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Abstract 

The work in this thesis is focused on characterising elastic behaviour of micro-cantilever 

probes found at the core of Atomic Force Microscopy (AFM) tools. It is an essential 

property to AFM force measurements, since interpretation of the cantilever deflection is 

directly related to the measure of the tip-sample force via its elastic conduct. It was 

demonstrated that the conventional micro-cantilevers can be well characterised using 

analytical and FE methods, together with the ready developed tools and experimental 

techniques, which formed the insights for the design practices used in further and more 

complex structure development efforts. However, this project’s emphasis was placed on 

assessment of non-traditional AFM cantilever structures that are not supported by the said 

methods, and hence necessitated in the conceptualisation and development of a dedicated 

micro electro-mechanical system (MEMS) solution. The sensitive force and elasticity 

measurement device, based on metal film resistive strain sensing, was realised using 

semiconductor and MEMS fabrication approaches in the James Watt Nanofabrication 

Centre, allowing the desired performance to be achieved with an in-house process 

optimisation. The functional MEMS tool paired with bespoke instrumentation was then 

employed to characterise a range of commercial cantilevers as well as non-standard probes 

consisting of complex composition multi-structures and non-linear elasticity, providing 

novel insights into their elastic character. 
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Chapter 1 - Introduction 

1.1 Introduction 

The work outlined in this thesis is concerned with the mechanical characterisation of 

Atomic Force Microscope cantilever probes. Atomic Force Microscopy (AFM) is a 

fundamental technique for many branches of science operating at the nano-scale that rely 

on the imaging, interaction and manipulation ability offered by the tool. The force 

measuring ability in the force-distance domain is particularly sought after by cutting edge 

fields - e.g., bio-science and cancer research where it enables live soft tissue mechanical 

characterisation [1], with precise force measurements allowing for differentiation between 

healthy and cancerous cells [2]; chemistry and material science, where the unprecedented 

resolution load mapping permits single molecule structure [3] and intra-bond strength [4] 

characterisation as well as accelerating the graphene [5] and carbon nanotube [6] 

development through their mechanical understanding and self-serving employment [7]; 

and recently the AFM force capacity is utilised in the early stages of SARS-CoV-2 

understanding beyond surface level visualisation [8]. 

The maturing yet still expanding field has produced many derivative techniques tailored 

for application-specific sensing performance, which have been achieved through 

functionalisation and optimisation of the AFM cantilever - a component instrumental to 

relate force and displacement. Such developments are increasing the complexity of this key 

component’s mechanical behaviour, necessitating the parallel development of tools and 

techniques required to characterise and maintain its function. The following chapter will 
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introduce the key work in the field of AFM interaction measurement methods, followed by 

AFM probe elasticity characterisation in chapter 2, which is fundamental to the thesis 

progression in subsequent chapters, where conceptualisation, realisation and application 

demonstration of the novel MEMS based solution is presented. 

1.2 Scanning Probe Microscopy (SPM) 

The field of microscopy provides the gift of sight and observation of samples which are 

beyond our natural means. The conception of the optical microscope had a disruptive 

impact on our understanding of the micro-world, eventually morphing into the paradoxical 

appreciation of the tremendous amount of sense hiding in the infinitesimal universe [9]. 

The relentless development of the natural sciences created a constant demand for better 

microscopy tools and techniques, which the optical microscope eventually could not 

satisfy. The ongoing developments in super-resolution microscopy continue challenging 

the constraints of visible light diffraction limit [10] [11], while electron-beam based 

imaging (EM) solutions had already beaten the optical resolution several-fold as early as 

1933 - Ruska with the Transmission Electron Microscope (TEM) [12]. This further 

developing field had extended imaging from raster-like single point observation to 

continuous surface imaging of samples by introduction of the Scanning Electron 

Microscope (SEM) by Ardenne [13] in 1938, drastically expanding the EM technique’s 

practicality and applicability. 

The extended limit of understanding smaller and smaller measurements facilitated the next 

ground-breaking development in the microscopy field - the emergence of scanning probe 
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microscopy (SPM). This technique’s ability to measure physical interactions between a 

scanning probe and sample at previously unchartered scale was first demonstrated by 

Binnig and Rohrer in 1983 [14] with the scanning tunnelling microscope (STM). The 

limitations stemming from the use of tunnelling current, such as restriction to solid and 

conductive samples, were soon addressed by Binnig and Gerber [15] in 1986 with the 

introduction of the Atomic Force Microscope (AFM), enabling the acquisition of three 

dimensional surface topography of (virtually) any solid sample. The presented AFM tool 

design was expanded further to form many derivative niches of thermal [16], electrostatic 

[17], magnetic [18], electrochemical [19] and near field optical [20] applications. The 

development of SPM techniques beyond imaging applications made a claim that 

microscopy is now more than just a topography graphing tool, since the availability and 

volume of acquired data had organically prompted the development of a wide range signal 

interpretation instrumentation and data processing methodologies. These approaches can 

be applied to extract quantitative information from the observed spectrum - e.g. bandwidth 

narrowing (lock-in reliance [21] [22]), statistical (Scanning Noise Microscope [23]) and 

spectroscopic (Current Imaging Tunnelling Spectroscopy [24]) measures. Given the 

unprecedented versatility and resolution these tools offer, it is no great surprise that SPM 

and further AFM derivatives have established themselves as essential metrology tools 

enabling new and already developed branches of science to operate at the nanoscale. 
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1.3 Atomic Force Microscopy (AFM) 

The AFM forms images of surfaces using a mechanical probe that scans the specimen. The 

interaction forces between a sharp tip mounted at the end of a cantilever and the surface 

being scanned are measured by monitoring either the static or dynamic deflection of the 

cantilever. Fundamental modes associated with general AFM applications are contact, non-

contact or hybrid (tapping or intermittent contact) and are characteristically achieved with 

an xyz scanner stage, cantilever deflection sensor and dedicated control and drive systems 

(Figure 1 and Figure 2). In addition, modern tools often utilise additional sensing devices 

for improved operational guidance, usability and performance in conjunction with the base 

setup - e.g. optical microscope live-view, closed-loop displacement and positioning 

elements, anti-collision safety features, etc. 

 

Figure 1. AFM system photograph, highlighting external composition, Bruker Dimension 

Icon AFM [25]. 
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Figure 2. Photograph highlighting components composing the core of the AFM system, 

Bruker Dimension Icon AFM [25]. 

The most fundamental AFM scanning mode, traceable back to its creation, is termed 

contact mode [15]. This method closely resembles the principle workings of a conventional 

surface profiler [26] – the cantilever deflection is regulated to be maintained at constant 

value of deflection and hence – force, whilst the tip is continuously interacting with the 

topography of the sample. The resultant z-axis correction error required to maintain 

constant deflection is logged as a proportional value to the vertical displacement, providing 

vertical imaging in relation to the planar scanning field. The requirement to maintain 

constant deflection does mean that scanning speed is limited to that of the cantilever 

dynamics and drive electronics, meaning a typical scan rate of a few Hz per line, as 

determined by the system eigenfrequency limitations [27]. Therefore, the slow scanning 

contact mode is nowadays almost exclusively reserved for functionalised imaging where 

direct tip-sample contact is required or physical sample manipulation is undertaken [28]. 
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If constant scanning force is not prerequisite, high-speed in-contact scanning is possible at 

some cost of the topography caused displacement artefacts and increased tip-wear due to 

topography determined engagement force [29]. 

In non-contact or dynamic modes [30] – the tip is oscillated above the sample whilst the 

topographic image is constructed from the change in cantilever oscillation (phase, 

amplitude or frequency) in response to sample’s property variation. Unlike the quasi-static 

contact mode tip-sample interaction, the dynamic force mechanics of such interaction are 

complex and need to be interpreted indirectly through an oscillator model that is processed 

within the built in AFM software. Such scanning modes contain numerous advantages - 

their non-destructive nature due to a lack of rigid contact, a reduction in tip artefacts and 

their increased speed - which is now limited by the mechanical structure and surrounding 

fluid interaction dynamics, reaching scanning rates of tens of Hz per line [31]. However, 

the practical application of these modes do pose limitations on the AFM cantilever dynamic 

properties (high quality factor structures required), complexity and cost of the necessary 

high-speed feedback loop hardware. 

Tapping mode combines aspects of both techniques, meaning that as the probe oscillates, 

it makes intermittent contact with the sample. Advances in mechanically optimised 

cantilever dynamics, rapid feedback loop control and signal processing allow for 

simultaneous mapping of tip-sample physical interactions and the oscillated cantilever’s 

own dynamic changes, permitting a compromise of speed and information quantifiability 

from the coupled dynamic and static cantilever response. The latest advancements in hybrid 

techniques are best illustrated by academic and commercial efforts through patents and 

newly setup ventures [32] [33] [34] [35] that aim to deliver wafer scale, ‘video rate’ (up to 
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25 Hz per frame) imaging speeds compatible with use at temperature extremes [36] [37] 

and under various environmental media [38] [39].  

The AFM software employed for data interpretation and processing is instrumental to 

making use of the recorded information, with proprietary [40] [41] as well as open-source 

solutions [42] [43] available to end-users. All scanning methods offer their advantages and 

applications, some of which rely critically on the ability to determine force via knowledge 

of the scanning probe elasticity - a key property which is the focus of further described 

work. 
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1.4 AFM operation 

Contact mode AFM operation is driven by the repulsive force between the sample and 

scanning tip, which is measured via the deflection of the spring (cantilever) upon which 

the scanning tip is attached (Figure 3). Other interatomic forces (i.e., Van der Waals, 

capillary, electrostatic, long-range etc.) are present and can be identified explicitly by 

appropriate interpretation methodologies [44]. In order to measure and maintain the tip to 

sample separation via a feedback loop, the AFM’s predecessor, scanning tunnelling 

microscopy (STM), related this distance to tunnelling current magnitude – a method which 

allowed for vertical resolution of up to 2×10-11 m [45]. The later-developed AFM designs 

were focused on adapting the similar application of feedback loop control to non-

conductive samples, therefore alternative solutions, such as mechanical cantilever 

deflection sensing via an optical interferometer [46], a laser optical lever system [47] or 

self-sensing cantilever probes [48] were introduced (Figure 3). All methods have found 

their application as decided by the offered compromises between accuracy, cost and speed. 

The modern, general purpose AFM systems which are of interest to this thesis have mostly 

settled for the optical lever solution [49], which is a monument to the ingenious simplicity 

and reliability of this height determination method over the accuracy potential of 

alternatives, as judged by the community preference and subsequent adaptation. 

Unsurprisingly, the versatility of optical levers does come with its own set of notable 

shortcomings. These include thermal irradiation effects [50], errors compounded in signal 

hysteresis, non-linearities in rotational bend to vertical displacement transformation [51] 

and inferior accuracy when compared to interferometry sensing (prompting a development 

of hybrid methods, e.g. [52]) - as will be discussed in upcoming chapters 5 and 6. 



17 

 

Figure 3. Representation of the AFM tip and sample interaction arrangement, highlighting 

the common AFM cantilever displacement detection options and interacting components. 

 

Figure 4. Software reconstructed plot of the scanned topography. The z-axis is 

proportional to cantilever deflection. Topography data courtesy of Hao Xu [53] of AFM 

and Hyperlithography Group, University of Glasgow. 
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The optical lever detection system integrates a laser-photodiode height sensor, xyz stage as 

well as built in control electronics. In this setup, the surface is scanned by moving the piezo 

driven xy stage. The sample is brought in contact with the tip by a combined piezo and 

stepper-motor actuated z-axis. During the scan, the laser deflection induced by the 

cantilever bend is monitored. This value is input into a feedback loop that maintains 

constant engagement by adjusting the probe or sample vertical height, which in turn 

maintains a constant cantilever bend that is proportional to the tip-sample force. A plot of 

the constant force z position at each xy point is then used as a 3-dimensional map of the 

surface (Figure 4). 

 

Figure 5. Force-distance curve obtained by optical lever AFM plotting retracting 

cantilever bend versus its z-axis displacement, noting the distinct probe-sample interaction 

and force exchange regions. 
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The force-distance ramp (Figure 5) - a type of contact mode subroutine - is tailored to 

observe the tip-sample force at various z positions. In such a routine, a cantilever is driven 

into the sample until a pre-set deflection or force is reached and then the motion is reversed 

- resulting in a controlled cyclic indentation a.k.a. ramping. This point interaction can then 

be analysed by relating vertical stage displacement (z) to the measured cantilever 

mechanical response in the form of its vertical deformation - deflection (δ). A plethora of 

techniques exist to identify and interpret these repulsive interaction forces (e.g. 

environmental [54], Van der Waals [55], material specific attraction and repulsion [56]) 

and adhesion force parameters (e.g. Hertz [57], DMT [58] and JKR [59]).  

Techniques used to resolve the force component in the z-direction require the ability to 

accurately relate the normal force and the AFM measured cantilever displacement, which 

necessitates characterisation of the cantilever elasticity. The default model is the linear 

spring approximation per Hooke’s Law (Eq. 1) - which relates the interaction elasticity (k) 

to the force (F) and measured cantilever displacement (δ). This linear proportionality 

constant, conventionally called an elasticity modulus or a spring constant, is expressed in 

units of N m-1. Its characterisation is critical if accurate force magnitudes are required, 

hence the methods used to determine AFM probe elasticity are of particular interest to this 

work and are explored in detail in chapter 2. 

𝑘 = 𝐹𝛿−1; Eq. 1 
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1.5 AFM scale force measurement 

Force measurement at the microscale is not a trivial task even with the latest metrological 

tools and techniques. To obtain a metrologically significant force measurand two co-

dependent steps are undertaken – interaction sensing and sensed information interpretation. 

Quantification of the measurand, in this setting – quantitative measurement of force 

component, is expressed as a most likely value with a stated degree of confidence 

(certainty) that it is assessed to carry. If the measurement is conducted using a traceable 

measurement system, the measurand can be expressed in absolute terms that allows 

individually obtained measurements to be compared. Per SI, the considered unit of 

measurement is the Newton (N), which is composed of three base units - kg m s-2 [60] - as 

force is derived from mass through Newtons second law (F=ma). The current 

metrologically recognised and industry adopted small-scale force measurement standard is 

a characterised deadweight balance (CMCs [61]). Whilst it may provide direct 

measurement traceability to the SI, it is limited in application by the >10-1 N range 

measurement ability, as it lies some orders of magnitude away from the typical AFM range 

of 10-10 to 10-6 N. Alternatively, a standard mass application may be employed, allowing 

for an indirect traceability to SI in the range of 10-1 N to 10-6 N [62]. Therefore, by national 

metrology institute’s own recognition (EURAMET [63]), the AFM scale force 

measurements are not directly supported by the conventional metrological standard and 

calibration chains.  Although efforts to establish a suitable tool (e.g., a precision 

compensation balance and nano-positioner [64]) with required accessibility are in 

development, for the absolute majority of users - i.e., those not involved in the force 
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balance tool adaptation and development, this means that the 10-10 to 10-6 Newton force 

range encountered in AFM interactions cannot be traced to SI.  

Non-traceable force interpretation options rely on dimensional metrology methods (based 

on optical and electrical detection) that do not suffer from scaled solid-body manufacturing 

challenges and can be used in tandem with mechanical structures to assess the degree of 

deformation, permitting a transformation of displacement into force. The sensory choices 

for force measurements are extensive - e.g., mechanical balancing, acoustic sensing, 

resistive, inductive, capacitive, and magnetic - meaning the force transduction may be 

achieved via a mechanical, electrical or hybrid response [65]. The detected signal is then 

transformed into SI defined force measurand via means of comparison to a known force 

reference. The combination of these principles into an electro-mechanical transducer with 

control and drive instrumentation is the technological basis of the current micro-scale force 

measurement solutions, to which the Atomic Force Microscope - an optical detection 

system employing a mechanically responsive structure - falls under.  

 

Figure 6. Publication volume of the AFM sub-fields by keyword phrases, according to Web 

of Science index [66].  
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The general use of AFM and particularly its deployment in quantitative measurements are 

progressively growing fields, which is illustrated by the keyword specific annual 

publication volume (Figure 6). This growth rate is however unmatched by the publications 

focusing on cantilever elastic constant quantification, typically classed under ‘spring 

constant’ and ‘calibration’ keywords. The apparent stagnation in calibration focused 

publications since 2005 may indicate that the field has adopted a separate standard for 

elasticity determination, since interest in quantitative measurements had continued to 

increase. A review of calibration techniques [67] released the same year included 

developments in critical dimension force microscopy (CD-AFM) and the NIST force-

balance calibration project [68], destined to become the traceable metrological standard, 

which may suggest that the quantitative AFM community had settled on the status quo 

method. However, whilst this established a pathway to traceable measurements [69] and 

found repeated success in adoptions as a force transfer standard [70], the solution remained 

incompatible with in-situ operation, and as a result, it did not find wide adoption within 

wider AFM circles. This highlights the continued metrological interest in establishing an 

SI-traceable, small force measurement standard that will achieve wide acceptance, which 

hinges on a practical and logistically convenient procedure  [71] [72].  

Other solutions do claim the desired accuracy and traceability potential. These are further 

adaptations of electrostatic [73] and electromagnetic [74] force balances as well as photo-

elastic sensing miniaturisations [75], although they too have yet to find their way to AFM 

laboratories for similar practical application limitations. Instead, a typical AFM force 

measurement calibration is conducted via separate deflection and elasticity determinations 

by indirect observation, resulting in the widespread acceptance that ‘quantitative’ force 
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measurements in the context of AFM are only able to define relative rather than absolute 

force magnitudes [76]. 

1.6 Thesis direction 

The atomic force microscope is often offered as the de-facto solution for nanoscale force 

measurements, yet due to the limited accuracy of the available elasticity characterisation 

techniques necessary for this function, AFM validity as a force referencing tool is often 

debated [77]. These practical, rather than technological limitations mean that users have 

adopted indirect elasticity estimation methods that are of limited applicability to 

increasingly complex AFM cantilever structures. The presented work describes a novel 

MEMS device that allows for detailed elasticity characterisation of AFM cantilevers of 

‘unknown’ mechanical properties. The research and development of this candidate solution 

is described in the following work, focusing on addressing these key areas: 

• Current AFM probe elasticity characterisation technique review and practical 

exploration through a case study in chapter 2. 

• Introduction of necessary theory and concepts behind structural mechanics, 

electrical sensing and instrumentation considerations required for device 

development in chapter 3. 

• Description of the adaptation and targeted optimisation of state-of-the cleanroom-

based processing and development of the micro electro-mechanical sensor in 

chapter 4. 
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• Addressing metal thinfilm sensing accuracy coupled with practical usability 

challenges in post-fabrication characterisation and demonstration in chapter 5. 

• Operational demonstration by in-situ cantilever elasticity characterisation of 

complex AFM probes in chapter 6. 
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Chapter 2 - Review of the AFM probe elasticity characterisation techniques 

The case study conducted in this chapter will investigate a range of techniques, each relying 

on differing philosophies of elasticity characterisation, that are compatible with the 

investigated cantilever - an off-the-shelf reference calibration structure, thermal fluctuation 

interpretation and nano-indentation based bend profile characterisation.  

2.1 AFM probe elasticity characterisation literature overview 

In the optical deflection detection employed in most AFM systems, force measurement is 

obtained through the elastic response of the interacting structure. This structure is simply 

referred to as ‘the cantilever’ due to its geometric characteristic of single fixed and single 

free end. As a result, the quality of its elastic characterisation is transferred to the accuracy 

of force measurement. Early designs of hand-crafted laboratory-unique cantilevers [78] 

have long since been replaced by commercial adaptations of consistent, batch produced 

microfabricated structures [79]. These now have a well-established record performing 

metrologically reliable measurements at the nanoscale. Whereas even hand fabricated 

probes could obtain the unprecedented topographical scanning of nanometre structures, the 

increasing structural complexity of microfabricated probes, compounded by the increasing 

use of functionalisation [80] [81] [82] quickly rendered the most basic elasticity 

characterisation methods inadequate. As will be discussed in chapter 6, these methods are 

generally not valid for cantilevers with complex geometries, or those functionalised with 

sensing and actuating features. However, the demands for increased accessibility, even 

with a penalty to accuracy or lack of direct traceability, have spawned development of 
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numerous solutions for calibration - reference structures, sensors, theoretical static and 

dynamic property-based descriptions [83] [84]. Some of these methods have found 

commercial success and user approval based on cost and ease of use, confirming an 

acceptance of relative over absolute measurement. 

The first calibration solution concerned with practicality and ease of use was published in 

1992 by Cleveland et al. [85]. This demonstrated the dynamic quantification of cantilever 

natural resonance shift caused by attaching a known mass to the AFM cantilever. The 

principal measurement of cantilever resonance amplitude versus its frequency could now 

be done in-situ without knowledge of the cantilever elastic constant value and with 

hardware already present in many optical-lever equipped AFM systems. The method 

employs a simplistic harmonic oscillation model with estimated or measured mass and 

velocity change to quantify the elastic dampening component, from which a cantilever 

elasticity can be expressed. Alternatively, an appropriately setup laser-doppler vibrometer 

system (LDV) can be used for the same purpose ex-situ, as preferred in cantilever 

mechanical quality assessment of probe batches [86] (as demonstrated further in section 

5.1.3). No external driving force is necessary to excite the cantilever, since it is possible to 

capture the angstrom1 level thermal vibration amplitudes using the optical lever or LDV. 

The magnitude of background noise caused by Brownian motion is related to the cantilever 

and its surrounding fluid temperature, which is particularly challenging to determine 

locally at this scale - an attractive solution for this challenge is demonstrated with the newly 

developed MEMS device in section 5.3.2.  The major technical and accuracy disadvantages 

of this approach are caused by the uncertainties associated with the mass quantification via 

 
1 1 A = 10-1 m, sometimes against convention noted as Å [79]. 
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a partial dimensional assessment and simplified dynamic expressions that are not 

straightforwardly transferable to complex structures. The practical challenge of reliable 

mass attachment and detachment ex-situ is also not a risk-free exercise – a handling step 

which users can avoid with later-developed solutions, suggesting why the technique is not 

commonly used today.  

In 1993 Hutler et al. [87] introduced a further dynamic observation based method, now 

known as as ‘thermal tune calibration’. Similar to Cleveland’s solution, it involved analysis 

of an acquired resonance spectrum, but with a critical distinction in the data interpretation 

method. The technique relates the total thermal energy in the system to the observed motion 

velocity and displacement of the cantilever through a dissipated elastic energy model. For 

the first time, no additional metrological tools outside conventional AFM hardware were 

required. As a consequence, a software enabled spectrum analyser and mathematical 

processing are now shipped with most commercial AFM systems as the technique has since 

established itself to be a default ‘push of a button’ calibration solution. The wealth of 

published geometry and fluid specific correction factors [88] [89] [90] illustrate an often-

ignored aspect of the technique’s idealised motion interpretation – whilst it is excellently 

descriptive in straight-cut cases of linear rectangular and ‘V’ cantilevers when compared 

to a traceable standard [91], it is of limited applicability to more complex cantilever 

structures exhibiting nonlinear behaviour that are increasingly popular in quantitative AFM 

measurements. An experimental demonstration and discussion through a case study is 

described in detail in further work (section 2.3). 

