52 -7.39 
NKY -0.70 -31.03 4.01 16.20 -0.45 0.41 
CAC 41.61 28.41 10.58 14.64 17.32 6.79 
DAX 29.33 17.03 20.21 3.99 -6.41 34.84 

F10  S&P 8.47 -0.61 16.12 6.25 3.60 7.35 
NKY 9.50 24.13 16.74 20.30 -3.35 25.50 
CAC -16.87 23.17 37.64 -2.59 -2.64 -22.09 
DAX 1.68 -12.60 6.49 -1.09 2.27 7.19 

F11  S&P 10.05 -23.98 5.38 -6.84 1.05 22.04 
NKY -0.1228 35.52 22.39 23.79 -4.94 35.90 
CAC 14.42 5.24 13.08 -4.90 -3.34 8.26 
DAX 7.02 -32.45 -15.17 -2.19 -1.30 -15.17 

Average FTSE 11.12 7.06 7.16 6.95 4.22 -2.88 
S&P 11.44 -2.61 1.04 8.45 9.37 2.24 
NKY 10.98 5.60 8.87 7.28 -0.66 -7.37 
CAC 12.96 6.76 5.12 10.32 9.36 -9.20 
DAX 10.86 -2.31 -3.38 5.64 4.40 -2.58 

Note: The highest annualized returns in each forecasting exercise per index are marked in bold. The units in 

the table are %. 

 

BGSA-SVM has 13 negative returns among total 53 predictions, which is significantly lower 

than the number in the benchmark models (RW 22 times, SVM 19 times, 𝑏𝑒𝑠𝑡1 17 times, 

𝑏𝑒𝑠𝑡2 18 times and Buy-and-Hold 27 times over all 53 times). Table 2.7 also indicates that 

the average performances and stability of both 𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2 are better than that of SVM. 
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This is because the input used in this study is large, which makes the SVM very prone to 

overfitting.  

 

This study adopts the 0.5% annual transaction cost. In practice, the transaction cost depends 

on trading times and amount. According to the rules applied here (given that there are 252 

trading days every year), we need to buy 252 times and sell 252 times annually. However, 

in the real situation, trading is not that frequent, as when the prediction of stock tomorrow is 

the same as today’s stock sign, there is no need to sell (or buy) at the close, which can reduce 

many transaction costs. In order to have a straightforward calculation, this study still uses 

the transaction cost of 0.5% every year.  

 

Table 2.8: Annualized returns after deducting 0.5% transaction cost of BGSA-SVM Model 

 FTSE100 S&P500 NKY CAC40 DAX 

F1 15.48 34.91 32.14 -8.50 -15.17 

(1.03) (1.30) (1.51) (1.47) (1.38) 

F2 18.57 29.59 14.58 33.70 -3.80 

(1.44) (1.33) (1.42) (1.61) (2.30) 

F3 23.92 9.42 2.75 9.85 1.56 

(1.15) (1.55) (1.27) (1.89) (2.08) 

F4 9.99 -6.78 10.42 -8.89 23.60 

(0.57) (1.22) (0.83) (0.88) (0.98) 

F5 10.22 15.12 17.38 15.89 -12.49 

(0.62) (0.71) (1.14) (0.69) (0.75) 

F6 -16.68 4.69 25.11 -1.32 11.93 

(1.08) (0.64) (1.50) (0.86) (0.88) 

F7 21.95 -13.94 -4.67 23.73 30.50 

(2.07) (0.63) (2.32) (1.40) (1.25) 

F8 3.96 14.21 10.34 35.46 41.26 

(0.89) (1.01) (1.37) (2.33) (2.36) 

F9 8.63 15.56 -1.20 41.11 28.83 

(0.78) (2.41) (1.16) (1.33) (1.54) 

F10  7.97 8.90 -17.37 1.18 

 (1.18) (1.11) (1.59) (1.15) 

F11  9.55 -0.62 14.42 6.52 

 (0.88) (1.49) (1.11) (1.74) 

Note: The table reports the annualized return with the 0.5% transaction cost. The daily volatilities of the year 

are in parenthesis. The units in the table are all %. 

 

Table 2.8 shows the annualized return after deducting transaction costs (0.5%), and the 

standard deviations of the daily return per year. It indicates that the annualized return of 

BGSA-SVM is not stable. Particularly with DAX, the annualized return ranges from -15.17% 

to 41.26%. For this problem, the stability of the return can be improved by using two 

methods. The first is to increase the update frequency of the BGSA-SVM model. This study 

uses only one trained model for predictions in a trading year, due to the limitation in 

computing power. If computing power were sufficient, the forecasting model could be 
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updated daily. The return is more stable when the model is updated more frequently. In other 

words, if the model is trained on a daily basis and the prediction model is updated daily, the 

annualized return of around 11% can be stably obtained. Second, the stability of the return 

can be improved by enhancing the trading strategy. 

 

The annualized return of the BGSA-SVM model is not affected by the volatility of stock 

indices. Appendix A.3.3 shows that there is no significant relationship between annualized 

return of BGSA-SVM and daily standard deviation.  

 

Table 2.9: Sharpe Ratios of BGSA-SVM and benchmark models 

 FTSE100 S&P500 NKY CAC40 DAX 

BGSA-SVM 0.71 0.70 0.95 0.57 0.59 

RW 0.17 -0.31 0.26 0.23 -0.17 

SVM 0.19 -0.10 0.40 0.12 -0.32 

𝑏𝑒𝑠𝑡1 0.27 0.35 0.39 1.03 0.50 

𝑏𝑒𝑠𝑡2 0.08 0.57 -0.05 0.72 0.39 

NR -0.41 0.01 -0.29 -0.48 -0.11 

Note: Bold is the highest Sharpe Ratio in the models for each index. 

 

The Sharpe Ratio is also used to measure the trading performance. The equation of the 

Sharpe Ratio is given in Appendix A.3.1. The Sharpe Ratio and its mean of each index are 

presented in Table 2.9. The risk-free ratio employed here is the average Libor overnight 

during the forecasting period. For example, for FTSE100, the risk-free ratio is the average 

of the GBP Libor overnight during the period 1997-2016. The Sharpe Ratios of BGSA-SVM 

for the five stock indices are all positive, and are significantly better than the Sharpe Ratios 

of the benchmark models. Only the Sharpe Ratios of 𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2 are higher than that 

of BGSA-SVM in the CAC40, which is because the standard deviations of annualized 

returns of 𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2 are small in CAC40. This is not the case with the other indices 

for 𝑏𝑒𝑠𝑡1 and 𝑏𝑒𝑠𝑡2. 

 

Looking closely at Table 2.4, Table 2.7 and Table 2.8, that financial crises do not have any 

effect on the predictive accuracy of the BGSA-SVM model. When Buy-and-Hold is negative, 

the return of BGSA-SVM is not affected by it. For example, during the periods of F1 and 

F2, NKY, CAC40 and DAX all have significant drops in prices, and the annual decreases 

are more than 20%, even close to 50%. However, the performances of the predictions with 

the BGSA-SVM model are all good, and even when the model loses money, its predicting 

losses are also lower than the losses of Buy-and-Hold. The distribution of losses with BGSA-
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SVM model prediction has no correlation with financial crisis. This all indicates that BGSA-

SVM prediction and the trading strategy are proved to be effective. 

 

2.7 Conclusions  

In this chapter, a hybrid BGSA-SVM model is introduced to forecast the daily returns of five 

popular stock indices in the world. BGSA is a heuristic optimization technique designed to 

address the optimization problem of discrete functions. BGSA optimizes SVM parameters 

and inputs based on the gravitation principle and the interaction information from agents of 

BGSA. Then the optimized parameters and inputs are used to train the SVM classifier. 

Finally, this SVM classifier predicts the sign of the daily log return in the next trading year. 

In addition, the data pre-processing method of this study is PCA. The dimension of inputs 

can be reduced to a certain range by PCA, which means the searching dimension of BGSA 

is lower. Thus, the problem that the small quantity of training samples cannot support the 

high-dimensional search is solved.  

 

In summary, the contribution of this study is to introduce a novel machine learning model 

that is suitable for predicting financial time series. Compared with previous hybrid SVM 

models, the advantage of BGSA-SVM is that it can forecast financial time series with high-

dimensional inputs while losing less information. This means that BGSA-SVM is more 

likely to produce higher performance. In addition, this is the first application of the BGSA-

SVM machine learning model in the financial field. 

 

Based on the technical data during the period 1990 to 2016, the model makes 11 forecasts 

and trading on four stock indices (S&P500, NKY, CAC and DAX), and 9 forecasts and 

trading on FTSE. In terms of the empirical results, the predictive results of stock indices with 

the BGSA-SVM model are better than the benchmark models, which include RW, best 

predictors, SVM and Buy-and-Hold. Concerning the trading performance, the expected 

returns of BGSA are higher than zero for all five stock indices, although some annualized 

returns are lower than zero in some tests. This proves that the five stock markets are not 

strictly efficient markets. In other words, under the Efficient Markets Hypothesis (EMH) 

framework, the efficient stock market does not exist in the experiments, not even weak-form 

market efficiency. Besides, during the financial crisis, the trading performance of BGSA-
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SVM does not significantly decline, which shows the robustness of BGSA-SVM in extreme 

situations.  

 

However, kernel functions are not optimized as they are not considered as parameters, which 

is a disadvantage of the used approach. There are not many commonly used kernel functions; 

therefore, it is better to investigate them one by one to select the best kernel for the model. 

This shortcoming will be researched further. Moreover, the annualized returns are not stable 

and BGSA-SVM is not always the best predicting model compared with all the benchmark 

models in 53 test times. If more information is used in prediction, BGSA-SVM promises to 

perform better. In addition, this chapter emphasizes forecasting more than trading strategy. 

The instability of the annualized return can be solved by trading strategies such as hedging 

or other methods.  
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Chapter 3 Forecasting and trading INDU index and 

FTSE100 index by MLP, CNN, LSTM and NNs 

combination 

3.1 Introduction  

ANNs were used as early as the late 1980s in the field of stock forecasting. Due to the 

complexity, dynamism and chaoticness of stocks, stock forecasting has proven to be a 

difficult task. Nonetheless, a large amount of research has been using various types of ANNs 

to forecast stocks for decades. Prior literature proves that ANNs have the ability to extract 

information from inputs and provide effective forecasts for stock prices. However, two 

questions that (1) which ANN has the best performance for stock forecasting among 

mainstream ANNs structures and (2) how ANNs can further improve the accuracy of stock 

forecasting remain to be investigated, which motivate this chapter. 

 

This chapter forecasts the INDU index and FTSE100 index using different architectures of 

ANNs, which include MLP, CNN and LSTM. The structures of MLP, CNN and LSTM for 

the financial time series data are designed in this chapter, aiming to get better forecasting 

accuracy. The statistical and trading performances of three neural networks are compared 

based on the same inputs pool. This chapter examines the binary classification categories 

and eight classification categories. Then, the predicting results of NNs are combined by 

traditional Simple Average, GRR and LASSO, respectively. In the trading part, this chapter 

uses leverage based on the daily forecasting probability to improve the trading performance.  

 

The empirical results show that MLP, CNN and LSTM all beat the Buy-and-Hold. The 

average accuracy of MLP, CNN and LSTM is 52.32%, 53.06% and 53.63% respectively for 

the FTSE100 and 52.21%, 52.32% and 53.32% for the INDU. The average annualized 

returns of MLP, CNN and LSTM are 8.82%, 11.32% and 12.49% respectively for the 

FTSE100 and 8.57%, 9.37% and 10.25% for the INDU. Although LSTM outperforms MLP 

and CNN in average annualized returns, LSTM is not significantly better than MLP and 

CNN regarding the times that LSTM becomes the best performing model in all tests. The 



Chapter 3    

 

38 

 

performance of the binary classification categories is better than that of the eight 

classification categories. This is because that the eight classification categories are more 

prone to overfitting. In addition, the combination methods do not improve the trading 

performance, while different leverages based on different probabilities of the forecasting 

results significantly improve the trading performance. 

 

The structure of the chapter is as follows. The literature review about the use of NNs to 

predict stock indices is in section 3.2. The dataset and software are introduced in section 3.3 

and after that, the employed architectures of NNs and the combination methods are described 

in section 3.4. Then, the comparison and explanation of the statistical and trading 

performances for models are respectively presented in sections 3.5 and 3.6. The conclusion 

and further developments are summarized in section 3.7.  

 

3.2 Literature review 

The overview of ANN is introduced firstly in section 3.2.1, which shows the history and 

development of ANN. Then, the applications of ANN in stock forecasts are presented in 

greater detail in later sections. Section 3.2.2 reviews the research in the stock forecasting 

field by MLP. Section 3.2.3 is a summary of the literature on hybrid ANNs. The main hybrid 

models include combinations of new data pre-processing methods and training methods. 

New neural network architectures, which include Recurrent Neural Network (RNN), CNN 

and LSTM, are reviewed in section 3.2.4. New neural network architectures that are designed 

to deal with stock forecasts usually have better forecasting performances than classical ANN 

in the stock forecasting field.  

 

3.2.1 The overview of ANN 

Research on ANN started in the 1950s when some researchers successfully built a single 

perceptron by combining the viewpoints of physiology and psychology. The representative 

researchers in this period include Marvin Minsky, Frank Rosenblatt & Bernard Widrow. In 

1969, Minsky & Papert mathematically proved that the perceptron cannot solve many simple 

problems, which include the XOR problem (Minsky & Papert, 2017). Later, researchers 

found that the perceptron cannot solve linear inseparability problems but MLP can. 
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Neural network architectures have been built gradually, and the most representative work is 

the Back-propagation algorithm. BP was introduced by Rumelhart, Hinton & Williams (1986) 

to solve the learning problem in MLP. After BP was proposed, research on ANN was 

developed rapidly, especially deep learning. Deep learning refers to a neural network with 

multiple hidden layers, which allows architectures that consist of multiple hidden layers to 

learn data with multiple levels of abstraction (LeCun, Bengio & Hinton, 2015). The 

representative architectures include CNN, RNN and LSTM (the improved version of RNN). 

The main contributions of deep CNN are the breakthroughs in processing images, video and 

audio, whereas RNN and LSTM have strengths in time series data such as text and speech. 

Deep nets have also shone a light on the financial forecasting field, especially in securities 

forecasting, stock indices and bankruptcy prediction (Trippi & Turban, 1992; Kimoto et al., 

1990; Tam & Kiang, 1991 & 1993). 

 

3.2.2 The application of MLPs in the stock forecasting field 

As early as the end of the 1980s, MLPs tried to forecast stock returns. White (1988) proves 

that the linear method will never predict IBM’s common stock daily returns under simple 

EMH. Then he uses a three-layer feedforward network with five inputs and five hidden units 

to forecast the daily return of IBM stock. However, White fails to forecast the out-sample 

returns with his neural network. The results and contributions of White’s tests show that non-

linear regularities can exist even under simple EMH, but MLPs cannot easily find this non-

linear regularity and they are easily trapped into overfitting with as many as 1000 

observations.  

 

Research in subsequent years has progressed significantly when it comes to the forecasting 

of stocks. Kimoto et al. (1990) successfully use a three-layer full connected MLP to forecast 

the sign of the daily return of Tokyo Stock Exchange Price Indices. Compared with White 

(1988), the most important improvement made by Kimoto et al. (1990) is that they use more 

types of inputs. For example, they use the returns for later days, turnover, interest rate, 

foreign exchange rate, Dow-Jones index price and so on, while White (1988) only uses 

returns and volatility. The Buy-and-Hold strategy based on prediction shows a stable and 

better performance than the index’s performance. Kimoto et al. (1990) have an optimistic 

impact on later research. The work of Baba & Kozaki (1992) is similar to that of Kimoto et 

al. (1990). They use MLP which combines the modified BP method with the random 
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optimization method to forecast stocks returns in the Japanese market.  

 

In the same period, Yoon & Swales (1991) use a four-layer MLP to forecast the annualized 

return of companies in the Fortune 500 and Business Week’s ‘Top 1000’ according to their 

fundamental information. Yoon & Swales (1991) compare the performance of the four-layer 

MLP with multiple discriminant analysis methods. The performance of their MLP is 

significantly better than that of multiple discriminant analysis methods. One year later, 

Swales & Yoon (1992) publish a similar paper to classify well-performing firms and poorly 

performing firms. Swales & Yoon use more types of inputs in order to add more information 

to their model. In addition, Swales & Yoon compare the two-layer MLP, three-layer MLP 

and four-layer MLP. The deeper network performs better. Similarly, Kryzanowski, Galler & 

Wright (1993) successfully select stocks under the Quebec Stock Savings Plan with a neural 

network. 

 

Yoon, Guimaraes & Swales (1994) make a hybrid Expert System that combines MLP and 

Rule-Based approach mainly for investment decision-making. They use ANN to generate a 

knowledge base for a Rule-Based approach. As with the fuzzy neural stock selection system 

of Yoon, Guimaraes & Swales (1994), Wong et al. (1992) also conduct similar research that 

contains a rule base of 32 company rules.  

 

After the mid-nineties, MLP was used in various stock markets around the world. Kai & 

Wenhua (1997) use GA to train MLP to forecast the Shanghai securities index. Quah & 

Srinivasan (1999) use MLP to select stocks in the Singapore market. MLPs are also 

employed to the forecasting tasks in the Taiwan market (Wang & Leu, 1996), the Tokyo 

stock market (Mizuno et al.,1998) and the Madrid stock market (Fernandez-Rodriguez & 

Gonzalez-Martel, 2000). Olson & Mossman (2003) use MLP to forecast the stock returns in 

the Canadian market and compare MLP with the Ordinary Least Squares regression and 

logistic regression, finding that MLP beats the linear methods. Olson & Mossman (2003) 

indicate that MLP classifiers with four to eight output categories have better results than 

either binary classification models or nets with 16 classification categories. 

 

Lam (2004) uses MLP to predict the financial performance of S&P companies with 

predictors which include 16 financial statement variables and 11 macroeconomic variables. 

Cao, Leggio & Schniederians (2005) build a three-layer MLP that beats Fama and French’s 
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model in the Chinese stock market. O’Connor & Madden (2006) successfully use external 

indicators, such as commodity prices and currency exchange rates, to predict the Dow Jones 

Industrial Average index. Zhu et al. (2008) use a three-layer MLP to study whether the 

trading volume has an effect on stock index increments under different horizons. They 

conclude that trading volume has an impact on the stock index, especially under medium 

and long-term horizons.  

 

In the last ten years, researchers have usually compared the performance of the MLP model 

with some hybrid neural network models and other new neural network architecture. 

However, the MLP model does not show significant disadvantages in some research. The 

results of Guresen, Gulgun & Daim (2011) show that the classical MLP outperforms the 

dynamic artificial neural network and hybrid neural networks, but only by a slight margin. 

Guresen, Gulgun & Daim (2011) use Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) inputs for MLP and dynamic artificial neural network but get 

worse results. They explain that the inputs of GARCH have a noise effect on NNs due to the 

inconsistencies.  

 

In comparison with the ARIMA model, MLP always outperforms the ARIMA model. 

Mostafa (2010) uses the MLP on the Kuwait stock market, finding that MLP defeats linear 

regression and ARIMA. Adebiyi, Adewumi & Ayo (2014) compare the forecasting 

performance of MLP and ARIMA with published stock data obtained from the New York 

Stock Exchange. Their empirical results show the superiority of MLP over ARIMA. Adebiyi, 

Adewumi & Ayo (2014) also mention that hybrid MLPs can improve forecasting accuracy.  

 

Moghaddam, Moghaddam & Esfandyari (2016) attempt to improve the layers and neurons 

in the hidden layer of the MLP model to forecast the NASDAQ exchange rate. The hidden 

layers they use in the network are 20-40-20 neurons. Their main contribution is to test the 

effects of the two different activation functions on forecasting results. Their research proves 

that the MLP model still has forecasting potential, and its performance can be improved by 

optimizing the hidden layers and activation functions.  
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3.2.3 The application of hybrid neural networks in the stock forecasting 

field 

Research from the early 1990s has found that the performance of the ANN is affected by 

input parameters. Therefore, from the late 1990s, various papers have proposed input 

optimization methods combined with ANN to build models. Hybrid neural networks have 

also been used to forecast stocks. With regard to stock forecasting, the research of Kim & 

Han (2000) is representative. They use GA combined with ANN to forecast the daily Korean 

stock price index. In their hybrid model, GA is used to select the inputs of the neural network 

and optimize the connection weights in the nets. Their results show that input selection 

makes a significant contribution to the forecasting performance; GA and BP’s optimizations 

of connection weights have similar impacts on final forecasting performance. Kim & Lee 

(2004) employ GA-ANN to forecast the Korean stock price index, which once again proves 

that feature selection improves the performance of ANN. With respect to the optimization 

problem of connection weights, Zhang & Wu (2009) put forward a heuristic method named 

Improved Bacterial Chemotaxis Optimization (IBCO) to integrate into the BP-ANN. They 

use IBCO-BP-ANN to predict the S&P500 index and compare the performance of IBCO-

BP-ANN with that of BP-ANN. Their original model has less computational complexity, 

better prediction accuracy and requires less training time.  

 

Kuo, Chen & Hwang (2001) consider adding the effect of qualitative factors (e.g. political 

effect) into stock prediction. They use a GA-based Fuzzy Neural Network (FNN) to acquire 

a qualitative index. Then, they integrate the qualitative index into the technical indices and 

train them with an ANN. Their hybrid model beats classical ANN. The work of Abraham, 

Nath & Mahanti (2001) is similar to that of Kuo, Chen & Hwang (2001). Abraham, Nath & 

Mahanti (2001) use PCA to pre-process the inputs (technical indices) for ANN. They then 

feed the prediction value and the qualitative variables into an FNN to make a decision. Their 

model also defeats classical ANN in the Nasdaq stock market. Similar research is conducted 

by Leigh, Purvis & Ragusa (2002), who empirically examine the New York stock exchange 

composite index using a sophisticated decision support system combined with a GA-ANN. 

Armano, Marchesi & Murru (2005) introduce a novel genetic-neural architecture for stock 

indices forecasting. In their study, the result is a group interaction of some experts, where 

every expert has an architecture that integrates GA and ANN. Their hybrid model 
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outperforms Buy-and-Hold in COMIT and the S&P500 index. 

 

Additionally, ANN can be used as a data pre-processing method in combination with other 

predictive models to forecast stocks. Hassan, Nath & Kirley (2007) propose a hybrid model 

to forecast stocks returns. The structure of their model is the first to use ANN to convert the 

daily stock technical indices into independent sets of values that become the inputs to the 

Hidden Markov Model (HMM). The GA is used to optimize the parameters of the HMM. 

Their hybrid model outperforms the ARIMA.  

 

Roh (2007) combines ANN with the Exponentially Weighted Moving Average (EWMA), 

GARCH and Exponential GARCH (EGARCH) respectively to predict the volatility of 

KOSPI 200. However, their hybrid model is not successful as only the performance of ANN-

EWMA is superior to that of classical ANN, while the performances of ANN-GARCH and 

ANN-EGARCH are worse. Based on the research of Roh (2007), Wang et al. (2011) conduct 

experiments on the dynamic artificial neural network. They compare the performances of 

classical ANN, hybrid ANN, DNN and hybrid DNN when predicting the NASDAQ index. 

Their results are similar to those of Roh (2007), supporting the view classical ANN performs 

the best. The performance of either ANN or DNN combined with GARCH and EGARCH is 

worse. They argue that more research should be focused on the selection of inputs. 

 

Qian & Rasheed (2007) claim that the accuracy of their hybrid ANN prediction for the DJIA 

index reaches 65%. However, they use the Hurst exponent to select the best predictability 

period (i.e. 1969-1973) for their prediction instead of predicting the index in all periods. In 

their research, they also mention that the movement of the DJIA index after 1980 is more 

random. Despite this, their work has contributed to improving the accuracy of stock forecasts. 

They respectively use ANN, K-Nearest Neighbour (KNN) and Decision Tree (DT) to predict 

DJIA index return. Then they propose a model that has ensembles of classifiers to integrate 

the results of ANN, KNN and DT for the final forecasting. Their ensembles model 

outperforms individual classifiers. 

 

There are also some studies that consider the results of the ANN and other predictive models 

together when forecasting stocks. For instance, Wang et al. (2012) use the Exponential 

Smoothing Model (ESM), ARIMA, and the classical ANN to forecast the daily close price 

of the Shenzhen Integrated Index (SZII) and the daily open price of DJIA index. Then the 
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results are processed by a weighted average, where the weight is determined by GA. Their 

hybrid model outperforms ESM, ARIMA, ANN, the equal weight hybrid model and RW. 

 

3.2.4 CNN, RNN and LSTM in the stock forecasting field 

The development of neural network algorithms means that more neural networks of different 

structures have been proposed and applied in the field of stock forecasting. Among these 

algorithms, CNN, RNN and the LSTM (a variant RNN) are the most representative. RNN 

performs well in forecasting time series, and thus many scholars go a step further and expect 

RNN and RNN variants to perform well in stock forecasting. CNN is adept in handling 

forecasts with a large amount of data and capturing the characteristics of adjacent data, and 

it thus has significant advantages in high-frequency prediction (Tsantekidis et al., 2017). 

Saad, Prokhorov & Wunsch (1998) are the first to use RNN in the stock prediction field. 

They predict short-term stock trends based on historical daily closing prices by using three 

different networks: Time Delay Neural Network (TDNN), Probabilistic Neural Network 

(PNN) and RNN. Their results indicate that all three networks are feasible, and RNN shows 

the best performance in accuracy but with implementation complexity.  

 

RNN has also been combined with other methods to forecast stock prices. Hsieh, Hsiao & 

Yeh (2011) use RNN to forecast several international stock indices, including DJIA, 

FTSE100, Nikkei225 and Taiwan Capitalization Weighted Stock Index. They optimize RNN 

by using the ABC algorithm. In respect of inputs pre-processing, they apply the Haar wavelet 

to decompose the stock price time series and employ Stepwise Regression-Correlation 

Selection to choose other fundamental and technical features. Thanks to their exquisite 

models, all the tested indices make profits. Yoshihara et al. (2014) integrate RNN, the 

Restricted Bolzmann Machine and Deep Belief Network (DBN) to build a six-layer hybrid 

NN to forecast the sign of the following day’s return for ten stocks on the Nikkei stock 

market. They aim to evaluate the long-term effects of news and events. Thus, the inputs data 

of their model are news articles represented as word vectors by the bag-of-words 

representation. They suggest that hybrid RNN has potential to capture events with long-term 

effects in the stock market.  

 

As for Agarwal & Sastry (2015), they use the autoregressive moving average model, 

exponential smoothing model and RNN to forecast the daily close price for 25 stocks on the 
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Bombay Stock Exchange (BSE). The performance of RNN is better than the two linear 

models. In order to increase predictive accuracy, they combine the prediction results of three 

models by a weighted average, where the weight is determined by GA. Their model structure 

is similar to that of Wang et al. (2012) (mentioned in section 3.2.3). 

 

CNN is applied later in stock forecasting than RNN. Ding et al. (2015) propose a deep 

learning method for event-driven stock market forecasting based on CNN. Ding et al. (2015) 

extract events from news text and represent them as dense vectors. CNN and ANN are then 

used to model both the short-term and long-term impacts of events on the stock piece. Their 

results show that the performance of CNN is better than ANN because it captures long-term 

influence better. Compared with state-of-the-art baseline methods for the S&P500 index, 

their Event Embeddings input Convolutional Neural Network (EB-CNN) model achieves an 

improvement of nearly six percentage points. CNN shows a solid performance not only in 

events-based forecasting, but also in high-frequency forecasting. Tsantekidis et al. (2017) 

propose a deep learning methodology based on CNN to predict the price movement of stocks 

by tick-data. They compare the forecasting accuracy of CNN, SVM and ANN, and the results 

show that CNN is significantly better than the other two benchmarks. The predictive 

accuracy of CNN for the sign of return reaches 59.44% in their study.  

 

Studies on forecasting stocks using LSTM have appeared in recent years, showing that the 

performance of LSTM is generally better than that of RNN and MLP. Nelson, Pereira & de 

Oliveira (2017) use LSTM to predict the Brazilian stock exchange return in 15 minutes into 

the future. LSTM as a variant RNN performs better than RNN in long-term memory, which 

is more suitable for stock prediction. The prediction task of Nelson, Pereira & de Oliveira is 

a binary classification problem and the average accuracy of prediction is 55.9%. Compared 

with the work for forecasting the daily return, shorter-term forecasting tends to obtain higher 

accuracy. Moreover, they do not use feature selection methods to reduce the dimension of 

the inputs, as LSTM has the ability to deal with high dimensional data.  

 

Unlike Nelson, Pereira & de Oliveira (2017), Pang et al. (2018) pay attention to the inputs 

pre-processing for LSTM. They introduce an embedded layer in the LSTM architecture to 

convert high-dimensional data into low-dimensional data and call the model ELSTM. 

Another contribution made by them is that they change the weights optimization method by 

pre-training with an automatic encoder with a Continuous Restricted Boltzmann Machine 
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(CRBM). This process can avoid the final result falling into local optimization. Their results 

show that both methods for achieving improvement efficiently enhance the LSTM. The 

predictive accuracy of daily return for the Shanghai stock exchange index reaches 57.2% 

and 56.9% with ELSTM and CRBM respectively, and the predictive accuracy for individual 

stocks is 52.4% (with ELSTM) and 52.5% (with CRBM). They provide evidence for the 

potential for improvement that the LSTM approach has, showing that inputs pre-processing 

significantly improves the performance of LSTM. 

 

In addition to CNN and RNN, other deep nets are also applied to stock forecasting. Chen, 

Leung & Daouk (2003) compare the performances of PNN, RW and Generalized Methods 

of Moments in the Taiwan stock exchange index. PNN beats the benchmark models in their 

paper. Enke & Thawornwong (2005) examine level-estimation nets (three-layer ANN, PNN 

and generalized regression neural network) and classification (ANN, PNN) for their 

capability to offer an effective forecast of the S&P500 index. However, the trading strategies 

guided by these networks do not generate significantly higher profits than the Buy-and-Hold 

strategy. Their networks’ performances are not significantly different, but they are all 

significantly better than linear regression.  

 

Additionally, Enke & Thawornwong (2005) employ the cross-validation technique to 

improve the generalization ability of the nets. They also point out that a shortcoming of the 

ANN training of feed-forward NNs is that they are not very stable, since the training process 

may depend on the choice of a random start. To solve this problem, Asadi et al. (2012) use 

GA to optimize the initial weights. They also use Levenberg-Marquardt to replace BP to 

optimize ANN weights. Moreover, they also carry out the input selection. Ticknor (2013) 

proposes the Bayesian Regularized artificial Neural Network (BRNN) to forecast the stock 

price. BRNN assigns the networks a nature that automatically penalizes complex models, 

which reduces the potential for overfitting and overtraining. Another advantage of BRNN is 

its ability to adapt to different types of data, and thus BRNN outperforms classical ANN 

without data pre-processing. In summary, new neural network architectures in recent years 

perform better in stock forecasting than classical ANN models. Adjusting the architecture of 

the neural network based on the characteristics of the inputs data (data used to forecast stock) 

has the potential to improve predictive accuracy. 
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3.3 Dataset and tools 

This chapter uses MLP, CNN and LSTM to predict the log return of the INDU index and 

FTSE100. The outputs of the forecasting models are the categories of the daily log return for 

stock indices. One task of the models is to predict the sign of the daily log return, which is a 

binary classification categories problem. The other task is an eight classification categories 

problem, where the daily log returns are divided into eight categories based on their values. 

