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Abstract 

Seasonal reproduction is a strategy conserved across nature. The duration of light 

(photoperiod) regulates the reproductive molecular control within the Hypothalamic-

Pituitary-Gonadal Axis of seasonal species, and supplementary cues fine-tune the exact 

timing of breeding. In recent years, epigenetic mechanisms have been shown to be 

involved in an array of circannual rhythms, including reproduction. The aim of this thesis 

was to explore the molecular reproductive neuroendocrine processes that underlie the onset 

of reproduction in two summer-breeding animal models, the Japanese quail (Coturnix 

japonica) and the Siberian hamster (Phodopus sungorus). In birds, light penetrates the 

skull and is detected by deep-brain photoreceptors (DBPs) within the hypothalamus, 

stimulating the photoperiodic reproductive response. However, the identity of these DBPs 

is unclear to this day. In the present thesis, the expression of two photoreceptors, 

Vertebrate-Ancient Opsin (VA Opsin) and Neuropsin (OPN5), was repressed through 

adeno-associated viral injection, and the breeding response was monitored in control and 

treated birds maintained under short-days (SD), or long-days (LD) for 2, 7 or 28 days. The 

data revealed that both opsins may be involved in seasonal reproduction in the Japanese 

quail, and that OPN5’s role includes modulating gonadal sensitivity to gonadotropins 

during breeding. It was also found that hypothalamic OPN5, GNRH and DNA 

methyltransferase (Dnmt) expression increases at embryonic day 14 in this species. In 

addition, higher global methylation levels were found in the pituitary gland of adult LD 

quail, compared to SD.  

In the Siberian hamster, two studies were conducted to investigate the effect of 

triiodothyronine (T3) on the photoperiod-dependent regulation of reproductive physiology 

and hypothalamic DNA methyltransferase enzyme expression in both males and females. 

Two weeks of daily T3 injections induced gonadal growth in SD males, but not in females. 

Female SD hamsters, but not males, were found to express lower levels of de novo Dnmts 

compared to LD individuals. However, exogenous T3 did not affect hypothalamic Dnmt 

expression in neither males or females. The data indicated sex differences in the gonadal 

response to T3, as well as in the regulation of hypothalamic DNA methyltransferase 

expression. It is likely that female Siberian hamsters require additional cues to initiate 

reproductive processes. The studies presented allowed for an exploration of reproductive 

mechanisms in both an avian and a mammalian model, including the role of epigenetic 

processes in seasonal breeding. Future studies are required to elucidate the precise 

mechanisms of DBPs, as well as identify downstream targets of maintenance and de novo 

Dnmts.  
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Chapter 1 – Introduction 

 

This chapter is drawn from three publications: “Tolla, E., Pérez, J. H., Dunn, I. C., Meddle, 

S. L., & Stevenson, T. J. (2019). Neuroendocrine Regulation of Seasonal Reproduction. 

In Oxford Research Encyclopedia of Neuroscience.”, “Pérez, J. H., Tolla, E., Dunn, I. C., 

Meddle, S. L., & Stevenson, T. J. (2019). A comparative perspective on extra-retinal 

photoreception. Trends in Endocrinology & Metabolism, 30(1), 39-53.”, and “Tolla, E., & 

Stevenson, T. J. (2020). Sex differences and the neuroendocrine regulation of seasonal 

reproduction by supplementary environmental cues. Integrative and Comparative 

Biology.”, as they provide in-depth descriptions of principles and knowledge that form the 

basis of the present thesis. 

 

1.1 Seasonal reproduction and the importance of photoperiod 

Seasonal rhythms are pervasive across the kingdoms of life, and seasonal species 

use environmental and internal cues to determine the correct timing for an array of 

functions, such as sleep, hibernation, reproduction, and migration. Some examples of 

external cues that can elicit one or all these responses are temperature, food availability 

and daylength (photoperiod). In time, studies have established a role for light information 

as the primary external factor involved in the seasonal response (Rowan, 1926; Paul et al., 

2008; Stevenson and Ball, 2011). William Rowan in 1926 first showed experimentally the 

crucial effect photoperiod has on reproduction. Working with the small finch Junco 

hyemalis, he brought the birds into breeding condition using artificial light in the depths of 

winter. Although seasonal rhythms in reproduction are more common in higher latitudes 

due to the salient changes in environmental conditions (Hut et al., 2013), it is not 

uncommon to observe annual variation in reproduction in species that are endemic to 

equatorial regions (Hau, 2001). Across avian and mammalian species, the hypothalamus is 
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the key brain region that integrates environmental cues with the endogenous internal 

timing mechanism, leading to the optimal timing of reproduction necessary for the 

propagation of the species (Stevenson, Prendergast, & Nelson, 2017; Pérez et al., 2019). 

One common feature of seasonal reproduction is the robust and predictable molecular 

oscillations in key neuroendocrine brain regions. These rhythmic-molecular switches are 

essential to ensure that the birth of the offspring occurs during periods optimal for survival.  

In the present chapter, I will introduce the biological concepts that underlie the 

work presented in this thesis, including mechanisms of light detection, and external and 

endogenous modulators of the hypothalamic-pituitary-gonadal axis that lead to timing of 

breeding. I will then outline the hypotheses tested in chapters 2-6. 

 

1.2 Environmental and internal regulation of seasonal reproduction 

1.2.1 Environmental control of seasonal reproduction 

Environmental cues are divided in proximate and ultimate factors (Baker, 1938). 

Proximate factors include events essential for the initiation and progression of reproductive 

processes during the whole breeding period. Ultimate factors are stimuli affecting 

individual fitness and survival by determining the optimal time for reproduction and birth 

of the offspring (Baker, 1938). This distinction aids in the categorisation of studies and 

facilitates research on seasonal rhythms. Seasonal species have developed neuroendocrine 

processes that respond to both ultimate and proximate factors (Wilson and Donham, 1987; 

Dawson et al., 2001). Successful timing of seasonal reproduction requires the integration 

of multiple environmental cues with complex internal, endogenous timing mechanisms 

(Figure 1.1A). In general, the annual change in day length, known as photoperiod, is the 

predictive cue that many animals use to anticipate annual changes in the environment 

(Figure 1.1B) (e.g., Dawson, 2015; Paul et al., 2008; Stevenson & Ball, 2011; 

MacDougall-Shackleton et al., 2009). 
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The timing of the termination of breeding is as critical as its stimulation. 

Photorefractoriness, or loss of a physiological ability to respond to the photoperiodic 

signal, tightly constrains reproduction to a breeding season. For example, in sheep, short-

day refractoriness causes the gonads to regress spontaneously after many months on short 

days (e.g., Lincoln, Andersson, & Hazlerigg, 2003). Absolute refractoriness in birds is 

remarkable and rapid. For instance, in white-crowned sparrows (Zonotrichia leucophrys) 

and European starlings (Sturnus vulgaris), long days stimulate gonadal growth but after 

two to three months there is a spontaneous shutdown of the HPG axis resulting in gonadal 

regression (e.g., Nicholls, Goldsmith, & Dawson, 1988; Meddle et al., 2006; Stevenson et 

al., 2009). For hamsters and other hibernating species, three to four months of short days 

result in refractoriness to the inhibitory effects and the gonads recrudesce (e.g., Ebling, 

2015; Hut et al., 2014). The complex neuroendocrine machinery underlying 

photorefractoriness and its disappearance by the next breeding season still requires 

deciphering. One suggestion is that two separate photoperiodic mechanisms (photo-

induction and photo-inhibition) are players in the asymmetrical breeding cycle (Dawson, 

2015; Ebling, 2015) and thyroid hormones are key for timing these seasonal transitions; for 

instance, in sheep, thyroid hormones are crucial for the transition from the reproductive 

state to anoestrus (e.g., Goldsmith & Nicholls, 1984, Nicholls et al., 1988, Parkinson et al., 

1995; Moenter et al., 1991; Webster et al., 1991; Dahl et al., 1994). It is important to 

highlight that many animals use long summer days to time breeding (e.g., hamsters, quail) 

and other animals use short winter day lengths to initiate reproduction (e.g., sheep, emu). 

Following the photoinduction of a breeding state, other supplementary cues, such as 

temperature, food availability, and social information serve to fine tune the timing of 

reproduction to maximize offspring survival (Wingfield & Kenagy, 1991).  

 



16 

 

 



17 

 

Figure 1.1. Schematic representation of seasonal reproductive rhythms. (A) Many northern 

hemisphere vertebrates time reproduction to occur during the long-day summer periods 

due to the significant increase in biomass. Annual cycles of long-day breeding animals are 

depicted by the black line and relative food abundance is represented by the green line. The 

two cycles are intrinsically linked, as species have evolved to lay eggs/give birth during 

times of high food abundance to maximize both parent and offspring survival. During 

winter when food availability is at its lowest, many temperate zone animals escape the 

harsh environments by annual endogenous programs in migration or hibernation. The 

principal forms of seasonal rhythms that have been characterized are Type I and Type II. 

(B) Type I (mixed) seasonal rhythms are dictated by both endogenous (interval timer) 

programming and environmental cues, for example, photoperiod. Long day breeders 

increase reproductive function in response to vernal increase in photoperiods and either 

terminate reproduction after prolonged exposure to long days (i.e., birds) or exhibit 

gonadal involution after exposure to decreasing day lengths (i.e., mammals). (C) Type II 

(circannual) seasonal rhythms are entirely generated by endogenous programs and 

typically have a period less than 12 months. Adapted from Stevenson et al. (2017). Figure 

from Tolla et al., 2019. 

 

1.2.2 Supplementary cues and timing seasonal reproduction in birds 

As mentioned above, the duration of light is considered the initial predictive cue for 

sexual maturation in seasonally breeding species of birds and mammals (Wingfield and 

Kenagy, 1991; Wingfield et al., 1992; Stevenson et al., 2012). However, it has been shown 

that supplementary cues impact the neuroendocrine regulation of reproduction in a sex-

dependent manner in both avian and mammalian systems (Ball and Ketterson, 2008). In 

seasonally reproducing birds, sexual differences in response to external supplementary 

cues have been documented for over a century (Riley and Witshi, 1938; Ball and 

Ketterson, 2008). For example, the vernal increase in light duration is sufficient to induce 

testes growth in male house sparrows (Passer domesticus), although the same treatment is 

not able to stimulate full ovarian development (Riley and Witschi, 1938). The lack of 

photostimulation to fully induce reproductive competence in female birds has been widely 

demonstrated (Farner and Lewis, 1971). These studies suggested that other cues drive 

female reproductive physiology, and since then, food cues, temperature, and auditory and 
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visual stimuli have been identified as important supplementary cues for reproductive 

development. 

In ring doves (Streptopelia risoria), females exposed to male presence respond with 

a significant increase in mating and maternal behaviour (Lehrman, 1965). Females that 

were able to see the male and hear males engaging in directed courting reached full 

reproductive growth (Friedman, 1977). Subsequently, using female canaries (Serinus 

canaria), Robert Hinde and Elizabeth Steel identified that simply hearing male 

vocalizations was sufficient to induce sexual development and behaviour (Hinde and Steel, 

1976). It is now well characterized that immediate early gene expression in the auditory 

brain region, the caudal mesopallium (CMM) and the dorsal nidocaudal mesopallium 

(NCMd), is associated with song attractiveness and female mate preferences in canaries 

(Haakenson et al., 2019), white-crowned sparrows (Zonotrichia leucophrys; Maney et al., 

2003), house finches (Carpodacus mexicanus; Hernandez and MacDougall-Shackleton, 

2004), European starlings (Sturnus vulgaris; Genter and Hulse, 2000) and zebra finches 

(Taeniopygia guttata; van Ruijssevelt et al., 2018).  

The presence of male vocalizations alone can stimulate the neuroendocrine axis 

leading to egg-laying in female birds. Female house sparrows (Passer domesticus) paired 

with males increased ovarian follicle size and body compared to birds that were housed 

alone or paired with a non-breeding male (Stevenson et al., 2008). When female 

budgerigars (Melopsittacus undulates) were kept in the dark and were exposed to male 

vocalizations, there was a significant increase in the number of eggs laid, indicating that 

auditory cues are capable of inducing full reproductive competence (Vaugien, 1951). To 

determine the specificity of male vocalizations that are required for egg laying, Bentley 

and colleagues (2000) exposed female songbirds to both heterospecific and conspecific 

songs. Both songs were identified to induce follicle development. In addition, a surge in 

plasma LH and egg laying was observed in females that heard male songs, compared with 

females exposed to no songs (Bentley et al., 2000). How auditory cues perceived in the 
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CMM and NCMd project to and regulate the neuroendocrine axis remains uncharacterized 

in birds. 

It is important to note that variation between populations in the response to 

supplementary cues has been previously reported and should be a factor when analysing 

data. For instance, one study found different effects of temperature on the onset of 

breeding in two distinct populations of great tits (Husby et al., 2010). Although both 

populations experienced a similar increase in temperature during the spring, only one 

showed a significant variation in timing of egg-laying (Husby et al., 2010). It is essential 

then to take into consideration not only species-specific effects, but also inter-population 

differences that could be given by genetic variances. 

 

1.2.3 Supplementary cues and timing seasonal reproduction in mammals 

Although the literature describing the role of supplementary cues in avian 

reproduction is abundant, most of the studies on mammalian seasonal reproduction 

predominantly focus on the effect of photoperiod. Some studies have focused on the effects 

of food availability, food quality and social cues (i.e. olfaction) for reproductive 

development, however these are rarely considered in a seasonal context. Here I will cover 

some of the evidence shown to underlie potential sex differences in the timing of seasonal 

reproduction in mammals. Due to the paucity of information of supplementary cues to time 

seasonal rhythms, supplementary cues in male mammals will primarily be considered. 

The availability of food resources can have an impact on reproductive development 

and seasonal breeding in some rodent species (Stephan, 2001; Bronson, 1989). California 

voles (Microtus californicus) are a seasonally-breeding rodent species and reduce testicular 

mass and seminal vesicles in response to short days. The simple addition of spinach leaves 

was observed to counteract the inhibitory effects of short-day lengths (Nelson et al., 1983). 

Moreover, water restriction was found to lower testicular mass suggesting that both food 

availability and water can augment seasonal rhythms in the reproductive competence of 
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male California voles. In tropical species such as the cloud forest mouse (Peromyscus 

nudipes), food availability significantly increased the probability of producing viable 

offspring. Female cloud forest mice exhibit oestrus cycles and readily engage in copulatory 

behaviours during both dry and wet seasons. Only during the wet season, when food and 

water are readily available, will cloud forest mice produce offspring (Heideman and 

Bronson, 1992). These findings indicate that food availability can impact the 

neuroendocrine control of gonadal growth in both male and female mammals. Yet, the 

investment in the production of offspring by the female is entirely dependent on sufficient 

food resources. 

In addition to food availability, the composition of food resources can impact the 

seasonal rhythm in reproductive physiology. In ewes (Ovis aries), feeding on dry lot 

resulted in a higher percentage of females reaching ovulation even in the non-breeding 

period, compared with individuals feeding on pasture (Hulet et al., 1986). In female voles, 

but not in males, the addition of the plant compound 6-Methoxybenzoxazolinone (6-

MBOA) to food during the non-breeding season caused a 4-week advance in sexual 

maturation and breeding (Korn and Taitt, 1987). In addition, voles maintained at a constant 

photoperiod of 12L:12D that were fed 6-MBOA showed an increase in serum FSH and 

uterus and ovary weights (Schadler et al., 1988). In the southern hemisphere, Australian 

cashmere goats reproduce in the late summer and early autumn (Walkden-Brown et al., 

1997). To assess the impact of diet composition on reproductive traits, goats were fed with 

either a high-protein (17.6 % protein) or low-protein (6.9 % protein) diet for sixteen 

months. In individuals that were fed the high-protein diet, there was a luteinizing hormone 

(LH) surge earlier in the season and LH levels were significantly higher than low-protein 

diet feeders (Walkden-Brown, 1994). These changes indicated that macronutrient levels in 

food can have an effect in advancing reproduction and increase the production of 

reproductive hormones. However, this study did not consider male-female differences, 
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suggesting more research is required to understand the role of nutrition on sex-dependent 

reproductive neuroendocrine signalling. 

In mammals, social cues, primarily via olfaction, are well established to regulate 

female reproductive cycles (i.e. oestrous) and copulatory behaviour in females and males. 

However, less is known regarding the impact of other social cues on the neuroendocrine 

timing of seasonal reproduction. Adult female Angora goats were kept in different social 

settings, from having no male contact to only visual, olfactory or tactile cues, or all visual, 

olfactory and tactile cues (Shelton, 1960). More females reached ovulation after either 

visual, olfactory or tactile stimulation compared to females that did not receive tactile cues 

from a potential male mate. This study suggests that in female mammals, social cues 

facilitated the onset of reproduction, manifested as an additive effect of vision, sound and 

presence of a prospective male partner. 

 

1.2.4 Organizational effects during development establish sex differences 

The differences in how males and females respond to supplementary environmental 

cues is likely the effect of organizational effects on brain morphology (Raisman and Field, 

1973; Gorski et al., 1978; Arnold and Gorski, 1984; Juraska, 1991). In 1959, Phoenix and 

colleagues proposed that steroid hormones, specifically testosterone, act on the mammalian 

brain during a critical window during development to organize its structure so that sex-

specific genes can be activated later, during puberty (Phoenix et al., 1959). The 

‘Organizational-Activational Hypothesis’ for the establishment and development of sex 

differences continues to explain how mammalian and avian species detect, integrate and 

respond to environmental and social stimuli (Beatty, 1984; Arnold, 2009). The preoptic 

area (POA) in the anterior hypothalamus is a critical node for the regulation of 

reproductive physiology and behaviour. Lesions to the POA in male rats result in a 

reduction in mating behaviour, however in females this decrease did not occur indicating a 
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marked sex difference in the role of the POA to regulate reproductive physiology (Hitt et 

al., 1970).  

In mammals, a female-like brain has generally been considered the default during 

development, as the differentiation into a female brain results from the lack of steroid 

hormone action. The organizational-activational hypothesis has also been applied to the 

avian brain. In Japanese quail (Coturnix japonica), males and females have distinct sex 

differences in reproductive behaviour, where mounting and cloacal contact attempts are 

male-only traits. This has been attributed to sexual differences in the medial preoptic 

nucleus (POM) structure and the action of testosterone in males (Panzica et al., 1996; for a 

review see Balthazart et al., 1996). Although the POA is considered the site of the majority 

of sexual differences in reproductive behaviour, other brain regions have been found to 

differ between the sexes, such as the mammalian cortex (Juraska, 1991) as well as the 

telencephalon in songbirds (Nottebohm and Arnold, 1976). 

 

1.3 Endogenous seasonal timing mechanisms 

In addition to environmental cues, seasonal species possess internal timing 

mechanisms that act as an endogenous annual clock (Figure 1.1C) (Helm & Stevenson, 

2015). The first suggestion that animals, and birds in particular, possess an endogenous 

circannual clock was demonstrated by Gwinner (1996). Using constant environmental 

conditions, Gwinner demonstrated that several tropical bird species, such as the East 

African stonechat (Saxicola torquatus) and the Garden warbler (Sylvia borin), maintain 

circannual rhythms in migratory behavior that showed period lengths ranging from 9 to 13 

months (Gwinner, 1996). The presence of circannual timing mechanisms has since been 

identified in a range of species from single-celled organisms (Alexandrium tamarense; 

Anderson & Keafer, 1987) to mammals (Spermophilus lateralis; Dark et al., 1985). The 

exact molecular and cellular processes that underpin circannual rhythms are unknown. 

Two prevailing hypotheses have been proposed: the annual birth of new neurons (i.e., 
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neurogenesis: Hazlerigg & Lincoln, 2011) and epigenetic modifications (Stevenson & 

Lincoln, 2017). A third conjecture is the involvement of circannual clock genes providing 

seasonal timing information in a manner similar to that of circadian clock genes. Several 

prospective hypothalamic regions have been proposed to act as the neural node for the 

central control of seasonal reproduction and include: the suprachiasmatic nucleus (SCN) 

(Ruby et al., 1998), the pars tuberalis (PT) (Lincoln et al., 2003), and the tanycyte cells that 

line the ependymal layer of the third ventricle (3V) (Meddle & Follett, 1997; Lewis & 

Ebling, 2017). The SCN is critical for the circadian regulation of daily rhythms of 

physiological, immunological, behavioural, and cognitive processes (Hastings et al., 2018). 

However, given that golden-mantled ground squirrels maintain circannual rhythms in body 

weight despite lesioned SCN, it is likely that an alternative brain region provides the neural 

representation of seasonal time. Moreover, the argument for the PT is not supported from a 

comparative reproductive perspective as fish do not possess a PT, suggesting the 

anatomical structure is not evolutionarily conserved. Given that female rainbow trout show 

robust and consistent circannual rhythmicity in gonadal function, an alternative cell 

substrate must provide long-term annual timing (Duston & Bromage, 1991). Overall, the 

present data support the proposition that the tanycytes in the ependymal layer of the 3V are 

an evolutionarily conserved cell population that are likely the anatomical substrate for the 

endogenous neuroendocrine timing of seasonal reproduction beyond mammals and birds. 

 

1.4 Neuroendocrine circuits involved in seasonal reproduction in birds and mammals 

1.4.1 Light detection in the avian brain 

For seasonal reproduction to be possible, organisms need to be able to detect 

sunlight and its duration. Until the start of the 20th century, the eyes were the only organ 

thought to be involved in this. For mammals, this is still true. Mammals possess 

photoreceptors in the retina that are linked to downstream neuroendocrine pathways and 
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that allow them to initiate different aspects of the reproductive response, such as gonadal 

recrudescence during long days (LD) in summer-breeding species (Foster et al., 1989; 

Yamazaki et al., 1999). However, non-mammalian species, e.g. reptiles and birds, have 

been shown to retain a seasonal rhythm despite lacking the eyes, implying the existence of 

extra-retinal photoreceptors (ERPs) (fish: Von Frisch, 1911; birds: Benoit, 1935; Menaker 

and Keatts, 1968; lizards: Underwood and Menaker, 1976; reviewed in Pérez, Tolla et al., 

2019). 

The first evidence for ERPs emerged in 1911, when Von Frisch showed that light 

stimulation caused skin colour changes in enucleated and pinealectomized minnows (Von 

Frisch, 1911). In 1935, Benoit provided the first piece of evidence correlating seasonality 

with the brain. In his study, the hypothalami of blind ducks were illuminated artificially 

with both winter and summer durations (Benoit, 1935). It was found that the avian skull is 

permeable to light and, despite lacking the eyes, summer-like day lengths stimulated 

gonadal growth, while short, winter-like day lengths did not. In 1976, Menaker and 

colleagues continued Benoit’s research and further established a role for ERPs as part of 

the seasonal framework that integrates light stimuli and translates them into a reproductive 

response (Menaker et al., 1976). In his studies, Menaker and colleagues injected india ink 

superficially inside the skull of house sparrows (Passer domesticus), blocking the passage 

of light, and observed reproductive inhibition even after light stimulation, highlighting the 

fact that birds possess light detection mechanisms within the brain that translate into 

signals able to target peripheral systems and stimulate sexual maturation (Menaker and 

Keatts, 1968). In 1979, Oliver et al illuminated different regions of the brain to determine 

the exact location of the avian DBPs, and found that only after illuminating the medio-

basal hypothalamus (MBH) they were able to induce testes growth, as opposed to brain 

regions such as the POA (Oliver et al., 1979). After the MBH was implicated in this 

process as the most important site for photoreception in the brain, research efforts lead to 
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the identification of DBPs in virtually all non-mammalian vertebrates (Young, 1935; 

Archer, 1999). The evolutionary reason for ERP loss in mammals is still unknown. 

ERPs consist of an opsin protein and a retinal chromophore, a type of vitamin A. 

The opsin protein is sensitive to light and it interacts with the chromophore component, 

either 11-cis-retinal or all-trans-retinal, through G protein-coupled receptors. The 

chromophore absorbs photons of light and alters its structure from 11-cis to all-trans, 

which begins a downstream signalling cascade. Opsins have been classified into five 

different groups, depending on various factors, such as species where they can be found, 

absorption spectra and location. The five groups are OPN1, OPN3, OPN4, OPN5 and 

retinal G protein-coupled receptor (RGR) opsin (Reviewed in Perez, Tolla et al., 2019). 

Each opsin has a different absorption spectrum by which it is activated, with maximal 

absorption occurring at the wavelength that triggers the highest production of energy. This 

difference in absorption spectra is likely due to the evolutionary pressure to respond to the 

appropriate wavelength of light, depending where a species may live. For instance, ERPs 

of fish living in deep water will have evolved sensitivity to green and blue wavelengths, as 

they are able to penetrate deeper in the water, while fish living in surface waters will have 

evolved different opsin absorption spectra.  

In 1983, Vigh-Teichmann and colleagues isolated the first opsin from the pineal 

gland of the thornback ray (Raja clavata). In 1994, Okano and colleagues were able to 

isolate a form of pinopsin from the pineal gland of chicken. Since then, a combination of 

immunochemistry methods and molecular and sequencing techniques have been used to 

characterise novel ERPs and attribute downstream physiological functions to them. 

The presence of opsins has been linked to an array of different functions, such as 

movement, migration and reproduction, in virtually all non-mammalian vertebrates, 

including amphibians, reptiles and birds. A large number of opsins has been found in the 

brain, including discrete nuclei of the hypothalamus and the pineal gland. The opsins found 

in the brain are also called deep-brain photoreceptors (DBPs). Figure 1.2 summarises the 
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opsins that have been reported in the brain of non-mammalian vertebrates, separating them 

by species and class of opsin. However, despite a century of research and the emergence of 

novel molecular techniques, the identity of the specific avian DBPs responsible for 

triggering reproduction in seasonal species has not yet been established, and a functional 

link between candidate photoreceptors and reproduction has not yet been investigated.  

 

 

Figure 1.2. The neural distribution of opsins in non-mammalian vertebrates (amphibians, 

reptiles, birds and fish) displayed on generalized sagittal sections. Protein (circle) and 

mRNA (triangle) localizations are indicated independently. An * indicates that the tagged 

marker represents expression of that opsin was characterized in a broad brain region (e.g. 

hypothalamus, telencephalon, mesencephalon etc.) not at the specific location of the 

marker. Abbreviations: lateral septal organ (LSO); premammilary nucleus (PMM); (POM); 

preoptic area (POA); periventiricular nucleus (PVN); median eminence (ME); (PVO); AM; 

suprachiasmatic nucleus (SCN); and pituitary (PIT). From Pérez, Tolla et al., 2019. 
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1.4.2 Vertebrate-Ancient Opsin and Neuropsin 

During the search for the opsins responsible for seasonal reproduction in birds, 

various scientific communities started to identify a number of photoreceptors located in the 

MBH, specifically in the lateral septal region (LSO), premammillary nucleus (PMM), 

paraventricular organ (PVO) and paraventricular nucleus (PVN). In 1985, Foster and 

Follett determined that the maximal light absorption (λmax) for the greatest LH release in 

the Japanese quail, a common seasonal model, is 492 nm (Foster and Follett, 1985). 

Because of the significance of LH in the reproductive axis of the Japanese quail, this 

finding initiated the hunt in the scientific community for an opsin molecule of a sensitive at 

492 nm. Foster and Follett’s study also provided an additional method of determining 

whether opsins found in the brain could be classified as potential DBPs. In 1998, Soni and 

Foster successfully isolated a novel retinal opsin in the Atlantic salmon (Salmo salar.; Soni 

and Foster, 1998), and named it Vertebrate-Ancient Opsin (VA Opsin). It was found that 

VA Opsin has two functional isoforms, a longer one (cVAL) and a shorter one (cVAS). 

Later, VAS was identified in the hypothalamus of the chicken, and cVAS-expressing 

neurons found to be projecting to the median eminence (ME) (Halford et al., 2009). VA 

Opsin was proposed as a potential avian photoreceptor mediating the reproductive 

response. In addition, the maximal spectrum for VA Opsin in the hypothalamus of birds 

was determined to be 490 nm both in vivo and in vitro, matching the absorption spectrum 

for the initiation of reproduction in birds (Davies et al, 2011). Immunoreactive VA Opsin 

cells are localized to the preoptic area, and paraventricular nucleus and fibers were 

identified in the anterior hypothalamus and basal hypothalamus. Of particular interest was 

the observation that fibers terminated adjacent to the PT (Halford et al., 2009).  

Based on the information gathered from prior studies, the candidate DBP must be 

expressed in the hypothalamus (Halford et al., 2009), activated by wavelength of ~ 492 nm 

(Foster and Follett, 1985), linked to circadian genes, and be associated with the activation 

of downstream reproductive pathways (as reviewed in García-Fernández et al., 2015). 
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However, it is still unclear whether VA Opsin in involved in the stimulation of the 

reproductive axis. 

In the meantime, a different opsin molecule started to gather attention from the 

scientific community: neuropsin (OPN5). OPN5 was initially isolated from neural tissue of 

mouse in 2003 and assigned to a new family of opsins, as it shares only about 30% of 

amino acids with other known photoreceptor molecules (Tarttelin et al., 2003). It was later 

found to be localised to the cerebrospinal fluid-contacting neurons of the PVO in the MBH 

of the Japanese quail (Nakane and Yoshimura, 2010), fulfilling the location criteria for 

candidate DBPs. Immunoreactive fibers were shown to project from the PVO directly 

adjacent to the PT (Nakane et al., 2010). However, the maximal absorption for OPN5’s 

two isoforms were found to be 360 nm and 474 nm (Yamashita et al., 2010), two lower 

values compared to the λmax required for the stimulation of reproduction determined by 

Foster (Foster and Follett, 1985). Recently, OPN5 has also been detected in the mouse 

POA and suggested to be involved in body temperature regulation (Zhang et al., 2020). 

Since OPN5’s characterisation, numerous studies have investigated the possible role of 

neuropsin in the avian reproductive system. However, despite a century of research and the 

emergence of novel molecular techniques, the identity of DBPs has not yet been 

established, mainly because a functional link between VA Opsin, OPN5 and reproduction 

has not yet been investigated. In addition, how opsins in the brain are able to initiate 

downstream reproductive pathways in seasonal vertebrate species is still unknown. Figure 

1.3 provides a schematic summary of the possible mechanisms adopted by DBPs to trigger 

the avian reproductive axis. In the present thesis, the two candidate photoreceptors that 

have been examined are VA Opsin and OPN5. 
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Figure 1.3. Schematic summary of both already established and hypothesised (symbolised 

by ‘?’) pathways of extra-retinal photoreception. Although numerous physiological and 

behavioural processes are linked to perception of light cues and/or circadian rhythms, most 

of the neural control mechanisms remain poorly elucidated. 1, localization of minnow 

colour change receptors resolved to diencephalon. 2, location of ERPs associated appears 

to vary by species and taxa. AGRP, Agouti-related protein; DIO2, deiodinase 2; DIO3, 

deiodinase 3; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; 

LH, luteinizing hormone; Mel, melatonin; NPY, neuropeptide Y; T3, triiodothyronine; TH, 

thyroid hormone; TSH-b, thyroid-stimulating hormone-b. From Pérez, Tolla et al., 2019. 
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In birds, one of the earliest confirmed molecular change in response to long-day 

exposure is an increase in thyrotrophin-stimulating hormone-β (TSHβ) in the PT (Nakao et 

al., 2008). Therefore, the photoreceptor that links photoperiodism with the seasonal 

reproductive response must also link with TSHβ expression. In 2012, Stevenson and Ball 

(2012) used siRNA that targeted OPN5 in the Border canary (Serinus canaria) and 

observed a significant increase in hypothalamic TSHβ expression. A similar negative 

correlation between OPN5 and TSHβ expression has been reported in the migratory 

redheaded bunting (Emberiza bruniceps) (Majumdar et al., 2014). This inhibitory output 

could potentially be discontinued during the breeding period, allowing for an increase in 

gonadal size and initiation of reproduction. Conversely, in Japanese quail (Coturnix 

japonica), the inhibition of OPN5 was observed to inhibit TSHβ expression (Nakane et al., 

2014). Overall, the neuroendocrine circuit that underlies the seasonal regulation of 

reproduction in birds requires light detection by hypothalamic ERPs that are connected to 

the PT thyrotrophs. The mechanism(s) by which ERPs are linked to the PT are currently 

unknown. The long-day increase in TSHβ secretion signals the tanycytes to induce T3-

dependent morphological changes that permit the release of GnRH from the median 

eminence (Figure 1.4). Supplementary environmental cues are then integrated across a 

diverse range of hypothalamic and extra-hypothalamic nuclei that converge on 

reproductive neuropeptides, GnRH and GnIH (Meddle et al., 2006; Stevenson et al., 

2012A; Kriegsfeld et al., 2015). 
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Figure 1.4. Neuroendocrine pathways for the photoperiodic regulation of seasonal 

reproduction in mammals and birds. In avian species, light is detected by extra-retinal 

photoreceptors (ERPs) located in the hypothalamus. The identity of the photopigments 

responsible for deep brain photoreception is currently unknown, however two major 

candidate genes are neuropsin (OPN5) and vertebrate-ancient opsin (VA Opsin). ERPs are 

connected to the pars tuberalis (PT) which stimulates thyrotropin-stimulated hormone-β 

(TSH) expression in response to long days. Photoperiodic regulation of TSH triggers 

tanycytes along the ependymal layer of the third ventricle (3rdV) to increase the expression 

of deiodinase Type-2 (DIO2) and decrease Type-3 (DIO3). The localized synthesis of 

thyroid hormone, triiodothyronine (T3) then induces a morphological change in the 

tanycytes that permits the pituitary gland to release gonadotrophs: luteinizing hormone 

(LH) and follicle-stimulating hormone (FSH). Annual changes in day length also regulate 

neuropeptide expression, gonadotropin-releasing hormone (GNRH) and gonadotropin-

inhibitory hormone (GNIH). In mammals, annual changes in photoperiod are initially 

detected by the retina photoreceptors (e.g. melanopsin) and light information is then 

transmitted to the circadian pacemaker nucleus, the suprachiasmatic nucleus of the 

hypothalamus (SCN). The SCN provides an internal code for daily secretion of melatonin 

by the pineal gland. The annual variation in nocturnal melatonin secretion regulates the 

levels of TSH produced by the PT. Similar to birds, long-day mammalian breeders have 

high TSH levels that trigger the tanycytes to stimulate Dio2 expression leading to the 

release of LH and FSH from the pituitary gland. Other supplementary environmental cues 

also converge on tanycytes and neuropeptides in the hypothalamus to fine-tune the timing 

of seasonal reproduction. The sinewave symbol represents the putative location for the 

endogenous circannual pacemaker. Solid arrows indicate well described direct 

connections, the dash arrow between the tanycytes and hypothalamic neuropeptides 

represents current undescribed connection. From Tolla et al., 2019. 
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1.4.3 The role of melatonin in mammals 

Although extra-retinal photoreceptors such as encephalopsin have been identified in the 

mammalian diencephalon and pineal gland (Blackshaw et al., 1999), it is likely that extra-

retinal photoreceptors in the mammalian brain are not involved in photoperiodism as the 

evidence to support the capability of light to pass the skull and regulate these opsins is 

lacking. Instead, photoreceptors in the retina are linked to downstream neuroendocrine 

pathways via the daily nocturnal pineal secretion of melatonin (Stevenson et al., 2017). 

