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Abstract:  

In humans, echocardiography is the standard of care in patients in shock, helping 

intensivists to characterize the haemodynamic disorder, to select a therapeutic approach 

and to monitor the response to treatment. In veterinary medicine the use of ultrasonography 

is limited to the assessment of the caudal vena cava (CVC), as a method of estimating 

volaemia. The current study aimed to explore whether echocardiographic measurements 

can be useful in the diagnosis and monitoring of the response to treatment in cases of 

suspected hypovolaemia. 

The study cohort comprised of eighteen dogs presented to an out of hours service for 

suspicion of hypovolaemia, and the control cohort consisted of nineteen dogs presented for 

echocardiography that were diagnosed as not having substantial cardiac disease. Data from 

the physical exam (mucous membrane colour, heart rate, pulse quality, capillary refill 

time), systolic blood pressure (SBP), and laboratory findings (lactate concentration (LAC), 

total protein (TP), packed cell volume (PCV)) were recorded for the study cohort and used 

to decide if the patients were suspected to be hypovolaemic. Dogs from both cohorts were 

scanned conscious in right lateral recumbency. Ultrasonographic measurements comprised: 

maximal diameter of the CVC (CVCmax), CVC collapsibility index (CVC CI), CVC to 

aorta ratio (CVC/Ao), maximal dimension of left atrium to aorta ratio (LAmajor/Ao), left 

ventricular internal diameter in diastole normalized for bodyweight by allometric scaling 

(LVIDdN), end diastolic ventricular volume index (EDVI), and stroke volume (SV) 

obtained from the aortic velocity- time integral. All the physical exam variables, laboratory 

tests and ultrasonographic measurements were measured again in the study cohort after the 

administration of intravenous fluid therapy.  

The median time to perform the ultrasonographic protocol was 4 (3-4) minutes. The best 

discriminator to differentiate between cases and controls was the EDVI (P=0.047), 

however the specificity (42%) and sensitivity (53%) were very low. The heart rate, 

capillary refill time, TP, PCV, CVCmax, CVC/Ao, LAmajor/Ao, LVIDdN, EDVI and SV 

were significantly different (P≤0.05) after treatment.   

This study shows that a simplified echocardiographic protocol, that can be performed in a 

limited time can provide useful information about the volume status of the conscious, 

spontaneously breathing, clinically ill dog and can be helpful in monitoring the response to 

treatment. 
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1. Introduction 

 

1.1 Definitions of volaemia, hypovolaemia and hypovolaemic shock 

Preserving fluid balance and maintaining homeostasis has always been one of the main 

targets of intensive care clinicians in human and veterinary medicine. In order to choose 

the appropriate therapy and monitor its effects, there are several physiological concepts 

that need to be clearly understood such as fluid compartments, plasma volume, and blood 

volume (volaemia).  

 

1.1.1 Volaemia 

Body fluids are mostly constituted of water (Reece et al., 2015), which accounts for up to 

60% of the total body weight in a healthy dog. Different solutes are dissolved in this water 

constituting the body fluids, which are contained in the different body compartments. The 

intracellular compartment comprises of the body fluids that are contained inside the cells, 

and accounts for about two thirds of the total body fluids. All the fluid located outside of 

the cells is considered the extracellular compartment, which is subdivided into the 

intravascular, interstitial, and transcellular compartments. The intravascular fluid is that 

contained inside the blood vessels, and usually referred to as plasma volume. The 

interstitial fluid is that located immediately around the capillaries and between the cells, 

but always outside of the cell membrane. This interstitial fluid is the major component of 

the extracellular fluid. The transcellular fluid is produced by specialized secreting cells. It 

is the smallest compartment and includes intestinal secretions, respiratory secretions, 

intraocular fluid, cerebrospinal fluid, and synovial fluid. All the compartments 

communicate with each other and equilibrate their content of fluids through a variety of 

mechanisms of fluid interchange across different membranes. Most disease states that 

cause fluid loss, initially do so in the extracellular compartment (DiBartola, 2012). 

 

Volaemia is defined as the volume of blood circulating in the intravascular compartment 

(Reece et al., 2015). The volume of blood is formed of two components: fluid (plasma) and 

cells (mostly red blood cells). Thus, a reduction in volaemia, or hypovolaemia, will occur 

if whole blood is lost or plasma volume is reduced by dehydration or losses to a third 

space.  
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1.1.2 Hypovolaemia 

Hypovolaemia can be described as a decreased intravascular circulating fluid volume 

relative to the total vascular space (Pachtinger and Drobatz, 2008). Absolute hypovolaemia 

will occur when there is a decreased fluid volume, while relative hypovolaemia will occur 

when there is a normal fluid volume, but an increased vascular space, such as in the case of 

generalized vasodilation. Hypovolaemia will translate into a decrease in cardiac preload, 

which will generate a poor cardiac output and poor tissue perfusion.  

 

In acute haemorrhage, there is a direct loss of fluid and cells (whole blood) from the 

intravascular compartment, leading to hypovolaemia. Dehydration occurs when the water 

spent by the body is superior to the intake through eating, drinking or administration of 

fluid therapy. The loss of water affects initially the extracellular compartment. Then, the 

body will try to compensate shunting fluid, mostly water, from the intracellular to the 

extracellular compartment. In severe dehydration, no further fluid is available to replenish 

the intravascular compartment (extracellular) and hypovolaemia will develop. In losses of 

fluid to a third space, this fluid will leave the intravascular compartment and accumulate in 

the interstitial space between cells, causing oedema, or in the body cavities causing 

effusions. A similar mechanism of that described for dehydration with compensatory 

shunting of fluid from the intracellular to the extracellular compartment will occur. Thus, 

in this scenario when hypovolaemia develops there would be a depletion of water and 

electrolytes in both the intra and extracellular compartments.  

 

The body will sense the development of hypovolaemia through different receptors. 

Peripheral chemoreceptors in the tissues will sense a decrease in oxygen delivery 

secondary to the poor perfusion. Stretch receptors in the aortic arch, the carotid body and 

the splanchnic vessels will sense the decreased filling of these vessels. The signals sent by 

those receptors will trigger the activation of two main compensatory mechanisms: 

elevation of the sympathetic tone, with the release of epinephrine and norepinephrine, and 

neurohormonal response through the activation of the renin-angiotensin-aldosterone 

system (RAAS) and the secretion of antidiuretic hormone (ADH). The sympathetic activity 

will directly affect the heart and cause an increase in heart rate and cardiac contractility, 

thus increasing cardiac output (CO). The release of epinephrine and norepinephrine from 

the adrenal glands will cause the same cardiac effects as the sympathetic activity 
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(enhanced contractility and increased heart rate), and most importantly vascular effects 

with vasoconstriction, which will produce an increase in blood pressure (BP). The 

neurohormonal response with the activation of the RAAS and the secretion of ADH will 

lead to the retention of sodium and water, increasing the circulating volume, and to 

vasoconstriction, increasing the BP. In summary, all the compensatory mechanisms aim to 

restore the intravascular volume and maximize the cardiac output. When these 

compensatory mechanisms are overwhelmed hypovolaemic shock develops.  

 

1.1.3 Hypovolaemic shock 

Shock is defined as a defective perfusion and oxygen delivery to the tissues to the point 

where their minimum requirements are not met (DiBartola, 2012). If either, the 

requirements are pathologically increased, or the supply is short, shock will develop. 

Increased requirements can be seen in cases of convulsions, heat stroke, and malignant 

hyperthermia. Insufficient oxygen supply can be a consequence of low CO or low oxygen 

content of the arterial blood. These different mechanisms allow to generate a classification 

of shock (Ettinger et al., 2016) into six main categories, outlined in Table 1.1. Clinical 

patients can have syndromes which borrow characteristics from different categories. 

 

Hypovolaemic shock is the most common category seen in critical patients in veterinary 

medicine (Silverstein and Hopper, 2014). Thus, one of the main targets of the intensive 

care clinician should be to assess the volume status of the critically ill patient. Shock 

develops as a progressive process that can be divided into stages: compensatory, early 

decompensatory and decompensatory  (DiBartola, 2012).  
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Table 1-1. Categories of shock 

Shock category  Main characteristic Examples 

Hypovolaemic Decrease effective circulating 

volume 

Haemorrhage 

Severe dehydration 

Cardiogenic Decreased forward flow Myocardial failure 

Arrhythmias 

Obstructive Obstruction to blood flow  Pericardial effusion 

Thromboembolism 

Distributive Inappropriate vascular tone Sepsis 

Anaphylaxis 

Hypoxaemic Reduced content of oxygen in 

arterial blood 

Anaemia 

Severe pulmonary disease 

Metabolic Impaired metabolic activity Hypoglycaemia 

Toxic: cyanide 

 

 

In the compensatory phase, the neurohormonal response is triggered by the stretch 

receptors. The CO will be increased by the compensatory mechanisms, sympathetic 

activity increase, RAAS activation and ADH secretion, and may reach an acceptable level, 

achieving compensation. However, launching all these compensatory mechanisms is 

energetically demanding and puts the body in a hypermetabolic state. Therefore, these 

compensatory mechanisms cannot be maintained indefinitely. If the intravascular volume 

remains inappropriate, the body runs out of energy to maintain all these compensatory 

mechanisms activated. Therefore, the vascular resistance starts to fall, the cardiac 

performance starts to deteriorate, and decompensation begins.  

 

In the early decompensatory stage, the blood flow is redirected to the most vital organs: 

brain and heart, which reduces even further the oxygen delivery to the other organs. 

Hypoxia in the intestine can predispose to ulceration and bacterial translocation. Hypoxia 

in the pancreas induces the release of the myocardial depressant factor which reduces 

cardiac contractility and impairs the metabolism of cardiac muscle, also predisposing to the 

development of arrhythmias. The shunting of blood away from the kidneys reduces 

glomerular filtration rate and oliguria develops. The shunting of blood away from the lungs 
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reduces the oxygen/carbon dioxide interchange, decreasing the content of oxygen of the 

arterial blood, and thus, decreasing even further the oxygen that finally reaches the tissues. 

If no aggressive treatment is provided the lack of oxygen continues and the shock state 

moves to the last stage, called decompensatory stage.  

 

In the decompensatory stage the severe and prolonged hypoxia induces a disruption in the 

normal regulatory mechanisms of homeostasis. A generalized vasodilation occurs, causing 

general circulatory failure. The sympathetic activity in the brain ceases and the heart rate 

and contractility fall. Eventually there is multiple organ dysfunction and death. The 

compensatory and early decompensatory stages can be reversed if an appropriate volaemia 

is restored through the administration of fluid therapy. The decompensatory stage can also 

be reversed, but accomplishing this reversal will require additional support, like, for 

instance, a blood transfusion or mechanical ventilation. Thus, the restoration of volaemia 

alone in the decompensatory stage will not be enough to prevent death or severe sequelae 

in patients who have reached this stage.  

 

The administration of fluid therapy to correct hypovolaemia is paramount in the intensive 

care unit. However, not only fluid deficit, but also fluid overload can be detrimental. In 

human medicine, positive fluid overload correlates with increased mortality in patients 

suffering from sepsis (Boyd et al., 2011) and in patients with respiratory distress 

(Rosenberg et al., 2009). Although counterintuitive, fluid overload increases the risk for 

the development of acute kidney injury in critically ill humans (Salahuddin et al., 2017). It 

is hypothesised that the fluid overload will cause renal interstitial oedema which will lead 

to increased pressure inside the renal capsule, reducing the glomerular filtration rate and 

leading to acute renal injury (Joannidis et al., 2010). An association between fluid overload 

and increased mortality has been shown in dogs in intensive care units (Cavanagh et al., 

2016). Therefore, recognising hypovolaemia and performing an intervention of the 

appropriate intensity is crucial for a good outcome in the intensive care unit. Different 

tools are available for the assessment of volaemia. Other than the physical exam, they 

differ substantially between human (Cecconi et al., 2014, Van der Mullen et al., 2018) and 

veterinary medicine (Marshall et al., 2016). The different approach between human and 

veterinary patients is due to obvious differences in the technology and staff available at 

most veterinary premises compared to human medicine.  
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1.2 Current techniques to estimate volaemia in dogs. 

There are several methods available to estimate the volume status of the dog. Most of them 

have been adopted from human medicine. The assessment of volaemia is currently based 

on:  

- Physical examination  

- Invasive methods 

- Non-invasive methods 

- Laboratory measurements 

 

1.2.1 Physical examination 

The physical examination remains the main source of information for most veterinary 

clinicians. Even though the physical exam provides vital information, it is in many ways 

subjective, and many times confusing. It has been reported that clinical examination and 

vital signs are poorly correlated with volume status in dogs (Perel et al., 1987). The main 

parameters to assess the volume status in the physical exam of a dog would be (Johnson, 

2016): mucous membrane colour, capillary refill time (CRT), skin turgor, pulse quality and 

heart rate. Alterations in these parameters can reflect the activation of the compensatory 

mechanisms described earlier (RAAS activation, ADH secretion, and increased 

sympathetic activity) and raise a suspicion of fluid deficit. However, none of them can 

reliably estimate the blood volume status of the patient. In addition to that, the stress 

suffered by dogs from being in a clinical environment can trigger similar effects, elevating 

the heart rate and the levels of circulating catecholamines (Höglund et al., 2012). The usual 

findings in hypovolaemic states in dogs are outlined in Table 1.2 according to the degree of 

severity (Boag and Hughes, 2005).  

 

 

 

 

 



20 
 

 
 

Table 1-2. Physical exam findings in hypovolaemia in dogs (Boag and Hughes 2005). 

Variable 

 

Mild 

hypovolaemia 

Moderate 

hypovolaemia 

Hypovolaemic shock 

Heart rate 130-150bpm 150-170bpm 170-220bpm 

Mucous 

membrane colour 

Normal to pinker Pale pink Grey, white 

Capillary refill 

time 

Rapid (<1sec) Normal (1-2secs) Prolonged (>2secs) or absent  

Pulse quality Strong Fair Weak or absent 

 

As said earlier, these changes reflect the activation of the compensatory mechanisms, and 

the more pronounced they are, meaning the higher the HR, the weaker the pulses, and the 

longer the CRT, the closer the patient is to developing hypovolaemic shock. One study 

investigated the usefulness of the so called “shock index”, to identify dogs in shock (Porter 

et al., 2013). The shock index is the result of dividing the HR expressed in beats per 

minute (bpm) by the systolic blood pressure (SBP) measured in millimetres of mercury 

(mmHg). They concluded that a shock index greater than one, has a good sensitivity and 

specificity for the diagnosis of moderate to severe shock. The reference value provided by 

this study for healthy dogs for the shock index was 0.37 to 1.30, which means some of the 

normal dogs had values over the proposed cut-off, reducing the accuracy of this index. In 

addition to that, they only assessed dogs with moderate to severe shock, which means there 

is no indication of this index for the detection of occult hypoperfusion. Occult 

hypoperfusion refers to a haemodynamic state in which , the critically ill patient suffers 

from a haemodynamically significant oxygenation deficit in the tissues without showing 

obvious changes in the SBP or the HR (Rady et al., 1996). If this deficit in oxygenation 

occurs as a consequence of inappropriate blood volume it is known as occult 

hypovolaemia.   
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1.2.2 Invasive methods 

The invasive techniques to estimate volaemia in dogs are based on estimations of the 

preload or on estimations of  the CO (Marshall et al., 2016).  

 

1.2.2.1 Central venous pressure 

The central venous pressure (CVP) has been studied as a surrogate of the preload. It 

measures the pressure in the vena cava, as a representation of the venous return. The 

volume of blood going back to the right atrium would be equivalent to the volume of blood 

going into the right ventricle and consequently into the left ventricle (preload) and the 

systemic circulation (stroke volume), assuming there are no intra or extracardiac shunts or 

any valve insufficiencies. A central catheter is placed in the vena cava, through the jugular 

vein, with its tip as close as possible to the right atrium. This central catheter is then 

connected to a fluid manometer (a water column) or an electric monitor (Oakley et al., 

1997). The maintenance of this central catheter can be rather challenging in veterinary 

patients, with a reported percentage of complications of 51% (Reminga et al., 2018). 

Intuitively, a high CVP should indicate hypervolaemia or poor cardiac function, while a 

low CVP should indicate hypovolaemia. However, multiple factors, such as the vascular 

tone or the intracavitary pressure in the thorax or the abdomen, can affect the CVP, 

irrespective of the blood volume. As a result, it has been found that CVP correlates poorly 

with blood volume status and fluid responsiveness in humans (Marik and Cavallazzi, 

2013). Fluid responsiveness is a concept widely used in human medicine. It can be 

described as the ability of a patient to improve his circulatory performance in response to 

the administration of fluid therapy. Although a study on the correlation of CVP with fluid 

responsiveness has not been performed in veterinary medicine it is suspected the 

correlation is also poor (Marshall et al., 2016, Drozdzynska et al., 2018).  

 

1.2.2.2 The Fick method 

The Fick method was designed to measure the CO. It assumes that all the oxygen inhaled 

by the lungs is entirely transferred to the arterial blood, and the oxygen remaining in the 

venous blood is again entirely transferred to the lungs and exhaled. In this scenario, if the 

oxygen provided to the patient and exhaled by it is known, the measurement of the arterio-

venous oxygen content difference will allow calculation of the blood flow, and thus the CO 
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(Shore et al., 1945). For the oxygen inhaled and exhaled by the dog to be known, it needs 

to be intubated and placed on a mechanical ventilator. The Fick method is not commonly 

performed in veterinary patients for several reasons: it is costly, the results are not 

immediately available, as they require laboratory analyses, and the patient must be 

anaesthetised, intubated, and ventilated. In addition to the high technical demands, in a 

haemodynamically unstable patient there is shunting of fluid to compensate for volume 

changes between the compartments, and the diffusion of oxygen in the lungs can be 

affected by the actual disease process or by the compensatory mechanisms, making it 

impossible for the assumptions needed for the technique (complete transfer of oxygen 

between the blood and the lungs) to be matched. The Fick method is, therefore, more 

suited for research purposes than for the clinical assessment of critically ill dogs (Marshall 

et al., 2016).  

 

1.2.2.3 Thermodilution and lithium dilution 

The measurement of the dilution of an indicator in the blood stream is another tool to 

estimate the CO in dogs. The indicator can be a dye or lithium which will change in 

concentration when they are diluted in the blood stream, or cold saline, which will change 

in temperature as it dilutes in the blood volume. There are two modalities of the method, 

depending on how the samples are collected.  

In the transpulmonary modality of thermodilution, a known amount of the indicator is 

injected in one site, frequently the jugular vein, and a blood sample is collected 

downstream from the original injection site, usually in the femoral artery. The 

concentration of the indicator in this second location in relation with the initial amount 

injected will allow to calculate the blood flow, and thus the CO.  

In the pulmonary artery modality of thermodilution, a catheter that can sense temperature 

changes is inserted in the pulmonary artery. A known volume of saline at a known 

temperature is injected in another site, usually the jugular vein through a central catheter. 

The temperature change induced in the blood flowing in the pulmonary artery measured by 

the catheter allows to calculate the dilution that occurred and thus the CO. The two 

modalities of thermodilution have shown accurate estimation of CO in dogs with fluid 

overload (Itami et al., 2016). Lithium dilution and transpulmonary thermodilution agreed 

with pulmonary artery thermodilution in hypo, hyper, and normal haemodynamic states in 

dogs (Morgaz et al., 2014).  



23 
 

 
 

Thermodilution is considered the gold-standard to measure the CO in dogs. However, there 

could be some complications with the insertion and maintenance of the central catheters 

(Reminga et al., 2018), and additional risks from the presence of a catheter in the 

pulmonary artery, like arrhythmias, thrombosis or pulmonary artery rupture (Marshall et 

al., 2016). Lithium could also be toxic for dogs of small size. Despite the accuracy of these 

techniques, the necessity of advanced training and equipment make them impractical, and 

out of reach for most veterinary premises.    

 

1.2.2.4 Pulse contour and pulse pressure analysis  

Pulse contour analysis estimates the CO based on calculating the area under the curve of an 

arterial pulse tracing obtained from an arterial catheter connected to a specific machine 

containing the required software. A dilution method (lithium or thermodilution) is used to 

calibrate it, but once it has been calibrated, it provides constant measurements without 

further injections of indicator. It has shown good agreement with the dilution techniques in 

anaesthetised dogs (Morgaz et al., 2014), but the arterial catheter needs to be inserted in 

the femoral artery to provide accurate readings (Shih et al., 2011). The relative changes in 

stroke volume (SV) calculated by pulse contour analysis showed good ability to predict 

fluid responsiveness in an experimental model of haemorrhagic shock in mechanically 

ventilated dogs (Berkenstadt et al., 2005).  Other studies, however, showed poor 

concordance of the pulse contour analysis with pulmonary artery thermodilution (Kutter et 

al., 2016) and lithium dilution (Cooper and Muir, 2007), and poor ability for the technique 

to show trends in healthy anaesthetised dogs and anaesthetised dogs subjected to 

haemorrhagic shock respectively. The presence of arrhythmias or reduced vascular tone 

affects the quality of the arterial tracing, reducing the accuracy of the technique in clinical 

patients.  

 

Pulse pressure analysis follows a similar principle to contour analysis with the only 

difference that it is not calibrated using a dilution method and, thus, it is much less 

invasive. However, it still requires an arterial catheter to be placed. When tested against 

thermodilution in dogs, it showed a clear overestimation of the CO and was judged 

unsuitable for this species (Valverde et al., 2011,Bektas et al., 2012). One study showed 

that the Vigileo/FlotracTM monitor, which is based on pulse pressure analysis, may have 

potential in tracing changes in the SV according to changes in the blood volume (bleeding 
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or induced volume overload), even though it will not reflect an accurate CO (Taguchi et 

al., 2011).  

 

Pulse pressure variation (PPV) and systolic pressure variation (SPV) are calculated values 

obtained from the invasive arterial blood pressure measurements from mechanically 

ventilated patients. PPV is the result of dividing the difference between the maximum and 

minimum pulse pressure during one cycle of mechanical ventilation divided by the mean 

of these values. SPV is the difference between the maximum and minimum arterial SBP 

during one cycle of mechanical ventilation.  