The classification rules of binary and eight classification categories are shown in Table 3.1 

and Table 3.2, respectively. 

 

Table 3.1: Classification rules for binary classification categories 

Binary classification categories  

If 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < 0 Output 𝑦 = [1,0] 

Else  Output 𝑦 = [0,1] 

Note: This table describes the classification rule for binary classification categories. If the daily log return is 

negative, the output is assigned as a vector [1,0], otherwise [0,1].  

 

 

Table 3.2: Classification rules for eight classification categories 

Eight classification categories  

If 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < −2% Output 𝑦 = [1,0,0,0,0,0,0,0] 
If −2% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < −1% Output 𝑦 = [0,1,0,0,0,0,0,0] 
If −1% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < −0.5% Output 𝑦 = [0,0,1,0,0,0,0,0] 
If −0.5% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < 0% Output 𝑦 = [0,0,0,1,0,0,0,0] 
If  0% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < 0.5% Output 𝑦 = [0,0,0,0,1,0,0,0] 
If  0.5% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < 1% Output 𝑦 = [0,0,0,0,0,1,0,0] 
If  1% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 < 2% Output 𝑦 = [0,0,0,0,0,0,1,0] 
If  2% ≤ 𝑑𝑎𝑖𝑙𝑦 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 Output 𝑦 = [0,0,0,0,0,0,0,1] 

Note: The output is an eight-dimensional vector as the task is eight classification categories. There are eight 

output vectors, corresponding to eight daily log return intervals. 
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Figure 3.1: Stock daily performance of INDU and FTSE100 from 2000 to 2018 

 

 

Note: The blue bar represents the daily return corresponding to the left vertical axis (%). The black line 

represents the index value corresponding to the right vertical axis. 

 

The data run from January 2000 to January 2019, including the financial crisis of 2007-2008, 

which can show the performances of the models in extremely poor financial situations. The 

performances for the INDU and FTSE100 from 2000 to 2018 are displayed in Figure 3.1. 

 

The summary of daily log returns is shown in Table 3.3. Both stock indices time series are 

non-normal and stationary, while the skewness is all negative and the kurtoses are all high. 

The Jarque–Bera statistic confirms that the FTSE100 and INDU return series are non-normal 

at the 99% confidence level. The Augmented Dickey-Fuller (ADF) reports that the null 

hypothesis of a unit root is rejected at the 99% statistical level for the two stock indices.  
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Table 3.3: Summary of daily log return 

 FTSE100 INDU 

Mean of return -0.0003% 0.0140% 

Standard deviation  1.1571% 1.1168% 

Skewness -0.1621% -0.1108% 

Kurtosis of return 9.6445 11.6362 

Jarque-Bera of return (p value) 0.0000 0.0000 

ADF (p value) 0.0000*** 0.0001*** 

Note: The model aims to predict the sign of the log returns. ∗∗∗ denotes that the hypothesis of the ADF test is 

rejected at the 1% significance level.  

 

The total number of independent variables is 100 or 80 for the networks. In comparison to 

the other NNs models, the MLP with AR & MA model has 20-dimensional Autoregression 

(AR) and Moving Average (MA) inputs in addition. The features mentioned here refer to the 

work of Ciner, Gurdgiev & Lucey (2013), Sheta, Ahmed & Faris (2015) and Partalidou et al. 

(2016), which are shown in Appendix B.1.1. All the nets employed here are tested 14 times 

for each stock index from 2000 onwards. For every test, the start and end dates are shown in 

Appendix B.1.2. Each trading year is set up to have 252 trading days. All nets specify five 

consecutive trading years as the in-sample set and the next trading year as the out-of-sample 

set.  

 

Data preparation is entirely conducted in Python 3.5, relying on the packages Numpy (Van 

Der Walt, Colbert & Varoquaux, 2011) and Pandas (McKinney, 2010). The deep learning 

networks used are developed with Keras on top of Google TensorFlow. The combination 

part is processed by MATLAB 2017. 

 

3.4 Methodology  

3.4.1 The Multi-layer Perceptron Model for forecasting stock indices 

MLP is a kind of traditional neural network architecture, which is also one of the most widely 

used neural network. MLP has the capability to approximate arbitrary functions (Principe, 

Euliano & Lefebvre, 2000). This suggests that MLP has potential when it comes to problems 

of non-linear dynamics and function mapping. Section 3.4.1.1 introduces the structure of the 

MLP designed by this study, which includes the data pre-processing, layers and numbers of 

neurons, the methods of optimization and the dropout technique. Then, section 3.4.1.2 and 

3.4.1.3 describe the structures of the single neuron and the BP algorithm in detail. 
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3.4.1.1 The structure of the MLP in this study 

The architecture of the MLP forecasting model employed in this chapter is shown in Figure 

3.2. The initial data is 2D data with 10 or 8 features and 10 lags. This chapter sets two 

different inputs pools for MLP. The difference between two inputs stems from whether or 

not autoregression and moving average have been added.   

 

Figure 3.2: The architecture of the MLP forecasting model in this study 

 

Note: 2D data is a matrix, which means the size of data is 2 dimensional. The 2D data in this paper has 10 

features (or 8 features) and their 10 lags. The 2D data matrix is reshaped to a vector with 100 (or 80) inputs. 𝑘 

is the keep value of variance, which means the PCA keeps 90% linear information.  

 

Since the value range for different features is different, the features are normalized 

individually. In this step, all inputs are converted to a range from 0 to 1. Then the 2D data is 

reshaped to 1D data (a vector). After that, I run PCA with k value equal to 90%. The neuron 

number of the inputs layer is decided by the inputs number after the PCA. The advantage of 

the MLP used here is that it is simpler and faster than the CNN and LSTM structures. The 

disadvantage is that MLP easily falls into the local optimum when dealing with high-

dimensional data. Thus, the data is pre-processed using PCA, which also causes some 

information loss. 

 

Compared with the research of Kimoto et al. (1990), Baba & Kozaki (1992) and Yoon & 

Swales (1991), this study examines fully connected nets that have more neurons in each 

hidden layer. The reason for this choice is based on the tests. The forecasting results are 

easily trapped into the same class (all negative or all positive) when the nets are simple (with 

fewer hidden layers and fewer neurons) and thus I use more complex nets with more neurons 

to solve this problem.  
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MLPs are usually trained with the BP algorithm. This study also uses the BP algorithm for 

network training. In addition, this research employs the adaptive moment estimation 

optimizer (AdamOptimizer), Gradient Descent (GD) and Stochastic Gradient Descent (SGD) 

to optimize the weights in nets. Based on the test results, this study finds that GD and SGD 

are easily trapped into local optimum compared with the AdamOptimizer. Thus, the final 

models all use the AdamOptimizer, which is an improved optimization method based on GD. 

The learning step in every iteration has a certain range for the AdamOptimizer. In this way, 

the value of weights can be more stable than GD and SGD. The AdamOptimizer provided 

by TensorFlow can automatically control the learning speed according to the first-order 

moment estimation and second-order moment estimation for every weight in the 

optimization.  

 

Another technique adopted here is Dropout, which was proposed by Hinton et al. (2014) to 

solve the over-fitting problem in deep learning. Dropout with Keep probability 60% is 

employed because the MLP I use is complicated and Dropout reduces over-fitting by 

randomly removing a certain probability of neurons during the training of the network. If 

Dropout with Keep probability 60% is used for a layer, when training, each iteration only 

randomly activates 60% of the neurons in that layer. 

 

3.4.1.2 The structure of the Processing Element (PE) in the MLP 

The MLP structure and the overall method used in this chapter have now been introduced, 

and the mathematical basis of MLP are as follows. A neuron is the most basic unit 

(component) that makes up NNs. Therefore, in order to introduce MLP or other NNs, this 

section first introduces artificial neurons. Each neuron can accept a set of input signals from 

other neurons in the system. Each input corresponds to a weight, and the weighted sum of 

all inputs determines the activation state of the neuron. As shown in Figure 3.3, the 𝑛 inputs 

are represented by 𝑥1, 𝑥2, … , 𝑥𝑛  respectively, and the corresponding weights are 

𝑤1, 𝑤2, … , 𝑤𝑛 respectively. All inputs and weights are shown as an inputs vector X and a 

weights vector W: 

X = (𝑥1, 𝑥2, … , 𝑥𝑛) (3.1) 

𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇 (3.2) 

An artificial neuron without an activation function is expressed as: 

net = XW (3.3) 
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Figure 3.3: The basic model of an artificial neuron 

 

Note: An artificial neuron multiplies two vectors: X = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛)𝑇. 

 

A neuron should produce an output when it obtains an inputs vector. Each neuron has a 

threshold. When the net value obtained by the neuron exceeds the threshold, the neuron is in 

an activated state; otherwise, it is in a suppressed state. This step is expressed as an activation 

function: 

o = 𝑓(net) (4) 

 

The McCulloch-Pitts (M-P) model is composed of the basic model of artificial neurons and 

the activation function (Funahashi, 1989), which can also be called the Processing 

Element, as shown in Figure 3.4. 

 

Figure 3.4: M-P model 

 

Note: M-P model adds an activation function to an artificial neuron. An appropriate activation function can 

significantly improve the performances of NNs. 

 

3.4.1.3 BP algorithm 

This section explains how the parameters of neurons are trained in the BP algorithm in multi-

forward training. The training steps include: 

（1） Take a sample (𝑋𝑖, 𝑌𝑖) in the sample set 
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（2） Calculate the actual output of the network O 

（3） Obtain calculation errors D = d(𝑌𝑖 − O);  where d(∙) is the function that calculates 

errors 

（4） Adjust W according to D 

（5） Repeat the above process until the times of training are reached or the error does not 

exceed the certain range. 

 

In the above steps, the key issue is to solve the problem of adjusting the weight of layers. 

The BP algorithm is the most mainstream solution. It uses the error of the output layer to 

estimate the error of one layer before this output layer, and then employs the backward 

process to use estimated error to continue to estimate the error of the layer before. Repeating 

in this way, the error estimates for all other layers can be obtained. Although the accuracy of 

this error estimation continues to decrease with backward propagation, it provides an 

effective approach to training multi-layer networks.  

 

Figure 3.5: The weights adjustment methods of the output layer 

 

Note: The weights of the output layer are directly adjusted based on loss.   

 

This study uses the notation in Figure 3.5 to explain the adjustment of the weights of the 

output layer. The calculation of hidden layers will be discussed later. In Figure 3.5, 𝐴𝑁𝑞 is 

the 𝑞𝑡ℎ neuron of the output layer, 𝐴𝑁𝑝 is the 𝑝𝑡ℎ neuron of the layer before the output 

layer, and 𝑤𝑝𝑞 is the weight of the two neurons. 

For the 𝑖𝑡ℎ training: 

𝑤𝑝𝑞
𝑖 = 𝑤𝑝𝑞

𝑖−1 + 𝛥𝑤𝑝𝑞
𝑖 (3.5) 

 

Taking the GD optimization method as an example, 𝛥𝑤𝑝𝑞
𝑖  can be calculated by: 

𝛥𝑤𝑝𝑞
𝑖 = 𝛼𝛿𝑞

𝑖 𝑜𝑝
𝑖 (3.6) 
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𝛿𝑞
𝑖 = 𝑓𝑛

′(𝑛𝑒𝑡𝑞
𝑖 )d(𝑦𝑞

𝑖 − 𝑜𝑞
𝑖 ) (3.7) 

Where 𝛿𝑞
𝑖  is the error of 𝐴𝑁𝑞, which is determined by the output of 𝐴𝑁𝑞, the real value of 

𝐴𝑁𝑞 and the output of 𝐴𝑁𝑝. 𝑓𝑛(∙) is the activation function of the 𝑛𝑡ℎ layer, and d(∙) is 

the loss function. 

 

Figure 3.6: The weights adjustment method of hidden layers 

 

Note: The loss of hidden layers needs to be estimated. Then the weights are adjusted based on the loss of hidden 

layers. 

 

Figure 3.6 displays the weights adjustment method of hidden layers. It is assumed that when 

𝐴𝑁ℎ is a hidden layer neuron, 𝛿𝑝𝑘−1 cannot be directly calculated but Δ𝑣ℎ𝑝 is determined 

by 𝛿𝑝𝑘−1, thus we need to give 𝛿𝑝𝑘−1 an estimate. Figure 3.6 indicates that the value of 

𝛿𝑝𝑘−1  is related to 𝛿1𝑘,  𝛿2𝑘 ,…, 𝛿𝑚𝑘 , and thus 𝛿1𝑘,  𝛿2𝑘 ,…, 𝛿𝑚𝑘  can be used to estimate 

𝛿𝑝𝑘−1. Meanwhile 𝛿𝑝𝑘−1 is associated with 𝑤𝑝1, 𝑤𝑝2,…, 𝑤𝑝𝑚 and 𝛿1𝑘, 𝛿2𝑘,…, 𝛿𝑚𝑘. We 

can deduce that the output error of 𝐴𝑁𝑝 is related to 𝑤𝑝1
𝑖 𝛿1𝑘

𝑖 + 𝑤𝑝2
𝑖 𝛿2𝑘

𝑖 + … + 𝑤𝑝𝑚
𝑖 𝛿𝑚𝑘

𝑖 . In 

this way, we can approximate the difference between the ideal output value of 𝐴𝑁𝑝 and real 

output. According to: 

𝛿𝑝𝑘−1
𝑖 = 𝑓𝑘−1

′ (𝑛𝑒𝑡𝑞
𝑖 )d(𝑤𝑝1

𝑖 𝛿1𝑘
𝑖 + 𝑤𝑝2

𝑖 𝛿2𝑘
𝑖 + … + 𝑤𝑝𝑚

𝑖 𝛿𝑚𝑘
𝑖 ) (3.8) 

 

We can obtain: 

Δ𝑣ℎ𝑝
𝑖 =  𝛼𝛿𝑝𝑘−1

𝑖 𝑜ℎ𝑘−2
𝑖 (3.9) 

𝑣ℎ𝑝
𝑖 = 𝑣ℎ𝑝

𝑖−1 + 𝛥𝑣ℎ𝑝
𝑖 (3.10) 

Where 𝑜ℎ𝑘−2
𝑖  represents the output of the ℎ𝑡ℎ neuron on the k − 2𝑡ℎ layer. 

 

In the above way, the weights in the BP neural network are adjusted. The weights adjustment 

methods of CNN and LSTM in this chapter are also the BP method.  
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3.4.2 Convolution Neural Network for forecasting stock indices 

The original form of CNN was proposed by Fukushima (1980). The hidden layer of the 

neocognitron model he proposed is composed of simple-layer and complex-layer, which 

partially realizes the functions of the convolution layer and pooling layer in CNN. LeCun et 

al. (1989) use SGD for learning in the networks they build. They were the first to use the 

word ‘convolution’ when introducing the network structure, which is where CNN gets its 

name. 

 

The common hidden layers of CNNs include the convolutional layer, the pooling layer and 

the fully connected layer. The fully connected layer was introduced above and the pooling 

layer is not used in this study, so I will only introduce the convolutional layer in this section. 

Its function is to extract features from the data using convolutional kernels (patches). When 

the convolutional kernel is working, the input features are regularly scanned. The input 

features are multiplied by the matrix elements in the receptive field, and we can sum the 

deviation: 

𝑍𝑙+1(i, j) = [𝑍𝑙 ⊗ 𝑤𝑙](i, j) + b (3.11) 

 where (i, j) ∈ {0,1, … , 𝐿𝑙+1}, 𝐿𝑙+1 =
𝐿𝑙 + 2𝑝 − 𝑓

𝑠0
+ 1 

where b is the deviation amount, 𝑍𝑙 represents the output of the 𝑙𝑡ℎ layer and the input of 

the 𝑙 + 1𝑡ℎ layer. Similarly, 𝑍𝑙+1 represents the output of the 𝑙 + 1𝑡ℎ layer and the input of 

the 𝑙 + 2𝑡ℎ  layer. 𝐿𝑙+1  is the size of 𝑍𝑙+1 . 𝑍𝑙+1(i, j)  is the data at the location (i, j)  in 

receptive field, which is a vector. 𝐾 is the number of filters. 𝑓, 𝑠0 and p are the parameters 

of a convolutional layer, corresponding to the size of patches, stride and the numbers of 

padding. 

 

As shown in Figure 3.7, the hidden layers of CNN constructed in this study consist of two 

convolution layers and the three-layer fully connected network. The initial inputs used in 

this study are 2D data with 8 features and 10 lags (see Appendix B.1.1 for details).  
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Figure 3.7: The architecture of the CNN forecasting model in this study 

 

Note: This figure shows the architecture of the CNN model. The blocks show the shapes of the data. For 

example, the first block represents a matrix size (10,8).  

 

Figure 3.7 displays the structure of the CNN model constructed in this research:  

(1) The first hidden layer is a 2D convolutional layer with 16 filters of size (5,8), the stride 

is 1, with Rectified Linear Unit (ReLU) activation function (ReLU is a type of activation 

function. Mathematically, it is defined as 𝑦 =  𝑚𝑎𝑥(0, 𝑥)). 

(2) The second hidden layer is a 1D convolutional layer with 32 filters of size (1,4), the stride 

is 1, with ReLU activation function. 

(3) Then reshape outputs into 1D form, enter the reshaped outputs into the three-layer fully 

connected networks with ReLU activation function, where the fully connected networks use 

the Dropout technique with probability 60%. 

(4) Finally, I output the forecasting probability of each class with a SoftMax activation 

function. 

 

The ReLU activation function and SoftMax activation function are common activation 
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functions in NNs training. SoftMax activation function is the gradient logarithm 

normalization of the finite term discrete probability distribution. In this study, the SoftMax 

activation function in the output layer gives the probability for daily return categories. For 

example, for a two categories classification, the output of day t is [𝑝, 1 − 𝑝], for an eight 

categories classification, the output of day t is [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8], where the sum 

is one.  

 

Unlike the general form of CNN, this study does not use a pooling layer after the 

convolutional layer, which is for two reasons: first, the max pooling method commonly used 

in the pooling layer is not suitable for processing financial data. Max pooling is more suitable 

for processing pixel data for image reduction. Second, the padding method of the patch in 

this study is ‘Valid’ rather than ‘Same’. ‘Valid’ makes the length and width of the data smaller 

after passing through the convolutional layer, and the total amount of data 

(length*width*height) is also smaller. Therefore, the pooling layer used to reduce the amount 

of data can be omitted. The explanation of ‘Valid’ and ‘Same’ is given in Figure 3.8. 

 

Figure 3.8: The convolutional lingo 

 

 

Note: In this study, Valid Padding helps to reshape the data. In this way, the pooling layer can be omitted, 

thereby reducing the loss of information. 

3.4.3 Long Short-Term Memory for forecasting stock indices 

Long Short-Term Memory is one of the many variations of RNN, which was first proposed 

by Jordan in 1986 based on the Hopfield network (Elamn, 1990). Under the parallel 

distributed processing theory, every neuron in hidden layers of Jordan’s network connects 

with a ‘state unit’ which is used for inputs lags. In 1990, Elamn proposed the first fully 
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connected RNN. In 1991, Hochreiter discovered the long-term dependencies problem of 

RNN, that is, when learning the sequence, gradient vanishing and gradient explosion will 

appear. This means that RNN is unable to learn long-term nonlinear relationships. In order 

to solve this long-term dependencies problem, many improved algorithms have been 

developed, among which the most widely used is LSTM. 

 

Figure 3.9: Unfolding the architecture of a recurrent neural network 

 

Note: RNN uses the same 𝑉 (weights of the output layer), 𝑈 (weights of the hidden layer) and 𝑊 (transition 

weights of the hidden state) for input and output at different 𝑡.  

 

The RNN and LSTM models are introduced as follows. Figure 3.9 shows that an RNN model 

is unfolded into a full network. 𝑥𝑡 is the input vector at time t. s𝑡 is the hidden state at time 

t; it is calculated based on the input vector and the previous hidden state. s𝑡 is calculated as: 

𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1) (3.12) 

where  𝑓(∙) is the activation function. The initial hidden state s0 used to calculate the first 

hidden state s𝑖 is typically initialized to zero. U and W are the weights of the hidden layer 

and transition weights of the hidden state respectively. o𝑡 is the output at time t, which can 

be formulated as follows: 

𝑜𝑡 = 𝑓(𝑉𝑠𝑡) (3.13)

where V are the weights of the output layer.  

 

As explained above, RNN has difficulty learning long-term dependencies because of the 

vanishing gradient and gradient explosion problems. LSTM is an effective solution for 

combatting vanishing gradient and gradient explosion by memory cells. The memory unit 

consists of four units: an input gate, an output gate, a forget gate, and a self-recurrent neuron, 

as shown in Figure 3.10. The interactions between adjacent memory cells and the memory 

cell itself are controlled by the gates. The input gate controls whether the input signal can 
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change the state of the memory cell. Additionally, the output gate governs the state of the 

memory cell, determining whether it is able to change another memory cell’s state. Moreover, 

the forget gate decides to remember or forget its previous state. 

 

Figure 3.10: The architecture of the LSTM memory cell 

 

Note: The dashed box shows a memory unit in LSTM. The three red dots are the input gate, forget gate and 

output gate. The rectangle with solid lines in the middle is a self-recurrent neuron. 

 

Figure 3.11: The repeating module in the LSTM 

 

Note: The dashed box shows the execution details of a unit of LSTM. ⨂ is the tensor product. ⨁ means the 

matrix addition. 

 

Figure 3.11 shows an LSTM model being unrolled into a full network, which describes how 

the value of each gate is updated. In Figure 3.11, 𝑥𝑡 is the input vector at time t. 𝑖𝑡 is the 

values of the input gate and �̃�𝑡 is the candidate sate of the memory cell at time t: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (3.14) 

�̃�𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (3.15) 

𝑓𝑡 is the value of the forget gate and 𝐶𝑡 is the state of the memory cell at time 𝑡, which can 

be calculated by: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (3.16) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (3.17) 

𝑜𝑡 is the value of the output gate at time t. ℎ𝑡 is the value of the memory cell at time t, which 
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can be formulated as: 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑉𝑜𝐶𝑡 + 𝑏𝑜) (3.18) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (3.19) 

Where 𝑊𝑖 , 𝑊𝑓 , 𝑊𝑐 , 𝑊𝑜 , 𝑈𝑖 , 𝑈𝑓 , 𝑈𝑐 , 𝑈𝑜  and 𝑉𝑜  are weight matrices. 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑐  and 𝑏𝑜 

are bias vectors. The LSTM network used in this study is a basic LSTM network with 10 

neurons in the hidden layer connected to an output layer with the SoftMax activation 

function. 

 

3.4.4 Forecasting combination techniques  

In this section, three techniques are used to combine MLP, CNN and LSTM forecasts. These 

combination techniques are used by Sermpinis et al. (2012) in their paper that forecasts the 

EUR/USD exchange rate. The aim of these techniques is to follow the best individual 

forecasting or significantly improve the combination of forecasting. This section combines 

the predicted outputs of NNs with the combination techniques used by Sermpinis et al. 

(2012). The combination techniques combine the prediction probability of three NNs for 

binary classification. All out-of-sample predictions are used for the parameters’ estimation 

for the combination techniques.  

 

3.4.4.1 Simple Average 

The first combination technique used in this section is a simple average, which can be 

considered as a benchmark forecast combination model. Given the NNs’ forecasting vectors 

𝑓𝑀𝐿𝑃
𝑡 , 𝑓𝐶𝑁𝑁

𝑡  and 𝑓𝐿𝑆𝑇𝑀
𝑡  at time 𝑡, the forecasting vectors at time 𝑡 are calculated as: 

𝑓𝑆𝐴
𝑡 =

𝑓𝑀𝐿𝑃
𝑡 + 𝑓𝐶𝑁𝑁

𝑡 + 𝑓𝐿𝑆𝑇𝑀
𝑡

3
(3.20) 

Where the 𝑓𝑆𝐴
𝑡 , 𝑓𝑀𝐿𝑃

𝑡 , 𝑓𝐶𝑁𝑁
𝑡 , 𝑓𝐿𝑆𝑇𝑀

𝑡  are two-column matrices (the elements are probabilities, 

the sum of every row is one), which can also be considered as a one-dimensional vector.  

 

3.4.4.2 Granger and Ramanathan Regression Approach (GRR) 

Bates and Granger (1969) indicate that combining a set of forecasts performs better than 

individual forecasts. According to this idea, Granger and Ramanathan (1984) propose three 
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regression models as follows: 

[GRR-1]: 

𝑓𝑐1 = 𝑎0 + ∑ 𝑎𝑖𝑓𝑖 +

𝑛

𝑖=1

𝜀1 (3.21) 

[GRR-2]: 

𝑓𝑐2 = ∑ 𝑎𝑖𝑓𝑖 +

𝑛

𝑖=1

𝜀2 (3.22) 

[GRR-3]: 

𝑓𝑐3 = ∑ 𝑎𝑖𝑓𝑖 +

𝑛

𝑖=1

𝜀3，where ∑ 𝑎𝑖 = 1

𝑛

𝑖=1

(3.23) 

Where 𝑓𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 are the individual one-step-ahead predictions. 𝑓𝑐1, 𝑓𝑐2, 𝑓𝑐3 are the 

combination predictions. 𝑎0 is the constant term of the regression. 𝑎𝑖 is the coefficient of 

the regression for each model. 𝜀1, 𝜀2, 𝜀3 are the error terms. 

 

The GRR-1 model is applied in the research of Sermpinis et al. (2012). This study also selects 

GRR-1. The forecasting results of NNs in this study are probabilities. Thus, the estimation 

function needs some adjustment: 

                                              (𝑓𝑐1 − 0.5)

= 𝑎0 + ∑ 𝑎𝑖(𝑓𝑖 − 0.5) +

𝑛

𝑖=1

𝜀1                                     (3.24) 

 

The GRR model at time 𝑡 is specified as follows: 

     (𝑓𝑐1
𝑡 − 0.5) = −0.0029 + 1.8650(𝑓𝑀𝐿𝑃

𝑡 − 0.5) + 4.0715(𝑓𝐶𝑁𝑁
𝑡 − 0.5)

+ 4.2992(𝑓𝐿𝑆𝑇𝑀
𝑡 − 0.5)                                                                                       (3.25) 

 

3.4.4.3 Least Absolute Shrinkage and Selection Operator (LASSO) 

LASSO is proposed by Tibshirani (1996) based on Ridge Regression. Compared to linear 

regression, LASSO is suitable for solving the problem of over-fitting or multi-collinearity 

between variables. Compared to Ridge Regression, LASSO is more adaptable to in-samples 

of fewer variables with medium/large effects. Given a set of samples with the vectors of 

independent and dependent variables: 
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[
𝑋1

𝑇

⋮
𝑋𝑁

𝑇
] = (

𝑥11 ⋯ 𝑥1𝑁

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝑁

) , 𝑌 = [𝑦1, … 𝑦𝑁]𝑇 (3.26) 

 

The LASSO coefficients are estimated as follows: 

�̂�𝑙𝑎𝑠𝑠𝑜 = arg 𝑚𝑖𝑛𝛽 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑗

𝑑

𝑗=1

)

2
𝑛

𝑖=1

} subject to ∑|𝛽𝑖| ≤ 𝑘, 𝑘 > 0.

𝑑

𝑗=1

(3.27) 

Where 𝑘 is the ‘tuning parameter’, which controls the amount of shrinkage applied to the 

coefficients. In this case, one is required for the constraint 𝑘 since the forecasting results of 

NNs in this study are probabilities. Thus, the range of the combination should be zero to one. 

|𝛽𝑀𝐿𝑃| + |𝛽𝐶𝑁𝑁| + |𝛽𝐿𝑆𝑇𝑀| ≤ 1 (3.28) 

 

Subject to the constraint model takes the form: 

𝑓𝑙
𝑡 = 0.1119𝑓𝑀𝐿𝑃

𝑡 + 0.3923𝑓𝐶𝑁𝑁
𝑡 + 0.4715𝑓𝐿𝑆𝑇𝑀

𝑡 + 𝜀𝑡 (3.29) 

 

3.5 Statistical performance 

The annualized accuracy of ANNs (MLP, CNN and LSTM) and combination methods are 

presented in this section. The accuracy is calculated every trading year from 2004 to 2018. 

This study also uses eight classification architecture NN model to test accuracy, which is 

shown in Appendix B.2.1. 

 

3.5.1 Statistical accuracy of MLP, CNN and LSTM 

The statistical accuracy of the binary classification of MLP, MLP with AR & MA, CNN and 

LSTM is presented in Table 3.4 (for the FTSE100) and Table 3.5 (for the INDU). A direct 

way to show the effectiveness of prediction is to see if the accuracy of the out-of-sample is 

higher than 50%. Tests of the out-of-sample lower than 50% are in bold. Table 3.4 and Table 

3.5 indicate that the likelihood of obtaining accuracy lower than 50% in the out-of-sample 

is small, since it occurs 3 times in 56 predictions for FTSE forecasting and 6 times for the 

INDU. The accuracy of the prediction of RW being lower than 50% should be 49.8% with 

the expectation close to 28 times. This also proves that the predictive accuracy of the neural 
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networks in this study is significantly higher than RW.  

 

Table 3.4: Accuracy for binary classification forecasts for the out-of-sample for the FTSE100 

Period MLP MLP_with_AR&MA CNN LSTM 

F1 0.5516 0.5238 0.5278 0.5397 

F2 0.5198 0.4960 0.5040 0.5635 

F3 0.5278 0.5119 0.5357 0.5198 

F4 0.5119 0.4841 0.5516 0.5516 

F5 0.5079 0.5278 0.5397 0.5317 

F6 0.5119 0.5040 0.5198 0.5079 

F7 0.5357 0.5159 0.5476 0.5357 

F8 0.5119 0.5317 0.5159 0.5079 

F9 0.5357 0.4802 0.5357 0.5635 

F10 0.5278 0.5159 0.5516 0.5278 

F11 0.5079 0.5198 0.5119 0.5238 

F12 0.5238 0.5198 0.504 0.5556 

F13 0.5159 0.5198 0.5317 0.5675 

F14 0.5357 0.5238 0.5516 0.5119 

Average accuracy 0.5232 0.5125 0.5306 0.5363 

Note: The tests of the out-of-sample lower than 50% are in bold. 

 

Table 3.5: Accuracy for binary classification forecasts for the out-of-sample for the INDU 

Period MLP MLP_with_AR&MA CNN LSTM 

F1 0.4921 0.5119 0.5159 0.5119 

F2 0.5000 0.5119 0.5079 0.5159 

F3 0.5476 0.5159 0.5238 0.5595 

F4 0.5079 0.5159 0.5079 0.5476 

F5 0.5278 0.5556 0.4881 0.5119 

F6 0.5476 0.4921 0.5675 0.5556 

F7 0.5437 0.4921 0.5278 0.5079 

F8 0.4921 0.5278 0.5357 0.5397 

F9 0.5437 0.5119 0.5437 0.5556 

F10 0.5159 0.5040 0.5040 0.5714 

F11 0.5079 0.5040 0.4881 0.5357 

F12 0.5159 0.5357 0.5317 0.5159 

F13 0.5278 0.5079 0.5595 0.5317 

F14 0.5397 0.5238 0.5238 0.504 

Average accuracy 0.5221 0.5150 0.5232 0.5332 

Note: The tests of the out-of-sample lower than 50% are in bold. 