Melanopsin expression in the photosensitive retinal ganglion cells is critical for the daily 

entrainment of circadian rhythms and is likely required for annual photoperiodism 

(Hankins, Peirson, & Foster, 2008). In mammals, light integration by the SCN is critical 

for circadian regulation and the photoperiodic control of melatonin secretion by the pineal 

gland. Nocturnal melatonin provides an internal physiological code for the annual change 

in night length (Goldman & Nelson, 1993). Long days result in a small nocturnal duration 

of melatonin, whereas short winterlike days result in a greater nocturnal duration of 

melatonin (Reiter, 1991; Bartness et al., 1993; Wehr, 1991). The duration of melatonin is 

sufficient for mammals to initiate different aspects of the reproductive response, such as 

gonadal recrudescence during long days in summer-breeding species such as hamsters 

(Foster et al., 1989; Yamazaki et al., 1999) and a long duration melatonin signal is 

stimulatory for short-day breeding species such as sheep (Ovis aries; e.g., Lincoln et al., 

2003; Weems et al., 2015; Karsch et al., 1984; Bittman & Karsch, 1984). A simple 

injection of melatonin in long days in the early afternoon is sufficient to extend the 

duration of exposure and subsequently induce reproductive involution in hamsters 

(Bartness et al., 1993). Thus, melatonin provides the internal representation of annual day 

length and acts in multiple brain regions, including the PT, to drive seasonal variation in 

reproduction. It is well established that melatonin binds to the melatonin receptor 1b 

(MT2) to inhibit hamster reproductive physiology (Prendergast, 2010).  
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Although the precise mechanisms are not well established, annual changes in melatonin 

have powerful effects on the expression of multiple neuropeptides (described in section 

4.1), neurotransmitters and receptor function in discrete neuroendocrine cell populations. 

In mammals, melatonin receptors have been shown to be expressed in the PT (Williams & 

Morgan, 1988), where thyrotrophs are predominantly located. Melatonin binding in the 

thyrotrophs reduces TSHβ levels (Hanon et al., 2008). TSHβ triggers an upregulation of 

the enzyme deiodinase 2 (DIO2), which is responsible for converting thyroxine (T4) into 

triiodothyronine (T3) during the reproductive period (Klosen et al., 2013). Work by Hanon 

et al. (2008) indicated the TSHβ-signalling system to be evolutionary conserved in 

seasonally breeding vertebrates (Hanon et al., 2008). In addition, TSHβ injections were 

sufficient to drive the long-day reproductive response in male Siberian and Syrian 

hamsters, through an increase in kisspeptin and RFRP expression (Klosen et al., 2013), 

implicating these neuropeptides in the seasonal control of reproduction. The mechanism 

for DIO3 action, responsible for inactivating T3 during the non-reproductive period, is 

currently unknown. However, its expression is likely to be affected by melatonin. In birds, 

nocturnal melatonin does not appear to be involved in the hypothalamic timing of seasonal 

reproduction (Juss et al.,1993) and instead, functions to synchronize peripheral tissues, 

particularly the gonads (McGuire et al., 2011). 

 

1.5 Neuroendocrine substrates that regulate reproduction in birds and mammals 

1.5.1 The role of neuropeptides: GnRH, Kisspeptin and GnIH/RFRP3 

The master neuroendocrine peptide in the regulation of reproduction is 

gonadotropin-releasing hormone (GnRH) (Herbison, 2016). GnRH is released from the 

median eminence in response to photostimulation and targets the gonadotrophs in the 

anterior pituitary, which, in turn, release the gonadotropins—luteinising hormone (LH) and 

follicle-stimulating hormone (FSH)—linking the brain to peripheral endocrine systems. LH 



34 

 

and FSH both play key roles in the development of characteristics essential for 

reproductive success. GnRH-secreting cells are expressed in the anterior hypothalamus, 

POA in all sexually reproducing species (Stevenson et al., 2012a). In birds, the number of 

cells that express GnRH exhibit robust variation; in some species such as the European 

starling (Sturnus vulgaris), there is a 10-fold change in the number of detectable cells 

(Stevenson et al., 2009; Dawson and Goldsmith, 1997) between seasons. However, in other 

species, such as Galliformes (e.g., chickens) the level of annual mRNA changes in GnRH 

is significantly less (Dunn & Sharp, 1999).  

The primary driver of annual plasticity in GnRH expression in birds is the change 

in photoperiod, as increased day length in the summer triggers a rapid increase in 

expression leading to a reproductive state (Dawson et al., 2001). However, long days also 

initiate a cascade of events that terminate the reproductive period (Stevenson et al., 2012b; 

Dawson and Goldsmith, 1997). How light directly regulates GnRH expression is not 

entirely clear and may be driven by the localization of photoreceptors in GnRH cells such 

as VA Opsin (Halford et al., 2009) in avian species, or by the coordinated activity of other 

neuropeptides such as Gonadotropin-inhibitory hormone (GnIH) also referred to as 

RFamide-related peptide-3 (RFRP3) in mammals. 

GnIH neurons are predominantly localized to the paraventricular nucleus (PVN) 

and have widely distributed projections into diencephalic and mesencephalic regions in 

birds (Kriegsfeld et al., 2015; Ubuka, Bentley, & Tsutsui, 2013a). GnIH receptors are 

expressed in the median eminence in quail and gonadotropes in the pituitary gland in quail 

and chickens (Tsutsui et al., 2000; Ubuka et al., 2013b). Unlike GnRH, the photoperiodic 

regulation of GnIH expression is minimal. For example, house sparrows (Passer 

domesticus) show only a small increase in immunoreactive GnIH cells during the non-

breeding season (Bentley et al., 2003). The mammalian ortholog, RFRP3, is expressed in 

the dorsomedial nucleus of the hypothalamus (DMH), projects to the median eminence and 

inhibits gonadotropin release in hamsters (Kriegsfeld et al., 2006). However, the direct link 
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between RFRP3 signaling and gonadotropin function has not been clearly delineated. 

Exposure to short days was found to significantly reduce RFRP3 expression in hamsters 

(Prendergast et al., 2013; Mason et al., 2010), and appears to be downregulated by 

melatonin (Revel et al., 2008). In sheep, RFRP3 does not directly regulate LH secretion 

and may instead have indirect effects on reproduction via food intake or stress (Decourt et 

al., 2016). 

In mammals, kisspeptin is generally located in two distinct hypothalamic brain 

regions, the arcuate nucleus (Arc), and the anteroventral periventricular nucleus (AvPv) in 

rodents (Yeo & Colledge, 2018). In Siberian hamsters, exposure to reproductively 

inhibitory short days resulted in a significant increase in Arc kisspeptin cell numbers and a 

reduction in AvPv cell numbers (Greives et al., 2007). Castration significantly reduced 

AvPv kisspeptin cells indicating a role for gonadal-dependent regulation of expression 

(Greives et al., 2008). Conversely, in Syrian hamsters, SD was observed to significantly 

reduce Arc kisspeptin cell numbers. Syrian hamsters that were pinealectomized and moved 

to short days showed elevated kisspeptin expression (Revel et al., 2006), suggesting a 

primary regulatory role for melatonin. This is consistent with the knowledge that short 

days stimulate weight gain in this species, while causing weight loss in Siberian hamsters 

(Bartness & Wade, 1984), although they are long-day breeders as well. To date, kisspeptin 

has not been identified in an avian genome, nor the cognate receptor, G-protein coupled 

receptor 54 (KISS1R) (Kim et al., 2012; Tena-Sempere et al., 2012). The complete absence 

of these two genes provides strong evidence that kisspeptin-KISS1R signalling is not an 

evolutionarily conserved mechanism for the control of reproduction. The evidence 

provided suggests that the neuroendocrine network responsible for seasonal species is 

complex and differs not only between birds and mammals but also within mammalian 

species. 
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1.5.2 The role of thyroid hormones in the hypothalamus 

Thyroid hormones, specifically the bioactive form, triiodothyronine (T3), are 

thought to play a central role in the seasonal photoperiodic reproductive response (Wu & 

Koenig, 2000). Thyroid hormones have been tied to the induction of the hypothalamic-

pituitary-gonadal (HPG) axis hormonal cascade responsible for development of the 

physiological characteristics associated with breeding in multiple species (Follett & 

Nicholls, 1985; Follett & Nicholls, 1988; Nicholls et al., 1988; Wilson & Reinert, 1995; 

Reinert & Wilson, 1996; Wilson & Reinert, 1999; Dawson et al., 2001, Pérez et al., 2018). 

Thyroid hormone delivered directly to the hypothalamus rescues gonadal growth in 

thyroidectomized animals (Wilson & Reinert, 2000) and induce HPG activation in 

Japanese quail held under short day lengths (Watanabe et al., 2007). Localized thyroid 

signaling within the brain is mediated by the diodinase enzyme system. T3 is generated 

from the corresponding prohormone thyroxine (T4) by the enzyme deiodinase 2 (DIO2) in 

most tissues (Yoshimura et al., 2003). Deiodinase 1 (DIO1) can also catalyze this reaction; 

however, it is mainly found in peripheral tissues (Bianco et al., 2002). Conversely, DIO3 is 

the enzyme responsible for inactivating T3 (Bianco & Kim, 2006; Schweizer et al., 2014). 

Increasing day-length results in the release of TSHβ from thyrotroph cells of the PT, which 

act in a paracrine manner to trigger a shift in deiodinase expression within tanycytes lining 

the 3rdV of the hypothalamus (Yoshimura et al., 2003; Yasuo et al., 2005). The resulting 

increase in DIO2 and decrease in DIO3 expression results in increased net conversion of T4 

to T3 (Watanabe et al., 2007; Nakao et al., 2008; Nakane & Yoshimura, 2010; Mishra et 

al., 2017). This local increase in T3 has a downstream effect on tanycytes to permit the 

release of GnRH from the median eminence in long-day breeding species (Figure 1.4) 

(Whitlock, 2005; Yamamura et al., 2004; Lehman et al., 1997), and the inhibition of 

reproduction in short-day breeders such as sheep (Webster et al., 1991). 
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1.5.3 Sex differences in the neuroendocrine regulation of reproduction function 

The early action of steroid hormones on the developing brain primes the organism 

for puberty, and the neuroendocrine control of reproduction by the GnRH pathway is 

essential across all sexually reproducing species (Stevenson et a., 2012). In female murine 

models, there is a significantly higher (10X) number of kisspeptin cells in AvPv compared 

to males (Clarkson and Herbison, 2006). Interestingly, kisspeptin action can overcome the 

negative effects of food restriction on reproductive aspects in rats (Castellano et al., 2005) 

suggesting a short-term responsiveness to food cues. In mammals, the population of GnRH 

cells appears relatively constant in seasonal breeders, but kisspeptin cells in both the AvPv 

and Arc exhibit large scale plasticity (Simonneaux, 2020; Clarke and Caraty, 2013). Food 

restriction in male Siberian hamsters can significantly suppress kisspeptin expression in the 

arcuate nucleus (Paul et al., 2009) suggesting that nutritional cues can fine tune the timing 

of reproduction upstream of GnRH. Thus, kisspeptin-secreting cell populations can be 

considered optimal targets for the regulation of the mammalian reproductive 

neuroendocrine axis by supplementary cues in a sex-specific manner. 

Neither kisspeptin, nor the receptor GPR54 have been identified in an avian genome. 

The available evidence suggests that GnRH cells in the POA are directly responsible for 

the integration of supplementary seasonal cues. The presence of a potential mate was found 

to significantly increase GnRH expression and/or release in European starlings (Stevenson 

and Ball, 2009) and house sparrows (Stevenson et al., 2008). Other supplementary cues 

have been shown to modulate GnRH content such as temperature and food cues. GnRH 

mRNA levels in redheaded buntings (Emberiza bruniceps) were significantly increased in 

response to elevated temperature (Trivedi et al., 2019). Food restriction in male house 

finches significantly increased the number of GnRH cells compared to ad libitum fed birds 

(Valle et al., 2015), reflecting a reduced GnRH secretion and increased GnRH storage 

indicated by high levels of cGnRH-ir perikarya (Foster et al., 1988; Valle et al., 2015). 

However, food resources do not appear to impact the amount of GnRH in Albert’s 
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Towhees POA (Davies et al., 2015). Furthermore, the opportunistically seasonally 

breeding songbird, White-winged crossbills (Loxia leucoptera) maintain constant levels of 

GnRH content despite variation in food resources (MacDougall-Shackleton et al., 2001). 

Highly plastic GnRH responses may be an evolutionarily conserved trait, as supplementary 

cues also significantly impact expression levels in amphibians (Burmeister and Wilcsynki, 

2005) and fish (White et al., 2002). 

Seasonal variation in body mass is another well characterized physiological 

response (Ebling, 2015). In female mammals, growth hormone (GH) has a continuous-

release pattern, while in males it is released in a pulsatile manner (Waxman et al., 1995; 

Udy et al., 1997; Waxman, 2000). These different forms of GH release have important 

downstream effects, some of which are critical for the expression of sex differences in 

physiological traits. For instance, GH stimulates tyrosine phosphorylation of Signal 

Transducer and Activator of Transcription 5 (STAT5b) in the male liver, but not in females 

(Waxman et al., 1995). STAT5b gene repression through knockdown studies in mice has 

confirmed the hypothesis that this gene is responsible for the regulation of certain sex-

specific traits: STAT5b K/D in males causes a slower growth rate compared to intact 

males, and an altered liver transcription profile, both effects comparable to characteristics 

of the female phenotype (Waxman et al., 1995; Udy et al., 1997; Waxman, 2000). This 

suggests that STAT5b is differentially regulated in males compared to females, and that it 

plays a key role in the development of sex differences in liver function. STAT5 is also one 

factor shown to be able to control ER alpha in the hypothalamus (Champagne et al 2006). 

The sex-dependent effects of GH and STAT5 may account for some variation in the 

organized brain and liver signalling pathways and therefore contribute to how 

supplementary cues fine tune the timing of reproduction. 
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1.6 Tanycytes function as an evolutionary conserved neuroendocrine regulator 

Tanycytes along the 3rdV in the hypothalamus have been proposed to be the 

predominant neuroendocrine cell population for the regulation of long-term physiological 

processes, such as seasonal breeding (Figure 1.5) (e.g., Meddle & Follett, 1997; Lewis & 

Ebling, 2017). Since tanycytes are derived from an evolutionarily ancient neuroepithelium 

in vertebrates, these cells are well positioned to be the conserved brain region for 

endogenous seasonal rhythmicity (Szele & Szuchet, 2003). Furthermore, these cells have 

been shown to exhibit a photoperiodic change in epigenetic modifications (Stevenson & 

Prendergast, 2013) as well as contain a stem cell niche (Lee et al., 2012) that could serve as 

a source of cyclical histogenesis (Hazelrigg and Lincoln, 2011). In addition, tanycytes 

integrate a range of environmental cues such as photoperiodic information from the PT 

(Wood & Loudon, 2018), peripheral endocrine changes in energetic state (Bolborea & 

Dale, 2013) and respond to gonadal steroids (i.e., estrogen) (de Seranno et al., 2010). 

Tanycytes also send long projections into adjacent nuclei, such as the Arc, POA, and DMH 

and have direct contacts with multiple neuroendocrine systems, such as reproductive, 

orexogenic, and anorexigenic neuropeptides (Figure 1.5) (Lechan & Fekete, 2007). The 

evolutionarily conserved nature of the tanycyte cells, the endogenous regulation of timing 

mechanisms, and the interaction with well-characterized reproductive neuroendocrine 

systems, all support the conjecture that tanycytes are critical for the regulation of seasonal 

reproduction. 
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Figure 1.5. Tanycytes are an evolutionarily conserved cell population for neuroendocrine 

function. All vertebrates have tanycyte cells that line the third ventricle (3rdV) and project 

into the adjacent parenchyma (e.g., Arcuate nucleus [Arc] and median eminence [ME]). 

(A) representative schematic of a coronal section through the hypothalamus to highlight 

the distribution of tanycytes along the 3rdV. The black box is represented at a higher 

resolution in (B). Tanycytes indicated in purple integrate photoperiodic information 

derived from the PT via thyrotropin-stimulating hormone (TSH) binding to the cognate 

receptor in long-day photoperiods. TSH triggers the synthesis of triiodothyronine (T3), 

which induces a morphological change in tanycytes that permits neuropeptide release from 

the median eminence (e.g., GnRH). Tanycytes also respond to peripheral signals of energy 

balance such as neuromedin U (NMU) and Glucose (Glu). NMU is photoperiodically 

regulated in rodents and provides an internal cue of energy state by binding receptors 

located on tanycytes. Acute, short-term signalling of energy balance is also provided by 

Glu binding to the GLUT2 receptor on tanycytes. TSH and NMU are downregulated in 

short-day conditions. These findings indicate that tanycytes integrate environmental and 

endogenous cues and are therefore a key cell population for the neuroendocrine timing of 

seasonal reproduction. From Tolla et al., 2019. 
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1.7 Epigenetics 

One mechanism by which environmental conditions can modulate patterns of gene 

expression (Bird & Wolffe, 1999) is through epigenetics. Epigenetics studies the ways in 

which the environment is able to cause changes to an organism that do not involve 

alterations to the underlying genetic sequence. Instead, environmental conditions are able 

to shape the patterns by which genes are expressed (Bird and Wolffe, 1999). This can be 

seen as an adaptive response to ensure optimal fitness and survival of an individual, 

especially for species living in extreme environmental settings.  

Well-documented epigenetic mechanisms include DNA methylation and histone 

methylation and acetylation (Bird and Wolffe, 1999; Zhang, 2001; Snowden et al., 2002; 

Fuks et al., 2005; Ding et al., 2007). DNA methylation is by far the most studied epigenetic 

modification, as it has been characterised in a range of species, from unicellular organisms 

(Harony and Ankri, 2008) to plants (Zhang et al., 2006), to complex mammals. The main 

enzymes that carry out this process, the DNA methyltransferases (DNMTs), add a methyl 

group to mostly cytosine nucleotides in promoter regions (Boyes and Bird, 1991; Bird and 

Wolffe, 1999; Santoro and Grummt, 2005), although methylation at other nucleotides may 

occur. Since methylated DNA is more tightly packaged compared to non-methylated DNA, 

therefore less exposed to transcription components, DNA methylation is most commonly 

associated with gene inactivation (Bird and Wolffe, 1999). In contrast, the removal of 

methyl groups allows for accessible DNA and implicates gene expression. Different types 

of DNMTs have been associated with maintaining DNA methylation patterns through cell 

division (Dnmt1) (Bestor et al., 1988), as well as establishing new ones (Dnmt3a and 

Dnmt3b) (Okano et al., 1998; Okano et al., 1999; Jones, 2012).  

Histone modifications are also considered part of the epigenetic landscape of an 

organism. DNA is packaged in histones, proteins that organise the genetic code into units 

called nucleosomes. Five histone variants have been characterised so far: H1, H2A, H2B, 

H3 and H4 (Lachner and Jenuwein, 2002). Histone methylation involves the addition of a 
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methyl group to lysine and arginine residues of histones, or ‘tails’, and is associated with 

both activation and repression of transcription, depending on the site of methylation and 

the form of histone (Hoffmann et al., 2012). On the other hand, histone acetylation is the 

addition of an acetyl group to histone tails, and is associated with gene activation (Struhl, 

1998). 

DNA methylation and histone acetylation patterns are two of the main mechanisms 

forming the “epigenome” of an organism. Their expression in human tissues is summarised 

in Figure 1.6. These conserved epigenetic processes provide a framework for studies in 

fields that analyse the ways the environment influences an organism. One of the first 

studies conducted to determine their existence in humans was carried out by Holliday and 

Pugh (1975). At that time, it was known that bacteria possess methylation mechanisms for 

the modification of DNA at adenine loci, and that methyl groups are an important part of 

human genes. It was then hypothesised that methylation of genetic information in humans 

plays a similar role to DNA methylation in bacteria (Holliday and Pugh, 1975). It was also 

suggested that DNA methylation patterns are not random but associated with the activation 

or deactivation of a particular gene. This switch was observed to be a possible “molecular 

clock” for development, or a chemical mechanism that regulates the growth and 

reproductive cycle of the organism. It was also compared to stem cell differentiation in 

order to explain how the turning “on” and “off” of genes determines cell type, and 

therefore function of a cell. Shortly after this experiment, Riggs (1975) also explored the 

idea that DNA methylation has a deep effect on the interaction between certain enzymes 

and DNA, as a regulatory process. He emphasised the fact that there needs to be a 

mechanism that is able to maintain methylation patters (Riggs, 1975) throughout cell 

growth and division. This growing interest in epigenetics lead to another study in 1999 that 

produced compelling evidence for the idea that the role of DNA methylation in mammals 

is to deactivate the expression of genes (Jones and Laird, 1999). The experiment followed 

this mechanism in certain genes that inhibit the rise of tumours, also known as tumour-
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suppressor genes, e.g. p53. When in a methylated state, their expression was “turned off”. 

This caused a rapid increase in cancerous cells, facilitating cancer growth.  

In 1988, DNA methyltransferase 1 (DNMT1), was shown to be an important 

maintenance methylation enzyme in mammals (Bestor et al., 1988; Sharif et al., 2007). 

DNMT3a and DNMT3b are essential in cell function as they set up de novo methylation 

patterns: designing structural cell function and regulation when an individual is first born 

(Okano et al., 1998; Okano et al., 1999). DNA methylation has been shown to be essential 

for survival in certain mammals, such as mice (Li, Bestor and Jaenisch, 1992; Okano et al., 

1999). The absence of DNMTs in DNMT Knockout (KO) mice results in embryonic 

lethality (Li, Bestor and Jaenisch, 1992). These major findings opened the scientific 

community to novel possibilities regarding epigenome analysis and the mechanisms that 

allow the environment to cause morphological, behavioural and physiological changes to 

individuals. All of these studies provided the basic knowledge needed to investigate 

epigenetic changes and relate them to variations in the surrounding environmental 

conditions. Recent research has been focusing on analysing DNA methyltransferase 

activity in an array of different genes and tissues in order to assess its function in depth and 

understand just how much daily cell function depends on it.  
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Figure 1.6. Distribution and relative abundance of epigenetic enzymes. A representative 

diagram to highlight the tissue specific and expression levels of epigenetic enzymes in 

multiple tissues. Epigenetic enzymes presented in tissue boxes were selected based on 

higher than average RPKM expression levels across all tissues. Most enzymes involved in 

DNA methylation and histone modifications are expressed in neuroendocrine substrates 

(i.e. brain) as well as reproductive tissues (i.e. testes, ovary and uterus). RPKM data were 

obtained from PUBMED and are based on Fagerberg et al., (2014). From Coyle, Tolla and 

Stevenson, 2018 (see Appendix B). 
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1.7.1 Rhythmic epigenetics involved in the seasonal regulation of reproduction  

In recent years, epigenetics has grown into a field with applications in countless 

research areas, one of them being seasonal biology. Recently, DNA methylation has been 

associated with both daily and annual changes in light in seasonally breeding species. In 

the wasp (Nasonia vitripennis), yearly changes in DNA methylation have been linked to 

the stimulation of seasonal diapause (Pegoraro et al., 2015). A seasonal increase in DNA 

methylation has also been observed in the testes and uteri of Siberian hamsters (Phodopus 

sungorus. Lynch et al., 2016) and in squirrel (Ictidomys tridecemlineatus) livers (Alvarado 

et al., 2015) during non-reproductive winter periods. In addition, exposure to short days in 

Siberian hamsters resulted in a significant decrease in DNA methylation in the proximal 

promoter regions for DIO3; suggesting a direct link between epigenetic regulation and 

enzymes involved in the local thyroid hormone catabolism (Stevenson & Prendergast, 

2013). Recently, high-throughput analyses have revealed widespread tissue- and nuclei-

specific genomic variation in DNA methyltransferase and histone deacetylase enzymes 

expression (Yoshimura et al., 2003; Mukai et al., 2009; Stevenson et al., 2012c; Cubuk et 

al., 2017; Lomet et al., 2018).  

The precise downstream genomic targets and functional outcome of rhythmic 

oscillations in epigenetic modifications remain uncharacterized. Taken together, these 

studies indicate that epigenetic enzymes show predictable rhythmic patterns that regulate 

genomic regions critical for the neuroendocrine timing of seasonal reproduction. Thus, it is 

possible that these rhythmic epigenetic modifications are an adaptive response, especially 

for species living in extreme environmental settings (Stevenson, 2018), to ensure that 

reproductive physiological changes occur at the most appropriate time of the year, when 

factors such as temperature and food availability are able to favour optimal fitness and 

survival of an individual. It is likely that epigenetic modifications beyond DNA 

methylation show cell-tissue- and nuclei-specific patterns that are ultimately critical for 

species variation in the neuroendocrine regulation of seasonal reproduction.  
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1.7.2 Epigenetic modifications as causes of sex differences in response to supplementary 

cues 

In mammals, during the early stages of embryonic development, DNA methylation 

and histone modifications silence the expression of genes located on one of the X 

chromosomes (Avner and Heard, 2001), as a dosage compensation mechanism between the 

X and Y chromosomes. However, the genes that remain activated are determinants in 

certain somatic and neuronal sex differences (Chen et al., 2008) that could explain sex-

specific disease vulnerability (Chen et al., 2008). X chromosome silencing can be 

considered as one of the first actions of epigenetic processes on an organism (McCarthy et 

al., 2009). As described above, brain masculinization is an active process that requires the 

action of estrogen during a critical window of time during embryonic development 

(Naftolin and Ryan, 1975). Recent evidence suggests that brain feminization may also 

involve active processes (Nugent et al., 2015) and that epigenetic modifications including 

DNA methylation organize neuroendocrine masculinization.  

A male-like brain develops due to the result of aromatization of testosterone to 

estrogens (Naftolin and Ryan, 1975). In murine models, 17β-estradiol (E2) has a key role 

in brain sexual differentiation (MacLusky and Naftolin, 1981; McCarthy, 2008). Alpha-

fetoprotein in females binds to E2 and prevents E2 from crossing the blood-brain barrier 

and inducing brain masculinization (Bakker et al., 2006). The POA is a primary target and 

underlying substrate of sexual differences in the control of male sexual behavior and 

regulation of GnRH release. Nugent and colleagues examined levels of DNA 

methyltransferase enzymes activity in order to establish a link between DNA methylation 

in the brain and its masculinization. It was found that gonadal steroids repress the activity 

of DNMTs, decreasing DNA methylation at the promoters of masculinizing genes, leading 

to their transcription, and therefore the development of a male-like brain (Nugent et al., 

2015). Both chemical inhibition and molecular knockdown of DNMTs, particularly 
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DNMT3A, in female rats causes a shift towards male-like markers and behaviour (Nugent 

et al., 2015).  

In the avian system, males are homogametic (ZZ) and females are heterogametic 

(ZW). It is unclear whether birds possess a dosage compensation mechanism that is similar 

to X chromosome inactivation in mammals. RNA-seq and microarray data show higher Z-

linked gene expression in male chicken embryos than in female embryos in both the 

gonads and soma, suggesting the lack of a dosage compensation process (Julien et al., 

2012; Ellegren et al., 2007). However, it is possible that a balance is reached through other 

means. For instance, male hypermethylated region (MHM) is hypermethylated on both 

male Z chromosomes, but in a hypomethylated state in the female Z chromosome 

(Teranishi et al., 2001), indicating that perhaps avian dosage compensation exists via sex 

differences in transcription of specific regions. In addition, Smith and colleagues reported 

that this difference in dosage is precisely the cause of sex determination, as opposed to a 

result of it (Smith et al., 2009). They found that silencing Z-linked gene doublesex and 

mab-3-related transcription factor 1 (DMRT1) in male chicken embryos lead to gonad 

feminization, suggesting that avian sex determination is dependent upon the dosage of Z-

linked genes present (Smith et al., 2009). Further research is required in order to fully 

understand sexual differentiation and dosage compensation in birds. 

The extent to which seasonal variation in epigenetic modifications is regulated by 

supplementary cues is poorly understood. Given the consistent observation of food 

availability, social signals, and temperature cues to impact the timing of seasonal rhythms, 

it is likely that supplementary cues will drive sex-dependent effects on tissue-specific 

epigenomes. 

 

  



48 

 

1.8 The Japanese quail and the Siberian hamster as seasonal models 

 In time, an array of species has been used for research on the effects of seasonality 

on reproductive endocrinology and physiology. Some of these species include sheep, 

hamsters, mice, and quails. The method by which a particular species is selected for a 

specific project is by taking into consideration the timings of the study, availability of 

funds, and the type of behavioural or molecular analyses necessary. 

The Japanese quail (Coturnix japonica) and the Siberian hamster (Phodopus 

sungorus) are both well-characterised animal models, especially studied in the context of 

seasonal reproduction. They are both summer breeders and long daylengths initiate 

physiological, morphological and behavioural changes that lead to breeding (Shimakura, 

1940; Kato and Konishi, 1968; Bartness and Wade, 1985; Finley et al., 1995), thus 

allowing scientists to manipulate the external environment and accurately study its effects 

on physiology and reproduction (Robinson and Follett, 1982; Finley et al., 1995; Ball and 

Balthazart, 2010). The Siberian hamster exhibits marked changes in fur colour (white in 

the winter and dark in the winter), gonadal size, energy balance (Bao et al., 2019) and 

immune function (Banks et al., 2016) (Figure 1.7).  Japanese quail also present significant 

differences between the seasons, where a LD condition stimulates an increase in gonadal 

size, cloacal gland area, and abdominal fat (Robinson and Follett, 1982) (Figure 1.8). In 

addition, this species is optimal for research on reproductive physiology and behaviour, as 

it reaches sexual maturity seven to eight weeks post-hatching (Huss et al., 2008), allowing 

for the possibility of more studies in a relatively short period of time. The Japanese quail 

and the Siberian hamster provide then two excellent animals models for the study of 

seasonal reproduction in a laboratory setting. 
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Figure 1.7. Seasonal phenotypic differences in the Siberian hamster. (A) Siberian hamster 

maintained under long-day (LD) conditions exhibiting dark brown fur. (B) Hamster 

maintained under short-day (SD), non-breeding conditions exhibiting white fur. (C) 

Seasonal difference between LD (left) and SD testes (right). Photo credit Tyler Stevenson. 

(D) Size variation between LD (left) and SD uteri (right). Photo credit Christopher Coyle. 

