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Abstract 

Type 2 immunity is activated in response to both allergens and helminths, but it 

can be detrimental or beneficial depending on the stimuli. These conflicting 

outcomes highlight the importance of understanding the regulation of this 

response. Th2 cells are key for the clearance of helminth infections in the SILP. 

IL-10 is a regulatory cytokine that is highly expressed during human and murine 

helminth infection, but its role in helminth infection remains unclear. The aim 

of this thesis is to assess if IL-10 acts directly or indirectly to promote the type 2 

immune response while also suppressing counter-active Th1 cells which provide 

immune competition.  

We show that helminth infection results in increased IL-10 expression in both the 

SILP and the draining MLN in mice, with highest expression in the infected 

tissue. In vivo blockade of IL-10 led to a significant decrease in IL-13, IL-5 and 

GATA3 expression by Th2 cells in the intestine and not in the MLN. In vitro, IL-10 

induced expression of GATA3 and production of IL-5 and IL-13 in purified CD4+ T 

cells. The impact of IL-10 was partially dependent on IFNγ signalling, and in 

vivo, surface IL-10 receptor expression was higher on Th1 cells than on Th2 cells 

and highest on Th1 cells in the SILP. Due to the nature of the H. polygyrus 

lifecycle, where at two-time points worms move through the wall of the 

intestine. We hypothesised that a possible indirect mechanism for IL-10 

promotion of Th2 cells was via suppression of IFNγ responses as a result of 

bacteria stimuli. However, our data show no major disruption to the intestinal 

barrier during infection. Although, we do report IFNγ responses in the SILP, MLN 

and omentum over the course of H. polygyrus infection. Suggesting IFNγ may 

play multiple roles during infection.  Furthermore, we found that MLN cells from 

H. polygyrus infected mice produced IFNγ when stimulated with HES, suggesting 

that IFNγ responses towards H. polygyrus itself may occur, although the function 

of this in the immune response to H. polygyrus remains unclear. 

Understanding immune competition during H. polygyrus infection contributes 

towards the understanding of the immune response to helminths and with 

further work may contribute towards treatment strategies. In addition, IL-10 

optimisation of Th2 responses during helminth infection may be applied to the 

treatment of helminth infections and other type 2 mediated diseases. 
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Chapter-1 Introduction  

1.1 CD4 T helper cells  

1.1.1 Development and activation of CD4 T cells 

Naïve CD4+ T cells are derived from bone marrow haemopoietic progenitors 

which migrate to and mature in the thymus (Germain, 2002). The thymus 

provides an essential niche for T cell development, comprising essential stromal 

cells, cytokines, and chemokines (Koch and Radtke, 2011). During thymic 

maturation, the T cell will begin to express a T cell receptor (TCR) which 

undergoes a series of checks to ensure its functionality (Robey and Fowlkes, 

1994, Roehm et al., 1984, Haskins et al., 1984). Positive selection ensures the 

TCR recognises peptide presented on major histocompatibility complex (p:MHC) 

by thymic antigen presenting cells (APCs) called cortical thymic epithelial cells 

(cTEC) at the appropriate affinity. Cells which do not meet this threshold die by 

apoptosis (Von Boehmer et al., 1989).  It is at this stage that a T cell will either 

become a CD4+ helper T cell, if it recognises peptide presented on major 

histocompatibility complex II (p:MHCII) or a CD8+ cytotoxic T cell if it recognises 

peptide presented on major histocompatibility complex I (p:MHCI) (Teh et al., 

1988, Kruisbeek et al., 1985, Kaye et al., 1989, Robey and Fowlkes, 1994). CD4 

and CD8 are co-receptors that stabilise the interaction between the TCR and 

MHC molecules and are key for T cell activation (Guidos et al., 1990). The next 

TCR checkpoint is negative selection; if a T cell binds MHC presenting self-

peptide on medullary epithelial cells (mTEC) too strongly, it will die by apoptosis 

or become anergic (unresponsive) (Robey and Fowlkes, 1994, Von Boehmer et 

al., 1989). This process removes T cells that respond too strongly to self-antigen.  

CD4+ T cells that survive through these checkpoints will leave the thymus, enter 

the circulation, and migrate to lymph nodes.  

Naïve CD4+ T cells enter the lymph node (LN) via high endothelial venules (HEVs) 

and migrate to T cell zones, where they encounter migratory DCs presenting 

peripheral antigen on MHCII (Figure 1-4) (Girard and Springer, 1995, Bousso, 

2008). Multiple activation signals are required for CD4+ T cell activation. When a 

naïve CD4+ T cell encounters its cognate antigen, the TCR binds to MHCII-peptide 

on the DC. This initial interaction is the first signal required for CD4+ T cell 
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activation (Itano and Jenkins, 2003). Subsequent co-stimulatory signals are 

provided by CD28 on the CD4+ T cell binding to CD80/86 present on the surface 

of the DC (Allison, 1994, Harding et al., 1992)(Figure 2-1). Both of these 

interactions are required for downstream signalling and subsequent activation, 

differentiation, and proliferation of CD4+ T cells; the absence of co-stimulatory 

molecules results in CD4+ T cell anergy (Smith-Garvin et al., 2009). An activated 

CD4+ T cell during an immune response can be identified by the expression of 

CD44. The expression of this marker is maintained on the surface of activated 

CD4+ T cells and remains high on memory CD4+ T cells (Budd et al., 1987, Lindell 

et al., 2006). The expression of CD69 is also rapidly upregulated on activated 

CD4+ T cells but is not maintained (Lindell et al., 2006, Avgustin et al., 2005).  

The differentiation and subsequent function of the CD4+ T cell into different T 

helper (Th) cell subsets will depend on the cytokine microenvironment during 

activation.  

1.1.2 CD4 T cell subset differentiation  

The T helper (Th) subsets, Th1 and Th2 were first described in the late 1980s 

(Mosmann et al., 1986, Killar et al., 1987). The extrinsic cytokine 

 

Figure 1-1 Th subset differentiation 
Adapted from (Bailey et al., 2014) and created with BioRender.com.  
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microenvironment provided primarily by APCs in the lymph node determines the 

Th subset an activated CD4+ T cell will differentiate in to (Bailey et al., 2014). 

Cytokines will bind to their cognate receptors on the surface of CD4+ T cells and 

induce downstream signalling and activate or inhibit transcription factors (TF), 

this results in subsequent cytokine secretion and polarisation (Raphael et al., 

2015). Presently, there are numerous described Th subsets, some of the most 

well characterised subsets being Th1, Th2, Th17 and regulatory T cells 

(Tregs)(Raphael et al., 2015). Each subset requires specific cytokines or cytokine 

combinations to induce CD4+ T cell differentiation (Figure 1-1) (Raphael et al., 

2015). 

1.1.2.1 T helper 2 cells 

Th2 cells are a key part of the immune response to helminths and also 

contribute to airway inflammation in atopic diseases such as asthma. Interleukin 

4 (IL-4) is required for polarisation of Th2 cells both in vitro and in vivo. IL-4 

signalling is dependent on STAT6 phosphorylation downstream of the IL-4 

receptor (IL-4R) (Redpath et al., 2015). STAT6 in turn, activates the TF GATA 

binding protein 3 (GATA3). GATA3 is required for Th2 development and induces 

chromatin remodelling at the Il4, Il5 and Il13 locus and subsequent release of 

these cytokines (Le Gros et al., 1990, Swain et al., 1990, Zheng and Flavell, 

1997). The initial source of IL-4 in the lymph node remains unclear. In IL-4 

knock-out mice, the Th2 response to the murine helminth Nippostrongylus 

brasiliensis is reduced but not absent with decreased IgE switching and 

eosinophilia (Kopf et al., 1993). Although these data highlight the important role 

of IL-4 in amplifying an effective Th2 response, it is not completely essential for 

Th2 cell development. This suggests that there may be another stimulus for Th2 

differentiation, perhaps from DCs as these cells do not produce IL-4 but are key 

for Th2 differentiation (Phythian-Adams et al., 2010, Smith et al., 2011). Both 

basophils and type 2 innate lymphoid cells (ILC2s) have been described as 

possible sources of IL-4 (Doherty et al., 2013, Sokol et al., 2008). Interestingly, 

IL-18 signalling via its receptor on natural killer T (NKT) cells has been shown to 

induce the release of IL-4 from these cells and may also be possible source of 

Th2 priming IL-4 (Yoshimoto et al., 2000).   
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1.1.2.2 T helper 1 and 17 cells 

Both Th1 and Th17 cells are involved in autoimmune responses and chronic 

inflammation but have distinct cytokine signatures and effector mechanisms. IL-

12 and IFNγ from DCs and surrounding innate immune cells bind to their 

respective receptors on CD4+ T cells and are key for Th1 differentiation. IFNγ 

induced phosphorylation of STAT1 activates T-box transcription factor TBX21 

(TBET) which is required for Th1 cell differentiation (Szabo et al., 2000). In 

addition, IL-12 signalling through the IL-12 receptor activates STAT4 and results 

in further upregulation of IFNγ (Szabo et al., 2000). Th1 cells are key for 

effective immunity to intracellular pathogens such as bacteria, viruses, protozoa 

and are also important in anti-tumour immunity (Szabo et al., 2000, Hsieh et al., 

1993). IFNγ from Th1 cells activates macrophages and enhances their 

antimicrobial activity to facilitate clearance of intracellular pathogens (Szabo et 

al., 2000). The generation of T cells lacking STAT4 resulted in a Th2 bias, even 

in the presence of IL-12, emphasising the importance of STAT4 for Th1 cell 

differentiation (Kaplan et al., 1996). In addition, humans lacking the IL-12 

receptor are highly susceptible to mycobacterial infections (Ramirez-Alejo and 

Santos-Argumedo, 2014, Kaplan et al., 1996).  

The immune response to fungal and extracellular pathogens requires Th17 cells, 

however, Th17 cells are also drivers of numerous autoimmune conditions such as 

psoriasis and multiple sclerosis (Korn et al., 2009). The differentiation of these 

cells is dependent on IL-6 and TGFβ (Korn et al., 2009). These cytokines induce 

subsequent activation of STAT3 and in turn the TF Retinoic-acid-receptor-related 

orphan nuclear receptor gamma (RORγt) (Korn et al., 2009). RORγt+ Th17 cells 

will release the cytokines IL-17A and IL-21 (Ivanov et al., 2006, Zhou et al., 

2007, Veldhoen et al., 2006). Although IL-23 is not involved in the primary 

induction of Th17 cells, it is required to maintain the effector functions of 

pathogenic Th17 cells (Stritesky et al., 2008). It is also important to note that IL-

2, which was initially described as a T cell growth factor, is a key cytokine for 

the activation and function of Th cell subsets (Létourneau et al., 2009). It can 

act in both an autocrine and paracrine fashion and is also a proposed mechanism 

for the regulation of effector CD4+ T cell responses (Létourneau et al., 2009).  
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1.1.2.3 Other T helper subsets 

Suppressor T cells were first discovered in 1969 (Nishizuka and Sakakura, 1969). 

These cells remained very controversial until 1995, when a breakthrough in the 

field came with the discovery of CD4+ CD25+ cells (Tregs) that were protective 

against autoimmunity in mice that had undergone a thymectomy (Sakaguchi et 

al., 1995). As with conventional CD4+ T cells, Tregs develop in the thymus 

(Sakaguchi et al., 2008). The TCR on Tregs interacts with p:MHCII with an 

intermediate strength (Sakaguchi et al., 2008). This TCR signal strength is weak 

enough to allow them to avoid negative selection but not continue with 

conventional CD4+ T cell development (Sakaguchi et al., 2008). The induction of 

Tregs requires the regulatory cytokine TGFβ, which switches on the TF Forkhead 

box protein P3 (FOXP3) via STAT5 and typically results in the secretion of the 

regulatory cytokines IL-10 and TGFβ (Sakaguchi et al., 2008). FOXP3 knockout 

mice die within the first month of life due to lymphoproliferative autoimmune 

syndrome (Brunkow et al., 2001). In addition, humans with a loss of function 

mutation in the FOXP3 gene have multi-organ autoimmunity and the 

inflammatory disorder IPEX (Immunodysregulation polyendocrinopathy 

enteropathy X-linked syndrome) (Bennett et al., 2001). Another population of 

Tregs that develop in the periphery from antigen specific CD4+ T cells are 

termed peripheral Tregs (pTregs) and upregulate FOXP3 upon exposure to 

antigen and in the presence of TGFβ (Bluestone and Abbas, 2003). pTregs are 

essential for regulating local inflammation in tissues (Bluestone and Abbas, 2003, 

Yadav et al., 2013). In addition, type 1 regulatory T cells (Tr1) are FOXP3- and 

exert their inhibitory functions primarily via IL-10 (Zeng et al., 2015). Both IL-10 

and IL-27 are needed for Tr1 differentiation and have been shown to prevent 

colitis (Groux et al., 1997, Zeng et al., 2015).  Tfh cells are specialised Th cells 

that provide B cell help and are key for germinal centre formation (Vinuesa et 

al., 2005, Nurieva and Chung, 2010). These cells can be defined by their high 

expression of CXCR5, which promotes migration to B cell follicles and the 

secretion of IL-21 (Vinuesa et al., 2005, Nurieva and Chung, 2010). In addition, 

Tfh cells express the costimulatory molecule ICOS, the inhibitory molecule PD-1 

and the TF Bcl6 (Vinuesa et al., 2005, Nurieva and Chung, 2010, King and Mohrs, 

2009). Th3 cells are another regulatory subset and FOXP3 expression by these 

cells is still debated. These cells both require TGFβ for their differentiation but 

also secrete TGFβ (Gol-Ara et al., 2012). Th3 cells have been shown to inhibit 



Chapter-1 Introduction 

20 
 

experimental autoimmune encephalomyelitis (EAE)(Gol-Ara et al., 2012, Fukaura 

et al., 1996). There are other well characterised Th subsets such as Th9 cells. IL-

4 and TGFβ in conjunction result in the differentiation of Th9 cells which secrete 

IL-9 and are known to promote anti-tumour immunity, contribute to Th17 

recruitment in autoimmune inflammation and support the Th2 response to 

helminths and in allergic inflammation (Kaplan, 2013, Lu et al., 2012).  

1.1.3 CD4 T cell regulation  

Although effector CD4+ T cells are an essential component of adaptive immunity, 

these responses need to be tightly regulated and this requires a fine balance; a 

strong enough response is needed to remove the pathogen, but that response 

needs to be controlled so that harmful immunopathology does not occur as a 

consequence. Tregs play an essential role in establishing this balance by 

regulating CD4+ T cell responses. In the LN, Tregs can prevent naïve CD4+ T cell 

proliferation and differentiation, in addition, in the tissues Tregs have the 

capacity to supress the effector functions of differentiated CD4+ T cells, along 

with CD8+ T cells, B cells, macrophages and DCs (Sojka et al., 2008, Sakaguchi et 

al., 2008). Numerous mechanisms of Treg-mediated suppression have been 

described. The secretion of anti-inflammatory cytokines is key for the 

suppression of both APCs and CD4+ T cells. Tregs can also suppress CD4+ effector 

cells via cell-to-cell contact via binding of inhibitory molecules on the surface of 

these cells (Sakaguchi et al., 2008, Sojka et al., 2008). Tregs, which express high 

levels of CD25 (the IL-2 receptor) have been shown to compete with effector 

CD4+ T cells by “mopping” up IL-2 in the surrounding environment (Létourneau 

et al., 2009, Sakaguchi et al., 2008). In addition to the above mechanisms, Th 

subsets can also produce self-limiting IL-10 via a negative feedback loop which is 

also an essential component of CD4+ T cell regulation (Ng et al., 2013). The role 

of IL-10 in Th responses will be discussed in detail in section 1.5.  

1.2 The type 2 immune response and disease 

1.2.1 Epidemiology of helminth infection 

Helminths infect more than 1.5 billion people per year worldwide (Yazdanbakhsh 

et al., 2002, Hotez et al., 2008, W.H.O, 2020), and in areas such as sub-Saharan 
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Africa where these parasitic worms are endemic, morbidity levels are high 

(W.H.O, 2020). The four most abundant helminth species which infect humans 

are the roundworm Ascaris lumbricoides, which infects more than 1.2 billion 

people, the whipworm Trichuris trichiura and the hookworms Necator 

americanus and Ancylostoma duodenale (De Silva et al., 2003). Chronic helminth 

infection affects an estimated 800 million children and can result in physical 

impairment, such as stunted growth, cognitive and developmental delays, 

negatively impacting their education (W.H.O, 2020, Hotez et al., 2008). 

Malnourishment is also associated with helminth infection, but whether this is a 

cause or consequence of infection remains unclear. In addition, helminth 

infections pose a significant burden on livestock and agriculture, adding a major 

challenge to global food security (Charlier et al., 2014). Helminth infections 

have also been shown to reduce vaccine efficacy, as demonstrated in mice  

vaccinated against malaria (Su et al., 2006); nematode co-infection at the time 

of vaccination resulted in less effective antimalarial immunity (Su et al., 2006). 

These factors demonstrate that, despite extensive progress in de-worming 

programmes, effective strategies to reduce worm burden in the human 

population are urgently needed. Eliminating helminth infection remains a 

challenge for numerous reasons. Helminth infections are largely a disease of 

poverty; sanitation and health care are lacking in most endemic areas (Hotez et 

al., 2008, W.H.O, 2020). Furthermore, different helminth species localise in 

specific areas of their host, and have distinct life cycles and routes of infection 

(Mcsorley and Maizels, 2012). However, the commonality between species is the 

induction of a host protective type 2 immune response which aims to eliminate 

the parasite. In areas where parasite infections are better controlled through 

de-worming, high sanitation and reduced poverty a correlation with an increase 

in inflammatory disorders has emerged as an adverse effect (Weinstock et al., 

2002).  

1.2.2 The hygiene hypothesis and old friends  

Since the 1980s, there has been a steady increase in immune-mediated disorders 

and atopic diseases such as allergy and atopic dermatitis in the Western world 

(Weinstock et al., 2002). The same increase was not observed in countries such 

as sub-Saharan Africa, China, and East Asia where infectious diseases were still 

prevalent. In 1989, D. P. Strachan proposed the idea of the “hygiene 
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hypothesis”, which suggests that reduced incidence of childhood infection 

resulted in increased incidence of autoimmune and atopic diseases (Strachan, 

1989). In 2003, the “old friends” hypothesis was proposed by G. Rook, which 

explains that through evolution, humans have co-evolved with parasites such as 

helminths, and the absence of these organisms in western countries coincides 

with autoimmune and atopic disease (Rook et al., 2003). This implied a 

potentially beneficial role of helminths and other ancient organisms in 

preventing inflammatory disease. In 2000, a study showed clear evidence for a 

link between parasites and decreased allergy; children infected with the 

trematode Schistosoma haematobium were less prone to allergy when measuring 

reactivity to house dust mite (HDM) allergen (Maizels, 2019, Van Den Biggelaar 

et al., 2000). We now know that parasites such as helminths, which dwell in 

healthy hosts for long periods of time, have the ability to modulate the immune 

system. Immune modulatory and mimicry molecules (described in section 1.3.3) 

have been identified in the secretory products of helminths, which can 

potentially be used as treatment strategies for type 2 immune-mediated 

diseases (Maizels et al., 2018, Osbourn et al., 2017, Johnston et al., 2017). 

1.2.3 Allergic responses  

Type 2 immunity occurs in response to extracellular parasites such as helminths, 

however, this type of immune response is also implicated in allergic and atopic 

diseases such as asthma, atopic dermatitis, food-allergy, and rhinitis (Thomsen, 

2015, Dharmage et al., 2019). The incidence of allergic disease is increasing 

globally, for example, approximately 300 million people suffer from asthma 

worldwide and this is predicted to increase by at least 100 million by 2025 

(Dharmage et al., 2019, Thomsen, 2015). Atopy is the term that refers to a 

genetic tendency to mount inappropriate immunoglobulin E (IgE) responses to 

common allergens such as pollen and house dust mite, resulting in atopic 

diseases (Thomsen, 2015). IgE responses occur when the immune system 

becomes sensitised to an allergen; IgE released by plasma cells will bind to 

innate immune cells such as mast cells and once an individual is exposed to the 

allergen again, the allergen will bind to IgE on the surface of mast cells. This 

results in the release of molecules such as histamine that drive allergic reactions 

and the associated symptoms such as in hay fever, where histamine drives 

changes in blood vessel permeability resulting in sneezing, coughing and weepy 
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eyes (Galli and Tsai, 2012, Galli et al., 2008).  Th2 and Tfh cells also play an 

important role in this response which are discussed fully in sections 1.1.2 and 

1.3.2. The antigen HDM is used to induce specific IgE responses that drive 

inflammation in mouse models of allergic asthma, where the antigen 

sensitisation phase is sufficient for the generation of Tfh cells but not Th2 

mediated inflammation which only occurs with HDM challenge after sensitisation 

(Galli et al., 2008, Galli and Tsai, 2012). Tfh cells facilitate the development of 

IgE producing plasma cells from B cells via the release of IL-21 and IL-4 (Galli 

and Tsai, 2012). In this model, there is evidence that Tfh cells generated in the 

initial sensitisation phase can differentiate in to Th2 cells upon HDM challenge 

(Galli et al., 2008, Ballesteros-Tato et al., 2016). In both HDM and asthma, Th2 

mediated airway inflammation is implicated in disease pathogenesis. Helminths 

provide a niche model to not only study type 2 immune response dynamics but 

also to investigate natural suppression of Th2 responses due to the evolutionary 

mechanisms they have developed to remain undetected in the host.  

1.2.4 Heligmosmoides polygyrus as an experimental model 

Murine models of human helminth infection have become invaluable in 

unravelling the complex immune response to these parasites. A well-established 

mouse model of nematode roundworm infection is Heligmosomoides polygyrus, a 

natural chronic helminth infection of mice (Maizels et al., 2012). This model of 

infection is especially useful as the majority of mouse strains do not expel 

primary H. polygyrus infection, and infection persists for a period of weeks or 

months (Maizels et al., 2012). This is beneficial as human helminth infections 

such as N. americanus are also typically chronic (Reynolds et al., 2012, Nutman, 

2015). In addition, H. polygyrus has evolved alongside its host and as a result can 

mimic aspects of host immune responses which are described in section 1.2.3, 

and as mentioned previously, these molecules have therapeutic potential for 

treating type 2 mediated diseases. H. polygyrus enters the host orally, migrates 

to the gut and burrows through the wall of the duodenum, encysts and moults 

twice over a period of 7 days (Figure 1-2)(Maizels et al., 2012). This is referred 

to as the tissue-dwelling stage. Around day 8, mature male and female adult 

worms re-enter the lumen at the proximal third of the small intestine (Monroy et 

al., 1992). During the luminal phase, adult parasites wrap around villi to 

maintain their position in the gut, mate with one another to produce eggs from 
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approximately day 10 onwards (Figure 1-2)(Maizels et al., 2012). Each stage of 

the life cycle initiates an immune response.  

 

Figure 1-2 Heligmosomoides polygyrus life cycle 
An overview of the key events in the life cycle of Heligmosomoides polygyrus. Created with 
BioRender.com and adapted from (Reynolds et al., 2012). 

1.3 Anti-helminth immune response  

1.3.1 Initial innate responses  

H. polygyrus larvae migrate through the wall of the small intestine, however the 

exact mechanism of larval penetration of the submucosa remains unclear (Patel 

et al., 2009). As a result, epithelial cells release the alarmin cytokines IL-33, IL-

25 and thymic stromal lymphopoietin (TSLP) (Humphreys et al., 2008, Taylor et 

al., 2009, Owyang et al., 2006, Gause et al., 2013). There alarmins are stored in 

and secreted by epithelial cells and are released upon damage to the cell 

membranes (Bamias and Cominelli, 2015). IL-25 is essential for the expulsion of 

H. polygyrus (Zaiss et al., 2013, Hewitson et al., 2015) and for the development 

of type 2 immune responses against N. brasiliensis and Trichuris muris (Owyang 

et al., 2006, Price et al., 2010). IL-33 is also a critical cytokine involved in the 

initiation of adaptive T helper 2 (Th2) responses to helminth infection via 

stimulation of innate immune cells (Humphreys et al., 2008). TSLP also promotes 

the adaptive Th2 response indirectly by acting on numerous immune cells such 
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as DCs (Ziegler and Artis, 2010).  IL-33, IL-25 and TSLP activate ILC2s, which in 

turn produce the type 2 cytokines IL-4, IL-5 and IL-13 (Figure 1-3) (Pelly et al., 

2016, Maizels et al., 2012, Gause et al., 2013). The release of alarmins is 

essential for the induction of type 2 innate cell responses.  

The activation of ILC2s is essential for priming an effective Th2 response to H. 

polygyrus (Pelly et al., 2016).  Other innate cells including mast cells, 

eosinophils and basophils are also rapidly recruited to the site of infection and 

secrete high levels of IL-4, IL-5 and IL-13 (Gause et al., 2013, Maizels et al., 

2012). Mast cells, eosinophils and basophils are activated by IgE released by 

plasma cells in the SILP, as discussed in section 1.3.1. IL-9 is also described as a 

type 2 cytokine, it is secreted by Th9 cells, ILC2s, mast cells and eosinophils 

(Licona-Limón et al., 2013, Gounni et al., 2000, Hültner et al., 2000, Wilhelm et 

al., 2011). The primary function of IL-9 is mast cell maturation, it has also been 

reported to promote epithelial cell release of cytokine alarmins (Faulkner et al., 

1997, Matsuzawa et al., 2003, Hepworth et al., 2012). In both T. muris and H. 

polygyrus infection, loss of either mast cells or administration of IL-9 blocking 

antibody impairs parasite expulsion (Hepworth et al., 2012, Kooyman et al., 

2000, Khan et al., 2003).  NK cells have also recently been reported to play an 

important role in would healing at the early stages of H. polygyrus infection 

(Gentile et al., 2020). Depletion of NK cells resulted in intestinal bleeding but 

had no effect on parasite expulsion (Gentile et al., 2020). Throughout H. 

polygyrus infection IL-13 stimulates goblet cell hyperplasia and increases goblet 

cell production of mucins and the anti-helminthic molecule RELM-β (Artis et al., 

2004). The importance of goblet cells and other specialised epithelial cells is 

discussed in section 1.3.2.  The activation and functions of numerous innate 

immune cells allow a rapid response to H. polygyrus and also contribute towards 

granulomas formation. During the tissue-dwelling stage of infection, granulomas 

form around encysted larvae in the serosa (Anthony et al., 2007). These 

granulomas consist of a neutrophil core surrounding the encysted larvae 

(Anthony et al., 2007, Annis et al., 2009). The core is also rich in Alternatively 

activated macrophages (AAMs) (Annis et al., 2009, Kreider et al., 2007). 

Polarisation of AAMs is primarily dependent on IL-4 and IL-13, which both 

signal via the IL-4Rα subunit, and mice lacking IL-4Rα specifically on  
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Figure 1-3 Immune response to H. polygyrus 
Overview of the type 2 immune response to H. polygyrus. Created with BioRender.com and 
adapted from (Sorobetea et al., 2018) and (Salazar-Castañon et al., 2014).  

macrophages lose the potent AAM response typically seen in helminth infection 

(Herbert et al., 2004). AAMs secrete the regulatory cytokines IL-10 and TGF-β, 

along with secretory proteins such as RELMα, Arginase-1 and Ym1, all of which 

are associated with various stages of tissue repair (Annis et al., 2009, Taylor et 

al., 2012, Maizels et al., 2012, Gause et al., 2013). Elevated levels of these 

repair proteins are observed during helminth infection (Annis et al., 2009). The 
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importance of AAMs has been specifically demonstrated in H. polygyrus 

infection, where depleting macrophages via chlodronate liposomes resulted in 

increased larval mobility and reduced adult worm expulsion (Anthony et al., 

2006). The outer ring of the granulomas is made up of DCs, eosinophils and Th2 

cells (Anthony et al., 2007). Granulomas encase the larvae and prevent their 

development to adult worms, and mice with increased resistance to helminth 

infection have higher numbers of granulomas (Menge et al., 2003, Moreau and 

Chauvin, 2010). The combination of alarmin release, activation and recruitment 

of innate immune cells, wound healing and granulomas formation are essential 

for the coordination of the adaptive immune response to and expulsion of H. 

polygyrus (Figure 1-3).  

1.3.2 Adaptive immune response  

DCs acquire H. polygyrus antigens in the lumen of the small intestine and 

migrate to the draining MLN. The importance of DC priming of Th2 cells has been 

well established and is discussed in section 1.4.2 and 1.1.2.1. Mice lacking 

CD11b+ CD103+ DCs have impaired Th2 responses to the helminth N. brasiliensis 

(Gao et al., 2013). CD11b+ DCs from H. polygyrus infected mice have been 

reported to promote Th2 cells differentiation (Redpath et al., 2018, Mayer et 

al., 2020). In Schistosoma mansoni infection, CD11b+ CD103+ DCs specifically 

transport parasite antigen from the SILP to the MLN (Mayer et al., 2017).  In 

addition, the expression of the transcription factor (TF) KLF4 by DCs has been 

reported to be essential for priming of Th2 responses to S. mansoni (Tussiwand 

et al., 2015). The expression of OX40-liagnd (OX40L) by DCs has also been shown 

to be a critical costimulatory molecule for the polarisation of Th2 cells (Ito et 

al., 2005, Jenkins et al., 2007). Although recent studies show an important role 

for OX40L in Th1 responses also (Gajdasik et al., 2020). Inducible T cell co-

stimulator (ICOS) is another costimulatory molecule that has been reported to 

contribute towards Th2 differentiation. ICOS-/- mice infected with N. brasiliensis 

have reduced Th2 differentiation (Kopf et al., 2000). Although similarly to 

OX40L, ICOS is also required for Th1 responses to infection (Wilson et al., 2006, 

Dong et al., 2001).  

Primed Th2 cells migrate to infected tissues from the MLN and are an essential 

source of IL-4, IL-13 and IL-5 which further activate AAMs, ILC2s and other 
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components of the type 2 response (Maizels et al., 2012, Anthony et al., 2007) In 

addition, IL-4 and IL-13 enhance smooth muscle contractility and, coupled with 

increased mucus production make up the “weep and sweep” response that 

promotes helminth expulsion (Zhao et al., 2003, Anthony et al., 2007). Although 

the type 2 cytokines IL-13, IL-5 and IL-4 all have distinct roles, redundancy 

between these cytokines has been reported. IL-4 is reported to be essential for 

T. muris expulsion in C57BL/6 mice but not BALB/C mice, parasites persist in 

infected IL-4-/- C57BL/6 but IL-4-/- BALB/C mice infected with T. muris mice are 

unaffected by this deficiency (Scales et al., 2007). In both strains, lack of IL-13 

impairs expulsion equally (Scales et al., 2007), perhaps due to the pivotal role of 

this cytokine in increasing mucus production during helminth infection. In 

addition, IL-4 has been reported to be non-essential for the expulsion of N. 

brasiliensis (Mckenzie et al., 1998, Liang et al., 2011, Lawrence et al., 1996). 

Although much of the literature depicts IL-4 as a critical cytokine for Th2 

priming, there is evidence that this cytokine is dispensable. It is argued that the 

presence of Th2 inducing co-stimulatory molecules and low antigen dose may be 

sufficient for initial priming of Th2 cells which will subsequently produce IL-4  

(Hosken et al., 1995, King and Mohrs, 2009, Noben-Trauth et al., 2000). Once 

Th2 activation, differentiation and proliferation occurs, these cells will traffic to 

the SILP, using homing markers including the integrin α4β7 and chemokine 

receptor CCR9 (Bono et al., 2016, Hosoe et al., 2004, Denucci et al., 2010). 

However, not all activated Th2 cells will migrate to the SILP.  

A small portion of CD4+ T cells remain in the MLN after activation, located in the 

B cell follicles, referred to as Tfh cells and are characterised by the expression 

of the chemokine receptor CXCR5 and inhibitory molecule PD-1 (King and Mohrs, 

2009, Haynes et al., 2007). IL-4 production by Tfh cells induce B cell activation 

and class switching to parasite-specific IgE and IgG1 (Figure 1-3) (Gause et al., 

2013, Maizels et al., 2012) . IL-21 secretion by Tfh cells is key for differentiation 

of long-lived class switched plasma cells, although IL-21 secretion by Tfh cells is 

not restricted to Th2 responses (Wang et al., 2018).  These plasma cells will 

secrete IgE and IgG1 (King and Mohrs, 2009, Maizels et al., 2012). Together these 

effector immune cells and molecules cumulate in a strong effective anti-

helminthic Th2 immune response (Figure 1-3)(Redpath et al., 2014). However, 

helminths have evolved with their hosts for many years and as a result have 

developed multiple mechanisms to evade or counteract the host Th2 response.  
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1.3.3 Regulatory response and immune mimicry  

The regulatory response induced by helminths involves both innate and adaptive 

regulatory cells, and regulatory cytokines such as IL-10 and TGF-β (Maizels and 

McSorley, 2016). The mechanisms by which helminths suppress the host immune 

response vary between helminth species (White et al., 2020). H. polygyrus is an 

example of a helminth that actively interferes with host cytokine signalling via 

secreted mimicry molecules (Smyth et al., 2018, Osbourn et al., 2017).  Two 

immune system mimic molecules have been identified in H. polygyrus 

secretory/excretory (HES) products. Firstly, H. polygyrus TGF-β mimic (TGM) is a 

TGF-β mimic molecule that binds to the TGF-β receptor and, despite sharing no 

structural homology with the TGF-β family, induces FOXP3 expression upon 

binding, similar to TGF-β itself (Smyth et al., 2018, Johnston et al., 2017). 

H. polygyrus Alarmin Release Inhibitor (HpARI) binds to the IL-33 receptor ST2 

and prevents IL-33 interacting with its receptor, therefore suppressing 

subsequent downstream type 2 immune responses and, preventing allergic 

inflammation in the airway (Osbourn et al., 2017). In addition to these cytokine 

mimic molecules found in HES, there are likely other active components of HES 

that regulate host immunity.  

