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Abstract 

This cross-disciplinary work improves the understanding on the mechanical 

degradation mechanisms occurring in tapestries, and how they can be prevented 

through conservation. Moreover, the research in this thesis offers new insights 

on the usefulness of 2D DIC as a diagnostic tool for monitoring strain across 

historic textiles.   

First, through a literature review, the cultural relevance of tapestries was 

highlighted, demonstrating the importance of preserving these artworks 

(Chapter 1). Chemical and physical properties of the main constituent materials 

in tapestries, wool and silk, were discussed, together with past studies focusing 

on tracking degradation (Chapter 2). Through this, the multi-analytical approach 

to be employed in the experimental parts was delineated.  

The mechanical (uniaxial tensile testing) and chemical properties (FTIR-ATR, 

UHPLC-PDA) of samples from different historic tapestries were investigated. The 

reciprocal influence of variables, e.g. stress at failure, level of cystine oxidation 

(in wool), dyes, and weave features, was discussed. The outcomes demonstrate 

the complexity of the mechanical behaviour when considering small-scale 

fragments, and so the need of combining chemical and physical testing for 

properly establishing the condition of tapestries (Chapter 3).  

Moving to the study of tapestries from a macroscopic perspective and while on 

display, the feasibility of 2D DIC for strain monitoring was proved. Among the 

mechanical mechanisms observed, fatigue showed to have the most influence on 

overall strains, while creep affected damaged areas like slits (Chapter 4). 2D DIC 

was also employed for evaluating the efficiency of sloping boards (Chapter 5), 

support and stitching methods (Chapter 6). In addition to the strain monitoring 

of (mainly) bespoke mock-ups, friction measurements and tensile testing were 

conducted to further validate display and conservation approaches. The 

outcomes suggested that the high friction promoted by covering fabrics is 

essential for the efficacy of sloping boards, while inclination alone may have 

only a marginal role (Chapter 5). The effectiveness of couching can be affected 

by spacing, while support techniques should be selected depending on the 

extension of structural weaknesses (Chapter 6).       
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Preface 

The appreciation of tapestries in Europe has fluctuated over centuries, 

inevitably influencing conservation. Despite being regarded as one of the most 

precious forms of art in the 16th century, from the late 18th century tapestries 

had been declassed and considered more as interior decorative elements. 

Nowadays, the symbolic and material value of tapestries is recognised, making 

these artworks a fundamental part of many historic collections. Nevertheless, in 

many cases the exposure to environmental factors and the long-lasting displays, 

during which the (heavy and large) objects are hung, have already being 

responsible for the loss of organic components, like fibres and dyes. 

Unfortunately, difficult conservation histories determined that only a relatively 

small number of tapestries has survived until today.   

In recent decades, the re-born interest for historic hangings has encouraged the 

development of related projects in the field of art history and conservation, but 

also in cultural heritage science. Up to now, the scientific studies have mainly 

considered how organic materials in tapestries, wool, silk, and dyes, may 

undergo chemical deterioration. On the other hand, the mechanical behaviour 

has only interested few studies and so it requires further investigation. 

Understanding the physical response of tapestries while on display, especially 

from a macroscopic perspective, is crucial; this would benefit textile 

conservators, who are still debating on the effectiveness of approaches. It is 

important to note that tapestries are weft-faced textile and displayed hanging in 

the weft direction. Therefore, weft yarns are easily exposed to degradation, and 

this represents both a structural issue and a problem for the preservation of the 

figurative design. Acknowledging the processes that determine weft loss is 

essential for ensuring the future display, as well as the future appreciation of 

the pictorial motif.       

The study presented in this thesis aimed to enrich the knowledge on the 

degradation and preservation of tapestries by answering the main following 

questions: 

1) Which factors affect the structural stability of tapestries and how 

successfully can they be investigated by using analytical tools? 
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2) What are the mechanical degradation processes affecting tapestries while 

hung for their display?  

3) How effectively can the structural stability of tapestries be improved by 

using different display methods and conservation strategies? 

To answer these research questions, a multi-disciplinary approach was 

employed, combining textile conservation, analytical chemistry, and mechanical 

engineering. It is underlined that this thesis was carried out within the context 

of a broader project at the University of Glasgow, financially supported by the 

Leverhulme Trust. The project, entitled From the Golden Age to the Digital Age: 

Modelling and Monitoring Historic Tapestries, involved the Centre for Textile 

Conservation and Technical Art History (CTCTAH) and the School of Engineering.   

The thesis is structured as follows: 

Chapter 1 presents a literature review on tapestry making, the evolution over 

centuries, the materials involved and conservation strategies. Special emphasis 

was given to treatments in use today for improving structural stability and for 

preventing the propagation of mechanical damage. The variety of approaches 

discussed in the chapter highlights how tapestry conservation is still largely 

influenced by subjective factors, and so the great need for a scientific 

investigation. 

Properties and degradation of wool and silk, main materials within tapestries, 

are summarised in Chapter 2. Furthermore, past works aiming to define and 

track (chemical and physical) processes occurring in historic tapestries were 

revised. Among the works discussed, outcomes from a previous three-year 

research carried out at the University of Southampton and from the Monitoring 

of Damage in Historic Tapestries (MODHT) project were described in detail. Both 

previous studies were central in selecting the analytical approach employed in 

the following experimental part.  

In Chapter 3 samples from different historic hangings (Karen Finch Reference 

Collection at the CTCTAH) were investigated using: uniaxial tensile testing, 

attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 
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ultra high performance liquid chromatography with photodiode array detector 

(UHPLC-PDA). The multi-analytical approach pointed to define the stress-strain 

response of historic textiles and how the tensile properties may vary depending 

on the level of chemical degradation of the fibrous material (wool) and on 

weave features. Moreover, the identification of dye sources through UHPLC-PDA 

helped in recognising the partial contribution of fibres treatments in promoting 

chemical deterioration.   

The tests in Chapter 4 validated the use of the contactless optical technique 2D 

digital image correlation, DIC, for monitoring strain across tapestries. Differently 

from the approaches employed in Chapter 3, 2D DIC was trialled as a full-field 

diagnostic tool for examining the mechanical behaviour of woven hangings when 

on display. Six case studies, with various sizes and features, were monitored; 

through this, the impact of experimental variables in the feasibility of DIC was 

assessed.  

For the first time, the usefulness of sloping boards, an untraditional display 

method for tapestries, in preventing weft elongation was systematically 

examined. The experiments, presented in Chapter 5, considered the separate 

influence of friction and inclination. While the role of fabric/fabric friction was 

studied through measurements of the coefficient of static friction, the role of 

inclination was examined through the 2D DIC monitoring of mock-ups displayed 

at different angles.  

Finally, the experiments in Chapter 6 were designed to define the efficacy of 

various conservation treatments. Namely, support and couching methods were 

evaluated by monitoring strain across textile objects (mainly bespoke mock-ups) 

differently conserved. The data gathered from the 2D DIC analysis were 

compared and enriched with those from the characterisation of the uniaxial 

tensile properties of treated samples and conservation materials.  
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1 Introduction to tapestries: why and how to 
conserve them 

Chapter 1 discusses the importance of tapestries from a historical and cultural 

perspective, as well as the conservation practices currently in use to ensure 

their preservation. The elaborate manufacturing process, the richness of the 

materials, and the high cultural value are fundamental factors to consider when 

approaching the field of tapestry conservation. Indeed, often times preserving 

historic hangings is very challenging, time-consuming and highly costly; 

therefore, it is important to underline why this activity is so crucial.  

The first part of this chapter describes how tapestry making developed and 

changed over centuries in Europe and how this art form went through period of 

great appreciation to less fortunate time. The historical manufacturing 

technique, with all its stages, is delineated, together with the materials usually 

employed. 

The second part of Chapter 1 deals with practices in tapestry conservation: how 

they evolved over time, especially in the 20th century, and what treatments are 

preferred today. In particular, on the basis of the objective of the thesis, the 

chapter focuses on the approaches aiming to provide structural support and to 

avoid the propagation of mechanical damage, including also display methods.            

1.1 Tapestries: the background 

1.1.1 The historical context and the cultural value  

Tapestry making is a craft with ancient roots, well-known and developed in 

many different cultures worldwide. Although in the European tradition the word 

tapestry is commonly used just for indicating figurative woven hangings, the 

term actually refers more broadly to textiles made with a specific weaving 

technique. In Asia, for instance, this technique was called kesi and it was 

employed to create, in addition to pictorial hangings, clothes and furnishing 

fabrics. Differently from European tapestries, Chinese kesi were usually made 

exclusively in silk; an example from the Karen Finch Refence Collection is 
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provided in Figure 1.1. The Inca version of the craft was instead known as cumbi 

and used for making precious costumes [1].  

 

Figure 1.1. Detail of a kesi, Karen Finch Reference Collection, CTCTAH. 

 

The most ancient surviving examples of tapestry are reported to be three 

fragments conserved at the Cairo Museum dated from 1440 B.C. [2]. In Europe, 

the art of tapestry making started during the early middle ages. However, it is 

difficult to clearly define when the craft appeared: some documents reported 

the presence and manufacture of hanging textiles in France since the 7th 

century, although, as no examples survived, they might not have been actual 

tapestries but perhaps other types of woven textiles, such as embroideries [3, 

4]. Nevertheless, it can be said that between the 11th and 12th century, some 

first workshops were established. These studios specialised in the creation of 

small tapestries of a medium quality. Some of the first European examples 

testifying to this are the German Cloth of St. Gereon (11th century) and the 

Norwegian Baldishol (11th – 13th century) [5, 6].  

By the end of the 14th century, the art was eventually refined and so tapestries 

of great dimensions and quality began to appear for covering, insulating and 

embellishing the stony and dark walls of medieval buildings, such as palaces and 

churches, throughout Europe. Tapestries were regarded as both functional and 

decorative elements, as well as a clear symbol of power and richness. Besides, 
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tapestries showed the further advantage of being transportable over the 

different properties of the wealthy patrons. During the 14th century, renewed 

workshops were based in towns like Arras, Tournai and Paris, where in the 

meantime corporations of tapestry weavers (e.g. the Parisian Tapissiers de la 

haute lisse) flourished to protect the craftsmen and so the craftsmanship. A 

century later, Brussels’ workshops became the most important ones in the 

European production. It is interesting to underline that in 1476 the guild rules 

prevented any other artists than the ones of the Guild of Saint Luke of Brussels 

to be involved in the creation of the design. Therefore, the manufacture was 

entirely Flemish, at least until the beginning of the 16th century [5, 6]. An 

example of 16th-century Flemish manufacture is shown in Figure 1.2, where one 

of the tapestries from the Unicorn set is depicted. Now the historic hanging is on 

display at the Metropolitan Museum of Art (the Cloisters) in New York. 

 

Figure 1.2. The Unicorn Rests in a Garden (from the Unicorn Tapestries set). Woven in 
South Netherlandish between 1495–1505. Accession number: 37.80.6. © The Metropolitan 
Museum of Art.   
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As just said, the Flemish hegemony began to be contained from the 16th century. 

Indeed, in 1515 Pope Leo X asked Raphael to prepare the figurative design (the 

cartoons) of a set of tapestries, the Acts of the Apostles [5, 6]. These cartoons 

are now conserved at the Victoria and Albert Museum (Figure 1.3). Although the 

hangings were still woven in Brussels, this episode was important since it 

renewed the pictorial style, which became greatly influenced by the Italian 

Renaissance taste. The new style was characterised by scenes (now including 

more secular themes) framed by complex borders and focused on few full-size 

characters and patterns, breaking with the former Medieval and Gothic tradition 

rich in decorative motifs and figures [5-7].  

 

Figure 1.3. Cartoon for a tapestry, The Miraculous Draught of Fishes. Raphael, Italy, about 
1515-1516. Bodycolour on paper laid onto canvas. Museum number: ROYAL LOANS.2. © 
Victoria & Albert Museum. 

 

During the first half of the 16th century, Brussels was regarded as the most 

prestigious centre for the weaving of tapestries, reaching the highest level of 

quality in history, from both the technical and artistic point of view. For these 

reasons, the second third of the 16th century is described as the “Golden Age of 

the Netherlandish tapestry weaving” [8]. To protect this esteemed status, from 

1528, Brussels’ tapestries were marked with an official sign, to avoid forgery. 
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Nevertheless, there was a fraudulent market involving other centres, such as 

Antwerp, that copied the mark on their pieces. A limited number of workshops 

was also established in Italian towns, like Mantua and Ferrara. These ateliers 

were founded by Italian patrons (namely Este and Gonzaga) that brought Flemish 

and French weavers to their own courts [5, 6]. From the 1560s, civil wars and 

religious persecutions drastically affected the southern Netherlandish industry, 

forcing many weavers to migrate towards Italy, Germany, Holland, England and 

France [3, 6, 8].  

In the 17th century, France substituted the Low Countries in their leading role in 

tapestry production. French kings, like Henry IV and later Louis XIV, greatly 

promoted this shift, encouraging the flourishing of ateliers such as the well-

known and enduring Manifacture des Gobelins [6, 8, 9].  

During the second third of the 18th century, together with the development of 

the decorative Rococo style, tapestries started to be requested as interior design 

objects. This was the last significant period for the art of tapestry making in 

Europe, as from that moment onwards the appreciation of hangings began to 

decline, in favour of an increasing positive perception of paintings. By the end of 

the 18th century, precious historic tapestries were cut and many of them (such 

as those of the English royal collection) started to be displayed permanently, 

while traditionally they were only installed on specific occasions. These factors 

markedly affected the preservation of woven hangings, as well as how they have 

been perceived, restored and conserved later on [5, 8, 10].  

The extreme high value of historic tapestries should be therefore remembered, 

underlining how, especially between the 14th and the 16th century, they were 

considered as the most widespread and explicit artistic devices to show off 

wealth and power by both religious and lay figures in all Europe. It is 

emblematic how Henry VIII in 1530s chose to commission tapestries as artistic 

tools to proclaim himself as the head of the newly born Church of England, while 

affirming his religious beliefs. Similarly, in 1520s Pope Leo X requested 

tapestries to demonstrate the greatness of the papacy against the threats of 

rising Lutheranism. Nonetheless, the high value of woven hangings was not only 

symbolic: historical sources proved that they were extremely expensive 

compared to any other art, including painting. A set of tapestries bought by 
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Henry VIII in 1528 (Story of David) cost over 1500 pounds (the price of a 

battleship), while, at that period, the royal artists Horenbout and Holbein 

received an annual stipend of between 30 and 33 pounds. Moreover, those same 

tapestries were carefully restored by appointed skilful professionals in the 

Standing Wardrobe at Hampton Court, and only occasionally displayed for 

ceremonies [8].  

Today tapestries represent a precious part of the cultural heritage, also 

considering that only a restricted percentage of the original amount of historic 

hangings survived over the centuries (e.g. the English royal collection was 

estimated to have over 2450 tapestries at the moment of Henry VIII’s death, 

while nowadays only around 100 tapestries can be found in the inventory of 

Hampton Court Palace [11]). All these data are significant to recognise the 

cultural value of tapestries and so the need of conserving them in the best way 

possible.     

1.1.2 The making of tapestry 

From a technical point of view, a tapestry can be defined as a discontinuous 

weft-faced plain weave. The term weft-faced refers to the fact that the design 

of tapestries is created by multi-coloured and closely packed weft yarns, which 

cover completely the structural undyed and widely spaced warp threads. 

Another technical characteristic of tapestries is that the weft is discontinuous, 

as the threads are changed according to the colour pattern [1, 5]. A scheme of 

tapestry weave structure is illustrated in Figure 1.4. 

 

Figure 1.4. Tapestry weave structure, in the hanging direction, with two differently coloured 
sets of weft threads [12].  
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Historically, different methods were employed to obtain a change in colour but 

in the European countries between the 14th and the 18th century the three most 

popular techniques were: slits, dovetail, and interlock.  

Slits occur whenever the weft turns around the warp yarn creating an opening, 

as shown in Figure 1.4. As slits affect the stability of the woven structure, 

historically they were usually sewn up after the weaving was completed. 

Nevertheless, in some other cases, slits were deliberately left open to better 

delineate specific shapes such as the ones of human faces or hands. Dovetail 

joints are obtained from turning weft threads of different colours over the same 

warp yarn, creating a zig-zag motif structurally reinforced. However, 

interlocking is the most efficient technique to produce a strong tapestry while 

avoiding the formation of holes in the weave. The method consists in interlacing 

on the back weft threads of adjacent colours through passing them around or 

between the same warp once or twice (single or double interlock joints). 

Although interlocking ensures a resistant structure, it is also highly time-

consuming.  

In addition, traditionally some other techniques were employed to enrich the 

woven design with characteristic effects. For instance, hatching was used to 

form shades through placing near lines of differently coloured weft threads. 

Besides, hachures (coloured triangular patterns) were created to obtain a similar 

blending effect, particularly in Flemish tapestries from the 15th and early 16th 

century [1, 5, 13, 14].  

Tapestry making has always been a long process, including many stages and 

involving different professionals. Before the actual weaving, the design of a 

tapestry is first made as a drawing or painting (petit patron) [10], then 

translated into a cartoon, a full-scale coloured representation of the tapestry 

pattern, used as the final template by the weavers. Historically, often times the 

first version of the design was commissioned by wealthy patrons from a qualified 

painter (e.g. Figure 1.3) [5, 6, 14].  

The potentially difficult process of translating a painting into a tapestry was 

usually accomplished by skilful professionals, the Kartonniers. These cartoon 

designers had the tasks of correcting the sizes of the painter’s draft and of 
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modifying it according to the specific technical requirements of tapestry 

weaving [5, 6, 14]. When the cartoon, which was often made of linen sheets or 

paper [10] (the latter only from the beginning of the 16th century [8]), finally 

arrived with the weavers, the master of the workshop became the owner and 

the design was usually replicated for making other pieces. To avoid this, 

sometimes the patron decided to acquire the original cartoons and even to 

display them; this also allowed to better preserve the tapestries and to hang 

them only on special occasions [13].  

In the weaving workshop, tapestries were then woven by hand using a loom. 

Through this instrument, warp yarns are straight so that the weft threads are 

inserted between the openings (sheds) created by raising or lowering a selected 

set of warps. Although there are different types of looms, the two most popular 

ones employed by European weavers were the high-warp (haute lisse) and low-

warp loom (basse lisse). Both of them consist of two bars stretching the warps, 

though in different directions: in the haute lisse the warps are arranged upright, 

while in the basse lisse horizontally.  

According to the type of loom, historically the cartoon was placed differently to 

enable the weavers to copy the design: with the haute lisse, the template was 

positioned behind the warps while, with the basse lisse, it was put underneath 

them. Since with the low-warp loom the cartoon was nearer to the weavers, it 

was easier for them to follow the pattern. The final product of both types of 

loom is structurally almost the same, although they have been differently 

employed depending on the historical period (e.g. the basse lisse was preferred 

during the Renaissance period) [1, 5, 6]. Furthermore, another important and 

common aspect is that with two types of loom, the pattern was traditionally 

woven sideways so that, when the work was completed, the tapestry was turned 

90 degrees. This was made for both practical and aesthetic reasons. As the size 

of the loom dictates the proportion of one side of the tapestries, from a 

practical point of view, this technique enabled to create much larger pieces with 

dimensions suitable for the walls of castes or cathedrals. Besides that, the motif 

was woven perpendicular to the warps to prevent the formation of long non-

aesthetic series of slits while creating frequent vertical features like trees [6]. 
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1.1.3 The materials  

Materials greatly defined the value of a tapestry. In fact, quality and cost of the 

artwork could vary significantly depending on that, together with other factors 

such as the cartoon, the skilfulness and the quantity of the manufacture, as well 

as the warp and weft count (the fineness/density of the weave) [4]. 

Traditionally, the fibres used in European tapestries were wool (especially from 

England and Spain) and silk (Italian or Spanish). Undyed wool was used for the 

structural warp yarns while dyed wool for a large part of the decorative weft. In 

addition, silk can be found in the weft and, more rarely, also linen (in 

particular, the use is reported in Swiss and German 16th-century hangings). 

Besides that, precious pieces featured metal threads made of a yellow dyed or 

white silk core wrapped by a gold, silver, or silver gilt strip, usually from Venice 

or Cyprus. Because of their excessive prices, both silk and metal threads were 

only present in high quality tapestries [5].  

Natural dyes and related mordants define the colour palette of historic 

tapestries. Dyes are described as materials characterised by the presence of a 

colour, but without any thickness, as opposed to pigments that have both 

properties [15]. They are organic and they can be applied in a solution for 

dyeing textiles thanks to the formation of chemical and/or physical bonds (while 

pigments are mechanically applied in a solid form through the help of an 

appropriate binding medium). Colorants can be grouped according to their origin 

(vegetal, animal, synthetic), the chemical class or the principle of the dyeing 

process. Before the second half of the 19th century dyes were obtained from 

natural sources (both vegetal and animal) [16], therefore in historic hangings 

only natural colorants can be found, at least in the original woven parts. The 

most common dyes in European tapestries are listed in Table 1.1 [14]. In 

addition to the colorants reported in Table 1.1, other dye sources have been 

previously detected in European tapestries, namely: logwood [16]; safflower [17-

19]; orchil [18, 20, 21]; kermes [22]; Polish cochineal [17].  

As shown by the brief descriptions in Table 1.1, the final colour of the dyeing 

can be affected by the type of mordant employed. Mordants are coordination 

metals that act as a bridge between the colorant and the fibres, forming a dye-

metal-fibre complex. Traditionally, the principal mordant was aluminium ion, 
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mostly from AlK(SO4)2∙12H2O (also known as potash alum or potassium alum). 

Other mordants were: salts from iron, tin (from the 17th century), chromium 

(from the 19th century), and copper (even if more rarely). As indicated in Table 

1.1, not all dyes required the use of mordant; it depended on their chemical 

properties and so on the dye class [16].    

 

Table 1.1. Dyes commonly employed in historic European tapestries. Data taken from Quye 
et al., 2009 [14]. 

 

Considering the final purposes of the current project, it is very important to 

remark the broad variety of materials involved in tapestries making, as material 

heterogeneity affects the complex degradation processes of the artefact and 

therefore its conservation needs.  

1.2 Conservation practices 

Tapestries are extremely complex objects, with complex deterioration problems 

and so conservation needs. Considering the manufacturing process, this 

complexity is linked to several factors, such as the presence of structural 

heterogeneities and the use of various materials that would eventually undergo a 

broad range of ageing conditions. This large number of variables over time can 

be responsible for an intricate mix of physical and chemical degradation 

processes, difficult to predict. Therefore, tapestry conservation techniques face 

Natural source of 
dye 

Chemical class of 
the main 

compounds 

Dye class Colour obtained 

Mexican cochineal Anthraquinone Mordant Red (alum),  
pink (tin chloride) 

Madder, wild madder, 
bedstraws 

Anthraquinone Mordant  Red (alum),  
purple and brown 
(iron sulphate) 

Soluble redwoods  Homoisoflavonoid Mordant Red, 
brown (alum) 

Weld Flavonoid Mordant Yellow (alum),  
green (iron sulphate 
or copper sulphate) 

Dyer’s broom Flavonoid Mordant Yellow (alum), 
green (iron sulphate 
or copper sulphate) 

Sawwort Flavonoid Mordant Yellow (alum),  
green (iron sulphate 
or copper sulphate) 

Young fustic Flavonoid Mordant Yellow (alum) 

Woad, indigotin-based 
source 

Indigoid Vat Blue 

Galls Tannin Direct or mordant Brown, black 
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various issues that may concern both the physical stability and pictorial integrity 

of the historic object. This is especially true if weft threads are deteriorated, as 

they are responsible for both the design and the structure.  

Frequent damage of weft threads is due to their over exposure to environmental 

factors, such as light, which may lead to different degrees of degradation 

according to the type of fibrous material and its processing technique (e.g. 

dyeing method, bleaching). For instance, silk wefts are weaker than woollen 

ones, especially if the former were bleached. In addition, insects may be 

responsible for fibres loss, while open slits, a typical feature of tapestry 

weaving, may lead to the propagation of structural problems [23]. In Chapter 2, 

the degradation paths of wool and silk, main components of historic hangings, 

are discussed more in detail. Further study on variables affecting structural 

stability and mechanical damage mechanisms is described in Chapter 3 and 

Chapter 4. 

Because of the fragility of tapestries, as well as of their high cost, their 

restoration started together with the development of the medieval production 

itself [23, 24]. Therefore, the maintenance of historic hangings has passed 

through many centuries and it has evolved along with the principles of 

restoration and the perception of this art. Nowadays, approaches and practices 

may vary significantly from country to country, as well as even from conservator 

to conservator within the same workshop. The difficulty of establishing a 

common trend in tapestry care may be due, partly, to the lack of a scientific 

approach in evaluating different techniques. Indeed, science could help 

providing reliable data that would make conservation less subjective and more 

objective. To understand this complex topic, first the evolution over time of 

tapestry restoration and conservation is discussed, followed by a technical 

description of approaches in use today.        

1.2.1 The approach over the time 

Among publications that trace back the history of tapestry repair from a general 

perspective [23-27], Lennard recognises three main stages: I) the reweaving by 

skilled professionals during the golden age of the manufacture; II) the 

unconscious and crude approach when the production declined (late 19th and 
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early 20th centuries); III) the conservative attitude developed from the second 

half of the 20th century [23]. 

During the first phase, the maintenance of tapestries was enabled by both the 

careful reweaving and the fact that the objects were only displayed in specific 

occasions, allowing their preservation. Some references, collected by Fiette, 

record the activity of French skilled repairers from the last quarter of the 14th 

century [25]. On the same hand, different publications give information about 

the care of the British royal collection [4, 28-30]. Campbell describes the use of 

reweaving, lining with canvas and cleaning during the reign of Henry VII and 

Henry VIII. At the same time, Campbell stresses the importance of the Great 

Wardrobe, the site where, until 1782, the royal collection was safely stored and 

restored by selected staff [4]. Other European royal courts did the same [31]. 

The widespread 16th-century custom of lining British tapestries is also indicated 

by Band [29]. She describes how blue- or black-dyed linings (usually made of 

linen) were added and renewed to protect the objects from the wall humidity, 

the handling and the weakness of the woven structure [29]. Regarding the 

cleaning of hangings, interestingly, Hefford portrays the 17th- and 18th-century 

use (perhaps also earlier [4] and later [25]) of brushing with crumbled bread in 

the Wardrobe [27]. In the same article, it is recalled the controversial painting 

method to cover areas of loss while avoiding reweaving. The habit of painting or 

chalking was very widespread at the beginning of the 16th century, though 

tentatively contained by regulations from the second quarter of the same 

century [27]. Because of the high-quality techniques and the use of appropriate 

and coherent materials, now it can be challenging to distinguish historical 

repairs from the original weaving. Usually, today these repairs are kept during 

the conservation treatment, since they are regarded as part of the historical 

evolution of the tapestry [23].  

The decreasing interest and appreciation of tapestries from the early 19th 

century, affected the quality and quantity of manufacture, as well as the 

general care. During this second phase, tapestries were displayed permanently, 

overhung by paintings, and even cut [24, 29, 30]. The case of The Lady and the 

Unicorn set (the masterpieces of the Cluny Museum in Paris) is emblematic 

though particularly drastic: the hangings were used to cover greenhouses [31]. 
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Reweaving was still a widespread method to fill areas of loss, but this carried 

out by a restricted number of unskilled professionals [32]. It is reported that, at 

the beginning of the 20th century, tapestries repairers were lacking especially in 

England although they could still be found in France [24, 32]. Besides that, the 

repairs often involved cheap and low-quality materials, such as newly 

synthesised unstable dyes. Industrial cotton was employed for reweaving, 

although it showed a totally different mechanical behaviour from the wool used 

to weave the original piece [33]. All these factors eventually led to further 

distortion and damage of the design [34].  

However, before the actual start of the third phase, different sources recognise 

an ante litteram conservative attitude towards pictorial hangings. This new 

approach was born in Sweden in the early 20th century, mainly thanks to the 

activity of John Böttinger [23-25]. Böttinger worked from 1915 as conservator for 

the Swedish Guarde-Meuble Royal and for the Royal Castles [23]. He stated, also 

through a written publication dated 1937 [35], the importance of documenting 

the conditions of the object before and after treatment, as well as the potential 

damaging effects caused by wet cleaning. As an alternative to this practice, 

Böttinger promoted the use of vacuum suction, specifying that it should be 

carried out biannually through a gauze in order to ensure proper care. The 

safety of the method for the fibres was tested by an appointed scientist [24]. 

Interestingly, the value of this new collaborative approach between science and 

textile conservation was also stressed a few decades later, in 1961, by another 

Swedish textile conservator, Agnes Geijer. In her brief publication, Geijer 

argued for better cooperation between curators, scientists, and “manual 

workers” [36]. Böttinger innovative approach included also the use of dyed 

patches and stitching for the repair of areas of loss [35].  

Despite these developments, until at least the second half of the 20th century, 

tapestries were more often restored rather than conserved [23]. Restoration 

usually involved reweaving, which was seen as a tool to recreate the integrity of 

the figurative design [33, 37], the element that dictated the economic value of 

the object [34].  

From the 1950s, conservation principles started to be widespread, generating 

debates among professionals and new techniques to conform to the modern 
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ethic [23, 24]. For instance, adhesives were introduced in the 1960s, especially 

in the UK and in the Netherlands, to provide stability to the fibres and to attach 

supports [38-40]. Soon, different conservators faced the damaging effects 

caused by these synthetic materials and their use was therefore abandoned 

quickly [41-43]. This experimental attitude affected also traditional reweaving 

and, especially in the UK, alternative techniques were developed [23, 24, 26]. 

The work of Karen Finch is regarded as fundamental for this development. Finch 

started working as a weaver in Denmark, while in 1946 she moved to England 

where she began her career as a textile conservator, and later as a teacher. 

Eventually, in 1975, Finch founded the Textile Conservation Centre (now 

CTCTAH). Some of Finch’s articles, published during her long career, aimed to 

show the path towards innovative practices [32, 34, 43], that can be seen as a 

further evolution of Böttinger’s [24]. Indeed, one her main contribution is 

related to the introduction of patches or full support linen fabrics stitched on 

the back of the tapestries (the latter also known as “the English method”) [24]. 

As Finch stated, these methods take into account and overcome relevant issues: 

the preservation of the original design and materials; the reversibility of the 

treatment; the need of providing a safe support for display [34].  

From the 1960s onwards, all these new methods were subjects of discussion 

during the increasing number of conferences on textiles and tapestries 

conservation [23, 24]. Important meetings regarding tapestries took place in: 

1964 in Delf (The Netherlands) [44]; 1976 in San Francisco (USA) [45]; 1980 in 

Como (Italy) [46]; 1981 in Florence (Italy) [47]; 1984 in Paris (France) [48]; 1987 

in Brussels (Belgium) [49]; 1994 in Amsterdam (The Netherlands) [50]; 1995 in 

Norfolk (UK) [51]; 2009 in New York (USA). The published volumes resulting from 

these symposiums document several case studies, able to demonstrate the 

evolution of approaches and practices, as well as how they differed between 

countries [44-51].  

Regarding image reintegration, some case studies, from the cited volumes and 

others, show a mixed use of methods: they involved traditional reweaving but 

also emerging stitching techniques. This trend could be observed in both 

American [52-54] and European laboratories [55, 56]. In 1995, Marko described 

this uncertain approach as “a confusion of ideas” [57]. This confused situation 
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lasted principally until the end of 1980s [26]. It should be noted that reweaving 

has been employed also later on: one well-known example is the Textile 

Conservation Department of the Metropolitan Museum of Art, where the pictorial 

integrity of hangings is still recognised as a crucial factor [58]. However, 

different methods, such as inpainted support patches, have been proposed 

during the last decades [59-61]. In general, the recent need of finding an 

alternative to reweaving has been spreading more insistently, not only to 

conform to conservation ethics, but also to try reducing the high cost and time 

of the intervention [62, 63].  

Besides image reintegration, the same conferences depicted heterogeneities also 

on the approach concerning support methods and the materials involved. 

Regarding the type of support, the choice could be made among full support [41, 

42, 61, 64, 65], patches [41, 53, 55, 63] and strips of fabric (straps) [53, 54, 66]. 

The cited publications prove that full support has been widely used in Europe, 

especially in the UK, while straps have been traditionally chosen by American 

workshops (also more recently [58, 67]). Sometimes patches are reported to be 

employed together with a full support fabric [41] (or even straps [53]), as they 

may be used not exclusively to reinforce weak areas but also for the image 

reintegration. The conservators’ vocabulary on structural treatments may vary 

significantly from paper to paper, so it may be difficult to discriminate the 

methods presented. One issue concerns the contradictory use of the term lining. 

In some publications, it clearly indicates an additional fabric (usually in cotton) 

stitched to the back as a protection from dust and wall humidity [42, 54, 61, 

66], while in others the word is more ambiguous and may refer to a support 

technique [24, 63].  

Regarding display and hanging methods, historically tapestries were hung loose 

from the top. The traditional system implies the use of damaging nails fixed to 

the wall [68]. From the 1970s, Velcro™ was introduced and, since then, it has 

been widely employed (e.g. [36, 40, 51-53, 59, 61, 69]). Nowadays, some 

museums choose to display tapestries using sloping boards [69, 70], as discussed 

in detail in Chapter 5. 

In general, from the 1980s, a more scientific approach started to affect the field 

of tapestry conservation. Materials and manufacture of historical tapestries have 
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been studied, leading to a better understanding of the related degradation 

processes and conservation needs [23]. Importantly, in 2002 the three-year 

project Monitoring of Damage to Historic Tapestries (MODHT) started, bringing 

together many professionals from all over Europe to investigate causes behind 

the degradation of hangings, mostly from a chemical perspective [14]. Besides, 

fewer studies focused on the mechanical behaviour and physical degradation of 

tapestries [71-73]. Projects within the field of heritage science and addressed to 

the study of tapestries are reviewed in Chapter 2. 

1.2.2 Current conservation practices  

During the last three decades, three surveys were carried out on the current 

methods employed in tapestry conservation, and especially on support 

treatments. The questionnaires are by: Hofenk de Graaff (1997) [26]; Breeze 

(2000) [24]; Duffus (2013) [74]. The three studies investigated the techniques 

and materials employed by conservators from the USA [24] and worldwide [26, 

74], giving an overview of the practices and materials used nowadays. More 

recently (2019), another questionnaire was carried out by Catic for her masters 

dissertation on stitching methods for treating weak areas in tapestries. The 

questionnaire was addressed to conservators working in some European 

countries, and it asked questions related to both stitching and display 

approaches [75]. Besides, Tapestry Conservation: Principles and Practices edited 

by Lennard and Hayward (2006) still represents a key publication, providing 

examples of current trends [76]. It is worth noting that in 2020 another 

comprehensive book on tapestry conservation by Marko was published [77].   

The techniques listed below all aim to improve structural stability, in some 

cases, together with providing pictorial continuity. Indeed, structural stability is 

the topic of the current study. For the same reason, treatments such as cleaning 

are not reported. 

Image reintegration 

- Re-warping: this method can be used to replace missing or weak warp 

yarns. Re-warping is carried out through knotting and channelling new 

wool warp threads in a sound part of the weave structure, restoring the 
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internal structure while providing the needed tension to the weave [26, 

31]. Re-warping can be made on the support fabric instead of the actual 

tapestry, in order to prevent damaging original wefts near the hole. This 

technique is usually the first step of the treatment, as it is often followed 

by brick couching or reweaving for replacing the missing weft threads 

[26]. Wool or cotton are usually employed [24, 26]. 

- Reweaving: this method is the one that has been traditionally used for the 

repair of areas of loss in tapestries. The technique can still be found in 

some workshops, although in the last decades it has been progressively 

abandoned as it does not conform to conservation ethics [23]. Before the 

treatment, original wefts can be removed, and this opposes the 

preservation of historical materials. Moreover, if no proper references are 

available (i.e. the original cartoon, old pictures) imaginative obtrusive 

interventions may be created [34]. Another drawback of reweaving is the 

fact that it is highly time-consuming and expensive [62, 63].     

- Needle weaving: this type of treatment is comparable to reweaving, 

though it is usually carried out in areas of missing wefts where warp yarns 

are still present. The technique involves an in situ re-wefting using a 

needle, differently from traditional reweaving where looms and bobbins 

are employed [31].  

- Laid couching: this treatment is commonly employed in textile 

conservation to stitch the damaged fabric to a stronger one used as 

support [78]. Laid couching is obtained first by inserting a long stitch 

along the weft direction (in the case of tapestries), and then securing it 

by adding smaller stitches perpendicular to the long one [79]. The stiches 

can be placed at different distances, possibly influencing the final 

strength of the textile object [75, 78]. According to the responses to 

Catic’s questionnaire, laid couching is especially used by textile 

conservators in Germany (11 out of 11 German respondents) [75].      

- Couching stitching: this technique, also known as brick couching, is used 

for providing both structural support and figurative infilling in areas of 

damage. The method consists of placing lines of running stitches in the 
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weft direction through the support fabric: the stitches go over one warp 

on the front and under the next, in an alternate pattern. The spacing and 

distribution of stitches may vary depending on the damage (i.e. if there is 

still a good amount of original wefts, the stitching can go over one warp 

on the front and under three-five warps on the back) [31, 80]. Breeze and 

Hofenk de Graaff’s surveys indicate that brick couching is the current 

preferred method for conserving areas of weft loss [24, 26], with the 

exception of German workshops, as specified by Catic’s study [75]. 

Questionnaires report that, for replacing wool threads, wool or cotton 

yarns are usually selected, while for missing silk, (stranded) cotton is 

often employed, though a few conservators may opt for silk [24, 26, 75]. 

Sometimes, also polyester is used for stitching across areas of missing 

wool and silk wefts [75].   

- Dyed fabric infills: this method is usually preferred for integrating while 

supporting large areas of loss or missing parts whose design cannot be 

reproduced [80].  

Support methods 

- Slits re-stitching: this technique can be used for damaged and weak slits. 

The decision of whether to stitch damaged slits or not may depend on 

several factors, such as time and money available for the intervention, 

length and location of the holes, the overall condition of the tapestry, 

and the original intentions of the weaver (some slits were indeed 

deliberately left open, as discussed in Section 1.1.2). Cotton and 

polyester are often used for stitching. The treatment can be carried out 

both directly on the hanging or through a support fabric [24, 26].  

- Full support: this technique consists in stitching a fabric on the entire 

back of the tapestry. Full supports are especially used when the object 

needs an extensive intervention as its overall structural conditions are not 

good. Usually, a certain excess of fabric (also called “bag”) is added while 

applying the support, to allow ease. In order to attach the support to the 

tapestry, various stitching techniques can be used (mainly running 

stitches) and distributed in different ways [24, 26, 74].   
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- Patch support: patches can be applied to tapestries as a support and a 

figurative infilling treatment. In particular, patches are selected when the 

overall structure of the hanging is sound and it only shows some weak 

areas [24, 26, 74].  

- Strap support: the use of textile (usually cotton or linen) straps is 

sometimes seen as a way of carrying the weight of the hanging without 

adding any extra load, like in the case of a full support. As no repairs are 

done in the strips, that are always distributed alongside the weft 

direction of the tapestry, they can be removed easily. Importantly, straps 

allow to leave part of the original back always available for observations 

[57]. Through this system, the weave structure is allowed to fluctuate 

accordingly to the environmental conditions [53]. Nevertheless, for some 

conservators these movements may lead to an irregular tension 

distribution, eventually causing the so-called swag [53] or festooned 

effect [57]. Another objection against straps is the possible formation of 

darker bands on the front, because of the uneven dust filtration (perhaps 

overcame through adding a dust cover) [53]. The spacing of straps, and so 

the percentage of covered area, may vary [24, 26]. Strap support is 

mainly popular in the USA [24, 26, 74].     

In addition to the choice on the type of support, other variables need to be 

selected, such as: the fabric for the treatment (and if/how it is pre-treated); 

the stitching technique (and materials) for securing the systems; the spacing and 

distribution of stitches. A more detailed overview of practice today can be 

drawn from previously cited surveys [24, 26, 74]. For instance, regarding the 

materials employed, for full supports, cotton and linen are the most widespread, 

though also synthetic ones have been rarely suggested. Duffus’ survey [74] shows 

that conservators still do not agree about the reasons behind the fabric choice. 

Some think that the fabric should respond to the environmental changes in a 

comparable way of the tapestry in order to enable its fluctuations, while others 

say that the material has to be selected for its ability to restrict the movement. 

These contrasting answers, similar to the ones previously collected by Hofenk de 

Graaff [26], prove that there is still uncertainty and misunderstanding on the 

(desirable) qualities of support fabrics. In the case of straps and patches, 
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Breeze’s questionnaire [24] shows that cotton is the most selected textile for 

both types of support in the USA.       

Additional protection  

- Lining: this term usually (though not always, leading to misunderstanding) 

indicates an additional fabric that covers entirely the tapestry on the 

back for protecting it from dust, abrasion and humidity of the wall. The 

most common material for linings is cotton, especially plain weave or 

sateen fabrics, while more rarely linen can be chosen [24, 26]. Many 

conservators opt for cotton because of the high density of its weave, 

allowing the textile to act as a dust protection [26]. Linings, like supports, 

can be attached using different stitching techniques (i.e. locking stitches, 

running stitches) and thread types (i.e. cotton, polyester) [24, 26].    

Display methods          

- Vertical hanging: historically tapestries were hung vertically. This 

approach is the most widespread also nowadays, in agreement with the 

tradition.  

- Sloping boards: in recent years, tapestries have started to be displayed at 

different angles through slanted boards. This approach is especially 

widespread in central Europe (Germany and France), and André Brutillot 

is regarded as one of the experts who greatly promoted this technique 

[69, 70, 81]. According to Brutillot, some of the advantages of sloping 

boards are: the retarded elongation of the weft threads; the lack of 

undulations (as the object lies flat on the board); the contained 

accumulation of dust; the reduced need of conservation treatments [81]. 

However, not all conservators think that sloping boards are a valuable 

solution since they alter both the historical presentation and the viewing 

perspective. Moreover, in opposition to Brutillot’s idea, it is often thought 

that the angled disposition may actually promote dust accumulation [81]. 

Another drawback is that usually boards are only tilted by a few degrees, 

such as 5° from the vertical, perhaps not enough to produce a significant 

ease from strain [82]. It should be noted that no studies have been 
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published so far to clarify the role of friction in this type of system, 

although the boards are usually covered by fabrics that aim at promoting 

this (e.g. cotton molton and polyester felt [75, 83]). The use, and the 

actual efficacy, of sloping boards is discussed in Chapter 5. 

- Velcro™: has been the most common tool to hang tapestries from the 

1970s. This hook-and-loop fastener represents a good advantage in case of 

emergency procedures, in opposition to the historical hanging systems 

that involved the use of hooks, rings and nails [23]. However, Marko 

underlines the importance of considering the context, as in some cases 

keeping the original hanging systems (though including also the Velcro™) 

may be significant to show the historical techniques [61]. Velcro™ can be 

fixed in different ways, either directly to the tapestry or through a fabric 

extension.             
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2 Introduction to the degradation of tapestries: 
why it happens and how to monitor it 

Chapter 2 presents a literature review on the chemical and physical properties 

of wool and silk, main materials within historic European tapestries. In 

particular, the first part of the chapter gives an overview on the degradation 

processes that may alter the mechanical behaviour of the two natural fibres.  

The second section of the chapter focuses on past works aiming to characterise 

physical and chemical properties of textiles made of wool and silk, and more 

specifically historic hangings. Moreover, studies evaluating the efficacy of 

structural conservation practices for textile artworks are discussed. Particular 

attention is given to the outcomes from a research carried out at the University 

of Southampton between 2007 and 2010. The previous work was central for the 

development of the current project, especially for defining the analytical 

approach to use for studying mechanical damage mechanisms while a tapestry is 

hanging. In addition, works from the Monitoring of Damage in Historic Tapestries 

project (MODHT) were reviewed, for delineating methodologies helpful for the 

investigation of degradation processes affecting mechanical and chemical 

properties of historic hangings.        

2.1 The degradation of tapestries: from the perspective 
of fibres  

Tapestries are complex heterogeneous systems, because of the discontinuous 

weave structure but also because of the large number of materials involved. 

Therefore, predicting the behaviour over time of these works of art is very 

challenging.  

As described in Chapter 1, historic hangings are principally made of wool and silk 

in the load-bearing weft direction, while wool is mostly used for the warp. 

Hence, the degradation of a hanging tapestry would be greatly determined by 

the characteristic response of wool and silk to the environment and to other 

ageing conditions the object would be exposed to. In the following sections the 

chemical and physical properties of wool and silk are discussed, highlighting 

factors that may affect them.     
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2.1.1 Wool 

2.1.1.1 Chemical and physical structure 

Wool is an animal hair from sheep [1]. Chemically wool can be defined as a 

proteinaceous polymer, as primarily made of proteins, which are natural 

macromolecules of high relative molecular mass (polymers). Proteins are the 

results of a sequence of condensed amino acids, or peptides: the general 

structure of proteins can be described as –(NHCHRCO)n-, while an amino acid is 

defined as H2N-CH(R)-COOH, where R represents the side group.  

Within wool, up to 170 proteins can be found [2, 3], formed by the different 

sequence and relative amount of the 20 amino acids present in this material [2]. 

The side groups of amino acids greatly affect the physical and chemical 

properties of the fibres since they establish the type of links between adjacent 

polypeptide chains. Among amino acids in wool, cysteine (Figure 2.1a), whose 

side group is a thiol (R-SH), plays a very important role as it is predominant [2, 

3]. Around 82% of the proteins within clean wool are indeed keratinous, meaning 

that they contain a high amount of cysteine. The reaction (oxidation) between 

thiols in neighbouring cysteine residues lead to the formation of covalent 

disulphide cross-links. Through such reaction between two cysteine molecules, 

cystine is formed (Figure 2.1b). The presence of cystine ultimately stabilises the 

matrix structure and it influences physical properties, especially in wet wool. 

Besides disulphide bonds, there are other chemical crosslinks, some covalent 

(i.e. isopeptide crosslinking) while others are non-covalent (i.e. hydrophobic 

interactions, ionic bonds, hydrogen bonds). All these combined interactions 

contribute to define the specific properties of wool [2].  

a)    b)   

Figure 2.1. Chemical structure of: a) cysteine; b) cystine.  
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Figure 2.2. Structure of a merino wool fibre. © CSIRO. 

 

Morphologically, wool fibres have a complex structure, as illustrated in Figure 

2.2, containing principally two types of cells: the cortical (in the bulk) and the 

cuticle (in the external layer). In addition, specialised cells called medulla can 

be found in the middle of coarse wool [2, 3].  

Cuticles are distributed on the surface of wool. As the cells overlap, this imparts 

the scale-like characteristic superficial appearance of this type of fibres. 

Cuticles are cystine-rich cells with a layered structure, where each layer is 

characterised by a different cystine content. Namely, the layers are called: 

epicuticle (whose nature and existence are still debated [3, 4]), exocuticle-A, 

exocuticle-B, endocuticle [3]. Closest to the surface, there is also a lipid layer of 

18-methyleicosanoic acid (18-MEA), which makes the surface hydrophobic, 

affecting the wettability and consequently the dyeability of wool [3, 5].  

Protected by the cuticles, there is the bulk or cortex, the inner part that 

composes around of the 90% of the fibre and greatly influences its mechanical 

properties. The cortex is constituted by cortical cells that can be divided into 

ortho-, para- and meso-cortical cells (the latter only present in coarse fibres). 

Each cortical cell consists of several macrofibrils, differently distributed 

according to the type of cells. Macrofibrils are cylindrical aggregations of many 
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crystalline microfibrils or intermediate filaments (IF). Microfibrils are rod-like 

filaments of α-helical low-sulfuric proteinaceous formations grouped and 

embedded in a relative amorphous matrix to constitute macrofibrils [3].  

Another important component within wool’s morphology is the cell membrane 

complex (CMC), that divides the cuticle cells from the bulk as well as the 

different macrofibrils from each other. The CMC represents only a small fraction 

of the total weight of the fibre (around up to 6%), however it has been of great 

interest because of its potential role in defining mechanical and chemical 

properties. The fundamental characteristic of the CMC is that it represents the 

only continuous phase in the fibre. The CMC is a multi-layered system whose 

chemical composition has not yet been clearly defined, but that perhaps 

includes: non-keratinous proteins, lipids, a chemically resistant membrane [3, 6, 

7].     

2.1.1.2 Key mechanical behaviour 

From a general point of view, fibres, including wool, can be described as visco-

elastic materials [8]. The strain response of visco-elastic materials to stress 

(where strain is the change in length, and stress the force applied per unit area 

or per linear density [9]) shows two time-dependent types of deformation: 

primary creep and secondary creep. Primary creep represents a recoverable 

deformation that occurs when fibres stretch and return to their original length 

once the force is removed (elastic region, 100% elastic recovery). After that, 

secondary creep takes place and the material will no longer recover completely, 

thus showing a viscous behaviour. The yield point marks the moment in the 

strain-stress curve when the behaviour switches from elastic to non-elastic [8, 

9].        

Among natural fibres, wool is characterised by an uncommonly high elastic 

recovery. As depicted in Figure 2.3, wool recovers completely at maximum 2% 

elongation (Hookean region), but then, after the yield point and until 30% 

elongation (at 57% RH) it keeps on exhibiting some elasticity [3, 10] (e.g. 63% 

elastic recovery at 20% elongation [11]). This unusual region between 2% and 30% 

elongation is sometimes called yield region [3, 10].  
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Figure 2.3. Generic stress-strain curve for wool (the x-axes is out of scale to better show the 
Hookean region). Taken from Huson, 2018 [3]. 

  

Besides its high elasticity, wool has a low tensile strength (when dry, the 

tenacity is around 1.0/1.7 gr/den [11]), especially if compared to other fibres 

such as silk [8, 11].  

Since natural fibres are hygroscopic material, their physical behaviour (including 

ultimate tensile strength, but also the elastic recovery [12]) can be affected by 

the amount of water absorbed and so by relative humidity (RH). Therefore, it 

should be underlined that the water uptake is not directly proportional to RH, as 

the relationship between the two (illustrated by the absorption and desorption 

isotherms) is sigmoidal. In addition, the water content within fibres also depends 

on whether they experience a decrease or an increase in RH. This leads to the 

so-called hysteresis phenomenon, which is depicted as a divergency between the 

absorption and desorption isotherm [9, 13]. Finally, it should be considered that 

textiles may take time to reach an equilibrium with the environment [13]. 

Hence, the moisture content may also depend on the specific rates of absorption 

and desorption at different levels of RH [12].       

In the case of wool, the sigmoidal relationship of the absorption isotherm means 

that the fibres will bind the same amount of water when the RH varies from 30% 

to 60% (+30% RH) as when the RH fluctuates from 82% to 92% (+10% RH) [13]. At 

the same time, because of hysteresis, at 65% RH (21 °C) moisture content within 

wool will be: 13.01% in case of absorption from dry condition, while 16.90% in 

case of desorption from saturation. In addition, while 2.5 hours will be needed 

to reach equilibrium from the absorption, the desorption will take place more 

slowly, precisely in 103 days [12].  
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Howell, in his paper dated 1996, emphasised that, also in the case of textile 

conservation research, great attention should be paid to the actual amount of 

time needed to reach the equilibrium in the moisture regain. This was confirmed 

by weighting for a period of six months a tapestry (supposedly made of wool) 

displayed in a historic house, while monitoring RH and temperature. The results 

demonstrated that the high fluctuations in the RH values (30-70%) caused less 

remarkable changes in weight (between 2-4%) that the ones expected by the 

literature for wool (8%). According to the author, this could have happened since 

the variations in RH were too rapid to actually allow the moisture content within 

the fibres to reach equilibrium [13].          