 

 

 

 

 

 

 

A B 

C D 



50 

 

 

  

 

  

Figure 1.8. Testes size and seasonal abdominal fat change in male Japanese quail. (A) 

Male quail maintained under long-day (LD) conditions (B) SD testes. Similar to the 

Siberian hamster, testes volume and mass significantly increase in LD individuals (not 

pictured). (C) Seasonal difference between SD (left) and LD abdominal fat (right).  
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1.9 Thesis aims 

The present thesis uses a comparative approach to explore the neuropeptides and 

neural circuits regulating seasonal reproductive mechanisms in the seasonal species of 

Japanese quail and Siberian hamster. One recurring theme throughout the chapters is DNA 

methylation, as it is becoming apparent that epigenetic alterations play an essential role in 

the regulation of seasonal reproduction. Chapter 2 addresses the lack of a functional link 

between VA Opsin/ OPN5 and downstream reproductive mechanisms using RNA 

interference methods, testing the hypothesis that either VA Opsin and OPN5, or both, play 

a role in stimulating the neuroendocrine pathways that lead to sexual maturation in the 

Japanese quail. Chapter 3 explores VA Opsin and OPN5 expression during embryonic 

development of the quail and whether stress plays a role in photoreceptor mRNA levels or 

DNA methyltransferase expression during critical developmental stages. Chapters 4 and 5 

describe sex-specific effects of thyroid hormone on the hypothalamic-pituitary-gonadal 

axis of Siberian hamsters, and epigenetic enzyme control of seasonal breeding. Finally, 

chapter 6 illustrates two studies in Japanese quail aimed at understanding the reversibility 

of epigenetic mechanisms and the daily patterns of DNA methyltransferase enzymes in the 

quail. 
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Chapter 2 – The Role of Vertebrate Ancient Opsin and Neuropsin in 

Mediating Seasonal Reproduction in the Japanese Quail 

 

2.1 Introduction 

2.1.1 Seasonal Reproduction in Avian Species 

As with mammals, seasonal reproduction is a conserved mechanism for many avian 

species. Breeding needs to occur at the most favourable time of year in order to ensure rich 

food availability for offspring survival and fitness (Dawson et al., 2001). Birds, especially 

temperate avian species, have evolved a photoperiod-dependent system for the initiation of 

reproductive traits, where the duration of light dictates the organism’s morphology, 

physiology, and behaviour. Until the 1920’s, reproduction in birds was believed to be 

triggered by the temperature increase observed in spring. In 1926, Rowan’s pioneering 

work in dark-eyed juncos (Junco hyemalis) demonstrated that light, specifically an increase 

in daylength, is the primary cue birds living in the northern hemisphere require to initiate 

gonadal growth and reproduction (Rowan, 1926). Conversely, the gradual decrease in 

duration of light during autumn and winter causes reproductive organs to decrease in size 

and the dampening of reproductive behaviour. 

Supplementary cues, such as food quality and availability, temperature and social 

cues play an important role in precisely defining the timing of breeding, however this is 

both species- and sex-specific (for review: Tolla and Stevenson, 2020a). Integrating 

photoperiod and supplementary environmental cues allows for the activation of 

gonadotropin-releasing hormone (GNRH) neurons in the hypothalamus to release GNRH, 

which, in turn, stimulates gonadotroph cells in the anterior pituitary gland to secrete 

luteinising hormone (LH) and follicle-stimulating hormone (FSH). LH and FSH are 

essential in stimulating gonadal function in males and females. In males, LH stimulates 

testosterone production from the Leydig cells, and FSH and testosterone lead to testes 



53 

 

growth (Follett, 1976; Ubuka et al., 2008). In females, LH is responsible for signalling 

mature follicles to release androgen and oestrogen, and follicle-stimulating hormone 

targets granulosa cells in the ovaries to secrete progesterone. FSH in females also 

stimulates ovarian maturation and selection of follicles. Sex steroids, i.e. androgen and 

oestrogen, are responsible for complete sexual maturation, behaviour, and regulate 

negative feedback to the brain. 

Gonadotropin-inhibitory hormone (GNIH) also plays role in avian seasonal 

breeding in repressing LH and FSH, although minimal. Studies have shown that GNIH 

action is species-specific, depending on whether a species is strictly seasonal (Perfito et al., 

2011; Kriegsfeld et al., 2015). In addition, male Japanese quail show an increase in GNIH 

release in response to female presence (Tobari et al., 2014). The role of GNIH in avian 

breeding and in the inhibition of the hypothalamic-pituitary-axis is still largely unclear. 

 

2.1.2 Light detection and Deep Brain Photoreceptors 

For the neuroendocrine processes described above to be possible, organisms need 

to be able to detect sunlight and its duration. As described in chapter 1, light is able to 

penetrate the avian skull and is detected by deep-brain photoreceptors (DBPs). DBPs 

initiate the reproductive response, leading to breeding state. The precise identity of the 

DBPs responsible for seasonal reproduction is still unclear, as no functional link has been 

investigated yet. Based on the information gathered from prior studies, the candidate DBP 

must exhibit the following properties (as reviewed in García-Fernández et al., 2015): (1) 

The candidate opsins must be expressed in the hypothalamus (Halford et al., 2009); (2) 

They must be activated by wavelength of ~ 492 nm (Foster and Follett, 1985); (3) They 

must be linked to circadian genes; (4) They need to be associated with the activation of 

downstream reproductive pathways. Based on these criteria, the two candidate 

photoreceptors examined in the present study were VA Opsin and OPN5.  
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2.1.3 Epigenetics, seasonality, and photoreceptors 

As discussed in chapter 1, epigenetic processes are conserved across taxa and 

throughout tissues. DNA methylation and histone modifications are studied in a range of 

diverse fields, from cancer research to chronobiology, to maternal behaviour. DNA 

methylation is by far the most studied form of epigenetic modification, and it has been 

associated with both daily and annual changes in light in seasonally breeding species. The 

enzymes that carry out DNA methylation are the DNA methyltransferase enzymes 

(DNMTs), and the most well-characterised are DNMT1, DNMT3A and DNMT3B (see 

chapter 1). 

Epigenetic mechanisms have also been shown to play a role in opsin function. In a 

study by Nasonkin et al. (2010) in mice, animals that lacked Dnmt1 in the retina exhibited 

deficiencies in the structural development of retinal photoreceptors (Nasonkin et al., 2010). 

Retinal Dnmt1 knockdown also results in impaired photoreceptor differentiation and 

decreased photoreceptor survival in mice (Rhee et al., 2012). In addition, increased 

Dnmt3a expression has been shown in retinitis pigmentosa (RP), a disease that causes loss 

of photoreceptors in the eyes, in an RP mouse model (Farinelli et al., 2014). Finally, Rao et 

al. (2010) found that methylation of lysine residues 4 and 27 of histone 3 plays an essential 

role in the correct development of photoreceptors in embryonic mice (Rao et al., 2010). 

Taken together, the studies described above suggest that epigenetics plays a key role in 

retinal photoreception. However, the role of epigenetics in deep brain photoreception has 

not yet been explored, leaving the opportunity for this study to finally link not only DBPs 

to seasonality, but also to epigenetic changes. 

 

2.1.4 Hypotheses and aims 

The goal of this study was to identify the gene(s) responsible for deep brain 

photoreception in the Japanese quail. The two candidate opsins are VA Opsin and OPN5. 
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Therefore, to determine whether these two opsins account for the avian seasonal 

reproductive response, the first aim was to create an adeno-associated virus able to target 

the VA Opsin and OPN5 sequences and inhibit their expression in the hypothalamus, 

specifically the third ventricle (3V) (García-Fernández et al., 2015), of male adult Japanese 

quail. The second aim was to monitor reproductive characteristics after maintaining the 

animals in SD or Long day (LD) condition for either 2, 7 or 28 days, testing the hypothesis 

that VA Opsin and OPN5 knock-down in male Japanese quail exhibit a significant 

decrease in reproductive characteristics, such as LH and FSH release, testosterone levels, 

testes mass, cloacal volume and reproductive neuroendocrine hormone expression. Finally, 

epigenetic enzyme expression in the hypothalamus and pituitary complex was analysed, 

comparing control and treated individuals. It was hypothesised that DNA 

methyltransferase enzyme expression would decrease in knock-down birds compared to 

control individuals, to reflect a SD-induced phenotype. 

 

2.2 Materials and Methods 

2.2.1 Validation of AAV2 vector transfection 

An adeno-associated virus containing OPN5 and VA Opsin target sequences was 

developed (Figure 2.1) and sent to Virovek© for production. The two target sequences 

were placed between the capsid serotype 2, a CMV promoter to target both glia and 

neurons, and GFP for detection. The ability of a commercially available AAV2 vector 

(Virovek inc.) was first assessed via transfection of primary cell culture of avian neural 

cells by Dr Jonathan Pérez at the Roslin Institute, University of Edinburgh. Fresh brain 

explant sections were taken from quail chicks at embryonic day 10 and rinsed in ice cold 

PBS. Explant sections were cultured in sterile 24 well culture plates with 500 l of media. 

Media contained DMEM base with 1% PenStrep and 10% Fetal Bovine serum. Explants 

were incubated overnight at 37°C with 5% CO2 to stabilise cultures. 400 L of media was 
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removed and replaced with 600 L either a CMV or heF1a promoter. All tests were 

replicated in duplicate. Due to rapid depletion of media an additional 500 L of fresh 

media was added the following day. Explants were cultured for 5 days prior to imaging to 

visualize presence of transfected cells via GFP. GFP was visualized via fluorescence 

microscopy and found to be present using both promoters, but stronger expression was 

seen under the CMV promoter.  

 

 

 

Figure 2.1. Schematic representation of generated AAV2 constructs. The target sequences, 

VA Opsin (above) and opn5 (below) are sandwiched between the virus capsid serotype 

(AAV2), a CMV promoter, and GFP. 

 

2.2.2 Stereotaxic ICV injection coordinate verification 

Based on previously published studies, a series of stereotaxic coordinates were 

tested using quail cadavers and India ink. Brains were removed and dissected to establish 

site of ink within the brain and the following test coordinates were adjusted. This process 

was repeated until the coordinates were found to reliably target 3V of the medial basal 

hypothalamus. The conclusive coordinates based of bursa as a starting point are x=0 mm, 

y= 3.8 mm, z = -6.3 mm, then up to -6.0 mm for injection. 1 L of AAV2 (2.34E+13 

vg/mL) was injected per bird. Isofluorane (4-5%) with O2 at 1-1.5 L/minute was used to 

anesthetize the animals. Once induced, birds received analgesia via subcutaneous injection 

of meloxicam (0.5 mg/kg) and butorphanol (1.5 mg/kg). Quails were then positioned into a 
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stereotaxic frame (Kopf Instruments) and their head feathers were plucked, and the head 

disinfected. A ~1cm small incision was made on the head and sterile gauze was used to 

keep the skull exposed during surgery. Then, the injection needle was aligned to the bursa 

and digital readouts on the stereotaxic frame were zeroed. The needle was then moved to 

the coordinates of the injection and a small mark was made before clearing the needle. A 

small dental drill was used to drill through the skull of the animals. Then, the needle was 

realigned to the stereotaxic coordinates, then loaded with AAV2 solution before injecting 

the quails. Either veterinary adhesive (VetBond 3M) or suture were used to close the 

wound. Animals were kept in isolation, allowing them to recover until they were able to 

stand, then they were transferred to a communal recovery pen and provided with a heat 

lamp and food and water access. All surgical procedures were carried out in accordance 

with protocols approved by local AWERB under Home Office Project Licence held by Dr 

Ian Dunn at the Roslin Institute, University of Edinburgh. 

Animals were maintained under short photoperiod (6L:18D) before surgery to 

ensure short-day, non-breeding phenotypes. Once surgeries began, photoperiod was altered 

to 7L:17D to allow additional time for recovery during light hours post-surgery. Surgeries 

were carried out between 0845 and 1330 (lights on at 0800) each day.  

 

2.2.3 Experimental design  

2.2.3.1 Study 1: Baseline/ control study 

Once sexually mature, a group of male quails (N=5) was pseudo-randomly 

selected, kept in SD and received a blank virus (CV) injection. Other three groups of male 

quails were randomly selected to receive either a CV (N=5), VA Opsin (both short and 

long; N=8) or OPN5 (N=5) injection, maintained in a 7L:17D condition for 2 weeks, and 

then individuals were photostimulated by transferring to a 16L:8D condition for 2 days, to 

mimic a summer breeding condition. 
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2.2.3.2 Studies 2 and 3: Acute study and chronic study  

Two studies were conducted to examine the impact of RNAi after 7 days (acute 

study; N=33) or 28 days (chronic study; N=33) of photostimulation on male Japanese 

quail. Quail were pseudo-randomly selected and assigned to a treatment: aside from a 

control virus group (CV; acute study:N=9; chronic study: N=8), treatment groups were 

injected with RNAi viruses that targeted VA Opsin (acute study: N=9; chronic study: N=9) 

or OPN5 (acute study: N=7; chronic study: N=9). A group of birds that received both 

OPN5 and VA Opsin RNAi was also included (‘Both’ group; acute study: N=8; chronic 

study: N=7). Following a 2-week incubation and transfection period (7L:17D), quails were 

photostimulated by transferring them to a 16L:8D condition for either 7 or 28 days. 

Cloacal gland size was measured throughout the 28 days of the chronic study. Body and 

testes weights were also taken from the start to the end of each study. The animals were 

culled, and the following tissues were extracted: brain, pituitary gland, gonads, liver, 

retina/eyes, adipose tissue, thymus, spleen, heart, muscle, adrenal, kidney. Tissues were 

collected and frozen at -80°C until analysis. 

 

2.2.3.3 Exclusion criteria 

Animals were selected for inclusion in subsequent analyses based on the following 

criteria. Quails that exhibited enlarged gonads within the short-day or 2-day groups were 

excluded, as it implied having broken the short-day, non-breeding state, prior to long-day 

transfer. One animal was excluded from OPN5 western blot analyses because of a 

technical error in gel loading. 28-day individuals were included based on the presence of 

GFP signalling within and around the third ventricle (3V) in 30 m coronal sections of 

fresh frozen brain mounted to Polysine slides and immediately wet mounted using 

VECTASHIELD Antifade Mounting Media (Vector Labs) containing DAPI. 
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2.2.4 Antibody descriptions 

Antibodies against VA Opsin and Opn5 were made polyclonal in rabbit hosts and 

custom made by Cambridge Biochemicals. Opn5 antibody antigen: 

CISSHRDSAALSETQLEV (Nakane et al., 2010). VA Opsin antibody antigen: 

PARWDPFHHPLDSI (Halford et al., 2009).  

 

2.2.5 Western blot protein analyses 

Opsin expression in birds in the short-day, 2-day and 7-day timepoints was 

analysed by western blot. Whole hypothalami were dissected because of the extreme 

challenge in dissecting the 3V alone because of its small size, as well as to investigate 

whole-hypothalamus interactions, as the downstream mechanisms of VA Opsin and OPN5 

are currently unknown. The hypothalamus was dissected from frozen brains and 

homogenized in 700 L of 100 mM Tris-HCL buffer with 4% w/v SDS and protease 

inhibitors (Halt™ Protease Inhibitor Cocktail, EDTA-free, Thermo Fisher Scientific). The 

anatomical boundaries for hypothalamus dissection were the tractus 

septopalliomesencephalicus (TrSM) at the anterior border, the cerebellum posterior at the 

posterior border, then 1-1.5mm on either side of the mid-line were trimmed, and, from the 

remaining chunk, the dorsal 2 mm were removed. Samples were then centrifuged at 20,000 

x g for 20 minutes at 4°C. Supernatant was collected and stored at -80°C. Total protein 

concentration was determined using 1 L of supernatant using a BCA Protein Assay 

(Pierce™ BCA Protein Assay Kit). Supernatant volume for use in western blots was then 

standardized to 10 g of protein to each well by diluting with water. 20 L of diluted 

sample was mixed with 10 L of LDS buffer (NuPAGE™ LDS Sample Buffer, Thermo 

Fisher Scientific), before incubating at 98°C for 2 minutes prior to loading. 10 L of each 

sample were loaded onto 4-12% Bis-Tris pre-cast gels (NuPAGE™, Thermo Fisher 

Scientific). Samples were loaded onto two separate gels that were run in parallel in the 
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same gel tank. Gels were run at 90V for 5 minutes to ensure even entry of samples into the 

gel, then at 175V for 1 hour. One duplicate gel was then immediately incubated in 40 ml of 

OptiBlue protein stain for 1 hour to quantify total protein loading on an orbital shaker. The 

second gel was then processed for western blot transfer. Protein was transferred to a PDVF 

membrane (iBlot™ Transfer Stacks, PVDF, regular size, Thermo Fisher Scientific) using 

the iBlot 2 system on preset setting 3. Then, membranes were washed in 1X PBS 5 times 

for 5 minutes before being blocked for 30 minutes in Odyssey blocking buffer in 50 ml 

falcon tubes. Blocking buffer was removed and 5 ml of primary antibody solution (5 ml 

Odyssey buffer, 1 AB, 0.1% Tween 20) were added. After primary antibody incubation, 

samples were washed with PBS for 5 minutes, 6 times. Incubation with secondary antibody 

was performed using IRdye 680RD Goat Anti-Rabbit antibody (LI-COR) at 1:10,000 in 5 

ml Odyssey Blocking Buffer with 0.1% Tween-20 Detergent. Secondary Antibody 

incubation was done for 90 minutes at room temperature. Membranes were then rinsed 

with PBS 5minutes for 6 times, before imaging. Membranes were visualised on a LI-COR 

Odyssey imager using Image Studio software (Image Studio™ LI-COR). Western blots 

were imaged at 3.5 Intensity, Medium image quality at 169 m resolution. Total protein 

gels were rinsed in distilled water and then imaged on the 700 nm channel at lowest image 

quality, Intensity 3, 169 m resolution. Protein work was carried out by Dr Jonathan Pérez 

at the Roslin Institute, University of Edinburgh. 

 

2.2.6 RNA isolation and cDNA synthesis 

RNA was extracted from pituitary gland and gonadal tissues using TRIzol (Thermo 

Fisher Scientific). For the pituitary gland, the entire gland was used for extraction. For the 

testes, a 100 mg piece of tissue was used. 1 mL of TRIzol was added to the tissue and 

homogenized using Kinematica™ Polytron™ PT1200E handheld homogenizer (Thermo 

Fisher Scientific). Then, after a 5 min incubation at room temperature, 200 µL of 
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chloroform were added to the homogenized sample and the tubes were incubated for 3 min 

at room temperature. The samples were centrifuged for 15 min at 12,000 g at 4C. After 

centrifugation, the samples separate into an upper aqueous phase, interphase and a lower 

red phase. The upper aqueous phase was pipetted out of the tube and transferred to a fresh 

tube. 500 µL of isopropanol were added to the new tubes and incubated for 10 min. The 

tubes were then centrifuged for 10 min at 12,000 g at 4C. The supernatant was discarded, 

and the white RNA pellet was resuspended in 1 mL of 75% ethanol, vortexed and 

centrifuged for 5 min at 7,500 g at 4C. The supernatant was discarded, and the tubes were 

air-dried for 5-10 min. Finally, the pellet was resuspended in 30 µL of RNase-free water. 

Nucleic acid quality (260/280 ratio) and concentration were determined by using a 

spectrophotometer (Nanodrop; Thermo Fisher Scientific). cDNA was synthesised using 

Precision nanoScript2 Reverse Transcription Kit (Primerdesign Ltd) (2 µg RNA) and 

stored at -20 °C until quantitative PCR (qPCR) assays. 

 

2.2.7 Primer design and optimisation 

Primers for target genes were designed using the NCBI Primer Design Tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were designed to include a 40-

60% GC content and have an annealing temperature of 55-65°C, then ordered from 

Invitrogen (Thermo Fisher Scientific). Primers were then suspended in RNAse- and 

DNAse-free water to 10 µM concentration and optimised using PCR and gel 

electrophoresis. Each PCR tube consisted of 45 µL of PCR SuperMix (Thermo Fisher 

Scientific), 1 µL of 10 µM forward primer, 1 µL of 10 µM reverse primer, 100 ng of quail 

cDNA, and water until 50 µL. The tubes were then placed in a thermal cycler (Thermo 

Hybaid Px2, Thermo Fisher Scientific) to follow a gradient program: (I) initial 

denaturation, 94°C for 2 minutes, 1 cycle; (II) denaturation, 94°C for 15 seconds, followed 

by a gradient annealing temperature (55°C – 62°C) for 30 seconds, followed by extension, 
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72°C for 1 minute/kb, 35 cycles; (III) hold step at 4°C. A 1% agarose gel was made by 

mixing 1.2 g agarose, 120 ml 1X TBE buffer (Thermo Fisher Scientific) and 4 µL SYBR 

Safe DNA Gel Stain (Thermo Fisher Scientific), heating it in a glass beaker for ~2 

minutes, then pouring it in a gel cast and letting it set for 40 minutes. 10 µL of each PCR 

product were then loaded onto the gel. Running was carried out for 50 minutes, at 100 V 

and 100 mA. The gels were visualised using a UV light transilluminator (GeneFlash, 

Syngene) and the ideal annealing temperature was identified for each primer pair by 

selecting the one that yielded the clearer quality and most amount of product. See Table 

2.1 for detailed primer information.  

 
 

Table 2.1. List of Japanese quail target genes, primer sequences, and relative annealing 

temperatures used. 

 

2.2.8 Real-time PCR (qPCR) 

qPCRs were performed on a Stratagene Mx3000 Real Time PCR machine in 20 µl 

reactions. For each well, the qPCR mix consisted of 5 µl cDNA template, 10 µl SYBR 

green (Primerdesign Ltd), 0.5 µl (300 nM) forward primer, 0.5µl (300nM) reverse primer 

and 4µl RNase-free H2O. Samples were run in duplicate in a 96-well plate format under 

Gene Forward primer Reverse primer Annealing Temp 

GAPDH ACGGTGGATGGCCCCTCTGG GGCCCATCAGCAGCAGCCTT 60˚C

B-ACTIN AATCAAGATCATTGCCCCAC TAAGACTGCTGCTGACACC 60˚C

TSH CTCTTTGGCCTGACTTTTGG TGTGCACACGTTTTGAGACA 60˚C

GNRH CGCTGAAAATCTGGTGGAAT TTGTTGGCGTTGTGGATTTA 60˚C

GNIH ATGGTGCGTGCCTAGATGAAC AGCAACTGAATTTGGCACTTTG 60˚C

DNMT1 GTGACAGCCCTATGGGAGGAC TCCACCATGAACAGCTCCAAC 61˚C

DNMT3A AGCGTGCAAGAGAGCGATG GCTCTGTCCTAAGGTGACCC 60˚C

DNMT3B AATCTCAGAGAACGGGGCTC TTTGTTCTCGGGTCTGGTCC 59˚C

OPN5 ATGGCATCAGACTGCAACTCC AAGGAACAGTAGCCCAGAACG 60˚C

VA Opsin CCTTGCGTACCCCTCTTAGC GGTGCCACCAGTCAAAGAGA 60˚C

LH TTTACCGCAGCCCTTTGGGT AGAGCCACGGGTAGGATGACTTT 55˚C

FSH CTGCGGTGACCATCCTGAATCTTT GCTTCCATTGTGACTGAAGGAGCA 62˚C

GNRH-R CTTCTCCTGTTCAGCCTCAT CTCACAGAGTGCCATCCTCA 60˚C

FSH-R ATGGAACCTGCCTGGATGAG CTTGTATGTAGACCTCGCTCTTAG 56˚C

LH-R CAGACGTCCTGGACATTTCTTC GCTGGGGTAGGTCAGAACAG 58˚C

AR AAGTACCTGTGTGCTAGCCG CTTTGCGGGCTCCAAGAGTC 60˚C
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the following conditions: i) denaturing at 95°C for 5 min, then 39 cycles of ii) 95°C for 10 

secs, iii) 30 secs at annealing temperature dependent on primer (Table 2.1), and finally iv) 

an extension step of 72°C for 30 secs. Melt curves were analysed to ensure the specificity 

of each reaction through only a single peak. PCR Miner (Zhao and Fernald, 2005) was 

used to determine reaction efficiencies and quantification cycle (Ct). Fold expression of 

each gene of interest was measured in relation to the average Ct for two reference genes 

(GAPDH and B-ACTIN) and calculated using 2-(ΔΔCt). 

 

2.2.9 Testosterone assay 

To measure plasma testosterone levels, the Parameter™ Testosterone Assay (R&D 

Systems, Bio-Techne) was used according to manufacturer’s instructions. DNA was 

extracted from the blood of Japanese quail using Qiagen DNeasy Blood and Tissue Kit 

(Qiagen, UK). Samples for the testosterone assay were prepared by mixing 50 µl DNA (1 

µg/ µl) of each sample with 450 µl of Calibrator Diluent RDS-48. 50 µl of Primary 

Antibody Solution were added to each well, apart from the non-specific binding (NSB) 

wells. Then, the plate was incubated on an horizontal shaker for 1 hour at room 

temperature at 500 rpm. After incubation, the wells were emptied by blotting on a dry 

paper towel and washed four times with wash buffer. 100 µl of Calibrator Diluent were 

added to the NSB wells and the zero standard wells. 100 µl of prepared standard, control or 

sample were added to the residual wells. Then, 50 µl of Testosterone Conjugate were 

added to each well and the plate was covered with an adhesive film and incubated at room 

temperature for 3 hours on an horizontal shaker at 500 rpm. After incubation, the wells 

were washes four times with wash buffer. Next, 200 µl of Substrate Solution were added to 

each well and the plate was incubated for 30 minutes at room temperature, away from 

light. Finally, 50 µl of Stop Solution were added to each well. The plate was then carried to 

a microplate reader (LT-4500, Labtech) and the absorbance of each well was measured at 

450 nm and at 570 nm as a control. 



64 

 

2.2.10 Statistical Analysis 

All statistical analyses were performed using SigmaPlot 13.0. Data were log-

transformed in the event of a violation of normality or equal variance. Significance was 

determined at p < 0.05. For detailed statistical analysis information, refer to Tables A.1 and 

A.2 (Appendix A). 
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2.3. Results  

2.3.1 Adeno-associated virus silencing of target deep-brain photoreceptors 

 Confirmatory qPCRs and Western blots were performed on study 1 and 2 

hypothalami to ensure the silencing of VA Opsin and OPN5. For mRNA and protein 

results (Figure 2.2A and B), average expression of control virus-injected individuals was 

taken. Then, mRNA and protein expression of VA Opsin, OPN5 or ‘Both’ groups was 

measured, and the average control value was subtracted from each treatment group, and the 

knockdown percentage was calculated. VA Opsin and OPN5 mRNA expression showed 

around 95% knockdown (K/D) in all treatment groups for both genes (Figure 2.2A). The 

viral constructs were effective in knocking down around >40% of protein expression in all 

treatment groups except the 2-day VA Opsin K/D group, which showed an increase in VA 

Opsin protein expression (Figure 2.2B).  

Immunohistochemistry showed effective transport of AAV into the hypothalamus 

by GFP signalling, and stronger expression was seen under the CMV promoter compared 

to the heF1a promoter (Figure 2.2C and D). By using OPN5 and VA Opsin antibodies, it 

was possible to identify immunoreactivity in cells lining the 3V (Figure 2.2 E and F), 

confirming photoreceptor localisation. OPN5-expressing cells were found in the PVO 

(Figure 2.2E) and VA-immunoreactive cells were identified within the POA (Figure 2.2F). 

Protein work/ immunohistochemistry was carried out by Dr Jonathan Pérez at the Roslin 

Institute, University of Edinburgh. 
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Figure 2.2. Confirmation of knockdown analyses. (A) Percent knockdown of VA Opsin 

and OPN5 mRNA in the hypothalamus of 2-day and 7-day study treatment groups at 

around 95% per group. (B) Percent knockdown of VA Opsin and OPN5 protein expression 

in the hypothalamus of 2-day and 7-day study treatment groups. All groups present 40-

60% knockdown levels, except for the 2d VA group. (C)(D) Representative blots showing 

effective transport of AAV into the hypothalamus of embryonic day 10 quails by GFP 

signalling using either a CMV promoter (C) or a heF1a promoter (D). Stronger GFP 

expression was seen with the CMV promoter. (E) Representative blots showing GFP 

localisation within the third ventricle (3rdV) of the hypothalamus. (F)(G) Representative 

blots showing VA and OPN5 immunoreactivity in cells lining the 3rdV within the 

paraventricular organ (PVO) and preoptic area (POA) of the hypothalamus. Protein work/ 

immunohistochemistry was carried out by Dr Jonathan Pérez at the Roslin Institute, 

University of Edinburgh. 
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2.3.2 Peripheral measurements  

Testes and body weights were taken at each collection time point (2d, 7d and 28d) 

(Figure 2.3). After 2 days of photostimulation, there was no difference in testes mass 

between treatment groups (F=0.205, p=0.892). However, after RNAi treatment and a 7-day 

photostimulation, there was a significant increase in testes mass in all treatment groups 

compared to SD individuals (F=11.334; p<0.001). Although not significant, there was also 

a pattern for an additive increase in testes mass in OPN5, VA and Both groups. After 28 

days of photostimulation, no significant difference between treatment groups was found 

(F= 0.205; p= 0.892). When analysing body mass data, no significant effect of RNAi was 

detected at 2 days (F=0.805; p=0.462), 7 days (F=0.717; p=0.549), or 28 days (F=0.664; 

p=0.580) (Figure 2.4).  

Cloacal gland area was measured in 28-day individuals. The change in cloacal 

gland growth rate (k value) between weeks 1-4 was then calculated (Figure 2.4). CV 

individuals showed higher overall k throughout the weeks, compared to RNAi-treated birds 

(Figure 2.5). 2-way ANOVA indicated a significant effect of both injection (F=3.512; 

p=0.009) and week (F=33.363; p<0.001) on cloacal k. Fisher’s post-hoc LSD method 

revealed a significant difference between CV and VA k, and CV and ‘Both’ k for all weeks 

(Figure 2.5; see tables A.1 and A.2 in Appendix A for statistical analysis details). 
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Figure 2.3. Testes mass in adult male quail treated with a control virus, or with an AAV 

construct to silence the expression of OPN5, VA Opsin or both (OPN5+VA), and 

photostimulated for either 2 days (A), 7 days (B) or 28 days (C). Asterisks (*) represent 

significance between groups. Results are mean ± SEM. SD= short-day, control virus 

(N=5); CV= long-day, control virus (2d: N=5; 7d: N=9; 28d: N=8); OPN5= OPN5 

knockdown group (2d: N=5; 7d: N=7; 28d: N=9); VA= VA Opsin knockdown group (2d: 

N=8; 7d: N=9; 28d: N=9); Both= OPN5 and VA Opsin knockdown group (7d: N=8; 28d: 

N=7). 
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Figure 2.4. Body mass in adult male quail treated with a control virus, or with an AAV 

construct to silence the expression of OPN5, VA Opsin or both (OPN5+VA), and 

photostimulated for either 2 days (A), 7 days (B) or 28 days (C). Results are mean ± SEM. 

SD= short-day, control virus (N=5); CV= long-day, control virus (2d: N=5; 7d: N=9; 28d: 

N=8); OPN5= OPN5 knockdown group (2d: N=5; 7d: N=7; 28d: N=9); VA= VA Opsin 

knockdown group (2d: N=8; 7d: N=9; 28d: N=9); Both= OPN5 and VA Opsin knockdown 

group (7d: N=8; 28d: N=7). 
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Figure 2.5. Change in cloacal gland growth rate (k value) in birds injected with a control 

virus, or with an AAV construct to silence the expression of OPN5, VA Opsin or both 

(OPN5+VA), and photostimulated for 28 days. Different letters represent a significant 

difference. Here, a significant difference was found between CV and VA k, and between 

CV and ‘Both’ k for all weeks. CV= long-day, control virus (N=8); OPN5= OPN5 

knockdown group (N=9); VA= VA Opsin knockdown group (N=9); Both= OPN5 and VA 

Opsin knockdown group (28d: N=7). 
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2.3.3 Gene expression 

2.3.3.1 Hypothalamus 

Gene expression in the hypothalamus was measured at 2 days and 7 days after 

photostimulation. Hypothalamic GNRH expression did not change between control virus 

SD individuals and treated quails (F=0.237, p=0.869) in the 2d study (Figure 2.6A). 

However, after 7 days of photostimulation, a one-way ANOVA revealed a significant 

effect of treatment (F=3.858, p=0.012). Tukey’s post-hoc test indicated an increase in 

GNRH expression in VA individuals compared to SD individuals (p=0.018; Figure 2.6B).  