 

Additionally, the average accuracy of all neural networks for both the FTSE100 and INDU 

is higher than 50%. LSTM especially shows the best performance in average accuracy, at 

3.63 percentage points (for FTSE100) and 3.32 percentage points (INDU) higher than the 

expectation accuracy (50%) of random classification. Moreover, the forecasting accuracy of 

NNs is not significantly affected by the performance of stock markets in the tests. The 

financial crisis in 2007 and 2008 corresponds to F4 and F5 respectively. However, only one 

prediction failure occurs in the experiments of these two periods.  
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The inputs of MLP with AR & MA have 20-dimensional AR & MA more than the inputs of 

MLP. However, the forecasting performance of MLP with AR & MA has not increased but 

decreased, which may result from improper use of inputs. The AR & MA information is 

extracted from the return lags. Thus, it is unnecessary to add AR & MA with return lags in 

the inputs pool. Another reason is that the information vanishes after pre-processing the 

forecasting results of AR & MA. This study uses the normalization method to pre-process 

the forecasting results of AR & MA, and then inputs the pre-processed results into MLP. 

Since the magnitude of the forecasting results of AR & MA is different from that of other 

inputs (such as return), normalization is applied separately for different features. This step 

will lose the interrelated information among the features. This problem exists not only for 

AR & MA as inputs, but also for other financial features. Compared to picture recognition, 

text recognition and speech recognition, the features of financial classification are more 

challenging to pre-process. For example, the ranges of the pixels in picture recognition are 

all between 0-255, and thus all features can be normalized uniformly, but financial features 

are usually not in the same range, as their range in some stock indices is from a thousand to 

ten thousand, and some dummy financial features are 0 or 1. This study argues that the 

heterogeneity of inputs affects the accuracy of financial forecasting. 

 

Compared to previous similar studies (Fischer & Krauss, 2018; Pang et al., 2018; Nelson, 

Pereira & de Oliveira, 2017; Tsantekidis et al., 2017), the accuracy of NNs used here does 

not reach their accuracy level, which may be due to three reasons. The first is because the 

UK and US stock markets are highly efficient markets, and thus the forecasting effectiveness 

will be worse. Pang et al. (2018) use LSTM to predict the Chinese stock exchange index 

with an accuracy rate of 57.2%, while the similar method used by Fischer & Krauss (2018) 

for the US stock index only has a prediction accuracy rate 54.3%. 

 

The second reason is that in order to compare the performances among NNs, the same inputs 

are employed for MLP, CNN and LSTM, which leads to insufficient input lags for LSTM. 

LSTM specializes in learning data with long lags, but this study only uses 10 lags, which 

does not reflect the advantages of LSTM (while Nelson, Pereira & de Oliveira (2017) use 

100 lags). The reason why this study does not use long lags is that they will increase the 

inputs dimension and cause the MLP to be easily trapped into overfitting. 

 

The third reason is that this study is predicting daily returns. Predicting the return over a 
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shorter period can result in higher accuracy. Evidence comes from Nelson, Pereira & de 

Oliveira (2017) and Tsantekidis et al. (2017) who use tick-data to predict stock indices’ 

performance in the next few minutes and achieve relatively high accuracy (55.9% and 59.44% 

respectively) 

 

3.5.2 Statistical accuracy of NNs combination  

The statistical accuracy of three combination techniques (Simple Average, GRR and LASSO) 

is presented in Table 3.6 (for the FTSE100) and Table 3.7 (for the INDU). Regarding the 

average accuracy, the three combination techniques do not perform better than the neural 

networks alone. For the FTSE100, the average accuracy of the three methods is very close. 

The average accuracy of 14 experiments is 53.17%, 53.20% and 53.26%, corresponding to 

Simple Average, GRR and LASSO. For the INDU, the performance is slightly worse, and 

the average accuracy is 51.93%, 52.78% and 52.69%. After observing the daily prediction 

results, this study finds that the forecasting results of GRR and LASSO are the same most 

of the time. 

 

Table 3.6: Annual accuracy of the out-of-sample combination for the FTSE100 

 Simple Average  GRR LASSO 

F1 0.5278 0.5357 0.5357 

F2 0.5198 0.5437 0.5397 

F3 0.5476 0.5278 0.5278 

F4 0.5238 0.5397 0.5397 

F5 0.5317 0.5317 0.5317 

F6 0.5198 0.5278 0.5278 

F7 0.5357 0.5119 0.5119 

F8 0.5556 0.4960 0.5079 

F9 0.5278 0.5516 0.5516 

F10 0.5516 0.5238 0.5238 

F11 0.5079 0.5357 0.5357 

F12 0.5000 0.5437 0.5476 

F13 0.5595 0.5516 0.5476 

F14 0.5357 0.5278 0.5278 

Average accuracy 0.5317 0.5320 0.5326 

Note: The tests of the out-of-sample lower than 50% are in bold. 
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Table 3.7: Annual accuracy of the out-of-sample combination for the INDU 

 Simple Average  GRR LASSO 

F1 0.5000 0.5198 0.5198 

F2 0.4921 0.5159 0.5159 

F3 0.4960 0.5357 0.5278 

F4 0.5238 0.5317 0.5357 

F5 0.5119 0.5317 0.5317 

F6 0.5556 0.5595 0.5595 

F7 0.5159 0.5159 0.5159 

F8 0.5000 0.5397 0.5357 

F9 0.5238 0.5516 0.5516 

F10 0.5437 0.5278 0.5238 

F11 0.5079 0.5119 0.5119 

F12 0.5317 0.5159 0.5159 

F13 0.5278 0.5278 0.5278 

F14 0.5397 0.5040 0.5040 

Average accuracy 0.5193 0.5278 0.5269 

Note: The tests of the out-of-sample lower than 50% are in bold. 

 

 

The combination techniques do not improve the predictive power of NNs, which is different 

from the results of Sermpinis et al. (2012). They use NNs to do regression fitting of the 

EUR/USD exchange and the forecasting result is the exchange rate. In their paper, using 

combination techniques can reduce volatility, trying to approximate the true value. However, 

this study forecasts the sign of stock indices and the forecasting result is the probability 

within the range 0 to 1. In the case of binary classification categories, if the value of the first 

item of the vector is higher than 50%, then the price of the stock is predicted to rise; if the 

probability is lower than 50%, the price is predicted to decrease. When these probabilities 

are combined, the combination may turn into a judgment problem as the naive strategy used 

in this study does not buy more stocks when the higher probability of price increase occurs. 

Thus, this shortcoming of the trading strategy weakens the performance of combination 

techniques. This study suggests that adjusting the leverage of buying (or selling) based on 

the forecasting probabilities given by the NNs will improve the performance. 

 

3.6 Trading performance  

The trading strategy in this study is to buy one unit or stay ‘long’ of the index when the 

forecast return is positive and sell one unit or stay ‘short’ of the index when the forecast 

return is negative. In section 3.6.1, trading performances are calculated annually for MLP, 

CNN, LSTM, and combination methods. Section 3.6.2 introduces a method to offer different 

leverages for daily trading based on the daily forecasting probabilities. The annual returns 
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of eight-classification NNs and NNs combination are in Appendix B.2 and Appendix B.3, 

respectively. Transaction costs have not been taken into account in this chapter. 

 

3.6.1 Trading performances of NNs and combination methods 

The annualized trading performances of MLP, CNN, LSTM, and combination methods are 

presented in this section. Table 3.8 (for the FTSE100) and Table 3.9 (for the INDU) show 

the out-of-sample results of MLP, CNN, LSTM and Buy-and-Hold with binary classification. 

All NNs beat Buy-and-Hold on average annualized returns, but all NNs are not guaranteed 

to outperform Buy-and-Hold consistently every year. This proves that forecasting the stock 

index by NNs is not stable. The instability of the forecasting results provides a new direction 

for future study. This study argues that increasing the updating frequency and the forecasting 

frequency of the model can reduce the instability of returns. The model can be updated daily 

during the actual transaction process (while in this study it is updated once a year). 

Additionally, a higher forecasting frequency can be adopted, such as forecasting and trading 

once per hour. 

 

Table 3.8: Trading performances of MLP, CNN and LSTM with binary classification 

categories for the FTSE100 (%) 

 Buy-and-Hold MLP MLP with AR & MA CNN LSTM 

F1 14.98 18.79 8.47 5.30 6.92 

F2 10.74 13.15 -8.39 6.98 16.01 

F3 0.88 0.19 10.56 31.59 11.26 

F4 -48.84 -5.29 -45.59 26.30 27.95 

F5 30.09 12.50 31.70 40.63 12.74 

F6 7.56 13.05 3.16 -4.49 -3.37 

F7 -3.23 24.37 1.45 -16.61 24.96 

F8 6.09 9.93 17.19 11.86 -15.95 

F9 13.14 1.12 -7.05 3.29 10.46 

F10 3.11 4.18 1.95 11.45 15.75 

F11 -13.37 11.32 10.10 -0.46 11.97 

F12 14.56 12.59 14.50 30.33 24.93 

F13 7.08 4.14 8.49 -3.00 20.01 

F14 3.45 3.39 2.67 15.24 11.30 

Average 3.30 8.82 3.52 11.32 12.49 

Note: The best performance in every forecast period is in bold. The units in the table are all %. 
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Table 3.9: Trading performances of MLP, CNN and LSTM with binary classification 

categories for the INDU (%) 

 Buy-and-Hold MLP MLP with AR & MA CNN LSTM 

F1 1.64 -1.02 6.22 -1.36 2.54 

F2 14.22 -5.25 8.89 -4.49 -10.31 

F3 6.25 13.87 -7.46 6.91 -1.65 

F4 -56.21 -13.24 3.87 36.52 33.55 

F5 30.32 38.09 21.59 20.01 35.42 

F6 8.43 7.02 11.78 2.78 4.48 

F7 4.55 -1.13 2.93 6.39 14.97 

F8 14.65 4.97 1.18 2.55 19.48 

F9 14.82 17.98 -6.13 11.48 2.95 

F10 9.01 11.55 11.35 8.39 9.60 

F11 -4.95 18.29 -2.91 -10.50 14.00 

F12 13.16 13.16 18.72 30.45 10.07 

F13 16.75 -7.06 1.74 21.02 3.10 

F14 13.21 22.71 21.85 0.98 5.33 

Average 6.13 8.57 6.69 9.37 10.25 

Note: The best performance in every forecast period is in bold. The units in the table are all %. 

 

In Table 3.8 and Table 3.9, the best performing model in each forecast period is in bold. 

Considering the FTSE100 and INDU together (in total 28 forecasts), Buy-and-Hold wins 2 

times, MLP wins 8 times, MLP with AR & MA wins 3 times, CNN wins 6 times and LSTM 

wins 9 times. It seems that no NN is significantly better than the other models at a 90% 

confidence level according to the chi-square test (see Appendix B.4). 

 

In respect of the average annualized returns, higher average forecasting accuracy contributes 

to higher average returns. CNN and LSTM perform significantly better than MLP, and 

LSTM has the highest average annualized return. During the tests, in the fully connected 

part of MLP and CNN, if the number of neurons is too small, the absolute value of some 

final forecasting return is the same as the absolute value of Buy-and-Hold return. This means 

the forecast results are all in the same category (i.e. returns are all positive or all negative). 

This should be considered as an invalid forecast that falls into local optimum. Thus, this 

chapter uses more neurons per layer compared to the literature of Kimoto et al. (1990), Baba 

& Kozaki (1992) and Yoon & Swales (1991). 
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Table 3.10: The summary of out-of-sample trading performances for the FTSE100 

 Buy-and-

Hold 

Neural networks Forecast combination 

 MLP CNN LSTM Simple 

average 

GRR LASSO 

Annualized return  3.30% 8.82% 11.32% 12.49% 11.29% 11.92% 11.96% 

Annualized volatility 17.36% 7.65% 15.50% 11.11% 10.02% 9.86% 9.83% 

Sharpe Ratio 0.19 1.15 0.73 1.12 1.13 1.21 1.22 

Information Ratio  0.72 0.52 0.83 0.80 0.87 0.88 

Note: MLP, CNN and LSTM belong to Neural networks; Simple average, GRR and LASSO belong to Forecast 

combination. Transaction costs have not been taken into account. 

 

Table 3.11: The summary of out-of-sample trading performances for the INDU 

 Buy-and-

Hold 

Neural networks Forecast combination 

 MLP CNN LSTM 
Simple 

average 
GRR LASSO 

Annualized return  6.13% 8.57% 9.37% 10.25% 8.02% 9.96% 9.74% 

Annualized volatility   19.00% 13.16% 12.85% 12.20% 12.32% 11.92% 11.90% 

Sharpe Ratio 0.32 0.65 0.73 0.84 0.65 0.84 0.82 

Information Ratio  0.19 0.25 0.34 0.15 0.32 0.30 

Note: MLP, CNN and LSTM belong to Neural networks; Simple average, GRR and LASSO belong to forecast 

combination. Transaction costs have not been taken into account. 

 

The summary of trading performances of individual NNs and combination techniques, based 

on binary classification categories, is presented in Table 3.10 (for the FTSE100) and Table 

3.11 (for the INDU). The calculation methods of the Sharpe Ratio and the Information Ratio 

are explained in Appendix A.3 and Appendix B.5. In terms of the Sharpe Ratio, Buy-and-

Hold is significantly worse than all other forecast models, which proves that all NNs and 

combination models used in this chapter are more effective than Buy-and-Hold. For the 

average results in 14 trading years, Buy-and-Hold also has the lowest average annualized 

return and the highest annualized volatility. This proves that in the long term, transactions 

based on NNs forecasts not only increase the average rate of return but also reduce the risk. 

With regard to the Sharpe Ratio and the Information Ratio, LSTM performs better than MLP, 

CNN and Buy-and-Hold, while the performances of three combination techniques are similar. 

NNs and combination techniques perform better for the FTSE100 than for the INDU in 

average return, the Sharpe Ratio and the Information Ratio. 
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3.6.2 Trading performance using leverage based on the daily forecast 

probability  

The MLP, CNN and LSTM models provide probabilities of signs of daily returns. Based on 

the probabilistic results, this study assigns different leverage ratios for different probabilities. 

The higher leverage is set for days with higher forecasting probabilities. In terms of 

forecasting probabilities that are close to 50%, the corresponding leverage is low or even 

zero. This method can reduce failed trading days and reduce transaction times. 

 

The threshold value of leverage is determined by the probability distribution of all out-of-

sample results. Figure 3.12 shows the distribution of results for MLP, CNN and LSTM. The 

horizontal axis indicates the interval of the forecast results, where every one percentage point 

has a bar. The vertical axis shows the height of bars, which describes the number of 

occurrences. The MLP forecast results are clustered at intervals 48%-49% and 49%-50% 

(the probability that the next day’s return is positive), which are both close to 1500 times in 

a total of 7056 forecasting times. The distributions of the results for CNN and LSTM are 

closer to normal distribution compared with the results for MLP.  

 

Table 3.12: Summary of daily forecasting probability 

 MLP CNN LSTM 

Mean 0.4863 0.4903 0.4915 

Standard deviation  0.0669 0.0381 0.0421 

Skewness -0.9045 -0.2363 0.0082 

Kurtosis 8.9999 4.5086 3.3652 

Kolmogorov-Smirnov test 0.0000*** 0.0000*** 0.4783 

Note: *** denotes that the hypothesis of the Kolmogorov-Smirnov Test is rejected at the 1% significance level.  

 

Table 3.12 indicates that according to the Kolmogorov-Smirnov Test, the forecasting results 

for MLP and CNN do not obey normal distribution, and the results for LSTM are normally 

distributed. The Kolmogorov-Smirnov Test for CNN yields results that are not identical to 

my intuitive perception, and thus this section analyzes the data further. 
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Figure 3.12: Forecasting probability distribution for MLP, CNN and LSTM (daily) 

 

 

 
Note: This figure displays the forecasting probability distributions for MLP, CNN and LSTM (from top to 

bottom in the figure). The width of each bar is 1%. The height of bars represents the number of times the 

forecasting result falls within the probability interval.  
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Figures 3.13, 3.14 and 3.15 use the normal distribution function curve to fit the forecast 

results of NNs. The fitting shows that the forecasting results for CNN and LSTM fit the 

normal distribution function. In Appendix B.6, the normplot function in MATLAB is used 

to further analyze the distribution of NNs forecasting results, finding that CNN and LSTM 

can be regarded as normal distributions. Thus, this study considers that both CNN and LSTM 

are normally distributed. In addition, the MLP forecasting results are not leveraged because 

they are very unstable, and most of the values fall within the interval close to 50% with a 

relatively large standard deviation. This will result in few transactions in some years. 

 

Figure 3.13: Fitting the forecasting results with Normal distribution function (MLP) 

 

Note: The fitting line is a normal distribution function. Its mean (𝜇) and standard deviation (𝜎) are reported 

in the figure. The bars are the distribution of forecasting results. Whether forecasting results are close to the 

normal distribution can be observed from the fit of line and bars.  

Figure 3.14: Fitting the forecasting results with Normal distribution function (CNN) 

 

Note: The fitting line is a normal distribution function. Its mean (𝜇) and standard deviation (𝜎) are reported 

in the figure. The bars are the distribution of forecasting results. Whether forecasting results are close to the 

normal distribution can be observed from the fit of line and bars.  
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Figure 3.15: Fitting the forecasting results with Normal distribution function (LSTM) 

 

Note: The fitting line is a normal distribution function. Its mean (𝜇) and standard deviation (𝜎) are reported 

in the figure. The bars are the distribution of forecasting results. Whether forecasting results are close to the 

normal distribution can be observed from the fit of line and bars.  

 

The threshold of the leverage in this study is determined by the standard deviation of the 

distribution. The mean is not 50%, which is mainly caused by the left fat-tail of the sample, 

which is explained in detail in Appendix B.6. In order to maintain the fairness of the positive 

and negative forecasts, this study uses 50% as the mean and regards the standard deviation 

of the normal distribution as the leverage criteria. As shown in Figure 3.16, the 1/3 

proportion close to the 50% (the blue area in Figure 3.16) is assigned leverage 0; the green 

part is endowed with leverage 1; leverage 2 is allocated to the red part, which means a higher 

forecasting success rate. 
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Figure 3.16: Leverage rules for CNN and LSTM 

 

(1) Leverage rules for CNN 

 

(2) Leverage rules for LSTM 

Note: This figure consists of leverage rules for CNN and LSTM. According to the forecasting probability, the 

results are divided into three parts: blue, green and red areas. Each part is assigned a leverage ratio. 

 

Based on the leverage allocation mentioned above, this study calculates the annualized 

returns of CNN and LSTM. In Tables 3.13 and 3.14, the average annualized returns of CNN 

and LSTM increase after using leverage both in the FTSE100 and INDU. Leverage trading 

improves the trading performance by an average of 1-2 percentage points per year. However, 

leverage trading does not beat non-leverage trading in every trading year.  
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Table 3.13: Trading performances of CNN and LSTM with leverage for the FTSE100 (%) 

 Buy-and-Hold CNN LSTM CNN with 

leverage 

LSTM with 

leverage 

F1 14.98 5.30 6.92 7.54 10.27 

F2 10.74 6.98 16.01 26.73 17.36 

F3 0.88 31.59 11.26 14.47 24.31 

F4 -48.84 26.30 27.95 24.51 18.68 

F5 30.09 40.63 12.74 15.58 23.56 

F6 7.56 -4.49 -3.37 -15.32 -5.28 

F7 -3.23 -16.61 24.96 -24.87 11.00 

F8 6.09 11.86 -15.95 3.16 -10.14 

F9 13.14 3.29 10.46 33.53 7.93 

F10 3.11 11.45 15.75 28.02 5.24 

F11 -13.37 -0.46 11.97 5.23 14.85 

F12 14.56 30.33 24.93 6.40 30.77 

F13 7.08 -3.00 20.01 22.88 33.16 

F14 3.45 15.24 11.30 32.48 25.94 

Average 3.30 11.32 12.49 12.88 14.83 

Note: The best performance in every forecast period is in bold.  

 

Table 3.14: Trading performances of CNN and LSTM with leverage for the INDU (%) 

 Buy-and-Hold CNN LSTM CNN with 

leverage 

LSTM with 

leverage 

F1 1.64 -1.36 2.54 10.82 10.18 

F2 14.22 -4.49 -10.31 -11.43 -15.56 

F3 6.25 6.91 -1.65 14.34 -14.24 

F4 -56.21 36.52 33.55 35.97 35.63 

F5 30.32 20.01 35.42 23.61 16.35 

F6 8.43 2.78 4.48 3.92 21.05 

F7 4.55 6.39 14.97 20.99 27.23 

F8 14.65 2.55 19.48 -4.62 2.34 

F9 14.82 11.48 2.95 20.57 14.22 

F10 9.01 8.39 9.60 6.40 11.42 

F11 -4.95 -10.50 14.00 -15.81 25.15 

F12 13.16 30.45 10.07 28.88 1.14 

F13 16.75 21.02 3.10 12.23 16.01 

F14 13.21 0.98 5.33 13.15 19.87 

Average 6.13 9.37 10.25 11.36 12.20 

Note: The best performance in every forecast period is in bold. The units in the table are %. 

 

In Tables 3.15 and 3.16, the volatility of annualized returns after using leverage has increased, 

which is due to the decline in the number of transactions per year. Although the volatility 

has increased, the annualized average return has increased more, resulting in an increase in 

both the Sharpe Ratio and the Information Ratio. For the Sharpe Ratio of the FTSE100, 

leverage trading helps the CNN and LSTM increase from 0.73 to 0.77 and from 1.12 to 1.21 

respectively. For the Sharpe Ratio of the INDU, leverage trading helps the CNN and LSTM 

increase from 0.73 to 0.80 and from 0.84 to 0.86 respectively. The results demonstrate that 

assigning different leverage ratios based on different forecasting probabilities can improve 

the trading performance. 
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Table 3.15: The summary of out-of-sample trading performances with leverage for the 

FTSE100 

 Buy-and-

Hold 

Neural networks Neural networks with leverage 

 MLP CNN LSTM CNN LSTM 

Annualized return  3.30% 8.82% 11.32% 12.49% 12.88% 14.83% 

Annualized volatility 17.36% 7.65% 15.50% 11.11% 16.73% 12.26% 

Sharpe Ratio 0.19 1.15 0.73 1.12 0.77 1.21 

Information Ratio  0.72 0.52 0.83 0.57 0.94 

Note: Trading performances of CNN and LSTM with leverage ratios are presented. Transaction costs are not 

taken into account. 

 

Table 3.16: The summary of out-of-sample trading performances with leverage for the INDU 

 Buy-and-

Hold 

Neural networks Neural networks with leverage 

 MLP CNN LSTM CNN LSTM 

Annualized return  6.13% 8.57% 9.37% 10.25% 11.36% 12.20% 

Annualized volatility   19.00% 13.16% 12.85% 12.20% 14.26% 14.17% 

Sharpe Ratio 0.32 0.65 0.73 0.84 0.80 0.86 

Information Ratio  0.19 0.25 0.34 0.37 0.43 

Note: Trading performances of CNN and LSTM with leverage ratios are presented. Transaction costs are not 

taken into account. 

 

3.7 Conclusions 

In this chapter, MLP, CNN and LSTM are applied to forecast the daily return of the FTSE100 

and INDU, and three combination methods are used to combine NNs forecasts. First, this 

chapter uses MLP, CNN and LSTM with the same inputs pool and compares the statistical 

accuracy and trading performances of the NNs with a naive trading strategy. Second, the 

simple average, GRR and LASSO are employed to combine the forecasting results of three 

NNs. Finally, this chapter applies leverage based on the daily forecast probabilities for 

trading. The models are trained with data of the first five years, and data of the sixth year is 

used for the out-of-sample test. The time span of the out-of-sample test is 2004-2018, and 

the start date of each test is one trading year apart (252 trading days). This chapter conducts 

14 tests each with the FTSE100 and INDU.  

 

In respect of the forecasting results, trading performances and average accuracy, MLP, CNN 

and LSTM are proved to provide effective forecasts. Of these models, the average 

performance of CNN is better than that of MLP, and the LSTM slightly outperforms the 

CNN. After analyzing the annualized trading performance, this research finds that due to 

insufficient trials, it is not possible to determine which of the NNs is significantly better than 

the other two. This study also tests the impact of different inputs on MLP’s performance and 
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finds that it declines with more duplicate information. This proves that the performances of 

NNs are significantly affected by the quality of inputs, and thus the pre-processing of inputs 

is important in the NNs model when forecasting stock indices. 

 

Additionally, the combination techniques used in this study do not help NNs improve 

performances because NNs are used as classifiers. The shortcoming of the naïve trading 

strategy used here weakens the performance of combination techniques. Leverage trading 

based on the daily forecast probability helps the average annualized return increase, but the 

volatility also increases at the same time. In general, the Sharpe Ratio and Information Ratio 

increase both for the INDU and FTSE100. Thus, the results demonstrate that leverage trading 

based on forecasting probabilities can improve the trading performance.  

 

This chapter contributes to the field of financial time series forecasts in three aspects. First, 

it improves the structures of MLP, CNN and LSTM for stock indices forecasting. Compared 

to MLP used in prior literature, this chapter adopts a more complex neural network by using 

five hidden layers with more neurons in each layer. Increasing the complexity of neural 

networks is prone to overfitting, and thus this study employs the Dropout technique to avoid 

overfitting. This chapter also designs the structure of CNN based on stock indices data. Valid 

Padding is used to reduce the data size instead of using the pooling layer. The Dropout 

technique is used for the fully connected layer in CNN. The empirical results confirm the 

superiority of MLP, CNN and LSTM to Buy-and-Hold, while LSTM slightly outperforms 

CNN and MLP. Second, it provides evidence that the pre-processing of inputs has an impact 

on the performances of NNs. This chapter uses different inputs for MLP, finding that more 

inputs do not lead to better performance. Third, leverage trading is applied based on the daily 

forecast probabilities given by NNs, which improves the trading performance.  

 

Three improvements can be made based on the results. First, inputs with more features and 

more lags can be used to further improve the performances of LSTM and CNN. Second, the 

pre-processing method of the inputs needs to be improved. Third, leverage can be further 

optimized. This study separates the forecast results into three parts and assigns different 

leverages, but if continuous leverage is used, the Sharpe Ratio will be higher. Further 

research can be conducted to solve the above problems. 
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Chapter 4 Deep Reinforcement Learning and Genetic 

Algorithm for a Pairs Trading Task on commodities 

4.1 Introduction  

Pairs trading is a quantitative method of speculation which originated on Wall Street. A great 

deal of literature uses this method to backtest various assets, especially in stock trading. The 

aim of pairs trading is to find two assets whose prices fluctuate together. When the spread 

between them widens, investors short the winner and buy the loser. If their prices converge, 

investors earn excess returns. Studying whether this simple strategy based on past price 

dynamics and contrarian investing can arbitrage in the commodity market in recent years, 

Gatev, Goetzmann & Rouwenhorst (1999) claim that if the market is efficient, positive risk-

adjusted returns from pairs trading are not possible. However, the traditional pairs trading 

models that gain no positive excess returns do not prove that the market is efficient. Pairs 

trading with a more reasonable pairs-selection method and flexible trading actions instead 

of traditional methods can achieve positive returns in the market. 

 

This chapter proposes a novel pairs trading strategy that combines the CA and DRL, which 

is denoted as CA-DRL. CA-DRL uses CA to form pairs. Then the DRL structure that is 

designed for dealing with a large amount of pairs trading data is used to learn the in-sample 

environment. After that, the trained DRL model makes the trading decisions in the out-of-

sample. During the testing period of 1980-2018 in commodity markets, the average 

annualized return in the out-of-sample of CA-DRL reaches 12.49%, which beats the 

traditional methods and CA-GA-ST method. The traditional methods, the benchmark models 

in this chapter, use the DIM and CA to form pairs and the ST strategy to trade. These 

benchmark models include DIM-ST, CA-ST and CA-DIM-ST. Additionally, the CA-GA-ST 

method also proposed here uses CA to form pairs and then employs the GA to optimize the 

parameters of ST strategy.  

 

In the tests, the in-sample excess profits of these traditional methods are still significant, but 

their out-of-sample excess profits are close to zero, which means these traditional strategies 

are ineffective in commodity markets during the sample period. Moreover, this chapter uses 
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GA to optimize the parameters in the ST method. The in-sample performance is significantly 

improved, but the out-of-sample improvements are not significant, with an average out-of-

sample annualized return of 1.84%. Regarding the risks involved in the methods this chapter 

employs, the Sharpe Ratio, Sortino Ratio, Value at Risk (VaR), Morningstar Risk-Adjusted 

Return (MRAR) and the Maximum Drawdown of the portfolios of CA-ST, CA-GA-ST and 

CA-DRL strategies are analyzed. CA-DRL performs better than other models in all 

estimations, while the performance of the Maximum Drawdown of CA-DRL is similar to 

that of CA-ST and CA-GA-ST. 

 

One of the aims of this chapter is to verify the effectiveness of traditional pairs trading 

methods in commodity markets in recent years. The second aim is to propose new methods 

of improving traditional pairs trading methods from two perspectives: one is to optimize the 

parameters in traditional methods, and the other is to use the machine learning method to 

make trading decisions. The third aim is to solve the problem of excessive computation when 

the machine learning method handles large batches of pairs.  

 

This chapter makes three main contributions. First, the use of novel DRL for decision-

making of trading actions is successful in terms of both returns and risks. Second, this 

chapter solves two problems with DRL when it is used for a large number of samples; that 

is, it avoids falling into the local optimum and reduces the calculation amount. Solving these 

two problems enables DRL to deal with a large number of pairs to form portfolios. Third, 

this chapter employs GA to optimize the parameters in ST and slightly improves the 

performance.  

 

Chapter 4 is organized as follows. The literature review about pairs trading and DRL is in 

section 4.2. The dataset used in this chapter is introduced in section 4.3 and the traditional 

benchmark strategy, CA-GA-ST method and CA-DRL model are examined in section 4.4. 

Then, the comparison and explanation of statistical and trading performances for all 

strategies are presented in section 4.5. Section 4.6 evaluates the robustness and risks of the 

strategies. The conclusion and further developments are presented in section 4.7.  
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4.2 Literature review 

4.2.1 Pairs trading 

Pairs trading is a neutral trading strategy, which is identified as a statistical arbitrage and 

convergence trading strategy (Kanamura, Rachev & Fabozzi, 2009). Pairs trading was 

introduced by Gerry Bamberger and then developed by Morgan Stanley in the 1980s. Since 

then, scholars have proposed different methods for optimizing pairs trading. The main 

methods include the Distance Method (Gatev, Goetzmann & Rouwenhorst, 1999; Perlin, 

2009; Broussard & Vaihekoski, 2012; Jacobs & Weber, 2015), the Co-integration Approach 

(Vidyamurthy, 2004), Machine Learning (Huck, 2009; 2010) and Stochastic Methods (Jurek 

& Yang, 2007; Liu & Timmermann, 2013). The summary of the literature about authors, 

methods, data and main results is presented in Appendix C.1. 

 

4.2.1.1 The Distance Method in pairs trading 

The traditional DIM has been widely tested in pairs trading literature. Gatev, Goetzmann & 

Rouwenhorst (2006) propose it and use it to examine the risk and return of pairs trading over 

the period 1962–2002. They use stocks from the Center for Research in Security Prices 

(CRSP) daily files. They construct a cumulative total return index for each stock, and then 

stocks are matched by finding the minimum sum of squared deviations between two 

normalized price series. Their pairs trading strategy of the fully invested portfolio of the top 

five pairs yields a mean monthly excess return of 1.31%, before transaction costs, and 1.44% 

per month for a portfolio of the top 20 pairs. The portfolios yield annualized excess returns 

of about 11% for top pairs, which are robust to conservative transaction-cost estimates. They 

show that the profits of pairs trading differ from the profits by simple mean reversion in the 

previous literature.  