2.1.1.3 Degradation  

The effects of humidity and temperature 

As just underlined, wool is a highly hygroscopic type of fibre [8, 11]. Water acts 

as a plasticizer for wool, promoting the mobility of molecules and therefore 

affecting the mechanical behaviour of the material [3]. Soaking wool can absorb 

an amount of water up to 200% of its dry weight, causing damaging swelling and 

making the material more vulnerable to mechanical changes [14].   

In her PhD work, Duffus [15] attempted to better establish the effects of cycles 

of humidity and temperature on the mechanical strength of tapestries. To do so, 

the tensile strength of historic samples was evaluated and compared to that of 

artificially aged woollen tapestry-like mock-ups. In the case of humidity and 

temperature, their effects were investigated simultaneously. Indeed, the 

artificial ageing consisted of treating the samples at a constant temperature of 

80 °C while going from 20% to 80% RH for up to 240 times. The treatment proved 

to negatively affect the elasticity and strength of the wool samples, though the 

results were not discussed extensively from a quantitative point of view. 

Overall, it was underlined that the historic samples were weaker than the 

replica [15].    

As mentioned in the previous paragraph, for historic hangings made of wool 

fluctuations in RH values may cause changes in weight. Therefore, increases and 

decreases in RH (as well as the rate of these variations) should be considered 
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when evaluating mechanical damage, since the load experienced by displayed 

artworks, as well as threads sizes (swelling), may vary. Damaging mechanisms 

linked to RH are further discussed in Section 2.2.2.1 and in Chapter 4.     

The effects of dyeing 

During the dyeing process (in the case of historic tapestries, originally with 

natural sources) wool may undergo the damaging effects of different factors: 

high water uptake, high temperature, extreme and/or ranging pH, chemical 

reagents.  

In general, dyeing usually involves treating the fibres for different hours with 

boiling or very hot water, decreasing already the material strength [3, 8, 11]. 

When the dye bath has a pH higher than 5 or lower than 4, where pH 4-5 

represents the isoelectric region of wool, the mechanical strength of fibres is 

even more compromised [3]. From a chemical level, the degradation is caused 

by the breakdown of disulphide bonds in cystine (pH > 3) and hydrolysis of 

peptides amide links in both acidic (pH 1.8-3) and alkaline environments [16]. 

The damaging impact of extreme pH environments when natural dyes are used 

was described also by Hacke et al. [17, 18]. They analysed, by time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) and tensile testing, the chemical 

(surface composition) and physical (tensile strength) properties of woollen 

tapestry-like samples dyed with different natural colourants. The results showed 

that, before ageing, very alkaline or acid baths negatively affected the samples 

[17, 18].  

In addition, the use of certain dyes, as well as mordants, may contribute to the 

modification of the physical properties and rate of deterioration of wool fibres. 

Indeed, both dyes and mordants may lead to phototendering reactions, affecting 

especially elasticity and tensile strength [19]. The relationship between dyeing 

process and tensile properties of wool (and silk), as single fibre, yarn, and 

fabric, was investigated during the MODHT project [17, 18, 20, 21]. The results, 

summarised by Quye et al. in [20], confirmed that, also in the case of woollen 

tapestry-like aged and unaged samples, the tensile strength can be affected by 

the colourant, mordant and dyeing conditions (pH and temperature). Among all, 

the outcomes underlined that different mordants may have various and even 
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opposite effects on wool strength: while alum was found to increase the strength 

of the samples, oak gall mordant decreased it. The beneficial effects of alum 

mordant on wool was further studied and stated by Smith et al., who also 

showed the negative impact of other metal ion mordants [19].               

Photodegradation 

UV and longer wavelength radiations may cause the photodegradation of wool. 

Indeed, light does not only promote dye fading but more physical and chemical 

properties can also be affected by the exposure to it [22]. In general, depending 

on the wavelength distribution, the degradation process induced by 

electromagnetic radiation can be categorised as: photoyellowing, 

phototendering, and photobleaching [23-25]. Besides wavelength distribution, 

other factors such as temperature, humidity, pollutants, and chromophores 

within the fibres, influence the reaction path of the degradation process [24, 

25].  

Chromophores are chemical groups responsible for the photodegradation taking 

place in the first place, as they absorb light [24]. The radiation absorbed by 

chromophores promotes the excitation of the same molecules to a higher energy 

level. While returning to the initial ground state, the molecules release the 

excess energy in several ways, which may lead to chemical alteration. Indeed, 

the energy transfer may result in the formation of free radicals, electronically 

excited species or isomerisation, all eventually leading to photodegradation 

processes in keratin proteins such as wool [24, 26]. In the case of wool, various 

compounds have been recognised as responsible for the absorption of light at 

different wavelengths, including some constituting amino acids (e.g. tyrosine, 

tryptophan and cysteine [22, 23]), photodecomposition products and natural 

pigments [22].  

Photoyellowing refers to the change in colour of wool fibres due to exposure to 

UV radiation (280-380 nm) [24]. This light-induced process, whose clear reaction 

path is still debated [27], is mainly associated with the degradation of 

tryptophan that reacts with the presence of atmospheric oxygen, eventually 

forming the yellow product kynurenine and other coloured derivates [28]. 
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Similarly, tyrosine also contributes to the formation of photoproducts and so to 

photoyellowing of wool [29].  

The exposure of wool fibre to the near blue range of sunlight (mainly 400-450 

nm) leads to the photobleaching effect. Yellow chromophores are responsible for 

the absorption of blue light that causes their degradation and conversion to 

uncoloured compounds. This process may affect woollen objects exposed to the 

daylight radiation filtered by glass windows since, while the UV radiation would 

be mitigated by the glass, the transmission of the blue light would be promoted 

[24].  

Phototendering indicates the modifications of wool mechanical properties (i.e. 

elasticity, abrasion resistance, tensile strength) produced by light exposure [24], 

especially by UV wavelengths between 290-320 nm [25]. The chromophores 

behind this degradation process are the disulphide bond in cystine, aromatic 

amino acids, their yellow oxidation products, constituent dyes within undyed 

wool, and added dyes in artificially coloured fibres [19, 24].  

2.1.2 Silk  

2.1.2.1 Chemical and physical structure 

Silk is a proteinaceous fibre produced by the larval form of different insect 

species. However, commercial silk is made from secretions of one specific 

species, the domesticated Bombyx mori, a moth originally native of China that 

eats exclusively mulberry [1, 8] and that has been reared since the Neolithic era 

[1].  

Caterpillars produce silk to make their cocoon: to do so, the silkworms first 

secret a liquid substance from two glands, creating two fibroin filaments that 

are then cemented with sericin. Both fibroin and sericin are proteins, though 

with a very different aminoacidic composition. When used for weaving, silk is 

degummed, a process that aims to clean the fibres from sericin, which would 

make the material stiffer and less prone to dyeing [1, 8]. In addition, silk fibres 

also contain a very low amount (≈ 1% respectively) of organic material (fat and 

wax) and colouring matter and ashes [30].  
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Fibroin, which makes up to 81% of silk [30], is mainly composed of three small 

amino acids: glycine (side group -H), alanine (side group -CH3) and serine (side 

group -OH). Sequences of these three condensed amino acids result in peptides 

characterised by small side chains, which eventually form the crystalline regions 

of fibroin [8]. In these regions, polypeptide chains, linked by hydrogen bonds, 

have a so-called anti-parallel β-pleated sheet secondary structure (3D 

arrangement) [14, 30]. The sheets are then bonded together by electrostatic, 

hydrogen, non-polar links and van der Waals forces, creating protein molecules 

(tertiary structure) [30]. Each unit cell of fibroin is composed of four 

polypeptide chains which are aligned to the fibre axis.  

Although within fibroin there are also amorphous regions made of amino acids 

with bulkier side groups (e.g. arginine, threonine, tyrosine), its high crystallinity 

and tertiary structure strongly define some properties of silk, namely: poor 

elongation, poor reactivity to chemicals, high tensile and tearing strength [8, 

14].       

2.1.2.2 Key mechanical behaviour 

Like wool, silk exhibits a visco-elastic behaviour [30]. However, silk elastic 

recovery (after spinning) is quite low compared to that of wool: after 2% 

elongation, unrecoverable deformation can take place, meaning that the 

material will remain stretched even after stress release. Besides, the non-full 

elastic recovery will occur slowly [8, 11].    

Just as other natural fibres, silk exhibits a sigmoidal relationship between 

moisture content and RH, as well as hysteresis and a different rate between the 

absorption and desorption processes. The sigmoidal trend of moisture regain at 

different levels of RH is depicted in Figure 2.4, where the hysteresis effect 

(divergency between absorption and desorption curve) is also evident. In 

comparison to wool, silk is less hygroscopic and thus it manifests a lower 

moisture regain [9, 13, 31, 32]. For example, silk fibres at ≈ 60% RH (25 °C [31] 

and 35 °C [32]) will have a moisture content of around 9% because of absorption 

from dry condition, while up to around to 10.5% due to desorption from 

saturation [13, 31, 32]. It should be underlined that absorption and desorption 



61 
 
curves may vary also depending on the type of silk, finishing processes (e.g. 

degumming) [31], and ageing conditions [13].     

 

Figure 2.4. Sorption isotherms for degummed silk. The difference in the moisture content 
between the two curves indicates the hysteresis. Plotted data from Hutton and Gartside, 
1949 [31]. 

 

Silk is a mechanically strong fibre and, as already mentioned, it exhibits both 

high tearing and tensile strength [8]. Indeed, tenacity is usually around 3.5-5.0 

gr/den [11]. On the other hand, because of the limited elasticity, elongation at 

break of mulberry silk may vary between 19% to 24% in normal condition [30], 

and up to 33% at 100% RH [11].      

2.1.2.3 Degradation 

The effects of humidity and temperature 

Even if silk is less hygroscopic than wool, moisture content and thus RH still play 

an important role in defining its condition. First of all, it should be underlined 

that, within the fibres, two main types of water can be distinguished depending 

on the interactions with silk molecules: free water (loosely bonded, e.g. by 

hydrogen bonds) and bound or structural water (firmly linked to the several 

polar groups present especially in the amorphous regions) [8, 14, 33]. The ability 

of silk to bond firmly to water affects its flexibility which indeed persists at 40% 
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RH. On the other hand, at lower values of relative humidity, silk desiccates 

making the material more brittle and rigid (this can also be promoted by high 

temperature) [8, 14]. At the same time, high levels of RH are also known to pose 

a threat to silk since this may lead to hydrolysis degradation processes [34].  

During the last few decades, in the cultural heritage field there has been an 

increasing awareness that other environmental factors than light, like humidity 

and heat, may contribute to the high deterioration rate of silk artefacts [13, 35-

37]. In the case of RH, since both high and low levels can be dangerous for silk 

objects, studies have been carried out to try to identify the most appropriate 

range for their preservation.  

As for wool, Howell verified that an issue for silk is not only represented by the 

% of RH, but also by for how long the textile object is subjected to it. By 

combining accelerated ageing and mechanical testing, it was suggested that 

fluctuations between 30 and 60% would only lead to non-remarkable changes in 

silk artefacts. Contrarily, a greater reduction in the tensile strength was caused 

by the exposure of samples at 85% RH for six months [13]. In agreement to this, 

Luxford showed that high RH levels can lead to significant variations in the 

mechanical properties of silk. Because of this, Luxford suggested to display silk 

artefacts between 30 and 50% RH [36]. In partial opposition, Nilsson et al. 

reported that minimal mechanical modifications occurred in silk samples 

artificially aged at various RH levels (at 25 °C and 60 °C) for 28 days [38, 39]. In 

the same articles, the authors indicated that thermo-oxidation ageing for up to 

56 days (125 °C, 0% RH) caused greater damage than humidity in the mock-ups 

(also just after 28 days). Overall, thermo-oxidation ageing promoted a level of 

chemical and physical degradation comparable to that of historic samples tested 

[38, 39].  

In general, it should be underlined that heat and high temperature can lead to 

oxidation processes which are responsible for the formation of active free-

radicals, especially from amino acids residues with hydrogen loosely bonded 

[14]. This thermo-oxidation process (potentially tracked by the tyrosine content) 

may then cause loss in tensile strength [40].                 
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Interestingly, in the case of tapestries displayed in historic houses, where the 

environmental conditions may fluctuate drastically, Luxford et al. [36] reported 

that the RH behind the artworks and in the room might differ. In particular, the 

case studies showed that the RH behind the historic hangings were higher than in 

the rest of the room, perhaps leading to a greater damaging action to the silk 

fibres on the back [36].        

The effects of dyeing and other related finishing treatments 

Like wool, during the dyeing process, silk can experience modifications regarding 

both the mechanical behaviour and the chemical properties. Furthermore, in 

preparation for the dyeing process, silk may undergo other damaging 

treatments, namely degumming and the addition of weighting agents.  

Degumming is the process through which sericin is removed from silk fibres, with 

the aim of improving texture (smother surface) and lustre [14]. To do so, silk can 

be chemically treated in different ways, such as with enzymes, with boiling and 

soaping water, with acidic or alkaline solutions [30]. Degumming can result in a 

loss of mechanical strength as well as water absorption capability [14]. 

Due to the degumming process, silk weight can decrease up to 25%. To 

counterbalance this loss and so to increase the stiffness of the material, silk is 

often treated with weighting agents. Historically different inorganic and organic 

materials have been employed for weighting, such as: gum Arabic, tannins, 

sugar, animal glues, waxes, and metal salts [8, 14]. Sometimes weighting 

treatments overly augmented the original mass of silk, so that the material was 

unlawfully sold at a higher price  [14, 41].    

Tannins in combination with iron salts were commonly used, also in historic 

hangings [20], as weighting agents but also to dye dark shades [34]. As often 

reported by textile conservators, black and brown silk areas in tapestries appear 

to be the weakest and most degraded ones [42]: acidity and metal ions of iron-

tannate dyes may indeed promote damaging acid hydrolysis and oxidation 

reactions. As a result of this, tensile strength may decrease and the fibres may 

become more brittle [43]. However, the effects of weighting on the mechanical 

properties may vary depending on the environmental conditions experienced 
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(e.g. exposure to light), the type and amount of weighting and other finishing 

materials present [41, 44-46].  

The MODHT project investigated the effects of the dyeing process on the 

properties of silk, as done for the wool. The outcomes reported that, in the case 

of tapestry-like models made of silk, those dyed with cochineal, copper turnings 

and oak gall (tannins) had a lower tensile strength and stiffness compared to the 

undyed samples [20, 47]. It was suggested that possibly both the metal and the 

tannins might have contributed to make the material more vulnerable [20]. 

López et al. also carried out some experiments to better understand how the 

mechanical behaviour of cochineal-dyed silk may vary depending on the mordant 

and dyeing conditions used, however no precise conclusions were drawn [48]. In 

addition to the negative impact of the previously cited dyes, the outcomes of 

the MODHT project showed that silk (as well as wool) replicas dyed with woad 

deteriorated at a relative low rate [20]. In general, it should be noted that when 

silk is treated with boiling water (as historically required in some dyeing 

processes), damaging hydrolysis and hence rupture of the main polypeptide 

chain can take place, regardless of the dye [34].  

Photodegradation 

Among natural fibres, silk is said to be the most sensitive to light. As for wool, 

depending on the wavelength of the radiation silk may undergo various 

degradation paths [8]. 

UV radiation is thought to cause the greatest damage to silk, namely: yellowing, 

embrittlement, loss of mechanical strength. The degradation process first starts 

thanks to the reaction between the electromagnetic radiation and aromatic 

residues, which indeed absorb in the UV region (especially between 250-300 

nm). Aromatic residues within silk are due to the presence of amino acids like 

tryptophan and tyrosine [8, 14], which also cause the photoyellowing of wool 

[29]. Studies on artificially aged and historic silk prove that tyrosine is 

particularly affected by photo-oxidation, even just considering the exposure to 

visible light [20, 49, 50]. The decrease in the amount of tyrosine is demonstrated 

to be correlated also to the loss in tensile strength in aged samples [50]. The 

embrittlement and loss of elasticity (phototendering) are consequences of 
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crosslinking reactions in the amorphous regions between activated tyrosine 

residues or lysine [8, 14].     

As discussed in the previous section, the role of light on silk degradation was 

delineated and partly re-evaluated by both Luxford and Nilsson [35, 37]. Their 

two PhD works included accelerated ageing of silk samples exposed to different 

environments, to establish which factors may pose the greatest threat to historic 

artefacts. In both studies, photodegradation turned out to cause less remarkable 

chemical and physical changes than other variables, like temperature. 

Importantly, both UV (Nilsson’s work) and visible light (Luxford’s research) was 

observed to be less of a threat for silk than temperature [35, 37].     

2.2 Evaluating the physical degradation of tapestries and 
the related effectiveness of conservation practices: 
state of the art 

As introduced in Chapter 1, textile conservators still debate on the best 

approach to employ when preserving tapestries. Often, decisions are based on 

subjective ideas, perhaps influenced by the personal background, training and 

tradition. Therefore, the current project aims to provide objective data on the 

efficacy of conservation approaches for tapestries, to test how various methods 

may contribute to preventing mechanical degradation occurring while these 

artworks are on display. In this section, previous studies on methods for 

monitoring the physical changes (strain) in tapestries and historic textiles are 

presented. In particular, a previous project on tapestries conducted at the 

University of Southampton is described in detail, since it greatly contributed to 

shape the current work. Furthermore, studies focusing on the mechanical 

characterisation of woven hangings and on the evaluation of textile conservation 

treatments are also discussed.         

2.2.1 The basis of the current research: the previous project at 
the University of Southampton (2007-2010) 

2.2.1.1 The project: main aims and outcomes 

The current work is based on a previous three-year study (2007-2010) carried out 

at the University of Southampton, led by Frances Lennard, and involving 
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conservators and engineers. The past research aimed to investigate whether 

tapestries are pulled apart by their weight and whether it would be possible to 

quantify the resulting strain by using engineering techniques, possibly able to 

detect non-visible structural damage. From the project, various articles [51-56] 

and conference papers [57-61] have been published, covering challenges and 

outcomes which arose during the work.  

To start, in a pilot study the research group reviewed the available engineering 

methods potentially useful for monitoring displacements across historic 

tapestries, underlining their previous application in the cultural heritage sector 

[51]. Namely, the authors focused on two kinds of point strain measurements: 

resistance strain gauges (RSG) and optical fibre sensors (OFS). Moreover, they 

also considered three types of full-field measurements: photogrammetry (e.g. 

digital image correlation, DIC), photoelasticity, holographic/electronic speckle 

pattern interferometry (ESPI). Point strain measurements require sensors to be 

applied to the object under investigation, perhaps causing some damage or 

modifying the mechanical properties of the local bonded area. Because of that, 

Dulieu-Barton et al. concluded that whole-field measurements, which consisted 

of optical-based contactless systems, would be a better option for monitoring 

artworks. In particular, photogrammetry was reported as a promising method for 

the objectives of the project, as well as photoelasticity, although the latter had 

not been tested in conservation science at the time. On the other hand, the 

more widely employed ESPI was defined as likely not suitable, as it only gives 

qualitative data and it is too sensitive to environmental changes and vibrations 

[51]. 

The unsuitability of ESPI for the project purposes was later studied and 

confirmed [52]. At the same time, the feasibility of OFS, 3D DIC and 

thermography for the condition monitoring of tapestries was further discussed. It 

was then concluded that a hybrid approach, involving both photogrammetry and 

OFS, would be the most ideal [52, 59]. However, both OFS and DIC needed more 

extensive tests to demonstrate their actual reliability.  

The viability of OFS (fibre Bragg grating, FBG) was studied and discussed, 

focusing especially on: the type of fibres (i.e. silica optical and polymer optical); 

how to bond the sensors to the textile; how much the bonding might modify the 
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properties of the fabric [52-54, 58]. Among the application methods researched 

(stitching, weaving through a patch, using a conservation adhesive containing 

PVA) at first the adhesive appeared to be the one giving a better response [52]. 

However, different types of conservation adhesive were used on silica based FBG 

and proved to significantly reinforce the fabric, indicating their unfeasibility for 

quantitative measurements [58].  

Also in the case of DIC, more extensive testing was needed to establish if it 

could be used for monitoring tapestries. One of the main challenges consisted of 

the fact that the image-processing algorithm of the technique requires a 

greyscale random pattern on the surface of the object as device of correlation 

to track the displacement. Because of that, engineers usually artificially apply a 

speckle pattern (e.g. through a spray) on the surface to be monitored. As this is 

not possible for tapestries, DIC could only rely on the woven pattern or on the 

figurative design for correlation. However, tests were needed to verify that the 

weave gives enough contrast. Khennouf et al in [55] validated this by conducting 

3D DIC analysis on four specimens (150 x 50 mm) made of a woollen 

representative fabric. The DIC monitoring was carried out while the samples 

underwent quasi-static tensile testing to then calculate longitudinal strain. On 

the surface of three of the specimens a different random speckle pattern was 

applied, while one was left without any pattern other than the inherent textile 

weave. The stress-strain curves of the four specimens were all shown to match, 

proving that the weave pattern can also be used as a device for correlation in 

DIC analysis, thanks to the inherent irregularities of the hand-woven structure 

[55]. 

In addition, in the initial stages of the study the DIC strain data were validated 

by using OFS, as the latter technique is more established and the results were 

considered more reliable [62]. Tests using both methods were carried out on 

traditional engineering materials (i.e. steel and single ply woven glass 

composite) and the representative textile. The results obtained were considered 

similar enough to demonstrate the DIC measurements can be accurate and 

reliable, and therefore that the contactless technique can be used alone [62].     

Williams et al. in [62] also claimed the efficacy of DIC for identifying weak areas 

not evident to the naked eye and prone to degradation. This was proved by 



68 
 
simulating the effects of self-loading by using a laboratory-prepared loading 

frame on bespoke wool tapestry strips, woven for the project and containing 

structural weaknesses such as slits. Because DIC results showed areas of high 

strain corresponding to the structural discontinuities, the authors confirmed the 

ability of the technique in detecting the presence of damage even before it 

being visible [62].         

Once the technique was better validated and the textile pattern was established 

to be good enough for the analysis, 3D DIC was employed to carry out more long-

term monitoring tests (minimum 48 hours). As summarised in [56], monitoring 

tests were performed on both the representative textile [55, 62] and actual 

tapestries (some newly woven, while others historic) [55, 60, 61], also in situ 

[61]. Among the main outcomes, the experiments revealed a clear linear 

relationship between strain and RH. This demonstrated how greatly tapestries 

may experience fatigue due to RH fluctuations, together with “creep strain” 

perhaps due to self-loading [56]. It should be noted that the authors used the 

term creep to specifically define a permanent deformation, even the expression 

refers to a time-dependent deformation that can also be recoverable [9].  

The research group used the direct proportionality between strain and RH to 

first attempt defining a mathematical model able to predict the strain response 

of a given tapestry to the humidity fluctuations. Indeed, it is important to 

underline that the results of the monitoring showed that each test had a 

different equation stating the linearity between strain and RH. According to the 

research group, perhaps this was due to differences in the storage/display 

conditions, and so to the RH range experienced in the past, as well as to the 

characteristic features of each tapestry [60]. Considering all these variables, the 

empirical model was built on the simple equation: 

ξx,y=kx,y RH  

where ξ is the strain, RH the relative humidity, and k a constant calculated from 

the experimental data. K values differed from test to test according to the 

properties of the monitored tapestry (e.g. mass, materials), although in an 

unclarified way [60, 61].    
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At the end of the project, the research questions were considered answered, at 

least partially. The initial research question wondered whether tapestries are 

pulled apart by their own weight and the results demonstrated that they are 

strained by a complex mix of creep (responsible for permanent deformations) 

and fatigue due to RH fluctuations (reversible deformations) [61]. Besides, the 

project aimed to define whether it would be possible to quantify strain across 

tapestries using an engineering technique, and the outcomes determined that 

DIC can be employed. Furthermore, DIC was found to be able to provide 

quantitative measurements, at least when analysing small areas [61].         

2.2.1.2 Critical evaluation of the research   

Despite the project showing through extensive work that great confidence can 

be put on the 3D DIC strain monitoring of tapestries, some characteristic 

experimental conditions employed by the research group prevented to generally 

state the viability of the method. In addition, some of the testing conditions are 

not fully described in the published works, jeopardising the repeatability of the 

experiments.       

For instance, before moving to actual tapestries, the monitoring techniques 

were tested on a representative fabric, which was reported to have a tapestry-

like weave structure [52]. The fabric was shown to have similar mechanical 

behaviour of that of woven hangings, although this was demonstrated by 

comparing the textile with newly woven tapestry samples, and not with historic 

ones [55]. The fabric was employed in different tests with various objectives, 

including confirming the viability of the weave pattern as a device for 

correlation in DIC analysis [55]. However, in the published works the authors 

failed to specify in detail the fabric used, preventing adequate repeatability of 

the tests: the manufacturer is never reported and it is unclear whether the 

fabric is weft-faced (as implied by the results in [52, 55, 56]) or warp-faced (as 

described in [54]). The latter feature is particularly important for the 

comparison with historic tapestries as they are weft-faced and hung in the weft 

direction, meaning that, when on display, strain affects mainly the threads 

responsible for the figurative pattern.  
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Besides, regarding the long-term monitoring tests conducted on actual 

tapestries, the research group considered only an individual and small area of 

the object (around 10 cm2 [55, 60], although the dimensions are not reported for 

all the experiments). Therefore, the full-field application of the DIC technique 

was never evaluated by the previous study. It is important to underline this as 

the size of the monitored area affects the resolution of the images and so the 

contrast essential for the DIC to operate (see Chapter 4). This means that 

monitoring a tapestry in its entirely may involve more methodological challenges 

than in the case studies reported.  

Regarding the described linear relationship between RH and strain data, the 

authors did not properly report and/or consider some important features of wool 

(and perhaps silk) fibres, of which the monitored objects were made. Indeed, as 

already discussed, natural fibres, thus including wool, exhibit a sigmoidal and 

not linear relationship between moisture regain % and RH. Moreover, moisture 

desorption and adsorption rate may differ, making the increase in weight due to 

water uptake, and so strain variation, even more difficult to predict [9]. 

Therefore, it should have been better specified that a linear relationship 

between RH and strain could only take place between certain ranges of RH 

(perhaps the ones experienced in the tests). Considering this, the mathematical 

model proposed by the research group to predict the behaviour of historic 

hangings at different humidity levels would probably be inaccurate and not 

properly representative [60]. In general, the pieces of information gathered on 

the strain response to RH variations seem unable to build a model, as suggested 

by the same authors [61].                   

2.2.1.3 Future work suggested by the research   

Considering the further work welcomed and suggested by the research team, 

they underlined the need to investigate more in depth the impact of the cycling 

in RH on the materials degradation. Eventually, this would enable to better 

distinguish the effects of creep from those caused by changes in environmental 

conditions [55]. Therefore, enriching the knowledge on the mechanical 

degradation processes affecting tapestries while on display is considered 

fundamental.  
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Another main aspect that needs to be more extensively researched is how to use 

DIC to efficiently monitor strain across the entire surface of full-size tapestries, 

and not only on a small area [56, 61]. Furthermore, when moving to the in situ 

monitoring, other practical challenges should be addressed. For instance: would 

it be possible to only use one camera instead of two, thus conducting a 2D DIC 

analysis instead of a 3D one? 

In addition, one of the main objectives of the past project was to establish 

whether, through the selected engineering technique, it would have been 

possible to identify “invisible” weak areas, before the appearance of actual 

damage. Although eventually DIC was stated to be able to accomplish that, it 

was proved only for structural discontinuities, such as slits, that are actually 

evident [61]. Therefore, it would be interesting to challenge and evaluate more 

extensively the potentiality of DIC, by testing whether also actual invisible weak 

areas can be located.       

Importantly, by validating DIC as a non-invasive tool for strain monitoring across 

textiles, it was assessed that the technique can be useful for comparing the 

effectiveness of different conservation treatments [56]. This entire field of 

research was therefore welcomed by the research group in Southampton, but 

left untried. 

2.2.2 Other works  

2.2.2.1 Researching the mechanical behaviour and degradation of tapestries  

Different publications deal with the characterisation of the mechanical 

behaviour of historic tapestries, some focusing on the effects of the 

heterogeneities in the structure [63, 64] (also from a chemical point of view 

[20]), some studying in particular the impact of RH [13, 15, 65].  

The most extensive work researching many of these aspects is represented by 

Duffus’ PhD thesis, Manufacture, Analysis and Conservation Strategies for 

Historic Tapestries, submitted in 2013 at the University of Manchester [15]. 

Through her work, Duffus carried out a comparison between accelerated and 

natural ageing on the properties (physical and chemical) of tapestries and 

tapestry-like woven samples. Duffus’ research evaluated the damaging impact of 
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the selected factors (light, temperature, RH, strain) both on fibres and small-

scale textile samples. The results indicated the difficulty in simulating through 

artificial ageing the condition of the naturally aged objects: the samples from 

actual tapestries proved to be always in a weaker state than the mock-ups. This 

demonstrated that an intricate mix of factors (including RH and temperature) 

contribute over time to the material degradation. Finite element analysis (FEA) 

was employed to create a macro-model able to estimate stress concentration 

across a hanging tapestry, also when some structural heterogeneities such as 

slits are present. The FEA model presented does not describe extensively the 

mechanical behaviour of tapestries as it is too simple, however it is reported as 

a useful first trial to develop. Considering the initial objectives of the thesis, the 

work wanted also to investigate the effects of different conservation practices, 

especially support methods. To gather information on the common trends spread 

worldwide, a questionnaire was sent to 116 workshops (receiving back 28 

completed forms). Although the questionnaire was useful in illustrating various 

common approaches, their efficacy was not further tested [15].   

The tensile mechanical behaviour of samples from actual historic tapestries was 

investigated by Máximo Rocha et al. in 2018, who combined tensile testing with 

2D DIC strain monitoring [64]. The samples presented some structural 

differences, including thickness, thread counts, presence/lack of slits, type and 

distribution of fibre materials. The physical properties of the historic samples 

proved to be affected by all these factors. In addition, a good correlation was 

observed between the results from DIC and tensile testing, validating the 

monitoring technique, at least in the studied experimental approach [64].      

In a similar way to Máximo Rocha et al. (though without including DIC), already 

in 1997 Bilson et al. carried out tensile testing on samples taken from five actual 

historic tapestries with different features. The results confirmed that structural 

heterogeneities, such as the presence of open slits, may reduce significantly the 

tensile strength (if the slits are stitched, the effects are less dramatic) [63]. 

Besides, indirectly the tensile testing also showed the influence of the dye on 

the mechanical behaviour of the tapestry samples: blue wool specimens were 

found to be remarkably stronger than yellow ones [63]. As better discussed in 
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Chapter 3, the impact of the dyeing process on the physical properties of 

tapestries was later studied more extensively through the MODHT project [20].      

Physical properties and the effects of changes in RH on historic textiles, 

including tapestries, were also researched by Bratasz et al. [65], Howell [13] and 

Ballard [9, 12]. Ballard in 1996 provided a glossary and literature review on the 

topic, underlining the need of increasing the knowledge on the mechanical 

behaviour of textiles among conservators [9, 12]. On the other hand, 

experiments to verify the actual implications of moisture content fluctuations on 

tapestries are reported by Bratasz et al. [65] and Howell [13]. In both works, 

tests were carried out to establish the moisture content and changes in size 

(expansion and shrinkage) caused by climate fluctuations on different fabric 

samples. The two articles demonstrated the non-linear but sigmoidal 

relationship between RH and moisture content in the fibres (and so strain) and 

the influence of the hysteresis effect [13, 65]. In addition, Howell, also after 

monitoring a woollen tapestry for six months, stressed the importance of always 

considering the time needed for the moisture content to reach equilibrium. 

Indeed, potentially dangerous fluctuations in weight may also depend on this, 

rather than just on the humidity conditions [13]. Similarly, also Bratasz et al. 

aimed to investigate how the mechanical properties of textiles can be affected 

by humidity fluctuations. To do this, specimens from various textiles, including 

tapestries, were subjected to cycles of strain by mechanical stretching. This 

sought to simulate the impact of humidity cycles on the fabrics, potentially 

responsible for friction between adjacent threads (fretting fatigue). The 

outcomes established that the (simulated) fretting fatigue does not cause a 

significant mechanical degradation. In the same article, this was also confirmed 

by the contained expansion (0.05%) registered after monitoring strain across an 

historic tapestry for a year by using silica FBG with ceramic coating [65]. It 

should be noted that no details are reported in the article on the sizes of the 

historic hanging [65], so it is not possible to quantify the actual dimensional 

changes.   

2.2.2.2 Testing the efficacy of conservation techniques for tapestries 

A small number of works focused on the evaluation of tapestry conservation 

practices, at least from the perspective of the mechanical properties [63, 66-
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68]. Bilson et al., in their paper dated 1997, focused on the effects of linings 

(meaning support fabrics) on hanging textiles such as tapestries [63]. In the first 

part of the publication, the approach used is theoretical and based on a 

simplified mathematical model of a tapestry. The calculations made from the 

model suggested that tapestries in good condition should experience an amount 

of stress too low to cause any significant damage, as also confirmed by the 

tensile tests on historic samples reported in the second part of the publication. 

This implies that full support treatments may not be needed, while instead 

patches can be used to support only weak areas (e.g. open slits or areas made of 

silk) [63].   

Asai et al. in [66] assessed the efficacy of different conservation stitching 

systems for attaching full support fabrics to tapestries. To do so, the tensile 

strength of unaged tapestry samples with slits and/or conservation treatments 

was evaluated and compared. The outcomes outlined that full interventive 

conservation (linen full support, stabilising lines, and close couching on the slit) 

was the most effective treatment, as it decreased the most the elongation near 

the slit. However, other less interventive approaches also seemed to make the 

samples stronger. As underlined by the authors, the experiments were only 

carried out on newly unaged woven tapestry samples, so they cannot directly 

prove the efficacy of the methods on historic weak objects [66].      

Hofenk de Graaff et al., besides conducting a questionnaire on conservation 

approaches for tapestries [69], carried out some experiments aiming to compare 

the mechanical behaviour of the two most widespread fabrics used for support 

treatments, i.e. linen and cotton [67]. Prior to the mechanical characterisation, 

some of the textile samples were pre-treated (cleaned) as usually done by 

textile conservators. After this, some of both untreated and treated specimens 

were artificially aged at different ranges of temperature and humidity. 

Eventually, the textile samples were uniaxially tensile tested. The results 

underlined that the mechanical response of both cotton and linen were similarly 

affected by the ageing (comparable loss of ultimate tensile strength and 

elongation at break). When considering the effects of pre-treatment, linen 

became weaker than cotton, while, for both, an increase in the elongation at 

break was recorded [67].   
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Catic’s masters dissertation from 2019 focused on the evaluating of brick and 

laid couching when used to treat weak areas in tapestries [68]. To do so, unaged 

wool rep samples, with some artificially made weak areas, were conserved using 

both techniques, at different spacing. To compare the efficacy of the stitching 

in preventing the propagation of mechanical damage, 2D DIC was used to 

monitor strain across the mock-ups, to which an extra load was added at the 

bottom. Some of the outcomes were difficult to interpret as the monitoring set-

up likely affected the accuracy of the analysis. However, in general it was 

observed that laid couching seemed to provide the most support, and that the 

spacing of the stitches influenced the level of strain reduction [68].            

From a broader perspective, in the textile conservation field, tensile testing was 

employed by Nilsson for the evaluation of support methods, although applied to 

silk historic costumes [37, 70]. In addition, some studies focused on testing the 

supporting effects of different stitching techniques, always from a general point 

of view, not limited to tapestries [71-73]. Benson et al. in [71] researched the 

influence of thread types, synthetic and natural, when used for laid couching on 

fabrics (made of different natural fibres) through both tensile testing and fixed-

load experiment. The results showed that the strength of the treated specimens 

depended more on the physical structure than on the chemical composition of 

the threads [71]. Following Benson’s research, Sutherland and Lennard [72] 

investigated the impact of spacing on laid couching, namely when applied on a 

cotton fabric. They employed fixed-load experiments and DIC to quantify the 

relative increase/decrease in strength due to different spacing. DIC was only 

used for few specimens and, although described as promising, no details are 

reported on the measured strains and on the experimental conditions, at least in 

the published work [72]. Similar fixed-load experiments to test the consolidating 

effects (measured as dimensional variations) of brick and laid couching on 

damaged silk specimens were carried out by Schön [73]. In general, the cited 

studies described fixed-load testing as a potential accelerated ageing tool to 

simulate the effects of self-weight loading.             
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2.3 Relating the physical and chemical degradation of 
tapestries: state of the art 

As described in the previous paragraphs, the mechanical behaviour of natural 

fibres is strictly related to their chemical composition. Indeed, physical 

degradation is often linked, or at least promoted, by reactions that occur on a 

molecular level.  

Considering tapestries, as already mentioned, the Monitoring of Damage in 

Historic Tapestries (MODHT) project greatly contributed to understand which 

factors may promote the strength loss of wool and silk in historic hangings. The 

project, which ran between 2002 and 2005, involved conservation scientists and 

curators from seven European institutions. The different research groups focused 

on the viability of various analytical techniques for identifying markers of 

physical and chemical change in wool and silk fibres, so as to track their 

degradation. To do so, the different methods were first tested on bespoke small-

scale models, woven and dyed using methods deriving from traditional ones. The 

response of the models to accelerated light ageing (no other parameters were 

considered) was assessed by the selected techniques, while markers able to 

illustrate the degradation of the proteinaceous fibres were identified. Tensile 

testing was carried out alongside the different chemical analyses to prove that 

the deterioration on a molecular level can be associated to tensile properties. 

After the inspection of the replicas, samples taken from historic tapestries from 

European collections (English, Spanish and Belgian) were similarly inspected and 

so the results compared. It is important to underline that only historic threads, 

and not fragments, were mechanically characterised; this prevented to 

evaluate, alongside chemical degradation, the influence of structural features in 

the weave. From a general perspective, at the end of the project it was 

observed that: I) the data gathered from (the majority of) the different types of 

analysis showed good correlation, stating the reliability of the analytical 

methods tested and of the degradation markers; II) the models, even after light 

ageing, were in better conditions than the historic samples. Furthermore, the 

influence of the dyeing process on the physical and chemical properties of wool 

and silk samples was assessed [20].   
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In the following paragraphs, the successful analytical techniques employed 

during the MODHT project are presented, together with their main results. In 

addition, other methods used in other studies with similar objectives 

(connecting the physical properties of fibres to chemical markers) are also 

illustrated. It should be noted that the techniques described are all invasive, at 

least within the context of the considered studies, meaning that they require a 

sample to be analysed.           

2.3.1 Tracking chemical degradation in historic wool 

X-ray photoelectron spectroscopy (XPS) 

During the MODHT project XPS was employed for the investigation of wool 

surface of model/historic aged/unaged samples. XPS allows to gather 

information on both elements and functional groups present on the surface of 

fibres (quantitative data and distribution). In the context of the MODHT project, 

this method was found to be able to trace wool degradation by considering as a 

marker the relative increase in ratio of oxidised surface sulphur. Indeed, 

oxidation causes the break of disulphide bonds of cystine, leading to the drop of 

the non-oxidised sulphur content and the growth of oxidised forms [17, 21].       

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-
FTIR) 

ATR-FTIR was employed during the MODHT project to identify markers of 

chemical degradation in keratinaceous fibres. Since thread samples were needed 

to be collected to allow the analysis, in this case, the approach used can be 

defined as micro-invasive. Like for the other analytical approaches tested, the 

study, carried out by Odlyha et al., combined the characterisation of weft 

samples from actual hangings as well as unaged/aged, dyed/undyed models. 

Through the research, the peak of cysteic acid (chemical structure in Figure 2.5) 

was found to be a suitable marker to establish the level of chemical degradation 

in wool. Indeed, due to oxidation processes, cystine was shown to be greatly 

converted into cysteic acid, whose characteristic ATR-FTIR peak (at 1040 cm-1) 

increased during the ageing, proving its viability as marker. Among the 

outcomes, the influence of different dyeing processes and materials on wool 

degradation was observed [74]. The outcomes agreed with the data gathered 
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from the analysis with other methods employed during the MODHT project [20]. 

It should be underlined that a similar approach to that proposed by Odlyha et al. 

[74] had been employed before by other researchers aiming to study wool 

degradation, but not for investigating textile artworks [75, 76]. 

 

Figure 2.5. Cysteic acid.  

 

More recently, ATR-FTIR analysis was employed by Kissi et al. for validating non-

invasive near infrared spectroscopy (NIR) as a tool to define the oxidation level 

of wool in historic tapestries. From the outcomes gathered, it was concluded 

that the approach proposed was not fully successful in predicting the level of 

chemical degradation on actual historic hangings when conducting the analysis in 

situ [77].          

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

ToF-SIMS can be used for investigating chemical features of fibre surface, 

offering elemental data alongside a mass spectral analysis. When employed 

during the MODHT project for investigating chemical modifications in wool, the 

outcomes demonstrated that the technique could track some superficial changes 

due to the effects of both natural and artificial ageing. Namely, ToF-SIMS was 

observed to give an indication of the condition of wool fibres based on the 

detected amount of surface lipid (in wool, mainly represented by 18-MEA), since 

degradation processes can cause a drop in the lipid content on the surface. 

Through the study of mock-ups and historic tapestries, it was observed that the 

18-MEA content can decrease because of light exposure as well as because of 

damaging initial treatments of the fibres (i.e. dyeing processes involving 

extreme pH) [17, 18].          



79 
 
Amino acid analysis 

Within the context of the MODHT project, Vanden Berghe studied the efficacy of 

calibrated amino acid analysis as a tool for detecting degradation of wool (and 

silk) fibres at molecular level due to oxidation reactions [49, 50]. To do so, high 

performance liquid chromatography with fluorescence detection was employed 

on historic/model samples. The micro-invasive technique was selected as it 

enables the identification of composition of proteins on a sub-microgram level. 

The method demonstrated that it was useful for tracking changes in wool and so 

to define degradation markers [50]. In the case of wool, the oxidation of keratin 

showed to impact especially the amount of tyrosine and cysteine (decrease). 

Besides these two amino acids, the so-called “Keratin Oxidation Factor” (KOF) 

was found to be a useful indicator of the oxidation level of wool. KOF is 

calculated as the ratio between the molar fractions of amino acids that, during 

ageing, tend to lower (i.e. lysine, histidine, tyrosine, methionine) over the ones 

that generally augment (i.e. aspartic, glutamic and cysteic acids). Interestingly, 

the discovered markers highlighted that iron and copper salts used as mordants 

may promote degradation. The outcomes from the amino acid analysis agreed 

with the data gathered from the tensile testing, proving the correlation between 

chemical and mechanical degradation [50].  

2.3.2 Tracking chemical degradation in historic silk    

ATR-FTIR 

Different studies employed ATR-FTIR (and more broadly FTIR) for investigating 

chemical degradation in historic silk artworks [38, 39, 78-81]. In general, past 

works pinpoint that the band between 1700-1775 cm-1 should be monitored when 

evaluating the level of degradation in silk. This band corresponds to the 

vibration of C=O group and it increases with degradation (oxidation). In addition, 

peaks related to tyrosine (at 828 and 850 cm-1) were found to give some insights 

on the degradation process, as they are expected to decrease with natural 

ageing [38, 39].    
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Amino acid analysis  

As done for wool, Vanden Berghe studied the changes in the aminoacidic 

composition of silk tapestry models and historic samples to detect potential 

markers indicating the damaging oxidative breakdown process. In the case of silk 

fibres, tyrosine was found to be the only amino acid useful as an early indicator 

of chemical degradation. Indeed, the content of tyrosine was found to decrease 

during the ageing treatments and it was shown to be correlated, on a 

macroscopic level, to the loss in tensile strength of aged samples [50]. Vilaplana 

et al. similarly carried out amino acid analysis on unaged/aged models of silk 

and historic silk pieces, though not tapestries [38]. They also reported that 

tyrosine content dropped during the accelerated UV light ageing, as well as after 

the thermo-oxidative treatment. On the other hand, ageing at 100% RH and at 

extreme alkaline/acidic environments did not cause a detectable change in the 

tyrosine amount [38].      

Size exclusion chromatography (SEC) 

SEC can be used to measure the molecular weight distribution of silk fibres. This 

can give an indication of the level of degradation of the material since the 

deterioration of silk leads to the breakage of the polymer chain. The breakage 

determines the formation of shorter polymers with a lower, and thus 

recognisable, molar mass. During the MODHT project, SEC analysis confirmed 

what was also observed with the other techniques: overall, the accelerated light 

ageing did not promote a degradation as extended as that of silk samples taken 

from historic hangings [20, 82]. Similar results were also obtained by Nilsson’s 

research on historic silk [38, 39]. As underlined by Hallett and Howell in [82], 

SEC analysis can only be employed for monitoring chemical degradation in silk 

(as also reported by Thickett et al. [83]), not in wool. Indeed, the technique 

requires the samples to be dissolved and, while this can be accomplished by 

using a mild solvent with silk (thanks to the weak hydrogen structural bonds), in 

the case of wool a stronger solvent would be needed to break the stronger 

structural covalent links. This may cause the breakage of the polymer chain, and 

so compromise the outcomes of the analysis [82].          
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2.4 Conclusions: objectives and analytical approach of 
the current study 

The literature review presented in Chapter 1 and Chapter 2 were helpful for 

defining which areas, within the study of historic tapestries, still need to be 

further investigated for ensuring a proper preservation of the textile artworks.  

Namely, the following broad research questions were identified as central and 

were selected for the project: 

1) Which factors affect the structural stability of tapestries and how 

successfully can they be investigated by using analytical tools? 

2) What are the mechanical degradation processes affecting tapestries while 

hung for their display?  

3) How effectively can the structural stability of tapestries be improved 

using different display methods and conservation strategies? 

More specifically, the current work aimed to fill the following knowledge gaps 

encountered in the literature review: 

1) To what extend the level of chemical degradation occurring within fibres 

affect the physical properties of tapestries? Does the weave structure play 

a role? Can the relationship between chemical and physical properties be 

studied directly on fragments from actual historic hangings, following up 

the work started through the MODHT project? Can the analysis of warp 

threads, unexposed to light, provide new insights on the degradation 

processes?    

2) In Southampton, 3D DIC was shown to be a suitable tool for tracking strain 

across relatively small areas, but can it be employed to monitor larger 

areas, and different kinds, of historic textiles? If so, what type of 

information should be expected, would it be actually possible to track 

“invisible” weaknesses? Which factors affect the accuracy of the analysis? 

Can DIC be used for evaluating conservation strategies? 
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3) Can sloping boards effectively prevent the elongation of tapestries? Which 

factors may contribute to the efficacy of the system? When considering 

conservation treatments, how the use support and stitching techniques 

may differently affect strain distribution in a textile object while hanging?  

Through a review of past studies on the degradation of tapestries, Chapter 2 

allowed to delineate the multi-analytical approach for answering the research 

questions. Based on the previous works, the experimental part of the thesis was 

designed as it follows: 

1) For evaluating different factors affecting the structural stability of 

tapestries, mechanical and chemical testing was carried out on different 

historic tapestry fragments. For verifying the mechanical behaviour of 

specimens, uniaxial tensile testing was employed. In addition, samples 

were chemically characterised through ATR-FTIR and UHPLC-PDA. Namely, 

following the approach proposed during the MODHT project, ATR-FTIR was 

used for tracking chemical degradation in wool, while dye sources in the 

same historic threads were identified through UHPLC-PDA analysis. Wool 

samples were studied more in detail than silk ones, as tapestries, and in 

particular those investigated, are mainly made of wool. It should be 

highlighted that here ATR-FTIR was selected among a broader range of 

methods, as just discussed in Section 2.3. ATR-FTIR was chosen as it was 

demonstrated to be highly informative, well-established, straightforward 

(no need of pre-treatments), non-destructive, as well as the most 

accessible method, at least within the context of the current project. 

Although UHPLC-PDA analysis is ineffective in tracking markers of 

chemical degradation, it was included as it represents the most 

widespread technique for the characterisation of dyestuffs in textiles. 

Identifying dyes was defined as relevant since they may play a role in the 

degradation processes of fibres. The multi-analytical characterisation of 

samples from historic tapestries is described in Chapter 3.       

2) For studying mechanical damage mechanisms occurring in tapestries while 

on display, DIC was used. The technique was further trialled, 

implementing the work started at the University of Southampton. 

Importantly, instead of employing 3D DIC, the 2D application of the 
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optical technique was tested, as it represents an easier and less expensive 

option, especially for in situ monitoring. The study on 2D DIC feasibility 

for tracking strain across textile objects is presented in Chapter 4.  

3) When validating display and conservation approaches, these were tested 

first on (woollen) mock-ups, so to ensure reproducibility and to simplify 

the behaviour of historic hangings, which may differ from object to 

object. To speed up the propagation of mechanical damage, fixed-load 

experiments were carried out on the bespoke samples, while strain was 

tracked through DIC. In combination to the contactless technique, 

uniaxial tensile testing was used for further investigating the impact of 

stitching and support techniques. The experiments on the efficacy of 

sloping boards, an untraditional but increasingly popular display method, 

are discussed in Chapter 5. Among the current conservation approaches 

for improving structural stability in woven hangings, the most widespread 

in Europe, i.e. patch/full support and laid/brick couching, were evaluated 

as reported in Chapter 6.        
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3 Characterisation of physical and chemical 
properties of historic tapestries 

Chapter 3 aimed to define the physical and chemical properties of historic 

tapestries and to highlight factors that may affect them. To gather information 

on the mechanical behaviour, specimens taken from seven historic hangings 

were uniaxially tensile tested. In addition to the data gathered on Young’s 

modulus and tensile strength, ATR-FTIR and UHPLC-PDA analysis were carried 

out on threads taken from the same historic samples. ATR-FTIR was used as a 

tool to define chemical deterioration of wool due to cystine oxidation, following 

the method applied to tapestries first proposed by Odlyha et al. [1]. On the 

other hand, UHPLC-PDA was employed to identify the natural dye sources within 

the woollen samples, to observe whether the dyeing process may have 

contributed to the degradation. This multi-analytical approach intended to 

follow up findings from the MODHT project [2], as discussed in Chapter 2. 

Importantly, the characterisation of tapestries reported in this chapter 

considered the influence of more variables than those evaluated in the past 

works from the MODHT project and others. For instance, the impact of structural 

differences in the weave structure on the mechanical response was also 

evaluated.       

In addition to the specimens from actual tapestries, a wool rep fabric with 

similar weave structure was uniaxially tensile tested. Evaluating the physical 

properties of the newly woven fabric was needed as the textile was employed in 

the following chapters for assessing the efficacy of conservation and display 

methods.  
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While the choice of the techniques was justified in Section 2.4, the experimental 

design of Chapter 3 is described in Table 3.1.    

Table 3.1 Experimental design of Chapter 3.  