In direct response to Cleveland’s added mass method, another practical and thus highly 

popular approach in relating dynamic behaviour to the elasticity constant was introduced 
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by Sader et al. in 1995 [92]. The newly formulated interpretation did not rely on a physical 

modification to harmonic properties (an anticipated improvement by the community), but 

instead mathematically related the observed geometry and resonant mechanical behaviour 

to a form of hydrodynamic transfer function, which could also be applied under liquid 

environments [93]. The publication itself recognised the vast uncertainty budgets 

associated with AFM cantilever elasticity characterisation techniques and extended the 

discussion to overall AFM-specific measurement difficulties arising due to the lack of 

standardisation. Two decades later, the same author introduced a ‘virtual’ standard transfer 

tool [94] via an online database in an attempt to observe cantilever variations and to create 

a statistical transfer platform through individual observed thermal resonance data, 

mitigating the laboratory-specific cantilever elasticity determination uncertainties. Here, 

the uncertainty reduction relies on the size of the statistical set, naturally benefiting data 

acquired with commonly used cantilevers. As a consequence, experimental and prototype 

cantilever designs are not supported, requiring dedicated modelling and statistical study 

efforts from the interested parties.  

Recognising the difficulties in dynamic behaviour interpretations, in 1995 Torii published 

a reference cantilever elasticity relation method [95]. This demonstration employed a 

reference elastic structure of increased scale when compared to a typical cantilever, 

improving the accuracy of dimensional characterisation. The analytically obtained load-

deflection characterisation of the reference cantilever in turn could be transferred to the 

‘unknown’ property of a cantilever via comparison of force-displacement curves obtained 

using the cantilever under test during interaction with the known elasticity (reference) 

cantilevers. This direct physical interaction method, received further development and 
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application improvements by Gates and Reitsma [96], and has since become established as 

a direct static elastic property characterisation technique. A detailed discussion and 

application examples employing an off-shelf product are presented in - section 2.4. The 

demonstrated potential of the method to be scaled to different force ranges also meant that 

previously unsuitable techniques, such as instrumented indentation, could be used to 

characterise the reference structure, in turn transferring the elasticity projection to AFM 

cantilever measurements. 

Tortonese et al. [97] showcased a philosophically different approach in 1992, focusing on 

direct elasticity interpretation via a dedicated MEMS sensor. Whilst this is not a method 

for cantilever calibration per-se, it is a technique that can resolve Force interactions in an 

AFM setting, the demonstration of which inspired numerous other force and elasticity 

measurement solutions. The introduced stiffness and deflection measurement was 

conducted using a strain sensor placed on the AFM cantilever paving way for the 

development of dedicated MEMS sensing, that can be integrated in parallel with the 

conventional AFM composition, demonstrating unprecedented accuracy [98]. The method 

allowed for an attractive simplification of the AFM deflection measurement hardware, at 

the cost of a complex and purpose-built active cantilever system. The following year (1993) 

Jarvis introduced another example of a self-sensing cantilever, this time via integrated 

magnet-coil sensing system [99]. The method brought a novelty of bypassing the cantilever 

elasticity component altogether and directly inferred interaction forces from the AFM tip. 

In the subsequent year, Scholl [100] introduced a capacitively sensed cantilever, now the 

third electro-mechanical transduction solution - all of which have since been adapted into 

potential calibration tools, but not as work-horse probes in general purpose AFM systems. 
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As AFM probes are consumables, outside of the niche applications where the integrated 

detection and actuation functions are essential (e.g. [101]), most users and manufacturers 

have preferred to invest in permanent deflection sensing hardware in the microscope, 

allowing the use of a wide range of low-cost probes differentiated by their suitability for 

scanning a particular type of sample, rather than by their suitability for scanning within a 

particular instrument. 

The current EURAMET recommendation [63] regarding traceable elasticity determination 

at the nanoscale is to use a dedicated tool comprising of a precision compensation balance 

and nano-positioner [64]. Access to such a tool, as well as the complexity involved in 

obtaining a measurement within the AFM, is prohibitive to most AFM users, therefore it 

is not surprising that to-date neither industry nor the AFM research community widely rely 

on this tool. The demand for accessibility and ease of use, even at the cost of accuracy or 

lack of traceability, has therefore driven development of the indirect experimental 

techniques introduced, some of which have found commercial success and user approval 

thanks to their favourable economic and practical characteristics - enabling the 

experimental review demonstration described next. It should be noted that some popular 

and well recognised methods were not investigated in the following practical review due 

to their intrusive and potentially destructive nature (added mass in static [102] and dynamic 

[85] characterisation), resulting in them being closely supplanted by other techniques 

already being considered (e.g. resonance in air interpretation through Sader method [93]) 

or accessibility - unavailable due to their developmental or cost prohibitive nature 

(instrumented elasticity reference samples [103] and dedicated force balancing structures 

[63] [104] [105]). 



31 

2.2 Technique review through a case study 

A case study on some of the most prominent AFM probe elasticity assessment techniques 

is conducted next, serving as a supplement to the earlier literature overview. By 

investigating a single AFM cantilever, the study aims to highlight technique related 

strengths and weaknesses, focusing on inputs and processing steps involved when defining 

the experimental output as an elasticity value. The absolute or true elasticity figure for the 

investigated structure cannot be determined or traced to a standardisation instruction due 

to the lack of established access to an international standard. Therefore, it is not possible 

to comment on measurement accuracy for the investigated techniques and the use of 

calibration term throughout the text is suggestive of its user adopted meaning - elasticity 

scalar value determination - and not an international standard or procedure. The 

summarised findings will be used to identify and attribute preferred qualities and possible 

improvements to the considered methods, which will outline a basis for the proposed 

elasticity characterisation method described in further chapters. 

By convention, the force component in AFM experimental routines treat cantilever elastic 

bending as the linear compression of a spring. This allows Hooke’s law (Eq. 1) to be 

employed, relating AFM registered cantilever displacements to forces experienced 

between the AFM tip and substrate. In order to describe an AFM cantilever as linear it is 

required that the displacement component in Hooke’s law is constant throughout the 

deformation range of the cantilever, ranging from sub-nanometre up to tens of 

micrometres. The key (but non-exhaustive) requirements for a near-linear cantilever spring 

undergoing quasi-static displacement in its elastic region are: 
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• a single clamped (fixed) end and opposing end unconstrained (free), 

• uniform cross-section and internal stress distribution, 

• length of the beam is much larger than the free end displacement and the width of 

the beam is much smaller than its length - per slender beam requirements of an 

Euler-Bernoulli beam definition [106]. 

These requirements are often not met in the most abundant modern-day cantilever designs 

– e.g. film coated and sensing (functionalised) cantilever probes. Therefore, in order to 

introduce the least obscurity into the intra-technique comparison case study, the most basic 

composition contact mode cantilever was chosen – whilst acknowledging that this is not 

necessarily representative of the most common and/or technically challenging probes 

employed in the community. The studied cantilever, available off-the-shelf as Veeco MPP-

21100-W (currently superseded by Bruker RFESPW-75 [107]), was taken from a wafer 

with production number 2149 [108] (Table 1 and Figure 7).  

Table 1. Veeco MPP-21100-W Cantilever manufacturer provided specifications. 

 Nominal Min Max 

Length, µm 225 215 235 

Width, µm 35 30 40 

Thickness, µm 4 3.5 4.5 

k - Spring Constant, N m-1 3 1.5 6 

Resonant Frequency, Hz 87.5 80 95 
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Figure 7. Batch produced Veeco MPP-21100-W probes, wafer no 2149 (left) and close-up, 

highlighting of the ‘pop-out’ style probe retention and release features on the 

microfabricated probe wafer (right). 

 

 

Figure 8. The schematic representation of the investigated AFM cantilever geometrical 

composition. 

The probe is an uncoated, uniform cross-section, plain silicon cantilever (Figure 8), that is 

well suited to be described with minimal simplifications and corrections using common 

elasticity estimation methods. The most notable exceptions are the cross-section non-

uniformities present at the free end, non-rectangular (trapezoid) cross section, presence of 

end mass in the form of a tip pyramid and the offset tip, meaning that any tip force applied 
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will also be distributed and offset. This deviates the structure from some technique specific 

simplifications, which will be discussed further where appropriate.   

The starting point of this investigation was the most trivial way of obtaining an elasticity 

estimate – by referring to manufacturer specified geometrical and mechanical properties 

(Table 1). The manufacturer provided nominal cantilever spring constant was 3 N m-1, 

covering a large range of extremities - 1.5 to 6 N m-1, meaning the tremendous 400% 

variability is also transferred to any AFM force measurements conducted with the provided 

guidelines. What is clear from the supplied data sheet is that tolerance control is difficult 

during batch fabrication and variance wafer to wafer is anticipated by the manufacturer. It 

may be stipulated that the major contributor to this elasticity variance is due to the difficult 

process control of the microfabricated cantilever thickness definition - a component which 

is related to the cantilever elasticity by an inverse cubic relationship (to be introduced in 

3.1 and eq. 22). The process specific limitations on achieving the resultant cantilever 

thickness is challenging to manufacturers due to the time-sensitive nature of anisotropic 

etching (akin to the process described in 4.5) and is typical to most batch produced silicon 

AFM cantilevers (ref. to 3.1.1 for supporting dimensional characterisation). This 

manufacturer provided elasticity is unlikely to be sufficient for any quantitative force 

measurement within an AFM setting, however at the very least it indicates an initial 

(expected) elasticity magnitude from which compatible calibration experiments and 

techniques may be identified. Whilst adopting the nominal elasticity specification is 

infinitely better than ignoring cantilever spring constant altogether, any user intending to 

employ the force component of AFM is well advised to look further into experimental 

characterisation techniques - for example, the thermal tune, reference spring and nano-
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indentation equipment, and conduct an individual investigation of their probes. Whether a 

casual end user chooses to utilise manufacturer suggested nominal values or decides to 

conduct their own assessment based on quoted cantilever dimensions, it is important they 

appreciate the variance natively present in most micro-fabricated probes.  
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2.3 Elasticity characterisation via thermal fluctuation interpretation 

Thermal tuning, as introduced by Hutter and Bechhoefer  [87], is a technique that aims to 

experimentally characterise the elasticity of AFM cantilevers by interpreting their energy 

dissipation from thermally induced oscillation. Its popularity is unprecedented, with many 

AFM users making use of its accessibility, setup simplicity and non-destructive nature. It 

is generally regarded and presented as a ‘single button’ solution to AFM cantilever 

elasticity calibration, and is thus highly automated, requiring little user input or 

appreciation of its heavy reliance on various assumptions and simplifications. However, 

according to literature best practices and not relying on the tested AFM system built-in 

processing algorithm, the work presented here will analyse this data ‘by hand’.  

The required acquisition tools are built-in and setup with most modern AFM systems and 

consist of conducting a power spectrum analysis of cantilever oscillation near its resonance 

frequency whilst it is excited thermally by a surrounding fluid. The technique relates the 

system thermodynamic energy scale “kBT” (where kB is Boltzmann constant and T is 

temperature) to the observed oscillation velocity and displacement spectral density (<z2>) 

in order to solve for the elasticity constant (k), as expressed in Eq. 2: 

𝑘 =
𝑘𝐵𝑇

< 𝑧2 >
; Eq. 2 

All experimental data was obtained using a Bruker Dimension Icon AFM [25] system 

utilising its environmental enclosure (previously shown in Figure 2). First, the sensitivity 

of the system was determined, relating the optical lever registered cantilever displacement 

to piezo-element measured vertical axis travel - procedure explained in detail in section 2.4 

and Figure 14. This was subsequently used to obtain the deflection velocity of the thermally 
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excited cantilever by measuring its displacement amplitude and frequency. Using the 

AFM’s built in spectrum analysis hardware/software the deflection power spectrum density 

was recorded (Figure 9). The peak of the first resonance frequency was observed to be at 

86229 Hz, which is within the manufacturer provided range of resonances (80-95 kHz, 

Table 1), obtaining a first experimental agreement that the structure performs in line with 

manufacturer characterisation. The spectrum plot allows for a Lorentzian fit to be obtained 

in the ± 3000 Hz region around it (Figure 10, Eq. 3), which sufficiently encapsulates the 

area of the observed peak above the noise line. The area under the noise baseline was 

excluded due to the assumption that it is a background signal and does not contribute to the 

power dissipation of the cantilever, hence only the positive area was considered in the 

numerical integration, which obtained the <z2> value (Eq. 4). 

 
Figure 9. The full range (1-100 kHz, bandwidth - 7.63 Hz) acquired Thermal Tune Power 

Spectrum Density capture for the Veeco MPP-21100-W cantilever. 
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Figure 10. Lorentzian fit (solid line) over the raw signal (dotted line) of the cantilever 

natural resonance shape over the investigated frequency span. 

 

𝐹(𝑥) =
𝑦0 + 𝑎

𝑏2 + (𝑥 − 𝑥0)2
=

664.8 × 10−27 + 19.312 × 10−21

(𝑥 − 86229)2 + 23088.8
 Eq. 3 

< 𝑧2 >= ∫ 𝐹(𝑥)
𝑥1

𝑥0

 Eq. 4 

= ∫
664.8 × 10−27 + 19.312 × 10−21

(𝑥 − 86229)2 + 23088.8
𝑑𝑥 = 3.8643 × 10−22  𝑚2;

89229

83229

  

The measurement was repeated 50 times at one-minute intervals, emphasising the 

technique’s speed and more importantly - the extremely small degree of variation between 

the obtained <z2> values (Table 2). The attributed natural distribution is also implied from 

the measurement spread density (Figure 11), allowing the statistical confidence limits of 

the measurand to be expressed. It should be emphasised, that this statistical expression 

focuses on the practical repeatability and thus the statistical confidence of the 

measurement, and not the measurement uncertainty in the conventional metrological 

definition, as it does not include the experimental setup unique uncertainty contributors 
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(e.g. the thermometer, AFM calibration detection and displacement calibration data), 

which are laboratory specific.  

Table 2. Thermal tune <z2> statistical component summary. 

Mean, <z2> 3.8663 × 10−22 , 𝑚2 

Number of observations 50 

Standard deviation, s(<z2>) 5.7032 × 10−24 , 𝑚2 

Margin of error, e(<z2>) 8.0656 × 10−25 , 𝑚2 

95% confidence limit coverage (1.96e) ±0.41 % 
 

 

Figure 11. Thermal tune obtained <z2> integral variation density, indicating a natural 

distribution. 

Since exact local thermal conditions surrounding the cantilever are not possible to 

determine with a conventional AFM system alone (a solution to be discussed in 5.3.2), an 

estimate temperature reading of 294 Kelvin is taken from a few cm proximity by a K-type 

thermocouple, which is then employed in the final expression allowing for the elasticity 

constant to be calculated using Eq. 2:  
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𝑘 =
𝑘𝐵𝑇

< 𝑧2 >
 

=
1.38064852 × 10−23 𝑚2 × 𝑘𝑔 × 𝑠−2 × 𝐾−1 × 294 𝐾

3.8643 × 10−22  𝑚2
 

= 10.51 𝑘𝑔 𝑠−2 = 10.5 𝑁 𝑚−1; 
 

 

Due to the widespread use of this calibration technique, it receives constant attention from 

users and developers who have introduced additional improvements and corrections to this 

fundamental expression, allowing for further data interpretation steps to be explored. For 

example, an inclusion of a correction factor of 0.971 addresses the afore-mentioned fact 

that only the energy stored in the first bending mode is considered [109], proportionally 

trimming the elasticity estimation, as shown in Eq. 5. The validity of this approach has 

been experimentally confirmed in [88] and is generally accepted by the community and 

manufacturers as the default for thermal fluctuation elasticity determination of reasonably 

high Q factor rectangular cantilevers, even though it only contributes a comparatively small 

(2.9%) adjustment. 

𝑘 = 0.971
𝑘𝛽𝑇

< 𝑧2 >
= 10.2 𝑁 𝑚−1; Eq. 5 

Another common correction is the correlation of cantilever displacement amplitude to the 

angular change interpretation provided by an optical lever system - since the measured 

thermal noise correlates strongly to the spot size, due to the nature of photodiode operation 

which is based on laser reflection intensity change interpretation  [90]. To achieve this, 

knowledge of the cantilever’s planar shape is required as well as certainty about the 

cantilever’s total length relation to laser spot size in order to apply an appropriate correction 

constant, that the user is required to identify from literature [109]. For the investigated 
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cantilever, the manufacturer provided planar dimensions and knowledge of the laser spot 

size (shown in further studies, e.g. Figure 85), the appropriate correction factor was 

identified to be 1.09, per [110] and [111]. This squared factor is integrated in most 

commercially available AFM thermal tune processing tools that employ optical lever 

detection systems, adding another correction factor to the fundamental expression - as 

shown in Eq. 6. 

𝑘 =
0.971

1.092

𝑘𝛽𝑇

< 𝑧2 >
= 8.6 𝑁 𝑚−1; Eq. 6 

Finally, a mounting angle correction is addressed, relating the in-situ observed cantilever 

elasticity to its mechanical structure property. Such a correction is necessary due to the fact 

that AFM cantilevers are typically mounted at an angle α (typ. 10° - 15° from parallel to 

surface and 13° in the tested AFM system), allowing the final thermal tune expression for 

the described setup in Eq. 7 to be obtained. 

𝑘 =
0.971

1.092

𝑘𝛽𝑇

< 𝑧2 >
 × 𝑐𝑜𝑠213° = 8.2 𝑁 𝑚−1;  Eq. 7 

This final elasticity figure of 8.16 N m-1 exceeds the manufacturer identified nominal 

elasticity figure nearly three-fold. Whilst a dedicated uncertainty analysis was not 

conducted in this instance, the literature reports the method measurement uncertainties in 

the 10-20% range [112] [113] [114]. This means that even accounting for the measurement 

uncertainty, the obtained elasticity expression is outside the maximal indicated elasticity 

modulus of 6 N m-1, illustrating that the elasticity variation in AFM structures is often even 

more excessive than the already broad range provided by probe manufacturers (to be 

expanded upon in section 3.1.1 and 3.1.2).  
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It can be seen why thermal tuning is an attractive technique that can obtain an elasticity 

modulus for simplistic composition AFM cantilevers thanks to its high speed, conventional 

instrumentation (often integrated in AFM) and non-destructive operation. The technique’s 

application is challenged by the indirect nature of the elasticity characterisation, which for 

confident results require user caution when applying appropriate output correction factors. 

Cantilevers with complex geometry thus exhibiting complex dynamic behaviour, outside 

the idealised harmonic oscillation expectations, are not represented by the ready-developed 

literature descriptions, limiting the technique’s applicability for structures beyond the most 

basic composition - as will be demonstrated in chapter 6.  
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2.4 Elasticity characterisation via comparison to elastic reference 

A common way of understanding forces at the nano/micro scale involves relative or 

proportionality-based comparisons between observed elastic deformations. In Atomic 

Force Microscopy such interpretation may employ a reference structure of a known 

elasticity structure such as cantilevers [84] [96] or beams (e.g. glass fibres [115] or 

torsional springs [103]). One common elastic reference configuration is a cantilever spring, 

much like the AFM cantilever, but with minimal geometrical complexities - e.g., a lack of 

coatings or sensing enabling features such as tips or sensors. The calibrated (reference) 

cantilevers themselves are characterised using external calibration tools e.g., dynamic 

methods that deliver a good relation between elasticity and frequency thanks to the 

appropriately simple cantilever shapes. Ultimately, the elastic reference structure allows 

‘transfer’ of a chosen elasticity characterisation method to the AFM cantilever context via 

the two elastic spring interaction analogy (Eq. 8), which has been arranged into an 

expression that accommodates an AFM force-distance curve gradient by the technique’s 

developers, Gates and Reitsma [96] (as shown further in Eq. 10 and Figure 12). 

𝑘𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (
1

𝑘𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
+

1

𝑘𝐴𝐹𝑀
)

−1

; Eq. 8 
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In order to explore the practical application of this static elasticity characterisation method, 

a commercially available reference grid - Bruker CLFC [116], Wafer No: A002/01 box 5 

- Probe 5, was used to determine the elasticity of the subject cantilever (Veeco MPP-21100-

W), following manufacturer instructions [117]. The manufacturer advises users to stay 

within the 0.3kreference<kAFM<3kreference range whilst conducting a spring-on-spring 

measurement [111], meaning the stiffest spring of 9.3 N m-1 was used, as informed by the 

probes estimated spring constant obtained in previous elasticity assessment. 

 
Figure 12. Spring on spring experimental schematic, depicting the soft interaction (Ssoft) 

force-distance ramp and variable, figure inspired by Gates et al. [96] description. 

 

The calibration or relative elasticity value transfer from structure to structure was 

conducted in two steps – by hard and soft contact force-distance ramp interactions (Figure 

13). First this involved displacing the unknown spring constant AFM cantilever on an 

infinitely stiff spring (e.g. a bulk sapphire or silicon sample) employing the AFM’s built in 

force-distance ramp routine, ensuring the only compliant component - the cantilever bend 

(dδ) was related directly to the observed vertical displacement (dZ). This provided the hard 

contact ratio Shard, also known as sensitivity (Eq. 9). In this way, the cantilever bend 

displacement registered by the optical lever system could be related to the driven 
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displacement of the Z axis, plotted in Figure 14 and expressed in Eq. 10. Such a procedure 

is a prerequisite in many AFM experiments and is commonly referred to as sensitivity 

determination. Then in the second step, the AFM cantilever kAFM was brought into contact 

with the cantilever of known stiffness (kreference) and length (Lreference) at a determined 

contact point (Lcontact). A force distance ramp routine was performed by the AFM system, 

where the vertical displacement (dZ) and resultant cantilever bend (dδ) was related to the 

ratio Ssoft. A squared cosine component (α) is present in the equation to relate the normal 

elasticity component to the absolute elasticity of the cantilever, which arises from the 

contact angle between the interacting structures. 

𝑆 =
𝑑𝛿

𝑑𝑍
; Eq. 9 

𝑘𝐴𝐹𝑀 = 𝑘𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (
𝐿𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡
)

3

(
𝑆ℎ𝑎𝑟𝑑

𝑆𝑠𝑜𝑓𝑡
− 1) 𝑐𝑜𝑠2𝛼; Eq. 10 

 
Figure 13. Tested cantilever positioned to interact in ramp mode with the bulk silicon 

surface (left) and reference spring (right), obtaining the Ssoft and Shard values. 
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Figure 14. Veeco RFESPW probe f-d ramp engagement approach region on solid (𝑆ℎ𝑎𝑟𝑑) 

and CLFC calibrated spring (𝑆𝑠𝑜𝑓𝑡). The difference in curve steepness allows to relate 

curve gradient ratios to the known interaction elasticity of the calibrated spring. 