The excretory secretory products from helminths induce a tolerogenic phenotype 

in DCs, characterised by secretion of IL-10, TGFβ and downregulation of MHC 

and co-stimulatory molecules (Segura et al., 2007, Domogalla et al., 2017). 

Infection with H. polygyrus increases the abundance of the bacteria 

Lactobacillus (Walk et al., 2010, Rapin et al., 2020). These bacteria produce 

short chain fatty acids (SCFA) which promote Tregs and have been reported to 

be protective in a mouse model of colitis (Morris et al., 2017).  As well as Tregs, 

other regulatory populations expanded in helminth infection include regulatory B 

cells (Bregs) and Tr1 cells (Allen and Maizels, 2011). CD19+ CD23hi Bregs 

adoptively transferred from helminth infected mice to recipient mice can 

suppress airway allergy, which is independent of IL-10. These data demonstrate 

an IL-10 independent role of Bregs in suppressing inflammation (Wilson et al., 

2010, Allen and Maizels, 2011). Treatment with anti-CD25 mAb to deplete Tregs 

during infection with the helminth T. muris results in increased pathology (D'elia 

et al., 2009, White et al., 2020). However, only treatment with an anti‐

glucocorticoid‐induced tumour necrosis factor receptor (GITR), which is 
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upregulated on Tregs, results in increased helminth expulsion (D'elia et al., 

2009, White et al., 2020), suggesting an important role for this receptor in 

suppressing Th2 cells. In addition, anti-CD25 mAb treatment during S. mansoni 

infection enhances egg destruction and pathology in the gut (Layland et al., 

2007). These data combined demonstrate that helminths exploit host immune 

responses and the suppressive role of regulatory cells which promotes parasite 

persistence, this mechanism can also be protective and therefore beneficial to 

the host.  

An area of increasing interest is the consequences of highly regulatory responses 

to helminth infections in the context of co-infections such as HIV, 

Mycobacterium tuberculosis and malaria causing Plasmodium species (Salgame 

et al., 2013). There is evidence that having a helminth co-infection during these 

infections results in decreased resistance to the these infections (Salgame et al., 

2013). One study in Ethiopia found an association between M. tuberculosis and 

intestinal helminth infection, with this association increasing when individuals 

were infected with multiple helminth species (Tristão-Sá et al., 2002, Salgame 

et al., 2013). Both protective and detrimental roles for helminth co-infection 

with malaria have been reported (Nacher et al., 2000, Lyke et al., 2005, Le 

Hesran et al., 2004). The conflicting outcomes of these studies may be 

dependent on life cycle stage of both parasites and time and order of co-

infection.  Similarly, the role of helminth co-infection in HIV has showed 

conflicting results. The suppressive nature of Tregs induced in helminth infection 

may dampen important immune responses required to control HIV infection, 

such as suppression of DCs (Salgame et al., 2013). Conversely, the type 2 

cytokine IL-13 has been reported to negatively regulate HIV replication (Mikovits 

et al., 1994, Montaner et al., 1993). The induction of regulatory responses as an 

evolutionary mechanism for helminth persistence proves an interesting 

therapeutic target for the treatment of inflammatory conditions. Therefore, the 

mixed Treg/Th2 immune response described during H. polygyrus infection is a 

result of both parasite manipulation of the host via mimicry molecules to induce 

a regulatory response and host effector Th2 responses to the parasite itself to 

promote clearance.  
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1.3.4 Helminth expulsion and secondary challenge 

The expulsion of helminths from the intestinal lumen requires the induction of 

Th2 mediated ‘weep and sweep’ response as described previously. This response 

comprises an increase in mucus production by goblet cells, electrolyte secretion 

by epithelial cells and smooth muscle contractility via IL-4 and IL-13 mediated 

stimulation of enteric nerves (Harris and Loke, 2017, Finkelman et al., 2004). 

High epithelial cell turnover during H. polygyrus infection has also been reported 

to disrupt parasite persistence (Cliffe et al., 2005). IL-5 dependent recruitment 

of eosinophils may promote direct killing of worms by these cells; however, this 

killing mechanism has only been successfully demonstrated in vitro (Sorobetea 

et al., 2018). Granulomas are key component of the immune response to H. 

polygyrus by walling off parasites which limits damage as a result of larval 

migration. In addition, higher numbers of granulomas correlate with resistance 

to infection (Menge et al., 2003, Anthony et al., 2006).  Granulomas persist in 

the submucosa of the gut once adult worms have re-emerged in the lumen 

(Filbey et al., 2014, Anthony et al., 2006, Menge et al., 2003).  

During H. polygyrus infection, there is a requirement for both killing of the 

parasite and subsequent wound healing. Much of these responses occur within 

granulomas, AAMs play a role in both parasite killing and wound 

repair(Ariyaratne and Finney, 2019). Binding of parasite bound IgG by CD64 on 

AAMs results in immobilization of parasites (Esser-Von Bieren et al., 2015, Esser-

Von Bieren et al., 2013).  In this study, CD11b on AAMs was required for the 

initial adherence to larvae but not for subsequent larval immobilization. As 

previously mentioned in section 1.3.1, the release of RELMα, Arginase-1 and Ym1 

from AAMs in response to both IL-4 and IL-13 promotes wound healing and 

collagen deposition(Annis et al., 2009, Kreider et al., 2007, Herbert et al., 

2004). Although, continued collagen deposition during helminth infection can 

result in fibrosis and subsequent loss of normal tissue structure and function 

(Ariyaratne and Finney, 2019, Esser-Von Bieren et al., 2015). Similarly to AAMs, 

eosinophils have also been reported to bind to larvae via complement receptors 

and IgG-Fc receptor interactions. IL-5 stimulated eosinophils bind to larvae, 

degranulate and release eosinophil stimulation promoter (ESP) and major basic 

protein (MBP), both of which can result in larval killing (Ariyaratne and Finney, 

2019). In keeping with this, mice lacking eosinophils have been reported to have 
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increased live larvae in the submucosa (Hewitson et al., 2015). In addition, 

eosinophils can also promote collagen deposition and wound healing during 

helminth infection via mediators such as RELMα and the release of IL-4 and IL-13 

which further promote AAM mediated repair (Allen and Sutherland, 2014, Chen 

et al., 2016). Therefore, the presence of both AAMs and eosinophils are key for 

both effective parasite killing and wound repair, although distinct mechanisms 

and immune mediators are required for these responses. 

Despite these mechanisms, primary infection with H. polygyrus in C57BL/6 mice 

is typically chronic. However, parasite persistence varies between mouse 

strains, for example, BALB/C mice, are more resistant to infection compared to 

C57BL/6 mice (Scott, 1991, Reynolds et al., 2012). Upon infection with H. 

polygyrus the expression of the IL-4R on MLN cells from BALB/C mice was higher 

compared to C57BL/6 mice (Perona-Wright et al., 2010). This coincided with 

higher IL-4 expression BALB/C mice compared to C57BL/6 mice (Perona-Wright 

et al., 2010). Initial primary infection with H. polygyrus can be cleared with 

anti-helminthics and in most mouse strains a strong memory response is 

established and protects against secondary challenge (Finkelman et al., 1997, 

Crump and Ōmura, 2011, Reynolds et al., 2012).  

The activation of the Th2 memory response upon secondary challenge with H. 

polygyrus occurs rapidly at 4 days post-infection, with the accumulation of 

neutrophils, Th2 cells, DCs and eosinophils around encysted larvae in the 

submucosa – these cell infiltrates are much greater than those found in primary 

infection (Anthony et al., 2006, Morimoto et al., 2004, Liu et al., 2004). In both 

humans and mice, memory Th2 cells can be defined by their high expression of 

the IL-33 receptor (ST2), allowing for TCR independent activation upon binding 

of IL-33, the alarmin cytokine, to its receptor (Minutti et al., 2017, Obata-

Ninomiya et al., 2018, Smithgall et al., 2008). This early activation of Th2 cells 

drives both innate and adaptive responses, as described in sections 1.3, resulting 

in rapid expulsion of parasites.  Successful immunity to secondary challenge with 

H. polygyrus is lost when both IL-4 and the IL-4R are blocked simultaneously but 

less so when blocking IL-4 alone (Urban et al., 1991). This shows that in a re-

challenge setting, both IL-4 and IL-13 key for worm expulsion as both signal via 

the IL-4R (Urban et al., 1991).  
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The expulsion of helminths from the lumen is a co-ordinated process reliant on 

the type 2 immune response, comprising mechanisms also found in allergic 

disease. The ‘weep and sweep’ response induced by helminths has therefore 

become an important model for the study of immune mechanisms during allergic 

responses.  

 

1.4 The intestinal barrier 

1.4.1 Anatomy of the intestine  

As the gastrointestinal (GI) tract of humans and mice have both anatomical and 

physiological similarities, mouse models have been used extensively in the study 

of gastrointestinal homeostasis and disease (Hugenholtz and De Vos, 2018, 

Bowcutt et al., 2014). The small intestine is the longest part of the GI tract and 

is made up of the duodenum, jejunum, and ileum (Figure 1-5) (Bowcutt et al., 

2014). The duodenum is the proximal end of the small intestine, where bile and 

digestive enzymes from the pancreas enter the intestine (Bowcutt et al., 2014). 

The duodenum is followed by the jejunum and then the ileum. The surface of 

the small intestine has small finger-like projections into the lumen called villi; 

villi maximise the surface area of the small intestine allowing for optimal 

nutrient absorption (Bowcutt et al., 2014). Peyer’s patches are also an important 

feature of the small intestine and contain Microfold ‘M’ cells which are 

important for the movement of luminal antigen such as food antigen, across the 

wall of the intestine (Okumura and Takeda, 2017). The large intestine can be 

split in to two sections, the colon, and the cecum. The cecum is important for 

fermentation and the production of SCFA’s (Parada Venegas et al., 2019). The 

colon has the highest abundance of bacterial species compared to the small 

intestine (Berg et al., 1996, Bowcutt et al., 2014). It also contains crypts, which 

are small invaginations found along the intestine, where progenitor cells 

typically reside (Bowcutt et al., 2014). The colon lacks villi, this is because the 

primary function of the colon is water reabsorption (Bowcutt et al., 2014, 

Hugenholtz and De Vos, 2018).  

Both the small intestine and colon have a mucus layer that protects the 

epithelial barrier, preventing microorganisms from accessing the host intestinal 
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epithelial cells (IECs). The mucus layer and the mucin glycans that make up the 

layer provide a surface for the colonisation of bacteria and are an important 

energy source for the microbiota (Johansson and Hansson, 2016). In response to 

appropriate stimuli such as pathogens, mucus production is enhanced and 

pathogenic bacteria, for example, become trapped in the mucus, contributing 

towards the clearance of pathogens (Johansson and Hansson, 2016). Damage to 

the intestinal epithelial layer and its associated mucosal layer can result in poor 

uptake of nutrients, movement of pathogens and microorganisms into the blood 

stream and changes to the gut microbiota (Johansson and Hansson, 2016). In the 

small intestine, there is one continuous diffuse mucous layer, which is 

penetrable to bacteria (Johansson and Hansson, 2016). However, these bacteria 

do not closely associate with the epithelium due to antimicrobial proteins, which 

are produced by most IECs including Paneth and goblet cells (Hooper and 

Macpherson, 2010). In addition, secreted immunoglobulin A (sIgA) from plasma 

cells limits bacterial interactions with the epithelium (Johansson and Hansson, 

2016, Hooper and Macpherson, 2010). The colon has an inner and outer mucus 

layer; the inner layer is attached to the epithelium, cannot be penetrated by 

bacteria, and is densely made up of layers of MUC2 multimers (Ambort et al., 

2012, Johansson and Hansson, 2016). Whereas, the outer mucus layer is highly 

colonised by bacteria (Johansson and Hansson, 2016). In both humans and mice 

with colitis, bacteria penetrate the inner layer of the colonic mucus (Johansson 

et al., 2014). Goblet cells are specialised IECs and are the predominant mucus 

secreting cells. 

Muc2 is the dominant mucin that makes up the mucus layer (Johansson and 

Hansson, 2016). In Muc2-/- mice there is no protective mucus layer throughout 

the intestinal tract, resulting in inflammation along the intestine and the 

development of spontaneous colitis and colorectal cancer (Velcich et al., 2002, 

Johansson and Hansson, 2016, Van Der Sluis et al., 2006). Interestingly, goblet 

cells have been shown to take up luminal antigen when secreting mucus which 

they subsequently transfer to DCs (Mcdole et al., 2012).  
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Figure 1-4 Small intestine and colon architecture and immune composition 
The anatomy and immune cells of the small intestine and colon. Created with BioRender.com and 
adapted from (Lutter et al., 2018). 

Due to the anatomical differences between the small and large intestine, these 

tissues are more susceptible to certain parasites (Bowcutt et al., 2014). Human 

parasite infections such as Ancylostoma duodenale and Ascasris lumbricoides 

localise to the small intestine, similar to H. polygyrus in mice. Whereas the 

human whipworm T. trichuria and the mouse parasite T. muris are found in the 

large intestine (Bowcutt et al., 2014). In addition, the bacterial content differs 

between the small and large intestine, where in humans the large intestine 

containing approximately 1010 bacteria/g of intestinal content and the small 

intestine containing fewer, around 103 bacteria/g of intestinal content (Berg, 

1996, Bowcutt et al., 2014). Indeed, due to difference in bacterial species and 

abundance in the small and large intestine these sites have varying susceptibility 

to pathogens and diseases. The pathogenic bacteria Clostridium difficile 

specifically colonises the colon, this infection can be serious if left untreated, 

resulting in conditions such as toxic megacolon which can result in sepsis 

(Johanesen et al., 2015). On the other hand, Norovirus is primarily found in the 

small intestine and is concentrated at the tips of the villi (Green et al., 2020, 

Bowcutt et al., 2014). In addition, cancers of the small intestine are much rarer 

than those in the colon (Bowcutt et al., 2014). In addition, distinct regions of 

the intestine correspond to draining lymph nodes that are critical for the priming 

of immune responses.  
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1.4.2 Mesenteric lymph nodes  

The mesenteric lymph nodes are the draining lymph nodes for the intestine, 

comprising a chain of multiple lymph nodes which each drain distinct parts of 

the intestine (Mayer et al., 2020, Houston et al., 2016). They are often divided 

into the small intestine and colon draining lymph nodes, sMLN and cMLN 

respectively (Houston et al., 2016). These are the priming sites for adaptive 

immune responses in the intestine. Lymph nodes are encapsulated secondary 

lymphoid organs (SLOs) which have a specialised architecture that allows for  

 

Figure 1-5 The MLN and lymph node architecture 
The MLN chain drains distinct regions of the intestine referred to as the sMLN and cMLN (Houston 
et al., 2016, Mayer et al., 2020). The architecture of LNs (left) shows the distinct T and B cell zones 
and cells typically found in these areas. Created with BioRender.com and adapted from (Houston 
et al., 2016) and (Drayton et al., 2006).  

naïve CD4+ T cells to encounter their cognate antigen presented on MHCII 

(Jenkins et al., 2001).  Lymphocytes enter LNs from the blood via HEVs (Girard 

and Springer, 1995). T cells will then move to T cell areas and B cells will 

migrate to follicles (Figure 1-5) (Girard and Springer, 1995). DCs are potent APCs 

with the unique capacity to capture, process, and present antigen to prime 

naïve T cells (García Nores et al., 2018). There are resident DCs that remain in 

LNs and also DCs which reside in peripheral tissues. These peripheral residing 

DCs are known as migratory DCs and are continually capturing both self and 

foreign antigen in the periphery (Segura et al., 2012, Jenkins et al., 2001). 

Captured antigen is internalised, processed, and presented on the surface of 

DCs. To maximise the chance of these DCs encountering naïve T cells with the 

correct TCR, DCs migrate to draining LNs (Jenkins et al., 2001, Randolph, 2001). 
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The subsequent activation and differentiation of T cells is described in section 

1.1.1 and 1.1.2. This process requires the migration of cells throughout the MLN. 

Migration into and within LNs is dependent on chemokines and their receptors 

(Randolph, 2001). Chemokines are chemotactic cytokines that control the 

migration and location of immune cells. CCR7 is a G-protein-coupled chemokine 

receptor which DCs upregulate upon maturation (Yanagihara et al., 1998). CCR7 

binds to the homeostatic chemokines CCL21 and CCL19 which are expressed by 

fibroblast reticular cells (FRCs), stromal cells in T cell area (Martín- Fontecha et 

al., 2003). CCL21 is also expressed by endothelial cells that line the HEVs (Gunn 

et al., 1998). These chemokines direct DC migration to the LNs, where they 

arrive at the subcapsular sinus of the LN and subsequently into the LN 

parenchyma where they interact with naïve T cells (Jenkins et al., 2001). 

Chemokines and homing molecules are also required for activated T cell egress 

from the MLN to the intestine. During DC-T cell interactions, DCs will imprint 

homing receptors on the surface, for example, upregulation of the integrin α4β7 

and the chemokine receptor CCR9 is required for homing to the small intestine 

lamina propria, a key immunological site (Williams and Butcher, 1997, 

Johansson-Lindbom and Agace, 2007).  

1.4.3 Epithelial barrier  

The lamina propria (LP) is separated from the lumen of the gut by both the 

epithelium and mucus barrier. It is an important immunological site made of 

connective tissue, containing numerous immune cells (Figure 1-4). The LP along 

with the epithelium and muscular mucosae make up the mucosa of the intestine. 

The other three layers that make up the intestinal wall are the submucosa, the 

muscularis propria and the serosa. The intestinal epithelial barrier acts as a 

physical barrier to prevent harmful toxins and microorganisms such as bacteria, 

viruses, and fungi crossing from the lumen of the gut into the blood stream. The 

barrier is also essential for absorption and filtration of nutrients into the body. 

This barrier is made up of a single layer of IECs, held together by numerous tight 

junction (TJ) proteins. Much of the epithelial barrier is comprised of 

enterocytes, which play a critical role in absorption and digestion. The rest of 

the barrier includes specialised IECs such as goblet cells, Paneth cells and tuft 

cells (Figure 1-4).  
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1.4.3.1 Epithelial cell-cell adhesion  

The cell-cell adhesion provided by TJ proteins is essential for the structural 

integrity of the intestinal barrier. Three of the key TJ proteins are the integral 

transmembrane proteins and protein families including occludin, claudins and 

junctional adhesion molecules (JAM). In addition, zonula occludens (ZO) are 

bridges that connect these transmembrane proteins to intracellular signalling 

cascades (Bazzoni and Dejana, 2004). Occludin and ZO-1 interactions are 

important for maintenance of barrier function (Bazzoni and Dejana, 2004). 

Occludin-/- mice have chronic inflammation in several tissues and intestinal 

epithelial hyperplasia (Saitou et al., 2000). In addition, increased expression of 

occludin improves and protects the integrity of the TJ (Mccarthy et al., 1996).  

There are 23 members of the claudin family, multiple claudin family members 

are expressed in the small intestine, claudin-2 specifically is expressed in the 

small intestine of mice and humans (Lu et al., 2013). Increased expression of 

claudin-2 is associated with a leaky epithelial cell barrier, and it also plays a 

determining role in permeability of the epithelium to ions and solutes (Rahner et 

al., 2001, Van Itallie et al., 2003). Absence of ZO-1 results in delayed assembly 

of other TJ proteins such as occludin (Tsukita et al., 2009). Adherens junctions 

(AJs) are also another important component of maintaining barrier integrity. AJs 

are protein complexes that maintain cell to cell contact and localise below the 

TJs (Figure 1-6) (Takeichi, 1990). Epithelial-cadherins (E-cadherins) are 

glycoproteins that bind to similar molecules on neighbouring epithelial cells. E-

cadherins are the major cadherin found in epithelial cells (Figure 1-6) (Takeichi, 

1990, Hanby et al., 1996, Doğan et al., 1995, Guo et al., 2003). AJs are key for 

barrier function and signalling via these junctions also regulates TJ proteins (Guo 

et al., 2003). Mice lacking E-cadherin in the small intestine die quickly after 

birth due to loss of barrier function (Bondow et al., 2012). The ability of 

epithelial cells to form a tightly regulated barrier is key for intestinal 
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Figure 1-6 Epithelial tight junction proteins 
Tight junction proteins and adherens junction proteins in epithelial cells that are essential for the 
formation of the intestinal epithelial barrier. Created with BioRender.com and adapted from 
(Hammer et al., 2015).  

homeostasis, function and nutrients absorption, the rapid turnover of epithelial 

cells is also a key component of maintaining epithelial barrier integrity.  

1.4.3.2 Epithelial cell turnover  

The intestinal epithelium renews constantly (Barker et al., 2007). Crypt base 

columnar cells are stem cells found in the crypts that drive this rapid intestinal 

epithelial cell renewal (Barker et al., 2007). Typically, IECs renew every 3-5 days 

with older cells being shed into the lumen and new IECs differentiating in the 

crypts (Park et al., 2016). This process is regulated by a magnitude of factors 

including growth factors, Wnt ligands and commensal bacteria (Hooper and 

Gordon, 2001, Clevers, 2013). Interestingly, it has been reported that IL-13 is a 

key driver in the movement of new IECs from the crypts to the tip of the villi, 

this mechanism also facilitates displacement of pathogens such as H. polygyrus 

which persists in the gut by wrapping itself around villi (Cliffe et al., 2005). This 

migration of cells to the tip of the villi is largely reduced in germ-free (GF) mice 

and mice treated with antibiotics, emphasising the importance of commensal 

bacteria in epithelial turnover (Park et al., 2016). In IBD, epithelial cell turnover 

is accelerated due to increased apoptosis, resulting in loss of barrier function 

and inflammation (Di Sabatino et al., 2003). The balance between epithelial cell 
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death and proliferation is essential for the maintenance of the intestinal barrier 

and for the function of specialised epithelial cells. 

1.4.3.3 Specialised epithelial cells 

IECs are an important line of defence and some of the earliest cells to respond 

to pathogens. IECs express pattern recognition receptors (PRRs) that recognise 

and discriminate microbes. This process is important for intestinal homeostasis. 

Mice lacking toll-like receptors (TLRs), a type of PRR, have increased 

susceptibility to dextran sulphate sodium (DSS) induced colitis due to lack of 

microbe sensing (Rakoff-Nahoum et al., 2004). In addition, IECs can alert 

immune cells to pathogens and interactions between IECs and APCs can 

coordinate local immune responses via the release of alarmin cytokines such as 

TSLP, IL-25 and IL-33 as described in Section 1.3.1(Rimoldi et al., 2005, Zaph et 

al., 2007). Specialised IECs play specific important roles in intestinal 

homeostasis and in immune responses to pathogens in the gut. Paneth cells are 

specialised IECs found in the crypts of the small intestine. These cells secrete 

numerous antimicrobial molecules which are stored in granules (Bevins and 

Salzman, 2011). The release of antimicrobial mediators into the lumen may 

prevent bacteria colonising in SI crypts. These mediators can act on both 

commensal and pathogenic bacteria (Bevins and Salzman, 2011). Paneth cells 

have also been shown to sense commensal bacteria in a MyD88 dependent 

manner and subsequently maintain homeostasis at the barrier site (Vaishnava et 

al., 2008).  In patients with Crohns disease, Paneth cell secretion of α-defensins, 

a type of antimicrobial peptide, is decreased, resulting in gradual changes and 

subsequent dysbiosis of the microbiota, promoting bacteria invasion across the 

epithelial barrier (Wehkamp et al., 2005). Along with Paneth cells, goblet cells 

are another subset of critical IECs.  As discussed in Section 1.3.1, goblet cells are 

critical for formation and maintenance of the mucus layer, which protects the 

epithelial barrier from luminal contents. An important driver of goblet cell 

hyperplasia is IL-13, which is released by IL-25 stimulated ILC2s, Tuft cells are 

key producers of IL-25. Tuft cells are chemosensory cells found at mucosal sites, 

including the intestine (Ting and Von Moltke, 2019). Tuft cells are the dominant 

source of IL-25 which is required to drive ILC2 responses (Von Moltke et al., 

2016, Ting and Von Moltke, 2019).  Mice lacking tuft cells fail to induce goblet 

cell hyperplasia and expel the helminth N. brasiliensis (Gerbe et al., 2016). 



Chapter-1 Introduction 

41 
 

Therefore, the epithelial cell barrier is an essential physical barrier that 

separates luminal contents from the lamina propria. In addition, specialised 

immune cells play essential roles in maintaining homeostasis and coordinating 

immune responses to pathogens.  

1.4.4 Bacterial translocation 

The term bacterial translocation was first proposed in 1979 (Berg and 

Garlington, 1979). It is defined as the movement of microbes and/or their 

products through the intestinal epithelial barrier, to organs such as the 

mesenteric lymph nodes (MLN) and spleen. The immune system has co-evolved 

with commensal bacteria (Berg and Garlington, 1979).  This is shown in GF mice, 

which have no commensal bacteria. These mice have an underdeveloped 

mucosal immune system and SLOs that lack structure (Bauer et al., 1963, 

Macpherson and Harris, 2004). Bacterial translocation can occur as a direct 

consequence of damage to the epithelial barrier, impaired commensal immune 

homeostasis, or overgrowth of bacterial species (Ding et al., 2004). Sampling of 

the intestinal lumen, including commensal bacteria, by DCs is an important 

component of immune homeostasis. These DCs will prime B cells in the MLN to 

produce IgA, which is key for intestinal homeostasis as described in section 1.4.1 

(Macpherson and Uhr, 2004). However, DCs sampling the lumen will traffic to the 

MLN only, not to distal sites such as the spleen or liver and so are not 

responsible for systemic bacterial translocation (Macpherson and Harris, 2004). 

In mice lacking a thymus and therefore T cells, spontaneous bacterial 

translocation to distal organs, including the spleen and liver, occurs (Owens and 

Berg, 1980). Th cells that are specific for commensal bacteria, in homeostasis, 

are either unresponsive to their cognate antigen or have a regulatory phenotype, 

preventing inappropriate inflammatory responses to commensal bacteria 

(Lathrop et al., 2011). However, in acute inflammatory infection mouse models 

such as Toxoplasma gondii, this commensal tolerance by T cells is lost. 

Commensal specific CD4+ T cells become activated and induce an inflammatory 

response by acting as an adjuvant that exaggerates the immune response to the 

T. gondii infection (Hand et al., 2012). Therefore, the commensal bacteria that 

colonise the intestine are key for functional mucosal immunity. Translocation of 

these bacteria to distal organs in immunocompromised individuals can result in 

lethal sepsis (Berg and Garlington, 1979). Overall, bacterial translocation can 
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have levels of severity, depending on a multitude of factors. These factors 

include changes to the microbiota, breach of the epithelial barrier or loss of 

tolerance to commensal bacteria by the immune system.  

1.5 The role of IL-10 in the intestine  

1.5.1 IL-10 and IL-10R signalling  

The regulatory cytokine IL-10 is a homodimer which binds to and signals via a 

tetrameric receptor made up of IL-10R1 and IL-10R2. IL-10 binds directly to IL-

10R1, resulting in recruitment of IL-10R2 to form the signalling receptor (Figure 

1-7) (Wei et al., 2020, Couper et al., 2008, Moore et al., 2001, Kotenko et al., 

1997). Most cells express the IL-10R2 receptor constitutively as this receptor is 

also required for signalling of other type II cytokines, including IL-22 and IL-26 

(Couper et al., 2008). IL-10R1 is expressed at basal levels on most hematopoietic 

cells, with receptor expression increasing once a cell becomes activated (Couper 

et al., 2008). In addition, IL-10R1 has been reported to be expressed on non- 

hematopoietic cells such as fibroblasts, and colonic epithelial cells (Denning et 

al., 2000, Mosser and Zhang, 2008). IL-10R expression has also been reported on 

intestinal stem cells (Biton et al., 2018). In vivo anti-CD3 treatment in mice not 

only results in an increase of IL-10+ T cells in the small intestine (Kamanaka et 

al., 2006b) but also an accumulation of Th17 cells which highly express IL-10R1 

(Huber et al., 2011). IL-10R1 is the ligand binding component of the receptor, 

and thus IL-10 signalling cannot occur in its absence. Therefore IL-10R1 

monoclonal antibodies have become a well-established method of blocking IL-

10R signalling (Liu et al., 1994, Liu et al., 1997, Burrack et al., 2018, Ring et al., 

2019). IL-10R signalling occurs via the Jak/STAT pathway. IL-10R1 and IL-10R2 

are associated with the tyrosine kinases Jak1 and Tyk2 respectively. These 

signalling molecules become activated upon IL-10R ligation, resulting in receptor 

phosphorylation. Phosphorylation of the IL-10R results in the recruitment of 

STAT3 (Williams et al., 2004). Jak1 and Tyk2 subsequently phosphorylate STAT3. 

Phosphorylated STAT3 molecules form homodimers and translocate to the 

nucleus (Williams et al., 2004, Moore et al., 2001). Here STAT3 homodimers bind 

to IL-10 responsive genes (Figure 1-7). Binding of IL-10 responsive genes, 

including IL-10 itself, by STAT3 results in a decrease in NF-Kβ dependent 

inflammatory cytokine expression (Shouval et al., 2014b, Moore et al., 2001). In 
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addition, STAT3 also activates suppressor of cytokine signalling 3 (SOCS3) which 

inhibits IL-6 signalling but does not degrade the IL-10R (Murray, 2007, Mosser and 

Zhang, 2008).  IL-10 does not exclusively activate STAT3 and has been reported 

to also activate both STAT1 and STAT5 but the biology and signalling cascades 

surrounding this remains unclear (Finbloom and Winestock, 1995, Moore et al., 

2001, Weber-Nordt et al., 1996, Wehinger et al., 1996).  

 

Figure 1-7 IL-10R signalling via STAT3 
The main signalling cascade downstream of the IL-10R via STAT3. Created with BioRender.com. 

The majority of innate and adaptive immune cells have the capacity to produce 

IL-10 (Saraiva and O'garra, 2010). In addition, non-immune cells such as 

epithelial cells have been reported to produce IL-10 (Hyun et al., 2015, Couper 

et al., 2008). The secretion of IL-10 by Th subsets can act as a self-limiting 

negative feedback loop (Couper et al., 2008, Meyaard et al., 1996). Antiviral 

CD4+ and CD8+ T cells become the prominent source of IL-10 once activated 

(Rojas et al., 2017). In addition, in different cell types, the secretion of IL-10 is 

dependent on different signalling proteins (Saraiva and O'garra, 2010). 

Macrophages, Th17 and Tr1 cells require the TF c-Maf for the induction of IL-10 

secretion (Apetoh et al., 2010, Xu et al., 2009, Cao et al., 2005). In Th2 cells, IL-

10 secretion is independent of c-Maf and instead requires GATA3 and STAT6, 

both of which are activated in response to IL-4R signalling (Chang et al., 2007, 

Shoemaker et al., 2006). The anti-inflammatory cytokine IL-27 is a potent 

inducer of IL-10 via STAT3 and STAT1 recruitment in T cells and bone-marrow 
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derived macrophages along with IL-12 and IL-21 (Batten and Ghilardi, 2007, Iyer 

and Cheng, 2012) and IL-27-/- mice, which partially resemble the phenotype of 

IL-10-/- mice, have exacerbated inflammation in numerous infection models 

(Batten et al., 2006, Batten et al., 2008). IL-4 has also been reported to 

upregulate IL-10 in macrophages stimulated with LPS (Cao et al., 2005, Mitchell 

et al., 2017).  APCs such as DCs express PRRs, and TLR2 specifically has been 

reported to induce IL-10 secretion in DCs (Netea et al., 2004, Dillon et al., 

2004). Also, B cells express TLR4 and TLR9, both of which have been shown to be 

key for IL-10 induction in B cells (Sanchez et al., 2019, Lenert et al., 2005) 

There are layers of complexity surrounding both the induction of IL-10 secretion 

and IL-10R signalling that can differ depending on the environment and cell 

type. The importance of this regulatory cytokine has been particularly 

demonstrated in the intestine.  

1.5.2 IL-10 and gut homeostasis  

Studies in both humans and mice have shown a crucial role for IL-10 in 

maintaining homeostasis in the gut. In humans, Ulcerative Colitis (UC) and 

Crohns Disease (CD) fall under the umbrella of Inflammatory Bowel Disease 

(IBD). These conditions are severely debilitating and are a result of a loss of 

immune homeostasis resulting in detrimental immune responses against harmless 

antigen such as food antigen and microbiota. Genome wide association studies 

(GWAS) have shown a link between single nucleotide polymorphisms in IL-10 to 

IBD (Franke et al., 2008, Franke et al., 2010). In addition, predisposing 

mutations in both IL-10 and the IL-10R have been described in association with 

serve early onset IBD (Glocker et al., 2009, Kotlarz et al., 2012, Moran et al., 

2013). In mice, both IL-10 and IL-10R deficient mice develop spontaneous colitis 

(Kühn et al., 1993, Spencer et al., 1998). RAG-/- mice reconstituted with IL-10-/- 

T cells and treated with piroxicam (a non-steroidal anti-inflammatory drug that 

accelerates colitis) develop spontaneous colitis. In this model, infection with H. 

polygyrus elevated colitis by acting on distal DCs, most likely via the action of 

HES (Hang et al., 2010, Reynolds et al., 2012). Similarly, RAG-/- mice infected 

with the pathogenic bacteria Helicobacter hepaticus reconstituted with IL-10-/- T 

cells results in an innate model of colitis (Maloy et al., 2003).  In addition, in a T 

cell transfer mouse model of colitis, administration of rIL-10 abrogated disease 
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(Powrie et al., 1994). Finally, spontaneous DSS-colitis in mice is prevented by 

the administration of IL-10 producing Lactococcus lactis (Steidler et al., 2000).  