 

These methods predicted fluid responsiveness in experimental models of mechanically 

ventilated dogs subjected to haemorrhagic shock (Berkenstadt et al. 2005,Westphal et al., 

2007, Endo et al., 2017), and in dogs subjected to abdominal surgery (Drozdzynska et al., 

2018). PPV showed better performance than SPV. Neither PPV or SPV showed good 

correlation with the CVP, building on the evidence that CVP holds poor relationship with 

volume status or fluid responsiveness. The SPV was judged a sensitive indicator of 

hypovolaemia in an animal model with mechanically ventilated dogs subjected to graded 

haemorrhage, and it is considered a validated method to estimate cardiac preload in 

mechanically ventilated dogs (Perel et al., 1987).  

 

Due to the ability of the SPV to estimate cardiac preload, it was tested as a predictor of 

fluid responsiveness in mechanically ventilated dogs (Rabozzi and Franci, 2014, Sano et 

al., 2018,Sasaki et al., 2018). The dogs in the study by Rabozzi and colleagues in 2014 

were administered a mini-fluid challenge, consisting of the administration of 3ml/kg of a 

crystalloid, once the patient was under anaesthesia and mechanically ventilated. A change 

in SPV greater than 4.5% was predictive of a positive fluid response, with haemodynamic 

improvement after the bolus. Haemodynamic improvement was defined as a 10% increase 

in SBP, or a 10% decrease in heart rate. The investigators concluded that the SPV can be 

considered a dynamic index of cardiac preload to guide fluid therapy in anaesthetised, 

mechanically ventilated dogs.  

Sano and colleagues in 2018 used a similar methodology, but the fluid challenge consisted 

of a 10ml/kg bolus of a colloid, and the animals were considered fluid responders if the SV 
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estimated from the pulmonary artery flow measured by echocardiography increased by 

15% or more. The increased in SV is considered a more accurate surrogate of the 

haemodynamic performance than the SBP (Cecconi et al., 2014).  

Sasaki and colleagues in 2018 also reported good performance of the SPV and PPV to 

predict fluid responsiveness, defining this as an increase in SV>10%. However, they 

identified differences on the measurements according to the modality of mechanical 

ventilation. If the ventilation modality influenced the SPV and PPV, it is very likely, that 

the changes due to spontaneous breathing will also affect these measurements.  

 

Despite their potential in mechanically ventilated dogs, SPV and PPV would be 

impractical to measure in most critically ill dogs, which are breathing spontaneously, and 

may be at risk of complications if they underwent general anaesthesia. In addition to that, 

the technical requirements to perform these measurements, such as a mechanical ventilator, 

an invasive arterial BP monitor, and the skill to place an arterial catheter, are seldom 

available in many veterinary practices.   

 

1.2.2.5 Invasive systolic arterial blood pressure 

Systolic arterial blood pressure (SBP) measured by arterial catheterization has failed to 

demonstrate much value in the assessment of volaemia in dogs in experimental models of 

haemorrhagic shock (Berkenstadt et al. 2005, Westphal et al., 2007) and in dogs 

undergoing abdominal surgery (Drozdzynska et al., 2018). All three of these studies 

showed that the changes in blood volume did not correlate with similar changes in the 

SBP. The explanation for the lack of correlation between blood volume and SBP is in the 

activation of the compensatory mechanisms during hypovolaemia: RAAS activation, ADH 

release and increased sympathetic activity. All the compensatory mechanisms working 

together are very effective in maintaining the SBP irrespective of the blood volume. Thus, 

the SBP would be mostly related to changes in vascular tone, rather than the blood volume, 

and thus it is not recommended to assess volaemia.  

 

The fact that SBP correlates poorly with blood volume may put into question the findings 

of some studies of fluid responsiveness in dogs (Rabozzi and Franci, 2014), that used a 
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10% increase in SBP as a marker of haemodynamic improvement in anaesthetised and 

mechanically ventilated patients, in which, the changes in intrathoracic pressure and 

vascular tone may play a bigger role than the blood volume. In human medicine, the SBP, 

heart rate and CVP are considered not accurate in predicting fluid responsiveness (Cecconi 

et al., 2014, Boyd et al., 2016, Monnet et al., 2016a).    

 

1.2.3 Non-invasive methods 

The non-invasive techniques measure surrogates of blood volume without accessing the 

intravascular space to estimate the actual volume status.  

 

A non-invasive variation of the Fick method has been used in dogs to estimate the CO. The 

dog needs to be anaesthetised, intubated, mechanically ventilated, and connected to a 

rebreathing system with carbon dioxide sensors. The differences between the 

concentrations of inhaled and exhaled carbon dioxide are used to calculate the CO. It has 

shown good correlation with lithium dilution in healthy anesthetized dogs (Gunkel et al., 

2004). However, the necessity for general anaesthesia and mechanical ventilation makes it 

impractical for clinically ill dogs.  

 

Bioimpedance is based on measuring changes in the electrical resistance of a circuit to the 

movement of electricity through it. In this case the circuit is the thorax, which will oppose 

varying degrees of resistance depending in the amount of fluid that is present in it, mostly 

the blood flow in the aorta, allowing the calculation of the CO. A clinical study (Yamashita 

et al., 2007) showed poor correlation between bioimpedance and thermodilution to 

estimate CO in dogs. Another study, however, showed good correlation with 

thermodilution in an experimental model of cardiac surgery in dogs (Sasaki et al., 2017). 

The main limitation for this technique is the necessity of specific and costly machinery, 

which is very sensitive to movement and noise (Marshall et al., 2016) and thus impractical 

for veterinary clinical patients.  

 

Bioreactance is based on similar concepts to bioimpedance. An electrical current is applied 

to the thorax, but in this case, instead of the resistance, it measures the change in the 

frequency of the current as it travels through the circuit. It showed very good correlation 

with thermodilution in dogs to estimate the CO in an experimental model (Heerdt et al., 
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2011). However, it has not been tested in clinical veterinary patients yet, and the same 

limitations of bioimpedance regarding availability and cost of the machinery, apply. 

 

Plethysmography variability index is a value obtained from the waveform of a pulse 

oximeter reading. It is calculated through a mathematical algorithm and it is thought to be 

influenced by preload. An experimental study in mechanically ventilated dogs showed that 

increases in this value over a certain threshold can accurately predict fluid responsiveness 

(Endo et al., 2017). Although the technique is not invasive, it requires the application of a 

pulse oximetry probe to the tongue or lip, which can be rather challenging in conscious 

animals. Other locations for the placement of the probe of the pulse oximeter, such as the 

tail, ear, and toe, have been tested and they seem to provide acceptable readings (Huss et 

al., 1995). However, this requires for the contact between the probe and the vascular bed to 

be optimal and for the animal to be immobile, as this was tested in anaesthetised Beagles. 

Thus, obtaining a reading of enough accuracy and quality to be measured in a conscious 

dog, may still be difficult.   

 

Additional non-invasive methods based on ultrasound have been used scarcely in 

veterinary medicine and very extensively in human medicine. They will be discussed in 

further detail in a separate section.  

 

1.2.4 Laboratory measurements 

Some laboratory parameters can be useful in assessing the relative changes in the plasma 

volume in dogs suffering from non-blood loss hypovolaemia, even though they do not 

provide any estimation of the CO.  

 

1.2.4.1 The packed cell volume 

The packed cell volume (PCV) measures the percentage of the blood volume represented 

by all the blood cells. Erythrocytes represent the majority of the blood cell population, 

therefore, the PCV can be used interchangeably with the haematocrit, which measures the 

percentage of the blood volume represented by the erythrocytes. When the blood cell 

volume remains constant, but the plasma volume decreases, most commonly from 

dehydration, the value of the PCV increases in a phenomenon called relative erythrocytosis 

(Ettinger et al., 2016). An in-line haematocrit monitor, that provided serial measurements, 
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has been proven useful to estimate the changes in blood volume induced by the 

administration of resuscitative fluid therapy in an experimental model in healthy 

anaesthetised dogs (Silverstein et al., 2005). Thus, PCV relative changes can be useful to 

monitor the response to treatment in non-blood loss hypovolaemic states in dogs.  

 

1.2.4.2 The total protein 

The total protein (TP) measures the amount of protein dissolved per unit of plasma. In 

cases of dehydration, it follows a similar pattern to the PCV. A reduction of the plasma 

volume will increase the TP (Ettinger et al., 2016). The administration of fluid therapy and 

restoration of the plasma volume should induce a decrease in its value. However, there are 

many different types of proteins with different functions and diffusion capabilities included 

in the TP, which can prevent accurate repeated measurements (McGrotty and Knottenbelt, 

2002). They can move through the fluid compartments, but they do so with different ability 

depending on their molecular weight and three-dimensional structure. Protein losses 

through the urine or the intestinal secretions can be exacerbated during pathological states 

and again will be conditioned by their molecular characteristics. Acute phase proteins 

would be produced and released into the intravascular space in systemic inflammatory 

processes. All these factors make the relative changes in TP during hypovolaemia and after 

fluid therapy treatment very challenging to monitor. Therefore, this parameter is mostly 

used in conjunction with the PCV to assess changes in the plasma volume when both 

values trend in the same direction.  

 

The albumin concentration in plasma (ALB), as an individual type of protein, can be more 

useful in monitoring relative changes in blood volume. A contraction of the plasma volume 

will increase the ALB, and the administration of fluid therapy should reduce its 

concentration (Davis et al., 2013). A simultaneous decrease in all these three parameters 

(PCV, TP and ALB) was documented when the plasma volume of healthy anaesthetised 

dogs was expanded through the administration of different protocols of fluid therapy (Muir 

et al., 2011).            
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1.2.4.3 Lactate and acid-base balance 

 

The diagnosis of shock can be supported by laboratory parameters, such as the lactate 

concentration in plasma (LAC) and the acid-base analysis. As discussed earlier, shock is 

defined as a disruption of the oxygen supply to the tissues. Lactate is mostly a by-product 

of the anaerobic glycolysis. Therefore, its production would increase as the oxygen supply 

to the tissues decreases in what is called type A hyperlactataemia (Sharkey and Wellman, 

2013). Conditions that induce a disruption of the carbohydrate metabolism can also elevate 

LAC, irrespectively of an appropriate oxygen supply, which is called type B 

hyperlactataemia. Hypovolaemic shock induces type A hyperlactataemia as the 

inappropriate intravascular volume reduces peripheral perfusion and thus, the oxygen 

supply to the tissues (Pang and Boysen, 2007). The compensatory mechanisms triggered 

during hypovolaemia (RAAS activation, ADH secretion, and increased sympathetic 

activity) can maintain normal LAC until the early decompensated stage of shock. Thus, 

hyperlactataemia is a late sign of hypoperfusion. The increase in LAC seems to have a 

close to linear relationship to the level of tissue hypoxia in dogs. (Gillespie et al., 2017). 

An effective treatment should reduce LAC, and a failure to do so has been linked with poor 

prognosis in dogs presented as emergencies, irrespectively of the underlying condition 

(Stevenson et al., 2007). However, the decrease in LAC does not follow the same linear 

relationship and it can take several hours for the treatment to have an impact on LAC. 

Therefore, its prognostic value is currently considered superior to its diagnostic value 

(Rosenstein et al., 2018).  

 

Acid-base analysis in dogs with hypovolaemic shock can present a wide range of 

alterations. The most common is the presence of metabolic acidosis, mostly linked to 

increases in LAC and low oxygen content. However, an experimental model of 

haemorrhagic shock in dogs proved that there are many other anions involved in the 

development of strong acidosis (Bruegger et al., 2007). However, if the hypovolaemic 

shock has been induced by excessive gastric losses, this can have an alkalinizing effect, 

thus masking the acidosis. Acid-base abnormalities can be sustained, even after apparently 

successful volume resuscitation (Young et al., 2014) and are therefore challenging to use 

to monitor volume status or response to treatment in hypovolaemic states.  
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1.3 The role of ultrasound for the assessment of volaemia and the presence of shock in 

human medicine 

Ultrasound technology has been available for human medicine for decades, and it is widely 

used for multiple purposes in the emergency room and critical care unit. This fact triggered 

an interest towards the use of these devices to monitor the haemodynamic status of the 

critically ill human patient. Several ultrasonographic measurements, protocols and 

techniques have been developed in recent years (Bernier-Jean et al., 2017) and are 

currently replacing more invasive techniques, such as thermodilution, as a first-line 

diagnostic and monitoring tool for most critical patients (Cecconi et al., 2014).  

 

1.3.1 Measurements of the inferior vena cava for the assessment of volaemia in humans 

This method rapidly gained popularity due to its technical simplicity (Feissel et al., 2004, 

Stawicki et al., 2009, Martin et al., 2013). It is based on the concept that the diameter of 

the major veins and the fluctuations of this diameter can reflect the volume status and 

predict the fluid responsiveness of the patient. Several different vessels have been 

investigated, but the inferior vena cava (IVC) has been the most widely studied, followed 

by the subclavian vein and the superior vena cava (Kent et al., 2013).  

 

The maximal diameter of the IVC, and the changes in the diameter of the vessel during the 

respiratory cycle, or more recently, the absolute maximal and minimal diameters, 

irrespectively of the phase of the respiratory cycle, have been used to calculate the 

collapsibility index (CI), according to the formula: IVC-CI = [(IVCmax - IVCmin)/ IVCmax] x 

100. The IVC diameters and IVC-CI have shown good correlation with the pressure in the 

right atrium measured through a flotation catheter, and with the invasive CVP (Kircher et 

al., 1990, Bodson and Vieillard-Baron, 2012). However, it has been stated recently that the 

CVP correlates poorly with the fluid responsiveness (Marik and Cavallazzi, 2013). Thus, 

the IVC measurements may also correlate poorly, which is what has been found in the 

more recent reviews and meta-analysis (Long et al., 2017, Orso et al., 2020).  

 

The performance of the caval measurements was substantially different in different 

populations of patients. The studies that looked at surgical and emergency patients showed 

better performance than those that looked at patients in intensive care units (Dipti et al., 
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2012). This may be a consequence of the different underlying conditions and the influence 

of interventions such as mechanical ventilation or invasion of the body cavities. For 

instance, the variation of the IVC measured in mechanically ventilated people in septic 

shock, was proposed as a useful tool to guide fluid therapy (Feissel et al., 2004). The 

predictive ability for fluid responsiveness of the respiratory variation of the IVC diameter 

was greater in mechanically ventilated patients, than in those breathing spontaneously 

(Long et al., 2017). This meta-analysis by Long and colleagues in 2017 suggests that 

although it can be useful in certain subpopulations, it is still not applicable to the whole 

human population.  

 

It is mentioned in the systematic reviews (Zhang et al., 2014, Long et al., 2017, Orso et al., 

2020) , that there are noticeable differences between studies on how the measurements of 

the IVC were performed, employing different acoustic windows, and different positions of 

the patient, all of which can greatly influence the measurements (Mookadam et al., 2011). 

How fluid responsiveness can be measured objectively has been, and continues to be, a 

source of controversy (Ansari et al., 2016). Thus, it is difficult to find studies that are 

completely comparable, as they can use different definitions to establish fluid 

responsiveness. Most of them will use thermodilution, CVP, or echocardiography to define 

a positive fluid response, and see how the IVC measurements behaved. Again, the lack of a 

standardized gold-standard to compare against, makes the different studies difficult to 

compare.  

 

In summary, even though there are promising indications for the measurements of the IVC 

in the assessment of haemodynamic status and response to fluid therapy in several 

subpopulations of human patients, the technique needs more standardization and further 

study, as the current data suggests that it is not useful to predict fluid responsiveness 

(Millington, 2019, Orso et al., 2020).     
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1.3.2 Echocardiography for the assessment of volaemia in humans 

Echocardiography is currently the standard of care recommended by the consensus on 

circulatory shock and haemodynamic monitoring of the European Society of Intensive 

Care Medicine (Cecconi et al., 2014). Echocardiography has been referred to as, textual 

citation from McLean 2016: “the most single useful tool in the diagnosis and management 

of shock”. This technique has also been sought as being accurate in the prediction of fluid 

responsiveness (Boyd et al., 2016) and it is currently recommended for this purpose by the 

guidelines of the British Society of Echocardiography (Miller et al., 2016) and the 

American Society of Echocardiography (Porter et al., 2015). When compared with 

thermodilution, the current gold-standard, it showed good performance in estimating CO 

(Zhang et al., 2019). For all these reasons, it can be safely said, that echocardiography is 

currently the most useful tool for the assessment of volaemia in human patients, with a 

performance almost as good as the invasive methods. Thus, invasive techniques are being 

replaced by echocardiography as the standard of care (Cecconi et al., 2014).    

 

Several different modalities of echocardiography can be used for the estimation of CO: 

transthoracic echocardiography, transoesophageal echocardiography (TOE), and the 

ultrasonic CO monitor (USCOM). The latter is a simplified ultrasonographic device that 

has a Doppler beam that can be placed over the chest of the patient and provides a Doppler 

spectrum of the aortic flow. Echocardiography estimates the CO appraising the SV by 

either of these two methods:  

 Multiplying the velocity-time integral (VTI) of the Doppler spectrum of the aortic 

or pulmonary forward flow times the cross-sectional area of the aorta. This method 

has already been validated for research purposes (Moulinier et al., 1991). 

 Calculating the difference between the left ventricular end diastolic and end 

systolic volumes.  

 

The USCOM monitor and TOE showed better performance than the transthoracic modality 

in estimating the CO, possibly due to better alignment with the aortic flow, but all three 

modalities correlated well with thermodilution (Zhang et al., 2019). When trying to predict 

fluid responsiveness or estimate blood volume, not only the measurement of the variations 

of the SV is useful (Marik et al., 2009), but also other data from the echocardiographic 

exam.  
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The observation of an obliterated lumen of the left ventricle (LV) is indicative of 

hypovolaemia (Tavernier et al., 1998, Feissel et al., 2001). Changes in the size of the LV 

measured by TOE, reflected changes in preload, although this was not a good predictor of 

fluid responsiveness (Cannesson et al., 2006, Marik et al., 2011). Hypovolaemia can 

induce diastolic dysfunction (Chew, 2012), which will increase the risk of volume overload 

when administering fluid therapy. This could be prevented by using echocardiography to 

assess diastolic function before the administration of fluids. A dilated right ventricle can be 

a sign of pulmonary thromboembolism (obstructive shock) or volume overload (Mercat et 

al., 1999). An increase in size of the right ventricle without an increase in the left 

ventricular SV is an objective end-point for fluid therapy (Miller et al., 2016).  

 

When there are still doubts about the fluid responsiveness of the patient, there are some 

manoeuvres that can increase the accuracy of echocardiography in predicting fluid 

responsiveness: a fluid challenge, a passive leg raising test, and a study of the variation in 

SV during mechanical ventilation.  

 

A fluid challenge is the rapid administration of intravenous fluid. A change in the VTI of 

the aortic flow of 10% after administering 100ml of a colloid over one minute predicts 

positive fluid responsiveness with a sensitivity of 95% and a specificity of 78% (Muller et 

al., 2011). The passive leg raising test consists in measuring the CO or the SV after raising 

the legs of the patient, in order to increase the venous return to the right atrium. It is 

applicable to mechanically ventilated and spontaneously breathing patients. During this 

test, an increase in the CO or SV by 12% or more is predictive of fluid responsiveness, 

with slightly better performance for the changes in SV (Monnet et al., 2016b). When 

patients are under mechanical ventilation, a SV variation of 10% over the respiratory cycle 

under a ventilated tidal volume of 8 to 10ml/kg is highly predictive of positive fluid 

responsiveness (Marik et al., 2009). Smaller tidal volumes have not been investigated, so 

patients are transiently moved to this range of volumes to make this assessment and then 

readjusted to their optimal values after the procedure.  

 

In addition to its usefulness in estimating fluid responsiveness, and monitoring the patient 

response to fluid therapy, echocardiography is employed in human patients to establish the 

aetiology of shock.  The most used classification of circulatory shock used in human 

medicine (Vincent and De Backer, 2013) comprises of four main categories: cardiogenic, 
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hypovolaemic, distributive and obstructive. Each category has specific echocardiographic 

characteristics, as can be seen in Table 1.3.  

 

 

Table 1-3. Classification of circulatory shock in humans. Adapted from Vincent and De Backer 

2013. 

Shock category  Echocardiographic features Examples 

Hypovolaemic Small chambers and normal to 

high contractility 

Haemorrhage 

Severe dehydration 

Cardiogenic Large ventricles and poor 

contractility 

Myocardial failure 

Arrhythmias 

Distributive Normal chambers and normal or 

low contractility 

Sepsis 

Anaphylaxis 

Obstructive In tamponade: pericardial 

effusion, small chambers and 

dilated IVC. In pulmonary 

thromboembolism: dilated right 

ventricle and small LV 

Pericardial effusion 

Thromboembolism 

 

It is recommended by the consensus on circulatory shock and haemodynamic monitoring 

of the European Society of Intensive Care Medicine (Cecconi et al., 2014) to use 

echocardiography under a suspicion of shock to: 

(1) better characterize the haemodynamic disorders 

(2) select the best therapeutic option (IV fluids, positive inotropes, or ultrafiltration) 

(3) assess the response of the haemodynamic disorders to therapy.  

 

This consensus (Cecconi et al. 2014) defined fluid responsiveness in human patients in 

shock as an increase of 10 to 15% in the stroke volume (SV), estimated from the velocity-

time integral (VTI) measured by Doppler echocardiography of the aortic forward flow. 

This same consensus discourages the use of invasive techniques such as thermodilution or 

pulmonary artery catheterization as a first line and reserves them for patients not 

responding to the therapy chosen based on echocardiography. It also states that useful 

information can be obtained from echocardiography in around two minutes by non-

cardiologists after minimal training (Beraud et al., 2013).  Even just a visual assessment, 
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without measurements, can help clinicians in estimating cardiac systolic function 

(McGowan and Cleland, 2003).  

 

Summarizing, echocardiography is currently the standard of care in human medicine to 

identify the underlying mechanism of shock, to predict fluid responsiveness and to monitor 

response to treatment after the administration of fluid therapy.   
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1.4 Volume status assessment using ultrasound in dogs. 

Ultrasound techniques have been growing in popularity in recent years as the equipment 

has become available in many veterinary practices. Ultrasound examination to assess 

volaemia in veterinary medicine has tried to adapt human techniques to veterinary patients. 

In this scenario, the same modalities of ultrasound have been employed: vessel diameter 

assessment, TOE, other Doppler devices, including USCOM, and transthoracic 

echocardiography.  