 

Based on this work, Broussard & Vaihekoski (2012) test the DIM, using data from the 

Finnish stock market over the period 1987–2008. The annualized return of their strategy is 

as high as 12.5%. Additionally, they find that it is necessary to use lower thresholds to raise 

returns, even after taking trading costs into account (low thresholds will result in a high 

frequency of trading), suggesting that a more optimal trade initiation threshold may be 

available. They state that their pairs trading strategy generates positive alpha in their sample 
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period. They conclude that pairs trading is a safe strategy, insignificantly affected by market 

risk. 

 

Regarding stock markets in developing countries, Perlin (2009) uses the daily, weekly and 

monthly prices of the Brazilian financial market to examine the performance of the pairs 

trading strategy, finding that it provides profits and is a market-neutral strategy. He adjusts 

the parameters in the method, such as the level of the thresholds in ST and the frequency of 

trading, observing that these parameters have a great impact on earnings. Daily frequency 

has the best results compared to weekly and monthly frequency. However, their final result 

uses the in-sample information, which causes the rate of return to be excessively high and 

hence invalid. 

 

Jacobs & Weber (2015) use the DIM to carry out a large-scale test of pairs trading on 34 

international stock markets, finding that pairs trading strategy is persistently profitable, 

whereas the returns are not stable over time. In particular, they analyze data for NYSE and 

AMEX stocks from 1960 to 2008 and indicate that the strategy’s time-varying profitability 

results mainly from investors’ under- or over-reaction to news. The over-reactions lead to 

biased estimates of prices, which provide opportunities for pairs trading strategies to be 

profitable.  

 

4.2.1.2 The Co-integration Approach in pairs trading 

The Co-integration Approach is a commonly used method of pairs formation. The forecasts 

of individual asset prices are generally acknowledged to be challenging, while the value of 

the portfolio formed by certain assets is easier to be forecasted. Assuming that there is a co-

integration relationship between two assets, when the co-integration irregularity appears, the 

prices of the two assets are expected to return to the co-integration relationship. Thus, a pairs 

trading strategy can be built based on forecasting in contrary to irregularity (Alexander, 

2001).  

 

The typical work on co-integration-based pairs trading is by Vidyamurthy (2004), who 

presents a theoretical framework using co-integration for pairs trading. The stock pairs are 

selected based on statistical or fundamental similarity measures and there is a possibility that 

they are co-integrated. Vidyamurthy uses the Engle-Granger two-step approach to test for 
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co-integration. Vidyamurthy’s trading rule is the ST method, which is the same as that of 

Gatev, Goetzmann & Rouwenhorst (1999). In addition, he provides the optimization method 

of thresholds. The optimization target (the profit for each threshold level) is the absolute 

value of the threshold level multiplied by the number of occurrences. However, this is not 

equivalent to total profit. Owing to this problem, these results are criticized by Krauss (2017). 

Although Vidyamurthy’s calculation method greatly simplifies the calculation amount of 

total profit, that method is meaningless. This study resolves this issue using GA.  

 

Li (2014) uses CA to analyze 38 dual-listed companies in China A-share and Hong Kong H-

share, that is, two stocks of the same company in different markets forming a pair. The simple 

thresholds, as used by Gatev, Goetzmann & Rouwenhorst (2006), are then adopted to make 

trading decisions. Their result is very successful, with an average annualized return of 17.6%. 

However, since the two stock prices are close, the trading frequency is high. Owing to the 

high trading frequency and market commissions, the annualized return falls to 10.8% once 

transaction costs have been taken into account. The CA-ST strategy has also been applied to 

the Brazilian stock market (Caldeira & Moura, 2013), and the empirical results are good over 

the sample period of 2005-2012, with an average annualized return of 16.38%, Sharpe Ratio 

of 1.34 and low correlation with the market. 

 

Some literature provides evidence that CA outperforms other methods in pairs formation. 

Bogomolov (2011) explores DIM-ST, CA-ST and the Stochastic spread method on the 

Australian share market over the period 1996-2010, finding that these three pairs trading 

strategies are profitable before transaction costs, and CA-ST reaches the highest average 

monthly return of 1.05%. However, profits are considerably diminished once transaction 

costs and liquidity issues have been taken into account.  

 

Additionally, Huck & Afawubo (2015) use the data of S&P 500 component stocks over 

2000-2011 to verify the DIM-ST method of Gatev, Goetzmann & Rouwenhorst (2006) and 

the CA-ST method of Vidyamurthy (2004), finding that the pairs selected by CA perform 

better. Rad, Low & Faff (2016) investigate DIM, CA, and copula methods for pairs trading 

on the US equity market over the period 1962-2014. These methods exhibit monthly excess 

return of 91, 85 and 43 bps before transaction costs, respectively. The copula method retains 

its frequency of trading opportunities from 2009, whereas the frequency of trading is 

decreased considerably for DIM and CA. They conclude that CA is a superior method of 
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trading in turbulent market conditions.  

 

The improvement of pairs formation based on CA can generate a better trading performance. 

Lin et al. (2006) improve CA by introducing a co-integration coefficient weighting rule to 

the pair formation process. They also optimize the trading thresholds according to the 

conditions necessary to guarantee a minimum profit for each trade. They select two 

Australian Stock Exchange quoted bank shares from January 2001 to August 2002 as a test 

set, where the data of the year 2001 forms the in-sample and data of the second half-year is 

used as the out-of-sample. They find that, given a reasonable minimum profit level, the 

number of transactions or the total profit does not decrease exceedingly, compared to the 

strategy without the minimum profit constraint. However, they only use one pair during 

2001-2002 to run the test, and this small dataset is not sufficiently convincing. They do not 

take special circumstances into account, and thus the risks of their strategy cannot be 

evaluated. 

 

4.2.1.3 The machine learning method and pairs trading 

There is limited literature on pairs trading frameworks that incorporate machine learning 

methods. Huck (2009) introduces a method based on the forecasting of Elman networks and 

the ranking of ELECTRE III for pairs selection. He uses Elman networks to forecast the 

returns of all stocks, and then ranks them according to the rules of ELECTRE III, buys high-

ranked stocks and sells low-ranked stocks to form pairs. He conducts experiments on S&P 

100 constituents from 1992 to 2006. The results are very successful, with the excess return 

surpassing 0.6% per week. Huck (2010) improves the previous model and employs it in S&P 

100 constituents again. Huang et al. (2015) use GA to optimize the pairs formed by 10 stocks 

on the Taiwan stock market from 2003 to 2012. The optimization targets are the weights of 

stocks and trading thresholds. Their model beats the Buy-and-Hold method. However, their 

model requires a large amount of computation and is only suitable for a small number of 

assets for pairs trading.  

 

Elliott, Van Der Hoek & Malcolm (2005) propose a mean-reverting Gaussian Markov chain 

model that simulates the spread movement of the price of two stocks. They compare the 

simulation results with subsequent observations of the spread, to make trading decisions. 

They only prove that their model can potentially be applied in the financial markets which 
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are observed to be out of equilibrium. The weakness of their results is that they do not test 

real market data.  

 

Avellaneda & Lee (2010) use PCA to create a seemingly mean-reverting time series, which 

is similar to Elliott et al. (2005). Their trading signals are produced in two methods, including 

using PCA or regressing returns of stocks on sector Exchange Traded Funds (ETFs). The 

returns are modelled as mean-reverting processes in both methods. After deducing 

transaction costs, the average annualized Sharpe Ratio of PCA-based strategies is 1.44 and 

the average annualized Sharpe Ratio of ETF-based strategies is 1.1 throughout the period 

1997-2007. They find that the Sharpe Ratio of both methods decreases over time. They then 

propose a new trading signal that uses trading volume to improve the performance of ETF-

based signals. Their results show that the Sharpe Ratio of ETF-based strategies with trading 

volume information reaches 1.51 during the period 2003-2007. 

 

4.2.1.4 Other methods 

In addition to the DIM, CA and machine learning methods, the stochastic method and copula 

approach are also used in some studies. Do, Faff & Hammza (2006) analyze three pairs 

trading methods: DIM, CA and the stochastic spread method. They then introduce a general 

approach to build the pairs trading model in view of asset pricing theory, which they call the 

stochastic residual spread model. The selected pairs show clear mean reversion behaviour in 

their relative pricing, which proves that there is arbitrage in the pairs they choose. In their 

later research, Do & Faff (2010) verify their method using data from the US stock market 

over the period 1962-2009, finding that pairs trading profitability decreases over time. The 

average monthly return reduces from 0.86% in 1962-1988 to 0.37% in 1989-2002 and then 

0.24% in 2003-2009. They also find risks have grown over time. In addition, they propose 

alternative algorithms to improve the performance of pairs trading by adding two new 

messages to the rules for pairs selection: industry homogeneity and historical frequency of 

reversal in the price spread. In this way, their pairs trading is still profitable, albeit at a 

relatively low level. 

 

Mudchanatongsuk, Primbs & Wong (2008) propose a stochastic control approach for pairs 

trading. They assume log-relationship between a pair of stock prices as an Ornstein-

Uhlenbeck process, and use this to formulate a portfolio. The Ornstein-Uhlenbeck model is 
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used to simulate the movement of a pair of stock prices as a Gaussian Markov chain model. 

Based on the Ornstein-Uhlenbeck process, Mudchanatongsuk, Primbs & Wong obtain the 

optimal solution to this control problem in the closed form via the corresponding Hamilton-

Jacobi-Bellman equation. Similar research is carried out by Ekström, Lindberg & Tysk 

(2011), Herlemont (2003) and Bogomolov (2013).  

 

The copula approach is a method similar to CA. Copulas are suitable for modelling joint 

distributions and dependence between assets to determine whether there is a continuous and 

stable relationship between two assets, and this method has also been employed in a few 

publications on pairs trading. Liew & Wu (2013) for example use the copula method and 

compare it with the CA for pairs trading. They find that the copula approach offers more 

trading opportunities with greater confidence relative to CA and DIM. However, they only 

provide the empirical results of one pair, and that pair has a co-integration relationship both 

in the in-sample and the out-of-sample, which makes their results statistically unreliable. 

Additionally, Krauss & Stübinger (2017) propose a copula-based pairs trading framework to 

investigate the S&P 100 constituents over the period 1990-2014. They sort the selected pairs 

according to mean-reversion and momentum, select top 5, top 10 and top 20 for out-of-

sample trading, and compare them with the naive S&P 100 Buy-and-Hold strategy. The 

results show that top 5 has the best out-of-sample performance with an average out-of-

sample return of 7.98% per year for the top 5 mean-reversion pairs and 7.22% per year for 

the top 5 momentum pairs. 

 

4.2.2 Deep Reinforcement Learning  

The combination of the advances in deep learning for learning feature representations and 

Reinforcement Learning (RL) is a significant development (Krizhevsky et al., 2012; Hinton 

et al., 2012), tracing back to the much earlier work of Tesauro (1995) and Bertsekas & 

Tsitsiklis (1995). The impressive application of DRL is to execute a sequence of actions in 

different environments. Guo et al. (2014) use DRL to train agents to play Atari games based 

on raw pixels and to acquire advanced manipulation skills with raw sensory inputs. Similar 

research in recent years has been done by Mnih et al. (2015), Levine et al. (2016) and Watter 

et al. (2015). The performance of DRL in 3D locomotion and manipulation tasks is 

significant (Schulman et al., 2015; Lillicrap et al., 2015). The trading process can be 

considered as a game and market information can be considered as the environment, and 
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hence the success of DRL in the games field indicates that there will be a promising 

application of DRL in trades. 

 

Recently, a small amount of literature has employed DRL to finance. Deng et al. (2016) 

introduce contemporary deep learning into a typical DRL framework for financial signal 

processing and online trading. Their results on both the stock-index and commodity futures 

contracts demonstrate the effectiveness of the learning system in simultaneous market 

condition summarization and optimal action learning. However, their models only handle 

one share. Additionally, Buehler et al. (2019) present a framework for hedging a portfolio of 

derivatives in the presence of market frictions such as transaction costs, liquidity constraints 

or risk limits using DRL. They illustrate their approach by an experiment on the S&P500 

index and by showing the effect on hedging under transaction costs in a synthetic market 

driven by the Heston model, where they outperform the standard ‘complete-market’ solution.  

 

The research group at Cornell University has published a large number of papers in financial 

trading using machine learning methods, which include the DRL (Xiong et al., 2018). 

Specifically, they use DRL to optimize the portfolio that consists of 30 stocks from the DJIA. 

Xiong et al. apply the Deep Deterministic Policy Gradient (DDPG) algorithm (an algorithm 

in DRL) to determine the weights of the stocks in the portfolio with the aim of a higher return. 

In the out-of-sample, their strategy decided by DRL beats the DJIA index and traditional 

min-variance portfolio allocation strategy in cumulative return and Sharpe Ratio. Similarly, 

Liang et al. (2018) try to use DDPG, Policy Gradient (PG) and Proximal Policy Optimization 

(PPO) to make the decisions (buy or sell) for stocks on the China stock market. Their results 

show that PG outperforms DDPG and PPO. Liang et al. then introduce a new training process 

for PG known as the Adversarial Training method and show that it can improve training 

efficiency, the average daily return and Sharpe Ratio in the out-of-sample.  

 

Few studies use DRL in decision-making for trading, especially in pairs trading. The major 

gaps are in using machine learning in pairs trading and optimizing the parameters of 

traditional pairs trading strategies. This chapter aims to improve the performances of pairs 

trading strategies by adopting two approaches. The first is to use GA to optimize the 

parameters of traditional pairs trading strategies. The second is to apply DRL to make 

decisions in pairs trading. In addition, the model framework of DRL introduced here can be 

extended to other strategy-based trading methods.  
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4.3 Dataset  

This chapter uses 35 commodities in 9 commodity markets. The list of commodities and 

their corresponding markets are presented in Appendix C.2. The implementation of pairs 

trading has two stages. First, a proper method needs to select the pairs from a pairs pool 

(total 35*34/2=595 pairs per period), and the portfolio consists of the selected pairs (Figure 

4.1). This stage is called pairs formation. Second, trading decisions need to be made in those 

selected pairs. Trading rules can be given directly by ST or DRL. Then, the trading rules are 

applied to the out-of-sample. The out-of-sample period and the in-sample period in this study 

are different from the study done by Gatev, Goetzmann & Rouwenhorst (2006), since this 

research forms pairs over a 24-month period (in-sample period), and trade them in the next 

12-month period (out-of-sample period). The data used here are taken from Bloomberg from 

1980 to 2018.  

 

Table 4.1 presents the statistical summary of all commodities used in this study. Some 

agriculture products (cotton, coffee, lumber, lean hogs, orange juice and sugar) are stationary 

during 1980-2018. The daily returns of all the commodities do not correspond to the normal 

distribution, the kurtosis of commodities being much higher than that of the normal 

distribution. 

 

Data preparation is conducted in Python 3.5, relying on the packages Numpy (Van Der Walt, 

Colbert, & Varoquaux, 2011) and Pandas (McKinney, 2010). The DRL used in this chapter 

is developed with Keras on the top of Google TensorFlow. GA is calculated by the Torch. 

The VaR of the portfolio is calculated by MATLAB with Financial Toolbox.  

 

Figure 4.1: Portfolio formation for every year  

 

Note: The number of pairs in the portfolio is different for every year, which depends on the formation methods.  
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Table 4.1: Data summary of commodities   

Commodities Stationary  ADF  

(p value) 

Std.Dev  Skewness Kurtosis Jarque-Bera 

of return (p 

value) 

Aluminum alloy 0 0.5059 0.0121 -0.1416 12.8233 0.000 

Aluminum 0 0.1708 0.0136 -0.2745 7.4679 0.000 

Soybean oil 0 0.1852 0.0146 0.0010 6.1648 0.000 

Corn 0 0.1138 0.0162 -1.2297 25.6908 0.000 

Cocoa 0 0.0452 0.0189 0.0397 5.9167 0.000 

Crude oil 0 0.4372 0.0232 -0.6973 17.8454 0.000 

Copper 0 0.5716 0.0158 -0.0887 7.6912 0.000 

Cotton 1 0.0013 0.0183 -8.1219 377.6215 0.000 

Feeder cattle 0 0.6696 0.0093 -0.2109 12.2533 0.000 

Gold 0 0.9309 0.0116 -0.0593 11.6327 0.000 

Copper 0 0.5908 0.0164 -0.2905 7.7036 0.000 

Heating oil 0 0.4428 0.0224 -1.2627 22.2659 0.000 

Coffee 1 0.0041 0.0223 0.0431 11.0409 0.000 

Wheat 0 0.0501 0.0158 -0.5389 12.8510 0.000 

Lumber 1 0.0021 0.0206 0.5070 11.3126 0.000 

Live cattle  0 0.3370 0.0111 -1.5245 17.4444 0.000 

Lead 0 0.3821 0.0197 -0.1627 9.6522 0.000 

Lean hogs 1 0.0025 0.0217 -0.2911 37.2748 0.000 

Wheat spring 0 0.0589 0.0153 -0.1750 40.3114 0.000 

Natural gas 0 0.0229 0.0334 0.1281 11.5553 0.000 

Nickel 0 0.2140 0.0240 -0.4916 20.1650 0.000 

Orange juice 1 0.0035 0.0193 0.4931 13.6691 0.000 

Palladium 0 0.9992 0.0191 -0.2050 8.9515 0.000 

Pork bellies 0 0.0546 0.0225 1.4001 52.2220 0.000 

Platinum 0 0.4657 0.0140 -1.0669 23.3215 0.000 

Rough rice 0 0.1527 0.0161 0.0814 26.5361 0.000 

Canola 0 0.0752 0.0123 -1.0377 19.6641 0.000 

Soybean 0 0.1448 0.0148 -0.7901 10.3020 0.000 

Sugar 1 0.0316 0.0251 0.1220 13.1169 0.000 

Brent oil 0 0.5087 0.0218 -1.0155 24.8093 0.000 

Silver 0 0.0144 0.0196 -0.7170 16.0766 0.000 

Soybean meal 0 0.0609 0.0170 -1.0099 14.5188 0.000 

Tin 0 0.5235 0.0158 -0.0024 10.8515 0.000 

Wheat 0 0.0240 0.0181 -0.9215 25.4862 0.000 

Zinc 0 0.3934 0.0200 -0.9849 26.5490 0.000 

Note: The ADF test is level. If the p value is lower than 1%, the price of the commodity is considered to be 

stationary. The Std.Dev, Skewness, Kurtosis and Jarque-Bera tests are for the log return of commodities.  

 

4.4 Methodology  

4.4.1 Pairs formation methods 

4.4.1.1 Distance Method 

Regarding DIM, as it is applied to the 𝑛 assets under consideration, the Sum of Euclidean 

Squared Distance (SSD) for the price time series of 𝑛(𝑛 − 1)/2 possible combinations of 

pairs is calculated. A certain number of top pairs with minimum SSD histories are considered 
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in a subsequent out-of-sample trading period. 𝑝𝑖
𝑡  and 𝑝𝑗

𝑡  denote realizations of the 

normalized price processes 𝑃𝑖 = (𝑝𝑖
𝑡)𝑡∈𝑇 and 𝑃𝑗 = (𝑝𝑗

𝑡)𝑡∈𝑇 of the assets 𝑖 and 𝑗 of a pair. 

The sum of Euclidean squared distance (𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
) is calculated as: 

𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
= ∑(𝑝𝑖

𝑡 − 𝑝𝑗
𝑡)

2
𝑇

𝑡=1

(4.1) 

This study calculates the 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
 of every pair, and rank them by 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗

 value. The pairs 

with smaller 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
 are at the top. After this step, the trading opportunities can be found 

by using the DIM, according to the ranking. For example, the top 10 pairs can be selected to 

trade in the out-of-sample. 

 

The advantages of the DIM are that it is easy to implement, robust to data snooping, and 

results in statistically significant risk-adjusted excess returns. However, the choice of 

Euclidean squared distance as a selection metric is analytically suboptimal. Let us assume 

that a rational pairs trader has the objective of maximizing excess returns per pair. As such, 

a pairs trader aims for spreads exhibiting frequent and strong divergences and subsequent 

convergences to equilibrium. In other words, the profit-maximizing rational investor seeks 

out pairs with high spread variance and strong mean-reversion properties. However, the 

‘ideal pair’ (best choice) of SSD has a spread of zero and thus produces zero profits. Thus, 

the DIM’s selection metric tends to form pairs with low spread variance and limited profit 

potential (Krauss, 2017). 

 

4.4.1.2 Co-integration Approach  

Compared with the DIM, using the CA to select opportunities makes more sense. CA can 

select more ‘ideal pairs’, that with high spread variance and strong mean-reversion. Using 

co-integration as a theoretical basis, the spread is generated based on the actual error term 

𝜀𝑖𝑗
𝑡  of the long-term relationship:  

𝜀𝑖𝑗
𝑡 = −𝑎𝑖

𝑡 + 𝛾𝑎𝑗
𝑡 + 𝐶 (4.2) 

Where 𝑎𝑖
𝑡  and 𝑎𝑗

𝑡  denote the price processes of assets 𝑖  and 𝑗 . The co-integration 

coefficient 𝛾 is a non-zero real number, so that the spread 𝜀𝑖𝑗
𝑡  as a linear combination of 𝑎𝑖

𝑡 

and 𝑎𝑗
𝑡  is stationary. 𝐶  is a constant. Next, all pairs are tested with the Engle-Granger 

approach.  
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(i) 𝐸(𝜀𝑖𝑗
𝑡 ) is independent with time 𝑡  

(ii) 𝑉𝐴𝑅(𝜀𝑖𝑗
𝑡 ) is bigger than zero and independent with 𝑡 

(iii) 𝐶𝑜𝑣(𝜀𝑖𝑗
𝑡 , 𝜀𝑖𝑗

𝑠 ) is correlated with 𝑡 − 𝑠 

In this way, the opportunities for pairs trading are found by co-integration analysis.  

 

4.4.2 Decision-making methods 

4.4.2.1 Simple trading thresholds method  

In Gatev, Goetzmann & Rouwenhorst (2006), trades are opened when the spread diverges 

by more than two historical standard deviations and closed upon mean-reversion, at the end 

of the trading period, or upon delisting. This study calls this method the Simple Thresholds 

method, which is generalized and used in many pairs trading strategies (Perlin, 2009; 

Vidyamurthy, 2004). Empirical spread variance 𝑠𝑃𝑖,𝑃𝑗

2  can be expressed as  

𝑠𝑃𝑖,𝑃𝑗

2 =
1

𝑇
∑(𝑝𝑖

𝑡 − 𝑝𝑗
𝑡)

2
𝑇

𝑡=1

− (∑(𝑝𝑖
𝑡 − 𝑝𝑗

𝑡)
2

𝑇

𝑡=1

)

2

(4.3) 

Where the estimation of coefficient and constant is: 

𝜀𝑖𝑗
𝑡 = −𝑎𝑖

𝑡 + 𝛾𝑎𝑗
𝑡 + 𝐶 (4.4) 

�̂�𝑖
𝑡 = 𝛾�̂�𝑗

𝑡 + 𝐶 (4.5) 

𝑝𝑖
𝑡 = 𝑎𝑖

𝑡 (4.6) 

𝑝𝑗
𝑡 = 𝛾 + 𝑎𝑗

𝑡𝐶 (4.7) 

The standard spread of 𝑎𝑖
𝑡 and 𝑎𝑗

𝑡 is: 

𝑠𝑝𝑖,𝑗
𝑡 =

𝑝𝑖
𝑡 − 𝑝𝑗

𝑡

𝑠𝑃𝑖,𝑃𝑗

2
(4.8) 

𝑠𝑃𝑖,𝑃𝑗

2   is also the historical standard deviation (standard deviation in the in-sample). The 

decision of trading actions is made based on 𝑠𝑝𝑖,𝑗
𝑡 . 

 

Table 4.2 shows how trading decisions are made. For example, as shown in Figure 4.2, the 

horizontal axis is time, and the vertical axis is the spread of two assets with the unit of 

standard deviation. The trade is open when the spread is higher than 2 standard deviations 

or lower than −2 standard deviations. The trade is closed when the spread returns to 0. 

Gatev, Goetzmann & Rouwenhorst (2006) only use the DIM combined with the ST to trade. 
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In this study, the ST is combined both with CA and DIM.  

 

Table 4.2: The trading decisions 

The distance of two assets Long position of the 
distance of two assets 

Square position Short position of the 
distance of two assets 

Higher than 2 historical 
standard deviation 

 
None 

 
Action (1) 

 
Action (2) 

 
Pass 0  
 

 
Action (3) 

 
Action (2) 

 
Action (1) 

Lower than -2 historical 
standard deviation 

 
Action (2) 

 
Action (3) 

 
None 

Note: The initial position starts with a square position. ‘None’ means this situation cannot happen. Action (1) 

is the action to buy 𝑎𝑖 with a value of 𝑉/2, and sell 𝑎𝑗 with a value of 𝑉/2. Action (2) means that there is no 

transaction. Action (3) is to sell 𝑎𝑖 with a value of 𝑉/2 and buy 𝑎𝑗 with a value of 𝑉/2. 

 

Figure 4.2: A sample of individual pairs to explain the ST 

 

Note: This figure shows the linear combination of two commodities given by the CA. The vertical axis is the 

standardized deviation.  

 

The ST method has four weaknesses. First, it assumes that the distribution of the distance of 

two assets follows the normal distribution, but this may not be the case. Second, the threshold 

value (±2 standard deviations) of decision-making is unreasonable, and a good threshold 

value may improve the trading performance significantly. Third, the ST method ignores the 

influence of time-series, by only using the current information (the distance between two 

assets). Fourth, it is not a continuous method and will lose some profits compared with 
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continuous methods at the same level of risk.  

 

4.4.2.2 Genetic Algorithm combined with CA and ST for pairs trading  

This study uses the CA to pre-select 𝑚  pairs trading opportunities from 𝑛  assets with 

𝑛(𝑛 − 1)/2  possible combinations. The threshold of ST strategy is ±2 ∗

historical standard deviation. The choice of this threshold may not be optimal. The GA 

can search for the optimal threshold in the in-sample. Thus, in this study, the GA is used to 

optimize the open threshold and close threshold based on the in-sample performance. The 

GA is introduced as follows. The chromosome in the GA is shown in Figure 4.3. 

 

Figure 4.3: Chromosome encoding 

 

Note: The chromosome is a loci vector with elements of the encoding for open trade threshold and close trade 

threshold. Each element takes the value 1 or 0. 

 

The binary coding scheme is used to represent a chromosome in the GA. In Figure 4.2, loci 

𝑏1
𝑜-𝑏𝑘

𝑜 and 𝑏1
𝑐-𝑏𝑘

𝑐 represent the encoding for open threshold and close threshold ( the trades 

open when the spread is higher than the open threshold ∗ historical standard deviation and 

close when the spread is lower than close threshold ∗  historical standard deviation). 𝑘 

decides the optimization accuracy, and here I use 𝑘 = 10. 𝑏 is 0 or 1. Then the agents are 

trained, as shown in Figure 4.4. 

 

Figure 4.4 shows the training steps for the GA. First, I initialize 𝑞 agents. Every agent has 

a random chromosome as presented in Figure 4.3. The chromosome determines the open and 

close thresholds. Then, I use the thresholds given by agents to trade the pairs and calculate 

the performance (this research uses the return). In this step, this study uses the initial capital 

𝐶0. If a trade opens, the investment of one pair at time 𝑡 equals 𝐶𝑡 𝑚⁄ . After that, following 

the evolutional processes (select agents with high performances, intersection and variation), 

a new group of agents can be obtained, repeating the process until it reaches the maximum 

times or convergence. Finally, I get the best performing agent to decide the threshold of ST 

and use it in the out-of-sample.  
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Figure 4.4: The training steps of the GA 

Note: The chromosome of an agent is a loci vector. The vector determines the open and close thresholds 

in the search range. The search range here is [1,3] for open threshold and [0,1] for close threshold, every 

search range is equally divided into 2𝑘 sub-ranges for searching.  

 

4.4.2.3 Methodology of DRL in pairs trading 

Reinforcement Learning is one of the methodologies of machine learning. It is used to 

describe and solve the problem that an agent learns a strategy to maximize returns or achieve 

a specific goal in the process of interacting with the environment (Sutton & Barto, 2018). 

RL differs from traditional supervised machine learning in the sense that it considers not 

only the short-term consequences of actions/decisions, but also long-term outcomes (Sutton 

et al., 2000). RL is different from supervised learning as it only has a reward rather than a 

teacher or labels. This reward is generated based on the decision of the agent in the RL.  

 

Figure 4.5: The key features of Reinforcement Learning 

Note: This figure shows the structure of RL. RL trains the brain through iteration.  

 

RL is characterized by Figure 4.5. The key elements of RL are environment, reward, action, 

Yes 

No 

Initialize the 
chromosome of agent 

(randomly) 

Trade and calculate every 
agent’s return 

 
If it reaches 

maximum times or 
convergence 

Evolution processes 
a) Select agents with high 

performances  
b) Intersection 
c) Variation 

Generate new agents 

End 

Brain 

Environment 

State 

 

Action 

 

Reward 
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state and brain, with which a reinforcement learning model can be built. RL aims to obtain 

an optimal policy for a specific problem. Thus, the reward gained under this policy is the 

largest. The so-called policy is a series of actions, and these actions are sequential data.  

 

DRL combines the fitting ability of deep learning with the decision-making ability of RL. It 

is an artificial intelligence technique that is closer to human thinking. Deep learning has a 

strong fitting capability but lacks decision-making ability, while RL has decision-making 

ability and cannot deal with the fitting problem. Therefore, the combination of these two 

methods can obtain complementary advantages, providing a solution to the fitting and 

decision problem of complex systems. 

 

This section now briefly introduces the RL model and how it can be used in pairs trading in 

this study. The CA is used for pre-select pairs. 𝑚 pairs trading opportunities are pre-selected. 

The price spread of assets 𝑖, 𝑗 ∈ {1 … 𝑚} at time 𝑡 is 𝑠𝑖𝑗
𝑡 .  

𝑠𝑖𝑗
𝑡 = −𝑎𝑖

𝑡 + 𝛾𝑎𝑗
𝑡 + 𝐶 (4.9) 

𝑎𝑐𝑖𝑗
𝑡  represents the trading action of pair 𝑖𝑗 at time 𝑡. 𝑠𝑖𝑗

𝑡  could be positive or negative, so 

the action has three choices: 

𝑎𝑐𝑖𝑗
𝑡 = {

𝐵𝑢𝑦, 𝑤ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝐷𝑁𝑁 = [1,0,0] 

𝐻𝑜𝑙𝑑, 𝑤ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝐷𝑁𝑁 = [0,1,0]

𝑆𝑒𝑙𝑙, 𝑤ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝐷𝑁𝑁 = [0,0,1]

(4.10) 

where the output of DNN is the estimated rewards of three actions in this study. If the output 

in function (4.10) is [1,0,0], 𝑎𝑐𝑖𝑗
𝑡  is the action ‘buy’. 𝑎𝑐𝑖𝑗

𝑡  also represents the actions ‘hold’ 

and ‘sell’, if the outputs in function (4.10) are [0,1,0] and [0,0,1] repectively. 