The uncertainty analysis for this approach is non-trivial since a major contribution to 

uncertainty and error in the experiment rises from interpretation of the force-distance 

gradient linear region, the calibration certainty of the reference springs as well as the 

determination of the spring-on-spring interaction (or offset) point. Evidence from other 

reference grid studies indicate that uncertainty from 2 - 20% can be expected, depending 

on the chosen calibration transfer method [64] [112]. The bend gradients from 10 repeats 

(Table 3) were obtained by finding the best linear fit to the data points in the positive bend 

region using the method of least squares. Due to the low sample count, the distribution 

shape was assumed to be natural, in order to express the measurement 95% confidence 

interval. 
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Table 3. Spring on spring measurement interaction gradient summary. 

Observation no. Shard, average Ssoft, average 

1 0.9951 0.6444 

2 1.0232 0.6638 

3 0.9565 0.6332 

4 0.9397 0.6108 

5 1.1118 0.6181 

6 1.0315 0.6289 

7 1.0417 0.6185 

8 1.0711 0.6069 

9 1.0677 0.6026 

10 1.0798 0.64887 

Mean, S 1.03181 0.62761 

Standard deviation, s(S) 0.05498 0.01996 

Margin of error, e(S) 0.01739 0.006313 

95% confidence limit coverage 

(1.96e)  
±3.30% ±1.97% 

 

Finally, the nominal elasticity figure for the investigated cantilever was obtained by 

applying the obtained variables to Eq. 10. 

𝑘𝐴𝐹𝑀 = 𝑘𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (
𝐿𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡
)

3

(
𝑆ℎ𝑎𝑟𝑑

𝑆𝑠𝑜𝑓𝑡
− 1) 𝑐𝑜𝑠2𝛼 Eq. 11 

= 9.3 N m−1 (
97.9 × 10−6 m

78.7 × 10−6 m
)

3

(
1.303181

0.62761
− 1) cos213° = 10.9N m−1 ; 

It should be noted that the obtained figure of 10.9 N m-1 is noticeably higher (+34 %) than 

the value obtained using thermal tune, indicating the structural elasticity was interpreted 

differently. Since there is no absolute point of reference to aid in accuracy judgement, the 

practical conclusion is that the method is worthy of employment just by virtue of its 

approach to characterising elasticity. Specifically, this method loads the AFM cantilever 

being characterised through the tip and is therefore highly (if not completely) 

representative of the in-use load scenario. In addition, the technique requires minimal 
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mechanical or geometrical knowledge of the cantilever being characterised and is 

compatible with use within a standard AFM system - the tip offset being one notable 

exception for some cantilevers. However, the results do suffer from the limited positional 

placement ability of many AFM’s navigation stages and camera systems, as well as 

inaccuracies in optical levers over large displacement ranges and non-standardised 

calibration reference samples, meaning users are likely to suffer from locally variable 

inaccuracies. Finally, the obtained force is not measured at the tip, but extrapolated from 

deflection much further down the structure - somewhere on the mid-point of the cantilever. 

Therefore, any possible bend compliance in the region between the cantilever tip and laser 

reflection point is not accounted by this method. 
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2.5 Elasticity characterisation by a nanoindenter 

Nanoindenters are versatile tools employed in a broad variety of micro-scale material 

studies. Their high sensitivity load cell transducers combined with high resolution data 

logging, provide a sought-after ability to resolve nano/micro phenomena from direct 

interaction observation [118]. Aside from plastic deformation studies, nanoindenters can 

also be employed non-destructively to study elastic structural behaviour - such as AFM 

cantilever deformation. The following measurements made use of a commercially available 

indentation system - Hysitron PI85 Nano Indenter [119], mounted inside a ZEISS Sigma  

SEM [120] system (Figure 15) at the Henry Royce Institute facilities in Manchester2. Nano 

indentation is an attractive approach for elastic structure characterisation, although its 

application to AFM cantilevers is limited due to the fact that commercial nanoindenters are 

typically only just sensitive enough to directly measure interaction forces relevant to the 

stiffer AFM cantilevers - 1 N m-1 and above. Whilst their displacement sensing is capable 

of sub-nanometre resolution, their load transducers are noise limited at the bottom end, 

resulting in a practical detection floor of 0.5 to 1 × 10-6 N. In practical terms this means 

that a typical contact mode cantilever of 0.1 N m-1 will need to be displaced between 5 and 

10 µm just to reliably register a force on the load transducer. This large deflection is not 

only potentially destructive to such cantilevers, but also means that the elasticity is 

characterised in a deformation range that may be far beyond its operating range. In addition, 

the fact that this measurement is made ex-situ of the AFM, requires a comparatively 

complex measurement setup and employs specialist equipment means that this approach 

 
2 Accessed through the Henry Royce PhD student access scheme, EPSRC grant EP/R00661X/1. 
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sees little use by AFM users, despite its promise for measurement accuracy. Having said 

this, the relatively stiff cantilever employed in this study is fully compatible with the 

limitations of this technique. The anticipated high stiffness (> 1.5 N m-1, per manufacturer 

instructions, Table 1) of the cantilever combined with its deformation compliance, as 

indicated by its dimensions, suggest that it will be able to tolerate micro-Newton forces 

without exceeding its structural elastic limit. As an ex-situ assessment technique, the 

approach is slower and has higher costs than the previous methods investigated, however 

it benefits from the accuracy of the externally calibrated load cell and SEM derived 

positioning accuracy when compared to the deflection interpretation and optical 

microscope aided positioning offered by AFM hardware.  

 

Figure 15. The nanoindenter with mounted sample (AFM probe not pictured). 

The concept behind this characterisation is inspired by Clifford and Seah [121] as well  as 

Z. Ying [122], who conducted a multi-point load study across the cantilever length and 

then extrapolated the data to find the tip point elasticity. In this way, the nanoindenter can 
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be used to mechanically displace a cantilever and define its elasticity at the contact point 

via interpretation of the force-distance plot generated.  

In this case study, displacements were performed using a spherical end diamond cone tip, 

originally employed for bulk material indentation (Figure 16). Although a load case most 

resembling a real-life cantilever load condition would be a direct tip apex displacement by 

a flat ‘landing pad’ style tip attached to the nanoindenter load cell, such a configuration 

was not available in the instrument employed. Due to the practical positioning limitations, 

potential for cantilever damage or slippage of the diamond sphere and tip apex during 

interaction with each other, it was deemed unfeasible to attempt to load the AFM tip 

directly with the conical indenter tip. Another consideration was the orientation of the 

cantilever relative to the indenter. If the AFM tip apex was facing away from the indenter, 

it would be possible to perform an indentation at the back side of the AFM tip, emulating 

a load at an offset equivalent to a real AFM use scenario. However, this would result in the 

loading direction being opposite to the real-life AFM mounted orientation. In a scenario of 

a linear elasticity cantilever this should not have any negative affect, but more specialist 

AFM cantilevers that have non-uniform stress conditions or complex neutral axes can 

exhibit direction unique elastic behaviour, depending on whether the bend is positive or 

negative. Therefore, it was decided to collect the multi-point bend data along the cantilever 

length in the positive bend orientation as this retains the orientation of a real-life AFM load,  

allowing a multi-point experimental assessment of the bend shape to be conducted, from 

which the tip offset equivalent elasticity could be projected. 
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Figure 16. The nanoindenter tip displacing the AFM cantilever, captured at maximal 

indenter displacement. 

The AFM cantilever was mounted perpendicular to the spherical diamond indenter tip at a 

shallow angle to the scanning electron beam. This allowed the nanoindenter displacement 

and load cell signal to be recorded and related to the captured SEM images. The AFM 

cantilever was displaced at nine points along its length (distance from fixed end indicated 

by k subscript), as shown in Figure 17. As desired, no plastic indentation upon spring back 

point and contact point was visible. This fact was confirmed by the overlapping load-

unload curves indicating the indenter tip was displacing the compliant beam in near-perfect 

elastic interaction [123].  
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Figure 17. Indenter registered force-distance signals for the 9 tested contact positions. The 

offset specific elasticities (indicated in microns in k bracket value) resolved by derivation 

of the linear fit of the interaction region in N m-1 units. 

The data was logged as the force experienced by the load cell versus the closed loop 

measured displacement, resulting in data analogous to an atomic force microscopy force-

distance experiment, allowing the same interpretation and gradient extraction. In order to 

define the elasticity, the gradient needed to be resolved into the rate of change scalar 

(
𝑑𝑦

𝑑𝑥
~ 

𝑑𝐹

𝑑𝑍
 = k in N m-1) that could subsequently be used in the calculation. The gradient of 

the curve was distinct in all the tested positions and straightforward to define by a linear as 

visible in the plotted representation. It is worth noting that the experiment was setup as 

displacement-controlled ramp, with the AFM cantilever undergoing a maximum supported 

extension by the indenter (5 µm) in order to maximise the information sensed from the 

interaction. To ensure the engagement point was captured, the indenter was retracted from 

the contact point by visual aid only. The displacement ramp was then started before the 

contact point (equivalent to out of contact region in AFM), therefore the practical limit of 
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displacement became 1 or 2 µm smaller than the maximum permitted indentation range, 

limiting displacement at positions 1 to 4. A pre-set force limit of 50 µN was also applied 

in order prevent permanent plastic indentation (penetration) of the AFM cantilever, 

meaning that positions were force (rather than displacement) limited.  

Knowledge of the offset specific elasticity properties allowed a bend profile to be defined 

for this beam by plotting the load proportional vertical displacement (k-1=
𝑑𝑍

𝑑𝐹
) versus the 

distance from fixed end (Figure 18). This provided a useful visual representation, 

proportionally resembling the cantilever bend profile shape, but also permitted a curve fit 

to be obtained that could then be used to project beam elasticity at a chosen offset. The 

bend profile was obtained by fitting a third-degree polynomial fit (per cubed length to 

stiffness relationship of a cantilever beam [124]) to the data points obtained by the offset 

specific indentation elasticity, allowing interpolation to give load proportional vertical 

displacement values at any chosen offset. 
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Figure 18. Offset to inverse elasticity, indicating the resistance to bend relationship plot, 

showing the third power fit line and the extrapolated calculation point at the tip offset value 

(k-1 expressed in units of m N-1). 

The obtained k-1(x) function could then be solved for the point of interest - the tip location 

(225.6 µm), allowing the load proportional vertical displacement at the tip equivalent offset 

to be identified as 0.1223 m N-1, per Eq. 12. In order to obtain the elasticity at the offset, 

the inverse of this value was taken giving a projected elasticity of 8.2 N m-1 at the probe 

tip. The major contributors to the errors with this measurement are associated with the 

offset estimation and load cell calibration. The calibration certificate for this equipment 

was not available at the time, therefore literature was employed to estimate a representative 

accuracy associated with this method. A guidance uncertainty was determined for an 

equivalent load transducer at a load similar to this work - 4 µN. The identified source [125] 

defines a load resolution (dZ) to load (F) ratio of 1.1% for conventional systems in this 

𝑘 =
𝐹

[𝑑𝑍]
=

1

𝑑𝑍
𝐹

=
1

0.1223
= 8.2 𝑁 𝑚−1; Eq. 12 
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loading range. The positional error was determined by SEM calibration and at the given 

scale (~1000 times magnification) was established at ±10-6 m, (both x and y error bars are 

not visible in Figure 18 due to being eclipsed by the marker dot). It should be emphasised 

that the physical load-cell interaction allowed for much more in-depth characterisation of 

this beam’s elastic profile without geometrical (exception of tip and indentation offsets 

from fixed end) or mechanical knowledge off the cantilever properties. It is also a 

significant advantage that the AFM tip was not touched at any point, reducing potential 

opportunities for contamination and damage. Obtaining and characterising cantilevers bend 

profiles is not available using rest of the other experimental methods investigated and can 

be immensely useful in structure characterisation - defining structural non-uniformity 

throughout the beam as well as operational corrections - e.g., compensation for optical 

lever reflection spot deviation from the tip-sample contact point. 

The lack of reliance on extensive external dimensional characterisation or angular 

corrections native to in-situ methods, as well as knowledge of material properties required 

for analytical or modelling based approaches, appears to justify the use of such a complex 

instrument, albeit at the cost of practical inconvenience and limited application for softer 

AFM cantilevers. 
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2.6 Conclusion 

The common techniques of experimental characterisation overviewed above highlighted 

the broad and varied approaches which have been taken towards the singular task of AFM 

cantilever elasticity (spring constant) determination. Since it has been established that as 

far as the public is concerned - no measurements at the considered scale can be directly 

traced to the SI, only a relative comparison between each techniques output could be 

conducted. When applied to the single structure characterisation, two of the three methods 

returned almost identical elasticity figures visible when additional significant figure is 

included - 8.16 vs. 8.18 N m-1, thermal tune and multi-point indentation respectively. 

However, neither of these techniques physically assessed the elasticity property exerted 

through the cantilever tip, which in other cases, may be a significant contributor to the 

elastic behaviour characteristic. The in-situ reference spring method returned a value of 

10.9 N m-1 - overestimating the other methods by a third. However, this method did involve 

observation of an operationally relevant behaviour - elastic deformation through tip, 

meaning that regardless of the structural composition, the complete cantilever elastic 

character was observed. The convenience of conducting this experiment in-situ is also 

suspected to be its major contributor to the witnessed disagreement with other methods. 

The necessary reliance on optical lever detection and the associated limited positioning 

accuracy of the interrogating laser leads to lack of reproducibility in force measurement 

due to alignment and displacement non-linearities. This is paralleled by the thermal tune 

method’s reliance on single point optical lever detection, which is not appropriate for AFM 

structures with complex composition, that are of interest to this work (to be demonstrated 

in further detail in chapter 6). 
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A process of elimination thus leads to the conclusion that an independent form of tip load 

sensing, uncoupled from the AFM built-in optical lever (similar to the load cell used in the 

nanoindenter) and integrated with the convenience of operation in-situ within an AFM 

setting (similar to the reference spring setup), could be a far better solution to the problem 

of characterising and calibrating AFM response to applied forces. Such a system would 

provide high speed and a low complexity of setup for cantilever behaviour characterisation 

(akin to the ‘push-button’ operation of thermal tune). Work on micromachined force 

sensors for applications (such as pressure sensing and integrated AFM force sensing 

cantilevers) has demonstrated the stability and accuracy of such technology. Whilst the 

direct use of integrated force sensing within an AFM cantilever increases the cost of the 

consumable AFM probe and precludes the use of many advanced probe types and 

materials, the use of such a technology as a non-consumable calibration sample would fulfil 

the requirements identified above. The theory of such sensors is introduced next, in chapter 

3.   
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Chapter 3 - MEMS sensing theory 

A sensor (from the Latin ‘sentire’ - meaning ‘to perceive’) translates an encountered 

physical magnitude into another, often electrical value, corresponding to the investigated 

measurand. The process of conversion is called transduction and the term transducer 

typically refers to the complete sensing device assembly - mechanical structure, electrical 

sensor (or actuator), wiring and instrumentation involved in the process [126]. 

Conventional, macro-scale force sensors are often categorised as load cells, which are 

assembled with the separate components necessary for the complete transduction function. 

These assemblies compose force and displacement transducers that are based on capacitive, 

resistive, electromagnetic or piezoelectric sensors integrated with deformable mechanical 

structures, such as membranes or beams. The advent of semiconductor microfabrication 

technology allowed for the development of highly miniaturised and integrated sensor 

solutions, often classed as micro electro-mechanical systems (MEMS), a term introduced 

in 1986 [127] by a proposal to DARPA [128]. These micro-devices can offer an accurate, 

low-cost solution with minimal additional hardware and easy integration within 

commercially available AFM systems, which is often not practical with conventional 

macro-scale load cell setups. Some of the numerous unique mechanical and sensing 

compositions that have been developed for AFM cantilever characterisation are introduced 

in this chapter, together with the relevant MEMS theory serving as a conceptual definition 

of the device presented in this thesis. First, the theory concerning the mechanical structure 

is described, introducing the relevant continuum mechanics concepts, which allow the 

analytical and Finite Element modelling theory of structures to be utilised. Then, the 
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relevant methods of microfabrication supported sensing are reviewed, while a description 

of the chosen strain sensing instrumentation technology is introduced. 

3.1 Structural mechanics theory 

MEMS (including AFM) cantilever elasticity can be understood using classical mechanics 

theory, which forms the fundamental physical descriptions behind the analytical and finite 

element modelling methods employed in the field. In solid body mechanics, convention 

dictates that the body (e.g. surface of area A, m2) responds to applied external load (e.g. 

load force F, N) by internally opposing forces and deformations (changes) in shape [129] 

(Figure 19 and Eq. 13). In continuum mechanics, these interactions are understood in stress 

(𝜎) and strain (𝜀) terms respectively, which are ordered to the chosen coordinate 

convention. The directionally and spatially categorised elements can then be attributed 

their own individual strain and stress values, which allows the structure to be considered 

not only as a continuous mass body, but also a composition of elements related to each 

other in stress relationships - conventionally expressed as tensors (Figure 20). 

 

Figure 19. An ellipse shaped solid body (a) subjected to external loads (b) that result in 

body deformations. 



61 

 

Figure 20. External forces applied on a solid body are distributed internally as normal and 

shear stress vectors (𝜎), marked with their indicated directions, which form the tensor 

element description. 

𝜎 =
𝐹

𝐴
; Eq. 13 

The tensor can thus be used to understand stress and strain relationships in the elastic region 

of three dimensional objects, summarising the relevant mechanical expressions to the 

further considered elastic structures (Eq. 14 in support of the naming convention of Figure 

20). Strain (𝜀) is the relative or fractional change in structure length in the direction of 

applied load (Figure 21 and Eq. 15). The relationship between lateral and longitudinal 

strains is defined by a material property called Poisson’s ratio (v), which defines the 

magnitude of change in the directions perpendicular to the load (Eq. 16), a property that is 

essential in understanding not only the mechanical component, but also the operation of 

strained electrical conductors (further expanded upon in section 3.2.2). 

  



62 

𝜀𝑥 =
𝜎𝑥

𝐸
− 𝜈

𝜎𝑦

𝐸
− 𝜈

𝜎𝑧

𝐸
=

1

𝐸
[𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)], 

𝜀𝑦 =
𝜎𝑦

𝐸
− 𝜈

𝜎𝑥

𝐸
− 𝜈

𝜎𝑧

𝐸
=

1

𝐸
[𝜎𝑦 − 𝜈(𝜎𝑥 + 𝜎𝑧)], 

𝜀𝑧 =
𝜎𝑧

𝐸
− 𝜈

𝜎𝑥

𝐸
− 𝜈

𝜎𝑦

𝐸
=

1

𝐸
[𝜎𝑧 − 𝜈(𝜎𝑥 + 𝜎𝑦)]; 

Eq. 14 

 

Figure 21. Force induced elastic uniaxial deformation of a solid structure allowing for the 

corresponding lateral and longitudinal strain resolution. 

𝜀 =
𝑑𝐿

𝐿
; Eq. 15 

𝜈 =
− 𝜀𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝜀𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
; Eq. 16 

Whilst the tensor describes the stress relationships at the element level, the strain is also 

understood from this multilinear relationship via the knowledge of elastic modulus (Eq. 

17). The gradient of the elastic region describes material compliance in uniaxial loading 

(Figure 21) and is called elastic (or Young’s) modulus (E, Eq. 17). However, in the load 

case concerning elastic deformations, the elastic compliance also involves a shear modulus 

(G) component since beam bending involves shear stress arising from the perpendicularly 

applied load. This can be accounted for by expressing the shear modulus in elasticity 



63 

modulus terms (Eq. 14), allowing for further expression simplifications, eliminating the 

need to refer to the shear modulus value explicitly.  

𝐸 =
𝜎

𝜀
; Eq. 17 

𝐺 =
𝐸

2(1 + 𝜈)
; Eq. 18 

In a given material, the relation between stress and strain is dictated by an experimentally 

obtained stress and strain plot (illustrative example shown in Figure 22), which is split into 

three distinct regions: 

•  elastic deformation region (0-1), where the stresses and strains manifest as elastic 

(reversible) deformations, that are defined by the elastic modulus defined linear 

proportionality. 

• plastic deformation region (1-2), where deformations become non-linear and non-

reversible.  

• failure region where fracture limit or yield strength (2) value indicates the material 

failure point.  
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Figure 22. Stress and strain relationship example. For isotropic, elastically deforming 

structure, the relationship between directional stress and strain is described in elastic 

deformation region governed by the proportionality limit. 

As the vast majority of MEMS structures are required to undergo repeat operation, it is 

necessary to ensure that their operational load stays inside their elastic deformation limit, 

allowing the load induced strain to reverse back to the neutral position once the load is 

removed (Figure 23). 

 

Figure 23. Perpendicular load induced deformation of a cantilever beam. 
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Mechanical sensors are typically designed in a geometrically simplistic manner where load 

induced stress and strain relationships are as straightforward as possible, with any 

additional geometrical complexity only included for well-considered reasons - e.g. 

manufacturing constraints or sensing enabling features. In force sensing applications, such 

structures most often take shape of deformable beams with a range of constraints as 

illustrated in Figure 24. 

 

Figure 24. Deformable mechanical structures in red and displayed fixed planes in blue. 

The load point (black arrow) is responsible for the induced deformation response of the 

showcased structures: a) single fixed end beam (cantilever); b) double fixed end beam; c) 

three end fixed beam; d) four end fixed beam (membrane). 

The primary optimisation area of a load sensitive structure, requires maximising stress or 

strain response (illustrated by an FE study in Figure 25, methods of which are introduced 

in 3.1.2), therefore the least constrained arrangement – a single end clamped cantilever 

beam must be considered as the preferential design option. Such a structure, when 

displaced using a normal load, experiences a bending action which results in polar direction 

strain and stress in the structure. If this stress or strain is measured by a dedicated strain 

gauge this information can be combined with knowledge of the type of loading to resolve 
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the normal magnitude of this load. For most materials, it can be straightforward to identify 

tensile-compression and shear values from representative cases presented in the literature. 

However, for microfabrication materials such as polymers, metals and silicon based thin-

films this can be particularly challenging since their material composition and form can 

vary to a significant extent, as dictated by their deposition parameters. For this reason, 

testing of each individual structure or material deposition is necessary if an accurate value 

is required. This limited material property knowledge leads to an early design decision – 

utilizing a structure with the largest magnitude specific surface strain, which can be 

relatively determined using continuum mechanics concepts and finite element analysis 

tools.  