 

1.4.1 Measurement of the caudal vena cava for the assessment of volaemia in dogs 

 

The measurements of great vessels in dogs for the assessment of volaemia have focussed 

almost exclusively on the caudal vena cava (CVC). The ultrasonographic technique to 

explore this vessel was first described along with other abdominal vessels (Finn-Bodner 

and Hudson, 1998) and it was stated that in the author´s opinion its size was dependent on 

patient´s size, moment of the respiratory and cardiac cycles, and  hydration. It was later 

included as part of a triage ultrasonographic protocol in the emergency room (Boysen and 

Lisciandro, 2013), which proposed that a subjective dilation of the CVC and the hepatic 

veins could be suggestive of right sided heart failure. Thus, a full echocardiography may 

follow, to confirm this finding.  

 

The CVC to aorta ratio (CVC/Ao), was designed to obtain a value independent of body 

size in children (Kosiak et al., 2008), and was adopted in dogs for the same reasons, as 

there is a big heterogenicity in the body weight of the canine population (Meneghini et al., 

2016). Meneghini and colleagues in 2016 proved a good correlation between the changes 

in the CVC/Ao ratio and the SPV after a fluid bolus administered in one minute in 

mechanically ventilated anaesthetised dogs. These dogs were subjects of skin wound 

repairs, therefore there was no invasion of their body cavities. This is an important detail, 

because a laparotomy can change the intraabdominal pressure, which may influence the 

diameter of compressible vessels such as the CVC. They also obtained the images of both 

vessels (CVC and Ao) simultaneously, in a transverse right-lateral intercostal view, after 

suspending temporarily the mechanical ventilation. The CVC/Ao ratio increased in these 

animals after the administration of the fluid bolus.  
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The CVC/Ao ratio  was validated for the assessment of volemia in dogs subject to a blood 

donation (Cambournac et al., 2018), demonstrating lower values for the CVC/Ao after the 

extraction of 9.8 ± 2.2 mL/kg of blood. This was due to a marked reduction in the diameter 

of the CVC, while the Ao remained almost unchanged. This was expected, because as 

discussed earlier, the compensatory mechanisms are very effective in maintaining the SBP, 

which will intuitively keep the diameter of the Ao stable, whereas hypovolaemia will 

decrease the pressure in the right atrium, and therefore in the CVC, reducing its diameter. 

They obtained the diameter of both vessels simultaneously in a transverse view. A low 

intra and interobserver variability was reported, although only two different operators took 

the measurements. Thus, they proposed this ratio may be of use in detecting reductions in 

blood volume.  

 

Two recent studies, have challenged the theory that the CVC/Ao ratio can detect reductions 

in blood volume in dogs (Marshall et al., 2018, Herreria-Bustillo et al., 2019). Marshall 

and colleagues in 2018 stated that when measuring CVC/Ao ratio in nine greyhounds 

subjected to an 8% blood loss, the change in these measurements, even though of statistical 

significance, was of such a small magnitude that it may not predict changes in real clinical 

cases. They employed transverse and sagittal views to measure the CVC. Although 

reductions of the diameter were seen in both views, this was of a bigger magnitude in the 

sagittal views. The CI was also included in this study, and proved to be smaller after blood 

loss, but again this change was of such a small magnitude (≈0.02) that it may not be 

identifiable in clinical cases. The inclusion of only nine animals and of only one breed, 

with breed-specific peculiarities in regards to their blood volume (Courtice, 1943) may 

imply these results were not applicable to the general canine population.  

 

Herreria-Bustillo and colleagues in 2019 failed to demonstrate any difference in the 

CVC/Ao ratio before and after a blood donation of one unit of whole blood in greyhounds. 

They used an M-mode to do the measurements, instead of the 2D mode described in other 

studies, making the results difficult to compare. The small population size included in this 

study (eight greyhounds) and the presence of only one breed, with higher blood volume 

than other breeds (Courtice, 1943) may have resulted in a non-representative sample of the 

general canine population.  
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In a different study, the induction of volume depletion in healthy Beagle dogs by the 

administration of 1mg/kg of IV furosemide produced significant reductions in the CVC/Ao 

ratio (Kwak et al., 2018). Transverse and longitudinal views were obtained. The authors 

described that it was subjectively easier to identify the maximum diameter of the CVC in 

the transverse view. Only one operator acquired all the images, preventing any assessment 

about the inter-operator variability of the technique. Several different ratios were obtained, 

employing the area of the CVC, its maximal height and width in the transverse view, and 

its maximal height in the longitudinal view. The values for all those ratios were smaller 

after volume depletion and also different between animals with or without clinical signs of 

dehydration. Thus, this study concluded that it could potentially be a method for the 

estimation of volaemia. The same limitation about studying only one breed of dogs applies.  

 

A very recent study (Rabozzi et al., 2020), which was published after the study design and 

data acquisition for the current study were completed, measured the CVC/Ao ratio and the 

CVC CI in an heterogenous population of hospitalized conscious dogs. They employed 

transverse images of both vessels at the same time at the porta hepatis, and a short and long 

axis of the CVC at the hepatic vein inlet, with the dog in left lateral recumbency. They 

defined positive fluid responsiveness as an increase of 15% in the VTI of the aortic 

forward flow after a fluid challenge consisting of an IV bolus of 4ml/kg of Hartmann´s 

solution administered over one minute. They obtained the Doppler spectrum of the aortic 

flow at the subxiphoid view in right lateral recumbency. They were able to predict fluid 

responsiveness with a sensitivity of 100% and a specificity of 75% with a threshold value 

of 0.83 for the CVC/Ao in this population of conscious dogs. However, the authors 

emphasised that an echocardiography alongside the measurement of the CVC/Ao is 

advisable to overcome some of the limitations of this ratio such as the changes induced in 

it by right sided heart failure, pleural effusion, cardiac tamponade, pulmonary 

thromboembolism, or pneumothorax.  The CVC CI measured in this study did not show 

significant differences after the fluid challenge, and the authors discouraged the use of this 

index to assess volaemia or predict fluid responsiveness in conscious dogs.  

 

The most recent study (Donati et al., 2020) performed in spontaneously breathing dogs 

was a retrospective study that reviewed the patients that received a fluid challenge 

consisting of the administration of a 30ml/kg bolus of a crystalloid IV, and had complete 

medical records of the VTI and CVC CI measurements. They defined fluid responsiveness 
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as an increase in the VTI of the aortic forward flow of 15% or greater. They acquired the 

aortic flow from the left apical window in left lateral recumbency. The CVC was assessed 

in long axis from the right transhepatic window, and the measurements were taken in M-

mode. They reported a 100% sensitivity and 83.3% specificity to predict fluid 

responsiveness for the CVC CI when using a threshold of 27%. Interestingly, they did not 

find significant differences between the maximal diameter of the CVC adjusted to body 

weight between responders and non-responders, suggesting that this measurement is of no 

value to predict fluid responsiveness.    

  

Reference values for the CVC diameter, area and CVC/Ao ratio in healthy dogs from 

different views have been established recently (Darnis et al., 2018). Not all acoustic 

windows performed equally. The subxiphoid view, which is the standard for human 

patients (Mookadam et al., 2011), showed a lower inter-rater agreement than the hepatic 

and paralumbar views. The measurements obtained in 2D mode showed better agreement 

that those in M-mode. The hepatic view, although showing good agreement, interrogated a 

vessel that was elliptical in shape. Therefore, the use of the area of the vessel was more 

accurate than the diameter alone. The reference ranges provided by this study were very 

wide, but it was hypothesized by the authors that during hypovolaemia or hypervolaemia 

the measurements of the CVC will be comprised in a narrower range. 

   

Summarizing, the ease and rapidity of the procedure, and the shortness of the learning 

curve needed to obtain repeatable measurements of the CVC (Darnis et al., 2019), makes it 

attractive for intensive care clinicians in veterinary medicine. However, its clinical 

applicability is still under debate and, to date, very few studies have been performed in 

clinical veterinary patients. In addition to that, most studies were performed in only one 

breed of dog, limiting even more the applicability of their results to the general canine 

population. As it happens in human medicine, there is a lack of standardization of the 

technique to acquire and measure the images. In addition to that, the variables used to 

define positive fluid responsiveness also differ between studies, making them difficult to 

compare.  
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1.4.2 Echocardiography for the assessment of volaemia in dogs 

As in humans, several techniques and devices have been trialled in dogs using ultrasound 

to assess the volume status. 

 

1.4.2.1 Transoesophageal echocardiography and other ultrasound-based techniques 

 

The CO estimation obtained from TOE has shown good  to excellent agreement when 

tested against thermodilution in mechanically ventilated anaesthetised dogs (Yamashita et 

al., 2007, Mantovani et al., 2017). When tested simultaneously with other non-invasive 

techniques, such as bioimpedance and partial CO2 rebreathing (a modified Fick method), 

TOE showed the best correlation with thermodilution (Yamashita et al., 2007). However, 

this study included only six dogs, and they were all of the same breed (Beagle). The CO of 

these six Beagle dogs was manipulated through the administration of a dobutamine 

infusion, so they were not clinical cases. The CO was estimated from the Doppler tracing 

of the aorta (CO = HR x (VTI x Ao area), which can be very well aligned with TOE, 

making this acoustic window more suited in dogs than in humans, where the alignment 

with the flow is more difficult due to the anatomy of the thorax.  

 

Similar findings were reported in another study with anaesthetised and mechanically 

ventilated dogs of different breeds (Mantovani et al., 2017). Using the same methodology 

as Yamashita and colleagues 2007, but a different acoustic window, Mantovani and 

colleagues 2017 observed an excellent agreement between TOE and thermodilution during 

normotension. Good, but lower agreement was seen during isoflurane-induced 

hypotension. Most patients with hypovolaemia can maintain an adequate arterial SBP, due 

to the activation of the compensatory mechanisms, thus, this should not be a limitation in 

such cases.  

 

A simplified oesophageal ultrasonographic Doppler device was tested in healthy 

anaesthetised dogs to estimate CO. This oesophageal Doppler device showed poor 

correlation with the thermodilution in healthy anaesthetised dogs (Canfrán et al., 2015). In 

addition to that, as any other transoesophageal technique, it requires general anaesthesia, so 

it would be impractical for critically ill conscious dogs. 
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The USCOM device was tested in two experimental models with anaesthetised Beagle 

dogs. While one of them showed good correlation between the CO measured by  USCOM 

and by a high-precision transit time ultrasonic flow probe placed on the ascending aorta 

(Critchley et al., 2005), a later study found poor correlation with thermodilution (Scansen 

et al., 2009).  There is a technical limitation when using this device in dogs, as the software 

included in the machine estimates the aortic cross section based on the height of a human 

patient. When used in dogs, the aorta should be measured by echocardiography and this 

value inserted in the software to generate more accurate readings. It has not been used in 

clinical veterinary patients yet.  

 

1.4.2.2 Transthoracic echocardiography  

 

Transthoracic echocardiography has been used to study changes in blood volume in dogs. 

The influence of the blood volume on transthoracic echocardiographic variables has been 

already reported.  

 

One study showed that experimentally induced volume depletion or dehydration in healthy 

dogs of different breeds produced noticeable reductions in the cardiac chamber sizes 

measured by transthoracic echocardiography (Fine et al., 2010). Volume depletion in this 

study was induced by the administration of furosemide, while dehydration was induced by 

water deprivation for eight hours. These changes were of different magnitude and in 

different variables in the dogs treated with furosemide than in the dogs deprived of water. 

While the left atrial dimension, left ventricular end-systolic and end-diastolic volumes, SV, 

M-mode LV diastolic diameter, E wave velocity, and aortic peak pressure gradient, were 

significantly reduced in the furosemide treated group, only the left ventricular diastolic 

volume and the left atrial size were reduced in the dehydrated dogs. This was interpreted 

by the authors as a proof that volume depletion will cause more marked changes in the 

cardiac chambers than pure dehydration due to the compensation through an increased 

osmolarity of the plasma. However, the weight loss in the furosemide group was greater, 

making the two groups not completely comparable. Thus, it is possible than the furosemide 

group showed more marked changes as a consequence of having a more pronounced 

hypovolaemia.  
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This would suggest echocardiography could be useful in diagnosing and grading 

hypovolaemia in dogs. Similarly designed studies proved the same reductions in chamber 

sizes and alterations in systolic and diastolic variables in other veterinary patients, such as 

horses (Underwood et al., 2011) and cats (Campbell and Kittleson, 2007, Sugimoto et al., 

2019).  

 

Two case series described the development of reversible left ventricular outflow tract 

obstruction as a consequence of hypovolemia in dogs. This feature disappeared in all these 

patients once the blood volume was restored (Aoki et al., 2015, Hammes et al., 2016). Two 

of the three dogs presented in these case series were diagnosed with hypovolaemic shock 

due to a splenic rupture, while another one was severely dehydrated. The authors of both 

case series hypothesized that the reduction in the lumen of the left ventricle was a sign of 

reduced preload, and that it narrowed the left ventricular outflow tract, causing systolic 

anterior motion of the mitral valve. Additionally, the secretion of catecholamines and the 

compensatory mechanisms triggered in the course of shock would increase cardiac 

contractility, thus inducing the obstruction.  

 

The reversibility of these changes and the absence of signs of cardiac disease after volume 

replacement in these three patients suggested that transthoracic echocardiography can 

identify hypovolaemia in dogs euvolaemia, irrespectively of the aetiology.  

 

The purpose of all the forementioned studies in this section was to prove the influence of 

blood volume status on the echocardiographic measurements, in order to avoid erroneous 

echocardiographic diagnosis of heart diseases such as hypertrophic cardiomyopathy or 

diastolic dysfunction in animals that may be volume depleted or dehydrated. However, 

they did not assess the performance of transthoracic echocardiography to estimate blood 

volume.  

 

The estimation of the CO using transthoracic echocardiography in dogs, has been very 

scarcely reported, and has shown conflicting results so far.  

 

Two studies demonstrated good to excellent agreement between the CO measurements 

provided by a flowmeter inserted in the aorta and the CO estimated from 

echocardiography.  
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One of these studies, was performed in open-chested, mechanically ventilated, 

anaesthetised dogs  (Steingart et al., 1980)with the ultrasound transducer  held next to the 

aorta through a thoracotomy. This is not in the usual position from outside the chest, 

limiting the applicability of these results to transthoracic echocardiography.  

 

The second study(Uemura et al., 2013) was performed in ten close-chested, anaesthetised 

and mechanically ventilated dogs, using transthoracic echocardiography and the peripheral 

arterial pressure profile to estimate the CO. The authors proved a good agreement in the 

CO measurements between the flowmeter and echocardiography, and also a good trending 

capacity of the latter during several haemodynamic conditions, such as hypotension, fluid 

overload and cardiac pacing. They used a modified approach to calculate the SV, 

measuring the maximal velocity from the aortic flow profile, and the ejection time from the 

peripheral pulse wave. In that way, they eliminated the need for an operator to manually 

trace the aortic profile. The main limitation of this technique is that it needed calibration, 

using the flowmeter, before readings could be accurately taken. The authors proposed the 

thermodilution method to do the first calibration and continue the monitoring with this 

minimally invasive protocol. The need of an initial calibration makes the technique 

impractical for the general canine population.  

 

Two studies have tested transthoracic echocardiography against thermodilution. One of 

these studies (Day et al., 2007) reported a lack of agreement between these two techniques, 

whereas the other one (Lopes et al., 2010) reported a clinically acceptable correlation 

between them. The dogs included in both studies were anaesthetised healthy individuals. 

Additionally, Day and colleagues subjected the dogs to a blood loss of 45ml/kg. Although 

the CO estimation from echocardiography was judged suboptimal, Day and colleagues 

observed qualitative changes in the heart chambers and the great vessels as the blood loss 

progressed. They hypothesized that the changes in geometry in the ventricles induced by 

these changes may have affected their echocardiographic flow profiles.   

 

Both studies reported a better performance for the pulmonary flow than for the aortic flow. 

For the acquisition of the aortic flow profile, both studies positioned the animals in the left 

lateral recumbency and used an apical five-chamber view which is not consider the optimal 

view to perform aortic forward flow interrogation (Abbott and Maclean, 2003).As the 
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Doppler interrogation technique is angle dependant this may have influenced the results, 

resulting in a poorer agreement,. Day, and colleagues also hypothesized, that the changes 

in the aortic diameter after haemorrhage may have affected the calculated CO. In 

disagreement with this hypothesis, most studies have identified no changes in the aortic 

diameter in relation to changes in blood volume (Meneghini et al., 2016, Bucci et al., 

2017, Rabozzi et al., 2020)  

 

Day and colleagues made a special emphasis on the statistical methods they employed in 

this study, applying the Bland-Altman plots, instead of correlation, which has been 

traditionally used to assess the agreement between techniques. In this description of the 

statistical analysis, they suggested that the lack of agreement between the techniques did 

not imply transthoracic echocardiography was unsuited to detect clinical changes 

associated with blood volume reduction, but only that echocardiography was not suited to 

accurately measure CO during haemorrhage, which may be of importance in a research 

environment, but may not be so relevant in a clinical setting. Correlation was the statistical 

method employed by Lopes and colleagues, which may also explain the divergent results, 

as they concluded that the pulmonary artery forward flow provided a clinically acceptable 

non-invasive means of estimating CO. If the pulmonic flow was clinically acceptable it is 

possible than the aortic flow would also be so, if the echocardiographic technique is 

optimised. 

 

No studies have been performed to assess the usefulness of transthoracic echocardiography 

for the assessment of volaemia or fluid responsiveness of conscious, spontaneously 

breathing, clinically ill dogs. As invasive and advanced techniques for the assessment of 

volaemia and fluid responsiveness are seldom available in veterinary facilities, this project 

will evaluate a variety of cardiac measurements that can potentially be useful for this 

purpose in dogs.  

 

The aim of the current study would be to assess if transthoracic echocardiography can be 

useful in the estimation of volaemia in conscious, spontaneously breathing, critically ill 

dogs. A second aim would be to develop a simple and brief ultrasonographic protocol that 

can be performed by non-cardiologist veterinarians, aiding in the diagnosis of 

hypovolaemia, and fluid responsiveness. 



45 
 

 
 

2. Materials and methods  

 

2.1 Equipment 

The following equipment was employed to perform this research project:  

- Packed cell volume (PCV) measurement kit (Thomas scientific, USA) 

- Lactate meter: Stat strip lactate Xpress meter (Woodley veterinary diagnostics, UK) 

- Ultrasound machine: Mindray M5 (Shenzhen Mindray biomedical electronics, 

China) 

- Refractometer (RS components, Czech Republic) 

- Doppler flow detector CAT+ Doppler blood pressure kit (Thames medical, UK) 

- Multiparameter anaesthetic monitor with oscillometric SBP meter: GE B40 

(General Electric, USA) 

 

2.2 Animals, diagnostic tests, and ultrasonographic protocol 

This was a prospective cohort study. The author obtained ethical approval from the ethics 

committee of the University of Glasgow. Owners provided informed consent for 

echocardiography and other clinically indicated procedures, at the time of presentation. 

Owners also permitted use of their pet’s anonymised clinical data for research purposes.  

 

2.2.1 Animals 

The population of the study were dogs presented to one single private veterinary hospital in 

the UK. They were divided into two different cohorts of patients:  

1. Control cohort: included dogs referred for echocardiography to a cardiology referral in 

a private veterinary hospital in the UK. They were included in the control group if the 

data from the history and physical examination suggested they presented a normal 

volume status (euvolaemic), there were no clinical signs of any systemic disease, and 

the echocardiography showed no signs of substantial cardiac disease. The absence of 

clinical signs or alterations in the physical exam deemed laboratory tests unnecessary. 

The SBP was measured by non-invasive methods, either Doppler or oscillometry in 

either the forelimb or the tail. Only the SBP was recorded after averaging the results of 

three to five measurements. Substantial cardiac disease was defined as any cardiac 
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disease that caused remodelling of the heart chambers. The patients included were dogs 

with innocent murmurs or dogs affected by mild degenerative mitral valve disease 

whose cardiac chambers were considered subjectively normal and whose cardiac 

chamber measurements were within the limits of the stage B1 according to the 

American College Veterinary Internal Medicine (ACVIM) Consensus (Keene et al. 

2019). This means their left ventricle and left atrium were not significantly enlarged 

and did not meet the criteria described in this consensus for the definition of 

cardiomegaly. All dogs were scanned conscious and spontaneously breathing. Dogs 

were placed in right and then left lateral recumbency and underwent a full standard 

echocardiography. The ultrasonographic exploration of the CVC was performed in 

right lateral recumbency from the subxiphoid window.  Electrocardiography leads were 

attached to the limbs to produce a simultaneous electrocardiogram tracing. One single 

clinician assessed all the animals, performed the ultrasonographic exam, acquired all 

the images, and made all the measurements.  

 

2. Study cohort: comprised dogs presented to the out of hours service of a private hospital 

in the UK. They were assessed by the same clinician that examined the dogs from the 

control cohort. They were included in the study cohort if the history and physical exam 

suggested they had hypovolaemia or hypovolaemic shock. There were no exclusions 

based on the underlying disease. The suspicion of hypovolaemia was originally based 

on the history and the physical examination after assessing mucous membranes colour 

(MM), capillary refill time (CRT), heart rate (HR), and pulse quality. The dogs of the 

study cohort were suspected to have mild or moderate hypovolaemia based on the 

history if the owner had reported obvious fluid losses such as bleeding, profuse 

vomiting, or persistent diarrhoea. The dogs were suspected of having hypovolaemic 

shock if the owner reported altered mentation or collapse. In the data from the physical 

examination: pulse quality and MM were classified in four different categories, which 

are detailed in the Table 2.1. Capillary refill time was considered prolonged if it 

exceeded 2 seconds. HR was considered elevated if it was over 160 bpm. Dogs in the 

study cohort were suspected of being in hypovolaemic shock if there was altered 

mentation or collapse, in addition to white or pale MM, markedly elevated HR (over 

180 bpm), markedly prolonged CRT (≥3seconds) or weak pulses. It was not required 

that all the variables matched this description, but instead a general clinical picture was 

drawn from the history and the physical examination in order to advise the owners to 
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perform further testing. If that was deemed necessary, owners were asked to give 

permission to perform a SBP measurement, a blood test and the ultrasonographic 

protocol that was the subject of this research project.  

 

Table 2-1. Categories of MM and pulse quality 

Variable Description Category 

MM white 3 

pale 2 

pink 1 

congested 0 

pulse quality not palpable 3 

weak 2 

fair 1 

strong 0 

  

 

2.2.2 Diagnostic tests 

After signed consent was obtained from the owners, the SBP was measured by non-

invasive indirect methods, either Doppler or oscillometric. The same method, and the same 

site were always used for the same dog for the subsequent measurements. The 

measurement sites were the forelimb or the tale. Only the SBP was recorded after 

averaging the results of three to five measurements. Hypotension was diagnosed if the 

SBP≤90mmHg, and hypertension if the SBP≥160mmHg.    