Hypothesis  Case studies Techniques Methodological limits 

The weave structure 

affects the tensile 

properties of historic 

tapestries  

37 samples (warp and 

weft direction) from 7 

historic tapestries with 

different weave patterns  

Uniaxial tensile 

testing 

Due to the contained 

number of samples, 

the applicability of 

the outcomes can be 

limited; 

the small areas of 

fragments available 

determines a 

reduction in size and 

number of specimens 

tested (in comparison 

to what indicated by 

British Standard) 

The newly hand-

woven wool rep 

fabric has a 

mechanical 

behaviour similar to 

that of historic 

tapestries and, 

therefore, it can be 

employed as a 

representative 

material for testing 

conservation 

strategies  

Samples from the wool 

rep fabric (5 per 

direction, weft and warp) 

Uniaxial tensile 

testing 

Besides the potential 

similar physical 

properties, the wool 

rep fabric will still 

show differences 

when compared to 

historic tapestries 

(e.g. lack of ageing 

and lower areal 

density)     

The amount of CA 

can indicate the 

level of chemical 

degradation of wool 

threads from historic 

tapestries and it can 

help identifying 

factors responsible 

for such degradation 

30 wool thread samples 

(warp and weft 

directions) from 7 

historic tapestries   

ATR-FTIR Due to the contained 

number of samples, 

the applicability of 

the outcomes can be 

limited  

 

The dye source 

affects the tensile 

properties of wool 

threads in historic 

tapestries 

12 differently coloured 

wool thread samples 

(weft direction) from 7 

historic tapestries.  

UHPLC-PDA Due to the contained 

number of samples, 

the applicability of 

the outcomes can be 

limited  
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3.1 Materials and methods 

3.1.1 Historic tapestry fragments 

Samples from seven different tapestry fragments, belonging to the Karen Finch 

Reference Collection (study collection based at the CTCTAH, no information on 

provenance, date or history of the objects), were tested to define chemical and 

physical properties. The historic fragments are reported in Table 3.2, alongside 

some structural features, namely: thread count, fibre composition, thickness 

and areal density. At first, the fibre composition was assessed through a visual 

examination, also involving light microscopy, and then verified through ATR-FTIR 

analysis.  

Depending on the type of analysis, the samples taken from the seven historic 

pieces were selected according to specific characteristics, such as colour (HPLC-

PDA and ATR-FTIR analysis) and presence/absence of heterogeneities in the 

weave structure (tensile testing). This allowed the consideration of the influence 

of more variables in the properties of the specimens, expanding the research 

carried out within the context of the MODHT project and by other more recent 

studies (revised in Section 2.2 and 2.3). Important differences from the approach 

employed in the previous studies are: I) actual historic fragments were tensile 

tested, instead of bespoke mock-ups and artificially aged yarns/fibres [2, 3]; II) 

the impact of the meso-structural elements in the weave, e.g. thread count, 

were evaluated alongside the chemical features [2, 4-6].      

Table 3.2. Historic tapestries tested. 

Code Thread count 
per 10 mm  

(warp x 
weft)1 

Fibre 
materials 

(warp; 
weft) 

Average 
thickness 

[mm] 

Areal 
density 
[Kg/m2] 

Image 

T1 7 x 18 Wool;  
wool, silk 

0.99 0.73  

 
 

 
1 A thread counter was used and the measurement was repeated in three different sites. The data 

from the inspection of three sites in each fragment were eventually averaged.  
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T2 7 x 32 Wool;  
wool, silk 

1.16 0.81  

 
 
 

T3 4 x 14 Wool;  
wool 

1.24 0.88  

 
 

T4 5 x 14 Wool;  
wool, silk 

1.12 0.90  

 
 

T5 5 x 12 Wool;  
wool 

1.12 0.58  

 
 

T6 7 x 26 Wool;  
wool, silk 

1.21 0.77  

 
 

T7 7 x 20 Wool;  
wool, silk 

1.14 0.80  

 
 

 

3.1.2 Newly woven wool rep fabric 

In addition to samples cut from historic hangings, specimens from a hand-woven 

wool rep (or ribbed weave) fabric were uniaxially tensile tested. As described in 



93 
 
the following chapters, the fabric was later employed to create replicas for 

studying the efficacy of conservation and display approaches. The tensile tests 

presented here aimed to ensure a certain proximity in the mechanical response 

between the newly woven textile and tapestries.   

The contemporary rep fabric was supplied by Context Weavers and it was 

selected as it is the most similar, and commercially available, textile to 

tapestries. It should be noted that requesting to produce a new tapestry fabric 

was not considered as a valuable option, as the process would have been too 

expensive and slow, and likely unable to create a textile with identical features 

to those from naturally aged tapestries. Important common features between 

the wool rep and historic hangings are the meso-structure, described as a plain-

weave (depicted in Figure 3.1), and the use of wool as a constituent material. 

The wool rep has a thread count of 8 wefts X 23 warps per 10 mm, and an areal 

density of 0.41 kg/m2. Besides the lower areal density, as illustrated in Figure 

3.2, the newly woven wool rep differs from historic hangings as it is warp-faced 

instead of being weft-faced. This means that the contemporary material is made 

of tightly twisted warp threads and bulky weft yarns, whereas tapestry weave 

has opposite features, tightly twisted weft threads and bulky warp yarns.  

 

Figure 3.1. Weave structure of the wool rep fabric (59x magnification). 
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a)  

b)  

Figure 3.2. Detail of the weave structure of the historic tapestry fragment T6 (a) and the wool 
rep fabric (b). In both figures, the red arrows indicate weft direction, while the blue arrows 
warp direction. Historic tapestries are hung in the weft direction.   

 

The use of the newly woven fabric for testing conservation and display methods 

ensured different advantages, including the possibility of applying a speckle 

pattern and assuring the repeatability of the experiments. As discussed in 

Chapter 4, applying a speckle pattern on the specimens was beneficial during 

the DIC processing stage. 

Furthermore, the wool rep textile was selected in accordance with previous 

tests carried out by the research group at the University of Southampton. During 

the past project, a wool rep fabric was employed for tensile testing and 

preliminary DIC trials. The fabric used for this thesis is thought to be the same 

employed in Southampton, however, since no details on the supplier are 

reported in the past published works [7-10], this cannot be surely stated.       



95 
 

3.1.3 Uniaxial tensile testing 

Uniaxial tensile testing was performed on historic tapestry samples using an 

Instron 5544 mechanical tester, according to the British standard [11]. The 

tester was attached to a hydraulic pump to ensure proper closure of the clamps 

and it was fitted with a 1kN loadcell. To avoid the slippage of the textile 

specimens, rubber coated jaw faces were employed. Testing was done in a 

controlled environment of 20.0±2°C and 50.0±5% RH, where all the samples were 

conditioned for at least 24 hours prior to the analysis. Tests were carried out at 

an extension rate of 10 mm/min. As previously indicated, the thickness of the 

specimens was measured with a digital micrometre (three measurements per 

sample). 

In total, 37 samples were tested, as reported in Table 3.3. As illustrated in Table 

3.3, the samples were from seven historic fragments (already described in Table 

3.2) and they presented features, such as the weave pattern, that could impact 

the mechanical response. As mentioned in Section 3.1.1, studying the effects of 

structural features on the physical behaviour represents an important difference 

from previous studies. Indeed, in the case of the MODHT project, only the 

effects of dyeing processes and artificial ageing were evaluated on mock-ups [2]. 

Indeed, it should be underlined that few studies up to now have carried out 

tensile testing on actual tapestry fragments [4, 5, 12].   

The uniaxial tensile properties of samples were verified in both the weft and 

warp direction and, from each fragment, at least two specimens per direction 

were investigated. The specimens were around 40 x 10 mm, thus five times 

smaller than standard recommendations (200 x 50 mm) [11]. Reducing 

dimensions and number of specimens was needed considering the limited size of 

the historic pieces. It should be underlined that the chosen samples were almost 

exclusively made of wool; a very limited amount of silk threads was present in a 

few of the pieces. This strategy allowed to direct the investigation towards the 

degradation of wool, so as to better link the results to those from the other 

analytical techniques. It is important to underlined that the tensile testing 

allowed to gather data expressed as load and extension. Since load and 

extension depend on the size of the specimen, they were converted into stress 

and strain, not affected by sizes and so more easily comparable. Stress was 
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calculated as load divided by cross-sectional area of the sample. Strain was 

measured as the ratio of deformed length to original length.  

Table 3.3. Specimens from the historic fragments characterised through uniaxial tensile 
testing. 

Tapestry 
Code 

Direction Sample 
Code 

Weave pattern 

T1 Warp T1_Wa1 Homogeneous 

T1_Wa2 Homogeneous 

T1_Wa3 Heterogeneous, circular pattern  

T1_Wa4 Heterogeneous, circular pattern  

Weft T1_We1 Homogeneous 

T1_We2 Homogeneous 

T1_We3 Heterogeneous, triangular pattern 

T1_We4 Heterogeneous, triangular pattern 

T2 Warp T2_Wa1 Heterogeneous, stripes in weft direction 

T2_Wa2 Heterogeneous, stripes in weft direction 

Weft T2_We1 Heterogeneous, stripes in weft direction 

T2_We2 Homogeneous 

T2_We3 Heterogeneous, stripes in weft direction 

T2_We4 Heterogeneous, stripes in weft direction 

T3 Warp T3_Wa1 Heterogeneous, stripes in weft direction 

T3_Wa2 Heterogeneous, stripes in weft direction 

T3_Wa3 Heterogeneous, stripes in weft direction 

Weft T3_We1 Homogeneous 

T3_We2 Homogeneous 

T4 Warp T4_Wa1 Homogeneous 

T4_Wa2 Homogeneous 

Weft T4_We1 Homogeneous 

T4_We2 Homogeneous 

T4_We3 Homogeneous 

T4_We4 Homogeneous 

T5 Warp T5_Wa1 Homogeneous 

T5_Wa2 Homogeneous 

Weft T5_We1 Homogeneous 

T5_We2 Heterogeneous, diagonal slit   

T6 Warp T6_Wa1 Homogeneous 

T6_Wa2 Heterogeneous, hatching weft direction 

Weft T6_We1 Heterogeneous, hatching weft direction 

T6_We2 Heterogeneous, hatching weft direction 

T7 Warp T7_Wa1 Heterogeneous, stripes in weft direction 

T7_Wa2 Heterogeneous, stripes in weft direction 

Weft T7_We1 Heterogeneous, diagonal slit 

T7_We2 Heterogeneous, diagonal slit 
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As mentioned in the previous paragraph, specimens from the wool rep fabric 

were also uniaxially tensile tested. The newly woven samples were characterised 

using the same equipment and conditions selected for the analysis of the historic 

fragments just described. Thanks to the larger availability of wool rep fabric, 

the measurements were repeated five times per direction (weft and warp), and 

using samples of the actual size indicated by the standard, 200 x 50 mm.  

3.1.4 ATR-FTIR 

Warp and weft samples, around 5 mm long, were collected from the tapestry 

fragments before the mechanical characterisation for enabling the analysis with 

ATR-FTIR. Samples and codes are reported in Table 3.4. It is important to 

underline that, differently from the MODHT project, warp samples were 

included in this study. After the non-destructive analysis, some of the coloured 

weft samples were further investigated using UHPLC-PDA, as also indicated in 

Table 3.4.  

The analysis was carried out using a Perkin Elmer Spectrum One FTIR 

Spectrometer with a Universal Sampling Attenuated Total Reflectance accessory, 

a diamond/thallium bromoiodide (C/KRS-5) ATR crystal with a penetration depth 

of up to 2 µm, and Spectrum software version 5.0.1. The spectra were collected 

over the region of 4000–400 cm−1, at a resolution of 4 cm−1, and averaging 32 

scans. The samples were held on the ATR using a clamping force of 

approximately 50 N. The spectra were analysed using Bio-Rad Laboratories 

KnowItAll® software, Windows version 10.0.15063. Each spectrum was viewed as 

absorbance mode. For each sample the analysis was repeated three times, and 

the resulting spectra were averaged using the software. The averaged spectra 

were baseline corrected and normalised at the peak high of Amide III at 1232 cm-

1 and then processed to obtain the second derivate spectra. From the second 

derivate spectra, areas of peak at 1232 cm-1 and 1040 cm-1 were calculated. The 

spectral processing procedure just described was based on the method used in 

other works, also for studying tapestries [1, 6, 13].  
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Table 3.4. Samples from the historic fragments analysed through ATR-FTIR. As indicated, 
some of the samples were also analysed through UHPLC-PDA.  

Tapestry code Direction Sample Code Sample Colour UHPLC-PDA 

T1 Warp T1_Wa White,  

likely undyed 

 

Weft T1_We.DBrown Dark brown X 

T1_We.Yellow Yellow X 

T1_We.LBrown Light brown  

T1_We.Red Red   

T1_We.YellowS Yellow  

T1_WeWhiteS White  

T2 Warp T2_Wa White,  

likely undyed  

 

Weft T2_We.DBrown Dark brown X 

T2_We.Red Red X 

T2_We.LBrown Light brown  

T2_We.Pink Pink  

T2_WeWhiteS White  

T3 Warp T3_Wa White,  

likely undyed 

 

Weft T3_We.Brown Brown X 

T3_WeBlack Black X 

T4 Warp T4_Warp White,  

likely undyed 

 

Weft T4_We.Beige Beige X 

T4_We.BeigeS Beige  

T5 Warp T5_Wa White,  

likely undyed  

 

Weft T5_We.Beige Beige X 

T5_We.Blue Blue X 

T5_We.Green Green  

T6 Warp T6_Wa White,  

likely undyed 

 

Weft T6_We.Beige Beige X 

T6_We.BeigeS Beige  

T7 Warp T7_Wa White,  

likely undyed 

 

Weft T7_We.Purple Purple X 

T7_We.Beige Beige X 

T7_We.BeigeSM Beige  

 

3.1.5 UHPLC-PDA 

A Waters® ACQUITY UPLC H-Class system was employed for identifying marker 

compounds related to dye sources in historic samples (Table 3.4). The UHPLC 

equipment, belonging to the CTCTAH, was controlled by ACQUITY UPLC Console 
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and it included: a sample manager, a temperature-controlled column, a 

quaternary-solvent manager, a PDA detector. Through the auto-sampler system, 

for each analysis a fixed volume of 4 μl was taken from the extract and injected 

into a pre-column, eventually leading to the column. The pre-column, a C18 BEH 

shield Van Guard (5 mm × 2.1 mm I.D., particle size 1.7 µm), aimed to avoid 

particulates contaminating the column, a shielded Waters C18 Ethylene Bridged 

Hybrid (BEH) (150 mm × 2.1 mm I.D., particle size 1.7 µm). 

The mobile phase eluents were: 10% methanol (v/v) in ultrapure water as 

solvent A; pure methanol as solvent B; 1% formic acid (v/v) in ultrapure water as 

solvent C. The following programme was used for the elution: 0-1.33 min 80% A, 

10% B, 10% C; 1.33-2.33 min linear gradient to 74% A, 16% B, 10% C; 2.33-5.33 

min linear gradient to 55% A, 35% B, 10% C; 5.33-9 min held at 55% A, 35% B, 10% 

C; 9-14 min linear gradient to 30% A, 60% B, 10% C; 14-25 min linear gradient to 

5% A, 85% B, 10% C; 25-26 min linear gradient to 100% B; 26-30 min held at 100% 

B; 30-32 min linear gradient to 80% A, 10% B, 10% C; 32-40 min held at 80% A, 

10% B, 10% C. During the 40-min elution gradient, the flow was set at 0.2 ml/min 

and the column temperature at 40 °C. The same gradient has been previously 

used at the CTCTAH for characterising dye sources in historic textiles [14, 15].   

Data collection and examination were carried out through Empower 3 software 

system from Waters®. Spectral data were collected in the range 200 to 800 nm 

and with a resolution of 1.2 nm. At first, the data were processed at 254 nm, a 

useful wavelength to reveal the presence of dye-related compounds. Then, 

depending on the colour of sample/extract and/or possible dye sources, 

chromatograms were acquired at other wavelengths, to ensure that the 

characteristic markers were detected. 

The marker compounds were identified thanks to specific UV-Vis absorbance 

spectra and retention time (RT). To allow a proper characterisation, spectra and 

RT of main components detected in the extracts were compared with those from 

reference materials (analysed in the same conditions), within UHPLC-PDA 

software libraries. These libraries have been enriched and employed during 

other projects at the CTCTAH [14-16].       
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3.1.5.1 Extraction method 

The standard extraction method for historic textile samples developed and used 

at the CTCTAH [15, 17] was employed in the current work (samples are reported 

in Table 3.4). The method consists of the following steps. First, the sample 

(consisting of threads with maximum length of 5 mm) was treated with 50 μl of 

DMSO at 80°C for 10 min. Then, the extract was transferred and stored into a 

new vial, while 75 μl of oxalic acid solution were added to the sample. The vial 

containing the sample was heated for 15 min at 80 °C; after, the new extract 

was evaporated to dryness using a Rotavapor (6-8 bar for around 30 min). At this 

point, the DMSO extract was placed back in the vial with the sample to 

reconstruct the dried residue. Using a micropipette, the combined extract was 

transferred on the tip of a filter placed on a syringe and eventually injected into 

a teardrop vial insert.       

3.2 Results and discussion 

3.2.1 Uniaxial tensile testing 

3.2.1.1 Samples from historic tapestry fragments 

Uniaxial tensile testing was carried out on the historic tapestry samples to 

determine the general mechanical behaviour and related properties, namely 

Young’s modulus and tensile strength. Tensile testing tapestry fragments is often 

not possible, as it is difficult to find samples of a useful size to carry out valid 

destructive analysis. Because of this, only few studies in the past were able to 

test specimens from actual artworks [4, 5, 12]. In this research the advantage 

was to access the study reference collection at the CTCTAH, so as to enrich 

knowledge on the mechanical properties of historic hangings.   

From a general perspective, the shape of the stress-strain curves of historic 

samples presented some common features, with some differences between warp 

and weft directions. The results gathered agreed with what was reported by 

previous studies on tapestries (historic and newly woven) [2-5, 18], and, more 

broadly, with the mechanical behaviour of wool illustrated in Chapter 2. Figure 

3.3 depicts the typical shape of stress-strain curves obtained. Namely, in Figure 

3.3 the graphs of samples T1_Wa1 (warp direction) and T1_We1 (weft direction) 
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are shown. Both samples were taken from the same historic piece, T1, they were 

made of wool and had a homogeneous weave pattern.  

As illustrated in Figure 3.3, initially stress-strain curves presented a plateau, 

also indicated as a slack region [19]. The plateau was due to samples adjusting 

before actual tension took place and to the de-crimping of threads. This region 

was greater in tapestry samples tested in the weft direction, probably because 

weft threads were crimped during the weaving and they were tightly twisted. 

Once de-crimping ended, specimens showed an elastic behaviour. Generally 

speaking, in the elastic, or Hookean, region, stress and strain are directly 

proportional and reversable deformations occur. The slope of the linear 

regression calculated in the elastic region indicates the Young’s modulus [4, 5]. 

Young’s modulus relates to the stiffness of the material: the greater the slope, 

the greater the stiffness. Nevertheless, it is noted that the term stiffness differs 

from stiffness modulus. Indeed, the former property depends on the sizes of the 

tested specimen, while the latter (modulus) is unaffected by them [20].     

As discussed later in detail, different factors could affect the modulus in the 

studied textiles. However, it can be stated that typically tapestry weft samples 

were more flexible than warp ones. After the elastic region, irreversible 

deformations started: from this moment on, specimens could no longer return to 

the original length. As described in Chapter 2, the so-called yield point indicated 

the end of the elastic behaviour and the beginning of the (mainly) inelastic one 

[21]. Eventually, stress began to decrease because of the progressive failure of 

threads. As also shown by Figure 3.3, the breaking point of each of the seven 

warp threads of sample T1_Wa1 (blue line) was evident: every drop in stress 

values corresponds to the failure of a thread.         
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Figure 3.3. Stress-strain curves of sample T1_Wa1 (warp direction) and T1_We1 (weft 
direction). The dotted lines highlight the elastic region, while the brackets the de-crimping 
one.   

 

Figure 3.4 depicts stress-strain curves of three samples, all tested in the weft 

direction, from various tapestries, T1, T2 and T6. The shape of these curves 

presented a characteristic post-yield region, where stress remained 

approximately constant and showed some recovery. This trend is not unexpected 

for wool, as this fibrous material usually retains a certain elasticity also after 

the yield point (Section 2.1.1.2) [21]. 
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Figure 3.4. Stress-strain curves of sample T1_We4, T2_We3, T6_We1 (weft direction). 

 

The data from the uniaxial tensile testing of historic samples are summarised in 

Table 3.5. In opposition to the similarities noted in the stress-strain curves, 

when looking at the detailed data on tensile properties, they demonstrated 

remarkable dissimilarities. Significant differences from sample to sample could 

be found in both the modulus and stress at failure, but also in nominal strain at 

the breaking point. These data prove how difficult it can be to define generic 

but representative features for this kind of artworks. This is an important caveat 

especially when such mechanical properties are needed to build an accurate 

model, as attempted by other studies [5].  

From the data in Table 3.5, it can be observed that the least “stiff” and weakest 

tapestry was T5, since it showed the lowest Young’s modulus, as well as 

breaking stress in both warp and weft direction. In contrast, for the opposite 

reasons, sample T2 showed the greatest tensile strength. The extreme fineness 

of the weave of T2 (7 warp x 32 wefts per cm) may have been one of the factors 

that contributed to its relatively high strength, especially in comparison to 

tapestries with a significantly lower thread count, i.e. T5 (5 warps x 12 wefts 

per cm).    
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Table 3.5. Uniaxial tensile properties of the samples from historic tapestries. 

Tapestry 
Code 

Direction Sample 
Code 

Strain at 
the End of 
the Crimp 

Young's 
Modulus 
[MPa]  

Stress at 
Failure 
[MPa] 

Strain at 
Failure 

T1 Warp T1_Wa1 0.04 145.83 9.92 0.11 

T1_Wa2 0.02 169.33 12.62 0.09 

T1_Wa3 0.05 104.39 8.50 0.11 

T1_Wa4 0.04 164.62 13.16 0.09 

Weft T1_We1 0.10 93.47 7.85 0.17 

T1_We2 0.10 97.47 7.77 0.16 

T1_We3 0.12 40.71 5.53 0.25 

T1_We4 0.12 28.57 2.31 0.18 

T2 Warp T2_Wa1 0.02 246.03 20.12 0.09 

T2_Wa2 0.03 247.26 17.65 0.09 

Weft T2_We1 0.09 121.13 13.03 0.20 

T2_We2 0.12 75.49 17.56 0.34 

T2_We3 0.09 139.85 12.50 0.19 

T2_We4 0.09 98.84 18.44 0.30 

T3 Warp T3_Wa1 0.04 78.00 3.84 0.06 

T3_Wa2 0.07 111.68 8.05 0.13 

T3_Wa3 0.04 101.72 3.71 0.07 

Weft T3_We1 0.10 4.43 0.99 0.33 

T3_We2 0.18 6.65 0.62 0.18 

T4 Warp T4_Wa1 0.04 61.80 3.29 0.08 

T4_Wa2 0.04 67.05 3.03 0.07 

Weft T4_We1 0.16 17.69 1.83 0.23 

T4_We2 0.12 5.08 0.53 0.19 

T4_We3 0.13 24.57 3.71 0.24 

T4_We4 0.12 13.82 1.32 0.19 

T5 Warp T5_Wa1 0.04 28.90 1.22 0.12 

T5_Wa2 0.09 13.08 0.54 0.06 

Weft T5_We1 0.09 4.55 0.45 0.16 

T5_We2 0.12 3.99 0.60 0. 18 

T6 Warp T6_Wa1 0.03 56.62 2.49 0.08 

T6_Wa2 0.04 124.24 8.09 0.09 

Weft T6_We1 0.10 38.14 2.89 0.15 

T6_We2 0.11 59.84 5.00 0.16 

T7 Warp T7_Wa1 0.06 124.78 6.76 0.10 

T7_Wa2 0.05 85.34 5.59 0.11 

Weft T7_We1 0.08 75.91 6.51 0.15 

T7_We2 0.09 78.86 7.72 0.18 

 

To better discuss the different mechanical properties, in Figure 3.5 are reported 

the Young’s moduli of the seven samples tested in the warp direction, while in 
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Figure 3.6 are depicted the results from specimens tensioned in the weft 

direction. Whenever it was possible to characterise more than one specimen 

from the same tapestry fragment, in the same direction, and with similar 

structure (i.e. homogeneous/uniform or heterogeneous), the data were 

averaged. In such cases, the error bar was included in the graph to indicate the 

standard error (SE), that also accounts the variability in the number of tested 

specimens. When considering the warp direction, it is observed that the Young’s 

moduli ranged from a maximum of 246.64 MPa (T2) to a minimum of 20.99 MPa 

(T5). On the other hand, Young’s moduli of weft specimens varied from 119.94 

MPa (T2) to 3.99 MPa (T5).    

From the data gathered, it is not possible to assess the influence of the 

heterogeneity of the weave structure. Indeed, in the case of sample T1, uniform 

specimens showed a higher stiffness, while specimens with heterogeneities from 

sample T6 had greater moduli. On the other hand, as previously mentioned, it is 

observed that the density of the weave had an impact on flexibility: the higher 

the thread count, the higher the Young’s modulus. 

 

Figure 3.5. Young’s moduli of specimens from historic tapestry fragments, tensioned in the 
warp direction. The bar indicates the SE, whenever it was possible to test more samples 
with uniform or heterogeneous weave structure.  
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Figure 3.6. Young’s moduli of specimens from historic tapestry fragments, tensioned in the 
weft direction. The bar indicates the SE, whenever it was possible to test more samples with 
uniform or heterogeneous weave structure. 

 

Figure 3.7 and Figure 3.8 depict the breaking stress of the different samples 

tested in the warp and weft direction, respectively. In general, warp tapestry 

samples were shown to have higher tensile strength than weft ones, as also 

previously noted by Duffus [5]. This could be explained by the more direct 

exposure of weft threads than warp ones to environmental factors, that can be 

able to promote degradation processes affecting the mechanical behaviour. In 

particular, light can play an important role, as it can be responsible for photo-

tendering process that may lead to a loss in strength [22], as discussed in 

Chapter 2, Section 2.1.1.3 . The greater exposure of weft threads in comparison 

to warp ones is due to the tapestry weave structure, in which warp yarns are 

completely covered by the coloured wefts (Section 1.1.2). The detailed data 

indicate that in the case of warp direction, specimens failed from a maximum of 

18.88 MPa (T2) to a minimum of 0.88 MPa (T5). In the case of weft direction, the 

data ranged from 17.56 MPa (T2) to 0.45 MPa (T5).   
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Figure 3.7. Breaking stress of specimens from historic tapestry fragments, tensioned in the 
warp direction. The bar indicates the SE, whenever it was possible to test more samples 
with uniform or heterogeneous weave structure.   

 

 

Figure 3.8. Breaking stress of specimens from historic tapestry fragments, tensioned in the 
weft direction. The bar indicates the SE, whenever it was possible to test more samples with 
uniform or heterogeneous weave structure.   
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It is interesting, though not surprising, to notice that in some cases the 

heterogeneities in the weave, especially those in the weft direction, determined 

the breaking point of specimens. This can be illustrated by Figure 3.9: during the 

uniaxial tensile test specimen T1_We3 failed in correspondence to the diagonal 

slit. Of course, the breaking mechanism greatly depended on the “geometry” of 

the pattern in the sample: if the change in colour was in the same direction of 

the tensioning, specimens would break uniformly. The variable influence of 

pattern justifies why, as reported in the data summarised by Table 3.5, not all 

samples with heterogeneities were weaker than ones with a homogeneous 

structure.       

 

Figure 3.9. Sample T1_We3 at the end of the uniaxial tensile testing. 

 

3.2.1.2 Newly woven wool rep fabric 

As done for the specimens from actual tapestries, the wool rep fabric was 

uniaxially tensile tested. The characterisation aimed to assess the resemblance, 

in the mechanical behaviour, between historic hangings and the newly woven 

textile.  
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Figure 3.10 illustrates the typical stress-strain curve of the wool rep fabric in 

both warp and weft directions. The graphs indicate that the de-crimping region 

ended at greater strain in the warp direction, contrary to what was observed for 

the historic samples. Moreover, from the stress-strain curves, it is evident that 

the wool rep specimens tested in the weft direction had greater Young’s moduli 

and were stronger than warp ones. These observations are confirmed by the data 

reported in Table 3.6. Indeed, from the data in the table, it is shown that weft 

samples had an average Young’s modulus of 531 MPa, while warp ones had an 

average modulus of 98 MPa. When considering the stress at failure, specimens 

tested in the weft direction broke at around 23 MPa, while warp ones at around 

10 MPa. All these observations seem to disagree with what was noted from the 

analysis of historic samples; nevertheless, it should be reminded that the new 

woollen fabric is warp-faced instead of weft-faced. Therefore, this clarifies why 

the physical features of warp yarns in the newly woven fabric resemble more 

those of historic weft threads. Besides these apparent discrepancies due to the 

different orientation of the weave, a certain similarity in the general mechanical 

behaviour can be stated from the shape of the stress-strain curves. For 

comparison, Figure 3.11 is shown.   

 

Figure 3.10. Stress-strain curves of samples of the warp-faced wool rep fabric in both weft 
(orange line) and warp direction (blue line).  
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Table 3.6. Uniaxial tensile properties of the wool rep fabric (average of five measurements 
per direction, the standard deviation, SD, is also indicated to show the variation of the data).  

Direction Strain at the 
End of the 
Crimp 

Young's 
Modulus 
[MPa]  

Stress at 
Failure 
[MPa] 

Strain at 
Failure 

Weft 0.02 ± 0.002 531 ± 32.326 23 ± 3.068 0.05 ± 0.007 

Warp 0.08 ± 0.008 98 ± 5.816 10 ± 1.095 0.17 ± 0.016 

 

 

Figure 3.11. Stress-strain curves of samples from the warp-faced wool rep fabric and 
historic tapestry fragment T1.  

 

When looking in more detail at the data (comparison between Table 3.5 and 

Table 3.6), the wool rep fabric demonstrated significantly higher moduli than 

the specimens from historic hangings, perhaps because of differences in the 

manufacturing process. Unsurprisingly, in general historic specimens were 

weaker than contemporary ones. However, this is not true in the case of T2, 

whose breaking stress values were close, or even higher, to those in Table 3.6. 

Again, the high thread count of T2, even greater than that of the wool rep 

fabric, may have determined its (relatively) remarkable strength.   
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3.2.2 ATR-FTIR 

After the mechanical characterisation, samples collected from the historic 

tapestry fragments were analysed with ATR-FTIR. 

In the first instance, the ATR-FTIR analysis clarified the fibre composition of the 

historic pieces under investigation, demonstrating that most of the samples were 

made of wool. Wool was identified because of the presence of some 

characteristic bands in the spectra. As an example, the spectrum of sample 

T1_We.Red is shown in Figure 3.12. Some of the peaks marked are distinctive of 

proteinaceous materials, namely: Amide I at 1635 cm-1, due to C=O stretching; 

Amide II at 1514 cm-1, linked to the combined vibrations of N-H and C-H [23, 24]; 

Amide III at 1232 cm-1, caused by C-N stretching and N-H bending [1]. It should 

be noted that such peaks are at lower wavenumbers than those reported for 

wool when FTIR analysis is carried out in a transmission mode. This is due to 

shifts caused by the ATR approach [25]. Besides amide bands, wool samples 

presented representative peaks related to cystine and its degradation. This is 

discussed more in more detail later. 

 

Figure 3.12. ATR-FTIR spectrum of sample T1_We.Red (average, baseline-corrected).  

 

In addition to wool, in fewer cases silk was detected. Similarly to wool, some 

bands, in particular those at around 1620 cm-1, 1510 cm-1 and 1230 cm-1, can be 

ascribed to the presence of a proteinaceous material as linked to the vibration 

of aminoacidic groups. It is pointed out that, in comparison to wool, amide 
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bands in silk samples should be expected at slightly different wavenumbers; this 

is due to the influence of the characteristic structural protein conformation [26-

28]. Other distinctive bands in the ATR-FTIR spectra of silk samples were at 

around: 1160 cm-1 (C-N stretching in tyrosine); 1000 and 970 cm-1 (skeletal 

stretching) [27, 29]. As an example, in Figure 3.13 the ATR-FTIR spectrum of 

T1_WeWhiteS is shown. Although different studies looked at methods for 

evaluating the level of degradation in silk through ATR-FTIR analysis (especially 

considering the band centred at 1700 cm-1, linked to the vibration of C=O group) 

[26-30], this goes beyond the purposes of the current work and therefore is not 

further investigated.   

 

Figure 3.13. ATR-FTIR spectrum of sample T1_We.WhiteS (average, baseline-corrected). 

 

When tracking chemical degradation of wool, although there may be some 

changes in the three amide bands, the most relevant variations occur between 

1170-1000 cm-1 [1]. As first suggested by Odlyha et al. and mentioned in Section 

2.3.1, by looking at key peaks in this region it is possible to compare the level of 

deterioration of different samples from historic tapestries [1]. The peaks of 

interest are related to cystine oxidation products, namely: cystine dioxide, -SO2-

S-, at 1121 cm-1 (CD); cystine monoxide, -SO-S-, at 1071 cm-1 (CM); cysteic acid, 

-SO3
-, at 1040 cm-1 (CA); S-sulfunate/Bunte salt, -S-SO3

-, at 1022 cm-1 (B-salt) [1, 

6]. Results from the MODHT project revealed that, in historic samples, cystine is 

particularly converted into cysteic acid [1]. Because of this, the peak at 1040 

cm-1 can be considered as the most informative for the purposes of the current 

work (the higher the CA amount, the greater the degradation). It is noted that, 
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besides the research carried out for the MODHT project, other studies have 

drawn similar conclusions, indicating the same peaks as the most useful to 

describe degradation of wool promoted by environmental factors such as light 

and temperature [13, 31, 32].  

Results from the analysis of cystine degradation products are first discussed by 

considering woollen warp threads from the seven fragments. Since warp yarns in 

European tapestries were usually left undyed, focusing on the warp threads 

allows to first observe degradation paths of the fibrous material, without any 

interference of the colourants. Studying warp samples aimed to enrich the data 

gathered from the MODHT project, as only weft threads were investigated with 

the spectroscopic technique before. When looking at the spectra and signals 

between 1250-1000 cm-1, three groups can be distinguished. The first group, 

which includes sample T1_Wa and T2_Wa, is characterised by peaks related to 

CM and CA, and the lack of signal at 1022 cm-1 associated to B-salt. On the other 

hand, B-salt can be distinguished in sample T4_Wa, T6_Wa and T7_Wa, 

categorised within the second group. While, on the basis of absorbance values, 

specimens belonging to the so-called second group had a contained amount of 

CA, samples from the third group (T3_Wa and T5_Wa) presented an intense peak 

at 1040 cm-1. Figure 3.14 illustrates the averaged spectra of sample T1_Wa, 

T5_Wa and T7_Wa to highlight the spectral differences of the three groups in 

the region of interest.  

 

Figure 3.14. ATR-FTIR averaged spectra of wool warp samples from fragment T1, T5, and T7 
(after baseline correction). Spectral differences in the intensity of peaks at around 1075 cm-1 
(CM), 1040 cm-1 (CA), and 1022 cm-1 (B-salt) allow to differentiate three groups.  
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Interestingly, a similar (though not identical, as discussed later) subdivision into 

groups was made for the tapestry samples analysed by Odlyha et al. In the past 

study, this variation in the ratio of cystine degradation products was possibly 

justified by the exposure of artefacts at different ranges of wavelengths [1], 

following what was suggested in other studies [31, 33]. In addition to the 

wavelength, also the exposure time can be considered a determining factor, as 

reported by Carr and Lewis [13]. In their paper, ATR-FTIR spectra of wool 

specimens exposed to sunlight revealed that the B-salt peak increased only 

initially, while it dropped after 4 weeks. In opposition, the CA signal constantly 

grew during the 20-week experiment [13]. Importantly, it is remarked that such 

degradation processes were here observed on warp threads, not directly exposed 

to light. Because of this, it is thought that other environmental factors than 

light, e.g. temperature, RH and pollutants, contribute to the formation of 

oxidation products from cystine. The high impact of thermo-hygrometric 

conditions on the degradation of wool within historic hangings was previously 

observed by Duffus, who tracked the formation of radicals from cysteine through 

electron paramagnetic resonance (EPR) [5]. Importantly, Luxford et al. noted 

the formation of high humidity microclimates behind tapestries displayed in 

historic houses. The authors considered these microclimates possibly responsible 

for the great chemical deterioration of silk threads taken from the back of 

historic hangings and analysed during the MODHT project through ATR-FTIR [34]. 

Having found that also unexposed wool warp samples from tapestries may be 

significantly (chemically) degraded, this seems to confirm the observations from 

the past study: humidity may play a relevant role in determining the poor 

condition of tapestries.     

Furthermore, in comparison to the classification by Odlyha et al., a main 

difference is noted. In the past work, specimens from the third group showed CA 

as the principal degradation product, however the corresponding signal at 1040 

cm-1 was not as intense as in T3_Wa and T5_Wa. In some other cases, a 

particularly high sulphonate absorbance band was revealed by Odlyha et al., but 

this was attributed to the possible use of alum as mordant, normally 

KAl(SO4)2∙12H2O. In the past paper, it is stated that the use of alum (possibly 

because of the SO4
2- group, although this was not clearly stated) caused a band 
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between 1200 cm-1 and 980 cm-1 so intense as to obscure the CA peak, that 

therefore could not be quantified [1].  

Considering the current work, since the warp threads are visibly undyed, the 

interference from alum seems unlikely. Nevertheless, to further study this 

aspect, reference samples from the MODHT project (stored at the CTCTAH) were 

analysed and compared with an undyed wool sample from the newly woven rep 

fabric. The two MODHT mock-ups had been dyed with logwood and mordanted 

with alum and an iron salt, also presenting the SO4
2- group, Fe(II)SO4. The 

spectra from the analysis of the three samples are depicted in Figure 3.15. From 

Figure 3.15, the intensity and shape of peak at 1040 cm-1 of Ref_LogAl, 

mordanted with alum, was demonstrated to be similar to that of Ref_LogFe, 

mordanted with Fe(II)SO4.  Undyed wool, as can be expected, did not present a 

pronounced peak around 1040 cm-1. Combining the data, it can be said that the 

mordanting process might have contributed to the signal at 1040 cm-1 (slightly, 

and perhaps in combination to natural ageing). Nevertheless, the outcomes seem 

to disagree with what reported by Odlyha et al., since the sulphonate signal 

from alum proved not to be high enough to “obscure” the CA peak. Therefore, it 

can be concluded that the intense band in specimens belonging to the third 

group was not likely to be linked to the use of mordants.  

Instead, it can be thought that other sources of sulphate (e.g. pollutants) may 

have played a role in determining strong signals at 1040 cm-1. Namely, the 

exposure to environments rich in sulphur dioxide (SO2) should be considered. 

Even if the concentration of SO2 in the air has been constantly decreased since 

the 1980s, in the past this pollutant was highly present as largely released by 

fuels. This gaseous pollutant can lead to the formation of sulphate compounds 

possibly harmful for the cultural heritage, such as ammonium sulphate secondary 

aerosol ((NH4)2SO4) [35], sulfuric acid (H2SO4), and gypsum (Ca2SO4·2H2O) when 

in presence of calcium carbonate [36]. Besides being formed through pollution, 

the latter soluble salt can be easily encountered historic buildings (e.g. in walls) 

and thus it should be included as a potential source of the sulphate signal in the 

investigated samples.      
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Figure 3.15. ATR-FTIR averaged spectra of wool reference samples prepared for the MODHT 
project and mordanted respectively with alum (Ref_LogAl) and iron salt (Re_LogFe). In 
addition, the spectrum of an undyed wool sample from the rep fabric is shown (green line). 

 

When comparing the CA/Amide III peak ratio of the warp samples (second 

derivate spectra, as shown in Figure 3.16), some differences between fragments 

can be noted. As depicted in Figure 3.17, woollen warp from T5 appeared to be 

the most chemically degraded (highest CA signal), followed by T3; on the other 

hand, specimens from T7 present the lowest ratio, stating the most contained 

chemical deterioration due to the reaction from cystine to cysteic acid. 

 

Figure 3.16. Second derivate ATR-FTIR spectra of warp samples from T1, T5, T7 (after 
average, baseline correction, normalisation, but no further processing/smoothing).  
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Figure 3.17.  CA/AmideIII ratio from the analysis of the second derivate ATR-FTIR spectra of 
warp threads from historic samples.  

 

As noted for warp samples, weft threads can also be grouped into the same 

three categories, indicated in Table 3.7. As an example, the spectra of weft 

samples from T1, T5, T4 are depicted in Figure 3.18. When looking at the data 

from the analysis of the second derivate spectra (Figure 3.19), some differences 

in the CA/AmideIII ratio can be noted from sample to sample. While the 

influence of the dyeing source is addressed later, in general it is highlighted that 

weft yarns from fragment T3 presented the most pronounced CA signal, and 

those from T7 the lowest.  

The agreement between data from the analysis of warp and weft threads seems 

to suggest that the chemical degradation of wool partly depends on the dyeing 

conditions, and partly on the action of environmental parameters, and so on the 

ageing. Differences in the fibre treatment might justify variabilities in the 

CA/AmideIII ratio among samples from the same fragment. On the other hand, 

the ageing conditions, characteristic for each historic piece, may have 

determined the spectral similarities in threads collected from the same hanging.    
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Table 3.7. Classification of wool samples from the different tapestry fragments based on the 
intensity of peaks related to cystine oxidation products.   

Group Tapestry 

fragments 

CD  

(1120 cm-1) 

CM  

(1070 cm-1) 

CA  

(1040 cm-1) 

B-Salt 

(1022 cm-1) 

I T1, T2 X X X  

II T4, T6, T7 X X X X 

III T3, T5 X X X strong X 

 

 

Figure 3.18. ATR-FTIR averaged spectra of wool weft samples from fragment T1, T5, and T4 
(after baseline correction). All the specimens here presented were dyed with a luteolin-
based source (Section 3.2.3). 

 

 

Figure 3.19. CA/AmideIII ratio from the analysis of the second derivate ATR-FTIR spectra of 
weft threads from historic samples. 
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When looking at the data in Figure 3.19, it is interesting to highlight that the 

tested samples show a CA level generally lower than that observed in the case of 

the weft threads collected from tapestries during the MODHT project. Namely, 

considering the results from the past study and reported in the published paper 

[1], the samples (all from tapestries of the Patrimonio National of Spain) 

showed, in most of the cases, a CA/AmideIII ratio between 2 and 3.5, with the 

exception of some extremely degraded wefts with a ratio above 4 [1]. All the 

wool threads with very high CA level were taken from the same tapestry, also 

demonstrating an intense oxidative degradation through the amino acid analysis 

[37]. During the MODHT project, differences in the chemical degradation of wool 

from the various case studies were justified by the variable conservation history 

and conditions experienced by each artwork [1, 37]. 

It should be pinpointed that some ATR-FTIR spectra showed peaks not related to 

wool. In the case of T3_We.Black and T3_We.Brown a signal at 1320 cm-1 was 

detected, as depicted in Figure 3.20. This peak can be attributed to the 

presence of calcium oxalate salts, such as weddellite (CaC2O4 ∙2H20) or 

whewellite (CaC2O4 ∙H20). As reviewed by Rampazzi in 2019 [38], calcium oxalate 

salts have been found in various types of artworks, e.g. historic buildings [39], 

marble statues [40], paintings [41], barkcloth [42], cartoons (drawings) [43]. 

Nevertheless, prior to this study, its identification in woollen historical textiles is 

only seen in a few tapestry samples from the MODHT project [1]. When 

considering paintings or stone artefacts, it is still not clear whether the origin of 

calcium oxalate films is biological (from lichens and other microorganisms) or 

chemical (e.g. promoted by organic materials from past treatments or from the 

painting technique) [38, 44]. In the wool samples here studied, the origin of 

oxalate salts could be related to materials employed during the dyeing process, 

such as plants and/or urea [45].    
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Figure 3.20. ATR-FTIR averaged spectrum of sample T3_We.Black: the peak at 1320 cm-1 can 
be linked to the presence of calcium oxalate salts.  

        

3.2.3 UHPLC-PDA 

In Table 3.8 are reported the main components, associated to dye sources, 

identified through UHPLC-PDA analysis of samples taken from the historic 

tapestries. When considering the analysed samples, it can be observed that the 

range of dyes used in the different hangings is quite limited. Namely, recurrent 

sources are: luteolin-containing plants (especially weld); indigo-type dye; 

soluble redwoods. Luteolin-based sources were employed to obtain yellow and 

beige hues, indigoid dyes for blue shades, while soluble redwoods for brownish 

ones. As discussed later, sometimes more colourants were identified within the 

same sample. Mixing different dyestuffs was traditionally done to obtain a wider 

range of shades.     

In addition to three sources just mentioned, other dyestuffs were revealed, 

namely: madder, red scale insects, tannins, young fustic, and possibly logwood. 

The colourants identified within the fragments agree with those traditionally 

employed for European historic hangings, as confirmed by other studies (Section 

1.1.3). 
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Table 3.8. Main compounds, and related dye sources, revealed in the wool samples from 
historic tapestry fragments.  

Sample Code Sample 

Colour 

Compounds Identified Dye Source 

T1_We.DBrown Dark 

brown 

Ellagic acid, 

Gallic acid, 

Unkn. Shibayama  

Tannins  

(+ logwood ?) 

T1_We.Yellow Yellow Luteolin, 

Chrysoeriol, 

Apigenin, 

Sulfuretin, 

Weld + young fustic 

T2_We.DBrown Dark 

brown 

Alizarin, 

Purpurin, 

Xanthopurpurin  

Madder-type dye 

T2_We.Red Red DcII,  

Carminic acid 

Red scale insects 

(cochineal species) 

 

T3_We.Brown Brown Type C Soluble redwoods 

T3_We.Black Black Ellagic acid 

 

Tannins  

T4_We.Beige Beige Luteolin, 

Chrysoeriol, 

Apigenin 

Weld 

T5_We.Beige Beige Luteolin, 

Apigenin (traces) 

Luteolin-based 

source 

T5_We.Blue Blue Isatin, 

Indigiton 

Indigotin-based 

source 

T6_We.Beige Beige Luteolin, 

Chrysoeriol, 

Apigenin 

Weld  

T7_We.Purple Purple Type C, 

Indigotin 

Soluble redwoods + 

indigotin-based 

source 

T7_We.Beige Beige Type C Soluble redwoods 

 

Below, the chemical compounds that allowed the characterisation, and the 

related dye sources, are described in detail. 

Luteolin-based sources 

Luteolin is a high lightfast flavonoid yellow component contained, together with 

related glycoside forms, in several plants [46]. Among the botanical sources 

containing luteolin, historically in Europe the most widespread for dyeing were: 

weld (Reseda luteola L.), sawwort (Serratula tinctoria L.), and dyer’s broom 

(Genista tinctoria L.). Since luteolin (UV-Vis absorbance spectrum in Figure 
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3.22a) can be found in different plants, its identification alone does not allow to 

univocally distinguish the dyeing source. Therefore, in the past decade, studies 

were carried out to isolate other dyeing components to further discriminate 

luteolin-based plants [47-50].  

In the case of dyer’s broom, also called dyer’s greenweed [46], genistein can be 

a helpful marker as it is not contained in either sawwort or weld [51, 52]. 

Genistein is an isoflavone whose UV-VIS absorbance spectrum presents two main 

peaks at 208 and 260 nm [52]. Since this compound does not greatly absorb in 

the yellow region (300-400 nm), it does not contribute to determining the final 

colour through the dyeing process [53]. In addition to genistein, Troalen et al. 

[48] reported that other compounds, indicated as Gt1-4, and in particular Gt3 

(probably isoprunetin), can be useful to recognise the use of dyer’s broom. 

When genistein is not found through the chromatographic analysis, the presence 

of chrysoeriol may allow to differentiate between weld and sawwort. Indeed, 

this flavonoid component is present within weld, but it is absent in sawwort. 

Although chrysoeriol may be expected also in samples dyed with dyer’s broom 

[54], when identified together with luteolin and in the absence of genistein, it 

likely refers to weld [52].         

Due to the presence of both luteolin and chysoeriol, and the lack of genistein, 

weld was identified in four samples taken from tapestries T1, T4 and T6. In 

Figure 3.21 the chromatogram from the analysis of sample T4_We.Beige is 

depicted as an example. From the chromatogram, it can be observed that the 

main markers for weld, luteolin and chrysoeriol, were eluted at 19.4 min and 

20.9 min, respectively. The UV-Vis absorbance spectra of the three compounds 

are shown in Figure 3.22. It should be highlighted that often the analysis 

revealed the presence of other components, among which some may be 

associated to glycosides of the flavonoid compounds [55]. Besides, as indicated 

in Figure 3.21, apigenin was also found in samples dyed with weld. The yellow 

flavone apigenin is typical of several plants, though not exclusively luteolin-

based ones [46] (e.g. safflower, Carthamus tinctorius L. [56]).  
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Figure 3.21. Chromatogram, acquired at 350 nm, from the analysis of sample T4_We.Beige.   

 

a) b)  

 

c)  

Figure 3.22. UV-Vis abs spectra of: a) luteolin; b) chysoeriol; c) apigenin. 

 

It is noted that, in the case of sample T5_We.Beige, only luteolin was revealed, 

impeding a precise characterisation of the dye source.  
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Interestingly, in sample T1_We.Yellow, together with weld, another botanical 

source giving yellow-orangish shades was identified, young fustic (Cotinus 

coggygria Scop.). Young fustic was revealed thanks to the presence of sulfuretin, 

an orange aurone (UV-Vis absorbance spectrum in Figure 3.23), usually found in 

combination with fisetin [52, 54, 57]. Young fustic was mainly employed 

between the Middle Ages and the 19th century in Mediterranean countries, 

particularly in Italy [46]. Since this dyestuff is fugitive, Troalen highlighted that 

the use of young fustic for dyeing historic tapestries should be considered a 

rarity [54].  

 

Figure 3.23. UV-Vis abs spectrum of sulfuretin. 

 

Soluble redwoods 

The term soluble redwoods refers to a group of trees of the Caesalpinia genus 

which includes Asian sappanwood (Caesalpinia sappan L.), and species native of 

South America, such as pernambuco wood (Caesalpinia echinata Lamarck) [46, 

51]. The distinctive feature of soluble redwoods, also known as brazilwood, is 

the presence in the heartwood of brazilin. Brazilin is a colourless 

homoisoflavonoid compound that, through oxidation, leads to the production of 

the chromophore brazilein. Brazilein is the principal component responsible for 

the dyeing properties of redwoods; however, it is easily degraded due to its low 

photo-stability. Because of this, faded historic textiles only contain a low 

amount of brazilein, often too small to be detected. Since brazilein cannot be 

used as a marker, usually the identification of soluble redwoods is only possible 

thanks to a component indicated as (Novic) Type C compound, Orh or RW(2) [52, 

57-60]. The chemical composition of the marker compound had been unknown 
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until 2018, when Peggie et al. reported that it corresponds to urolithin C [61]. 

Although in the paper it is underlined that further investigations are needed to 

properly understand how urolithin C is formed (presumably through ageing [62]), 

when detected, it can be unequivocally associated with the use of brazilwood 

[61].   

The identification of Type C compound confirmed the use of brazilwood in 

tapestry fragments T3 and T7. In Figure 3.24, the chromatogram of 

T3_We.Brown is shown as an example: the marker compound Type C is eluted at 

15.4 min. The characteristic UV-Vis absorbance spectrum of urolithin C is 

depicted in Figure 3.25. 

 

Figure 3.24. Chromatogram, acquired at 255 nm, from the analysis of sample T3_We.Brown.   
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Figure 3.25. UV-Vis abs spectrum of urolithin C. 