There are numerous mechanisms reported for IL-10 directly promoting gut 

homeostasis through acting on immune cells. IL-10 signalling in macrophages 

drives a regulatory phenotype and these macrophages can be identified by the 

high expression of CX3CR1 (Zigmond et al., 2014, Mantovani and Marchesi, 2014, 

Shouval et al., 2014a). IL-10 inhibits the expression of MHCII and costimulatory 

molecules such as CD80/86 on the surface of macrophages and DCs, which 

inhibits antigen presentation and suppresses effector responses (Fiorentino et 

al., 1989, Couper et al., 2008, Mosser and Zhang, 2008) . IL-10 has also been 

reported to antagonise inflammatory genes downstream of TLRs (Lang et al., 

2002). IL-10 also prevents immune cell migration to sites of inflammation by the 

suppression of the chemokines such as CCL3, CXCL8 and CCL4 on activated 

monocytes (Moore et al., 2001, Berkman et al., 1995). The suppression of Th1 

cells by IL-10 is well described, however, self-limiting IL-10 is produced by most 

effector Th subsets (Ng et al., 2013, Fiorentino et al., 1989). A detailed 

description of Treg derived IL-10 mediated inhibition of immune responses is 

described in section 1.1.3. It is important to note that some pro-inflammatory 

mechanisms of IL-10 have been described. IL-10 has been reported to contribute 

to B cell activation, survival, and class switching (Mosser and Zhang, 2008). In 

addition, IL-10 in conjunction with IL-18 stimulate natural killer (NK) cell 

proliferation and function (Cai et al., 1999). IL-10 may also act as a growth 

factor for CD8 T cells, but this is dose dependent (Rowbottom et al., 1999). 

However, IL-10 can also act on non-immune cells, such as epithelial cells.  

IL-10 has also been reported as a key cytokine for epithelial cell barrier 

function. Mice with IL-10R1 depletion on epithelial cells developed more severe 

inflammation in a model of colitis and showed increased epithelial barrier 

permeability (Kominsky et al., 2014). IL-10 promotes the production of mucus 

from goblet cells via the suppression of endoplasmic reticulum stress, a common 

marker of colitis and by preventing misfolding of the MUC2 protein (Hasnain et 

al., 2013). Wound healing is an essential component of immune responses and in 

restoring homeostasis, IL-10 promotes intestinal epithelial cell proliferation and 

repair via Wnt1-inducible signalling protein 1 (WISP-1) (Quiros et al., 2017). In 

mice lacking both B and T cells, epithelial wound healing is not impaired, and 
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macrophages are reported to be the primary source of IL-10 for driving epithelial 

repair (Quiros et al., 2017).  Butyrate is a SCFA produced by the microbiota, 

which has been shown to promote the expression of IL-10R1 on an intestinal 

epithelial cell line (Zheng et al., 2017). Furthermore, treatment of intestinal 

epithelial cell lines with both IL-10 and butyrate increased epithelial barrier 

integrity, more so than butyrate alone (Zheng et al., 2017). This report showed 

that IL-10 suppression of Claudin-2, an important epithelial TJ protein that 

determines intestinal permeability resulted in increased barrier integrity.  

Therefore, the activity of IL-10 and IL-10R signalling are key for the maintenance 

of gut homeostasis and also in infection settings.   

1.5.3 IL-10 and helminth infection 

IL-10 has been reported to be a key component in responses to helminth 

infection, but studies show both host protective and pro-parasitic roles for this 

cytokine (Schopf et al., 2002, Wynn et al., 1997, Sanchez et al., 2015, Couper et 

al., 2008). The expression of IL-10 increases in mice infected with H. polygyrus 

and, in a model of IBD, H. polygyrus limits gut injury in a manner associated 

with increased IL-10 (Setiawan et al., 2007, Leung et al., 2012, Redpath et al., 

2013, Finney et al., 2007, Filbey et al., 2014). In addition, ICOS has been shown 

to be key for IL-10 expression by Tregs in H. polygyrus infection (Redpath et al., 

2013) and co-operation between IL-10 and IL-4 in this model maximises the 

suppression of IL-17 in the MLN (Elliott et al., 2008). During infection with 

Trichinella spiralis, IL-10 from eosinophils indirectly suppresses nitric oxide 

which favours parasite persistence (Huang et al., 2014). In addition, DCs pre-

treated with antigen from the tapeworm Hymenolepis diminuta can suppress 

colitis in an IL-10 dependent manner (Matisz et al., 2015). IL-10 expression by T 

cells but not B cells in the immune response to Litomosoides sigmodontis 

suppresses antigen specific T cell responses (Haben et al., 2013) and this 

infection model results in a decreased responsiveness of basophils, which is IL-10 

dependent (Larson et al., 2012).  These studies present a possible mechanism of 

parasites promoting persistence using IL-10 derived from host innate immune 

cells. In the whipworm T. muris, IL-10 is not only required for the development 

of resistance to this parasite but also in host survival and the absence of IL-10 

results in increased susceptibility to infection and host mortality (Schopf et al., 

2002).  Co-operation and association between IL-10 and the Th2 response to 
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helminth infection have been reported. The strong Th2 response to N. 

brasiliensis requires IL-4 dependent IL-10 signalling (Balic et al., 2006). In 

humans, infection with S. mansoni results in increased expression of IL-10, along 

with the Th2 cytokines IL-4 and IL-13 in the blood (Marinho et al., 2016, Dias et 

al., 2018). Therefore, IL-10 has an expansive and important role in mediating 

immune responses to helminth infections. These data also demonstrate that 

although IL-10 is most frequently described as a suppressive cytokine, in many 

infection settings parasites use host IL-10 to promote persistence or to evade the 

host immune system. In addition, the immune environment, concentration, and 

tissue location of IL-10 is critical for determining its role in both homeostasis and 

infection settings.  

1.6 Hypothesis and aims 

The objectives of this thesis focus on cytokine signals and immune competition 

during helminth infection.  

Although H. polygyrus is a well-established model of helminth infection and tool 

used to study type 2 immune response dynamics, analysing leukocytes from the 

SILP has remained a challenge in the field. This technical challenge places a 

limitation on immune cell analysis at the site of infection, which is critical for 

understanding the role of cytokines in orchestrating, maintaining, and 

controlling type 2 immune responses. IL-10 is a critical cytokine for the 

maintenance of intestinal homeostasis and is also important in numerous 

infection settings and diseases. There are numerous reports of increased IL-10 

production during helminth infection but whether it is important for the type 2 

immune response to helminths remains unclear. The immune response to H. 

polygyrus is described solely as a type 2 immune response, however underlying 

immune responses to bacteria due to barrier breach during the lifecycle of this 

parasite have been hypothesised in the literature. It was therefore hypothesised 

that IL-10 promotes Th2 responses to helminth infection, by suppressing 

bacteria-specific IFNγ producing Th1 cells. To test this hypothesis 3 objectives 

were addressed: 
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1. Develop a method for the successful isolation of leukocytes from the SILP. 

Allowing key questions surrounding tissue cytokine responses at the site of 

infection to be explored. 

2. Determine the role of IL-10 in the Th2 response to helminth infection. The 

role of IL-10 in the context of type 2 immunity is debated and there are 

reports of both suppressive and promoting effects of this cytokine. 

Importantly, to accurately answer these questions analysis of both the 

priming MLN and the site of infection (SILP) is required, emphasising the 

importance of objective 1. 

3. Investigate possible barrier breach during H. polygyrus infection. There 

are few reports surrounding barrier breach during H. polygyrus infection 

despite the fact this parasite migrates through the wall of the intestine at 

two points in its life cycle. To address this, IFNγ secretion by T cells in 

the MLN and SILP will be measured, barrier integrity will be analysed and 

immune responses at distal sites investigated.  

By addressing these objectives, we aimed to contribute to the understanding of 

cytokine regulation during the type 2 immune to helminth infection and explore 

immune competition in H. polygyrus infection. 
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Chapter-2 Methods  

2.1 Mice 

C57BL/6 mice were purchased from Envigo (Huntingdon, UK), B6.4get mice were 

kindly provided by Professor Judi Allen (University of Manchester) and bred in-

house (University of Glasgow). These mice were first developed by (Mohrs et al., 

2005b) and express GFP under the control of the Il4 promoter. Il10gfp-foxp3RFP 

B6 mice were kindly provided by Rick Maizels (University of Glasgow) and bred 

in-house (University of Glasgow). These mice express two separate transgenes: 

IRES-eGFP inserted at the end of the last exon and before the polyadenylation 

site of the Il10 gene (Tiger mice) (Kamanaka et al., 2006a) and similarly have 

IRES-RFP inserted at this site of the Foxp3 gene (Wan and Flavell, 2005) (See 

figure 2-1). For each experiment mice were sex-matched and used at age 6-12 

weeks. Both male and female mice were used for experiments. Animals were 

maintained in individually ventilated cages under standard animal house 

conditions at the University of Glasgow and procedures were performed under a 

UK Home Office license held by Rick Maizels (Project PPL number 70/8483 / 

PP4096415) in accordance with UK Home Office regulations and following review 

by the University of Glasgow Ethics Committee. 

 

Figure 2-1 Generation of Il10gfp Foxp3rfp dual reporter mice 
Adapted from (Kamanaka et al., 2006a) and (Wan and Flavell, 2005). Generation of Il10gfp (Tiger) 
mice (left) and Foxp3rfp mice (right).                                                                                                            
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2.2 Heligmosomoides polygyrus infections 

The life cycle of Heligmosomoides polygyrus (which is also known as 

Heligmosomoides polygyrus bakeri) was maintained, prepared and counted by 

Nicola Britton and subsequently by Claire Ciancia (Maizels laboratory, University 

of Glasgow). This process is described in detail by (Johnston et al., 2015). The 

lifecycle of H. polygyrus is shown in Figure 1-2. Mice were acclimatised for 1 

week after arrival in the animal unit. L3 larvae were prepared at 1 larvae/μl. 

Mice were infected with 200μl of L3 larvae (total 200 larvae) by oral gavage 

(size: 24G, round ball stainless steel tip).   

2.3 IL-10R monoclonal antibody blockade 

For IL-10R1 blockade, purified rat anti-mouse IL-10 receptor (IL-10R) mAb (Clone 

1B1.3a BioXcell) was used and where stated a Rat IgG1 isotype (Merck) control 

was given. Both IL-10R1 mAb and isotype control stocks were prepared at 

2.5mg/ml in sterile PBS. Each mouse was injected intraperitoneally (i.p.) (26.5G 

needle) with 200μl (500μg) of appropriate treatment.  Each treatment was given 

at D-1, D2, and D5 of H. polygyrus infection, and mice were culled at D7 of 

infection. H. polygyrus-infected mice were maintained in mixed treatment group 

cages.  

2.4 Cell Isolation 

Cells were counted and dead cells excluded using trypan blue and a 

haemocytometer. 

2.4.1     Isolation of lamina propria leukocytes  

Naïve and infected animals were euthanised using carbon dioxide, and the small 

intestine removed (below the stomach and above the caecum). All fat was 

removed. Intestines were immediately transferred onto laboratory tissue paper 

soaked in phosphate-buffered saline (PBS) (no calcium, no magnesium, kept at 

room temperature). Peyer’s patches were removed, and the intestines cut 

opened longitudinally and washed vigorously in a PBS-filled petri dish to remove 

intestinal content. Fine forceps were used to gently squeeze out any remaining 
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mucus.  Intestines were then transferred onto a fresh PBS-soaked tissue and cut 

in to 1cm pieces and transferred to a 50ml centrifuge tube containing 30ml of 

HBSS (Gibco™ 14170088 no calcium, no magnesium) supplemented with 10% FCS 

(Gibco™ Fetal Bovine Serum, qualified, heat inactivated, E.U.-approved, South 

America Origin) and kept on ice.  

Each sample was washed by pouring the sample into a large piece of 50-micron 

Nitex mesh, folded into a funnel placed in a 400ml beaker and pouring 30mls 

pre-warmed HBSS (Gibco™ 14170088 no calcium, no magnesium) over the Nitex 

mesh in the funnel. Using forceps, the samples were then transferred back into 

tubes containing 15ml 2mM EDTA (UltraPure™ 0.5M EDTA, pH 8.0 Cat. 15575020) 

in HBSS (37oC). The samples were shaken vigorously by hand and placed into an 

orbital shaker (Stuart, Orbital Incubator SI500) set to 220rpm and 37oC for 15 

mins. After shaking for 15min, the samples were washed as previously and 

transferred to new tubes containing 15ml 2mM EDTA in HBSS and returned to the 

shaker for a further 15 minutes. This process of EDTA washes was repeated once 

more, for a total of three EDTA washes. After the 3rd wash, the samples were 

transferred to 15ml of RPMI 1640 (Gibco™ no glutamine, 21870076) 

supplemented with 10% FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin, 2mM 

L-glutamine (Life Technologies 15140122) and 62.5 CDU/ml Collagenase VIII 

(CDU, collagenase digestion units) (typically 0.5mg/ml, Sigma-Aldrich C2139-

500MG). The samples were shaken vigorously by hand and placed back into the 

shaker set to 220rpm and 37oC for 15min. Other enzymes used in optimisation 

steps in Chapter 2 (Table 3-1): Liberase (Roche, 05401020001), DNaseI (Sigma-

Aldrich, DN25-100MG), Collagenase D (Roche) and Dispase II (Gibco). 

After the 15-minute digest period digestion was stopped by adding 35ml of ice-

cold RPMI 1640 (10% FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin and 2mM 

L-glutamine) to each sample and placing on ice. Each sample was then filtered 

through a 100µm nylon mesh filter, followed by a 40µm nylon mesh filter – 

remaining tissue was not crushed through as this reduced cell viability. Samples 

were washed by spinning down 400g for 10 minutes at 4oC, resuspending in 35ml 

of ice-cold RPMI 1640 (10% FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin and 

2mM L-glutamine) and this was repeated twice. The cell suspensions were 

resuspended in 10mls of cold RPMI 1640 (10% FCS, 100 U/ml Penicillin, 100μg/ml 

Streptomycin and 2mM L-glutamine) and kept on ice for further analysis.  
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2.4.2     Percoll gradients  

Prior to optimising the SILP isolating protocol detailed in section 2.4.1, percoll 

gradients were used to eliminate dead cells and debris from SILP samples. An 

80:40:30% percoll gradient was used as had been previously optimised in the lab. 

Percoll 100 (Merck) was diluted in RPMI 1640 supplemented with 10% FCS to 

obtain the correct percoll %. 15ml falcon tubes were pre-rinsed with RPMI 1640 

supplemented with 10% FCS to ensure the gradient would settle. 2mls of 80% 

percoll was added first, followed by 5mls of 40% percoll, pipetting slowly to 

ensure not to disrupt the 80% layer. Once a single cell suspension had been 

obtained, cells were resuspended in 30% percoll and slowly pipetted on to the 

40% percoll layer. Gradients were centrifuged at 1800rpm for 15min at 20oC with 

no acceleration or brake. To recover cells from the gradient, the 30% layer was 

removed using a Pasteur pipette and the mononuclear cells collected using a 

fresh Pasteur pipette from the 80:40% interface. Cells were washed in 10ml RPMI 

1640 supplemented with 10% FCS and kept on ice for further analysis.  

2.4.3     Isolation of cells from lymphoid organs 

Lymphoid organs (spleen and MLN) were harvested and collected in RPMI 1640 

(10% FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin and 2mM L-glutamine). 

Samples were crushed through a 70μm filter to obtain a single cell suspension. 

Splenocytes were red blood cell lysed using 1ml of ACK Lysing Buffer 

(Thermofisher) for 1 minute at room temperature, and lysis was stopped by 

adding 30ml PBS. Samples were then spun down at 400g for 5min, supernatants 

discarded, and samples resuspended in 10ml of PBS.   Samples were kept on ice 

for further analysis.  

2.5 Collection of blood  

Animals were euthanised using carbon dioxide and the femoral artery cut using a 

blade, immediately afterwards the chest cavity was opened and a 25G needle 

with a 1ml syringe attached was used to collect blood from the left ventricle of 

the heart. Average volume of blood collected ranged from 200-300μl. Blood 

samples were left at 4oC overnight in Eppendorfs to allow blood to clot. Samples 
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were then spun down at 12,000g for 15 min and the top layer containing serum 

removed and put into a new Eppendorf and stored at -20 until further analysis.  

2.6 RNA extraction  

Tissue samples (duodenum (1cm)/spleen/MLN/omentum) (no more than 30mg) 

were collected placed in RNA later (Qiagen 76104) and kept in the fridge for up 

to 1 month. For optimal RNA purity, samples were homogenised in a TissueLyser 

(Qiagen) (1min 25Hz x2, 1x 5mm steel ball (Qiagen) per sample) in Trizol 

(ThermoFisher), and centrifuged for 5min at 12,000g for 10 minutes at 4oC. 

Supernatants were collected, chloroform added, and samples incubated at room 

temperature for 3min before being centrifuged for 15min at 12,000g at 4oC. The 

resulting upper aqueous layer was collected and 1.5x 100% ethanol added to 

each sample.  RNA was then purified using the RNEASY Mini Kit (Qiagen 74104), 

including an on-column DNase digestion (RNase-Free DNase Set Qiagen) and 

according to manufacturer’s guidelines. RNA was eluted in 30-40μl nuclease-free 

water and RNA concentration determined using a nanodrop 1000. RNA 

concentration values ranged from 250μg/μl – 3000 μg/μl). Samples which had 

260/280 of less than 2.0 had poor purity and were discarded. Where possible, 

cDNA was generated on the same day as RNA extraction and RNA was stored at -

80oC.  

2.7 cDNA synthesis  

cDNA was generated using the High Capacity cDNA Reverse Transcription Kit 

(Invitrogen 4368814). A range of 500-2000ng of RNA was transcribed (this was 

kept consistent for all samples in each individual experiment). Cycling 

parameters were as follows: 25oC for 10 min, 37oC for 120 min, 85oC for 5 min 

and 4oC ∞. cDNA was diluted 1:20 with nuclease-free water and kept at -20 prior 

to use.  

2.8 RT PCR 

For real time PCR, PowerUp™ SYBR™ Green Master Mix (Applied Biosystems 

A25742) and QuantStudio 6 Flex Real-time PCR system (Applied Biosystems) were 

used. For each gene master mix, 5μl of 2X SYBR master mix was added and 0.5μl 
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of both forward and reverse gene primers (10uM working stocks). Samples were 

plated in triplicate, and nuclease-free water controls added to ensure no 

contamination had occurred. Cycling parameters and dissociation curve 

conditions are stated in Table 2-1. Ct values were normalised to those for the  

UDG Activation 50°C 2 min Hold

Dual-lock DNA polymerase 95°C 2 min Hold

Denature 95°C 15 sec

Anneal/extend 60°C 1 min

Step Ramp rate Temp. Time

1 1.6°C/second 95°C 15 sec

2 1.6°C/second 60°C 1 min

3 0.15°C/second 95°C 15 sec

Cycling parameters

40 cycles

Dissociation curve conditions (melt curve stage)

 

Table 2-1 Cycling parameters and dissociation conditions used in RT PCR 

 

Gene Forward primer Reverse primer 

IL-13 CCTGGCTCTTGCTTGCCTT GGTCTTGTGTGATGTTGCTCA

IL-5 CTCTGTTGACAAGCAATGAGACG TCTTCAGTATGTCTAGCCCCTG

IL-10 CTGAAGACCCTCAGGATGCG TGGCCTTGTAGACACCTTGGTC

IFNγ TGAGTATTGCCAAGTTTGAG CTTATTGGGACAATCTCTTCC

IL-17A ATCCCTCAAAGCTCAGCGTGTC GGGTCTTCATTGCGGTGGAGAG

Lcn2 AAGGCAGCTTTACGATGTACAGC CTTGCACATTGTAGCTGTGTACC

IL-22 TTTCCTGACCAAACTCAGCA CTGGATGTTCTCGTCGTCAC

RPS29 ACGGTCTGATCCGCAAATAC CATGATCGGTTCCACTTGGT

Occludin CTCCCATCCGAGTTTCAGGT GCTGTCGCCTAAGGAAAGAG

E-cadherin GGATCAGGACCAGGACTACG AGGGAAGGAGCTGAAAGACC

Claudin-2 GTGGCTGTAGTGGGTGGAGT CCAAAGAAAACAGGGCTGAG

N-cadherin AGGTAGCTGTAAACCTGAGC CTTGGCAAGTTGTCTAGGGA

JAM-1 CACCTTCTCATCCAGTGGCATC  CTCCACAGCATCCATGTGTGC

ZO-1 ACTCCCACTTCCCCAAAAAC CCACAGCTGAAGGACTCACA  

Table 2-2 Primers used for RT PCR 
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Gene Source 

IL-13 

IL-13 

IL-5 

IL-10 

IFNγ 

IL-17A 

Lcn2 

IL-22 

RPS29 

Occludin 

E-

cadherin 

Claudin-2 

N-

cadherin 

JAM-1 

ZO-1 

 

(Khaled et al., 2007) 

IL-5 (Khaled et al., 2007) 

IL-10 Nicolette Fonseca (University of British Columbia) 

IFNγ The Maizels Laboratory (University of Glasgow) 

IL-17A The Maizels Laboratory (University of Glasgow) 

Lcn2 (Chassaing et al., 2012) 

IL-22 The Maizels Laboratory (University of Glasgow) 

RPS29 Graham Heieis (University of Glasgow) 

Occludin Julie Worrell (University of Glasgow) 

E-cadherin Julie Worrell (University of Glasgow) 

Claudin-2 Julie Worrell (University of Glasgow) 

N-cadherin Julie Worrell (University of Glasgow) 

JAM-1 (Volynets et al., 2016) 

ZO-1 (Nevado et al., 2015) 

 

Table 2-3 Source of primers 

  

gene encoding ribosomal protein S29 (RSP29), and expression of genes of interest 

was determined using the 2−ΔΔC(t) method. See Table 2-2 for primer sequences. 

All primers were purchased from Life Technologies Ltd. 

2.9 In vitro CD4+ T cell culture 

CD4+ T cells were obtained from naïve splenocytes using the MojoSort™ magnetic 

cell separation system, which is a negative selection kit (Biolegend). Typical 

CD4+ T cell yield from a naïve spleen was around 5 million cells.  1x108 

splenocytes were used per each isolation, for a full 96-well plate an average of 3 

isolations were required.  Isolated cells were seeded at 1x105 cells per well in 

round bottom 96 well plates. Isolated CD4+ T cells were resuspended in RPMI 

1640 supplemented with 10% FBS, 100 U/ml Penicillin, 100 μg/ml Streptomycin, 

1mM Glutamax, 1mM non-essential amino acids, 1mM sodium pyruvate and 50μM 

2-mercaptoethanol (ThermoFisher) for plating. Plates were pre-coated for 1hr at 

37 oC with 1μg/ml of αCD3 (17A2, BioLegend), and soluble αCD28 was added to 

stimulation cocktails at 1μg/ml. For polarisation of CD4+ T cells recombinant 

mouse cytokines were added to cultures; Th0: 20ng/ml recombinant IL-2 (rIL-2) 

(ThermoFisher), Th2: rIL-2 (20ng/ml), rIL-4 (40ng/ml) (ThermoFisher), αIFNγ 

(1μg/ml) (Biolegend). Th1: rIL-2 (20ng/ml), rIL-12 (10ng/ml) (ThermoFisher). For 
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IL-10 stimulation, IL-10 (ThermoFisher) was added at 10ng/ml. Cultures were 

incubated (37oC, 5% Co2) for 4 days and cells or supernatants harvested for 

further analysis. CD4+ T cell purity after 4 days of culture was typically between 

93-98%.  

2.10 T cell proliferation  

To assess CD4+ T cell proliferation, the CellTrace™ Violet Cell Proliferation Kit 

(ThermoFisher) was used according to manufacturer’s guidelines. 1x106 cells 

were resuspended in PBS (no protein) and 1ul/ml of a 5mM stock of component A 

(dye) was added. Cells were then incubated in a shaking incubator (gentle shake 

- 90rpm) set to 37 oC for 20 min (protected from light). To wash cells, 5 times 

the volume of ice-cold of RPMI 1640 supplemented with 10% FCS, 100 U/ml 

Penicillin, 100μg/ml Streptomycin and 2mM L-glutamine was added and cells 

allowed to incubate for 5 min on ice. Cells were then spun down at 400g for 5 

min at 4 oC. Cells were then resuspended at the desired concentration in RPMI 

1640 supplemented with 10% FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin 

and 2mM L-glutamine and plated as described previously. For acquisition of 

these cultures, samples were acquired on a low flow rate for peak separation.  

2.11 T cell stimulation, intracellular staining, and flow 

cytometry 

3x106 cells were resuspended in in 500μl of RPMI 1640 supplemented with 10% 

FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin and 2mM L-glutamine and 

2μl/ml solution of both stimulation cocktail and protein transport inhibitors 

(Invitrogen eBioscience™ Cell Stimulation Cocktail plus protein transport 

inhibitors (500X)). Cells were incubated for 4 hours (37°C, 5% CO2). After 

stimulation, cells were washed twice in PBS and then stained for flow 

cytometry. Fixable Viability Dye eFluor 780/506 (Ebioscience) was used to 

exclude dead cells and Fc block anti-mouse CD16/32 Antibody (Clone 93, 

BioLegend) was used to prevent non-specific binding. Cells were stained for 

surface markers in FACS buffer (PBS containing 2% FBS and 2mM EDTA 

(UltraPure™ 0.5M EDTA, pH 8.0 Cat. 15575020)) for 20 min at 4oC. All surface 

antibodies are listed in Table 2-3. For intracellular cytokine staining, 150μl of BD 

Cytofix/Cytoperm™ (554714) was added to samples to permeabilise and fix cells 
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for 20 min at 4oC. Samples were then washed in 1ml of BD Perm/Wash™ Buffer 

(554714) and 50μl of intracellular anti-cytokine antibody stain: PE-Cy7-

conjugated anti-IL-13 (eBio13A, Invitrogen), PE-conjugated anti-IL-5 (TRFK5, 

BioLegend), e450-conjugated anti-IFNγ (XMG1.2, Invitrogen)) or appropriate 

isotype control antibody was added to each sample. Samples were incubated at 

room temperature for 1 hour (protected from light).  Samples were washed as 

previously and acquired immediately on the BD LSRII flow cytometer running 

FACS-Diva software (BD Biosciences). For intracellular transcription factor 

staining, 3x106 cells were surface stained as previously and fixed and 

permeabilised using the eBioscience™ Foxp3 / Transcription Factor Staining Kit 

(ThermoFisher 00-5523-00).  Cells were fixed for 1 hour at room 

temperature (protected from light) and then resuspended in 100μl of 

intracellular transcription factor stain: eFluor 450-conjugated anti-FOXP3 (FJK-

16s, ThermoFisher), PE-Cy7-conjugated anti-T-bet (eBio4B10, ThermoFisher) and  

Marker Flurochrome Clone Dilution Manufacturer

CD11b BV421 M1/70 1/200 BD Horizon

CD19 APC-Cy7 1D3 1/200 eBioscience

CD4 APC RM4-5 1/200 BioLegend 

CD4 BV421 RM4-5 1/200 BioLegend 

CD4 BV605 RM4-5 1/200 BioLegend 

CD4 BV711 RM4-5 1/200 BioLegend 

CD4 FITC RM4-5 1/200 BioLegend 

CD4 PE-Cy7 RM4-5 1/200 BioLegend 

CD44 APC-Cy7 IM7 1/200 BioLegend 

CD44 FITC IM7 1/200 BioLegend 

CD44 PE-Cy7 IM7 1/200 eBioscience

CD45 BUV395 30-F11 1/200 BD Biosciences

CD45 BV421 30-F11 1/200 eBioscience

CD69 FITC H1.2F3 1/200 BioLegend 

CD8a BV605 53-6.7 1/200 BioLegend 

CD8a PE-Cy7 53-6.7 1/200 BioLegend 

CXCR3 PE-Cy7 CXCR3-173 1/100 BioLegend 

IL-10R PE 1B1.3a 1/100 BioLegend 

IL-4R APC I015F8 1/100 BioLegend 

IL-7R APC A7R34 1/100 eBioscience

TCRβ BV421 H57-597 1/200 BioLegend 

TCRβ PerCP Cy5.5 H57-597 1/200 BioLegend  

Table 2-4 Surface antibodies used for flow cytometry 
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PE-conjugated anti-GATA3 (TWAJ, ThermoFisher), BUV395-conjugated anti-Ki67 

(Clone B56, BD biosciences). Samples were washed as previously and acquired 

immediately on the BD LSRII or BD LSR Fortessa flow cytometer running FACS-

Diva software (BD Biosciences). Analysis was performed using FlowJo (Treestar). 

2.12 BAE preparation  

Bacterial antigen extract (BAE) was obtained by collecting faeces (20 fresh 

pellets) from several cages of naïve C57BL/6 mice in 5ml of PBS containing 

10μg/ml of DNase I (Sigma-Aldrich, DN25-100MG). 2x 5mm steel balls (Qiagen) 

were added and the sample vortexed to break up faeces. The sample was then 

sonicated 3x for 30 seconds and centrifuged for 10 min at 10,000g and 

supernatants collected and transferred to a fresh 15ml falcon. The supernatant 

was then filtered through a 0.2μm filter and 1ml aliquots made and frozen at -

80. Prior to freezing, total protein of the BAE was measured using the Qubit™ 

Protein Assay Kit. Standards were prepared according to manufacturer’s 

guidelines and all samples and standards kept in the dark once detection dye 

had been applied. Qubit was calibrated using standards and sample protein 

concentration readings given in μg/ml.  A serial dilution was carried out to 

ensure protein concentration was not above the detection limit of the Qubit.  

2.13 Ex-vivo re-stimulation 

The MLN chain was harvested and collected in RPMI 1640 supplemented with 10% 

FCS, 100 U/ml Penicillin, 100μg/ml Streptomycin and 2mM L-glutamine. A single 

cell suspension was then achieved as described previously. Cells were washed 

twice using RPMI 1640 supplemented with 10% FCS, 100 U/ml Penicillin, 

100μg/ml Streptomycin and 2mM L-glutamine. Cells were then counted (as 

described previously) and resuspended at 5x106 cells/ml,100μl of cell suspension 

(500,000 cells per well) was added to a αCD3 pre-coated 96-well round bottom 

plate (coated for 1hr at 37oC with 1μg/ml of αCD3. Where stated MLN cells were 

stimulated with either HES (provided by the Maizels laboratory, University of 

Glasgow) or BAE instead of αCD3. For HES stimulation, HES was added at 1μg/ml. 

For BAE stimulation, BAE was added at 100μg/ml (based on total protein 

concentration). Cultures were incubated (37oC, 5% Co2) for 3 days and then 

supernatants collected for further analysis.  
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2.14 Cytokine measurement  

Supernatants (90μl) were collected from in vitro T cell cultures or ex-vivo 

stimulated cultures and stored at -20oC for further analysis. For cytokine 

measurements, supernatants were diluted 1/200 in sterile filtered FACS buffer. 

Serum was also analysed for cytokines and diluted 1/2. Cytokines (IL-10, IFNγ, 

IL-13, IL-5 and IL-4) were measured using BD™ CBA Flex Sets (BD Biosciences) 

according to the manufacturer guidelines. For a standard curve, a serial dilution 

of pooled recombinant cytokines was carried out using filtered FACS buffer and 

blank wells plated containing only filtered FACS buffer to account for 

background. The standards, blanks and samples were added to a 96-well round 

bottom plate and 50μl of capture bead mix (diluted in filtered FACS buffer) 

added to each well and incubated at room temperature for 1 hour (protected 

from light). Subsequently, 50μl of detection antibody was then added and 

incubated as previously. The plate was then washed twice by adding 200μl of 

filtered FACS buffer to each well. For acquisition, samples were resuspended in 

100μl of filtered FACS buffer. A minimum of 300 beads per cytokine was 

acquired for analysis. The cytometric bead array was analysed using the 

MACSQuant® Analyser (Miltenyi Biotec). Analysis was performed using FlowJo 

(Treestar).  

2.15 Lcn2 ELISA 

Faecal samples were collected from mice infected with H. polygyrus and 

appropriate naïve controls. Three fresh faecal pellets were collected per mouse 

in PBS. Samples were immediately homogenised using a TissueLyser (Qiagen) 

(1min 25Hz) and 1x 5mm steel ball (Qiagen) per sample. Samples were then spun 

down at 12,000g for 15 min at 4oC. Supernatants were collected and placed in to 

a new 1.5ml Eppendorf and placed at -80. Naïve samples were diluted 1/10 and 

infected samples 1/25 in PBS. To determine the concentration of Lipocallin-2 

(Lcn2), an enzyme-linked immunosorbent assay (ELISA) was carried out using the 

Mouse Lipocalin-2/NGAL DuoSet ELISA (R&D systems) and DuoSet ELISA Ancillary 

Reagent Kit 2 (R&D systems) according to the manufacturers guidelines. ELISA 

wash buffer was made up of 500ml 10X PBS, 2.5ml TWEEN and made up to 5L 

using distilled water. Plates were read at 450nm using a VersaMax plate reader. 

Background was removed by subtracting the blank from all readings. The 
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concentration of Lcn2 was determined by plotting a standard curve and 

extrapolating values using GraphPad Prism. Any samples that fell above or below 

the standard curve limits were removed from analysis. To standardise our 

results, Lcn2 (pg/ml) per mg of protein was calculated to normalise Lcn2 data to 

total protein.  

2.16 BCA Assay 

Bicinchoninic acid (BCA) assay was used to measure total protein concentration 

in each faecal supernatant samples. Lcn2 values were then normalised to total 

protein of faecal supernatants to account for variability between each sample. 

Each sample was diluted as they were in the previous Lcn2 ELISA. Pierce™ BCA 

Protein Assay Kit was used according to the manufacture’s guidelines. Standards 

were made using a serial dilution with a top standard of 2mg/ml Bovine Serum 

Albumin (BSA). 10μl of standard and samples were added to each plate, along 

with blank controls. BCA reagent (50:1 dilution solution A:B) was made up, 

dispensed at 200μl per well, and incubated for 30 min at 37oC. Plates were read 

at 580nm using a TEACAN Sunrise plate reader and protein concentration 

readings given in μg/ml.  Background was removed by subtracting the blank from 

all readings.  