 

Blood tests were performed after obtaining a blood sample from venepuncture of the 

jugular vein. If the clinical condition of the animal was judged very unstable the blood 

sample was drawn from the venous catheter that was inserted in the cephalic vein in order 

to provide fluid therapy. Laboratory tests comprised: PCV, TP in plasma, and LAC in 

whole blood. The PCV was expressed as percentage and measured manually using a PCV 

kit after spinning a microhaematocrit tube for 5 minutes in a microhaematocrit centrifuge 

at 12,000 revolutions per minute. The TP in plasma was measured manually in a 

refractometer, previously calibrated with water, after depositing one drop of the 

centrifuged plasma from the microhaematocrit tube. The units read from the refractometer 

(g/100ml) were converted into grams per litre (g/L). The LAC was measured in whole 

blood by a bedside strip-based meter from the blood remaining in the needle from the 
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blood extraction and expressed in millimole per litre (mmol/L). Lack of appropriate tissue 

perfusion was suspected if LAC≥2.5 mmol/L. Additional blood tests were performed in 

most patients, such as full biochemistry and haematology, but these were not included in 

the study.  

 

2.2.3 Ultrasonographic protocol 

Once the non-invasive SBP measurement was performed and the blood sample drawn, 

dogs in the study cohort underwent an ultrasonographic exploration, comprising of a 

simplified echocardiographic protocol and the CVC exploration. The ultrasonographic 

exploration was performed in conscious dogs, breathing spontaneously in right lateral 

recumbency. Whenever possible, electrocardiogram leads were attached, but this was 

based on patient´s needs, as some animals required immediate intervention. The time 

consumed by the examination was recorded. Two echocardiographic windows were used 

to perform all the ultrasonographic views and acquire all the cine loops that were used to 

obtain all the measurements. The following windows and views were recorded:  

- Subxiphoid window (Figure 2-1). It was performed to obtain the longitudinal 

subxiphoid view of the CVC (Figure 2-2) and the subxiphoid view of the heart for 

Doppler examination of the aortic forward flow (Figure 2-3).  

- Right parasternal window (Figure 2-4). It was performed to obtain the following 

echocardiographic views: long-axis four chambers view optimised for the left 

atrium (L4chA) (Figure 2-5), long-axis four chambers view optimised for the left 

ventricle (L4chV) (Figure 2-6), long-axis five chambers view (L5ch) (Figure 2-7), 

and short-axis view at the level of the papillary muscles (Spm) (Figure 2-8). 
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Figure 2- 1. Control dog held in right lateral recumbency with electrocardiogram leads 

attached. Operator scanning using the subxiphoid window. 
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Figure 2-2. Longitudinal subxiphoid view of the caudal vena cava (arrows) from the subxiphoid 

window. 

 

 

Figure2-3.Subxiphoid view of the aorta (arrows) from the subxiphoid window. 
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Figure 2-5. Long-axis 4 chamber view optimised for the left atrium (LA) from the right parasternal 

window. 

Figure 2-4. Control dog held in right lateral recumbency with electrocardiogram leads attached. 

Operator scanning using the right parasternal window. 
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Figure 2-6. Long-axis 4 chamber view optimised for the left ventricle (LV) from the right 

parasternal window. 

 

 

Figure 2-7. Long-axis 5 chamber view from the right parasternal window showing the aorta (Ao). 

LV 

Ao 



53 
 

 
 

 

Figure 2- 8. Short axis view of the left ventricle (LV) at the level of the papillary muscles from the 

right parasternal window. 

 

Once the cine loops were acquired, the measurements were performed off-line at a later 

time. Three measurements were made in three different cardiac cycles and averaged to 

obtain the value included in the study. One single operator, the same as for the control 

cohort, acquired all the images and performed all the measurements. They comprised:  

 

- Left atrial major longitudinal diameter to aortic diameter ratio (LAmajor/Ao). 

(Strohm et al., 2018) The major longitudinal diameter of the left atrium (LAmajor) 

was measured in the L4chA view, tracing a line from the interatrial septum to the 

lateral atrial wall parallel to the mitral annulus in the last frame before the opening 

of the mitral valve as described by Strohm and colleagues in 2018 (Figure 2-9). The 

aortic diameter was measured in the L5ch view tracing a line between the hinges of 

the aortic valve in systole (Figure 2-10).  
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Figure 2- 9. Right parasternal 4 chamber view. The yellow line represents the measuring plane for 

the major longitudinal diameter of the left atrium (LA). 

 

 

Figure 2-10. Right parasternal 5 chambers view. The yellow line represents the measuring plane 

for the aortic diameter between the hinges of the aortic valve. (Ao) aorta.  

 

 

Ao 
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- Left ventricular end diastolic volume index (EDVI). The diastolic area of the 

LV in the L4chV view was traced following the endocardial border excluding 

the papillary muscles, if present, in the first frame after the mitral closure 

(Figure 2-11). The Simpson´s method of discs was applied using the cardiac 

software of the ultrasound machine to obtain the end diastolic volume, which 

was divided by the body surface area to obtain the EDVI (Wess et al., 2010). In 

addition to the measurements of the left ventricular volume, the L4chV view 

was used to subjectively assess the presence of left ventricular obliteration. 

 

Figure 2-11. Right parasternal 4 chambers view optimised for the left ventricle (LV). The yellow 

area represents the measuring technique employed, following the endocardial border to trace the 
end diastolic area. The Simpson´s method of discs was used to calculate the end diastolic volume. 

 

- Left ventricular internal diameter in diastole normalized for body weight by 

allometric scaling (LVIDdN). The left ventricular internal diameter during diastole 

(LVIDd) was measured following the “leading edge to leading edge” methodology 

at the onset of the Q wave of the simultaneous electrocardiogram tracing, in an M-

mode tracing guided by the 2D mode in the Spm view (Figure 2-12)  (Bonagura, 

1983). The LVIDd was normalized to body weight following allometric scaling 

(Cornell et al., 2004) according to the formula:   

𝐿𝑉𝐼𝐷𝑑𝑁 = 𝐿𝑉𝐼𝐷𝑑/𝐵𝑊0.294 

Where BW is body weight. 
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Figure 2-12. M-mode tracing obtained at the right parasternal short axis view of the left ventricle 

(LV) at the level of the papillary muscles. The yellow line represents the measuring plane for the 

left ventricular internal diameter in diastole. 

 

- Stroke volume (SV) in cubic centimetres (cm3). This was calculated according to 

the following formula (Phillips et al., 2017): 

𝑆𝑉 = 𝑉𝑇𝐼 × 𝐴𝑜 𝑎𝑟𝑒𝑎 

Where VTI is the velocity-time integral, in cm, of the Doppler tracing of the aortic 

forward flow from the subxiphoid view (Figure 2-13), calculated by the cardiac 

software of the ultrasound machine, and Ao area is the area of the aortic annulus in 

cm2, calculated from the aortic diameter previously measured in the L5ch view 

(Figure 2-10) according to the formula. 

𝐴𝑜 𝑎𝑟𝑒𝑎 =  𝜋𝑟2 

Where “r” is the result of diving the aortic diameter measured in the L5ch view by 

two to obtain the radius of the aorta.  
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Figure 2-13. Doppler spectrum of the aortic forward flow obtained from the subxiphoid view. The 

yellow lines draw the velocity-time integral of the aortic flow. (Ao) aorta 

 

- CVC maximum diameter (CVCmax). A longitudinal plane of the CVC was obtained 

from the subxiphoid view in right lateral recumbency (Figure 2-2), and a cine loop 

was recorded when the vessel appeared subjectively at its biggest diameter. The 

CVC was measured in millimetres (mm), on its maximal diameter, tracing a 

perpendicular line from the inner edge to the inner edge of the walls of the CVC at 

its crossing of the diaphragm (Figure 2-14), regardless of the moment in the cardiac 

or respiratory cycle (Darnis et al., 2018). In addition to the measurements, the 

longitudinal subxiphoid view of the CVC was used to subjectively assess the 

presence of dilation or collapse of the CVC.  

- CVCmax to aorta ratio (CVCmax/Ao). Where CVCmax is the maximum diameter of 

the CVC previously obtained from the subxiphoid view, and Ao is the aortic 

diameter previously obtained from the L5ch view. (Cambournac et al., 2018, Kwak 

et al., 2018).  

- CVC collapsibility index (CVC CI). This was calculated following the formula: 

𝐶𝑉𝐶 𝐶𝐼 =
𝐶𝑉𝐶𝑚𝑎𝑥 − 𝐶𝑉𝐶𝑚𝑖𝑛

𝐶𝑉𝐶𝑚𝑎𝑥
𝑥 100 

Ao 
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Where CVCmin is the minimum diameter of the CVC obtained from the same 

longitudinal subxiphoid view as the CVCmax, but on its narrowest diameter, 

irrespectively of the moment of the respiratory cycle (Darnis et al., 2018). 

 

Figure 2-14. Subxiphoid view of the caudal vena cava (CVC). The yellow line represents the 

measuring plane of the vessel at its crossing of the diaphragm, used to measure its maximal and 

minimal diameters.  

 

Once the ultrasonographic examination was completed, an intravenous catheter was placed 

in the cephalic vein and fluid therapy was administered intravenously (IV). The IV fluid 

therapy was tailored according to the patient´s needs based on the 2013 AAHA/AAFP 

Fluid therapy Guidelines for dogs and cats (Davis et al., 2013), and was recorded as per 

fluid type, volume, and time of administration. All the variables of the physical exam, 

SBP, laboratory tests and ultrasonographic measurements were reassessed after the 

administration of the chosen protocol of IV fluid therapy. This was a fluid bolus in a few 

minutes if the animal was considered in shock, or replacement fluid therapy for dehydrated 

animals given over a period of 24 hours.  

Animals were classified as fluid responders if they achieved an increase of 10% or greater 

in the SV, as described in human medicine in the current consensus on circulatory shock 

and haemodynamic monitoring of the European Society of Intensive Care Medicine 

(Cecconi et al., 2014). 

CVC 
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2.3 Statistical analyses  

The data were analysed using commercially available software Microsoft Excel Analysis 

data Pack tool, Microsoft Office 365 and Minitab Statistical Software, Minitab LLC, USA. 

Most data were not normally distributed, according to the Shapiro-Wilk test, so non-

parametric tests were applied. All the descriptive statistics are presented as median and 

interquartile range 25th-75th, employing this format for all the variables assessed in the 

study and for all the demographic characteristics of the population. The level of 

significance was set at P≤0.05 for all tests. 

Logistic regressions were used to compare the demographic characteristics (age, body 

weight and sex distribution) between cohorts.  

The Kruskal Wallis test was used to compare the control versus the study cohort. Binary 

logistic regressions were used to identify which parameters better discriminate between the 

control and study cohorts, and a non-parametric ROC curve was employed to identify cut-

off values.  

The study sample size for the best chance to obtain a significant result, when comparing 

the medians of the study and control cohorts with a power of 0.8, α = 0.05 and β = 0.05 

was nineteen observations. This was based in published data about the variations of the 

CVC size (Rabozzi et al., 2020) in a similar subpopulation of dogs, where the population 

and sample variances were expected to be similar.  

Data from the study cohort were compared before (pre-treatment) and after treatment 

(post-treatment) using a Wilcoxon signed-rank test. 

Among the study cohort, animals were classified as fluid responders, if they achieved a 

10% increase in the SV, or non-fluid responders if they did not reach this 10% increase in 

the SV. A Mann-Whitney U test was used to compare the measurements pre-treatment and 

post-treatment of these two sub-groups.  

Among the study cohort, animals were classified as being in shock or not in shock. A 

Mann-Whitney U test was used to compare the measurements pre-treatment and post-

treatment of these two sub-groups.  
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2.4 Subjective assessment 

The subjective assessment of the cardiac chambers and CVC diameter were performed at 

the time of the ultrasonographic examination. This was performed by the same operator 

that acquired the images and made the measurements. 

 

The subjective appearance of the CVC in the longitudinal subxiphoid view was categorized 

as dilated, normal, or collapsed. The CVC was described as dilated if the diameter of the 

vessel seemed subjectively big compared with the diameter of the aorta and there was 

scarce change on the diameter throughout the cardiac cycle. The CVC was categorized as 

normal if the diameter changed over the cardiac cycle, with a noticeable difference 

between maximal and minimal diameters, and the maximal diameter seemed somehow 

smaller than that of the aorta. The CVC was described as collapsed if the lumen of the 

vessel was almost completely obliterated at some point during the cardiac cycle and the 

maximal diameter was clearly smaller than the aortic diameter.       

 

The LV was assessed for the presence of lumen obliteration. The degree of obliteration 

was categorized as severe, moderate, or not present. Severe obliteration was noted when 

the free wall of the LV and the interventricular septum touched, or almost touched each 

other during systole. Moderate obliteration was described if one or both of the walls of the 

LV were bent towards the lumen of the ventricle during diastole. A subjectively normal 

lumen for the LV during systole and diastole was classified as the obliteration was not 

present.   

 

The correlations of these subjective changes with lack of adequate tissue perfusion, defined 

as a LAC≥2.5mmol/L, fluid responsiveness, and shock were studied observationally, as the 

small number of dogs prevented statistical analyses.     
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3. Results 

 

3.1 Statistical results 

3.1.1 Control cohort vs study cohort 

The control cohort consisted of nineteen dogs. These nineteen dogs had an age of 9 (8-11) 

years, and a median body weight of 14 (8-22) kilograms (kg). Many breeds were 

represented: Cocker spaniel, Staffordshire terrier, Labrador (n=3), Shih-Tzu, Yorkshire 

terrier, Pointer, Cavalier king Charles spaniel, Podenco, Border collie, Tibetan terrier, 

Chihuahua, Jack Russell, Beagle, and mix-breed (n=4).  

 

The study cohort comprised of eighteen dogs. These eighteen dogs had an age of 9 (4.5-11) 

years and a body weight of 13 (8-19) kg. Many breeds were represented: Cocker spaniel 

(n=2), Staffordshire terrier, Great Dane, Border collie, Pekinese, Doberman, Cairn terrier, 

Lurcher, Cavalier king Charles spaniel (n=2), Dachshund, Shetland sheepdog, Boxer, West 

highland white terrier, Lhasa Apso, Springer spaniel, and mix-breed. 

 

The demographic characteristics of both cohorts are presented in Table 3-1. There were no 

significant differences in age, body weight and sex distribution between the cohorts.   

Table 3-1. Demographic characteristics of the control and study cohort presented as median 

(interquartile range). P value obtained by logistic regression. 

Variable Control cohort (n=19) Study cohort (n=18) P value 

Age (years) 9 (8-11) 9 (4.5-11) 0.440 

Body weight (kg) 14 (8-22) 13 (8-19) 0.869 

Sex distribution males: 10 

females:9 

males:12 

females:6 

0.512 

. 

 

In the control cohort, none of the dogs presented clinical signs at the time of examination. 

The physical exam was unremarkable, except for the presence of a heart murmur grade 

III/VI or lower in fourteen out of the nineteen dogs. Five out of the nineteen dogs did not 

have a murmur. Given the fact that there were no clinical signs nor significant findings in 

the physical examination they were consider euvolaemic; they did not undergo further 
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testing other than echocardiography and the non-invasive measurement of the SBP. Their 

values for the elected physical exam variables and SBP are presented in Table 3-2. 

Among the study cohort, the most common clinical presentation was the presence of 

intense gastrointestinal signs (10/18), comprising vomiting, diarrhoea, or both. This was 

followed by collapse (n=6), prolonged anorexia (n=1) and lethargy (n=1). Their values for 

the elected physical exam variables and SBP are summarised in Table 3-2. 

 

The HR was higher (p= 0.004), and the CRT was longer (p=0.048) in the study cohort at 

the time of presentation, than in the control cohort. There were not significant differences 

between the control cohort and the study cohort at the time of presentation in the SBP.  

Table 3-2. Values for continuous variables of the physical examination and the systolic blood 
pressure in the control cohort and study cohort at the time of presentation. P value obtained by 

logistic regression. 

Variables  Value control cohort Value Study cohort  

at presentation 

P value 

CRT (s) 2 (2-2) 2 (2-3) 0.048 

HR (bpm) 116 (104-125) 152 (131-160) 0.004 

SBP (mmHg) 140 (130-159) 130 (119-152) 0.133 

.  

 

In the categorical variables, MM colour and pulse quality, the control cohort grouped all its 

dogs in the categories considered normal (strong pulses (0) and pink MM (1)), whereas the 

study cohort had representation in all categories (Table 3-3).  

Table 3-3. Number of dogs included in each category of the categorical variables pulse quality and 

mucous membranes colour in the control and study cohort. 

Variable Categories Control cohort Study cohort  

pre-treatment 

Pulse quality 0 19 6 

 1 0 6 

 2 0 5 

 3 0 1 

MM colour 0 0 3 

 1 19 9 

 2 0 5 

 3 0 1 

.  
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In the study cohort at the time of presentation, eleven of the eighteen dogs were suspected 

of varying degrees of hypovolaemia, with no presence of shock based on the physical 

exam findings and laboratory variables. Seven of the eighteen dogs were suspected to be in 

hypovolaemic shock.  

The ultrasonographic measurements of the control cohort and the study cohort at the time 

of presentation are summarised in Table 3-4. The LAmajor/Ao was smaller (p=0.034) in the 

study cohort at the time of presentation than in the control cohort. The EDVI (p=0.064), 

and the LVIDdN (p=0.068), were not significantly different between cohorts, although 

they were approaching significance. The SV (p=0.448) and the measurements of the CVC 

were not significantly different between the control and study cohorts.   

 

Table 3-4. Ultrasonographic measurements of the control cohort and study cohort at the time of 

presentation. P value obtained by Kruskal-Wallis. 

Variables  Control cohort Study cohort  

at presentation 
P value 

LAmajor/Ao 2.1 (1.9-2.3) 1.9 (1.7-2) 0.034 

EDVI 49 (45-72) 43 (24-51) 0.064 

LVIDdN 1.6 (1.3-1.6) 1.4 (1.2-1.6) 0.068 

SV (cm3) 21.5 (16.9-32) 19.5 (10.4-34.6) 0.448 

CVCmax (mm) 8.8 (6.5-10.8) 9.2 (8.1-10.8) 0.358 

CVCmax/Ao 0.62 (0.48-0.70) 0.65 (0.54-0.73) 0.296 

CVC CI (%) 40 (33-46) 32 (23-48) 0.350 

  

 

All the ultrasonographic variables were tested, using binary logistic regression, as potential 

discriminators between the dogs in the control and study cohorts. The variables that 

performed better as discriminators were the EDVI, that achieved significance (P=0.047), 

and the LVIDdN, which was close to, but did not achieve significance (P=0.07). None of 

the measurements of the CVC had the ability to discriminate between cohorts. All the 

discriminators tested are listed in Table 3-5. The attempts to obtain a cut-off value for 

discrimination between cohorts for the EDVI or the LVIDdN were unsuccessful, as the 

sensitivity and specificity were not considered clinically acceptable for either of these 
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variables. For the EDVI, the cut-off value that performed best was a value of 50. With this 

cut-off value, 47% of the patients would have been correctly classified, with a sensitivity 

of 42%, and a specificity of 53%. For the LVIDdN a cut-off of 1.3 will classify correctly 

39% of the patients, with a sensitivity of 68% and a specificity of 11%. Thus, none of the 

ultrasonographic measurements was able to accurately differentiate between euvolaemic 

and potentially hypovolaemic dogs. 

 

Table 3-5. Logistic regressions to identify possible discriminators between the control and study 

cohorts. 

Variable Odds ratio 95%Confidence 

interval 

P-value 

LAmajor/Ao 0.41 0.063-2.70 0.360 

EDVI 0.96 0.93-0.999 0.047 

LVIDdN 0.08 0.005-1.25 0.070 

SV 0.99 0.95-1.03 0.702 

CVCmax 1.14 0.91-1.42 0.250 

CVCmax/Ao 10.99 0.13-932.2 0.290 

CVC CI 0.14 0.001-24.4 0.460 

.  

 

3.1.2 Study cohort pre-treatment vs post-treatment 

After analysing the differences between the control and study cohorts, the study cohort was 

analysed comparing the values at the time of presentation (pre-treatment) against the 

values after the administration of IV fluid therapy (post-treatment).  

On the physical examination, the categorical variables of the study cohort are included in 

Table 3-6, which showed that most of the patients moved to the categories considered 

normal post-treatment. In the continuous variables the CRT (p=0.02) was shorter post-

treatment, and the HR (p=0.004), was lower post-treatment (Table 3-7). 
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Table 3-6. Number of dogs included in each category of the categorical variables pulse quality and 

mucous membranes (MM) colour in the study cohort pre-treatment, and post-treatment. 

Variable Categories Study cohort  

pre-treatment 

Study cohort 

post-treatment 

Pulse quality 0 6 16 

 1 6 2 

 2 5 0 

 3 1 0 

MM colour 0 3 0 

 1 9 15 

 2 5 3 

 3 1 0 

 

The SBP did not show differences pre, and post-treatment (Table3-7).  

In the laboratory tests (Table 3-7), LAC failed to demonstrate a substantial change pre, and 

post-treatment. However, in the subsequent measurements, all the patients returned to 

values of < 2.5mol/L. The PCV (p=0.001) and TP (p=0.02) were significantly lower post-

treatment (Table 3-7).  

Table 3-7. Continuous variables from the physical examination and laboratory data from the study 

cohort pre-treatment and post-treatment with intravenous fluid therapy presented as median 

(interquartile range). P value obtained by Wilcoxon signed-rank test. 

Variables  Value pre-treatment  Value post-treatment  P-value 

CRT (s) 2 (2-3) 2 (2-2) 0.02 

HR (rpm) 152 (131-160) 113 (100-132) 0.004 

SBP (mmHg) 130 (119-152) 136 (119-143) 0.26 

LAC (mmol/L) 1.8 (1.5-2.9) 1.9 (1.5-2.5) 0.64 

TP (g/L) 64 (56-67) 60 (55-67) 0.02 

PCV (%) 48 (37-55) 44 (35-51) 0.001 

 

 

The ultrasonographic protocol in the study cohort was performed in a median of 4 (3-4) 

minutes for the pre-treatment examination and 3 (2-4) minutes for the post-treatment 

examination. The exploration from the subxiphoid view was subjectively more time 

consuming than the exploration from the right parasternal window. Thus, dogs that needed 

immediate intervention lacked some measurements from the subxiphoid window. The SV 
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was measured in fifteen out of the eighteen patients. The CVC measurements were 

acquired in sixteen out of the eighteen patients. The dimensions of the left heart chambers 

(LAmajor/Ao, EDVI, and LVIDdN) were measured in all of the eighteen patients. In the 

analysis of the ultrasonographic measurements (Table 3-8), the LAmajor /Ao (p=0.002), the 

EDVI (p=0.003), and the LVIDdN (p=0.003), were significantly greater post-treatment. 