 

In the case of sample T7_We.Purple urolithin C was found in a mixture with an 

indigoid dye, as the combination of dye sources created a purplish hue on the 

textile.    

Madder-type dye 

Madder is a mordant dye obtained from the roots of a wide range of plants 

belonging to the Rubiaceae family. Depending on the geographical area, 

different plants have been used for dyeing. Among them, historically the most 

relevant one in Europe was Rubia Tinctorium L., usually referred to as dyer’s 

madder or common madder [51, 63]. Madder plants contain several 

anthraquinones, some of them fundamental in determining the dyeing 

properties, like alizarin and purpurin [51, 64]. In general, for revealing the use 

of madder in historic textiles through HPLC-PDA, the main chromophores, i.e. 

alizarin and purpurin, should be detected [54, 65, 66]. Some studies have been 

carried out to differentiate the botanical sources on the basis of the ratio of the 

anthraquinones [67, 68]. Nevertheless, this can be challenging as the amount of 

the compounds may vary significantly depending on many different factors, such 

as the age of the plant [69].   

A madder-type dye was detected in only one sample, T2_We.DBrown. As 

illustrated in Figure 3.26, within the sample both alizarin (RT 21.4 min) and 

purpurin (RT 25.3 min) were revealed; the UV-Vis abs spectra of the two markers 

are presented in Figure 3.27.  



127 
 

 

Figure 3.26. Chromatogram, acquired at 450 nm, from the analysis of sample 
T2_We.DBrown.  

  

a) b)  

Figure 3.27. UV-Vis abs spectra of alizarin (a) and purpurin (b). 

 

Red scale insects 

Broadly speaking, red scale insects are plant parasites from the Coccidae 

superfamily; they all contain anthraquinones that define their ability to dye [46, 

69]. Different species, originally from distinctive geographical areas, can be 

indicated as red dye insects, but the ones considered the most important in 

dyeing history are: American cochineal (Dactylopius coccus Costa); kermes 

(Kermes vermilio Planchon); Polish cochineal (Porphyrophora polonica L.); 

Armenian cochineal (Porphyrophora hamelii Brandt); lac (Kerria lacca Kerr).  

HPLC-PDA analysis allows to easily distinguish lac from the other animal sources 

thanks to the univocal presence of laccaic acids as the main chromophores [57, 
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70]. On the other hand, the use of kermes can be successfully revealed when 

kermesic and flavokermesic acids are detected as principal compounds, since 

they are the predominant dyeing matters within this type of red scale insect [71-

73]. 

When carminic acid is found to be the main component, this indicates the use of 

cochineal species. To further discriminate between D. coccus, P. polonica, and 

P. hamelii, Wouters and Verhecken suggested to evaluate the ratio of minor 

compounds, namely dcII (7-C-glucoside of flavokermesic acid [47]), 

flavokermesic and kermesic acid [74]. Nevertheless, it has been highlighted that 

this approach may be misleading as it does not consider changes in the ratios 

due to factors such as the extraction method, the dyeing conditions, the fibres, 

the larger number of cochineal species potentially available, the ageing [72]. For 

these reasons, when the historical contextualisation of the artworks does not 

allow to exclude some of the sources (e.g. [75]), studies can only generically 

report the use of a carminic acid containing insects [58, 71, 76]. Because of this, 

when a precise identification of the type of insects is needed, Serrano et al. 

advise to combine the qualitative and quantitative data from the 

chromatographic analysis with chemometric methods. This approach would 

enable to further discriminate species on the basis of statistical differences [72, 

77, 78].       

In the investigated fragments, carminic acid and dcII were only detected in 

sample T2_We.Red, as portrayed by the chromatogram and spectra in Figure 

3.28 and Figure 3.29. Revealing the two markers in the red specimen from 

fragment T2, led to the identification of a red scale insect (cochineal species).   
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Figure 3.28. Chromatogram, acquired at 255 nm, from the analysis of sample T2_We.Red. 

    

a) b)  

Figure 3.29. UV-Vis abs spectra of dcII (a) and carminic acid (b). 

 

Tannins  

Tannins, chemically described as polymeric polyphenols, have been widely used 

in the making of fine arts objects: from the preparation of leather [79], to the 

weighting of silk fibres [80] and the production of iron-galls inks [81]. Regarding 

the dyeing process, traditionally they were sometimes employed as assistants 

when combined with other colourants (like young fustic), with the purpose of 

enriching the intensity of the hue [51]. Alternatively, they were also used as 

colourants to produce grey, brown and black shades, when they were used 

together with metal salts for mordanting [51, 63, 69]. Tannins are contained 

within several plants, such as some from the Fagaceae family (oak galls) and 
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some Alnus species (alder bark) [46, 51]. Depending on the vegetal source, 

tannins are present in different parts of the plant and are formed through 

various processes. For instance, Aleppo galls are caused by wasps puncturing the 

buds of Quercus infectoria Oliv. for laying their eggs [51]. Based on the specific 

chemical structure, the number of vegetal tannins is vast; nevertheless, they are 

conventionally grouped into two main categories: hydrolysable tannins and 

condensed tannins. Hydrolysable tannins mainly contain gallic acid and ellagic 

acid; on the other hand, condensed tannins are made of flavonoids [79, 82].   

When ellagic acid is detected through HPLC-PDA analysis within historic samples, 

this reveals the presence of hydrolysable tannins. Unfortunately, up to now, 

often the technique is unable to further discriminate the vegetal source [52, 54, 

66, 83]. However, in the case of sources historically widespread in China, i.e. 

gallnut and acorn cup, Han at al. further characterised the related tannins (also 

by coupling the HPLC system with electrospray ionisation mass spectrometer as 

the detector), to enable a more precise identification [14, 84].   

Based on the detection of ellagic acid, it can be stated that hydrolysable tannins 

were used for dyeing sample T1_We.DBrown and T3_We.Black. In addition to 

ellagic acid eluted at 14.6 min, gallic acid was revealed in T1_We.DBrown. The 

chromatogram showing the peaks related to the two markers is depicted in 

Figure 3.30, while the corresponding UV-Vis spectra are illustrated in Figure 

3.31.     

 

Figure 3.30. Chromatogram, acquired at 255 nm, from the analysis of sample 
T1_We.DBrown. 
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a)  

b)  

Figure 3.31. UV-Vis abs spectra of gallic acid (a) and ellagic acid (b). 

 

Interestingly, besides ellagic and gallic acid, a coloured compound was revealed 

in specimen T1_We.DBrown. The component was eluted at 9 min and, as shown 

in Figure 3.32, its UV-Vis absorbance spectrum presented maximum wavelength 

at around 360, 290, and 250 nm. The marker is not reported among the 

references in the instrument libraries, nor in literature. Nevertheless, a small 

project, promoted by Dr Nobuko Shibayama and carried out at the Scientific 

Research Department of the Metropolitan Museum of Art in 2017, first attempted 

to associate the compound to logwood, Haematoxylum campechianum L. (native 

of the Yucatan peninsula) [85]. The dyeing properties of logwood, useful to 

obtain different colours like purple, blue and black, depend on the presence 

within the tree of homoisoflavanone haematoxylin. Although haematoxylin is 

colourless, it can be converted through oxidation by air into haematein, 

coloured but not lightfast [46]. Because of the low photo-stability of the 

principal dyeing component, the use of logwood in historical samples is usually 

based on the detection of a haematein derivate, first described by Hulme et al. 

in 2005 [86]. Since this marker is only solubilized when samples are treated with 

a HCl solution, if a mild extraction method is employed, as is usually now 

preferred, detecting logwood may be challenging [86]. Following the work 
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started by Shibayama, Wertz et al. possibly linked a compound found in Turkey 

red prints to logwood [87]. The component, with very similar RT and UV-Vis 

absorbance spectrum to the unknown compound here described, was revealed by 

Wertz et al. using the same equipment and methods as the current work. 

Further analysis involving mass spectrometry would be helpful in providing more 

precise information on the compound and its origin.    

From an historical perspective, the combination of logwood and tannins as 

sources for the dark dyeing of sample T1_We.DBrown seems reasonable and in 

agreement with other research [46, 83]. However, logwood has been rarely 

detected in European tapestries [51]; this could be linked to: I) the difficulties 

of the HPLC-PDA analysis just discussed; II) the availability of the dyestuff. 

Indeed, although logwood has been imported into Europe from South America 

since the 16th century, laws and conflicts limited its trade. For instance, an 

English law issued in 1580 forbade the use of logwood as the colours obtained 

were too fugitive, and also to foster the trade of local woad [46].   

 

Figure 3.32. UV-Vis abs spectrum of unknown compound detected in T1_We.DBrown, 
possibly associated to logwood. 

 

Indigotin-based sources 

Indigotin represents the most widespread and historically relevant blue dyeing 

compound. This component, chemically classified as an indigoid chromophore, 

can be found in several plants from different botanical families diffused 

worldwide [46]. Among them, important ones are the European woad (Isatis 
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tinctoria L.) and the Asian indigo plant (Indigofera tinctoria L.). The dye, 

sometimes indicated with the generic term indigo, requires different steps for 

fixing into the fibres. Namely, the process includes a chemical reaction 

(reduction) to form a water-soluble compound from indigotin, that otherwise 

cannot be solubilised in water. Because of the type of dyeing method, indigo can 

be classified as vat colourant [46, 51]. In addition to indigotin, another coloured 

component within woad and indigo plants is indirubin. Although indigotin and 

indirubin are present in many botanical sources, they are formed from different 

chemical precursors, and via various processes [51, 88]. Regarding the use of 

HPLC-PDA analysis, in general the identification of indigotin states the use an 

indigo source, e.g. [42, 52, 54]. Due to the similar chemical composition and the 

many variables involved, recognising the exact dyeing plant employed is still 

difficult, as stated also by recent works [89].    

Unsurprisingly, indigotin, UV-Vis absorbance spectrum in Figure 3.34, was 

detected in sample T5_We.Blue (chromatogram in Figure 3.33). While 

T5_We.Blue was likely only dyed with indigo, indigotin was found as minor 

compound in other weft threads of different colours (Table 3.8). As already 

mentioned, in such cases it is likely that indigo plants were employed together 

with other colourants and sources to obtain a wide range of shades.   

  

Figure 3.33. Chromatogram, acquired at 255 nm, from the analysis of sample T5_We.Blue. 
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Figure 3.34. UV-Vis abs spectrum of indigotin. 

 

3.2.4 Connecting the data from the multi-analytical investigation 
of historic samples 

The results from both the tensile testing and the ATR-FTIR analysis were in 

agreement and proved the low strength and high chemical degradation of 

samples from fragments T3 and T5, in particular when considering the undyed 

warp threads. On the other hand, it is interesting to note that specimens from 

T2 showed the greatest breaking stress but, at the same time, a relatively high 

CA/Amide III ratio. These data seem to contradict themselves, but it could be 

hypothesised that the very dense weave structure of T2 largely impacted its 

tensile strength and so minimised effects linked to cystine conversion to CA.  

In Figure 3.35 are depicted the combined data from the ATR-FTIR and UHPLC-

PDA analyses. Looking at the graph, first it is pinpointed that, among samples 

from T1 and T3, threads dyed with tannins presented the greatest CA signal. 

Tannins are known to promote chemical degradation of wool, also linked to 

cystine oxidation, perhaps because of the combined use with the photosensitiser 

Fe3+ [2, 90]. This is usually acknowledged also by textile conservators, who are 

empirically aware of the high fragility of brownish/dark areas in tapestries [91]. 

Besides confirming the great weakness of wool dyed with tannins, it is noted 

that specimens with a luteolin-containing source showed a remarkable CA peak. 

In particular, this is true in comparison to samples dyed with indigo (T5). 
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Interestingly, these outcomes, although they are not relevant from a statistical 

perspective, agree with the findings from the MODHT project. During this past 

project, dyeing with weld was considered possibly detrimental due to the photo-

tendering action of luteolin (thought this was not further linked to CA formation) 

[1]. On the other hand, the use of indigotin-based plants was thought not to 

impact wool degradation as the related dyeing conditions were usually not 

aggressive (i.e. high pH, low temperature) [2]. It is important to underline that 

further research, and a larger number of samples, are needed to define more 

precisely the chemical degradation processes promoted by the dyeing.  

 

Figure 3.35. CA/AmideIII ratio and dye sources of weft threads from historic samples. 

 

In conclusion, combining all the information from the three material analysis 

techniques again underpins that defining the state of degradation of tapestries is 

extremely complex. For the first time, the work reported here connected 

information on the chemical and physical properties of actual historic hangings, 

enriching the knowledge on the different factors behind structural damage. 

Importantly the results show that, even when the chemical degradation of wool 

(cystine oxidation) is found to be remarkable, the textile may still preserve a 

good tensile strength thanks to its characteristic weave and thread structure. 



136 
 
Similarly, the impact of the dyeing process, and so the treatment with 

aggressive conditions and/or materials, may affect the chemical degradation 

only partly. In addition, the (length of) exposure to different environmental 

factors should be considered a relevant caveat, though further research is 

needed to clarify which parameters are the most significant.  

3.3 Conclusions 

Chapter 3 aimed to investigate the tensile behaviour of tapestries and which 

factors may affect it. To do so, specimens from seven historic hangings, stored 

at the CTCTAH, were cut and uniaxially tensile tested. Furthermore, warp and 

weft threads were collected from the same samples and analysed through ATR-

FTIR and UHPLC-PDA. While ATR-FTIR analysis was employed to help quantifying 

chemical degradation of wool due to cystine oxidation, UHPLC-PDA was used to 

identify dyeing sources. The multi-analytical strategy is built on previous studies 

on tapestries, nevertheless, it differs from them, as they examined chemical and 

physical variables separately and/or not on fragments from historic artworks. In 

addition to historic samples, uniaxial tensile testing was carried out on the wool 

rep fabric to be employed in the following chapters for studying the efficacy of 

conservation strategies. This allowed an assessment of the similarity between 

the newly woven textile and actual tapestries.     

The results from the mechanical characterisation of tapestry fragments 

highlighted that, although all stress-strain curves presented similar features, 

properties like stress at failure and Young’s modulus varied significantly. Besides 

variabilities linked to the chemical degradation of fibrous materials, the density 

of the weave seems to be a determining factor for understanding the tensile 

strength of the historic hangings. This is an important contribution to the 

findings from the MODHT project, as the previous study did not take into 

account the impact of differences in the weave on the structural stability.   

The uniaxial tensile testing carried out on the wool rep fabric confirmed a 

certain similarity with the mechanical behaviour of historic hangings, especially 

when looking at the stress-strain curves. It is remarked that, since the newly 

woven wool fabric is warp-faced, and not weft-faced as are actual tapestries, 

warp threads have features like historic weft yarns, and vice versa. Therefore, 
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from this moment on, to avoid confusion the weft direction of the wool rep 

fabric is referred to as warp, and warp as weft. 

The chemical characterisation of the historic woollen samples though ATR-FTIR 

and UHPLC-PDA analysis led to some similar observations to those from the 

MODHT project (e.g. the negative impact of tannins, spectral differences 

possibly due to the variable exposure to environmental factors). In general, the 

good agreement between the data here collected and those from the previous 

project confirmed the validity of the non-destructive approach (ATR-FTIR) for 

assessing the level of chemical degradation in wool. Nevertheless, the current 

study provided new insights on the interpretation of some spectral differences in 

naturally aged samples. Although it can be concluded that there are several 

parameters that may compete, including the dyeing process, tracking the 

amount of CA can be a helpful tool to gain a first estimation of the level of wool 

deterioration. A relevant observation drawn from the ATR-FTIR analysis is that 

humidity may greatly determine chemical deterioration of tapestry fibre 

materials, also in comparison to light. Importantly, this was observed through 

the investigation of warp threads (not studied before), unexposed to light.     
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4 2D DIC for investigating mechanical damage 
mechanisms in tapestries 

Chapter 4 discusses the usefulness of 2D Digital Image Correlation (DIC) for 

monitoring strain across historic hangings and tapestry-like materials when on 

display. The first section of the chapter presents a literature review on DIC, 

focusing on the related sources of errors. It is important to pinpoint, before the 

actual tests, which factors to look at to ensure the accuracy of measurements. 

This is particularly true when considering tapestries as case studies, since DIC 

needs to rely on a woven figurative design rather than an applied speckle 

pattern, usually employed as a correlation device. Besides the pattern, the 

impact of other factors is discussed in the first part of the chapter, by looking at 

past studies.         

The following experimental part reports 2D DIC monitoring tests on different 

case studies, involving actual historic hangings and a wool rep fabric with 

tapestry-like weave structure. The experiments aimed to verify the feasibility of 

the optical technique for tracking displacements in larger areas of historic 

hangings than those previously researched (≈ 10 cm2) [1, 2]. Through the 

diversity of the textile objects monitored and the set-ups, different variables 

affecting the measurements were identified. Importantly, the 2D DIC monitoring 

tests also intended to investigate the potential mechanical damage mechanisms 

in woven hangings. Differently from the research presented in Chapter 3, here 

the structural stability of tapestries is studied from a macroscopic perspective 

and it focuses on the mechanical mechanisms occurring while the artwork is 

hanging. 

4.1 Introduction  

4.1.1 2D DIC: basic principles of the technique and common 
sources of errors 

As briefly mentioned in Chapter 2, DIC can be defined as a contactless optical 

technique able to measure displacement and deformation occurring in an object 

subject to different loadings. Before and during the loading, images of the 

object are acquired, so to record the deformation. Once all the needed images 
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are taken, the post-processing phase begins: thanks to specific correlation 

algorithms, the deformation is eventually translated into displacement and 

strain.  

DIC can be used for both 2D measurements as well as 3D ones. As suggested by 

the name, the 2D method can only track in-plane displacements, while 3D DIC, 

also called stereo-DIC, enables the measurement of out-of-plane displacements. 

The monitoring equipment varies depending on whether 2D or 3D DIC is used: 

only one camera is required for tracking 2D movements, while for 3D DIC two 

synchronised cameras are usually needed [3, 4].      

DIC has been widely used and applied on a broad range of case studies and 

objectives, from defining deformations in nano/micro-scale specimens (e.g. [5, 

6]) to large-scale structures such as walls (e.g. [7, 8]). In the cultural heritage 

sector, the use of DIC can be particularly appealing: the technique is 

contactless, the set-up is simple, and it allows in situ analysis. Compared to 

other state-of-the-art methods, the equipment needed is more affordable. 

Indeed, the technique only requires: one/two camera(s); a tripod; a DIC 

software. The latter can be the most expensive part of the set-up, although 

some open source software exists, such as Ncorr [9]. A limitation to the use of 

DIC is that no artificial speckle pattern, usually employed as a correlation 

device, can be applied on historic objects. This means that, differently from the 

common usage of DIC, when artworks are monitored the technique needs to rely 

on the intrinsic figurative pattern to track deformation.    

Besides the work done on tapestries by the research group at the University of 

Southampton [1, 2], DIC has been employed to study deformations occurring in 

artworks such as: textile objects [10]; panel paintings [11-13]; canvas paintings 

[14-18]; wall leather decorations [19]; wood shipwrecks [20, 21].  

4.1.1.1 Theoretical foundation and sources of error related to the correlation 
algorithm  

Fundamentally, DIC works by defining how much a specific point of interest (P) 

has moved during a time-lapse, while capturing the movement through an image 

acquisition system. The point of interest is part of a square subset, which is 



146 
 
found within a region of interest (ROI). The region of interest is established at 

the beginning of the analysis, from the reference image. The reference image 

describes the point of interest before the occurrence of any deformation, at t0 

[22, 23]. An example of point of interest, subset, and ROI is provided in Figure 

4.1.  

 

Figure 4.1. Example of defining features in the DIC analysis: the ROI is the area indicated in 
red, the subset is marked by the blue line, and the point of interest corresponds to the green 
dot.  

 

It should be noted that the shape and size of the subset are important variables 

that need to be properly selected, as they may impact the analysis accuracy. 

Indeed, the subset defines the amount of information available for correlation, 

therefore, the smaller the subset the lower the amount of information, and so 

the more difficult it could be to track the deformation. On the other hand, if the 
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subset is too big, relevant pieces of information may be overseen through 

averaging and not considered, leading to a miscalculation of the displacement 

[22-24]. This can be an issue especially when heterogeneous deformations occur 

[25]. Of course, the appropriate subset size (measured in pixels) would greatly 

depend on the speckle pattern and should be defined together with other 

parameters of the algorithm, such as the shape function (see below) [26]. At the 

beginning of the analysis, alongside the subset size, step size is chosen. The step 

size, defined in pixels, indicates the distance between subset centres, in both 

horizontal and vertical directions. The step size may vary from 1 pixel to half of 

the subset size and it defines the spatial resolution of data: the bigger the step 

size, the less the displacement measurements. Since selecting a small step size 

means more data to calculate, this affects the time for the analysis [25].    

The deformation process tracked by DIC is schematically illustrated in Figure 

4.2. From Figure 4.2, it can be seen that at t1, where t1 = t0 + Δt, P is no longer 

in the initial position. Therefore, the reference image at t0 is compared to the 

deformed one, taken at t1. From the comparison of the two images, and in 

particular of the subset of interest at different times, the displacement of P can 

be calculated. 

 

Figure 4.2. Scheme of a subset before and after deformation.  

 

Specific algorithms enable the matching of the subset before and after 

deformation and so the tracking of the point of interest. These algorithms must 

include a proper correlation criterion, able to recognise and measure changes 

that have occurred in the subset over time by highlighting differences and 
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similarities [3]. Pan et al. in [27] classified the criteria used for DIC into four 

main categories: I) cross-correlation (CC); II) sum-squared difference (SSD); III) 

sum of absolute difference (SAD); IV) parametric sum of squared difference 

(PSSD). Tables summarising the most commonly used correlation-criteria for DIC 

can be found in review papers, e.g. [22]. In general, a good correlation criterion 

should not be affected by variables linked to the set-up, like uneven lightning, 

brightness, or contrast. Therefore, the choice of the correlation criterion is 

particularly important when the resolution of the images is not expected to be 

very high because of the experimental conditions [28].        

Besides the correlation criterion, another important detail of DIC algorithm is 

the shape function. The shape, or displacement mapping, function describes the 

deformations that have occurred across the entire subset, therefore affecting all 

its different nodal points. When selecting the shape function, it is important to 

consider that different points in the same subset may move in various directions. 

This means that the displacement could not be accurately defined by a zero-

order shape function, so a high order one should be preferred as it would better 

fit a broader range of deformations [26, 29].             

Furthermore, different studies focused on the systematic errors caused by the 

fact that the coordinates of the point of interest in the deformed image may be 

between pixels, but the displacement is calculated considering the pixel as the 

minimum unit. To avoid this, algorithms able to register information at a sub-

pixel level can be used [22, 30].    

4.1.1.2 Experimental sources of errors  

Speckle pattern 

Speckle patterns, more precisely random intensity distributions, are 

fundamental in DIC analysis. Indeed, the speckle pattern carries the information 

on the deformation experienced by the specimen, allowing the algorithm to 

operate the correlation [31]. This correlation device can be artificially applied 

on the surface of the sample or sometimes it can consist of the natural intrinsic 

texture of the material, as later discussed. In any case, speckle patterns need to 

fulfil specific requirements since the quality greatly affects the accuracy and 
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precision of the measurements. As summarised by Dong and Pan in [31], a high 

quality speckle pattern requires: high contrast in the greyscale levels; non-

periodic features; anisotropy (lack of orientation); stable and strong adherence 

to the sample surface.  

When an artificial speckle is applied, some practical precautions should be taken 

into consideration to obtain and verify its good quality [32-36]. For instance, 

each subset should contain 2-3 speckles, so their size needs to conform to this 

[32], while avoiding any aliasing due to too small speckles (< 3 pixels) [33]. At 

the same time, ideally there should be 50-50% coverage of black and white [34], 

and speckle edges should be “soft” (with a transitional grey area) [36]. These 

features need to be adapted depending on the subset size, since larger subsets 

can allow bigger speckles [37] and/or lower density [34]. As also revised in [31], 

besides general qualitative indications, different theoretical assessments have 

been proposed to verify the quality of speckle patterns.             

As mentioned above, in the current study, the application of an artificial speckle 

pattern can only be taken into consideration for bespoke mock-ups used as 

models, since no alteration can be done on actual historic objects.  

Image quality: camera system and illumination 

The image acquisition system, which can be a camera, but also a microscope, 

and the related settings greatly contribute to defining the resulting image 

quality and so the accuracy of DIC data. When a camera is used, the type of lens 

and sensor, its main components, may separately affect image quality [38]. 

Lenses and sensors are fundamental elements in a camera as the first enables to 

collect the light, while the latter permits the image to be formed and registered 

thanks to its sensitivity to the electromagnetic radiation [39].  

For 2D DIC, Pan in 2009 recommended to use CCD (charge-coupled device) 

sensors [22], however later works found out that also state-of-the-art CMOS 

(complementary metal oxide semiconductor) sensors can lead to high quality 

images, feasible for DIC analysis [40]. In 2017, Hijazi and Kähler experimentally 

assessed the different and separate contribution of lenses and sensors on 2D DIC 

errors [38]. It was shown that the imaging sensor and type of camera scarcely 
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influence the accuracy of the data, while they may be more affected by the 

quality of the lenses [38]. Nevertheless, low cost devices like camera phones 

have also been employed for DIC measurements [41, 42]; in this case, the 

accuracy of the data was shown to be improved when applying appropriate error 

correction approaches [42].        

An even illumination is needed to ensure a stable contrast over the specimen 

surface (and speckle pattern) during the monitoring, to enable proper 

correlation. Indeed, fluctuations in the light source may lead to drastic 

drops/growths in the greyscale level, eventually resulting in errors [24]. Because 

of that, for 2D DIC, adjusting the exposure time of the camera is important. 

When no displacement is expected to occur during the capture (slow 

deformations), a high exposure time can be set to avoid errors from an uneven 

illumination [4]. In particular, an adequate adjustment of the exposure time 

may play an important role in the accuracy of data from in situ experiments, 

when the environmental illumination is irregular and/or too low. As assessed by 

Wang et al., this can play an important role for cultural heritage applications, 

such as long-term monitoring in museums, since only low and uneven lighting is 

available [21].  

Another variable to consider is the type of light source. A constant white light 

source is usually employed for tests in laboratory environments [43]. To allow an 

efficient in situ monitoring, Pan et al. presented a monochromatic light 

illuminated active imaging DIC method. The monitoring kit, besides a CMOS 

camera, included two monochromatic light sources and an optical bandpass 

filter, able to avoid the interference of unstable ambient light [43]. 

Furthermore, it is noted that lenses and sensors can temporarily deform because 

of the temperature increase (up to 10 °C) that occurs when the cameras are 

switched on. The phenomenon can last one or two hours and its intensity may 

depend on the type of lens [44] (telecentric lenses appeared to be scarcely 

affected the by self-heating effect [45]).   
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Out-of-plane displacement  

Three fundamental and basic requirements to ensure 2D DIC operates properly 

are: I) specimens have a planar surface; II) mainly in-plane deformations occur; 

III) the sensor plane of the camera is parallel to the specimen surface [4, 46]. 

These three factors are all linked to the inability of the 2D application of DIC to 

measure out-of-plane displacements. 

Figure 4.3 depicts how out-of-plane motions of the specimen can lead to errors 

in the DIC analysis when using a standard lens [45, 46]. Z represents the distance 

between the object and the camera, while L the image distance. When the 

object moves of a distance ΔZ towards the lens, the out-of-plane displacement 

would affect the image dimensions (X, Y) and so the strain calculated by the DIC 

software.  

  

Figure 4.3. Effect of out-of-plane movement of the specimen (translation towards the lens) 
on the in-plane displacements calculated by DIC.   

 

As defined by Sutton et al. [46], the resulting displacement (u horizontal, v 

vertical) and error strain can be measured as: 

u(ΔZ)≈ -L/(Z ) X∙ΔZ/Z                                                                       Eq (1) 

v(ΔZ)≈ -L/(Z ) Y∙ΔZ/Z                                                                       Eq (2) 

ε≈ -ΔZ/Z                                                                                          Eq (3) 



152 
 
When ΔZ is negative, meaning when the object is moved towards the camera, 

the error strain is positive, i.e. a higher extension (y direction). On the other 

hand, when a translation away from the lens occurs (positive ΔZ), the strain 

error is negative. By increasing the distance between lens and specimen (Z) the 

influence of some unavoidable out-of-plane displacements can be contained 

[46]. Besides, the use of telecentric lenses instead of standard ones can also 

help to increase the accuracy of the measurement [46].    

4.1.2 Evaluating the usefulness of DIC as a tool to measure strain 
across historic hangings through synthetic deformation 
fields 

Before employing 2D DIC for monitoring strain across large areas of historic 

hangings, the feasibility of the technique was first evaluated using a theoretical 

approach involving finite element analysis (FEA). This was done by Dr 

Alsayednoor, post-doctoral researcher working on the project and the main 

outcomes were presented in an article published in 2019 [47]. The method used 

by Dr Alsayednoor is based on the comparison of the 2D DIC outcomes from the 

analysis of the synthetic deformation of two images: I) a standard speckle 

pattern; II) the Florence tapestry from the Burrell Collection, Glasgow Museums 

(Figure 4.13). It is noted that a similar approach for validating DIC set-ups, by 

using FEA, can also be found in other studies [48, 49]. 

The comparison aimed to highlight whether the image of the tapestry was able 

to give results as accurate as those from the analysis of the speckled figure. Both 

starting images were deformed by applying displacement fields as indicated by 

the simulation; then the two sets of images were processed through DIC, to 

eventually compare the resulting strain data (calculated through VIC by 

Correlated Solutions). FEA was therefore used as a tool for predicting how a 

tapestry-like material would deform under the effects of self-weight loading, as 

the image was modified through the interpolation with the nodes of the FEA 

model. To make the prediction reasonably close to actual cases, the model 

(made through Abaqus) was fitted with parameters obtained from the 

mechanical characterisation of tapestry samples (the tests are presented in 

Section 3.2.1.1). Different scenarios were considered and modelled, adding 
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heterogeneities such as the presence of: I) stitched slits; II) open slits; III) local 

support patches.  

In general, the work was able to assess that probably DIC analysis would be 

successful, in the case of the tapestry under investigation and when such 

(relevant) deformations occur. It was stressed that the technique may still lead 

to inaccurate strain data, especially in case of different/less busy figurative 

designs. In addition, actual measurements may be influenced by the out-of-

plane movements of the textile object. The approach followed in the paper was 

indicated as a helpful pre-experimental strategy able to verify the suitability of 

a specific tapestry for DIC analysis, before conducting any monitoring.     

Despite some advantages, it should be pinpointed that the proposed pre-testing 

analysis presents a relevant limit, as it does not take into consideration 

experimental variables that may affect image quality. Indeed, the quality of the 

pattern and its suitability as correlation device depends on factors such as 

resolution and brightness. So, in general, to assess a priori whether a set of 

images of a specific tapestry could lead to accurate DIC data, a picture of the 

object in the same experimental conditions should be processed through the 

suggested pre-testing tool. However, this can be counterproductive, as it will 

lengthen the testing time.               

4.2 Materials and methods 

In this chapter, 2D DIC was employed to monitor strain across different textile 

objects. The tests aimed: I) to verify the feasibility of the optical technique in 

measuring displacements across case studies with different features; II) to 

investigate which parameters may affect the accuracy of the data; III) to study 

the mechanical damage mechanisms occurring in historic hangings once hung for 

their display. The studied textiles included one newly woven wool rep fabric 

with two speckle patterns applied, and five historic hangings. In the following 

paragraphs the case studies are described in detail, together with the monitoring 

set-up and data processing. 

It should be noted that the 2D DIC approach was preferred for the project due to 

limitations that 3D system may cause when setting the monitoring in situ. In 
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particular, this was first noted when preparing the monitoring of the 

contemporary tapestry in Stirling Castle, for which a camera was placed on the 

opposite wall of the hanging. Having a second camera for the 3D monitoring 

would have been problematic since the two needed to be synchronised and so at 

a fixed position, but the periodic need of changing the battery and memory card 

would have prevented that. Nevertheless, as just discussed in Section 4.1.1.2, it 

is important to underline that out-of-plane movements can lead to errors, so the 

2D approach could be non-ideal for tapestries. As later discussed, the 

occurrence of 3D movements was tentatively prevented through monitoring most 

of the case studies against a board/wall that limited air circulation.       

4.2.1 Case studies   

4.2.1.1 Wool rep sample 

Strain across a wool rep sample (37 x 37.5 cm) was monitored for 48 hours using 

2D DIC (specifications and mechanical behaviour of the fabric are described in 

Chapter 3). Two speckle patterns were applied to the sample, as shown in Figure 

4.4: I) a pattern with random dots of around 1 mm in diameter, obtained by 

using both a Stabilo OHPen Universal Marker™ (Fine, black) and a Sharpie 

Permanent Marker™ (fine, black); II) a spray pattern obtained by using a Montana 

Gold NC-Acrylic™ professional black spray paint.   

The test aimed to evaluate whether the two patterns can be used successfully as 

devices for DIC correlation. This would be helpful in defining the experimental 

conditions for the tests reported in the following chapters.   

Figure 4.4 represents the monitoring set-up. The sample was pinned from the 

top edge to a vertical board and the camera was placed parallel to the object, 

taking one picture per hour. A data logger was put close to the board, so as to 

monitor the environmental conditions.   
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Figure 4.4. Monitoring set-up of the wool rep sample with two speckle patterns applied: 
spray (left side), and dots (right side). 

 

4.2.1.2 Tapestries 

Five different tapestries were selected for testing the feasibility of 2D DIC in 

measuring strain across historic textile objects. Using various artworks with 

distinctive features (e.g. size, areal density, thread count, fibrous materials, 

figurative design) aimed to discriminate the impact of such variables in the 

analysis. Furthermore, factors affecting the image quality were also indirectly 

researched. Indeed, the monitoring set-up differed from case study to case study 

depending on the object and/or location specifications, e.g. different size of the 

artwork and/or the available lighting. The impact of these factors on the 

resulting image quality was also considered.  

In addition to the evaluation of the usefulness of the contactless technique, 

monitoring five tapestries enabled to study mechanical damage mechanisms 

affecting historic hangings while on display. A relevant aspect to consider 

through the investigation of historic case studies is whether the DIC approach 

could help locate defects before these become visible. Indeed, as discussed in 

Chapter 2, during the project in Southampton the optical method was proposed 
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as a possible preventive tool for anticipating damage and thus for indicating 

areas at risk and in need of conservation.    

TapestryFragment_1 

TapestryFragment_1, illustrated in Figure 4.5, belongs to the Karen Finch 

Reference Collection, based at the CTCTAH. The textile object, 160 cm high x 40 

cm width, has an areal density of 1.14 kgm-2 and it is made of wool (information 

confirmed by FTIR-ATR analysis of samples from weft and warp yarns). As Figure 

4.5 shows, at the time of the test, the fragment was structurally weak: it 

presented several open slits (highlighted by the red line in the picture) and some 

detached parts.  

 

Figure 4.5. TapestryFragment_1, Karen Finch Reference Collection, CTCTAH. Two open slits 
are highlighted in red. 
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Also when looking at the back of the tapestry it can be deduced that the 

fragment had a complex conservation history: some patches, made of pieces of 

hangings, were stitched on the back (Figure 4.6).  

 

Figure 4.6. Detail of the back of TapestryFragment_1. 

 

TapestryFragment_1 was selected for monitoring strain through 2D DIC (200-hour 

test) partly because of its weak condition, as it was thought that the effects of 

mechanical damage mechanisms would be more evident in such a poorly 

conserved piece. 

TapestryFragment_1 has a relatively low thread count, namely 4 warps x 14 

wefts per 10 mm. A magnified picture of the coarse weave structure of the 

historic hanging is provided in Figure 4.7.   

 

Figure 4.7. Weave structure of TapestryFragment_1 showing horizontal warps and vertical 
wefts, as it would hang (55x magnification). 
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TapestryFragment_2 

A second tapestry fragment belonging to the Karen Finch Reference Collection 

was monitored using 2D DIC for 168 hours. TapestryFragment_2 is depicted in 

Figure 4.8. Like TapestryFragment_1, it is characterised by different damaged 

areas. Namely, on the left part, extensive areas of bare warps are shown, while 

on the right, a large open slit is present, as better portrayed in Figure 4.9. The 

fragment has an irregular shape: it is 16.5 cm high on the right side and 61.5 cm 

on the left side. The top has a maximum width of 141.5 cm.  

 

Figure 4.8. TapestryFragment_2, Karen Finch Reference Collection, CTCTAH. 

 

 

Figure 4.9. Detail of the front of TapestryFragment_2 showing an open slit. 

 

Differently from the first fragment, in this case it can be noted that the 

figurative design is less busy, especially on the left-side area and bottom right-

side part, where a homogeneous brownish pattern is present. This could mean 
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that the response of the correlation algorithm in tracking strain may be different 

as the level of contrast here is less marked.  

Preliminary FTIR-ATR analysis assessed that TapestryFragment_2 is made of wool 

(warp and weft) and silk (weft). Unlike TapestryFragment_1, this historic textile 

has a relatively fine weave, as shown in Figure 4.10 (9 warps x 25 wefts per 10 

mm). 

 

Figure 4.10. Weave structure of TapestryFragment_2 showing horizontal warps and vertical 
wefts, as it would hang (57x magnification). 

 

Kesi 

In addition to historic tapestries from the European tradition, strain across a 

kesi, also belonging to the Karen Finch Reference Collection, was monitored. 

The circular shaped textile object, with a diameter of 80 cm, is shown in Figure 

4.11. It is important to note that the kesi is extremely light-weight, 11.40 g, 

especially when compared to the other tapestries studied.   



160 
 

 

Figure 4.11. Kesi, Karen Finch Reference Collection, CTCTAH.  

  

As mentioned in Chapter 1, kesi have the typical tapestry weave structure but 

they are mainly made of silk, instead of wool. Moreover the weave of kesi is very 

fine (i.e. 22 warps x 15 wefts per 10 mm, in this case study) and may present 

painted areas and metal threads, as shown in the magnified pictures of Figure 

4.12. Through Figure 4.12, the complexity of the weave of kesi can be observed, 

also noting how the geometry of weft yarns is not as regular as in the case of 

European tapestries. Indeed, it includes a round-shaped pattern, usually termed 

eccentric weaving. Another detail to highlight is that, when the studied kesi is 

displayed, coloured weft yarns run horizontally, and not vertically like in 

European traditional tapestries. As depicted in Figure 4.11, during the 

monitoring the kesi was displayed hanging vertically against a magnetic board. 

The Chinese artwork was suspended from the board using some small magnets 

placed on the top border. 
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a)  

b)  

Figure 4.12. Details of weave structure of kesi (58x magnification): a) area with metal 
threads; b) painted decoration and metal threads.  

 

Historic tapestry conserved with full support   

A historic tapestry from the Burrell Collection belonging to Glasgow Museums 

was monitored for 100 hours after being conserved with a full support 

treatment. The tapestry is called Two Episodes from a Chivalric Romance, 

perhaps the tale of Florence of Rome, abbreviated from this moment on to 

Florence. This test represents the first attempt of monitoring a historic hanging 

in its entirety, but also a first investigation through DIC on the mechanical 

behaviour of a tapestry after conservation.  

Table 4.1 gathers historical and manufacturing details of the studied tapestry, 

while Figure 4.13 depicts the historic hanging. From Figure 4.13b, taken in 

transmitted light, the poor mechanical condition of the tapestry before 

conservation is evident: there were many (failed) slits and areas of loss across 

the entire surface.      
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a)  

b)  

Figure 4.13. Florence tapestry: a) direct light; b) transmitted light. Registration number: 
46.93. © CSG CIC Glasgow Museums Collection.  
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Table 4.1. Details of Florence tapestry.2 

Title Two Episodes from a Chivalric Romance, perhaps the tale of 

Florence of Rome 

Date of manufacture Late 15th century 

Provenance Burgundy  

Size, height [cm] 207 (left) x 210 (right) 

Size, width [cm] 298 (top) x 301 (bottom) 

Weight [kg] 4.9 (before wet cleaning, although no extensive loss of original 

material was noticed after the treatment) 

Fibre, warp Wool (Z twist 3 x S plied) 

Fibre, weft Wool (Z twist 2 x S plied); 

Silk (Z twist 2 x S plied) 

Thread count 7 warps x 11 wefts per 10 mm 

 

The tapestry underwent two main phases of the conservation process: while the 

first consisted of the application of a linen full support stitched through a grid 

lined system (42.5 mm distance between grid lines, leaving 10 mm excess of 

fabric), the second concerned local treatments, like slits re-stitching. The local 

treatments were carried out through the support fabric. The strain monitoring, 

whose results are presented in this chapter, was carried out right after the first 

phase of conservation, i.e. the application of the linen full support.   

Contemporary tapestry at Stirling Castle  

Besides the historic hangings described in the previous paragraphs, a 

contemporary tapestry was monitored using 2D DIC. The tapestry, originally 

called The Mystic Hunt of the Unicorn but here referred with the name Unicorn 

tapestry for simplicity (details in Figure 4.14), was woven by the West Dean 

Tapestry Studio. This was done as part of a project that involved the Studio 

between 2001 and 2013, aiming to reinterpret the series of the Hunt of the 

Unicorn, originally made in the Netherlands between the late XV-early XVI 

century. The historic set of tapestries now belongs to the Metropolitan Museum 

of Art and it is on display at the Cloisters Museum [50, 51]. The weaving of the 

new series was commissioned by Historic Scotland and it is part of a big 

 
2 Data taken from the condition report by Meggie Dobbie (Glasgow Museums), 2011.  
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renovation project by the organisation, aiming to reproduce the original 

appearance of the XVI century Scottish castle [51].     

   

a)  b)  

Figure 4.14. Details of Unicorn tapestry. The figurative design of the contemporary piece 
was greatly inspired by that of The Unicorn Surrenders to a Maiden belonging to the 
Metropolitan Museum of Art (accession number: 38.51.2). 

 

Also for ethical reasons, the new Hunt of the Unicorn set was woven introducing 

some significant differences from the original pieces. For instance, the new 

weave structure is less fine (4 warps, instead of 8, per 10 mm) and the metal 

threads are wrapped in gold instead of silver leaf [51]. In addition, the warp 

threads are made of cotton, not wool, and the woollen weft yarns are dyed with 

synthetic colourants instead of natural ones. In 2015, Smith et al. published a 

study on the mechanical properties of the fibrous materials employed in the 

contemporary hangings, with the aim of providing information on the conditions 

of wool and cotton yarns at t0, before the occurrence of any degradation process 

[50].  
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Regarding the size, it is reported that the contemporary tapestries are around 

10% smaller than the original ones [51], meaning that the case study has a total 

length of around 180 cm.  

Once completed, the contemporary tapestries were hung on the wall of Stirling 

Castle (Queen’s Inner Hall), where the artwork has been monitored since first 

hung (June 2015) until August 2020.  

4.2.2 Monitoring set-up and strain calculation   

The strain monitoring of both wool rep sample and actual tapestries was carried 

out by taking one picture per hour, although the duration of the test varied from 

case study to case study (Table 4.2). This was done automatically, using an auto 

shutter connected to the camera, alongside a charger kit that prevented the use 

of batteries. At all times, the camera was fitted on a tripod (in the case of the 

monitoring at Stirling, fixed on the wall). All these precautions were needed to 

maintain a constant distance between lens and specimen and to prevent any 

movement of the camera.  

The first picture was taken within around the first 10 seconds of the textile 

object being hung (to track displacement post self-weight loading) but after two 

hours of the camera being turned on, to avoid lenses distortion. A Canon EOS 

1000D™ (manual mode, no flash, 100 ISO, f/8 aperture, exposure time 1/4 s)3 

was employed for all the tests, except for the monitoring of the tapestry at 

Stirling, where a Nikon D7000 was employed. Both cameras have a CMOS sensor.   

2D DIC analysis was performed on the acquired images using Vic-2D 2009 by 

Correlated Solutions. The following parameters were employed: optimised 8‐tap 

interpolation shape function, normalised squared differences and Gaussian 

weights, exhaustive search, low‐pass filter, and incremental correlation. These 

parameters were chosen following recommendations from Dr Alsayednoor, who 

found them to be the most suitable for accurate results in similar conditions 

[47]. Since such details of the correlation algorithm were evaluated by the post-

 
3 The camera set-up was selected following recommendations from Iona Shepherd (Glasgow Life), 

Santiago Arribas Peña (photographer with Historic Scotland), Stephen McCann and Sam Dyer 
(University of Glasgow Photo Unit). The recommendations took into consideration the different 
lighting conditions and the need to avoid image noise. 
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doctoral researcher working on the project, they were not further considered in 

this thesis. A subset size of 61 and a step size of 5 were selected for all case 

studies. In certain cases, the analysis was repeated by processing the set of 

images with a lower subset size (31) or step size (3), so as to assess the impact 

of such parameters in the measurement of displacement. The Hencky strain was 

calculated using the DIC software and the data were then transferred to MATLAB 

to allow further analysis. In particular, through MATLAB, strain data across 

specific areas of the investigated objects were averaged, following the method 

first proposed by the research group in Southampton [1]. Namely, once the data 

were transferred in MATLAB, a strain map of the object at the end of the test 

was opened and, from that, the area of interest was selected. MATLAB mean 

function was then used for averaging the data so as to obtain one strain value 

representing the deformation of the area during each moment of the monitoring. 

This allowed the definition of deformations affecting the overall surface of the 

studied textiles, even when local strain data were expected to be unreliable 

from what indicated by the sigma maps. Furthermore, the method was useful to 

study how different regions of the object moved, in particular to distinguish the 

behaviour across open slits from that across the rest the artwork.       

Table 4.2 provides details of the monitoring tests and details of the 

experimental design, highlighting the justifications that led to the choice of the 

case studies. It is added that artificial lighting was used during all the 

experiments (except for Unicorn tapestry, illuminated by natural light) and that 

all the textile objects were displayed against a vertical surface, i.e. a board or 

the wall (not covered to prevent friction), to avoid out-of-plane movements 

(except for Florence, which was free-hanging).  

A data logger (Hanwell Pro ML4000) was placed close to all case studies to 

record the environmental conditions (RH and temperature) every 15 minutes. 

This was needed as the environmental parameters were unstable in all the 

monitoring locations. Temperature data are not discussed in the following 

paragraphs as they were found to be usually more stable than RH and always 

unrelated to strain measurements. 
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Table 4.2. Details of monitoring tests and of the experimental design. 

Object code Hypothesis  Monitoring 

Location 

Test 

duration 

Limitations of 

DIC analysis   

Wool rep The wool rep fabric, 

with a proper speckle 

pattern applied, can be 

used as a representative 

material for evaluating 

the efficacy of 

conservation strategies 

through DIC  

Photo Studio  

Robertson 

Building 

48 hours Possible out-of-

plane 

movements, 

contained by 

the presence of 

a board behind 

the object 

TapestryFragment_1 DIC can be used to track 

strain across areas of 

tapestries larger than 

10 cm2 and it allows to 

gather data on the 

mechanical behaviour, 

especially in the case of 

highly damaged 

artefacts  

Photo Studio  

Robertson 

Building 

200 hours Possible out-of-

plane 

movements, 

contained by 

the presence of 

a board behind 

the object 

TapestryFragment_2 DIC can be used to track 

strain across areas of 

tapestries larger than 

10 cm2 and it allows to 

gather data on the 

mechanical behaviour, 

even when the pictorial 

motif is homogeneous  

Project 

Room  

Robertson 

Building 

168 hours Possible out-of-

plane 

movements, 

contained by 

the presence of 

a board behind 

the object 

Kesi Silk artefacts, besides 

wool hangings, can be 

successfully monitored 

through DIC 

Project 

Room  

Robertson 

Building 

68 hours Possible out-of-

plane 

movements, 

contained by 

the presence of 

a board behind 

the object 

Florence Information on the 

mechanical behaviour 

of tapestries, especially 

recently conserved 

ones, can be gathered 

from their full-field 

monitoring  

Textile 

Conservation 

Studio 

Glasgow Life 

100 hours Air circulation 

promoted by 

conservators 

working below 

the tapestry 

(suspended 

from a batten) 

possibly leading 

to out-of-plane 

movements 

Unicorn tapestry Information on the 

mechanical behaviour 

of tapestries, especially 

contemporary ones 

exposed to wide RH 

levels, can be gathered 

Queen’s 

Inner Hall 

Stirling 

Castle 

5 years4 Uneven lighting; 

movement of 

the camera 

when changing 

battery/memory 

card; possible 

 
4 It is noted that data were not reliably gathered for all the 5-year period, as discussed in Section 

4.3.2.5.  
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from their full-field 

monitoring  

out-of-plane 

movements, 

contained by 

the presence of 

the wall behind 

the object 

 

4.3 Results and discussion 

4.3.1 Wool rep sample 

Strain across a wool rep fabric sample with two different speckle patterns 

applied (dots and spray) was monitored through 2D DIC for 48 hours. This test 

aimed to evaluate the suitability of two patterns as means for correlation. The 

results were useful to define the experimental conditions for the following 

chapters, as wool rep specimens were employed to compare treatments and 

display methods for tapestries.    

4.3.1.1 Causes of strain 

The average strain (longitudinal and horizontal) calculated across the entire 

surface of the wool rep fabric is plotted in Figure 4.15. Together with the strain, 

humidity fluctuations are reported in the same graph. From Figure 4.15, it is 

clear that there is no direct proportionality between time and strain, since there 

was not a constant increase in either εxx or εyy during the 48 hours of monitoring. 

However, strain in both directions was demonstrated to change according to 

variations in humidity, that fluctuated between a maximum of 53.4% and a 

minimum of 45.3%.  
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Figure 4.15. Mean εxx and εyy [%] of the wool rep sample with two speckle patterns during 
the 48-hour monitoring. RH [%] is indicated by the dotted line.  

 

In Figure 4.16 the good linear relationship between strain, both εyy and εxx, and 

RH is stated, as the coefficients of determination, R2 (a statistical measure to 

define the linearity between two variables), are close to 1. Longitudinal strain 

data gave a better fit (R2 0.96) than εxx (R2
 0.90). 

a)  
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b)  

Figure 4.16. Mean strain [%], longitudinal (a) and horizontal (b), during the 48-hour 
monitoring of the wool rep sample plotted against RH [%].  

 

The registered extensions/contractions, especially those in the vertical 

direction, were probably due to variations in weight of the woollen sample 

because of absorption/desorption of water from the environment. This indicates 

the occurrence of fatigue mechanisms. However, since changes occurred also in 

the horizontal direction, this reveals that humidity variations were also 

responsible for the swelling of the fibrous material.  

As mentioned in Chapter 2, when considering the effects of fatigue, it is 

important to underline that the linear relationship between strain, due to 

changes in weight, and RH can only be observed within specific intervals, such as 

the one experienced during the monitoring (45-53% RH). Indeed, the response of 

moisture content within natural fibres, thus including wool, from 0 to 100% RH, 

is sigmoidal and not linear. In addition, the complex relationship between 

moisture uptake and humidity conditions is also linked to: I) the difference in 

rate between absorption and desorption; II) the hysteresis phenomenon; III) the 

prolonged time needed for the water content to reach the equilibrium [10, 52]. 

As mentioned in Section 2.2.1.2, this means that data gathered on the strain 

response of the case studies here investigated to RH fluctuations would be 

unable to build an accurate mathematical model for predicting the mechanical 

behaviour of tapestries. In general, the damage function would not be linear, 

and additionally it would need to consider several parameters characteristic of 

each artwork, as also proved by the tests in Chapter 3. Although modelling the 



171 
 
behaviour of historic hangings goes beyond the objectives of the current study, 

gathering more data though the monitoring represents a crucial step [53]. 