 

Figure 25. Unit load applied at maximal strain inducing locations (see Figure 24) 

comparing the surface strains of different degree of freedom beams (FEA, Abaqus). The 

structures have a width and length ratio of 1:1, and length to thickness ratio of 100:1. 

Graph scaled to 100% in vertical axis – as determined by value of maximal strain on a 

single clamped cantilever under unit load. The arrow values indicate comparative 

percentage of maximal surface strain, as compared to single end clamped beam -

cantilever. 



67 

Once the load effects on deformation are understood, it is necessary to consider the 

structural description relevant to the further considered geometries - the second moment of 

inertia (I, m4). This describes the phenomenon where the further material is located from 

the bend axis, the more resistant the structure is to deflecting under a given load. The scalar 

value for I is obtained through integration of the material cross-sectional area (dA) and its 

squared vertical displacement during bending (z2) orthogonal to load bend axis (Eq. 19). 

For a rectangular beam (Figure 26), as considered in this case, the integral reveals that 

resistance to mechanical deformation is related to thickness cubed but is linear in relation 

to width (Eq. 20) – an important design consideration for fabrication control and 

optimisation. 

  

Figure 26. Cross-sectional representation of force directions as induced by orthogonal 

concentrated force in a rectangular cantilever (left) and of second moment of inertia 

defining variables and neutral axes y and z (right). 

𝐼 = ∫ 𝑧2𝑑𝐴 ; Eq. 19 

𝐼 = ∫ 𝑤𝑧2𝑑𝑧 = 𝑤 [
𝑧3

3
]

−
𝑡
2

   
𝑡
2

=
𝑤𝑡3

12

𝑡
2

−
𝑡
2

; Eq. 20 

For a concentrated force on a single fixed end beam, elastic deformations resulting from 

small deflections and lateral only loads, Euler-Bernoulli beam theory [130] can be 
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employed. Therefore, if an offset point load is considered (per Figure 27 configuration), in 

relevance to the loading type concerned with AFM cantilever and substrate interaction, the 

mathematical relationship between force and deflection is expressed in Eq. 21. 

𝛿 =
𝐹𝐿3

3𝐸𝐼
; Eq. 21 

 
Figure 27. Depiction of cantilever beam structural variables. 

Finally, by combining the above expression (Eq. 21) with the Hooke’s law (Eq. 1) elasticity 

expression relating deflection (δ) and force (F) relationship in a linear elastic system, the 

elasticity value for the cantilever beam can be expressed solely based on in its external 

dimensions (I, L) and material property (E) terms. This expression (Eq. 22) concludes the 

fundamental relationships relevant to the mechanical behaviour descriptions used in future 

work, allowing the cantilever based MEMS device development to be discussed using 

appropriate terminology. 

𝑘 =
3𝐸𝐼

𝐿3
; Eq. 22 
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3.1.1 Analytical methods for MEMS characterisation  

The validity of the analytically modelled cantilever elasticity characterisation was 

investigated by comparing the analytical results to the previously experimentally evaluated 

MEMS structure - the Veeco MPP-21100-W AFM probe (introduced in section 2.2). 

Clearly, analytically obtained spring constant reliability is dependent on the accuracy of its 

inputs, therefore a dedicated structural geometry study of the investigated cantilever was 

carried out. Both optical and scanning electron microscopy (SEM) were used to 

geometrically characterise the AFM cantilever with good resolution, capturing the major 

length and cross-section dimensions - as summarised in Table 4. SEM’s higher resolution 

comes at higher cost, but the approach may prove preferable, when compared to optical 

techniques, particularly if more complex geometries or sub-micrometre features are present 

– e.g., the exact tip shape or cantilever shape non-uniformities. SEMs also offer improved 

depth of field over conventional optical microscopy, making acute angle images, such as 

looking at the thickness profile, easier to interpret. Additionally, some common AFM 

cantilevers can have a thickness component of tens or hundreds of nanometres, making 

thickness characterisation impossible with conventional optical microscopy and tricky 

even when using an SEM. In these instances, more specialised approaches, such as thin 

film characterising techniques (e.g., ellipsometry [131] and spectral reflectance [132]) can 

be employed. The thickness of the cantilever was measured to vary from 3.38-3.42 µm 

along its length using SEM. Therefore, for use in the expressions introduced in the previous 

section, the mean figure of these two values was employed. The fixed end point (where the 

cantilever meets the silicon probe body) was also somewhat difficult to define due to the 

etch plane forming an outward draft angle, hence the origin was chosen at the cantilever 
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and etch draft intersection. Young’s modulus uncertainty was not experimentally obtained 

in this study, with the value 176 GPa being employed as described in the literature 

(obtained by indentation) [133]. The probe manufacturer’s website provided a pictorial 

cantilever description from which it can be seen the cantilever has a tapered cross-section. 

This edge profile is distinct, indicating an anisotropic silicon etch, necessitating a trapezoid 

geometry moment of inertia evaluation. To obtain the values described above,  a calibrated 

SEM (FEI Nova NanoSEM 630 [134]) was used to obtain the cantilever length, tip offset 

and thickness figures, whilst planar dimensions were obtained using an optical microscope 

(Nikon Eclipse L200N/DS-U3 [135]) as illustrated in Figure 28 and Figure 29. The 

obtained result differences clearly illustrate the previously speculated manufacturing 

tolerance control difficulties (section 2.2) and highlights the expense required to 

confidently build a representative analytical model of a mechanical system at this scale. 

 

Figure 28. Cantilever dimensions summarised on an isometric capture of the investigated 

AFM cantilever (dimensions are angle compensated, SEM). 
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Figure 29. Planar image showing the two distinct width boundaries resulting from the 

tapered cross-section (optical microscope). 

Table 4. Veeco MPP-21100-W, mechanical property assessment necessary for analytical 

and FE modelling exercises. 

Property 
Manufacturer 

Nominal 

Measured, 

Nominal 
Source 

Length (to tip peak), 

 L, µm 
225 225.62 SEM, Figure 28  

Top width,  

wtop, µm 
35 37.84 

Optical microscope, 

Figure 29 

Bottom width,  

wbottom, µm 
35 53.61 

Optical microscope, 

Figure 29 

Thickness,  

t, µm 
4 3.40 SEM, Figure 28 

Natural resonant 

frequency, f0, kHz 
87.5 86.2 

Air thermal 

fluctuation spectrum, 

Figure 9 

Elastic modulus, E, 

GPa 
176 

Literature, Silicon 

undoped [133] 

Density, ρ, kg m-3 2330 
Literature, Silicon 

undoped, [136] 

Poisson’s ratio 0.279 
Literature, [137] 

(100) plane 

Using this in formation, an analogous assessment using the Euler-Bernoulli expression 

mentioned in the previous section could then be carried out (Eq. 19). Firstly, a moment of 

inertia was calculated for the evidently trapezoidal (where measured top and bottom widths 

are expressed separately) cross-section of the cantilever: 

𝐼𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑 =
𝑡3(𝑤𝑡𝑜𝑝

2 + 4𝑤𝑡𝑜𝑝𝑤𝑏𝑜𝑡𝑡𝑜𝑚 + 𝑤𝑏𝑜𝑡𝑡𝑜𝑚
2 )

36(𝑤𝑡𝑜𝑝 + 𝑤𝑏𝑜𝑡𝑡𝑜𝑚)
= 1.48 × 10−22 𝑚4; Eq. 23 
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Then, using the Euler-Bernoulli equation (Eq. 22) an analytical elasticity solution was 

obtained by employing the measured variables as shown in Eq. 24. 

𝑘 =
3𝐸𝐼

𝐿3
=

3 × 176 𝐺𝑃𝑎 × 1.48 × 10−22 𝑚4

(225.62 × 10−6 𝑚)3
= 6.8 𝑁 𝑚−1; Eq. 24 

This result, based on real life measurements in combination with a literature value for 

material elasticity modulus, agrees approximately with the experimentally obtained values 

- underestimating the elasticity by 16 % when compared to thermal tune, 17 % to 

indentation and 38 % to reference spring. This variation may be attributed to a non-

experimentally obtained elasticity modulus value and the idealised uniformity and 

simplified geometric variables involved in the Eulerian bend equation, which are not 

completely valid in real-life structures. Having said this, it can be concluded that static 

analytical modelling based on accurate dimensions is a reasonable technique for MEMS 

structural behaviour description, although it poses limitations on the complexity of the 

geometry which can be represented, reducing the design freedom or its potential accuracy.  

Another analytical modelling method, also heavily reliant on dimensional characterisation 

should be introduced for completeness. It is one of the earliest AFM specific elasticity 

characterisation techniques based on dynamic behaviour - natural resonance value, related 

to mass and elasticity, as described by Cleveland [85] and formulated in its presented 

equivalence form by Clifford [112] (for simplicity the 2π term is used instead of the 

effective mass accounting coefficient). In this approach, resonance is analytically derived 

from a simple cantilever harmonic oscillator model, which relates elasticity to the oscillator 

mass or expresses the mass in density terms, per Eq. 25. The developed harmonic oscillator 

equation can be rearranged for MEMS (and AFM cantilevers) in a convenient manner, 
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equating it with the Eulerian cantilever expression (Eq. 22), allowing the often-complicated 

thickness component to be exchanged for a dynamic resonance measurement (Eq. 26). 

Appealingly, obtaining the resonance frequency is trivial in practice for MEMS structures 

due to their ability to oscillate through Brownian motion in the surrounding medium (e.g. 

air), therefore not requiring forced excitation. In this case study, the oscillation spectrum 

for the cantilever was obtained by employing the previously described tools (section 2.3), 

allowing this technique to be employed.  

𝑓0 =
1

2𝜋
√

𝑘

𝑀
≈

1

2𝜋𝐿2
√

𝐸

𝜌
; Eq. 25 

In this case, the expression also requires knowledge of the planar dimensions (w, L), 

cantilever resonance frequency (f0), elastic modulus (E) and density (𝜌). The density of n-

type silicon was found from the literature and unlike Young’s modulus, is reported 

consistently as 2330 kg m-3 [136], allowing for the part-dimensional and part-experimental 

elasticity expression: 

𝑘 = 2𝜋3𝑤
(𝑓0𝐿√𝜌)

3

√𝐸
 Eq. 26 

=
2𝜋3(45.7 × 10−6 𝑚)(86229 𝑠−1 × 225.62 × 10−6 𝑚 × √2330 𝑘𝑔 𝑚−3 )3

√176 𝐺𝑃𝑎 
= 5.6 𝑁 𝑚−1;           

The obtained elasticity of 5.6 N m-1 is 17.9 % less than the previously obtained value 

employing Eulerian beam theory, resulting in a value that falls below the experimentally 

obtained figures, an outcome that is also attributed to the highly idealised and simplified 

geometric representation - e.g. the trapezoid cross-section is not accounted for (average 

width used) by the resonance model as well as the presence of the tip-mass which acts 

against the uniformity of the spring-mass oscillator analogy the theory is based on.  
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From these results, it is possible to say that the analytical beam elasticity characterisation 

methods were able to determine the elasticity modulus with reasonable agreement with the 

established experimental methods. This adds further weight to the conclusion that the 

structure’s true spring constant deviates significantly from the manufacturer’s figures. 

Overall, it is reasonable to say that analytical methods can be extremely useful in the 

characterisation of cantilever-like MEMS designs as they provide clarity in the influence 

of individual variables. For example, the third order length (Eq. 24) and frequency (Eq. 26) 

relationship to elasticity is an extremely useful indicator of the elasticity behaviour via 

simplistic (e.g. optical microscope) and indirect (vibrometer) observation means, as 

exploited in the further developments (described in section 5.1). On the other hand, as 

described, they are limited to simplistic structures, which may not always be realistic due 

to multi-layer microfabrication processing and added complexity present in some probes 

and MEMS devices.   
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3.1.2 Finite Element methods for MEMS characterisation 

In addition to the analytical modelling, a finite element study was carried out to further 

explore commonly used methodologies. FE methods offer the ability to apply the 

established mathematical descriptions of physical behaviour (e.g., thermal, structural, 

magnetic, or fluid or a combination of them in a hybrid-physics modelling exercise) to 

individual elements, from which a complex structure can be represented. FE methods for 

structural analysis can therefore be employed for a geometrically unrestricted MEMS 

component. The validity and usefulness of the finite element method was investigated by 

employing an FE analysis software tool (Simulia Abaqus FEA, Dassault Systemes [138]) 

to determine elasticity of the Veeco MPP-21100-W and compare it to the experimental and 

analytical solutions. All inputs into the model were based on the previously conducted 

dimensional characterisation of the cantilever structure (Table 4).  

Firstly, an analysis of the effect of three-dimensional mesh types and element quantity on 

accuracy was conducted on an arbitrary structure, of similar dimensions to the AFM 

cantilever being studied – specifically, a rectangular cantilever of width and length ratio of 

1 to 1 and thickness to length of 1 to 100. The elements available in Abaqus suitable for 

such modelling consist of three-dimensional hexahedral continuum bricks (C3D) of two 

node counts (8 and 20), and varied solution types (full or reduced integration and hybrid 

pressure). Since the available computing power is not a restriction for the straightforward 

bend cases of cantilever structures, the computationally ‘cheaper’ element types - truss, 

membrane, shell and beam, were not investigated, as they suffer from restrictions similar 

to the analytical methods. It was assumed that the analytical solutions would give a 
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‘perfect’ answer for such an idealised and simple cantilever, so the resulting FE derived 

values were compared to the analytical solutions as an error percentage in Table 5. 

Table 5. Study of Abaqus 3D continuum hexahedral element mesh configuration and 

quantity effect in comparison to the analytical solution. 

Element Type / 

Element Count 

Error to numerical solution, % Average error to 

numerical 

solution, % 
180 

elements 

360 

elements 

720 

elements 

2880 

elements 

C3D8 99.6 99.6 99.6 98.4 99.3 

C3D8H 99.6 99.6 99.6 98.4 99.3 

C3D8R 8518 26.16 1.28 1.45 2136 

C3D8IH 2.53 2.85 2.93 1.23 2.38 

C3D20 1.35 1.15 1.10 0.75 1.09 

C3D20R 1.08 0.75 0.65 0.60 0.77 

C3D20H 1.20 1.08 1.05 0.73 1.01 

C3D20RH 0.70 0.65 0.63 0.60 0.64 

The mesh element type and quantity comparison revealed that the 20-node quadratic brick 

hexagonal element with hybrid formulation and reduced integration (C3D20RH) provided 

the smallest deviation from the theoretical model used, with an average error of 0.64%. As 

expected due to larger node count and the quadratic, as opposed to linear, integration along 

the cross-section, the twenty node (C3D20) brick elements represented the variable elastic 

shear in much better detail - and thus accuracy than the eight node (C3D8) elements. The 

hybrid linear pressure (H) element, which is recommended for incompressible materials - 

such as the considered solid silicon, also improved simulation accuracy. Interestingly, the 

lesser order of integration solving element (R) showed a marginally closer match to the 

analytical solution compared to full integration in the considered case. Whilst this may be 

just a coincidence of the chosen geometry, nevertheless it can be concluded that this 

element should be considered due to its result’s closeness to the full integration at cheaper 

computational cost. Conceivably, the study also demonstrated that increasing the element 

count does increase the modelling accuracy. Whilst the effect may not be as significant for 
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the simplified structure considered here - e.g., a 0.1% accuracy increase for 16-fold element 

increase for the chosen C3D20RH type, if more detailed geometries are considered the 

impact should be more pronounced. The broad element specific accuracy variance - from 

0.6% to 8000% illustrates the necessary precautions that need to be taken into account 

when using FE methods. For instance, the 8-node version of the reduced integration 

element (C3D8R) displayed a pronounced hour-glassing effect, making it completely 

unsuitable for this study, reaching a near three orders of magnitude overestimation. The 

importance of correct element type identification and the positive relationship between 

element type and accuracy is therefore considered in the further studies, where much more 

complex geometry devices are explored.  

To employ the finite element method on the Veeco MPP-21100-W cantilever the cantilever 

dimensions described in the previous section were used. This then allowed a CAD model 

of the cantilever to be created in FE software (Figure 30). The solid pyramid shape tip 

geometry was not included, due to the assumption that it is significantly more rigid than 

the cantilever and does not contribute to the overall structure elasticity. The point load (F) 

of 1 µN magnitude was applied at the planar projection where the tip peak would be – 

225.62 µm offset from fixed end. The simulation returned a displacement (δ) of 0.137 µm 

at the corresponding node. Utilizing Hooke’s law (Eq. 1) the node specific spring constant 

was derived per Eq. 27. 
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Figure 30. Finite Element Analysis representation of the loaded AFM cantilever.  

NB: 1) Geometry dimensions in micrometres. 2) Part symmetrical along its length. 3) The 

deformed model visualization scale is hyperbolized by a factor of 150. 

𝑘 = 𝐹𝛿−1 =
10−6 𝑁

1.37 × 10−7 𝑚
= 7.3 𝑁 𝑚−1; Eq. 27 

The resultant figure of 7.3 N m-1 overestimates the elasticity by 7 % when compared to the 

analytically acquired static beam displacement result (6.8 N m-1). The disagreement 

between the two can be attributed to more a complete geometrical representation of the 

structure in the FE model, including the structure past the load point as well as the 
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accounted directional strain changes by accounting for the Poisson’s ratio. The obtained 

elasticity figure is also closer to the experimental characterisation values - e.g., 11 % 

underestimation compared to nano-indentation and thermal tune, and 33% less than the 

reference spring. It may be suggested that the added complexity involved in conducting an 

FE study through a dedicated simulation package may not be justified for such a simple 

cantilever, due to the result being so close to the straightforward analytical solution. 

However, it should be noted that the FE model, if needed, could provide a much more in-

depth and complex simulation of loading and interaction cases, displaying stress 

concentrations and surface strains that are of interest to the more complex structures used 

later in this work. These studies are introduced in the appropriate sections concerning the 

MEMS device development in chapters 4 and 5.  
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3.2 Electrical sensing theory 

The ultimate intention of this work was the design, fabrication and characterisation of a 

MEMS device to be employed in the characterisation of AFM cantilevers. With this in 

mind, the two MEMS sensing approaches available for fabrication wholly within the James 

Watt Nanofabrication Centre (JWNC) were judged to be resistive and capacitive based. 

Therefore, these two fundamental electrical sensing approaches are introduced next. 

3.2.1 Capacitive deformation sensing 

Capacitive sensing relies on monitoring change in a capacitance (C) resulting from the 

deformation or displacement in the separation (Z) of two conducting surfaces or in their 

overlapping area (A), separated by a vacuum or dielectric material having a permittivity 

(𝜖), per relationship in Eq. 28 [139]. This technology is commonly employed in 

microfabricated load sensing applications – static and dynamic pressure sensing [140] and 

acceleration [141] with example configurations of which are shown in Figure 31 - an 

arrangement that is equivalent to its use in AFM elasticity calibration tools [73] [103] 

[142]. 

𝐶 = 𝜖 (
𝐴

𝑍 + 𝑑𝑍
) ; 

Eq. 28 
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Figure 31. Capacitive MEMS load sensor cross-sectioned examples – a) pressure sensors 

(diaphragm configuration), b) microphone acoustic structures (open surfaces) and c) 

accelerometers (suspended stages). 

Unlike the linear Hookean spring (Eq. 1) relation between force and elasticity in cantilever 

structures, capacitive signals based on changes in separation of dZ do not exhibit a linear 

relation to displacement [143]. This complicates the calibration methodology and 

necessitates an external calibration that maps all relevant force-displacement relationship 

ranges. On the other hand, the nature of charge measurements lends itself to traceable and 

repeatable measurements, since a direct quantification of charge value can be related 

through the SI definitions of mole and elementary charge - a method metrological institutes 

employ for AFM calibration balance solutions [70]. 

Material selection is relatively straightforward and requires a suitable elastic carrier 

structure and conductor. Typical choices of material for the elastic structure are silicon, 

silicon nitride or silicon oxide, allowing for fabrication using common wafer processing 

procedures. The capacitor conductor material is only limited to those that can be 

accommodated in cleanroom tools - physical vapour deposition or sputtering and includes 
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materials such as nichrome, gold, aluminium and platinum. One advantage of 

microfabrication is the flexibility it possesses in planar geometry, although there are rigid 

constraints in vertical axis and resolution of patterns. With this in mind, an opportunity lies 

in maximising the charge coupled area. The closed membrane design (shown in Figure 31 

a) is attractive for its encapsulated conductor and dielectric configuration that are then inert 

to environmental effects (except changes in air pressure). However, sensitivity would be 

limited by the size of the planar charge area (A). In addition, the complexity in Z required 

by the encapsulation would make it expensive and complex to fabricate. A more efficient 

design has been described in the literature that offers sensitivity in the nano-Newton range 

[144]. This design (Figure 31, b) increases the sensing surface area by utilising a comb-

like packaging for an interdigitated surface configuration [145], thus returning a higher 

magnitude signal contrast in response to the changed separation displacement. A similar 

solution could further simplify the design by employing planar lithographical definition of 

the capacitive elastic and anchored surfaces. However, even this simplified design places 

substantial challenges on the fabrication process (surface micro-machining, also known as 

MUMPs processing), requiring extremely close tolerance in pattern definition and transfer 

and may require extensive optimisation of surface adhesion and curling properties [146]. 

Therefore, it can be anticipated that a capacitive sensing solution would be potentially 

accurate and sensitive, yet complex and expensive to produce.  
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3.2.2 Resistive deformation sensing 

Metal conductor strain gauges (e.g. nichrome, gold, aluminium, constantan) are widely 

used in macro and micro scale environments due to their relative simplicity and reliability. 

As a result they can be encountered in precision surface strain measuring applications - e.g. 

bone [147] and micro-beam [148] deformation. Extending or compressing an electrical 

conductor of absolute resistivity (Rabs) has an impact on its cross sectional area (A) and 

length (L), meaning that its resistance changes (dR) in response to the geometry changes, 

per Figure 32 and relationship in Eq. 29. This makes it possible to relate resistance change 

(dR) to the strain experienced by the carrier surface (𝜀). The ratio relating the electrical 

resistance change to the experienced mechanical strain is called the gauge factor (GF) and 

is used to express the resistive strain gauge sensitivity to mechanical load, per Eq. 30. 

 
Figure 32. Strained conductor geometry affecting electrical resistance. 

𝑅𝑎𝑏𝑠 = 𝜌
𝐿

𝐴
; Eq. 29 

𝑑𝑅/𝑅𝑎𝑏𝑠 = 𝐺𝐹𝜀; Eq. 30 
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Whilst the term strain-gauge is often reserved for metallic conductors, semiconductor-

based strain sensing techniques are frequently found in micro-structures - a method referred 

to as piezo-resistive sensing. In these devices resistive response to strain is the result of 

material bandgap changes [149] [150] rather than cross section modulation. This 

phenomenon is limited to materials that exhibit the piezo-resistive effect such as 

polycrystalline diamond or doped silicon. This is attractive in MEMS as both functions - 

electrical strain sensing and mechanical deformation are integrated into a single structure. 