 

 
Figure 2.6. Average gene expression for GNRH for the 2-day study (A) and 7-day study 

(B). Asterisks (*) represent significance between groups. Results are mean ± SEM. SD= 

short-day, control virus (N=5); CV= long-day, control virus (2d: N=5; 7d: N=9); OPN5= 

OPN5 knockdown group (2d: N=5; 7d: N=7); VA= VA Opsin knockdown group (2d: 

N=8; 7d: N=9); Both= OPN5 and VA Opsin knockdown group (N=8). 

 

 

When investigating GNIH expression in the hypothalamus, no significant change was 

detected after 2 days of photostimulation (F=0.104, p=0.957), or after 7 days (H=3.237; 

p=0.519) (Figure 2.7).  

SD CV OPN5 VA

2
d
 G

N
R

H
 e

x
p

re
s
s
io

n

0

10

20

30

40

50

A B 



72 

 

 
Figure 2.7. Average gene expression of GNIH, for the 2-day study (A) and 7-day study 

(B). Results are mean ± SEM. SD= short-day, control virus (N=5); CV= long-day, control 

virus (2d: N=5; 7d: N=9); OPN5= OPN5 knockdown group (2d: N=5; 7d: N=7); VA= VA 

Opsin knockdown group (2d: N=8; 7d: N=9); Both= OPN5 and VA Opsin knockdown 

group (N=8). 

 

Next, expression of DNA methyltransferase enzymes 1, 3A and 3B was analysed. 

At 2 days post-photostimulation, there was no significant effect of treatment on expression 

of DNMT1 (F=0.214; p=0.885), DNMT3A (F=0.120; p=0.947), or DNMT3B (F=0.134; 

p=0.939) (Figure 2.8). OPN5-treated individuals appear to present slightly higher levels of 

hypothalamic DNMT1, 3A and 3B expression compared to the rest of the treatment groups, 

although not statistically significant. Kruskal-Wallis One Way Analysis of Variance on 

Ranks revealed that after 7 days of photostimulation, there was no significant effect of 

treatment on DNMT1 (H=4.833; p=0.305), DNMT3A (H=8.601; p=0.072), or DNMT3B 

(H=4.222; p=0.377) (Figure 2.9). DNMT3A and DNMT3B levels appear to decrease in 

OPN5 and ‘Both’ birds, although not statistically significant (Figure 2.9). A t-test between 

OPN5 birds showed a decrease in DNMT3B expression in the 7-day group, compared to 2-

day hypothalami. 
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Figure 2.8. DNA methyltransferase 1 (A), 3A (B), 3B (C) expression in the hypothalamus 

of control virus short-day individuals (SD), and birds that were injected with either a 

control virus (CV), OPN5-silencing virus (OPN5), or VA Opsin-silencing virus (VA) and 

photostimulated for 2 days. SD= short-day, control virus (N=5); CV= long-day, control 

virus (N=5); OPN5= OPN5 knockdown group (N=5); VA= VA Opsin knockdown group 

(N=8). 
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Figure 2.9. DNA methyltransferase 1 (A), 3A (B), 3B (C) expression in the hypothalamus 

of control virus short-day individuals (SD), and birds that were injected with either a 

control virus (CV), OPN5-silencing virus (OPN5), or VA Opsin-silencing virus (VA) and 

photostimulated for 2 days. (D) Comparison of DNMT3B levels between 2-day and 7-day 

OPN5 individuals (p=0.0536). SD= short-day, control virus (N=5); CV= long-day, control 

virus (N=9); OPN5= OPN5 knockdown group (2d: N=5; 7d: N=7); VA= VA Opsin 

knockdown group (N=9); Both= OPN5 and VA Opsin knockdown group (N=8). 
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2.3.3.2 TSHB, LHB, and FSH expression in the pituitary gland 

Key reproductive genes were analysed in the anterior pituitary gland of quail at 2, 

7, and 28 days.  Target genes include thyroid-stimulating hormone (TSHB), luteinising 

hormone (LHB), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone 

receptor (GNRH-R). In addition, the expression of DNA methyltransferases 1 and 3A was 

investigated. 

TSHB expression was found not to vary between treatment groups at 2 days 

(F=1.632; p=0.219) (Figure 2.10A), 7 days (H=2.129; p=0.712) (Figure 2.11A), or 28 days 

(H=5.681; p=0.128) (Figure 2.12A). No significant effect of treatment was found on LHB 

expression at 2 days (F=0.663; p=0.586) (Figure 2.10B), 7 days (H=1.865; p=0.761) 

(Figure 2.11B), or 28 days (H=4.372; p=0.224) (Figure 2.12C). There was a significant 

effect of treatment on FSH (F=9.346; p<0.001) levels at 2 days, with levels increasing in 

CV, OPN5, and VA groups, compared to SD (Figure 2.10C). At 7 days, FSH expression 

was significantly affected by treatment (F=3.139; p=0.028), with a significant increase in 

‘Both’ treated individuals, compared to SD (Figure 2.11C). 28-day FSH expression did not 

change with treatment (H=5.943; p=0.114) (2.12D). FSH levels at after 2 days were also 

greatly higher than levels at 7 or 28 days. GNRH-R levels were also monitored in 28-day 

individuals. There was no effect of treatment on its expression (F=2.899; p=0.051) (Figure 

2.12B). 
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Figure 2.10. Changes in key molecular targets in the pituitary gland between treatments at 

2 days. qPCR analyses of pituitary expression of thyrotropin-stimulating hormone (TSHB) 

(A), luteinizing hormone beta subunit (LHB) (B), and follicle-stimulating hormone (FSH) 

(C) from adult male quail. Note – quail were collected between zt2 and zt7 to capture the 

increase in gonadotropin levels (Meddle and Follett, 1997). Asterisks (*) represent 

significance between groups. Results are mean ± SEM. SD= short-day, control virus 

(N=5); CV= long-day, control virus (N=5); OPN5= OPN5 knockdown group (N=5); VA= 

VA Opsin knockdown group (N=8). 
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Figure 2.11. Changes in key molecular targets in the pituitary gland between treatments at 

7 days. qPCR analyses of pituitary expression of thyrotropin-stimulating hormone (TSHB) 

(A), luteinizing hormone beta subunit (LHB) (B), and follicle-stimulating hormone (FSH) 

(C). Note – quail were collected between zt2 and zt7 to capture the increase in 

gonadotropin levels (Meddle and Follett, 1997). Asterisks (*) represent significance 

between groups. Results are mean ± SEM. SD= short-day, control virus (N=5); CV= long-

day, control virus (N=9); OPN5= OPN5 knockdown group (N=7); VA= VA Opsin 

knockdown group (N=9); Both= OPN5 and VA Opsin knockdown group (N=8). 
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Figure 2.12. Changes in key molecular targets in the pituitary gland between treatments at 

28 days. qPCR analyses of pituitary expression of thyrotropin-stimulating hormone 

(TSHB) (A), Gonadotropin-releasing hormone receptor II (GNRH-R) (B), luteinizing 

hormone beta subunit (LHB) (C), and follicle-stimulating hormone (FSH) (D). Note – quail 

were collected between zt2 and zt7 to capture the increase in gonadotropin levels (Meddle 

and Follett, 1997). Results are mean ± SEM. CV= long-day, control virus (N=8); OPN5= 

OPN5 knockdown group (N=9); VA= VA Opsin knockdown group (N=9); Both= OPN5 

and VA Opsin knockdown group (28d: N=7). 
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2.3.3.3 DNMT1 is reduced in the pituitary gland of 28d VA birds 

DNA methyltransferase 1 and 3A expression was measured in the pituitary gland of 28-day 

individuals. VA-treated animals exhibited a decrease in DNMT1 expression, compared to 

CV individuals (H=9.523; p=0.023). No change was found in DNMT3A expression 

between treatment groups (F=0.988; 0.412) (Figure 2.13). 
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Figure 2.13. Pituitary gland expression of DNMT1 (A) and DNMT3A (B) for each 

treatment group in the pituitary gland after 28 days of photostimulation (Study 3). DNMT1 

is significantly reduced (p = 0.023) in VA Opsin K/D individuals compared to controls 

(CV). Asterisks (*) represent significance between groups. Results are mean ± SEM. CV= 

long-day, control virus (N=8); OPN5= OPN5 knockdown group (N=9); VA= VA Opsin 

knockdown group (N=9); Both= OPN5 and VA Opsin knockdown group (28d: N=7). 
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2.3.3.4 Testes 

The expression of FSH receptor (FSH-R), LH receptor (LH-R), and Androgen receptor (AR) 

was analysed in the testes of 2-day, 7-day and 28-day individuals. Treatment did not 

significantly alter FSH-R expression at 2 days (F=0.907; p=0.458) (Figure 2.14A), or 7 days 

(F=7.395; p=0.116) (Figure 2.15A). However, at 28 days, there was a significant reduction 

of FSH-R in OPN5-treated individuals compared to the CV group (F=3.028; p=0.044) 

(Figure 2.16A). When considering LH-R, there was no effect of treatment on LH-R levels at 

2 days (H=5.309; p=0.151) (Figure 2.14B), 7 days (H=0.554; p=0.968) (Figure 2.15B), or 

28 days (H=1.164; p=0.762) (Figure 2.16B). Finally, AR did not exhibit a change in 

expression between treatment groups at 2 days (F=0.718; p=0.555) (Figure 2.14C), 7 days 

(H=3.527; p=0.474) (Figure 2.15C), or 28 days (F=1.478; p=0.240) (Figure 2.16C). 
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Figure 2.14. Photoperiodic regulation of receptor expression in the testes for the 2-day 

study. mRNA levels of follicle stimulating hormone receptor (FSH-R) (A), luteinizing 

hormone receptor (LH-R) (B) and androgen receptor (AR) (C) in quail testes. In short days 

(SD), male quail received ICV injections that consisted of control virus (CV). A subset of 

SD-CV quail was collected and used as a reference group (CV). All birds were then moved 

to long days and collected after 2 days. Results are mean ± SEM. SD= short-day, control 

virus; CV= long-day, control virus; OPN5= OPN5 knockdown group; VA= VA Opsin 

knockdown group. SD= short-day, control virus (N=5); CV= long-day, control virus 

(N=5); OPN5= OPN5 knockdown group (N=5); VA= VA Opsin knockdown group (N=8). 
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Figure 2.15. Photoperiodic regulation of receptor expression in the testes for the 7-day 

study. mRNA levels of follicle stimulating hormone receptor (FSH-R) (A), luteinizing 

hormone receptor (LH-R) (B) and androgen receptor (AR) (C) in quail testes. In short days 

(SD), male quail received ICV injections that consisted of control virus (CV). A subset of 

SD-CV quail was collected and used as a reference group (CV). All birds were then moved 

to long days and collected after 7 days. Results are mean ± SEM. SD= short-day, control 

virus (N=5); CV= long-day, control virus (N=9); OPN5= OPN5 knockdown group (N=7); 

VA= VA Opsin knockdown group (N=9); Both= OPN5 and VA Opsin knockdown group 

(N=8). 
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Figure 2.16. Photoperiodic regulation of receptor expression in the testes for the 28-day 

chronic study. mRNA levels of follicle stimulating hormone receptor (FSH-R) (A), 

luteinizing hormone receptor (LH-R) (B) and androgen receptor (AR) (C) in quail testes. A 

subset of SD-CV quail was collected and used as a reference group (CV). All birds were 

then moved to long days and collected after 28 days. Asterisks (*) represent significance 

between groups. Results are mean ± SEM. CV= long-day, control virus (N=8); OPN5= 

OPN5 knockdown group (N=9); VA= VA Opsin knockdown group (N=9); Both= OPN5 

and VA Opsin knockdown group (28d: N=7). 
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2.3.4 Plasma testosterone 

Finally, plasma testosterone levels were measured in 2-day, 7-day and 28-day quail. At 2 

days, there was no effect of treatment on plasma testosterone (F=0.922; p=0.451) (Figure 

2.17A). After 7 days of photostimulation however, there was a significant effect of 

treatment (F=31.693; p<0.001), specifically an increase in testosterone in CV, OPN5, VA 

and Both groups, compared to SD (Figure 2.17B). At 28 days no change was seen between 

treatment groups, but there was a significant increase in CV, OPN5 and VA testosterone 

levels, compared to the SD group (F=8.105; p<0.001) (Figure 2.17C).  
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Figure 2.17. Plasma testosterone across the photoperiodic response. In short days (SD), 

male quail received ICV injections that consisted of control virus (CV). A subset of SD-

CV quail was collected and used as a reference group. All birds were then moved to long 

days and collected after 2 days, 7 days, or 28 days. Plasma testosterone levels are similar to 

previous reports (Follett and Maung, 1978). Asterisks (*) represent significance between 

groups. Results are mean ± SEM. SD= short-day, control virus (N=5); CV= long-day, 

control virus (2d: N=5; 7d: N=9; 28d: N=8); OPN5= OPN5 knockdown group (2d: N=5; 

7d: N=7; 28d: N=9); VA= VA Opsin knockdown group (2d: N=8; 7d: N=9; 28d: N=9); 

Both= OPN5 and VA Opsin knockdown group (7d: N=8; 28d: N=7). 
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2.4 Discussion 

2.4.1 Confirmation of knockdown 

 This study aimed to explore the function of two candidate deep-brain 

photoreceptors, VA Opsin and OPN5, and their role in regulating seasonal reproduction in 

the Japanese quail, Coturnix japonica. To achieve this, two adeno-associated viral 

constructs were designed that targeted VA Opsin and OPN5 sequences, silencing their 

expression, and were injected in the third ventricle (3V) of the hypothalamus. After 

receiving the injections, quails were either maintained at SD or photostimulated for 2, 7 or 

28 days.  

 To confirm photoreceptor knockdown, both mRNA and protein levels of OPN5 and 

VA Opsin were measured in 2-day and 7-day hypothalami. It was found that around 95% 

of gene expression was silenced in all treatment groups. Regarding protein levels, around 

40-50% of protein was knocked down, except for the 2-day VA group.  

 GFP expression was then examined in 28-day quail hypothalami (Figure 2.2C and 

D). Fluorescence was detected in cells lining the 3V and the paraventricular organ (PVO) 

of the hypothalamus, confirming successful AAV injection in target brain regions. VA and 

OPN5 antibodies were also used on hypothalamic sections of 28-day quail. OPN5-

expressing cells were found in the PVO and 3V, which parallels previous findings (Nakane 

and Yoshimura, 2010). VA-immunoreactivity was identified in the preoptic area (POA), 

consistent with earlier studies on VA Opsin (Halford et al., 2009). Taken together, these 

data show successful AAV injection and viral transfection in Japanese quail target brain 

areas. 
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2.4.2 Peripheral measurements 

In order to evaluate reproductive effects, different indicators of reproductive 

maturation were used, including gonadal mass, cloacal area, whole-tissue gene expression, 

and plasma testosterone levels. Testis mass exhibited no change between SD control virus 

animals and treated individuals after 2 days (2d) of LD. Both the 2d SD CV group and the 

2d treated groups had small testes, consistent with the phenotypic differences between 

Japanese quail in a LD summer condition and a SD non-breeding condition. However, 

when observing testes after 7 days (7d) of photostimulation, there was a significant 

increase in gonadal mass in LD treated birds, irrespective of injection, compared to SD 

control animals, consistent with the known effect of long photoperiods on gonadal mass 

increase. There was a pattern, though not statistically significant, for an increase in testes 

weight in LD treated birds compared to LD CV animals, the largest effect seen in animals 

that received both VA Opsin and OPN5 viral constructs, suggesting that the suppression of 

opsin expression may be able to facilitate testicular growth. This non-significant increase 

in testes mass in ‘Both’ birds can be attributed to an additive effect of the knockdown of 

both opsins, suggesting a possible inhibitory role for one or both photoreceptors. By 

silencing the opsins, the inhibitory input is removed, causing a surge in gonadal mass. The 

lack of significance in this pattern may be due to low samples size and incomplete protein 

knockdown (Figure 2.2B). After 28 days (28d) of exposure to LD, there was no significant 

change in testes mass between long-day control and treated birds. This was expected, as 28 

days of photostimulation induces marked gonadal growth in Japanese quail (Follett and 

Maung, 1978). Since complete gonadal recrudescence is achieved at around 28-30 days 

after exposure to a 16L:8D photoperiod (Follett and Maung, 1978), removing the 

photoreceptor(s)’ inhibitory output did not elicit an even bigger increase in testes mass. 

Taken together, this data suggests that both photoreceptors may be tied to the control of 

seasonal reproduction in Japanese quail. Regarding body mass, no change was seen 
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between treatment. This constant body mass between long and short photoperiods is 

consistent with previous reports in the Japanese quail (Follett, Nicholls and Mayes, 1988). 

In addition to measuring gonadal size as a proxy for seasonal reproduction, cloacal 

size was also monitored throughout the study. In normal long-day conditions, Japanese 

quail show an increase in cloacal size, and in non-breeding conditions cloacal size is 

decreased. In males, the cloaca functions as a sperm-storage organ. In this study, cloacal 

gland growth rate (k) was reduced in all three treatment groups (VA Opsin, OPN5 and 

Both) compared to control animals in the course of the 28 days. Taken together, the data 

suggests that there may be two distinct pathways involved in maturation of sexual 

characteristics, one leading to testes growth and one affecting cloacal size growth rate. 

Interestingly, previous studies have shown an increase in cloacal size in SD quail after 

testosterone treatment, suggesting long days are not required for cloacal gland enlargement 

during the breeding period (Schumacher and Balthazart, 1983). However, it appears that 

photoreceptors are, at least in part, involved in cloacal growth.  

 

2.4.3 GNRH and GNIH  

One of the most important components of seasonal reproduction in both mammals 

and birds is gonadotropin-releasing hormone (GNRH) (Herbison, 2016). GNRH is released 

from the median eminence in response to photostimulation and targets the gonadotrophs in 

the anterior pituitary, which, in turn, release LH and FSH, linking the brain to peripheral 

endocrine systems. No significant change was found in GNRH expression in the 

hypothalamus at 2 days post-photostimulation, as 2 days may not be sufficient time for 

GNRH expression to increase. This is also consistent with the small testes phenotype seen 

in 2-day birds (see section 4.1). However, at 7 days post-photostimulation, there was a 

significant increase in GNRH expression in VA-treated birds compared to SD individuals. 

In addition, similar to gonadal mass, there appears to be a pattern for a gradual increase in 

GNRH expression when inhibiting VA Opsin and OPN5, reaching its peak in individuals 



89 

 

that received both VA Opsin- and OPN5-targeting viral sequences. However, this gradual 

increase was found not to be statistically significant. As stated previously, this may be due 

to low samples size and/or incomplete protein knockdown (Figure 2.2B). This data may 

again suggest an inhibitory role of one or both candidate photoreceptors, consistent with 

the testes data presented above.  

Unlike GNRH, the role of GNIH in avian seasonal reproduction is unclear. 

Gonadotropin-inhibitory hormone (GNIH) receptors are expressed in the median eminence 

in quail and gonadotropes in the pituitary gland in quail and chickens (Tsutsui et al., 2009; 

Ubuka et al., 2013). In this study, GNIH expression in the hypothalamus did not exhibit a 

change at 2 days or 7 days post-photostimulation. This result suggests that inhibiting VA 

Opsin and OPN5 in male Japanese quail does not change GNIH levels in the 

hypothalamus.  

 

2.4.4 DNA methyltransferase expression in the hypothalamus 

As discussed in the introductory section, rhythmic and predictable oscillations of 

epigenetic enzymes have been shown to be involved in the onset of seasonal reproduction. 

In this study, DNA methyltransferase 1, 3A and 3B expression was explored in the 

hypothalamus. When comparing 2-day control virus (CV) and short-day control virus (SD) 

individuals, there was no change in hypothalamic expression of DNMT1, 3A and 3B 

enzyme in SD animals, although there was a pattern in lower DNMT1, 3A and 3B 

expression in SD, although not significant. This reduction in DNA methyltransferase 

expression is consistent with previous studies (Stevenson and Prendergast, 2013; Lynch et 

al., 2016; Tolla and Stevenson, 2020b). After 2 days of photostimulation, no change in 

expression of DNMT1, 3A or 3B was shown. However, after 7 days of LD, there is an 

overall reduction in gene expression of all three Dnmt enzymes in OPN5 and ‘Both’ 

treated birds. Since levels are maintained at higher levels in the VA group, this implies that 

the decrease in 7-day hypothalami in ‘Both’ animals may be caused by the OPN5-silenced 
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group. Interestingly, when comparing OPN5 individuals at 2 days and OPN5 individuals at 

7 days, there is a trend for a reduction in DNMT3B expression in 7-day animals 

(p=0.0536). Contrary to what the testes data suggests, this DNMT3B decrease after 7 days 

of photostimulation in OPN5-silenced birds points to a possible stimulatory role for OPN5, 

but only if DNMT3B levels are reduced in normal short-day quail hypothalamic, similar to 

other seasonal species (Stevenson and Prendergast, 2013; Tolla et al., 2020b). Further 

experiments, such as examination of DNMT expression and global methylation in the 

hypothalamus of LD and SD Japanese quail, and the investigation of promoter region of 

VA Opsin and OPN5, are required in order to delineate the association between DNA 

methyltransferase enzymes and deep-brain photoreceptors. 

 

2.4.5 Pituitary gene expression 

Expression of TSHB, LHB, and FSH was analysed in the pituitary gland of 2-day, 

7-day and 28-day animals. In 28-day quails, gonadotropin-releasing hormone receptor 

(GNRH-R) levels were also measured, as GNRH-R has been shown to be strongly regulated 

between SD and LD photoperiods in chickens, increasing during the breeding period 

(Bédécarrats et al., 2006). Two important components of the reproductive axis in eliciting 

reproductive characteristics are LH and FSH. In this study, LHB expression did not change 

in response to AAV treatment. However, at 28 days there was a pattern for decreased LHB 

expression in response to RNAi treatment in a similar manner to the decrease in cloacal 

area, although not statistically significant. On the other hand, FSH expression increased at 

2 days in VA Opsin, OPN5 and Both groups, compared to the SD group. At 7 days, there 

was significant rise in FSH levels in ‘Both’ individuals compared to SD, but again not 

between LD treatments. This FSH increase in ‘Both’-injected quail at 7 days reflects testes 

mass and GNRH expression pattern in the hypothalamus (section 4.3), further suggesting 

that at least one of the two candidate photoreceptors is involved in seasonal breeding 

mechanisms in the Japanese quail. After 28 days of photostimulation, there was no 
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difference in FSH expression between treatment groups. In addition, overall FSH levels 

were much higher after 2 days of photostimulation, compared to 7 or 28-day pituitaries. 

This may be because of negative feedback: after 4 weeks of long-day, increased sex steroid 

production, caused by FSH and LH action, inhibits GNRH release from the hypothalamus, 

preventing gonadotropin release. In future studies, it will be useful to determine FSH levels 

via radioimmunoassay to correlate gene expression to circulating FSH and the effect of 

injection on reproductive characteristics, as well as analysing GNRH gene levels in the 

hypothalamus of 28-day quail. The differential expression of LHB and FSH may be the 

driving factor leading to the opposite patterns of testes mass and cloacal growth rate. 

Taken together, this data again suggests that there may be two pathways acting separately, 

one that involves LHB and cloacal growth and one that involves FSH expression and testes 

mass, although this is yet to be investigated.  

 

2.4.6 DNA methyltransferase enzyme expression in the pituitary gland  

 DNMT1 and DNMT3A expression was measured in 28-day quail pituitary glands. A 

significant decrease in DNMT1 was found in VA K/D birds compared to control 

individuals, but no change was detected in DNMT3A levels between treatment groups. This 

DNMT1 reduction in VA quails suggests that this enzyme may control the transcription of 

reproductive genes in the pituitary gland, and disrupting photoreceptor expression, 

specifically VA Opsin, down-regulates DNMT1 expression. This may indicate that genes 

expressed in the pituitary, such as LHB and FSH may be differentially regulated in VA 

animals, affecting downstream pathways, such as steroid release from the gonads. Further 

experiments are needed to clarify the role of DNMT1 in the pituitary gland of the Japanese 

quail. 
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2.4.7 Receptor expression in the testes 

In birds, gonadotropins target Leydig and Sertoli cells in the testes to stimulate the 

production of androgens, such as testosterone. The expression of FSH receptors (FSH-R), 

LH receptors (LH-R), and androgen receptors (AR) has been shown to rise during the 

breeding period in the Japanese quail, allowing for increased gonadotropin and androgen 

sensitivity (Brown and Follett, 1977; Tsutsui and Ishii, 1978; Ottinger et al, 2002). This 

increase leads to the maturation of reproductive characteristics, such as enlarged gonads 

and marked reproductive behaviour. In this study, mRNA expression of FSH-R, LH-R, and 

AR was measured in the testes of 2d, 7d and 28d quail, in order to relate it to testes mass 

and plasma testosterone patterns.  

In 2d gonads, no difference in receptor expression was found between treatments. 

This was expected, as testes mass and GNRH expression did not exhibit any change after 2 

days of photostimulation. However, given that 2d FSH expression did increase in LD 

treated animals, but its receptors did not, this may suggest that 2 days of LD are sufficient 

to increase FSH expression, but not sufficient to reflect receptor levels in the gonads. 

Similar to 2d, at 7d no significant effects were found in receptor expression. Finally, 28 

days of LD did not elicit a change in LH-R and AR expression. Chronically silencing the 

two candidate photoreceptors caused a significant reduction in FSH-R in OPN5 animals, 

compared to control quails. This suggests that OPN5 may play a role in increasing 

sensitivity to gonadotropins during the breeding months, at least after 28 days of LD, even 

if not directly affecting FSH release.  

 

2.4.8 Plasma testosterone 

In order to understand the testes and cloacal effects in this study, testosterone levels 

were measured in both control and treated quails. No changes were found in plasma 

testosterone between SD birds and treated individuals after 2 days, reflecting GNRH 



93 

 

expression. After 7 days of photostimulation, there was an expected increase in 

testosterone concentration in all LD groups, compared to SD. Similarly, at 28 days, a 

significant increase in testosterone was observed in CV, OPN5 and VA individuals, 

compared to birds maintained in SD. This suggests that even though overall FSH and LH 

levels are lowered after 28 days, compared to 2 and 7 days, testosterone is kept at high 

levels even after 28 days of LD. No change was detected between LD treatment groups at 

any time point.  

 

2.5 Conclusions 

The main aim of this study was to determine whether VA Opsin, OPN5, or both 

photoreceptors are involved in seasonal reproduction in the Japanese quail. It was 

hypothesised that silencing these two opsins through AAV injection in the 3V of the 

hypothalamus would cause a marked reduction in reproductive characteristics, such as 

testes mass, gonadotropin release and plasma testosterone levels. At 2d and 7d, values 

were compared to a short-day control group injected with a blank virus. At 7d, an 

additional ‘Both’ treatment group was added, that received a mix of both AAV, targeting 

both OPN5 and VA Opsin. After 2 days of photostimulation, FSH expression in the 

pituitary gland significantly increased in the LD treated groups compared to SD animals, 

regardless of treatment. However, other reproductive indicators, such as testes mass, 

GNRH and LHB expression and plasma testosterone did not change. This suggests that 2 

days of photostimulation are sufficient for FSH expression to increase, but not sufficient to 

stimulate opsin function. At 7d, there was a pattern for an overall gradual increase in 

gonadal mass, GNRH expression and pituitary FSH expression with opsin knockdown, 

peaking when both photoreceptors were silenced. Although not statistically significant, this 

gradual increase may indicate that at least one of the two opsins is involved in regulating 

the hypothalamic-pituitary-gonadal axis through an inhibitory role. By disrupting the 

photoreceptors, therefore the inhibitory output, there is an increase in reproductive 
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indicators. The reason for the lack of significance between LD treatments at 7d may be due 

to the incomplete opsin protein knockdown in 7d animals (Figure 2.2B) and the low 

sample size of each treatment group. In future experiments, it will be essential to 

successfully knockdown more than 40% of VA Opsin and OPN5 protein expression in the 

hypothalamus. Interestingly, at 28d, a significant decrease in FSH-R levels was found in 

the testes in OPN5 animals compared to the CV group, although no change was seen in 

testes mass, FSH or LHB expression between treatments. This may point to a chronic role 

for OPN5 in controlling sensitivity to gonadotropins during breeding through a stimulatory 

output. By removing this stimulatory output, FSH-R levels are reduced, decreasing the 

reproductive response in quail. 

Given the emerging role of DNA methylation and DNA methyltransferase enzyme 

in seasonal reproduction in mammals, DNMT1, 3A and 3B expression was also 

investigated, both in the hypothalamus and pituitary gland of Japanese quail. In the 

hypothalamus, a non-significant decrease in DNMT3B expression was found in 7d 

hypothalami of OPN5 quail compared to 2d OPN5 animals (p=0.0536). This trend in 

reduction may further suggest a stimulatory role for OPN5: by silencing OPN5, there is a 

decrease in DNMT3B levels, perhaps reflecting a SD expression pattern. This hypothesis 

was further explored in chapter 3. This trend may not be statistically significant due again 

to the lack of complete protein knockdown at 7d. When analysing gene expression in the 

pituitary gland, a significant decrease was also shown in DNMT1 in 28d VA individuals, 

compared to CV. This difference in DNMT1 may suggest that silencing VA Opsin leads to 

a reduction in DNA methylation, perhaps in promoter regions of pituitary genes involved 

in reproduction, such as LH and FSH. Taken together, these data point to potential 

differential effects of VA Opsin and OPN5, as well as LH and FSH, in regulating 

reproductive physiology in the Japanese quail. The pilot data presented in this chapter can 

be used to power future, larger-scale experiments.  
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It is possible that either VA Opsin or OPN5 are not acting alone, and instead that 

the activation of reproduction in birds is the result of the interaction between a variety of 

photoreceptors in the hypothalamus. Moreover, each opsin could be responsible for 

different aspects of avian reproduction. The interaction of different opsins could potentially 

be advantageous, as they would be able to respond to a range of wavelengths, activate 

diverse reproductive pathways or brain regions, and as a result, provide increased 

efficiency and reproductive success during breeding seasons. Additional studies are needed 

to map the molecular pathways that deep-brain photoreceptors utilise to trigger seasonal 

reproduction in the Japanese quail. 

  



96 

 

Chapter 3 – Expression of Deep-Brain Photoreceptors During 

Development of the Japanese Quail and the Role of Corticosterone 

 

3.1 Introduction 

3.1.1 Seasonal rhythms and stress 

As discussed in the previous chapters, seasonally-breeding species exhibit a range 

of physiological, behavioural and morphological changes between the breeding and non-

breeding periods. These changes are modulated by pathways such as the Hypothalamic-

Pituitary-Gonadal (HPG) axis, responsible for reproduction, and the Hypothalamic-

Pituitary-Adrenal (HPA) axis, or the stress axis. The HPA axis mediates the stress response 

through glucocorticoid (GC) release, such as corticosterone (CORT). Stress can be defined 

as any condition which causes allostatic load to an organism, an increase in the cost of 

maintaining physiological homeostasis (Henriksen et al., 2011). High GC levels have been 

associated with inhibition of the reproductive response in order to redirect energy 

expenditure to survival of the individual (Free and Tillson, 1973; Sapolsky, 1987). 

However, numerous studies have shown that in non-mammalian vertebrates, GC levels are 

often increased during the breeding period, in both stressed and non-stressed animals, e.g. 

white-crowned sparrows (Zonotrichia leucophrys) (Romero and Wingfield, 1999; 

Casagrande et al., 2018). In addition, testosterone exposure elevated GC levels in free-

living birds (Ketterson et al., 1991), suggesting an intricate interaction between the adrenal 

and gonadal pathways (Romero, 2002). In 2018, Casagrande and colleagues proposed that 

levels of GC during the year, especially during the breeding months, vary between species 

depending on the degree of reproductive investment in each species (Casagrande et al., 

2018). If energy expenditure is higher, GC levels will likely be elevated as well 

(Casagrande et al., 2018). Further studies are required to precisely determine the causes of 

yearly changes in GC release. 