2.17 Albumin ELISA 

Stored faecal samples of stated timepoints, collected for the Lcn2 ELISA (section 

2.15), were thawed. To determine the concentration of faecal albumin in 

samples, an ELISA was carried out using Mouse Albumin ELISA Quantitation Set 

(Bethyl Laboratories) according to manufacturers guidelines. ELISA wash buffer 

was made up of 500ml 10X PBS, 2.5ml TWEEN and made up to 5L using distilled 

water. Plates were read at 450nm using a VersaMax plate reader. Background 

was removed by subtracting the blank from all readings. The concentration of 

Albumin was determined by plotting a standard curve and extrapolating values 

using GraphPad Prism. Any samples that fell above or below the standard curve 

limits were removed from analysis.  
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2.18 Histology 

2.18.1 Processing, embedding, and sectioning   

For duodenum cross-sections, the top 6cm of the small intestine was collected 

and using a blade, cut in to 1cm pieces and placed in to 10% neutral buffer 

formalin (NBF). Samples were left to fix overnight in NBF, washed twice in PBS 

and placed in 70% EtOH for 24hrs or for up to two weeks at 4oC. When ready to 

process, samples were fixed in paraffin wax and stored at room temperature. A 

rotary microtome was used for sectioning paraffin embedded samples. Samples 

were cut at a 5-micron thickness, placed in a 40oC water bath and collected on 

frosted microscope slides. Slides were allowed to dry for at least one hour. For 

small intestine swiss rolls, the small intestine was removed, and all visible fat 

removed. A 10ml syringe filled with PBS was used to flush out intestinal contents 

and repeated until all contents had been removed. A pre-soaked PBS skewer was 

then used to invert the intestine, which was then washed with PBS and placed 

into to 10% neutral buffer formalin. After 4 hours of fixation, samples on skewers 

were removed from 10% NBF in a fume hood, cut open longitudinally using a 

blade and then gently rolled on to a wooden toothpick. Toothpick was gently 

removed from the roll and the now complete roll placed into a tissue cassette. 

Tissue cassettes were labelled and placed back in to 10% NBF overnight. Samples 

were then placed in 70% EtOH and processed as above. 

2.18.2 Staining 

Prior to staining, slides were placed into a 60oC oven for 30-60 min. Slides were 

deparaffinised by immersing in Xylene for 3 minutes and this was carried out 

twice. To rehydrate, the slides were immersed in 100% EtOH for 2 x 3 minutes 

followed by 90% EtOH for 2 x 3 minutes and finally 70% EtOH for 2 x 3 minutes. 

Slides were then placed in running water for 3 minutes. Slides were then stained 

to investigate general histology using Haematoxylin (stains nuclei blue) and Eosin 

(stains cytoplasm and extracellular matrix pink). For the stain, slides were 

immersed in Harris Haematoxylin for 3 minutes followed by running water to 

remove excess staining. To reduce the background of this stain, slides were 

briefly dipped (2 dips) in to 1% Acid/Alcohol, rinsed in running water, immersed 

in Scott’s Tap Water Substitute for 30 seconds and rinsed in running water. To 
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counter stain with Eosin, slides were dipped in 70% EtOH (9-10 dips) and 

immersed in Eosin stain for 2-3 minutes. To dehydrate, slides were placed in 90% 

EtOH for 2 x 30 seconds, followed by 90% EtOH for 2 x 3 minutes and finally 

immersed in Xylene for 2 x 3 minutes. For quantification of goblet cells using an 

Alcian Blue PAS stain kit (Atom Scientific); slides were stained with Alcian blue 

(pH 2.5) for 10 min, washed with distilled water, treated with periodic acid 1% 

solution for 10 min, washed with distilled water, treated with Schiff reagent for 

10 min, washed in hot tap water for 2 min and then in running water for 10 min, 

stained with Haemalum Mayer for 30 seconds and washed in running water. For 

both stains’ slides were then subsequently dehydrated (gradually moving from 

70%-100% EtOH) and cleared (Xylene). Slides were mounted using DPX mounting 

medium (CellPath) and glass cover slips (ThermoFisher). Mounted slides were 

left overnight to allow to dry. 

2.18.3 Scoring 

The severity and depth of inflammation were scored by a certified pathologist 

(Virginia Gamino, VetPatólogos, Madrid, Spain)  in 5 high-power fields of two 

intestinal sections per animal, by adapting a protocol established previously 

(Erben et al., 2014). The severity was scored from 1-4: 1 – Minimal inflammation 

(<10% area evaluated), 2 – Mild inflammation (10-25% area evaluated), 3 – 

Moderate inflammation (26-50% area evaluated), 4 – Marked inflammation (>51% 

area evaluated and dense infiltrate). The depth of inflammation was scored in 

each field of view from 1-3: 1 – Mucosa, 2 – Mucosa and submucosa, 3 – 

Transmural. The combined score of inflammation and depth was scored from 0-

4; 0 – minimal and mucosal, 1 – Mild/minimal and mucosa and submucosa, 2 – 

Moderate/mild/marked and mucosa/transmural 3 – Marked/moderate and 

submucosa/transmural, 4- Marked and transmural. Both Paneth and goblet cells 

were enumerated by counting the number of cells in 10 crypts per mouse (40X). 

For parasite enumeration, all visible parasites per samples were counted. All 

slide scoring and analysis was carried out blindly by Virginia Gamino.  

2.19 Statistical analysis 

All statistical analysis was carried out using GraphPad Prism (version 8/9) and 

data represents mean + standard deviation.  A Student t test was used for 
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comparison between 2 groups and a one-way ANOVA with Tukey’s multiple 

comparison correction was carried out for comparisons between 3 or more 

groups. All data sets were tested for normality using the Shapiro-Wilk normality 

test, this test was used as all experiments had n=<50 and this test can be applied 

to smaller data sets with a minimum sample number of 2. Where data were not 

normally distributed, a Mann Whitney U test for comparisons between 2 groups 

and a Kruskal-Wallis test with Dunn’s multiple comparison correction was carried 

out for comparisons between 3 or more groups. Data represents mean with 

standard deviation. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = not 

significant 

.
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Chapter-3 Isolation of leukocytes from helminth 

infected small intestine lamina propria  

3.1 Introduction  

Helminth models are a well-established tool for understanding type 2 immunity, 

and the use of these models is critical for many areas of immunological research. 

One of these models is H. polygyrus and, as previously mentioned, this 

nematode naturally infects the small intestine of rodents and induces a potent 

type 2 immune response (Monroy and Enriquez, 1992). This is described in detail 

in Section 1.3. 

Many studies using H. polygyrus as an experimental model focus on fourteen 

days post-infection, as this is when Th2 cell expansion peaks (Perona-Wright et 

al., 2010). At this timepoint, adult worms emerge into the lumen and both 

innate and adaptive immune cells infiltrate the tissue resulting in thickening of 

the submucosa (Hewitson et al., 2011a, Rolot and Dewals, 2018). Furthermore, 

goblet cell hyperplasia occurs resulting in increased mucus production.  The 

combination of increased mucus and fragile tissue due to oedema especially 

result in high cell death when digesting leukocytes from the small intestine 

lamina propria (SILP) for further analysis. In addition, investigating myeloid 

populations introduces a further level of complexity as these cells are large and 

become more readily trapped in dying or dead cells and tissue.  Much of the 

literature, therefore, focuses on the immune response in the MLN or at earlier 

timepoints in the SILP (Mosconi et al., 2015, Pelly et al., 2016, Perona-Wright et 

al., 2010).  

To obtain a comprehensive understanding of the immune response to infection, 

immune cells at both the site of infection and priming lymph node require 

examination. Therefore, the first step in my research was to establish a method 

that allowed for the examination of cell populations in the SILP during H. 

polygyrus infection. To this end, we optimised a protocol for isolating leukocytes 

from the SILP of key timepoints during H. polygyrus infection. We used both 

intracellular staining and flow cytometry to demonstrate that our protocol 

enabled us to identify leukocyte subsets from the SILP. In addition, using this 
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protocol, we were able to investigate the secretion of the regulatory cytokine 

IL-10 in both the MLN and SILP during H. polygyrus infection from different 

leukocyte subsets.  

3.2 Aims  

• To optimise small intestine digests from H. polygyrus infected mice 

• To isolate different leukocyte populations from optimised digest protocols  

• To phenotype Th subsets from the SILP of naïve and infected mice  

• To examine IL-10 secretion by leukocyte populations in the SILP and MLN 

during H. polygyrus infection 

3.3 Results 

3.3.1 Optimisation of small intestine digests  

Mice infected with H. polygyrus for 7 days have visible encysted parasites in the 

small intestine (Figure 3-1A, red arrows). The resulting granulomas can also be 

visualised at 14 days post-infection (Figure 3-1A, red arrow). In addition, at both 

time points there is expansion of the MLN chain and an enlarged spleen (Figure 

3-1B). As previously described, there is increased mucus production in the small 

intestine during H. polygyrus infection, and at day 14, mucus production peaks 

(Anthony et al., 2007, Sharpe et al., 2018). Therefore, isolating leukocytes from 

the SILP at this timepoint is technically challenging, as mucus can result in cell 

death (Webster et al., 2020). We therefore aimed to isolate cells from the SILP 

using a protocol developed by collaborators at the University of Manchester 

(Liberase and DNase based enzyme cocktail: Table 3-1, Enzyme cocktail 1)(Shaw 

et al., 2018). Using this protocol, we found that there was large cell death when 

analysing single cell suspensions, which was shown in terms of scatter of SILP 

cells from mice 14 days post-infection and low cell yield from both naïve and 

D14 infected mice (Figure 3-1C & 1D). Cell scatter is a tool used to identify cells 

based on their size and granularity and dead cells will break up and present with 

a low side scatter. In addition, viability staining of these samples revealed <10% 
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live cells compared to the MLN, a tissue which is not technically challenging to 

isolate cells from, where viability of cells was >55% (Figure 3-1E and 1F).   

 

Figure 3-1 Cell death and low cell yield from helminth infected SILP digests pre-optimisation 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- or 14-days post-infection the small 
intestine and MLN removed. (A) Representative images of the duodenum from naïve (top) and D7 
(middle) and D14 (top) infected mice. Black arrows indicate Payers patches and red arrows 
indicate granulomas. (B) Weight (mg) of the MLN (top) and spleen (bottom) from naïve, D7 and 
D14 infected mice. (C) Representative flow scatter plot of the SILP from D14 infected mice. (D) 
Total cell number from the SILP of naïve and D14 infected mice. (E) Representative flow plot of cell 
viability from cells isolated from the small intestine (left) and MLN (right) from D14 infected mice. 
(F) Percentage of live cells from the small intestine and MLN from D14 infected mice. Graphed 
data are shown with mean ± SD and are representative of 2-3 independent experiments with n=3-5 
per experiment. Statistical significance was calculated by Student t test (D&F) and one-way 
ANOVA with Tukey’s post-test for multiple comparisons between groups where data were normally 
distributed (B (Spleen)) and Kruskal-Wallis test with Dunn’s post-test for multiple comparisons 
between groups where data were not normally distributed (B (MLN)) (Significance **p< 0.01, 
***p< 0.001, ****p< .0001).  

We next aimed to improve the viability of single cell suspensions digested from 

the small intestine of naïve and D14 infected mice. Percoll density gradients are 

a commonly used tool for the isolation of cells from dirty or sticky cell 

suspensions (Horner et al., 2019). We therefore used this technique to improve 

the viability and cell yield from our cell suspensions from naïve and D14 infected 
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mice, by removing mucus, dead cells and tissue using a density gradient. Using a 

percoll density gradient resulted in improved cell viability (>30%) from D14 

infected mice, however, the number of cells isolated from naïve mice remained 

low (<10%) (Figure 3-2A & 2B). I hypothesised that enzyme cocktail 1 (Liberase 

and DNase based enzyme cocktail: Table 3-1) was too harsh for naïve small 

intestine samples and this resulted in high cell death prior to the density 

gradient.  In addition, despite improved viability of infected samples, cell yield 

remained low, with <1x106 from naïve mice and <3x106 cells from D14 infected 

mice (Figure 3-2C & 2D). Our collaborators in the Milling & Mowat laboratories at 

the University of Glasgow, who routinely digest naïve SILP, estimated a yield of 

1x107 cells from naïve SILP. Therefore, percoll gradients were no longer used for 

small intestine digests due to low cell yield and I next aimed to compare 

different digestion enzymes used to isolate leukocytes from naïve and D14 

infected small intestines.  

 

Figure 3-2 The use of percoll gradients improved cell viability but reduced cell yield 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 14 days post-infection the small 
intestine removed. (A) Representative flow cytometry plot of cell viability from cells isolated using 
percoll from the small intestine from D14 infected mice (B) Percentage of live cells from the small 
intestine from naive D14 infected mice isolated with and without percoll gradient. (C) 
Representative flow scatter plots from cells isolated with (left) and without (right) percoll from D14 
infected small intestines. (D) Total cell number from small intestine cells isolated with percoll 
gradients from naïve and D14 infected mice. Graphed data are shown with mean ± SD and are 
pooled from 2-3 independent experiments with n=2-5 per experiment Statistical significance was 
calculated by Student t test (Significance ****p< 0.0001).  
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Due to poor viability and cell yield using enzyme cocktail 1, we tested new 

enzyme cocktails to improve viability and cell yield of SILP samples from both 

naïve and D14 infected mice (Figure 3-3). We tested two protocols; firstly, we 

tested the enzyme digest previously used to digest small intestine samples in the 

Perona-Wright laboratory (Table 3-1, Enzyme cocktail 2), which uses the 

enzymes Collagenase D, Dispase and DNase.  Secondly, we adapted a protocol 

developed by the Mowat and Milling laboratories (Table 3-1, Enzyme cocktail 3a) 

which uses the enzyme Collagenase VIII. This protocol had previously been used 

to isolate cells from the SILP of mice infected with Salmonella enterica serovar 

Typhimurium, especially in successfully isolating myeloid cells from these 

infected tissues (Chirdo et al., 2005, Bravo-Blas et al., 2019, Cerovic et al., 

2013). I combined this protocol with the use of DNase (Table 3-1, Enzyme 

cocktail 3b). 

Name Enyzme Concentration Protocol source

Liberase 0.1mg/ml

DnaseI 0.02mg/ml

Collagenase D 0.5mg/ml

Dispase 0.5mg/ml

DnaseI 0.02mg/ml

Collagenase VIII 0.5mg/ml

Collagenase VIII 0.5mg/ml

DnaseI 0.02mg/ml

Enzyme cockatil 3a
Milling & Mowat Labratories        

The Unviersity of Glasgow

Enzyme cockatil 3b
Milling & Mowat Labratories        

The Unviersity of Glasgow

Enzyme cocktail 1
Dr John Grainger                              

The University of Manchester

Enzyme cocktail 2
Dr Stephen Redpath                        

The Unviersity of British Columbia

 

Table 3-1 Enzyme cocktails used for SILP digest optimisation 

 

Analysis of these digests demonstrated that the use of Collagenase VIII and 

DNase gave higher cell yield, improved cell viability and percentage of CD4+ T 

cells (Figure 3-3A – 3D). In addition, during future digests, DNase was no longer 

used as viability improved further when this was not included in the digest (data 

not shown). Enzyme cocktail 3a was therefore used for all future experiments. 

Collagenase VIII is a mixture of enzymes, containing additional proteases 

including clostripain, potentially improving the efficacy of digestion. These data 

demonstrate that we have developed a protocol that enabled successful isolation 

of live cells from the SILP with high cell yield for further use in downstream 

analysis. 
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Figure 3-3 Comparison of different enzymes used for digestion optimisation 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 14 days post-infection the small 
intestine removed. (A-B) Representative flow gating of CD4+ T cells from D14 infected small 
intestines digested with different enzyme cocktails.  (C) Percentage of live cells and (D) Percentage 
of CD4+ T cells of D14 infected small intestines digested with different enzyme cocktails. Graphed 
data are shown with mean ± SD with n=3 per experiment.  

3.3.2 Isolation of leukocyte subsets from optimised small 

intestine digests 

To demonstrate that CD4+ T cells could be successfully isolated at our timepoints 

of interest (day 7 and day 14), we used enzyme cocktail 3b to digest small 

intestines from naïve, D7 and D14 H. polygyrus infected mice (Figure 3-4A-4D). 

CD4+ T cells were successfully isolated from each of the 3 timepoints, with 

improved cell yield and consistent viability compared to earlier experiments 

(Figure 3-4E & 4F). As expected CD4+ T cells increased at D14 compared to naïve 

mice, which is the peak T cell response to infection (Figure 3-4C & 4D)(Perona-

Wright et al., 2010). Although CD4+ T cells were the primary cell of interest for 

our experiments, we also wanted the ability to analyse other cell types for 

future experiments. To confirm our optimised digests would allow for these 

types of experiments, we carried out broad phenotyping of different cell subsets 

from naïve and D7 infected mice (Figure 3-5A & 5B). We were able to isolate 

CD4+ T cells (CD45+ TCRβ+ CD8- CD4+, as shown in Figure 3-4B), CD8 T cells (CD45+ 

TCRβ+ CD4- CD8+), CD45+ TCRβ- CD19- CD11b+ cells as broad phenotyping of 
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myeloid cells, B cells (CD45+ TCRβ- CD11b- CD19+) and ILCs (CD45+ TCRβ- CD11b- 

CD19- IL-7R+) (Figure 3-5A). 

 

Figure 3-4 Successful isolation of CD4+ T cells from SILP using optimised digest 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the small 
intestine removed. (A-C) Representative flow gating of CD4+ TCRβ+ from naïve (top), D7 (middle) 
and D14 (bottom) infected small intestine samples. (D) Percentage CD4+ TCRβ + T cells (E) 
Percentage live cells and (F) total cell number from naïve, D7 infected small intestines digested 
using the optimised protocol. Graphed data are shown with mean ± SD and are representative of 2-
3 independent experiments with n=4-5 per experiment. Statistical significance was calculated by 
one-way ANOVA with Tukey’s post-test for multiple comparisons between groups (Significance 
*p< 0.05, ****p< 0.0001) 

When comparing the percentage of each cell subset of total CD45+ cells from 

naïve and D7 infected mice (Figure 3-5B), we observed an increase in percentage 

of CD4+, CD8+ and myeloid cells in infected small intestines and a striking 

decrease in the percentage of B cells upon infection. Importantly, these data 

show that our optimised protocol enables the isolation of different leukocyte 
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subsets from the SILP, including myeloid cells which are more challenging to 

isolate from tissue with high mucus content, due to their size.  

 

Figure 3-5 Successful isolation of leukocyte subsets from the SILP using the optimised 
digest 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7 days post-infection the small intestine 
removed. (A) Representative gating of cell subsets isolated from D7 infected small intestine 
samples.  (B) Percentage of each cell subset of total CD45+ cells from naïve and D7 infected small 
intestines. Gating for IL-7R+, CD11b+ and CD19+ cells was carried out using appropriate FMO 
controls. Data are representative of 3 independent experiments with n=3-5 per experiment.  

3.3.3 Phenotyping T helper cell subsets in the SILP  

Having established our technique, we now wanted to examine differences in Th 

subsets in the SILP and MLN.  In both the MLN and SILP there is an increase in 

activated CD4+ T cells 7- and 14-days post H. polygyrus infection, based on high 

expression of CD44 (CD44hi) (Figure 3-6). In the MLN, a small proportion of cells 

were CD44hi whereas in the SILP, almost all CD4+ T cells were CD44hi (Figure 3-6A 

– 6C), reflecting that activated and primed CD4+ T cells leave the lymph node 

and migrate to the tissue. This emphasises the importance of investigating both 
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the priming site and tissue as CD4+ T cell response dynamics are very different at 

both sites.  

 

Figure 3-6 In both the MLN and SI, CD44hi CD4+ T cells increase 7 and 14 days post-infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the MLN 
and small intestine collected for analysis. Representative flow plots of CD44hi staining of CD4+ 

TCRβ + T cells in (A) the MLN and (B) the small intestine.  (C)  Percentage of CD44hi of CD4+ TCRβ 

+ T cells in naïve, D7 and D14 infected mice. Graphed data are shown with mean ± SD and are 
pooled from 2-3 independent experiments with n=4-5 per experiment. Statistical significance was 
calculated by one-way ANOVA with Tukey’s post-test for multiple comparisons between groups 
where data were normally distributed (C (MLN)) and Kruskal-Wallis test with Dunn’s post-test for 
multiple comparisons between groups where data were not normally distributed (C (SILP)) 
(Significance **p< 0.01, ***p< 0.001).  

We next tested if, using the optimised protocol, we could measure type 2 

cytokine secretion by flow cytometry from activated CD44hi T cells in the SILP 

and MLN from naïve, D7 and D14 infected mice. This process requires stimulation 

with PMA and ionomycin for 4 hours, which can increase cell death. My aim here 

was to ensure that the optimised cell isolation protocol was suitable for this type 

of analysis.  Both IL-5 and IL-13 are key cytokines in the Th2 response. The 

percentage of IL-5+ CD44hi CD4+ T cells and IL-13+ CD44hi CD4+ T cells in the MLN 

increased 7- and 14-days post-infection compared to naïve mice (Figure 3-7A -

7D). In the SILP, the percentage of IL-5+ CD44hi CD4+ T cells and IL-13+ CD44hi 

CD4+ T cells in the SILP increased 7 days post-infection, although this increase 

was not significant, and increased significantly at 14-days post-infection 

compared to uninfected controls (Figure 3-7E – 7H). This is in keeping with peak 

CD4+ T cell responses and occurring at day 14 post-infection (Perona-Wright et 

al., 2010). These data confirm that our optimised small intestine digest method 

allows for accurate cytokine staining from naïve, D7 and D14 infected mice. 
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Figure 3-7 There is increased type 2 cytokine secretion in both the MLN and SILP during H. 
polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the MLN 
and small intestine collected for analysis. Representative flow plots of (A) IL-5+ and (B) IL-13+ 
staining of CD4+ TCRβ+ CD44hi T cells in the MLN from naïve, D7 and D14 infected mice. 
Percentage of (C) IL-5+ and (D) IL-13+ CD4+ TCRβ+ CD44hi T cells in the MLN from naïve, D7 and 
D14 infected mice. Representative flow plots of (E) IL-5+ and (F) IL-13+ staining of CD4+ TCRβ+ 

CD44hi T cells in the small intestine from naïve, D7 and D14 infected mice. Percentage of (G) IL-
5+ and (H) IL-13+ CD4+ TCRβ+ CD44hi T cells in the small intestine of naïve, D7 and D14 infected 
mice. Gating for IL-13+ and IL-5+ cells was carried out using appropriate isotype controls.  Graphed 
data are shown with mean ± SD and are representative of 2-3 independent experiments with n=4-5 
per experiment. Statistical significance was calculated one-way ANOVA with Tukey’s post-test for 
multiple comparisons between groups where data were normally distributed (D, G, H) and Kruskal-
Wallis test with Dunn’s post-test for multiple comparisons between groups where data were not 
normally distributed (C) (Significance *p< 0.05, **p< 0.01, ***p< 0.001, ****p< .0001). 
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Figure 3-8 Changes in the frequency and number of Th1 and Th2 cells in the MLN and SI, 7- 
and 14- days post infection with H. polygyrus infection  
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the MLN 
and small intestine collect for analysis. Representative flow plots of (A) GATA3+ and (B) TBET+ 
staining of CD4+ TCRβ + CD44hi T cells from the MLN of naïve, D7 and D14 infected mice. (C) 
Percentage of GATA3+ and TBET+ of CD4+ TCRβ + CD44hi T cells from naïve, D7 and D14 infected 
mice. (D) Total number GATA3+ and TBET+ CD4+ CD44hi T cells in the MLN from naïve and D7 
infected mice. Representative flow plots of (E) GATA3+ and (F) TBET+ staining of CD4+ TCRβ + 
CD44hi T cells from the small intestine of naïve, D7 and D14 infected mice. (G) Percentage of 
GATA3+ and TBET+ of CD4+ TCRβ + CD44hi T cells from the small intestine of naïve, D7 and D14 
infected mice. (D) Total number GATA3+ and TBET+ CD4+ CD44hi T cells in the small intestine from 
naïve and D7 infected mice. Gating for TBET+ and GATA3+ cells was carried out using appropriate 
isotype controls. Graphed data are shown with mean ± SD and are representative of 1-3 
independent experiments with n=4-5 per experiment. Statistical significance was calculated by 
Student t test (D&H) and one-way ANOVA with Tukey’s post-test for multiple comparisons between 
groups (C&G) (Significance *p< 0.05, **p< 0.01, ***p< 0.001, ****p< .0001). 

We also aimed to confirm our definition of Th2 cells in the MLN and SILP using 

the TF GATA3; we also considered TBET as a marker of Th1 cells. We therefore 

measured the expression of GATA3 and TBET in CD44hi CD4+ T cells from naïve, 
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D7 and D14 H. polygyrus infected mice in the SILP and MLN using our optimised 

protocol.  Staining for transcription factors to identify Th subsets involves 

numerous steps of fixation, permeabilization and staining which can reduce 

sample viability. In the MLN, the percentage of GATA3+ but not TBET+ CD44hi 

CD4+ T cells increased at D7 of infection compared to naïve controls. In addition, 

at D14 the increase in GATA3+ CD44hi CD4+ T cells was maintained compared to 

uninfected controls (Figure 3-8A-D).  The percentage of GATA3+ but not TBET+ 

CD44hi CD4+ T cells increased in the SILP at both D7 and D14 of infection 

compared to naïve controls (Figure 3-8E-H). As expected, in both tissues from D7 

infected mice, GATA3+ CD44hi CD4+ T cells were the dominant Th subset 

compared to TBET+ CD44hi CD4+ T cells, based on the percentage of these cells in 

the MLN and SILP compared to naïve mice. This was reflected in the total 

number of GATA3+ CD44hi CD4+ T cells and TBET+ CD44hi CD4+ T cells from D7 

infected mice in both tissues (Figure 3-8D & 8H). Although we did see an 

increase in the total number of TBET+ CD44hi CD4+ T cells in the MLN and SILP.  

Unfortunately, due to technical error, the total number of GATA3+ CD44hi CD4+ T 

cells and TBET+ CD44hi CD4+ T cells at D14 of infection were not calculated.  I 

predict that the number of GATA3+ CD44hi CD4+ T cells would have increased 

further at day 14 post infection as this is known to be the peak of the Th2 

response (Perona-Wright et al., 2010). 

Regulatory T cells are critical in preventing immune dysregulation (White et al., 

2020). Through the secretion of regulatory cytokines such as IL-10 and TGF-β, 

Tregs have the capacity to suppress effector T cell responses (Smith et al., 2016, 

White et al., 2020). FOXP3+ CD4+ regulatory T cells have previously been shown 

to increase during H. polygyrus infection in the MLN and at early timepoints (D7) 

of infection in the SILP (Finney et al., 2007, Smith et al., 2016, Rausch et al., 

2008, Redpath et al., 2013). Although suppression of Th2 cells in helminth 

infection has been demonstrated to be independent of IL-10 secretion by Tregs 

(Smith et al., 2016).  Expansion of these cells in the MLN typically peaks at D21 

of infection, although expansion can be seen from D7 of infection (Rausch et al., 

2008, Finney et al., 2007, Smith et al., 2016).  Therefore, we examined changes 

in Tregs 7- and 14-days post-infection in the SILP. The percentage of FOXP3+ 

CD4+ T cells increased at D7 in both the MLN and the SILP compared to naïve 

controls. At D14, the percentage of FOXP3+ CD4+ T cells increased in the MLN 

only (Figure 3-9A-9D). The absolute number of Tregs also increased in D7 
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infected mice in both tissues, compared to naïve, but sadly, as explained above, 

cell numbers for D14 infected mice could not be calculated.  I hypothesise that 

similar to GATA3+ CD4+ T cells these cells would have continued to increase, 

particularly in the MLN as this has been published previously (Finney et al., 

2007). Although the percentage of FOXP3+ CD4+ T cells did not increase in the 

SILP at D14 of infection compared to D7, peak Treg responses are reported at 

later timepoints such as D21. I predict that at timepoints such as D21 of 

infection, the number and percentage of Tregs would also increase in the SILP 

based on published reports in the MLN (Smith et al., 2016, Bowron et al., 2020). 

My data add to already published data by showing that Treg frequency increases 

not only in the MLN during H. polygyrus infection, but also in the infected tissue 

site. 

 

Figure 3-9 There is an increase in Tregs in the MLN and SILP, 7- and 14- days post-infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the MLN 
and small intestine collect for analysis. Representative flow plots of FOXP3+ staining of CD4+ TCRβ 

+ T cells from the (A) MLN and (B) small intestine of naïve, D7 and D14 infected mice. (C) % of 
FOXP3+ CD4+ TCRβ + T cells in the MLN and small intestine from naïve, D7 and D14 infected mice. 
(D) Total number of FOXP3+ CD4+ TCRβ + T cells in the MLN and small intestine from naïve, D7 
infected mice. Gating for FOXP3+ cells was carried out using an appropriate isotype control. 
Graphed data are shown with mean ± SD and are representative of 1-3 independent experiments 
with n=4-5 per experiment. Statistical significance was calculated by Mann Whitney U test where 
data were not normally distributed (D (MLN)) and Student t test where data were normally 
distributed (D, SILP) and one-way ANOVA with Tukey’s post-test for multiple comparisons between 
groups where data were normally distributed (C, MLN) and Kruskal-Wallis test with Dunn’s post-
test for multiple comparisons between groups where data were not normally distributed (C (SILP)) 
and (Significance *p< 0.05, ***p< 0.001, ****p< .0001). 

To summarise our data so far, we have shown that despite both cytokine and 

transcription factor stains requiring harsh treatment of cells, viability of SILP 

samples was maintained from naïve, D7 and D14 infected mice (Figure 3-10A – 
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10F). As expected, viability was reduced, particularly at D14, when carrying out 

cytokine staining, as this requires 4 hours of intense stimulation and at least 10% 

cell death is expected (Figure 3-10D-F). These data demonstrate that the 

optimised digest protocol allows us to measure the Th2 immune response to H. 

polygyrus infection described in the literature.  

 

Figure 3-10 Restimulation, fixation and permeabilization does not reduce cell viability  
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14-days post-infection the small 
intestine collected for analysis. (A) Flow chart of transcription factor stain method. (B) Percentage 
of live cells from naïve, D7 and D14 infected mice and (C) total number live cells from naïve and 
D7 infected mice. (D) Flow chart of cytokine stain method. (E) Percentage of live cells from naïve, 
D7 and D14 infected mice and (F) total number live cells from naïve, D7 and D14 infected mice.  
Graphed data are shown with mean ± SD and are representative of 1-3 independent experiments 
with n=4-5 per experiment Statistical significance was calculated by Student t test (C) and one-way 
ANOVA with Tukey’s post-test for multiple comparisons between groups (B, E, F) (Significance 
*p< 0.05).  

3.3.4 IL-10 secretion increases in the MLN and small intestine 

during infection 

One of the main aims of this thesis was to understand the role of IL-10 in the 

immune response to H. polygyrus infection. Establishing a method for isolating 

cells from the SILP allowed us to address this question. However, we first 

wanted to examine IL-10 expression in the SILP during H. polygyrus infection 

using our optimised protocol. As discussed previously, IL-10 is a regulatory 

cytokine that is reported to have an important role in gut homeostasis in both 

mice and humans (Glocker et al., 2009, Kotlarz et al., 2012, Moran et al., 2013, 

Kühn et al., 1993, Spencer et al., 1998, Franke et al., 2008). The role of IL-10 

has been debated in the context of a Th2 response, and there is evidence both 

that it can promote the Th2 response and that it has the capacity to suppress 
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Th2 cells (Laouini et al., 2003, Golebski et al., 2021). In the context of H. 

polygyrus, Treg derived IL-10 does not appear to suppress Th2 responses (Smith 

et al., 2016).  Previously, ex-vivo restimulated SILP cells from H. polygyrus 

infected mice had increased IL-10 secretion compared to naïve controls 

(Setiawan et al., 2007).  Increased IL-10 secretion by Tregs in the in the MLN  

 

Figure 3-11 An increase in IL-10 expression in multiple cell types in both the MLN and small 
intestine during infection 
Il10gfp-foxp3rfp B6 or C57BL/6 mice were infected with 200 L3 H. polygyrus and 7- and 14- post-
infection the MLN and small intestine collected for analysis. (A) MLN cells from naïve, D7, D14 and 
D21 infected mice were stimulated ex vivo with anti-CD3 and 3 days later supernatants collected, 
and concentration of IL-10 measured. Percentage of IL-10+ of (B) CD45+, (C) CD8+, (D) CD4+, (E) 
CD19+, (F) IL-7R+ and (G) CD11b+ cells from the MLN and small intestine of naïve and D7 infected 
report mice. Percentage of each cell subset of total IL-10+ CD45+ cells from (H) the small intestine 
and (I) the MLN of naïve and D7 infected reporter mice. Graphed data are shown with mean ± SD 
and are representative of 1-5 independent experiments with n=2-5 per experiment. Gating for IL-
10+ cells was carried out using samples from a WT C57BL/6 mouse, to account for any background 
fluorescence. Statistical significance was calculated by Student t test where data were normally 
distributed (B, D (SILP)) and Mann Whitney U test where data were not normally distributed (C, D 
(MLN), E, F, G) and a one-way ANOVA with Tukey’s post-test for multiple comparisons between 
groups (A) (Significance *p< 0.05, **p< 0.01, ***p< 0.001, ****p< .0001).  

and SILP during H. polygyrus infection has been reported (Setiawan et al., 2007, 

Redpath et al., 2013, Finney et al., 2007). However, its expression by different 
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cell types in the SILP is poorly described in the literature due to the difficulty of 

isolating cells from the SILP during H. polygyrus infection. We therefore aimed 

to measure IL-10 expression in the MLN and SILP during H. polygyrus infection. 