The SV (p=0.003) was significantly higher post-treatment. The CVCmax (p=0.003) and the 

CVCmax/Ao ratio (p=0.002) were significantly greater post-treatment. The CVC CI did not 

show any significant change. 

 

Table 3-8. Ultrasonographic measurements pre-treatment and post-treatment in the study cohort, 

presented as median (interquartile range). P value obtained by Wilcoxon signed-rank test. 

Variables  Value pre-treatment  Value post-treatment  P-value 

LAmajor/Ao 1.9 (1.7-2) 2 (1.8-2.3) 0.002 

EDVI 43 (24-51) 54 (34-66) 0.003 

LVIDdN 1.4 (1.2-1.6) 1.5 (1.4-1.6) 0.003 

SV 19.5 (10.4-34.6) 22 (11.7-39.4) 0.003 

CVCmax (mm) 9.2 (8.1-10.8) 10.5 (8.6-12.9) 0.003 

CVCmax/Ao 0.65 (0.54-0.73) 0.72 (0.64-0.86) 0.002 

CVC CI (%) 32 (23-48) 33 (27-39) 0.54 

 

 

Graphs were constructed for individual measurements in the study cohort pre, and post-

treatment for the ultrasonographic variables: LAmajor/Ao (Figure 3-1), EDVI (Figure 3-2), 

LVIDdN (Figure 3-3), SV (Figure 3-4), CVCmax (Figure 3-5), CVCmax/Ao (Figure 3-6), 

CVC CI (Figure 3-7) 
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Figure 3-1. Left atrium major diameter to aorta ratio (LAmajor/Ao) pre- and post-treatment in the 

study cohort. 

 

 

Figure 3-2. End diastolic volume index (EDVI) pre- and post-treatment in the study cohort. 
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Figure3-3. Left ventricular internal diameter in diastole normalized (LVIDdN) pre- and post-

treatment in the study cohort. 

 

 

Figure3-4. Stroke volume (SV) in cubic centimetres(cm3), pre- and post-treatment in the study 

cohort. 
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Figure3-5. Caudal vena cava maximal diameter (CVCmax) in millimetres (mm), pre- and post-

treatment in the study cohort. 

 

 

Figure3-6. Caudal vena cava maximal diameter to aorta ratio (CVCmax/Ao) pre- and post-

treatment in the study cohort. 
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Figure3-7. Caudal vena cava collapsibility index (CVC CI) pre- and post-treatment in the study 

cohort. 

 

All the patients in the study cohort, except one (patient 9), made a full recovery and were 

discharged from the hospital.  

 

3.1.3 Fluid responders vs non-fluid responders 

Eleven out of the fifteen patients that had SV measurements performed, achieved an 

increase of 10% or more after the administration of IV fluid therapy, and were classified as 

fluid responders according to the current standards in human guidelines (Cecconi et al., 

2014). Four out of the fifteen patients that had SV measurements performed did not 

achieve an increase of 10% after the IV fluid therapy and were classified as non-responders 

(patients 9, 10, 11, 16). Two dogs out of the four non-responders presented with moderate 

dehydration from gastrointestinal losses (patients 10 and 11). One dog out of the four non-

responders presented with chronic kidney failure with gastrointestinal losses, marked 

polyuria and systemic hypertension (patient 16). The only patient that did not recover was 

one of the four non-fluid responders (patient 9). This dog did not achieve a 10% increase in 

SV after fluid therapy, despite the fact that its LAC reduced to <2.5 mmol/L. This patient 

was euthanised due to a suspicion of a gastric tumour.  

 

The differences in the ultrasonographic measurements between responders and non-

responders were analysed (Table 3-9).   
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Table 3-9. Ultrasonographic measurements pre-treatment and post-treatment in the fluid-
responders and non-fluid responders among the study cohort, presented as median (interquartile 

range). P value obtained by U Mann-Whitney test. 

Variables  Value pre-treatment  P-value Value post-treatment  P-value 

 Fluid 

responders 

Non-fluid 

responders 

 Fluid 

responders 

Non-fluid 

responders 

 

LAmajor/Ao 1.8 (1.7-2.1) 1.9 (1.6-

2.4) 

0.957 1.9 (1.7-2.4) 2 (1.8-2.4) 0.416 

EDVI 41 (23-51) 47 (30-66) 0.481 55 (29-68) 57 (32-74) 0.786 

LVIDdN 1.3 (1.1-1-6) 1.5 (1.3-

1.8) 

0.143 1.5 (1.3-1.6) 1.6 (1.4-2) 0.357 

CVCmax (mm) 9.5 (7.1-14-

3) 

8.2 (7.8-

10.3) 

0.625 11.9 (9.5-

16) 

8.5 (8.4-11) 0.074 

CVCmax/Ao 0.67 (0.53-

0.86) 

0.57 (0.5-

0.68) 

0.303 0.89 (0.66-

0.94) 

0.63 (0.54-

0.72) 

0.034 

CVC CI (%) 33 (28-49) 40 (22-61) 0.786 32 (25-37) 40 (28-57) 0.212 

.  

 

There were no differences in the pre-treatment values for the LAmajor/Ao, EDVI, LVIDdN, 

CVCmax, CVC/Ao, CVC CI between fluid responders and non-fluid responders. The post-

treatment values were greater (p=0.034) for the CVCmax/Ao ratio in the fluid responders. 

The other variables were not significantly different, although the CVCmax almost achieved 

significance (P=0.074). 

 

3.1.4 Shock vs non-shock hypovolaemia 

Seven out of the eighteen dogs of the study cohort were suspected to have hypovolaemic 

shock based on their physical examination and laboratory tests, whereas eleven out of 

eighteen dogs were suspected of varying degrees of hypovolaemia without achieving the 

shock status.  
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Two of the seven dogs suspected of hypovolaemic shock had intra-abdominal haemorrhage 

secondary to splenic rupture (patients 3 and 6). Four of the seven dogs suspected of 

hypovolaemic shock presented with severe dehydration, two of them from gastrointestinal 

losses (patients 14 and 18), one of them from gastrointestinal losses added to poor cardiac 

performance secondary to end-stage myxomatous mitral valve disease (MMVD) (patient 

9), and another one from severe iatrogenic dehydration from parenteral furosemide 

treatment (patient 4). The dog suffering from iatrogenic dehydration was also diagnosed 

with pulmonary hypertension (PHT) secondary to a lung atelectasis.  

 

One of the seven dogs suspected to be in shock was diagnosed with either neurogenic 

shock or relative hypovolaemic shock due to systemic vasodilation, along with severe 

bradycardia. The clinical distinction of these two shock entities can be rather challenging, 

particularly if the cause is a severe blunt trauma, potentially affecting the head, or the 

upper spinal cord, as it was in this case (patient 2). Trauma can cause mayor bleeding from 

bigger vessels, which will be detectable clinically as a haemorrhage, or from the capillary 

bed, which will be clinically undetectable. This bleeding may lead to hypovolaemic shock. 

Trauma can also cause a disruption in the vasomotor centre, causing a haemodynamic triad 

of vasodilation, bradycardia and hypotension that characterizes neurogenic shock (Ahuja et 

al., 2018). In human medicine, it is thought that the distinction between hypovolaemic and 

neurogenic shock in trauma patients, although theoretically possible, can be virtually 

impossible clinically, and the recommendation in these patients is to restore intravascular 

volume.  This patient was the only one of the seven patients suspected of shock that had a 

LAC<2.5 mmol/L, having LAC=1.9mmol/L, at the time of presentation.  

 

Three of the dogs suspected of hypovolaemic shock did not have their SV measured, and 

two of them did not have their CVC measured as they required immediate intervention due 

to haemorrhagic shock. It was considered unethical to delay a therapeutical intervention in 

order to acquire data for the study. However, as the exploration from the right parasternal 

window can be performed very rapidly by the operator who performed the examination 

and was also employed to rule out a cardiac mass in the cases of splenic masses, the 

echocardiographic measurements of the heart chambers (LAmajor, EDVI and LVIDdN) 

were available for all seven patients.  
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As described earlier, one of the shock patients had end-stage MMVD and its measurements 

were excluded from this analysis of sub-groups due to the increased heart size secondary to 

MMVD. The differences in the echocardiographic measurements of the heart chambers 

between shock and non-shock patients were analysed (Table 3-10). The LVIDdN was 

smaller (p=0.046) in the shock patients pre-treatment compared to non-shock patients. 

There were no differences in the other measurements pre-treatment. The post-treatment 

values were not significantly different between shock and non-shock patients.  

 

Table 3-10. Ultrasonographic measurements pre-treatment and post-treatment in the shock and 

non-shock patients among the study cohort, presented as median (interquartile range). P value 

obtained by U Mann-Whitney test. 

Variables  Value pre-treatment  P-value Value post-treatment  P-value 

 Shock Non-shock  Shock Non-shock  

LAmajor/Ao 1.8 (1.6-2) 1.9 (1.7-2) 0.270 2.1 (2-2.3) 2 (1.8-2.1) 0.288 

EDVI 33 (14-49) 40 (31-51) 0.212 50 (24-61) 57 (35-65) 0.242 

LVIDdN 1.1 (0.7-1.4) 1.4 (1.3-1.6) 0.046 1.5 (1.2-1.5) 1.5 (1.4-1.6) 0.227 
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3.2 Subjective ultrasonographic findings 

The subjective assessment of the CVC diameter and LV diameter were performed at the 

time of examination in the study cohort, pre-treatment, and post-treatment with IV fluid 

therapy.  

 

3.2.1 Changes in the caudal vena cava 

 

The subjective appearance of the maximal diameter of the CVC and its change in diameter 

throughout the cardiac cycle was assessed in sixteen of the eighteen dogs of the study 

cohort. Three dogs showed subjective dilation of the CVC (Figure 3-8) in the pre-treatment 

examination (patients 4,7 and 15). This dilation of the CVC in a supposedly hypovolaemic 

dog prompted the suspicion of increased pressure of the right heart. The three dogs with a 

subjectively dilated CVC were diagnosed with pulmonary hypertension (PHT), based on a 

pressure gradient (PG)>30mmHg, derived from the tricuspid regurgitation velocity, when a 

full echocardiographic examination was performed. The CVC remained dilated in all three 

dogs in the post-treatment examination. 

 

 

Figure3-8. Longitudinal subxiphoid view showing a dilated caudal vena cava (star) and dilated 
hepatic veins (arrows) in a dog (patient 15) with pulmonary hypertension and suspected 

hypovolaemia (pre-treatment). 
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Eight dogs showed a subjectively normal CVC in the pre-treatment examination, which 

remained normal in the post-treatment examination. Five dogs showed a subjectively 

collapsed CVC (patients 8, 12, 14, 17 and 18), with obliteration of the lumen of the vessel 

at some point during the cardio-respiratory cycle (Figure 3-9) in the pre-treatment 

examination. 

 

 

Figure3-9. Longitudinal subxiphoid view, showing complete collapse of the lumen of the caudal 

vena cava (arrow) in a dog suspected of hypovolaemia (pre-treatment). 

 

The subjective appearance of the CVC changed from collapsed in the pre-treatment 

examination to normal in the post-treatment examination in the five dogs that had a 

collapsed CVC pre-treatment (Figure 3-10).  
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Figure3-10. (A) Maximal diameter of the caudal vena cava from the subxiphoid view (arrow) from 

patient 14 pre-treatment. (B) Maximal diameter of the vena cava from the subxiphoid view (arrow) 
from patient 14 post-treatment. 

 

Table 3-11 summarises the number of dogs included in each category for the lumen of the 

CVC in the pre-treatment and post-treatment examination.  

 

Table 3-11. Number of dogs in each subjective category of caudal vena cava diameter before (pre-

treatment) and after (post-treatment) the administration of intravenous fluid therapy. 

CVC subjective assessment Pre-treatment (n=16) Post-treatment (n=16) 

Dilated 3 3 

Normal 8 13 

Collapsed 5 0 

.  
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3.2.2 Changes in the heart chambers 

The lumen of the LV was assessed subjectively in all eighteen dogs of the study cohort. 

Three dogs (patients 3, 4 and 6) showed severe obliteration of the left ventricular lumen 

during systole in the pre-treatment examination (Figure 3-11). It is important to note that 

the lumen of the left heart chambers, the LA and the LV, was affected unevenly by the 

phase of the cardiac cycle in the three dogs that showed severe obliteration of the lumen of 

the LV. Whereas the LV was completely collapsed in systole and showed a visible lumen 

in diastole, the LA showed subjectively small changes between atrial systole and atrial 

diastole (Figure 3-12), always keeping a visible lumen. 

 

 

Figure3-11. Right parasternal long axis four chamber view showing severe obliteration of the left 
ventricular (LV) lumen (encircled area) during systole in a dog suspected of hypovolaemia in the 

pre-treatment examination. 

 

LV 
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Figure3-12. Right parasternal long axis four chamber view during systole (A) and diastole (B) in 

the pre-treatment examination of patient 3, showing very marked changes in the lumen of the left 
ventricle (LV) between systole (A) and diastole (B), while small changes occur in the lumen of the 

left atrium (LA), which always keeps a visible lumen. 

 

The subjective appearance of the LV changed from severe obliteration in the pre-treatment 

examination to moderate obliteration in the post-treatment examination in two of the three 

dogs (patients 4 and 6). This change from severe to moderate obliteration of the LV was 

observed in both, the L4chA view (Figure 3-13) and the Spm view (Figure 3-14).  

 

 

Figure3-13. (A) Right parasternal long axis four chamber view in diastole from patient 4 showing 

severe obliteration of the left ventricle (LV) pre-treatment. (B) Right parasternal long axis four 

chamber view in diastole from patient 4 showing moderate obliteration of the left ventricle post-

treatment. 

 

LA LA 
LV LV 

LV 
LV 
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Figure3-14. (A) Short axis view of the left ventricle in diastole from patient 4 showing severe 

obliteration of the lumen of the left ventricle pre-treatment. (B) Short axis view of the left ventricle 

(LV) in diastole from patient 4 showing moderate obliteration of the lumen of the left ventricle 

post-treatment. 

 

One dog (patient 3) changed from severe obliteration of the LV in the pre-treatment 

examination to no obliteration of the LV in the post-treatment examination (Figure 3-15).  

 

Figure3-15. (A) Right parasternal long axis four chamber view of the left ventricle (LV) in diastole 
in patient 3 showing severe obliteration of the left ventricular lumen pre-treatment. (B)Right 

parasternal long axis four chamber view of the left ventricle in diastole in patient 3 showing no 

obliteration of the left ventricular lumen post-treatment. 

 

 

Table 3-12 summarises the number of dogs included in each subjective category for the 

assessment of LV lumen obliteration pre-treatment and post-treatment.  

Table 3-12. Number of dogs in each subjective category of left ventricular lumen obliteration 

before (pre-treatment) and after (post-treatment) the administration of intravenous fluid therapy. 

Left ventricular obliteration Pre-treatment (n=18) Post-treatment (n=18) 

Severe 3 0 

Moderate 6 2 

Not present 9 16 

LV 

LV 

LV LV 
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 3.2.3 Correlation of subjective changes with fluid responsiveness and shock 

 

The correlation of a collapsed CVC or an obliterated LV ventricular lumen in any degree 

in the pre-treatment examination, with a disruption of tissue perfusion expressed as a 

LAC≥2.5mmol/L, fluid responsiveness and the presence of shock was investigated, and it 

is described in Table 3-13. All the five dogs that presented subjectively with a collapsed 

CVC, also presented some degree of obliteration of the LV lumen and were all positive 

fluid responders. All the three dogs with severe obliteration of the LV lumen were in 

shock, and in addition to that they were positive fluid responders.  

 

Table 3-13. Dogs that presented a collapsed CVC or an obliterated lumen of the left ventricle in 

any degree and the associated presence of an elevated lactate, positive fluid response and shock. 

Patient 

identification 

Collapsed 

CVC 

Obliterated 

lumen LV 

LAC 

≥2.5mmol/L 

Positive fluid 

response 

Shock 

1 no yes no yes no 

3 n/a yes (severe) yes yes yes 

4 no yes (severe) yes yes yes 

6 n/a yes (severe) yes yes yes 

8 yes yes no yes no 

11 no yes no no no 

12 yes yes no yes no 

14 yes yes yes yes yes 

16 no yes no no no 

18 yes yes yes yes yes 

.  
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4. Discussion 

 

4.1 Changes in the physical examination variables 

The assessment of volaemia in dogs is, currently, mostly based on the history and the 

physical examination (Johnson, 2016). This is due to the lack of the equipment and the 

training necessary to implement advanced techniques in most veterinary practices. Several 

variables obtained from the physical examination were included in the current study, 

proving to be different between the control and study cohorts, and also pre-treatment and 

post-treatment in the study cohort.  

 

The CRT was different between the control and study cohorts, and also between the pre-

treatment examination and the post-treatment examination of the study cohort. The CRT 

was shorter in the control than in the study cohort at the time of presentation. Also, the 

CRT was shorter after the administration of fluid therapy to the dogs in the study cohort. 

However, this shortening may not be of clinical significance, as the median CRT was of 2 

seconds for both groups (pre-treatment and post-treatment). In a clinical setting it is 

unlikely that a clinician would be able to perceive differences of less than a second. 

Therefore, a prolonged CRT can be informative for the diagnosis of hypovolaemia, but it 

may not be a useful tool to monitor the response to treatment. In human medicine the CRT 

is considered as a poor method to estimate the volume status of the patient (Fleming et al., 

2015). It is recommended to use a substantially prolonged CRT, over four seconds, just as 

a red-flag sign, to recommend further investigation. In veterinary medicine similar findings 

have been described, giving the CRT some clinical value to be used as a sign of concern 

(Boag and Hughes, 2005), and proving it to be inefficacious in estimating the volume 

status of the dog (Goucher et al., 2019).  

 

The HR was different between the control and study cohorts, and also between the pre-

treatment examination and the post-treatment examination of the study cohort. The HR 

was higher in the study cohort at the time of presentation, than in the control cohort. Also, 

it was higher in the pre-treatment examination than in the post-treatment examination, after 

the administration of fluid therapy. When comparing the data from the present study with 

the reference ranges given in the literature for the assessment of volaemia in dogs (Boag 
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and Hughes, 2005), the values pre-treatment ,152 (131-160) bpm, fitted in the category of 

moderate hypovolaemia (150-170bpm), while the values post-treatment, 113 (100-132) 

bpm, fitted in the category of absence of hypovolaemia (<130bpm) according to the same 

source. This builds on the current evidence, that the HR is one of the tools clinicians may 

use to monitor patients suspected of hypovolaemia (Drozdzynska et al., 2018). In this 

situation, an elevated HR will reflect the activation of the compensatory mechanisms, 

particularly the increase in sympathetic activity.  

 

There are many other factors that can cause an increase in the HR in emergency patients on 

presentation, such as stress, pain, hypoxemia, anaemia, or fever (Tilley et al., 2008). These 

factors can show a response, consistent in a reduction in HR, to other treatments that are 

not fluid therapy. For instance, an elevated HR caused by pain would respond to the 

administration of analgesics, if it is caused by stress it would respond to sedatives, 

hypoxemia would respond to oxygen-therapy, or fever would respond to antipyretics. 

Many of these drugs, particularly analgesics, were administered to most of the patients 

included in the study cohort when judged clinically appropriate. Therefore, it is difficult to 

prove that the reduction in HR was due exclusively to the restoration of the blood volume, 

but it is also true that the deactivation of the compensatory mechanisms would not occur 

unless the blood volume is restored. For instance, opioid analgesics will not reduce the 

heart rate in uncompensated hypovolaemia. According to the present data, and previous 

evidence (Boag and Hughes, 2005), the HR can be useful in the diagnosis of 

hypovolaemia, and also in the monitoring of the response to treatment in hypovolaemic 

dogs (Rabozzi et al., 2020), but it should always be interpreted in the context of the 

underlying condition and the concurrent administration of other treatments. 

 

The pulse quality was different between the control and the study cohort, which had many 

dogs in the poorer quality pulse categories. Among the study cohort, the pulse quality 

seemed to improve post-treatment, as most patients moved to the categories considered 

normal. However, this is a completely subjective measurement, and can easily include bias 

when the same clinician is monitoring the treatment and reassessing the patient. Also, even 

when pulse quality has been described to change mostly accordingly to the SV (Bighamian 

and Hahn, 2014), it can also be affected by vasoconstriction or vasodilation, phenomena 

that occur during hypovolaemic states, and also during the recovery from them (Boag and 
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Hughes, 2005). Therefore, it cannot be concluded that the improvement in pulse quality 

was due exclusively to the administration of fluid therapy and the restoration of the blood 

volume. Thus, although pulse quality may be useful in the diagnosis and monitoring of 

response to treatment of hypovolaemic dogs, it has important limitations, and needs to be 

interpreted among other variables.  

 

The MM colour showed similar behaviour to the pulse quality.  It was different between 

the control and study cohort, which presented with many dogs in the paler MM colour 

categories. Among the study cohort, the MM colour seemed to improve post-treatment, as 

most patients moved to the categories considered normal. MM colour assessment is also 

affected by similar limitations regarding its subjectivity and the influence of 

vasoconstriction or vasodilation. Thus, even when in agreement with the expected 

outcome, it is difficult to prove that the restoration of the blood volume was the cause for 

the improvement in MM colour. It is likely that the main component for this change in 

appearance of the MM was the fluctuation in the vasomotor tone (Boag and Hughes, 

2005), in response to the activation of the compensatory mechanisms and their 

deactivation, rather than the changes in the blood volume. We need to mention again that 

the deactivation of the compensatory mechanisms would not occur unless the blood 

volume is restored.   