𝑠𝑡𝑖𝑗
𝑡  is the state of pair 𝑖𝑗 at time 𝑡.  

𝑠𝑡𝑖𝑗
𝑡 = {

𝑜𝑝𝑒𝑛𝑒𝑑+

𝑐𝑙𝑜𝑠𝑒𝑑
𝑜𝑝𝑒𝑛𝑒𝑑−

(4.11) 

𝐸𝑖𝑗
𝑡 = [𝑠𝑖𝑗

𝑡 , … 𝑠𝑖𝑗
𝑡−𝑥, 𝑠𝑡𝑖𝑗

𝑡 ] (4.12) 

The environment 𝐸𝑖𝑗
𝑡  is 𝑥 lags of 𝑠𝑖𝑗

𝑡  and the state 𝑠𝑡𝑖𝑗
𝑡 , and the output is 𝑎𝑐𝑖𝑗

𝑡  at time 𝑡. 

An agent is assumed to trade the pair consisting of assets 𝑖, 𝑗. At each timestamp 𝑡, the 

agent takes action 𝑎𝑐𝑖𝑗
𝑡 , the state of the environment will change to 𝐸𝑖𝑗

𝑡+1 from 𝐸𝑖𝑗
𝑡 , and the 

agent will receive a reward 𝑅𝑖𝑗
𝑡+1. Possible actions in this agent are ‘buy’, ‘sell’ and ‘hold’ 

as presents in function (4.10). The reward in this study is the sum of a daily return 𝑟𝑡𝑖𝑗
𝑡+1 at 

time 𝑡 + 1 and the maximum weighted reward in 𝐸𝑖𝑗
𝑡  estimated by the agent (see function 
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(4.13)). The ultimate goal is to correctly estimate the rewards of 𝑎𝑐𝑖𝑗
𝑡  under 𝐸𝑖𝑗

𝑡 .  

𝑅𝑖𝑗
𝑡+1(𝐸𝑖𝑗

𝑡 , 𝑎𝑐𝑖𝑗
𝑡 ) = 𝑟𝑡𝑖𝑗

𝑡+1 + 𝛿𝑚𝑎𝑥𝑎𝑐𝑖𝑗
𝑡+1𝑅𝑖𝑗

𝑡+2(𝐸𝑖𝑗
𝑡+1, 𝑎𝑐𝑖𝑗

𝑡+1) (4.13) 

where 𝛿 is a parameter to decide the importance of a future reward. 𝛿 ∈ [0,1). If 𝛿 is too 

close to 1, the DNN may not converge. This study chooses 𝛿 of 0.95.  

 

The agent of RL is a Q table, which shows the optimum solution for every 𝐸𝑖𝑗
𝑡  for every 

𝑎𝑐𝑖𝑗
𝑡 . However, in trading, the states of the environment are too many to explain in a table. 

Thus, DNN is used as the brain of the agent in RL (so-called DRL). Using one pair as an 

example, the DRL model proposed by this study is trained as Figure 4.6. 

 

This chapter chooses the training data (continuous 504 days) from in-sample data in 

sequence. Then this study initializes the capital 𝐶0, 𝑡 = 0. The inputs of DNN are the state 

𝑠𝑡𝑖𝑗
𝑡   and the environment 𝑥  lags of 𝑠𝑖𝑗 . The outputs decide the action 𝑎𝑐𝑖𝑗 . Then the 

temporary reward is calculated and the DNN weights are adjusted. Repeating the iteration 

until 𝑡 = 𝑇. Then the DNN model after training is saved and used as the brain. After that, 

the capital, time and trading data are initialized, and the whole model is trained again based 

on the DNN in the last training until the maximum training times 𝑁 is reached. The DNN 

used in this study and the weights adjustment method in the DNN are set out in Appendix 

C.3. 

 

This research uses a pre-training technique to solve two problems during the test. First, every 

pair has its own model in trading. The calculation amount will be extremely high if the 

models for all pairs are fully trained. Thus, this study needs a pre-trained model and train the 

models for pairs based on it. In this way, not only can we get a model which better fits the 

specific pairs, but we can also reduce the 90% calculation amount. Second, if the study does 

not carry out pre-training, the model can easily fall into the local optimum. If the model is 

trapped in the local optimum, this will cause all the decisions of an agent to be the same. For 

example, the DNN may make ‘buy’ decisions in all environments, as the results are positive 

in some in-sample data. In this situation, the training is not effective. In addition, if we start 

the training with the random weights in the DNN, there will be a high chance of getting 

trapped into the local optimum, which will cause non-effective training and non-effective 

calculation. Thus, it is necessary to adopt a pre-training technique for the task of trading a 

large number of pairs.  
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The pre-training technique used in this chapter is described as follows. First, this study trains 

several models by a chosen pair. The model that performs well both in the in-sample and 

out-of-sample is selected as the pre-trained model for all other pairs. The parameters of the 

pre-trained model are used as the initial DNN connection weights of other pairs. The models 

for all other pairs are trained for 5 episodes (5*504 days) based on the pre-trained model.  

 

Figure 4.6: Instruction of DRL for pairs trading 

 

Note: This flowchart shows the iteration processes of DRL used in this study. The brain of the DRL is the DNN. 

Actions include buy, hold and sell. The environment is the historical data of two commodities.  
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4.5 Statistical performance  

4.5.1 Benchmark performance 

Benchmark models include CA-ST, DIM-ST and CA-DIM-ST. In the CA-ST strategy, this 

chapter uses the Engle-Granger test to test whether the co-integration relationship exists in 

two commodities. The total number of selected pairs by CA for every period is presented in 

Appendix C.4. After selection, the pairs with co-integration relationships are traded with the 

ST strategy. Then, the portfolio comprises those selected pairs with equal weights.  

 

In the DIM-ST strategy, the 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
 is calculated by function (4.1) for every possible pair. 

Then the top 20 pairs with the minimum 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
 value are chosen to trade with the ST 

strategy. The CA-DIM-ST strategy combines the selection results of CA and DIM, and uses 

the top 10 pairs with the minimum 𝑆𝑆𝐷𝑃𝑖,𝑃𝑗
 value after the selection of CA. If the number 

of pairs is lower than 10, the final pairs of CA-DIM are the same as CA. The transaction cost 

is not considered in the models because of the low frequency of trading actions in those 

strategies. Trading performances of portfolios are presented in Table 4.3. 

 

Table 4.3 shows the annualized return of three benchmark models in the in-sample and out-

of-sample. The annualized returns of three benchmark models are all positive in the in-

sample, showing that CA, DIM and CA-DIM are effective for data selection in the in-sample. 

The average annualized returns of CA-ST and CA-DIM-ST are 10.79% and 10.59%, which 

are higher than that of DIM-ST (6.89%). However, the average returns of out-of-samples are 

all very close to zero (0.12%, 0.37% and 0.43%), and there are many negative annualized 

returns in the out-of-sample over the period 1980-2018. In summary, the benchmark models 

(CA-ST, DIM-ST and CA-DIM-ST) all fail in commodities pairs trading.  
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Table 4.3: Annualized returns of the portfolios for benchmark models (%) 

 CA-ST DIM-ST CA-DIM-ST 

Year In-sample  Out-of-sample  In-sample Out-of-sample In-sample Out-of-sample 

1980-1982 12.16 -1.64 6.19 0.06 12.16 -1.64 

1981-1983 10.92 -4.01 6.40 -5.44 7.74 -5.69 

1982-1984 7.49 -0.15 6.71 0.10 6.73 -1.08 

1983-1985 11.93 0.75 5.10 -1.91 11.93 0.75 

1984-1986 11.74 5.84 7.90 9.85 12.75 13.86 

1985-1987 12.89 3.34 9.75 2.62 12.89 3.34 

1986-1988 14.06 -1.49 11.10 -4.45 15.04 -2.55 

1987-1989 9.34 5.73 8.15 0.39 10.35 2.03 

1988-1990 8.63 -1.65 6.07 2.15 9.68 -0.97 

1989-1991 9.03 0.79 6.18 -0.01 9.18 1.32 

1990-1992 11.49 -0.65 6.30 2.91 13.56 3.30 

1991-1993 8.31 2.13 5.45 0.99 8.13 1.02 

1992-1994 5.92 -2.62 5.05 1.99 7.24 -1.62 

1993-1995 9.82 3.84 7.36 0.87 10.77 4.04 

1994-1996 8.12 -2.70 5.47 -2.75 5.97 -0.77 

1995-1997 8.03 -6.41 8.06 -3.32 10.01 -4.59 

1996-1998 7.74 -0.01 5.14 0.48 7.74 -0.01 

1997-1999 12.30 -1.54 9.08 -1.17 11.59 0.07 

1998-2000 12.52 1.38 7.53 0.34 9.52 -0.05 

1999-2001 8.30 -3.08 5.76 0.34 11.67 0.25 

2000-2002 9.76 2.92 5.98 -1.13 11.75 5.12 

2001-2003 14.62 -3.24 6.62 -0.16 10.49 0.46 

2002-2004 10.38 -0.51 6.41 2.70 7.76 1.06 

2003-2005 14.88 -1.01 7.90 1.20 12.31 -0.84 

2004-2006 12.13 0.58 8.30 -1.47 11.41 2.26 

2005-2007 12.65 -0.72 7.09 -0.15 9.01 -1.32 

2006-2008 14.13 4.11 6.93 2.16 10.98 2.68 

2007-2009 13.14 4.06 6.57 2.85 14.75 -1.18 

2008-2010 15.20 -0.47 8.07 0.50 14.05 0.36 

2009-2011 13.77 -0.16 7.96 0.77 14.18 -3.22 

2010-2012 14.61 2.02 6.01 0.51 10.81 0.24 

2011-2013 7.08 -0.16 7.45 0.42 9.21 -0.13 

2012-2014 6.46 -1.49 4.86 -1.88 6.98 -2.84 

2013-2015 10.19 -0.79 5.72 -1.00 9.36 -1.40 

2014-2016 12.46 -0.01 7.44 0.62 9.73 -0.47 

2015-2017 8.95 -1.73 6.69 2.66 14.47 0.18 

2016-2018 8.23 3.08 6.30 1.01 10.02 3.85 

Average 10.79 0.12 6.89 0.37 10.59 0.43 

Note: Every three-year data is a test sample (e.g., 1980-1982), which includes the in-sample for the first two 

years (e.g., 1980-1981) and the out-of-sample for the third year (e.g., 1982). The portfolios are formed by all 

selected pairs in the in-sample with equal weights. The units in the table are %. 

 

Table 4.4 presents the pairs with non-cointegration relationship traded with ST, where CA-

ST is used for comparison. The average annualized return of non-cointegration pairs (6.74%) 

is not much lower than that of CA-ST (10.79%). Moreover, the out-of-sample average 

performances are almost the same for non-selected (non-cointegration) pairs and CA-ST. 

This proves that for the pairs selected by CA in the in-sample, if the ST strategy is still 

implemented in the out-of-sample, it will not be profitable.  
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Table 4.4: Annualized returns of the non-cointegration pairs traded with ST (%) 

 ST for pairs with non-cointegration CA-ST 
Year In-sample  Out-of-sample  In-sample Out-of-sample 
1980-1982 6.30 1.71 12.16 -1.64 
1981-1983 7.22 -2.87 10.92 -4.01 
1982-1984 5.25 0.09 7.49 -0.15 
1983-1985 5.83 -0.94 11.93 0.75 
1984-1986 5.59 4.15 11.74 5.84 
1985-1987 8.66 0.39 12.89 3.34 
1986-1988 8.98 -4.80 14.06 -1.49 
1987-1989 7.32 -0.26 9.34 5.73 
1988-1990 4.90 0.30 8.63 -1.65 
1989-1991 6.65 0.99 9.03 0.79 
1990-1992 6.77 1.44 11.49 -0.65 
1991-1993 6.70 2.28 8.31 2.13 
1992-1994 5.71 0.39 5.92 -2.62 
1993-1995 6.79 1.23 9.82 3.84 
1994-1996 6.23 -0.56 8.12 -2.70 
1995-1997 6.67 -1.49 8.03 -6.41 
1996-1998 6.41 0.83 7.74 -0.01 
1997-1999 5.89 -1.07 12.30 -1.54 
1998-2000 5.70 2.03 12.52 1.38 
1999-2001 8.11 0.20 8.30 -3.08 
2000-2002 7.39 -0.92 9.76 2.92 
2001-2003 6.89 0.06 14.62 -3.24 
2002-2004 7.55 -0.83 10.38 -0.51 
2003-2005 7.27 0.24 14.88 -1.01 
2004-2006 5.92 -1.10 12.13 0.58 
2005-2007 7.23 -1.05 12.65 -0.72 
2006-2008 6.53 2.63 14.13 4.11 
2007-2009 4.83 0.74 13.14 4.06 
2008-2010 9.99 2.82 15.20 -0.47 
2009-2011 9.92 1.36 13.77 -0.16 
2010-2012 8.32 0.49 14.61 2.02 
2011-2013 6.69 -0.62 7.08 -0.16 
2012-2014 4.81 -0.66 6.46 -1.49 
2013-2015 3.70 -1.03 10.19 -0.79 
2014-2016 7.73 0.75 12.46 -0.01 
2015-2017 6.55 -0.53 8.95 -1.73 
2016-2018 6.47 2.10 8.23 3.08 
Average 6.74 0.23 10.79 0.12 

Note: The performances of all in-samples are better than out-of-samples. That is because correlation 

coefficients and standard errors are calculated by in-sample data and then use those parameters in the out-of-

sample to calculate the spread and make the trading decisions. Every three-year data is a test sample (e.g., 

1980-1982), which includes the in-sample for the first two years (e.g., 1980-1981) and the out-of-sample for 

the third year (e.g., 1982). The units in the table are %. 

 

 

The low performances of CA-ST, DIM-ST and CA-DIM-ST can be explained in the 

performances of individual pairs. Figure 4.7 presents four trading samples of CA-ST. In 

those samples, trading opportunities are rare. For example, the pair ‘1981-1983FC1 

Commodity - MW1 Commodity’ has five trading opportunities in three years (two-year in-

sample and one-year out-of-sample). The pair ‘1987-1989 LB1 Commodity – PB1 

Commodity’ only has three trading opportunities, which are all in the in-sample. The low 

number of trading opportunities causes a low expectation of returns both in the in-sample 

and out-of-sample. In addition, the low trading frequency results in low efficiency of capital. 

Another important cause of the low return in the out-of-sample is that the co-integration 

relationship may not exist in the out-of-sample of some pairs, which creates a huge loss in 
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some pairs, as the stop-loss targets are not set in the models. For example, the pair ‘2001-

2003 LH1 Commodity-JO1 Commodity’ and the pair ‘2001-2003 LY1 Commodity-LN1 

Commodity’ show the situation of loss. Those very high losses cause the average return of 

the out-of-sample to be low. However, the stop-loss targets are also difficult to set, as I do 

not know where the turning point is. In summary, CA-ST, DIM-ST and CA-DIM-ST with 

two standard errors do not work in commodities. The trading thresholds need to be adjusted.  

 

Figure 4.7: Sample of pairs of the price spread 

Note: The titles of charts are named by sample period and two commodities’ names in the pair. Chart (a) is the 

pair of feeder cattle and wheat spring; Chart (b) shows the pair of lumber and pork bellies; Chart (c) displays 

the pair of lean hogs and orange juice; Chart (d) is the pair of aluminium alloy and nickel. 
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4.5.2 The performance of CA-GA-ST and CA-DRL  

This study uses the same data to test the CA-GA-ST trading model. The results are shown 

in Table 4.5. The GA is used to optimize thresholds, which has a considerable impact on the 

annualized return of the in-sample. The average annualized return of the in-sample increased 

from 10.79 of CA-ST to 21.57%, while the improvement of the out-of-sample is small, and 

the average annualized return of CA-GA-ST is only 1.84%. In the test over 37 years, there 

are 11 losses for CA-GA-ST, and 23 for CA-ST. 

 

Table 4.5: Annualized returns of CA-GA-ST pairs trading model (%) 

 CA-GA-ST CA-ST 
Year In-sample Out-of-sample In-sample Out-of-sample 

1980-1982 21.94 11.06 12.16 -1.64 
1981-1983 15.40 2.21 10.92 -4.01 
1982-1984 8.09 -3.19 7.49 -0.15 
1983-1985 24.40 7.65 11.93 0.75 
1984-1986 27.94 7.55 11.74 5.84 
1985-1987 23.02 2.69 12.89 3.34 
1986-1988 23.91 -3.93 14.06 -1.49 
1987-1989 14.53 3.55 9.34 5.73 
1988-1990 19.54 -0.16 8.63 -1.65 
1989-1991 19.86 6.35 9.03 0.79 
1990-1992 25.63 4.65 11.49 -0.65 
1991-1993 18.83 -8.71 8.31 2.13 
1992-1994 14.54 -2.67 5.92 -2.62 
1993-1995 21.82 2.57 9.82 3.84 
1994-1996 15.93 4.36 8.12 -2.70 
1995-1997 14.42 -2.32 8.03 -6.41 
1996-1998 13.96 2.18 7.74 -0.01 
1997-1999 25.98 5.86 12.30 -1.54 
1998-2000 28.77 -2.11 12.52 1.38 
1999-2001 14.39 2.68 8.30 -3.08 
2000-2002 19.04 0.84 9.76 2.92 
2001-2003 26.87 3.04 14.62 -3.24 
2002-2004 22.39 2.54 10.38 -0.51 
2003-2005 23.44 0.29 14.88 -1.01 
2004-2006 24.70 4.15 12.13 0.58 
2005-2007 28.56 -8.29 12.65 -0.72 
2006-2008 29.52 -5.82 14.13 4.11 
2007-2009 21.85 7.27 13.14 4.06 
2008-2010 39.29 1.12 15.20 -0.47 
2009-2011 32.69 -0.74 13.77 -0.16 
2010-2012 30.52 -1.58 14.61 2.02 
2011-2013 15.42 4.42 7.08 -0.16 
2012-2014 11.07 0.22 6.46 -1.49 
2013-2015 20.97 7.80 10.19 -0.79 
2014-2016 24.42 5.18 12.46 -0.01 
2015-2017 17.25 4.75 8.95 -1.73 
2016-2018 17.07 2.48 8.23 3.08 
Average 21.57 1.84 10.79 0.12 

Note: The negative annualized returns are marked in bold. Every three-year data is a test sample (e.g., 1980-

1982), which includes the in-sample for the first two years (e.g., 1980-1981) and the out-of-sample for the 

third year (e.g., 1982). The units in the table are %. 
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Although CA-GA-ST performs better than CA-ST, the performance of CA-GA-ST is in 

general unsatisfactory. The trading thresholds obtained using the GA search are already close 

to the optimal solution in the in-sample, compared to CA-ST without optimizing thresholds, 

and the out-of-sample average annualized return only increases slightly by using the CA-

GA-ST strategy. It is reasonable to draw the conclusion that no matter how the trading 

thresholds are adjusted based on the volatility of price spread in the in-sample, the out-of-

sample trading performance will not be improved significantly, but only in-sample 

performance is improved. This shows that the Simple Thresholds trading strategy does not 

have any potential, and a more flexible trading strategy is needed to replace it. 

 

Regarding DRL, the in-sample and out-of-sample data for CA-DRL are the same as for the 

benchmark models. The annualized return of the CA-DRL pairs trading model is presented 

in Table 4.6. The CA-DRL pairs trading model shows high annualized returns both in the in-

sample and out-of-sample, on average 36.00% and 12.49%. The trading performance of the 

CA-DRL in the out-of-sample even outperforms the in-sample performance of the CA-ST. 

In addition, only two negative trading periods occur in the out-of-sample, in 01/01/1995-

31/12/1995 and 01/01/1998-31/12/1998.  

 

Table 4.6: Annualized returns of CA-DRL pairs trading model (%) 
 DRL  DRL 
Year In-sample Out-of-sample Year In-sample Out-of-sample 
1980-1982 31.20 17.75 1999-2001 33.06 9.55 
1981-1983 40.53 8.93 2000-2002 37.40 9.71 
1982-1984 20.88 11.54 2001-2003 43.67 16.35 
1983-1985 21.72 10.63 2002-2004 36.61 17.20 
1984-1986 39.96 21.93 2003-2005 45.01 18.29 
1985-1987 48.86 25.02 2004-2006 41.30 14.17 
1986-1988 34.02 15.02 2005-2007 42.75 9.66 
1987-1989 38.26 7.52 2006-2008 34.70 9.34 
1988-1990 33.22 8.36 2007-2009 35.39 12.35 
1989-1991 24.96 7.75 2008-2010 56.68 16.36 
1990-1992 35.63 12.99 2009-2011 40.06 20.57 
1991-1993 40.75 5.43 2010-2012 47.45 18.11 
1992-1994 26.26 8.48 2011-2013 32.99 10.40 
1993-1995 40.20 -11.85 2012-2014 16.89 16.82 
1994-1996 23.63 12.47 2013-2015 33.01 13.11 
1995-1997 28.51 6.88 2014-2016 38.37 13.54 
1996-1998 28.55 -0.46 2015-2017 35.29 15.04 
1997-1999 49.84 21.90 2016-2018 32.44 20.93 
1998-2000 42.01 10.22 Average 36.00 12.49 

Note: The negative annualized returns are marked in bold. Every three-year data is a test sample, which includes 

the in-sample for the first two years and the out-of-sample for the third year. The units in the table are %. 
 

 

The annualized returns in the in-sample are all much higher than in the out-of-sample, since 

this study trains model for every pair. Every individual pair is trained individually, which 
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leads to a higher in-sample performance. In addition, having different models for different 

pairs also improves the performance in the out-of-sample.  

 

In every trading period, this study trains a DRL model for every pair. However, there are two 

reasons why the DRL may fail in the in-sample. First, I set maximum training times, which 

may cause the model still not to converge when it reaches the maximum training times. 

Second, the training may get trapped into local optimum. There are few failures in the in-

sample. Thus, this study chooses the pairs to trade in the out-of-sample only if the return in 

the in-sample is positive, and this process increases the average return. The results that are 

not processed by this step are presented in Appendix C.5.  

 

Figure 4.8: A sample of a pair traded by DRL 

Note: This figure shows a pair (palladium and zinc) traded by DRL. The top two charts display the positions 

(blue line) and spread (yellow line) of the pair in the in-sample (the top-left chart) and out-of-sample (the top-

right chart). The bottom two charts show the return of the commodity pair in the in-sample (the bottom-left 

chart) and the out-of-sample (the bottom-right chart). The data for 2013-2015 is a test sample, which includes 

the in-sample for the first two years (2013 & 2014) and the out-of-sample for the third year (2015). 

 

(a) 2013-2015 PA1-LX1 in-sample position and spread  

(c) 2013-2015 PA1-LX1 in-sample return  (d) 2013-2015 PA1-LX1 out-of-sample return  

(b) 2013-2015 PA1-LX1 out-of-sample position and spread  
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Figure 4.8 shows an example of a commodity pair traded by DRL. In the top two charts, the 

blue line represents the positions: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1 means a long position in ‘commodity1’ and 

a short position in ‘commodity2’, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0 is the close position, and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = −1 

represents a short position in ‘commodity1’ and a long position in ‘commodity2’. The yellow 

line represents the spread of two commodities after being divided by the standard error of 

their price spread in the in-sample. Figure 4.8 shows that the trading performance of DRL is 

good both in the in-sample (see the top-left chart) and out-of-sample (see the top-right chart). 

The return reaches 60% in the two-year in-sample and 25% in the one-year out-of-sample 

reaches. The top two charts show the position of DRL. Compared with the ST method (in 

Figure 4.7), DRL is rarely in the close position, which makes the capital efficiency of DRL 

higher than that of ST. In addition, the DRL trading model does not change its position 

frequently, which means a very low transaction cost.  

 

Figure 4.9: The failed sample of a pair traded by DRL 

 

Note: This is a failed sample (the pair of aluminium alloy and nickel in 2003) for DRL. Although the highest 

return during the out-of-sample test reaches 25%, the final return is close to zero. The left chart displays the 

positions (blue line) and spread (yellow line) of the pair in out-of-sample. The right chart shows the return of 

the commodity pair in the out-of-sample. 

 

Figure 4.9 shows that the DRL trading strategy does not avoid loss in the case of a sudden 

increase in price spread. However, due to the positive return before the loss, the overall 

return of the out-of-sample is close to 0. The large loss in the extreme situation of DRL 

indicates that DRL in this study does not have the ability to generate the stop-loss targets by 

its DNN. However, in a normal situation, DRL has higher returns compared with ST, which 

leads to the positive return of the portfolio. 

 

(a) 2003 LY1-LN1 out-of-sample position and spread  (b) 2003 LY1-LN1 out-of-sample return 
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In summary, CA-DRL performs significantly better than the benchmark models from the 

perspective of average returns, both in the in-sample and out-of-sample. Although the in-

sample performance of the CA-DRL trading strategy is significantly better than that of the 

out-of-sample, the out-of-sample still has a high annualized return. 

 

4.6 Risk evaluation   

4.6.1 The return on actual employed capital  

The benchmark models, CA-GA-ST and CA-DRL all have the same committed capital (∑ 𝐶0
𝑖) 

but different actual employed capital. The average annualized return on committed capital 

takes the sum of the returns over all pairs during the trading period, and divides it by the 

number of pairs in the portfolio, which were used in Section 4.5. This measure of this return 

is conservative, as there are many close positions for pairs when capital is not employed. A 

hedge fund would be more flexible in its use of funds. Calculating return relative to the actual 

employed capital is a more realistic measure of the performance. Capital efficiency is 

introduced to evaluate the ratio of how much capital is employed on average. Capital 

efficiency is calculated by actual employed capital divided by committed capital. Lower 

capital efficiency means that the portfolio is always in a close position and uses less capital.  

 

Table 4.7 shows that CA-ST’s capital efficiency is low, which means that the CA-ST strategy 

has more close positions. This is because the absolute value of the trading thresholds is large 

in the CA-ST strategy. When the trading thresholds are reduced, for example, CA-GA-ST’s 

capital efficiency is higher. The capital efficiency of CA-DRL is always higher than 99%, 

which means the CA-DRL strategy is more aggressive and always in a full position. 
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Table 4.7: Capital efficiency of CA-ST, CA-GA-ST and CA-DRL (%) 

 CA-ST CA-GA-ST CA-DRL 

Year In-sample  Out-of-sample  In-sample Out-of-sample In-sample Out-of-sample 
1980-1982 22.25 29.65 85.76 81.90 99.25 99.46 
1981-1983 23.48 28.28 82.61 85.44 99.27 99.66 
1982-1984 23.11 18.01 88.41 87.83 99.44 99.22 
1983-1985 23.99 32.06 87.72 89.53 99.61 99.48 
1984-1986 18.03 27.32 86.94 85.40 99.32 99.65 
1985-1987 21.71 14.35 85.12 84.72 99.33 99.39 
1986-1988 23.07 41.73 86.76 90.11 99.39 99.45 
1987-1989 20.66 25.82 85.59 85.84 99.24 99.72 
1988-1990 21.99 34.36 84.96 87.42 99.37 99.20 
1989-1991 23.28 22.12 85.83 87.08 99.46 99.51 
1990-1992 18.68 26.53 83.82 84.57 99.34 99.64 
1991-1993 14.14 19.84 85.14 83.32 99.36 99.53 
1992-1994 22.09 24.70 83.38 84.08 99.30 99.58 
1993-1995 22.56 22.78 85.37 86.66 99.24 99.76 
1994-1996 20.08 28.74 82.23 84.24 99.20 99.27 
1995-1997 19.34 19.18 83.99 82.84 99.38 99.49 
1996-1998 18.56 23.40 83.59 82.46 99.45 99.55 
1997-1999 19.19 25.94 84.09 85.33 99.33 99.63 
1998-2000 19.99 25.03 84.75 84.87 99.34 99.35 
1999-2001 18.93 21.75 84.96 85.96 99.33 99.45 
2000-2002 19.52 26.84 84.99 85.65 99.36 99.74 
2001-2003 21.18 28.99 85.58 85.76 99.44 99.22 
2002-2004 20.78 23.85 84.51 85.58 99.26 98.61 
2003-2005 18.69 10.25 85.25 84.96 99.51 99.66 
2004-2006 19.55 25.34 85.31 86.49 99.39 99.26 
2005-2007 16.74 11.29 82.17 79.71 99.23 99.61 
2006-2008 18.05 26.28 83.88 83.89 99.46 99.18 
2007-2009 20.76 16.21 84.05 83.16 99.26 99.53 
2008-2010 19.85 28.72 85.14 87.04 99.15 99.55 
2009-2011 18.16 20.23 82.83 84.01 99.22 98.89 
2010-2012 20.62 20.01 84.05 82.96 99.33 99.66 
2011-2013 20.01 25.87 84.00 84.52 99.27 99.25 
2012-2014 25.54 36.90 86.25 87.94 99.38 99.37 
2013-2015 21.95 17.46 85.19 83.91 99.24 99.34 
2014-2016 20.94 26.24 85.15 85.70 99.32 99.37 
2015-2017 22.32 26.36 84.42 84.25 99.39 99.46 
2016-2018 21.79 25.82 84.86 86.35 99.26 99.18 
Average 20.58 24.55 84.83 85.17 99.34 99.43 

Note: Capital efficiency is calculated by actual employed capital divided by committed capital. The higher 

capital efficiency means that a strategy uses more capital during the whole trading period. The units in the table 

are %. 
 

 

Table 4.8 shows the return on actual employed capital, which is calculated by the return on 

committed capital divided by the corresponding capital efficiency. The use of loose 

thresholds such as CA-ST, produces the best performance in the in-sample, but the worst 

performance in the out-of-sample. CA-GA-ST also has low out-of-sample returns with an 

average out-of-sample return of 2.16%. This proves that the ST method, no matter how the 

thresholds are adjusted, can only obtain low returns in the 1980-2018 commodities markets. 