In Figure 4.17 the strain maps of the sample are shown. It is interesting to note 

that the εyy map reveals alternating areas of high and low strain on the side with 

the spray pattern applied (left side of the sample, indicated by the dotted red 

line). On the other hand, εyy across the right-side area with dots is more 

homogeneous. 

 

Figure 4.17. Strain maps, εxx and εyy [%], of the wool rep sample with two speckle patterns 
(spray pattern on the left side, dotted pattern on the right side) at the end of the 48-hour 
monitoring. 

         

4.3.1.2 Evaluation of artificial speckle patterns as correlation devices 

Some first observations on the accuracy of the two patterns can be drawn from 

the error map in Figure 4.18. Figure 4.18 illustrates the errors in the 

investigated area expressed in sigma, where sigma represents the confidence 

interval for the match at that point in pixels. In Vic-2D software, high sigma 

indicates low confidence, while the closer sigma is to 0, the more (statistically) 

likely the values are to be correct [54]. It is highlighted that no further 

explanation is given by Correlated Solutions on how the data are generated in 

Vic-2D [54].  
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From Figure 4.18, it can be stated that the spray pattern gave less accurate 

results compared to the dotted one. It seems likely that this contained 

efficiency mainly affects the accuracy of strain data on a small-scale level; this 

would justify the alternating (small) areas of high and low strain observed in the 

strain map of Figure 4.17. The lower accuracy of the spray pattern may be due 

to the textile features: the wool fabric presents a hairy surface that prevented 

the paint from properly depositing, hence the paint only stained the hairs. This 

eventually resulted in a relatively homogeneous black pattern, not properly 

adhered to the moving surface.      

     

Figure 4.18. Error map expressed in sigma [pixel] of the wool rep sample with two speckle 
patterns (spray pattern on the left side, dotted pattern on the right side) at the end of the 48-
hour monitoring. 

 

  

The average longitudinal strain data across the two areas with spayed and 

dotted patterns were then calculated, separately to allow their comparison. 

From the observations drawn in the previous paragraph, it is expected that the 

strain data from the analysis of the dotted pattern would better fit the RH 

values. This is confirmed when looking at graphs in Figure 4.19, depicting the 

linear fitting of strain against humidity. Since the coefficient of determination R2 

is very close to 1, ≈ 0.97, this proves the good fitting of the data from the 

pattern with dots. It should be underlined that the average strain from the 

sprayed area was also shown to be directly proportional to RH, however with a 
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worse fitting (R2 ≈ 0.94) perhaps indicating lower accuracy and higher errors. It 

is important to note that two groups of εyy data in Figure 4.19 are clearly 

represented by different equations, with different slope as well as x axis 

crossing. This likely reflects divergency in the accuracy.    

 

Figure 4.19. Mean longitudinal strain calculated across the area with dotted pattern (green) 
and sprayed pattern (purple) against RH [%]. 

 

From a quantitative point of view, the maximum longitudinal strain reached was 

around 0.03%, that, considering a total length of 37 cm, corresponds to an 

extension of around 0.01 cm. On the other hand, the minimum strain was -0.02% 

and it can be translated as a compression of around 0.007 cm. Therefore, the 

DIC outcomes demonstrated that only minimal and reversible variations 

occurred. Nevertheless, the technique proved to be sensitive enough to properly 

detect such displacements, more accurately when the dotted pattern was used.  

Both the very good linearity between strain and RH, as well as the reasonable 

quantitative strain data, established the viability of 2D DIC as a monitoring tool 

in similar experimental conditions. Although the past research in Southampton 

already looked at the influence of dotted patterns applied on a similar wool rep 

fabric (see review in Section 2.2.1) [1, 55], the outcomes could not be directly 

related to the current study. Therefore, the tests presented in this section were 

needed to better adapt to the aims and methodology of the research in this 
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thesis. As a main difference, here 2D DIC was selected, while 3D DIC was 

preferred by the previous research group. In addition, the sizes of woollen mock-

ups for testing conservation approaches (Chapter 5 and 6) would need to be 

bigger than those considered in the experiments from 2010 (15 x 5 cm [1]). 

Because of this, a larger wool rep sample was here tested.  

4.3.1.3 Evaluation of DIC parameters: subset size, step size 

The 2D DIC analysis of the wool rep fabric was repeated using different 

parameters than those employed for the strain measurements presented in 

sections 4.3.1.1 and 4.3.1.2. In the previous paragraphs the set of images was 

processed using a subset size of 61 and a step size of 5, while in this paragraph 

lower subset and step sizes were selected to analyse the same set of images. 

The aim of this series of tests was to understand whether these DIC parameters 

may have an impact on the data. 

Figure 4.20 presents the strain data calculated across the dotted area of the 

wool rep sample, when using the different parameters. Similarly, Figure 4.21 

shows the trend of the strain data measured, with the various subset and step 

sizes, across the area with the sprayed pattern. Already from these graphs, it 

can be noted that the strain calculation seems to be scarcely affected by 

decreasing the step size from 5 to 3, or the subset size from 61 to 31. Indeed, a 

more significant difference was underlined between the measurements on the 

two areas with different patterns (Section 4.3.1.2).  

It should be underlined that, since the real value of strain and displacement is 

not known, it is not possible to properly define accuracy. Therefore, in this case 

the deviance from the 61_5 data is considered. In general, such parameters are 

proposed as the most convenient in comparison to the others. Indeed, a step size 

of 5 would shorten the correlation calculation time, while a subset size of 61 can 

be considered more appropriate to the type of homogeneous deformation 

studied [47].    



175 
 

 

Figure 4.20. Mean εyy [%] calculated across the area with dotted pattern using different DIC 
parameters: 31 as subset size, 5 as step size (green line); 61 as subset size, 5 as step size 
(orange line); 61 as subset size, 3 as step size (blue line).  

  

  

Figure 4.21. Mean εyy [%] calculated across the area with sprayed pattern using different DIC 
parameters: 31 as subset size, 5 as step size (green line); 61 as subset size, 5 as step size 
(orange line); 61 as subset size, 3 as step size (blue line).  

 

The good agreement of the data obtained from processing the images with the 

different sets of parameters is also stated from the linear fitting, as shown in 

Figure 4.22. The R2 values from the fitting of the three different sets of data are 

reported in Table 4.3: in all three cases, R2 is between 0.97-0.98. Importantly, 

slope and x axis crossing of the three plots are alike. This differs from what 

observed from the comparison of the two patterns (Figure 4.19). Because of this, 
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it can be suggested that subset and step sizes had less an impact on the 

accuracy of data than the type of pattern applied.    

 

Figure 4.22. Mean εyy [%] calculated across the area with dotted pattern using different DIC 
parameters.  

 

Table 4.3. R2 from the linear fitting of εyy [%] calculated from the DIC analysis of the wool rep 
sample (dotted pattern) with different parameters.  

Subset Size – Step Size R2 

31 - 5 0.9786 

61 - 5  0.9743 

61 - 3  0.9770 

 

4.3.2 Tapestries 

As done for the wool rep sample, 2D DIC was used to monitor strain across five 

different tapestries. The test aimed to define the usefulness of DIC when 

considering actual historic textile objects as case studies. Moreover, the 

experiments pointed to the identification of mechanical damage mechanisms 

affecting tapestries when on display. 
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4.3.2.1 TapestryFragment_1 

Strain across TapestryFragment_1 was monitored for 200 hours using 2D DIC. At 

the time of the experiment, the historic hanging was evidently in weak 

condition.  

Figure 4.23 and Figure 4.24 report globally averaged εxx and εyy data obtained 

from the monitoring of TapestryFragment_1, respectively. In the two figures RH 

fluctuations are also indicated. It is clear that the overall strain across the entire 

surface of the fragment, in both the horizontal and longitudinal direction, is 

strongly linked to the variations in humidity. This shows the occurrence of 

fatigue and swelling, as observed for the wool rep fabric (Paragraph 4.3.1.1). It 

is highlighted that mean εyy was greater than εxx. This can be expected, as self-

weight loading would contribute to the longitudinal extension of the fragment, 

and more greatly in this case study since the fragment has a longitudinal shape 

and so its weight is mainly distributed in the vertical direction. On the other 

hand, loading is not expected to impact strain variations in the horizontal 

direction, therefore swelling can be considered responsible for εxx variations.  

It is noted that, although changes in lengths promoted by RH variations are 

expected to be reversible and discrete, these can be detrimental on a long term 

due to their cycling nature, possible determining failure. Indeed, strain cycling 

may lead to fretting process, as neighbouring threads move against each other 

with friction. Therefore, when historic hangings are exposed to uncontrolled 

environments, the constant friction can cause the rupture of wool, already 

strained by the self-weight loading. As mentioned in Chapter 2, the actual 

damage caused by fretting fatigue in tapestries is still debated [10]. 

Nevertheless, according to the study conducted in 2015 by Bratasz et al., no 

remarkable damage should occur over a 274-year period in tapestries that 

experience strain (up to 1%) due to RH fluctuations [10].      



178 
 

 

Figure 4.23. Mean εyy [%] calculated across the entire surface of TapestryFragment_1 
against time. RH [%] fluctuations are indicated by the dotted line.  

 

 

Figure 4.24. Mean εxx [%] calculated across the entire surface of TapestryFragment_1 
against time. RH [%] fluctuations are indicated by the dotted line. 

 

The good linear fitting of the strain data against the RH values, indicated by 

Figure 4.25 and Figure 4.26, confirms the accuracy of the outcomes from the DIC 
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analysis. In this case, this is particularly important as it proves the feasibility of 

2D DIC for monitoring larger areas of historic textiles than those previously 

researched [2]. 

  

Figure 4.25. Mean εyy [%] across TapestryFragment_1 plotted against the changes in RH [%]. 

 

 

Figure 4.26. Mean εXX [%] across TapestryFragment_1 plotted against the changes in RH [%]. 
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Figure 4.27 shows the error map of TapestryFragment_1. Since the sigma values 

across the entire surface are largely comparable, this can indicate that, in 

general, the figurative pattern was successful as the correlation device. 

 

Figure 4.27. Error map expressed in sigma [pixel] of TapestryFragment_1 at the end of the 
200-hour monitoring. 

 

Figure 4.28 depicts the longitudinal strain map of the historic hanging at the end 

of the experiment. Overall, the fragment appeared to be largely affected by a 

longitudinal strain below 0.15%, as also indicated by the data plotted in Figure 

4.23. From the map, some weak and damaged areas can be easily located, as 

they correlate to regions of high local strain, pinpointed in red. These locations 

of high strain mainly correspond to pre-existing open slits, such as those within 

the dotted squares in Figure 4.28. When observing the strain maps at different 

moments, it could be noted that the high strain across the slits progressively 
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augmented, while the overall strain changed unevenly with time as it followed 

the unstable humidity. 

 

Figure 4.28. Longitudinal strain map of TapestryFragment_1 at the end of the 200-hour 
monitoring.  

 

This observation was validated thanks to strain data registered across the six 

open slits. In these damaged areas, εyy augmented with time, as shown by the 

graphs in Figure 4.29. It is important to underline that the data describing the 

deformation affecting the slits cannot be defined as actual strain. Indeed, the 

slits progressively enlarged during the experiment, so the data portray the 

interpolated displacement, rather than the strain. Therefore, from this moment 

on, the outcomes averaged from the slits/damaged areas are referred to as 

pseudo strain.  
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Figure 4.29. Pseudo εyy [%] acting across the slits versus time. RH [%] fluctuations are 
indicated by the dotted line. 

 

As just said, pseudo strain was largely influenced by time. However, the 

environmental conditions may have had some (limited) effects on it. For 

instance, it is clear that the steep rise in humidity registered between the 60th 

and the 80th hours promoted a more drastic increase in the local pseudo εyy. 

Since pseudo strain was shown to mainly depend on time, it can be suggested 

that the mechanical damage mechanism occurring in the weak areas can be 

defined as creep. Such time-dependent mechanism is expected to be, at least 

partly, irreversible, causing much faster and more evident damage processes 

than those due to fatigue.   

Besides the high strain in correspondence to the damaged areas, also the top 

border seemed to extend more than the rest of the fragment. However, it is 

thought that the high εyy data are unrelated to creep-like mechanisms, or to the 

self-weight loading expected when going from the unloaded horizonal position to 

the vertical one, as modelled by Duffus [56] and in Section 5.1.4. Instead, it is 

hypothesized that the high strain could be due to: I) errors caused by out-of-

plane movements; II) the un-crimping of weft yarns. The first option seems more 

likely, as the outcomes from other tests carried out on the same tapestry 

fragment, and presented in the following chapters, do not show the same strain 

at the top border.     
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It is important to underline that, besides the open slits just described, no other 

defects could be tracked through the strain maps. This indicates that the 

technique was not able to detect other non-visible weak areas that may have 

been present in the artefact. Therefore, under the same experimental 

conditions, DIC seems unfeasible as a preventive tool for anticipating locations 

prone to creep. Nevertheless, it should be noted that the test only lasted 200 

hours, so possibly the time span was too short for allowing minimal (and still 

invisible) defects to form and be tracked.        

4.3.2.2 TapestryFragment_2 

As done for TapestryFragment_1, strain across another piece of historic hanging 

was monitored through 2D DIC, in this case for 168 hours. TapestryFragment_2 

was also in evident weak condition and it presented extensive areas of loss. The 

experiment further trialled DIC feasibility for monitoring strain across actual 

textile objects, and, in particular, the sensitivity of the optical technique to a 

different figurative pattern. 

In Figure 4.30 the sigma values across the entire surface of TapestryFragment_2 

are mapped, giving a first indication of error distribution. It is shown that the 

areas with the less busy figurative pattern, namely the brownish/reddish part at 

the bottom right corner, were probably going to provide less accurate data (high 

sigma, low confidence) than those from the top right-side area (low sigma, high 

confidence), e.g. in correspondence to the detailed oval motif, already depicted 

in Figure 4.9. As first discussed in Section 4.3.1.2, the sigma map provides an 

indication of the accuracy of strain data, highlighting the ability of the pattern 

of ensuring proper correlation.      
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Figure 4.30. Error map expressed in sigma [pixel] of TapestryFragment_2 at the end of the 
168-hour monitoring. 

 

Figure 4.31 presents the strain map at the end of the 168-hour monitoring of 

TapestryFragment_2. Figure 4.31 illustrates the difficulty of the optical 

technique in properly tracking strain in certain areas, as predicted from the 

sigma mapping. As previously observed, wherever there were some issues with 

the measurements (i.e. areas of high sigma values, low level of confidence), in 

the strain map there are alternating small areas of relatively high and low strain. 

Namely, this can be observed in the region at the bottom right corner. Again, 

this likely indicates that the homogeneous pattern in this area did not allow 

proper correlation and led to errors. An area of high strain is shown at the 

bottom of the oval design. This area corresponds to a long open slit (detail in 

Figure 4.9), that presumably widened up during the test. It is underlined that no 

other defects or weak areas were clearly noted.   
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Figure 4.31. Longitudinal strain map of TapestryFragment_2 at the end of the 168-hour 
monitoring. The area delineated by the dotted line refers to an open slit.  

 

The trend of the average longitudinal strain is illustrated in Figure 4.32, 

together with humidity variations. It is noted that strain data from areas with 

unsuitable pattern for correlation were excluded from the calculation of the 

average εyy. By looking at the graph in Figure 4.32, the influence of RH on the 

overall strain is clear. It should be pinpointed that humidity rose less remarkably 

than during the monitoring of TapestryFragment_1. In this case, the main 

increase in RH, from around 34% to around 43%, occurred during a time-lapse of 

50 hours (60th-110th hour). Because of this, also the overall increase in length of 

the fragment linked to fatigue was more contained (maximum overall εyy 0.13%) 

than that registered in the previous test. Another factor that may have 

contributed to the less extensive longitudinal strain on TapestryFragment_2 can 

be linked to its horizontal, rather than vertical, shape. The very good linearity 

between strain and humidity was observed also for overall εxx, confirming the 

occurrence of fatigue and swelling in both longitudinal and horizontal direction. 
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Figure 4.32. Mean εyy [%] calculated across TapestryFragment_2 against time. RH [%] 
fluctuations are indicated by the dotted line.  

 

Figure 4.33 depicts the longitudinal pseudo strain registered across the long 

open slit below the oval motif. As noted for the slits in TapestryFragment_1, also 

in this case the data demonstrate that the damaged area enlarged progressively 

with time, possibly indicating the occurrence of a creep-like mechanism. Again, 

humidity appears to impact, up to a certain level, pseudo εyy.  

 

Figure 4.33. Pseudo εyy [%] calculated across the slit in TapestryFragment_2 against time. 
RH [%] fluctuations are indicated by the dotted line. 
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4.3.2.3 Kesi 

In addition to European woollen tapestries, 2D DIC was employed to monitor 

strain across a light-weight Chinese silk kesi for 68 hours. This experiment aimed 

to further assess the feasibility of the optical method for studying mechanical 

deformations in textile objects, also when they include different manufacturing 

features than traditional European tapestries.  

The error map and the strain map at the end of the monitoring are shown in 

Figure 4.34 and Figure 4.35, respectively. Both maps state that the pattern of 

the border of the textile object is probably unsuitable as the correlation device, 

since it shows relatively high sigma and it provides inaccurate strain data on a 

local level (alternated areas of high and low strain).  

 

Figure 4.34. Error map expressed in sigma [pixel] of the kesi at the end of the 68-hour 
monitoring (61 subset size, 5 step size). 
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Figure 4.35. Longitudinal strain map of the kesi at the end of the 68-hour monitoring (61 
subset size, 5 step size). 

 

Figure 4.36 portrays the fluctuations in the εyy, averaged from the overall 

central area of the kesi (borders excluded), while Figure 4.37 shows length 

variations in the horizontal directions. As observed for the other case studies 

made of wool, the Chinese silk tapestry also extended and contracted following 

RH trends. Although tracking such changes is relevant as this demonstrates the 

validity of the monitoring technique also in this case study, these dimensional 

variations should be expected to happen since silk, like wool, is a hygroscopic 

material [57]. As discussed in more detail in Chapter 2, silk shows a more 

contained moisture regain than wool. This could partly explain the relatively low 

extension of the object during the RH increases, namely the one registered 

between 15-25 hours from 44% to 55% (maximum overall εyy 0.005%). Moreover, 

the low areal density of the kesi, in opposition to that of European tapestries, 

may have limited the effects linked to the self-weight loading. In general, the 

humidity decreased during the experiment, causing the object to contract rather 

than extend.  
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Figure 4.36. Mean εyy [%] calculated across the kesi against time. RH [%] fluctuations are 
indicated by the dotted line.  

 

 

Figure 4.37. Mean εxx [%] calculated across the kesi against time. RH [%] fluctuations are 
indicated by the dotted line.  

 

4.3.2.4 Historic tapestry conserved with full support 

A historic tapestry from the Burrell Collection was monitored for 100 hours. 

Unlike the experiments presented in the previous sections that only dealt with 

relatively small historic hangings (though larger than those tested in 

Southampton [2]), in this case a 2x3 m tapestry was considered. Inevitably, 

capturing the entire surface of Florence causes a certain loss of detail (lower 

resolution), so this test was important to assess whether the full-field 
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application of DIC can be useful for textile objects of such sizes. Another 

objective was to define the mechanical damage mechanisms occurring across a 

historic hanging while on display right after being conserved with a linen full 

support.   

Before starting the analysis, by looking at the pictures taken, it was clear that 

the lower part of the tapestry moved. These out-of-plane displacements were 

caused by the (contained) air circulation within the workshop, while the object 

was hanging freely from a batten. Since 3D movement affects the accuracy of 2D 

DIC analysis, only the top half of the hanging was considered as ROI.  

Sigma values across the analysed area are plotted in Figure 4.38, while the 

related εyy map is shown in Figure 4.39. Figure 4.38 outlines as areas of higher 

sigma (lower accuracy) regions with homogeneous figurative patterns, such as 

the tower in the centre, or the architecture around the borders.  

 

Figure 4.38. Error map expressed in sigma [pixel] of Florence at the end of the 100-hour 
monitoring (61 subset size, 5 step size). 

 

By looking at the strain map of Figure 4.39, the same locations of high sigma 

correspond to areas of relatively high and low strain. Again, this can be linked to 
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DIC miscalculating local strain. As discussed later, the miscalculation can be due 

to the lack of contrast in the image, negatively affected by the low resolution on 

a small-scale level.         

 

Figure 4.39. Longitudinal strain map of Florence at the end of the 100-hour monitoring (61 
subset size, 5 step size). 

 

Overall longitudinal strain across the upper half of the tapestry is shown in 

Figure 4.40. By looking at the graph, mean εyy was demonstrated to follow two 

different trends: one defining the behaviour during around the first 24 hours of 

monitoring, the other describing a different mechanical mechanism between the 

25th and the 100th hours. Right after being hung, as well as during the entire first 

day of display, the tapestry was shown to elongate constantly with time. 

Importantly, this occurred regardless of a drastic drop in RH (from 44% to 35%) 

registered in the same time-lapse. After around the first 24 hours of display, the 

trend changed and strain across the historic hanging was found to depend more 

greatly on humidity. 

From these observations, it can be suggested that at the beginning of the test a 

time-dependent deformation occurred, determining an overall elongation of the 
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textile object in the weft direction. The initial time-dependent mechanism can 

be justified by the uncrimping of the fibres and the re-adjusting of the weave 

structure subjected to the self-weight loading after a long period of storage. 

From the second day of display onwards, fatigue was the dominating mechanical 

damage mechanism. 

 

Figure 4.40. Mean εyy [%] during the 100-hour monitoring of Florence tapestry. RH [%] 
fluctuations are indicated by the dotted line. 

 

The maximum overall strain registered was ≈ 0.1%, in correspondence to the 

maximum RH reached, 44%; this would indicate an extension of 0.06 cm (initial 

length analysed of ≈ 60 cm). Although the order of magnitude of strain data is 

comparable to that of other studies on fully conserved tapestries (considering a 

longer monitoring period, i.e. 25 days) [58], it is not possible from this test 

alone to define the (potential) supporting effects of the linen on the back: 

monitoring the tapestry before the conservation treatment would have enabled 

a better evaluation of the treatment.    

The ability of DIC in demonstrating the occurrence of fatigue from the second 

day on gives a certain confidence to the overall strain data gathered, since it 

agrees with what was reported in the previous sections. However, it is noted 

that the linearity between strain and RH is not as good as that from other tests. 



193 
 
Indeed, as indicated by Figure 4.41, the R2 is only 0.75. This poorer linearity 

could be linked to hysteresis effects, but it may also indicate a lower accuracy in 

the measurements. This could be due to different factors, namely: the 

insufficient greyscale contrast affecting the image processing algorithm; the 

appearance of out-of-plane displacements. Besides the figurative design, it is 

thought that the size of the monitored object prevented the acquisition of 

images with a high resolution on a small-scale level. This could have negatively 

affected (local) greyscale contrast and so strain calculation. For the same 

reason, such full-scale monitoring is probably unable to detect weak areas like 

slits, even when visible.   

 

Figure 4.41. Mean εyy [%] across Florence tapestry against RH [%] (25-100 hours). 

 

4.3.2.5 Contemporary tapestry at Stirling Castle 

In addition to historic tapestries, a contemporary hanging, Unicorn tapestry, 

made of wool (weft) and cotton (warp) was monitored. As done for Florence, 

also in this case the full-field application of 2D DIC was tested. However, the 

monitoring lasted longer than in the previous cases, as it started in 2015, when 

the tapestry was first hung in the Castle, until August 2020. This was possible 

thanks to a camera placed on the opposite wall of the room, taking one picture 

per hour. The memory card was changed when full, i.e. around once a month. 

However, it was later found that whenever this was done, the device was 
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slightly moved, preventing the correlation of the sets of images acquired at 

different moments.   

When observing the pictures taken during the long-term monitoring, a first 

potential issue for the DIC analysis was shown to be the uneven lighting. Indeed, 

no artificial lighting was used in the room, so the quality of pictures greatly 

depended on the natural light coming from the two windows at the sides of the 

tapestry. Because of this, most of the photos taken were very dark, and thus not 

suitable for correlation, as in the example in Figure 4.42. Whenever the image 

quality was too low, the VIC-2D software excluded the pictures from the 

analysis.   

  

Figure 4.42. Picture from the monitoring of the Unicorn tapestry. The photo, taken at 10:30 
pm on the 23/07/2015, was not suitable for 2D DIC analysis. 
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It was noted that, in the current position, the tapestry has the best light 

exposure at around 10:30 am. Therefore, it was possible to process through the 

software some of the photos taken at this time. In particular, all the images 

from the first month of monitoring, when the tapestry was first hung on the wall 

of the Queen’s Inner Hall, were suitable for correlation. The first image of the 

monitoring, employed for the successful DIC analysis, is depicted in Figure 4.43.  

  

Figure 4.43. Picture from the monitoring of the Unicorn tapestry. The photo, taken at 10:30 
am on the 23/07/2015, was used for 2D DIC analysis. 

 

Figure 4.44 illustrates error distribution from the analysis of pictures from the 

first month of monitoring. It is shown that the central area corresponding to the 

body of the unicorn did not allow any correlation. This was due to the strong 

lack of greyscale contrast, that prevented the calculation of strain across this 

area, as shown by the strain map in Figure 4.45. Because of that, the overall 

strain data from this first month of monitoring only considered the top half of 

the hanging, i.e. the area within the dotted line in Figure 4.45.    
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Figure 4.44. Error map expressed in sigma [pixel] of Unicorn tapestry at the end of the 30-
day monitoring when first hung (23/07/2015). 

  

Figure 4.45. Longitudinal strain map of Unicorn tapestry at the end of the 30-day monitoring 
when first hung (23/07/2015). 
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The average longitudinal strain data calculated across the top half of the 

tapestry during the 30 days of monitoring are plotted in Figure 4.46, together 

with humidity fluctuations. It is interesting to note that, overall, the newly 

woven tapestry extended constantly in the weft direction within the first month. 

In particular, it is observed that mean εyy drastically increased during the first 

week. This occurred regardless of the uneven RH, indicating how time-

dependent mechanisms like creep and uncrimping overcame the influence of 

fatigue. This was similar to what was observed in the first 24 hours of monitoring 

of Florence tapestry (Section 4.3.2.4). In this case uncrimping seems a 

reasonable factor as, straight after being woven, weft threads in a hanging are 

more tightly twisted from the manufacturing process, than after being 

displayed. It should be underlined that, after the first 30 days of hanging, the 

maximum overall εyy registered was 0.4%. Considering a total length of 90 cm of 

the analysed area, such strain would correspond to an extension of ≈ 0.36 cm. 

 

 

Figure 4.46. Mean εyy [%] during the first month of monitoring of Unicorn tapestry. RH [%] 
fluctuations are indicated by the dotted line (23/06/2015 – 23/07/2015). 
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The observations drawn in the previous paragraph on the greater influence of 

creep/uncrimping over fatigue occurring at the beginning of the display were 

confirmed by looking at the strain data calculated in June 2016, a year later. In 

Figure 4.47 are shown the trends of mean εyy, calculated across the top half of 

the tapestry, and RH. Although in this case it was possible to run the analysis 

only on ten pictures, covering a period of ten days (one picture a day, at 10:30 

am), it is clear that fatigue dominated creep/uncrimping. This shows how, after 

the initial phase, the textile object adjusted to a certain length. Although this 

length may vary afterwards, elongations would be less remarkable and would 

alternate with contractions, all depending on humidity. 

 

 

Figure 4.47. Mean εyy [%] during the ten days of monitoring of Unicorn tapestry, after around 
a year of it being on display (31/05/2016 – 09/06/2016). RH [%] fluctuations are indicated by 
the dotted line. 

 

It is noted that the second set of images (taken in 2016) allowed a proper 

correlation of the entire surface of the tapestry. This includes the central area 

corresponding to the white body of the unicorn, as shown in the strain map of 

Figure 4.48. This was not possible when monitoring the same tapestry during the 

first month of display (Figure 4.45), demonstrating how the pattern alone does 
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not guarantee a successful analysis. In this case, probably the different light 

exposure of the textile object, due to a slight change in the position of the 

camera, allowed an increase in the greyscale contrast in the problematic area. 

The new camera position permitted a full-field strain calculation, but it did not 

ensure a constant (in time) light exposure of the tapestry, preventing the 

analysis of most of the images. All these observations indicate the need to 

properly evaluate such variables impacting image quality before starting in situ 

long-term tests. 

 

Figure 4.48. Longitudinal strain map of Unicorn tapestry at the end of 10-day monitoring 
after a year since first hung (09/06/2016). 
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Importantly, it should be noted that the contemporary tapestry in Stirling Castle 

was the only case study exposed to high ranges of RH. Indeed, while RH did not 

exceed 60% in all in the experiments described in in Sections 4.3.2.1 - 4.3.2.4 

(taking place in mitigated environments, i.e. research laboratories and a 

conservation studio), the historic castle was shown to be more humid, reaching 

peaks up to 73% of RH. This observation is significant when defining the 

applicability of the outcomes: since a large number of tapestries are displayed in 

historic houses, they are probably exposed to high levels of RH [59, 60]. 

Therefore, a more extended investigation of the mechanical behaviour of woven 

hangings subject to wider RH ranges, including levels above 60%, would be 

beneficial for ensuring a proper understanding of the risk caused by humidity. 

Defining the mechanical response of the artworks at high RH is particularly 

crucial since, at high RH, the linear relationship between strain and moisture 

content in wool stops and the fibrous material undergoes shrinkage [10].            

4.3.2.6 Evaluation of DIC parameters when monitoring historic tapestries: 
step size, subset size 

As done for the wool rep sample (Section 4.3.1.3), images from the monitoring 

of the kesi and Florence tapestries were processed through VIC-2D with different 

subset (31 and 61) and step (3 and 5) size. Varying step and subset size aimed to 

highlight the impact of such parameters in strain calculation.  

By comparing the error maps presented in the previous sections, i.e. Figure 4.34 

and Figure 4.38, with those obtained using different parameters, Figure 4.49 

(kesi) and Figure 4.50 (Florence), it is observed that lowering the subset size 

from 61 to 31 increased the overall sigma. On the other hand, the same maps do 

not highlight any significant difference in sigma values when using different step 

size, namely 3 and 5. From these observations, a certain impact of the subset 

size was expected to be found in the sets of strain data. In particular, it could 

be hypothesised that strain measurements obtained with a subset size of 31, 

instead of 61, would be less accurate. 
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a)  

 

b)  

Figure 4.49. Error maps expressed in sigma [pixel] of the kesi at the end of the 68-hour 
monitoring: a) 31 subset size, 5 step size; b) 61 subset size, 3 step size. 
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a)  

b)  

Figure 4.50. Error maps expressed in sigma [pixel] of the Florence tapestry at the end of the 
100-hour monitoring: a) 31 subset size, 5 step size; b) 61 subset size, 3 step size. 
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The longitudinal strain maps of the silk and wool tapestries, with different 

subset and step sizes, are shown in Figure 4.51 and Figure 4.52, respectively. As 

noted in the previous paragraphs, the higher the sigma in a specific area, the 

lower seem to be the accuracy of strain measurements on a small scale. Indeed, 

Figure 4.51a and Figure 4.52a presented more alternating areas of high and low 

strain than Figure 4.51b and Figure 4.52b.  

a)  

b)   

Figure 4.51. εyy [%] map of the kesi at the end of the 68-hour monitoring: a) 31 subset size, 5 
step size; b) 61 subset size, 3 step size. 
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a)  

b)  

Figure 4.52. εyy [%] map of Florence tapestry at the end of the 100-hour monitoring: a) 31 
subset size, 5 step size; b) 61 subset size, 3 step size. 

 

However, differently from what was predicted by looking at the sigma maps, 

varying step and subset size did not significantly alter the calculation of the 

average strain. This is shown by the graphs in Figure 4.53 and Figure 4.54, where 
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are presented the longitudinal strain from the monitoring of the two tapestries 

with different DIC parameters. The trends of mean εyy, measured using varying 

subset and step sizes, are very similar and they almost overlap each other.    

Therefore, it can be concluded that sigma values can be useful to estimate the 

suitability of patterns. Indeed, sigma maps efficiently identified where 

inaccurate local strain data would be calculated. On the other hand, sigma 

mapping was not helpful for defining the accuracy of overall strain data.    

 

Figure 4.53. Mean εyy [%] calculated across the kesi when using different subset and step 
size. 

 

Figure 4.54. Mean εyy [%] calculated across Florence tapestry when using different subset 
and step size. 
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4.3.2.7 Notes on the mathematical relationship between strain and RH 

As discussed in the previous sections, a linear relationship between strain and RH 

was noted in all the experiments. To better assess whether some differences on 

fatigue mechanism can be drawn by looking at the equations from the linear 

regressions, Table 4.4 is presented. Table 4.4 reports the slope, longitudinal 

strain versus RH, registered from the monitoring of each artwork.     

Table 4.4. Slope from the linear fitting, εyy [%] versus RH [%], from the monitoring tests of 
the different artworks.  

Case study Slope  

TapestryFragment_1 0.0090 

TapestryFragment_2  0.0089 

Kesi 0.0027 

Florence  0.0099 

Unicorn tapestry 0.0038 

 

From Table 4.4 it is observed that, when considering the historic woollen 

tapestries, the slope did not show to vary significantly, ranging between 0.0089 

(TapestryFragment_2) and 0.0099 (Florence). On the other hand, both the 

historic silk kesi and the contemporary tapestry showed a lower slope of 0.0027 

and 0.0038 respectively. In such cases, the lower value can be linked to: I) the 

more contained hygroscopicity of silk threads composing the kesi and the lighter 

weight of the artwork (the latter limiting the effects of self-weight loading); II) 

the low level of degradation of the newly woven Unicorn tapestry.  

As expressed in Section 2.2.1.2 when reviewing the work done in Southampton 

[61], these data are probably not able to build an empirical model for accurately 

predicting change in lengths due to humidity fluctuations. This seems unfeasible 

as many variables characteristic of each textile object, e.g. linked to the 

conservation history, may play a role in the equation. Nevertheless, from the 

results gathered it was interesting to note how major similarities and 

discrepancies could be related to the linear regression.          
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4.4 Conclusions 

In this chapter, the feasibility of 2D DIC for monitoring strain across historic 

hangings was assessed. In general, the contactless technique was proved to be a 

suitable tool to track overall (globally averaged) displacement in all case 

studies. Importantly, the tests demonstrated that 2D DIC can be employed for 

studying larger areas of tapestries than those previously researched [1]. 

Moreover, the results from the experiment with the kesi demonstrated that the 

optical technique can be suitable for monitoring different types of textile 

objects, including light-weight silk artefacts affected by relatively small 

deformations. This is an important caveat, as originally in Southampton the 

approach was only addressed to the study of European woollen and heavy 

tapestries [2].   

As better described below, the different experimental conditions used 

throughout the tests were helpful in delineating which parameters may affect 

the accuracy of DIC analysis. Furthermore, the outcomes gathered from the 

various tests were able to provide some new insights on the mechanical damage 

mechanisms affecting tapestries while on display.    

4.4.1 Parameters affecting 2D DIC analysis  

2D DIC was demonstrated to be a helpful tool to track strain across historic (and 

non-historic) hangings. Indeed, the high linearity between RH and strain 

(averaged from the entire surface of the objects) gave confidence to the 

outcomes. Nevertheless, some parameters were found to have an impact on 

strain calculation, namely: 

I) The figurative design. As expected, areas with a homogeneous pattern led to 

inaccurate εyy data, especially on a small-scale level (local strain). 

II) The image quality. When monitoring full-size tapestries of more than one m2, 

the technique would probably be unable to provide accurate local data because 

of the low resolution of the acquired images. This means that, if damage 

propagation needs to be tracked across a specific area, the full-field DIC 

application should be avoided. In addition, it was observed that brightness is 
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crucial, especially in areas with homogeneous patterns, as it may impact 

greyscale contrast.    

III) Out-of-plane displacements. These can be an issue when the monitored 

objects are hanging freely because of air circulation; however, they can be 

sometimes prevented by displaying tapestries against a wall/board. 

IV) The subset size. Lowering the subset size was shown to increase the 

inaccuracy of local strain data (but not globally averaged data).     

4.4.2 Mechanical damage mechanisms affecting tapestries when 
on display 

After monitoring five different historic case studies, it was possible to distinguish 

three main processes determining the mechanical behaviour of tapestries when 

hung for display:  

I) Time-dependent creep/uncrimping at the beginning of the display. When a 

full-size tapestry is hung after being in storage for a long time, or right after 

being woven, it elongates significantly during a limited time. The mechanism 

would mainly compromise weft threads, responsible for both the structure and 

the pictorial motif of the textile object. Interestingly, the time-dependent 

behaviour was shown to occur regardless of the application of conservation 

treatments like linen full support.   

II) Fatigue and swelling. Due to the highly hygroscopic nature of wool and silk, 

tapestries are subjected to contraction and extension, in both horizontal and 

vertical direction, following humidity variations. This mechanism, that 

sometimes followed the time-dependent behaviour, proved to be the dominant 

one during most of the display, defining the overall changes in length in all the 

case studies examined. These changes are known to be reversible but, due to 

the constant cycling, may lead to damaging fretting process [10]. It is relevant 

to note that the case studies presented in this chapter were exposed to 

relatively low ranges of RH (with the only exception of the contemporary 

tapestry at Stirling). Because of this, it is important to underline that the 

negative impact of high RH on the mechanical behaviour could not be observed 
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through the tests. This represents a limit of the outcomes gathered, as high RH 

ranges, possibly frequent in historic houses, may lead to damaging shrinkage and 

structural modifications in wool artworks [10].           

III) Creep-like behaviour across damaged areas. Although 2D DIC was found 

unsuitable to identify weaknesses before the occurrence of a visible defect in 

the weave structure, the optical method proved useful in describing how 

longitudinal (pseudo) strain may increase with time across damaged areas such 

as slits. In comparison to fatigue, the effects of creep should be expected to 

happen faster, to be more drastic and irreversible.  

From a practical perspective, it is important to underline how these experiments 

clarified that the optical technique is likely to be unable to recognise 

mechanically fragile areas when they are still “invisible”. Through this, one of 

the research questions first asked by the group in Southampton is answered: DIC 

cannot indicate structural weaknesses before the occurrence of an evident 

defect [2]. This is especially true when considering limited time spans such as 

those reported in this chapter (up to 200 hours). Nevertheless, the non-invasive 

approach can be a helpful diagnostic tool for tracking time-dependent 

mechanisms across weak areas such as slits (calculation of pseudo local strain). 

As previously said, local data are likely to be less accurate than globally 

averaged ones, especially when the full-field approach is used on full-size woven 

hangings; nevertheless, they can provide useful qualitative information.   
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5 Evaluation of sloping boards as a display 
method 

Chapter 5 focuses on the study of sloping boards (also called slanted supports), 

an untraditional display method increasingly popular among museums in 

continental Europe. As mentioned in Chapter 1 and discussed more in detail in 

the introductory section of this chapter, sloping boards are preferred by some 

conservators and curators. They are considered a good alternative to the 

traditional vertical display since it is thought that they may retard the 

elongation of weft threads, and so reduce mechanical damage due to the self-

weight loading. Few published works can be found on slanted supports [1, 2], 

and none that systematically examines, also from a scientific perspective, all 

advantages and disadvantages of such system. The first part of the chapter 

presents a literature review on the use of sloping boards and the few past 

experimental studies seeking to validate this approach. Furthermore, a review of 

past works dealing with fabric on fabric friction is presented in the first section.    

The experimental work of the chapter aimed to investigate the usefulness of 

slanted supports for conservation purposes by considering two different factors 

that may contribute to strain reduction: friction and inclination. The coefficient 

of friction between common board-covering fabrics and tapestries (with and 

without cotton and linen for lining/support treatments) was measured using an 

inclined plane method. On the other hand, to assess the effects due to the 

inclination, 2D DIC (trialled in Chapter 4) was employed to monitor strain across 

wool rep mock-ups displayed on an uncovered support (low friction) slanted at 

different angles from the vertical. Lastly, strain across a historic tapestry 

fragment on a vertical wooden support half covered with cotton molton was 

monitored using DIC. This aimed to verify whether fabric on fabric 

adhesion/friction may be enough to limit overall extensions even at 0° from the 

vertical.   
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The experimental design of Chapter 5 is described in Table 5.1. 

Table 5.1. Experimental design of Chapter 5. 

Hypothesis  Case studies Techniques Methodological limits 

Fabrics employed for 

covering sloping 

boards ensure a high 

level of friction 

when in contact with 

tapestries 

Common covering fabrics 

(cotton molton, cotton 

domette, polyester felt, 

cotton veltet); 7 historic 

tapestry fragments with 

different weave 

structure; wool rep 

fabric; linen used for 

support treatments; 

cotton for lining 

treatments   

Slanted plane 

method for 

measuring the 

coefficient of 

static friction (with 

and without added 

weight) 

Not all variables 

playing a role in 

fabric/fabric friction 

are evaluated through 

the testing method 

(e.g. rate, asperity)  

In case of no 

friction, only when 

tapestries are 

displayed at 

significant 

inclinations (e.g. 45° 

from the vertical) 

strain is successfully 

decreased   

Wool rep mock-ups 

displayed at 0°, 5°, 45° 

from the vertical. A fixed 

load is added to speed up 

creep and a dotted 

pattern is applied on the 

surface to facilitate 

correlation   

2D DIC (168-hour 

test per 

inclination) 

The uncontrolled 

environmental 

conditions during 

testing can impede 

the comparison 

between results 

acquired at different 

inclinations  

The high level of 

friction/adhesion 

between a tapestry 

and commonly 

employed board 

covering fabrics can 

limit strain even at 

0° from the vertical  

Historic tapestry 

fragment displayed on a 

vertical board half coved 

with cotton molton and 

half uncovered  

2D DIC The test can only last 

a limited amount of 

time (i.e. 340 hours), 

so long-term effects 

cannot be evaluated 

 

5.1 Introduction 

5.1.1 Origins and current diffusion of sloping boards for 
displaying tapestries   

The use of slanted supports for displaying tapestries started in the 1990s thanks 

to André Brutillot who worked as a private textile conservator and at the 

Bayerisches National Museum (BNM) in Munich, Germany. Brutillot, now retired, 

did not thoroughly discuss his method in any (English) publication, from how it 

was first conceived to how it developed and improved. Nevertheless, Brutillot 

provided details of his approach at a conference held at the Metropolitan 

Museum of Art in 2009; the  presentation was recorded and it can now be found 

on YouTube [3].  
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At the conference Brutillot examined his experience with slanted boards, 

underlining advantages and disadvantages. He started his speech by explaining 

why he first had had the idea of changing from the traditional vertical display to 

slanted supports. He thought of this new method when he got appointed to 

conserve, working alone and only 20 hours a week, highly damaged tapestries at 

the BNM. Due to the fragile conditions of the textile objects and the fact that 

they were expected to be on display for a long time once ready, Brutillot aimed 

to find a way to retard weft elongation. The need of conceiving a method that 

allowed tapestries to be on display for long periods and safely was essential. He 

acknowledged that the museum wanted to show them permanently as they were 

precious masterpieces, but he was also aware that originally the collection was 

not intended to be hung for long periods. This means that tapestries were 

designed and woven considering the structural strength as less important than 

the aesthetic appreciation. Therefore, Brutillot aimed to find a method able to 

compromise long-lasting display and supporting action. Besides these 

considerations, importantly, the treatment needed to be fast and minimally 

invasive, as he had a tight schedule.  

The first boards prepared were made of wood and inclined by 5° from the 

vertical (no explanation was given for the choice of the angle). To prevent the 

historic hanging from sliding, from the beginning the importance of choosing a 

covering fabric for the board able to promote friction was highlighted. At first 

wool was considered, as Brutillot stated that the coefficient of friction between 

two textiles of the same material was expected to be higher than that between 

different ones, though he underlined he had no reference proving this. However, 

since wool is easily attacked by insects, other materials were preferred, namely: 

cotton molton, cotton babycord, polyester felt (also indicated with the term 

fleece) [3].  

For the first time, in 1991 at the BNM a historic hanging was on display on a 

slanted board. From that moment on, different museums, especially in 

continental Europe, began to use this new display method, though few 

documented this with publications [4]. Examples portraying slanted supports in 

museums and galleries are shown in Figure 5.1. From the recent survey by Catic 

(2019) [5], it was highlighted that all the respondents working in Italy and 
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France sometimes opt for slanted supports, to reduce stress. Also among German 

conservators the use of sloping boards proved to be widespread (82% of 

interviewed people). On the other hand, only around one quarter of the 

respondents from British workshops claimed to employ this system (24%), 

specifically in the case of very fragile tapestries to reduce the amount of 

invasive treatments. However, from the survey it can be observed that French 

and Italian conservators do not change the type of treatment when they decide 

to use slanted supports, while 67% of German staff do. All the respondents using 

boards said they would cover them with fabrics to promote friction [5].  

 

a)   b)  

Figure 5.1. Sloping boards at the: a) Cluny Museum in Paris; b) Designmuseum Denmark in 
Copenhagen (profile). 

 

Today, one of the most renowned examples using this display method is the 

Cluny Museum in Paris. There, the Unicorn set is currently presented on boards 

slanted at an angle varying from 2° to 5° from the vertical, as shown in Figure 

5.1a [6, 7]. Some pieces of information on the design of the supports can be 

found in some reports in French [6, 8]. For instance, it is described that the 

boards are made of steel, with a surface made of aluminium, polyethylene and 

an isolating material [8]. The boards in the French museum are covered with a 

cotton needlecord fabric (“velours bouclé de coton”) [7].    
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5.1.2 Previous studies on the efficacy of sloping boards  

When advocating for slanted supports, Brutillot underlines that they bring 

important and verifiable advantages, such as the decrease of: I) weft elongation; 

II) superficial waves; III) conservators’ intervention; IV) dirt accumulation. To 

prove the validity of these points, Brutillot carried out some tests, as he 

explained at the American conference in 2009 [3]. 

To assess the ability of slanted supports in reducing strain (retardation of weft 

elongation), Brutillot measured the distance between the bottom edge of the 

board and that of some tapestries. He repeated the measurements weekly for at 

least five years, comparing tapestries displayed at 5° with one at only 1° from 

the vertical (while recording humidity and temperature). He noted that, in all 

the cases, the greatest elongation occurred within the first month of display 

(i.e. 5 mm when at 5°), then it remained stable for around five years. Another 

important observation was that textile objects on the supports slanted by 1° 

from the vertical elongated more than those at 5° (i.e. 10 mm in three months 

in the case of the display at 1°), as he expected. Thanks to this reduction in 

weft elongation, Brutillot decided to diminish the amount of conservation 

treatments [3]. It is important to underline that without more precise details on 

the methodology, it is difficult to properly evaluate the outcomes of these series 

of tests. For instance, how were the effects of fatigue separately evaluated from 

those linked to other time-dependent mechanical damage mechanisms like 

creep? How were the studied tapestries selected? How much did differences in 

the pre-existing condition of the objects under investigation affect the 

measurements?  

When considering dust accumulation, Brutillot explained that this argument is 

often used against sloping boards, as one may think that the angle would make 

the surface dustier. However, he thinks that dust deposition is caused by air 

circulation and the different temperature between the front and the back of the 

object rather than the inclination of the support. In Brutillot’s opinion, this is 

clearly shown when looking a tapestry with supporting straps on the back: the 

areas without lining, where air circulation is allowed, get dirty, while covered 

areas remain cleaner. Therefore, Brutillot suggested that sloping boards would 

avoid dust accumulation through impeding air from passing across the textile [3].  
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As remarked by Brutillot, another aspect of sloping boards often criticised is that 

they alter the original aesthetic, and this may affect the appreciation of 

tapestries design. Nevertheless, this point is in contrast with what he observed 

through some experiments assessing how people spent more time in front of 

tapestries on boards rather than those hung vertically [3]. Again, as no more 

specific pieces of information were given about the tests, it is difficult to 

properly examine the outcomes.  

Besides Brutillot’s own work, few other publications can be found on the 

assessment of slanted supports for displaying historic textiles [9], and more 

specifically tapestries [1, 2]. Barker in 2002 published an article where she 

discussed the usefulness starting from a mathematical model [1] (the same 

paper was also re-published in 2005 [10]). First, the author illustrates the forces 

acting on an object (tapestry) displayed on an inclined support. The reproduced 

graph is depicted in Figure 5.2.  

  

Figure 5.2. Forces acting on a tapestry displayed on a fabric-covered board. Reproduced 
from Barker [1]. 

 

From the model it can be measured that strain is reduced by only 0.4% with an 

inclination of 5° from the vertical. Also at greater angles the decrease in strain 

is still very much contained (-8.4% at 25° from the vertical). 
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In her theoretical analysis, Barker did not consider the impact of friction. 

Although the author mentioned the variable, no value for the fabric on fabric 

coefficient of static friction (μs) was given, and therefore its effects were not 

properly evaluated. In general, according to Barker, the level of fabric/fabric 

friction is not high enough to significantly affect the supporting action of the 

board [1].       

On the other hand, Trosbach’s master dissertation (unpublished, in German) 

focused more on the impact of friction on slanted supports’ efficacy [2]. In this 

case, the author measured friction between one tapestry fragment and fabrics 

commonly employed in Germany for covering sloping boards, namely: cotton 

babycord; cotton molton; polyester felt (fleece), thick and thin variety. In 

addition, friction between these covering fabrics and two cotton textiles, 

sometimes used for conservation treatments, were measured. To calculate the 

coefficient of friction, a specific testing machine was designed and prepared. It 

consisted of a large board that, through an automated system, could be tilted at 

different angles at a fixed rate. The board was coated with one of the covering 

fabrics, while the tapestry sample (or one of the cotton fabrics), wrapped into a 

metal plate, was placed on top of the support while lying horizontally. Then the 

automated system was turned on, and the angle at which the textile object 

started to slip was recorded. The coefficient of friction was calculated from the 

tangent of the sliding angle, as it can be derived from Amontons’ law (this is 

better discussed in the next Section). The outcomes showed that μs between the 

tapestry fragment and most of the covering fabrics was around 1.5. Only the 

thick polyester fleece led to a much greater μS, namely 3.3. Since a coefficient 

of static friction of 1.5 is relatively high, this already indicates how choosing an 

appropriate board-covering fabric in such display method is fundamental to 

increase the supporting action [2]. 

From the French report on the use of sloping boards at the Cluny Museum, it was 

stated that cotton needlecord was selected after some tests consisting of placing 

tapestry samples on small mock-up boards covered with different textiles. 

Although there are no details on the experiments, also in this case they 

confirmed the high level of friction and adhesion promoted by the fabrics under 

investigation [8].    
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5.1.3 Fabric on fabric friction: definition, how to measure it and 
what factors may influence it 

Friction is defined as “the force resisting the relative lateral or tangential 

motion of solid surfaces, fluid layers or material elements in contact” [11]. 

When considering the interaction between two solid bodies, the phenomenon 

can be described by the dry or Coulomb friction model. Importantly, Coulomb 

distinguished two frictional forces: I) static friction; II) dynamic friction. The 

force of static friction, Fs, describes the force needed to move the object from 

lying still on a surface. Conversely, the force of dynamic, or kinetic, friction (FR) 

represents the force once the body is moving, after overcoming the force of 

static friction. 