 

Summarising this section, among the physical exam variables, the HR can be helpful in the 

diagnosis of hypovolaemia in dogs, but it needs to be interpreted in the context of the 

clinical picture and the underlying disease. Even though, HR can be affected by the 

administration of other treatments, it seemed to be helpful in monitoring the response to 

fluid therapy in dogs suspected of hypovolaemia. Other variables such as the MM colour 

and pulse quality can also be used for the monitoring of treatment but are very subjective 

and largely influenced by the vascular tone.  
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4.2 Changes in the systolic blood pressure 

Arterial SBP is considered of little value in the assessment of volaemia or fluid 

responsiveness (Muir et al., 2014). This is due to the high effectiveness of the 

compensatory mechanisms (RAAS activation, ADH secretion, and increased sympathetic 

activity) in maintaining a normal arterial SBP during the development of hypovolaemia in 

conscious dogs.  

 

Hypotension is defined in dogs as a SBP  of less than 90mmHg (Silverstein and Hopper, 

2014). The changes in the SBP in conscious dogs are mostly related to the vascular tone, 

and not to the circulating blood volume, unless this is severely reduced. Ideally, the 

measurement of the SBP should be obtained from invasive measurements from an arterial 

catheter. The invasive monitoring of the SBP will allow to obtain other parameters, such as 

the SPV or the PPV, that have shown much better performance to estimate volaemia and 

fluid responsiveness in mechanically ventilated dogs than the  SBP alone (Araos et al., 

2020). However, the insertion and maintenance of an arterial catheter in a conscious dog 

may be challenging (Beal and Hughes, 2000).  

 

In the present study, the SBP was measured by indirect methods, either Doppler or 

oscillometric. None of these methods meet the requirements for validation (Acierno et al., 

2018), although they are considered a clinically acceptable alternative in conscious dogs 

(Haberman et al., 2006, Bosiack et al., 2010). In the present study, the same method, 

oscillometric or Doppler, was always used for the same dog for repeated measurements. It 

is thought Doppler and oscillometric readings are not interchangeable (Wernick et al., 

2012). Thus, using the same method to acquire repeated measurements should have 

reduced the variability of the measurement due to the actual procedure and provide more 

comparable readings.  

 

Despite the reduction in technical variability, the present study did not prove any 

statistically significant difference between the pre-treatment and post-treatment readings. 

As discussed earlier, hypovolaemia and hypotension are not necessarily related. The 

activation of the RAAS, the secretion of ADH and an increase in sympathetic activity are 

able to maintain the SBP in a range that should guarantee peripheral perfusion in conscious 
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dogs. Thus, animals with occult hypovolaemia are not expected to present with 

hypotension. Hypotension induced by hypovolaemia in conscious dogs will only happen in 

the decompensated stage of shock, once the compensatory mechanisms have been 

completely overwhelmed.  

 

In the study cohort, only two dogs had a non-invasive SBP<90mmHg on presentation. One 

of them had suffered from severe blunt trauma, presumably affecting the head or the upper 

spine, and was diagnosed with relative hypovolaemia due to systemic vasodilation. In 

addition to that this dog had a HR of 40 beats per minute, which will substantially reduce 

the CO. The SBP is directly correlated with the CO and the vascular resistance. Thus, a 

dog with a reduced CO, due to bradycardia, and a reduced vascular resistance due to 

vasodilation will be expected to be hypotensive, regardless of the circulating blood 

volume. The failure to mount an appropriate compensatory tachycardia in this patient may 

indicate that there was damage to the vasomotor centre and neurogenic shock. In 

neurogenic shock there is a disruption of the sympathetic activity, with preserved 

parasympathetic activity (Ahuja et al., 2018). This translates clinically in bradycardia 

accompanied by vasodilation, leading to hypotension. Whether this dog was affected by 

neurogenic shock, hypovolaemic shock, or a combination of the two can be difficult to 

establish. This distinction is described as very challenging and virtually impossible 

clinically in human medicine, where the recommendation for such trauma patients is to 

restore intravascular volume, and if this would not be effective, to administer vasopressors, 

such as dopamine, which was not necessary in this case. This presentation and response to 

treatment, suggest, once again, that the vasomotor tone, and not the blood volume, was the 

main cause for the hypotension.  

 

The other dog that had a SBP <90mmHg presented in hypovolaemic shock due to a splenic 

rupture. This patient was thought to be in the decompensated stage of hypovolaemic shock, 

with a very high LAC (11mmol/L) and massive intraabdominal bleeding. In addition to the 

administration of crystalloids and colloids for resuscitation, this patient received a blood 

transfusion.  
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The other five dogs diagnosed with hypovolaemic shock, based on their physical 

examination parameters and LAC, did not show hypotension, and thus they were thought 

to be in earlier stages of shock. None of the eleven dogs suspected of occult hypovolaemia 

presented with hypotension.  

 

The administration of fluid therapy did not produce significant changes in the SBP in the 

study cohort. The medians, pre-treatment and post-treatment were within the normal range 

of systolic SBP in dogs. According to the data of the present study the non-invasive SBP 

was of no use for the diagnosis of hypovolaemia, nor for the monitoring of treatment, or to 

predict fluid responsiveness, as it has been described in the previous literature (Muir et al., 

2014, Rabozzi et al., 2020). However, it may be helpful in determining the stage of shock. 

Patients in decompensated stages of shock will usually present with hypotension, and they 

may not recover after fluid replacement alone. Thus, additional therapies, such as a blood 

transfusion may be needed (DiBartola, 2012).   
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4.3 Changes in the laboratory variables  

Additional testing using laboratory variables for emergency patients suspected of 

hypovolaemia is common practice in veterinary medicine (Johnson, 2016). The PCV and 

the TP are among the most frequently used. 

 

4.3.1 Changes in the packed cell volume and the total protein 

In the present study comparisons between control and study cohort could not be made 

because of lack of laboratory data in control dogs.  In the study cohort the PCV and the TP 

were lower post-treatment. As most of the patients presented with dehydration, mostly 

associated with severe gastrointestinal signs, it was expected they were haemoconcentrated 

on presentation. Haemoconcentration will elevate the values of both PCV and TP. The 

administration of fluid therapy in a hemoconcentrated animal should increase the 

circulating blood volume, diluting the cells and plasma proteins, thus causing a reduction 

in PCV and TP (Davis et al., 2013).  

 

The rapid administration of large volumes of crystalloids in dogs has  been proven to be a 

cause of haemodilution, reducing the PCV and the TP (Valverde et al., 2012). The data 

from the study cohort builds on the evidence in the literature that serial measurement of the 

PCV and the TP can be useful in the assessment of fluid volume status in dogs (Silverstein 

et al., 2005, Davis et al., 2013). However, to evaluate the trend over time of the PCV and 

the TP, it is crucial that there is complete certainty about the absence of any internal or 

external bleeding.  

 

The loss of cells and proteins through haemorrhage will also decrease the values of the 

PCV and the TP. In this scenario, a decrease in the PCV and TP might be erroneously 

considered the result of a successful blood volume restoration, when in fact, it is depicting 

a haemorrhage.  

 

Two of the patients included in the study cohort presented massive intraabdominal 

haemorrhage due to a splenic rupture. They received intensive resuscitative fluid therapy 

with crystalloids and colloids, followed by a blood transfusion. The blood from the 
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abdomen was aseptically collected and reinfused in the patient (autotransfusion) as 

described elsewhere (Robinson et al., 2016). All these interventions would affect the 

values of the PCV and the TP. While the administration of large volumes of crystalloids 

will dilute the blood and cause reductions in both, PCV and TP, the administration of an 

autotransfusion will potentially elevate them. However, the increase in PCV and TP might 

be asymmetrical, as the blood that has been stored in the abdomen can have a variable 

content of protein. This is due to the fact that the blood stored in a body cavity will lose, 

over time, coagulation factors and fibrinogen, as they get consumed by the coagulation 

cascade that gets activated by being in contact with the inner lining of that body cavity.  

 

The two dogs that received an autotransfusion showed decreased values post-treatment for 

the PCV and the TP, but this was mostly a consequence of the blood loss, which was not 

completely replenished even with the blood transfusion. Unexpectedly, the decrease in the 

PCV was much more marked than in the TP. This may reflect the production of acute 

phase proteins in response to the hypovolaemic shock. It is possible to identify acute phase 

proteins in plasma, although it requires advanced laboratory equipment, not frequently 

available at most veterinary practices. Considering all the confounding factors in the 

interpretation of the changes in the PCV and the TP, a complete physical examination 

should be performed along with the measurement of the PCV and the TP each time these 

parameters are reassessed.  

 

The physical examination should be able to rule out the presence of haemorrhage, and also 

to assess the changes in the HR, MM colour, and pulse quality. The HR should show a 

tendency to decrease if the blood volume is being restored (Boag and Hughes, 2005). On 

the contrary, the HR will increase if the cause for the decreased values of the PCV and the 

TP was haemorrhage. This increase in HR will be a compensatory mechanism triggered by 

the reduced amount of oxygen delivered to the tissues by blood containing less oxygen 

carrying cells, which are being lost by the haemorrhage. Additionally, in case of 

haemorrhage there will be changes in pulse quality and MM colour. Haemorrhage will 

make the pulse weaker and the MM colour paler, whereas fluid restoration will make the 

pulse stronger and the MM colour pinker.  
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There are currently no guidelines in veterinary medicine to use the PCV and the TP with 

precision in cases of hypovolaemia, and its use is limited to qualitative changes over time, 

or in response to therapy, as it was performed in the present study. The necessity for the 

physical examination parameters to be assessed simultaneously reinforces the idea that 

none of the laboratory or physical examination parameters can be used individually, and 

they need to be combined to draw a general picture of the patient, before any decision is 

made about the volume status of the dog.  

 

4.3.2 Changes in lactate 

An elevated LAC might indicate a disruption in tissue perfusion, and it has been 

traditionally used to identify shock (Cecconi et al., 2014, Gillespie et al., 2017). In the 

study cohort LAC was not significantly different pre-treatment and post-treatment. In 

addition to that, it was higher post-treatment in eight of the eighteen dogs.  

 

The dogs diagnosed with hypovolaemic shock, had the highest LAC, and six of the seven 

had LAC≥2.5mmol/L. Four of the seven dogs in shock showed a marked reduction in LAC 

after resuscitative fluid therapy, while three of them showed higher values after the fluid 

bolus, even though the physical exam parameters and the ultrasonographic values had 

improved. When these three patients were followed for a longer period, and additional 

therapies implemented, the subsequent LAC measurements were lower, and fell within the 

reference range (Sharkey and Wellman, 2013).  

 

The failure to normalize LAC and acid-base disorders despite a normalization of the 

physical exam after resuscitative fluid therapy in sick dogs has been described before, 

proposing that hypoxemia at the cellular level persisted despite the normalization of the 

macrocirculation (Young et al., 2014). The administration of lactate-containing crystalloid 

solutions has been identified as a cause for exacerbation of hyperlactataemia in dogs with 

lymphoma (Vail et al., 1990). All the dogs included in the study cohort received lactate-

containing crystalloid solutions, and it is possible this may have played a role, even though 

this might have been of small magnitude. Elevated sympathetic activity, which is one of 

the compensatory mechanisms against hypovolemia, induces hyperlactataemia (Levy et al., 



90 
 

 
 

2008). A failure to control additional causes of epinephrine secretion, such as pain, stress, 

fear, or other components of the shock process, apart from hypovolaemia, may have 

contributed to the persistently elevated values of some patients.  

The three patients in shock that did have increased LAC levels after fluid therapy (patients 

2,4 and 18), presented additional causes for hyperlactataemia.  

Patient 2 had suffered a severe blunt trauma and it is possible than the muscle damage and 

the adrenergic response related to it contributed to an elevated LAC more than the relative 

hypovolaemia, particularly considering that this animal was the only one of the seven dogs 

diagnosed with shock that had LAC<2.5mmol/L on presentation.  

Patient 4 presented with hypovolaemic shock from iatrogenic volume depletion 

(unnecessary aggressive IV furosemide treatment), and complete atelectasis of one lung 

with concurrent PHT. Several factors could have exacerbated the hyperlactataemia, such as 

local hypoxia of the affected lung, the obstructive component of the shock related with the 

PHT, and the ventilation/perfusion mismatch in the lungs, causing generalized hypoxemia. 

Additional treatment of this patient with oxygen-therapy and a pulmonary vasodilator 

(sildenafil) resulted in the normalization of LAC.  

Patient 18 had an intestinal obstruction and was in hypovolaemic shock due to extreme 

dehydration. Local hypoxia is a cause for type A hyperlactataemia; thus, it is likely that the 

intestinal hypoxia added to the adrenergic activation due to the pain from the intestinal 

obstruction caused this persistent elevation of LAC. Hyperlactataemia in this dog resolved 

immediately after performing corrective surgery.  

 

In addition to these additional factors that may have increased LAC, previous publications 

have identified a window of six hours for LAC to reduce in critically ill veterinary patients 

(Stevenson et al., 2007). As most of the patients in the present study were reassessed 

before six hours, and all the LAC measurements came back to normal in the subsequent 

measurements, it is likely that the changes in the physical exam, PCV, TP, and 

ultrasonographic measurements preceded the clearance of LAC. The fact that LAC may 

need several hours to clear might reduce its usefulness to guide fluid therapy in dogs in 

shock, although it was proven as a useful endpoint for therapy.  
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The dogs that were not diagnosed with shock but instead, were suspected of having 

varying degrees of hypovolaemia, had LAC within the reference range. This was expected, 

as LAC is a late indicator of hypoperfusion (Gillespie et al., 2017), and would only be 

increased during hypovolaemia when the compensatory mechanisms are overwhelmed, in 

the decompensated stages of shock. The effect of fluid therapy on the LAC of the eleven 

patients suspected of varying degrees of hypovolaemia was unpredictable. Six dogs 

showed reductions, while four showed increases, and one remained the same. The LAC 

always remained within the reference range for the eleven dogs.  

 

There are two physiological explanations for the erratic behaviour of LAC in these dogs: 

the timing of the measurement and the movement of fluids through the body 

compartments.  

 

Occult hypovolaemia comprises a wide range of haemodynamic situations, depending on 

the degree of hypovolaemia and the degree of activation of the compensatory mechanisms. 

LAC has roughly a linear relationship with hypoperfusion in dogs, once the compensatory 

mechanisms have been overwhelmed (Gillespie et al., 2017). However, before this 

happens, the balance between blood volume deficit and activation/deactivation of the 

compensatory mechanisms can disrupt this relationship. Depending on the rate of 

metabolism and clearance of lactate by the liver and kidneys, and on that balance of 

activation/deactivation of the compensatory mechanisms, fluctuations in LAC in either 

direction would be expected, and the timing for the measurement will largely affect its 

value.  

 

Another explanation is the movement of fluids through compartments. Lactate is generated 

inside the cells, so it will initially accumulate in the intracellular compartment, generating 

a concentration gradient between the intracellular and interstitial compartments. During 

dehydration, there is a reduction in the content of fluids in the extracellular compartment, 

which will then be compensated by a shunting of fluid from the intracellular to the 
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extracellular compartment (interstitial and intravascular). The lactate molecules will leave 

the cell following the concentration gradient and be present now in the interstitial space. 

Crystalloids administered in the intravascular compartment are rapidly redistributed to the 

interstitial compartment, “washing” the lactate present in this compartment, and thus, 

transiently increasing intravascular LAC, but maintaining it always within the reference 

range. The four dogs out of the eleven suspected of occult hypovolaemia that had higher 

LAC post-treatment (patients 8, 13, 15 and 16) were dehydrated on presentation, making 

this second mechanism of balance between compartments, suitable. Thus, LAC was unable 

to inform about the volume status of the patient or monitor the response to treatment in 

dogs with occult hypovolaemia. LAC was useful for the diagnosis of shock, although even 

in these patients it was unable to monitor the response to treatment in the short term and 

needed several hours to normalize.  

 

Summarizing, the laboratory variables are not suited for the diagnosis of hypovolaemia. 

Although LAC is used for the diagnosis of shock, it is insensitive in diagnosing occult 

hypovolaemia. The changes in LAC in response to therapy seemed to be delayed when 

compared with other parameters such as PCV, TP, the ultrasonographic measurements and 

the physical exam variables. The PCV and TP can be used to monitor the response to 

treatment in non-blood loss hypovolaemia.    
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4.4 Changes in the caudal vena cava measurements 

The ultrasonographic measurement of the IVC to assess the volume status of the patient 

and predict fluid responsiveness is a common technique in human medicine (Zhang et al., 

2014). However, its clinical usefulness is still under debate and the latest review and meta-

analysis concluded that it is an unreliable means of predicting fluid-responsiveness in the 

general human population (Orso et al., 2020). The main limitations found in this meta-

analysis were the vast heterogenicity in the protocol for evaluation of the IVC between 

studies, and the different methods used to estimate fluid responsiveness or volume status to 

compare against the IVC measurements. Despite this, it remains in use, because it has been 

proven useful to guide fluid therapy in some subpopulations of human patients, such as 

spontaneously breathing critically ill patients (Corl et al., 2017), mechanically ventilated 

people (Dipti et al., 2012), or those in septic shock (Feissel et al., 2004), acute circulatory 

failure (Zhang et al., 2014), or haemodialysis (Mandelbaum and Ritz, 1996). In addition to 

that, measurement of the IVC has been found to improve outcome when used to guide fluid 

therapy in human intensive care units (Bernier-Jean et al., 2017).  

 

 

The low cost and rapid execution of the ultrasonographic assessment of the CVC has 

drawn the attention of veterinary medicine in the recent years (Boysen and Lisciandro, 

2013). The same limitations described in the human literature affect the research 

performed in this field in veterinary medicine: there is a vast heterogenicity in the 

ultrasonographic protocol used to acquire the measurements, and there is also 

heterogenicity in the means to estimate volume status.  

 

 

4.4.1 Technical considerations in the assessment of the CVC in dogs. 

 

In the present study the CVCmax was measured in 2D mode from the long-axis view of the 

CVC from the subxiphoid window, which is considered the optimal view in humans 

(Finnerty et al., 2017) and has already been tested in dogs (Kwak et al., 2018, Darnis et al., 

2018) and validated in horses (Tuplin et al., 2017). However, when reference values for the 

CVC in dogs were published (Darnis et al., 2018), this view was found to be less 

repeatable than other approaches and there were no reference values reported for it, but 

only a mean ± standard deviation of the measurements.  
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It was decided to use the long-axis view of the CVC from the subxiphoid window in the 

present study to reduce the examination time, as this is the same ultrasonographic window 

used to obtain the most accurate Doppler spectrum of the aortic forward flow (Abbott and 

Maclean, 2003) needed to estimate the SV and define fluid responsiveness. This allowed 

the two measurements to be obtained from the same window, therefore substantially 

reducing the time needed to perform the ultrasonographic examination. Also, the 

subxiphoid view was employed because it has been shown that a training course of only 

six hours allowed non-cardiologist veterinarians to acquire values that agreed with those 

obtained by veterinary cardiologists when measuring the CVCmax (Darnis et al., 2019) from 

this window. As the ultimate goal of this research project was to provide a cage-side tool 

for non-cardiologists, it was considered appropriate to use techniques that are easy to 

perform and quick to learn.   

 

The positioning of the dog is another factor that needs to be considered when interpreting 

the results. The dogs in the present study were placed in right lateral recumbency, which is 

the standard positioning employed to acquire the echocardiographic views that were used 

in the study (L4chA, L4chV, and Spm) (Thomas et al., 1993), and also the positioning 

used in the study that validated the CVC/Ao ratio in dogs (Cambournac et al., 2018). 

However, most publications to date in veterinary medicine, have used the left lateral 

recumbency (Bucci et al., 2017, Darnis et al., 2018, Kwak et al., 2018, Marshall et al., 

2018, Donati et al., 2020, Rabozzi et al., 2020).  

 

The different recumbencies have been proven to affect the measurements of the vena cava 

in human medicine (Mookadam et al., 2011), and it is likely that this is also the case in 

veterinary medicine. Thus, the results of the present study may not be completely 

comparable with previous studies in dogs. In addition to that, there are disparities between 

publications in using the long axis view, or the short axis view of the CVC.  

 

In the present study the long axis view was used as described in human medicine and in the 

first description of the method in veterinary medicine (Tuplin et al., 2017). However more 

recent publications (Darnis et al., 2018) argue that it can be challenging to ensure that the 

diameter that is being visualized is the maximum diameter of the CVC when it is explored 

in the long axis. In this view, only transecting the CVC at its centre, will provide the real 
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maximum diameter, and any obliquity may affect the measurement. Thus, the long axis 

subxiphoid view of the CVC may be suboptimal to quantitatively assess the CVC in dogs.  

 

The inaccuracy in obtaining the maximal CVC diameter might be avoided if the short axis 

view is used, and it has been described that the short and long axis measurements of the 

CVC are not interchangeable (Darnis et al., 2018). That study also described that the CVC 

in the short axis view often times presented an elliptical shape, so instead of a diameter, the 

area of the CVC should be used, making the measurements more time consuming. 

 

Reference values for the CVC obtained from echocardiography, from the left parasternal 

cranial view, have been published in dogs (Gentile-Solomon and Abbott, 2016). This view 

has not been tested against other views, or in diseased animals, but it may be of use if 

echocardiographic measurements are employed to estimate volaemia. One limitation to this 

approach would be the need to manipulate the patient to move it from the right lateral 

recumbency, where all the other echocardiographic views would be obtained, to the left 

lateral recumbency to measure the vena cava. Although, this is usually the case when 

performing a full echocardiographic examination.   

 

Due to the vast morphological heterogenicity of the canine population, the CVCmax was 

normalised to the aortic diameter to obtain a value that was independent of body weight. 

This method was first described in children (Kosiak et al., 2008), and has been validated in 

healthy dogs subject to a blood donation (Cambournac et al., 2018). Also it was employed 

in healthy dogs administered IV furosemide or deprived from water to induce 

hypovolaemia (Kwak et al., 2018), and most recently in an heterogeneous population of 

hospitalized conscious dogs (Rabozzi et al., 2020). However, the diameter of the aorta was 

measured in different locations and through different views in the different studies.  

 

In summary, there is an urgent need to develop a standard ultrasonographic protocol to 

quantitively assess the CVC in dogs to avoid the same difficulties described in human 

medicine about the lack of standardization.    
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4.4.2 Agreement of the CVC measurements with the previous literature  

 

The dogs in the control cohort showed values of the CVCmax within the range provided for 

the same view in the only study in veterinary medicine that attempted to provide reference 

values  for the CVC (Darnis et al., 2018). A more recent study (Vientós-Plotts et al., 2019) 

established a threshold to describe CVC dilation in dogs weighing less than 9kg or more 

than 9kg. All the dogs in the study cohort of the present study were under the appropriate 

threshold, showing agreement between the present study and the previous literature.  