CA-DRL’s aggressive trading strategy and high capital efficiency make the return on actual 

employed capital and the return on committed capital almost the same. 
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Table 4.8: Return on actual employed capital (%) 

 CA-ST CA-GA-ST CA-DRL 
Year In-sample  Out-of-sample  In-sample Out-of-sample In-sample Out-of-sample 
1980-1982 54.65 -5.53 25.58 13.50 31.44 17.85 
1981-1983 46.51 -14.18 18.64 2.59 40.83 8.96 
1982-1984 32.41 -0.83 9.15 -3.63 21.00 11.63 
1983-1985 49.73 2.34 27.82 8.54 21.81 10.69 
1984-1986 65.11 21.38 32.14 8.84 40.23 22.01 
1985-1987 59.37 23.28 27.04 3.18 49.19 25.17 
1986-1988 60.94 -3.57 27.56 -4.36 34.23 15.10 
1987-1989 45.21 22.19 16.98 4.14 38.55 7.54 
1988-1990 39.25 -4.80 23.00 -0.18 33.43 8.43 
1989-1991 38.79 3.57 23.14 7.29 25.10 7.79 
1990-1992 61.51 -2.45 30.58 5.50 35.87 13.04 
1991-1993 58.77 10.74 22.12 -10.45 41.01 5.46 
1992-1994 26.80 -10.61 17.44 -3.18 26.45 8.52 
1993-1995 43.53 16.86 25.56 2.97 40.51 -11.88 
1994-1996 40.44 -9.39 19.37 5.18 23.82 12.56 
1995-1997 41.52 -33.42 17.17 -2.80 28.69 6.92 
1996-1998 41.70 -0.04 16.70 2.64 28.71 -0.46 
1997-1999 64.10 -5.94 30.90 6.87 50.18 21.98 
1998-2000 62.63 5.51 33.95 -2.49 42.29 10.29 
1999-2001 43.85 -14.16 16.94 3.12 33.28 9.60 
2000-2002 50.00 10.88 22.40 0.98 37.64 9.74 
2001-2003 69.03 -11.18 31.40 3.54 43.92 16.48 
2002-2004 49.95 -2.14 26.49 2.97 36.88 17.44 
2003-2005 79.61 -9.85 27.50 0.34 45.23 18.35 
2004-2006 62.05 2.29 28.95 4.80 41.55 14.28 
2005-2007 75.57 -6.38 34.76 -10.40 43.08 9.70 
2006-2008 78.28 15.64 35.19 -6.94 34.89 9.42 
2007-2009 63.29 25.05 26.00 8.74 35.65 12.41 
2008-2010 76.57 -1.64 46.15 1.29 57.17 16.43 
2009-2011 75.83 -0.79 39.47 -0.88 40.37 20.80 
2010-2012 70.85 10.09 36.31 -1.90 47.77 18.17 
2011-2013 35.38 -0.62 18.36 5.23 33.23 10.48 
2012-2014 25.29 -4.04 12.83 0.25 17.00 16.93 
2013-2015 46.42 -4.52 24.62 9.30 33.26 13.20 
2014-2016 59.50 -0.04 28.68 6.04 38.63 13.63 
2015-2017 40.10 -6.56 20.43 5.64 35.51 15.12 
2016-2018 37.77 11.93 20.12 2.87 32.68 21.10 
Average 52.43 0.49 25.43 2.16 36.24 12.56 

Note: The return on actual employed capital is the return on committed capital divided by capital efficiency. 

The units in the table are %. 
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4.6.2 The Risk-Adjusted Return 

4.6.2.1 The Sharpe Ratio and Value at Risk of portfolio  

The Sharpe Ratio and Value at Risk of the portfolio with CA-ST, CA-GA-ST and CA-DRL 

strategies are presented in Table 4.9. The annualized out-of-sample return of CA-ST is very 

low (0.12%), which results in a CA-ST strategy with almost no trading value, even though 

the volatility of CA-ST is low. The annualized return of CA-GA-ST is also much lower than 

that of CA-DRL, while its volatility is lower than that of CA-DRL but higher than that of 

CA-ST. Though the annualized volatility of CA-DRL is the highest, its outstanding 

annualized return means that CA-DRL still has a satisfactory Sharpe Ratio of 1.853. The 

calculation of annual Value at Risk is based on the Portvrisk function in the MATLAB 

Financial toolbox. CA-DRL has the best VaR performance, with a VaR of 0 at a 95% 

confidence level and a VaR of -3.19% at a 99% confidence level. This is because losses 

rarely occur in the out-of-sample, showing the robustness of CA-DRL for pairs trading. 

Though the VaR performance of CA-ST and CA-GA-ST is not bad, owing to their low rate 

of return, it is not a wise choice to invest using CA-ST and CA-GA-ST strategies. The 

probability of CA-ST having returns below zero is greater than 50%, which again indicates 

that CA-ST is ineffective in community markets. CA-GA-ST has a 29.73% probability that 

the annualized returns will be lower than zero. As a portfolio, this performance is not 

satisfactory. However, the CA-DRL portfolio only has a 5.41% probability of returns lower 

than zero. The minimum historical annualized return of CA-DRL is lower than the CA-ST 

and CA-GA-ST.  

 

Table 4.9: Summary of annually out-of-sample trading performance of the portfolio 

 CA-ST CA-GA-ST CA-DRL 

Annualized return  0.12% 1.84% 12.49% 
Volatility 2.72% 4.47% 6.74% 

Sharpe Ratio 0.044 0.412 1.853 
    
Annual Value at Risk    

1% -6.20% -8.56% -3.19% 
5% -4.35% -5.52% 0 

10% -3.36% -3.89% 0 
15% -2.70% -2.80% 0 
20% -2.16% -1.93% 0 

Probability below 0 62.16% 29.73% 5.41% 
Min. historical observation -6.41% -8.71% -11.85% 

Note: The Sharpe Ratio is based on the return on committed capital. Risk-free is assumed to equal zero. 

 



Chapter 4    

 

109 

 

4.6.2.2 The Sortino Ratio 

Keating & Shadwick (2002) define the Sortino Ratio to measure the risk-adjusted return. 

Different from the Sharpe Ratio, the Sortino Ratio does not assume a normal distribution of 

returns. The Sortino Ratio is defined as: 

𝑆 =
𝜇 − 𝜏

√∫ (𝜏 − 𝑅)2𝑑𝐹(𝑅)
𝜏

−∞

(4.14)
 

Where: 

⚫ 𝐹(∙) = the cumulative density function for total returns on an investment  

⚫ 𝜏 = threshold return 

⚫ 𝜇 = the expected periodic return = ∫ 𝑅𝑑𝐹(𝑅)
∞

−∞
 

 

The evaluation of the return in the Sortino Ratio and the Sharpe Ratio is the same. The 

Sortino Ratio evaluates the risk by only considering the returns lower than 𝜏 , while the 

Sharpe Ratio considers both positive and negative returns. Table 4.10 shows that under 

similar risk evaluations (0.103, 0.150 and 0.119), CA-DRL provides the best expected return. 

Thus, CA-DRL shows the best Sortino Ratio (1.053) compared with CA-GA-ST and CA-

ST.  

 

Table 4.10: The Sortino Ratios of annually out-of-sample trading performance (of the portfolio) 

 CA-ST CA-GA-ST CA-DRL 

𝜇  0.12% 1.84% 12.49% 

𝜏 0 0 0 

Risk evaluation 0.103 0.150 0.119 

Sortino Ratio 0.019 0.123 1.053 

Note: The risk-free rate is assumed to equal zero, and thus 𝜏 is 0.  

 

4.6.2.3 Morningstar Risk-Adjusted Return 

Morningstar lnc. is a provider of independent investment research in the US which uses the 

MRAR to rate funds. The MRAR is calculated as follows (Kräussl & Sandelowsky, 2007). 

 

𝑇𝑅 = {
𝑃𝑒

𝑃𝑏
∏ (1 +

𝐷𝑖

𝑃𝑖
)

𝑛

𝑖

} − 1 (4.15) 

Where 𝑇𝑅 is the total return for one month. 𝑃𝑒 is the Net Asset Value (NAV) at the end of 

the month, 𝑃𝑏 is the NAV at the beginning of the month. 𝐷𝑖 is the distribution per share at 
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time 𝑖, 𝑃𝑖 is the reinvestment NAV per share at time 𝑖. 𝑛 is the number of distributions 

during this month. Distributions include dividends, distributed capital gains and return of 

capital. However, the portfolios in this study do not have dividends. 𝐷𝑖 is the return of the 

capital that is not employed. The cumulative value for one unit capital of MRAR monthly is 

defined as:  

𝑉𝑢 = ∏(1 + 𝑇𝑅𝑡)

𝑇

𝑡=1

(4.16) 

Where 𝑉𝑢 is the value before adjusting the loads and redemption fees. 

 

𝑉 = (1 − 𝐹)(1 − 𝑅)𝑉𝑢 − 𝐷(1 − 𝐹)
min(𝑃0, 𝑃𝑡)

𝑃0

(4.17) 

Where 𝐹 is the front load and 𝐷 is the deferred load. 𝑅 is the redemption fee, 𝑃0 is NAV 

per share at the start and 𝑃𝑡 is the NAV at the end. In this study, the portfolio does not have 

any fees of loads. Thus 𝑉 = 𝑉𝑢.  

 

MRAR is defined as follows: 

𝑀𝑅𝐴𝑅(𝛾) = [
1

𝑇
∑(1 + 𝑟𝐺𝑡

)
−𝛾

𝑇

𝑡=1

]

−
12

𝛾

− 1 (4.18) 

Where 𝑟𝐺𝑡
 is the excess return compared with the risk-free ratio.  

 

𝑟𝐺𝑡
=

1 + 𝑇𝑅𝑡

1 + 𝑅𝑓
− 1 (4.19) 

Where 𝑅𝑓 is the risk-free ratio. 𝛾 is the parameter defined to describe the degree of risk 

aversion. This research adopts 𝛾 = 2 , which is taken to correspond to a typical investor 

(Kräussl & Sandelowsky, 2007).  

 

Table 4.11 presents the cumulative value and MRAR(2) of strategies. Considering the 

deposit ratio and risk-free ratio, the average adjusted return of CA-ST is negative, and the 

average adjusted return of CA-GA-ST is very close to zero. CA-DRL shows the best 

performance with an annualized average adjusted return of 9.98%.  
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Table 4.11: MRAR(2) of CA-ST, CA-GA-ST and CA-DRL 

 CA-ST CA-GA-ST CA-DRL 

Year Cumulative 

value  

MRAR(2)  Cumulative 

value 

MRAR(2) Cumulative 

value 

MRAR(2) 

1980-1982 0.9945 -0.0258 1.0317 0.0088 1.1939 0.1667 
1981-1983 0.9757 -0.0447 0.9564 -0.0663 1.0566 0.0307 
1982-1984 1.0045 -0.0157 1.0466 0.0249 1.0841 0.0613 
1983-1985 1.0226 0.0019 0.8519 -0.1714 1.1061 0.0773 
1984-1986 1.0813 0.0565 1.0982 0.0658 1.2474 0.2161 
1985-1987 1.0373 0.0162 1.0122 -0.0099 1.2646 0.2348 
1986-1988 1.0008 -0.0211 0.9913 -0.0343 1.1386 0.1103 
1987-1989 1.0739 0.0522 1.1376 0.1134 1.0248 0.0032 
1988-1990 1.0007 -0.0207 1.0063 -0.0187 1.0982 0.0726 
1989-1991 1.0079 -0.0123 1.0167 -0.0042 1.0715 0.0488 
1990-1992 1.0012 -0.0191 1.0361 0.0143 1.1313 0.1060 
1991-1993 1.0278 0.0073 1.0843 0.0602 1.0530 0.0268 
1992-1994 0.9791 -0.0410 1.0273 0.0036 1.0853 0.0598 
1993-1995 1.0471 0.0255 1.0093 -0.0180 0.8888 -0.1323 
1994-1996 0.9810 -0.0386 0.9566 -0.0626 1.1214 0.0982 
1995-1997 0.9401 -0.0795 1.0430 0.0160 1.0660 0.0405 
1996-1998 1.0189 -0.0017 0.9763 -0.0442 1.0268 0.0050 
1997-1999 0.9956 -0.0246 1.0653 0.0417 1.2083 0.1834 
1998-2000 1.0224 0.0013 1.0741 0.0499 1.0882 0.0631 
1999-2001 0.9777 -0.0421 1.0698 0.0464 1.0754 0.0534 
2000-2002 1.0415 0.0202 1.0801 0.0573 1.0950 0.0713 
2001-2003 0.9614 -0.0592 0.9950 -0.0274 1.1511 0.1241 
2002-2004 1.0010 -0.0190 1.0048 -0.0157 1.1692 0.1443 
2003-2005 0.9879 -0.0318 1.1058 0.0755 1.1917 0.1616 
2004-2006 1.0137 -0.0071 0.9990 -0.0223 1.1408 0.1165 
2005-2007 0.9955 -0.0243 1.0631 0.0395 1.0935 0.0664 
2006-2008 1.0520 0.0300 1.0321 0.0067 1.0936 0.0665 
2007-2009 1.0705 0.0444 1.2172 0.1782 1.1456 0.1197 
2008-2010 1.0027 -0.0178 1.0522 0.0293 1.1698 0.1448 
2009-2011 1.0045 -0.0157 1.0544 0.0302 1.2210 0.1936 
2010-2012 1.0253 0.0048 1.0386 0.0158 1.2139 0.1829 
2011-2013 1.0071 -0.0130 1.0068 -0.0135 1.1082 0.0855 
2012-2014 0.9859 -0.0344 0.9763 -0.0435 1.1720 0.1479 
2013-2015 1.0009 -0.0192 1.0453 0.0233 1.1386 0.1148 
2014-2016 1.0058 -0.0145 1.0043 -0.0165 1.1478 0.1237 
2015-2017 0.9878 -0.0318 0.9377 -0.0813 1.1448 0.1203 
2016-2018 1.0323 0.0113 1.0545 0.0310 1.2072 0.1825 
Average 1.0099 -0.0109 1.0313 0.0076 1.1253 0.0998 

Note: 1% deposit ratio and 2% risk-free ratio are adopted in this calculation.  

 

 

 

4.6.3 Maximum Drawdown 

4.6.3.1 Individual pair Maximum Drawdown 

Table 4.12 shows the Maximum Drawdown value of the worst-performing pair among all 

the pairs selected in the portfolio each year. The Maximum Drawdown in this study is 

calculated every two years in the in-sample and every year in the out-of-sample.  
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Table 4.12: Individual pair Maximum Drawdown of CA-ST, CA-GA-ST and CA-DRL (%) 

 CA-ST CA-GA-ST CA-DRL 
Year In-sample  Out-of-

sample  
In-sample Out-of-

sample 
In-sample Out-of-

sample 

1980-1982 -13.73 -8.18 -23.61 -24.09 -45.85 -24.09 
1981-1983 -39.28 -30.74 -49.32 -32.08 -49.62 -32.08 
1982-1984 -24.20 -29.62 -26.04 -29.62 -35.21 -35.50 
1983-1985 -6.74 -18.29 -8.34 -23.25 -16.05 -18.29 
1984-1986 -12.93 -28.17 -32.81 -34.38 -40.74 -24.85 
1985-1987 -22.42 -17.77 -34.58 -22.71 -27.91 -15.83 
1986-1988 -31.71 -35.05 -36.59 -40.18 -60.88 -49.24 
1987-1989 -37.36 -34.70 -67.90 -34.70 -59.35 -41.92 
1988-1990 -23.37 -27.34 -43.14 -32.71 -35.25 -27.87 
1989-1991 -15.18 -27.68 -22.68 -30.29 -26.16 -24.07 
1990-1992 -14.60 -25.74 -14.60 -28.56 -27.58 -21.96 
1991-1993 -20.58 -42.76 -54.64 -49.51 -43.59 -53.12 
1992-1994 -20.68 -29.52 -31.85 -40.59 -30.87 -29.05 
1993-1995 -15.90 -25.82 -29.03 -25.82 -41.76 -38.00 
1994-1996 -16.13 -37.70 -46.24 -49.44 -47.70 -39.32 
1995-1997 -24.26 -37.45 -51.83 -36.01 -67.81 -40.40 
1996-1998 -18.51 -25.26 -31.93 -27.99 -23.79 -27.16 
1997-1999 -28.48 -35.68 -51.30 -35.68 -60.15 -38.33 
1998-2000 -21.03 -50.36 -44.52 -53.67 -52.76 -44.27 
1999-2001 -34.38 -39.36 -51.54 -53.24 -60.25 -54.05 
2000-2002 -16.69 -32.16 -50.36 -47.73 -49.68 -35.02 
2001-2003 -22.57 -27.33 -35.20 -31.88 -43.62 -31.38 
2002-2004 -17.06 -39.59 -43.20 -39.59 -55.26 -27.21 
2003-2005 -21.33 -42.80 -29.74 -42.97 -40.99 -22.33 
2004-2006 -13.92 -53.11 -58.87 -53.11 -50.70 -37.37 
2005-2007 -12.04 -48.85 -63.39 -48.85 -32.04 -26.11 
2006-2008 -15.71 -37.28 -65.64 -37.82 -59.55 -39.34 
2007-2009 -14.01 -45.70 -30.66 -45.70 -31.70 -45.70 
2008-2010 -38.37 -31.17 -28.41 -31.63 -41.94 -24.67 
2009-2011 -10.14 -29.37 -20.29 -30.89 -27.54 -17.88 
2010-2012 -18.19 -29.83 -18.92 -33.24 -30.30 -20.37 
2011-2013 -17.38 -21.77 -34.22 -27.39 -31.51 -22.86 
2012-2014 -16.59 -26.65 -32.13 -30.06 -27.30 -27.37 
2013-2015 -14.77 -33.85 -16.64 -33.85 -19.35 -33.85 
2014-2016 -12.84 -25.09 -21.79 -29.87 -22.40 -28.62 
2015-2017 -28.47 -27.60 -50.04 -31.44 -43.36 -30.72 
2016-2018 -21.94 -23.80 -39.10 -26.33 -41.11 -31.69 
Average -20.36 -31.98 -37.60 -35.86 -40.58 -31.94 
Minimum -39.28 -53.11 -67.90 -53.64 -60.88 -54.05 

Note: The calculated Maximum Drawdown here for the in-sample is the Maximum Drawdown for two years, 

while for the out-of-sample, the Maximum Drawdown is for one year. The units in the table are %. 

 

 

Table 4.12 describes that out of 1329 pairs, the out-of-sample Maximum Drawdowns of the 

worst-performing individual pairs of the three strategies in 1980-2018 are all around 50% 

(see ‘Minimum’ in Table 4.12). That is, for instance, at a leverage of 1.8, no pair’s assets will 

become zero during the 1980-2018 trading period. Table 4.12 also shows the worst 

performance of Maximum Drawdown among all pairs each year. This is an extreme situation, 

indicating that the prices of the two commodities of a pair deviate a great deal. For most 

pairs, their Maximum Drawdowns are much smaller. 
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4.6.3.2 Portfolio Maximum Drawdown 

It is conservative to use leverage based on Maximum Drawdown of individual pairs. While 

for a portfolio, when the value of an asset is less than zero, other assets may have values 

greater than zero, as long as the total assets of the portfolio are not less than zero, it will not 

go bankrupt. Therefore, the leverage that the portfolio can withstand is determined by the 

minimum Maximum Drawdown of the overall portfolio. 

 

Table 4.13: Portfolio Maximum Drawdown (%) 

 CA-ST CA-GA-ST CA-DRL 
Year In-sample  Out-of-

sample  
In-sample Out-of-

sample 
In-sample Out-of-

sample 
1980-1982 -1.05 -1.51 -4.31 -3.87 -4.99 -3.81 
1981-1983 -2.09 -4.65 -3.15 -7.75 -2.32 -6.55 
1982-1984 -3.70 -7.35 -3.99 -6.13 -6.03 -3.15 
1983-1985 -2.18 -5.07 -4.46 -6.49 -11.05 -5.62 
1984-1986 -1.74 -4.81 -3.54 -7.27 -3.10 -2.79 
1985-1987 -1.99 -4.91 -6.79 -7.41 -4.23 -2.16 
1986-1988 -1.75 -9.15 -2.92 -11.04 -3.54 -6.05 
1987-1989 -1.79 -4.44 -2.54 -4.19 -3.26 -3.94 
1988-1990 -1.16 -2.92 -2.51 -3.87 -2.04 -2.86 
1989-1991 -1.12 -3.41 -1.87 -2.17 -3.15 -2.55 
1990-1992 -0.72 -3.68 -1.54 -3.84 -1.37 -2.82 
1991-1993 -6.37 -7.71 -6.41 -11.65 -4.67 -6.72 
1992-1994 -1.25 -8.23 -1.97 -9.83 -3.14 -3.88 
1993-1995 -1.86 -3.99 -4.44 -4.58 -3.67 -13.74 
1994-1996 -0.66 -2.44 -1.24 -2.53 -1.51 -1.61 
1995-1997 -1.36 -6.58 -2.83 -7.02 -4.78 -3.96 
1996-1998 -1.48 -3.17 -3.04 -2.57 -2.74 -3.12 
1997-1999 -1.14 -2.33 -1.70 -2.82 -3.10 -1.37 
1998-2000 -0.72 -2.96 -2.89 -3.25 -1.09 -4.11 
1999-2001 -0.45 -1.43 -1.16 -1.52 -2.07 -1.71 
2000-2002 -0.64 -3.76 -1.27 -3.34 -1.17 -2.82 
2001-2003 -2.65 -3.87 -3.77 -7.51 -7.23 -5.15 
2002-2004 -0.52 -3.20 -1.11 -2.36 -1.21 -1.21 
2003-2005 -3.25 -8.94 -6.76 -8.23 -5.59 -5.07 
2004-2006 -2.05 -3.85 -2.11 -3.00 -2.35 -3.76 
2005-2007 -1.17 -13.71 -1.45 -14.10 -1.69 -7.50 
2006-2008 -3.21 -7.41 -6.43 -7.85 -8.58 -6.48 
2007-2009 -1.01 -5.05 -2.95 -3.81 -3.66 -5.05 
2008-2010 -1.13 -3.29 -2.15 -4.77 -3.56 -3.14 
2009-2011 -0.79 -4.49 -1.67 -4.15 -1.57 -2.72 
2010-2012 -1.10 -9.16 -1.44 -11.00 -1.39 -3.94 
2011-2013 -1.10 -1.95 -1.34 -1.37 -1.15 -2.15 
2012-2014 -1.13 -2.65 -1.60 -3.02 -2.28 -0.86 
2013-2015 -0.58 -1.96 -1.74 -1.95 -2.00 -1.36 
2014-2016 -0.55 -2.27 -1.21 -2.56 -1.29 -3.03 
2015-2017 -1.32 -3.40 -1.78 -4.42 -2.23 -2.49 
2016-2018 -1.15 -2.54 -1.70 -2.93 -2.83 -1.42 
Average -1.57 -4.66 -2.80 -5.30 -3.29 -3.80 
Minimum -6.37 -13.71 -6.79 -14.10 -11.05 -13.74 

Note: The calculated Maximum Drawdown here for the in-sample is the Maximum Drawdown for two years, 

while for the out-of-sample, the Maximum Drawdown is for one year. The units in the table are %. 

 

 

As shown in Table 4.13, the average Maximum Drawdown of CA-DRL (-3.80%) is better 

than that of CA-GA-ST (-5.30%) and CA-ST (-4.66%) in the out-of-sample. The minimum 

value of Maximum Drawdown of CA-DRL, CA-GA-ST and CA-ST in the out-of-sample 
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during 1908-2018 are all greater than -20%, which means that investors can withstand a 

leverage ratio of 5 in the pairing trading in the case of avoiding assets below zero. This makes 

the expected return of the pairing trading strategy very promising, especially for CA-DRL, 

where the average annual expected return reaches 62.45% using a leverage ratio of 5. 

 

4.7 Conclusion 

This chapter uses five pairs trading strategies to conduct in-sample training and backtesting 

on 35 types of commodity markets in the world’s major commodity markets from 1980 to 

2018. The pairs are formed by the DIM and CA respectively. ST, GA and DRL are used to 

execute trading actions. DIM-ST, CA-ST and CA-DIM-ST are used as benchmark models. 

The pairs pool consists of all pairs that are formed by every two commodities. This study 

uses the DIM and CA methods to select the pairs from the pairs pool with data in the first 

two years as the in-sample, and trade according to ST strategy. Then the data of the following 

year is used as the out-of-sample and traded according to ST strategy. The improved trading 

strategies in this research include CA-GA-ST and CA-DRL strategies. CA-GA-ST strategy 

optimizes the thresholds of ST according to the in-sample performance. CA-DRL abandons 

the ST trading strategy. In CA-DRL, the price spread change of the two commodities in the 

pair is considered as the environment, agents of DRL play the pairs trading game based on 

the environment of the in-sample data. The agents are trained to execute the optimum actions 

based on the pairs trading rules, environment (historical information), and their state. Finally, 

the trained agents are traded with out-of-sample data. 

 

The main contributions are described as follows. First, this chapter introduces a novel CA-

DRL structure for the decision-making of trading actions, which obtains high returns and 

low risks. The CA-DRL model designed by this study tests all the possible pairs in the pairs 

pool, and obtains portfolios that have better performances than traditional methods. It is the 

first time to use CA-DRL for trading portfolios. Second, this study proposes the pre-training 

technique to solve two problems with DRL: falling into the local optimum and its large 

calculation amount. These two problems cause that DRL cannot deal with a large amount of 

data and only can be used for a small number of pairs. This study solves the problems and 

extends the use of DRL in portfolios. Third, this research introduces CA-GA-ST by using 

GA to optimize the parameters in ST, which slightly increases the annualized return 
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compared with CA-ST. The performance of CA-GA-ST is not significantly improved, which 

proves that the potential of ST strategy is low. As no matter how the thresholds are optimized, 

the trading performance does not change significantly with ST strategy.  

 

Regarding the trading performance, the traditional DIM-ST, CA-ST and CA-DIM-ST 

strategies are ineffective. Though they have low risks and low capital efficiency, they have 

almost no excess returns. CA-GA-ST uses GA to optimize the trading thresholds of ST. It 

chooses narrower thresholds, which increases the in-sample performance; however, the 

increase in returns of the out-of-sample is not significant and the risk is higher. According to 

the performance of GA, this study argues that adjusting the thresholds of ST cannot 

significantly improve the out-of-sample performance. Additionally, this research uses DRL, 

which can make more flexible trading actions to replace the ST strategy. DRL is trained with 

the pairs selected by CA and then trades in the in-sample and out-of-sample. The result beats 

the traditional methods and CA-GA-ST. The average annualized return of CA-DRL is 

12.49%; the Sharpe Ratio is 1.853; the Sortino Ratio is 1.053; and negative returns of the 

portfolio are rare, which leads to a good performance of VaR. Additionally, the MRAR(2) of 

CA-DRL shows the best performance with an annualized average adjusted return of 9.98% 

while considering the 1% deposit ratio and 2% risk-free ratio. Moreover, this study computes 

the Maximum Drawdowns of each pair and portfolios for CA-ST, CA-GA-ST and CA-DRL. 

The Maximum Drawdown in the out-of-sample of CA-DRL is -13.74%, which allows 5:1 

leverage and a higher expected return (62.45%).  
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Chapter 5 Conclusion  

5.1 Summary  

This thesis introduces several models for quantitative trading from three machine learning 

architectures (SVM, ANNs and DRL) and applies them in three empirical chapters. Chapter 

2 introduces a novel BGSA-SVM (Figure 2.5) to forecast the sign of log return for five stock 

indices from 1990-2016. In this model, PCA is used to reduce the dimension of the input 

pool. The BGSA is then employed to optimize the inputs and parameters of the SVM. The 

final step is to forecast the sign of the out-of-sample return by the optimized SVM. Moreover, 

Chapter 2 compares the forecasting accuracy and trading performances of RW, SVM, Buy-

and-Hold and best predictors with that of BGSA-SVM, finding that the BGSA-SVM beats 

all the benchmark models.  

 

Chapter 3 applies MLP, CNN and LSTM to the task of forecasting and trading the FTSE100 

and INDU indices from 2000 to 2018. The number of neurons and hidden layers of three 

NNs are designed to fit the financial time series data. The average accuracy of three NNs are 

all higher than 50%, and the average returns of three NNs are all larger than that of Buy-and-

Hold. Additionally, LSTM slightly outperforms MLP and CNN both in accuracy and average 

annualized returns. Chapter 3 also explores the utility of three combination methods (Simple 

Average, GRR and LASSO) in combining MLP, CNN and LSTM. However, the 

combination techniques and individual NN yield similar trading performances. A designed 

leverage rule in Chapter 3 (i.e., a higher forecast probability corresponds to a higher leverage 

ratio) increases the average annualized returns and Sharpe Ratio for CNN and LSTM. 

 

Chapter 4 focuses on the application of machine learning to the task of optimizing the trading 

strategy. A novel CA-DRL is introduced to pairs trade 35 commodities from 1980-2018. CA 

is used to select the pairs from the pairs pool, and DRL is employed to decide the actions in 

the pairs trading strategy. CA-DRL beats the traditional CA-ST, DIM-ST and CA-DIM-ST 

method in the trading performance. Chapter 4 also introduces GA to optimize the trading 

thresholds of the CA-ST method. The results show that the traditional CA-ST, DIM-ST and 

CA-DIM-ST are close to martingale, with average annualized returns of 0.12%, 0.37% and 

0.43% respectively. CA-GA-ST improves the in-sample performance significantly, slightly 

improves the out-of-sample performance (a 1.84% average annualized return) and increases 
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the risk. The limitation of CA-GA-ST indicates that the ST trading strategy does not have 

the potential to improve the trading performance. In addition, CA-DRL shows great 

performance in pairs trading with a 12.49% average annualized return and a Sharpe Ratio of 

1.853. CA-DRL obtains the best performance in the annualized return, and has a similar 

Maximum Drawdown to CA-ST and CA-GA-ST.  

 

To summarize the results, the machine learning methods applied to quantitative trading are 

practical and productive, and the models proposed by this thesis can improve the forecasting 

accuracy of financial time series and decide the trading actions. The machine learning 

algorithms make it possible for inexperienced investors to gain profits, and thus they are 

increasingly applied to the tasks of forecasting and trading. This study compares the machine 

learning models and traditional models from the perspective of investors. This thesis not 

only proposes new machine learning models for quantitative trading, but also helps bring 

academic literature in finance closer to trading applications. 

 

5.2 Limitations 

This thesis proposes new machine learning models to forecast financial time series and make 

trading decisions. The proposed models need to learn and simulate historical data. Machine 

learning models that extract effective information from historical data provide significant 

improvements in investment decision-making. However, limitations in machine learning 

models exist and three are worthy of discussion. 

 

The first limitation is that machine learning models cannot forecast what never happened. 

They only learn existing patterns from historical data (in-sample). If there are some 

unpredictable conditions that cannot be extracted from the in-sample, the pattern in the out-

of-sample will be different from the in-sample. This makes the model fail to forecast the out-

of-sample and even leads to serious losses. Finding solutions for extreme situations can 

result in a more stable performance of machine learning models. 

 

The second limitation is that the number of samples is limited for financial time series. 

Machine learning models are very effective in image recognition, speech recognition and 

text recognition. One important reason is that these application fields have sufficient samples 
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for learning. Nevertheless, the amount of financial time series data is limited, and the pattern 

of each market is different. This leads to a small amount of data being available for training 

in financial time series. Insufficient data leads to that input dimensionality not being very 

high, which means that a great deal of information cannot be used and the forecasting 

accuracy of the model decreases. Although this thesis uses some dimensionality reduction 

methods, such as PCA, it still loses some non-linear relationship information. Machine 

learning models specially designed for small samples of financial time series are needed to 

potentially improve the application of machine learning in finance. 

 

The third limitation is that the calculation speed is of concern. For machine learning models, 

a large number of optimization tasks exist in training, and they face the problem of 

‘dimensional explosion’. Although in this thesis, some techniques are used to minimize the 

amount of computing such as a kind of heuristic optimization algorithm called BGSA 

(Chapter 2) and the pre-training method (Chapter 4), it still takes several days to complete 

each model with a personal computer. Due to the limitation of computing power, the rolling 

period of models in this thesis updates yearly instead of daily. If higher computing power 

were available, the test could be updated on a daily basis. This would increase the stability 

of the return in the model and improve the trading performance. With the development of 

computers, the limitation of computing power will become less problematic in the future. 

 

5.3 Future work  

The focus of this thesis is to apply machine learning algorithms to quantitative trading, and 

propose new models for financial time series data. This study has improved and optimized 

machine learning algorithms, such as using BGSA combined with SVM in Chapter 2, 

optimizing of the network structure in Chapter 3, and combining CA and DRL in Chapter 4.  

These optimized models are applied to the tasks of financial forecasting and trading, in order 

to examine the effectiveness of the models. These models are designed for financial time 

series and can be applied to the trading of other assets. Additionally, all these models can be 

further developed in the future. There are three aspects to potential future work based on the 

algorithms in this thesis. 