Up to a certain level of approximation, reasonable in many case studies, both 

frictional forces can be calculated quite easily as they are proportional to the 

normal force [12], as expressed by equations 1 and 2 (also known as Amontons’ 

law): 

𝐹𝑆 =  𝜇𝑆 × 𝑁                                                                                                                 Eq (1) 

𝐹𝑅 =  𝜇𝐾 × 𝑁                                                                                                                Eq (2) 

where μ represents the coefficient of friction between the two solid bodies, and 

N the normal force. The coefficient of friction μ is indicated by a dimensionless 

scalar number and it is specific for each pairing of materials in contact. In many 

cases, like for instance for metallic surfaces, it is expected that frictional forces 

do not depend significantly on variables such as the contact area or roughness of 

the surface [12].      

Figure 5.3 depicts the diagram of forces involved when considering an object 

sliding on an inclined plane, as in the case of a tapestry displayed on a slanted 

support.   
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Figure 5.3. Object on an inclined plane and related applied forces. 

 

Where: 

• W = weight 

• N = normal force 

• FS = static frictional force 

• PX = component of the weight of the object on the x axis.  

• PY = component of the weight of the object on the y axis. 

 

From Figure 5.3, it can be determined that, when the object is sliding: 

 

𝑁 = 𝑊 ×  cos 𝜃                                                                             Eq (3) 

 

Therefore, combining eq. 1 with eq. 3, it can be determined that: 

 

𝐹𝑆 =  𝜇𝑆 × 𝑊 ×  cos 𝜃                                                                    Eq (4) 

 

From this, it can be derived that: 

𝜇𝑠 =  tan 𝜃                                                                                    Eq (5) 

The equation just derived can be used to calculate the coefficient of friction 

using a slanted plane system [13]. In practice, the testing apparatus consists of a 

flat board that can be tilted at different angles. The surface of the board is 

covered with one of the pair of materials under investigation, while the other 

lies on top unfixed. During the measurement, the board moves progressively 
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from the initial horizontal position. Once the object starts to slide, the test 

finishes and the angle is recorded to calculate the coefficient of static friction 

from its tangent [2, 13-15].  

This simple method is not the most widespread when looking at papers dealing 

with friction measurements and indicated by the standard [16]. However, it is 

sometimes employed, also when studying fabric/fabric friction, as it represents 

an easy-to-prepare and valid alternative to more elaborate tools [2, 13-15, 17]. 

Even when not opting for the slanted plane method, the testing machine needs 

to be specifically designed and built, as there are no ready-to-use devices. 

Often, the self-made tool is attached to the crosshead of a tensile tester and it 

is based on the principle of pulling the surface of a sled, covered with one 

fabric, against that of a horizontal plane, covered with the other fabric. The 

force needed for moving the sled is calculated by the load cell and it 

corresponds to the resistance frictional force [18, 19]. 

Past studies, using both methods described above, report that fabric on fabric 

frictional forces may vary greatly depending on the pairing textiles, however 

they are usually high, especially in the case of those made from natural fibres 

like wool (μs ≥ 1) [2, 14, 20]. This is evident when comparing fabric/fabric μ with 

that of other materials. For instance, μs of oak on oak ranges between 0.5 and 

0.6, that of glass on glass is around 0.9, while in the case of hard steel on hard 

steel around 0.8 [21]. Usually the coefficient of dynamic friction is lower than 

the static one, as one may expect [14]. 

When considering fabrics, it should be noted that defining the coefficient of 

friction may be more complex than for other materials [22]. Indeed, it was 

found that in the case of many textiles, Coulomb’s model and Amontons’ law 

may not apply properly as some testing parameters can affect the 

measurements, namely: pressure [23]; normal force; tension [23-25]; tested area 

[24]; number of measurements [24]; speed [26]. Howell in 1953 identified the 

following relationship between friction (F) and normal force (N) [25, 27, 28]: 

𝐹 = 𝑎 𝑁𝑛                                                                                Eq (6) 
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In Howell’s equation, the proportionality between friction and normal force is 

defined by a, a coefficient that can be determined experimentally. On the other 

hand, n represents the fitting parameter linked to the deformation mechanism. 

In the specific case of n = 1, a corresponds to μ [25].     

Wilson in his article dated 1963 [23] clarified more precisely, through both a 

theoretical and experimental approach, the influence of pressure, and the 

related contact area, on friction. He stated that the frictional force can be 

defined as: 

𝐹 =  𝐶1 + 𝑛 𝑙𝑜𝑔𝑃                                                                       Eq (7) 

Where C1 and n are variables, found to be characteristic of the type of textile. In 

particular, C1 is linked to asperity (the higher the asperity, i.e. number of 

contacts between the materials, the higher C1). From the tests, it was 

established that the fabrics under investigation could be divided in two groups: 

I) fabrics with a high n and a low C1, woven with yarns from continuous 

filaments; II) fabrics with a low n and high C1, woven with all/some spun yarns, 

or bulky yarns [23]. Wilson’s work is important to prove how intrinsic properties 

of the material, like indeed the type of yarns, contribute to define the 

fabric/fabric frictional forces.  

Nevertheless, the Wilson or Howell laws are an approximation of a more complex 

phenomenon that still needs to be fully defined, as also other variables are now 

known to partly determine fabric/fabric friction [29]. Indeed, more recently, 

studies analysed the influence of properties linked to the raw materials, weave 

meso-structure and yarns [20]. Factors like yarn hairiness [20], loop length, yarn 

linear density [30], yarn thickness, but also sample orientation [31], are 

demonstrated to have an impact on fabric on fabric friction. 

5.1.4 Theoretical analysis of the role of inclination and friction 

Prior to embarking on the experimental investigation, a theoretical analysis of 

the efficacy of sloping boards for reducing strain across tapestry-like materials is 

presented. The theoretical approach was elaborated within the context of the 

current project by Dr Philip Harrison, co-investigator. Differently from the model 
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provided by Barker [1], Harrison took into consideration the reciprocal influence 

of friction between covering fabric and a tapestry, as well as the inclination of 

the board. The observations drawn from the theoretical model were helpful to 

have a better, although still simplified, understanding of load distribution across 

a historic hanging displayed on a slanted support. Furthermore, such theoretical 

predictions were helpful to assess the reliability of the data gathered from the 

experimental work discussed in Section 5.3.2 and 5.3.3. In particular, this was 

relevant to verify the feasibility of 2D DIC for testing display/conservation 

approaches, as such application of the optical technique has not been 

extensively trialled before. A detailed description of the theoretical analysis can 

be found in the following publication from 2020 [32].    

Figure 5.4 illustrates the load per unit of length (N) experienced by the top part 

of a 2m-long tapestry (areal density 1 kgm-2) at different angles ϴ, and when 

considering different values of the coefficient of friction μ. The broad range of 

values selected reflects the variability observed when measuring μ in actual 

cases (Section 5.3.1). As expected, Figure 5.4 shows that the maximum line 

force experienced by the tapestry drops with both increasing inclination angle 

and at greater friction. When there is no friction, the load decreases are 

significant when sloping the board is at 45o, but very small for inclination angles 

of 5o from the vertical, or less. On the other hand, when examining a high μ of 

1.5, the reductions are already significant at angles of 5° (≈ 15%) and fall to 

complete reduction of the load at a display angle of about 34o. To reduce the 

load to 0 at smaller angles, such as 5o, μ would have to be close to 20. However, 

it is remarked that, as further discussed in Section 5.3.1.2, such high values of μ 

could not be fully explained using the Coulomb’s model.  
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Figure 5.4. Line force per unit length acting along the top of the tapestry versus inclination 
angle of the display board with different coefficients of friction, normalised by the load at 0o 
of inclination. 

Figure 5.5 depicts strain at various heights of the modelled tapestry when 

displayed at 5º from the vertical but experiencing different friction. In the 

graph, 2m corresponds to the top edge while 0m represents the bottom edge of 

the tapestry. Clearly, the higher the frictional force (and adhesion), the lower 

the strain experienced by the fabric; μ values of 20 or more lead to complete 

support (0 strain) in the tapestry.  

 

Figure 5.5. Strain versus height of the tapestry when displayed 5º from the vertical at 
different coefficient of friction: 0; 0.5; 1.5; 20. 
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These theoretical results can provide a basic understanding of the kind of loads 

and strains one might expect when hanging tapestries at different inclinations 

and level of friction. While the theory gave some enlightenment, this analysis 

did not consider the presence of heterogeneities (e.g. open slits) and only 

examined the effects of self-weight loading. In particular, the model described 

the load distribution that should be expected on a displayed woven hanging 

moving from a horizontal position, so in comparison to a distribution of 0 load. 

Other mechanical damage mechanisms like fatigue, discussed in Chapter 4, were 

not included in the theoretical analysis.  

5.2 Materials and Methods 

5.2.1 Friction measurements 

The coefficient of static friction between tapestry fragments (with and without 

lining/support) and fabrics commonly employed for sloping boards was measured 

to assess the impact of this variable in reducing weft elongation (strain) when 

this display method is employed.  

As indicated in Table 5.2, four different board-covering fabrics were selected for 

the tests: I) cotton molton; II) cotton domette; III) polyester felt; IV) cotton 

velvet. The textiles were chosen according to the responses from Catic’s 

questionnaire [5] and Trosbach’s work [2]. 

Table 5.2. Details of the board-covering fabrics tested.  

Fabric 

type 

Fibre  Weave Supplier 

Domette Cotton 2:1 twill with brushed 

surface 

NB: the quality of domette used in the 

testing is no longer available from this 

supplier 

https://www.naturstoff.de 

Molton Cotton 2:1 twill with brushed 

surface 

Bio-Molton 160 

https://www.whaleys-bradford.ltd.uk 

Felt Polyester Non-woven, needle 

punched  

Polyester felt (3mm; 120gsm) 

https://www.preservationequipment.com 

Velvet Cotton  Velvet, warp pile Supplier: Naples NESP  

Obtained from 

https://www.mandors.co.uk 

  

https://www.naturstoff.de/
https://www.whaleys-bradford.ltd.uk/
https://www.preservationequipment.com/
https://www.mandors.co.uk/
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Six tapestry fragments were chosen to evaluate friction against the board-

covering fabrics. Besides the historic samples, the newly woven wool rep fabric, 

used for the DIC strain monitoring experiments (as in described in Section 5.2.2), 

was tested. It should be noted that fragments Tap1 and Tap2 present, 

respectively, a cotton lining and a linen support stitched on the back. Friction of 

cotton and linen textiles on the board-covering fabrics was evaluated also 

separately, without any tapestry fragment attached. This was important as often 

these textiles can be found stitched on the back of historic hangings since they 

are used for conservation treatments such as support or lining/dust covering 

[33]. Details and images of the historic and non-historic fabrics are reported in 

Table 5.3.     

Table 5.3. Details of the historic tapestry fragments, wool rep, linen and cotton fabrics 
tested against the board-covering fabrics to measure μs. 

Sample 

Code 

Dimensions 

[mm] 

Thread count 

per cm 

(warp x weft) 

Lining/support Image 

Tap1 225 x 200 7 x 27 Cotton, tightly 

woven tabby 

(plain weave) 

 

 
Tap2 300 x 240 5 x 16 Linen, tabby 

(plain weave) 

 
Tap3 210 x 90 8 x 32 - 

 
Tap4 150 x 105 7 x 27 - 

 
Tap5 908 x 950 5 x 17 - 
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Tap6 925 x 270 8 x 30 - 

 
Wool Rep 200 x 200 23 x 8 - 

 
Cotton 200 x 200 -5 - 

 
Linen6 200 x 200 17 x 17 - 

 

 

Tests were carried out using a simple inclined plane method, as described in 

Section 5.1.3. The technique consists of measuring the angle at which the 

sample under investigation (i.e. the tapestry fragment or the linen 

support/cotton lining fabric) starts to slide on a flat surface covered with the 

selected fabric (i.e. the board-covering textile). The value of the angle was read 

through a phone app (Multi Clinometer™). The coefficient of friction was 

calculated from the tangent of the mean value after 15 measurements of the 

sliding angle.  

Two different variants of this procedure were followed: I) the sliding specimen 

was wrapped, prior to the test, around a glass plate (12 x 6 cm, 121 g); II) the 

sample was left without any weight. The second approach is thought to better 

replicate actual scenarios, as a tapestry being placed on a slanted support will 

 
5 The weave is extremely fine and therefore thread count is difficult to quantify through a thread 

counter. 

6 Corresponding to Linen B in Chapter 6, supplied by Claessens. 



230 
 
not present any extra load on its surface. However, previous studies calculating 

fabric/fabric friction with the slanted plane method, added an extra weight 

wrapped around the textile specimen, so as to apply a constant pressure on a 

defined area [2, 14]. As mentioned above, the coefficient of friction between 

fabrics is known to be influenced by factors like the applied load and the 

number of asperities [23, 25], so it was expected that the outcomes from the 

experiments using the two approaches would be different.        

5.2.2 2D DIC strain monitoring: fixed-load experiments with non-
historic samples on uncovered board slanted at different 
angles 

Non-historic samples made with hand-woven wool rep fabric (by Context 

Weavers, see specifications in Section 3.1.2) were used to investigate the effects 

of displaying tapestry-like materials on uncovered board slanted at different 

angles. This allowed the study of strain reduction promoted by the inclination of 

slanted supports, when friction is neglectable. As mentioned in Chapter 3 and 4, 

the wool textile was selected to mimic the mechanical behaviour of historic 

hangings, although simplifying it, as also done in other studies [34].     

For each test at a specific inclination, specimens 200 mm wide and 245 mm long 

were used. The samples presented a central horizontal open slit 50 mm wide to 

simulate the behaviour of a mechanically damaged textile object. One 

undamaged specimen was also monitored as reference. A cotton bag containing 

100 g of lead weights was stitched at the bottom of all the samples to better 

match the load experienced near the top of a larger and heavier tapestries. The 

textiles were attached to the board using a wooden batten (covered with 

Velcro™, soft side) which in turn was fixed at the top edge of the display board 

via four bar clamps.  

On the surface of the wool-rep samples a speckle pattern with dots of around 1 

mm in diameter was artificially applied to ensure the DIC correlation algorithm 

could track the strains. The type of pattern was selected according to the results 

from the tests in Chapter 4. The speckle pattern was created by hand using both 

a Stabilo OHPen Universal Marker™ (Fine, black) and a Sharpie Permanent 

Marker™ (Fine, black). Figure 5.6 illustrates the monitoring set-up.  
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Figure 5.6. Set-up of wool rep specimens for the tests studying the effects of inclination. 
The open slits in the artificially damaged samples are indicated within the red dotted lines.  

 

Each monitoring session lasted 168 hours, one week, during which a Canon 

camera was set up to take one picture per hour (details in Section 4.2.2). More 

precise information on the DIC analysis is reported in Section 4.2.2, including 

details on the post-processing calculation carried out through MATLAB. When 

comparing the results from different tests, the maximum strain registered across 

the area of interest was considered. Such value corresponds to the highest strain 

calculated in the specific region during the entire length of the experiment. It is 

underlined that a subset size of 61 and a step size of 5 were used throughout the 

analysis.    

5.2.3 2D DIC strain monitoring of a historic tapestry fragment 
displayed on a half covered and half uncovered vertical 
board 

Strain across a tapestry fragment was monitored through 2D DIC. The historic 

hanging was displayed for 340 hours on a wooden board placed at 0° from the 

vertical. The board, in the vertical direction, was left half uncovered while the 

other half was covered with cotton molton. The test aimed to verify whether 

frictional/adhesion forces originating from the contact of the surfaces of the two 

fabrics would be high enough to reduce strain when displayed vertically. The 

set-up is shown in Figure 5.7. 
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Figure 5.7. Monitoring set-up of the historic tapestry fragment displayed on a vertical 
wooden board, half uncovered, and half covered with cotton molton. 

 

In Chapter 4, more detailed information on the fragment, DIC analysis and 

camera set-up can be found. Again, a subset size of 61 and a step size of 5 were 

chosen as fixed parameters.    

5.3 Results and discussion 

To evaluate the effectiveness of sloping boards as a display method for 

tapestries, tests were carried out to establish the role played by: I) fabric/fabric 

friction (measurements of μs); II) inclination (2D DIC strain monitoring).   

5.3.1 The role of friction 

First, the coefficient of static friction, μs, between tapestries and common 

covering fabrics was measured using a simple slanted plane method, with and 

without additional load. 



233 
 
5.3.1.1 Friction measurements: weighted specimens  

Table 5.4 reports the angles at which the weighted samples, i.e. wrapped 

around the glass plate, started to slide from the board covered with cotton 

molton. The coefficient of static friction calculated from those angles are shown 

in Table 5.5. The data obtained agree with what was previously found by 

Trosbach [2]: the coefficient of static friction between the historic/newly woven 

fabrics and cotton molton was close to 1.5 (sliding angle between 57° and 62°). 

The only exception was Tap3, for which the μs was higher, around 3.2. It is 

important to remember that already a μs of 1.5 can be considered quite high in 

comparison to that of other materials (as discussed in Section 5.1.3), indicating 

the frictional force would oppose the sliding movement considerably.         

Table 5.4. Angle [°] at which the weighted fabric samples (i.e. wrapped around a glass plate) 
started to slip from the board covered with cotton molton. The SD is also indicated (15 
measurements per sample). 

Board covering fabric Cotton  Linen  Wool Rep Tap3 Tap4 

Cotton Molton 62.25 ± 

3.58 

56.98 ± 

3.25 

61.27 ± 

3.45 

72.87 ± 

2.53 

58.34 ± 

1.02 

 

Table 5.5. Coefficient of static friction between the weighted fabric samples and cotton 
molton. 

Board covering fabric Cotton  Linen  Wool Rep Tap3 Tap4 

Cotton Molton 1.90 1.54 1.82 3.24 1.62 

 

5.3.1.2 Friction measurements: unweighted specimens  

In Table 5.6 are reported the angles at which the tapestry fragments, without 

any extra load, started to slip from the board covered with the different fabrics 

under investigation. The fabric/fabric coefficients of friction derived from such 

measurements are recorded in Table 5.7, whenever possible. Indeed, in most of 

the cases the tapestry specimens only moved when inclining the plane at angles 

beyond the vertical, i.e. ≥ 90° from the horizontal. This means that, when 

interpreting the results using a simple Coulomb friction model, the coefficient is 

effectively infinite (or at least very high) and so it cannot be calculated. Indeed, 

the tangent of an angle greater than 90° would correspond to a negative 

number. This suggests that Coulomb friction was not actually representative of 
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the slip behaviour of the textile, and so other forces were involved, and/or 

other variables affected the measurements. It is noted that measurements were 

carried out also between Tap3, Tap4 and the uncovered wooden board. As 

expected, in these cases the tapestry samples began to slide at lower angles, 

namely Tap3 at 48.79° (±4.04°), while Tap4 at 49.83° (±2.98°).    

Although no values of μs can be drawn from most of the tests with unweighted 

specimens on the covered board, some more general observations on the 

interaction between the tapestry fragments and the four types of board-covering 

fabrics can be highlighted. Interestingly, it can be noted that the specimens 

slipped at the lowest angles when displayed on cotton velvet, namely between 

around 76° and 98°. Although these data are still very high and distant from 

following Coulomb’s model, they point out that cotton velvet was the fabric 

promoting the least effective adhesion/friction. On the other hand, results from 

the measurements with cotton molton and domette were very similar and 

showed the greatest effects of adhesion/frictional forces: in both cases, the 

historic specimens started to slip at an inclination between 95° and 107°. In the 

case of polyester felt the results ranged more: Tap1 and Tap2, with cotton and 

linen respectively stitched on the back, slipped at lower angles (70°-79°) than 

Tap3 and Tap4 (99°-102°).  

Molton and domette have a very similar weave structure, characterised by 

coarsely woven spun yarns, giving a texture with raised nap. Although also 

polyester felt and velvet have a textured surface with pile, molton and domette 

are less smooth. These intrinsic properties related to the type of weaving and 

finishing, together with other variables, may have contributed to the different 

levels of adhesion of the board-covering fabrics investigated.              

Table 5.6. Angle [°] at which the unweighted tapestry samples started to slip from the board 
covered with different textiles. The SD is also indicated (15 measurements per 
sample/covering fabric).  

Board covering fabric Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 

Cotton Molton 100.65 ± 

5.24 

100.19 ± 

3.43 

107.24± 

4.62 

101.09 ± 

6.41 

95.16 ± 

5.94 

104.04 ± 

1.34 
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Cotton Domette 96.34 ± 

2.93 

100.21 ± 

6.29 

100.63 ± 

4.67 

107.19 ± 

3.28 

/7 / 

Polyester Felt 70.05 ± 

2.48 

79.39 ± 

3.17 

99.07 ± 

4.60 

102.81 ± 

6.63 

/ / 

Cotton Velvet 87.19 ± 

1.53 

97.50 ± 

3.54 

78.58 ± 

3.29 

75.59 ± 

5.20 

/ / 

 

Table 5.7. Coefficient of static friction between the unweighted tapestry samples and the 
board-covering fabrics. Whenever the sign – is used, it indicates that the coefficient could 

not be calculated, as ϴ ≥ 90°. 

Board covering fabric Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 

Cotton Molton - - - - - - 

Cotton Domette - - - - / / 

Polyester Felt 2.75 5.34 - - / / 

Cotton Velvet 20.37 - 4.95 3.89 / / 

 

By comparing the results from the friction measurements with and without extra 

load, the influence of variables such as contact area and pressure is evident. 

Indeed, whenever μs was calculated without wrapping the tapestry/textile 

specimens around the glass plate, its value was lower than those from the tests 

with the weights. This agrees with past studies [23, 25] and it shows the inability 

of Coulomb’s model to properly describe the phenomenon. Nonetheless, it is not 

possible from this series of tests to clearly state which equation would better fit 

here to define the relationship between frictional force, normal force and 

coefficient of friction. Indeed, it should be highlighted that, besides normal 

force and contact area, other variables were noted to affect the measurements, 

such as the number of tests and the orientation of the textile sample. Namely, 

specimens were observed to slide at lower angles after that the measurement 

was repeated a few times, perhaps as the fabric surface became smoother.  

The friction measurements without additional weight may suggest that, even 

without slanting the support, the level of friction/adhesion between board-

 
7 Measurement not done.  
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covering fabric and tapestries might be enough to impede the sliding of the 

historic textile, and thus promoting a certain strain reduction, even at 0° from 

the vertical. This could lead to an improvement of the display method, as this 

would mean that some benefits could be obtained even without inclining the 

support, and so without altering the aesthetic appreciation of the hanging 

design.  

5.3.2 The role of inclination: fixed-load experiments with non-
historic samples (uncovered board) 

This series of tests aimed to study how much inclination of sloping boards may 

contribute to preventing damage propagation in fragile textiles. To do so, strain 

across wool rep mock-ups was monitored through 2D DIC. These experiments 

represent the first attempt of using the optical technique for evaluating 

conservation practices. Therefore, these tests were crucial for the project, since 

they sought to assess the feasibility of DIC as an evaluation tool for tapestry 

conservation methods.  

It is important to underline that two types of DIC data are presented: I) strain 

averaged from the entire surface of the sample; II) local pseudo strain averaged 

from the damaged areas (i.e. open slits). As already highlighted in Chapter 4 

through the different textile objects investigated, while the overall strain 

clearly shows the occurrence of fatigue mechanism, the pseudo strain calculated 

across slits depends less on the environmental conditions and more on time. 

Because of this, the pseudo strain data were expected to be more useful to 

define the efficacy of the inclination of the display method, as they would be 

more comparable and less dependent on the mutable RH. Therefore, this 

experimental approach mainly considered the efficacy of inclination in reducing 

creep-like behaviour rather than fatigue.        

5.3.2.1 Display at 0° from the vertical 

In this experiment the wool rep specimens were clamped at the top of the 

uncovered wooden board displayed vertically. 

The strain map of the model samples with fixed-load after one week of 

monitoring is shown in Figure 5.8. The strain map points out the presence of 
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areas of high pseudo strain across the central open slit in the three damaged 

specimens (A, B, C). On the other hand, strain across the undamaged areas of 

the mock-ups, as well as the whole of sample D, appears to be more 

homogeneous. As expected, this indicates that the open slits were prime regions 

of damage propagation. It is important to note that the areas at the bottom of 

the specimens were not considered in the data analysis, as the high strain 

registered in these regions was most likely linked to errors from local out-of-

plane displacement, caused by the stitched load. Similarly, the upper border of 

the samples was excluded from the DIC analysis as the shadow from the batten 

affected strain calculation. 

 

Figure 5.8. Longitudinal strain map of samples displayed at 0º from the vertical at the end of 
the 168-hour monitoring. Samples A, B, C have one central slit 50 mm wide, while sample D 
is undamaged. 

 

Figure 5.9 depicts the overall strain averaged from the entire surface of the four 

samples during the 168 hours of monitoring. In addition, RH values are also 

plotted (dotted line). The data state that the overall strain greatly depended on 

the environmental conditions. For instance, it is clear that the drastic rise in 

humidity registered between the 25th and the 65th hours of monitoring (from 

around 27% to 48% of RH), caused a remarkable increase on the overall εyy. In 
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general, the analysis of the four samples gave comparable results. Sample D, 

without slits, showed to extend less than damaged samples B and C; however, it 

presented a longitudinal strain comparable to that of sample A. This can indicate 

that, as the specimens were mainly sound, this might have minimised the impact 

of the open slit on the overall εyy data, at least during the one-week test.  

 

Figure 5.9. Overall εyy [%] of the damaged sample A, B and C and undamaged sample D 
during the 168-hour monitoring. RH [%] is indicated by the dotted line. 

 

As previously mentioned, for the aim of this series of tests it is particularly 

important to consider the pseudo strain from the damaged areas. Figure 5.10 

depicts the pseudo εyy from the areas across the slits in samples A, B and C. The 

data confirmed that the widening of the slits was the prime cause of weft 

elongation, and thus of mechanical damage propagation. This is evident since 

the pseudo strain was considerably higher than the overall strain in Figure 5.9. 

Besides being greater than the overall strain, pseudo εyy was also shown to be 

less affected by RH and to increase with time. This likely indicates the 

occurrence of creep (see discussion in Chapter 4). It should be underlined that 

humidity still had an impact on the pseudo strain, as again noted in the tests 

reported in the previous chapter. Indeed, the drastic rise in humidity between 

25-65 hours corresponded to a steep growth in the pseudo εyy. Because of this, it 

may be difficult to directly compare the outcomes from tests where the 
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environmental conditions were remarkably different, as also the proper reading 

of the pseudo strain data would be compromised.     

  

Figure 5.10. Pseudo εyy [%] across the damaged areas (open slits) of sample A, B and C. RH 
[%] is indicated by the dotted line. 

 

5.3.2.2 Display at 5° from the vertical 

Damaged wool rep samples were monitored while displayed on the uncovered 

board slanted at 5° from the vertical. 

In Figure 5.11 the longitudinal strain averaged from the whole surface of the 

specimens is presented. Again, the occurrence of fatigue mechanism is evident, 

as the εyy data changed accordingly to the humidity fluctuations. However, it is 

important to underline that the environmental conditions did not differ 

significantly from the experiment at 0° from the vertical. Indeed, also in this 

case there was a steep rise in humidity: from the 85th to 115th hour, the humidity 

increased remarkably from 35% to 51%. 
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Figure 5.11. Overall εyy [%] of the damaged sample AI and BI during the 168-hour 
monitoring. RH [%] is indicated by the dotted line. 

 

Figure 5.12 shows the pseudo strain across the slits, that progressively increased 

with time, even if partly affected by the humidity changes (in particular by the 

steep rise in humidity registered between 85-115 hours of monitoring). 

 

Figure 5.12. Pseudo εyy [%] across the damaged areas (open slits) of sample AI and BI. RH 
[%] is indicated by the dotted line. 
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5.3.2.3 Display at 45° from the vertical 

Damaged wool rep mock-ups were displayed for one week on the uncovered 

board slanted at 45° from the vertical, while 2D DIC was used to monitor strain 

across the specimens. 

The overall εyy averaged from the entire surface of the specimens is depicted in 

Figure 5.13. From Figure 5.13 the great influence of the variable environmental 

conditions can be stated. In comparison to the tests at 0° and 5° from the 

vertical, here the changes in RH were even more remarkable. Indeed, humidity 

greatly and quickly rose and decreased three times. However, it is interesting to 

note that, regardless of the more significant changes in the environmental 

conditions, especially during the first 40 hours of the test, the overall strain of 

samples at 45° from the vertical was more contained that that of specimens at 

0°(Figure 5.9) and 5° (Figure 5.11).   

 

Figure 5.13. Overall εyy [%] of the damaged sample AII, BII and CII during the 168-hour 
monitoring. RH [%] is indicated by the dotted line. 

 

The pseudo strain calculated across the open slits of the monitored specimens is 

illustrated in Figure 5.14. The influence of the humidity variations on the local 

strain is particularly evident when considering the data between the 15th and 
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30th hours of monitoring: RH rose from 47% to 60%, while the pseudo strain from 

0.05% to 0.15%.     

   

Figure 5.14. Pseudo εyy [%] across the damaged areas (open slits) of sample AII, BI and CII. 
RH [%] is indicated by the dotted line. 

 

5.3.2.4 Discussion: comparison between the tests at different inclinations  

The strain data from the tests in Section 5.3.2 are now compared to highlight 

whether inclining the board at different angles may prevent the elongation of 

structural weaknesses in tapestry-like textiles when friction is low. It should be 

pinpointed that the environmental conditions varied from experiment to 

experiment. Because of this, the partial but visible influence of humidity on the 

pseudo strain data is an important factor to consider when comparing the 

outcomes. 

Figure 5.15 illustrates the maximum pseudo strain registered across the damaged 

areas of the specimens displayed at 0, 5 and 45 degrees from the vertical. The 

maximum pseudo strain represents the highest value registered across the area 

of interest (i.e. the region across the slit) during the 168 hours of monitoring. 

The graph shows that the difference between the samples at 0° and 5° is not 

statistically relevant, as the difference falls within the error (averaged data 
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from three damaged replicas of each experiment). This means that no strain 

reduction could be observed when moving the board from 0° to 5° from the 

vertical. On the other hand, the samples displayed at 45° elongated significantly 

less across the damaged areas compared to the other two inclinations, namely 

around 40% less. 

 

Figure 5.15. Maximum values of mean pseudo εyy [%] registered across the slits of the 
samples displayed at 0, 5, 45 degrees from the vertical for one week. The error bars indicate 
the SD, as three damaged replicas were tested for each inclination.   

 

Figure 5.16 compares the trends of pseudo strain registered, during the 168-hour 

monitoring, across damaged samples displayed at 5° and 45° from the vertical. 

Although in both cases it can be noted that humidity partly affected the pseudo 

strain data, it is underlined that the wool rep mock-up at 45° from the vertical 

elongated considerably less than that at 5°. This is evident especially when 

considering the data from the first 80 hours of monitoring: while the local strain 

from the 5° specimens reached a value of around 0.2% over a period with stable 

RH, the 45° sample reached a similar value only during an intense initial rise in 

RH.  
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Figure 5.16. Pseudo εyy across the damaged areas of samples displayed at 5 and 45 degrees 
from the vertical (solid blue and green line) during the 168-hour monitoring tests. RH [%] 
variations are indicated by the dotted lines.   

 

     

5.3.3 2D DIC strain monitoring of a historic tapestry fragment 
displayed on a half covered and half uncovered vertical 
board 

This test aimed to verify the great effects of friction/adhesion from the 

interaction between tapestries and covering fabrics for slanted supports. Indeed, 

from the outcomes reported in Section 5.3.1 it was hypothesised that strain 

across a historic hanging could be reduced by displaying the textile on even a 

vertical support covered with fabrics like cotton molton. To better investigate 

this, 2D DIC was used to track displacements across a historic tapestry fragment 

displayed on the wooden board, half uncovered (to simulate the effects of a low 

friction surface) and half covered with cotton molton. Differently from the tests 

in Section 5.3.2, here the effects of the system were mainly evaluated 

considering the impact on overall εyy, determined by fatigue, rather than on 

local pseudo strain across damaged areas, due to creep.    

Figure 5.17 shows the strain map of the historic tapestry fragment after 300 

hours of hanging. In the map the weak areas, mainly open slits, are indicated as 

locations of high pseudo strain. As discussed in Chapter 4, but also in Section 
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5.3.2, the probable mechanical damage mechanism determining strain across 

open slits is time-dependent creep. It is noted that also on the bottom left 

corner of the tapestry alternating areas of high and low strain seem to be 

present. Unfortunately, this was due to a significant out-of-plane displacement 

that occurred during the monitoring. Because of this, only the εyy data from the 

top half of the tapestry were considered (area indicated by the dotted line), as 

the reliability of the results from the bottom half were negatively affected by 

the 3D movement of the textile object.      

  

Figure 5.17. Longitudinal strain map of TapestryFragment_1 at the end of the 300-hour 
monitoring displayed on a vertical wooden board half uncovered and half covered with 
cotton molton. The arrows indicate open slits.  

 

In Figure 5.18 the overall longitudinal strain data are reported, together with 

RH. Two lines indicating εyy fluctuations are shown: one depicts the data 

averaged from the area displayed on the uncovered board (blue line), the other 

from the remaining part directly in contact with the cotton molton (red line). By 

comparing the two graphs, the supporting effects of the covering fabric can be 

stated, as the area not in contact with cotton molton presented a greater strain 
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than the other. More specifically, the outcomes demonstrated that overall 

extensions, largely determined by RH fluctuations, were smoothed by the display 

on the fabric. Indeed, the part of the textile displayed on the wooden surface 

reached a maximum εyy of 0.05%, while that on cotton molton of 0.01% (at RH 

58.5%). This may indicate that the level of adhesion/friction between the 

historic textile and the cotton fabric was high enough to reduce weft elongation 

due to fatigue, even without slanting the board. It is important to note that high 

pseudo strain was registered across open slits in contact with the molton, as 

shown in Figure 5.17. This demonstrates that the system was not completely 

effective in limiting creep across damaged areas.   

 

Figure 5.18. Mean εyy [%] across the area of the historic fragment in contact with the cotton 
molton (orange line), and the area in contact with the wooden surface of the board (blue 
line). RH [%] is indicated by the dotted line. 

 

Even when considering the efficacy in preventing damage due to fatigue, the 

test only considered a limited time-lapse, therefore the long-term effects of 

such a system may differ from those here observed. For instance, it can be 

expected that eventually the adhesion with the covering fabric may fail because 

of the self-weight loading of the historic textile, as it is known that fabric on 

fabric frictional forces are affected by factors like pressure and contact area 

[23, 25]. Furthermore, the level of adhesion may vary from tapestry to tapestry 
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depending on the specific manufacturing/material properties of the object. For 

instance, woven hangings with large areas made of silk may adhere less than 

those entirely made of wool. In addition, it should be noted that often weak 

tapestries feature a linen fabric on their back, stitched by conservators as a 

support method. This would mean that the tapestry is not directly in contact 

with the highly “gripping” covering fabric, and thus the effects of adhesion with 

the smoother linen surface may be less evident. However, it is noted that 

outcomes reported in Paragraph 5.3.1.1 showed that also linen on cotton molton 

μs is high.        

5.4 Conclusions 

This chapter aimed to investigate the effects of sloping boards in retarding weft 

elongation and limiting the impact of mechanical damage mechanisms. The role 

of two variables, friction and inclination, were evaluated to assess why and how 

displaying tapestries on slanted supports could be beneficial.  

First, the coefficient of static friction between commonly employed board-

covering fabrics and tapestry/textile samples was measured using a slanted 

plane method, with and without additional load. The results showed that, in this 

situation, Coulomb’s model is not fully descriptive of the phenomenon, as the 

coefficient of friction (μ): I) it varies depending on the applied load and other 

factors related to the weave structure; II) in certain cases, it cannot be 

measured as the specimen started to slide at angles > 90°. Nevertheless, it was 

observed that the interaction between the two fabrics led to great 

adhesion/friction. Perhaps, up to a certain level, this adhesion can be obtained 

even without slanting the board, and so while keeping it at the vertical position.    

On the other hand, 2D DIC strain monitoring of wool rep samples displayed on a 

wooden board at different angles clarified that, without a proper board-covering 

fabric promoting adhesion and frictional forces, the use of slanted supports is 

not helpful in containing strain, particularly creep across damaged areas. This is 

true especially when considering small angles, like 5° from the vertical, as 

usually opted for this display method. The observations drawn upon the 

experimental work agreed with the theoretical analysis, conducted within the 

context of the current project, that modelled load distribution at the top of a 
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historic hanging when displayed at different angles and with different 

coefficients of friction. The good agreement between theoretical analysis 

(although not fully representative) and the DIC outcomes further validate the 

optical technique as a tool for studying the effects of conservation treatments, 

when a similar methodology is used. 

Lastly, since the effects of adhesion/friction were greater than expected, 2D DIC 

was employed to monitor strain across a historic tapestry fragment displayed on 

a vertical board, half covered with cotton molton (high friction) and half 

uncovered (low friction). The test aimed to define whether strain can be 

reduced even without inclining the support, thanks to the forces from the 

interaction of the fabrics. The outcomes from the 340-hour experiment showed 

that the area of the tapestry in contact with the cotton fabric overall elongated 

less. This may indicate the positive effects of the covered vertical board in 

limiting length variations due to fatigue. However, it should be highlighted that 

the test lasted for a contained amount of time, so the long-term implications of 

the system are not known. Indeed, the usefulness of a vertical covered board 

may depend on factors like weave features and material properties, 

characteristic of each historic hanging. Furthermore, it should be remarked that 

no relevant positive impact of the approach was noted in limiting creep-like 

mechanisms affecting damaged areas.     

From a practical perspective, the outcomes suggest that displaying a historic 

tapestry on a board, tilted at 5°from the vertical (or less) and covered with a 

fabric promoting high friction, could be useful in reducing weft elongation due 

to fatigue. A similar approach can be particularly helpful when the time for 

conservation is limited and the environmental conditions in the display location 

cannot be controlled. Nevertheless, the textile artwork would need to be 

structurally sound, as the system would be likely unable to entirely prevent the 

occurrence of time-dependent mechanical behaviours across damaged areas. 

This means that perhaps the display method should be used in combination with 

local treatments supporting evident structural weaknesses, as discussed in 

Chapter 6.
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6 Evaluation of stitching and support methods 

Chapter 6 investigates and compares the efficacy of different stitching 

techniques and support methods for the conservation of tapestries. To do so, a 

multi-analytical approach was used, involving both 2D DIC and uniaxial tensile 

testing. As discussed in Chapter 1, to prevent mechanical damage propagation in 

historic hangings, a broad range of approaches are used by textile conservators. 

Still nowadays, the choice of the type of treatment seems to be markedly 

influenced by subjective matters, such as where the workshop is based and by 

whom the staff was trained [1]. Therefore, the experiments presented in this 

chapter aimed to provide some objective data on various methods.   

Among the different treatments in use, two stitching techniques, laid and brick 

couching were selected and studied by employing 2D DIC to track strain across 

differently conserved case studies. Brick and laid couching were chosen as they 

are the most widespread stitching techniques, building on previous research 

carried out at the CTCTAH [2-4] and elsewhere [5-7]. It should be reminded that 

these stitching methods intend to promote both structural stability and 

figurative continuity in damaged areas, in particular those where weft yarns are 

missing. Alongside laid and brick couching, the two main support approaches 

aiming to prevent damage propagation, full support of new fabric and with 

patches of fabric, were evaluated. After the strain monitoring, the tensile 

properties of the conserved specimens were researched. Similarly, two types of 

linen fabrics used by textile conservators in the UK for support treatments were 

also (uniaxially) tensile tested, to compare their mechanical behaviour with that 

of historic hangings, already discussed in Chapter 3. In addition, the tensile 

properties of Stabiltex™ were studied, as similar textiles made of synthetic 

fibres have also been (very rarely) used for supporting tapestries [8]. 

Investigating the mechanical properties of these materials is important as there 

are still some uncertainties regarding the type and reasons behind the choice of 

fabric  [9, 10].    
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The experimental design of Chapter 6 is described in Table 6.1. 

Table 6.1. Experimental design of Chapter 6. 

Hypothesis  Case studies Techniques Methodological limits 

The structural 

stability of damage 

in tapestries can be 

improved through 

the application of 

patch and full linen 

supports  

Wool rep mock-ups 

differently conserved; 

one historic tapestry 

fragment first conserved 

with patches and later 

with a full support 

2D DIC (for mock-

ups and historic 

tapestry 

fragment);  

uniaxial tensile 

testing (for mock-

ups) 

Unstable 

environmental 

conditions limiting 

outcomes comparison; 

limited applicability of 

the results due to  

contained number of 

samples  

The structural 

stability of damage 

in tapestries can be 

improved through 

laid and brick 

couching 

Wool rep mock-ups 

differently conserved; 

one historic tapestry 

fragment conserved with 

brick and laid couching 

2D DIC (for mock-

ups and historic 

tapestry 

fragment);  

uniaxial tensile 

testing (for mock-

ups) 

Unstable 

environmental 

conditions limiting 

outcomes comparison; 

limited applicability of 

the results due to  

contained number of 

samples 

Fabrics used for 

structural 

treatments in 

tapestries show 

desirable physical 

properties  

Samples from 2 linen 

fabrics currently 

employed by conservators 

for support treatments 

(before and after 

washing); samples from 1 

polyester fabric 

sometimes used for 

support treatments  

Uniaxial tensile 

testing 

Uncertainties 

regarding what should 

be considered as 

desirable by 

conservators  

 

6.1 Materials and methods 

6.1.1 2D DIC monitoring of newly woven conserved samples  

Hand-woven wool rep fabric provided by Context Weavers was employed for the 

preparation of mock-ups (for specifications see Section 3.1.2).8 The specimens 

varied, in the type of damage, sizes, and conservation treatments applied, 

depending on the specific aim of the test. Figure 6.1 schematically illustrates 

the three types of specimens used and the related artificial physical damage: 

 
8 It is noted that, as specified in Chapter 3, the weft direction of the wool rep fabric is referred to as 

warp, and the warp as weft. 
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I) Figure 6.1a: samples (650 x 410 mm) used to investigate both the 

influence of stitching and support techniques. Each sample presented 

four damaged areas (55 x ≈ 15 mm) made of 12 bare warps. 

II) Figure 6.1b: samples (350 x 205 mm) used to investigate the influence 

of stitching techniques and the impact of spacing. Each sample 

presented one central damaged area (55 x ≈ 15 mm) made of 12 bare 

warps. 

III) Figure 6.1c: samples (650 x 410 mm) used to investigate both the 

influence of stitching and support techniques. Each sample presented 

four damaged areas (55 x ≈ 15 mm) made of 12 bare warps and other 

weak regions, like holes with missing weft and warp.   

It should be noted that the 50 mm at the top of each sample were used to clamp 

the textile to the board, while, in the 20 mm at the bottom, a bag containing 

100 g (for 350x205-mm samples) or 200 g (for 650x410-mm samples) of lead 

weights was added.    

a)  b)  
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c)  

Figure 6.1. Wool rep mock-ups with artificial damage.   

 

The mock-ups were conserved using different support and couching techniques 

to compare the diverse approaches, while limiting variables as much as possible 

at each stage. In particular, the two types of stitching techniques investigated 

were brick and laid couching. Examples of the two types of couching are 

provided in Figure 6.2 and Figure 6.3, while further information on the 

techniques can be found in Section 1.2.2 of Chapter 1. The stitches were carried 

out at different spacing, to observe how this would impact on strain in the area 

of damage. On the other hand, the two types of support treatment tested were 

full, depicted in Figure 6.4a, and patch, illustrated in Figure 6.4b. The samples 

used, and the related specifications, are provided in Table 6.2 and Table 6.3. 

a)   b)  

Figure 6.2. Damaged area on a wool rep sample conserved with brick couching, 4-mm 
spacing: a) front; b) back. 
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a)   b)  

Figure 6.3. Damaged area on a wool rep sample conserved with laid couching, 4-mm 
spacing: a) front; b) back. 

 

a)        b)  

Figure 6.4. Back of wool rep mock-ups treated with: a) full support; b) patch support. 

 

Table 6.2. Wool rep mock-ups used for testing the efficacy of support and stitching 
techniques. Samples AI-F are described by Figure 6.1a, samples G-I by Figure 6.1c (before 
conservation). Mock-ups DI/DII and G were left untreated and used as control samples. This 
aimed to highlight the impact of conservation strategies from the comparison with 
conserved samples.   

Sample Code Size 

[mm] 

Damage Support  Couching  

 

AI/AII9 650x410 4 damaged areas 

(12 bare warps each) 

Full  Brick, laid 

(4-mm spacing) 

B 650x410 4 damaged areas 

(12 bare warps each) 

Patches Brick, laid 

(4-mm spacing) 

 
9 In case of samples AI/AII and DI/DII, two identical specimens were prepared as they were needed 

for two different tests. 
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C 650x410 4 damaged areas 

(12 bare warps each) 

Full  Brick, laid 

(4-mm spacing) 

DI/DII 650x410 4 damaged areas 

(12 bare warps each) 

- - 

E 650x410 4 damaged areas 

(12 bare warps each) 

Full - 

F 650x410 4 damaged areas 

(12 bare warps each) 

Full - 

G 650x410 14 damaged areas 

(7 areas of bare warps, 2 

areas of missing 

weft/warp, 5 areas of 

partially missing weft) 

- - 

H 650x410 14 damaged areas 

(7 areas of bare warps, 2 

areas of missing 

weft/warp, 5 areas of 

partially missing weft) 

Patches, only on 

the back of the 4 

main damaged 

areas  

  

Brick 

(8-mm spacing) 

I 650x410 14 damaged areas 

(7 areas of bare warps, 2 

areas of missing 

weft/warp, 5 areas of 

partially missing weft) 

Full Brick 

(8-mm spacing) 

 

Table 6.3. Wool rep mock-ups used for testing the influence of spacing in brick and laid 
couching. The samples are described by Figure 1b (before conservation). Da. was left 
untreated (control sample).   

Sample Code Size [mm] Damage Support  Couching / spacing 

Br.1 350x205 1 damaged area 

(12 bare warps) 

Full  Brick /  

15-mm spacing 

Br.2 350x205 1 damaged area 

(12 bare warps) 

Full Brick / 

8-mm spacing 

Br.3 350x205 1 damaged area 

(12 bare warps) 

Full  Brick / 

4-mm spacing 

La.1 350x205 1 damaged area 

(12 bare warps) 

Full Laid / 

15-mm spacing 

La.210 350x205 1 damaged area 

(12 bare warps) 

Full Laid / 

8-mm spacing 

Da. 350x205 1 damaged area 

(12 bare warps) 

-  - 

 

Usually full support requires a system of scrim and grid lines for being attached 

to a tapestry: scrim lines extend from top to bottom, while grid lines are shorter 

rows of stitches. In this study, when the specimens were conserved with a full 

 
10 Since it was possible to monitor up to six samples at the same time, no sample with laid 

couching at 4-mm spacing was included in the experiment. Nonetheless, data on the efficacy of 
the 4-mm laid stitches were gathered from the monitoring of samples AI, AII, B and C.   
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support, this was applied in three different ways: I) without grid and scrim lines; 

II) with scrim lines 300 mm from each other and with grid lines between the 

areas of damage (20 mm distance between weak areas and grid lines); III) with 

scrim lines 300 mm from each other and with grid lines across the areas of 

damage. The distribution of grid lines when applied at a distance from the weak 

areas is shown in Figure 6.5a, while Figure 6.5b illustrates the grid lines system 

going across the damaged areas. In both cases, the grid lines consisted of 

running stitches. Table 6.4 records the three ways used for applying the full 

supports to the samples.  

a)  b)  

Figure 6.5. Wool rep mock-ups with full support applied on the back through scrim lines (at 
the edges of the samples) and grid lines (in the centre): a) grid lines far from the areas of 
damage (samples AI, AII, E, I); b) grid lines across the areas of damage. 

 

Table 6.4. Grid lines systems used for attaching full supports to the samples.  

Type of application of the full support Samples applied 

No grid lines C 

Grid lines far from the areas of damage AI, AII, E, I 

Grid lines across the areas of damage F 

 

All the experiments done, codes, aims and samples employed are listed in Table 

6.5.  
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Table 6.5. Codes, objectives, and wool rep samples used in the experiments on the efficacy 
of stitching and support techniques. 

Test Code Treatments investigated and compared Samples used 

6.1 Full vs patch support; 

Brick vs laid couching 

AI, B 

6.2 Full support with scrim/grid lines vs full support 

without scrim/grid lines; 

Brick vs laid couching 

AII, C, DI 

6.3 Full support with grid lines across the damage vs 

grid lines distant from the damage 

DII, E, F 

6.4 Full support with vs without couching AI, E, F 

6.5  Full vs patch support in highly damaged samples G, H, I 

6.6  Brick vs laid couching, at different spacing Br.1, Br.2, 

Br.3, La.1, 

La.2, Da. 

 

All the specifications of the materials used for conserving the mock-ups are 

reported in Table 6.6. It should be noted that, before the treatment, the linen 

fabric used for the support treatments (Linen B, see also Section 6.1.3.1), was 

washed in a washing machine, without any detergent and at 90°C. Then, it was 

applied in the warp direction with an extra allowance (also called “bag”) of 5 

mm, meaning that for each 300mm-wide sample, a 305mm-wide linen fabric was 

stitched on the back. This is a common practice that aims to prevent the support 

fabric becoming too tight, although not all conservators agree with this approach 

[8].  

Table 6.6. Materials used for conserving the wool rep samples. 

Material Description  Supplier 

Wool Rep Narrow ribbed rep Context Weavers  

Linen Fabric Unprimed light weight 

linen scrim 

Claessens 

(product’s code OV10) 

Thread for 

couching  

Stranded cotton  

(2 threads were pulled 

from the 6-ply yarn)  

Anchor 

Thread for grid 

and scrim lines  

Polyester yarn Gütermann 

 

All the conservation treatments on the wool rep samples were carried out by 

Prof Frances Lennard. It is underlined that the small number of mock-ups was 

largely determined by the high amount of time required for carrying out the 

treatments.  
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Following the procedure described in the previous chapter, the monitoring was 

conducted clamping the sample on a wooden board displayed vertically. A 

dotted speckle pattern was applied, following the procedure described in 

Section 5.2.2. At the same time, a camera was set to take one picture per hour 

during the entire length of each test (168 hours) and a data logger was placed 

next to the objects for recording the environmental conditions. Specifications on 

the camera settings, DIC analysis (subset size 61, step size 5) and data 

processing through MATLAB can be found in Section 4.2.2. It is underlined that, 

also in this case, both overall strain and pseudo strain across damaged/treated 

areas was measured.  

6.1.2 2D DIC monitoring of a historic tapestry fragment after 
conservation 

A historic tapestry fragment (details in Chapter 4, Section 4.2.1.2) was 

monitored for 200 hours using 2D DIC, after two successive conservation 

treatments. The test aimed to see if the results from the wool rep were also 

applicable to historic tapestry. The same materials as those employed for 

treating the mock-ups were used (Table 6.7). Strain distribution across the 

fragment, indicated with the code TapestryFragment_1, was studied also before 

conservation and the results were discussed in Section 4.3.2.1. As described in 

Chapter 4, before being treated, the textile object was in evident weak 

condition and showed different open slits, location of relatively high pseudo 

strain and therefore prone to a creep-like damage mechanism.    

The first conservation treatment was applied only locally, and it consisted of 

small linen patches stitched on the back of some open slits. The patches were 

applied using brick couching, carried out at different spacing. The back of the 

fragment is depicted in Figure 6.6. 
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Figure 6.6. Detail of the back of TapestryFragment_1 after the first conservation treatment 
consisting of the application of three linen patches through brick couching in 
correspondence to weak areas. Brick couching was carried out at the following spacing: 3 
mm (areas within yellow dotted line); 6 mm (areas within purple dotted line), 8 mm (area 
within brown dotted line). 