We carried out ex-vivo re-stimulations of whole MLN cells at D7 and D14 post 

infection with H. polygyrus and measured IL-10 in the supernatant (Figure 

3-11A). We observed increased IL-10 secretion from cells isolated during 

infection, and this IL-10 release peaked at D7 post infection in the MLN (Figure 

3-11A). We therefore focused on this timepoint for further analysis of the SILP 

and MLN.  To measure IL-10 expression by different cell subsets in the MLN and 

SILP, we used Il10gfp-foxp3rfp B6 mice reporter mice. We found that, overall, 

the percentage of IL-10+ CD45+ cells increased in both the MLN and the SILP 

compared to naïve controls. In addition, baseline IL-10+ CD45+ was overall higher 

in the SILP compared to the MLN (Figure 3-11B). To gain a deeper understanding 

of the cell subsets producing IL-10 in the SILP and MLN during infection, IL-10 

secretion from different cell populations was analysed using the gating strategy 

described in Figure 3-5A (Figure 3-11C-G). In the SILP, the percentage of IL-10+ 

CD8 T cells, B cells and ILCs increased D7 post-infection compared to uninfected 

mice. Whereas the percentage of IL-10+ CD4+ T cells in the SILP did not increase 

with infection and there was decrease in the percentage of IL-10+ myeloid cells 

compared to uninfected mice in the SILP (Figure 3-11C-G). In the MLN, the 

percentage of IL-10+ B cells and myeloid cells remained unchanged between 

naïve and infected samples, whereas the percentage of IL-10+ CD8+ T cells, CD4+ 

T cells, ILCs increased upon infection. IL-10 expression in both naïve and 

infected mice was higher in the SILP compared to the MLN (Figure 3-11B-G), 

which again highlights the importance of investigating both the priming site and 

tissue when assessing immune responses to infection.  

Further analysis of these data, assessing the proportions of different cell types 

represented within the IL-10+ CD45+ population revealed that, in the SILP, CD4+ T 

cells and myeloid cells made up the majority of the IL-10+ CD45+ cells (Figure 

3-11H). In addition, 7 days post H. polygyrus infection, there was an increase in 

the proportion of IL-10+ CD8+ T cells, CD4+ T cells and B cells and a decrease in 

IL-10+ myeloid cells (Figure 3-11H). In the MLN CD4+ T cells made up more than 

half of IL-10+ CD45+ cells and there were no significant changes upon infection 

with H. polygyrus (Figure 3-11I). These data show that although we did not see 

an increase in the percentage of CD4+ T cells that expressed IL-10 upon 
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infection, this cell population is nonetheless one of the main producers of IL-10 

in both the SILP and the MLN, in naïve as well as infected animals. 

Together, the data in this chapter demonstrate that we have optimised a SILP 

digest protocol that allows for successful isolation of multiple immune cells from 

H. polygyrus infected SILP, with high cell yields and viability. In addition, this 

protocol provides a method for accurate analysis and characterisation of immune 

cell subsets. In keeping with the literature, we show that Th2 cells are the main 

effector population in the SILP. In addition, we report that the total number of 

Th1 cells in the SILP and MLN also increases with H. polygyrus infection, 

although the total numbers of these cells were low overall. We also report 

increased Tregs in the SILP and examine IL-10 producing cells in both the SILP 

and MLN during H. polygyrus infection which provides important information 

about the source of this cytokine during infection.  By optimising this technique, 

we were able to address some of the main aims of this thesis and we have also 

provided a new insight into the immunology of H. polygyrus infection.  

3.4 Discussion 

3.4.1 Validation of optimised helminth infected SILP digestion 

protocol  

The SILP has been investigated extensively in the literature in both naïve mice 

and those infected with organisms such as bacteria and viruses (Bravo-Blas et 

al., 2019, Perona-Wright et al., 2012, Cerovic et al., 2013, Isakov et al., 2011). 

The same however cannot be said for immune cell analysis in the SILP during 

helminth infection. The induction of a ‘weep and sweep’ response is a key part 

of the type 2 immune response but results in tissue samples that are very fragile 

and that quickly die ex vivo. This is due to elevated mucus production, 

infiltration of leukocytes and granulocytes, fibrosis, and the release of immune 

mediators such as cytokines and histamines (Allen and Maizels, 2011, Allen and 

Wynn, 2011, Webb and Tait Wojno, 2017). In this chapter, I aimed to study the 

immune response to H. polygyrus at the site of infection as well as in the MLN. 

This required the optimisation of isolating cells from infected tissues first. Our 

optimised protocol allowed us to identify Tregs, Th2 and Th1 cells in the SILP 

during H. polygyrus infection. In addition, we show that the regulatory cytokine 
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IL-10 is predominately a tissue-based cytokine and its expression is increased in 

numerous cell types during H. polygyrus infection.    

The importance of studying tissue immunity is becoming increasingly important, 

and this is reflected in back-to-back publications of methods for isolating cells 

from the SILP of H. polygyrus infected small intestine samples (Ferrer-Font et 

al., 2020, Webster et al., 2020, Jarjour et al., 2020).  Numerous studies have 

reported MLN cytokine dynamics during H. polygyrus infection, but studies of 

small intestinal cytokines during infection have been restricted to gene 

expression, ex-vivo restimulation or earlier timepoints of infection (<D7) 

(Redpath et al., 2013, Filbey et al., 2014, Setiawan et al., 2007, Pelly et al., 

2016, Blum et al., 2012). For successful downstream analysis using techniques 

such as flow cytometry and intracellular staining, high cells yield, and viability 

are required. Our use of percoll gradients aimed to remove debris and dead 

cells, although this technique improved cell viability, it extended the length of 

our protocol and gave poor cell yields (around 1 million cells/sample). On 

average, our collaborators in the Milling laboratory at the University of Glasgow, 

digest 10 million cells from a naïve SILP.  The low cell number from naïve small 

intestines indicated that there was high cell death prior to the use of the percoll 

gradient. This suggested that the digestion protocol itself (Table 1-1, Enzyme 

cocktail 1) was too harsh for isolating SILP cells from naïve mice, where the 

mucus layer is thinner compared to infected mice (Johansson and Hansson, 2016, 

Zhao et al., 2003, Anthony et al., 2007). Through testing of different enzyme 

cocktails (Table 3-1), we improved the cell yield and viability of our samples 

with Collagenase VIII giving the highest viability and percentage of CD4+ T cells. 

This digest also gave the highest cell yield (data not shown). We could not show 

these data due to software issues resulting in the loss of data but all future 

experiments with this digest reflect this. Through optimisation of enzyme 

cocktails and timing of both processing and digestion of samples, our data 

demonstrate that we developed a SILP digest protocol that allows for the 

isolation of viable leukocytes with high cell yield from the SILP at both D7 and 

D14 post H. polygyrus infection, which are two important immunological time 

points.  

As discussed previously, despite the high mucus content of these samples we 

were able to isolate various leukocyte subsets, including myeloid cells. Myeloid 
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cells are notoriously difficult to isolate from these kinds of tissues and prone to 

cell death ex-vivo. We used CD11b as a broad marker for myeloid cells for these 

experiments. Deeper analysis of these subsets to look at distinct populations of 

monocytes, macrophages and DCs has been carried out by our collaborators in 

the Milling laboratory at the University of Glasgow, published alongside our own 

data in our recent methods paper (Webster et al., 2020). The data from this 

study showed that macrophages increase with H. polygyrus infection and this is 

maintained from D7 to D14 (Webster et al., 2020). However, although DCs and 

neutrophils increase at D7 of infection compared to naïve mice, the total 

number of these cells returns to baseline at D14 of infection (Webster et al., 

2020). These observations are in keeping with the overall increase in the 

proportion of CD11b+ cells we report at D7 of infection compared to naive 

controls. In addition to identifying both innate and adaptive cell subsets we 

were also able to show changes in the proportions of these cells in the SILP 7 

days post-infection. In particular, CD4+ T cells were shown to significantly 

increase at D14 post-infection compared to naïve controls. This confirms that 

our protocol allows for accurate representation of the immunobiology during 

infection as it is well established in the literature that D14 is the peak of the 

CD4+ T cell expansion during H. polygyrus infection (Perona-Wright et al., 2010).  

3.4.2 Investigating Th cell subsets in both the MLN and SILP 

during H. polygyrus infection  

The analysis of both cytokine secretion and transcription factor expression by 

CD4+ T cells is key for the investigation of CD4-mediated immune responses. 

Therefore, in addition to isolating CD4+ T cells, we demonstrated that we could 

carry out these deeper analyses without losing consistent cell viability and yield. 

The increase in Th2 cells observed at D7 and D14, both in terms of IL-5 and IL-13 

secretion and GATA3 expression, show that the isolated cells from the SILP 

reflect the described immune response to H. polygyrus in the literature (Maizels 

et al., 2012). Although IL-4 is a key Th2 cytokine along with IL-5 and IL-13, 

particularly in the priming of Th2 cells in the MLN (Perona-Wright et al., 2010, 

Redpath et al., 2015), we were unable to assess IL-4 expression due to poor 

staining of this cytokine. The Th2 cytokines IL-13, IL-4 and IL-5 all play 

important roles in the type 2 immune response, however, the localisation and 

function of these cytokines at different sites varies. IL-4 is found in high 
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concentrations in the MLN during infection, and in comparison, the levels of IL-

13 and IL-5 are lower (Redpath et al., 2015). Furthermore, the target cells of 

these cytokines differ. IL-13 primarily targets epithelial cells, ILC2s and AAMs, 

all of which typically localise within the tissue (Mckenzie et al., 1998, Kuhn et 

al., 1991, Reynolds et al., 2012, Pelly et al., 2016). Similarly, the targets of IL-5 

signalling are primarily tissue-based cells, IL-5 is key for the recruitment of 

granulocytes and for the degranulation of basophils (Kouro and Takatsu, 2009, 

Obata-Ninomiya et al., 2020). Despite the main functions of IL-4 being B cell 

class switching and Th2 polarisation in the MLN (King and Mohrs, 2009, Kuhn et 

al., 1991, Redpath et al., 2015). IL-4 is also present in the infected tissue and 

contributes towards the activation of AAMs and further drives DC mediated Th2 

cell polarisation (Cook et al., 2012, Jang and Nair, 2013). I hypothesise that IL-4 

may have significantly decreased in the MLN with IL-10R blockade, similar to the 

decrease in IL-13 and IL-5 in the tissue, which would reflect the site-specific 

primary functions of these cytokines.  

It is well established that Th2 cells are essential for type 2 immune responses.  

However, we also assessed the Th1 master transcription factor TBET and found 

that in the SILP and MLN, Th1 cells increased but were not nearly as prevalent as 

Th2 cells. This is interesting as immune competition between Th subsets is 

important for the outcome of an immune response to infection (Magombedze et 

al., 2014). There is some evidence of the presence of Th1 cells during H. 

polygyrus in the literature (Reynolds et al., 2014a, Filbey et al., 2014)  and we 

have investigated this underlying Th1 response further in Chapter-5 as a possible 

source of immune competition during H. polygyrus infection. The presence of a 

Th1 response during H. polygyrus infection would suggest counter-regulation of 

the Th2 response. To further examine the idea of regulation, we considered both 

Tregs and the expression of the immunosuppressive cytokine IL-10.  

3.4.3 IL-10 in the immune response to helminth infection 

Tregs, IL-10 and TGFβ are an important component of the immune response to 

H. polygyrus infection (Finney et al., 2007, White et al., 2020, Redpath et al., 

2013, Smith et al., 2016, Rausch et al., 2008) and in keeping with the literature 

we saw an increase in FOXP3+ CD4+ T cells in both the MLN and SILP at D7 of H. 

polygyrus infection (Finney et al., 2007, Redpath et al., 2013). Our data shows 
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that in the SILP, this increased percentage of Tregs is not observed at D14, 

unlike in the MLN where Tregs continue to increase at D14 of infection. Although 

IL-10 is secreted by Tregs, suppression of Th2 responses by Tregs is independent 

of IL-10 in H. polygyrus infection (Smith et al., 2016).  

The expression of IL-10 increases during H. polygyrus infection (Finney et al., 

2007, Setiawan et al., 2007, Redpath et al., 2013, Filbey et al., 2014, Leung et 

al., 2012). Its important role in helminth infection has been shown in other 

parasite models. IL-10 is key for host survival in T. muris infection, IL-10-/- mice 

infected with this parasite had a significantly lower survival rate compared top 

WT controls (Schopf et al., 2002). In addition, IL-4R dependent IL-10 production 

maintains Th2 dominance during infection with N. brasiliensis (Balic et al., 

2006). S. mansoni infection reduced tissue damage in a model of airway 

inflammation and this was IL-10 dependent (Marinho et al., 2016). These studies 

demonstrate the protective effects of helminth induced IL-10 secretion.  The 

optimised protocol allowed us to investigate IL-10 in the SILP in different cell 

subsets and our data demonstrate that IL-10 is highly expressed in the tissue 

compared to the priming lymph node. This is most likely due to its essential role 

in gut homeostasis as IL-10-/- mice develop severe colitis (Kühn et al., 1993, 

Spencer et al., 1998, Kole and Maloy, 2014) . Interestingly, the development of 

spontaneous colitis in IL-10-/- mice is dependent on the microbiota, as specific-

pathogen-free (SPF) mice have a delayed intestinal inflammation (Kullberg et 

al., 1998). Furthermore, infecting IL-10-/- SPF mice with the pathogenic bacteria 

Helicobacter hepaticus induces chronic colitis (Kullberg et al., 1998). The 

presence of the microbiota in the intestine adds a layer of complexity when 

studying this tissue compared to the LN and highlights the requirement for IL-10 

in the maintenance of homeostasis. The dominant IL-10 producing cells in the 

SILP were CD4+ T cells and myeloid cells, both cell types are known to express 

this cytokine in naïve mice to maintain immune homeostasis (Kole and Maloy, 

2014, Mantovani and Marchesi, 2014). Increased IL-10 expression during H. 

polygyrus infection by both innate and adaptive cells in both the SILP and MLN 

further suggests that this cytokine is important in the type 2 immune response to 

H. polygyrus infection. However, the dynamics of this remain unclear. In 

Chapter 3 I investigate the role of IL-10 on Th2 immunity during H. polygyrus 

infection.  
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3.4.4 Concluding remarks 

There is an expanding need to investigate immune responses not only at 

lymphoid priming sites but at the sites of infection too. The idea of resident T 

cell memory in the tissues reshaped how we see immunity in many ways 

(Carbone and Gebhardt, 2019) and this may also be the case for tissue-specific 

immune responses to helminth infection. Type 2 cytokines can be broadly but 

not exclusively described as tissue and lymphoid cytokines, with IL-13 and IL-5 

being recognised as tissue cytokines whereas IL-4 is concentrated in the MLN 

(Liang et al., 2011, Redpath et al., 2015). Using our optimised and validated 

protocol, we can now examine immune cells in both the MLN and SILP to obtain 

a deeper understanding in to key immunobiology dynamics in H. polygyrus 

infection. Our data report the presence of Tregs, Th1 and Th2 cells at both D7 

and D14 of H. polygyrus infection in the SILP. Furthermore, we show that IL-10 

expression is upregulated on numerous cell types during H. polygyrus infection 

and that the role of IL-10 may be largely tissue-based based on the expression of 

this cytokine.  
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Chapter-4 IL-10 drives tissue-based Th2 

responses to helminth infection 

4.1 Introduction  

The type 2 effector mechanisms in the immune response to helminth infection 

such as mucus production, oedema and smooth muscle contractility, that are 

critical for helminth expulsion, are pathogenic in atopic disease such as asthma 

(Galli et al., 2008). Type 2 effector functions and the cytokines involved are 

required for helminth expulsion and subsequent remodelling and repair of tissue 

to restore homeostasis in the small intestine (Reynolds et al., 2012). On the 

other hand, dysregulation or an inappropriate Th2 response to common allergens 

results in tissue fibrosis and scarring, airway constriction and chronic 

inflammation (Galli et al., 2008). Understanding the regulation of type 2 

mediated responses, in particular Th2 responses, is important in advancing the 

treatment of atopic disease and improving anti—helminth strategies.  

IL-10 is a potent regulatory cytokine, which was initially described as a Th2 

cytokine due to its ability to suppress Th1 cells (Moore et al., 2001, Fiorentino et 

al., 1989, Vieira et al., 1991). An increase in IL-10 is reported during H. 

polygyrus infection (Leung et al., 2012, Setiawan et al., 2007, Redpath et al., 

2013, Filbey et al., 2014, Finney et al., 2007). In addition, in Figure 3-11 we 

demonstrate an increase in IL-10 during H. polygyrus infection in both the MLN 

and SILP. It remains unclear if increased IL-10 directly supports the Th2 response 

to helminth infection. However, previous studies have shown that IL-10 can 

enhance the activity of mast cells (Helmby and Grencis, 2003, Thompson-Snipes 

et al., 1991, Ghildyal et al., 1992) and promote antibody class switching (Malisan 

et al., 1996), both of which are key components of the type 2 immune response. 

There is some evidence of an underlying Th1 response during H. polygyrus 

infection (Rapin and Harris, 2018) and this will be discussed in depth in Chapter-

5. Indeed, IL-10 mediated Th1 suppression may be an indirect mechanism of 

supporting the Th2 response, however it is currently unclear if there are direct 

effects of IL-10 in promoting the Th2 response. It is well established that there is 

an inverse relationship between IL-10 and IFNγ; IL-10 limits Th1 responses via 

suppression of IFNγ (Couper et al., 2008, Wilson et al., 2005, Fiorentino et al., 
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1989). It also inhibits IFNγ dependent macrophage activation and disrupts the 

type 1 immune response to pathogens (Leng and Denkers, 2009, Gazzinelli et al., 

1996, Hunter et al., 1997). On the other hand, IFNγ has been reported to limit 

IL-10 expression. IFNγ inhibits TLR2 dependent IL-10 expression (Hu et al., 

2006). In addition, IL-10 selectively promotes the Th1 cytokine IL-12 and inhibits 

IL-10 in CpG stimulated bone marrow DCs (Flores et al., 2007). Intrinsic IL-10 in 

Th1 cells is also a critical self-limiting mechanism to prevent collateral tissue 

damage in response to pathogens (Hunter et al., 1997, Anderson et al., 2007). As 

described in section 1.5.3, the role of IL-10 in helminth infections has been 

reported to both inhibit and promote immune responses. These conflicting 

reports are most likely due to differences in parasite location, immune 

environment, and IL-10 concentration.  

The role of IL-10 in the SILP during H. polygyrus is unclear and we therefore 

aimed to study the impact of IL-10 signalling on the Th2 response to infection. 

To address this question, we firstly blocked IL-10 receptor signalling during H. 

polygyrus infection and investigated the type 2 immune response. We analysed 

cells from the SILP, MLN and the spleen, a distal lymphoid site from the 

infection. We found that in the absence of IL-10R signalling, the Th2 response 

was significantly reduced. To determine if this was a direct effect on T cells, we 

measured the response of unpolarised CD4+ T cells (Th0), Th1 and Th2 cells to IL-

10 in vitro. Both Th0 and Th2 cells had increased type 2 cytokine expression 

upon stimulation with IL-10.  To understand if Th subsets respond differently to 

IL-10, we measured IL-10R expression in vitro and how IL-10 changes the 

expression of its receptor. Finally, we determined if H. polygyrus infection 

resulted in changes in IL-10R expression in vivo and therefore IL-10 

responsiveness on IL-4+ “Th2” and CXCR3+ “Th1” cells.  In both our in vitro and in 

vivo systems, Th1 and Th2 subsets had differing expression of IL-10R. 

4.2 Aims  

• To understand the role of IL-10 signalling in the Th2 response to helminth 

infection 

• To investigate the direct effects of IL-10 in promoting type 2 cytokines in 

different Th subsets in vitro  



Chapter-4 IL-10 drives tissue-based Th2 responses to helminth infection 
 

88 
 

• To examine if Th subsets respond differently to IL-10 in vivo during 

helminth infection based on IL-10R expression 

4.3 Results 

4.3.1 In vivo blockade of IL-10 signalling 

Our results in Figure 3-11 demonstrated an increase in IL-10 expression in both 

the MLN and SILP from CD45+ cells at D7 of H. polygyrus infection. At this 

timepoint, CD4+ T cells are migrating to the SILP and priming in the MLN is 

ongoing. To determine the functional importance of IL-10 in both sites, we 

blocked IL-10 receptor signalling, using a blocking antibody against the IL-10 

receptor alpha chain, referred to as IL-10R1 (Clone 1B1.3A) (Liu et al., 1994, Liu 

et al., 1997, Burrack et al., 2018, Ring et al., 2019). IL-10R1 signalling was 

blocked at D-1, D2 and D5 of H. polygyrus infection to ensure that prior to and 

during infection IL-10R signalling was blocked.  We analysed cells from the SILP,  

 

Figure 4-1 Experimental outline of IL-10R1 blockade during H. polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and at D-1, D2 and D5 of infection treated 
with anti-IL-10R mAb or isotype control, mice were weighed daily, and 7 days post-infection serum 
collected for analysis. (A) Experimental outline (B) Percentage weight change of each experimental 
group (C) Serum concentrations (pg/ml) of IFNγ from each experimental group. Graphed data are 
shown with mean ± SD and are representative of 3 independent experiments with n=4-5 per 
experiment. Statistical significance was calculated by Kruskal-Wallis test with Dunn’s post-test for 
multiple comparisons between groups (Significance **p< 0.01). 

MLN and spleen at D7 post-infection, allowing us to address the role of IL-10 

during priming and on effector cells in the tissue (Figure 4-1A). To ensure there 
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were no non-specific effects of the IL-10R1 blockade, we used a rat IgG1 isotype 

control. In addition, each experimental group was weighed daily throughout the 

experiment to determine if blocking the IL-10R1 had any adverse effects which 

would result in weight loss. Percentage weight change indicated that there were 

no adverse effects in any experimental groups throughout the experiment 

(Figure 4-1B). The IL-10R1 mAb was injected intraperitoneally, resulting in a 

systemic signalling blockade (Ring et al., 2019). As it is well established that IL-

10 inhibits IFNγ during homeostasis and during infection (Couper et al., 2008, 

Gazzinelli et al., 1996, Rojas et al., 2017), we therefore, used this cytokine to 

check our IL-10R1 blockade had worked.  Serum was collected 7 days post-

infection and the concentration of IFNγ measured (Figure 4-1C). In infected mice 

treated with the IL-10R1 blocking antibody, IFNγ increased compared to both the 

naïve and H. polygyrus isotype control groups, indicating that IL-10R signalling 

was successfully blocked in our system. 

To determine if blocking IL-10 signalling resulted in changes in pathology of the 

small intestine, we assessed pathology in all experimental groups.  Cross-

sections of the duodenum were collected and stained with H&E (Figure 4-2A) and 

Alcian PAS (data not shown) for histology and goblet cells, respectively. In the 

small intestine of naïve mice, there was a mild multifocal to diffuse lymphocyte 

and plasma cell infiltrate (Figure 4-2A, top left). However, in both H. polygyrus 

infected groups there was a more mixed inflammation, consisting of 

lymphocytes, plasma cells, granulocytes, and macrophages (Figure 4-2A, top and 

bottom right). Both infected groups had variable inflammation severity 

depending on the area of the sample that was scored, ranging from mild and 

mostly mucosal at areas distal to encysted parasites (Figure 4-2A, bottom left) 

to severe and submucosal at parasite foci (Figure 4-2A, top and bottom right). In 

addition, inflammation in infected animals was transmural at specific foci and 

the local inflammatory influx at those foci infiltrated both the submucosa and 

muscular layer. Such transmural inflammation was not observed in naïve control 

mice. Based on these data, at 7 days post-infection, infection is associated with 

increased inflammation, but only at distinct foci associated with encysted 

larvae.  

When comparing H. polygyrus infected isotype and IL-10R blockade groups, there 

were no significant changes in immunopathology and this is reflected in the 
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inflammation severity, depth, and combined scores (Figure 4-2B). From Alcian 

PAS staining for goblet cells there were no significant changes to goblet cell  

 

Figure 4-2 IL-10R1 blockade during H. polygyrus infection does not change histopathology 
of the duodenum 
C57BL/6 mice were infected with 200 L3 H. polygyrus and at D-1, D2 and D5 of infection treated 
with anti-IL-10R mAb or isotype control, and 7 days post-infection the small intestine collected for 
analysis. (A) Representative H&E staining of the duodenum from naïve (top left), anti-IL-10R mAb 
(top right), isotype (foci) (bottom right) and isotype (distal) (bottom left) treated mice. (B) Histology 
scoring of inflammation severity (left), depth (middle), combined (right). Histology scoring of 
number of goblet cells/per crypt (left), of Paneth cells/per crypt (middle) and number of parasites 
(right). Slides were scored blind by a certified pathologist from the VetPatólogos SL in Madrid, 
Spain. Graphed data are shown with mean ± SD and are from 1 experiment with n=3 per 
experiment.  

number when comparing naïve and infected animals. In addition, there was no 

difference between the H. polygyrus infected isotype and IL-10R1 blockade 

groups, indicating that blocking IL-10R signalling did not alter the number of 

mucus producing goblet cells at this timepoint (Figure 4-2C, left). We also 

enumerated Paneth cells which are known to have important antimicrobial 
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properties and are located deep in the intestinal crypts (Bevins and Salzman, 

2011). Paneth cells did not increase in small intestinal sections from the H. 

polygyrus isotype or IL-10R blockade group, compared to naïve mice (Figure 

4-2C, middle). Finally, to begin to answer if blocking IL-10 signalling resulted in 

changes in parasite persistence, parasites encysted in the submucosa were 

counted in H. polygyrus infected isotype and IL-10R1 treated groups (Figure 

4-2D). Parasites were identified in both infected groups but not in naïve mice. 

There was high data spread in both infected groups and this type of analysis does 

not account for the variability of where the worms encyst in the duodenum. 

Overall, these histological analyses revealed increases in immune cell infiltration 

and inflammation depth in infection compared to naïve mice. However, we did 

not observe any significant changes between our H. polygyrus infected isotype 

and IL-10R blockade groups when assessing pathology and changes in Paneth and 

goblet cells.   

To assess the effect of IL-10 on the Th2 cytokine response, we measured the 

cytokines IL-5 and IL-13 and the Th2 master TF GATA3 from CD4+ TCRB+ CD44hi 

cells in the SILP, MLN and spleen. As expected, there was an increase in IL-13, 

IL-5 and GATA3 when comparing naïve and H. polygyrus infected isotype control 

groups in the SILP (Figure 4-3A-F). However, in the infected, IL-10R blockade 

group, there was a significant decrease in IL-5, IL-13 and GATA3 compared to 

infected animals treated with the isotype control (Figure 4-3B, 3D & 3F). In the 

MLN, a clear Th2 response was induced upon H. polygyrus infection compared to 

naïve mice, based on GATA3, IL-13 and IL-5 expression. However, unlike in the 

SILP a decrease in Th2 cytokines and GATA3 was not observed in the H. 

polygyrus infected IL-10R blockade group compared to infected isotype controls 

(Figure 4-3G-4L). Furthermore, in the spleen, a SLO not usually associated with 

H. polygyrus infection, we observed an increase in the Th2 cytokines IL-13 and 

IL-5 but no significant changes in GATA3+ cells or between isotype and IL-10R 

blockade groups (Figure 4-3M-5R). H. polygyrus infects the small intestine and 

the priming response to this infection occurs in the MLN. However, in keeping  
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Figure 4-3 Blocking IL-10R1 signalling results in a decreased Th2 response in the small 
intestine during H. polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and at D-1, D2 and D5 of infection treated 
with anti-IL-10R mAb or isotype control, and 7 days post-infection the small intestine, MLN and 
spleen collect for analysis. Top panel (small intestine), representative flow plots of (A) IL-13+ (C) IL-
5+ (E) GATA3+ staining from CD4+ CD44hi T cells in each experimental group in the SILP. 
Percentage of (B) IL-13+ (D) IL-5+ (F) GATA3+ of CD4+ CD44hi in the SILP. Middle panel (MLN), 
Representative flow plots of (G) IL-13+ (I) IL-5+ (K) GATA3+ staining from CD4+ CD44hi T cells in 
each experimental group in the MLN. Percentage of (H) IL-13+ (J) IL-5+ (L) GATA3+ of CD4+ CD44hi 
in the MLN Bottom panel (spleen), Representative flow plots of (M) IL-13+ (O) IL-5+ (Q) GATA3+ 
staining from CD4+ CD44hi T cells in each experimental group in the spleen. Percentage of (N) IL-
13+ (P) IL-5+ (R) GATA3+ of CD4+ CD44hi in the spleen. Gating for IL-13+, IL-5+ GATA3+ cells was 
carried out using appropriate isotype controls. Graphed data are shown with mean ± SD and are 
pooled from 2-3 independent experiments with n=4-5 per experiment. Statistical significance was 
calculated by ANOVA followed by a Tukey's post-test for multiple comparisons between groups 
where data were normally distributed (F, H, L, N) and Kruskal-Wallis test with Dunn’s post-test for 
multiple comparisons between groups where data were not normally distributed (B, D, J, P, R) 
(Significance *p<0.05, **p< 0.01, ***p< 0.001, ****p< .0001).  

with our data, Th2 cells have previously been reported in the spleen during H. 

polygyrus infection (Mohrs et al., 2005a). In addition, as has previously been 

reported and as we show in Figure 3-1B splenomegaly occurs during H. polygyrus 

infection (Brailsford and Mapes, 1987). Overall, these data suggest that IL-10 is 

important for maintaining an optimal Th2 response specifically in the SILP during 

H. polygyrus infection. 
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To validate our results, we analysed cytokine gene expression in the duodenum 

in our three experimental groups (Figure 4-4). Strikingly, both IL-13 and IL-5 

gene expression in IL-10R blockade infected animals significantly decreased  

 

Figure 4-4 Blocking IL-10R signalling results in decreased type 2 gene expression in the 
duodenum during H. polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and at D-1, D2 and D5 of infection treated 
with anti-IL-10R mAb or isotype control, and 7 days post-infection the small intestine collect for 
analysis. Fold change of (A) IL-13 (B), IL-5 (C), IL-10 (D) IFNγ (E), IL-17A and (F) IL-22 in the 
duodenum compared to housekeeping gene (RPS29). Graphed data are shown with mean ± SD 
and are representative of 2-3 independent experiments with n=4-5 per experiment. Statistical 
significance was calculated by ANOVA followed by a Tukey's post-test for multiple comparisons 
between groups (Significance *p<0.05, **p< 0.01, ***p< 0.001, ****p< .0001).  

compared to infected isotype controls (Figure 4-4A & B), supporting our previous 

observations that IL-10 is key for driving Th2 cytokine responses during H. 

polygyrus infection. IL-10 gene expression was not altered with IL-10R blockade 

but increased upon infection as previously described (Figure 4-4C, Figure 3-11) 

We also measured genes associated with other Th subsets, IL-17A and IFNγ for 

Th17 and Th1 respectively (Figure 4-4D & 4E). In our H. polygyrus IL-10R 

blockade group, IL-17A increased significantly and IFNγ trended towards an 

increased compared to infected isotype controls, but this was not significant. 

These data suggest that the reduction in GATA3 and Th2 cytokines observed in 

the absence of IL-10 signalling is associated with an increase in the expression of 

canonical Th1 and Th17 cytokines, but whether this is a cause or consequence 

remains unclear and is discussed further in Chapter-5. IL-22 is a cytokine that is 

negatively regulated by and shares the IL-10R2 subunit with IL-10 (Zenewicz, 

2018). We therefore included this cytokine in our analysis to determine if lack of 
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IL-10 signalling changes the expression of this cytokine. Indeed, IL-22 gene 

expression in the duodenum of infected animals was increased 100-fold during 

IL-10R1 blockade (Figure 4-4F). Taken together, our qPCR data further supported 

the conclusions from our T cell analysis, suggesting that IL-10 is required for an 

optimal Th2 response in the SILP during H. polygyrus infection. 

4.3.2 In vitro, IL-10 promotes Th2 differentiation and cytokine 

release 

Our IL-10R1 blockade data suggested a role for IL-10 in promoting the Th2 

response to helminth infection. We therefore aimed to test direct effects of IL-

10 on CD4+ T cells in an in vitro setting. Our in vitro system involved isolating 

CD4+ T cells from a naïve spleen and subsequently stimulating these cells with 

αCD3, αCD28 and IL-2 only (Th0 cells) and where stated, polarising cytokines, IL-

12 for Th1 cells and IL-4 and anti-IFNγ for Th2 cells, were also added. After 4 

days of in vitro activation, flow cytometry analysis of these cultures showed high 

CD4+ purity and activation based on CD44hi expression (Figure 4-5). 

 

Figure 4-5 Gating strategy for in vitro CD4+ T cell cultures 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0), for 4 days and harvested 
for further analysis. (A) Representative gating strategy of in vitro activated Th0 cells.  

To determine the minimum concentration of recombinant IL-10 (rIL-10) required 

to induce biological changes, IFNγ suppression was measured. We used IFNγ 

suppression as a measure of IL-10 activity as IL-10 is known to suppress IFNγ 

significant difference when comparing the concentration of IFNγ in 10ng/ml and 

50ng/ml treated samples. We therefore used 10ng/ml of rIL-10 for all future in 

vitro experiments. Interestingly, when we measured the Th2 cytokines IL-13 and 

IL-5, we observed an increase in these cytokines with the addition of 10ng/ml of 

rIL-10 which did not increase further with 50ng/ml of rIL-10 (Figure 4-6B & 6C).  
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Figure 4-6 Titration of rIL-10 in CD4+ T cell cultures 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0), for 4 days with or without 
rIL-10 at 10ng/ml and 50ng/ml. Supernatants were collected and concentration of (A) IFNγ, (B) IL-5 
and (C) IL-13 measured. Graphed data are shown with mean ± SD and are representative of 2 
independent experiments with n=5 technical replicates per experiment. Statistical significance was 
calculated by ANOVA followed by a Tukey's post-test for multiple comparisons between groups 
where data were normally distributed (A) and Kruskal-Wallis test with Dunn’s post-test for multiple 
comparisons between groups where data were not normally distributed (B&C) (Significance 
*p<0.05).  