Furthermore, semi-conductor strain gauges offer the advantage of upto 50 times higher 

specific sensitivity to strain (or gauge factor, as defined in Eq. 30) than conventional 

conductors e.g. - GFSilicon = 120 [151], versus a metal resistor value of GFNichrome = 2 to 2.5 

[152]. However, piezoresistive materials are much more sensitive to thermal effects and 

also exhibit photo-conductive properties [153], meaning any device is sensitive to local 

illumination (e.g. microscope light, optical lever laser overspill and surrounding laboratory 

lighting), all of which challenge the implementation of piezo-resistive technology in 

reliable calibration approaches for AFM cantilever stiffness characterisation. For example, 

the thermal coefficient of resistance TCR for Silicon is over an order of magnitude higher 

compared to metals  (e.g., TCRSilcon = 1000+ ppm [154], when TCRNichrome = 85 ppm [155]), 

a phenomenon of significance to this work, hence described in further detail in section 

5.3.1. 

As a consequence, metallic resistors were considered preferably due to their relative 

fabrication simplicity as well as additional degree of material choice and manipulation that 

can compensate for their lower gauge factor. In addition, their strain induced resistance 

change can be simply interpreted due to its linear nature and lesser dependency on local 
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environment thermal effects. The anticipated TCR behaviour should be much lower than 

conventional silicon sensors, as highlighted in the literature [140]. It was expected that the 

most significant shortcoming of this sensing composition would be observed at the system 

level – e.g., the bi-material bend originating at the interface between the different 

coefficients of thermal bending [156] of the complex composition structure. However, the 

advantages, such as a potential force sensing capability down to 10-8 N sensitivity 

(demonstrated by [157]) made resistive sensing an appealing configuration to develop with 

in-house controlled processes and simplistic instrumentation setup, to be described in 

sections 5.2 and 5.3. 
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3.3 Signal interpretation and instrumentation 

Instrumentation is an umbrella term referring to an assembly of electronic components, 

necessary for sensor the signal acquisition and conditioning. In this work, the 

instrumentation required for the resistive strain sensor was required to output a potential 

change (or voltage, dVsensor) corresponding to changes in its resistance (dRsensor) as a 

response to the offset force (F(L)) induced strain on conductor (𝜀):  

𝐹(𝐿) ↔ 𝜀 ↔ 𝑑𝑅𝑠𝑒𝑛𝑠𝑜𝑟 ↔ 𝑑𝑉𝑠𝑒𝑛𝑠𝑜𝑟  

For such precision measurements it is common to employ a Wheatstone bridge 

configuration which works in tandem with additional amplification and filtration before 

ultimately logging the data (e.g. by employing an oscilloscope). The Wheatstone bridge 

circuit (Figure 33) was originally conceived by Samuel Cristie, but popularised by, and 

hence now referred after Charles Wheatstone [158]. This type of sensing method is 

commonly used in applications where there is a change of equilibrium [159] and the change 

to the baseline resistance is converted to a voltage by an externally supplied current. Having 

a single strained element allows for quarter bridge circuit implementation, which produces 

a non-linear, thermally sensitive signal. The more complex half bridge configuration, 

where there is an additional instrumented strain gauge isolated from the load induced strain, 

could be used for thermal compensation although this does not compensate for the bridge 

nonlinearity. Beyond this, a full-bridge configuration involving a total of four strain 

gauges, placed in unstrained and opposing strain directions (opposing surface from the one 

in quarter bridge configuration) offers additional advantages, by compensating for the non-

linear strain behaviour of the signal. 
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However, the placement of additional strain gauges in these nanofabricated structures can 

be challenging and impractical. Therefore, employing a quarter bridge together with 

characterisation of the thermal resistance dependence and calibrating non-linearity effects 

inherent in such configuration is a worthwhile price to pay to reduce device complexity. In 

this configuration, by plotting the Vsensor reading (Eq. 31) versus the AFM registered 

displacement, a calibrated system could obtain not only the cantilever exerted force 

(Vsensor~F), but also the elasticity profile of the interaction (k) if the rate of change is 

monitored - e.g. by the instrument clock, as demonstrated in section 5.4.2. 

 
Figure 33. Composition of a quarter Wheatstone bridge where one of the resistors is 

sensitive to strain Rsensor and passive resistors (R1-3) are not.  

𝑉𝑆𝑒𝑛𝑠𝑜𝑟 = [
𝑅3

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑅3
−

𝑅2

𝑅1 + 𝑅2
] 𝑉𝐸𝑥𝑡. Eq. 31 

Moreover, in order to prevent other resistive variables from affecting the reading, a four 

terminal measurement method can be employed (Figure 34). This makes the measurement 

insensitive to the resistance of the signal carrying wires from instrumentation leads to the 

device level connections, thus allowing the system to only record the resistance between 

the strain sensor junction points. Insensitivity to signal wire resistance allows for simpler 
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instrumentation and a less complex device level fabrication approach that does not focus 

on lead wire resistance or stability.  

 

Figure 34. Resistive strain resistor connected by a four-terminal arrangement, where 

current is passed through two wires and instrumentation measures the voltage across two 

terminals, negating the total wire resistances up to the terminal junction. The strain gauge 

arrangement contains multiple wire passes in-line with the strain direction, increasing the 

strained wire length and thus the relative change in resistance, for increased sensitivity. 

Appropriate filtration should also be considered in order to reduce interference present in 

laboratory environment, a major source of which is the AFM high-voltage piezo-element 

drive. Contact mode AFM force-distance interactions, required for force ramp 

measurements, are typically carried out between 0.1-50 Hz - e.g., the tested Dimension 

D3100 AFM system is hardware limited to 0.1-14 Hz range. Therefore, the MEMS 

instrument was destined for operation above 0.1 Hz and below 50 Hz, posing no particular 

requirements on the mechanical hardware as the mechanical resonance frequencies for 

these structures are in the kHz domain (expanded upon 5.2.2). To minimise external noise 

pickup, the instrumentation should be appropriately grounded and ideally be enclosed in a 

Faraday cage, where it would be isolated from electromagnetic interference. An example 
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noise spectrum of the laboratory is shown in Figure 35, as an indicative illustration of the 

ambient noise and signal presence. This was measured using a spectrum analyser with a 

connected open-end coaxial cable acting as antenna and high input impedance input. This 

power spectral density plot indicates that in the 0-50 Hz range the environmental noise is 

proportional to f -1, indicating that the fastest permissible ramp speed will increase the 

signal to noise ratio. It is also evident that there are noise spikes at 50, 150, 200, 250 and 

350 Hz, resulting from the. mains frequency of 50 Hz and its harmonics, which could be 

eliminated through appropriate filtration as they sit beyond the maximum operation 

frequencies intended for the MEMS instrument and AFM. 

 

Figure 35. Power spectral density analysis of the AFM Group Laboratory (Rankine 

Building, School of Engineering, University of Glasgow) where an AFM system was being 

run (capture by Agilent 35670A spectrum analyser, bandwidth - 0.5 Hz).  

This section concludes the necessary theory and terminology overview, which is utilised 

throughout the device conceptualisation, development, final product characterisation and 

application demonstration in the forthcoming chapters 4, 5 and 6 respectively.  
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Chapter 4 - MEMS Fabrication 

The following section focuses on the fabrication process carried out within the James Watt 

Nanofabrication Centre at the University of Glasgow. Developments in micro and nano 

fabrication methods now allow unprecedented accuracy in lithographical definition, 

permitting nanometre scale tolerance controls across micrometre scaled structures. The 

materials and fabrication methods are greatly inspired by previous work carried out at 

Glasgow producing novel scanning probes [160] [161] [162] [163] [164] and related thin 

film MEMS sensing devices [165] [166] [167], expanding upon it with novel process 

choices and improvements permitting the production of a functional MEMS tool. 

4.1 Fabrication concept and starter substrate  

The discussion in this chapter forms the underlying basis for the new MEMS component 

that was designed, fabricated and characterised in the rest of the discussed work. For 

practical reasons aimed at development time reduction, the starter wafer substrate is 

outsourced as it posed no limitations on design and processing freedom - hence an off-shelf 

picked silicon wafer3. Due to local limitations in insulator deposition, the substrate received 

a low stress silicon nitride LPCVD coating4 at the Chalmers Nanofabrication Laboratory 

(Gothenburg, Sweden [168]) - which will serve as the structural layer for the mechanical 

sensor component as well as insulating carrier for the conductive strain gauge.  

 
3 Single side polished 3-inch and phosphor (n-type) doped 380 µm thick silicon wafer, <100> lattice 

orientation by PI-KEM Limited [155], UK. 
4 Proprietary composition, described in part in S. Tönnberg’s work [170]. 
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The further processing is to be conducted fully in house. The concept behind the proposed 

MEMS tool is that it can be realised using standard cleanroom fabrication approaches, 

resulting in batch produced devices of high reproducibility, spreading unit cost and offering 

a competitive alternative to the previously mentioned probe calibration instruments and 

techniques. The idea is that a suitably small tool could be permanently integrated within an 

AFM system - e.g., on the positioning stage, in a similar way to the existing alignment 

assistance stage on a Brucker Dimension Icon AFM, providing the user with a push-button 

solution which is no harder to use than a conventional thermal tuning measurement. A top-

down fabrication is chosen in order to produce the device in robust batch production 

friendly manner with the least complex processing - as visualised in Figure 37, with the 

undertaken process developments and optimisations in metallisation and surface 

machining are detailed in the upcoming sections. 

 

Figure 36. Fabrication sequence and material choice outline for the conceptualised 

strained resistor equipped cantilever force sensor. 
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This necessitated for scalable functional design choices during the prototyping and 

development stages. Firstly, the electrical sensitivity needs to be considered. It relies on 

one key parameter - load strained wire length. Its sufficient length is difficult to define 

without a test involving a complete integration with instrumentation and AFM system, 

therefore efforts from the get-go were focused on choosing a flexible manufacturing 

method providing maximal flexibility in scaling strain gauge design packaging - electron 

beam lithography. This enabled easy prototyping by means of a simple CAD mask 

modification, allowing for the desired serpentine wire packaging to be iteratively achieved 

(as showcased in 4.3). Secondly, a high mechanical compliance (low stiffness) of the 

carrier cantilever means larger deflection per load unit, which results in higher sensitivity 

due to increased strain experienced by the sensing wire. Minimising the MEMS device 

spring constant is therefore another key goal that was enabled by the easily scalable 

electron beam lithography defined planar dimensions. Similar thickness (~400 nm) silicon 

nitride cantilevers are consistently available in the sub 0.1 N m-1 range [169] [170] [171], 

therefore producing a MEMS device with elasticity at this or lower range is a reasonable 

expectation (achieved successfully per assessment in 5.1.3). Combining both electro-

mechanical requirements meant that the key features relied on parametrically driven 

packaging dice sizes, scalable on-chip connectors, flexible alignment marker positioning 

and finally - intra-dependent etch and beam boundary geometries. The conceptualised 

MEMS device is shown in Figure 37 with its fabrication explored in-sequence throughout 

this chapter. However, the MEMS device shape has evolved significantly throughout the 

process development stages, with the final successfully fabricated designs showcased in 

4.6 and Figure 62 and 64.  
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Figure 37. Visualisation of an elastic cantilever with integrated resistive strain sensor near 

the fixed end. 
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4.2 Step 1 - metal film lift off, marker layer 

The MEMS device fabrication aimed to achieve geometrically and functionally consistent 

devices that could be reliably fabricated with high success rate, hence the considered 

microfabrication processes are based on robust batch production practices. A key 

consideration to achieve this in a multi-layer fabrication process is the successful 

realisation of inter-layer registration, allowing alignment of different lithographic layers. 

This can be done by employing a permanent coordinate system on the substrate – 

colloquially referred to as a ‘marker layer’. ‘Markers’ can be produced using lithography 

followed by pattern transfer through additive (metal deposition) or subtractive (etching) 

techniques, forming recognisable contrast with the background substrate. In this work, an 

additive technique based on physical vapour deposition (PVD) was chosen to form this 

feature, with a commercially available electron beam evaporator (Plassys MEB 550S, 

France [172]). This employed a combination of gold top layer and adhesive nickel-

chromium underlayer patterned using a process called metal lift-off, shown in Figure 38. 

The combination of gold and nichrome was chosen as the marker material due to the 

following practical considerations. Gold on silicon nitride provides a high contrast signal 

when imaged using a secondary electron emission detector as employed in the e-beam tool 

used in this work (Vistek VB6 by Raith, Germany).  Gold is also inert to the remainder of 

the microfabrication processes employed, retaining its form and function throughout the 

device fabrication cycle. Nickel-chromium was used as the adhesion layer between gold 

and silicon nitride, since a direct gold to silicon nitride interface exhibits poor adhesion and 

can result in delamination or poor edge definition, affecting subsequent registration 
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accuracy [173]. The initial feature enabling further fabrication layer alignment is shown in 

Figure 39 and the fabrication process is detailed in Appendix B, process table 1. 

 

 

Figure 38. 1-2) The marker layer mask pattern is written by CAD data driven electron 

beam machine on a layer of sacrificial polymer resist layer applied on the substrate by a 

spin-coat method. 3) Changes in polymer cross-linking under exposure to the electron 

beam allows a suitable developer liquid to selectively remove material exposed to it.  4) 

The substrate with the revealed pattern is then uniformly coated by evaporated metal in a 

physical vapour deposition apparatus, where the metal layer sticks to the revealed silicon 

nitride surface and the surrounding resist mask. 5-6) The mask is then dissolved in a 

suitable solvent (e.g. acetone), causing a separation or lifting of the metal from the 

substrate that is adhered to it and thus only the mask formed features remain coated in the 

chosen metal. 
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Figure 39. Registration feature with origin cross and square location markers: a) CAD file 

for pattern; b-c) Secondary electron scanned origin points and cell marker; d) Optical 

image after final metalisation steps, indicating the previously exposed areas.  
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4.3 Step 2 - metal film lift off, sensor layer 

Once alignment marks were available on the substrate, the second fabrication step, also a 

metallisation layer, was patterned through an analogous metal lift off method. In this layer 

electron beam lithography was used to define a complex metal pattern which included the 

strain resistor pattern, Vernier marks, text containing device identification information, 

large area connection pads for instrumentation and four leads joining the strained resistor 

ends and the corresponding four pads - per sequence detailed in Appendix B, process table 

2 and graphical representation in Figure 40.  

 

Figure 40. a) and b) metallisation layer pattern pictured in CAD and c) optical image of 

the fabricated metal layer. 

The material chosen for this layer was a nickel chromium alloy with a nickel:chromium 

ratio of 3:2, (commonly referred to as nichrome). Nichrome was selected over the other 

available materials for a number of reasons. Firstly, it exhibits the highest specific 

resistivity of the available PVD metals, meaning that the strain induced changes in 

resistance would have the highest magnitude for the given geometry. Secondly, nichrome 

has the lowest thermal coefficient of resistance, reducing environmental temperature 

effects during the device operation. An in-depth characterisation and literature overview 

supporting this can be found in characterisation section 5.3. Finally, as mentioned in the 
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first step, nichrome is compatible with the remainder of the fabrication process - 

particularly the aggressive KOH etch which damages aluminium films. However, 

nichrome is not a perfect material as it exhibits an undesirably high elastic strength when 

compared to other options such as gold or aluminium. It can also suffer from high internal 

stress in deposited film form which may result in layer wide delamination or cracking. In 

the end, it was felt that its advantages outweighed these negative features, which may also 

be remedied by a certain degree through having full in-house process control over the 

nichrome deposition. 
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4.3.1 Metal film strain sensor fabrication trial 

Test structures covering a range of strain sensor geometries were produced in order to 

assess lithography and lift-off quality, as judged by visual inspection. The fabrication and 

technological limits of the chosen lift-off method were tested by modulating the conductor 

wire width, length and offset to achieve a range of conductor packaging densities in the 

chosen planar envelope, while the film thickness was fixed at the determined minimal 

value. Summary of the trailed metal film sensor geometries - variable location and 

fabricated sensor variations pictured in the images below (Figure 41 - 43), while the 

corresponding variables are listed in Table 6. 

 

Figure 41. Showcase of the variation of tested devices described in Table 6, where lift-off 

quality, directionality variations and repeatability were assessed. 
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Figure 42. Fabricated sensors stitched into a single scale image. 

 

 

Figure 43. Strained sensor (serpentine)geometry parameters. 
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Table 6. The 36 trialled strain gauge configurations design to fit a 100 by 60 µm envelope, 

representing the strain sensor occupied region on the MEMS cantilever. 

NB: Strike-out numbers had not been successfully fabricated. 

 No Conf. Name 
Wire width, 

 w, (μm) 

Offset, 

o, (μm) 

Pass-over, 
(2w + o), p, (μm) 

Repeat 

passes, n 

Total wire length, 
(60 × n), (μm) 

1 200-200 2 2 6 24 1440 

2 200-150 2 1.5 5.5 26 1560 

3 200-100 2 1 5 32 1920 

4 200-050 2 0.5 4.5 38 2280 

5 200-025 2 0.25 4.25 42 2520 

6 200-010 2 0.1 4.1 44 2640 

7 150-200 1.5 2 5 26 1560 

8 150-150 1.5 1.5 4.5 32 1920 

9 150-100 1.5 1 4 38 2280 

10 150-050 1.5 0.5 3.5 48 2880 

11 150-025 1.5 0.25 3.25 54 3240 

12 150-010 1.5 0.1 3.1 60 3600 

13 100-200 1 2 4 32 1920 

14 100-150 1 1.5 3.5 38 2280 

15 100-100 1 1 3 48 2880 

16 100-050 1 0.5 2.5 64 3840 

17 100-025 1 0.25 2.25 76 4560 

18 100-010 1 0.1 2.1 86 5160 

19 050-200 0.5 2 3 38 2280 

20 050-150 0.5 1.5 2.5 48 2880 

21 050-100 0.5 1 2 64 3840 

22 050-050 0.5 0.5 1.5 96 5760 

23 050-025 0.5 0.25 1.25 128 7680 

24 050-010 0.5 0.1 1.1 160 9600 

25 025-200 0.25 2 2.5 42 2520 

26 025-150 0.25 1.5 2 54 3240 

27 025-100 0.25 1 1.5 76 4560 

28 025-050 0.25 0.5 1 128 7680 

29 025-025 0.25 0.25 0.75 192 11520 

30 025-010 0.25 0.1 0.6 274 16440 

31 010-200 0.1 2 2.2 44 2640 

32 010-150 0.1 1.5 1.7 60 3600 

33 010-100 0.1 1 1.2 86 5160 

34 010-050 0.1 0.5 0.7 160 9600 

35 010-025 0.1 0.25 0.45 274 16440 

36 010-010 0.1 0.1 0.3 480 28800 
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The minimum film thickness that could sustain a given current was determined by 

assessing the maximum current density (Eq. 32). The anticipated instrumentation 

employed a sensor current of Imax=10-7 to 10-5 A, resulting in a current density between 107 

and 109 Am-2 for the proposed designs. This maximum sustainable value for a device is 

dependent upon the material, substrate and environment, and for the options considered 

was expected to fall in the Jmax=106 - 1010 Am-2 range, as presented by Ho and Kwok [174]. 

This was also demonstrated in palladium with a comparable geometry (cross section 

A=6.6×10-14 m-2) by Y.Ge [166] at Glasgow. Therefore, the resistors were designed to be 

of 30 nm thickness in order to maintain a cross-section within the range deemed ‘safe’ 

[166], preventing any detrimental instability (e.g. melting) or electron migration. 

𝐽𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥𝐴−1; Eq. 32 

The produced and tested strain geometries ranged in strained wire lengths from 1.8 mm to 

28.8 mm5. This wide range was permitted by the broad scaling capabilities of the electron 

beam mask and lift-off deposition technique. Some of the serpentine designs were observed 

to suffer from poor metal lift-off, most likely caused by over-exposure of the pattern during 

electron beam definition (Figure 45, a), where the high feature density resulted in indirect 

exposure of the background resist - a phenomenon known by lithography users as the 

proximity effect. Although these effects can be corrected for by modifying the electron 

beam dose of selected areas, it was felt that the successful strain sensors were sufficient for 

the expected strain magnitude sensing and so development moved on to sensor integration 

with the free-standing thin-film carrier structure.   

 
5 Length is proportional to the expected operational strain sensitivity, per: 

 𝑅𝑎𝑏𝑠 = 𝜌
𝐿

𝐴
   and   𝑑𝑅/𝑅𝑎𝑏𝑠 = 𝐺𝐹𝜀; 
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Figure 44. Highlights of the strained wire packaging density variation in the chosen 

envelope – e.g. the 1.8 mm achieved by the least miniaturised ‘2XX-2XX’ serpentine 

geometry, versus the highest density successfully fabricated ‘X1X-X1X’ design with a total 

length of 28.8 mm. N.B. the ‘X’ symbol replaces ‘0’ in order to remove closed contours 

and aid lift-off clarity. 

 

 

Figure 45. Common failure modes: a) a poorly developed (overexposed) pattern 

containing thick wires and small offset gaps, illustrating a lift-off failure mode and the 

chosen additive deposition limitations. b) poor lift-off mask quality, resulting in excess 

metal not ‘lifting’ from the substrate. c) failed strain sensor geometry definition caused by 

insufficient mask exposure resulting in localised undercuts at the overpass – common 

failure for sub 250 nm width wires.  
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4.4 Step 3 - plasma etching, elastic structure definition 

The outline of the silicon nitride cantilever was defined using an e-beam lithography 

PMMA resist pattern, that was subsequently used as a dry etch mask. Once transferred into 

the silicon nitride, this pattern formed the structural cantilever as well as the etch boundary 

that defined the extent of the anisotropic etch pit in the silicon substrate. Much like metal 

lift off, reactive etching is a standard process in micro/nano fabrication - parameters of 

which are dictated by the substrate, mask and pattern material choice as well as the desired 

etch profile, rate and depth. In this instance, the process specific parameters were adopted 

from silicon nitride etching described in previous work by the group (e.g. [163]) using 

commercial reactive ion etching tools - BP80 RIE and RIE 80 Plus by Oxford Instruments,  

Bristol, UK [175]. 