97 

 

3.1.2 Avian response to pre-natal stress 

During both development and adulthood, organisms are affected by a multitude of 

environmental stressors, such as limited food availability. During development, maternal 

hormonal signals, including corticosterone release, reach the embryo through crossing the 

placental barrier in viviparous species, and through targeting the egg yolk in oviparous 

organisms (Hayward et al., 2005). The hormonal transfer between mother and embryo 

provides the embryo with an indication of external surrounding environmental conditions 

(Gluckman and Hanson, 2004), aiding in adaptation and survival in the postnatal 

environment. Stress during development and the physiological responses to stress have 

been shown to persist into adulthood to maximise offspring survival, although chronic 

exposure to negative conditions, such as limited food availability, has been shown to be 

linked to a higher risk of adverse health conditions (Cottrell and Seckl, 2009). However, 

there is some evidence suggesting that environmental stressors at low levels can have a 

beneficial effect on the health and survival of the organism (Costantini et al., 2010), 

especially if embryonic conditions match environmental conditions postnatally (Gluckman 

and Hanson, 2004; Zimmer, Boogert and Spencer, 2009; Henriksen et al., 2011). Most 

research on stress and embryonic development has been done in mammals, and it appears 

that sex-specific effects exist, where females are more susceptible to stress exposure during 

the prenatal period (Benoit et al., 2015). Birds, however, are excellent models to explore 

the effects of glucocorticoid exposure in early-life stages, as avian embryonic development 

occurs outside the mother and inside an egg. In chicken, offspring of stressed mothers have 

a significantly lower body mass compared to those of healthy mothers, both at hatching 

(Love et al., 2005) and later in adult life (Hayward and Wingfield, 2004; de la Cruz et al., 

1987). If the postnatal environment of these smaller offspring matches the stressful 

conditions of the mother prenatally, for instance limited food supply, having a smaller 

body mass may be beneficial, as the organism would need less food to survive (Henriksen 

et al., 2011). However, if the environmental conditions do not match pre-hatching 
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hormonal cues, lower body mass may be a disadvantage to the animal and decrease its 

survival. The ways by which glucocorticoids contribute to animal fitness are then either 

advantageous or detrimental depending on the differences between pre- and post-natal 

environments (Henriksen et al., 2011). Studies that explored the effects of elevated CORT 

levels in stressed female chickens also found gonadal size reduction, reduced sexual 

maturity and a decrease in immune response in offspring (Satterlee et al., 2007; Love et al., 

2005), indicating that stressful conditions in mothers can negatively impact offspring 

development. In addition, a maternal plasma CORT-dependent shift in offspring sex ratio 

has been reported in Japanese quail (Pike and Petrie, 2006) and the house finch 

(Carpodacus mexicanus; Badyaev et al., 2002), generally favouring females. These data 

suggest that maternal elevated glucocorticoid levels can cause profound physiological 

changes to offspring during critical embryonic stages.    

 

3.1.3 Epigenetics and the stress response 

Epigenetics and the stress response are closely linked, as they are both mechanisms 

of response to the surrounding external environment. Stress is able to alter an individual’s 

epigenome, and epigenetic processes can modulate an organism’s response to stressful 

conditions. In mammals, prenatal exposure to glucocorticoids has been associated with 

altered gene expression caused by a change in DNA methylation patterns (Crudo et al., 

2012; Oberlander et al., 2008; Alikhani-Koopaei et al., 2004). The epigenetic response to 

glucocorticoid exposure has been investigated in both mammals and birds. In 2004, 

Weaver and colleagues explored changes in DNA methylation patterns in offspring of 

stressed rat mothers (Weaver et al., 2004). They found that stressed mothers showed 

reduced licking and grooming behaviour towards their pups, causing an increase in 

glucocorticoid receptor (GR) promoter methylation in the hippocampus of offspring. This 

switch in DNA methylation patterns at the GR level was shown to be reversible through 

cross-fostering and was supported by later studies (Weaver et al., 2004; Kosten et al., 
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2013). The study by Weaver et al suggests a stress-dependent maternal epigenetic 

programming of the HPA axis in offspring. In later studies, maternal prenatal stress during 

critical developmental stages in mice was shown to increase methylation of the GC 

promoter in the hippocampus and decrease methylation of corticotropin-releasing hormone 

(CRH) (Mueller and Bale, 2008), as well as an increase in DNA methyltransferase 1 

(DNMT1) protein in the same region of the brain (Benoit et al., 2015). Recent experiments 

have also shown changes to the foetal epigenome in peripheral tissues, such as adrenal 

gland and liver (Thomassin et al., 2001; Crudo et al., 2012) following glucocorticoid 

treatment. Taken together, these studies suggest that glucocorticoid exposure during early 

stages in mammalian development alters the epigenome of an individual in a range of 

tissues, including the brain.  

Avian embryonic exposure to glucocorticoids and tissue-specific epigenetic effects 

are not as well-characterised as they are in mammals. In neonatal male chicken kept in a 

LD condition, food restriction for 12 continuous hours caused an increase in DNMT1 and 

DNMT3B expression compared to individuals fed normally (Kang et al., 2017). Exposure 

to predatorial stress, experimentally simulated by predatorial alarm calls, has also been 

shown to significantly increase global methylation levels in yellow-legged gull (Larus 

michahellis) embryos (Noguera and Velando, 2019). This increase in DNA 

methyltransferase enzymes and global DNA methylation following nutritional and 

predatorial stress respectively, suggests that stress is able to modulate the epigenetic profile 

in the avian brain as well as the mammalian one. Taken together, these data indicate a role 

for epigenetic mechanisms, especially DNA methylation, in mediating stressful conditions 

in both the embryo and later in life in mammals and birds. However, most of the reports 

concerning the effects of stress in developmental stages have been carried out in mammals, 

and avian studies in the field generally investigate hippocampal epigenetic plasticity. The 

hippocampus is often studied in the context of stress and epigenetic modifications because 
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it is a region of the brain which is highly plastic and sensitive to environmental changes 

and learned behaviour (Cunha et al., 2010; Sweatt, 2009).   

 

3.1.4 Deep-brain photoreceptor development 

As outlined in chapters 1 and 2, the identity of the deep-brain photoreceptor(s) that 

are responsible for seasonal reproduction in the avian brain is still unclear. In addition, the 

development of brain opsins and how they can affect the development of an embryo is 

currently not known, as most of studies focus on retinal development rather than the brain, 

especially in mammals. In chicken embryos, Vertebrate Ancient opsin (VA Opsin) 

expression was found in the midbrain, hindbrain and diencephalon from embryonic day 2 

(E2) (Tomonari et al., 2007). OPN5-like proteins have been detected in the retina of chick 

embryos at E7 (Rios et al., 2019), however no detailed report of OPN5 expression in the 

avian brain has been published yet. To explore whether opsins are essential for embryonic 

development, Hang and colleagues inserted a VA Opsin mutation in zebrafish embryos 

through CRIPR/Cas methods (Hang et al., 2016).  Crossing a mutant female with a wild-

type male resulted in foetal death, but caused late hatching in offspring of mutant males 

and wild-type females (Hang et al., 2016). It is important to note that extra-retinal 

photoreceptor function in fish is distinct from the role of deep-brain photoreceptors in 

birds. However, no similar studies have been done in the avian system to investigate opsin 

embryonic development and the role of stress in modulating photoreceptor maturation 

during early stages.  

 

3.1.5 Aims and Hypotheses 

In this chapter, two distinct studies allow for an exploration of both opsin 

expression during embryonic development and the role that glucocorticoid exposure plays 

in modulating epigenetic mechanisms. In study 1, Japanese quail (Coturnix japonica) eggs 
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were treated with corticosterone at various developmental stages. It was hypothesised that 

expression of neuropsin (OPN5) and vertebrate ancient opsin (VA Opsin) would increase 

in late embryonic development, and that DNA methyltransferase enzyme expression would 

increase with corticosterone injections. 

In study 2, adult, sexually mature Japanese quail were maintained in either a long-

day (LD; 18L:6D) or short-day (SD; 6L:18D) condition. The purpose of study 2 was to 

explore hypothalamic DNA methyltransferase expression in adult individuals, as well as 

investigate VA Opsin and OPN5 levels in birds kept under reproductive photoperiodic 

conditions or non-breeding light conditions. It was hypothesised that both DNA 

methyltransferase and opsin expression would decrease in SD. 
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3.2 Methods  

3.2.1 Animals 

3.2.1.1 Study 1  

All procedures were approved by the local ethics committee at the University of St. 

Andrews and in accordance with the Animals (Scientific Procedures) Act 1986 ASPA 

regulations under PIL IE1CF3B75 held by Jessica-Lily Harvey and PPL 70/8159 held by 

Dr Karen Anne Spencer. All procedures were in accordance with the ARRIVE Guidelines 

for ethical research on animals.  

78 Japanese quail (Coturnix japonica) eggs (Moonridge farm, Exeter, UK) were 

kept under constant darkness on a rotating platform at 37.4oC with 60% humidity. They 

were incubated all at the same time (Ova-Easy 190A, Brinsea Products Ltd, UK) and 

injected at embryonic day 5 at the apex with l0µl of 850 ng/ml corticosterone (CORT) 

diluted in sterile peanut oil (Sigma Aldrich, Poole, UK), similar to a previous study 

(Zimmer et al., 2013). This dose has been shown to increase CORT concentration in the 

yolk within 1.8 standard deviation of natural egg CORT ranges (Zimmer et al., 2013; 

Zimmer et al., 2017), and is similar to the CORT concentration that is deposited in the yolk 

following natural stressors (Love et al., 2008; Pitk et al., 2012). Control eggs were injected 

only with 10µL sterile peanut oil. All eggs were returned to the incubator within 30 

minutes of the procedure. Tissue was collected from the eggs at embryonic day 11 (CORT 

n=8, control n=8), day 14 (CORT n=8, control n=7), and day 17 (CORT n=7, control n=5). 

A post-natal group was kept under 12L:12D conditions with ad libitum food (minced 

Turkey crumb, BOCM, UK) and food, and chicks were culled at postnatal day 10 (CORT 

n=14, control n=20). The brain and hypothalami were collected immediately and frozen at 

-80o until further analyses. 
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3.2.1.2 Study 2  

Adult male and female Japanese quail were maintained at the Roslin Institute, 

University of Edinburgh. All procedures were carried out under the Animals (Scientific 

Procedures) Act 1986, project license 70/7909 held by Dr Ian Dunn and individual 

experiments were approved by the institutional ethics committee. 3-week female and male 

quail were either photostimulated (18L:6D; n=9) or maintained in SD (6L:18D; n=8) for 

12 days. Dissections were performed by A Yingua, IC Dunn and PJ Sharp 4 hours after 

lights off (Dunn et al., 2017). 

 

3.2.2 RNA extraction 

3.2.2.1 Study 1 

RNA was extracted via Absolutely RNA miniprep kit (Agilent, UK) as per 

manufacturer’s instruction. RNA concentrations were measured on a QuBit 2.0 

flourometer using RNA HS Assay Kit (Thermofisher, UK). 

3.2.2.2 Study 2 

RNA was extracted by A Yingua, IC Dunn and PJ Sharp at the Roslin Institute, 

University of Edinburgh, using Ultraspec II reagent (AMS Biotechnology, Abingdon, UK) 

and Lysing Matrix D tubes in a FastPrep Instrument (MP Biomedicals, Cambridge, UK), 

as described in Dunn et al., 2017. 

 

3.2.3 cDNA synthesis 

For study 1, cDNA synthesis was carried out using Nanoscript2 Reverse 

Transcription Kits (Primer Design, UK). RNA concentration was normalized across all 

samples to 1.2 μg/μl made up to 10 μl in RNase free H2O, then 1 μl of primer (50 μM 

oligo dT) and 1 μl of annealing buffer were added. RNase-free H2O was added to take the 

volume up to 100 μl before being stored at −20 °C until quantitative PCR (qPCR) assays. 
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For study 2, RNA was transferred on dry ice to the University of Glasgow, and cDNA 

synthesis was carried out using the same method used for study 1. 

 

3.2.4 Real-time PCR (qPCR) 

To measure mRNA expression, cDNA was assayed using qPCR for both studies. 

Primers for target genes were ordered from Invitrogen and optimised using gel 

electrophoresis as described in chapter 2, section 2.2.7. See Table 2.1 for detailed primer 

information. qPCRs were run on a BioRad CFX96 Real time PCR machine in a 20 μl 

reaction. For each well the qPCR mix consisted of 5 μl cDNA template, 10 μl SYBR green 

(PrecisionPLUS qPCR Master Mix with SYBR green) 0.5 μl (300 nM) forward primer, 0.5 

μl (300 nM) reverse primer and 4 μl RNase-free H2O to make up to 20 μl. See Table 1 for 

primer information. All samples were run in duplicate in a 96-well plate format under the 

following cycling conditions; i) initial denaturing at 95 °C for 5 min, then 39 cycles of ii) 

95 °C for 10 secs, iii) 30 secs at annealing temperature dependent on gene of interest (See 

Table 1), then iv) an extension step of 72 °C for 30 secs. For each gene analysed, including 

reference genes, there were no-template H2O controls included in the plate. Melt curve 

analysis was carried out to ensure only a single peak was produced for each reaction. PCR 

Miner (Zhao and Fernald, 2005) was used to determine reaction efficiencies (E) and 

quantification cycle (Ct). According to MIQE guidelines, samples with effciency values 

below 0.8 and above 1.2 were excluded from analyses (Bustin et al., 2009). Fold 

expression of each target gene was measured in relation to the average Ct for two reference 

genes (Gapdh and Hprt) and calculated using 2- (ΔΔCt).  

 

3.2.5 Statistical Analyses 

All statistical analyses were performed using SigmaPlot 13.0. Significance was 

determined at p < 0.05. Data were log-transformed in the event of a violation of normality 
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or equal variance. Study 1’s results were analysed using Two Way ANOVA. For study 2, 

student’s t-tests were used. For detailed statistical analysis information, refer to Tables A.1 

and A.2 (Appendix A). 
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3.3 Results  

3.3.1 Study 1  

3.3.1.1 GNRH expression changes at different embryonic stages but is not affected by 

CORT treatment 

Two Way Analysis of Variance revealed no interaction between age and treatment 

(F=0.397, p=0.756). A significant effect of age on GNRH expression was found (F=6.242, 

p=0.001), but there was no effect of CORT treatment (F=0.0310, p=0.861) (Figure 3.1).  

 
Figure 3.1. GNRH expression in control and corticosterone-treated samples (CORT). 

Asterisks (*) represent significance between groups. Results are mean ± SEM. E11= 

embryonic day 11 (control: N=8; CORT: N=8); E14= embryonic day 14 (control: N=8; CORT: 

N=7); E17= embryonic day 17 (control: N=7; CORT: N=5); P10= postanal day 10 (control: N=14; 

CORT: N=20). 
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3.3.1.2 DNA Methyltransferase expression varies between ages and CORT treatment has a 

significant effect on DNMT1 and DNMT3B levels 

When analysing DNMT1 expression, no interaction effect of age and CORT 

treatment was detected (F=0.655; p=0.584). However, there was a significant effect of age 

(F=18.392; p<0.001) and CORT treatment (F=8.594; p=0.005) (Figure 3.2A). Fisher’s 

LSD post-hoc test revealed a significant increase in DNMT1 expression in E14, E17 and 

P10 animals, compared to E11. There was also a significant DNMT1 decrease in E17 

hypothalami compared to E14.  

There was no interaction effect of age and CORT on DNMT3A expression 

(F=1.345, p=0.271). A significant effect of age on DNMT3A expression (F=3.824, 

p=0.016) was detected, but no effect of CORT (F=0.858, p=0.359) was found (Figure 

3.2B). Fisher’s post-hoc method indicated a significant increase in DNMT3A levels in E14 

and E17 animals, compared to E11. 

Finally, two-way ANOVA analysis revealed a significant interaction of age and 

treatment (F=4.683, p=0.006) on DNMT3B levels (Figure 3.2C). E17 DNMT3B expression 

was significantly increased in control individuals compared to the E11 control group. 

Within CORT-treated treatment groups, a significant difference was found in E14, E17 and 

P10 compared to E11. Similar to DNMT1 expression patterns, DNMT3B was significantly 

decreased in E17 compared to E14 individuals. 
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Figure 3.2. Average gene expression of DNMT1 (A), DNMT3A (B) and DNMT3B (C) in 

the hypothalamus of quail at embryonic day 11, 14, 17 and post-natal day 10. Asterisks (*) 

represent significance between groups. In (C), # represent a significant difference between 

E11 and E14 controls; different letters represent significance within the CORT-treated 

group. Results are mean ± SEM. E11= embryonic day 11 (control: N=8; CORT: N=8); 

E14= embryonic day 14 (control: N=8; CORT: N=7); E17= embryonic day 17 (control: 

N=7; CORT: N=5); P10= postanal day 10 (control: N=14; CORT: N=20). 
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3.3.1.3 OPN5 expression increases at E14, decreasing again at P10 

The expression of VA Opsin and OPN5 was analysed in the quail hypothalami, both 

pre-natally at embryonic day 11, 14, 17 and post-natally at day 10. There was no effect of 

the interaction of age and treatment (F=0.693, p=0.564) on VA Opsin expression. VA Opsin 

expression did not change in response to CORT treatment (F=0.0632, p=0.803), or 

between ages (F=1.692, p=0.191) (Figure 3.3A). When analysing the expression of OPN5, 

there was no significant effect of the interaction between age and CORT (F=3.010, 

p=0.069). However, a significant effect of age was found (F=7.103, p=0.004), but no effect 

of CORT (F=3.729, p=0.066). A significant surge in OPN5 levels was observed at 

embryonic day 14 (Figure 3.3B), decreasing again at postnatal day 10, similar to the 

pattern of GNRH, DNMT1 and DNMT3B expression (Figure 3.1).  

   

Figure 3.3. Hypothalamic expression of VA Opsin in quail at embryonic day 11, 14, 17 and 

postanal day 10 (A), and OPN5 in quail at embryonic day 11, 14 and postnatal day 10. 

Asterisks (*) represent significance between groups. Results are mean ± SEM. E11= 

embryonic day 11 (control: N=8; CORT: N=8); E14= embryonic day 14 (control: N=8; 

CORT: N=7); E17= embryonic day 17 (control: N=7; CORT: N=5); P10= postanal day 10 

(control: N=14; CORT: N=20). 
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3.3.2 Study 2 

3.3.2.1 TSHB expression decreases in SD 

In study 2, adult quail were either photostimulated for 12 days or maintained under 

short-day conditions. No significant change was detected in GNRH (p=0.159) or GNIH 

(p=0.140) expression. TSHB levels significantly decreased during SD (p<0.001) (Figure 

3.4). 
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Figure 3.4. Hypothalamic expression of GNRH (A), GNIH (B) and TSHB (C) in adult quail 

maintained in long day (LD) or short day (SD). Results are mean ± SEM. LD= 18L:6D; 

N=9; SD= 6L:18D; N=8. Asterisks (*) represent significance between groups.  
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3.3.2.2 DNMT3A and DNMT3B expression tends to decrease in SD 

DNA methyltransferase 1, 3A and 3B levels were examined in the hypothalamus of 

adult quail. No difference in DNMT1 (p=0.727), DNMT3A (p=0.436), or DNMT3B 

(p=0.334) expression was detected between the two photoperiodic conditions (Figure 3.5). 

There was a pattern for lower DNMT3A and DNMT3B expression in SD compared to LD, 

although it was not statistically significant. 
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Figure 3.5. Hypothalamic expression of DNMT1 (A), DNMT3A (B) and DNMT3B (C) in 

adult quail maintained in long day (LD) or short day (SD). Results are mean ± SEM. LD= 

18L:6D; N=9; SD= 6L:18D; N=8. 
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3.3.2.3 Deep-brain photoreceptor expression tends to decrease in SD 

The expression of two photoreceptors involved in seasonal reproduction was 

analysed in the adult quail hypothalamus. No significant change was seen in OPN5 

(p=0.194) or VA Opsin (p=0.475) gene levels between LD and SD hypothalami. However, 

there seemed to be a pattern of decreased photoreceptor expression in SD (Figure 3.6). 
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Figure 3.6. Hypothalamic expression of VA Opsin (A) and OPN5 (B) in adult quail 

maintained in long day (LD) or short day (SD). Results are mean ± SEM. LD= 18L:6D; 

N=9; SD= 6L:18D; N=8. 
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3.4 Discussion  

In this chapter, I presented data gathered from two different studies, both in 

Coturnix japonica. In study 1, gene expression levels were measured in the hypothalami of 

Japanese quail at three different embryonic stages (E11, E14 and E17) and at postnatal day 

10. Quails were either injected with corticosterone or with peanut oil as a control. Study 2 

examined hypothalamic gene expression in adult quails maintained either under long-day 

photoperiods or short-day photoperiods. 

In Study 1, a significant effect of age was found in GNRH expression, with levels 

increasing at E14 compared to E11, decreasing again at E17. GNRH levels were also found 

to be upregulated postnatally, compared to E11. The temporary increase in GNRH 

expression at E14, comparable to P10 expression levels, may indicate a critical 

developmental day in Japanese quail embryos. The upregulation of GNRH at P10 may 

reflect reproductive maturation development in young birds maintained at 12L:12D. CORT 

injections did not elicit a change in hypothalamic GNRH expression at any age. One study 

that investigated long-term effects of embryonic CORT injections in chickens, found a 

significant reduction in hypothalamic GNRH mRNA in adults that were previously treated 

with CORT, compared to controls (Ahmed et al., 2014). However, the experiment did not 

take into consideration photoperiod, therefore a markedly-seasonal species such as the 

Japanese quail may exhibit different effects in reproductive markers. Nonetheless, in future 

studies, it would be useful to measure GNRH expression in the hypothalamus of adult, 

sexually mature quail that were treated with CORT during embryonic development. 

Adult quail samples from study 2 show a significant reduction in TSHB levels in 

SD quail, but no significant difference was seen in GNRH or GNIH expression between 

photoperiods. GNRH expression appears to decrease in SD, however this is not significant. 

The decrease in TSHB expression is consistent with seasonal breeding patterns, as the 

Japanese quail reproduces in the summer, long-day condition. As discussed in chapter 1, 

TSHB is an important component of the photoperiodic reproductive response, as it acts 
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upstream of the DIO2 switch and leads to GNRH, LH and FSH release, and therefore 

reproduction. TSHB is also therefore upregulated in the summer and decreased in SD, 

consistent with the data presented here. GNRH is responsible for stimulating the release of 

LH and FSH from the pituitary gland to activate the seasonal reproductive cascade. GNRH 

is therefore reduced, although not significantly, in the winter, SD conditions, when the 

reproductive axis is repressed.  

The process of adding methyl groups to the DNA, more commonly cytosine-

guanine bonds, is well-characterised in a myriad of plant and animal models and in the 

context of a range of physiological functions, including seasonal reproduction (see Chapter 

1). The addition of a methyl group to DNA is associated with repression of gene 

expression. DNA methylation patterns are heritable, reversible and can be altered by 

changing environmental conditions and external stresses. DNA methylation plasticity, thus, 

provides researchers with a measurable method of linking changes in the surrounding 

environment to gene expression patterns. Stresses such as limited food availability and 

predatorial stress elicit a rise in the stress hormone corticosterone, and have been correlated 

to changes in DNA methylation patterns (Kang et al., 2017; Noguera and Velando, 2019). 

In this study, it was hypothesised that artificially injecting eggs with corticosterone would 

cause an increase in the main enzymes involved in catalysing DNA methylation, DNA 

methyltransferases 1, 3A and 3B (DNMT1, DNMT3A, DNMT3B, respectively).  DNMT1 is 

traditionally thought of as the maintenance methyltransferase, conserving DNA 

methylation patterns through cell division. Because of its maintenance function, DNMT1 

has an essential role during developmental stages in both mammals and birds. DNMT3A 

and DNMT3B are also called the de novo methyltransferases, as they establish new methyl 

marks on the DNA, important in X silencing in mammals (McCarthy et al., 2009) and 

perhaps Z-linked gene expression in birds (Teranishi et al., 2001), although the latter 

requires further research. In study 1, the expression of DNMT1 increased at embryonic day 

14, decreasing again at E17, similarly to GNRH expression. A similar age-dependent 
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increase at E14 was seen in DNMT3A and DNMT3B levels. DNMT3B expression also 

increased in E14 individuals in response to CORT treatment, decreasing again at E17. 

DNMT3B levels, however, were significantly higher in E17 CORT animals compared to 

E11 CORT hypothalami.  The increase in DNMT1 may further point to E14 as a critical 

day during development, or an ‘epigenetic resetting’, where more cell division occurs, 

therefore more DNMT1 is required to maintain DNA methylation patterns. In addition, it is 

possible that embryonic development at E14 is connected to avian Z-linked differentiation, 

which has been proposed as the equivalent of dosage compensation mechanisms in 

mammals (X-silencing) (Teranishi et al., 2001; Smith et al., 2009). Upregulation of 

DNMT1,3A and 3B could be involved in the epigenetic modulation of Z-linked genes, such 

as male hypermethylated region (MHM) or gene doublesex and mab-3-related transcription 

factor 1 (DMRT1), as both have been found to play a role in avian sex determination 

during early developmental stages (Teranishi et al., 2001; Smith et al., 2009).  

On the other hand, in study 2, expression of DNMT3A and DNMT3B decreased in 

SD, although not significantly, and DNMT1 levels did not change. This reduction in de 

novo methyltransferase expression in short photoperiods in consistent with previous 

mammalian studies (Stevenson and Prendergast, 2013; Tolla et al., 2020b) and perhaps 

indicates a sort of ‘epigenetic switch’ between the reproductive and non-reproductive 

seasons, altering expression patterns of downstream reproductive components. It is also 

possible that DNA methyltransferase enzymes are themselves part of a circannual 

endogenous mechanism in seasonally-reproducing avian species. However, further 

research is required in order to test the hypothesis that Dnmts are regulated by their own 

seasonal clock. Taken together, the Dnmt data from study 1 and study 2 suggest that there 

are distinct gene expression profiles between embryonic hypothalamic at different critical 

developmental stages and adult hypothalami kept under LD and SD conditions. Both 

maintenance and de novo DNA methyltransferase enzymes may act during high cell 

division foetal stages, and de novo methyltransferase enzymes may be part of the 
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circannual machinery that allows seasonal species to reproduce at the most favourable time 

of the year. In future avian studies, it will be important to precisely identify the 

downstream effects of altered epigenetic mechanisms and exposure to stress during early 

developmental stages. 

Deep-brain photoreceptor mRNA expression was also measured in both studies. So 

far, no studies have investigated avian brain opsin expression across development and/or 

any effect maternal stress could have on DBP expression. One study by Hang and 

colleagues in 2016 found altered chorion structure and even foetal death after inserting a 

mutation in the VA Opsin protein in zebrafish (Hang et al., 2016). However, no study has 

explored the role of opsin development in bird embryos. In both study 1 and study 2, the 

expression of VA Opsin and OPN5, two deep-brain photoreceptors involved in seasonal 

reproduction (see Chapter 2), was measured. It was found that CORT injections did not 

alter the levels of VA Opsin nor OPN5, at any age. However, OPN5 expression 

significantly increased at E14, similarly to the pattern of expression of GNRH and 

DNMT1/3A/3B expression. OPN5 expression was also shown to decrease at day 10 post-

hatching. This OPN5 level surge at E14 may further indicate that embryonic day 14 in 

Japanese quail is a critical day not only in setting up DNA methylation patters, but also in 

the development of hypothalamic photoreceptors involved in sexual maturation later in 

life. This critical window of time appears to be restricted, as expression of GNRH, and 

DNMT1/3A/3B decreased again at E17, and OPN5 was reduced at P10. VA Opsin also 

exhibits an increase in its expression at day E14, however it is not significant. In previous 

studies, rhodopsin expression in the pineal gland was first detected at embryonic day 13 in 

Japanese quail, and retinal rhodopsin expression was first detected at embryonic day 13 in 

quail and 14 in chicken (Yamao et al., 1999; Araki et al., 1992; Araki et al., 1990). From 

the data collected in different studies, Yamao and colleagues suggested that opsin synthesis 

first occurs on the same developmental day (Yamao et al., 1999), and from the results of 

the present study, it appears that opsin synthesis in the brain also occurs around the same 
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time as the pineal gland and the retina, given that incubation time in quail is slightly 

shorter than chicken. Opsin expression at specific embryonic stages could have different 

implications. For instance, OPN5 expression in the developing mouse retina has been 

shown to stimulate a dopamine-dependent pathway that leads to postnatal vascular 

regression needed for postnatal vision (Nguyen et al., 2019). It is then possible that OPN5 

in the brain is also connected to downstream pathways that elicit essential physiological 

changes later in life, specifically in preparation to reproductive stimulation. Indeed, other 

photoreceptors in the brain, such as melanopsin, have been found to be co-expressed in 

dopamine neurons in the avian hypothalamus, perhaps playing a role in seasonal 

reproduction (El Halawani et al., 2009). The possible link between photoreceptor 

expression and dopamine pathways during critical embryonic stages in the Japanese quail 

has yet to be investigated.  

Corticosterone treatment did not alter opsin expression in the hypothalamus, which 

suggests that offspring of stressed mothers do not have disrupted development of the two 

candidate deep-brain photoreceptors and may, later in adult life, undergo sexual maturation 

and reproduce at the appropriate time of the year. Further experiments are required to 

elucidate brain opsin development in the avian embryonic brain and the effect that 

different stressors may have on it, by perhaps silencing their expression at critical foetal 

stages and monitoring seasonal reproduction once adulthood is reached. However, RNAi in 

specific regions of the brain during development has its limitations, as Japanese quail 

embryos are significantly smaller than chicken embryos, and specific intracerebral 

injections may be problematic. Finally, in study 2, OPN5 and VA Opsin expression was 

reduced in SD, although it was not statistically significant. This decrease in photoreceptor 

expression may suggest a stimulatory role for both opsins, activating the reproductive 

cascade in the summer and expressed at lower levels in SD. However, as it was not a 

statistically significant reduction, further research will need to examine a greater number of 

adults, as well as discern male-female differences that could be present and could impact 
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on photoreceptor gene patterns within the hypothalamus. 

 

3.5 Conclusions 

  The present chapter presented data from two separate studies on Japanese quail. 

Study 1 focused on the effect of embryonic CORT exposure on hypothalamic expression 

of GNRH, DNMT1/3A/3B and VA Opsin/OPN5 at different embryonic stages and at 

postnatal day 10. The second study analysed hypothalamic expression of adult male and 

female Japanese quail either maintained in LD or SD. Taken together, the data collected 

suggest an important role of E14 as a critical developmental stage for epigenetic resetting, 

where DNA methyltransferase 1,3A and 3B expression is upregulated, independent of 

CORT. Z-linked genes such as MHM or DMRT1 are both potential targets for the 

epigenetic modulation required for dosage compensation in birds (Teranishi et al., 2001; 

Smith et al., 2009). Overall DNMT3A and DNMT3B expression was reduced in SD adults, 

indicating their possible involvement in underlying seasonal reproduction in quail, 

however statistical analysis did not find this reduction significant, and a significant effect 

may be masked by sex-differences.  

OPN5 expression was also found to be upregulated at E14, decreasing in later 

stages. One hypothesis for its upregulation during a limited window of time could signify a 

functional role of OPN5 in the set-up of molecular processes that will modulate later 

mechanisms postnatally, such as embryonic OPN5-dependent dopamine pathways in the 

mouse retina that later allow for adult vision (Nguyen et al., 2019). The lack of a CORT-

dependent effect in photoreceptor expression may indicate that pre-natal stress in the 

Japanese quail does not affect the way light is detected in sexually mature adults. In adults, 

both VA Opsin and OPN5 appear to be decreased in SD, although not significantly, and 

again this could be an effect of sex-specific differences. It is also possible that the lack of 

significance in study 2, i.e. GNRH, DNMT3B, VA, OPN5 expression, is due to low sample 

size and high variation. In future studies, it will be necessary to account for male-female 
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differences when analysing photoreceptor expression in the brain of adult Japanese quail, 

as well as examine the long-term effects of embryonic CORT exposure in this species, 

especially at E14, and increase sample size. The epigenetic basis of avian dosage 

compensation and seasonal reproduction is largely unknown, however the emergence of 

advanced sequencing techniques and novel RNAi methods will aid in the unravelling of 

the role that epigenetics plays in these fundamental physiological processes.  
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Chapter 4 – Effects of Exogenous Triiodothyronine on DNA 

Methyltranferase Enzyme Expression and Neuroendocrine Reproductive 

Pathways in Male Siberian Hamsters (Phodopus sugorus). 

 

4.1 Introduction 

4.1.1 The Siberian hamster as a seasonal model 

This study focuses on the role of thyroid hormones in seasonal reproduction in 

male mammals, specifically the Siberian hamster, Phodopus sungorus. Siberian hamsters 

are well-characterised animal models, most commonly used in studies concerning seasonal 

changes in physiology. They are long-day breeders, initiating the reproductive cascade 

during the spring/summer (Bartness and Wade, 1985), and nocturnal animals. They are 

excellent models of seasonal plasticity, as one single long day can stimulate reproduction 

in this species, allowing for easy environmental manipulation and study design (Finley et 

al., 1995). Photoperiod drives a range of morphological, physiological and behavioural 

differences between LD and SD individuals: animals maintained in a LD condition exhibit 

weight gain and a dark fur, along with enlarged gonads, whereas SD hamsters become 

more aggressive, undergo gonadal regression, lower their body mass and their fur changes 

to white (Bartness and Wade, 1985). Siberian hamsters are therefore an excellent animal 

model for exploring seasonal physiological changes between the reproductive and non-

breeding periods.  