 

Figure 4-7 In vitro, IL-10 skews CD4+ T cells to express GATA3 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0) with the addition of IL-4 and 
anti- IFNγ for Th2 cells or IL-12 for Th1 cells, for 4 days with or without rIL-10. Representative 
histogram of GATA3 staining from IL-10 stimulated and unstimulated (A) Th0 cells, (B) Th2 cells 
and (C) Th1 cells. Percentage of CD4+ GATA3+ from (A) Th0, (B) Th2 and (C) Th1 cell cultures. 
Gating for GATA3+ cells was carried out using an appropriate isotype control. Graphed data are 
shown with mean ± SD and are pooled from 2 independent experiments and representative of 3 
independent experiments with n=4-5 technical replicates per experiment. Statistical significance 
was calculated by Student t test where data were normally distributed (A&B) and Mann Whitney U 
test where data were not normally distributed (C) (Significance **p< 0.01). 
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Our in vivo data suggested that IL-10 may promote Th2 differentiation and our 

rIL-10 titration experiment suggested that IL-10 may achieve this by directly 

acting on CD4+ T cells. To test this directly we investigated changes in the 

expression of the Th2 master TF GATA3 in our Th0 cells and also in in vitro 

polarised Th2 and Th1 cells treated with and without rIL-10 (Figure 4-7). There 

was a significant increase in GATA3+ CD44hi CD4+ T cells in Th0 cultures compared 

to untreated controls, but we did not observe the same increase in Th2 cultures 

(Figure 4-7A & 7B). In Th1 cultures, as expected, the percentage of GATA3+ 

CD44hi CD4+ T cells was low, and rIL-10 did not increase this (Figure 4-7C). These 

data demonstrate that rIL-10 can result in increased GATA3+ expression in 

unpolarised cells, but not in Th1 and Th2 cells. When measuring Th2 cytokines 

from culture supernatants of Th0 and Th2 cultures, we found, similarly to our 

rIL-10 titration experiment, that Th0 cells increase their expression of Th2 

cytokines with rIL-10 compared to  

 

Figure 4-8 IL-10 induces type 2 cytokine expression in unpolarised CD4+ T cells 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0) with the addition of IL-4 and 
anti- IFNγ for Th2 cells, for 4 days with or without rIL-10.  Supernatants were collected and 
concentration of IL-13 and IL-5 from (A) Th0 cultures and (B) Th2 cultures measured. Graphed 
data are shown with mean ± SD and are pooled from 2 independent experiments and 
representative of 3 independent experiments with n=4-5 technical replicates per experiment. 
Statistical significance was calculated by Student t test (Significance **p< 0.01, ****p< .0001).  
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Figure 4-9 In vitro, IL-10 skews CD4+ T cells to a Th2 phenotype independently of activation 
and proliferation 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0) with the addition of IL-4 and 
anti- IFNγ for Th2 cells or IL-12 for Th1 cells, for 4 days with or without rIL-10. (A) Representative 
histograms of cell trace violet (CTV) staining from IL-10 stimulated (red) and unstimulated (black) 
Th0 (left), Th1 (middle) and Th2 (right) cultures. (B) Percentage of CD44hi CD4+ T cells from IL-10 
stimulated and unstimulated Th0/1/2 cultures. (C) Proliferation index of CD4+ T cells from IL-10 
stimulated and unstimulated Th0/1/2 cultures. Graphed data are shown with mean ± SD and are 
pooled from 2 independent experiments and representative of 3 independent experiments with 
n=4-5 technical replicates per experiment. Statistical significance was calculated by Student t test 
where data were normally distributed (B (Th0, Th2)) and Mann Whitney U test where data were not 
normally distributed (B (Th1), C). 

untreated controls (Figure 4-8A). Th2 cytokines in Th2 cultures however did not 

increase (Figure 4-8B). I hypothesise that this is due to these cells already 

reaching their maximum cytokine output due to the extreme nature of in vitro 

polarisation.  

To assess if the increase in the Th2 phenotype we observed in Th0 cultures with 

the addition of exogenous IL-10 was dependent on changes in activation and or 

proliferation of CD4+ T cells, we assessed CD44 expression and proliferation in 

Th0, Th2 and Th1 cultures with and without rIL-10 (Figure 4-9). Although 

proliferation varied slightly between CD4+ helper subsets (Figure 4-9A & 9C), we 

saw no significant changes in the proliferation index and in CD44hi CD4+ T cells 

with the addition of rIL-10. These data suggested that rIL-10 induces CD4+ T cell 

Th2 skewing independently of activation and proliferation. 

I next hypothesised that due to the inverse relationship described between IL-10 

and IFNγ (Fiorentino et al., 1989, Couper et al., 2008, Wilson et al., 2005), the 
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enhanced Th2 response we see in the presence of IL-10 may be a consequence of 

IFNγ suppression. To address this, we blocked IFNγ signalling in Th0 cells with or 

without rIL-10, and measured GATA3+ CD44hi CD4+ T cells and Th2 cytokines in 

the supernatants (Figure 4-10). We hypothesised that the absence of IFNγ 

signalling would result in Th2 skewing independently of IL-10. Indeed, Th0 cells 

treated with anti-IFNγ alone had similar levels of both GATA3+ CD44hi CD4+ T 

cells and Th2 cytokines to Th0 cells treated with rIL-10 alone (Figure 4-10A & 

10B). Interestingly, simultaneous treatment with both rIL-10 and anti-IFNγ 

resulted in higher secretion of IL-13 and IL-5 than each treatment alone (Figure 

4-10).  These data indicate that blocking IFNγ can mimic the Th2 skewing effect 

of IL-10, but IL-10 still appears to have an additional role out with IFNγ 

suppression.   

 

Figure 4-10 In vitro, Th2 induction by IL-10 is partially dependent on IFNγ suppression 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0), for 4 days with or without 
anti-IFNγ and with or without rIL-10. (A) Percentage of GATA3+ CD44hi CD4+ T cells from Th0 
cultures (B) Concentration (pg/ml) of IL-13 (left) and IL-5 (right) measured. UT = untreated. Gating 
for GATA3+ cells was carried out using an appropriate isotype control. Graphed data are shown 
with mean ± SD and representative of 1 independent experiment with n=4-5 technical replicates 
per experiment. Statistical significance was calculated by Kruskal-Wallis test with Dunn’s post-test 
for multiple comparisons between groups (Significance *p<0.05, **p< 0.01, ***p< 0.001, 
****p< .0001).  

Taken together, our data suggest a role for IL-10 in driving Th2 polarisation that 

is partially dependent on the suppression of the Th1 cytokine IFNγ. We therefore 

hypothesised that Th1 cells may express higher levels of the IL-10R to facilitate 

IL-10 mediated suppression of IFNγ by these cells. To test this, we measured the 

expression of the IL-10R on different Th subsets and also with the addition of rIL-

10 to determine if IL-10 signalling changes IL-10R expression in our in vitro 

system (Figure 4-11). Th0, Th1, Th2 cells all expressed the IL-10R, with Th2 cells 

having highest expression overall (Figure 4-11A-C). Upon treatment with rIL-10, 

IL-10R expression on both Th0 and Th1 cells decreased, whereas Th2 cells 
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maintained their IL-10R expression irrespective of the addition of rIL-10 (Figure 

4-11B-C). These data demonstrate that in an in vitro setting, Th2 and Th1 cells 

respond differently to stimulation with rIL-10 in terms of IL-10R expression 

maintenance, suggesting that distinct downstream signalling pathways may occur 

in response to IL-10R binding in Th1 and Th2 cells.  

 

Figure 4-11 IL-10R expression on Th subsets in vitro 
Naïve CD4+ T cells were stimulated with αCD3, αCD28 and IL-2 (Th0) with the addition of IL-4 and 
anti- IFNγ for Th2 cells or IL-12 for Th1 cells, for 4 days with or without rIL-10. (A) Representative 
histograms of IL-10R staining from IL-10 stimulated and unstimulated cells from Th0/1/2 cultures 
compared to IL-10R FMO. (B) Geometric mean of IL-10R on Th0/1/2 cells and (C) percentage of 
CD4+ IL-10R+ of Th0/1/2 cells. Gating for IL-10R+ cells was carried out using an appropriate FMO 
control. Graphed data are shown with mean ± SD and are pooled from 1 (panel A) or 3 (panels B & 
C) independent experiments with n=4-5 technical replicates per experiment. Statistical significance 
was calculated by Student t test (Significance ****p< .0001). 

4.3.3 Th1 cells have an increased capacity of IL-10 

responsiveness in vivo  

Our previous in vitro data suggested that IL-10 can promote the Th2 response, at 

least partially due to suppression of IFNγ. In addition, Th1 cells which produce 

IFNγ at high levels may respond differently to IL-10 compared to Th2 cells based 

on IL-10R expression by these cells in vitro. We therefore aimed to assess the 
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responsiveness of Th1 and Th2 cells to IL-10 in vivo, based on IL-10R expression 7 

days post H. polygyrus infection. To identify Th1 and Th2 cells in vivo, we 

considered TF or cytokine staining, but both methods involve harsh stimulation 

and/or fixation, which can downregulate some cell surface receptors such as 

cytokine receptors. To accurately measure IL-10R expression on Th1 and Th2 

 

Figure 4-12 IL-10R expression is higher n CXCR3+ CD4+ T cells compared to IL-4+ CD4+ T in 
the SILP  
B6 4get mice were infected with 200 L3 H. polygyrus and 7 days post-infection the small intestine 
and MLN removed. (A) Representative flow plots of CXCR3 and IL-4 staining of CD44hi CD4+ T 
cells in the small intestine (left) and MLN (right). (B) Representative overlaid histograms of IL-10R 
expression of IL-4+ and CXCR3+ Th cells compared to IL-10R FMO. (C) Total number of IL-10R 
expressing CXCR3, IL-4 and DN (double negative) CD4+ T cells in the small intestine and MLN. (D) 
Percentage of IL-10+ cells of DN, IL-4+ and CXCR3+ Th cells in the MLN and small intestine. (E) 
Geometric mean of IL-10R expression of DN, IL-4+ and CXCR3+ Th cells in the MLN and small 
intestine. Gating for IL-10R+ cells was carried out using an appropriate FMO control. Graphed data 
are shown with mean ± SD and are pooled from 3 independent experiments with n=3 per 
experiment. Statistical significance was calculated by Kruskal-Wallis test with Dunn’s post-test for 
multiple comparisons between groups (Significance **p< 0.01, ***p< 0.001, ****p< .0001).  
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cells in the SILP and MLN, we used the surface marker CXCR3 and IL-4 GFP 

reporter mice (Mohrs et al., 2005b) to identify Th1 and Th2 cells respectively 

(Figure 4-12A & 12B). Interestingly, in the SILP, CXCR3+ CD4+ T cells had 

significantly higher expression of the IL-10R compared to DN cells, both in 

frequency and intensity, a similar trend was also observed when comparing 

CXCR3+ and IL-4+ of CD4+ T cells (Figure 4-12A-12E). Higher expression of the IL-

10R on CXCR3+ CD4+ T cells was observed in cells from both naïve and infected 

mice (Figure 4-12A-12E).  In addition, in both naïve and infected mice IL-10R 

expression on both CXCR3+ and IL-4+ CD4+ T cells was higher in the SILP 

compared to the MLN (Figure 4-12A-12E). This is in keeping with our previous 

data that show that IL-10 secretion is higher in the SILP compared to the MLN 

(Figure 3-11). These data suggest that high IL-10R expression is a feature of 

CXCR3+ CD4+ T cells in the SILP, suggesting that the primary target of IL-10 

signalling during homeostasis and helminth infection may be Th1 cells in the 

SILP. 

4.4 Discussion 

The regulation of type 2 immune responses is key for understanding numerous 

diseases and infections. The most prominent being helminth infection, atopy, 

and allergy. The role of the regulatory cytokine IL-10 in the orchestration of the 

Th2 response remains unclear. IL-10 is reported to suppress the Th2 response to 

schistosomiasis but is not implicated in Th2 suppression during H. polygyrus 

infection (Smith et al., 2016, Hoffmann et al., 2000). In addition, IL-10 has been 

reported to both suppress and promote Th2 responses in models of allergy and 

asthma (Hoffmann et al., 2000, Hawrylowicz and O'garra, 2005). However, our 

data demonstrate an important role for IL-10 in promoting the Th2 response in 

the SILP to H. polygyrus and that this tissue-based role of IL-10 may be, in part, 

due to IL-10 mediated suppression of Th1 cells and IFNγ signalling. 

4.4.1 The role of IL-10R signalling in the Th2 response to H. 

polygyrus infection  

By blocking IL-10R signalling prior to and throughout the first 7 days of H. 

polygyrus infection we could assess the role of IL-10 in both Th cell priming in 

the MLN and subsequent effector functions in the SILP. This time-specific and 
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short blockade of IL-10R signalling was a preferable system to using IL-10R-/- or 

IL-10-/- mice, both of which develop spontaneous colitis. Using either of these 

strains of mice would have skewed our results due to the severe inflammation 

and damage that occurs in the intestine (Kühn et al., 1993, Spencer et al., 

1998). Interestingly, infecting IL-10-/- mice, which develop spontaneous colitis 1-

3 months after birth, with H. polygyrus promotes the resolution of inflammation 

(Elliott et al., 2004). Our experimental setup did not include naïve mice treated 

with the IL-10R blockade. However, unlike IL-10-/- mice, (Kühn et al., 1993), our 

IL-10R1 is blockade is not prolonged and we hypothesise, would have no adverse 

effects on naïve mice. However, as demonstrated in IL-10-/- mice, IL-10 is also 

critical for immune homeostasis out with infection (Kühn et al., 1993), and 

perhaps removing IL-10 even for a short period of time may have resulted in a 

change in the balance of homeostatic Th1/Th2 cells.  An important component 

of our system was to ensure the IL-10R blockade had worked systemically. The 

inverse relationship between IL-10 and IFNγ, described in section 4.1 of this 

chapter, made IFNγ a good candidate to assess the efficacy of our blockade. In 

the absence of systemic IL-10R signalling, we hypothesised that IFNγ would 

increase. Indeed, we found that in our IL-10R blockade group IFNγ increased 

significantly in the serum at 7 days post-infection. We had also hypothesised 

that due to the IL-10R mAb binding to the IL-10R, we would see an accumulation 

of IL-10 in the serum. However, cytokine concentrations in the serum were low 

and IL-10 could not be detected in the serum of any experimental groups. The 

increase in IL-17A gene expression observed in the infected IL-10R blockade 

group gave us further confidence in the effectiveness of our blockade, as 

previous studies using the IL-10R1 mAb also observed an increase in IL-17A 

(Kullberg et al., 2006). Furthermore, the dose of IL-10R1 mAb used per injection 

in the literature ranges from 0.2-1mg/ml, we used 0.5mg/ml which fits well in 

that range (Ring et al., 2019, Burrack et al., 2018, Kullberg et al., 2006, Bai et 

al., 2009, Brooks et al., 2008). These factors and our data combined indicate 

that IL-10R1 signalling was successfully blocked in our system. 

IL-10-/- mice have abnormal intestinal histopathology (Kühn et al., 1993), we saw 

no changes to histopathology in the duodenum in infected mice in the absence 

of IL-10R signalling compared to the isotype control. This may be in part due to 

the protective effects of H. polygyrus described in IL-10-/- mice (Elliott et al., 

2004). We hypothesise that this may also be due to the mild and short-term 
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nature of our blockade, however, to fully answer this question we would require 

the additional experimental group, where uninfected mice are treated with the 

IL-10R blockade. In addition, we examined specialised IECs by histology and 

found that despite their known contribution to mucus production for the 

expulsion of helminths, there were no changes in the number of goblet cells in 

our analysis. The Th2 cytokine IL-13 promotes goblet cell hyperplasia and due to 

the decrease in this cytokine observed in infected mice treated with the aIL-10R 

blockade, we hypothesised this would have resulted in a decrease in goblet cells 

(Artis et al., 2004). One explanation for the lack of change in goblet cells is the 

increase in IL-22 observed in our infected aIL-10R treated group, as this cytokine 

is also key for goblet cell hyperplasia and there may be redundancy between IL-

22 and IL-13 (Turner et al., 2013). In addition, goblet cell hyperplasia typically 

peaks at around D14 of H. polygyrus infection (Sánchez-Quintero et al., 2019), so 

the timepoint of our analysis may also account for the lack of changes in these 

cells.  Furthermore, Alcian PAS-stained sections were not of the best quality. 

The sections for this analysis were not cut at the perfect longitudinal angle, 

resulting in the obscuring of villi length. Goblet cells per 100μm of villi is a 

common method for quantifying goblet cells and we felt that our slides might 

not give the best representation of data as we could not carry out this type of 

analysis (Sánchez-Quintero et al., 2019, Wellington et al., 2020). IL-10 signalling 

is important for the integrity of Paneth cells in the intestine (Berkowitz et al., 

2019). However, our data show no significant changes to Paneth cell number 

when comparing both naïve and infected mice and infected isotype and IL-10R 

blockade treated mice.  

The decrease in Th2 cytokines observed when IL-10R signalling is blocked 

suggests that parasite persistence would increase due to the decrease in the Th2 

response. Encysted parasites could be visualised in our H&E-stained slides and 

were enumerated. There were no significant changes between our infected 

isotype and aIL-10R treated mice in the number of encysted parasites, although 

it is important to note that these sections are of the top 1cm of the duodenum 

and encysted larvae occur along the entirety of the duodenum and top of the 

jejunum (Figure 3-1A). To address this question fully, visualising the entire small 

intestine is key. This could be achieved using the swiss roll technique which 

would allow for all encysted parasites to be counted (Pereira E Silva et al., 

2019). A further technique to address this question would be to enumerate 
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visible parasites encysted in the wall of the small intestine. In addition, it would 

have been interesting to extend our system to 14 days post-infection. This would 

allow us to carry out adult worm counts in the intestine and give a better 

understanding if IL-10R signalling impacts parasite expulsion. The literature 

surrounding the role of IL-10 in parasite expulsion is conflicting.  In T. spiralis 

infection, IL-10 derived from eosinophils indirectly suppresses nitric oxide and 

this promotes parasite persistence (Huang et al., 2014). Whereas in T. muris, IL-

10 is required for parasite resistance and the survival of the host (Schopf et al., 

2002). Overall, our histology data does not show any changes in histopathology 

as a result of blocking IL-10 signalling at D7 of H. polygyrus infection. 

Although we did not observe any changes to intestinal pathology in helminth 

infected mice treated with aIL-10R blockade, we do report a decrease in the Th2 

response to infection. The role for IL-10 in promoting the Th2 response is 

unclear. There is evidence that IL-10 has the capacity to suppress Th2 cells in 

human allergen immunotherapy (Golebski et al., 2021). However, there is also 

increasing data to support the concept of IL-10 promoting Th2 cells. A role for 

TLR-2 induced IL-10 in promoting Th2 responses in asthma has been described 

(Hu et al., 2006). Recently, a direct IL-10 dependent induction of the TF STAT3 

and subsequently Blimp-1 was shown to be critical for Th2 development in the 

type 2 immune response to asthma in the lung (He et al., 2020). By measuring 

both GATA3 expression and the expression of the type 2 cytokines IL-13 and IL-5 

from the SILP, MLN and spleen we were able to accurately assess the role of IL-

10R signalling in the Th2 response to H. polygyrus. The effector cytokines IL-13 

and IL-5 are critical for the weep and sweep response, described in section 1.3, 

in the SILP during H. polygyrus infection. This response is required for helminth 

expulsion and these cytokines are highly expressed in the infected tissue 

(Anthony et al., 2007, Maizels et al., 2009, Liang et al., 2011). IL-4 is also a 

critical cytokine for both priming of Th2 cells in the MLN and as an effector 

cytokine in the SILP (Le Gros et al., 1990, Swain et al., 1990, Redpath et al., 

2015, Liang et al., 2011). However, IL-4 was not measured in these experiments 

as staining for this cytokine was poor despite optimisation. From these data we 

demonstrate a SILP specific effect of IL-10 in promoting the Th2 response. We 

saw a significant decrease in all Th2 markers in the SILP with IL-10R blockade 

during infection, and this was not observed in the MLN or the spleen. These 

observations were validated further when measuring gene expression of both IL-
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13 and IL-5 in the duodenum, where levels of these genes were comparable to 

naïve mice in our IL-10R blockade group. Together, these data show a Th2 

promoting effect of IL-10 in the SILP during H. polygyrus infection. To further 

elucidate the mechanism behind this, investigating Blimp-1 expression in Th2 

cells would be interesting. In asthma, activation of Blimp-1 by IL-10 promoted 

Th2 cell development (He et al., 2020), and we hypothesise a similar mechanism 

may apply in the SILP.  Although our data highlight a role for IL-10 in promoting 

the Th2 response to H. polygyrus infection, I hypothesise there will never be a 

definitive suppressing or promoting role of IL-10 that applies to all Th2 

responses. This is due to the context of IL-10 signalling being important to its 

subsequent immunological role.  

We have demonstrated a role for IL-10 in promoting Th2 cells in the SILP, we 

next considered if blocking IL-10 signalling would impact other important tissue 

cytokine responses such as Th1, Th17 and pro-repair responses. Interestingly, 

gene expression of both IL-17 and IFNγ increased slightly, indicating that a loss 

of Th2 cells allows for the expansion of other Th subsets. However, whether this 

is an existing underlying response that is suppressed by IL-10 or a consequence 

of IL-10 blockade is unclear and will be discussed further in Chapter-5. As IL-10 

and IL-22 share the IL-10R2 and both play important but separate roles in 

maintaining epithelial barrier integrity (Morhardt et al., 2019, Gao and Xiang, 

2019) we also measured gene expression of IL-22. IL-22 promotes barrier 

integrity by acting directly on epithelial cells as opposed to immune cells 

(Zenewicz, 2018). IL-22 can be pro and anti-inflammatory in different settings; 

co-expression with IL-17 can be pathogenic (Wei et al., 2020, Rutz et al., 2013). 

The striking increase in IL-22 in the IL-10R blockade group suggests there may be 

some redundancy between these cytokines in maintaining epithelial barrier 

integrity, in addition it may also indicate a pathogenic Th17 response in the 

absence of IL-10R1 signalling. Furthermore, IL-22 has also been shown to be key 

for goblet cell hyperplasia in N. brasiliensis infection and IL-13 is also a critical 

promoter of goblet cell hyperplasia (Turner et al., 2013, Artis et al., 2004). 

Perhaps the increase in IL-22 we observe may be to compensate for the decrease 

of IL-13 in infected mice treated with the IL-10R blockade. Therefore, blocking 

IL-10R signalling during H. polygyrus infection may allow other tissue cytokine 

responses perhaps by Th1 and Th17 cells to increase. Although further studies 

are required to investigate if these cytokine signatures are CD4+ T cell derived 
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and if they are reflected at the protein level. In addition, our data suggest that 

the lack of IL-10 signalling may promote other cytokines such as IL-22, although 

the role of this cytokine in this context remains unclear.  

Overall, these data demonstrate an important role for IL-10 in not only 

promoting Th2 cells but supporting the entire type 2 immune response in the 

duodenum. In addition, we have shown that the role of IL-10 may be tissue or 

context specific and investigating both infected tissue and priming lymph nodes 

is key for a complete understanding of an immune response to infection. In 

addition, our data provide some evidence of increases in cytokines which are 

associated with other Th subsets, often associated with bacterial responses, 

which may be suppressed by IL-10 during H. polygyrus infection. However, these 

data demonstrate that the precise direct and/or indirect mechanisms of IL-10 

promoting Th2 cells are complex and understanding this IL-10-Th2 dynamic is 

key.  

4.4.2 Using an in vitro system to understand IL-10 skewing of Th 

cells 

Our previous data demonstrated a role for IL-10 in the Th2 response, however 

whether this effect was direct or indirect remains unclear. To examine direct 

effects of IL-10 on CD4+ T cells independently of APCs, we set up an in vitro 

system to mimic CD4+ T cell activation. CD4+ T cells were activated by providing 

TCR stimulation with anti-CD3 antibodies, co-stimulation with anti-CD28 

antibodies and administration of recombinant IL-2 (rIL-2) which supports T cell 

proliferation (Morgan et al., 1976, Klatzmann and Abbas, 2015). We hypothesise 

that the Th2 promoting function of IL-10 we observed in our in vivo IL-10R 

blockade was independent of APCs such as DCs, as IL-10 treated DCs have been 

reported to suppress Th2 cells rather than promote them in the context of 

airway inflammation (Koya et al., 2006). Interestingly, our in vitro data do 

demonstrate APC independent mechanisms of IL-10 in promoting Th2 

polarisation.  In much of our in vitro work, Th0 cells are used as “unpolarised 

CD4+ T cells”, as no Th subset polarising cytokines were added to these cultures. 

This system does come with caveats, strong TCR signals which are provided in 

this system have been reported to favour the polarisation of Th1 cells over Th2 

cells (Bhattacharyya and Feng, 2020). As a result, cytokine independent 
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polarisation may occur in these cultures, however the IFNγ concentration in 

these cultures were low, with ~1ng/ml of IFNγ in Th0 cultures compared to 

~300ng/ml in Th1 cultures. It is also important to discuss the extreme nature of 

in vitro polarisation of Th subsets. Polarising cytokine concentrations 

administered in vitro are higher than would be observed in an in vivo setting. 

For example, is has been estimated that IL-4 acts in vivo at around 5-500pg/ml, 

this is approximately 100-fold lower that the concentration of IL-4 added to a 

Th2 culture. Based on these data, Th0 cells may be a better representation of an 

in vivo CD4+ T cell.  Despite this, the addition of rIL-10 to Th2 cultures increased 

the expression of GATA3 further but did not increase the Th2 cytokines IL-13 and 

IL-5 concentrations in supernatants. This is most likely due to in vitro polarised 

Th2 cells reaching maximum cytokine output in our system.  

The increase in GATA3, IL-5 and IL-13 in Th0 cells with the addition of rIL-10 

demonstrated a potential direct effect of IL-10 signalling on T cells in promoting 

Th2 responses. IL-10 has previously been described to inhibit T cell proliferation 

and cytokine output in mice and humans (Del Prete et al., 1993, Couper et al., 

2008, Ye et al., 2007). Considering this we measured proliferation and activation 

of Th0, Th2 and Th1 cells with and without the addition of rIL-10. Interestingly, 

there was no significant differences in either activation or proliferation between 

Th subsets and rIL-10 treated and untreated groups. I hypothesise that the 

strength of activation signals provided in our in vitro system are higher than 

those in vivo and so could not be altered by rL-10. Despite this, these data 

demonstrate that the direct Th2 promoting effects we observe with the addition 

of rIL-10 are mechanistically independent of both activation and proliferation.  

We hypothesised that the mechanism behind the direct effect of rIL-10 on CD4+ 

T cells, resulting in enhanced Th2 skewing, may be IFNγ dependent due to the 

inverse relationship between these cytokines (Couper et al., 2008, Wilson et al., 

2005, Fiorentino et al., 1989). In keeping with this, blocking IFNγ in our CD4+ T 

cell culture system showed similar Th2 skewing as adding rIL-10. Furthermore, 

the combined treatment of rIL-10 and blocking IFNγ resulted in higher 

concentrations of both IL-13 and IL-5 in Th0 cells than either treatment alone.  

Potential reasons for this are that in our in vitro system, anti- IFNγ treatment 

did not fully block all cytokine. However, these data could indicate that IL-10 is 

activating an additional, non-IFNγ dependent pathway, such as the activation of 
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Blimp-1 which is known to promote Th2 effector responses (He et al., 2020). 

Overall, these data suggest that Th2 skewing by rIL-10 is only partially 

dependent on the suppression of IFNγ. To assess and confirm this, simultaneous 

of blockade of IFNγ and IL-10r signalling during H. polygyrus infection would 

directly test the role of IL-10 mediated IFNγ suppression in supporting the Th2 

response. T cell intrinsic MyD88 signalling induced by IL-18 is key for Th1 

polarisation (Orr et al., 2013, Yarovinsky, 2013, Oliveira et al., 2017), and, 

consistent with our hypothesis, MyD88-/- mice infected with H. polygyrus have 

increased worm expulsion and IL-4 expression (Reynolds et al., 2014a). In 

addition, IFNγ-/- mice infected with H. polygyrus have reduced egg counts and 

worm burden, indicating an elevated Th2 response in the absence of Th1 cells 

and IFNγ (Reynolds and Maizels, 2012). Together these data show that reduced 

Th1 responses allow for the expansion of Th2 cells, supporting the idea that IL-

10 suppression of IFNγ may promote the Th2 response.   

4.4.3 The expression of the IL-10R as a measure of Th 

responsiveness to IL-10 

To assess if in vitro and in vivo Th subsets respond differently to IL-10, we 

measured IL-10R expression on these cells. Blocking IL-10 signalling in the SILP, 

but not the MLN, resulted in increased Th2 cells. In keeping with this, IL-10R 

expression was higher overall in the SILP compared to the MLN. This is in line 

with our previous data that reports IL-10 expression being higher in the SILP 

compared to the MLN (Figure 3-11). The surface expression of the IL-10R reflects 

gene expression and surface binding of the cytokine, internalisation, and 

recycling (Cendrowski et al., 2016). In vitro, when rIL-10 is added, active 

signalling can result in loss of surface detection of the receptors (Munitic et al., 

2004, Perona-Wright et al., 2010). In vivo, active cytokine concentrations are 

lower and receptor stripping is less likely, and receptor downregulation is 

normally observed only in those cells that have become exhausted (Ingram et 

al., 2011). Furthermore, in vivo, the expression of the IL-10R1 is associated with 

IL-10 responsiveness (Shouval et al., 2014b, Liu et al., 1997). These factors are 

important to consider when drawing conclusions from our in vivo and in vitro IL-

10R data. 
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We report that in vitro Th1 and Th0 cells downregulate IL-10R expression when 

treated with rIL-10 compared to Th2 cells. In vivo, we used CXCR3 to identify 

Th1 cells and B6 4get mice were used for these experiments which have GFP in 

IL-4 expressing cells, allowing the identification of Th2 cells (Mohrs et al., 

2005b). CXCR3 is a chemokine receptor expressed by numerous cell types and is 

rapidly upregulated on activated T cells (Groom and Luster, 2011). CXCR3 

expression only remains high on Th1 and CD8+ T cells and facilitates trafficking 

of these effector T cells to sites of inflammation (Groom and Luster, 2011, Xie et 

al., 2003). For these experiments, Th cells were gated on both CD4 and TCRβ 

expression, therefore giving a pure population of Th cells for further gating on 

CXCR3 and IL-4 expression. We found that in the SILP, CXCR3+ “Th1” cells 

expressed higher levels of the IL-10R compared to IL-4+ Th2 cells. The 

combination of our in vitro and in vivo data measuring IL-10R expression of Th 

subsets indicates that downstream effects of IL-10R signalling may be different 

in Th1 and Th2 cells. Further studies are required to understand the role of IL-10 

signalling in different Th subsets.  

In vitro experiments focusing on TF expression in Th1 and Th2 cells after 

treatment with IL-10, may highlight different signalling pathways in these cells. 

IL-10 has been reported to activate not only STAT3 but STAT5 and STAT1 also 

(Finbloom and Winestock, 1995, Moore et al., 2001, Weber-Nordt et al., 1996, 

Wehinger et al., 1996). Investigating which STATs are activated in response to 

IL-10R signalling in Th1 and Th2 cells may help to address the question of 

differences in downstream signalling in these cells. Furthermore, the TF Blimp-1 

can promote Th2 polarisation and so investigating this TF in both Th1 and Th2 

cells would also be interesting (He et al., 2020).  As previously described, the 

cytokine environment at the time of IL-10R signalling is key for the 

immunological function of this cytokine. Perhaps, in our in vitro system, the 

presence of the polarising cytokines IL-4 and IL-12 for Th2 and Th1 cells 

respectively may also influence the outcome of IL-10R signalling. Assessing the 

expression of other cytokine receptors such as the IL-4 receptor and subsequent 

downstream signalling molecules induced would also contribute to unravelling IL-

10R signalling in Th1 and Th2 cells. Together our data support the sensitivity of 

tissue-based effector cells to IL-10 signalling, and particularly intestinal Th1 

cells. 
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4.4.4 Concluding remarks  

In conclusion, we report that IL-10 promotes the Th2 response to a helminth 

infection in the SILP. We show that IL-10 can signal directly to CD4+ T cells to 

increase Th2 differentiation in vitro, but that IL-10 production and IL-10R 

expression are both concentrated in the infected tissue rather than the MLN. 

High expression of the IL-10R by Th1 cells in the SILP indicates that these cells 

are sensitive to IL-10 signalling and subsequent IL-10 mediated suppression, 

providing an indirect mechanism for promoting the Th2 response. These data 

provide new insight into the complexity of tissue-based regulation during a Th2 

immune response and suggest that IL-10 may be an interesting candidate for 

therapeutic targeting in Th2 dominated diseases such as allergy, asthma, and 

helminth infection.  

 

Figure 4-13 Schematic of proposed mechanism of IL-10 promoting Th2 responses 
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Chapter-5 Barrier breach and IFNγ responses 

during H. polygyrus infection 

5.1 Introduction 

The immune response to helminths is typically characterised by a strong Th2 

response and the effector cytokines IL-13, IL-5 and IL-4 as previously described 

in section 1.3. Despite the well described Th2 response to H. polygyrus 

infection, there is some evidence in the literature suggesting IFNγ, a type 1 

cytokine, may also play a role in this model (Gentile et al., 2020, Reynolds and 

Maizels, 2012, Filbey et al., 2014). IFNγ dependent NK cell recruitment is 

required for wound repair at the early stages of infection (Gentile et al., 2020). 

In addition, IFNγ secretion by MLN cells from H. polygyrus infected mice has 

been reported. IFNγ-/- mice infected with H. polygyrus have reduced worm 

burden, suggesting that IFNγ provides immune competition during infection 

(Reynolds and Maizels, 2012). Underlying IFNγ responses, specifically Th1 

responses, are associated with the development of chronic helminth infections. 