The patterned mask was exposed to an RF energised plasma based on the fluorine 

containing gas (halocarbon R116 or C2F6). Plasma etching not only erodes the silicon 

nitride but also the polymer mask at a significant rate, therefore it is commonplace to 

transfer the resist pattern into a metal mask, which is then employed in the etch. However, 

it was felt that this addition and removal of metal could introduce contamination to the 

strain sensor geometry and, together with the added process cost, was felt to be an 

undesired addition. Therefore, the PMMA resist mask was exposed to the plasma’s 

physical bombardment resulting in its steady consumption, as well as chemical attachment 

of fluorine, breaking its carbon-carbon and carbon-fluorine bonds (mechanism explained 

in [176]). This potentially marginal use of a highly sacrificial masking method for the 

prolonged and aggressive etch was demonstrated to be reliable when used as described in 
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the device fabrication procedure (Figure 46). Due to the relatively large feature size of the 

etch mask (smallest feature, stress relief corner radius of 10-6 m) a 10 % spot size (10-7 m) 

resolution achieved with the thickest available single layer PMMA (Allresist PMMA AR-

P 642.15) resist was deemed sufficient in the test pattern geometries (Figure 47). A C2F6 

resist to Si3N4 etch ratio was experimentally determined to be at around 2 to 1. This meant 

that a mask of thickness exceeding the nitride thickness by 2.5-3 (to allow for some 

fabrication variation and process tolerances) would survive the process without requiring 

the use of a metal mask (Figure 46) whilst still producing adequate definition features. The 

fabrication sequence was followed by a conventional clean in solvents to remove the 

remaining polymer mask, per process parameters detailed in Appendix B, process table 3. 

 

Figure 46. 1) A thick mask is patterned by an e-beam., 2) Substrate is bombarded by a 

charged halocarbon gas that reacts and removes the silicon nitride, as well as the 

patterned resist layer. 3) Leftover resist is cleaned in solvent, revealing the mask pattern 

on the silicon nitride and exposing the underlying silicon substrate. 
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Figure 47. The etch pattern on the test substrate (quarter of the LPCVD nitride coated 3” 

wafer) showcasing the (left) post-plasma etch revealed etched features on silicon and the 

non-uniform PMMA thickness caused by the plasma base etch. Right - the cleaned and 

scribed wafer with the desired silicon nitride features. The colour gradient non-uniformity 

is due to the LPCVD film variation and not related to dry etch.  
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4.5 Step 4 - selective chemical etching, elastic structure release 

Following definition of the silicon nitride cantilever, the underlying silicon was removed 

to form a free-standing cantilever structure. Silicon etching can be achieved in two distinct 

ways - isotropically, in a directionally independent manner (by employing a solution an 

acetic acid, nitric acid and hydrofluoric acid solution), or anisotropically, at geometrically 

varied etch rates (e.g. by employing a potassium hydroxide solution). This liquid 

anisotropic etching technique is often employed in MEMS component formation, due to 

the geometrical control provided that allows complex feature formation, necessary for the 

mechanical device designs - e.g. of microfluidic apertures [177] and thin film SPM 

cantilever undercuts [162]. The etching solution continuously reacts with any exposed 

silicon, generating by-products that move away from the surface, exposing fresh silicon 

thus removing (or ‘machining’) away the material. Etch rates are defined by solution 

concentration and temperature, allowing a fine level of control over the process described 

in Figure 48. 

 

Figure 48. Wet etching process showcasing how the silicon nitride structure can be 

released by under etching silicon substrate through taking advantage of the selective etch 

planes. 
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The anisotropic nature of some etches, a hereby desired feature, is a result of the fact most 

silicon substrates are single crystals. In a crystalline solid, atom placement and proximity 

defines the direction of the individual atom bonds and are conventionally described in 

terms of Miller index naming convention. When exposed to a hydroxide containing 

etchant, e.g. potassium hydroxide (KOH), the varied number of inter Si atomic bonds at 

the surface undergo the chemical reaction outlined in Eq. 33 [178] at different rates, thus 

allowing for intricate geometric feature formation (e.g. [179]), not offered by other surface 

machining methods. This allows for selective positive or negative three-dimensional 

feature (pyramid or pit) formation, from the planar (two-dimensional) mask. Conveniently, 

simulation software is available to aid in predicting more complex topography etches (e.g. 

Anisotropic Crystalline Etch Simulation ACES by UIUC MASS Group, hosted at [180]). 

The achieved feature (negative pyramid pit) required for the cantilever structure release is 

shown in Figure 49, using the Miller index convention - e.g. {100} is the ‘fast’ etch plane 

(parallel to the plane of the mask if a <100> oriented Si wafer is used) and {111} is the 

‘slow’ etch plane that is at 54.7° angle to the {100} plane, as dictated by the silicon 

substrate atomic lattice formation.  
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Figure 49. The MEMS device a) planar and b) tilted views highlighting the anisotropic 

removed pyramid. Silicon etch planes named per Miller Index convention. The selective 

etch method allows for different plane etch rates along the crystal planes - ratios of 1:100 

are achieved in slow:fast planes with selected KOH concentration [181], enabling 

consistent regular pyramid feature formation. 

𝑆𝑖 + 2𝑂𝐻− + 2𝐻2𝑂 → 𝑆𝑖𝑂2(𝑂𝐻)2
−2 + 𝐻2; Eq. 33 

The released structures were extremely fragile to any submersion and drying induced 

forces. Several methods of drying were tested on the substrates, allowing a sequence 

enabling the fabrication of the highly deformable structures to be identified. A full base 

neutralisation (e.g. in sulphuric acid) and native silicon oxide removal in (hydrofluoric 

acid), that are often used in such processes, were eliminated due to consistent cantilever 

failures (Figure 50) suspected to be caused by the additional agitation and 

submersion/drying mechanics.  
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Figure 50. Post wet-etch failure mode where cantilever adheres to the nearby underlying 

etch pit. The consistently downward direction and lack displacement form the failure site 

suggest a common interaction between the wall and cantilever - e.g. a drying liquid 

presence. 

To mitigate the agitation and drying steps, a pipet wetted transfer from the etch solution to 

a non-agitated water was conducted first, where the potassium hydroxide dilution takes 

place - leaving salt deposits behind (Figure 51). A straight drying from water to air took a 

significant amount of time (assisted with nitrogen flow 30-45 minutes, non-assisted 60-90 

minutes) and resulted in failures indistinguishable from the, now eliminated, acid 

submersion cycles. The cantilever breakage and stiction to nearby sites was attributed to 

the liquid pooling at the bottom of the etch pits and gradually pulling the compliant 

structures together during the drying process. Therefore, an additional wetted transfer to a 

methanol solution was introduced, to take advantage of the methanol’s significantly lower 

surface tension (γ=22.5×10−3 N m−1 for methanol-air compared to γ=72×10−3 N m−1 for 

water-air [182], and γ=70-80×10−3 N m−1 for the aqueous potassium hydroxide to air [183]) 

and accelerated methanol evaporation (5-minute nitrogen gun assisted drying).  
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Figure 51. The presence of crystal-like particles - believed to be potassium salts, after a 

non-complete post wet-etch solution neutralisation in water. 

The remaining failure modes witnessed after introduction of this step were attributed to the 

film quality as well as cracking and shock damage during cleaving process, therefore for 

maximum yield, the devices were cleaved before the wet etch step, so no purposeful shock 

induction was necessary post release. The fabrication specifics are described in Appendix 

B, process table 4 and illustrated in Figure 52. The following section focuses on the device 

level results and function related parameter development. 

 
Figure 52. MEMS wet etch pattern in a) CAD file, b) optical image before submersion and 

c) SEM image the after selective KOH etch, releasing the device with a directionally 

formed boundary in the underlying silicon substrate. 
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4.5.1 Elastic structure geometry optimisation 

The pattern defined in the silicon nitride was designed and oriented to take advantage of 

anisotropic silicon etching to form a consistent boundary from the ‘slow’ etch plane. To 

test the fabrication method, cantilever arrays of varied length were formed from the silicon 

nitride film (Figure 54). This design was inspired by Petersen’s work [184], but resized to 

an appropriate scale relevant for this task. The detailed geometries and dimensions are 

discussed in the characterisation chapter (section 5.1) whilst the focus here remains on the 

fabrication feasibility with the available methods. It was desirable for the calibration 

structure to be planar and sized so that each cantilever could be located within a typical 

AFM - i.e., length of ~10-4 m and width ~10-5 m. This was intended to permit 

straightforward alignment using the AFM’s own positioning stage. The rectangular 

cantilevers, chosen due to their ease of fabrication and excellent description using 

analytical models [112], also allowed for straightforward performance prediction. 

However, the use of the rectangular boundary structures aligned along the {100} planes 

often resulted in incomplete cantilever release and inconsistent edge definition (e.g., Figure 

53), undermining the structural correlation to analytical descriptions.  
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a)  b)  

Figure 53. a) Test beam structure experiencing two failure modes simultaneously under-

etch failure caused incomplete edge formation and long cantilever stiction to the shallow 

etch pit (SEM). b) Inconsistent cantilever boundary revealing a shifted silicon plane during 

release, due to possible deposition and/or masking contamination.  

Additionally, it was observed that long cantilevers were prone to adhering to the bottom of 

the etch pit. It was speculated that the mechanism for this was the liquid solution droplets 

vacating the etch pit progressively pulling the compliant structure to the bottom surface 

during the drying process (described in 4.5). The practical implication of this was that such 

geometries had limits to the maximum cantilever length and thus compliance, with the wet 

processing preventing the production of cantilevers that exceed the etch pit depth with ratio 

of roughly 1.5:1 (Figure 54). This placed a practical maximum cantilever length at 400 µm, 

as dictated by the 380 µm thick wafer used, if at least 100 µm of the thickness was to 

remain at the base of the pit in order to retain its structural integrity.  
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Figure 54. a) planar and b) isometric SEM images of the microfabricated test cantilevers, 

showcasing the formed free-standing features. Post release cantilever adhesion to etch pit, 

if etch pit to cantilever length ratio exceeds ~ 1.5:1. 

In an attempt to mitigate the fabrication irregularities at the design stage, a circular 

boundary was proposed. Orientating the fixed end to be at a 45° angle to the fast silicon 

etch plane (Figure 55) allowed for a consistent and scalable boundary that was significantly 

less sensitive to imperfections in alignment and etching. There was a risk of such a 

cantilever boundary condition being less rigid (no underlying substrate support), therefore 

reducing agreement with established analytical descriptions. However, in light of the 

advantages offered to the fabrication procedure, this solution was implemented in the full-

scale device fabrication by a successful trial.  
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Figure 55. Circular boundary cantilevers form a consistent and scalable boundary 

formation as well as increased cantilever length before stiction to bottom pit. 
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4.5.2 Stress concentration reduction  

The decision to include a metal film feature on top of a compliant insulator introduced 

additional fabrication failure modes unique to the complex structures - excessive beam 

bending and cracking. The analogous geometry, but monolithic structures (nitride-only 

cantilevers detailed in Figure 55) did not experience such failures, therefore the cause was 

attributed to the surface of the PVD metal film.  

The drying process optimisation (section 4.5) allowed a reduction in the failure rate and 

provide some further insight into the in-progress failure mechanisms, where cracks had not 

fully propagated. A partially developed crack was captured (Figure 56 a and b) allowing 

identification of the corner as the crack initiation point. Therefore, a stress relief radius was 

incorporated to mitigate this stress concentration. Finite element analysis was employed to 

determine the relief geometry, suggesting that the inclusion of a 10 μm radius would reduce 

the maximum operational load stress (10-6 N free-end point load) experienced at the 

structure by 2.65 times - from 220 MPa down to 83 MPa. The radius was minimised in 

order to mitigate the resultant stiffness increase, which allowed it to remain effectively 

unchanged - a 2.4% increase, from 0.058 to 0.0594 Nm-1 at the end-point of the showcased 

structure. 
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Figure 56. a) and b) SEM images of failed devices and stress raiser induced crack in silicon 

nitride; c) and d) SEM images of the devices with stress relieving fillet at the stress raiser 

point; e) and f) FEA stress analysis of surface stress magnitude at the cantilever corner. 

Whilst the yield had improved drastically (85-95% depending on feature size) the released 

structures still retained a pronounced upward bend – a suspected manifestation of bi-

material surface stress, a phenomenon that required additional exploration.  
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4.5.3 Metal thin-film stress reduction 

In order to minimise the cantilever bend and allow structures with the highest possible 

compliance, efforts were taken to reduce the deposition stress in the nichrome conductor 

film. To confirm the bending root cause, the NiCr film was removed from one of the 

devices using chromium etchant [185] (Transene, USA) which effectively dissolves nickel 

chromium (Figure 57). The arched cantilever straightened out upon removal of the strain 

gauge, confirming that it was the source of the problem. This indicated two possible 

approaches to resolve the problem: either increasing the silicon nitride stiffness and making 

the structure less prone to bending and/or reducing the metallisation induced stress. The 

former option would reduce the sensitivity to strain and require access to externally 

procured process modification - the LPCVD film deposition. Therefore, the latter was 

explored in-depth. 

 
Figure 57. Images taken at angle to the device planar surface, showcasing the a) presence 

of bend on the complex structure and b) absence of curvature with the metal layer removed.  
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Figure 58. Physical vapour deposition tool (Plassys Bestek) schematic. 

The stress present in a deposited nickel chromium film is a product of material formation 

during the physical vapour deposition process [186] (Figure 58). A first principle approach 

in understanding the molecular adsorption and deposition thermal expansion parameters is 

beyond the scope of this work. However, the added film stress can be estimated in practice 

by quantifying cantilever curvature magnitude. The most straightforward expression 

relating thin-film stress effect on a substrate in force terms (Ff) was introduced by Stoney 

[156] and has been reformulated for a simplified bi-material cantilever expression in width 

(w), curvature (r), substrate elastic modulus (E), film elastic modulus (Ef) substrate 

thickness (t) and film thickness (tf) terms [187], per Eq. 34:  

𝐹𝑓 ×
𝑡 + 𝑡𝑓

2
=

𝐸𝑡3𝑤

12𝑟
+

𝐸𝑓𝑡𝑓
3𝑤

12𝑟
; Eq. 34 

This expression is useful for illustrating the relationships of conveniently quantifiable 

variables - curvature magnitude and thickness, that can be determined by optical surface 

profiling (Figure 60) and physical surface profiling. However, the expression’s application 

is limited to slender beams (w:L<50) with low film to substrate thickness ratios (t:tf <0.01). 

These conditions are unsupported by the MEMS device geometry employed here - w:L of 
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1.3-2.5 and t:tf =0.075, as well as the non-orthogonal fixed end boundary geometry. This 

meant that the assessment could only be used for a relative stress magnitude quantification, 

although it was decided that this was still sufficient for process optimisation.  

Several test structures replicating the MEMS geometry were fabricated from a single wafer 

to minimise any substrate thickness variation. The samples were individually cleaved, and 

the NiCr was deposited on each sample uniformly, resulting in the detectable curvature 

(Figure 59). The choice to conduct experiments on separate samples rather than adding and 

dissolving nichrome film away (Figure 57) was motivated by the structural fragility post 

release and high chance of sample breakage during the etching and cleaning process as 

well as unintended surface contamination. 

 

Figure 59. Planar images of the (a) non-metallised beams with no visible bend and (b) 

metallised structures, portraying a pronounced upward arch. 

Nickel chromium is often used as an adhesion promoter for metals that have poor adhesion 

properties of their own (e.g., gold and platinum). As this layer is typically under 10 nm and 

deposited on solid substrates, the resultant surface stress is not of concern to most tool 

users. A reduction below the safe electrical current-density thickness of 30 nm (section 
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4.3.1) was therefore not explored due to the anticipated electrical fragility and the process 

development focused on manipulating other available parameters.  

The avenues explored were concentrated in four major process iterations employing 

previously introduced metal evaporator system [172], returning notable improvement 

steps, further referred to as Recipes 1 to 4. The baseline configuration, employed in the 

previous runs (e.g. Figure 56 and Figure 57), now called Recipe 1, was set to a target 

thickness of 30 nm and the evaporation rate of 0.4 nm s-1 per tool pre-set standard. 

Literature indicates [188] that a reduced deposition rate reduces the deposited metal grain 

boundary size, which results in lower metal film stress. This theory was tested by altering 

the rate of evaporation, which was configured by controlling the crucible evaporating 

electron gun voltage, with the resultant deposition rate being measured by the built-in 

quartz resonator. An initial reduction of the rate to 0.1 nm s-1 for Recipe 2 was introduced, 

yielding a significant bend reduction. Therefore, another iteration (Recipe 3) at the lowest 

permissible rate (0.04 nm s-1) was conducted and resulted in further, although less 

significant beam relaxation. A final process development improvement was introduced in 

Recipe 4 per in-person suggestion [189], focusing on chamber and crucible conditioning. 

This step isolated the sample from the evaporation by keeping the sample shutter closed, 

preventing deposition on the sample. This process was conducted for one minute in order 

to remove any nichrome crucible oxidation and/or other contaminant build up present. 

Furthermore, with the shutter separation lid still closed, titanium was also evaporated for 

an additional minute, in order to reduce any oxygen present in chamber - a forced reaction 

to titanium oxide, resembling ion pump operation [190]. These conditioning improvements 

again resulted in detectable curvature reduction (Figure 60 and Figure 61).  
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Figure 60. Reconstructed 3D image and profile cross-sectioning line (Optical Profiler - 

Contour XT, Bruker) from which the deflection profiles are obtained. 

 
Figure 61. Overlaid bend profiles deflection towards the free cantilever end captured by 

the optical profiler system (Contour XT, Bruker). Dotted line represents polynomial fit line. 

NB. The near end non uniformities are due to edge reflection artefacts displayed by the 

optical profiling technique. 
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Table 7. Recipe iteration dependant cantilever profile polynomial curve fit variables,  
𝑦(𝑥) = 𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3. 

Curve Fit 

Value 

Recipe 

1 

Recipe 

2 

Recipe 

3 

Recipe 

4 

c1 
2.362
× 102 

8.766
× 101 

7.227
× 101 

4.759
× 101 

c2 
1.852
× 10−6 

5.105
× 10−8 

8.955
× 10−8 

1.019
× 10−6 

c3 
−1.431
× 10−2 

1.106
× 10−2 

−1.054
× 10−2 

−1.932
× 10−2 

d2y

d2x
= 2c1 

4.724
× 102 

1.753
× 102 

1.445
× 102 

9.518
× 101 

 

The assessment criteria thus focused on reducing the second term in Eq. 34 (
𝐸𝑓𝑡𝑓

3𝑤

12𝑟
) - 

wrelating the cubed film thickness relationship to the observed curvature, in order to 

determine the relative film stress magnitude. Polynomial expressions were fitted to to 

optical profiler date were used to obtain the curvature magnitude. This approach was used 

as the deposition target thickness varied between each of the recipes and needed to be 

compensated for (variation of up to 20%, as shown further in Table 8). Therefore, the 

investigated bend curvature could be expressed by the Eq. 35, per description provided by 

[187]. 

𝑟 =

(1 +
𝑑𝑦
𝑑𝑥

2

)

3/2

𝑑2𝑦
𝑑2𝑥

; Eq. 35 

Since the first derivative (
dy

dx
) is much smaller than 1 (in the 10-5 range), the expression 

could be simplified to Eq. 36. This allowed for complete assessment of the criteria from 
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the observed curvature (Figure 61) and resultant polynomial fits (Table 7) with a summary 

of the findings shown in Table 8. 

r = (
d2y

d2x
)

−1

; Eq. 36 

Table 8. Metallisation run summary, highlighting the process parameters and resultant 

film thickness (AFM, Bruker Dimension Icon) and curvature (Optical Profiler, Contour 

XT). 

Recipe 

no. 

Change 

purpose 

Targeted 

deposition 

rate, 

×10-9 ms-1 

Measured 

deposition 

thickness, 

t, ×10-9 m 

Curvature, 

r, ×10-3 m 

t3r-1 

×10-21 m 

1 
Original 

recipe 
0.4 30.8 2.12 13.8 

2 
Intermediate 

rate 
0.1 35.2 5.71 7.64 

3 
Lowest 

rate 
0.04 36.3 6.92 6.91 

4 
Pressure 

reduction 
0.04 32.8 10.5 3.36 

 

Nickel chromium deposited using this final recipe exhibited a fourfold improvement in the 

chosen criteria in thickness and curvature ratio (t3r-1) and was therefore included in the 

MEMS device fabrication procedure. This optimised deposition process resulted in a 

significant reduction of the MEMS device bend - the root cause of witnessed failures, 

subsequently enabling a much longer (from 130 µm to 250 µm, Figure 62) and therefore 

more strain sensitive cantilever to be fabricated. This metal stress optimisation was 

therefore a key factor in enabling densely nichrome strain sensors to be employed. 
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Figure 62. MEMS devices with varied length elastic structures, providing a range of 

mechanical compliances. The isometric view displays the presence of nichrome film 

resistor caused bend. 
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4.6 Result - fabrication of the MEMS calibration device 

The compliant beam fabrication combined with the chosen metal film proved to be a highly 

challenging task, requiring four generations of design cycles in order to produce the final 

device iteration shown in Figure 63 and Figure 64. 

 

Figure 63. Top (left) and isometric (right) view of the MEMS device, highlighting the key 

components and composition (CAD visualisation). 

 
Figure 64. SEM picture (left) and CAD drawing (right) of the prototype MEMS device, 

highlighting cantilever structure and strained resistor dimensions. 

N.B.:’*’ indicates features that are pictured not to scale. 
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Numerous geometrical and process optimisation decisions shaped the device into its final 

form. The final version requires just three lithographic steps, making it a straightforward 

product to batch fabricate at wafer scale (Figure 65). The fabrication step count is lower 

than that of a commercial functionalised AFM probe, but the device units (dices) occupy a 

relatively large area so that only 88 MEMS devices versus 200-300 units of conventional 

AFM probes may be fitted on a single 3″ wafer. This suggests that such a device may have 

similar production costs to instrumented AFM probes such as the SThM probe (to be 

introduced in Chapter 6 [191]), currently retailing in the 200-300 EUR per unit range in 

mounted and bonded form. The finalised process could be developed for further cost 

reduction if cheaper lithography options were employed - e.g., photolithography may 

replace the electron beam patterning in marker, contact pad and cantilever definition steps 

(1 and 3). The higher resolution and better alignment of electron beam nanolithography is 

necessary however for the fabrication of high resistance meander metallic resistors with 

high yield. 