 

Unlike the CVCmax, the CVCmax /Ao ratio of the control dogs did not fall within the range 

of measurements given by Darnis et al., 2018, and were lower in the present study. This 

can be explained by the different methodology employed. While Darnis et al. 2018 

measured the diameter of the abdominal aorta, in the present study this artery was 

measured between the aortic valve hinges in the L5ch view. It would be expected that this 

would be the maximal diameter of the aorta, while the abdominal aorta might have a 

smaller diameter. A bigger diameter for the aorta would therefore generate a lower value 

for the CVCmax /Ao ratio, as noted.  

 

The range for the CVC CI in the control cohort of the present study mostly coincided with 

the range provided by Darnis et al. 2018, although the median, and third quartile were 

higher than theirs. It has been described that the range of normality for the CVC CI is very 

wide in healthy human individuals (Finnerty et al., 2017) and in healthy dogs (Darnis et 

al., 2018), so the lack of complete agreement possibly reflects the different characteristics 

of the population included in the different studies. Another explanation may be the 

difficulty to ensure proper alignment when measuring the CVCmin, needed to calculate the 

CVC CI. In a previous study in dogs, the CVCmin measurements showed much poorer 

agreement between cardiologists and non-cardiologists than the measurements of the 

CVCmax (Darnis et al., 2019). Thus, inaccurate measurement of one of the components of 

the index, will prevent the actual index to be reliable. 

 

The generally good agreement with previous publications suggests the technique may be 

repeatable and comparable between observers if a standard protocol is followed.  
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4.4.3 Quantitative changes in the CVC measurements    

 

The CVCmax and CVCmax/Ao were unable to discriminate between the healthy controls and 

the dogs suspected of hypovolaemia in the present study. The same finding has been 

described in another very recent study in spontaneously breathing dogs (Donati et al., 

2020). The explanation for this can be in the wide range of normality for these parameters. 

Even when there is a change in the diameter for a given animal, this can still fall within the 

range of normality. Also, there are several factors other than the blood volume that can 

affect the diameter of the CVC, such as the intraabdominal pressure, the intrathoracic 

pressure, and the diaphragmatic excursion. Donati et al., 2020 concluded that the 

assessment of the diameter of the CVC without accounting for the respiratory cycle is not 

an accurate predictor of fluid responsiveness, as described in humans (Airapetian et al., 

2015).   

 

According to the results of the present study, both CVCmax and CVCmax/Ao were greater 

after the administration of fluid therapy in the study cohort. This builds on other evidence 

in the literature that the fluid volume status affects the diameter of the CVC in dogs 

(Cambournac et al., 2018 Kwak et al., 2018, Donati et al., 2020, Rabozzi et al., 2020). 

These authors demonstrated reductions in CVCmax and CVCmax/Ao after blood loss 

(Cambournac et al., 2018), volume depletion or dehydration (Kwak et al., 2018), in other 

words the CVC reduced its diameter in response to blood volume contraction. In the 

present study increases in CVCmax and CVCmax/Ao were documented when fluid therapy 

(blood volume expansion) was administered to dogs suspected of hypovolaemia. This is in 

agreement with the findings of a recent study, which studied a very similar population 

(Rabozzi et al., 2020). This suggests the assessment of the CVCmax and CVCmax/Ao may be 

useful to monitor the response to treatment in dogs suspected of hypovolaemia.  

 

When the dogs in the study cohort that were fluid responders were compared to those that 

were non-fluid responders there were significant differences in the CVCmax/Ao in the post-

treatment values between the two groups. Therefore, the ability of a dog to achieve an 

increase in the CVCmax/Ao demonstrated a positive fluid response, which, again, agrees 

with the findings of Rabozzi et al. 2020. However, since only eleven of the dogs in the 

study group were proven to respond to fluid therapy, these observations may lack statistical 

power. 
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Previous studies in veterinary medicine have described a wide range of normality for the 

CVC CI in healthy animals (Tuplin et al., 2017,  Darnis et al., 2018)  but have 

hypothesized that a narrower range would be seen in pathologic states (hyper and 

hypovolaemia), a finding that has already been reported in human patients (Finnerty et al., 

2017). Darnis et al. 2018 suggested the CVC CI will be very low in hypervolaemia and 

very high in hypovolaemia, as seen in humans (Stawicki et al., 2009). According to the 

data in the present study the CVC CI was unable to discriminate between controls and 

clinical cases, as it was to monitor the response to treatment.  

 

A poor capacity of the CVC CI to assess volume status has already been reported in 

humans (Gui et al., 2018) and dogs (Marshall et al., 2018, Rabozzi et al., 2020).  In a study 

with healthy human volunteers that performed a passive leg raising test, although the CVC 

CI was slightly lower after the test, this difference was so small and inconsistent that it was 

judged of little value in the clinical setting (Gui et al., 2018). Similar findings were 

reported in dogs subject to a blood donation. Even though the CVC CI was slightly higher 

after 8% blood loss, the change was of such a small magnitude that it would probably not 

be helpful in clinical patients. 

 

However, another human study showed good agreement between CVC CI and other 

techniques (echocardiography and bioreactance) in predicting fluid responsiveness in 

spontaneously breathing clinically ill human patients, although it identified a different 

threshold for positive fluid response than previous studies (Corl et al., 2017). Also, a very 

recent study in dogs (Donati et al., 2020), showed that the CVC CI was predictive of fluid 

responsiveness in spontaneously breathing dogs with perfusion abnormalities. They 

explained how the cardiac cycle and the respiratory cycle can affect the venous return and 

the intrathoracic pressure respectively, explaining why some results obtained in 

mechanically ventilated dogs (Bucci et al., 2017), cannot be applied to spontaneously 

breathing dogs. They concluded that the absolute diameter of the CVC may be of no use, if 

it does not take into consideration the respiratory variations (Donati et al., 2020).  

 

Thus, further research is required in both human and veterinary medicine to reach a 

conclusion about the usefulness of this index in clinical patients to assess volume status. 
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4.4.4 Additional indications for the CVC measurements 

 

The measurements of the CVC may provide information about other variables that are not 

the volume status. The first proposed use for the measurement of the CVC in dogs 

presented as emergencies was to raise a suspicion of increased pressures in the right side of 

the heart if the vessel was dilated (Lisciandro, 2011, Boysen and Lisciandro, 2013). It 

should be noted that three dogs in the present study (patients 4, 7 and 15) diagnosed with 

PHT, and thus, with elevated right atrial pressure, presented with a subjectively dilated 

CVC, even during hypovolaemic shock for one of them (patient 4).  

 

However, a more recent study declared the CVCmax to be insensitive when screening for 

PHT (Vientós-Plotts et al., 2019). This was counterintuitive and against the initial 

hypothesis of that study. They hypothesized that the heterogenicity of the operators 

acquiring the images, and factors such as respiratory movements, or the pressure applied 

with the ultrasonographic probe may have affected the measurements. Only one operator 

performed all the measurements in the present study, excluding the inter-operator 

variability as a source of error.  

 

Of the three dogs diagnosed with PHT, patient 15 was diagnosed with hypovolaemia 

secondary to dehydration from gastrointestinal losses, and showed modest changes in the 

heart chambers size, and almost no change on the CVC measurements after fluid therapy, 

although it was classified as a positive fluid responder (SV increase >10%) and had a very 

noticeable clinical improvement after fluid therapy. This dog had the greatest CVCmax/Ao 

ratio, with a value of 1 after fluid therapy, of all the dogs included in the study (control and 

study cohorts). However, when compared with a recent study that established a cut-off 

value to describe a CVC as dilated, this dog did not reach this threshold (Vientós-Plotts et 

al., 2019). This may be a consequence of the ranges of weight provided by that study and 

the lack of normalization to any other blood vessel. They stablished that an absolute 

diameter of the CVC obtained from the subxiphoid view over 1.4 cm for any dog weighing 

more than 9kg and over 0.9 cm for any dog weighing less than 9kg was indicative of caval 

dilation. As the canine population is very heterogeneous it is likely that a measurement 

normalised to the aorta would be more sensitive to describe such changes.  
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Patient 4 presented with iatrogenic hypovolaemic shock as a consequence of unnecessary 

aggressive furosemide treatment and showed dramatic increases in the left heart chambers 

sizes, but a modest increase in the CVC after fluid therapy. This dog showed the lowest 

value of CVC CI (16% after fluid therapy), and the second biggest CVCmax/Ao ratio (0.98 

after fluid therapy) of all the dogs included in the study. The concurrent observation of a 

distended vena cava and a low CVC CI has been described as a reliable indicator of 

elevated right atrial pressure in human patients (De Vecchis et al., 2016) and seems to 

prove true in this dog that was diagnosed with severe PHT. When tested against the cut-off 

value provided by Vientós-Plotts et al. 2019, it was proven to have a dilated CVC after 

fluid resuscitation, but not before, when in hypovolaemic shock. This dog was a positive 

fluid responder based on its SV variation after fluid therapy.  

 

The last of these three dogs (patient 7) diagnosed with PHT had MMVD and was 

suspected of hypovolaemia as a consequence of iatrogenic Addisonian crisis secondary to 

treatment with trilostane. It also was a positive fluid responder according to the SV 

variation, in spite of minimal changes in the heart chamber sizes and the CVC 

measurements, which showed CVC dilation before and after treatment according to the 

cut-off values from Vientós-Plotts et al. 2019.  

 

The increases in the CVCmax and CVCmax/Ao ratio in all these three patients after fluid 

therapy were very modest, suggesting that the presence of elevated right atrial pressure can 

be a limitation to the CVC measurements to assess volume status if used alone.  

 

The usefulness of the CVC CI to monitor for increased pressures in the right atrium has 

already been assessed in human patients (De Vecchis et al., 2016). Using the CVC CI in 

conjunction with the CVC diameter, and using a threshold of CVC CI <50% and CVCmax 

>21mm, was predictive of increased right atrial pressure. Two of the three dogs of the 

present study (patients 4 and 15) diagnosed with PHT had CVC CI<50%, and their 

CVCmax/Ao ratios were the first and second highest of all the patients in the study. Also 

two of  the three (patients 4 and 7) were over the threshold of caval dilation for dogs 

(Vientós-Plotts et al., 2019). This suggests that similar features can be seen in dogs than in 

humans. However, further research would be needed to establish appropriate thresholds.  
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Considering all the limitations and variables, when faced with a dilated CVC, it will be 

impossible, without echocardiography, to determine if the patient is hypervolemic or 

suffers from elevated right atrial pressure due to PHT or right sided congestive heart 

failure. Thus, the quantitative CVC measurements and the CVC CI should always be 

interpreted in conjunction with echocardiography. 

 

In summary, according to the findings of the current study, the CVC measurements may 

not be suitable for the diagnosis of hypovolaemia in dogs. However, the CVCmax and the 

CVCmax/Ao ratio may be useful in monitoring the response to fluid therapy and 

establishing fluid responsiveness. They can also rise a suspicion of elevated right atrial 

pressures, which can be further assessed by the use of echocardiography. 

 

4.4.5 Subjective changes in the CVC 

 

The subjective appearance of the CVC can also be assessed by ultrasonography. In the 

study cohort of the present study, the diameter of the CVC subjectively increased after the 

administration of IV fluid therapy. In addition to that, the presence of a collapsed CVC 

seemed to predict positive fluid responsiveness, as all the dogs with a collapsed CVC at 

presentation were positive fluid responders and showed a normal size CVC after the 

administration of fluid therapy. This should be interpreted with caution due to the small 

sample size, only 5 dogs. However, the presence of a collapsed CVC is very easy to 

diagnose, and reassess by the same or different clinicians (Darnis et al., 2019), and may 

become a simple way of guiding fluid therapy.  
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4.5 Changes in echocardiographic measurements. 

Echocardiography is the standard of care for human patients in shock (Cecconi et al., 

2014) and a useful tool in the monitoring of blood volume status in critically ill human 

patients (McLean, 2016). There are recognised limitations for the measurements of the CO 

using echocardiography in humans, where it has been proven to not be interchangeable 

with the readings obtained from thermodilution (Wetterslev et al., 2016). However, the 

estimation is considered clinically acceptable, and the information that the technique can 

provide is so clinically relevant, that it can successfully guide interventions of paramount 

relevance such as fluid therapy (Porter et al., 2015, Boyd et al., 2016, Miller et al., 2016).  

 

In veterinary medicine there is very scarce literature about the usefulness of 

echocardiography as a guide to fluid therapy, or in the management of shock. Most of the 

studies to date were aimed at estimating the CO during anaesthesia or to develop animal 

models for human medicine. The transoesophageal modality has shown excellent 

agreement with thermodilution, which is considered the gold-standard (Yamashita et al., 

2007, Mantovani et al., 2017) proving that the Doppler flow profile is capable of 

estimating CO accurately. However, this technique is obviously unsuited for conscious 

patients, and the equipment required is seldom available in veterinary practices. The 

accuracy of transthoracic echocardiography to estimate CO in dogs is still under debate. 

While some authors have suggested clinically acceptable agreement with the invasive 

readings from thermodilution (Lopes et al., 2010) or from a flowmeter (Uemura et al., 

2013), other authors have demonstrated poor agreement (Day et al., 2007).  

 

The present study is the first attempt in veterinary medicine to use echocardiographic 

measurements to assess volume status in conscious, spontaneously breathing, clinically ill 

dogs suspected of hypovolaemia. Previous studies have demonstrated a reduction in the 

cardiac chambers measured by transthoracic echocardiography when healthy dogs (Fine et 

al., 2010), horses (Underwood et al., 2011) or cats (Sugimoto et al., 2019, Campbell and 

Kittleson, 2007) were experimentally dehydrated by water deprivation or volume depleted 

by the administration of furosemide. The present study agrees with these publications in 

the sense that changes in the volume status produced measurable changes in the cardiac 

chambers.  
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4.5.1 Selected echocardiographic variables for the assessment of volaemia. 

 

The left atrium was measured using its maximal diameter in the L4chA view. Although the 

left atrium to aorta ratio (LA/Ao) has been traditionally used for the estimation of the left 

atrial size, the maximal diameter of the LA in the long axis view has been demonstrated to 

outperform this ratio, being more accurate in estimating the real size of the atrium and also 

more repeatable (Strohm et al., 2018). In addition to that, the L4chA view has been 

traditionally used to assess the heart size and function subjectively and using this same 

view to acquire atrial measurements will reduce the time required to perform the 

examination. Also, the L4chV, just represents a slightly different optimization for the same 

view, allowing the acquisition of two views to acquire measurements of the LA and the LV 

in a very short time. These measurements were acquired in right lateral recumbency, which 

is the standard for echocardiography in dogs (Thomas et al., 1993). The position of the dog 

affects the echocardiographic measurements of the heart (Chetboul et al., 2005), as it does 

with the CVC.  

 

The LV was measured in two different ways: the left ventricular size was measured using 

the LVIDdN, and the left ventricular volume was estimated using the EDVI obtained by 

the Simpson’s method of discs. The LVIDdN is considered one of the most repeatable 

echocardiographic measurements in terms of low inter day, inter observer and intra 

observer variability (Dukes-McEwan et al., 2002, Visser et al., 2019). In the author´s 

opinion, the Spm view that is needed to measure the LVIDdN is one of the easiest 

echocardiographic views to obtain and optimize for measurement. It has been shown that a 

course of only six hours is enough for non-cardiologist veterinarians to be able to 

accurately acquire the end diastolic left ventricular diameter (Darnis et al., 2019) used to 

calculate the LVIDdN.  In addition to the simplicity of the acquisition of the view, the 

calculation of the LVIDdN does not require special cardiac software, widening the range of 

ultrasonographic equipment that can be employed. Another advantage of the LVIDdN is 

that being a linear measurement it minimizes the influence of any operator-related error 

when compared with a volumetric measurement such as EDVI, where any operator-related 

error during the measurement acquisition would be amplified to the power of three when 

the volume is calculated. 
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The EDVI obtained by the Simpson´s method of discs is currently considered the optimal 

measurement to identify subtle changes in the left ventricular volume (Visser et al., 2019), 

which justifies why it is used in the diagnosis of occult phases of heart diseases that show 

LV volume overload, such as dilated cardiomyopathy (Wess et al., 2010). The left 

parasternal apical four chamber view and the L4chV view which was used in the present 

study, have been proven equally valid for the acquisition of the LV volume by the 

Simpson´s method of discs (Wess et al., 2010). The inter and intra observer repeatability of 

the EDVI is very good among veterinary cardiologists (Wess et al., 2010), but this has not 

been tested in non-cardiologists. In the author´s opinion, obtaining an optimized L4chV 

view and repeatable measurements for the EDVI is much more technically challenging 

than acquiring the end diastolic left ventricular diameter used for the calculation of the 

LVIDdN. In addition to that, it requires special cardiac software to calculate the volume 

after the left ventricular area has been traced.  However, if very subtle increases in the 

EDVI reveal early volume load, it would be expected that small reductions in the EDVI 

may demonstrate early volume depletion.   

 

The SV estimated by transthoracic Doppler echocardiography has been described to show 

clinically acceptable agreement with thermodilution in anaesthetised dogs (Lopes et al., 

2010), although that study showed better performance for the values obtained from the 

pulmonary artery than for those obtained from the aorta, classifying the aortic SV as not 

clinically acceptable. This is probably a consequence of better alignment with the 

pulmonary flow, than with the aortic flow, as the accuracy of the Doppler profile is angle-

dependant (Thomas et al., 1993). A poorer alignment with the aortic flow could have been 

a consequence of the echocardiographic view they employed, as the left parasternal four 

chamber apical view they used is considered inferior to the subxiphoid view for the 

acquisition of the aortic flow (Abbott and Maclean, 2003).  

 

Other studies (Yamashita et al., 2007, Mantovani et al., 2017), which employed 

transoesophageal echocardiography, demonstrated that the SV calculated from the aortic 

profile had good agreement with thermodilution, suggesting that a properly aligned aortic 

flow can accurately estimate SV in dogs. The subxiphoid view was used in the present 

study to acquire the aortic flow, which could have potentially provided a more accurate 

estimation of the SV than the one obtained by Lopes et al. 2010. However, this could not 
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be proven as no other technique, such as thermodilution, was used to validate the estimated 

SV. The SV estimated by echocardiography was also chosen because it is the standard of 

care in human medicine (McLean, 2016).  

 

4.5.2 Quantitative changes in the echocardiographic measurements   

 

The dogs in the control cohort showed values among the reference values provided in the 

literature for the LVIDdN (Cornell et al., 2004, Visser et al., 2019), EDVI (Visser et al., 

2019) and LAmajor/Ao (Strohm et al., 2018). In contrast with the measurements of the CVC, 

echocardiographic views and reference values are very strictly standardised, helping in the 

interpretation of the results.  

 

When the echocardiographic measurements of the study cohort were tested against the 

control cohort, the only discriminator that achieved significance was the EDVI. This might 

prove that EDVI is able to identify subtle changes in the LV volume, as it was anticipated, 

and could be a suitable method to detect volume depletion in conscious, spontaneously 

breathing, clinically ill dogs. However, when a cut-off value was tested, no value 

demonstrated acceptable levels of sensitivity and specificity. It is possible that a bigger 

sample size for both cohorts would have yielded a better discriminator and allowed the 

definition of a cut-off value, so further research in this field is warranted. The LVIDdN 

was the second-best discriminator, but it did not achieve statistical significance. As for the 

EDVI it is possible that the study was underpowered, and a bigger sample size would have 

provided better performance. Although, it can be said from the results of the present study 

that the ventricular measurements performed better than the atrial and caval measurements, 

which were unable to discriminate between healthy dogs and those suspected of 

hypovolaemia.  

 

According to the data of the present study the administration of IV fluid therapy induced 

changes in the echocardiographic parameters in the study cohort. The size of the left 

cardiac chambers (LAmajor/Ao and LVIDdN), the volume of the LV (EDVI), and the SV 

were greater after the administration of IV fluid therapy in conscious, spontaneously 

breathing, clinically ill dogs suspected of hypovolaemia.  
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The fact that the blood volume status affects the size of the cardiac chambers in 

echocardiography is in agreement with previous veterinary literature in healthy dogs (Fine 

et al., 2010), cats (Campbell and Kittleson, 2007) and horses (Underwood et al., 2011). All 

these three studies demonstrated that a reduction in preload results in a reduction of the 

diameter of the LV, and its volume, and also that it modifies the intracardiac pressures, 

affecting the systolic and diastolic function in dogs  (Fine et al., 2010) and cats (Sugimoto 

et al., 2019). Therefore, these authors demonstrated a reduction in cardiac size as a 

consequence of volume depletion, while the present study demonstrated an increase in 

cardiac size as a result of blood volume expansion. Although the interactions between the 

cardiac function and the compensatory mechanisms that are activated during hypovolaemia 

(sympathetic activity, ADH release and RAAS activation) can be very complex, with 

varying degrees of peripheral resistance, vascular tone, and intravascular pressure, it is 

clear from the results of the present study and the previous literature that the changes in 

preload affect the cardiac size. Thus, the LAmajor/Ao, the LVIDdN and the EDVI may be of 

use in monitoring the response to treatment in conscious, spontaneously breathing 

clinically ill dogs receiving IV fluid therapy.  

 

However, it should be noted that pre-existing volume loading cardiac diseases such as 

MMVD, dilated cardiomyopathy, patent ductus arteriosus (PDA) or ventricular septal 

defect (VSD) will compromise the diagnostic ability of left chamber sizes and volumes in 

the estimation of volaemia. Two of the dogs included in the study cohort had advanced 

MMVD and had significantly enlarged left heart chambers. The administration of IV fluids 

in these two patients elicited a measurable increase in LAmajor, EDVI and LVIDdN, with 

one of them achieving an increase of over 10% in SV (positive fluid responder). The CVC 

measurements in these two dogs also increased post-treatment and did so in a greater 

magnitude than the heart chambers, suggesting again that the simultaneous use of the 

echocardiographic and caval measurements improves their performance. 
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4.5.2.1 Quantitative changes in fluid responders vs non-fluid responders 

 

The dogs in the study cohort were subdivided into fluid-responders and non-fluid 

responders according to the impact of fluid therapy on their SV. Human intensive care 

physicians are familiar with a concept scarcely used in veterinary medicine: fluid 

responsiveness. A positive fluid responder would be a patient in shock who will benefit 

from the administration of IV fluids, whereas a negative fluid responder will require a 

different strategy, and IV fluids can be either unhelpful or detrimental.  