 

4.1.2 The importance of thyroid hormones in seasonal reproduction 

Thyroid hormones are crucial components in the physiology of most seasonal 

breeders, including birds, reptiles and mammals (Wu and Koenig, 2000; Ebling, 2015). 

Some of their essential functions include regulating development and metabolism, 
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initiating reproduction, and they are also involved in the stress response, avian feather 

moulting (Vézina et al., 2009), and hibernation (Tomasi, Hellgren and Tucker, 1998). In 

the mammalian system, thyroid hormones exist as two main isoforms, thyroxine (T4) and 

triiodothyronine (T3), and are synthesised by the thyroid gland. T4 is considered the 

inactive prohormone of T3, which is converted into T3 when required by the organism. 

Because of their multiple functions, thyroid hormones have been the focus of many studies 

concerning endogenous mechanisms and seasonal rhythms in mammals.  

Similar to the avian brain, mammalian neuropeptides involved in seasonal 

reproduction include gonadotropin-releasing hormone (Gnrh), kisspeptin (Kiss), and the 

mammalian ortholog of gonadotropin-inhibitory hormone (Gnih), RFamide-related peptide 

3 (Rfrp3) (Greives et al., 2007; Stevenson et al., 2012a; Tsutsui et al., 2013). The increase 

in day length during the spring/summer increases the production of T3 in summer-breeding 

species, triggering release of GnRH and downstream reproductive pathways (Yoshimura et 

al., 2013). Rfrp3 expression has also been shown to increase in the hypothalamus of 

Siberian hamsters during LD summer conditions (Ubuka et al., 2012), and in Siberian 

hamsters that received daily T3 injections (Henson et al., 2013). In addition, Rfrp3 has been 

shown to increase LH levels in SD Siberian hamsters, but to inhibit LH release in LD, 

breeding hamsters (Ubuka et al., 2012). Studies on Syrian hamsters (Mesocricetus auratus) 

indicate that Rfrp3 is able to stimulate the action of GNRH, therefore aiding in 

gonadotropin release (Ancel et al., 2012). Previous studies in Siberian hamsters have also 

shown that triiodothyronine injections or implants are able to stimulate gonadal growth in 

SD individuals (Barrett et al., 2007; Freeman et al., 2007). Taken together, these studies 

suggest that triiodothyronine is an essential component of the reproductive response by 

being able to modulate important reproductive neuropeptides in seasonal mammals, such 

as Gnrh and Rfrp3.  
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4.1.3 The effect of photoperiod and T3 on body mass, testes volume and reproductive 

neuropeptide expression in male Siberian hamsters  

The study I will describe in this chapter includes data gathered from findings 

published in Banks et al., 2016, for which I was of technical assistance during tissue 

collections. In this paper, male hamsters were maintained in SD or a LD condition, and 

received daily T3 or saline injections for 2 weeks. Hamsters exhibited an increase in body 

mass in response to LD, and a decrease in response to exogenous T3 treatment (Banks et 

al., 2016; Figure 4.1A). Individuals injected with saline for 2 weeks did not show altered 

body mass. Interestingly, exogenous T3 significantly increased testes volume in SD 

hamsters (Figure 4.1B) but did not change testes volume in LD individuals. In addition, the 

expression of Gnrh and Rfrp3 in the hamsters’ hypothalami was measured (Figure 4.1C 

and 4.1D). No change was found in Gnrh expression as a result of different photoperiods, 

nor T3 treatment. However, Rfrp3 levels were found to significantly decrease in SD 

hamsters compared to LD, and also in response to T3 injections. In summary, this study not 

only showed the short day-dependent decrease in body weight and testicular volume, but 

also reported that T3 injections were able to stimulate gonadal recrudescence in SD male 

Siberian hamsters. In addition, Rfrp3 was shown to decrease in response to short 

photoperiods and T3 treatment (Banks et al., 2016). The Dnmt1/3a/3b expression results 

presented in this chapter were gathered in the hypothalami collected by this previous study.  
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Figure 4.1. Body mass (A) and testes volume (B) of male Siberian hamsters maintained 

either in a long day (LD) or short day (SD) condition and treated with either saline (+S) or 

exogenous triiodothyronine (+T3) for two weeks. (C) Gnrh and (D) Rfrp3 expression in the 

hypothalami of male Siberian hamsters maintained either in a long day (LD) or short day 

(SD) condition and treated with either saline or exogenous T3 for two weeks. LD Saline: 

N=9; SD Saline: N=8; LD T3: N=6; SD T3: N=8. Adapted with permission from Banks et 

al., 2016. 
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Figure 1 - Photoperiod and T
3
 regulation of body mass,  testicular volume and blood leukocytes. A) SD treatment 

significantly reduced body mass after 8 weeks (PRE); d aily T
3
 for 2 week (POST) significantly decreased 

mass in hamsters. B) SD significantly reduced testicula r volume and T
3
 treatment induced a slight increase 

after 2 weeks. C) T
3
 significantly reduced leukocytes counts in SD hamsters to levels that were equivalent 

to LD hamsters. Conversely, T treated in LD hamsters significantly increased leukocytes. Asterisks denote 

significant differences *** P<0.001.
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4.1.4 DNA methyltransferase expression and seasonality 

As discussed in previous chapters, recent studies in the field of seasonality and 

epigenetics have highlighted the role of DNA methylation in the transition between the 

breeding and non-breeding periods in seasonally-reproducing species (Stevenson and 

Prendergast, 2013; Alvarado et al., 2015; Wilschut et al., 2016; Pegoraro et al., 2015; 

Lynch et al., 2016; Tolla and Stevenson, 2020b). Specifically, DNA methyltranferase 

enzyme 1 (Dnmt1), 3a (Dnmt3a) and 3b (Dnmt3b) expression in the hypothalamus of these 

species significantly increased during the summer in long-day breeding animals. One target 

gene that has been shown to undergo seasonal changes in its promoter methylation is 

enzyme deiodinase 3 (Dio3), which catalyses the deactivation of T3 during the winter in 

Siberian hamsters (Stevenson and Prendergast, 2013). DNA methylation is therefore 

emerging as a regulator of seasonal reproduction. However, the upstream modulators of 

DNA methyltransferases (Dnmts) are still unknown. As T3’s upstream hormonal signal, 

thyroid-stimulating hormone (TSH), was shown to have no effect on DNA 

methyltransferase expression in the hypothalamus (Ashton and McCaffery, 2017, 

unpublished data), this study seeks to explore whether T3 is part of the network that 

modifies Dnmt expression between breeding and non-breeding seasons. 

 

4.1.5 Hypotheses and Aims 

This study aimed to analyse the effects of exogenous triiodothyronine and 

photoperiod on DNA methyltransferase expression in male Siberian hamsters. The 

indicators of seasonal reproduction used were testes volume and hypothalamic 

neuroendocrine peptide expression. It was hypothesised that T3 treatment would lead to a 

surge in hypothalamic DNA methyltransferase 1, 3a and 3b expression in SD individuals 

comparable to the known increase in these enzymes during LD photoperiods.   
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4.2 Methods  

4.2.1 Animals 

Adult male hamsters (3-8 months; N=31) were obtained from a colony maintained 

at the University of Aberdeen. Hamsters were housed in polypropylene cages illuminated 

for 15h/day (15L: 9D). Food and water were provided ad libitum and nesting material was 

provided in the cages. All procedures were approved by the University of Aberdeen 

Animal Welfare and Ethics Committee and Home Office (PPL 70/7917). All procedures 

were in accordance with the ARRIVE Guidelines for ethical research on animals. 

 

4.2.2 Study design  

Adult male hamsters were maintained on the colony photoperiod (15L:9D). 

Hamsters were pseudo-randomly assigned to either long day (LD; 15L:9D) (n=15) or short 

day (SD; 9L:15D) (n=16) conditions for 8 weeks. The transfer to a SD photoperiod reliably 

induces reproductive involution in Siberian hamsters (Banks et al., 2016; Bao et al., 2019). 

After 8 weeks of either LD or SD treatment, body mass was measured (Ohaus Scale) to the 

nearest 0.1g to confirm photoperiod manipulations. Then, hamsters were divided into 

saline-treated controls LD+SAL (n=9), SD+SAL (n=8) or males that received exogenous 

triiodothyronine, LD+T3 (n=6) and SD+T3 (n=8). Hamsters were injected daily with 5 µg 

T3 (T2877, Sigma-Aldrich) dissolved in 1M sterile phosphate buffered saline (PBS) 

subcutaneously for 2-weeks. LD and SD saline controls received the same solution volume 

during the 2-week period. Baseline pre-treatment body mass were recorded and collected 

weekly until the termination of the study. aeADAM scales (Adam Equipment PGL2002; 

Adam Equipment, Milton Keynes, UK) were used to determine body mass. Testes mass 

was used to confirm the reproductive involution in response to the SD photoperiodic 

treatment. There were no non-responders identified. At the end of the experiment, males 
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were euthanized by cervical dislocation, the brains were rapidly dissected and frozen in dry 

ice for approximately 5 minutes. Then, brains were moved to -70°C until RNA extraction. 

 

4.2.3 RNA extraction and cDNA synthesis 

Hypothalami and infundibulum (i.e. pars tuberalis) were dissected as previously 

described (Stevenson and Prendergast 2013; Bao et al., 2019). In brief, the anatomical 

boundaries for hypothalamus dissection were: the optic chiasm at the anterior border, the 

mammillary bodies at the posterior border, and laterally at the hypothalamic sulci. 

Extracted tissue was cut dorsally 3-4 mm from the ventral surface. Tissues were 

homogenized in Trizol (ThermoFisher Scientific) and RNA extracted as per manufacturers 

guidelines. RNA concentrations (260/280 ratio) were measured by NanoDrop 

(ThermoFisher Scientific). cDNA synthesis was carried out using First Strand cDNA 

synthesis kit (Invitrogen). RNA concentration was normalized across all samples to 

1.2µg/µl made up to 10µl in RNase free H2O, then 1µl of primer (50 uM oligo dT) and 1µl 

of annealing buffer were added. RNase-free H2O was added to take the volume up to 100µl 

before being stored at -20°C until quantitative PCR (qPCR) assays.  

 

4.2.4 Primer design and optimisation 

Primers for target genes were designed using the NCBI Primer Design Tool 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were designed to include a 40-

60% GC content and have an annealing temperature of 55-65°C, then ordered from 

Invitrogen (Thermo Fisher Scientific). Primers were then suspended in RNAse- and 

DNAse-free water to 10 µM concentration and optimised using PCR and gel 

electrophoresis. Each PCR tube consisted of 45 µL of PCR SuperMix (Thermo Fisher 

Scientific), 1 µL of 10 µM forward primer, 1 µL of 10 µM reverse primer, 100 ng of 

hamster cDNA, and water until 50 µL. The tubes were then placed in a thermal cycler 
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(Thermo Hybaid Px2, Thermo Fisher Scientific) to follow a gradient program: (I) initial 

denaturation, 94°C for 2 minutes, 1 cycle; (II) denaturation, 94°C for 15 seconds, followed 

by a gradient annealing temperature (55°C – 62°C) for 30 seconds, followed by extension, 

72°C for 1 minute/kb, 35 cycles; (III) hold step at 4°C. A 1% agarose gel was made by 

mixing 1.2 g agarose, 120 ml 1X TBE buffer (Thermo Fisher Scientific) and 4 µL SYBR 

Safe DNA Gel Stain (Thermo Fisher Scientific), heating it in a glass beaker for ~2 

minutes, then pouring it in a gel cast and letting it set for 40 minutes. 10 µL of each PCR 

product were then loaded onto the gel. Running was carried out for 50 minutes, at 100 V 

and 100 mA. The gels were visualised using a UV light transilluminator (GeneFlash, 

Syngene) and the ideal annealing temperature was identified for each primer pair by 

selecting the one that yielded the clearer quality and most amount of product. See Table 

2.1 for detailed primer information. 

 

4.2.5 Real-Time Polymerase-Chain Reaction (qPCR)  

To measure mRNA expression, cDNA was assayed using qPCR. Primers for target 

genes were ordered from Invitrogen and optimised using gel electrophoresis, as described 

in chapter 2, section 2.2.7. qPCRs were run on a BioRad CFX96 Real time PCR machine 

in a 20µl reaction. For each well the qPCR mix consisted of 5µl cDNA template, 10µl 

SYBR green (PrecisionPLUS qPCR Master Mix with SYBR green) 0.5µl (300nM) 

forward primer, 0.5µl (300nM) reverse primer and 4µl RNase-free H2O to make up to 

20µl. Primers were all ordered from Invitrogen, sequences for Gnrh, Rfrp3, Dnmt1, 

Dnmt3a, and Dnmt3b were optimised and published previously (Stevenson and 

Prendergast, 2013; Lynch et al., 2016; Bao et al., 2019) as well and the primer sequences 

for the reference genes glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and 

hypoxanthine phosphoribosyltransferase 1 (Hprt) (Lynch et al., 2016). See Table 1 for 

primer information. All samples were run in triplicate in a 96-well plate format under the 

following cycling conditions; i) initial denaturing at 95°C for 5 min, then 39 cycles of ii) 
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95°C for 10 secs, iii) 30 secs at annealing temperature dependent on gene of interest (See 

Table 4.1), then iv) an extension step of 72°C for 30 secs. For each gene analysed, 

including reference genes, there were no-template H2O controls included in the plate. Melt 

curve analysis was carried out to ensure only a single peak was produced for each reaction. 

PCR Miner (Zhao and Fernald 2005) was used to determine reaction efficiencies (E) and 

quantification cycle (Ct). According to MIQE guidelines, samples with efficiency values 

below 0.8 and above 1.2 were excluded from analyses (Bustin et al., 2009). A two-way 

ANOVA was conducted to assess the stability of the reference RNA expression levels 

across experimental groups. Using the average reference Cts, no variation between 

photoperiod (P=0.34), treatment (P=0.19) or an interaction (P=0.73) was detected. Fold 

expression of each target gene was measured in relation to the average Ct for two reference 

genes (Gapdh and Hprt) and calculated using 2-(ΔΔCt). 

 

 

Table 4.1. List of Siberian hamster target genes, primer sequences, and relative annealing 

temperatures used. 

 

 

4.2.6 Statistical analyses 

Statistical analyses were performed using SigmaPlot 13.0. Two-way ANOVA was 

conducted on hypothalamic mRNA expression. Data were log-transformed in the event of 

a violation of normality or equal variance. Significance was determined at p<0.05. For 

detailed statistical analysis information, refer to Tables A.1 and A.2 (Appendix A). 

 

Gene Forward primer Reverse primer Annealing Temp

GnRH TCTGGTCATGTTGTCCGTGT CTTGCTGGTGTGTGGTATGC 61˚C

Rfrp3 GCCCCTGCCAACAAAGTG CAGGGTCCTCCCAAATCTCA 60˚C

Tshβ GCCCTCTCCCAGGATGTTTG GTGGCTTGGTGCAGTAGTTG 60°C

Dnmt1 CTGAGGCCATGTTGCCGGGG TCTCAGCTCAGCCAGCCGGA 60˚C

Dnmt3a CTCTGCAGGAGAGGGCAAAGAACAG TAGCATTCTTGTCCCCAGCATCCCC 60˚C

Dnmt3b GCTGCTGCAGATGCTTCTGTGTG TTGCTGGGTACAACTTGGGTGGC 60˚C

Gapdh TTCTTGTGCAGTGCCAGCCTCG CTGTGCCGTTGAACTTGCCGTG 60˚C

Hrpt AGTCCCAGCGTCGTGATTAGTGATG CGAGCAAGTCTTTCAGTCCTGTCCA 62˚C
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4.3 Results  

4.3.1 DNA methyltransferase expression does not vary in response to photoperiod or T3 

treatment in male Siberian hamsters 

When analysing Dnmt1, there was no interaction effect of daylength and T3 

treatment (F=0.420, p=0.522). No change in its expression was found as a result of 

daylength (F=0.00006, p= 0.994) or T3 treatment (F=0.189, p=0.667) (Figure 4.2A). Two-

way ANOVA analysis showed no change in Dnmt3a expression as a result of the 

interaction between daylength and T3 treatment (F=0.233, p=0.633). There was also no 

change in Dnmt3a expression in response to daylength (F=0.129, p= 0.722) or T3 treatment 

(F=0.203, p=0.656) (Figure 4.2B). Finally, Dnmt3b expression was not altered by the 

interaction between daylength and T3 treatment (F=0.00006, p=0.993), daylength alone 

(F=0.094, p= 0.762), or T3 treatment alone (F=0.350, p=0.559) (Figure 4.2B). 
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Figure 4.2. Photoperiod- and T3- dependent expression of Dnmt1 (A), Dnmt3a (B) and 

Dnmt3b (C) in the hypothalami of male Siberian hamsters maintained either in a long day 

(LD) or short day (SD) condition and treated with either saline or exogenous T3 for two 

weeks. LD Saline: N=9; SD Saline: N=8; LD T3: N=6; SD T3: N=8. 
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4.4 Discussion 

In the present study, the effect of photoperiod and T3 on hypothalamic DNA 

methyltransferase expression was analysed. Banks and colleagues confirmed the breeding 

status of the hamsters by measuring body mass and testes volume. In addition, it was 

shown that daily exogenous T3 injections are able to stimulate gonadal growth in SD male 

hamsters (Banks et al., 2016), consistent with previous studies (Freeman et al., 2007; 

Barrett et al., 2007). When considering DNA methyltransferase expression, the results 

suggest that neither photoperiod nor T3 drive DNA methylation in the hypothalamus of the 

male Siberian hamster brain. There are a few possible interpretations of this data. In 

previous studies, hypothalamic DNA methyltransferase expression has been shown to 

increase in response to long day lengths (Stevenson and Prendergast, 2013; Tolla and 

Stevenson, 2020). However, circadian rhythms have also been shown to dictate Dnmt 

expression in both the hypothalamus (Azzi et al., 2014; Stevenson, 2017) and the pituitary 

gland (see chapter 6) of seasonal species. Therefore, it may be possible that not accounting 

for circadian effects is masking alterations in Dnmt levels between SD and LD. Future 

studies will have to take into consideration time of day when sampling tissues for seasonal 

experiments. It may also be possible that male Siberian hamsters require longer than 2 

weeks to exhibit a change in Dnmt expression in the hypothalamus.  

When considering triiodothyronine treatment, the absence of an effect of T3 

injections on hypothalamic Dnmt levels may be because: 1) a different hormonal signal 

may be driving Dnmt expression in LD hamsters, or 2) Dnmts may be part of the 

endogenous circannual machinery within the brain of male Siberian hamsters, therefore not 

being driven by other hormonal signals at all. In addition, seasonal ‘clock’ genes in 

seasonal vertebrate species have not been identified yet, and epigenetic mechanisms have 

been hypothesised to underlie circannual rhythms (Stevenson and Lincoln, 2017). It may 

also be possible that other epigenetic enzymes, e.g. Hdacs or Tets, are regulated by 

reproductive components such as T3, leading to the modulation of the reproductive axis. 



132 

 

However, the association between other epigenetic enzymes and seasonal reproductive 

processes in the hypothalamus has not yet been investigated. An alternative experimental 

design could consist of exposing the animals to thyroid hormone injections for longer than 

a two-week period, along with sampling tissues at different times during the day following 

a daily T3 injection regimen.  

Finally, Rfrp3 expression in the hypothalamus appears to be reduced by T3 

treatment in SD hamsters, suggesting a role for triiodothyronine in inhibiting Rfrp3 levels 

in male Siberian hamsters. Rfrp3 expression was also shown to significantly decrease in 

response to short photoperiods, consistent with previous reports (Klosen et al., 2013; 

Henson et al., 2013). It could be useful to analyse Rfrp3 promoter methylation via bisulfite 

sequencing, to determine whether DNA methylation is linked to the differential expression 

of this peptide between seasons. 

One important aspect of the hypothalamic-pituitary-gonadal axis is differences 

between male and female integration of stimuli that initiate the reproductive response (Ball 

and Ketterson, 2008). It may be possible that Dnmt1, 3a and 3b in certain regions of the 

brain involved in seasonal reproduction, e.g. the hypothalamus, exhibit sex differences in 

expression that later in life account for sex differences in physiology or behaviour, and 

may account for the absence of variation in Dnmt expression I presented in this chapter. 

For instance, the preoptic area of the hypothalamus (POA) is a critical node for the control 

of mammalian reproduction, and GnRH neurons are largely concentrated in this area. 

Lesions to the POA in rats cause a decrease in breeding behaviour in males, but not in 

females (Hitt et al., 1970), suggesting that the POA is involved in integrating signals that 

lead to sex differences in reproduction. Thus, differences in the seasonal or circadian 

expression of DNA methyltransferase enzymes may be found in anatomically localised 

hypothalamic regions, such as the POA. 
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4.5 Conclusions 

In the present chapter, I presented data collected from the hypothalami of male 

Siberian hamsters exposed to either SD or LD, and to either daily saline or T3 injections for 

2 weeks. This study hoped to shed some light on neuroendocrine pathways underlying 

seasonal reproduction in this mammalian species. Body mass and testicular volume data 

gathered by Banks and colleagues confirmed the breeding and non-breeding status of LD 

and SD individuals, respectively (Banks et al., 2016). DNA methyltransferase expression 

results indicated that the expression of hypothalamic Dnmt1, 3a and 3b enzymes is not 

driven by photoperiod or T3 injections. However, since previous studies reported decreased 

Dnmt expression in SD Siberian hamsters (Stevenson and Prendergast, 2013; Tolla and 

Stevenson, 2020b), it may be possible that 2 weeks of SD were not sufficient to alter DNA 

methyltransferase levels in this region of the brain in males. Furthermore, results show that 

T3 acts to inhibit Rfrp3 expression. Rfrp3 levels were also reduced as an effect of short 

photoperiod, which has been reported in other studies (Klosen et al., 2013; Henson et al., 

2013). 

The present data suggest a complex neuroendocrine interaction between thyroid 

hormones, reproductive hormones such as RFamide-related peptide 3 and DNA 

methylation in hypothalamus brain regions of the male Siberian hamster. Additional 

research in the field of epigenetics and neuroendocrinology in mammals is needed to 

further assess the role and patterns of hormones important for reproduction and relate them 

to the methods by which environmental pressures act on the physiology of organisms, i.e. 

enzymes that carry out epigenetic modifications. 
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Chapter 5 – Photoperiod-Induced Changes in Hypothalamic de novo 

DNA Methyltransferase Expression are Independent of Triiodothyronine 

in Female Siberian Hamsters (Phodopus sungorus). 

 

Published Article: Tolla, E., & Stevenson, T. J. (2020). Photoperiod-induced changes in 

hypothalamic de novo DNA methyltransferase expression are independent of 

triiodothyronine in female Siberian hamsters (Phodopus sungorus). General and 

Comparative Endocrinology, 299, 113604. 
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Abstract 

Many temperate zone animals engage in seasonal reproductive physiology and 

behaviour as a strategy to maximise the propagation of the species. The hypothalamus 

integrates environmental cues and hormonal signalling to optimize the timing of 

reproduction. Recent work has revealed that epigenetic modifications, such as DNA 

methylation, vary across seasonal reproductive states. Multiple hormones act in the 

hypothalamus to permit or inhibit reproductive physiology, and the increase in thyroid 

hormone triiodothyronine (T3) has been implicated in the initiation of breeding in many 

species. The objective of this study was to examine the effect of T3 on the photoperiod-

dependent regulation of reproductive physiology and hypothalamic DNA 

methyltransferase enzyme expression in female Siberian hamsters (Phodopus sungorus). 

The hypothesis that T3 in short days (SD) would stimulate hypothalamic Rfrp3 and de novo 

DNA methyltransferase (Dnmt) expression in female Siberian hamsters was tested. 10 

weeks of SD lengths induced a decrease in body and uterine mass. Hamsters maintained in 

SD were found to express lower levels of GnRH, Rfrp3, Dnmt3a and Dnmt3b. Two weeks 

of daily T3 injections did not affect body mass, uterine mass, Gnrh, Rfrp3, Dnmt3a or 

Dnmt3b expression in neuroendocrine tissues. SD significantly lowered Tshβ mRNA 

expression and T3 reduced Tshβ in LD hamsters. The data indicate sex-dependent effects 

of T3 for the neuroendocrine regulation of seasonal reproduction in hamsters. 

  



136 

 

5.1 Introduction 

Most temperate species engage in seasonal breeding as a strategy to optimize the 

timing of reproductive physiology and behaviour and ensure the propagation of the species 

(Nelson et al., 1990; Tolla et al., 2019). Changes in environmental cues such as 

temperature, food availability and day lengths (i.e. photoperiod) act on the hypothalamus 

to regulate the synthesis and secretion of reproductive neuropeptides (Nelson et al., 1990; 

1994; Visser et al., 2010; Helm and Stevenson, 2015; Stevenson, et al. 2017a). Photoperiod 

is considered the primary predictive cue that entrains seasonal reproduction, and 

supplementary environmental cues, such as temperature, fine-tune the timing of breeding 

(Paul et al., 2008; Stevenson and Ball, 2011, Wingfield and Kenagy, 1991). Gonadotropin 

releasing hormone (GnRH) is the final common pathway that integrates photoperiodic and 

supplementary cues and subsequently governs reproductive physiology and behavior 

(Lehman et al., 1997; Bentley et al., 2006; Ansel et al., 2011; Stevenson et al., 2012). 

In mammals, the annual change in photoperiod is coded via the secretion of 

melatonin from the pineal gland (Carter and Goldman, 1983; Bartness and Goldman, 1989; 

Goldman, 2001). Melatonin acts via the primary receptor sub-type Melatonin receptor 1b 

to trigger gonadal regression in a range of mammalian species that breed during the 

summer, also referred to as long-day breeders (Yasuo et al., 2009; Prendergast, 2010). 

Melatonin does not act directly on GnRH cells as these neurons do not express melatonin 

receptors (Clarke et al., 2009). Instead, melatonin acts via multiple hypothalamic nuclei to 

regulate the release of GnRH into the pituitary gland (Song and Bartness, 1996). Short day 

increases in the duration of melatonin trigger a decrease in thyrotropin-stimulating 

hormone-β (Tshβ) expression in the pars tuberalis of hamsters (Watanabe et al., 2004; 

Klosen et al., 2013; Saenz de Miera et al., 2017) and sheep (Dardente et al., 2010, Wood et 

al., 2015, Hazlerigg et al., 2018). In birds, melatonin is not necessary for the SD-induced 

change in reproductive physiology (Juss et al., 1993), yet still exhibit the long-day 

photoinduced increase in Tshβ expression (Nakao et al., 2008; Majumdar et al., 2014). The 
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current evidence indicates that long-day increases in Tshβ pars tuberalis expression is a 

conserved mechanism that provides a paracrine signal to transiently induce the release of 

GnRH into the pituitary gland. 

Increased Tshβ stimulates deiodinase type-2 (Dio2) expression in the ependymal 

layer along the 3rd ventricle (Nakao et al., 2008; Klosen et al., 2013). Dio2 is a thyroid 

hormone enzyme that serves to increase the local concentration of triiodothyronine (T3). In 

long-day breeding animals, hypothalamic T3 concentrations are higher in the summer, as it 

is converted from thyroxine (T4) to T3 by Dio2 (Yoshimura et al., 2003; Yasuo et al., 

2005). In the late autumn, T3 concentrations are proposed to decrease due to the increased 

expression of deiodinase type-3 (Dio3) and the subsequent inactivation of T3 (Yasuo et al., 

2005; Barrett et al., 2007; Stevenson and Prendergast, 2013). Increased hypothalamic T3 

results in the retraction of tanycyte cell innervation from the median eminence and permits 

GnRH-to-pituitary gland signalling (Yamamura et al., 2004). The T3 signalling pathway 

may be evolutionarily conserved as high T3 concentrations are strongly correlated with 

reproductive physiology and behaviour during breeding months in both mammals and non-

mammalian vertebrates (Wu and Koenig, 2000). Previous work using Siberian hamsters 

housed in short days and then provided a daily exogenous T3 injection regimen could 

induce testicular growth (See Chapter 4; Freeman et al., 2007; Banks et al., 2016). In 

addition to effects on peripheral physiology, daily T3 was found to inhibit Tshβ expression 

(Bao et al., 2019) and induce hypothalamic expression of reproductive neuropeptide RF-

amide related peptide-3 (Rfrp3) (Hansen et al., 2013) but had no effect on GnRH 

expression (Banks et al., 2016). Most research on the neuroendocrine regulation of 

seasonal reproduction has focused on males, therefore, a greater attention to the role for T3 

in the neuroendocrine control of female reproduction is needed.  

Seasonal variation in epigenetic modifications has emerged as a novel mechanism 

for the long-term timing of reproductive physiology and behaviour (Stevenson, 2018). 

Epigenetic mechanisms such as DNA methylation is conserved in nature, and found in 
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plants, invertebrates and vertebrates (Feng et al., 2010). DNA methylation involves the 

addition of a methyl group to the genomic DNA template, predominantly on cytosine-

guanine pairs by DNA methyltransferase (Dnmt) enzymes (Jones et al., 2012). Increased 

promoter DNA methylation prevents transcription factor binding and, therefore represses 

gene transcription (Jones et al., 2012). In contrast, the removal of methyl groups permits 

access to the genome template and subsequent gene transcription. There are two classes of 

Dnmts, one isoform is associated with maintaining DNA methylation patterns through cell 

division (Dnmt1) (Bestor et al., 1988), compared to isoforms that are involved in 

establishing de novo methylation patterns (Dnmt3a and Dnmt3b) (Okano et al., 1998; 

Okano et al., 1999). DNA methylation has been demonstrated to oscillate with both daily 

and seasonal rhythms in multiple species. In the wasp (Nasonia vitripennis), a long day 

breeder, DNA methylation increased in short days and was shown to be essential for the 

transition into diapause (Pegoraro et al., 2016). In the Thirteen-lined squirrel (Ictidomys 

tridecemlineatus) liver and muscle tissue exhibited a significant increase in Dnmt3a 

expression during non- reproductive winter periods (Alvarado et al., 2015). In the 

laboratory, short-day photoperiods were found to increase testicular and uterine DNA 

methylation and Dnmt3a and Dnmt3b expression in Siberian hamsters (Phodopus 

sungorus) (Lynch et al., 2016). Hypothalamic Dnmt3a expression is significantly higher in 

hamsters maintained in long day conditions (Stevenson and Prendergast, 2013; Stevenson, 

2017a), redheaded bunting (Emberiza bruniceps) (Sharma et al., 2018) and Japanese quail 

(Coturnix japonica) (Nakao et al., 2008). The increased enzyme expression is paralleled by 

an increase in global DNA methylation (Stevenson and Prendergast, 2013) and the 

promoter region for Dio3 appears to be one genomic motif that exhibits reversible 

methylation. However, the extent to which hypothalamic T3 concentrations regulate 

hypothalamic Dnmt expression and a role for the control of female reproduction is not well 

characterised. 
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The objective of this study was to determine the effect of T3 on the photoperiodic 

regulation of female reproductive physiology and hypothalamic expression of reproductive 

neuropeptides, Gnrh, Rfrp3 and epigenetic enzymes Dnmt1, -3a and 3b expression. This 

study used Siberian hamsters due to the well-characterized, robust and reliable 

reproductive responses to photoperiodic manipulations (Bartness and Goldman, 1989; 

Prendergast et al, 2013; Stevenson et al., 2017b). The hypothesis that short days would 

induce reproductive involution across the entire hypothalamo-pituitary gonadal axis was 

tested. Moreover, it was hypothesized that 2 weeks of daily exogenous T3 injections in 

female hamsters housed in short days for 10 weeks would trigger long day-like 

neuroendocrine and gonadal phenotypes. This study follows the experimental rationale and 

design described in chapter 4, investigating female Siberian hamsters instead of males. 

 

5.2 Material and Methods  

5.2.1 Animals 

Adult female hamsters (3-8 months) were obtained from a colony maintained at the 

University of Aberdeen. Hamsters were housed in polypropylene cages illuminated for 

15h/day (15L: 9D). Harlan food and tap water were provided ad libitum and each cage was 

provided cotton-nesting material. All procedures were approved by the University of 

Aberdeen Animal Welfare and Ethics Committee and Home Office (PPL 70/7017). All 

procedures were in accordance with the ARRIVE Guidelines for ethical research on 

animals. 