 
Figure 65. The complete fabrication mask design for the wafer scale production of the 

MEMS device, packaging 88 unit dices on a 3-inch (diameter) fabrication wafer. 
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The fabricated devices may now be characterised and instrumented for their primary 

purpose - in-situ AFM load and interaction elasticity measurement, as described in the next 

chapter. 
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Chapter 5 - MEMS device characterisation 

The MEMS calibration device presented in the previous chapter consists of materials that 

are challenging to ascribe properties using literature values due to their composition 

dependence on local microfabrication processing. Therefore, the practice of acquiring 

property defining constants from the literature is not sufficient in most cases. [192]. For 

that reason, their experimental characterisation was undertaken, in order to understand the 

mechanical and electrical behaviour of the system. Where possible, direct characterisation 

was carried out – e.g., carrier structure elasticity modulus, sensor electrical properties and 

measurement noise, signal sensitivity to temperature, and MEMS tool response to 

environmental thermal effects. Where direct characterisation was not possible due to 

equipment limitations, routes for indirect property assessment were explored and applied 

– e.g., the MEMS tool elasticity and contact point offset relationship established via 

dynamic methods and MEMS tool calibration conducted with an externally characterised 

elastic structure. 
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5.1 Mechanical characterisation 

Ensuring the MEMS tool responded to mechanical loads as a linear spring was crucial to 

the device’s function. This premise was investigated by ensuring the structure complied 

with the load and deflection behaviour correlated by analytical descriptions. As 

demonstrated earlier in section 2.5 - nano indentation is a highly accurate characterisation 

method, however the system employed had sensitivity and application specific limitations 

that restricted its use for fabricated structure assessment. These practical limitations 

prompted exploitation of an alternative method for elastic behaviour assessment - resonant 

frequency correlation to stiffness, as introduced in mechanical theory section 3.1. This 

allowed a quality assurance test of the fabricated devices to be conducted, whilst the contact 

point specific elasticity was characterised directly using AFM. 
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5.1.1 Silicon nitride elastic modulus assessment 

Initially, monolithic silicon nitride cantilevers were characterised using nano indentation 

displacement, analogous to the setup introduced in 2.5, allowing their analytically derived 

elastic modulus to be obtained (Figure 66 and Figure 67). To achieve this, the Euler–

Bernoulli rectangular beam expression Eq. 22 (introduced in 3.1.1 and repeated below, was 

rearranged to solve for rectangular cross-section (Eq. 20, repeated below) cantilever elastic 

modulus - as shown in Eq. 37.  

𝑘 =
3𝐸𝐼

𝐿3
; Eq. 22 

𝐼 = ∫ 𝑤𝑧2𝑑𝑧 = 𝑤 [
𝑧3

3
]

−
𝑡
2

   
𝑡
2

=
𝑤𝑡3

12

𝑡
2

−
𝑡
2

; Eq. 20 

𝐸 =
4𝑘𝐿3

𝑤𝑡3
; Eq. 37 

Whilst carrying out the indentation, only four successful force-displacement measurements 

could be obtained near the cantilever fixed end where the structure is least compliant. 

Failure of some measurements was attributed to restrictions in the instrument setup (bottom 

end sensitivity) and material specific limitations related to low cantilever stiffness and 

charging effects (Figure 68). A significant aspect of the measurements made near the 

cantilever fixed end was due the fact that errors associated with contact position 

determination had the greatest effect on the measurement. Combined with the low number 

of indentations this resulted in a poor quality quantification. This situation could not be 

improved by additional data points as any measurements obtained with a contact point 

further than 60 µm offset from the cantilever fixed end, resulted in extremely low 
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confidence linear fits (e.g. Figure 69). With this in mind, the data presented below 

highlights the shortcomings associated with the available experimental setup when applied 

to characterising highly compliant, silicon nitride structures in SEM.  

Initially, it proved impossible to obtain measurements on the silicon nitride structures, with 

strange deflection behaviour appearing to be dependent on SEM acceleration voltage which 

caused upward bend of the cantilever (Figure 68 and Table 9). Two repeats at different 

acceleration voltages were attempted before the cantilever failed through attraction and 

stiction to the indenter diamond tip. These measurements produced widely differing values, 

further diminishing confidence in the experimental setup due to the apparent severe 

electrostatic interaction. This highlighted sensitivity to SEM acceleration voltage, even 

though the linearity of the fitted gradient for individual experimental data sets was high - 

showing R2 >0.97, per Figure 67. Ultimately, the artefacts were attributed to a phenomenon 

commonly referred to as ‘charging’. This is seen in insulators (such as hereby shown silicon 

nitride thinfilm) exposed to high static potential fields and can be mitigated by coating 

them in a conductive metal film as is commonplace in SEM imaging. However, addition 

of such a film would negate the efforts of obtaining the base silicon nitride stiffness as the 

measured cantilever would have become a complex (bi-material) structure.  
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Figure 66. Silicon nitride cantilever t=0.389 µm, w=100 µm indented by the Hysitron 

PI85. The indentations can only be performed near the fixed end (L< 60 µm), where the 

structure is most resilient to static charging effects. 

 
Figure 67. Silicon nitride cantilever indentation near the fixed end position 1, 23.94 µm, 

highlighting the clear engagement region, the near-linear force and displacement 

relationship and high measurement signal to baseline noise ratio.  

N.B.: The initial downward slope before engagement is likely caused by the repulsive 

interaction between indenter tip and nitride cantilever. 
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Figure 68. SEM captures of the scanning beam static charging affecting the cantilever 

mechanical behaviour - by a) bending, b) twisting and c) sticking to the indenter probe, 

thus preventing its free-state property characterisation. An example of the captured 

interaction is provided in Figure 69. 

 
Figure 69. Load-displacement curve of an interaction at a 60 µm, offset, where the low 

stiffness results in high engagement noise and low measurement to noise ratio due to the 

small magnitude forces measured during the interaction.  

 

As a consequence, the limited number of samples and an unquantified static interaction 

prevented any meaningful definition of uncertainty since neither a distribution shape, nor 

the individual measurement budgets could be confidently determined due to the 

unquantified systematic errors present. Therefore, only the mean and statistical standard 

error were calculated for the determined elastic modulus. An argument may be made that, 

if enough instrument time had been available, optimal SEM imaging conditions could have 

been identified, reducing the charging effect and thus allowing a more behaviourally 

representative measurement to be made. However, since the magnitude of charging is also 



135 

influenced by several other variables (e.g., exposure area and time, underlying substrate, 

proximity of the indenter cone) an averaged figure, obtained from a larger number of 

samples was preferred.  

Table 9. Indentation obtained position specific interactions allowing for analytical solution 

for elastic modulus (E). Note the relationship to SEM beam voltage. 

Indentation 

position 

Distance 

from fixed 

end,L  
×10-6 m 

SEM 

accel-

eration 

voltage,  
(kV) 

Indenter 

measured 

elasticity, 

k, 

N m-1 

Linear 

fit, R2  

Indenter obtained 

position specific 

elastic modulus 

Eq. 37, 

(GPa) 

1 23.94 5 20.83 0.999 194 

2 22.47 20 36.25 0.999 279 

3 36.76 5 4.789 0.966 162 

4 37.81 20 7.299 0.976 268 

 

Table 10. SEM beam acceleration voltage dependant experimental elastic modulus (E) 

figures for the Silicon Nitride film used as the structural layer for the MEMS device. 

 5 kV 20 kV Combined 

E, Mean, (GPa) 178 273.5 225.8 

Number of observations, n 2 2 4 

e(E), standard deviation, (GPa) 3.89 11.3 24.6 

 

With this in mind, the all-observation averaged silicon nitride cantilever elastic modulus 

and standard deviation was found to be 225.8±24.6 GPa, expressed as the mean and 

standard deviation (Table 9). However, this should not be referred to as the silicon nitride 

Young’s modulus due to the potentially complex interactions between the structure and 

measurement system witnessed here. A comparison to literature reported values may be 

drawn – with the figure laying within the 217 [193] - 370 GPa [194] range reported 

elsewhere. These sources attribute the wide variation in this value to dependence on film 

thickness and atomic structure, as well as fabrication specific internal and surface stresses 
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[195]. Having considered the above, the measurement of an absolute elastic modulus value, 

despite its shortcomings, still has merit as it aids the structural behaviour prediction when 

analytical and FE modelling is conducted in the forthcoming work. 

5.1.2 Direct MEMS elastic modulus assessment failure 

A nano-indentation characterisation experiment was then setup to determine the elastic 

modulus of the fabricated MEMS device (Figure 70) per experimental setup described in 

section above. Unfortunately, limitations in the equipment prevented direct 

characterisation when using the multi-point nano-indentation method - as illustrated 

through the data described next.  

 
Figure 70. MEMS device characterised by the Hysitron PI85 [119] Nano Indenter – a) 

pre-indentation live capture, b) end indentation, live capture (SEM at 5 kV). 

Five interactions were registered for their force and displacement relations obtained at the 

most compliant area still producing a reading on the indenter loadcell - immediately after 

the strain gauge, towards the cantilever free end. Following this approach, the measured 

interaction plots produced spring constant figures (k) that did not agree with the previously 

presented analytical Eulerian beam relationships, where k~L-3 as introduced in section 
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3.1.1. The elastic moduli (E) values analytically obtained exceed the previously quoted 

literature figures by 2 to 6 times (up to 1282 GPa) making them comparable to carbon 

nanotubes [196], but not silicon nitride based structures. These values obtained through the 

SEM-based measurements may still have been affected by charging effects, however the 

significantly less noisy interaction gradient (Figure 71) suggests the effect was less 

pronounced. This reduced charging can be attributed to the proximity of the metal film 

resistor, which partially helped dissipate the built-up charge.  

 

Figure 71. MEMS indentation data at position 1, showcasing the poor linearity of the force 

measurement during the engagement – downsides associated with low mechanical 

resistance in the structure causing the maximal force registered to be at 7.8 µN at the 

maximal displacement range, value - which is below the engagement noise. The lack of 

post-engagement linearity in this region concludes that a reliable spring consant 

approximation (from the rate of change dy/dx fit) may not be obtained. 

 

Therefore, the major cause of error was attributed to the low instrument accuracy of the 

indenter due to it operating near the bottom of its force sensing limit. An attempt to interpret 

the spring constant through the linear derivative of the measured force and displacement 

plot (Figure 71, Table 10) resulted in a poor linear fit, with the coefficient of determination 

(R2) ranging between the 0.65-0.88, rather than the previously observed >0.96 (Table 9). 

From this figure it can be seen that the measured forces during contact are below those 
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registered during the pre-engagement area of the indentation (±17 µN) while the indenter 

instrument is subject to no external force. The exact source of this non-contact signal is 

open to interpretation (although external factors were suspected due to construction works 

on campus during experiments), however it may indicate that the reliability of these 

measurements are highly dependent upon laboratory specific experimental setup and 

sample choice. It should also be noted that this signal severalfold exceeds the 

manufacturers claimed noise floor for the Hysitron PI85 [119] of 0.4 µN, indicating that 

the noise is may not be an artefact of the instrument itself. These findings can further be 

extended to allude that the contact mode AFM cantilevers (in the sub 1 N m-1 range) are at 

the limit of the capacitive force transducer-based nano-indenter’s characterisation ability 

and are thus generally unsuitable but may be in reach for the experimental MEMS based 

solutions introduced in section 2.5. 

Table 11. The 5 indentations at different offsets returning similar spring constant (k) values 

instead of following the third order analytical relationship – a product of poor 

measurement.  

Indentation 

position 

Distance 

from fixed 

end, L  
(μm) 

Indenter 

measured 

spring const., 

𝑘 linear fit, 

(N m−1) 

Linear fit, 

R2 value 

Indenter obtained 

position specific 

elastic modulus 

Eq. 37, 

(GPa) 

1 58 3.56 0.878 471 

2 62.75 3.65 0.879 612 

3 63 4.98 0.653 846 

4 73.5 3.31 0.774 892 

5 84 3.18 0.724 1282 
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5.1.3 Indirect MEMS spring constant assessment 

Failure of the direct MEMS device calibration via nano-indentation necessitated an 

alternative method to be employed. Therefore, dynamic behaviour was explored in order 

to confirm the third order length/offset to spring constant relationship of the MEMS 

structure – a key cantilever-like quality allowing point load force to be related to elastic 

response. It is important not to take uniform elastic behaviour of the microfabricated 

structure for granted, since the previously discussed structural inconsistencies and feature 

definition can be challenging to assess using dimensional techniques. Some structural flaws 

are simply not detectable by conventional inspection methods - e.g., micro cracks below 

the imaging resolution or conventionally ‘invisible’ internal material stresses generated 

during deposition. Therefore, it is common to conduct post-fabrication quality assurance 

by measurement of the structure’s resonance behaviour. As established by the number of 

references introduced in the literature review and calibration case study sections - simple 

mechanical structures exhibit a reliable relationship between end-point spring constant and 

fundamental resonance [112], therefore a study was conducted to determine the 

analytically determined cantilever spring constant (k) to fundamental resonance frequency 

relationship (f0).  

An indirect stiffness (k) to resonance frequency relationship was confirmed by exploring 

the measured resonant frequency and theoretically estimated equivalence, agreement of 

which was to confirm the k~f0 (Eq. 26) power correlation. An experimental assessment 

based on this assumption was conducted on four different MEMS devices (Figure 72, a), 

representing the varied absolute end point stiffness, alongside the uniform composition 
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structures employed in the previous fabrication trials (Figure 72, b) – summarised in  

Table 12. The stiffness of the simplistic rectangular structure was estimated using 

analytical methods, described in 3.1.1, while the complex boundary structures were 

characterised by FEA methods, analogous to methodology described in section 3.1.2. The 

elastic modulus determination enabling the theoretical estimates used was described in 

section 5.1.1. The resonance profile was characterised non-destructively using a Laser 

Doppler Vibrometer system (MSA-100-3D, Polytec GmbH, Germany - Figure 73). This 

measurement system registers the Brownian motion excited cantilever velocity providing 

a resonance profile from which the fundamental (natural) resonance frequency f0 can be 

extracted. 

a)  

b)  

Figure 72. Dynamically assessed free standing structures spanning a range of geometrical 

variations, summarised in  

Table 12 - a) full scale MEMS devices of varied lengths and resultant end point stiffness 

and b) stitched and scaled SEM images of the fabricated test structures. 
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Figure 73. The Laser Doppler Vibrometer system - Polytec MSA-100-3D, for analysing the 

MEMS cantilever frequency and motion spectrum. 

 

Table 12. Tested cantilever structures, summarising the dimensions, estimated spring 

constant and measured natural resonance values. 

No Name 

Boundary type,  

cross-section 

composition 

Bea

m 

lengt

h, 

L,  
μm 

Beam 

width,  w,  
 

μm 

Spring constant 

approximation, 

N m−1 

Natural 

resonance 

frequency, 

LDV 

f0, Hz 

1 AB Square, uniform 400 100 0.0057 (Eq. 22) 2008 

2 AC Square, uniform 300 100 0.014 (Eq. 22) 3641 

3 AD Square, uniform 200 100 0.046 (Eq. 22) 8086 

4 AE Square, uniform 100 100 0.37 (Eq. 22) 32977 

5 BAX Circular, uniform 271 40 0.0074 (FEA) 7382 

6 BBX Circular, uniform 231 40 0.012 (FEA) 9164 

7 BCX Circular, uniform 208 40 0.016 (FEA) 10648 

8 BDX Circular, uniform 166 40 0.032 (FEA) 16414 

9 BEX Circular, uniform 132 40 0.064 (FEA) 23500 

10 BFX Circular, uniform 96 40 0.17 (FEA) 27055 

11 BGX Circular, uniform 74 40 0.36 (FEA) 45063 

12 MEMS1 Circular, complex 250 100 0.023 (FEA) 8008 

13 MEMS2 Circular, complex 170 100 0.075 (FEA) 17133 

14 MEMS3 Circular, complex 150 100 0.11 (FEA) 21148 

15 MEMS4 Circular, complex 130 100 0.17 (FEA) 27719 
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Figure 74. Measured natural resonance frequency to estimated end-point stiffness (k) 

relationship following the power law fit, distinguished by planar geometry and boundary 

fixation type. NB. The BFX circular boundary fit has an outlier structure at 27 kHz, with 

stiffness twice as high as the one expected – possible cause of an otherwise undetected 

structural defect. 

Using the experimentally obtained natural frequency plot an analytically derived 

relationship was created - showing the power relationship between the properties in the 

three distinct trendlines (Figure 74). Without further processing, such a figure does not 

reveal absolute stiffness information in N m-1  (only a correlation to theoretically estimated 

elasticity shown in this example), however, it is immensely useful in identifying structures 

that do not exhibit expected elastic behaviour. For example, an outlier circular boundary 

cantilever (BFX measured at 27 kHz instead of the expected ~35 kHz) is indicated as not 

following the cubic relationship trend, suggesting a structural defect is present in the 

structure - although neither cursory SEM or optical profiler inspection techniques revealed 

any obvious deviations. On the other hand, the four MEMS structures tested do 

demonstrate consistent compliance with the expected relationship, indicating that all 

MEMS structures maintain the Eulerian stiffness (k) and length (L) inverse cubed 
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relationship (as introduced in section 3.1.1). Understanding it for each structure type 

allowed for further development work focusing on related geometry cantilever 

modification and rapid assessment using the non-destructive method. 
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5.2 Electrical characterisation 

To characterise the electrical behaviour of the MEMS strain sensor, a fabricated device 

(Figure 75) was cleaved into individual units that were bonded on to a copper PCB, 

connecting the four terminals to a macroscale plug (Figure 76) allowing for convenient 

integration with laboratory measurement instruments.  

    

Figure 75. Left - capture of the 250 µm long MEMS device cantilever used in the electrical 

characterisation sequence; Right - the device envelope, mostly occupied by the millimetre 

sized four terminal connection leads required for handling. 

The primary device function - strain induced resistance change should be detectable by 

employing conventional electrical instrumentation e.g. - high-quality ohmmeter. However, 

anticipating the small resistance changes and overall low signal amplitude, a purpose-built 

instrument was preferred for conditioning the sensor output. Therefore, in order to quantify 

the device resistance change (dR) from the instrumentation output voltage (dV) a 

conversion constant (dV/dR) was required. This could be determined theoretically from 

the specific component values employed in the instrumentation (described in Appendix A 

- MEMS Instrumentation Schematic), or, as used here, experimentally by introducing a 

known resistance change and measuring the corresponding change in output signal voltage. 
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This allowed MEMS device measurements to be reported as change in sensor resistance 

rather than voltage by employing the conversion constant shown Table 13, enabling the 

forthcoming sensor signal output to be presented as relative strain resistance change - 

dR/Rabs. 

Table 13. Instrumentation conversion constant. 

Symbol Value Unit 

dV/dR 0.00095586 V/ Ω 

 

a)  

b)  

c)  

Figure 76. a) batch fabricated MEMS devices on a substrate quarter wafer, b) individually 

cleaved, bonded and connected to copper film PCB tracks with conductive paint, to allow 

for c) soldering a handling-friendly MOLEX type connector for connection to 

instrumentation. 
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5.2.1 Strain sensor resistive properties 

The strained resistor formed the sensing component of the MEMS structure, characterised 

by its electrical response to applied strain. The material specific resistivity of the nichrome 

film used was estimated by measuring the conductor absolute resistance and relating it to 

the area and length ratio (Eq. 29). In this measurement, the strain gauge resistance 

measurement was conducted using a four-terminal ohmmeter (GW Instek GDM-8251A, 

Taiwan) and the conductor geometry was assessed using an SEM (FEI Nova Nanosem 630, 

USA) to measure planar length and width values, while the conductor thickness was 

measured using a surface profiler (Bruker Dektak XT, USA) due to its large scanning area 

capability, capturing a full strain sensor cross-section. Several (36) strain resistor 

geometries were fabricated, however the further showcased characterisation efforts focus 

on a single resistor, which was used throughout the device real-world application trials - 

the ‘150-050’ strain gauge is shown in Figure 75, table 14 (as described back in section 

4.3.1). 

 

Figure 77. The ‘150-050’ strain resistor with geometrical property describing symbols. 
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The obtained measurements (Table 14) allow the determination of the fabricated device 

nichrome resistivity (ρMEMS=2.62×10-6 Ω m), and it should be observed that this does not 

agree with typical nichrome bulk resistivity values reported in literature by a notable 

margin (e.g. ρnichrome=1.5×10-6 Ω m [197]). However, when the device resistance was 

measured prior to the final MEMS wet etch step in potassium hydroxide solution, nichrome 

resistivity was found to be much closer to the bulk value figure (ρStrain gauge=1.3×10-6 Ω m, 

Table 14). This change is not surprising given the extremely aggressive environment 

produced by high KOH concentration and temperature solutions. The reaction between 

nichrome alloys and potassium hydroxide is highly complex and dependent upon the exact 

alloy composition [198]. Additionally, conductor thickness in the sub-micron range has a 

significant impact on specific resistivity, as described by Kazi6 [199]. Whilst both of these 

findings are interesting and further illustrate the challenges in thin film device design and 

fabrication, the exact investigation of the precise processes occurring in these instances 

would require considerable work beyond the scope of this thesis. The afore mentioned 

effects have no direct relevance to the device function, since the strain gauge operates as a 

relative resistance change device, meaning the change in resistivity, rather than its absolute 

value defines the relationship between the perceived change in strain. 

  

 
6 NB: the publication investigates a Ni/Cr composition of 80/20, rather than 60/40 used in this work. 
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Table 14. The ‘150-050’ configuration strain sensor geometry and measured resistivity. 

Property Symbol Value Source 

Length (single pass), µm l 59 Nominal 

Width, µm w 1.5 Nominal 

Offset spacing, µm o 0.5 Nominal 

Overpass height (2×w+o), µm p 3.5 Nominal 

Number of repeat passes, ‘n’ n 48 Nominal 

Thickness, nm t 32.7 Measured: AFM 

Strained cross-section, µm2 A 0.0491 Calculation: (w×t) 

Total strained wire length, µm L 2832 Calculation: (l×n) 

Strain gauge resistance (before 

wet etch), Ω 
RStrain gauge 75224 

Measured: four-terminal 

ohmmeter 

Material resistivity (before wet 

etch), ×10-6 Ω m  
ρStrain gauge 1.30 Calculation: (RStrain gauge×A/L) 

Strain gauge resistance (post 

wet etch), Ω 
RMEMS 151000 

Measured: four-terminal 

ohmmeter 

Material resistivity (post wet 

etch), ×10-6 Ω m 
ρMEMS 2.62 Calculation: (RMEMS×A/L) 
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5.2.2 MEMS device electrical noise spectrum analysis 

Analysis of the signal spectrum was also carried out on the completed device. The purpose 

of this was primarily to establish the device signal to noise performance. However, it 

additionally allowed sources of environmental interference to be visualised. The 1-100 Hz 

frequency range was first scrutinised as this easily covered the relevant frequencies of the 

experiment as dictated by the experiment ramp speed (max. 14 Hz for the Digital 

Instruments Dimension D3100 system used throughout the investigation). This relatively 

high speed of Z motion was employed in order to minimise any signal drift due to thermal 

and mechanical instabilities present in laboratory environment. 