  

After the first local treatment and strain monitoring, the tapestry was conserved 

again. The second time a full linen support was applied on the entire back of the 

fragment through a system of grid and scrim lines. As shown in Figure 6.7, the 

scrim lines were applied running from top to bottom of the external border, at 

37 mm from vertical grid lines. On the other hand, 13mm-long grid lines were 

stitched leaving a 70-mm distance between each other in the vertical direction 

and 75 mm horizontally. It is important to note that usually the full support is 

not applied alongside the patches.     
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Figure 6.7. Back of TapestryFragment_1 after the second conservation treatment consisting 
of the application of a linen full support.  

 

All the conservation treatments on TapestryFragment_1 were carried out by Prof 

Frances Lennard.        

The DIC monitoring was carried out following the procedure reported in Section 

4.2.2.   

6.1.3 Uniaxial tensile testing  

6.1.3.1 Fabrics for support treatments 

One polyester fabric (Stabiltex™) and two types of linen fabrics currently in use 

by textile conservators (suppliers and details in Table 6.7), were uniaxially 

tensile tested to investigate their mechanical behaviour, and eventually to 

compare it to that of historic tapestries (Chapter 3, Section 3.2.1.1). Linen A is 

currently used by staff at Glasgow Museums for the conservation of tapestries, 

while Linen B is preferred by conservators at the National Trust and the Victoria 



262 
 
and Albert Museum. A fabric made of synthetic fibres was sometimes selected by 

Landi (Textile Conservation Consultancy) for supporting tapestries [11], but it is 

remarkably less widespread than linen [8, 10]. Magnified pictures of the 

supporting fabric are provided in Figure 6.8. 

Table 6.7. Details of support fabrics.   

Code Areal density 

[kg/m2] 

Thickness11 

[mm] 

Weave count 

[yarn/cm] 

Weft x warp  

Supplier 

Linen_A 0.019 0.46  9x9 Whaleys (Bradford) 

Linen_B 

Unwashed 

0.020 0.25 17x17 Claessens 

(product’s code OV10) 

Linen_B 

Washed 

0.017 0.25 17x17 Claessens 

(product’s code OV10) 

Polyester 

Stabiltex™ 

0.001 0.06 28x28 PlastOk 

 

a)   b)  

c)   d)  

Figure 6.8. Weave structure (59x magnification) of: a) linen A; Stabiltex™ (annotated); linen 
B unwashed; linen B washed. 

 
11 The thickness of each specimen was measured, before the tensile test, with a digital micrometre 

(three measurements per specimens). The data reported in table represent the average 
thickness from all these measurements. The data were also confirmed by the optical analysis of 
the threads with the dino lite.  
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Uniaxial tensile testing was performed on the same equipment and with the 

same experimental conditions employed for studying historic samples and the 

wool rep fabric (Section 3.1.3). Five specimens, 200 x 50 mm, per linen type and 

weave orientation (warp and weft) were tested. The thickness of each specimen 

was calculated with a digital micrometre (average of three measurements at 

three different points).     

6.1.3.2 Newly woven conserved samples 

Uniaxial tensile testing was carried out on specimens cut from the stitched wool 

rep samples described in Section 6.1.1. The testing took place after the 2D DIC 

monitoring, so to gather more data on the efficacy of the different stitching and 

support techniques. The specimens (160 x 35 mm) were cut in the middle of the 

damaged area, as indicated by the example in Figure 6.9. To allow the 

specimens to be tested with the 1kN load cell, the width of the cross-sectional 

area was reduced to 35 mm. Since the weak areas were originally 55 mm wide, 

this means that the samples were cut in the middle of the region with bare 

warps, although with the repair stitches.   

 

Figure 6.9. Specimen cut from sample AI. 
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The specimens, cut from the samples listed in Table 6.2 and Table 6.3, are 

shown in Table 6.8, together with the combination of treatments applied. For 

details on the equipment used and experimental conditions, see Section 3.1.3. 

Table 6.8. Conserved wool rep specimens uniaxially tensile tested. 

Specimen 

Code 

Full 

Support 

Patch 

Support  

No Grid 

Lines 

Far Grid 

Lines 

Crossing 

Grid 

Lines 

Brick 

Couching  

 

Laid 

Couching 

AI_B2 X   X  X 4 mm  

AI_L1 X   X   X 4 mm 

AI_L2 X   X   X 4 mm 

B_B1  X    X 4 mm  

B_L1  X     X 4 mm 

C_B1 X  X   X 4 mm  

C_L1 X  X    X 4 mm 

Br.2  X    X 8 mm  

Br.3  X    X 4 mm  

La.1       X 15 mm 

La.2  X     X 8 mm 

    

6.2 Results and discussion 

6.2.1 2D DIC monitoring of newly woven conserved samples 

2D DIC was used to evaluate the usefulness of brick and laid couching (with 

different spacing), patch and full support treatments (with different grid and 

scrim line systems) in reducing the strain across tapestry-like textiles when 

hung. Six monitoring tests were conducted and each experiment lasted 168 

hours.    

6.2.1.1 Full support vs patch support, brick vs laid couching (test 6.1) 

One of the aims of this first test was to compare the effectiveness of a full 

support against that of a patch treatment. To do so, two wool rep samples, with 

four damaged areas each, were used: sample AI, with a full support on the back 

(grid lines between damage); sample B, with four patches on the back of the 

weak regions. Two out of four damaged areas of each sample were conserved 

using laid couching (right side), while the remaining were treated with brick 

couching (left side). This also aimed to compare the two stitching techniques. 
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Figure 6.10 shows a strain map at the end of the one-week monitoring of sample 

AI (full support) and sample B (patch support). From the strain maps no 

remarkable differences between the two samples can be observed, suggesting 

that the impact of two support techniques might have been very similar. In 

addition, Figure 6.10 shows no areas of higher strain in the samples, not even 

across the damage. This could indicate the success of both types of support 

and/or stitching techniques in preventing the elongation of the areas with bare 

warps. It is important to note that, from this test, it is not possible to distinguish 

the role of stitching from that of the support fabric in improving the mock-ups’ 

structural stability. This is better addressed in experiment 6.4. It is noted that, 

since the surrounding areas of the specimens did not present any damage, they 

were expected to be already strong enough not to benefit from the support 

treatments.             

 

   

Figure 6.10. Strain map, εyy [%], of sample AI (full support, brick and laid couching) and 
sample B (patch support, brick and laid couching) at the end of the168-hour monitoring.  

 

Figure 6.11 presents the overall longitudinal strain data, together with the 

humidity. The graphs confirm the observations drawn by looking at the strain 
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maps: the trend and magnitude of εyy across the different samples is 

comparable, possibly stating a similar efficacy of patches and full support. From 

Figure 6.11 the linear relationship between humidity and strain fluctuations is 

also clear; as defined in Chapter 4, this indicates the occurrence of fatigue. 

 

Figure 6.11. Mean εyy [%] of sample AI and sample B during the 168-hour monitoring. RH [%] 
is indicated by the dotted line.  

  

When comparing the efficacy of brick and laid couching in more detail, the 

pseudo strain data measured across the weak areas is more helpful than the 

overall longitudinal strain. Indeed, a more time dependent behaviour, possibly 

creep, is expected to happen across the damaged areas, as they would tend to 

widen when left untreated, causing a relatively high local stain (Chapter 4). In 

this case, by looking at the pseudo strain data across the differently conserved 

areas (Figure 6.12 and Figure 6.13), the 2D DIC outcomes are not able to state 

whether one stitching technique, brick or laid, was more effective than the 

other. Indeed, as depicted in Figure 6.13, the error bars (SD) of the maximum 

pseudo strain overlap each other, so neither of the two couching techniques was 

more efficient than the other from a statistical point of view. However, by 

comparing Figure 6.11 and Figure 6.12, the data confirm the success of both 

conservation methods: the extension of the (treated) weak areas was around the 

same, or even less, than that across the entire surface of the samples. 

Therefore, it can be said that the treatments enabled the damaged areas to 

regain the physical strength lost. The fact that in general the 4-mm couching 
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seems to have partly impeded fatigue across the treated area (lower pseudo 

strain than overall strain) is further discussed in Section 6.2.1.6.   

 

Figure 6.12. Pseudo εyy [%] across the damaged but conserved areas of sample AI.   

 

 

Figure 6.13. Maximum pseudo εyy [%] across areas of sample AI and B conserved with brick 
and laid couching. 
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6.2.1.2 Full support with vs without grid lines, brick vs laid couching (test 

6.2) 

Experiment 6.2 investigated the effects of grid lines in full support treatments. 

Besides a non-conserved specimen (DI), two samples with a full support were 

used: AII with grid lines 20 mm apart from the damaged area, and C without grid 

lines. The weak areas in mock-ups AII and C were conserved using both brick and 

laid couching, so as to test the stitching techniques.      

The strain map of the three samples after the one-week test is illustrated in 

Figure 6.14. As also observed for experiment 6.1, the strain map suggests the 

usefulness of the laid and brick couching in easing the strain around weak areas. 

Here it is even more evident thanks to the direct comparison with untreated 

sample DI: the damaged areas of specimen DI are marked as locations of high 

pseudo strain, in contrast to those conserved in specimens AII and C.  

 

Figure 6.14. Strain map, εyy [%], of sample DI (no conservation), AII (full support with grid 
lines, brick and laid couching) and sample C (full support without grid lines, brick and laid 
couching) at the end of the168-hour monitoring.  
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The (overall) greater elongation of sample D is confirmed by the εyy [%] data in 

Figure 6.15, that also describe the occurrence of a fatigue mechanism thanks to 

the correlation with humidity variations. At the end of the one-week monitoring, 

after a steep rise in humidity levels (from 36.8% to 50.3% in the last 15 hours of 

monitoring), all samples reached the maximum elongation. However, the strain 

across untreated sample DI was around twice as much (≈ 0.17%) as that in 

conserved samples AII (≈ 0.07%) and C (≈ 0.10%). This suggests how effective the 

conservation treatments were in reducing strain, especially pseudo εyy 

associated with the opening of damaged areas as a result of creep behaviour 

(Figure 6.16). By looking at Figure 6.15 and Figure 6.16, it is interesting to note 

that negative strain (indicating contraction) took place in treated samples AII 

and C, in opposition to non-conserved sample D, for which only positive values 

were recorded.  

 

Figure 6.15. Mean εyy [%] of sample DI, AII, and C during the 168-hour monitoring. RH [%] is 
indicated by the dotted line.  
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Figure 6.16. Pseudo εyy [%] across the damaged areas of sample D, and conserved areas of 
sample AII. 

 

Figure 6.17 reports the average maximum pseudo strain registered across the 

areas of samples AII and C conserved with brick and laid couching, in contrast to 

those left untreated in sample DI. The average for each couching technique, and 

the related SD, was calculated from the four areas (two per sample) conserved 

with the same method. The results of Figure 6.17 seem to show a greater 

efficacy of the laid couching in preventing damage propagation (lower pseudo 

strain). Nonetheless, it is important to underline that the error range is 

relatively high, making the outcomes from the two techniques close.    

 

Figure 6.17. Maximum pseudo εyy [%] across the damaged/untreated areas of sample DI and 
the damaged/conserved areas of sample AII and C. 
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6.2.1.3 Full support with grid lines across vs distant from damaged areas 

(test 6.3) 

This test focused on the evaluation of grid lines used in full support treatments. 

To do so, two samples with different supporting line systems were monitored 

and the displacement analysed with 2D DIC. Both conserved specimens 

presented four damaged areas and a linen full support on the back. However, 

while in sample E grid lines were stitched at a distance from the damaged areas 

(20 mm), in sample F the lines were stitched though the centre of the weak 

regions. Alongside treated specimen E and F, sample DII, damaged but not 

conserved, was monitored as reference.   

The strain across the three samples monitored for one week is depicted in Figure 

6.18. It is clear that the greatest elongation was experienced by the weak areas 

of untreated sample DII and, less markedly, across structural weaknesses in 

sample E. On the other hand, strain on the entire surface of sample F appeared 

to be more homogeneous. All these observations suggest that the support 

treatment was effective in mitigating damage propagation, especially when grid 

lines were stitched across the slits. By comparing strain maps in Figure 6.18 with 

those in Figure 6.10 or Figure 6.14, it can be noted that weak areas appeared to 

be better stabilised by the combination of both grid lines and couching 

techniques. Indeed, while no high pseudo strain was noted across stitched areas 

(Figure 6.10 and Figure 6.14), damaged areas in samples E and F, treated with 

full support but no couching, present relatively high local εyy.    
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Figure 6.18. Strain map, εyy [%], of sample DII (no conservation), E (full support with grid 
lines at a distance from the damaged area) and sample F (full support with grid lines across 
the damaged area) at the end of the168-hour monitoring.  

 

 

Figure 6.19, by showing the overall strain data and RH [%], points out the effects 

of support treatments: sample DII was characterised by the greatest elongation 

when compared to samples E and F. The significant drops in RH during the test, 

especially from 54% to 35% RH (20-45 hours), caused significant contractions in 

samples E and F; on the other hand, overall εyy in sample DII was always positive. 

Average strain across specimen E appeared to be slightly higher than that across 

sample F, as expected. 
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Figure 6.19. Mean εyy [%] of sample DII, E, and F during the 168-hour monitoring. RH [%] is 
indicated by the dotted line. 

 

Figure 6.20 describes pseudo strain across damaged areas in the three different 

samples during the 168 hours of the test. The (average) maximum pseudo strain 

across the bare warps is shown in Figure 6.21. The outcomes confirm the 

usefulness of the full support treatments in minimising damage propagation in 

weak areas: untreated sample DII experienced a significantly greater elongation 

than the treated samples. However, it is pointed out that the pseudo εyy from 

the weak (treated) areas of samples E and F is greater than the overall strain in 

Figure 6.19. This confirms that the treatments were not effective enough to 

completely prevent damage propagation. Data in Figure 6.20 and Figure 6.21 

also define the greater efficacy of the grid line system of sample F. Indeed, the 

(average) maximum pseudo strain across structural defects in sample F was 

around 0.16%, while in sample E was almost twice as much, around 0.30%. It is 

difficult from this test to establish whether the positive effects registered in 

sample E were due to the full support alone, or to its combination with grid lines 

distant from the slits.  
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Figure 6.20. Pseudo εyy [%] across damaged areas of sample DII, E, and F during the 168 
hours of monitoring.   

 

 

Figure 6.21. Maximum pseudo εyy [%] across the damaged areas of sample DII, E and F. 

 

6.2.1.4 Full support vs brick/laid couching (test 6.4) 

This experiment aimed to better distinguish the impact of full support 

treatments from that of couching techniques. To do so, specimens with and 

without couching, but all treated with full support, were employed. Namely, the 

samples used were: AI, full support with grid lines distant from the damaged 

areas, brick/laid couching; E, full support with grid lines distant from the 

damaged areas, no couching; F, full support with grid lines across the damaged 

areas, no couching. All the specimens had been used once before this test. 
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Figure 6.22 depicts strain across the three specimens. As noticed in the previous 

paragraph (6.2.1.3), the strain map highlights as regions of greater elongation 

the areas of weft loss in sample E, while εyy across specimens AI and F appeared 

to be more homogeneous.    

 

Figure 6.22. Strain map, εyy [%], of sample AI (full support, brick and laid couching), F (full 
support with grid lines across the damaged areas), E (full support with scrim lines distant 
from the damaged areas) at the end of the168-hour monitoring. 

 

Globally averaged strain across the three samples is described in Figure 6.23. 

Sample AI showed similar mean εyy of sample E, higher than the one of specimen 

F. This was unexpected: since sample AI presents, alongside the full support, 

laid and brick couching across the damaged areas, its overall strain was thought 

to be lower than mock-ups E and F, without couching. This unexpected result 

could be due to differences in the prior condition of the specimens, as they had 

been used for other tests before this experiment.    
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Figure 6.23. Mean εyy [%] of sample AI, F, and E during the 168-hour monitoring. RH [%] is 
indicated by the dotted line. 

 

Figure 6.24 shows the overall pseudo strain across damaged areas in the three 

samples during the 168 hours of monitoring. The graphs outline the greatest 

effectiveness of the couching (both brick and laid) in preventing the opening of 

slits (sample AI), followed by the full support combined with grid lines across the 

damaged areas (sample F). Lastly, weak areas in sample E widened the most. 

The maximum pseudo strain values, described in Figure 6.25, confirm these 

observations. Again, in sample AI the areas conserved with laid couching possibly 

elongated less than those treated with brick couching, however the difference 

falls within the error range (Figure 6.25).    
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Figure 6.24. Pseudo εyy [%] across damaged areas of sample AI (blue line, brick couching; 
red line, laid couching), F (grey line), E (yellow line) during the 168 hours of monitoring.   

 

 

Figure 6.25. Maximum pseudo εyy [%] across the damaged areas of sample AI (conserved 
with brick and laid couching), E and F. 

 

6.2.1.5 Full support vs patch support in highly damaged samples (test 6.5) 

This test studied the different impact of a full and patch support in reducing the 

strain in a highly damaged tapestry-like material. Differently from the samples 

employed in the previous experiments (6.1-6.4), the mock-ups used here 

presented more extensive physical damage. This allowed us to observe whether 

the treatment, local (sample H, patch support) or full (sample I), can be 

effective in physically supporting different types of weak areas. Brick couching 
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was also used for the major damaged areas. Besides conserved specimens H and 

I, untreated sample G was also monitored as reference. In general, the samples 

employed here better describe actual scenarios, as historic hangings usually 

present more widespread, more pronounced, and a wider range of structural 

weaknesses than those in specimens AI-F.  

Figure 6.26 illustrates the strain map of the mock-ups at the end of the 160-hour 

monitoring.12 It is evident that other weak regions than the four with 12 bare 

warps can be distinguished because of the high local strain linked to creep. In 

particular, the 50-mm horizontal slits on the right side of the mock-ups were 

clearly seen to widen during the monitoring, since they are indicated as 

locations of high εyy (Figure 6.26). As expected, this is especially evident from 

the strain maps of the untreated sample G, but also from those of sample H, 

with patch support. On the other hand, strain across specimen I, fully supported 

on the back, appears more homogeneous, possibly indicating the greater efficacy 

of this type of treatment.    

 

Figure 6.26. Strain map, εyy [%], of sample G (no conservation), H (patch support) and 
sample I (full support) after 160 hours of monitoring. The locations of particularly weak 
areas are marked within dotted lines.  

 
12 Although the test lasted 168 hours, unexpected out-of-plane displacements of the specimens 

occurred in the last 8 hours of monitoring, preventing the DIC analysis. 
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The mean overall εyy [%] across the three samples is plotted, together with RH 

and against time, in Figure 6.27. Figure 6.27 confirms the positive effects of the 

full support in reducing the global longitudinal strain: while mean εyy in sample 

H, with patches, was almost the same of that across non-conserved sample G, 

specimen I elongated less.  

 

Figure 6.27. Mean εyy [%] of sample G, H, and I during the 160-hour monitoring. RH [%] is 
indicated by the dotted line. 

 

Figure 6.28 and Figure 6.29 depict the data from the pseudo strain registered 

across the four damaged areas with 12 bare warps in the three specimens. From 

both figures, the success of the brick couching in preventing the opening of the 

slits is assessed. Indeed, the maximum pseudo strain across structural damage in 

untreated specimen G was shown to be remarkably greater (≈0.65%) than that in 

conserved samples H (≈0.15%) and I (≈0.12%). The difference in the pseudo 

strains from specimens H and I falls within the error range, so it can be said that 

in both cases the weak areas were equally and successfully conserved through 

the brick couching. 
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Figure 6.28. Pseudo εyy [%] across damaged areas (12 bare warps) of sample G, H, and I 
during the 160 hours of monitoring.   

 

 

Figure 6.29. Maximum pseudo εyy [%] across the damaged areas (12 bare warps) of sample 
G, H and I. 

 

When focusing on the results from the weak areas without couching (Figure 

6.30), the greater efficacy of the full support in sustaining them and avoiding 

elongation is demonstrated. Indeed, patch support was ineffective whenever 

patches were not directly on the back of damage, as the max pseudo strain in 

sample H was around the same of that in untreated specimen G.          
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Figure 6.30. Maximum pseudo εyy [%] across the particularly damaged areas of sample G, H 
and I. 

 

6.2.1.6 Different spacing (test 6.6) 

Experiment 6.6 aimed to examine the impact of spacing in brick and laid 

couching. Five conserved samples were monitored: Br.1, brick couching, 15-mm 

spacing; Br.2, brick couching, 8-mm spacing; Br.3, brick couching, 4-mm 

spacing; La.1, laid couching, 15-mm spacing; La.2, laid couching, 8-mm spacing. 

In addition, untreated sample Da. was also tested as reference. Studying how 

spacing may impact strain across damage is important for different reasons: I) 

the number of stitches affects time and cost of the treatment; II) some 

conservators have been questioning whether close stitching excessively 

constrains the treated area [5]. The second point may raise the question of 

whether close spacing may be actually detrimental, as it may create different 

responses to RH and lead to local tension.      

Figure 6.31 depicts the strain map of the six samples at end of the test. The 

central damaged area in specimen Da., the only one left untreated, is marked in 

red, expressing high longitudinal strain, and so elongation, due to a time-

dependent mechanism. Contrarily to this, εyy across the five conserved 

specimens appears to be more homogeneous. 
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Figure 6.31. Strain map, εyy [%], after 168 hours of monitoring of sample: Br.1, Br.2, Br.3 
(brick couching); La.1, La.2 (laid couching); Da. (no conservation). 

 

The observations drawn from the strain maps can be further verified by the 

(overall) εyy data summarised in Figure 6.32: among the six samples, specimen 

Da. was the only one showing a distinctively higher strain than the others. In 

general, it can be noted that sample Br.3, with the closest stitches, was 

characterised by a more contained elongation than samples Br.1 and Br.2. 

Similarly, specimen La.2 (8-mm spacing) presented a lower strain than sample 

La.1 (15-mm spacing).    



283 
 
 

 

Figure 6.32. Mean εyy [%] during the 168-hour monitoring of sample: Br.1, Br.2, Br.3 (brick 
couching); La.1, La.2 (laid couching); Da. (no conservation). RH [%] is indicated by the 
dotted line. 

 

Figure 6.33 illustrates the mean pseudo εyy measured across the damaged areas, 

conserved and non-conserved, of the six samples. The curves show a possible 

creep-like behaviour, affecting mostly the weak area in sample Da., without 

couching. The greater extension of sample Da. is also confirmed by the 

maximum pseudo strain data reported in Figure 6.34. Furthermore, data in 

Figure 6.33 and Figure 6.34 seem to describe the impact of spacing in the 

couching: close stitches (samples Br.3 and La.2) were more effective in 

preventing slits opening, when compared to more spaced couching (specimens 

Br.1 and La.1). When the overall data (Figure 6.32) are compared against pseudo 

strain across treated areas (Figure 6.33), it is interesting to note that local εyy 

was lower than globally averaged strain in mock-ups with stitches at 8- and 4-

mm spacing (see also discussion in Section 6.2.1.1). On the other hand, the 

specimens conserved with 15-mm brick and laid couching have similar pseudo 

and overall strains. As an example, graphs plotting overall and pseudo εyy of Br.1 

(15-mm spacing) and Br.2 (8-mm spacing) are provided in Figure 6.35. These 

observations could indicate that, when stitches were applied at lower distance 

than 15 mm, the treatment could have partly limited fatigue across the 
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conserved area. As previously mentioned, according to some conservators, such 

divergency in the response to RH between treated and untreated areas should be 

avoided. It is important to stress that only one specimen per type of couching-

spacing was employed, so these outcomes should be regarded as indicative 

rather than statistically objective.    

 

Figure 6.33. Pseudo εyy [%] across damaged areas of sample Br.1, Br.2, Br.3, La.1, La.2, Da. 
during the 168 hours of monitoring.   

 

 

Figure 6.34. Maximum pseudo εyy [%] across the damaged areas of sample Br.2, Br.3, La.1, 
La.2, Da. 
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Figure 6.35. Mean and pseudo εyy [%] of sample Br.1 (15-mm spacing) and Br.2 (8-mm 
spacing) during the 168 hours of monitoring.  

 

6.2.1.7 Summary and discussion 

From the tests described in Section 6.2.1 on wool rep mock-ups the following 

general observations on the efficacy of different stitching and support 

techniques for tapestries can be drawn: 

- Strain across weak areas (i.e. bare warps), possibly linked to a time-

dependent creep behaviour, can be successfully reduced by both support 

treatments alone (full and patch), and, even more greatly, when in 

combination with couching techniques (brick and laid). Results showed 

that the extension across fully conserved areas was similar to that across 

the undamaged fabric, indicating a successful regain in strength.   

- Full support treatments proved to be more effective than patches, when 

damage across the textiles was extensive. On the other hand, when the 

two types of treatment were applied on the back of more sound 

specimens (thus the patches were directly behind the few weak areas), 

both support methods were shown to be equally useful in preventing 

damage propagation, at least at the tested loads.  
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- Grid lines used for full supports contributed to reducing strain across 

weak areas when they overlapped them. On the other hand, when the 

lines were farther away from the mechanical defects (20 mm), their 

presence did not seem to contribute to the strain reduction. 

- No statistically significant difference between brick and laid couching was 

noted. In general, structural weaknesses conserved with laid couching 

appeared to be better supported than those treated with brick couching, 

however the strain difference was within or close to the error range. 

Therefore, even if laid couching might have been more effective than 

brick couching, the dissimilarity was too subtle to be consistently 

revealed through 2D DIC.    

- Indicatively, the impact of spacing on the efficacy of brick and laid 

couching was noted: the smaller the distance between the stitches, the 

lower the local pseudo strain.  

It should be noted that these general conclusions were drawn by looking at each 

test individually, as the quantitative data were greatly affected by the 

environmental conditions and this prevented a proper overall comparison, from 

a quantitative perspective.  

The findings are in good agreement with the previous research by Asai et al. on 

the evaluation of support techniques, stabilising lines and couching on unaged 

tapestry-like samples by using tensile testing [5]. In particular, Asai et al. also 

reported that the physical strength of weak areas can be completely restored 

when using couching and support treatments, especially when these are 

combined. In addition, the research team also proved the usefulness of 

stabilising (grid) lines, in particular when they are close to the damage [5]. 

Regarding the similar positive impact of brick and laid couching, this was also 

observed by Nilsson, although her work focused on artificially aged silk samples 

[12]. The agreement with previous studies is particularly significant since, in this 

project, 2D DIC was used for the first time as a tool for evaluating conservation 

treatments, therefore the reliability of the results could not be ensured a priori.   
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On the other hand, some differences can be noted when comparing the data 

with those reported by Catic’s work [2], partly conducted within the context of 

the current project. Catic followed the same methodology here presented (i.e. 

same materials, same type of damage, same stitching techniques and similar DIC 

set-up), however the treatments, especially the brick couching, were reported 

to be less effective in minimising elongation. This can be due to the conservators 

who treated the mock-ups: while Prof Lennard conserved the specimens for this 

study, CTC students carried out those in Catic’s research. It is likely, as the 

support stitching is carried out by hand, that there will be variations from one 

individual to another, reflecting differences in training, experience and 

technique. In addition, it should be noted that the DIC analysis in Catic’s work 

presented some issues that might have affected some of the outcomes (e.g. use 

of two different cameras with different settings) [2].        

6.2.2 2D DIC monitoring of a historic tapestry fragment after 
conservation 

2D DIC was employed to monitor strain across TapestryFragment_1, already 

studied in Chapter 4 before conservation. This test aimed to investigate the 

effects of conservation strategies when applied on actual tapestries, affected by 

more extensive and complex damage processes than the wool rep mock-ups in 

Section 6.2.1. The fragment was treated twice: first, it was conserved by 

applying some local linen patches with brick couching at different spacing; later, 

a full linen support was stitched on the back through grid and scrim lines. The 

two monitoring tests were carried out at the end of each treatment and they 

both lasted 200 hours.  

The strain map of the fragment at the end of the first treatment is presented in 

Figure 6.36. The conserved areas are highlighted in yellow, while the pre-

existing open slits left untreated are marked by the blue dotted line. Slit 5 is not 

indicated since it underwent some uncontrolled structural modifications 

between the different tests, impeding a correct comparison before and after 

treatment. Already from the strain map, the impact of the linen patches and 

brick couching in diminishing damage propagation can be observed. Indeed, the 

conserved areas show lower local pseudo strain than the untreated ones. 
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Figure 6.36. Strain map, εyy [%], of TapestryFragment_1 at the end of the 200-hour 
monitoring after the first conservation treatment (application of patches through couching). 
The conserved areas are highlighted in yellow, while those left untreated in blue. The 
location of the patches is indicated by the thick black dotted line, while that of brick 
couching by the fine black dotted line. 

 

The local strain data from the areas of interest (treated and untreated), 

presented in Figure 6.37, confirm the effect of the patches and couching: Slit1 

and Slit4 enlarged significantly more than the conserved slits. In general, it is 

observed that the pseudo strain across the treated areas was similar, or even 

lower, than globally averaged strain, plotted in Figure 6.38. On the other hand, 

pseudo strain across non-conserved areas, Slit1 and Slit4, was remarkably 

greater than mean εyy. Namely, while overall strain reached a maximum of 0.05% 

(at 52.5% RH), pseudo strain across Slit1 and Slit4 was 0.21% and 0.29%, 

respectively. This means that a creep-like behaviour determined the widening of 

the two untreated slits, that extended up to six times the increase in length 

registered for the overall tapestry.  
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When comparing the data calculated across stitched Slit2 (3-mm spacing), Slit6 

(3-mm spacing) and Slit3 (6-mm spacing), it is noted that Slit2 showed the 

highest extension. The fact that the area treated with brick couching at 3-mm 

spacing (Slit2) extended more than that at 6-mm spacing (Slit3) is 

counterintuitive, also considering the outcomes reported in Section 6.2.1. 

However, it is worth noting that above Slit2 an area of high pseudo strain was 

registered (Figure 6.36), not observed before conservation (Chapter 4, Section 

4.3.2.1). Although further investigation is needed to clarify this point and to 

exclude the occurrence of local strain miscalculation, it could be thought that 

Slit2 was negatively affected by the damage propagation occurring in the 

neighbouring area.  

It is underlined that Slit6 only indicates the open slit affected by the application 

of the patch (same area monitored before conservation, Chapter 4), while 

Patch_Slit6 refers to the entire part of the tapestry covered by the patch. It is 

highlighted that pseudo εyy in the two areas is different (Figure 6.37). Perhaps, 

the stitching across the small area of Slit6 determined some tension, excessively 

impeding the textile to move. In general, it is important to point out that local 

strain data may be less accurate from a quantitative perspective than globally 

averaged ones. This is particularly true when monitoring historic textiles (no 

speckle pattern). Therefore, errors in displacement calculation may prevent a 

proper (quantitative) reading of the local data.   
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Figure 6.37. Pseudo εyy [%] across damaged areas of TapestryFragment_1 during the 200-
hour monitoring after the first conservation treatment (application of patches though 
couching). 

 

 

Figure 6.38. Mean εyy [%] during the 200-hour monitoring TapestryFragment_1 after the first 
conservation treatment. RH [%] is indicated by the dotted line. 

 



291 
 
Importantly, the second treatment, which affected the entire back of the 

fragment, resulted in limiting the extension across Slit1 and Slit4, not treated 

with patches and couching in the first phase of conservation. This can be 

observed from the strain map at the end of the monitoring, illustrated in Figure 

6.39: local pseudo strain across all the slits is less evident.  

 

Figure 6.39. Strain map εyy [%] of TapestryFragment_1 at the end of the 200-hour monitoring 
of TapestryFragment_1 after the second conservation treatment (application of full support). 
The area treated with full support is indicated by the horizontal black lines.  

 

The efficacy of the full support in containing the widening of the open slits is 

also revealed by the pseudo strain data, shown in Figure 6.40. Indeed, pseudo 

strain across Slit1 was shown to be efficiently contained thanks to the 

application of the full linen support on the back. Interestingly, pseudo εyy 

registered across Slit1 was around the same as that across Slit2, Slit3, and Slit6, 

already conserved with patches. When considering Slit4, this was shown to widen 
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the most. Although it can be said that the treatment was not completely 

effective in preventing the occurrence of creep, from comparison between data 

in Figure 6.37 and Figure 6.40 it is delineated that the application of the support 

partly contained the damage mechanism. These observations on the usefulness 

of support techniques agree with what was indicated by the DIC strain 

monitoring of wool rep mock-ups: patch support may effectively prevent damage 

propagation, but when weaknesses are widespread, full support can represent a 

better option. 

 

Figure 6.40. Pseudo εyy [%] across damaged areas of TapestryFragment_1 during the 200 
hours of monitoring after the first conservation treatment (application of full support). 

 

 

Figure 6.41. Mean εyy [%] during the 200-hour monitoring TapestryFragment_1 after the 
second conservation treatment. RH [%] is indicated by the dotted line. 
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6.2.3 Uniaxial tensile testing: fabrics for support treatments 

6.2.3.1 Linen fabrics 

Uniaxial tensile testing was carried out on two different linen fabrics currently 

used by textile conservators in the UK for full and patch support treatments on 

tapestries. Linen B (by Claessens), which has a higher thread count than Linen A 

(by Whaleys) and was employed to conserve the samples monitored in the 

previous sections, was tested before and after the pre-treatment. The pre-

treatment consisted of washing the fabric at 90 °C in a machine. The objectives 

of the experiment were to better define physical properties, namely ultimate 

tensile strength and Young’s modulus, of these conservation materials and 

eventually relate the results with those from the mechanical characterisation of 

historic fragments reported in Chapter 3.  

Typical stress-strain curves of the two washed linen fabrics are shown in Figure 

6.42 (weft direction) and Figure 6.43 (warp direction). Similarly, representative 

curves of unwashed Linen B are illustrated in Figure 6.44 (weft direction) and 

Figure 6.45 (warp direction). All the graphs describe a similar mechanical 

behaviour: the occurrence of slack and de-crimping regions, followed by a linear 

section indicating the elastic behaviour (from which the Young’s modulus was 

calculated), eventually interrupted by the failure of the specimen.  

 

Figure 6.42. Stress-strain curves of specimens from washed Linen A (blue line) and washed 
Linen B (yellow line) tested in the weft direction. 
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Figure 6.43. Stress-strain curves of specimens from washed Linen A (blue line) and washed 
Linen B (yellow line) tested in the warp direction. 

 

 

Figure 6.44. Stress-strain curve of specimen from unwashed Linen B in the weft direction. 
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Figure 6.45. Stress-strain curve of specimen from unwashed Linen B in the warp direction. 

 

Table 6.9 summarised the tensile properties of the two linen fabrics 

investigated. From the data reported, it can be pointed out that the slack and 

crimp-removal regions ended at a nominal strain between 0.02 and 0.09. The 

unwashed Linen B showed the lowest extension before the occurrence of the 

Hookean region; on the opposite, washed Linen A and B presented similar strain 

at the end of the crimp (in both cases, higher in the warp direction).    

Table 6.9. Uniaxial tensile properties of the two linen fabrics (the SD is also indicated, 
average of five measurements per direction). 

Fabric / 

Direction /  

Pre-treatment 

Strain at the 

End of the 

Crimp  

Young’s 

Modulus [MPa] 

Stress at Failure 

[MPa] 

Strain at Failure  

Linen A / Warp / 

Washed 

0.090 ± 0.002 581.51 ± 30.04 24.42 ± 0.81 0.012 ± 0.003 

Linen A / Weft / 

Washed  

0.074 ± 0.005 570.43 ± 15.55 21.55 ± 0.95 0.010 ± 0.009 

Linen B / Warp / 

Unwashed 

0.058 ± 0.002 1470.0 ± 137.46 47.37 ± 5.13 0.080 ± 0.001 

Linen B / Weft / 

Unwashed 

0.021 ± 0.002 2460.40 ± 40.97 58.98 ± 1.83 0.041 ± 0.002 

Linen B / Warp / 

Washed 

0.087 ± 0.010 1164.6 ± 164.25 37.31 ± 5.05 0.105 ± 0.012 

Linen B / Weft / 

Washed 

0.071 ± 0.009 1523.8 ± 203.68 
 

43.93 ± 6.60 0.090 ± 0.008 
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When comparing the two washed fabrics, Linen B presented a greater Young’s 

modulus than Linen A, in both warp and weft direction, as indicated by data in 

Table 6.9 and in Figure 6.46. It can be noted that the modulus of Linen B in the 

warp direction was lower (1164.60 MPa) than that in the weft direction (1523.80 

MPa). On the other hand, Linen A seemed to show a more isotropic behaviour, as 

the modulus in both directions was around 575 MPa. Differences in stiffness 

between warp and weft of linen fabrics have been reported by other studies 

investigating similar materials used in painting conservation [13-15]. The studies 

indicate that usually the weft direction is stiffer than the warp, and this can be 

due to the manufacturing process [13]. It is important to underline that in 

tapestry conservation the linen would be used so that the warp direction hangs 

vertically and takes the weight of the object.   

Considering the effects of the pre-treatment, the data in Figure 6.46 state that 

the washing of Linen B caused a decrease in the modulus.  

 

Figure 6.46. Young’s modulus of the washed Linen A, washed Linen B, unwashed Linen B. 

 

Besides showing a greater “stiffness”, washed Linen B had a higher breaking 

stress, and thus tensile strength, than washed Linen A (Figure 6.47). This is true 

for both the warp and weft direction. Probably, the higher thread count of Linen 

B may have contributed to this. 
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As observed for the Young’s modulus, the tensile strength of washed Linen B was 

lower than the unwashed fabric.     

 

Figure 6.47. Breaking stress of washed Linen A, washed Linen B, unwashed Linen B. 

 

Strain at failure of the two washed linen fabrics (Figure 6.48) ranged between 

0.009 and 0.012. In both cases, specimens tested in the warp direction 

elongated more than those in the weft direction.  

It is observed that the pre-treatment of Linen B caused an increase in the 

elongation at break, especially in the weft direction as a growth of almost 50% 

was registered. This indicates that the washed linen fabric is likely more elastic 

than the same unwashed textile. Similarly, also strain at the end of the crimp 

raised after the washing of Linen B (Table 6.9). This is in agreement with 

previous studies, as further discussed in Section 6.2.3.3 [8].   
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Figure 6.48. Breaking strain of washed Linen A, washed Linen B, unwashed Linen B.  

 

6.2.3.2 Polyester Stabiltex™ 

In addition to the two linen fabrics, polyester Stabiltex™ was uniaxially tensile 

tested. Synthetic materials as polyester and polypropylene fabrics have also 

been (rarely) reported as an option for supporting tapestries [8, 10, 11]. 

Typical stress-strain curves in both warp and weft direction of polyester 

Stabiltex™ are illustrated in Figure 6.49. It is evident that the mechanical 

response of the synthetic fibre is remarkably different from that of linen, as the 

curve presents two distinctive regions before the failure. The first part of the 

graphs represents the elastic (Hookean) region, where the elongation is directly 

proportional to the stress and from which the Young’s modulus was calculated. 

However, the elastic behaviour of the fabric is interrupted from the yield point 

on, that indeed marks the start of plastic deformations. Before failure takes 

place, the non-elastic region presents an inflection, particularly evident in the 

weft-direction curve of Figure 6.49. This is due to the re-arrangement of the 

molecular structure of the material, that eventually grows in resistance. In the 

region before the inflection, amorphous tie chains, characteristic of polyester 

materials, stretch (strain softening). After this, the chains are taut and started 

to be deformed (strain hardening) [16, 17].        
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Figure 6.49. Stress-strain curves of polyester Stabiltex™ in the weft and warp direction. 

 

The data from the uniaxial tensile testing of the polyester fabric are reported in 

Table 6.10. The properties do not vary remarkably from the warp to the weft 

direction. In both directions, the yield point occurred at a nominal strain of 

between 0.018-0.019, and specimens failed between 0.16-0.18 strain. The 

Young’s modulus is around 416 MPa in the weft direction, and 470 MPa in the 

warp direction. This indicates a lower “stiffness” than that of the linen fabrics 

tested in the previous section, especially of Linen B. On the other hand, the 

stress at failure of the synthetic textile (37-39 MPa) describes a strength similar 

to washed Linen B, and even greater than that of washed Linen A.        

Table 6.10. Uniaxial tensile properties of the polyester Stabiltex™ (the SD is also indicated, 
average of five measurements per direction). 

Direction Strain at the 

Yield Point  

Young’s 

Modulus [MPa] 

Stress at Failure 

[MPa] 

Strain at Failure  

Weft 0.019 ± 0.001 416.11 ± 17.29 39.58 ± 0.74 0.18 ± 0.004 

Warp 0.018 ± 0.001 470.39 ± 34.81 37.26 ± 1.94 0.16 ± 0.013 

 

6.2.3.3 Discussion: comparison between the tensile properties of fabrics for 
support treatments and historic tapestries 

The data presented in the previous section are now compared with those 

obtained from the uniaxial tensile testing of historic tapestry fragments 
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presented in Paragraph 3.2.1.1. The observations from the comparison are then 

discussed considering previous studies on the evaluation, from a mechanical 

perspective, of support treatments in conservation.   

As expected, the overall shape of the stress-strain curves of linen and tapestry 

samples were significantly different. In general, the two linen fabrics were 

considerably less flexible than the historic hangings, as they showed a Young’s 

modulus even one hundred time higher than that of tapestries. At the same 

time, Linen A and Linen B presented a greater tensile strength than the tapestry 

specimens, especially when the latter had a low thread count and were in 

evident poor condition. Similar considerations could be made for Stabiltex™ as, 

also in the case of the synthetic fabric, the material was shown to be greatly 

stiffer and stronger than the actual tapestry specimens. Overall, the polyester 

textile proved to differ from the linen samples in the general mechanical 

behaviour because of the presence of a non-elastic region after the yield point 

and the consequently much greater strain at failure. It should be noted that all 

these observations are not only valid for the comparison between support fabrics 

and historic tapestries, but also between the conservation materials and wool 

rep. Indeed, linen and polyester fabrics are also stronger and stiffer than the 

newly woven tapestry-like material (especially in the weft hanging direction).   

Both the lower flexibility (up to a certain extend) and higher tensile strength of 

conservation materials are desirable qualities, as they would increase the ability 

to, fully or partially, support weak areas in historic textiles. Indeed, the same 

parameters are considered when evaluating linings for paintings, e.g. [18]. 

However, in painting conservation, the mechanical behaviour is even more 

complex due to the wider range of constituent materials, related physical 

behaviour, pre-treatment of the lining (i.e. stretching), and application system 

(i.e. type of adhesive) [13-15, 18, 19]. For instance, Young et. al in [19] state 

that the stiffness of the lining fabrics drops once they are stretched for the 

application, and this may negatively affect the efficacy of the support. Indeed, 

loads are proportionately distributed between lining and painting according to 

their stiffness, at least when they are strictly bonded and the adhesive has a 

contained shear movement: the most flexible will take the lowest amount of 

load [19]. In the case of tapestries, stretching and adhesive type are not 



301 
 
relevant variables, as the fabric is directly stitched to the back of the artwork. 

Another mechanical property critical for paintings but less for tapestries 

conservation is isotropy: paintings (on canvas) are tensioned biaxially as they are 

prepared and displayed on a stretcher, so the lining treatment aims to support 

evenly both vertical and horizontal direction. On the other hand, support 

treatments for tapestries aim to prevent damage caused by the self-weight 

loading acting in the weft vertical direction. Because of this, in the current 

study textile specimens were uniaxially, and not biaxially, tensile tested.     

The results in Section 6.2.3.1 highlighted that the tensile properties of linen are 

affected by the preparation of the fabric. Before the current study, Hofenk de 

Graaff et al. also studied the effects of pre-treatment (i.e. washing and drying) 

and environmental factors (i.e. heat and humidity) on the tensile strength and 

breaking elongation of linen and cotton fabrics used for supporting tapestries 

[9]. The data showed that the pre-treatment can weaken the fabrics (especially 

linen) and that the impact of ageing conditions was similar on both type of 

cellulosic material. In addition, the research group investigated the dimensional 

changes of linen and cotton, and two woollen tapestry fragments, due to 

fluctuations in relative humidity and temperature (measured through a thermo-

hygrograph). Although the outcomes stated that treated fabrics and the 

tapestries behaved similarly, the tests were not considered fully representative. 

Factors like the lack of replicas, the testing methods (e.g. the modified thermo-

hygrograph), as well as the lack of some results (e.g. no indications on stiffness), 

partly affected the accuracy of the study, as already mentioned by the authors. 

Overall the research concluded that it is difficult to indicate which fabric, linen 

and cotton, should be employed, as the tensile properties greatly depend on 

variables like density [9]. 

When comparing the synthetic and the natural fabrics tested in section 6.2.2, it 

should be pointed out that Stabiltex™ was introduced for textile conservation 

treatments not only for its strength, but also for its durability and contained 

moisture regain [20, 21]. However, in the conservation field, the polyester fabric 

has been usually employed for supporting fragile textiles in combination with 

adhesive [21-23]. Since neither durability nor moisture regain were evaluated in 

this study, they cannot be here considered. Nevertheless, it is relevant to note 
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that the use of synthetic fabrics (both polyester and polypropylene) as support 

for historic hangings is very limited [8, 10, 11]. In the most recent questionnaire 

no respondent claimed to employ other materials than linen (the preferred one) 

and cotton [2]. Overall, the experiments reported in this chapter are not able to 

surely state whether Stabiltex™ is a better or worse option than linen for 

supporting tapestries. Nevertheless, the uniaxial tensile testing of the 

conservation material and historic hangings can be used as a starting point for 

further research.       

In general, as stated by Young, characterising the mechanical behaviour of 

conservation materials used for structural treatments is a crucial but initial step 

of a longer evaluation process [13]. Indeed, when all the materials tested show 

desirable qualities, as in this case, to decide which one will give the best long-

term results in the continuous interaction with the artwork is particularly 

complex. This is especially true in the context of the current research, as textile 

conservators still do not agree on the reasons behind treatments’ choice (e.g. 

should the support fabric restrict or allow fatigue? [10]), impeding our ability 

clearly establish what is indeed desirable in the long term.  

6.2.4 Uniaxial tensile testing: newly woven conserved samples    

Conserved specimens were uniaxially tensile tested to compare the mechanical 

strength. Through this, the observations drawn from the DIC strain monitoring of 

the same samples reported in Paragraph 6.2.1 were further verified. 

The graph in Figure 6.50 illustrates the stress-strain curves of specimens AI_B2 

and C_B1, both conserved with brick couching and full support. Figure 6.51 

shows the trend of specimens AI_L1 and C_L1, also with a linen support on the 

entire back but then treated with laid couching. Although the specimens 

presented a complex structure and different materials, namely the wool rep, the 

linen and threads for the stitching, the curves mainly resembled those from the 

characterisation of the support fabric (Figure 6.43). This suggests that the 

mechanical response was greatly determined by the linen on the back.  
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Figure 6.50. Stress-strain curve of specimen AI_B2 (full support, grid lines far from areas of 
damage, 4-mm brick couching) and C_B1 (full support, no grid lines, 4-mm brick couching). 

 

 

Figure 6.51. Stress-strain curve of specimen AI_L1 (full support, grid lines far from areas of 
damage, 4-mm laid couching) and C_L1 (full support, no grid lines, 4-mm laid couching). 

 

Typical failure mechanism of specimens with full support and couching across 

the area with bare warps is represented in Figure 6.52: the wool rep fabric and 
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the stitches were torn apart at lower loads than the linen fabric, that was 

indeed the last material to break down.    

a)    b)  

Figure 6.52. Specimen AI_B2 (a) and C_L1 (b) during the uniaxial tensile testing.  

 

The dominating impact of linen fabric in defining the tensile properties of the 

fully supported specimens can be also assessed by considering the stress-strain 

curves of the samples with patches on the back of the damaged areas (Figure 

6.53 and Figure 6.54). The graphs, representing patch support in combination 

with brick (Figure 6.53) and laid couching (Figure 6.54), show that the specimens 

with only local treatments failed at much lower stress and had lower moduli 

than those with the linen fabric on the entire back (Figure 6.50 and Figure 6.51). 

From the same graphs, the impact of the spacing can also be observed: the 

larger the space between stitches, the weaker the specimens.    
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Figure 6.53. Stress-strain curves of specimen B_B1 (patch support, 4-mm brick couching), 
Br.2 (patch support, 8-mm brick couching). 

 

 
Figure 6.54. Stress-strain curves of specimen B_L1 (patch support, 4-mm laid couching), 
La.1 (patch support, 15-mm laid couching). 

 

The data on the tensile properties of the tested specimens are reported in Table 

6.11. By comparing the mechanical properties of specimens with the same 

couching treatments but with different support methods, full (from samples AI 

and C) and patch (from samples B, Br., La.), the difference is significant, as 
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already anticipated by the analysis of the stress-strain curves. Specimens with 

the linen fabric on the entire back were remarkably stronger and with a higher 

Young’s modulus than those with the linen textile only covering the damaged 

area. Perhaps the 2D DIC strain monitoring tests in section 6.2.1 were unable to 

pinpoint differences in stain reduction between patch and full support as the 

samples were exposed to lower loads and the sound part was big enough to 

minimise the impact of the treatments. 

When considering the effects of the two couching techniques from the data in 

Table 6.11, it can be stated that the specimens treated with laid couching were 

stronger and had higher moduli than those with brick couching. This confirms the 

preliminary observations drawn from the 2D DIC monitoring tests reported in 

Section 6.2.1 on the greater ability of laid couching in carrying the load from 

weak areas. In addition, as already observed from the analysis of stress-strain 

curves and the DIC monitoring, it is verified that the spacing of the couching 

affected strength and modulus of specimens. Interestingly, when considering 

samples with patches, there is not a significant difference between 4-mm laid 

couching (B_L1) and 8-mm laid couching (La.2). On the contrary, in the case of 

the brick couching, the specimen with the 8-mm spacing (Br.2) was significantly 

weaker than those with the 4-mm spacing (B_B1, Br.3).     

Table 6.11. Uniaxial tensile properties of specimens conserved with different support and 
stitching techniques.  

Sample code Strain at the 

end crimp 

Young's modulus 

[MPa] 

Stress at failure 

[MPa] 

Strain at failure 

AI_B2 0.060 463.05 13.50 0.080 

AI_L1 0.065 529.48 15.68 0.085 

AI_L2 0.060 539.70 14.26 0.075 

B_B1 0.040 17.33 0.99 0.080 

B_L1 0.060 21.28 1.44 0.105 

C_B1 0.065 513.13 15.98 0.085 

C_L1 0.060 542.53 16.81 0.080 

Br.2 0.040 6.90 0.50 0.090 

Br.3 0.055 20 1.18 0.090 

La.1 0.060 7.77 0.68 0.120 

La.2 0.065 20.15 1.44 0.110 
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6.3 Conclusions  

In this chapter objective data on the usefulness of couching and support 

techniques to prevent the propagation of mechanical damage in tapestries were 

provided. To do so, wool rep mock-ups were artificially damaged and then 

conserved using different couching techniques (brick and laid) and support 

methods (full, with different grid lines systems, and patches). To investigate the 

impact of the different approaches, strain across the samples was monitored 

through 2D DIC. Then, specimens were cut from the conserved samples and 

uniaxially tensile tested to study the mechanical behaviour. The tensile 

properties of fabrics employed for supporting tapestries, i.e. linen and polyester 

textiles, were also assessed. This aimed to provide a better understanding on 

how load is successfully transferred from weak areas in tapestries to the 

conservation material.    