 

5.2.2 Study design  

Adult female hamsters (N=29) were maintained on the colony photoperiod 

(15L:9D). Hamsters were pseudo-randomly assigned to either long day (LD; 15L:9D) 

(n=15) or short day (SD; 9L:15D) (n=14) conditions. The transfer to a SD photoperiod 
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reliably induces reproductive involution in Siberian hamsters (Banks et al., 2016; Bao et 

al., 2019). After 10 weeks of either LD or SD treatment, body mass was measured (Ohaus 

Scale) to the nearest 0.1g to confirm photoperiod manipulations. Then, hamsters were 

divided into saline-treated controls LD+SAL (n=7), SD+SAL (n=6) or females that 

received exogenous triiodothyronine, LD+T3 (n=8) and SD+T3 (n=8). Female hamsters 

were injected daily with 5 µg T3 (T2877, Sigma-Aldrich) dissolved in 1M sterile phosphate 

buffered saline (PBS) subcutaneously for 2-weeks. The T3 dose selected was to replicate 

previous work using exogenous injections in male Siberian hamsters (Banks et al., 2016; 

Onishi et al., 2019; Bao et al., 2019). LD and SD saline controls received the same solution 

volume during the 2-week period. The injection dose and schedule selected were 

previously established to induce reproductive development (i.e. testicular growth) in SD 

housed male hamsters (Banks et al., 2016). Baseline pre-treatment body mass were 

recorded and collected weekly until the termination of the study. Uterine mass was used to 

confirm the reproductive involution in response to the SD photoperiodic treatment. There 

were no non-responders identified. At the end of the experiment, females were euthanized 

by cervical dislocation, the brains were rapidly dissected and frozen in dry ice for 

approximately 5 minutes. Then, brains were moved to -70°C until RNA extraction. 

 

5.2.3 RNA extraction and cDNA synthesis 

Hypothalami and infundibulum (i.e. pars tuberalis) were dissected as previously 

described (Stevenson and Prendergast 2013; Bao et al., 2019). In brief, the anatomical 

boundaries for hypothalamus dissection were: the optic chiasm at the anterior border, the 

mammillary bodies at the posterior border, and laterally at the hypothalamic sulci. 

Extracted tissue was cut dorsally 3-4 mm from the ventral surface. Tissues were 

homogenized in Trizol (ThermoFisher Scientific) and RNA extracted as per manufacturers 

guidelines. RNA concentrations (260/280 ratio) were measured by NanoDrop 

(ThermoFisher Scientific). cDNA synthesis was carried out using First Strand cDNA 
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synthesis kit (Invitrogen). RNA concentration was normalized across all samples to 

1.2µg/µl made up to 10µl in RNase free H2O, then 1µl of primer (50 uM oligo dT) and 1µl 

of annealing buffer were added. RNase-free H2O was added to take the volume up to 100µl 

before being stored at -20°C until quantitative PCR (qPCR) assays.  

 

5.2.4 qPCR assay for DNA methyltransferase and photoperiodic genes 

To measure mRNA expression, cDNA was assayed using qPCR. Primers for target 

genes were ordered from Invitrogen and optimised using gel electrophoresis, as described 

in chapter 4, section 4.2.4. qPCRs were run on a BioRad CFX96 Real time PCR machine 

in a 20µl reaction. For each well the qPCR mix consisted of 5µl cDNA template, 10µl 

SYBR green (PrecisionPLUS qPCR Master Mix with SYBR green) 0.5µl (300nM) 

forward primer, 0.5µl (300nM) reverse primer and 4µl RNase-free H2O to make up to 

20µl. Primers were all ordered from Invitrogen, sequences for Tshb, Gnrh, Rfrp3, Dnmt1, 

Dnmt3a, and Dnmt3b were optimized and published previously (Stevenson and 

Prendergast, 2013; Lynch et al., 2016; Bao et al., 2019) as well and the primer sequences 

for the reference genes glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and 

hypoxanthine phosphoribosyltransferase 1 (Hprt) (Lynch et al., 2016). See Table 4.1 for 

primer information. All samples were run in triplicate in a 96-well plate format under the 

following cycling conditions; i) initial denaturing at 95°C for 5 min, then 39 cycles of ii) 

95°C for 10 secs, iii) 30 secs at annealing temperature dependent on gene of interest (See 

Table 4.1), then iv) an extension step of 72°C for 30 secs. For each gene analysed, 

including reference genes, there were no-template H2O controls included in the plate. Melt 

curve analysis was carried out to ensure only a single peak was produced for each reaction. 

PCR Miner (Zhao and Fernald 2005) was used to determine reaction efficiencies (E) and 

quantification cycle (Ct). According to MIQE guidelines, samples with efficiency values 

below 0.8 and above 1.2 were excluded from analyses (Bustin et al., 2009). A two-way 

ANOVA to assess the stability of the reference RNA expression levels across experimental 
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groups was conducted. Using the average reference Cts, no variation between photoperiod 

(P=0.34), treatment (P=0.19) or an interaction (P=0.73) was detected. Fold expression of 

each target gene was measured in relation to the average Ct for two reference genes 

(Gapdh and Hprt) and calculated using 2-(ΔΔCt). 

 

5.2.5 Statistical analyses 

Statistical analyses were performed using SigmaPlot 13.0. Two-way ANOVA was 

conducted on uterine and body mass, and hypothalamic mRNA expression. Data were log-

transformed in the event of a violation of normality or equal variance. Significance was 

determined at p<0.05. For detailed statistical analysis information, refer to tables A.1 and 

A.2 in Appendix A. 

 

5.3 Results 

5.3.1 Photoperiod but not triiodothyronine regulates uterine and body mass in female 

hamsters 

 There was no significant interaction of daily T3 injections and daylength on uterine 

mass (F=0.42; P=0.52). Similarly, no effect of daily T3 injections on uterine mass (F=0.12; 

P=0.73) was found. However, uterine mass decreased in response to SD (F=14.95; 

P<0.001) (Fig. 5.1A). 

No significant interaction was found between daily T3 injections and daylength on body 

mass (F=0.04; P=0.84). Exogenous T3 did not significantly affect body mass (F=2.85; 

P=0.10, but there was a significant decrease in body mass in response to SD (F=36.09; 

P<0.001) (Fig. 5.1B). 
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Figure 5.1. Photoperiodic regulation of uterine and body mass in female Siberian hamsters 

kept under short day (SD) or long day (LD) conditions. Hamsters received either a daily 

saline (SAL) or triiodothyronine (T3) injection for two weeks. SD induce reproductive 

involution evidenced by reduced uterine mass (A) and body mass (B). Daily T3 injections 

did not significantly affect body mass or uterine mass (P>0.05). Data presented as mean ± 

SEM and asterisks indicate significant difference P<0.001. LD+SAL: N=7; SD+SAL: 

N=6; LD+T3: N=8; SD+T3: N=8. 

 

5.3.2 Exogenous daily T3 did not augment SD-induced reduction in reproductive 

neuropeptides. 

 There was no significant interaction found between daily T3 injections and 

daylength on hypothalamic GnRH expression (F=0.42; P=0.52). Exogenous T3 did not 

affect GnRH expression (F=0.09; P=0.76). However, female hamsters exposed to SD had 

significantly lower hypothalamic GnRH expression compared to LD animals (F=15.55; 

P<0.001) (Fig. 5.2A). These data indicate that GnRH expression in females is responsive to 

photoperiodic manipulations but was not regulated by T3 signalling. 

 Next, hypothalamic Rfrp3 expression was assessed. Rfrp3 mRNA levels did not 

vary in response to the interaction between T3 injections and daylength (F=0.59; P=0.45). 

Daily T3 injections did not affect Rfrp3 expression (F=1.85; P=0.18). However, it was 

confirmed that SD significantly reduced Rfrp3 expression (F=4.23; P=0.05) (Fig. 5.2B). 



144 

 

These findings suggest that similar to GnRH expression, reproductive neuropeptides in the 

female hamster hypothalamus are primarily driven by photoperiodic cues independent of 

T3 signalling. 

Tshβ expression was measured as a means to determine the effectiveness of 

exogenous T3 to augment the hypothalamo-thyroid axis. A significant interaction effect of 

T3 treatment and daylength was found on Tshβ expression (F=5.72; P<0.05). As expected, 

SD hamsters had significantly lower Tshβ expression compared to LD animals (F=18.61; 

P<0.001) (Fig. 5.2C). There was also a main effect of T3 treatment, with higher Tshβ 

expression in saline treated control hamsters (F=5.38; P<0.05). These data suggest that 

Tshβ expression is driven by photoperiodic `changes. Furthermore, they suggest that 

exogenous T3 injections were sufficient to influence the homeostatic regulation of the 

neuroendocrine-thyroid axis.  

 

 

Figure 5.2. Short days induce a significant reduction in photoperiodic and reproductive 

neuropeptides. Hamsters were kept either under a long day (LD) or short day (SD) 

condition and received either a daily saline (SAL) or triiodothyronine (T3) injection for 

two weeks. Prolonged exposure to SD resulted in lower expression of two reproductive 

neuropeptides: Gnrh (A), and Rfrp3 (B). Decreased photoperiods lowered thyrotrophin-

stimulating hormone subunit-β (Tshβ) and exogenous T3 significantly reduced expression 

in LD (C). Data presented as mean ± SEM. Asterisks indicate significant variation between 

LD and SD *** P<0.001 and * P<0.05. Hashtag denotes significant T3-induced reduction 

in LD hamsters # P<0.05. LD+SAL: N=7; SD+SAL: N=6; LD+T3: N=8; SD+T3: N=8. 
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5.3.3 Photoperiod and not T3 regulates seasonal variation in hypothalamic Dnmt3a/b 

 There was no significant effect of the interaction between T3 treatment and 

photoperiod (F=0.35; P=0.56), or photoperiod alone (F=0.74; P=0.39) (Fig. 5.3A), or daily 

T3 injections (F=0.48; P=0.49) on hypothalamic Dnmt1 expression. There was a non-

significant trend for the effect of the interaction between photoperiod and daily T3 

injections on hypothalamic Dnmt3b (F=3.56; P=0.07) expression. There was no significant 

effect of the interaction between daily T3 injection and photoperiod on hypothalamic 

Dnmt3a (F=2.30; P=0.14). In parallel with the neuroendocrine responses, SD animals 

showed reduced hypothalamic expression of Dnmt3a (F=4.34; P=0.05) and Dnmt3b 

(F=5.71; P=0.05), but T3 treatments did not significantly impact expression of Dnmt3a 

(F=0.01; P=0.89) (Fig. 5.3B) or Dnmt3b (F=2.92; P=0.09) (Fig. 5.3C). These data suggest 

that LD-induced increases in hypothalamic T3 concentrations do not regulate de novo DNA 

methyltransferase expression in the hamster hypothalamus. 

 

Figure 5.3. Photoperiodic regulation of hypothalamic DNA methyltransferase expression 

in female hamsters. Hamsters were kept either under a long day (LD) or short day (SD) 

condition and received either a daily saline (SAL) or triiodothyronine (T3) injection for 

two weeks. The levels of hypothalamic Dnmt1 expression were not significantly different 

across photoperiodic manipulations or T3 treatment (P>0.05 for all comparisons). Similar 

to previous reports, SD resulted in reduced hypothalamic Dnmt3a (B) and Dnmt3b (C) 

expression. Data presented as mean ± SEM and asterisks indicate significant difference 

between LD and SD * P<0.05. LD+SAL: N=7; SD+SAL: N=6; LD+T3: N=8; SD+T3: 

N=8. 
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5.4 Discussion 

The findings presented here confirmed SD-induced reductions in female Siberian 

hamster body mass and uterine involution. These changes were paralleled by lower 

neuroendocrine expression of a highly photoperiodic gene, Tshβ; and key reproductive 

neuropeptides Gnrh and Rfrp3. These findings replicate previous reports in hamsters 

(Stevenson and Prendergast, 2013; Stevenson, 2016) and redheaded buntings (Sharma et 

al., 2017) for photoperiod-dependent regulation of hypothalamic Dnmt3a and Dnmt3b. 

However, unlike prior studies in male Siberian hamsters (Freeman et al., 2003; Banks et 

al., 2016), female hamsters housed in SD for 10 weeks did not exhibit gonadal 

recrudescence, nor a change in neuropeptide expression after 2 weeks of daily T3 

injections. Furthermore, daily T3 injections did not affect the level of Dnmt3a and Dnmt3b 

expression. These data indicate that photoinduced changes in T3 have sex-specific effects 

and that females likely require additional supplementary cues for full reproductive 

development that are independent of T3 signalling pathways. 

Hypothalamic T3 signalling is conserved across mammalian and avian species and 

plays a critical role for timing seasonal transitions in reproduction (Yoshimura, 2013). 

Studies conducted in the 1980s and 1990s illustrated that thyroidectomy disrupted the 

photoperiodic regulation of reproduction in quail and sheep (Follett and Nicholls, 1985; 

Parkinson and Follett, 1994). Subsequent work in American Tree sparrows (Spizella 

arborea) indicated that thyroidectomy before LD stimulation inhibited gonadal regression 

during the onset of photorefractoriness (Wilson and Reinert, 1993). However, 

thyroidectomy 4 weeks after photostimulation did not impact gonadal involution (Wilson 

and Reinert, 1995). In combination with similar evidence collected in sheep, these data 

suggest that thyroid hormones have a window of opportunity to regulate reproductive 

transitions across photoperiodic states (Thrun et al., 1997). Moreover, the role of T3 for the 

regulation of neuroendocrine molecular pathways appears limited, as 49 genes – out of 

>3000 genes that are differentially expressed between seasons – were observed to be 
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differentially regulated between intact and thyroidectomised ewes after transfer from SD to 

LD conditions (Lomet et al., 2018). In hamsters, daily T3 injections in SD conditions 

induce testicular growth (Freeman et al., 2007; Hansen et al. 2013; Banks et al., 2016). The 

T3 injections regimen does not stimulate the expression of all hypothalamic transcripts 

identified to exhibit photoperiod-dependent regulation but is instead restricted to a few 

hypothalamic targets and includes Pomc (Bao et al., 2019) and Rfrp3 (Banks et al., 2016). 

Other transcripts such as Npy, Agrp, Cart (Bao et al., 2019) and GnRH (Banks et al., 2016) 

are not impacted by daily T3 injections in SD hamsters. Taken together, these studies 

highlight that thyroid hormone acts during a limited period to regulate the photoperiodic 

response and only regulates a few hypothalamic transcripts. 

The daily T3 injections regimen significantly decreased Tshβ expression in LD 

hamsters consistent with previous work in male hamsters (Bao et al., 2019). These data are 

important to establish that the dose of exogenous T3, mode of administration (i.e. 

subcutaneous) and injection regimen are sufficient to negatively impact the homeostatic 

regulation of the hypothalamic-thyroid axis. Moreover, the lower Tshβ levels confirm that 

exogenous T3 injections can act in key neuroendocrine substrates to regulate gene 

transcription. It was anticipated that SD Tshβ levels are expressed at very low levels and 

cannot be reduced further in response to exogenous T3. The dose selected for these studies 

can mimic physiological responses across several different endocrine and immune systems. 

For example, adaptive immune responses in SD hamsters (Stevenson et al., 2014), and 

circulating leukocytes numbers are significantly reduced (Stevenson et al., 2014; Banks et 

al., 2016). Other work has indicated that hamsters treated with a lower daily dose of T3 (i.e. 

0.5ug) could initiate gonadal recrudescence in SD conditions (Freeman et al., 2007; 

Hansen et al., 2013). Furthermore, the dose used by Hansen and colleagues (2013) was 

capable of increasing Kiss1 immunoreactivity in the anteroventral periventricular nucleus, 

reducing Kiss1 immunoreactivity in the arcuate nucleus and increasing Rfrp3 

immunoreactivity in the dorsomedial hypothalamus of SD hamsters. A clear comparison of 



148 

 

the two T3 doses is challenging as the approach used here examines transcript expression 

and not protein levels in the hamster hypothalamus. At present, the data indicate T3 dose-

dependent effects on the neuroendocrine regulation of seasonal reproductive physiology.  

These findings suggest photoperiod regulation of reproductive physiology can 

occur independent of T3 pathways in female hamsters. Sex differences in the 

environmental regulation of reproduction is widely known and may be driven by resources 

required for spermatogenesis versus ovulation (Beery et al., 2007) and male-male 

competition (Prendergast, 2005) to name a few. In birds, photoperiod is sufficient to 

stimulate reproductive development in males, whereas females, require additional 

supplementary cues (Wingfield, 2008). In the present study, SD female hamsters that 

received T3 injections did not exhibit body mass or uterine growth, nor the hypothesised 

decrease in hypothalamic Gnrh or Rfrp3 expression. These data indicate that, unlike males, 

the photoperiodic regulation of reproduction requires additional inputs that are independent 

of T3 pathways. In male rats, but not in females, lesions of the medial preoptic area 

(MPOA) cause a loss of dopamine projections and decreased reproductive behaviour (Hitt 

et al., 1970; Brackett et al., 1986). Furthermore, the diverse isoforms and functional role of 

thyroid hormone receptors could contribute to the sex-dependent responses to T3 

injections. Dellovade and colleagues demonstrated that thyroid receptor alpha 1 (TRα1) 

knockdown in mice results in an inhibition of female reproductive behaviour, whereas 

thyroid receptor β (TRβ) knockout was able to increase reproductive behaviour (Dellovade 

et al., 2000). Conversely, TRα1 knockout male mice show an increase in reproductive 

behaviour compared to wildtype controls, while TRβ knockouts did not change 

reproductive behaviour (Vasudevan et al., 2013). These studies highlight the fact that 

thyroid hormone functions are sex-specific and modulating the thyroid hormone pathway 

at any level is likely to have sex-dependent outcomes on reproductive physiology and 

behavior. 
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Daily and seasonal variation in epigenetic enzyme expression has been reported 

across a range of tissues (Tolla et al., 2019). Hypothalamic Dnmt3a levels oscillate across 

the day with higher expression during the dark phase in hamsters (Stevenson, 2017a). 

Dnmt3a and Dnmt3b are expressed in the suprachiasmatic nucleus and the inhibition of de 

novo methyltransferase via zebularine suppressed changes in period length (Azzi et al., 

2014). SD photoperiods reduced Dnmt3a as well as Dnmt3b in a circadian-dependent 

manner (Stevenson, 2017a). In redheaded buntings, there is a significant reduction in 

hypothalamic Dnmt3a expression in autumn compared to spring conditions (Sharma et al., 

2018). The mechanisms that drive greater de novo DNA methyltransferase expression in 

the hypothalamus in LD conditions are not well-characterised. This study tested the 

hypothesis that T3 injections would increase hypothalamic Dnmt3a and Dnmt3b expression 

in SD hamsters. Contrary to the hypothesis, there was no significant effect of T3 on 

hypothalamic Dnmt1, Dnmt3a, nor Dnmt3b expression. Consistent with previous reports 

hypothalamic Dnmt3a and Dnmt3b levels were reduced in SD conditions and occurred 

independent of exogenous T3. Therefore, it is possible that (1) an alternative hormonal 

signal regulates photoperiodic variation in Dnmt3a and Dnmt3b expression, or (2) the 

expression levels reflect an endogenous circannual timing system (Stevenson and Lincoln, 

2017). 

The proximate mechanisms that drive seasonal transitions in growth and 

reproduction remain less well characterised. The photoperiodic hamster model has been 

valuable to investigate the sufficiency and necessity of several hormone signalling 

pathways for the neuroendocrine regulation of seasonal rhythms (Stevenson et al., 2017a). 

Studying the sufficiency of thyroid hormones for the photoperiodic control of reproductive 

responses facilitates the ability to identify molecular pathways involved in triggering 

seasonally-timed changes in physiology and behavior. The present data describe T3-

independent and sex-specific responses in the female Siberian hamster hypothalamus. The 

data indicate that full reproductive development, measured by uterine mass, requires 
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additional stimulating input beyond the simple T3-to-GnRH release pathway. It is likely 

that several other hormonal pathways (e.g. ovarian steroids) and extra-hypothalamic 

systems (e.g. midbrain dopamine) are involved in the integration of supplementary cues 

that are known to fine-tune female seasonal reproduction. In future studies, it will be 

necessary to identify which supplementary cues drive the underlying molecular 

mechanisms involved in triggering full reproductive development in females and how it 

differs from males. 
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Chapter 6 – Reversible, Seasonal and Daily Patterns of DNA Methylation 

and DNA Methyltransferase Enzymes in the Pituitary Gland of Japanese 

Quail. 

 

6.1 Introduction 

6.1.1 Reversible epigenetic mechanisms control seasonal reproduction  

In the past 60 years, studies have begun to untangle the role of epigenetic 

mechanisms such as DNA methylation and histone modifications in the context of a 

variety of fields, including seasonal biology. By definition, epigenetic alterations do not 

modify the DNA sequence, and are heritable (Rakyan et al., 2001) and reversible (Herb et 

al., 2012; Stevenson, 2018). Recently, the role of DNA methylation in the regulation of 

seasonal rhythms has emerged (see chapter 1). As discussed in previous chapters, Siberian 

hamsters (Phodopus sungorus) have been shown to exhibit plasticity in DNA methylation 

patterns between breeding and non-breeding seasons in an array of tissues (Stevenson and 

Prendergast, 2013; Lynch et al., 2016; Tolla and Stevenson, 2020b). To aid in yearly 

reproductive success and offspring survival, these rhythmic patterns in DNA methylation 

and DNA methyltransferase expression must be repeatable each season, and therefore 

reversible. The reversibility of epigenetic modifications is an important concept used in 

different fields, including cancer research. A range of tumours exhibit elevated DNA 

methylation, and epigenetic marks are the target in numerous epigenetic therapies (Luczak 

and Jagodzinski, 2006). By using Dnmt or histone deacetylase (Hdac) inhibitory drugs, it 

has been possible to develop a number of treatments to reverse aberrant epigenetic patterns 

in cancer (Luczak and Jagodzinski, 2006), leading to increased patient survival. The 

reversibility of epigenetic mechanisms has also been shown in human embryonic stem 

cells (Tompkins et al., 2012). 
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In birds, much less is known about fluctuating DNA methylation patterns between seasons. 

Nevertheless, microarray expression profiles in the hypothalamus of Japanese quail have 

shown that DNMT3A is upregulated in long days (Nakao et al., 2008). 

 

6.1.2 DNA methylation and the circadian clock 

As mentioned in chapter 1, the circadian clock is a major regulator of gene 

expression in vertebrates. Studies in mice have found that ~10% of the liver, brain and 

heart transcriptome is dictated by the circadian cycle (Storch et al., 2002; Ueda et al., 2002; 

Akhtar et al., 2002). In Siberian hamsters, hypothalamic DNA methyltransferase enzymes 

1 and 3a have been previously shown to oscillate not only between breeding and non-

breeding periods, but also during the day (Stevenson, 2017a). In mice, Dnmt1, Dnmt3a, 

Dnmt3b, ten-eleven translocation enzymes (Tet) 1, 2 and 3 and certain histone demethylase 

enzymes have all revealed daily patterns of expression (Azzi et al., 2014). In addition, 

different day lengths have been shown to modify global DNA methylation levels in the 

suprachiasmatic nucleus (SCN) in mice (Azzi et al., 2014). A study in the barn swallow 

(Hirundo rustica) indicated that exposure to certain pollutants significantly increases Clock 

gene promoter methylation, potentially altering the circadian clock and negatively 

impacting the life cycle of these birds (Romano et al., 2017). Taken together, these studies 

suggest a conserved interaction between epigenetic enzymes and the circadian clock in 

both mammals and birds. However, whether avian DNA methyltransferase enzyme 

expression varies throughout the day has yet to be explored. 

 

6.1.3 Aims and hypotheses 

For this study, two experiments were conducted. Study 1 aimed to investigate the 

reversibility of DNA methylation patterns between breeding and non-breeding seasons in 

the Japanese quail, a common bird model. The experimental design of Study 1 allowed for 
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an exploration of pituitary gland DNA methylation levels in: 1) individuals maintained in a 

SD condition, 2) individuals maintained under a LD photoperiod, and 3) animals that were 

moved to a SD condition again after a week of photostimulation. It was proposed that 

initial SD quail would exhibit a level of DNA methylation in the pituitary gland 

comparable to individuals that were moved back to a SD condition after being exposed to 

LD for 1 week. Study 2’s objective was to examine the daily variation in expression, if 

any, of DNA methyltransferases 1, 3A and 3B in the pituitary gland of Japanese quail. 

Study 2 tested the hypothesis that Dnmt1, 3A and 3B expression varies between the light 

and dark phase of the day, predicting a peak during the dark phase, as shown by previous 

studies in other seasonal species (Stevenson, 2017a). 

 

6.2 Materials and Methods 

6.2.1 Animals 

All procedures were approved by the local ethics committee at the University of 

Glasgow School of Veterinary Medicine (EA12/19). All procedures were in accordance 

with the ARRIVE Guidelines for ethical research on animals.  

 

6.2.2 Study 1: Short Day Reversibility Study  

6.2.2.1 Experimental Design  

Adult male Japanese quail (n=31) were maintained in SD (6L:18D) for 8 weeks and 

then photostimulated for 7 days by maintaining them in a 18L:6D cycle. After 7 days of 

LD, the animals were moved back into a SD condition (6L:18D) for an additional 2 weeks. 

Tissues were collected at the initial SD condition (‘SD’; n=8), after 7 days of LD (‘LD’; 

n=8), after being moved again to SD for 1 week (‘SD1W’; n=8), and after being kept in SD 

for 2 weeks (‘SD2W’; n=7). 
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6.2.2.2 DNA extraction 

DNA was extracted from the entire pituitary gland using the Qiagen DNeasy Blood 

and Tissue Kit (Qiagen, UK) according to manufacturer’s instructions, and eluted to a final 

volume of 200 µL. Samples were kept at -20°C until ELISA analysis. 

 

6.2.2.3 Enzyme-linked immunosorbent assay (ELISA) 

In order to measure global methylation, an Enzyme-Linked Immunosorbent Assay 

(ELISA) was run using the pituitary gland (MethylFlash™ Global DNA Methylation 

ELISA Easy Kit - Colorimetric, Epigentek). The kit was used as per manufacturer’s 

instructions. The preparation of the standard curve consisted in preparing 6 control 

concentration points. Table 6.1 below describes the contents and volumes of each 

concentration point. 

 
Table 6.1. Contents and volumes of each PC concentration point. 

 

For plate setup, negative control wells consisted of 100 µL of binding solution (BS) and 2 

µL of negative control (NC; 0.5% 5-mC). For positive control wells, 100 µL of BS and 2 

µL of positive control (PC) were added at various concentrations, from 0.1 % to 5 %. 50 

ng of DNA (4 µL) and 100 µL of BS were added to each sample well and each sample was 

run in duplicate. The plate was then shaken gently to ensure each solution covered the 

bottom of each well. The plate was then sealed with Parafilm and incubated at 37°C for 1 

hour. To prepare the 5-mC Detection Complex Solution, the following reagents were 

added to a tube: 3 ml of diluted wash buffer (WB), 3 ml of 5-mC Antibody (mcAb; 

1000X), 3 ml of signal indicator (SI) and 1.5 µL of enhancer solution (ES). After the plate 

No. Control PC (µL) Diluted PC (µL) NC (µL)

1 0.1% PC/well 0 1 9

2 0.2% PC/well 0 1 4

3 0.5% PC/well 0 3 3

4 1% PC/well 1 0 9

5 2% PC/well 1 0 4

6 5% PC/well 3 0 3
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had finished the incubation period, the BS was removed from each well, and wells were 

washed 3 times using 150 µL of diluted WB each time. Then, 50 µL of 5-mC Detection 

Complex Solution were added to each well and the plate was covered with Parafilm and 

incubated at room temperature for 50 minutes. After the incubation period, the 5-mC 

Detection Complex Solution was removed and each well was washed again 5 times using 

150 µL of diluted WB each time. 100 µL of developer solution (DS) was added to each 

well and left for 2 minutes, then 100 µL of stop solution (SS) were added to each well. The 

DS causes the wells to turn a yellow colour, and the SS stops the reaction before measuring 

absorbance. The plate was then carried to a microplate reader (LT-4500, Labtech) and the 

absorbance of each well was measured at 450 nm and at 570 nm as a control. 

 

6.2.2.4 5-mC Analysis  

In order to calculate the percentage of methylated DNA, a standard curve was 

generated. To generate the standard curve, the optical density (OD) values obtained by the 

microplate reader were plotted for each control well (See Table 6.1 for details of control 

points for standard curve). A polynomial second order regression equation was used on 

Microsoft Excel to determine the slopes of the standard curve (See Figure 6.1 for curve, 

equation and slope). 
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Figure 6.1. Standard curve generated by plotting each control point against their respective 

optical density (OD) read. 

 

Slope 1 and Slope 2 were determined to be -0.1928 and 1.14, respectively. The 5% PC OD 

appears reduced compared to the other PCs (Figure 6.1). The reason for this decrease is 

most likely a saturated signal intensity at high % PCs. However, the highest OD value 

collected from the samples analysed was 0.62, which indicates that the PC points used for 

the analysis were 0.1%, 0.2%, 0.5%, and 1% (Table 6.1). The following equation was then 

used to calculate the 5-mC% of the samples:  

 
Figure 6.2. 5-mC% equation. From MethylFlash™ Global DNA Methylation 

(5-mC) ELISA Easy Kit (Colorimetric) online protocol. Base Catalog # P-1030. 

 

 

6.2.3 Study 2: Daily Study 

6.2.3.1 Experimental Design 

Adult male Japanese quail (n=30) were maintained in SD (6L:18D) for 8 weeks and 

then photostimulated for 1 week by maintaining them in a 18L:6D cycle. In quail kept in 
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SD condition, tissues were collected 2 hours after light on (SDzt2; n=8) and during the 

dark phase (SDzt14; n=7). In LD individuals, tissues were collected in the morning 

(LDzt2; n=7), and in the evening (LDzt14; n=8). 

 

6.2.3.2 RNA Isolation and cDNA Synthesis 

RNA was extracted from the entire pituitary gland using TRIzol (ThermoFisher 

Scientific). 1 mL of TRIzol was added to the tissue and homogenized using Kinematica™ 

Polytron™ PT1200E handheld homogenizer (Thermo Fisher Scientific). Then, after a 5 

min incubation at room temperature, 200 µL of chloroform were added to the 

homogenized sample and the tubes were incubated for 3 min at room temperature. The 

samples were centrifuged for 15 min at 12,000 g at 4C. After centrifugation, the samples 

separate into an upper aqueous phase, interphase and a lower red phase. The upper aqueous 

phase was pipetted out of the tube and transferred to a fresh tube. 500 µL of isopropanol 

were added to the new tubes and incubated for 10 min. The tubes were then centrifuged for 

10 min at 12,000 g at 4C. The supernatant was discarded, and the white RNA pellet was 

resuspended in 1 mL of 75% ethanol, vortexed and centrifuged for 5 min at 7,500 g at 4C. 

The supernatant was discarded, and the tubes were air-dried for 5-10 min. Finally, the 

pellet was resuspended in 30 µL of RNase-free water. Nucleic acid quality (260/280 ratio) 

and concentration were determined by using a spectrophotometer (Nanodrop; 

ThermoFisher Scientific). cDNA was synthesised using Precision nanoScript2 Reverse 

Transcription Kit (Primerdesign Ltd) (2 µg RNA) and stored at -20 °C until quantitative 

PCR (qPCR) assays. 

 

6.2.3.3 Real-time PCR (qPCR) 

Primers for target genes were ordered from Invitrogen and optimised using gel 

electrophoresis. See Table 2.1 (chapter 2) for detailed primer information. qPCRs were 
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performed on a Stratagene Mx3000 Real Time PCR machine in 20 µl reactions. For each 

well, the qPCR mix consisted of 5 µl cDNA template, 10 µl SYBR green (Primerdesign 

Ltd), 0.5 µl (300 nM) forward primer, 0.5µl (300nM) reverse primer and 4µl RNase-free 

H2O. Samples were run in duplicate in a 96-well plate format under the following 

conditions: i) denaturing at 95°C for 5 min, then 39 cycles of ii) 95°C for 10 secs, iii) 30 

secs at annealing temperature dependent on primer (See Table 1), and finally iv) an 

extension step of 72°C for 30 secs. Melt curves were analysed to ensure the specificity of 

each reaction through only a single peak. PCR Miner (Zhao and Fernald, 2005) was used 

to determine reaction efficiencies and quantification cycle (Ct). Fold expression of each 

gene of interest was measured in relation to the average Ct for two reference genes 

(GAPDH and B-ACTIN) and calculated using 2-(ΔΔCt). 

 

6.2.4 Statistical Analysis 

All statistical analyses were performed using SigmaPlot 13.0. Log10 

transformation was performed when violations of normality or equal variance would occur. 

Analysis of Variance (ANOVA) on Ranks and Dunn’s Method pairwise comparisons were 

used to analyse results from study 1. Two-way ANOVA was used to analyse the effects of 

day length and time-of-day in study 2. Significance was determined at p < 0.05. For 

detailed statistical analysis information refer to tables A.1 and A.2 in Appendix A. 
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6.3 Results 

6.3.1 Study 1: Short Day Reversibility Study 

6.3.1.1 Peripheral measurements 

ANOVA on Ranks analyses revealed a significant effect of treatment on testes 

mass (H=17.612; p<0.001). Dunn’s post-hoc analyses indicated an increase in testes mass 

in LD quail compared to SD (p=0.002), and in SD1W individuals compared to SD quail 

(p=0.001). No significant difference was detected between the SD and SD2W group 

(p=0.084) (Figure 6.3). 