 

There are different techniques in human medicine to assess fluid responsiveness; one of the 

most common is measuring the SV before and after the administration of a bolus of IV 

fluids (McLean, 2016). If the human patient achieves an increase in SV of 10% or more, it 

is classified as a positive fluid responder (Cecconi et al., 2014). Although the 

measurements of the CO estimated from transthoracic echocardiography in humans are not 

interchangeable with the readings obtained from thermodilution (Wetterslev et al., 2016), 

the good trending ability of the SV estimated by echocardiography and the non-invasive 

nature of the technique have made echocardiography the standard of care for the estimation 

of fluid responsiveness in humans (Cecconi et al., 2014). 

 

Eleven of the fifteen dogs in the current study that had their SV measured pre- and post-

treatment with IV fluids achieved an increase of that magnitude and were classified as 

positive fluid responders. The SV and not the CO was used in the statistical analysis to 

avoid the variability that can occur in the HR as a consequence of other treatments. The 

estimation of the SV through echocardiography will add another tool to the intensive care 

clinician in veterinary medicine to monitor the response to treatment of dogs suspected of 

hypovolaemia and give another step towards goal-directed fluid therapy.  

 

Of the four dogs that did not achieve an increase of 10%, and were classified as non-fluid 

responders, one had severe systemic hypertension and chronic kidney disease (patient 16), 

two had mild to moderate dehydration from gastrointestinal losses (patients 10 and 11) and 

one suffered from hypovolaemic shock (patient 9). The mechanisms that may explain a 

lack of response are different in each of these patients.  
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The presence of an increase afterload due to systemic hypertension can affect stroke 

volume, particularly in a clinically ill dog, with severe uraemia. Systolic dysfunction 

secondary to uraemia has been recognised in human patients and it is described as uremic 

cardiomyopathy (Josephs and Odenthal, 1995). Dogs are also suspected to have some form 

of systolic disfunction associated with uraemia (Pouchelon et al., 2015), and this might 

have prevented an improvement in the SV after the administration of IV fluid therapy in 

this dog.  

 

Cardiac function deterioration may also explain the lack of response of the dog in 

hypovolaemic shock that did not show a positive fluid response. This dog (patient 9) had 

pre-existing MMVD in stage C (Keene et al., 2019) and showed very enlarged cardiac 

chambers. A previously dilated LV with poor systolic function may have prevented any 

response in SV. This dog was the only one among the study cohort that did not recover.  

 

The other two dogs had moderate dehydration, and despite them being classified as 

negative fluid responders, they showed marked clinical improvement after the 

administration of fluid therapy. This may be explained by the mechanisms which govern 

the movement of fluids between the body compartments. Dehydration starts in the 

interstitial compartment, and it is not until the functional reserve in this compartment has 

been exhausted, that the blood volume starts to decrease. In this scenario, it is possible that 

dogs that are not severely dehydrated do not change their blood volume. Thus, the preload 

will remain constant and there will be no change in the SV after fluid therapy. Then, the 

crystalloids administered would go to replenish the interstitial compartment instead of 

expanding the blood volume. This puts into question the reliability of fluid responsiveness 

as a guide to fluid therapy, as being a non-fluid responder in this case does not mean than 

the patient would not benefit from fluid therapy. This has been a long-standing controversy 

in human medicine that remains unresolved (Marik and Lemson, 2014, Monnet et al., 

2016a).    
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4.5.2.2 Quantitative changes in shocked vs non-shocked 

 

The study cohort was subdivided into dogs that presented in shock and dogs with varying 

degrees of hypovolaemia (non-shocked). The LVIDdN was smaller in the dogs that were in 

shock. Although this subpopulation only comprised of six animals, and thus obtaining a 

cut-off value was not attempted, it can be inferred that the LVIDdN could potentially be of 

use in the diagnosis of hypovolaemic shock. The same limitations of the low power of this 

small sample apply as for the EDVI in the diagnosis of hypovolaemia. Considering the rest 

of the findings in the present study and what has been described in the previous literature, 

it would appear intuitive that the size of the LV would get smaller and smaller as the 

animal progresses into hypovolaemic shock. 

 

4.5.3 Subjective changes in the heart chambers 

Not only measurements, but also a subjective assessment of the heart was made through 

echocardiography. When assessing the images subjectively, a markedly different response 

to severe hypovolaemia was identified between the LA and the LV. While the LV showed 

dramatic changes during systole, with complete collapse of the lumen, a phenomenon 

called kissing walls (Leung and Levine, 1994), the LA did not show very marked changes 

throughout the cardiac cycle. The collapse of the left ventricular lumen possibly reflects an 

enhanced forward flow due to a marked decrease in afterload, in the decompensated stage 

of shock. On the other hand, the decrease in blood volume, and thus in preload will affect 

similarly both chambers, proved by the fact that they were both reduced in size in their 

respective end diastoles when compared with the values after treatment. All the dogs that 

showed kissing walls of the LV suffered from hypovolaemic shock, and this phenomenon 

was no longer observable after the administration of fluid therapy. This builds on the 

evidence that the obliteration of the LV lumen is diagnostic of hypovolaemia (Feissel et 

al., 2001).  Many of the dogs in the study cohort showed changes in the left heart chambers 

after the administration of IV fluid therapy that could be identified subjectively. However, 

this judgement was made by one single observer who has extensive experience in 

echocardiography, and this may not be applicable to the general population of 

veterinarians.  
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In addition to volume status, the subjective assessment of the heart can provide other 

haemodynamic information. The subjectively enlarged right chambers of three dogs 

prompted full echocardiography at a later stage confirming a presumptive diagnosis of 

PHT. These three dogs also presented with a subjectively dilated CVC, reinforcing the 

concept that the heart chambers and the CVC should be assessed simultaneously.  
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4.6 Proposed ultrasonographic protocol for the assessment of volaemia in dogs 

 

The present study would support that an ultrasonographic protocol comprising of 

echocardiography and caval measurements could potentially be a useful tool to assess the 

volume status of the conscious, spontaneously breathing, clinically ill dog. This protocol 

will help in raising a suspicion of hypovolaemia and in guiding fluid therapy. Based on the 

results of the present study a suggested ultrasonographic protocol would comprise:  

- Subxiphoid view to obtain the Doppler spectrum of the aortic flow to estimate SV, 

and to subjectively assess and measure the CVC.  

- L4chV view to subjectively assess the heart chambers size and measure the EDVI.  

- Spm view to subjectively assess the LV size and to measure the LVIDdN. 

The results of this assessment will help in the management of the conscious, spontaneously 

breathing, clinically ill dog, as described in Table 4-1.  

 

Table 4-1. Clinical applicability of ultrasonographic variables 

Variable assessed Clinical relevance 

Subjectively collapsed CVC suggests it should have a positive fluid 

response 

Subjectively collapsed LV strongly suggests hypovolaemic shock 

Increase in CVC/Ao after fluid therapy suggests positive fluid response 

Increase of 10% in SV strongly suggests positive fluid response 

Dilated CVC and dilated right heart 

chambers 

suggest increased pressure in the right 

atrium and/or pulmonary circulation 

.  
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4.7 Limitations 

  

There were several limitations in this study. Even though this was a prospective study, not 

all the patients had all the ultrasonographic measurements recorded. This was due to 

ethical reasons. The animals that were in severe hypovolaemic shock needed immediate 

intervention, and that limited the time available to perform the examination. The most 

time-consuming measurement is the SV, as it requires optimal alignment with the aortic 

forward flow to produce a reliable measurement, and thus, it was only performed in fifteen 

of the eighteen dogs. Also, as these were privately owned animals, some repeated 

laboratory variables were not measured after treatment due to financial reasons. 

 

The number of animals included in each cohort was low, considering the objective of 

obtaining a reliable cut-off value for the diagnosis of hypovolaemia. According to the 

power calculations based on previously published data about the caval measurements in 

conscious, clinically ill dogs, the minimum number of animals to detect a change would 

have been nineteen patients in each group. That number of dogs was achieved in the 

control cohort, but there was one dog down in the study cohort.  

 

The same sample size of nineteen dogs was deemed appropriate for the other 

ultrasonographic variables, but this is not necessarily true. The variances of 

echocardiographic variables in this particular population of dogs, may be different from the 

variances of those variables in healthy dogs that are used to generate reference values. The 

lack of published data about the variance of echocardiographic measurements in 

heterogeneous populations of conscious, clinically ill dogs, made the power calculations 

rather challenging and possibly inaccurate, increasing the chances of incurring in type II 

statistical error, which will reduce the ability of the study to recognise the suitability of the 

technique to diagnose hypovolaemia. 

  

All the subpopulations that were assessed, such as fluid-responders, or animals in shock, 

did not achieve the minimum sample size proposed, reducing even further the statistical 

power of the study, and increasing the chances of a type II statistical error. Bigger 

populations would have been needed to increase the power of the study.  
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Another limitation is the lack of an alternative method to validate the estimation of the 

volume status and the fluid-responsiveness. Although the definition of fluid-responsiveness 

in humans (Cecconi et al., 2014) was followed, this method is yet to be validated in 

veterinary medicine, thus there was not complete certainty that the dogs in the study cohort 

were accurately classified as being hypovolaemic, or positive fluid-responders. 

Thermodilution would be the gold-standard to prove both, hypovolaemia, and fluid-

responsiveness, but this technique is seldom available in veterinary premises. There is 

currently not a gold-standard for the diagnosis of shock.  

 

A further limitation is the fact that the same clinician assessed the patients and performed 

the ultrasonographic examination, which can introduce bias, as the operator was not 

blinded to any of the physical exam parameters, laboratory findings, or response to 

treatment of the dog. 
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4.8 Future research considerations 

 

The assessment of volaemia using ultrasonography has gained importance in veterinary 

medicine in recent years. However, veterinarians are inheriting the same problems that this 

method has encountered in human medicine. The primary problem being the lack of 

standardization of the method to acquire the measurements of the CVC. Future research 

should focus on clearly establish the positioning of the patient, and the ultrasonographic 

views that should be used for both the subjective and quantitative assessment of the CVC, 

which has shown promising potential in the guidance of fluid therapy.  

 

The results presented on this thesis suggest that the EDVI could potentially be of use in the 

diagnosis of hypovolaemia. It is possible that a bigger sample size would have permitted 

determination of a cut-off value for this measurement in order to diagnose hypovolaemia in 

dogs, and possibly even in grading it. Further research to obtain a cut-off value for EDVI 

for the diagnosis of hypovolaemia should be pursued.   

 

As LVIDdN is less sensitive than EDVI, it may not be of use for the diagnosis of varying 

degrees of hypovolaemia. However, the present results suggest that it may be helpful in the 

diagnosis of hypovolaemic shock. Non-cardiologist veterinarians acquire competence in 

obtaining this measurement after very little training. This facilitates that the LVIDdN could 

become a common practice in the assessment of volaemia and can guide emergency 

clinicians when deciding the aetiology of shock.  

 

The validation of the SV assessment obtained from transthoracic echocardiography against 

thermodilution, as a way of predicting fluid-responsiveness in veterinary patients will 

allow the setting of a goal for fluid therapy when designing new studies. In the current 

situation, with the absence of a validated method to define a positive fluid response, each 

study states a different goal, and that prevents comparison of results. Also, setting a 

standard method to assess fluid-responsiveness would be of importance. As a passive leg 

raising test cannot be easily performed in dogs, and dogs suspected of hypovolaemia will 

rarely be put under mechanical ventilation, a fluid challenge will probably be the most 

suitable option for this purpose, testing the echocardiographic and CVC measurements 

against the gold-standard, thermodilution.    
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5. Conclusions 

 

The EDVI was able to discriminate between hypovolaemic and euvolaemic dogs. The 

LVIDdN was smaller in dogs in hypovolaemic shock. The increase in CVCmax/Ao after 

fluid therapy suggested positive fluid response. The presence of a subjectively collapsed 

lumen of the LV and CVC were diagnostic of hypovolaemia and predictive of positive 

fluid response, respectively. A dilated CVC and right heart chambers can be predictive of 

increased pressure in the right atrium. Thus, a simplified echocardiographic protocol, that 

can be performed by non-cardiologist veterinarians in a limited time, can provide useful 

information about the volume status of the conscious, spontaneously breathing, clinically 

ill dog. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Appendix 

 

 

case 
number breed sex 

age 
(years) 

weight 
(kg) 

SBP 
(mmHg) CRT (s) pulse   MM  

HR 
(bpm) LAmajor/Ao EDVI LVIDdN SV (ml) 

CVCmax 
(mm) CVC/Ao CVC CI 

1 CS F 3 9 120 1 0 1 80 1.9 52.3 1.5 23.1 6.0 0.42 50% 

2 Mx F 11 21 200 2 0 1 100 2.2 47.4 1.2 39.2 11.6 0.69 37% 

3 ST F 12 14 156 2 0 1 100 2.0 89.8 1.6 32.0 6.5 0.36 42% 

4 Mx M 11 31 120 2 0 1 120 2.5 83.8 1.7 56.7 9.3 0.49 45% 

5 Lb F 6 32 130 2 0 1 120 2.0 76.0 1.7 55.8 10.0 0.48 44% 

6 Stz M 10 7 130 2 0 1 100 2.4 67.6 1.7 20.0 9.0 0.82 19% 

7 YT F 13 4 140 2 0 1 140 1.9 28.5 1.6 7.3 4.8 0.55 31% 

8 Pt F 8 23 180 2 0 1 124 1.8 77.1 1.6 40.3 8.7 0.44 46% 

9 Lb M 8 35 140 2 0 1 144 1.8 58.7 1.7 66.8 13.0 0.62 25% 

10 CKCS F 9 8 150 2 0 1 110 1.7 26.8 1.6 19.8 6.5 0.46 28% 

11 JRT M 12 8 120 2 0 1 105 2.6 48.8 1.5 16.5 8.4 0.68 38% 

12 BC M 1 17 230 1 0 1 104 1.8 45.5 1.4 31.9 11.8 0.75 33% 

13 Pd M 10 12 140 2 0 1 140 2.1 46.2 1.3 25.1 8.8 0.65 50% 

14 Mx F 5 7 136 2 0 1 104 2.3 44.6 1.6 17.8 5.6 0.49 34% 

15 B M 12 17 160 2 0 1 126 2.3 44.8 1.2 19.8 13.3 0.89 38% 

16 TT M 11 15 158 2 0 1 138 2.2 40.3 1.5 15.8 7.2 0.51 64% 

17 Lb M 9 31 185 2 0 1 116 1.9 79.0 1.6 26.9 13.6 0.72 40% 

18 Ch F 8 7 120 2 0 1 120 2.3 23.0 1.3 3.9 6.0 0.62 55% 

19 Lb-oo M 9 9 140 2 0 1 116 2.1 54.5 1.3 16.6 9.5 0.73 40% 

Appendix1: Raw data of the control cohort 

Abbreviations: B: Beagle, BC: Border collie, Ch: Chihuahua, CKCS: cavalier King Charles spaniel, CS: Cocker spaniel, F: female, JRT:  Jack Russell terrier, Lb: 

Labrador, Lb-oo: labradoodle, M: male, Mx: mixed breed, Pd: Podenco, Pt:  Pointer, ST: Staffordshire terrier, Stz: Shih-Tzu, TT: Tibetan terrier, YT: Yorkshire terrier 
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 case 
N breed sex 

age 
(years) 

weight 
(kg) history 

LAC 1 
mmol/L 

LAC 2 
mmol/L 

TP 1 
(g/L) 

TP 2 
(g/L) 

PCV 
1 

(%) 

PCV 
2 

(%) 
SBP 1 
mmHg 

SBP 2 
mmHg 

CRT 
1 s 

CRT 
2 s 

pulse 
1 

pulse 
2 

 
MM 

1 
MM 

2 

HR 
1 

bpm 

HR 
2 

bpm Diagnosis 

1 GD F 4 50 C 0.9 0.5 64 67 36 34 120 100 2 2 2 1 2 1 180 136 HypoAC 

2 BC M 6 21 
C & 
RTA 1.9 2.4 62 60 38   50 120 3 2 2 0 2 1 40 120 HS/NS 

3 CS M 13 18 C 11.0 4.0 48 46 23 15 50 50 5 2 3 0 3 2 200 160 SR 

4 Pk F 8 4 C 3.3 5.6 92 82 60       2 2 1 0 1 1 80 80 
Iatro HS, 
PHT 

5 Do M 3 37 
L & 
RTA 1.2 2.1 62 62 50 50 118 119 2 1 0 0 0 1 126 88 PT 

6 CT M 10 9 C 5.0 2.4 40 38 26 15     4 2 2 1 2 2     SR 

7 CKCS F 14 9 V & D 1.6 1.2 50 50 32       2 2 1 0 1 1 140 110 
Iatro 
HypoAC 

8 Lu F 11 17 A 1.8 2.6 48 48 59 51 120 160 2 2 0 0 1 1 160 136 ML 

9 CKCS M 9 8 C, V 4.0 2.0 72 68 45 44 110 116 3 2 0 0 1 1 220 160 GT 

10 T M 1 5 V & D 1.6 1.6 60 60 44   128 138 2 2 0 0 1 1 160 120 GE 

11 Sts M 11 7 V &L 2.3 1.9 64 58 48 40 140 140 3 2 2 0 2 1 160 116 IBD 

12 WHWT M 5 12 V & L 1.7 1.4 78 70 51 44 150 150 2 2 1 0 1 1 140 84 P 

13 Bx M 7 30 V & L 1.5 1.9 82 78 55 51 130 136 2 2 1 0 1 1 130 110 OFB 

14 CS M 2 13 D 2.5 1.2 70 66 55 44 136 140 4 2 2 0 2 1 160 100 Pv 

15 LA M 14 11 V & D 1.3 1.6 64 68 48 48 184 146 2 2 0 0 1 1 136 104 HAC, PHT 

16 SS F 9 15 V & D 1.6 1.7 60 58 31 25 220 240 3 2 1 0 2 2 116 100 CKD, SHT 

17 Cp M 4 6 A & D 1.5 0.8 64 60 62 52 130 130 2 2 0 0 0 1 144 88 GE 

18 ST F 9 29 V & L 3.6 3.8 64 58 65 58 168 130 1 2 1 0 0 1 166 118 OIT 

Appendix 2: Raw data of the study cohort.  

1 Represents the value pre-treatment. 2 represents the value post-treatment. 

Abbreviations: A: anorexia, BC: Border collie, Bx: Boxer, C: collapse, Ch: Chihuahua, CKCS: cavalier King Charles spaniel, CKD: chronic kidney disease, Cp, 

cockapoo, CS: Cocker spaniel, CT, Cairn terrier, D: diarrhoea, Do: Doberman, F: female, GD: great Dane, GE: gastroenteritis, GT: gastric tumour, HAC: 

hyperadrenocorticism, HypoAC: hypoadrenocorticism, HS: hypovolaemic shock, IBD: inflammatory bowel disease, JRT:  Jack Russell terrier, L:lethargy, Lu: 

lurcher, LA: Lhasa Apso, Lb: Labrador, M:male, ML: multicentric lymphoma, OFB: obstructive foreign body, OIT: obstructive intestinal torsion, P: pancreatitis, Pk: 

Pekinese, PHT: pulmonary hypertension, PT: polytrauma, Pv: Parvovirus enteritis, RTA: road traffic accident, SHT: systemic hypertension, SR: splenic rupture, SS: 

springer spaniel, ST: Staffordshire terrier, Sts: Shetland sheepdog, T: Teckel, V: vomiting, WHWT: West Highland white terrier. 
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case N 
LAmajor/Ao 

1 
LAmajor/Ao 

2 EDVI 1  
EDVI 

2  
LVIDdN 

1  
LVIDdN 

2 
CVCmax 
1 (mm) 

CVCmax 
2 (mm) 

CVCmax/Ao 
1 

CVCmax/Ao 
2 

CVC CI 
1 (%) 

CVC CI 
2 (%) 

SV 1 
(ml) 

SV 2 
(ml) 

exam 
time 

1 
(min) 

exam 
time 

2 
(min) 

1 1.7 1.8 50.4 81.3 1.2 1.4 14.0 16.3 0.54 0.63 53% 37% 49.9 61.3 12 9 

2 2.1 2.3 60.3 80.0 1.4 1.6 12.7 12.9 0.73 0.75 23% 23%     4 4 

3 1.6 2.1 20.9 54.0 0.9 1.5                 3 3 

4 1.6 1.7 6.7 10.4 0.6 1.1 8.1 9.8 0.82 0.98 12% 16% 3.1 6.3 5 3 

5 2.0 2.0 62.3 63.8 1.3 1.3 20.5 21.2 0.92 0.92 21% 18% 76.1 118.8 4 3 

6 2.0 2.3 12.3 16.0 0.6 1.1                 2 3 

7 2.0 2.5 52.0 82.0 1.7 1.8 9.2 9.4 0.65 0.67 57% 33% 10.8 13.7 3 3 

8 1.9 1.7 58.8 62.7 1.5 1.7 10.5 12.4 0.54 0.59 65% 56% 36.2 42.6 4 3 

9 3.6 3.7 87.5 90.0 2.0 2.1 7.1 8.6 0.55 0.66 20% 23% 14.8 16.2 4 3 

10 1.5 1.7 32.7 24.3 1.3 1.2 8.3 8.5 0.71 0.73 47% 45% 9.1 7.9 5 3 

11 2.0 2.0 22.7 35.1 1.4 1.5 8.1 8.5 0.66 0.72 23% 29% 11.4 9.2 4 2 

12 2.3 2.4 26.4 40.2 1.2 1.4 7.2 9.5 0.70 0.89 35% 42% 10.4 12.1 4 2 

13 1.8 2.0 36.0 63.6 1.6 1.6 15.4 15.9 0.84 0.86 32% 30% 29.8 35.4 5 2 

14 1.9 2.3 50.0 63.5 1.3 1.5 6.5 12.5 0.43 0.82 31% 27% 24.2 27.8 3 2 

15 2.6 2.6 35.4 32.6 1.6 1.6 10.8 11.2 0.95 1.00 32% 34% 10.4 13.3 3 5 

16 1.9 2.0 43.2 69.0 1.7 1.8 10.2 10.5 0.59 0.60 31% 33% 30.0 29.6 3 2 

17 1.7 1.8 11.2 18.8 0.9 1.3 6.8 7.7 0.58 0.64 34% 39% 6.1 10.5 2 2 

18 1.7 1.9 45.5 46.5 1.5 1.5 9.7 13.5 0.50 0.70 48% 27% 26.3 41.4 3 4 

1 Represents the value pre-treatment. 2 represents the value post-treatment. 

 

Appendix 3: Raw data of the study cohort (continued).  
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