By combining the observations from the 2D DIC strain monitoring and the tensile 

tests, it can be deduced that:  

- The support fabric plays a fundamental role in determining the 

mechanical response of conserved specimens. When a linen full support is 

applied on woollen tapestry-like textiles, the mechanical behaviour is 

significantly altered. The strength and stiffness of the supported tapestry 

may be even greater than those of the unaged material. The impact of 

patches applied on the back of weak areas, in combination with couching, 

appears to be more contained, although still successful in preventing 

damage propagation. This may be true especially at loads experienced in 

normal conditions and for relatively sound historic hangings.             

- Both couching techniques, in combination with support methods, are 

effective in avoiding the failure of weak areas of weft loss. In general, 

brick couching seemed to improve less the strength than laid couching, 

although the difference observed was not significant. On the other hand, 

the space between the stitches may affect the success of the treatment.     

It is important to remember that, from the conservators’ perspective, several 

aspects should be taken into consideration when deciding how to treat a 
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tapestry. In general, the soundness of the historic object seems to primarily 

determine conservators’ decisions. For instance, when choosing the support 

method, many workshops may already opt for full support only for tapestries in 

evident weak conditions [2, 10]. However, besides this, factors like time and 

cost also influence the choice of the treatment [10]. Therefore it should be 

highlighted that the observations drawn in this chapter on the usefulness of 

conservation approaches only consider one aspect of a more complex decision-

making process.  

From a methodological perspective, the combination of analytical techniques 

employed here, 2D DIC and tensile testing, was proved to be useful in providing 

some insights on the mechanical behaviour of conserved textiles. While this work 

represents the first extensive trial of DIC within the field of textile conservation, 

tensile testing has been employed before for evaluating treatments, also in the 

case of tapestries [5]. Due to the uncertainty on the accuracy of DIC results, it 

was necessary to include the more established tensile testing method. The 

destructive technique showed that confidence can be given to DIC, although 

sometimes the optical method was unable to clearly highlight differences in the 

treatments’ ability to reduce strain. For instance, the tensile testing proved the 

greater ultimate tensile strength of samples treated with laid couching than 

those conserved with brick couching. Of course, this largely depends on the fact 

that the stress experienced by tensile tested samples was significantly higher 

than that in fixed-load experiments. Because of this, the contribution from the 

DIC analysis can be critical as the contactless method allows the monitoring of 

damage propagation in actual cases, considering realistic load distributions.   
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7 Conclusions and future research 

This thesis aimed to extend the knowledge on the degradation and preservation 

of historic tapestries. The research was carried out within the context of the 

project From the Golden Age to the Digital Age: Modelling and Monitoring 

Historic Tapestries, involving the Centre for Textile Conservation and Technical 

Art History and the School of Engineering of the University of Glasgow. The work 

was conducted through a multi-analytical approach combining textile 

conservation, analytical chemistry, and mechanical engineering. The cross-

disciplinarity nature of the work and the variety of diagnostic tools employed 

allowed the characterisation, and the understanding, of the mechanical 

behaviour of tapestries both on a small-scale level and from a macroscopic 

perspective. Moreover, the use of well-established techniques benefitted the 

assessment of more novel methods. Innovative aspects investigated and achieved 

goals include: 

• Comparative investigation of factors affecting the physical and chemical 

durability of tapestries (Chapter 3).   

• Improvement of the analytical approach, involving digital image 

correlation (DIC), to be used when monitoring strain across historic 

hangings to study mechanical damage mechanisms occurring during 

display (Chapter 4).  

• Comprehensive study on the efficacy of sloping boards as a display 

method for tapestries, evaluating the role of fabric/fabric friction and 

inclination in decreasing strain (Chapter 5).  

• Objective investigation, through DIC and uniaxial tensile testing, of the 

mechanical behaviour of bespoke mock-ups when using different 

conservation strategies for supporting weak areas in tapestries (Chapter 

6).  

More specifically, from this work the following conclusions can be drawn:  
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Factors affecting the structural stability of tapestries on a small-scale level  

The tensile properties of small-scale fragments from various historic tapestries 

were shown to vary on the basis of different parameters, associated with both 

the geometry of the weave and chemical features, that were here connected for 

the first time. Chemical degradation, measured by attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR) in wool samples considering 

the level of cysteic acid (CA) formed from cystine oxidation, leads to a certain 

loss in strength. Processes behind this alteration of chemical and physical 

features were shown to be likely associated to the exposure to environmental 

factors. In particular, it could be thought that humidity, temperature and/or 

pollutants may play a role, as the warp threads, undyed and unexposed to light, 

were also affected. This builds on the knowledge from past studies, and namely 

from the Monitoring of Damage of Historic Tapestries (MODHT) project, as  

spectroscopic investigation previously focused on historic weft threads and on 

the effects of light. Some dyeing processes and materials, e.g. tannins, were 

shown to have a possible, but partial, impact on wool chemical degradation, 

although only a limited number of coloured weft threads was analysed. 

Interestingly, it was noted that, despite the great chemical degradation, textile 

samples may still preserve a good tensile strength thanks to the great fineness of 

the weave.      

Feasibility of 2D DIC for monitoring strain across tapestries and defining 

mechanical damage mechanisms  

2D DIC was proved to be successful in monitoring overall displacements across 

tapestries, with different figurative designs, fibres, and sizes. Overall strain 

data, averaged from the entire surface of the textile, was shown to be useful in 

defining fatigue, as well as time-dependent mechanisms causing a significant 

elongation of weft threads when the object is first hung for the display. 

Importantly, such mechanical mechanisms were identified also when full-size 

tapestries were studied, indicating a broader applicability of the technique than 

was established before. Nevertheless, it was clear that when monitoring large 

tapestries with an area of more than one m2, local strain data were likely to be 

inaccurate and unable to provide information on structural weaknesses. On the 

other hand, when the monitored area was reduced, the increased resolution of 
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the images sometimes enabled the tracking of the propagation of local damage, 

such as the widening of open slits due to creep-like behaviours. It is important to 

underline that, even when the monitored area was limited, no damage was 

detected before the occurrence of a visible defect in the weave.     

From these observations, it can be concluded that 2D DIC can be a helpful tool 

for a non-invasive and in situ assessment of strain distribution across historic 

textile objects while hanging. Nevertheless, when the objective of the 

experiment is to define the mechanical degradation occurring in a specific area, 

the full-field approach should be avoided. For instance, when the propagation of 

an evident defect needs to be tracked over time (e.g. for assessing the 

helpfulness of a local conservation treatment), the monitored area should be 

restricted to the few cm2 of interest.  

Evaluation of display methods and conservation strategies 

It was shown that the helpfulness of sloping boards in limiting overall strain 

across tapestries greatly depends on the covering fabrics, and that those 

currently in use for such systems may be effective in preventing 

extensions/contractions caused by humidity fluctuations. However, sloping 

boards would probably be unable to contain strain across evident damaged 

areas. Since the inclination was observed to play a more marginal role than 

friction/adhesion, covered boards inclined at lower angles than 5° could be 

employed for displaying structurally sound tapestries. This can help in smoothing 

fatigue, although the long-term effects of this approach are not known, and the 

adhesion/friction mechanism was not fully explained.    

Moving to treatments aiming to improve the structural stability of tapestries, full 

and patch supports were shown to be similarly effective in carrying load from 

damaged areas, when wool rep mock-ups were tested. However, from the 

outcomes it can be stated that, when weaknesses are widespread across the 

surface of the woven hanging, full support is a more effective option. From the 

data gathered, laid and brick couching have demonstrated a similar positive 

impact when conserving areas of weft loss, although effects may vary depending 

on spacing.  
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From a practical perspective, it is thought that the combined use of sloping 

boards (inclination ≤ 5° from the vertical) and local support linen patches could 

be a valuable option to help preserving historic hangings, although only when 

they are in good condition. Advantages of this approach would be the limited 

amount of time and material for the conservation treatment, as well as the 

possibility of leaving the back of the artwork available for future research. 

Although the application of a full support may impede further study of the 

original materials on the back, as the treatment is difficult to reverse, the 

presence of a textile barrier (perhaps also represented by a lining) between the 

tapestry and the wall may be beneficial. Indeed, this can help in retarding 

degradation processes in fibres, such as those promoted by humidity.  

7.1 Future research 

Based on the conclusions drawn from the current study, the following areas of 

future research are identified: 

• More detailed study of the chemical degradation processes behind the 

formation of CA in wool threads from tapestries, defining the related 

responsibility of environmental factors, and in particular of humidity.  

• More extended and more numerous long-term in situ monitoring tests of 

historic tapestries to better understand the actual structural risk caused 

by high levels of RH and fretting fatigue. Extended experiments can be 

helpful to delineate if and when the variation in length due to RH 

fluctuations may lead to irreversible changes. This can be useful also for 

textile conservators who need to establish the objectives of the 

treatments (i.e. should the artwork be allowed to move, or should it be 

constrained?).       

• Evaluation of the long-term effects on strain when displaying a tapestry 

on a vertical board covered with cotton molton, or a similar fabric. In 

addition, further analysis is needed to provide a more accurate definition 

of the friction and adhesion process occurring between tapestries and the 

covering fabric of boards. 
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• Further application of 2D DIC for validating conservation approaches, 

possibly carrying out tests directly on historic hangings. A relevant aspect 

to further investigate can be establishing the minimum spacing between 

couching stitches to ensure long-term structural stability. In addition, 

further tests should be carried out to verify whether very close 

conservation stitches may negatively impact the treated areas (through an 

increase in tension).  
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Appendix – Technical notes 

Attenuated total reflectance Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a common absorption 

technique for identifying and characterising a wide range of organic and 

inorganic materials within artworks [1]. Broadly speaking, the technique relies 

on the ability of the infrared (IR) radiation of leading molecular bonds, in 

distinctive functional groups, to vibrate once absorbed. Since each functional 

group absorbs only specific frequencies of the incident IR radiation, by detecting 

the ranges absorbed, the groups can be identified. Eventually, by recognising the 

various chemical groups, it can be possible to qualitatively define molecular 

structures and so the chemical composition of the sample analysed [2].  

In the case of attenuated total reflectance (ATR) FTIR, samples are irradiated 

with radiation in the mid-IR region, which ranges between 4000 cm-1 and 400 cm-

1. Importantly, when the ATR approach is used the sample, or object, is placed 

against a specific crystal and clamped. The ATR approach allows some 

advantages, such as: no samples preparation is required; in some cases, no 

sample is needed, allowing a non-destructive analysis (depending on the object 

size and its surface flatness). One of the possibly crucial limits of ATR-FTIR is 

that it only enables the investigation of the surface, as the penetration depth of 

the radiation is limited to maximum of around 2 μm, depending on the crystal 

[1, 3]. Besides, in some cases it can be difficult to properly define the 

composition when complex mixture of materials is present [4]. Both 

circumstances are not relevant considering the objectives and case studies of 

the current work.       

High performance liquid chromatography coupled with photodiode array 

detector 

Like all chromatographic techniques, high performance liquid chromatography 

(HPLC) enables the separation of different chemical components within a 

mixture. Fundamental element in a HPLC instrument is the column, usually 

made of stainless steel. Importantly, the column is covered with a so-called 

stationary phase, designed to have a specific chemical affinity with the analytes. 
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When HPLC is conducted, the sample is in the form of a small volume of solution 

which contains, as a mixture, the solubilised analytes. During the analysis, part 

of the solution is injected and allowed to pass through the column together with 

specific solvents. The solvents (mobile phase), mixed at different % during the 

analysis, are pumped at high pressure. While passing through the column, the 

components in the sample interact with the stationary and mobile phase, and, 

depending on chemical properties, they show a different chemical attraction. 

Based on the characteristic affinity, each component is retained in the column 

for a specific amount of time, enabling the original mixture to be effectively 

separated. Since the time at which the compound is eluted from the column and 

it reaches the detector depends on its chemical structure, the retention time 

(RT) is one of the variables to be considered when identifying the component.  

When analysing dyes in historic artworks, in the last decades HPLC has been 

usually coupled with the photodiode array detector (PDA). The PDA detector 

allows to measure the radiation absorbed, in the UV-Vis range (≈ 250-750 nm), 

by each compound previously separated. Since when studying dyes (some of the) 

components of interests are coloured, this means that they absorb characteristic 

wavelengths in the UV-Vis range. The absorbance spectrum of each component, 

provided by the PDA detector, represents another distinctive feature that can 

lead to the chemical identification [5, 6]. 

Within the context of the current work, UHPLC-PDA was employed. Differently 

from traditional HPLC, ultra HPLC enables to obtain a higher resolution and 

sensitivity, meaning that smaller samples can be analysed. Besides, lower 

volumes of solvents are needed for the UHPLC application [7].      

Before the actual chromatographic analysis, when characterising dyes from 

historic textile samples, a crucial step is represented by the extraction method 

for solubilising the components from the threads. Depending on the analytes 

expected, the pre-treatment should be selected carefully [5].     



318 
 

References 

1. Thickett, D. and B. Pretzel, FTIR surface analysis for conservation. 
Heritage Science, 2020. 8(1): p. 5. 

2. Derrick, M., D. Stulik, and J.M. Landry, Infrared Spectroscopy in 
Conservation Science. Scientific Tools for Conservation. 1999, Los 
Angeles: Getty Conservation Institute. x, 235 p. 

3. Smith, M., K. Thompson, and F. Lennard, A literature review of analytical 
techniques for materials characterisation of painted textiles-Part 2: 
spectroscopic and chromatographic analytical instrumentation. Journal of 
the Institute of Conservation, 2017. 40(3): p. 252-266. 

4. Izzo, F.C., 20th Century Artists’ Oil Paints: A Chemical-Physical Survey. 
2009-2010, Università Ca’ Foscari Venezia. 

5. Degano, I. and J. La Nasa, Trends in High Performance Liquid 
Chromatography for Cultural Heritage. Topics in Current Chemistry, 
2016. 374(2): p. 20. 

6. Skoog, D.A., et al., Fondamenti di Chimica Analitica. 2009, Città di 
Castello: EdiSES. 1051 p. 

7. Troalen, L.G., Historic Dye Analysis: Method Development And New 
Applications In Cultural Heritage, in School Of Chemistry. 2013, 
University Of Edinburgh. 

 

  



319 
 

Complete bibliography 

1964 Delft conference on the conservation of textiles: collected preprints. London: IIC; 1964. 153 
p. 

Ackroyd P. The structural conservation of canvas paintings: changes in attitude and practice 
since the early 1970s. Stud Conserv. 2002;47(sup1):3-14. 

Acts of the Tapestry Symposium, November 1976. San Francisco: Fine Arts Museums of San 
Francisco; 1979. 223 p. 

Ajayi JO, Elder HM. Comparative Studies of Yarn and Fabric Friction. Journal of Testing and 
Evaluation. 1994;22(5):463-7. 

Allaoui S, Hivet G, Wendling A, Ouagne P, Soulat D. Influence of the dry woven fabrics meso-
structure on fabric/fabric contact behavior. Journal of Composite Materials 2012;46(6):627-39. 

Alsayednoor J, Harrison P, Dobbie M, Costantini R, Lennard F. Evaluating the use of digital image 
correlation for strain measurement in historic tapestries using representative deformation fields. 
Strain. 2019;55(2):e12308. 

Andersen CK. Lined canvas paintings: Mechanical properties and structural response to 
fluctuating relative humidity, exemplified by the collection of Danish Golden Age paintings at 
Statens Museum for Kunst (SMK): Centre for Art Technological Studies and Conservation, Statens 
Museum for Kunst, Royal Academy of Fine Arts; 2013. 

Appel WD, Jessup DA. Accelerated ageing test for weighted silk. Journal of Research of the 
National Bureau of Standards. 1935;15:601-8. 

Asai K, Biggs E, Ewer P, Hallet K. Tapestry conservation traditions: an analysis of support 
techniques for large hanging textiles.  15th Triennial Conference New Delhi; New Delhi 2008. p. 
967-75. 

Badillo-Sanchez D, Chelazzi D, Giorgi R, Cincinelli A, Baglioni P. Understanding the structural 
degradation of South American historical silk: A Focal Plane Array (FPA) FTIR and multivariate 
analysis. Scientific reports. 2019;9(1):1-10. 

Balci Kilic G, Okur A. Effect of yarn characteristics on surface properties of knitted fabrics. 
London, England: SAGE Publications; 2019. p. 2476-89. 

Ballard MW, Koestler RJ, Indictor N. Weighted silks observed using energy dispersive X-ray 
spectrometry. Scanning electron microscopy. 1986(II):499-506. 

Ballard MW. Hanging Out Strength, Elongation and Relative Humidity: Some Physical Properties 
of Textile Fibers. In: Bridgland J, editor. ICOM committee for conservation, 11th triennial 
meeting in Edinburgh, Scotland, 1996: Preprints. II. London: James & James; 1996. p. 665-9. 

Ballard MW. How backings work: the effect of textile properties on appearance Lining and 
backing: the support of paintings, paper and textiles Papers delivered at the UKIC Conference, 7-
8 November 1995. London: United Kingdom Institute for Conservation of Historic and Artistic 
Works; 1995. p. 34-9. 

Band J. The survival of Henry VIII’s History of Abraham tapestries: an account of how they were 
perceived, used and treated over the centuries. In: Lennard F, Hayward M, editors. Tapestry 
Conservation: Principles and Practice. Oxford: Butterworth-Heinemann; 2006. p. 20-7. 

Barker K. Reducing the Strain: Is it worth displaying a large fragile textile at a slight angle? 
Conservation news. 2002:30. 

Barker K. Reducing the Strain: Is it worth displaying a large fragile textile at a slight angle? 
Newsletter of the ICOM Committee for Conservation, Working Group of Textiles. 2005:4-6. 



320 
 
Barnett R, Blohm AA, Colburn K, Kane T, Sato M, Zaharia F. Tapestry conservation at the 
Metropolitan Museum of Art. In: Lennard F, Hayward M, editors. Tapestry Conservation: 
Principles and Practice. Oxford: Butterworth-Heinemann; 2006. p. 155-62. 

Barnoud P, Abécassis L, Magos F. Musée National De Cluny: Restauration et Muséographie de la 
Salle 13 Dite Salle De La Dame à la Licorne. Rapport de Présentation Description Sommaire des 
Travaux. 2013. 

Barrett RT. Fastener design manual: NASA, Scientific and Technical Information Division; 1990. 

Batcheller J, Hacke AM, Mitchell R, Carr CM. Investigation into the nature of historical tapestries 
using time of flight secondary ion mass spectrometry (ToF-SIMS). Applied Surface Science. 
2006;252(19):7113-6. 

Behera BK, Hari PK. Friction and other aspects of the surface behavior of woven fabrics. In: 
Behera BK, Hari PK, editors. Woven Textile Structure. Oxford; Cambridge; New Delhi: Woodhead 
Publishing in association with The Textile Institute; 2010. p. 230-42. 

Beingessner A. The Hunt of the Unicorn: Tapestry Copies Made for Stirling Castle, Scotland: 
University of Guelph; 2015. 

Benson SJ, Lennard F, Smith MJ. 'Like-With-Like’: A Comparison of Natural and Synthetic 
Stitching Threads used in Textile Conservation. In: Bridgland J, editor. ICOM Committee for 
Conservation (ICOM-CC) Triennial meeting, 17th, Melbourne, Australia, 2014: Preprints. Paris: 
The International Council of Museums; 2014. 

Bilson T, Howell D, Cooke B. Mechanical Aspects of Lining 'Loose Hung' Textiles.  Fabric of an 
exhibition: an interdisciplinary approach Preprints Ottawa: Canadian Conservation Institute; 
1997. p. 63-9. 

Bing P, Hui-min X, Bo-qin X, Fu-long D. Performance of sub-pixel registration algorithms in digital 
image correlation. Measurement Science and Technology. 2006;17(6):1615-21. 

Blaber J, Adair B, Antoniou AJEM. Ncorr: open-source 2D digital image correlation matlab 
software. Experimental Mechanics 2015;55(6):1105-22. 

Böttiger J. Les tapisseries des châteaux royaux de Suède: expériences et conseils. Uppsala: 
Almquist & Wiksells Boktryckeri; 1937. 

Bratasz L, Lukomski M, Klisinska-Kopacz A, Zawadzki W, Dzierzega K, Bartosik M, et al. Risk of 
Climate-Induced Damage in Historic Textiles. Strain. 2015;51(1):78-88. 

Breeze CM. A Survey of American Tapestry Conservation Techniques: American Textile History 
Museum 2000. 

Bruni S, De Luca E, Guglielmi V, Pozzi F. Identification of Natural Dyes on Laboratory-Dyed Wool 
and Ancient Wool, Silk, and Cotton Fibers Using Attenuated Total Reflection (ATR) Fourier 
Transform Infrared (FT-IR) Spectroscopy and Fourier Transform Raman Spectroscopy. Appl 
Spectrosc. 2011;65(9):1017-23. 

Brutillot A. Conservation of a fifteenth-century tapestry from Franconia. In: Grimstad K, editor. 
The Conservation of Tapestries and Embroideries. Marina del Rey: The Getty Conservation 
Institute; 1989. p. 75-9. 

Brutillot A. Slant Boards for Display 2010. Available from: 
https://www.youtube.com/watch?v=uDQSI1yJEs0&t=47s. 

Bryson WM, McNeil SJ, McKinnon AJ, Rankin, DA. The Cell Membrane Complex of Wool. Wool 
Research Organisation of New Zealand; 1992. 

Calia A, Lettieri M, Quarta G. Cultural heritage study: Microdestructive techniques for detection 
of clay minerals on the surface of historic buildings. Applied Clay Science. 2011;53(3):525-31. 



321 
 
Campanella L, Casoli A, Colombini MP, Marini Bettolo R, Matteini M, Migneco LM, et al. Chimica 
per l'arte. Ozzano Emilia: Zanichelli; 2007. 490 p.  

Campbell TP, Ainsworth MW, White B. Tapestry in the Renaissance: art and magnificence. 
London; New York; New Haven: Metropolitan Museum of Art; 2002. 594 p. 

Campbell TP. Henry VIII and the art of majesty: tapestries at the Tudor Court. New Haven; 
London: Yale University Press; 2007. xviii, 419 p. 

Cardon D. Le monde des teintures naturelles. Paris: Belin; 2003. 783 p. 

Cariati F, Rampazzi L, Toniolo L, Pozzi A. Calcium Oxalate Films on Stone Surfaces: Experimental 
Assessment of the Chemical Formation. Stud Conserv. 2000;45:180-8. 

Carò F, Chiostrini G, Cleland E, Shibayama N. Redeeming Pieter Coecke van Aelst’s Gluttony 
Tapestry: Learning from Scientific Analysis. Metropolitan Museum Journal. 2014;49:151-64. 

Carr CM, Lewis DM. An FTIR spectroscopic study of the photodegradation and thermal 
degradation of wool. Journal of the Society of Dyers and Colourists. 1993;109(1):21-4. 

Catic EM. A Research Project to Measure the Effectiveness of Stitching Methods when Stabilizing 
Weak Areas in Tapestries: University of Glasgow; 2019. 

Chahardoli Z, Vanden Berghe I, Rocco M. Twentieth century Iranian carpets: investigation of red 
dye molecules and study of traditional madder dyeing techniques. Heritage Science. 2019;7. 

Church JS, Millington KR. Photodegradation of wool keratin: Part I. Vibrational spectroscopic 
studies. Biospectroscopy. 1996;2(4):249-58. 

Clarke A, Hartog F. The cost of tapestry conservation. In: Barnett J, Cok S, editors. ‘The Misled 
Eye…’ Reconstruction and Camouflage Techniques in Tapestry Conservation; Amsterdam: TRON; 
1996. p. 69-72. 

Clementi C, Miliani C, Romani A, Santamaria U, Morresi F, Mlynarska K, et al. In-situ fluorimetry: 
a powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. 
Identification of orcein and indigo in Renaissance tapestries. Spectrochimica Acta Part A: 
Molecular and Biomolecular Spectroscopy. 2009;71(5):2057-62. 

Comite V, Fermo P, The effects of air pollution on cultural heritage: The case study of Santa 
Maria delle Grazie al Naviglio Grande (Milan). The European Physical Journal Plus. 2018;133(12): 
556. 

ervazione e restauro dei tessili: Convegno internazionale. 1980; Como. Milano: Edizioni 
C.I.S.S.T.; 1982. 

Cook JG. Handbook of textile fibres. 5th ed. Cambridge: Woodhead Publishing Limited; 2001. 205 
p. 

Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D. Identification of mechanical material 
behavior through inverse modeling and DIC. Experimental Mechanics. 2008;48(4):421-33. 

Costantini R, Lennard F, Alsayednoor J, Harrison P. Investigating mechanical damage mechanisms 
of tapestries displayed at different angles using 2D DIC. The European Physical Journal Plus. 
2020;135(6):515. 

Costantini R, Shibayama N, Carò F. Logwood blue: dyeing, fading and the possible marker 
compound for the HPLC-PDA identiication by a mild extraction. Dye in History and Archaeology 
37; 2018; Lisbon. 

Cousens S. The Conservation Treatment of a Heavily Restored Fragment of a Hercules Tapestry: a 
Method of Approach. In: Barnett J, Cok S, editors. ‘The Misled Eye…’ Reconstruction and 
Camouflage Techniques in Tapestry Conservation; Amsterdam: TRON; 1996. p. 132-5. 



322 
 
Cuoco G, Mathe C, Archier P, Vieillescazes C. Characterization of madder and garancine in 
historic French red materials by liquid chromatography-photodiode array detection. Journal of 
Cultural Heritage 2011;12:98-104. 

Cussell S. Tapestry conservation techniques at Chevalier Conservation. In: Lennard F, Hayward 
M, editors. Tapestry Conservation: Principles and Practice. Oxford: Butterworth-Heinemann; 
2006. p. 145-52. 

da Costa AC, Correa F, Sant’Anna G, de Carvalho S, Santos F, Lutterbach M. Scanning Electron 
Microscopic Characterization of Iron-Gall Inks from Different Tannin Sources – Applications for 
Cultural Heritage. Chemistry and Chemical Technology. 2014;8:423-30. 

Davidson RS. The photodegradation of some naturally occurring polymers. Journal of 
Photochemistry and Photobiology B. 1996;33:3-25. 

De Boeck J, De Bruecker M, Carpentier C, Housiaux K. The treatment of two sixteenth-century 
tapestries at the Institut Royal du Patrimoine Artistique. In: Grimstad K, editor. The 
Conservation of Tapestries and Embroideries. Marina del Rey: The Getty Conservation Institute; 
1989. p. 113-7. 

De Luca E, Poldi G, Redaelli M, Zaffino C, Bruni S. Multi-technique investigation of historical 
Chinese dyestuffs used in Ningxia carpets. Archaeological and Anthropological Sciences. 
2016;9(8):1789-98. 

Degani L, Riedo C, Chiantore O. Identification of natural indigo in historical textiles by GC–MS. 
Analytical and Bioanalytical Chemistry. 2015;407(6):1695-704. 

Degano I, Łucejko JJ, Colombini MP. The unprecedented identification of Safflower dyestuff in a 
16th century tapestry through the application of a new reliable diagnostic procedure. Journal of 
Cultural Heritage. 2011;12(3):295-9. 

Degano I, Mattonai M, Sabatini F, Colombini MP. A Mass Spectrometric Study on Tannin 
Degradation within Dyed Woolen Yarns. Molecules. 2019;24(12):2318. 

Degano, I, La Nasa J. Trends in High Performance Liquid Chromatography for Cultural Heritage. 
Topics in Current Chemistry.2016;374(2),20. 

Derrick M, Stulik D, Landry JM. Infrared Spectroscopy in Conservation Science. Los Angeles: Getty 
Conservation Institute; 1999. x, 235 p. 

Diehl JM. The workshop for the restoration of ancient textiles, Haarlem.  Delft Conference on 
the Conservation of Textiles. London: IIC; 1964. p. 105-8. 

Dolcini L. The tapestries of the Sala dei Duecento in the Palazzo Vecchio. In: Grimstad K, editor. 
The Conservation of Tapestries and Embroideries. Marina del Rey: The Getty Conservation 
Institute; 1989. p. 81-7. 

Dong YL, Pan B. A Review of Speckle Pattern Fabrication and Assessment for Digital Image 
Correlation. Experimental Mechanics. 2017;57(8):1161-81. 

Dreby EC. A friction meter for determining the coefficient of kinetic friction of fabrics. Journal 
of Research of the National Bureau of Standards. 1943;31(4):237. 

Duffus P. Manufacture, analysis and conservation strategies for historic tapestries: University of 
Manchester; 2013. 

Dulieu-Barton JM, Dokos L, Eastop D, Lennard F, Chambers AR, Sahin M. Deformation and strain 
measurement techniques for the inspection of damage in works of art. Reviews in Conservation 
2005;6:63-73. 



323 
 
Dulieu-Barton JM, Khennouf D, Chambers AR, Lennard FJ, Eastop DD. Long term condition 
monitoring of tapestries using image correlation. Society for Experimental Mechanics (SEM) 
Annual Conference; 2010 7-10 June 2010; Indianapolis, USA. 

Dulieu-Barton JM, Sahin M, Lennard FL, Eastop DD, Chambers AR. Assessing the feasibility of 
monitoring the condition of historic tapestries using engineering techniques. Key Engineering 
Materials. 2007;347:187-92. 

Dulieu-Barton JM, Ye C-C, Chambers AR, Lennard FL, Eastop DD. Optical fibre sensors for 
monitoring damage in historic tapestries. XIth International Congress on Experimental and 
Applied Mechanics; 2008 2-5 June 2008; Orlando, USA. 

Dupre J-C, Jullien D, Uzielli L, Hesser F, Riparbelli L, Gauvin C, et al. Experimental study of the 
hygromechanical behaviour of a historic painting on wooden panel: devices and measurement 
techniques. Journal of Cultural Heritage. 2020;46:165-75. 

Dyer JM, Bringans SD, Bryson WG. Characterisation of photo-oxidation products within 
photoyellowed wool proteins: tryptophan and tyrosine derived chromophores. Photochemical & 
Photobiological Sciences. 2006;5(7):698-706. 

E. Taburet-Delahaye, R. Déjean, D. de Reyer, Nowik W. La Dame à la licorne, sa conservation et 
l'évalutation colorimétrique du nettoyage. Techne 2015;41:87 - 93. 

Elisabeth Taburet-Delahaye, Béatrice de Chancel-Bardelot, Alain Decouche, Déjean R. Les 
coulisses de la scénographie, de la restauration et de l’installation des tapisseries de la Dame à 
la Licorne au musée national du Moyen Âge. Conserver et presenter les tapisseries: du bilan 
sanitaire a la mise en valeur; 2015. 

Falcão L, Araújo ME. Tannins characterization in historic leathers by complementary analytical 
techniques ATR-FTIR, UV-Vis and chemical tests. Journal of Cultural Heritage. 2013;14:499–508. 

Feller RL. Accelerated Aging: Photochemical and Thermal Aspects. United States of America: The 
J. Paul Getty Trust; 1994. 

Ferreira ES, Hulme AN, McNab H, Quye A. The natural constituents of historical textile dyes. 
Chemical Society Reviews. 2004;33(6):329-36. 

Fiette A. Tapestry restoration: An historical and technical survey. The Conservator. 
1997;21(1):28-36. 

Finch K. Evolution of tapestry repairs: a personal experience.  Seminaire international la 
restauration et la conservation des tapisseries; Paris: IFROA; 1984. p. 125–32. 

Finch K. Problems of tapestry preservation.  Tecniche di conservazione degli arazzi: tre gionate 
di studio Firenze 18-20 Settembre 1981; Firenze: Leo S. Olschki; 1986. p. 39-45. 

Finch K. Tapestries: conservation and original design. In: Grimstad K, editor. The Conservation of 
Tapestries and Embroideries. Marina del Rey: The Getty Conservation Institute; 1989. p. 67-74. 

Five centuries of tapestry from the Fine Arts Museums of San Francisco. Bennett AG, editor. San 
Francisco: Fine Arts Museums of San Francisco; 1992. 329 p. 

Flowers TH, Smith MJ, Brunton J. Colouring of Pacific barkcloths: identification of the brown, 
red and yellow colourants used in the decoration of historic Pacific barkcloths. Heritage Science. 
2019;7(2):1-15. 

Foskett S. A Brief History of the Maintenance and Care of Tapestries. In: Cleland E, Karafel L, 
editors. Tapestries from the Burrell Collection. London: Philip Wilson Publishers; 2017. p. 27-33. 

Frame K, Vlachou-Mogire C, Hallett K, Takami M. Balancing Significance and Maintaining 'Sense of 
Place' in the Sustainable Display of Tudor Tapestries in the Great Hall, Hampton Court Palace. 
Stud Conserv. 2018;63:87-93. 



324 
 
Franceschi VR, Nakata PA. Calcium Oxalate in Plants: Formation and Function. Annual review of 
plant biology. 2005;56(1):41-71. 

Francis K, Fredette T, Halvorson B, Windsor D. Tapestries on long-term view at the Isabella 
Stewart Gardner Museum: a synthesis of treatment options. In: Lennard F, Hayward M, editors. 
Tapestry Conservation: Principles and Practice. Oxford: Butterworth-Heinemann; 2006. p. 163-
70. 

Franses J. Tapestries and their mythology. London: John Gifford Ltd.; 1973. 160 p., 18 p. of 
plates. 

Freeman MB. The Unicorn Tapestries. Lausanne: The Metropolitan Museum of Art; 1983. 244 p. p. 

Fusek J. An attempt to regain the original colour and structure of an old tapestry. Stud Conserv. 
1964;9(sup1):109-12. 

Fuster López L, Mecklenburg M, Yusa Marco DJ, Vicente Palomino S, Batista dos Santos AF. 
Effects of mordants on the mechanical behaviour of dyed silk fabrics: preliminary tests on 
cochineal dyestuffs. Arché. 2007;2:115-20. 

Garside P, Lahlil S, Wyeth P. Characterization of Historic Silk by Polarized Attenuated Total 
Reflectance Fourier Transform Infrared Spectroscopy for Informed Conservation. Appl Spectrosc. 
2005;59(10):1242-7. 

Gauvin C, Jullien D, Doumalin P, Dupré JC, Gril J. Image Correlation to Evaluate the Influence of 
Hygrothermal Loading on Wood. Strain. 2014;50(5):428-35. 

Geijer A. Treatment and Repair of Textiles and Tapestries. Stud Conserv. 1961;6(4):144-7. 

Gentle N. The examination and conservation of two Indian textiles. The conservator. 
1993;17(1):19-25. 

Giachetti A. Matching techniques to compute image motion. Image and Vision Computing. 
2000;18(3):247-60. 

Gilbert AS. IR Spectral Group Frequencies of Organic Compounds. In: Lindon JC, editor. 
Encyclopedia of Spectroscopy and Spectrometry: Academic Press; 2000. p. 1035-47. 

Gonzalez-Chi P, May-Hernández L, Carrillo J. Polypropylene Composites Unidirectionally 
Reinforced with Polyester Fibers. Journal of Composite Materials. 2004;38:1521-32. 

Grau-Bové J, Strlič M, Fine particulate matter in indoor cultural heritage: a literature review. 
Heritage Science. 2013;1(1):8. 

Hacke AM. Investigation into the Nature and Ageing of Tapestry Materials: University of 
Manchester 2006. 

Hacke M, Hutchings C, Hallett K, Carr CM. Investigation into the Nature and Degradation of 
Historical Wool Tapestries. 11th International Wool Textile Research Conference; 2005; Leeds, 
UK. 

Hacke M. Weighted silk: history, analysis and conservation Stud Conserv. 2008;53(sup2):3-15. 

Haddadi H, Belhabib S. Use of rigid-body motion for the investigation and estimation of the 
measurement errors related to digital image correlation technique. Optics and Lasers in 
Engineering. 2008;46(2):185-96. 

Hain R, Kähler CJ, Tropea C. Comparison of CCD, CMOS and intensified cameras. Experiments in 
Fluids. 2007;42(3):403-11. 



325 
 
Hallett K, Howell D. Size exclusion chromatography of silk: inferring the tensile strength and 
assessing the condition of historic tapestries. In: Verger I, editor. ICOM Committee for 
Conservation Triennial meeting, 14th, The Hague, Netherlands, 2005: Preprints. II. London: 
James & James/Earthscan; 2005. p. 911-9. 

Halpine SM. An Improved Dye and Lake Pigment Analysis Method for High-Performance Liquid 
Chromatography and Diode-Array Detector. Stud Conserv. 1996;41(2):76-94. 

Han J, Wanrooij J, van Bommel M, Quye A. Characterisation of chemical components for 
identifying historical Chinese textile dyes by ultra high performance liquid chromatography – 
photodiode array – electrospray ionisation mass spectrometer. Journal of Chromatography A. 
2017;1479:87-96. 

Han J. The historical and chemical investigation of dyes in high status Chinese costume and 
textiles of the Ming and Qing dynasties (1368-1911): University of Glasgow; 2016. 

Harrison P, Gonzalez Camacho LF. Deep draw induced wrinkling of engineering fabrics. 
International Journal of Solids and Structures. 2021;212:220-36. 

Hayward M. Fit for a king? Maintaining the early Tudor tapestry collection. In: Lennard F, 
Hayward M, editors. Tapestry Conservation: Principles and Practice. Oxford: Butterworth-
Heinemann; 2006. p. 13-9. 

Hearle JWS. A critical review of the structural mechanics of wool and hair fibres. International 
Journal of Biological Macromolecules. 2000;27:123-38. 

Hefford W. Bread, brushes and broom: aspects of tapestry restoration in England, 1660–1760. In: 
Bennett A, editor. Acts of the Tapestry Symposium; San Francisco Fine Arts Museums of San 
Francisco; 1979. p. 65-75. 

Hermann D, Ramkumar SS, Seshaiyer P, Parameswaran S. Frictional study of woven fabrics: The 
relationship between the friction and velocity of testing. Journal of Applied Polymer Science. 
2004;92(4):2420-4. 

Hijazi A, Kahler CJ. Contribution of the Imaging System Components in the Overall Error of the 
Two-Dimensional Digital Image Correlation Technique. Journal of Testing and Evaluation. 
2017;45(2):369-84. 

Hijazi A, Madhavan V. A novel ultra-high speed camera for digital image processing applications. 
Measurement Science and Technology. 2008;19(8):085503. 

Hillyer L, Tinker Z, Singer P. Evaluating the use of adhesives in textile conservation: Part I: An 
overview and surveys of current use. The Conservator. 1997;21(1):37-47. 

Hinsch KD, Gulker G, Hinrichs H, Joost H. Artwork monitoring by digital image correlation. In: 
Dickman K, Fotakis C, Asmus JF, editors. Lasers in the Conservation of Artworks. Springer 
Proceedings in Physics. 100. Berlin: Springer-Verlag Berlin; 2005. p. 459-67. 

Hofenk de Graaff JH, Boersma F, Roelofs WGT. Tapestry Conservation (Part III Scientific 
Research 'Linen versus Cotton'). 1998. 

Hofenk de Graaff JH. Tapestry Conservation: Support Methods and Fabrics. 1997. 

Hosseinali F, Thomasson JA. Multiscale Frictional Properties of Cotton Fibers: A Review. Fibers. 
2018;6(3):49. 

Howell D. Some Mechanical Effects of Inappropriate Humidity on Textiles. In: Bridgland J, editor. 
ICOM committee for conservation, 11th triennial meeting in Edinburgh, Scotland, 1996: 
Preprints. II. London: James & James; 1996. p. 692-7. 

Howell HG, Mazur J. Amontons' Law and Fibre Friction. Journal of the Textile Institute 
Transactions. 1953;44(2):T59-T69. 



326 
 
Howell HG. The Laws of Friction. Nature. 1953;171(4344):220-. 

Howell HG. The Laws of Static Friction. Textile Research Journal. 1953;23(8):589-91. 

https://www.correlatedsolutions.com   

Hulme AN, McNab H, Peggie DA, Quye A. The chemical characterisation by HPLC–PDA and HPLC–
ESI–MS of unaged and aged fibre samples dyed with sawwort (Serratula tinctoria L.). Dyes in 
History and Archaeology. 2017:374-82. 

Hunter GL. The practical book of tapestries. Philadelphia: J. B. Lippincott Company; 1925. 302 
p. 

Huson MG. Properties of wool. In: Bunsell AR, editor. Handbook of properties of textile and 
technical fibres: Elsevier Ltd; 2018. p. 59-103. 

Hutchison RB. Gluttony and Avarice: two different approaches. In: Grimstad K, editor. The 
Conservation of Tapestries and Embroideries. Marina del Rey: The Getty Conservation Institute; 
1989. p. 89-94. 

Hutton E, Gartside J. The Moisture Regain of Silk i. Adsorption and Desorption of Water by Silk at 
25° C. Journal of the Textile Institute Transactions. 1949;40(3):T161-T9. 

Ioele M, Sodo A, Casanova Municchia A, Ricci MA, Russo AP. Chemical and spectroscopic 
investigation of the Raphael’s cartoon of the School of Athens from the Pinacoteca Ambrosiana. 
Applied Physics A. 2016;122(12):1045. 

Izzo FC. 20th Century Artists’ Oil Paints: A Chemical-Physical Survey: Università Ca’ Foscari 
Venezia; 2009-2010. 

Jones DC, Carr CM, Cooke WD. Investigating the Photo-Oxidation of Wool Using FT-Raman and 
FT-IR Spectroscopies. Textile Research Journal. 1998;68(10):739-48. 

Kajitani N. Conservation maintenance of tapestries at the Metropolitan Museum of Art. In: 
Grimstad K, editor. The Conservation of Tapestries and Embroideries. Marina del Rey: The Getty 
Conservation Institute; 1989. p. 53-66. 

Kammers AD, Daly SJEM. Digital image correlation under scanning electron microscopy: 
methodology and validation. Experimental Mechanics. 2013;53(9):1743-61. 

Karapanagiotis I, Lakka A, Valianou L, Chryssoulakis Y. High-performance liquid chromatographic 
determination of colouring matters in historical garments from the Holy Mountain of Athos. 
Microchimica Acta. 2007;160(4):477-83. 

Karapanagiotis I, Mantzouris D, Kamaterou P, Lampakis D, Panayiotou C. Identification of 
materials in post-Byzantine textiles from Mount Athos. Journal of Archaeological Science. 
2011;38(12):3217-23. 

Karapanagiotis I, Minopoulou E, Valianou L, Daniilia S, Chryssoulakis Y. Investigation of the 
colourants used in icons of the Cretan School of iconography. Analytica Chimica Acta. 
2009;647(2):231-42. 

Karsten IF, Kerr N. The Properties and Light Stability of Silk Adhered to Sheer Silk and Polyester 
Support Fabrics with Poly(Vinyl Acetate) Copolymer Adhesives. Stud Conserv. 2002;47(3):195-
210.  

Khennouf D, Dulieu-Barton JM, Chambers AR, Lennard FJ, Eastop DD. Application of digital image 
correlation to deformation measurement in textile.  Photomechanics 2008: International 
Conference on Full-Field Measurement Techniques and their Applications in Experimental Solid 
Mechanics; 7-9 July 2008; Loughborough, UK2008. 



327 
 
Khennouf D, Dulieu-Barton JM, Chambers AR, Lennard FJ, Eastop DD. Assessing the Feasibility of 
Monitoring Strain in Historical Tapestries Using Digital Image Correlation. Strain. 2010;46(1):19-
32. 

Kirby J, van Bommel M, Verhecken A, Spring M, Vanden Berghe I, Stege H, et al. Natural 
colorants for dyeing and lake pigments: practical recipes and their historical sources. London: 
Archetype Publications Ldt in association with CHARISMA; 2014. 114 p. 

Kissi N, Curran K, Vlachou-Mogire C, Fearn T, McCullough L. Developing a non-invasive tool to 
assess the impact of oxidation on the structural integrity of historic wool in Tudor tapestries. 
Heritage Science. 2017;5(49). 

Knutson T, Ballard MW. Dyeing Polyester: Disperse Dyes for Textile Conservation Work.  20th 
Century Materials, Testing and Textile Conservation, 9th Symposium1989. 

Koperska MA, Łojewski T, Łojewska J. Evaluating degradation of silk’s fibroin by attenuated total 
reflectance infrared spectroscopy: Case study of ancient banners from Polish collections. 
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:576-82. 

Koperska MA, Pawcenis D, Bagniuk J, Zaitz MM, Missori M, Łojewski T, et al. Degradation markers 
of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability. 2014;105:185-
96. 

Kothari V, Swani N, Gangal M. Frictional properties of woven fabrics. Indian Journal of Fibre & 
Textile Research. 1991;16:251-6. 

Landi S. A description and evaluation of a conservation system for tapestries. In: Lennard F, 
Hayward M, editors. Tapestry Conservation: Principles and Practice. Oxford: Butterworth-
Heinemann; 2006. p. 108-12. 

Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D. Assessment of measuring errors in 
DIC using deformation fields generated by plastic FEA. Optics and Lasers in Engineering. 
2009;47(7):747-53. 

Lava P, Cooreman S, Debruyne D. Study of systematic errors in strain fields obtained via DIC 
using heterogeneous deformation generated by plastic FEA. Optics and Lasers in Engineering. 
2010;48(4):457-68. 

Lech K, Fornal E. A Mass Spectrometry-Based Approach for Characterization of Red, Blue, and 
Purple Natural Dyes. Molecules. 2020;25(14):3223. 

Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, et al. Quality assessment 
of speckle patterns for digital image correlation. Optics and Lasers in Engineering. 
2006;44(11):1132-45. 

Leeder JD, Bishop DG, Jones LN. Internal Lipids of Wool Fibers. Textile Research Journal. 
1983;53(7):402-7. 

Lennard F, Dulieu-Barton JM. Quantifying and visualizing change: Strain monitoring of tapestries 
with digital image correlation. Stud Conserv. 2014;59(4):241-55. 

Lennard F, Eastop D, Dulieu-Barton J, Chambers A, Khennouf D, Ye C-C, et al. Strain monitoring 
of tapestries: results of a three-year research project. In: Bridgland J, editor. ICOM-CC 16th 
Triennial Conference, Lisbon, 2011: Preprints. Paris: International Council of Museums; 2012. p. 
1-8. 

Lennard F, Eastop D, Ye CC, Dulieu-Barton JM, Chambers AR, Khennouf D. Progress in strain 
monitoring of tapestries. In: Bridgland J, editor. ICOM Committee for Conservation Triennial 
meeting, 15th, New Delhi, India, 2008. II: Allied Publishers Pvt. Ltd.; 2008. p. 843-8. 

Lennard F. Methods of infilling areas of loss. In: Lennard F, Hayward M, editors. Tapestry 
Conservation: Principles and Practice. Oxford: Butterworth-Heinemann; 2006. p. 138-44. 



328 
 
Lennard F. Preserving image and structure: tapestry conservation in Europe and the United 
States. Stud Conserv. 2013;51(sup1):43-53. 

Lewis DM. Damage in wool dyeing. Review of Progress in Coloration and Related Topics. 
1989;19(1):49-56. 

Lion V, Cussell S. The tapestry imposes its own treatment. In: Barnett J, Cok S, editors. ‘The 
Misled Eye…’ Reconstruction and Camouflage Techniques in Tapestry Conservation; Amsterdam: 
TRON; 1996. p. 81-90. 

Lodewijks J. The Use of Synthetic Material for the Conservation and Restoration of Ancient 
Textiles. Stud Conserv. 2014;9(sup1):79-85. 

Lu H, Cary PD. Deformation measurements by digital image correlation: Implementation of a 
second-order displacement gradient. Experimental Mechanics. 2000;40(4):393-400. 

Lugtigheid R. The eye deceived: camouflage techniques used at the Werkplaats tot Herstel van 
Antiek Textiel in Haarlem. In: Barnett J, Cok S, editors. ‘The Misled Eye…’ Reconstruction and 
Camouflage Techniques in Tapestry Conservation; Amsterdam: TRON; 1996. p. 59-67. 

Luxford N, Thickett D, Wyeth P. Applying preventive conservation recommendations for silk in 
historic houses. Proceedings of the joint interim conference multidisciplinary conservation: a 
holistic view for historic interiors; Rome: ICOM-CC; 2010. 

Luxford N. Reducing the Risk of Open Display: Optimising the Preventive Conservation of Historic 
Silks: University of Southampton; 2009. 

Luxford N. Silk durability and degradation. In: Annis PA, editor. Understanding and improving the 
durability of textiles. Oxford; Philadelphia: Woodhead Publishing; 2012. p. 205-32. 

Ma S, Pang J, Ma Q. The systematic error in digital image correlation induced by self-heating of a 
digital camera. Measurement Science and Technology. 2012;23:025403. 

Maes Y. The conservation/restoration of the sixteenth-century tapestry The Gathering of the 
Manna. In: Grimstad K, editor. The Conservation of Tapestries and Embroideries. Marina del Rey: 
The Getty Conservation Institute; 1989. p. 103-12. 

Malesa M, Malowany K, Tymińska-Widmer L, Kwiatkowska EA, Kujawńska M, Rouba BJ, et al. 
Application of digital image correlation (DIC) for tracking deformations of paintings on canvas.  
Proceedings of the Optics for Arts, Architecture, and Archaeology III Munich2011. p. 80840L. 

Malowany K, Chrzanowska J, Kujawińska M, Targowski P, Tymińska-Widmer L, Rouba BJ. 3D 
Digital Image Correlation for tracking displacements of canvas paintings with natural texture.  
16th International Conference on Experimental Mechanics; Cambridge, UK 2014. 

Malowany K, Tyminska-Widmer L, Malesa M, Kujawinska M, Targowski P, Rouba BJ. Application of 
3D digital image correlation to track displacements and strains of canvas paintings exposed to 
relative humidity changes. Appl Opt. 2014;53(9):1739-49. 

Manhita A, Balcaen L, Vanhaecke F, Ferreira T, Candeias A, Dias CB. Unveiling the colour palette 
of Arraiolos carpets: Material study of carpets from the 17th to 19th century period by HPLC-
DAD-MS and ICP-MS. Journal of Cultural Heritage. 2014;15(3):292-9. 

Manhita A, Santos V, Vargas H, Candeias A, Ferreira T, Dias CB. Ageing of brazilwood dye in wool 
– a chromatographic and spectrometric study. Journal of Cultural Heritage. 2013;14(6):471-9. 

Marko K. Experiments in Supporting a Tapestry Using the Adhesive Method. The Conservator. 
1978;2(1):26-9. 

Marko K. Tapestry conservation – a confusion of ideas.  Lining and Backing: the Support of 
Paintings, Paper and Textiles. London: UKIC; 1995. p. i-iv. 



329 
 
Marko K. Textiles in trust. London: Archetype Publications in association with the National Trust; 
1997. xiii, 199 p., 24 p. of plates. 

Marko K. Two case histories: a seventeenth-century Antwerp tapestry and an eighteenth-century 
English Soho tapestry. In: Grimstad K, editor. The Conservation of Tapestries and Embroideries. 
Marina del Rey: The Getty Conservation Institute; 1989. p. 95-101. 

Marko K. Woven Tapestry: Guidelines for Conservation: Archetype Publications Limited; 2020. 

Mathisen SA. An Excess of Metal Threads: the Techniques Used in Conservation of the Tapestry 
Entitled 'The Bridal Chamber of Herse'. In: Barnett J, Cok S, editors. ‘The Misled Eye…’ 
Reconstruction and Camouflage Techniques in Tapestry Conservation; Amsterdam: TRON; 1996. 
p. 73-80. 
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