 

Figure 6.3. Testes mass for quails maintained in an initial short day condition (SD; N=8), 

long day condition (LD; N=8), or moved back to a short day condition for one (SD1W; 

N=8) or two weeks (SD2W: N=7). Asterisks (*) represent significance between groups. 

Results are mean ± SEM.  
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A significant effect of treatment was found when analysing cloacal gland area (H=11.164; 

p=0.011). Dunn’s post-hoc test revealed no significant difference in cloacal area between 

SD and LD groups (p=0.074), between SD and SD1W (p=0.443), or between SD and 

SD2W (p=1.0). A significant decrease was detected in SD2W quails when compared to LD 

individuals (p=0.031) (Figure 6.4). 

 

 

Figure 6.4. Cloacal area for quails maintained in an initial short day condition (SD; N=8), 

long day condition (LD; N=8), or moved back to a short day condition for one week 

(SD1W; N=8) or two weeks (SD2W; N=7). Asterisks (*) represent significance between 

groups. Results are mean ± SEM. 
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6.3.1.2 DNA methylation levels 

A significant effect of treatment was found when analysing methylation levels (5 

mC %) (H=13.246; p=0.004). Dunn’s post-hoc test determined a significant increase in 

methylation between the LD and SD group (p=0.009). Methylation was also significantly 

increased in the pituitary of SD2W individuals compared to SD quail (p=0.012). No 

significant difference was detected between SD and SD1W animals (p=0.210) (Figure 6.5).  

 

Figure 6.5. DNA methylation percentage (5-mC %) in the pituitary gland of quails 

maintained in an initial short-day condition (SD; N=8), long day condition (LD; N=8), or 

moved back to a short day condition for one week (SD1W; N=8) or two weeks (SD2W; 

N=7). Asterisks (*) represent significance between groups. Results are mean ± SEM. 

 

 

  



162 

 

6.3.2 Study 2: Daily variation in DNA methyltransferase expression 

When analysing DNMT3A mRNA levels in the pituitary gland, two-way Analysis 

of Variance did not detect a significant effect of the interaction between time of day and 

daylength (F=0.254; p=0.619). There was a significant effect of time of day on DNMT3A 

expression (F=6.725; p=0.016), but no effect of daylength (F=3.006; p=0.096) (Figure 

6.6). 

Similar to DNMT3A, DNMT3B expression did not change in response to the 

interaction between time of day and daylength (F=0.715; p=0.406), nor in response to 

daylength alone (F=0.0235; p=0.879). However, there was a significant effect of time of 

day on DNMT3B expression (F=5.766; p=0.024) (Figure 6.6). 

 

Figure 6.6. DNA methyltransferase 3a (DNMT3A) and 3b (DNMT3B) expression in the 

pituitary gland of quail kept in either short day (SD) or long day (LD), and sampled either 

in the morning (zt2) or in the evening (zt14). For DNMT3A, different letters represent 

statistical significance. For DNMT3B, different symbols [either asterisks (*) or hashtag (#)] 

indicate statistical significance. Results are mean ± SEM. SDzt2: N=8; SDzt14: N=7; 

LDzt2: N=7; LDzt14: N=8. 
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6.4 Discussion 

6.4.1 Study 1: Short Day Reversibility Study 

In study 1, adult quail were maintained in a SD condition (‘SD’ group), then moved 

to a LD condition (‘LD’ group) for 1 week. After 1 week of photostimulation, they were 

moved back to a SD condition for 1 week (‘SD1W’ group) or 2 weeks (‘SD2W’ group). 

This study sought to explore the concept of the reversibility of epigenetic mechanisms in 

the context of seasonal reproduction by looking at DNA methylation levels in the pituitary 

gland. As expected, LD quails exhibited a significant increase in testes mass compared to 

SD quail. This marked change in gonadal weight between Japanese quail kept under long 

daylight conditions and quail kept under non-breeding, short day conditions can be 

considered a hallmark of the activation of the reproductive axis and FSH release, and once 

more highlights the high phenotypic plasticity between seasons in this species. In SD1W 

individuals however, testes mass appears to continue to increase, contrary to expected 

testes mass within the SD paradigm. This absence of testes mass reduction at SD1W could 

be caused by the insufficiency of 1 week to lower gonadal weight. A study by Robinson 

and Follett measured testicular mass in Japanese quail transferred to a SD (8L:16D) 

condition from 14 weeks of LD (16L:8D), and found that testes began to regress just after 

around 5 days of SD (Robinson and Follett, 1982). However, it is important to note that 

after 14 weeks of LD, the quails would have been relatively photorefractory (Robinson and 

Follett, 1982), therefore prone to decrease their testicular mass once exposed to SD. Other 

reports show testicular regression starting at around 10 days after the transfer from LD to 

SD (Follett and Farner, 1966). In the present study, SD2W quail did indeed show regressed 

testes, comparable to testes mass in the SD group. The gonadal data presented here 

confirms the LD/SD paradigm and phenotypic plasticity in Japanese quail. 

During the experiment, an additional indicator of reproduction, i.e. cloacal gland area, was 

measured. LH released from the anterior pituitary gland stimulates the testosterone 
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production from the testes, and testosterone leads to an increase in cloacal gland size in 

LD. In the present study, no statistically significant change in cloacal gland area was seen 

between SD and LD quail. This may be because of high variability in the LD cloacal gland 

measurement. Indeed, figure 6.4 does show an increase in cloacal area in LD compared to 

the SD group, but it can only be considered a trend, as it is not significant. However, there 

was a significant decrease in SD2W cloacal area compared to LD quail. The small cloacal 

area that can be seen after 2 weeks of SD is comparable to the size of the cloaca in the SD 

group. These results further confirm the non-breeding status of the animals at SD2W. 

Finally, methylation levels were measured in the pituitary gland. In the long day 

condition, methylation levels significantly increased from ones in SD. This difference in 

methylation is consistent with the differences in methylation between SD and LD observed 

in the hypothalamus of the Siberian hamster (Stevenson and Prendergast, 2013; Lynch et 

al., 2016). However, at SD2W, methylation levels are still significantly higher than SD. 

Taken together, these data suggest that the confirmatory increase in testes mass in LD 

individuals reflects not only photostimulated status, but also an increase in DNA 

methylation in the pituitary gland. Although cloacal area seemingly increased after 1 week 

of LD, it revealed as just a trend and not as statistically significant. The high levels of 

DNA methylation following transfer to SD for 2 weeks after 1 week of LD suggest that 14 

days may not be sufficient in eliciting the SD-decrease in pituitary methylation. DNA 

methylation may need to be reduced in SD, as it may be involved in the regulation of 

molecular processes underlying seasonal reproduction in a similar way to mammals. For 

instance, Dio3 expression in Siberian hamsters in the hypothalamus is controlled by 

differential methylation at the dio3 promoter region between LD and SD, where more 

methylation  at the site occurs in LD compared to SD, to prepare the individuals for the 

repression of the HPG axis during the non-breeding period (Stevenson and Prendergast, 

2013). Similar processes may be present in the avian pituitary gland, such as genes 

upstream or downstream of FSH and LH, e.g. oestrogen receptor. Other studies have 
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analysed epigenetic modulation of specific target genes involved in circannual rhythms in 

plants (Bastow et al., 2004), insects (Pegoraro et al., 2016), and mammals (Alvarado et al., 

2015). In many plant species, flowering occurs following a period of exposure to cold 

temperatures, called vernalisation. In Arabidopsis, it was shown that vernalisation caused 

increased demethylation within the FLC gene, specifically on lysines 9 and 27 of histone 3, 

leading to flowering (Bastow et al., 2004). The wasp (Nasonia vitripennis) exhibits a 

process called diapause, or offspring developmental arrest in response to short days 

(Pegoraro et al., 2015). Disruption of Dnmt1 and Dnmt3 has been found to inhibit 

diapause, indicating an essential role of DNA methylation in the regulation of seasonal 

rhythms in this species (Pegoraro et al., 2015). Bisulfite sequencing assays showed 

differential methylation of multiple genes, e.g. the misshapen (msn) gene, a gene involved 

in insect photoreceptor development. In thirteen-lined ground squirrels (Ictidomys 

tridecemlineatus), a hibernating species, alterations in global skeletal muscle tissue DNA 

methylation were reported between periods of torpor and arousal (Alvarado et al., 2015). 

Differential promoter methylation was observed for myocyte enhancer factor 2C (mef2c), a 

gene likely involved in the control of metabolism in skeletal muscle tissue (Alvarado et al., 

2015). Taken together, these studies suggest a critical role for DNA methylation and DNA 

methyltransferases in the regulation of seasonal rhythms in an array of species. Future 

experiments involving alternative techniques, such as bisulfite sequencing, will be essential 

for the identification of differentially methylated photoperiodic genes in the quail. 

 

6.4.2 Study 2: Daily variation in DNA methyltransferase expression  

The aim of study 2 was to determine whether DNA methyltransferase 3a and 3b 

expression is altered by photoperiod and/or throughout the day. For this study, Japanese 

quail were either kept in a LD or SD condition, and the pituitary glands were sampled 

either in the morning, 2 hours after lights on (zt2), or 14 hours after lights on (zt14). 

DNMT3A and DNMT3B expression was found not to be altered by daylength condition. 
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However, this could be given by the fact that 1 week of LD could not be sufficient to alter 

DNMT3A/3B expression. This is further supported by study 1’s finding that suggests that 2 

weeks is not sufficient for methylation levels to decrease in SD (Figure 6.5). However, 

time of day was shown to have an effect in DNMT3A/3B expression in SD quail, increasing 

in the morning and decreasing at night (Figure 6.6). This finding supports the hypothesis 

that DNA methyltransferase expression in the pituitary gland fluctuates during the day, 

although showing an opposite pattern of expression from other Dnmt reports. For instance, 

in the hypothalamus of Siberian hamsters, Dnmt3a peaks during the dark phase 

(Stevenson, 2017a). This could suggest both tissue- and species- specific variation, 

depending on the Dnmt’s downstream target genes.  

 

6.5 Conclusions 

In the present study, two experiments were carried out in order to investigate DNA 

methylation reversibility and the daily regulation of DNMT3A and DNMT3B expression. It 

was shown that methylation in the pituitary gland of Japanese quail varies between the 

breeding and non-reproductive seasons, increasing in the former. It was also revealed that a 

2-week transfer from LD to SD is not sufficient to elicit a decrease in methylation levels in 

this organ. The pituitary gland secretes follicle-stimulating hormone (FSH) and luteinising 

hormone (LH) to the gonads, stimulating reproductive maturation. In Japanese quail, a 5-

fold rise in LH release has been shown just 20 hours after dawn, following transfer from 

SD to LD (Meddle and Follett, 1997). However, it may be possible that the epigenetic 

mechanisms that play a role in inhibiting the reproductive axis, perhaps even directly or 

indirectly interacting with important reproductive components such as LH, require 

additional time, i.e. methylation levels in the pituitary may require a period longer than 2 

weeks to decrease to SD standards. The lower methylation found in SD compared to LD is 

consistent with methylation patterns in the hypothalamus of another highly seasonally 

plastic species, the Siberian hamster. In the Siberian hamster, one gene that is modulated 
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by these differences in DNA methylation, more specifically by the DNA methyltransferase 

enzymes, is Dio3. As mentioned in earlier chapters, Dio3 catalyses the deactivation of 

triiodothyronine (T3), an essential reproductive hormone. Differential methylation of the 

Dio3 promoter between the breeding and non-breeding seasons underlies the oscillatory 

expression of Dio3 (Stevenson and Prendergast, 2013). In future studies it will be useful to 

examine DNA methylation levels in the hypothalamus of Japanese quail and identify 

specific DNMT1/3A/3B target genes, in order to better understand the molecular processes 

responsible for seasonal reproduction in the avian brain.  

The present study also revealed daily patterns in DNMT3A and DNMT3B 

expression in the pituitary gland of Japanese quail, with expression higher in the morning 

and lower at night, independent of daylength. Dnmt3a in the hypothalamus of the Siberian 

hamster has been shown to follow the opposite pattern of expression (Stevenson, 2017a), 

indicating that the daily variation in Dnmt expression patterns may be tissue-specific, as 

well as species-specific. Further studies are required to determine the patterns of Dnmt 

expression in other quail tissues involved in reproduction, such as the hypothalamus.  
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Chapter 7 – Summary and Conclusions 

 

This chapter is drawn from the published paper “Tolla, E., & Stevenson, T. J. (2020). Sex 

differences and the neuroendocrine regulation of seasonal reproduction by supplementary 

environmental cues. Integrative and Comparative Biology.”, as it forms part of the 

discussion and future directions surrounding the findings presented in this thesis. 

 

 

7.1 The role of VA Opsin and OPN5 in avian reproduction 

The thesis aimed to explore the mechanisms underlying the onset of seasonal 

reproduction in two common seasonal species, the Japanese quail and the Siberian hamster, 

both summer, long day (LD) breeders. Chapters 2, 3 and 6 described the known processes 

that control timing of breeding in Japanese quail, Coturnix japonica. The way in which the 

avian brain perceives photoperiod and translates it into a reproductive physiological 

response is still unclear, largely because the deep-brain photoreceptors (DBPs) responsible 

for this response have not yet been identified. Based on previous literature and criteria for 

candidate opsins, I have considered two photoreceptors, Vertebrate-Ancient (VA) Opsin 

and Neuropsin (OPN5). It was hypothesised that disrupting these two photoreceptors 

would suppress the reproductive response in LD quail. The expression of these two opsins 

was silenced via AAV intracerebral injection targeted to the third ventricle (3V) of the 

hypothalamus. It was found that both opsins may play a role in the stimulation of seasonal 

reproduction, highlighted by the pattern of gradual increase in testes mass and 

hypothalamic GNRH mRNA expression in KD individuals. However, this pattern must be 

investigated further, as it was found not to be statistically significant. Increasing sample 

size may clarify opsin function in future studies. This gradual increase suggests perhaps an 

inhibitory role for OPN5 and VA Opsin: once removed, a surge in gonadal mass and 

GNRH expression occurred. This hypothesis is supported by studies showing tonic 
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hyperpolarisation of other photoreceptors, e.g. rods and cones (Lamb et al., 2007; Gorman 

et al., 1971).  On the other hand, cloacal growth rate was significantly lower in VA- and 

‘Both’- RNAi treated birds compared to control individuals, pointing perhaps to a 

stimulatory role for the two opsins. In addition, FSH receptor expression significantly 

decreased in OPN5-treated animals, compared to LD controls. This indicates that OPN5 

may play a role in increasing testes sensitivity to gonadotropins during breeding months, 

enabling reproduction. I propose that two distinct mechanisms act on the seasonal 

reproduction of Japanese quail, one regulating testes growth and hypothalamic GNRH 

expression, and the second one modulating cloacal gland growth. These two mechanisms 

are likely to involve differential regulation by LHB and FSH, and, from the data gathered, 

it is possible that these two processes include both VA Opsin and OPN5. Further statistical 

tests to explain the results could be used, such as Gamma GLM models, as the distribution 

of the data is a Gamma distribution. Moreover, low sample size and incomplete protein 

knockdown were two limitations that may have masked significant results in this study. 

The pilot data presented in this chapter can be used to power future, larger-scale 

experiments. Furthermore, the study described in chapter 1 is the first report of timescale 

effects of VA Opsin and OPN5 silencing via AAV injection in the 3V of the Japanese 

quail.  

DBP expression and the role of stress was also explored during embryonic 

development of the Japanese quail (chapter 3). Embryonic day 14 (E14) emerged as a 

critical developmental day, as expression of GNRH and OPN5 increased significantly at 

this stage, independent of corticosterone (CORT) treatment. GNRH then decreased at E17, 

increasing again postnatally, presumably in preparation of puberty. One hypothesis for the 

OPN5 surge at E14 implies a role for OPN5 in the organisation of pathways that will 

modulate postnatal physiology, such as embryonic OPN5-dependent dopamine signalling 

that allows for adult vision in the retina of mice (Nguyen et al., 2019). Adult quail 

exhibited a reduction, although not significant, in VA Opsin and OPN5 levels in the 
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hypothalamus in SD, compared to LD, further suggesting a stimulatory role for the opsins 

in activating the HPG axis. A significant reduction in VA Opsin/OPN5 in SD may be 

concealed by sex-differences, as neither embryos or adults were separated by sex, and will 

need to be addressed in future studies.  

 

7.2 DNA methylation and DNA methyltransferases 

In recent years, epigenetic mechanisms, especially DNA methylation, have emerged 

as important components of the regulation of seasonal breeding in mammals. In Siberian 

hamsters, a seasonal species, there are marked differences in the seasonal variation in DNA 

methylation in the testes and uterine tissues. For example, in the short-day non-breeding 

state, the testes and uterine tissue show elevated levels of Dnmt3a expression and global 

DNA methylation (Lynch et al., 2016). The ovary was not found to show any change in 

DNA methyltransferase expression, nor global DNA methylation (Lynch et al., 2016). 

Moreover, two histone deacetylase enzymes (Hdac), testicular Hdac3 and uterine Hdac2, 

exhibit seasonal changes in expression, suggesting that other epigenetic modifications are 

involved in sex-specific timing of reproductive function (Lynch et al., 2017). Seasonal 

rhythmic changes in DNA methylation and/or Dnmt expression have been reported across 

mammalian and avian species with localized patterns in liver (Alvarado et al., 2015), 

muscle (Alvarado et al., 2015), leukocytes (Stevenson et al., 2014), and hypothalamus 

(Sharma et al., 2018, Stevenson et al., 2013; Stevenson, 2017, Coyle et al., 2020). The 

present thesis aimed to understand whether these epigenetic processes also are involved in 

the timing and modulation of avian reproduction. It was hypothesised that DNMT1, 3A or 

3B expression would decrease in knock-down birds compared to control individuals, to 

perhaps reflect a SD-induced phenotype. OPN5 K/D Japanese quail photostimulated for 28 

days exhibited a significant reduction in the expression of pituitary DNMT1, compared to 

LD CV. In addition, overall hypothalamic DNMT3B levels in OPN5 K/D birds decreased 

after 7 days of LD compared to only 2 days of LD, though not significantly. Taken 
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together, these data confirmed the proposed hypothesis and may indicate an interaction 

between OPN5 pathways and epigenetic regulation in the avian brain. However, further 

molecular analyses, e.g. bisulfite sequencing, are required to establish the link between 

photoreceptor function and DNA methylation involved in seasonal reproduction.  

In embryos, DNMT1, 3A and 3B were also upregulated at E14, in a similar fashion to 

GNRH and OPN5, independent from CORT treatment. E14 could therefore be an 

important stage for epigenetic resetting. As outlined in chapter 1, previous studies have 

suggested that birds may possess a dosage compensation mechanism similar to mammalian 

X chromosome inactivation, via sex differences in transcription of specific regions, e.g. 

MHM and DMRT1. Further timepoint and RNAi experiments are required in order to fully 

understand sexual differentiation and dosage compensation in birds, and whether these sex 

determination mechanisms occur at E14 in the Japanese quail. In adult quail, DNMT3A and 

DNMT3B were both reduced in SD, although not significantly. However, this lack of 

significance may be masked by sex differences, as this particular study (chapter 3, study 2) 

considered both males and females. 

Epigenetic reversibility was also investigated (chapter 6). It was found that global 

DNA methylation in the pituitary gland of Japanese quail was significantly reduced in SD 

individuals, compared to LD. These results are consistent with DNA methylation patterns 

in the hypothalamus of another markedly seasonal species, the Siberian hamster 

(Stevenson and Prendergast, 2013; Tolla et al., 2020b). However, after 7 days of LD, 

followed by 2 weeks of SD, pituitary DNA methylation levels did not decrease to initial 

SD standards. This suggests 2 weeks are not sufficient to reduce methylation levels within 

this organ. In the Siberian hamster, one gene that is regulated by this LD/SD switch in 

DNA methylation, is deiodinase 3 (Dio3). Decreased methylation of the Dio3 promoter 

during non-breeding season allows for the suppression of the reproductive response 

(Stevenson and Prendergast, 2013). Seasonal changes in DNA methylation or DNA 

methyltransferase expression have been also reported in Arabidopsis (Bastow et al., 2004), 
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the wasp (Nasonia vitripennis; Pegoraro et al., 2015), and thirteen-lined ground squirrels 

(Ictidomys tridecemlineatus; Alvarado et al., 2015). In future studies it will be essential to 

investigate DNA methylation levels in the hypothalamus of Japanese quail, along with 

possible target genes, such as DIO3. It was also found that pituitary gland DNMT3A and 

DNMT3B are expressed at significantly higher levels in the morning, compared to the 

evening. Previous studies have suggested the opposite daily variation pattern in Dnmt3a 

expression in the hypothalamus of mice and Siberian hamsters (Stevenson, 2017). Further 

gene quantification and sequencing analyses are required to determine the patterns of Dnmt 

expression in other quail tissues involved in reproduction, such as the hypothalamus. 

 

7.3 Neuroendocrine regulation of reproduction function in Siberian hamsters 

Chapters 4 and 5 provided evidence for sex differences in reproductive 

neuroendocrine pathways in the Siberian hamster, specifically the role of triiodothyronine 

(T3) in the stimulation of breeding. In seasonally breeding mammals and birds, the local 

synthesis of thyroid hormone in the hypothalamus is an essential component that governs 

the release of GnRH into the portal vasculature (Dardente et al., 2014). In female mice, 

silencing the expression of thyroid hormone receptor alpha 1 (THrα1) repressed 

reproductive behavior, but knocking down receptor β (THrβ) had the opposite effect 

(Dellovade et al., 2000). In contrast, THrα1 repression in male mice increased breeding 

behavior, and THrβ knock down resulted in its reduction (Dellovade et al., 2000). Recent 

data has shown that silencing THrα in male mice specifically suppresses the regulation of 

Rfrp3 by melatonin, though not affecting Tshb or Dio2/3 expression (Quignon et al., 2020). 

These data support the notion for sex differences in the role of thyroid hormones to 

regulate the neuroendocrine control of reproductive physiology and behaviour. In male 

Siberian hamsters, daily injections of T3 in non-breeding animals held in short days trigger 

a long day breeding phenotype exhibited by increased testicular volume and body weight 

gain (Banks et al., 2016; Freeman et al., 2007; Bao et al., 2019). Female hamster data 
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(chapter 5) has revealed that females do not show any significant change in uterine mass, 

body mass or reproductive neuroendocrine expression in the hypothalamus in response to 

T3. In addition, it was hypothesised that T3 injections in SD hamsters would stimulate the 

increase in hypothalamic Dnmt expression seen in LD animals. It was found that in males, 

there was no change in Dnmt1, 3a or 3b expression in response to daylength or exogenous 

T3. However, females exhibited a reduction in Dnmt3a and Dnmt3b levels under SD 

photoperiod, independent of T3, suggesting sex-specific variation. These data indicate that 

T3 is not involved in the regulation of epigenetic enzymes underlying seasonal 

reproductive mechanisms in the Siberian hamster. It is possible that (1) a different 

hormonal signal controls photoperiodic variation in Dnmt3a and Dnmt3b expression, or (2) 

the expression levels reflect an endogenous circannual timing system (Stevenson and 

Lincoln, 2017). Finally, it is likely that additional supplementary cues are required to 

stimulate gonadal development in females besides photoperiodic induced changes in T3-

mediated GnRH release.  

 

7.4 Supplementary cues and timing seasonal reproduction  

As discussed throughout the present thesis, the duration of light has been shown to be 

the main predictive cue regulating the timing of breeding in both birds and mammals. 

However, studies have shown fundamental differences in the role that supplementary cues 

play in the reproductive development of male and female vertebrates (see chapter 1). 

Sexual differences in brain structure and function arise during a critical period in 

development and are the result of organizational effect of hormones (Arnold, 2009). 

Gonadal steroids have recently been identified to organize sex differences in epigenetic 

modifications in neuroendocrine substrates essential for the control of reproduction 

(Nugent et al., 2015). Supplementary cues fine tune the timing of seasonal reproduction. In 

many instances, there are marked sex differences in the reproductive response to 

supplementary cues. The integration of these environmental cues in the reproductive 
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neuroendocrine axis occurs in a sex-dependent manner (Ball and Ketterson, 2008). In 

chapter 1, I highlighted that sex-specific responses to supplementary cues likely develop 

from organizational effects of sex steroids early in development and that epigenetic 

modifications could be one factor that regulates the reproductive response to 

supplementary cues in adulthood (Figure 7.1). 

The proposition that epigenetic modifications are central to the impact of 

supplementary cues has several exciting outstanding questions. First, how do seasonal 

supplementary cues regulate epigenetic modifications during juvenile development and 

adulthood? Second, how does sex influence the impact of supplementary cues on seasonal 

epigenetic modifications in the neuroendocrine axis? And lastly, can alterations in the 

epigenetic profile in response to supplementary cues be inherited? Until recently, the major 

limitation for understanding the molecular and genomic basis of seasonal rhythms has been 

due to a lack of genome sequence information. The role of supplementary cues in 

regulating genome plasticity can now be unraveled in the Great tit and the Siberian 

hamster, as their genomes have been sequenced (Laine et al., 2016; Bao et al., 2019). 

Recent work has shown that DNA methylation patterns in Great tit red blood cells show 

robust seasonal rhythms and several candidate markers (e.g. Dio2) may be consistent 

genomic markers of internal timing mechanisms (Viitaniemi et al., 2019). These questions 

are a few that will begin to shed exciting new discoveries for the role of epigenetic 

modifications in the timing of seasonal reproduction. 

 

7.5 Summary and future directions 

The aims of the thesis were to gain a deeper understanding of (1) whether VA Opsin 

and OPN5 underlie seasonal reproduction in quail, (2) embryonic and adult levels of VA 

Opsin and OPN5 in quail, and whether stress hormones affect these levels, and (3) 

oscillating patterns of DNA methylation and DNA methyltransferase enzymes within the 

HPG axis of both Japanese quail and Siberian hamster.  
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Overall, the studies presented show that the seasonal increase in photoperiod causes 

two avian brain photoreceptors, VA Opsin and OPN5, to translate the light signal into a 

reproductive response, likely through tonic hyperpolarisation. The data also provided 

evidence for embryonic day 14 as a critical developmental day in Japanese quail, as there 

was a rise in hypothalamic expression of GNRH and OPN5 at this stage. Oscillating 

patterns of DNA methylation levels and DNA methyltransferase expression between 

seasons were found in both Japanese quail and Siberian hamster, suggesting a role for 

epigenetic processes in modulating breeding in these species. Furthermore, data presented 

in chapters 4 and 5 indicated sex-differences in T3 function, as well as regulation by DNA 

methyltransferases, in the hypothalami of Siberian hamsters. It was proposed that female 

hamsters require supplementary cues for full sexual maturation. Future studies involving 

exposing female hamsters to a combination of exogenous T3 injections and social cues, e.g. 

male presence, are required to delineate the reproductive neuroendocrine pathways in 

female mammals. Additional experiments are also essential to identify downstream 

processes of both DBPs and epigenetic processes, in order to untangle the intricate 

neuroendocrine network that underlies the onset of reproduction. 

 

  



176 

 

 
 

 

Figure 7.1 - The proposed model of early-life organization of the brain in seasonal species 

leading to sex differences in response to supplementary cues in adulthood. The 

organizational effects of sex steroids early during embryonic development in mammals and 

birds could potentially be mediated by a range of epigenetic mechanisms, such as dosage 

compensation (e.g., X chromosome silencing in mammals), or modulation of DNA 

methyltransferase (DNMTs) and histone deacetylase (HDACs) expression. These 

epigenetic processes persist in the adult brain and affect an array of peptides involved in 

seasonal reproduction: kisspeptin, gonadotropin releasing hormone (GnRH), thyroid 

hormone and its receptors, growth hormone (GH) and signal transducer and activator of 

transcription 5 (STAT5b), all of which have been shown to be directly altered by 

photoperiod (‘initial predictive cue’) and supplementary cues such as food availability, 

nutrient quality, temperature, visual and auditory cues. Epigenetic modifications could be 

one factor that regulates the reproductive response to supplementary cues in adulthood and 

male-female differences in this response. From Tolla and Stevenson, 2020. 
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Appendix A: Supplementary tables 

Table A.1. List of statistical tests done per chapter. GNRH= Gonadotrophin-releasing 

hormone; GNIH= Gonadotrophin-inhibiting hormone; DNMT= DNA methyltransferase; 

TSHB= Thyroid stimulating hormone beta; LHB= luteinising hormone beta; FSH= 

follicle-stimulating hormone; GNRH-R= Gonadotrophin-releasing hormone receptor; 

FSHR= follicle-stimulating hormone receptor; LHR= luteinising hormone receptor; AR= 

androgen receptor; OPN5= neuropsin; VA Opsin= Vertebrate ancient opsin; N/A= not 

applicable. 
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Table A.2. List of post-hoc tests done per chapter. LD= long-day; SD= short-day; GNRH= 

Gonadotrophin-releasing hormone; GNIH= Gonadotrophin-releasing hormone; DNMT= 

DNA methyltransferase; TSHB= Thyroid stimulating hormone beta; LHB= luteinising 

hormone beta; FSH= follicle-stimulating hormone; GNRH-R= Gonadotrophin-releasing 

hormone receptor; FSHR= follicle-stimulating hormone receptor; LHR= luteinising 

hormone receptor; AR= androgen receptor; OPN5= neuropsin; VA Opsin= Vertebrate 

ancient opsin; wk= week; 7d= 7-day photostimulation; E11= embryonic day 11; E14= 

embryonic day 14; E17= embryonic day 17; P10= postanal day 10; CORT= corticosterone-

injected; SD1W; 1 week short-day group; SD2W= 2 week short-day group; 5mC %= 5 

methylcytosine percentage; N/A= not applicable. 
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Table A.3. Summary of genes/proteins analysed. LD= long-day; SD= short-day; GNRH= 

Gonadotrophin-releasing hormone; GNIH= Gonadotrophin-releasing hormone; DNMT= 

DNA methyltransferase; TSHB= Thyroid stimulating hormone beta; LHB= luteinising 

hormone beta; FSH= follicle-stimulating hormone; GNRH-R= Gonadotrophin-releasing 

hormone receptor; FSHR= follicle-stimulating hormone receptor; LHR= luteinising 

hormone receptor; AR= androgen receptor; OPN5= neuropsin; VA Opsin= Vertebrate 

ancient opsin; w= week; 2d= 2-day photostimulation; 7d= 7-day photostimulation; 28d= 

28-day photostimulation; 12d= 12 days; E11= embryonic day 11; E14= embryonic day 14; 

E17= embryonic day 17; P10= postanal day 10; CORT= corticosterone-injected; SAL= 

saline-injected; T3= triiodothyronine-injected; SD1W; 1 week short-day group; SD2W= 2 

week short-day group; 5mC %= 5 methylcytosine percentage; zt= zeiteberg time (2: 2 

hours after lights on; 14: 14 hours after lights on; N/A= not applicable. 
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Appendix B: Published papers 

Bao R, Onishi K, Tolla E, Ebling F, Lewis J, Anderson R, Barrett PJ, Prendergast B, 

Stevenson TJ. (2019). Genome sequencing and transcriptome analyses of the Siberian 

hamster hypothalamus identify mechanisms for seasonal energy balance. Proceedings of 

the National Academy of Sciences, 116(26), pp.13116-13121. 

Coyle CS, Tolla E, Stevenson TJ. (2020). Rhythmic epigenetics in neuroendocrine and 

immune systems. In Developmental Neuroendocrinology (pp. 295-314). Springer, Cham. 

Tolla E, Pérez J, Dunn I, Meddle S, & Stevenson TJ. (2019). Neuroendocrine regulation of 

seasonal reproduction. In Oxford Research Encyclopedia of Neuroscience. Oxford 

University Press. 

Pérez J, Tolla E, Dunn I, Meddle S and Stevenson TJ. (2019). A Comparative Perspective 

on Extra-retinal Photoreception. Trends in Endocrinology & Metabolism, 30(1), pp.39-53. 

Tolla E, Stevenson TJ. (2020). Sex differences and the neuroendocrine regulation of 

seasonal reproduction by supplementary environmental cues. Integrative and Comparative 

Biology. 

Tolla E, Stevenson TJ. (2020). Photoperiod-induced changes in hypothalamic de novo 

DNA methyltransferase expression are independent of triiodothyronine in female Siberian 

hamsters. General and Comparative Endocrinology. 

Coyle CS, Caso F, Tolla E, Barrett PJ, Onishi KG, Tello JA, Stevenson TJ. (2019). 

Ovarian hormones induce de novo DNA methyltransferase expression in the Siberian 

hamster suprachiasmatic nucleus. Journal of Neuroendocrinology. 
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