Antigen-specific Th1 cells occur in susceptible mouse strains infected with T. 

muris, resulting in chronic infection (Klementowicz et al., 2012).  In addition, 

injecting IFNγ into mice infected with N. brasiliensis, antagonised ILC2 

responses (Moro et al., 2016). In this chapter, I aimed to characterise the timing 

and function of IFNγ responses to H. polygyrus and investigate the stimuli behind 

it.  

Alterations of the microbiota are of interest as bacteria can drive IFNγ responses 

(Kaiko et al., 2008). Bacteria induced IFNγ responses require immune cell 

priming by bacterial antigens. Changes to barrier permeability or damage can 

result in translocation of bacteria or bacterial products, allowing immune cell 

access to these antigens (Ding et al., 2004).  Helminth-induced changes in both 

the composition and abundance of the microbiome in the intestine have been 

reported. In H. polygyrus infection, both Lactobacillaceae and 

Enterobacteriaceae species are increased in the small intestine, although this 

change to the microbiota varies between mouse strains (Walk et al., 2010, 

Reynolds et al., 2014b, Rapin and Harris, 2018, Rapin et al., 2020, Rausch et al., 

2013).  Promotion of Lactobacillaceae species by H. polygyrus is reported to 



Chapter-5 Barrier breach and IFNγ responses during H. polygyrus infection 
 

113 
 

increase host susceptibility to infection (Reynolds et al., 2014b). Similarly, in T. 

muris infection, there is an increase in Lactobacillaceae species and also a 

reduction in the diversity of the microbiota (Houlden et al., 2015). As well as 

changes to the microbiota, there have been a small number of reports of 

helminth-induced changes to tight junctions (TJs) which are required to 

maintain epithelial barrier integrity. N. brasiliensis infection alters the 

expression of E-cadherin resulting in loss of cell-cell adhesion in the small 

intestine (Hyoh et al., 1999). Co-infection with H. polygyrus and the pathogenic 

bacteria Citrobacter rodentium results in translocation of this bacteria to 

systemic tissues, suggesting an increase in the movement of luminal contents 

across the epithelial barrier (Chen et al., 2005).  Although H. polygyrus infection 

is restricted to the small intestine, Th2 cells have been reported at distal sites, 

including the peritoneal cavity and omentum during infection, suggesting that H. 

polygyrus antigens may also be present at these sites or that cells home to these 

sites as well as the intestine (Jenkins et al., 2013, Mohrs et al., 2005a). We 

therefore hypothesised that bacterial antigens may also access the peritoneal 

cavity and omentum during H. polygyrus infection, and that these antigens might 

drive a local type 1, IFNγ-mediated immune response. 

The omentum is an adipose tissue with immune properties found within the 

peritoneal cavity. This tissue contains clusters of leukocytes called milky spots 

(MS) (Meza-Perez and Randall, 2017). The MS of the omentum are exposed to 

antigen via the drainage of lymphatic fluid from the peritoneal cavity (Meza-

Perez and Randall, 2017). This gives the omentum a filtration function for the 

peritoneal cavity and the capacity to generate immune responses to any 

pathogens or antigens found within the peritoneal cavity (Meza-Perez and 

Randall, 2017). In addition, mucosal homing ligands are expressed on the blood 

vessels of the omentum (Briskin et al., 1997, Berberich et al., 2008, Meza-Perez 

and Randall, 2017, Carlow et al., 2009). Lymphocytes express mucosal homing 

receptors, which facilitate their migration into areas where mucosal homing 

ligands are expressed (Bono et al., 2016, Hosoe et al., 2004, Denucci et al., 

2010). As a result, immune cells that are programmed to home to the intestine 

may also home to the omentum and this presents an interesting question on the 

role of this tissue during mucosal immune responses.  During H. polygyrus 

infection, Th2 cells accumulate in both the peritoneal cavity and the omentum 

(Rangel-Moreno et al., 2009) and similarly mice infected with influenza virus 
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accumulate CD4+ and CD8+ memory T cells at both these sites (Rangel-Moreno et 

al., 2009). This suggests an interesting role for the omentum and the peritoneal 

cavity as a homing site for mucosal immune cells from distal sites such as the 

intestine and lung.  The potential combination of immune cells and bacterial 

antigens in the peritoneal cavity would have the theoretical ability to drive a 

type 1 component during H. polygyrus infection. 

We aimed to unravel if an underlying type 1 response occurs during H. polygyrus, 

and whether that type 1 response is driven by translocating bacteria. We 

hypothesised that increased bacterial translocation may present an indirect 

mechanism by which IL-10 promotes Th2 responses as described in Chapter 2. To 

assess how strongly type 1 immunity features in H. polygyrus infection, we 

measured local IFNγ responses in both the SILP and MLN and also in the 

omentum, a tissue where mucosal immune cells have been reported to reside 

(Rangel-Moreno et al., 2009). Our initial IFNγ data suggested the possibility of an 

immune response initiated by bacteria or bacterial antigens. To assess intestinal 

permeability during H. polygyrus infection, faecal lipocalin-2 and albumin were 

measured. Furthermore, to understand how the epithelial barrier is held 

together during infection, TJ gene expression was analysed.  Our preliminary 

experiments showed minimal evidence of bacterial translocation during 

infection, although further studies are required. In addition, our data do not 

provide evidence of bacterial-specific Th1 cells. Instead, our data suggest that 

proteins secreted by H. polygyrus may elicit a Th1 response. Together the data 

in this chapter suggest that although IFNγ secretion and alterations in TJs occur 

during H. polygyrus infection, we found little evidence of bacterial 

translocation. Instead IFNγ secretion may be directed against H. polygyrus itself, 

although further studies are required to address this.  

5.2 Aims 

• To investigate where and when IFNγ is expressed during H. polygyrus 

infection  

• To determine if H. polygyrus infection results in a leaky intestinal barrier  
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• To examine if bacterial translocation and a subsequent bacteria-specific 

Th1 response occurs during H. polygyrus infection  

5.3 Results 

5.3.1 Expression of IFNγ during H. polygyrus infection 

At the end of Chapter 3, we discussed the interactions between Th2 and Th1 

cytokines, and in this chapter, we aimed to investigate the type 1 cytokine IFNγ  

 

Figure 5-1 CD8+ T cells are the main IFNγ+ producing T cell subset in the MLN and SILP 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 7 days post-infection the small intestine 
and MLN removed. (A) Representative FACS plots of IFNγ+ CD4+ CD44hi T cells from the small 
intestine (top) and MLN (bottom) from naïve (left) and D7 (right) infected mice. (B) % IFNγ+ of CD4+ 
CD44hi T cells from the small intestine (top) and MLN (bottom) from naïve and D7 infected mice. 
(C) Total number of IFNγ+ CD4+ CD44hi T cells from the small intestine (top) and MLN (bottom) 
from naïve and D7 infected mice. (D) Representative FACS plots of IFNγ+ CD8+ CD44hi T cells 
from the small intestine (top) and MLN (bottom) from naïve (left) and D7 (right) infected mice. (E) 
percentage IFNγ+ of CD8+ CD44hi T cells from the small intestine (top) and MLN (bottom) from 
naïve and D7 infected mice. (F) Total number of IFNγ+ CD8+ CD44hi T cells from the small intestine 
(top) and MLN (bottom) from naïve and D7 infected mice. Gating for IFNγ+ cells was carried out 
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using an appropriate isotype control. Graphed data are shown with mean ± SD and are pooled 
from 3 independent experiments with n=4-5 per experiment. Statistical significance was calculated 
by Mann Whitney U test where data were not normally distributed (C (MLN), F) and Student t test 
where data were normally distributed (B, C (SILP), E) (Significance *p<0.05, ***p< 0.001, 
****p< .0001). 

during H. polygyrus infection further. As described previously, there has been 

some evidence of IFNγ being part of the immune responses triggered by H. 

polygyrus (Reynolds and Maizels, 2012, Filbey et al., 2014, Gentile et al., 2020).  

To investigate if this IFNγ was indicative of a T cell response, we first analysed T 

cell populations 7 days after H. polygyrus infection. IFNγ secretion by both CD4+ 

and CD8+ cells in the SILP and MLN was measured (Figure 5-1). As was previously 

shown in Figure 3-8, the number of Th1 cells (TBET+ CD4+ TCRβ+ CD44hi) 

increased in the MLN and the SILP. Figure 5-1 shows that both percentage and 

number of IFNγ+ CD4+ TCRβ+ CD44hi cells again increased within the MLN but not 

the SILP (Figure 5-1A & B). This suggests that although TBET+  

 

Figure 5-2 There is a spike in IFNγ gene expression in the duodenum and omentum at D2 of 
H. polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 2-, 7-, 10-, 14 and 15- days post-
infection the small intestine collect for analysis. (A) Fold change of IFNγ gene expression in the 
duodenum at timepoints during H. polygyrus infection compared to housekeeping gene (RSP29) 
and normalised to an average of naïve samples.  Samples for timepoints 10 and 15 were provided 
by Claire Drurey from the Maizels laboratory.  Fold change of (B) IFNγ, (C) IL-13 and (D) IL-5 gene 
expression in the omentum compared to housekeeping gene (RPS29) and normalised to an 
average of naïve samples. Graphed data are shown with mean ± SD and are representative of 1-3 
independent experiments with n=3-6 per experiment. Statistical significance was calculated by 
significance was calculated by Student t test where samples were normally distributed (B&C) and 
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Mann Whitney U test where data were not normally distributed (D) and Kruskal-Wallis test with 
Dunn’s post-test for multiple comparisons between groups (A) (Significance *p<0.05, **p< 0.01, 
***p< 0.001). 

cells arrive in the SILP, they do not secrete IFNγ, and I hypothesise that this is 

perhaps due to IL-10 mediated suppression. When investigating CD8+ T cells, 

there was a significant increase in percentage and number of IFNγ+ CD8+ TCRβ+ 

CD44hi cells in the MLN, and an increase in percentage, but not number, of these 

cells in the SILP. These data demonstrate that both IFNγ+ CD4+ and CD8+ T cells 

expand in the MLN during H. polygyrus infection, but this is not reflected at the 

site of infection.  

A recent report demonstrated a strong IFNγ signature at the earlier stages of H. 

polygyrus infection (Days 2-4) (Gentile et al., 2020). At this timepoint, IFNγ is 

unlikely to be T cell derived. We therefore used qPCR to capture IFNγ gene 

expression from all cell types. IFNγ gene expression was measured in the 

duodenum at early and later timepoints of H. polygyrus infection (Days 2, 7, 10 

and 15). Samples from day 10 and 15 were kindly given to us by Claire Drurey 

from the Maizels laboratory, University of Glasgow. In keeping with the 

published data, we observed a clear spike in IFNγ gene expression at D2 in the 

duodenum compared to naïve mice and later timepoints (Figure 5-2). Although 

the IFNγ expression spike was very acute, only spiking at D2 of infection in the 

small intestine, when we examined surrounding tissues, such as the omentum 

(which is thought to filter the peritoneal cavity), we saw IFNγ expression at D2 

and sustained to D7, although gone by D14 (Figure 5-2). In comparison, the Th2 

tissue cytokines, IL-13, and IL-5, were also detectable in the omentum early and 

continued to increase till D14 (Figure 5-2). Overall, we observed an IFNγ 

signature from MLN T cells at D7 of H. polygyrus infection, which was not 

reflected in the SILP. We observed IFNγ gene expression in both the omentum 

and duodenum 2 days post-infection, which was sustained until D7 in the 

omentum only.  

5.3.2 Changes in intestinal barrier integrity during H. polygyrus 

infection 

As mentioned previously, a recent study observed an increase in IFNγ gene 

expression which was required for NK cell recruitment and subsequent limiting 
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of tissue damage during H. polygyrus infection (Gentile et al., 2020). The 

requirement for NK cells to limit tissue damage during infection suggests barrier 

breach may occur. To test this hypothesis, we aimed to assess the integrity of 

the intestinal barrier at D2 of infection. We used lipocalin-2 as a marker for loss 

of barrier integrity. Lipocalin-2 release has been well established as an indicator 

of intestinal leakiness and damage (Chassaing et al., 2012, Hsieh et al., 2016). 

 

Figure 5-3 Spike in lipocalin-2 but not albumin in the faeces during H. polygyrus infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and fresh faecal samples collected daily for 
14 days. (A) Lcn2 (pg) per mg of protein from faecal samples was measured by ELISA from naïve 
(circle) and H. polygyrus (square) infected mice. (B) Fold change of Lcn2 gene expression of in the 
duodenum and colon from naïve and D2 infected mice compared to housekeeping gene (RSP29) 
and normalised to an average of naïve samples. (C) Fold change of Lcn2 gene expression in the 
duodenum from naïve and D7 and D14 infected mice compared to housekeeping gene (RSP29). 
(D) Albumin (ng/ml) in faecal samples from naïve, D2 and D8 infected mice. Graphed data are 
shown with mean ± SD and are representative of 1-3 experiments with n=2-5 per experiment. 
Statistical significance was calculated by Mann Whitney U test where data were not normally 
distributed (B (Colon)) and Student t test where data were normally distributed (B (SI), C, D) 
(Significance *p<0.05, **p< 0.01).  

We measured faecal lipocalin-2 daily over a 14-day infection with H. polygyrus 

to determine if intestinal leakiness occured throughout infection (Figure 5-3). Of 

interest, faecal samples taken from a mouse undergoing an acute, DSS-induced 
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colitis (provided by Madeline White from the Maizels laboratory, University of 

Glasgow), gave Lcn2 protein measurements higher than the detection limit of 

the ELISA. There was a clear increase in faecal lipocalin-2 at day 2 of H. 

polygyrus infection compared to naïve controls (Figure 5-3A). In addition, 

another peak was observed at day 8.  These two timepoints match the days 

when H. polygyrus migrates through the wall of the gut (Figure 1-2). We further 

  

Figure 5-4 Changes in TJ protein gene expression in the duodenum at D2 of H. polygyrus 
infection 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 2 days post-infection the small intestine 
and colon removed. Fold change of (A) Lcn2, (B) IFNγ, (C) Cldn2, (D) JAM-A, (E) Occludin, (F) N-
cadherin, (G) E-cadherin and (H) ZO-1 gene expression in the duodenum and colon compared to 
housekeeping gene (RSP29) and normalised to an average of naïve samples. Graphed data are 
shown with mean ± SD and are pooled from 3 independent experiments with n=4-5 per 
experiment. Statistical significance was calculated by Mann Whitney U test (Significance **p< 0.01, 
****p< .0001).  

validated these data by examining Lcn2 gene expression in the duodenum and 

colon at day 2 of H. polygyrus infection (Figure 5-3B).  An increase in Lcn2 gene 

expression was observed in the duodenum but not the colon, reflecting that H. 

polygyrus only migrates through the wall of the small intestine. In addition, an 

increase in Lcn2 gene expression was also observed at D7 and D14 of H. 
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polygyrus infection (Figure 5-3C). To confirm these suggestions of possible 

barrier breach at D2 and D8 of infection, we also used a second assay of barrier 

integrity. The presence of faecal albumin indicates severe inflammation, 

bleeding and barrier disruption, a marker of extreme barrier breach as compared 

to lipocalin-2 (Maccioni et al., 2020, Zhao et al., 2018, Khan et al., 2017). We 

measured faecal albumin at 2- and 8-days post-infection, but we saw no changes 

in this protein between naïve and infected mice (Figure 5-3D). Similarly, to our 

lipocalin-2 ELISA, albumin in faecal samples taken from a mouse undergoing an 

acute, DSS-induced colitis was above the detection limit of the assay. From 

these data we see some suggestion of barrier disruption at D2 and D8 of 

infection but is much milder than in DSS induced colitis for example and is not 

associated with total loss of barrier integrity or bleeding. The contrasting results 

between lipocalin-2 and albumin in the faeces suggests that intestinal leakiness 

and inflammation occurs at timepoints where H. polygyrus is moving through the 

wall of the small intestine. However, we hypothesise the severity of this is low 

due to the lack of faecal albumin. 

We next aimed to understand what is keeping the barrier intact as H. polygyrus 

migrates through the wall of the intestine. Based on the spike in both IFNγ and 

Lipocalin-2 observed at day 2 post-infection, we therefore decided to focus on 

this timepoint. Alterations in TJ proteins are associated with intestinal barrier 

disruption and we therefore assessed the gene expression of key TJ proteins in 

the duodenum at day 2 post infection with H. polygyrus (Figure 5-4). In keeping 

with our previous data, both Lcn2 and IFNγ expression increased in the 

duodenum but not the colon (Figure 5-4A & B).The expression of the TJ proteins 

Cldn2, JAM-A and Occludin increased in the duodenum at day 2 of H. polygyrus 

infection, but, N-cad (N-cadherin), E-cad (E-cadherin) and ZO-1 did not change 

in comparison to uninfected controls (Figure 5-4C-H). These data suggest there 

are changes in cell-to-cell contacts during H. polygyrus infection. It is possible 

that the upregulation of some TJ proteins in the duodenal tissue represents a 

rapid restoration of TJ integrity, after disruption by a passing worm, 

contributing to consistent structural integrity of the gut epithelium during H. 

polygyrus infection.  
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5.3.3 H. polygyrus as a stimulus for IFNγ expression during 

infection 

Although we hypothesise that barrier breach is mild during H. polygyrus 

infection, we do observe an increase in disruption, measured by lipocalin-2, 

repair through the upregulation of TJ proteins and some evidence of a type 1 

response in the small intestine and more distal tissues. Based on these data it 

was possible that low level bacterial translocation may occur.  To address the 

  

Figure 5-5 Ex-vivo re-stimulation with HES induces IFNγ secretion from MLN cells from H. 
polygyrus infected mice 
C57BL/6 mice were infected with 200 L3 H. polygyrus and 14-days post-infection the MLN 
removed, MLN cells were re-stimulated ex-vivo with media/bacterial antigen extract (BAE)/HES or 
anti-CD3 for 3 days and cytokines measured in the supernatant. The concentration (pg/ml) of (A) 
IL-17A, (B) IFNγ, (C) IL-4 and (D) IL-10 in culture supernatants. ^DL = above the detection limit of 
the assay.  Graphed data are shown with mean ± SD and are reprehensive of 1 independent 
experiment with n=3-5. Statistical significance was calculated by Mann Whitney U test where data 
were not normally distributed (A (HES), B (BAE), C (HES)) and Student t test where data were 
normally distributed (A (media, BAE), B (media, HES), C (media, BAE, aCD3), D) (Significance 
*p<0.05, **p< 0.01). 

question of bacterial translocation as a result of intestinal leakiness during H. 

polygyrus infection, two attempts were made to detect systemic bacteria. We 
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first attempted to detect bacteria in the MLN and spleen, after 14 days of H. 

polygyrus infection by plating homogenised organs on to bacterial growth 

medium (data not shown). This pilot experiment showed bacterial growth in the 

MLN and spleen from both naïve and infected mice, indicating that sample 

contamination had occurred as SLOs from naïve mice should be sterile. This 

experiment requires optimisation of sterile techniques which due to time 

limitations could not be carried out. We next measured LPS in the serum of 

naïve and day 14 infected mice. This assay showed no detectable LPS in either 

set of samples, naïve or infected (data not shown). The assay itself worked well, 

as the standard curve was clear, but the lower detection limit of this assay was 

0.01ng/ml. Serum concentrations of LPS at this level would be expected only in 

severe bacteraemia, and sepsis is not reported during H. polygyrus infection 

(Reynolds et al., 2012).  

 

Figure 5-6 Collection of bacterial antigen extract 
The collection of BAE is described in detail in section 2.12. Created with BioRender.com 

It remained possible that low level bacterial translocation could occur during H. 

polygyrus infection and could be responsible for driving the IFNγ CD4+ and CD8+ 

T cell responses seen in Figure 5-1. To test whether T cell responses are directed 

against bacterial antigens during H. polygyrus infection, we aimed to determine 

if the IFNγ signature we observed during infection in different tissues was a 

result of bacteria specific Th1 cells. MLN cells from naïve and day 14 infected 

mice were re-stimulated ex-vivo with bacterial antigen extract (BAE) for 3 days 

and then cytokines measured in the supernatant (Figure 5-5). The collection of 

BAE is described in Figure 5-6 and is a crude method obtaining bacterial antigen 

from the faeces. We found that both IL-17A and IFNγ, two cytokines associated 

with type 1 responses against many pathogens, did not increase when stimulated 

with BAE but decreased (Figure 5-5A&B), we therefore could not conclude from 

this assay that there are T cells responding to bacteria during H. polygyrus 

infection. IL-10 also decreased in response to BAE compared to naïve controls, 
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and IL-4 remained unchanged (Figure 5-5C&D). MLN cells were also re-stimulated 

with HES, and interestingly both IL-4 and IFNγ but not IL-17A significantly 

increased in MLN cells from day 14 infected mice compared to naïve controls 

(Figure 5-5). These data demonstrate that IFNγ is expressed at early timepoints 

in the small intestine and omentum which persists to D7 in both the MLN and 

omentum. Our data also suggest that minor barrier breach occurs during H. 

polygyrus infection. Although we do not conclusively assess bacterial 

translocation during infection, we show that IFNγ may be released in response to 

H. polygyrus itself.  

5.4 Discussion 

5.4.1  Local and distal IFNγ expression during H. polygyrus 

infection  

In this chapter I aimed to characterise the site and timing of IFNγ expression 

during H. polygyrus and to subsequently understand the stimulus behind it. 

Although both the percentage and number of IFNγ producing T cells increased in 

the MLN 7 days post H. polygyrus infection, this increase was not observed in the 

SILP. I hypothesise that the high concentrations of IL-10 found in the intestinal 

tissue, as seen in Figure 3-11, might act directly on tissue-based T cells to limit 

their IFNγ expression during upon H. polygyrus infection (Coomes et al., 2017, 

Joss et al., 2000). Indeed, a trend towards an increase in IFNγ gene expression 

was observed during IL-10R mAb blockade (Figure 4-4). When examining IFNγ 

production from distinct CD4+ and CD8+ T cells, we found an increase in the 

percentage but not number of CD8+ IFNγ producing cells in the SILP.  An 

expansion of CD8 regulatory T cells, which produce both IL-10 and IFNγ (Yu et 

al., 2018), has been reported in H. polygyrus infection (Metwali et al., 2006). I 

hypothesise that perhaps these cells may account for the observed increase of 

CD8+ IFNγ producing cells in the SILP. Overall, these data at 7 days post-

infection show little evidence of an increase in IFNγ expression by CD4+ and CD8+ 

T cells in SILP but do show a clear increase in IFNγ expression by both T cell 

subsets in the MLN. Therefore, suggesting that perhaps IFNγ expression by these 

cells is suppressed upon entering the helminth infected tissue.   
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To obtain a better overall understanding of when IFNγ is expressed in the small 

intestine, we assessed gene expression of this cytokine at different timepoints. 

We became increasingly interested in earlier timepoints of H. polygyrus 

infection as recent literature suggests a role for this cytokine at earlier stages of 

infection (Nusse et al., 2018, Gentile et al., 2020). IFNγ production by 

lymphocytes has been reported within granulomas and has been shown to be 

important for promoting epithelial turnover during H. polygyrus infection (Nusse 

et al., 2018).  In addition, another recent study reported that the depletion of 

NK cells resulted in intestinal bleeding during H. polygyrus infection and 

demonstrated that IFNγ was essential for NK cell recruitment in this model. 

These data therefore show an early, at days 2-4, requirement for IFNγ during 

infection and that wound healing is required for epithelial barrier integrity also 

(Gentile et al., 2020). In keeping with the observations in these studies, we 

observed an increase in IFNγ gene expression at D2 of infection in the 

duodenum. This increase was not observed at later timepoints. These data 

coupled with the literature suggest that IFNγ may be important for wound 

healing at the larval and granuloma stages of infection, but other mechanisms of 

wound repair may be sufficient when adult worms migrate back to the lumen. 

Possible ways of testing this hypothesis would be to analyse IL-22 gene 

expression at early and later timepoints of infection. IL-22 is important for 

wound repair and perhaps may be more highly expressed at later timepoints 

when IFNγ is absent (Wei et al., 2020). Although, we did not report an increase 

in gene expression of IL-22 at D7 of infection (Figure 4-4F), this timepoint is 

slightly earlier than when worms are to migrate back to the lumen which is 

usually around day 8 (Monroy and Enriquez, 1992). In addition, blocking IFNγ 

signalling at the larval and granuloma stages may further elucidate the roles this 

cytokine plays during H. polygyrus infection. Overall, the role of IFNγ in the 

small intestine thus far from our data appears restricted to D2 of infection and 

from the literature early IFNγ expression contributes towards wound healing via 

NK cell recruitment and epithelial cell turnover(Gentile et al., 2020). However, 

we do report increased IFNγ in the MLN during H. polygyrus infection, suggesting 

that the role of this cytokine may not restricted wound healing in the intestine.  

During H. polygyrus infection despite parasites only residing within the small 

intestine, systemic immune effects have been described. In a mouse model of 

airway inflammation, infection with H. polygyrus resulted in reduced eosinophil 
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recruitment to the lung (Rzepecka et al., 2007). The suppression of 

inflammation in the skin as a result of H. polygyrus infection has been 

demonstrated in a model of contact hypersensitivity (Filbey et al., 2020). In 

addition, as we show in Figure 3-1B and as previously published (Brailsford and 

Mapes, 1987) that splenomegaly occurs during H. polygyrus infection. In 

addition, Th2 cells are found in the spleen, as well as the lung, peritoneal 

cavity, and liver (Mohrs et al., 2005a). Interestingly, the number of Th2 cells in 

the peritoneal cavity were similar to those found in the SLOs, the MLN and 

spleen (Mohrs et al., 2005a). Furthermore, cells in the peritoneal cavity 

expressed high levels of the intestinal homing molecule α4β7, rapidly produce 

IL-4 when stimulated ex vivo and persist with in the peritoneal cavity after worm 

clearance with anti-helminthics (Mohrs et al., 2005a). These data suggest that 

the peritoneal cavity is a site of Th2 memory cell accumulation, despite 

parasites themselves not being present at this site (Mohrs et al., 2005a).  

In addition to being found in the peritoneal cavity, Th2 cells have also been 

identified in the omentum, a fatty tissue with immunological properties that 

drains fluid from the peritoneal cavity (Rangel-Moreno et al., 2009). We decided 

to investigate IFNγ responses in the omentum as we hypothesised that perhaps 

effector Th1 memory cells may also accumulate at this site or that as the 

omentum filters the peritoneal cavity, bacteria or bacterial products leaking 

from the intestine may become trapped in the omentum. In addition, we 

considered the idea that bacteria or bacterial products may also arrive in the 

omentum in the blood.  

Our data measuring IFNγ and type 2 cytokine gene expression in the omentum 

suggested that IFNγ responses occur at this site at D2 and D7 of infection but 

this signature was lost at D14. These data suggest that the IFNγ gene expression 

in this tissue is not a result of Th1 effector memory cells at D2, as this timepoint 

is too early for the accumulation of these adaptive immune cells. However, IFNγ 

expression at D7 could be a result of Th1 cells beginning to home to the 

omentum. The blood vessels of the omentum express molecules such as mucosal 

addressin cell adhesion molecule 1 (MAdCAM-1) and peripheral lymph node 

addressin (PNAd) typically found on HEVs of Peyer’s patches and the MLN (Briskin 

et al., 1997, Berberich et al., 2008, Meza-Perez and Randall, 2017). The 

intestinal homing integrin α4β7 is also associated with cell migration from the 



Chapter-5 Barrier breach and IFNγ responses during H. polygyrus infection 
 

126 
 

blood to the omentum (Carlow et al., 2009, Meza-Perez and Randall, 2017). This 

suggests that primed IFNγ+ Th1 cells from the MLN (Figure 5-1) may home to the 

omentum as part of a memory response, although the stimulus behind this Th1 

response remains unclear and the absence of an IFNγ signature at D14 could 

potential be a result of Th1 cells moving to the peritoneal cavity or low cytokine 

activity by these cells.   

Our data also suggest that a local innate immune response occurs in the 

omentum during H. polygyrus infection due to the observed D2 cytokine 

signature. Interestingly, NK cells have been reported in the omentum (Sorensen 

et al., 2009, Sedlacek et al., 2013) and LPS stimulation of NK cells results in IFNγ 

expression (Kanevskiy et al., 2013). Low level LPS in the blood as a result of 

early barrier breach during H. polygyrus infection may arrive at the omentum 

and stimulate NK cells, presenting a possible reason for the early IFNγ signature 

in the omentum during H. polygyrus infection. We examined LPS in the serum 

and peritoneal wash at D7 of infection and found no detectable LPS (data not 

shown), it would be important to carry this experiment out at D2 of infection 

also. These data present an exciting question surrounding systemic responses to 

H. polygyrus in the omentum. A method to explore this question further would 

be to analyse innate cells with the capacity to produce IFNγ such as 

macrophages and NK cells, which have been previously identified in the 

omentum, by flow cytometry from naïve and D2 infected mice. Furthermore, the 

presence of IFNγ producing Th1 cells in the omentum and D7 of infection should 

also be analysed, as the D2 and D7 IFNγ signatures may be due to different 

responses. In addition, unravelling the stimuli behind IFNγ expression by cells is 

a key part of understanding this response in the omentum. To address this 

question, measuring the integrity of and changes to the intestinal barrier is 

important as a leaky gut may result in systemic bacteria or bacterial products.  

5.4.2 Changes in epithelial barrier integrity during H. polygyrus 

infection  

We hypothesised that due to the migration of H. polygyrus through the wall of 

the small intestine that barrier breach may occur during infection and that 

subsequent bacterial translocation could be a potential stimulus for IFNγ 

responses during infection. In keeping with this hypothesis, we observed in an 
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increase in lipocalin-2 in the faeces at day 2 of infection and also at day 8 of 

infection. Lipocalin-2 is an innate immune protein produced by epithelial cells 

and macrophages in response to inflammation. Neutrophils also store lipocalin-2 

in granules (Meheus et al., 1993, Chan et al., 2009, Toyonaga et al., 2016). The 

primary role of lipocalin-2 is to starve and therefore prevent overgrowth of 

bacteria via sequestering iron (Goetz et al., 2002, Toyonaga et al., 2016) and 

Lcn2-/- mice have bacterial dysbiosis (Singh et al., 2020). Lipocalin-2 is a well-

established marker of inflammation and barrier breach in IBD and murine colitis 

models (Chassaing et al., 2012, Hsieh et al., 2016), however, it is not exclusively 

a marker of a leaky intestinal barrier. We therefore measured albumin in the 

faeces, a protein found in the blood which increases in organs such as the 

intestine when bleeding and severe pathology occur (Khan et al., 2017, Powell-

Tuck, 1986).  There were no changes to faecal albumin at day 2 or day 8 of 

infection, indicating that there is no major barrier disruption during H. polygyrus 

but does not remove the possibility that minor barrier breach occurs.  

To assess barrier integrity further, gene expression of TJ proteins in the 

duodenum were measured. We observed significant increases in numerous TJ 

proteins at 2 days post-infection with H. polygyrus. These data could be 

consistent with a process in which burrowing worms disrupt TJs and gene 

expression increases as the TJs are restored. Previously, H. polygyrus has been 

shown to increase distal colonic barrier permeability as a result of decrease in E-

cadherin at the protein level and this was shown to be dependent on IL-4 

signalling (Su et al., 2011). This decrease of protein E-cadherin may require 

increased gene expression to overcome loss of TJs, a similar process may occur 

in the duodenum and our data showing increased TJ gene expression supports 

the idea of renewing TJ proteins. To validate these observations at the protein 

level, a possible experiment would be to carry out immunofluorescence imaging 

of TJ proteins in the duodenum of naïve and D2 infected mice. In addition, 

although we observe clear changes at D2 of infection, it would be interesting to 

carry out these experiments at D8 of infection, where a second lipocalin-2 peak 

occurred and when adult worms are moving into the lumen.  To gain a conclusive 

answer surrounding barrier breach during H. polygyrus infection, my proposed 

experiment would be to use FITC-dextran at day 2 and 8 of infection to assess 

movement across the intestinal barrier. This technique would require 

optimisation as a result of the high levels of mucus reported during H. polygyrus 



Chapter-5 Barrier breach and IFNγ responses during H. polygyrus infection 
 

128 
 

infection. These data show that major barrier disruption does not occur in 

responses to H. polygyrus infection, but our data do indicate changes to the 

epithelial barrier do occur and we hypothesised that this may be sufficient for 

bacterial translocation and subsequent bacterial specific responses.  

5.4.3 Potential stimuli of IFNγ expression in the immune response 

to H. polygyrus infection  

The detection of bacterial translocation and bacteria-specific immune responses 

requires the optimisation of techniques that require sterile handling of samples 

to prevent contamination and false positive results. As described previously we 

carried out numerous pilot experiments to assess bacterial translocation during 

H. polygyrus infection. However, contamination was a common problem across 

experiments. However, using bacterial antigen extract (BAE) (Figure 5-6) as a 

crude bacterial ex vivo stimulus for MLN cells provided some interesting 

preliminary data surrounding IFNγ responses during H. polygyrus infection. 

Although this experimental set up does have some caveats. Firstly, the 

components of BAE are unknown and there may be a super-antigen within BAE 

samples. Secondly, BAE most likely contains a high concentration of bacterial 

antigen from the colon, and we hypothesise that any bacterial specific cells 

would respond small intestinal bacteria rather than those found in the colon. 

Despite these caveats, we did observe some interesting data from these 

experiments.  