 

The first aspect for improvement is the parameter optimization for initial parameters and the 
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connection weights in neural networks. This thesis optimizes the inputs and parameters of 

SVM by BGSA. The empirical results support the view that initial parameters have a 

significant effect on the performance of machine learning models. In the future, more 

advanced optimization method and more initial parameters can be adopted. Regarding the 

optimization of connection weights, this thesis uses AdamOptimizer and SGD optimization 

methods. The algorithms that can reduce the computing amount need to be developed in the 

future. A smaller calculation amount increases the frequency of the forecasting, and thus 

offers a more stable trading performance.  

 

The analysis of inputs is the second aspect, as finding the main factors that affect the price 

of financial assets is crucial to forecasting accuracy. This thesis uses the inputs suggested by 

relevant literature. Dimensionality reduction methods and models that are able to deal with 

high dimensional inputs are employed. The forecasting accuracy of MLP, CNN and LSTM 

is very similar in Chapter 3. This is because the information contained in the inputs is limited 

and restricts the performance of the NNs. It is necessary to introduce more useful information 

to improve forecasting accuracy. The relationship of inputs and the forecasting target needs 

to be further considered with regard to financial knowledge, and then useful inputs need to 

be selected to form the inputs pool; this will significantly improve the forecasting 

performance.  

 

The third aspect is the optimization of trading strategies. Chapters 2 and 3 use naive trading 

strategies, while Chapter 4 adopts the DRL to make trading decisions and uses leverage 

based on the forecasting probability. If stochastic mathematics is used to generate a 

continuous method of leverage selection, the return will significantly rise. Therefore, the 

combination of stochastic mathematical methods and machine learning methods for 

quantitative trading will be a promising future research direction.
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Appendices 

Appendix A (Chapter 2) 

Appendix A.1 Inputs and dataset 

The inputs pool is presented in Appendix A.1.1, and the start and end dates of every 

prediction are shown in Appendix A.1.2.  

 

A.1.1 Inputs pool 

The inputs of BGSA-SVM include %K, Momentum, Williams’ %R, Disparity5, OSCP, CCI, 

Return, Moving average, Volume, AR and ARMA. Their descriptions are provided in Table 

A.1. 

 

Table A.1: Input pool for Chapter 2 

Name  Description  Formula  Total individual 

forecasts  

%K(q) Stochastic %K. It 

compares where a 

security’s price closed 

relative to its price 

range over a given time 

period. 

𝐶𝑡−𝑞 − 𝐿𝐿𝑡−4−𝑞

𝐻𝐻𝑡−4−𝑞 − 𝐿𝐿𝑡−4−𝑞

∗ 100 

Where : 

𝐿𝐿𝑡 and 𝐻𝐻𝑡 mean lowest low and 

highest high in the last t days 

respectively. 

𝑞 = 1, … ,10 

 

10 

Momentum(n) It measures the amount 

that a security’s price 

has changed over a 

given time span. 

 

𝐶𝑡−1 − 𝐶𝑡−𝑛−1 

Where: 

𝑛 = 1, … ,10 

10 

Williams’ %R(a) Larry William’s %R. It 

is a momentum 

indicator that measures 

overbought/oversold 

levels. 

 

𝐻𝑡−5𝑎 − 𝐶𝑡−1

𝐻𝑡−5𝑎 − 𝐿𝑡−5𝑎

 

Where 

𝑎 = 1 … 5 

5 

Disparity5(l) 5n-day disparity. It 

means the distance of 

the current price and the 

moving average of 5 

days. 

𝐶𝑡−1

𝑀𝐴5𝑙(𝑡 − 1)
∗ 100 

Where: 

𝑙 = 1 … 5 

5 

OSCP Price oscillator. It 

displays the difference 

between two moving 

averages of a security’s 

price. 

𝑀𝐴5(𝑡 − 𝑚) − 𝑀𝐴10(𝑡 − 𝑚)

𝑀𝐴5(𝑡 − 𝑚)
 

1 
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Name  Description  Formula  Total individual 

forecasts  

 

CCI (d) Commodity channel 

index. It measures the 

variation of a security’s 

price from its statistical 

mean. 

(𝑀𝑡−𝑑 − 𝑆𝑀𝑡−𝑑)

(0.015𝐷𝑡−𝑑)
 

Where  

𝑀𝑡 = (𝐻𝑡 + 𝐿𝑡 + 𝐶𝑡)/3 

𝑆𝑀𝑡 =
∑ 𝑀𝑡−𝑖+1

𝑛
𝑖=1

𝑛
 

𝐷𝑡 =
∑ |𝑀𝑡−𝑖+1 − 𝑆𝑀𝑡|𝑛

𝑖=1

𝑛
 

𝑑 = 1 … 5 

 

5 

Return(k) Last days’ log return 
log (

𝐶𝑡−𝑘

𝐶𝑡−𝑘−1

) 

where: 

𝑘 = 1 … 20 

 

20 

Moving average (p) Moving average 𝑀𝐴5𝑝(𝑡 − 1) 

Where: 

𝑝 = 1 … 10 

 

10 

Volume (i) Last days’ trading 

volume 

𝑉𝑡−𝑖 

Where: 

𝑖 = 1 … 10 

 

10 

Volatility(h)  Price volatility 𝐹𝑉10ℎ(𝑡 − 1) 

Where: 

ℎ = 1 … 3 

 

3 

𝐴𝑅(𝑚) Close Price predicted 

by  

𝐴𝑅(𝑚) model 

𝛽0 +  ∑ 𝛽𝑖𝐶𝑡−𝑖−1

𝑚

𝑖=1
 

Where: 

𝑚 = 1, … ,10 

𝛽0, 𝛽𝑖   are the regression 

coefficients. 

10 

𝐴𝑅𝑀𝐴(𝑚′, 𝑛′) Close Price predicted 

by  

𝐴𝑅𝑀𝐴(𝑚′, 𝑛′) model 

𝜑0 + ∑ 𝜑𝑗𝐶𝑡−𝑗−1

𝑚′

𝑗=1
+ 𝜀0

+ ∑ 𝛾𝑘𝜀𝑡−𝑘−1

𝑛′

𝑘=1
 

Where: 

𝑚′, 𝑛′ = 1, … ,10 

𝜑0, 𝜑𝑗  are the regression 

coefficients. 

𝜀0, 𝜀𝑡−𝑘−1 are the residual terms. 

𝛾𝑘  is the weight of the residual 

terms. 

100 

Sum dimension   189 

Note: 𝐶𝑡  is the close price at time 𝑡 . 𝐿𝑡  is the lowest price at time 𝑡 . 𝐻𝑡   is the highest price at time 𝑡 . 

 𝑀𝐴𝑛(𝑡) is the moving average of n days at time 𝑡. 𝑉𝑡 is the trading volume at time 𝑡.  𝐹𝑉𝑛(𝑡) is the volatility 

in last n days at time 𝑡.  
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A.1.2 Start and end dates of predictions  

Table A.2 indicates the start and end dates of the training sample, test sample and out-of-

sample of every test. 

 

Appendix A.2 The accuracy and trading performances of BGSA-SVM and 

Benchmark models 

This section shows all the empirical results for BGSA-SVM and benchmark models. Table 

A.3, Table A.4, Table A.5, Table A.6 and Table A.7 display the accuracy of the training 

sample, test sample and out-of-sample of S&P500, FTSE100, NKY, DAX and CAC40 

respectively. 



Appendices      

 

123 

 

Table A.2: The start and end dates of the training sample, test sample and out-of-sample set 

  FTSE100 S&P500 NKY CAC DAX 

F1 Training sample 1993/1/21-1998/4/14 1990/3/14-1997/4/2 1993/1/22-1997/12/30 1993/3/10-1998/1/29 1993/3/15-1998/4/15 

Test sample 1998/4/15-2000/7/24 1997/4/3-1999/5/28 1998/1/5-2000/7/14 1998/1/30-2000/3/14 1998/4/16-2000/7/25 
Out-of-sample 2000/7/25-2001/10/1 1999/6/1-2000/6/12 2000/7/17-2002/4/25 2000/3/15-2001/5/10 2000/7/26-2001/8/29 

F2 Training sample 1994/4/25-1999/5/27 1991/5/29-1998/4/16 1994/3/30-1999/4/21 1994/12/8-1999/3/4 1994/9/30-1999/6/18 
 Test sample 1999/5/28-2001/10/1 1998/4/17-2000/6/12 1999/4/22-2002/4/25 1999/3/5-2001/5/10 1999/6/21-2001/8/29 

Out-of-sample 2001/10/2-2002/12/20 2000/6/13-2001/6/26 2002/4/26-2003/8/4 2001/5/11-2002/8/30 2001/8/30-2002/10/23 

F3 Training sample 1995/10/27-2000/7/24 1993/11/24-1999/5/28 1995/7/6-2000/7/14 1996/1/24-2000/3/14 1995/10/17-2000/7/25 
Test sample 2000/7/25 2002/12/20 1999/6/1-2001/6/26 2000/7/17-2003/8/4 2000/3/15-2002/8/30 2000/7/26-2002/10/23 

Out-of-sample 2002/12/23-2004/3/1 2001/6/27-2002/10/11 2003/8/5-2004/10/26 2002/9/2-2003/10/7 2002/10/24-2003/12/4 
F4 Training sample 1996/12/24-2001/10/1 1996/2/16-2000/6/12 1996/10/7-2002/4/25 1997/1/28-2001/5/10 1996/10/31-2001/8/29 

Test sample 2001/10/2-2004/3/1 2000/6/13-2002/10/11 2002/4/26-2004/10/26 2001/5/11-2003/10/7 2001/8/30-2003/12/4 

Out-of-sample 2004/3/2-2005/6/9 2002/10/14-2003/10/29 2004/10/27-2005/11/7 2003/10/8-2004/11/10 2003/12/5-2004/12/17 
F5 Training sample 1998/4/15-2002/12/20 1997/4/3-2001/6/26 1998/1/5-2003/8/4 1998/1/30-2002/8/30 1998/4/16-2002/10/23 

Test sample 2002/12/23-2005/6/9 2001/6/27-2003/10/29 2003/8/5-2005/11/7 2002/9/2-2004/11/10 2002/10/24-2004/12/17 
Out-of-sample 2005/6/10-2006/11/8 2003/10/30-2004/11/12 2005/11/8-2007/3/16 2004/11/11-2005/12/28 2004/12/20-2006/1/10 

F6 Training sample 1999/5/28-2004/3/1 1998/4/17-2002/10/11 1999/4/22-2004/10/26 1999/3/5-2003/10/7 1999/6/21-2003/12/4 
Test sample 2004/3/2-2006/11/8 2002/10/14-2004/11/12 2004/10/27-2007/3/16 2003/10/8-2005/12/28 2003/12/5-2006/1/10 

Out-of-sample 2006/11/9-2008/4/21 2004/11/15-2005/12/27 2007/3/19-2008/4/24 2005/12/29-2007/5/14 2006/1/11-2007/2/16 

F7 Training sample 2000/7/25-2005/6/9 1999/6/1-2003/10/29 2000/7/17-2005/11/7 2000/3/15-2004/11/10 2000/7/26-2004/12/17 
Test sample 2005/6/10-2008/4/21 2003/10/30-2005/12/27 2005/11/8-2008/4/24 2004/11/11-2007/5/14 2004/12/20-2007/2/16 

Out-of-sample 2008/4/22-2009/12/1 2005/12/28-2007/1/18 2008/4/25-2009/9/14 2007/5/15-2008/5/22 2007/2/19-2008/2/18 
F8 Training sample 2001/10/2-2006/11/8 2000/6/13-2004/11/12 2002/4/26-2007/3/16 2001/5/11-2005/12/28 2001/8/30-2006/1/10 

Test sample 2006/11/9-2009/12/1 2004/11/15-2007/1/18 2007/3/19-2009/9/14 2005/12/29-2008/5/22 2006/1/11-2008/2/18 

Out-of-sample 2009/12/2-2013/2/19 2007/1/19-2008/3/10 2009/9/15-2010/10/29 2008/5/23-2009/9/17 2008/2/19-2009/2/16 
F9 Training sample 2002/12/23-2008/4/21 2001/6/27-2005/12/27 2003/8/5-2008/4/24 2002/9/2-2007/5/14 2002/10/24-2007/2/16 

Test sample 2008/4/22-2013/2/19 2005/12/28-2008/3/10 2008/4/25-2010/10/29 2007/5/15-2009/9/17 2007/2/19-2009/2/16 
Out-of-sample 2013/2/20-2016/4/20 2008/3/11-2009/6/12 2010/11/1-2011/12/26 2009/9/18-2010/10/26 2009/2/17-2010/4/13 

F10 Training sample  2002/10/14-2007/1/18 2004/10/27-2009/9/14 2003/10/8-2008/5/22 2003/12/5-2008/2/18 
Test sample  2007/1/19-2009/6/12 2009/9/15-2011/12/26 2008/5/23-2010/10/26 2008/2/19-2010/4/13 

Out-of-sample  2009/6/15-2010/7/12 2011/12/27-2013/3/6 2010/10/27-2012/3/27 2010/4/14-2011/4/18 

F11 Training sample  2003/10/30-2008/3/10 2005/11/8-2010/10/29 2004/11/11-2009/9/17 2004/12/20-2009/2/16 
Test sample  2008/3/11-2010/7/12 2010/11/1-2013/3/6 2009/9/18-2012/3/27 2009/2/17-2011/4/18 

Out-of-sample  2010/7/13-2011/7/11 2013/3/7-2014/6/26 2012/3/28-2013/9/23 2011/4/19-2012/7/23 

Note: Due to missing data and holidays, the start and end dates of the five indices (FTSE, S&P500, NKY, CAC and DAX) are different.  
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Table A.3: Accuracy for the S&P500 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

BGSA-SVM Training sample 0.7153  0.6052  0.6409  0.7123  0.5992  0.5883  0.6161  0.6409  0.6419  0.6280  0.7361  

Test sample 0.6171  0.6190  0.6528  0.6429  0.6270  0.5913  0.6171  0.6111  0.6369  0.6429  0.6528  

Out-of-sample 0.5516  0.5516  0.5437  0.4881  0.5238  0.5278  0.5119  0.5278  0.5595  0.5159  0.5437  

RW Training sample 0.4911  0.5149  0.5099  0.5159  0.5218  0.5129  0.4931  0.5188  0.5169  0.4931  0.4980  

Test sample 0.5000  0.4940  0.5000  0.5040  0.4603  0.5238  0.5496  0.5000  0.5179  0.5218  0.5417  

Out-of-sample 0.4802  0.4841  0.5119  0.5357  0.5278  0.5516  0.4960  0.4683  0.4960  0.4881  0.4286  

SVM Training sample 1.0000  1.0000  1.0000  0.9990  0.9881  0.9206  1.0000  0.8075  1.0000  1.0000  1.0000  

Test sample 0.5437  0.5119  0.5020  0.4722  0.5040  0.5337  0.4444  0.5575  0.5357  0.5317  0.5417  

Out-of-sample 0.5079  0.4683  0.4563  0.5437  0.5516  0.5079  0.4524  0.5317  0.5357  0.5278  0.5000  

𝑏𝑒𝑠𝑡1 Training sample 0.5466 0.4871  0.5298  0.5268  0.5238  0.5179  0.5169  0.5109  0.5208  0.5169  0.5466  

Test sample 0.5298  0.4841  0.5317  0.4980  0.5258  0.5238  0.5159  0.5099  0.5179  0.5298  0.5119  

Out-of-sample 0.5198  0.4921  0.5317  0.5357  0.5119  0.5198  0.5000  0.5357  0.5794  0.5119  0.4960  

𝑏𝑒𝑠𝑡2 Training sample 0.5317  0.5030  0.5585  0.5367  0.5446  0.5377  0.5397  0.5169  0.5030  0.5248  0.5159  

Test sample 0.5437  0.5060  0.4881  0.5238  0.5476  0.5456  0.5397  0.5060  0.5337  0.5337  0.5258  

Out-of-sample 0.5079  0.4921  0.4246  0.5635  0.5278  0.5516  0.5357  0.5754  0.5714  0.4921  0.4881  

Buy-and-Hold Training sample 0.5317  0.5437  0.5585  0.5308  0.5159  0.4792  0.4831  0.4940  0.5169  0.5476  0.5456  

Test sample 0.5437  0.5119  0.4881  0.4464  0.4782  0.5417  0.5556  0.5536  0.5357  0.5298  0.5536  

Out-of-sample 0.5079  0.4683  0.4246  0.5317  0.5516  0.5595  0.5476  0.5238  0.5357  0.5714  0.5754  

Note: This table shows the accuracy of all the models for S&P500 in Chapter 2. The SVM has significant overfitting, as the accuracy is almost 100% in the training sample 

for all periods and around 50% in the out-of-sample.
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Table A.4: Accuracy for the FTSE100 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 

BGSA-SVM Training sample 0.7173  0.7331  0.6171  0.6260  0.6339  0.6290 0.6696  0.6796 0.6012  

Test sample 0.6508  0.6329  0.6171  0.6171  0.6230  0.6131  0.6012  0.6111  0.6389  

Out-of-sample 0.5278  0.5317  0.5079  0.5357  0.5198  0.4325  0.5119  0.5000  0.5159  

RW Training sample 0.4732  0.5129  0.5407  0.5198  0.4772  0.4931  0.4752  0.5060  0.5069  

Test sample 0.5298  0.4940  0.4782  0.4861  0.4782  0.5119  0.5317  0.4861  0.4980  

Out-of-sample 0.4762  0.5079  0.4802  0.4563  0.5278  0.5357  0.5238  0.4802  0.4881  

SVM Training sample 1.0000  0.8085  1.0000  0.8175  1.0000  1.0000  0.9018  0.8482  0.7192  

Test sample 0.5893  0.5933  0.4623  0.5139  0.5278  0.5337  0.5119  0.5337  0.5635  

Out-of-sample 0.5159  0.5040  0.5079  0.5079  0.4960  0.5556  0.5159  0.5040  0.4921  

𝑏𝑒𝑠𝑡1 Training sample 0.5407  0.5258  0.5069  0.4931  0.5089  0.5327  0.5317  0.5228  0.5030  

Test sample 0.5198  0.4782  0.5079  0.5496  0.5317  0.4940  0.5099  0.5298  0.5119  

Out-of-sample 0.5000  0.5159  0.5357  0.4762  0.4722  0.5278  0.5317  0.5159  0.4722  

𝑏𝑒𝑠𝑡2 Training sample 0.5456  0.5169  0.5099  0.4921  0.5218  0.5248  0.5228  0.5089  0.5198  

Test sample 0.5099  0.5437  0.5139  0.5258  0.5298  0.4742  0.5040  0.5317  0.5238  

Out-of-sample 0.5278  0.5317  0.5317  0.4405  0.4921  0.5000  0.5437  0.4841  0.4802  

Buy-and-Hold Training sample 0.5437  0.5456  0.5486  0.5268  0.5040  0.5109  0.5169  0.5308  0.5308  

Test sample 0.5258  0.5159  0.4821  0.5060  0.5516  0.5556  0.5099  0.4841  0.5099  

Out-of-sample 0.4921  0.4722  0.5397  0.5635  0.5476  0.4722  0.4960  0.5238  0.5000  

Note: This table shows the accuracy of all the models for FTSE100, of which the SVM is overfitting.
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Table A.5: Accuracy for the NKY  

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

BGSA-SVM Training sample 0.6726  0.6538  0.5952  0.6260  0.6270  0.6835  0.6528  0.6706  0.6329  0.6875  0.8095  

Test sample 0.6151  0.6190  0.6111  0.6270  0.5933  0.6091  0.6111  0.6290  0.6409  0.6369  0.6190  

Out-of-sample 0.5595  0.5476  0.5357  0.5079  0.5000  0.5397  0.5119  0.5238  0.5317  0.5357  0.5079  

RW Training sample 0.4792  0.5069  0.5149  0.5020  0.4613  0.4960  0.5020  0.5159  0.4861  0.5129  0.5327  

Test sample 0.4563  0.5040  0.5139  0.5020  0.5079  0.4881  0.4782  0.5496  0.4980  0.5278  0.5060  

Out-of-sample 0.4643  0.5119  0.5079  0.5317  0.5635  0.5516  0.5397  0.4603  0.4405  0.5159  0.5873  

SVM Training sample 1.0000  0.8978  1.0000  1.0000  0.9871  0.8591  0.9980  1.0000  1.0000  1.0000  0.8363  

Test sample 0.5456  0.5556  0.4563  0.5258  0.4940  0.5020  0.5060  0.5298  0.5218  0.5595  0.5397  

Out-of-sample 0.4921  0.4921  0.4881  0.4603  0.5317  0.5040  0.5437  0.5516  0.4802  0.5198  0.5278  

𝑏𝑒𝑠𝑡1 Training sample 0.4851  0.5079  0.5139  0.5159  0.4782  0.4950  0.5079  0.5129  0.5188  0.5089  0.5079  

Test sample 0.5218  0.4960  0.4901  0.4722  0.5179  0.5099  0.5020  0.4980  0.4742  0.4921  0.5337  

Out-of-sample 0.5079  0.4722  0.4722  0.5397  0.5317  0.4722  0.5159  0.4683  0.5159  0.5516  0.4881  

𝑏𝑒𝑠𝑡2 Training sample 0.5010  0.5099  0.5159  0.5149  0.5208  0.4980  0.4861  0.4861  0.4921  0.5139  0.5268  

Test sample 0.5218  0.4960  0.5040  0.4901  0.5179  0.4841  0.5119  0.5099  0.5079  0.5099  0.5040  

Out-of-sample 0.4960  0.5119  0.4960  0.5635  0.4722  0.5238  0.4960  0.5198  0.4643  0.5238  0.5159  

Buy-and-Hold Training sample 0.5050  0.4960  0.5020  0.4792  0.4742  0.4752  0.4851  0.5020  0.5129  0.5079  0.4960  

Test sample 0.4921  0.4762  0.4563  0.4742  0.5139  0.5298  0.5119  0.4861  0.4802  0.5099  0.5357  

Out-of-sample 0.4524  0.4603  0.4881  0.5397  0.5198  0.5040  0.4683  0.4921  0.5278  0.5437  0.5397  

Note: This table shows the accuracy of all the models for NKY, of which the SVM is overfitting.
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Table A.6: Accuracy for the DAX 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

BGSA-SVM Training sample 0.6190  0.6111  0.7063  0.7252  0.6875  0.7004  0.6300  0.7500  0.6389  0.6667  0.6806  

Test sample 0.6190  0.6052  0.6091  0.6310  0.6389  0.6190  0.6349  0.6290  0.6389  0.6131  0.6091  

Out-of-sample 0.4643  0.5278  0.4881  0.5992  0.5040  0.4921  0.5714  0.5238  0.5198  0.5079  0.5238  

RW Training sample 0.5208  0.5327  0.4732  0.5109  0.4911  0.4950  0.5278  0.4712  0.5179  0.4940  0.4950  

Test sample 0.5020  0.4663  0.5278  0.4980  0.4901  0.4901  0.5556  0.5020  0.4821  0.5119  0.5179  

Out-of-sample 0.5437  0.4603  0.5079  0.4722  0.4881  0.4921  0.4683  0.5119  0.5357  0.4484  0.4683  

SVM Training sample 1.0000  1.0000  0.8710  0.8423  0.8909  1.0000  0.9950  1.0000  0.9980  1.0000  1.0000  

Test sample 0.5397  0.5397  0.5159  0.5853  0.5794  0.5516  0.5675  0.5774  0.5516  0.5198  0.5456  

Out-of-sample 0.4643  0.4762  0.4841  0.5675  0.5000  0.5516  0.5000  0.5198  0.5198  0.5040  0.4921  

𝑏𝑒𝑠𝑡1 Training sample 0.5387  0.5198  0.5536  0.5456  0.5397  0.5129  0.5179  0.5288  0.5109  0.5268  0.5198  

Test sample 0.5556  0.5357  0.5238  0.5139  0.4901  0.5099  0.5278  0.4821  0.5218  0.4940  0.5020  

Out-of-sample 0.5159  0.5159  0.4960  0.4841  0.5357  0.5079  0.5317  0.5476  0.4722  0.5040  0.5317  

𝑏𝑒𝑠𝑡2 Training sample 0.5298  0.5655  0.5327  0.5079  0.5030  0.5397  0.5069  0.5119  0.5258  0.5119  0.5407  

Test sample 0.5575  0.5119  0.5179  0.5060  0.5218  0.5258  0.5218  0.5218  0.5536  0.5218  0.4623  

Out-of-sample 0.5159  0.5317  0.5595  0.5159  0.5238  0.4683  0.5357  0.5357  0.4206  0.5238  0.5119  

Buy-and-Hold Training sample 0.5675  0.5536  0.5635  0.5367  0.4931  0.5000  0.4940  0.5278  0.5605  0.5635  0.5476  

Test sample 0.5317  0.5119  0.4544  0.4881  0.5337  0.5675  0.5873  0.5595  0.5079  0.5198  0.5456  

Out-of-sample 0.4643  0.4444  0.5317  0.5357  0.5992  0.5754  0.5437  0.4722  0.5675  0.5238  0.4921  

Note: This table shows the accuracy of all the models for DAX, of which the SVM is overfitting.
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Table A.7: Accuracy for the CAC 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

BGSA-SVM Training sample 0.6935  0.6448  0.6587  0.6607  0.6300  0.6012  0.7897  0.6270  0.6111  0.6052  0.6796  

Test sample 0.6329  0.6052  0.6052  0.6270  0.6091  0.5913  0.5933  0.6270  0.6270  0.6171  0.5873  

Out-of-sample 0.4881  0.5397  0.5040  0.5079  0.5476  0.4762  0.5714  0.5913  0.5833  0.5278  0.5195  

RW Training sample 0.5079  0.5099  0.5129  0.5069  0.5000  0.4970  0.4692  0.4990  0.4861  0.5000  0.5000  

Test sample 0.4563  0.5099  0.4623  0.5020  0.5119  0.5040  0.4603  0.5020  0.4861  0.5119  0.5516  

Out-of-sample 0.4841  0.5278  0.4643  0.4881  0.4841  0.4524  0.5357  0.5397  0.5238  0.5198  0.5159  

SVM Training sample 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  0.8333  1.0000  1.0000  0.9286  1.0000  

Test sample 0.5119  0.5159  0.4524  0.4623  0.5139  0.4762  0.5913  0.4940  0.4940  0.5258  0.4821  

Out-of-sample 0.4921  0.4405  0.4841  0.5437  0.4921  0.5357  0.5516  0.5278  0.5198  0.5675  0.5159  

𝑏𝑒𝑠𝑡1 Training sample 0.5119  0.5258  0.5089  0.5179  0.4970  0.5278  0.5387  0.5248  0.5357  0.5188  0.5208  

Test sample 0.4643  0.5079  0.5218  0.5476  0.5615  0.5476  0.5456  0.5119  0.5397  0.5437  0.5456  

Out-of-sample 0.5635  0.5040  0.5913  0.5317  0.5635  0.4802  0.5556  0.5635  0.5397  0.5516  0.5119  

𝑏𝑒𝑠𝑡2 Training sample 0.5456  0.5198  0.4881  0.5050  0.5050  0.5179  0.5427  0.5337  0.5248  0.5179  0.5218  

Test sample 0.4722  0.5139  0.5278  0.5238  0.5377  0.5694  0.5020  0.4901  0.5536  0.5496  0.5079  

Out-of-sample 0.5397  0.5040  0.5714  0.5317  0.5754  0.4841  0.5317  0.5437  0.5357  0.5159  0.4722  

Buy-and-Hold Training sample 0.5079  0.5347  0.5546  0.5308  0.5099  0.4891  0.4831  0.4970  0.5228  0.5208  0.5069  

Test sample 0.5675  0.5159  0.4524  0.4623  0.5139  0.5317  0.5317  0.5099  0.4821  0.4960  0.4821  

Out-of-sample 0.4643  0.4405  0.4841  0.5437  0.5198  0.5437  0.4762  0.4881  0.5040  0.4603  0.5476  

Note: This table shows the accuracy of all the models for CAC, of which the SVM is overfitting.
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Appendix A.3 The Sharpe Ratio and other tests 

In this Appendix, details of the Sharpe Ratio, Chi-square test and volatility analysis in this 

study are presented. 

A.3.1 The Sharpe Ratio 

The Sharpe Ratio is a way to examine the performance of an investment by adjusting for its 

risk (Sharpe, 1970). The Sharpe Ratio is defined as: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑖𝑜 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
(𝐴. 1) 

In recent years, the risk-free ratio has been low for the countries in the study, and thus the 

risk-free ratio in Chapter 2 is assumed to be zero. 

A.3.2 The Chi-square test for BGSA-SVM 

In 53 predictions, BGSA-SVM is the best of the six models 17 times. If the BGSA-SVM is 

invalid, then the expectation it would be the best model should be less than 8.83 (53/6) times. 

Thus, a chi-square test for BGSA-SVM with the expectation of random models is described 

as follows. 

 

H0: the distribution of results that BGSA-SVM is the best forecasting model compared with 

all benchmark models is the same with the distribution of the expectation of random models.  

𝜒2 = ∑
(𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 − 𝑇)2

𝑇
(𝐴. 2) 

T1 = 53/6, T2 = 265/6, T3 = 56/6, T4 = 265/6, 𝜒2 = 9.0604 

 

Table A.8 shows the upper percentage points of the 𝜒2 distribution. As shown in Table A.9, 

the value of 𝜒2 can reject the H0 at a 99% confidence level, which means that BGSA-SVM 

is valid. 

 

Table A.8: The Chi-square test BGSA-SVM with the expectation of random models 

 Positive  Negative  Sum  

BGSA-SVM 17 36 53 

The expectation of random models   53/6 ∗ n 265/6 ∗ n n 

Sum 19 + 53/6 34 + 265/6 106 

Note: 𝑛 tends to +∞. 
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Table A.9: Upper percentage points of the 𝜒2 distribution  

Degrees of freedom Pr 

0.05 0.01 0.001 

1 3.84 6.63 10.83 

2 5.99 9.21 13.81 

3 7.81 11.34 16.27 

4 9.49 13.28 18.47 

5 11.07 15.09 20.52 

6 12.59 16.81 22.46 

7 14.07 18.48 24.32 

8 15.51 20.09 26.12 

9 16.92 21.67 27.88 

10 18.31 23.21 29.59 

Note: The degree of freedom is 1 for the test.  

 

A.3.3. The relationship between volatility and annualized returns of BGSA-SVM 

Chapter 2 runs the regression of BGSA-SVM’s annualized return on volatility to investigate 

their relationship. Table A.10 shows that the p-value of the estimated coefficient of volatility 

is 0.168 and the R-squared is only 0.037. This means that the volatility is not related to the 

annualized return of BGSA-SVM and cannot explain the change of the annualized return.   

 

Table A.10: The regression result of the annualized return of BGSA-SVM and volatility 

Dependent Variable: the annualized return of BGSA-SVM   

Method: Least Squares   

Date: 07/12/18   Time: 17:37   

Sample: 53 times test  

Included observations: 53 after adjustments  

          
Variable Coefficient Std. Error t-Statistic Prob.   