Our ex-vivo MLN stimulation data demonstrated that BAE did not induce the 

secretion of IFNγ from H. polygyrus infected MLN cells, instead secretion of this 

cytokine decreased. In addition, HES, the secretory product of H. polygyrus 

promoted IFNγ secretion by MLN cells from H. polygyrus infected mice. HES 

induction of IFNγ from MLN cells has also been shown at D7 and D28 of H. 

polygyrus infection (Filbey et al., 2014). The induction of IFNγ expression by HES 

may be a mechanism by H. polygyrus to create immune competition during 

infection, subsequently reducing the Th2 responses and allowing parasite 

persistence. An additional experiment to elucidate if IFNγ is derived from CD4+ T 

cells would be to re-stimulate CD4+ T cell from the MLN, rather than entire MLN 

cells, from H. polygyrus infected mice. In addition, HES promoting IFNγ 

expression is not described in BALB/C mice which are more resistant to H. 
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polygyrus infection (Filbey et al., 2014), suggesting that in the context, IFNγ 

responses are detrimental to parasite expulsion.  These data suggest that 

perhaps H. polygyrus specific Th1 cell are primed in the MLN, but upon arrival at 

the SILP, IFNγ secretion by these cells is suppressed. A potential mechanism for 

this suppression is IL-10, the concentration of IL-10 in the intestine is overall 

higher and increases with infection (Figure 3-11), even in naïve mice, compared 

to the MLN. Therefore, when IFNγ producing cells arrives in the SILP, exposure 

to high concentrations of IL-10 may result in suppression of these responses. In 

addition, the strong type 2 cytokine environment in the SILP is not favourable for 

Th1 responses. A potential mechanism to test these hypothesise would be to 

block IL-10R signalling at the peak of CD4+ T cell response, D14 of infection 

(Perona-Wright et al., 2010), and test if this results in an increase in IFNγ 

producing Th1 cells in the SILP and subsequent increased worm burden due to 

immune competition. Overall, our preliminary studies investigating bacterial 

translocation as an IFNγ stimuli do not show evidence of this during H. polygyrus 

infection. In addition, we hypothesise that H. polygyrus may also be a candidate 

for stimulating IFNγ responses, although further studies surrounding both 

bacterial translocation and H. polygyrus specific Th responses are required.   

5.4.4 Concluding remarks  

To conclude, we have demonstrated a slight increase in intestinal permeability 

and inflammation that may reflect minor barrier breach at the two points of 

infection where H. polygyrus moves through the wall of the intestine. However, 

our data do not indicate that this results in bacterial translocation. Further 

experiments and optimisation are required to confirm this preliminary 

observation. In addition, we show that both Th1 and Th2 cell cytokine signatures 

are found in the omentum, a site of possible mucosal effector cell homing or a 

previously undescribed site where H. polygyrus induces innate immune 

responses. Furthermore, we show that HES induces IFNγ production as well as IL-

4 by MLN cells from H. polygyrus infected mice. Overall, we have demonstrated 

that during H. polygyrus infection, IFNγ is expressed in both local and distal sites 

and at earlier (D2) and later (D7) stages of infection. However, the stimulus 

behind this remains unclear, and may differ between tissues and at different 

timepoints. This suggests that IFNγ may play numerous, previously overlooked, 

roles in the immune response to H. polygyrus infection and further experiments 
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should focus on elucidating this. Understanding the functions of IFNγ and 

possible immune competition during H. polygyrus is key for understanding 

immunity to this parasite and may contribute towards anti-helminth treatment. 
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Chapter-6 Main discussion  

Cytokines are pivotal in orchestrating and maintaining immune responses to 

pathogens such as helminth infections. The Th2 cytokines IL-4, IL-13 and IL-5 

play a critical role in the immune response to H. polygyrus infection (Reynolds et 

al., 2012). Interestingly, location-specific functions of these cytokines have been 

described, with IL-4 being essential within the priming lymph node and IL-13 and 

IL-5 often described as tissue cytokines (Redpath et al., 2015). This emphasises 

the importance of investigating both of these sites during infection. There have 

been numerous studies using IL-10-/- mice to study the protective roles of H. 

polygyrus infection in models of colitis (Elliott et al., 2004, Setiawan et al., 

2007, Blum et al., 2012, Metwali et al., 2006). However, these studies do not 

investigate the role of IL-10 in the small intestine in the context of H. polygyrus 

alone. Therefore, it remains unclear if IL-10 has a role in promoting Th2 

responses to helminth infection and if this affects Th2 cells directly, indirectly 

or a combination of both. A possible mechanism for indirect promotion of Th2 

responses by IL-10 is the suppression of Th1 cells, removing immune competition 

in this infection model (Figure 6-3). Although the idea of an underlying bacterial 

Th1 response during H. polygyrus has been hypothesised in the literature, due to 

the nature of the H. polygyrus life cycle, this has never been directly reported 

(Filbey et al., 2014, Ahmed et al., 2017). The overarching aims of this thesis 

were to understand the possible direct and indirect mechanisms of the cytokine 

IL-10 in promoting Th2 immunity to helminth infection and to explore immune 

competition during H. polygyrus infection.  

6.1.1 Analysing immune responses in both the SILP and MLN is 

key for understanding immunity to H. polygyrus infection 

The priming LN and tissue-based site of infection have distinct organisation, 

immune cells, and functions. The lymph node is a hub of lymphocytes comprising 

mostly B cells and T cells, however stromal cells and DCs are also key players at 

these sites (Jenkins et al., 2001, Martín- Fontecha et al., 2003). One of the 

primary functions of the LN is to orchestrate and initiate the adaptive immune 

response to infection, as described in section 1.4.2. The site of infection is 

where primed effector cells, such as activated Th2 cells and plasma cells, traffic 

to, in order to exert their effector functions (Maizels et al., 2012). At these 
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sites, there are a variety of immune cells that are abundant in the intestine but 

found in much fewer numbers or are absent from the MLN, including ILCs, 

macrophages, basophils and mast cells (Pelly et al., 2016, Reynolds et al., 2012). 

There are also almost no naïve lymphocytes found in the tissue, unlike the MLN 

(Jenkins et al., 2001). The difference in immune cells and the subsequent 

cytokine signatures found in the LN compared to the tissue create a distinct 

immune environment. Furthermore, commensal bacteria do not reside in SLOs 

such as the MLN, whereas in tissues such as the intestine, there is an abundance 

of commensal bacteria and food antigen, presenting the requirement for 

increased regulation of immune cells at these sites (Bowcutt et al., 2014). These 

differences mean that investigating both the LN and tissue-based site of 

infection are key when studying immune responses to infection. Much of the 

published literature that explores immune responses to H. polygyrus focuses on 

the MLN (Mosconi et al., 2015, Pelly et al., 2016, Perona-Wright et al., 2010).  

There is a lack of studies using techniques such as flow cytometry to analyse H. 

polygyrus infected small intestine samples at later time points of infection, such 

as 14 days post-infection, where Th2 expansion peaks (Perona-Wright et al., 

2010).  This is largely due to the technical challenge of isolating cells and 

maintaining cell viability from samples with high levels of mucus.  Although 

studying the MLN is critical for understanding the priming of the adaptive 

response to H. polygyrus it does not allow for full understanding of subsequent 

effector responses in the small intestine. The aim of Chapter-3 was therefore to 

optimise a method to isolate leukocytes from H. polygyrus infected small 

intestine samples at timepoints where mucus levels are high. In addition, two 

further methods for isolating cells from the SILP during H. polygyrus infection 

were published quickly after our own method was published, emphasising the 

need for this technique to move the field forward (Webster et al., 2020, Mayer 

et al., 2020, Jarjour et al., 2020).  The successful development of this protocol 

enabled us to carry out key experiments in both Chapter-4 and Chapter-5, 

allowing us to address our hypothesis surrounding the role of IL-10 in the Th2 

response to helminth infection and immune competition in this model.  
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6.1.2  The source of IL-10 and surrounding immune environment 

are key for the immunological role of this cytokine  

The role of IL-10 in maintaining gut homeostasis and suppression of Th1 

responses is well described (Glocker et al., 2009, Moran et al., 2013, Fiorentino 

et al., 1989, Couper et al., 2008). However, the role of this cytokine in the Th2 

response to helminths and other type 2 mediated disease, such as allergy, 

remains unclear. A factor that appears important for the role of IL-10 is the 

surrounding immune environment (Dennis et al., 2013, Fiorentino et al., 1989, 

Moore et al., 2001, Vieira et al., 1991). In addition, the cellular source of IL-10 

also appears to be important for the resulting immunological role of IL-10. The 

importance of T cell derived IL-10 has been shown in mice lacking IL-10 

specifically in T cells, using IL-10 FL/FL x CD4-cre mice, which develop 

spontaneous colitis, similar to that seen in global IL-10-/- mice (Roers et al., 

2004). Infection of these mice with T. gondii resulted in a lethal Th1 response, 

due to the lack of IL-10 mediated regulation. This was characterised by high 

CD4+ T cell infiltrates in the liver and severe immunopathology (Roers et al., 

2004). In contrast, these T cell specific IL-10-/- mice did not have exacerbated 

responses to cutaneous skin irritation or to LPS exposure (Roers et al., 2004). 

This suggests that in the skin, IL-10 production by other cells such as 

keratinocytes or macrophages may be key for regulating immune responses. 

Furthermore, in mice lacking B cells, the mouse model EAE is non-remitting. 

However, remission was restored by transfer of WT B cells and the same 

restoration was not found when transferring B cells from IL-10-/- mice. This study 

shows a specific role of B cell derived IL-10 for promoting remission in EAE 

(Fillatreau et al., 2002). Interestingly, B cell derived IL-10 has been reported to 

promote IL-10 secretion by T cells, so in this model the lack of IL-10 from B cells 

may result in a lack of IL-10 secretion by other immune cells also (Pennati et al., 

2016).  Another important factor to consider when studying IL-10 is what 

promotes the expression of IL-10 by different cell subsets. Cells such as 

macrophages and DCs have been shown to produce IL-10 in response to TLR 

ligation (Chanteux et al., 2007, Samarasinghe et al., 2006, Netea et al., 2004, 

Nguyen et al., 2020). Similarly, in B cells, ligation of TLR2, TLR4 and TLR9 have 

all been shown to induce IL-10 production by these cells (Sun et al., 2005, Sayi 

et al., 2011, Ma et al., 2015). B cells activated via TLR-2 can also activate Tr1 

cells, and this TLR2 mediated activation of B cells was responsible for the 
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suppression of gastric immunopathology induced in Helicobacter pylori infection 

(Sayi et al., 2011). The induction of IL-10 by the ligation of certain TLRs may be 

a self-limiting mechanism, where excess release of cytokines such as IL-12 after 

TLR ligation is limited by IL-10 production. In addition, another study 

demonstrated that macrophages release IL-10 in response to phagocytosis of 

apoptotic cells, again suggesting the requirement for regulation when immune 

cells are stimulated (Chung et al., 2007). These studies combined emphasise the 

importance of the immune environment and cellular source of IL-10 when 

considering immunological functions of this cytokine.  

6.1.3 Potential mechanism of IL-10 promoting Th2 responses 

We have demonstrated that in the absence of IL-10R signalling, the Th2 response 

in the SILP, but not MLN, is decreased and in addition type 2 cytokine gene 

expression is dramatically reduced. This emphasises once again the importance 

of investigating both the MLN and SILP when studying H. polygyrus infection. In 

addition, it demonstrates an important role for IL-10 in maintaining Th2 

responses and type 2 cytokines in the SILP. The absence of this effect in the MLN 

suggests a tissue-specific and perhaps even an intestinal specific role of IL-10 in 

promoting Th2 responses. The idea of the second touch hypothesis (also known 

as the two-hit hypothesis) states that for full T cell activation and 

differentiation, interactions with APCs such as DCs and macrophages at the site 

of infection where antigen was first acquired are needed (Ley, 2014, Mohrs et 

al., 2005b). In addition, ILC2s have also been shown to express MHCII and have 

been reported to interact with antigen specific CD4+ T cells in the tissue 

(Oliphant et al., 2014). This hypothesis implies that Th cells retain some 

plasticity when arriving at the site of infection and interactions with APCs and 

the resulting cytokine environment in the tissue drives further polarisation of Th 

cells (Ley, 2014). IL-10 can act on DCs to prevent the secretion of IL-12 (Aste-

Amezaga et al., 1998, Huang et al., 2001, Corinti et al., 2001, Ma et al., 2015). 

A potential mechanism for IL-10 support of Th2 responses in the small intestine 

may be due to IL-10 conditioning of APCs in the tissue to prevent the induction 

of Th1 cells and subsequent IFNγ production via inhibition of IL-12 (Figure 6-1). 

This is also in keeping with our observation in Chapter-5, where we show an 

increase in IFNγ producing CD4+ T cells in the MLN but not the SILP with H. 

polygyrus infection. IL-10 conditioned DCs may skew any IFNγ producing CD4+ T 
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cells to a Th2 phenotype once they arrive in the small intestine, explaining why 

we do not observe an increase in these cells in the SILP (Figure 6-1). In addition 

to this, in a model of allergic dermatitis induced by OVA sensitization in the 

skin, IL-10 derived from DCs was reported to be critical for induction of antigen 

specific Th2 responses (Laouini et al., 2003). In this model, adoptive transfer of  

 

Figure 6-1 Proposed mechanisms of IL-10 promoting the Th2 response 
Based on the literature and our data I propose that IL-10 (which increases during H. polygyrus 
infection) promotes Th2 responses through a combination of direct and indirect mechanisms. 
Mechanism 1. (Indirect) IL-10 inhibits IL-12 secretion by DCs, inhibiting Th1 responses. Based on 
the second touch hypothesis and the importance of the surrounding cytokine environment this 
removes immune competition and promotes Th2 differentiation in the SILP. Mechanism 2. 
(Indirect) The literature has described AAM derived IL-10 promoting wound healing during H. 
polygyrus infection via promoting epithelial proliferation via WISP-1. This mechanism may prevent 
or limit bacterial translocation during infection, preventing anti-bacterial Th1 responses which would 
act as immune competition for Th2 responses. Mechanism 3. (Indirect) Our data show that there 
is increase in IFNγ+ CD4+ T cells in the MLN but not the SILP at D7 of H. polygyrus infection. 
Indicating that IL-10 may suppress these cells upon entering the SILP, this is in keeping with higher 
IL-10R expression by Th1 cells in the SILP compared to Th2 cells. Mechanism 4. (Direct) We 
have shown in vitro that IL-10 can directly promote Th0 and Th2 cells to produce the type 2 
cytokines IL-13 and IL-5. These direct and indirect mechanisms combined may explain the 
reduction in SILP Th2 cells we observe when blocking IL-10R signalling.  
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OVA-pulsed IL-10-/- DCs into WT and IL-10-/- mice resulted in equally poor IL-4 

secretion by T cells (Laouini et al., 2003). This suggests an important role of DC 

derived IL-10 in promoting Th2 responses in the skin, although it is unclear if this 

is a direct or indirect response.  These data demonstrate that IL-10 derived from 

DCs in the tissue may be an interesting target for further investigation in H. 

polygyrus infection.  

I hypothesise that IL-10 may also act directly on T cells to promote a Th2 

phenotype.  Our data demonstrate that IL-10 can stimulate both Th0 and Th2 

cells to produce the type 2 tissue cytokines IL-13 and IL-5 in vitro. This in vitro 

system is set up using purified CD4+ T cells, suggesting direct effects of IL-10 

that are independent of APCs. Furthermore, this effect occurred independently 

of changes to activation and proliferation of the T cells but was partially 

dependent on IFNγ suppression. The suppression of IFNγ as a mechanism for IL-

10 promoting Th2 cell skewing is supported further by our data demonstrating 

that in the SILP but not the MLN, CXCR3+ “Th1” cells express higher levels of the 

IL-10R compared to IL-4+ “Th2” cells. This would suggest that the increased 

levels of IL-10 reported during H. polygyrus infection may act on Th cells to 

further skew to a Th2 phenotype by eliminating immune competition (Figure 

6-1). To test this hypothesis, I suggest blocking IFNγ signalling using a mAb 

during H. polygyrus infection. If an increase in Th2 cells was observed, this 

would indicate that, as we found in vitro, IL-10 promoting Th2 cells may be 

partially dependent on IFNγ suppression. To determine if IL-10 promoting Th2 

cells is only partially dependent on IFNγ suppression in vivo, I suggest that 

carrying out a dual treatment where IFNγ signalling is blocked and rIL-10 is 

administered. Comparing these treatments together to treatments with either 

rIL-10 or IFNγ blockade alone would elucidate the extent of the importance of 

IL-10 mediated IFNγ suppression in promoting Th2 cells.  

IL-10 derived from AAMs has been shown to promote intestinal wound repair by 

inducing WISP-1 signalling in epithelial cells, which promotes proliferation and 

subsequent wound repair (Gordon, 2003, Quiros et al., 2017, Morhardt et al., 

2019). IL-10 has also been shown to promote intestinal stem cell proliferation 

(Biton et al., 2018). IL-10 mediated wound repair may prevent microbiota 

induced inflammation during H. polygyrus infection, preventing the recruitment 
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of bacteria-specific Th1/Th17 cells, which would otherwise become immune 

competition for Th2 cells (Figure 6-1).  The combination of both 

 

Figure 6-2 The role of IL-10 is dependent on the surrounding immune environment. 
In allergic airway inflammation, immunopathology occurs in the lung. Furthermore, in models of 
allergic airway inflammation IL-10 has been reported to suppress the Th2 response. Conversely, 
the Th2 response to H. polygyrus infection is host protective and our data demonstrate that IL-10 is 
important for an optimal Th2 response. I hypothesise that the function of IL-10 depends on the 
pathological potential of the target Th2 response.  

the hypothesised indirect and direct mechanisms may support Th2 cell 

responses. To test these hypotheses, the generation of cell specific IL-10 or IL-

10R knockout mice would facilitate and allow us to address each of these 

proposed mechanisms.  

As discussed in section 1.3, there are numerous mechanisms that promote the 

clearance of H. polygyrus. The type 2 promoting role for IL-10 we describe may 

play a role in numerous clearance mechanisms at both the larval and adult 

stages of infection.  AAMs can immobilise larvae within granulomas, as discussed 

in section 1.3.4, this effect is CD64 dependent and previous studies have shown 

that IL-10 induces the expression of CD64 on human monocytes (Te Velde et al., 

1992, Bovolenta et al., 1998). Therefore, IL-10 acting on AAMs may promote 

larval immobilisation indirectly via the upregulation of CD64. Similarly, 

eosinophils also play an important role in larval killing at the granulomas stage 

of infection. Simultaneous stimulation of AAMs with IL-10 and IL-4 has been 
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shown to result in increased CCL24 production which subsequently promotes the 

migration of eosinophils (Makita et al., 2015). This mechanism could be a 

possible IL-10 and IL-4 dependant mechanism for eosinophil recruitment to 

granulomas.  IL-10 may also act on ILC2s to enhance type 2 cytokine secretion, 

therefore furthering the secretion of the type 2 cytokines IL-4, IL-13 and IL-5 

which in turn promote goblet cell hyperplasia, the function of AAMs and the Th2 

response, all of which contribute to the clearance of H. polygyrus.  

Adult worms reside in the lumen of the gut wrapped around villi (Maizels et al., 

2012). As mentioned previously, IL-10 promotes epithelial cell proliferation 

(Gordon, 2003, Quiros et al., 2017, Morhardt et al., 2019). The subsequent 

epithelial shedding as a result of proliferation induced by IL-10 could perhaps 

provide a mechanical mechanism for dislodging worms from the villi, preventing 

their persistence and mating. The secretion of antibodies such as IgG and IgE by 

plasma cells occurs during H. polygyrus infection. IL-10 has been shown to 

promote class switching of human B cells to IgG secreting plasma cells (Heine et 

al., 2014). IgG “coating” of larvae is required for immobilisation and killing by 

innate immune cells (Esser-Von Bieren et al., 2015). A further potential 

mechanism for IL-10 mediated expulsion of H. polygyrus may be via promoting 

class switching in B cells to IgG. The direct effect of IL-10 in promoting Th2 cells 

could promote the expulsion of H. polygyrus via enhancing type 2 cytokine 

secretion, which promotes both the innate and adaptive arms of the type 2 

immune response, all of which contribute to the clearance of parasites.  

Most studies that have investigated the role for IL-10 in allergic disease in the 

lung report suppression of type 2 responses by this cytokine, conflicting with our 

data that IL-10 promotes Th2 cell responses. In these contexts, the type 2 

immune response results in severe damage and fibrosis in the lung mediated by 

pathogenic Th2 cells. This level of inflammation is not described in H. polygyrus 

infection, where Th2 cells are host protective. I hypothesise that IL-10 may have 

a pro-/anti- Th2 switch, whereby IL-10 will promote Th2 responses unless severe 

inflammation occurs as a result, where the collateral damage of the Th2 

response outweighs the protective benefits and so Th2 suppression is required 

(Figure 6-2). This concept may apply to other helminth infections, such as N. 

brasiliensis, where IL-10 secretion as a result of IL-4R signalling helps to 

maintain Th2 responses (Balic et al., 2006). In addition, another layer of 
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complexity when comparing the lung and intestine is the abundance of bacteria 

found at these mucosal sites, with the lung microbiota having a much lower 

biomass than that of the gut (Enaud et al., 2020). In addition, Tregs have been 

reported to be key for homeostasis within the lung, similarly to the gut. In the 

lung, Tregs achieve homeostasis by suppressing both Th1 and Th2 responses and 

this Treg mediated suppression in the lung depends on TGF-β rather than IL-10, 

unlike in the gut where IL-10 is required for intestinal homeostasis (Rubtsov et 

al., 2008, Ray et al., 2010, Kühn et al., 1993). This suggests that although Tregs 

are involved in the regulatory responses in both of these tissues, the mechanisms 

of action differ. Therefore, the role of IL-10 may be context dependent. 

However, our data demonstrate that IL-10 promotes the anti-helminthic Th2 

response in the intestine. 

6.1.4 Immune competition is key for the outcome of helminth 

infection  

The concept of mixed Th1/Th2 responses during helminth infection is well 

established in mouse models of helminth infection including T. muris, T. spiralis 

and S. mansoni (Pearce and Macdonald, 2002, Klementowicz et al., 2012, Ilic et 

al., 2011). Typically, in mouse strains that are more resistant to helminth 

infection, Th2 responses are dominant and result in lower worm burden (Cortés 

et al., 2017). However, in more susceptible mouse strains, Th1 responses limit 

host protective Th2 responses, resulting in parasite persistence (Cortés et al., 

2017).  It is important to note that this broad summary varies between helminth 

models and their respective life cycles (Cortés et al., 2017). Co-infection with H. 

polygyrus and T. gondii, a Th1 inducing protozoan parasite, prevents the 

induction of Th2 cells and promotes H. polygyrus-specific Th1 cells (Ahmed et 

al., 2017). This study supports the concept of H. polygyrus specific Th1 

responses occurring during infection.  Interestingly, C57BL/6 mice are described 

as susceptible to H. polygyrus and develop chronic infection, unlike BALB/C mice 

which are more resistant, although infection is still chronic (Reynolds et al., 

2012, Scott, 1991). It would be interesting to examine if a similar decrease in 

Th2 cytokines is also observed in BALB/C mice when treated with an IL-10R 

blocking antibody. This strain has a more robust Th2 response overall and 

therefore I hypothesise the requirement for indirect support of Th2 responses by 

IL-10 mediated suppression of Th1 cells may be less (Reynolds et al., 2012). As 
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well as discussing the relevance of our observation in different laboratory mouse 

strains, it would also be important to address the concept of wild mice and the 

relevance our data has in this setting. A recent study developed ‘wilding mice’, 

where embryos from C57BL/6 mice were transferred into wild mice, which 

harness a natural microbiome, including many pathogens (Rosshart et al., 2019). 

These mice reflected human phenotypes in two pre-clinical trial studies, where 

laboratory C57BL/6 mice did not (Rosshart et al., 2019). These data suggest that 

using mice that have a naturally acquired microbiome may be more reliable for 

translational clinical studies. H. polygyrus has been described in the natural 

microbiome (Behnke et al., 2009). To test the importance of IL-10 for Th2 

responses in mice with a natural microbiome, embryos from C57BL/6 mice could 

be transferred into mice naturally infected with H. polygyrus and IL-10R 

signalling blocking in the wilding offspring. I hypothesise that due to the 

presence of numerous pathogens in these mice, including H. polygyrus, that the 

requirement for IL-10 signalling would be more so than in “clean” laboratory 

mice, for both the suppression of Th1 responses to prevent intestinal 

inflammation and the promoting of Th2 responses against intestinal helminths. 

Therefore, although our data demonstrate a role for IL-10 in promoting Th2 

responses in laboratory C57BL/6 mice, it would be important to investigate this 

in other strains of laboratory mice and in mice with a natural microbiota as the 

Th1/Th2 immune balance may differ.  

Despite the increased susceptibility in C57BL/6 mice and our data demonstrating 

an increase in IFNγ producing Th1 cells in the MLN at D7 of infection, suggesting 

priming of a Th1 response in the MLN, IFNγ producing Th1 cells did not increase 

in the SILP at D7 of infection. To confirm the lack of Th1 cells in the SILP during 

H. polygyrus infection, further analysis is required at D14 to confirm that Th1 

cells primed in the MLN do not migrate to and exert their effector functions in 

the SILP at this later timepoint. We hypothesise that the lack of IFNγ-producing 

Th1 cells in the SILP at D7 could be due to IL-10 mediated suppression of the 

cells in the infected tissue. This is in keeping with our data that demonstrate 

that Th1 cells express higher levels of the IL-10R compared to IL-4 producing Th2 

counterparts. Therefore, the balance of Th1 and Th2 cells is key for helminth 

expulsion and it remains unclear if Th1 cells tip the balance in immunity to H. 

polygyrus. A potential stimulus for a Th1 response to H. polygyrus infection 
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could be bacterial translocation, although our preliminary studies showed little 

evidence for this.  

In the omentum, a tissue where Th2 cells have been reported to reside during H. 

polygyrus infection (Rangel-Moreno et al., 2009), we observed mixed Th1/Th2 

cytokine gene expression. We hypothesise that IFNγ expression in the omentum 

at different timepoints, D2 and D7, may be a result of different stimuli. 

Expression at D2 could perhaps be a result of a previously unknown innate 

response in the omentum to H. polygyrus infection. As described in Chapter 5, 

this could be a result of innate immune cells such as NK cells in the omentum 

responding to LPS in the blood, due to early barrier breach during infection. On 

the other hand, IFNγ expression at D7 of infection may be a result of IFNγ 

producing immune cells homing to the omentum. Further experiments are 

required to understand immune responses in the omentum during H. polygyrus 

infection. Targeting the movement of immune cells in and out of the omentum 

without preventing trafficking to mucosal sites is difficult due to the expression 

of gut homing ligands on blood vessels in the omentum (Carlow et al., 2009, 

Meza-Perez and Randall, 2017, Berberich et al., 2008). In-depth analysis of 

immune cells in the omentum prior to and during H. polygyrus infection using 

single-cell RNA sequencing would contribute to our understanding of immune 

cell subsets at this site. In addition, this would demonstrate how immune cell 

subsets in the SILP change as a result of cell proliferation or recruitment in the 

omentum during H. polygyrus infection. However, the stimulus for IFNγ 

responses during H. polygyrus infection are unclear, and we hypothesised that as 

we see mixed Th1/Th2 responses in the omentum, a distal site from the small 

intestine, that translocation of bacteria may occur in H. polygyrus infection.  

The lack of severe barrier breach we observed during H. polygyrus does not 

reflect the conditions, such as in the DSS model of colitis, where prolonged 

destruction of the epithelial barrier results in bacterial translocation and 

subsequent Th1/17 driven immunopathology (Eichele and Kharbanda, 2017). 

Despite this, we hypothesise a potential reason for a lack of extensive barrier 

breach could be due to H. polygyrus promoting repair as it moves through the 

wall of gut. H. polygyrus may have evolved this mechanism to limit barrier 

breach during infection as this would result in a damaging immune response to 

the host, which could be detrimental to parasite persistence. The increase in TJ 
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proteins we found at the early timepoints of infection may be as a result of HES 

induced changes to increase gene expression and therefore limiting epithelial 

barrier disruption. In keeping with this concept, an effect of H. polygyrus in 

modulating TJ proteins in the colon, which is distal from the site of infection, 

has been described (Su et al., 2011). An experiment that would help to address 

this hypothesis, would be to carry out microinjections of HES into intestinal 

organoids and subsequently analyse TJ proteins at both the gene and protein 

level. Understanding mechanisms where H. polygyrus modulates the immune 

system and barrier sites are key for identifying proteins secreted by this parasite 

that may have therapeutic potential.  

A recent concept depicted in the literature is the moulding of Th effector cell 

subsets in the SILP by the microbiota (Kiner et al., 2021). This is an interesting 

concept when considering H. polygyrus infection. Perhaps the changes induced 

in the microbiota by H. polygyrus is a detrimental mechanism of action, 

resulting in a pro-Th2 shift in the microbiota. One way to address this would be 

to treat Th cells from the MLN ex vivo with bacteria species such as 

Lactobacillaceae and Enterobacteriaceae. These species are expanded during H. 

polygyrus infection and may skew to a Th2 phenotype, although 

Lactobacillaceae species have been shown to promote Tregs in vivo (Morris et 

al., 2017, Walk et al., 2010, Reynolds et al., 2012). Another way to test this 

would be to treat mice with antibiotics, to remove most commensal bacteria, 

and reconstitute mice with a single bacterium, such as Lactobacillus. Subsequent 

infection of these mice with H. polygyrus and measuring the role of the resulting 

Th1/2 responses may elucidate precise roles of different commensal bacteria in 

skewing responses to H. polygyrus infection. Importantly, H. polygyrus infection 

of GF mice, which lack an intestinal microbiome, have an increased Th2 

response (Russell et al., 2020). However, GF mice have underdeveloped SLOs 

and mucosal immune system, which would affect results when considering the 

role of bacteria in influencing Th responses in this model (Bauer et al., 1963, 

Macpherson and Harris, 2004). Furthermore, the effect of the microbiota may 

not be directly on T cells. Commensal bacteria could also perhaps modulate 

other immune subsets that indirectly result in changes to Th responses. 

Therefore, commensal bacteria are an interesting and important factor to 

consider when investigating immune competition in infections such as H. 
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polygyrus, particularly when the parasite itself alters the presence of bacterial 

species.   

Our data and the literature suggest that a multitude of factors may induce IFNγ 

expression during H. polygyrus infection. However, an interesting concept which 

requires further investigation is the priming of H. polygyrus antigen specific IFNγ 

producing Th1 cells in the MLN. The first step in answering if H. polygyrus 

specific IFNγ response occur, would be to stimulate MLN cells from H. polygyrus 

infected mice with isolated proteins from HES, such as the venom allergen-like 

(VAL) proteins which have shown to be associated with the surface of H. 

polygyrus (Hewitson et al., 2011b). This experiment would be a first step in 

identifying H. polygyrus antigen specific Th1 and Th2 cells. Furthermore, the 

generation of H. polygyrus antigen tetramers would allow Th cells specific for H. 

polygyrus to be tracked during infection and allow us to determine if H. 

polygyrus specific Th1 cells are part of the immune response to infection. 

However, the immunogenic antigen has yet to be identified in H. polygyrus 

infection, although currently there are projects underway by the Perona-Wright 

and Maizels laboratories at the University of Glasgow that aim to address this. A 

potential alternative method would be to genetically modify the parasite itself, 

for example, to create a model where H. polygyrus surface proteins such as VAL 

proteins are fluorescently labelled. Using flow cytometry, DCs expressing 

fluorescent VAL antigen on MHCII in the MLN could be identified. This would also 

take the field closer to identifying the immunogenic antigen in H. polygyrus 

infection. Excitingly, a recent publication on N. brasiliensis, described a new 

method for genetically modifying helminths that could be applied to H. 

polygyrus (Hagen et al., 2021). Together, to further our understanding of 

immune competition and IFNγ secretion in H. polygyrus infection, further 

experiments using new techniques are required. 

6.2 Conclusions 

In this thesis, I aimed to answer questions surrounding the regulation of type 2 

immune responses by IL-10 and to address if immune competition occurs in H. 

polygyrus infection. The optimisation of a method for the isolation of leukocytes 

from the SILP of H. polygyrus infected mice allowed us to address these 

questions. Through the analysis of both the SILP and MLN we have demonstrated 
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a tissue-specific role for IL-10 in promoting optimal Th2 responses in the SILP. 

We report evidence that IL-10 supporting Th2 responses is mediated through, 

 

Figure 6-3 The role of IL-10 in promoting Th2 responses to H. polygyrus by limiting immune 
competition 

 

direct instruction of Th2 cells and perhaps due to indirect suppression of Th1 

cells to eliminate immune competition (Figure 6-3). These data demonstrate a 

previously unreported role for IL-10 in the intestine during helminth infection 

which contributes to the understanding of cytokine regulation during H. 

polygyrus infection. This finding would also be interesting to explore in other 

helminth models and type 2 mediated disease, although, comparing our data to 

published work, we hypothesise that IL-10 promotion of Th2 responses does not 

occur in setting of severe tissue damage.  

The observation that IL-10 might be driving Th2 responses, in part through IFNγ 

suppression led us to examine IFNγ producing Th1 cells during H. polygyrus 

infection.  From these studies, we have demonstrated that increased intestinal 

permeability and inflammation may result in minor barrier breach during H. 

polygyrus infection, but preliminary data indicates a lack of bacterial 

translocation in this model. However, we do report IFNγ producing CD4+ T cells 
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in the MLN that are not present in the SILP, perhaps in part due to IL-10 

mediated suppression in the infected tissue. The antigen stimulus for the 

induction of this Th1 response is unclear, but we hypothesise that these Th1 

cells are specific for H. polygyrus itself, as HES stimulated cells released IFNγ as 

well as type 2 cytokines. The lack of severe barrier breach and little evidence 

for bacterial translocation that we report raises questions of the stimulus, 

mechanism, and reasoning for an underlying Th1 response, either to H. polygyrus 

itself or to bacteria. Together, these data advance our knowledge of immune 

competition and cytokine responses to H. polygyrus which may contribute 

towards the improvement of anti-helminth strategies. In addition, we have 

elucidated a role for IL-10 in promoting Th2 responses in the context of helminth 

infection. Future experiments should assess this mechanism in different mucosal 

tissues, in different helminth models and in other type 2 mediated disease as 

understanding cytokine regulation in these settings is essential. 
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