     
     
C 1.913591 6.079529 0.314760 0.7542 

Daily Standard deviation 6.108195 4.365973 1.399045 0.1679 

     
     
R-squared 0.036960     Mean dependent var 9.885362 

Adjusted R-squared 0.018077     S.D. dependent var 15.57350 

S.E. of regression 15.43209     Akaike info criterion 8.347781 

Sum squared resid 12145.62     Schwarz criterion 8.422132 

Log likelihood -219.2162     Hannan-Quinn criter. 8.376373 

F-statistic 1.957328     Durbin-Watson stat 1.984038 

Prob(F-statistic) 0.167852    

          
Note: EViews is used to run the regression. 
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Appendix B (Chapter 3) 

Appendix B.1 Inputs and dataset 

In this Appendix, the inputs pool and the start and end dates of every forecast are presented. 

 

B.1.1 Inputs pool  

There is some small difference between the inputs for MLP, CNN and LSTM, which are 

described in Section 3.4. The summary of the inputs is presented in Table B.1. 

 

Table B.1: Input pool for Chapter 3 

Name  Description  Formula  Total individual 

forecasts  

Return (k)  Last days’ log return 
log (

𝐶𝑡−𝑘

𝐶𝑡−𝑘−1

) 

Where: 𝑘 = 1 … 10 

10 

𝐻𝑡−𝑘  (k) Daily highest price  𝐻𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10 

𝐿𝑡−𝑘 (k) Daily lowest price 𝐿𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10 

G (k) Last day’s Gold price (COMEX) 𝐺𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10 

O (k) Last day’s Oil price (NYMEX) 𝑂𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10 

USD/JPY (k) Last day’s USD/JPY exchange 

rates 

𝑈/𝐽𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10(only for INDU) 

USD/EUR (k) Last day’s USD/EUR exchange 

rates 

𝑈/𝐸𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10(only for INDU) 

USD/GBP (k) Last day’s USD/GBP exchange 

rates 

𝑈/𝐺𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10 

GBP/JPY (k) Last day’s GBP/JPY exchange 

rates 

𝐺/𝐽𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10(only for FTSE) 

GBP/EUR (k) Last day’s GBP/EUR exchange 

rates 

𝐺/𝐸𝑡−𝑘 

Where: 𝑘 = 1 … 10 

10(only for FTSE) 

Moving average (n) Moving average 𝑀𝐴5𝑛(𝑡 − 1) 

Where: 𝑛 = 1 … 10 

10 

𝐴𝑅(𝑚) Close price predicted by 𝐴𝑅(𝑚) 

model   

𝛽0 +
 ∑ 𝛽𝑖𝐶𝑡−𝑖−1

𝑚
𝑖=1    

Where: 𝑚 = 1, … ,10 

𝛽0  and  𝛽𝑖  are the 

regression coefficients  

10 

Sum Variables   80 

Note：𝐶𝑡 is the close price at time 𝑡. 𝑀𝐴𝑛(𝑡) is the moving average of 𝑛 days at time 𝑡. 
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B.1.2 Start day and end day for forecasts 

Table B.2 indicates the start & end dates of the in-sample and out-of-sample of every test. 

The length of the in-sample is 5 trading years (1260 trading days), and the length of the out-

of-sample is 1 trading year (252 trading days). 

 

Table B.2: The dataset for tests  

  Start date & end date for INDU and FTSE100 

F1 In-sample 2000/1/4-2004/11/1 

 Out-sample 2004/11/2-2005/10/19 

F2 In-sample 2000/12/21-2005/10/19 

 Out-sample 2005/10/20-2006/10/6 

F3 In-sample 2001/12/10-2006/10/6 

 Out-sample 2006/10/9-2007/9/25 

F4 In-sample 2002/11/27-2007/9/25 

 Out-sample 2007/9/26-2008/9/11 

F5 In-sample 2003/11/14-2008/9/11 

 Out-sample 2008/9/12-2009/8/31 

F6 In-sample 2004/11/2-2009/8/31 

 Out-sample 2009/9/1-2010/8/18 

F7 In-sample 2005/10/20-2010/8/18 

 Out-sample 2010/8/19-2011/8/5 

F8 In-sample 2006/10/9-2011/8/5 

 Out-sample 2011/8/8-2012/7/24 

F9 In-sample 2007/9/26-2012/7/24 

 Out-sample 2012/7/25-2013/7/11 

F10 In-sample 2008/9/12-2013/7/11 

 Out-sample 2013/7/12-2014/6/30 

F11 In-sample 2009/9/1-2014/6/30 

 Out-sample 2014/7/1-2015/6/17 

F12 In-sample 2010/8/19-2015/6/17 

 Out-sample 2015/6/18-2016/6/3 

F13 In-sample 2011/8/8-2016/6/3 

 Out-sample 2016/6/6-2017/5/23 

F14 In-sample 2012/7/25-2017/5/23 

 Out-sample 2017/5/24-2018/5/10 

Note: The data for INDU and FTSE100 are downloaded from Bloomberg.  

 

Appendix B.2 Performance of eight classification categories  

This Appendix presents the results of eight categories classification. The accuracy and 

trading performance of eight classification categories are shown in Appendix B.2.1 

Appendix B.2.2 respectively. 

 

B.2.1 Statistical accuracy of eight classification categories of NNs 

The statistical accuracy of the eight classification categories is presented in Table B.3 (for 
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FTSE100) and Table B.4 (for INDU). This study classifies the daily return of the stock index 

by eight classification categories because in the previous literature the prediction results of 

more classification categories are better than that of binary classification, especially the eight 

categories (Olson & Mossman, 2003). However, the 4 classification categories and 16 

classification categories are not examined due to the amount of work that would be involved 

and the limited time available. 

 

Table B.3: Accuracy for eight classification forecasts for the out-of-sample for the FTSE100 

 MLP MLP with AR & MA CNN LSTM 

 Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

F1 0.2738 0.5476 0.3175 0.5357 0.4405 0.5437 0.2865 0.4841 

F2 0.2421 0.5317 0.25 0.4921 0.3214 0.5040 0.3063 0.5159 

F3 0.2222 0.5238 0.2024 0.5159 0.3611 0.4921 0.2825 0.5040 

F4 0.1587 0.5437 0.1825 0.5476 0.2500 0.5794 0.2548 0.5516 

F5 0.1548 0.5119 0.1468 0.4921 0.2659 0.5278 0.3627 0.4960 

F6 0.2262 0.5119 0.1746 0.5238 0.3214 0.5079 0.2063 0.5357 

F7 0.2103 0.5079 0.2063 0.5119 0.3294 0.5079 0.3389 0.4921 

F8 0.1944 0.4841 0.1786 0.5476 0.4206 0.5317 0.1865 0.5238 

F9 0.2103 0.5516 0.2460 0.4960 0.4087 0.5516 0.2429 0.5040 

F10 0.2619 0.5198 0.2381 0.5238 0.4087 0.4762 0.2786 0.5079 

F11 0.2500 0.4960 0.2540 0.4762 0.4087 0.5159 0.2429 0.5595 

F12 0.1786 0.4841 0.1984 0.4841 0.3492 0.5556 0.1865 0.5278 

F13 0.3254 0.5278 0.3135 0.5000 0.4762 0.4921 0.2381 0.5278 

F14 0.3095 0.4960 0.3175 0.5357 0.3690 0.5119 0.2619 0.4841 

Average 0.2299 0.5170 0.2304 0.5130 0.3665 0.5213 0.2625 0.5153 

Note: The out-of-sample sign accuracy lower than 50% are in bold. Classes accuracy is the ratio that eight 

classification forecasts are right. Sign accuracy is the ratio that the sign of eight classification forecasts is right.  

 

Table B.4: Accuracy for eight classification forecasts for the out-of-sample for the INDU 

 MLP MLP with AR & MA CNN LSTM 

 Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

Classes 

accuracy 

Sign 

accuracy 

F1 0.3730 0.5357 0.3175 0.5278 0.4206 0.5040 0.2421 0.5040 

F2 0.2103 0.5079 0.2500 0.4960 0.2103 0.5079 0.2341 0.5516 

F3 0.3532 0.4881 0.2024 0.4802 0.3611 0.4921 0.2937 0.4921 

F4 0.1905 0.5437 0.1825 0.5278 0.2500 0.5794 0.2262 0.5397 

F5 0.2421 0.5317 0.1468 0.5000 0.2659 0.5278 0.2302 0.5040 

F6 0.2937 0.4921 0.1746 0.5357 0.3056 0.4881 0.2857 0.5238 

F7 0.2659 0.5000 0.2063 0.5040 0.3294 0.5079 0.2302 0.5079 

F8 0.1984 0.5516 0.1786 0.5357 0.4246 0.5357 0.2341 0.5238 

F9 0.2619 0.5437 0.2460 0.5238 0.4008 0.5516 0.2659 0.5119 

F10 0.3690 0.5119 0.2381 0.4921 0.3095 0.5873 0.3333 0.4960 

F11 0.2540 0.5000 0.254 0.4921 0.4087 0.5159 0.3770 0.5317 

F12 0.3016 0.5040 0.1984 0.5079 0.2619 0.5238 0.3175 0.4960 

F13 0.2976 0.4762 0.3135 0.4802 0.4802 0.4921 0.3611 0.5516 

F14 0.3333 0.5556 0.3175 0.5556 0.3294 0.5238 0.3135 0.5357 

Average 0.2817 0.5173 0.2304 0.5114 0.3399 0.5241 0.2817 0.5193 

Note: The out-of-sample sign accuracy lower than 50% are in bold. Classes accuracy is the ratio that eight 

classification forecasts are right. Sign accuracy is the ratio that the sign of eight classification forecasts is right.  
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The performances of the eight classification categories of MLP, CNN and LSTM are much 

better than the RW (12.5%). CNN performs the best, since its predictive accuracy for 

FTSE100 and INDU reaches 36.65% and 33.99% respectively, which is more accurate than 

that of Chen, Zhou & Dai (2015) (27.2% by LSTM). Additionally, the accuracy of LSTM 

and MLP is similar. However, the accuracy of LSTM is much lower than that of CNN. The 

reason for this is due to insufficient inputs lags of LSTM. 

 

Though the results of the eight classification categories forecasts seem successful, this study 

further analyzes the results and finds that the conclusion is reversed from that of Olson & 

Mossman (2003). Table B.3 and Table B.4 also show the sign accuracy, which is obtained 

by converting the eight classification categories to the sign forecast (binary classification 

forecast). This study finds that the accuracy of converted sign forecasts is lower than that of 

the binary classification forecasts in Section 3.5.1 (directly obtained binary classifications). 

This shows that the eight classification categories do not help to improve the sign prediction 

accuracy. It also shows that the results of the eight classification categories are not more 

effective than that of the binary classification.  

 

Accuracy of the eight classification forecasts is significantly higher than the uniform random 

walk because the distribution of daily returns is not uniform. For example, most daily returns 

cluster in -0.5% to 0% and 0% to 0.5%. NNs concentrate more on learning the distribution 

of in-samples, which leads to a significant increase in the accuracy of the eight classification 

categories while the sign accuracy is not improved, but decreased. 

 

This study attempts to adjust the loss function calculation in NNs to solve the problem of 

class imbalance. In the training process of NNs, when the forecasting results are errors, the 

penalty values of different classes are determined according to the ratio of this class’s 

proportion over the total sample, and the larger the proportion, the smaller the penalty value. 

For example, if the return is 3% on a certain day, the predicted error penalty value is larger; 

while the return is 0.1% on a certain day, the penalty value is smaller when prediction error 

exists. The NNs try to find the minimum total penalty value. After adopting this method, this 

study finds that NNs very easily fall into local optimum, resulting in all prediction results be 

in a certain class. As a result, the prediction is invalid. However, this study holds the view 

that this method can be further developed to improve the performance of multi-categories 

classification. 
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B.2.2 Trading performance of eight categories classification 

Table B.5 and Table B.6 show trading performances of the eight classification forecasts for 

FTSE100 and INDU respectively. The trading performance of eight classification categories 

is worse than that of the binary classification. In particular, the trading performance of the 

LSTM is close to that of Buy-and-Hold.  

 

Table B.5: Trading performances of NNs with eight classification categories for FTSE100 (%) 

 Buy-and-Hold MLP MLP with AR & MA CNN LSTM 

F1 14.98 14.51 12.20 24.59 6.04 

F2 10.74 13.95 1.58 4.70 11.73 

F3 0.88 9.73 6.63 -2.79 4.23 

F4 -48.84 9.92 30.65 18.68 -10.73 

F5 30.09 18.58 4.41 12.69 -3.91 

F6 7.56 15.35 19.85 1.98 1.82 

F7 -3.23 8.79 -7.43 3.23 8.37 

F8 6.09 0.36 12.37 14.49 13.71 

F9 13.14 13.03 4.63 12.45 -8.87 

F10 3.11 1.25 1.50 -1.49 -2.65 

F11 -13.37 0.67 -15.05 3.20 16.58 

F12 14.56 -4.92 -18.46 7.36 20.04 

F13 7.08 -10.43 -4.73 -4.69 -8.44 

F14 3.45 -6.19 14.53 -3.29 2.42 

Average 3.30 6.04 4.48 6.51 3.60 

Note: The best performance in every forecast period is in bold. The units in the table are %. 

Table B.6: Trading performances of NNs with eight classification categories for INDU (%) 

 Buy-and-Hold MLP MLP with AR & MA CNN LSTM 

F1 1.64 0.27 0.04 0.53 -8.57 

F2 14.22 15.89 3.34 14.22 10.20 

F3 6.25 -1.25 -1.10 -6.25 -12.25 

F4 -56.21 21.42 -2.45 46.60 21.80 

F5 30.32 -7.57 30.18 30.32 16.27 

F6 8.43 8.43 6.96 -8.95 -9.11 

F7 4.55 2.05 3.17 4.55 -11.65 

F8 14.65 15.67 3.00 -4.50 4.62 

F9 14.82 5.50 -12.07 15.68 2.49 

F10 9.01 -5.32 -2.50 6.25 9.66 

F11 -4.95 -6.04 2.91 4.95 47.25 

F12 13.16 16.23 13.86 13.16 4.82 

F13 16.75 15.21 -9.45 -16.75 15.21 

F14 13.21 8.36 -17.74 13.21 8.83 

Average 6.13 6.35 1.30 8.07 7.11 

Note: The best performance in every forecast period is in bold. There are some cases that the return of NNs are 

the same with Buy-and-Hold, which is due to the failed training (the forecasting results are all in one class). 

The units in the table are %. 

 

With regard to the performances of the binary classification and eight classification 

categories, this study draws a different conclusion from Olson & Mossman (2003). This 

study finds that when using eight classification categories, NNs use most of the capabilities 

to learn the in-sample distribution of the categories, resulting in a worse average 

performance than binary classification categories. 
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Appendix B.3 Trading performances of combination techniques 

The annualized trading performances of combination techniques are presented in Table B.7 

(for FTSE100) and Table B.8 (for INDU). The trading performance of the simple average is 

slightly worse than GRR and LASSO. The annualized returns of GRR and LASSO are 

almost the same for every test period because their daily statistical forecasts are almost the 

same. 

 

Table B.7: Annualized returns of out-of-sample combination of FTSE100 (%) 

 Simple Average  GRR LASSO 

F1 14.93 10.79 10.79 

F2 11.55 23.90 22.68 

F3 5.87 16.09 16.09 

F4 -1.32 10.96 10.96 

F5 20.98 13.63 13.63 

F6 14.85 16.99 16.99 

F7 -1.39 -5.28 -5.28 

F8 -5.93 4.90 5.19 

F9 5.81 6.00 6.00 

F10 11.30 -7.87 -7.87 

F11 30.28 17.68 17.68 

F12 7.68 29.22 29.22 

F13 18.61 19.74 21.22 

F14 24.86 10.13 10.13 

Average 11.29 11.92 11.96 

Note: The out-of-sample annualized returns of the simple average, GRR and LASSO lower than zero are in 

bold. The units in the table are %. 

 

Table B.8: Annualized returns of combination for out-of-sample: INDU (%) 

 Simple Average GRR LASSO 

F1 -2.92 10.83 10.83 

F2 -6.84 -16.39 -16.39 

F3 -15.32 15.14 12.86 

F4 13.91 23.18 23.27 

F5 21.94 21.95 21.95 

F6 11.76 11.86 11.86 

F7 3.62 6.19 6.19 

F8 5.86 2.21 1.72 

F9 9.51 28.32 28.32 

F10 22.56 8.30 7.90 

F11 -8.88 8.82 8.82 

F12 13.72 19.82 19.82 

F13 27.57 10.09 10.09 

F14 15.78 -10.86 -10.86 

Average 8.02 9.96 9.91 

Note: The out-of-sample annualized returns of the simple average, GRR and LASSO lower than zero are in 

bold. The units in the table are %. 
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Appendix B.4 The Chi-square test for MLP, CNN and LSTM 

Considering the FTSE100 and INDU together (in total 28 forecasts), Buy-and-Hold, MLP, 

CNN and LSTM win 2, 8, 6 and 9 times respectively. 

 

Table B.9: The Chi-square test for NNs 

 Positive  Negative  Sum  

MLP 

CNN 

LSTM 

8 

6 

9 

20 

22 

19 

28 

28 

28 

Buy-and-Hold 2 26 28 

Sum 25 87 112 

Expected value 5.6 22.4 28 

Note: The expected value is the expectation when all the forecasting models are random forecasts. 

 

H0: the distribution of results of the two models is similar. 

𝜒2 = ∑
(𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 − 𝑇)2

𝑇
(B. 1) 

Where: 

𝑇 is the expected positive times for the benchmark model. 

For LSTM, compared with Buy-and-Hold, 𝜒2 = 10.2946 

For MLP, compared with Buy-and-Hold, 𝜒2 = 9 

For CNN, compared with Buy-and-Hold, 𝜒2 = 7.7 

 

Table B.10: Upper percentage points of the 𝜒2 distribution  

Degrees of freedom Pr 

0.05 0.01 0.001 

1 3.84 6.63 10.83 

2 5.99 9.21 13.81 

3 7.81 11.34 16.27 

4 9.49 13.28 18.47 

5 11.07 15.09 20.52 

6 12.59 16.81 22.46 

7 14.07 18.48 24.32 

8 15.51 20.09 26.12 

9 16.92 21.67 27.88 

10 18.31 23.21 29.59 

Note: The degree of freedom is 1 for the test. 

 

In Table B.10, the value of 𝜒2  can reject the H0 at a 95% confidence level. NNs is 

significantly better than Buy-and-Hold. For the comparison between NNs, the value of 𝜒2 

is very small and cannot reject H0. Therefore, in this study, the difference in the 

performances among NNs is not large. It is necessary to increase the number of trials to 
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determine which NN is significantly better than others. 

 

Appendix B.5 The Information Ratio 

The Information Ratio is defined as 

Information Ratio =
𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑟𝑒𝑡𝑢𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 
(B. 2) 

The benchmark model is Buy-and-Hold.  

 

Appendix B.6 Distribution analysis of forecasting probability 

This study uses the normplot function in MATLAB to examine the distribution of the 

forecasting results. Figures B.1 shows the distribution of the forecasting results of MLP, 

CNN and LSTM. The data points appear along the red line, meaning the forecasting results 

are normally distributed. The distribution of LSTM’s results is closest to normal distribution. 

The three distributions for NNs are all left-skewed, especially the forecasting results for MLP 

and CNN. The left-skewness of CNN is the main reason for CNN failing to pass the 

Kolmogorov-Smirnov Test in section 3.6.2. However, the results for CNN fit normal 

distribution very well in the middle part, and thus the results are still considered as a normal 

distribution.  
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Figure B.1: Fitting analysis of MLP, CNN and LSTM 

(a) Fitting analysis of MLP 

 

(b) Fitting analysis of CNN 

 

(c) Fitting analysis of LSTM 

  

Note: The vertical axis is the normal distribution density. The horizontal axis is the forecast results. The red 

line is the regression line of the blue dots. The blue dots are close to a normal distribution if they fit the red line 

well. 
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Appendix C (Chapter 4) 

Appendix C.1 Literature list  

This section presents the literature introduced in Section 4.2.1. A concise overview with 

relevant literature, their data samples and main results are provided in Table C.1. 

 

Table C.1: An overview of the literature 

Approach Representative studies Sample  Main results 

DIM Gatev, Goetzmann & 
Rouwenhorst (1999; 2006) 

US CRSP 1962-1997; 
US CRSP 1962-2002 

11% annualized return on 
actual employed capital 

Perlin (2009) Brazilian financial market - 

Broussard & Vaihekoski 
(2012) 

Finnish stock market 1987–
2008 

12.5% annualized return on 
actual employed capital 

Jacobs & Weber (2015) NYSE and AMEX stocks 
1960-2008 

The profit is from over-
reaction to news 

CA Vidyamurthy (2004) - - 

Lin et al. (2006) Selected stocks from Australian 
stock market 01.2001- 08.2002 

- 

Bogomolov (2011) Australian stock market 1996-
2010 

1.05% average monthly 
return of CA-ST 

Caldeira & Moura (2013) Brazilian stock market 2005-
2010 

16.38% annualized return 

Li (2014) 38 dual-listed companies in 
China A-share and Hong Kong 
H-share 

10.8% annualized return 

Rad et al. (2016) US equity market 1962-2014 0.85% monthly return for 
CA-ST before transaction 
costs 

Machine 
learning 

Elliott et al. (2005) - - 

Huck (2009) S&P 100 1992 to 2006 13%-57% annualized return 

Huck (2010) S&P 100 1992 to 2006 16%-38% annualized return 

Avellaneda & Lee (2010) ETFs 1997-2007 1.1 Sharpe Ratio 

Huang et al. (2015) Selected stocks on Taiwan 
stock market 2003-2012 

- 

Others: 
stochastic, 
copula 

Do et al. (2006) - - 

Do & Faff (2010) US stock market 1962-2009 Pairs trading’ profitability 
decreases over time 

Mudchanatongsuk et al. 
(2008) 

- - 

Liew & Wu (2013) Selected stocks 2009-2012 - 

Krauss & Stübinger (2017) S&P 100 1990-2014 7.22% annualized return 

Note: This table presents the literature on the methods, data and trading performance of pairs trading. The 

literature is mainly in the stock trading field.  
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Appendix C.2 Commodities list 

This section presents all the commodities used in Chapter 4. The 1980-2018 data are 

collected from Bloomberg. Daily closing prices are used in this study. 

 

Table C.2: Commodity list  

Symbol Name  Market 

BO1 Soybean oil CBOT 

C1 Corn CBOT 

CC1 Cocoa NYBOT 

CL1 Crude oil NYMEX 

CO1 Brent oil ICE 

CT1 Cotton NYBOT 

FC1 Feeder cattle CME 

GC1 Gold NYMEX 

HG1 Copper NYMEX 

HO1 Heating oil NYMEX 

JO1 Orange juice NYBOT 

KC1 Coffee NYBOT 

KW1 Wheat KCBT 

LA1 Aluminium LME 

LB1 Lumber CME 

LC1 Live cattle  CME 

LH1 Lean hogs CME 

LL1 Lead LME 

LN1 Nickel LME 

LP1 Copper LME 

LT1 Tin LME 

LX1 Zinc LME 

LY1 Aluminium alloy LME 

MW1 Wheat spring MGEX 

NG1 Natural gas NYMEX 

PA1 Palladium NYMEX 

PB1 Pork bellies CME 

PL1 Platinum NYMEX 

RR1 Rough rice CBOT 

RS1 Canola WCE 

S1 Soybean CBOT 

SB1 Sugar NYBOT 

SI1 Silver NYMEX 

SM1 Soybean meal CBOT 

W1 Wheat CBOT 

Note: Data come from: Chicago Board Of Trade (CBOT), Chicago Mercantile Exchange (CME), 

Intercontinental Exchange (ICE), Kansas City Board of Trade (KCBT), London Metal Exchange (LME), 

Minneapolis Grain Exchange (MGEX), New York Board of Trade (NYBOT), New York Mercantile Exchange 

(NYMEX), Winnipeg Commodity Exchange (WCE). Regarding 35 types of features, the total number of pairs 

is 35 ∗ 34/2 = 595.  
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Appendix C.3 The structure of DNN in the DRL 

The DNN of DRL in this study is introduced in detail in this section, which includes the 

training method, layers of DNN, number of neurons and the activation function. In addition, 

the reasons for using these structures are explained here.   

 

C.3.1 Deep learning for RL model  

The problem with RL is mainly caused by the limitation of the Q matrix. This can be solved 

by using the DNN to replace the RL model’s brain, that is, using DNN instead of Q matrix 

to help the RL model make decisions, which is shown in Figure C.1.  

 

Figure C.1: The training process and decision-making process of the DRL model  

 

Note: This figure shows the structure of DRL for pairs trading. The DNN is trained through iteration. DNN 

decides the action of the agent. Then agent trades in the market (environment), obtains the position state of 

itself and the reward of this action.  

 

Figure C.2: The states calculated by DNN in the DRL model 

  

Note: 𝑆𝑖 is the state at time 𝑖. 𝑎1 denotes action (1). DNN replaces the Q matrix and estimates the expected 

reward for the actions under the states and environment.  

 

 

𝑆𝑖 

DNN 

Q(𝑆𝑖, 𝑎1) Q(𝑆𝑖, 𝑎2) Q(𝑆𝑖, 𝑎3)
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As shown in Figure C.2, in the DRL, DNN calculates the expected value of the various 

actions of rewards (returns). Thus, it is not necessary to seek the expectations of the 

corresponding states and actions in the Q matrix, as in the RL model. The DRL model only 

needs to input the state, including the current price and current long or short position of the 

asset (and 5 lags are used here).  

 

In terms of the in-sample and out-of-sample, some fixed-length trading periods are randomly 

picked from a period. The game ends when it reaches the end time in each iteration. The 

final reward is calculated with returns, the number of transactions and daily volatility. The 

trained DRL model is tested in the out-of-sample.  

 

C.3.2 Deep Neural Networks  

This study uses a 7-layer MLP as the brain of the DRL. MLP is a kind of DNN architecture, 

which is also one of the most widely used neural network topologies. MLP has the capability 

to approximate arbitrary functions (Principe, Euliano & Lefebvre, 2000). This suggests that 

MLP has promise when it comes to problems of non-linear dynamics and function mapping. 

The structure of the MLP in the DRL of this study is shown in Figure C.3.  

 

Figure C.3: MLP’s structure in the DRL 

 

Note: The input layer has 7 features which include 5 lags of price spread, 1 feature of the position state and 1 

feature of the standard deviation. The output layer has 3 neurons, which represent the rewards of three trading 

actions. There are 5 hidden layers with 32, 64, 32, 16 and 8 neurons respectively, which provide sufficient 

depth for evaluating the rewards based on environment and state. 
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This research uses the BP algorithm for network training. Additionally, this study uses 

AdamOptimizer to adjust the connection weights. The activation function is a linear function. 

There are two reasons for using a linear function here. First, the computing result of output 

is the reward of each action, and the final reward calculation result can be negative or 

positive. Thus, an activation function that is symmetrical about the origin is required. Second, 

there is no limit to the size of the reward. The linear function meets these two requirements. 

While in the training process, the linear function may cause the connection weights of the 

MLP in the DRL to fail to converge, leading to the problem that the estimated reward of the 

MLP infinitely increases. This kind of situation rarely occurs, and this research completely 

avoids it through employing the pre-training technique. 

 

Appendix C.4 Details of the co-integration test 

Table C.3 shows the number of pairs with the co-integration or non-cointegration 

relationship in every trading period. The number of pairs with a co-integration relationship 

is not stable. The total number of pairs in earlier years is fewer than in recent years because 

some commodities do not have data in earlier years.  

 

Table C.3: Summary of co-integration analysis  

Year Co-integration  Non-cointegration Year Co-integration  Non-cointegration 
1980-1982 8 128 1999-2001 82 513 
1981-1983 28 125 2000-2002 59 536 
1982-1984 25 146 2001-2003 45 550 
1983-1985 3 168 2002-2004 35 560 
1984-1986 20 151 2003-2005 40 555 
1985-1987 9 267 2004-2006 68 527 
1986-1988 43 233 2005-2007 24 571 
1987-1989 28 323 2006-2008 45 550 
1988-1990 18 333 2007-2009 25 570 
1989-1991 15 363 2008-2010 35 560 
1990-1992 26 352 2009-2011 23 572 
1991-1993 42 336 2010-2012 40 555 
1992-1994 13 365 2011-2013 77 506 
1993-1995 13 365 2012-2014 38 557 
1994-1996 53 325 2013-2015 19 576 
1995-1997 45 333 2014-2016 41 554 
1996-1998 13 582 2015-2017 65 529 
1997-1999 83 512 2016-2018 37 556 
1998-2000 46 549    

Note: The co-integrated pairs are selected in the portfolio. The return of the portfolio with more pairs will be 

more stable. 

 

This study chooses a 95% confidence level to judge whether the pairs are co-integrated. If 

the p-value is lower than 5% in the Engle-Granger test, this study considers that the pair is 

co-integrated. It is not wise to use a more restricted confidence level to select pairs, as that 

would cause a lower expected level of return and higher risks in the out-of-sample.  
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The pairs with the co-integration relationship in a period are formed as a portfolio with equal 

weights. For example, in 1980-1982, 8 pairs are selected by CA. For each pair, this study 

calculates the return and recorded trading actions in 1980 and 1981 (for the in-sample) and 

1983 (for the out-of-sample) by ST and DRL. Then, the daily return and annualized return 

of the portfolio can be calculated.  

 

Appendix C.5 Return of CA-DRL without considering the in-sample 

performance  

Table C.4 presents the results of the CA-DRL trading model without any selection in the in-

sample. The average annualized return of CA-DRL that does not consider the in-sample 

performance is a bit lower, at 11.64% (the return of CA-DRL considers the in-sample 

performance to be 12.56%). However, only one negative result occurs in 37 periods.  

 

Table C.4: Annualized returns of CA-DRL without making any selection in in-sample. 

 CA-DRL  CA-DRL 

Year In-sample Out-of-sample Year In-sample Out-of-sample 

1980-1982 0.2435 0.1776 1998-2000 0.3807 0.0907 

1981-1983 0.2689 0.0560 1999-2001 0.1233 0.0679 

1982-1984 0.1368 0.0836 2000-2002 0.2930 0.0930 

1983-1985 0.2172 0.1063 2001-2003 0.3351 0.1385 

1984-1986 0.3996 0.2193 2002-2004 0.2870 0.1559 

1985-1987 0.4343 0.2270 2003-2005 0.4256 0.1772 

1986-1988 0.2422 0.1258 2004-2006 0.3705 0.1322 

1987-1989 0.2635 0.0281 2005-2007 0.4275 0.0966 

1988-1990 0.3137 0.1044 2006-2008 0.2993 0.0799 

1989-1991 0.2329 0.0735 2007-2009 0.3221 0.1382 

1990-1992 0.3338 0.1243 2008-2010 0.5425 0.1656 

1991-1993 0.3240 0.0569 2009-2011 0.4006 0.2057 

1992-1994 0.1804 0.0873 2010-2012 0.4745 0.1811 

1993-1995 0.3181 -0.1052 2011-2013 0.2884 0.0935 

1994-1996 0.1635 0.1171 2012-2014 0.1575 0.1548 

1995-1997 0.1152 0.0560 2013-2015 0.3301 0.1311 

1996-1998 0.2196 0.0230 2014-2016 0.3728 0.1338 

1997-1999 0.3478 0.1862 2015-2017 0.2518 0.1382 

1998-2000 0.3807 0.0907 2016-2018 0.2104 0.1868 

1999-2001 0.1233 0.0679 Average 0.2986 0.1164 

Note: The negative returns per test are marked in bold. There is only one negative return in the 1993-1995 out-

of-sample test.  
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