The spectral analysis was conducted on the instrumentation output for four scenarios 

(Figure 78). First, the AFM cantilever was positioned on the MEMS beam and continuous 

force-distance ramps were conducted, representative of device operation. Second, an 

identical indentation routine was performed on the substrate, but at a site 1 millimetre away 

from the MEMS beam, in order to identify any noise generated by the AFM system control 

and drive sources. Thirdly, the output of the idle AFM was captured whilst the probe was 

positioned at the top of the ramp engagement position, which corresponds to the 

background noise of the instrumentation. Finally, the instrumentation was disconnected 

from the spectrum analyser and analysis of the laboratory background was conducted 

through the open end co-axial cable, now acting as an antenna. This provided the PSD 

profile of the laboratory and contrasted that to the measured instrumentation output signal 

magnitudes. 
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Figure 78. Power spectrum analysis of the MEMS device signal and environment in the 1-

100 Hz range (Agilent 35670A, bandwidth - 0.125 Hz). 

The spectral analysis revealed that the primary MEMS signal had a signal to noise ratio7 

of 218:1 or 47 dB. The harmonics of the indentation, induced by the compliant beam and 

AFM drive and control system, were also visible and of significant magnitude (comparable 

to mains interference), however they were easily distinguished from the main measurement 

signal at 14 Hz which is 1000 times (or 30 dB) larger. The inclusion of a passive twin-T 

notch filter [200] and electronic screening also resulted in a quantifiable reduction in the 

mains interference at 50 Hz of some 40 dB. 

An investigation of the broader frequency spectrum (1.2-51.2 kHz) was also conducted. 

This was carried out with the MEMS device idle (powered on, but not in contact with 

external bodies) and thus subject to thermal vibrations, as described in the thermal tune 

 
7 Signal to noise ratio in unit bandwidth is determined by the square root ratio of frequency of interest peak 

(7.49 × 10−5) to base (1.97 × 10−10) multiplied by the square root of measurement bandwidth (1/8 Hz): 

(
√7.49×10−5/1.97×10−10

√8
) = 218 - for a linear ratio expression, or 20log10(

√7.49×10−5/1.97×10−10

√8
) = 47 dB for a 

logarithmic scale expression. 
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calibration routine in chapter 2. The Brownian motion excitation of an AFM cantilever, 

which this structure is very similar to, manifests as vibrational amplitudes in the nanometre 

range [109]. The lack of unique signal peaks that match the mechanical vibration frequency 

range (Figure 79) demonstrated that the strain gauge was not sensitive enough to pick up 

strains of that magnitude in the kHz range. This eliminated the opportunity to investigate a 

‘self-calibrating’ beam concept, that could measure variations in its frequency and refer 

that to an anticipated change in elasticity (as discussed in 3.1.1). 

 
Figure 79. Frequency and signal amplitude comparison of the background and MEMS 

signal spectrum analysis (Agilent 35670A, bandwidth - 62.5 Hz) contrasted with 

mechanical (Brownian) motion spectrum of the MEMS beam, captured by laser doppler 

vibrometer system (Polytec MSA-100-3D, bandwidth ~ 100 Hz). 
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5.3 Thermal behaviour characterisation 

Since the MEMS tool was implemented as part of the quarter-bridge circuit, as highlighted 

in section 3.3, it was important to understand its relationship to temperature changes, 

particularly as the device may be used for transferable or comparative force measurements 

in non temperature-controlled environments. 

5.3.1 Thermal Coefficient of Resistance (TCR) and Coefficient of Thermal Bending 

(CTE) 

The metric employed to understand the signal relationship to temperature is called the 

thermal coefficient of resistance (TCR). This relates the conductor’s sensitivity to 

temperature in relative change terms, per degree of temperature change (Eq. 38). TCR is 

both a material property - unique to the deposited nichrome conductive pattern, and a 

system property once the conductor is incorporated on a temperature-sensitive structure - 

released MEMS beam (Figure 80).  

𝑇𝐶𝑅 =
1

𝑅𝑎𝑏𝑠
×

𝑅(𝑇) − 𝑅(𝑇0)

𝑇 − 𝑇0
=

𝑑[𝑑𝑅/𝑅𝑎𝑏𝑠]

𝑑𝑇
; Eq. 38 

To achieve this, the complete MEMS device TCR constant was determined experimentally. 

The MEMS device was submerged in a fluid medium (here: chemically inert liquid - Flutec 

PP3 [201] with high thermal and low electrical conductivity), which was uniformly heated 

in the insulated copper enclosure attached to a controlled Peltier heater element, as shown 

in Figure 81.  



153 

 
Figure 80. Two MEMS configurations used to determine mechanically de-coupled strain 

gauge TCR (a) and a released MEMS system TCR that contains a product of bi-material 

beam mechanical behaviour (b). 

 

 
Figure 81. TCR experiment setup with a temperature-controlled enclosure. 

The MEMS device signal was recorded against the settled fluid temperature over a range 

of temperatures, defining the coefficient of temperature and resistance relationship. This 

method allowed the TCR to be defined by translating the recorded temperature (T) specific 

device resistance (R(T)) to the absolute device resistance at ambient temperature (Rabs). 
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Plotting the recorded data points against absolute temperature or relative temperature 

change allowed a TCR to be defined from the slope of the linear fit - per Figure 82 and 

Table 15. In order to separate nichrome TCR from other thermal sensitivities within the 

system, including the bi-material bend of the cantilever, measurements were taken on a 

device pre-release (strain gauge) and post release (MEMS) over the 18 to 36 °C 

temperature range. 

 
Figure 82. Experimentally obtained data points showcasing the TCR relationships for the 

strain gauge and MEMS device, highlighting the radical change in slope gradient once the 

mechanical response to thermal effects is included. Linear fit gradient shown in red. 

Table 15. Statistical summary of the TCR experimental determination. 

 Strain gauge MEMS 

TCR, Mean, K-1 -7.659× 10−5 1.842× 10−4 

e(TCR), standard error 2.261× 10−7 3.269× 10−7 

Number of observations, n 80 77 

 

This data emphasises the importance of considering the differences in device behaviour on 

a component and system level. Firstly, the obtained thermal coefficient for the nichrome 

strain gauge supported on a solid silicon substrate revealed a TCRStrain gauge = -76.59 ppm 
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K-1 (Figure 82). This figure indicates that the resistance drops as the temperature increases, 

which is characteristic to nichrome alloys [202]. The magnitude is also comparable to that 

of constantan alloys (TCRConstantan = ±50 ppm K-1, [203]) that are purpose engineered for 

high thermal stability8, confirming the excellent thermal performance of nichrome and 

justifying its use in this application. Studies conducted by Chuang et al. [202] on 

comparable thickness nichrome films suggest that the strain gauge TCR performance could 

be further improved by annealing, resulting in thermal coefficients as low as ±5 ppm K-1, 

establishing nichrome as the metal of choice for high thermal stability resistive films, 

especially when compared to non-metal strain gauge options such as silicon9. 

 
Figure 83. A single fixed end cantilever of bi-material composition - containing two 

different CTE values, will respond to temperature change in different rates of expansion 

that cause non-uniform stress the cross section that manifest in a curvature. 

 

However, once the resistor was incorporated on top of a mechanically compliant beam, the 

device TCR performance needs to be considered at a whole-device level where the thermal 

behaviour changes fundamentally. The observed TCRMEMS relationship for this 

configuration was 184.2 ppm K-1 (Figure 82) – meaning its direction had reversed and its 

 
8 Yet intrinsically incompatible with the chosen fabrication procedures, per chapter 4. 
9 N.B.: TCRSilicon=1000’s ppm K-1 [146]. 
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magnitude doubled when compared to the mechanically rigid system, highlighting the 

downsides of nichrome as a strain gauge material choice in this arrangement. Here, the bi-

material structure experienced different changes in length with temperature change, 

resulting in different thermal expansion coefficients or CTE’s [204]. The thermal 

expansion coefficient of nichrome exceeds that of its silicon nitride carrier structure by 5-

6 times (CTENichrome = 14×10-6 K-1 [205] while CTESilicon nitride = 2-3×10-6 K-1 [206]), which 

resulted in the interface originating strains. The high elastic strength of the metal film 

(ENichrome=100-200 GPa, depending on composition and geometry, e.g. [207] and [208] 

respectively) exaggerated the effect further meaning that stress manifest as a large 

magnitude force on the surface (Figure 83), causing the strain sensor to stretch and respond 

in resistance change, which in operation, was indistinguishable from the strain induced by 

a mechanical load. Little could be done to mitigate this effect due to the microfabrication 

material choice limitations, where matching or achieving a lesser contrasting expansion 

coefficient ratio was not possible. Therefore, the solution lay in the understanding of how 

the MEMS device reacted to thermal sources in operation - the AFM environment, 

exploration of which is described next. 
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5.3.2 MEMS device thermal behaviour in AFM environment 

The TCR experiment characterised a uniformly heated device response to temperature, 

whereas in practice a typical AFM substrate is subject to multitude of localised thermal 

sources. Having established that the MEMS device was sensitive to thermal effects, it was 

therefore necessary to investigate the possible magnitude of these effects during device 

operation in a real-life scenario. The characterised TCR figure allowed the MEMS 

resistance reading to be used as a temperature measurement, provided no mechanical 

loading was applied. This provided the ability to isolate thermal effects from sources 

present in the AFM system, which are not typically accessible using external measurement 

methods. These thermal sources were unique to the experimental setup and understanding 

them can aid experimental consistency and allow thermal mitigation practices to be 

employed as necessary. 

 

Figure 84. (a) AFM optical lever laser spot aimed away and (b) aimed at the MEMS device 

strain gauge, introducing localised heating to the low thermal mass cantilever.  

N.B.: MEMS device not visible completely in the capture due to the curvature falling 

outside the AFM camera depth of field range. 
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Localised heating due to the laser light required for AFM optical lever systems is a common 

issue in scanning probe microscopy, being particularly significant in methods such as 

scanning thermal microscopy (SThM), where pronounced effects on substrate and 

cantilever heating have been widely investigated [209]. Using the MEMS sensor as a 

thermometer, it was observed that when aiming the AFM (Digital Instruments Dimension 

D3100) laser directly at the strain sensor a large resistance increase occurred - dR=715 Ω 

averaged over ten positioning cycles as shown in Figure 84. This is equivalent to a 

temperature jump of dT=26.5 K (295 K to 321.5 K), suggesting significant localised 

heating is manifesting as mechanical bending – as previously witnessed in the uniformly 

heated TCR investigation. The thermal effect caused by camera illumination was also 

measured - dR=0.4 Ω averaged over ten toggle on/off cycles, equivalent to temperature 

change of dT=0.02 K. Whilst this was far less significant than the laser overspill in this 

AFM setup due to the non-locally focused illumination, it was still considered good 

practice to pay attention to surrounding light and heat sources as they may have posed a 

detectable effect on the final measurements. 

To further investigate optical lever laser thermal effects that could be expected during 

normal device operation the 1 mW laser from the AFM optical lever system was aligned 

onto an AFM cantilever (Bruker Scanasyst Air HPI [210], Figure 85) which was then 

lowered into proximity with the MEMS substrate surface without making contact. The 

location of the probe above the MEMS structure was moved around 200 x-y datapoints in 

the 300 by 300 µm area around the device and the measurements linearly interpolated to 

create the 3-axis map shown in Figure 86.  
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Figure 85. AFM camera capture of the laser aimed at the reflective cantilever surface and 

the visible laser overspill. 

 
Figure 86. Thermal intensity heatmap overlaid with the MEMS device contour, 

highlighting the intensity and location from the optical lever cantilever laser overspill. 

Unsurprisingly, this revealed that the nichrome strain gauge was the most sensitive zone to 

laser overspill heating, resulting in a temperature increase equivalent to dT=6.7 K from 

ambient (room) temperature. As expected, this was much lower than the heating observed 

previously where the AFM probe was removed, and the laser spot aligned directly onto the 

MEMS device. It was also clear that the magnitude of laser heating reduced rapidly as the 

cantilever was planarly distanced from the strain sensor proximity, stabilising around 1 K. 

This is not an insignificant effect, and the uncertainty it introduced affected each 
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measurement, possibly proving to be the limiting factor of device measurement sensitivity. 

For illustration, the 1 K temperature change induces thermal strain that registers a relative 

resistance change of 0.006% (8.4 Ω)10, which, as demonstrated further in the force 

measurement experiments, is equivalent to the mechanical strain caused by a ~1 nN 

operational load (at 20 µm offset from free end) for this device - indicating the real-life 

measurement floor. Compensating for this localised heating was very challenging as the 

localised overspill is unique to each AFM probe type and optical lever alignment. What is 

more, compensation of the effect - e.g., with a half-bridge employing a resistor placed on 

the opposite surface of the beam, would make device fabrication impractical, therefore the 

ability to employ the MEMS device as a thermal environment assessment tool is 

particularly useful, especially if intra-laboratory measurements are considered. 

  

 
10 The resistance values vary in response to the instrumentation configuration - bias current, amplification 

magnitude and bridge imbalance, therefore the early characterisation stage measurement magnitudes are not 

comparable directly in bridge resistance terms. The instrumentation configuration is set in the calibration 

stage described next, allowing for the further measurements to be contrasted directly. 
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5.4 In-situ AFM elasticity characterisation 

The demonstration of the device operating in an AFM environment was investigated next. 

This was done through MEMS elasticity measurement against a known elasticity AFM 

cantilever - completing the mechanical characterisation of the intended load site in-situ. 

Then, interpretation of the instrumentation output signal was assessed as a calibration 

procedure, correlating the sensor resistance change to the AFM-MEMS interaction force 

as well as determining the rate of the force application. The latter metric - the first order 

derivative of the force application in time domain, further referred to as force rate, was then 

interpreted as the elasticity property determining metric – elasticity or spring constant 

profile, forming a demonstration of the key purpose of the conceived device.  

5.4.1 MEMS contact point elasticity characterisation with a calibrated AFM cantilever 

A procedure was selected to serve as a showcase for the MEMS device relating measured 

strain to a known interaction force and displacement. This application focused on 

demonstrating the ability to detect loads exerted by an AFM cantilever when interacting 

with the MEMS device. To achieve this, elasticity of the MEMS device (at a selected 

loading site) was determined using a calibrated AFM cantilever and conventional force-

distance ramp setup (schematic in Figure 87 and Figure 89). A springs in series analogy 

was used to determine the unknown MEMS device elasticity (kMEMS) from the obtained 

interaction elasticity (kinteraction) and known AFM elasticity (kAFM) via the relationships 

described in Figure 88 and Eq. 39 - Eq. 41.  
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Figure 87. Illustration (CAD) of the different elasticity AFM and MEMS device interaction, 

resulting in an equal opposite direction force exchange at a contact point. 

  
Figure 88. Springs in series analogy used to represent the two distinct elasticity structures 

(kMEMS and kAFM cantilevers), which act as a compound system with its own resistance to 

acting force (F), expressed as common elasticity constant (kinteraction) and displacement (Z). 

𝐹𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑀𝐸𝑀𝑆 = 𝐹𝐴𝐹𝑀 ; Eq. 39 

𝑍𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑍𝑀𝐸𝑀𝑆 + 𝑍𝐴𝐹𝑀; Eq. 40 

𝑘𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = (
1

𝑘𝑀𝐸𝑀𝑆
+

1

𝑘𝐴𝐹𝑀
)

−1

; Eq. 41 

Determining the MEMS elasticity (kMEMS) at the chosen contact point was a non-trivial but 

crucial exercise. Much like the AFM system, the MEMS device was used to measure 

interaction elasticity, from which the compounded AFM elasticity (kAFM) was decoupled 

by employing knowledge of the experimentally determined shared interaction elasticity 

value (kinteraction). 
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Figure 89. MEMS-AFM probe interaction at the elasticity characterised loading point 

illustration (left) and the AFM camera capture of the interaction (right).  

The MEMS device used in this exercise was the 130 µm long cantilever structure with 1.5 

µm width, 2.832 mm long thin film nichrome wire forming the strain gauge and all 

indentations were conducted at the 110 µm site (Figure 89). Whilst this was not the highest 

compliance and thus not the most sensitive of all of the fabricated MEMS structures, it was 

the first device to be successfully fabricated, therefore receiving the most experimental 

time and attention. 

The AFM cantilever employed was the Veeco MPP-21100-W (Figure 16), with known 

elasticity (kAFM=8.18 N m-1), as determined by the multi-point cantilever profile elasticity 

study carried out using the nano-indentation system described in 2.5. By carrying out a 

force ramp on the MEMS cantilever the AFM produced a force-distance plot from which 

the loading gradient could be interpreted to extract the elasticity constant from two spring 

interaction (kinteraction=0.24 N m-1) as a first order derivative (dF/dZ=kinteraction, per Eq. 1) 

from the rising curve - loading region, shown in Figure 90.  
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Figure 90. The AFM obtained indentation data from the known elasticity AFM cantilever 

indentation of the MEMS device, allowing to express the resultant loading and unloading 

region gradients in elasticity terms by fitting a linear gradient. 

The elasticity relationship of springs acting in series could now be resolved in order to 

determine the MEMS device elasticity at the interaction point - giving kMEMS =  

0.24 N m-1, per Eq. 42: 

𝑘𝑀𝐸𝑀𝑆 = (
1

𝑘𝐴𝐹𝑀

−
1

𝑘𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

)
−1

= (
1

8.18
−

1

0.237
)

−1

= 0.24 𝑁𝑚−1; Eq. 42 
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5.4.2 MEMS strain signal correlation to an externally determined interaction force  

In order to relate the instrumentation output to the magnitude and rate of the induced 

mechanical strain - the device was exposed to a known force or displacement at a known 

rate. It would be possible to employ traceable sources as part of this calibration procedure 

e.g. a dead-weight application [62], characterisation by a metrological institute developed 

force balancing tool [70] or a sufficiently sensitive and appropriately calibrated nano-

indentation system [119]. However, access to such methods is non-trivial, resulting in use 

of a non-traceable strain to force quantification solution described here. On the other hand, 

it should be considered that either the MEMS device or AFM cantilever employed to 

characterise it could be calibrated using a traceable standard in the future. In recognition 

of this, the datasets obtained are presented in the native instrumentation output units of 

relative strain change (dR/Rabs - unitless as a measurement of relative resistance change) 

and strain rate (d[dR/Rabs]/dt, s-1), with the resultant force magnitude (F, N) and related 

elasticity expression (k, N m-1) noted as secondary values where applicable.  
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Figure 91. The MEMS sensor positioned in the AFM system (Left), permitting user control 

of the interaction parameters through the AFM ramping mode interface (Right). 

The force applied by the AFM during the interaction showcased in the previous section 

(schematic setup in Figure 89 and experimental setup in Figure 91) was simultaneously 

recorded by the MEMS instrumentation (Figure 93). The AFM-MEMS experimental 

parameters were fixed during the AFM ramps - the location of the loading site, ramp rate 

and ramp amplitude (per summary in Table 16), meaning all further experiments were 

conducted with the same settings, allowing application of the force rate to be directly 

referenceable to this particular calibration. The data was presented as an interaction plot, 

enabling direct comparison and the extraction of the necessary parameters, described in the 

following text. 

The analogue output signal of the instrument was recorded using an oscilloscope (Agilent 

DSO6102A, Figure 92) permitting capture of the interaction data in the form of a two-

variable matrix - relative voltage change (dV, Volts) and time (t, seconds). A single cycle 

of this interaction is shown on a shared area plot (to be shown in Figure 94) – illustrating 

the measured interaction equivalence and subsequently devised scalar expressions for the 

relationships. 
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Figure 92. Snapshot of the two-channel oscilloscope interface showcasing the MEMS 

signal (yellow) and the low voltage Z axis piezo (green). Both channels synchronised 

(triggered) on the rising AFM Z-signal sawtooth wave allowing for obtaining multiple 

samples through averaging function. 

This could be directly related to the load induced strain gauge resistance change (dR, Ohm) 

by employing the known instrumentation constant (ci), that defines the Wheatstone bridge 

resistance imbalance to the measured voltage change. The MEMS voltage signal could then 

be displayed as a relative resistance change (dR/Rabs) by dividing the relative resistance 

change by the known free-state strain gauge resistance (Rabs). The obtained strain signal 

amplitude (dR/Rabs peak, Figure 93) was related to the previously measured force 

magnitude (F peak) via ratio expressing the strain to force calibration coefficient - cf (N). 

Similarly, the recorded data enabled the coupled interaction first order parameter to be 

scalarly equated between the AFM measured interaction elasticity (dF/dZ) and the MEMS 

device recorded strain rate (d[dR/Rabs]/dt, Figure 93), resulting in the strain rate calibration 

constant – ck, (N s m-1), Eq. 44.  

𝑐𝑓 =
𝑑𝐹

𝑑[𝑑𝑅 𝑅𝑎𝑏𝑠⁄  ]
=

1.047 × 10−6

3.208 × 10−10
=  3.264 × 103 𝑁; Eq. 43 

𝑐𝑘 =
𝑑𝐹/𝑑𝑍

𝑑[𝑑𝑅 𝑅𝑎𝑏𝑠⁄  ]/𝑑𝑡
=

0.24

1.711 × 10−9
= 1.385 × 108 𝑁 𝑠 𝑚−1; Eq. 44 
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Figure 93. The MEMS instrumentation output from the AFM indentation, displaying a 

single cycle of the load and unload displacement, centred at the direction change point. 

The secondary axis displays the relative resistance change value, as obtained by the linear 

mathematical conversion described in Figure 95. 

         
Figure 94. The independently and simultaneously captured AFM-MEMS interaction plots, 

highlighting the relationship between the vertical amplitude axis and the shared 

displacement capture. 

 



169 

It is worth highlighting that the coupled interaction duration may also be used to relate the 

AFM displacement (dZ, Figure 90) to the time of the capture as recorded by the 

oscilloscope (dt, Figure 93) by correlating ramp-velocity, allowing ramp frequency and 

amplitude to be altered between the calibration events. However, translation from the 

measured time domain to AFM ramp displacement was explicitly avoided in this work to 

circumvent untested assumptions regarding AFM system ramp control and drive linearity 

behaviour of the tested calibration conditions. Furthermore, it avoids possible confusion 

about the device operation as independent load and displacement detection may be inferred 

if displaying in these units. Utilising the raw MEMS device output of strain amplitude in 

time domain avoids this implication and remains transparent about the fundamentally 

simple, single sensor enabled functionality. 
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Table 16. Strain to force determination by a measured force exchange with an AFM probe. 

Ramping rate, Hz 1.99 AFM control parameter 

Ramping amplitude, µm 5.795 AFM control parameter 

Instrumentation constant, ci 0.00095586 Measurement, ohmmeter, Table 13. 

Absolute device resistance, 

Rabs, Ω 
151000 

Measurement, ohmmeter (four-

terminal), Table 14 

Strain signal amplitude in 

response to exerted force by 

AFM cantilever, 

[dR/Rabs] 

3.208×10-10 
Measurement, MEMS strain amplitude, 

Figure 93 

Exerted force amplitude by 

AFM cantilever, F, N 
1.047×10-6 Measurement, Figure 90 

Strain to Force 

relation factor, cf, N 
3263.716 Calculation, Eq. 43 

AFM cantilever elasticity,  

kAFM, N m-1 
8.2 Measurement, nano-indenter, Figure 18 

Contact point elasticity 

kinteraction, N m-1 
0.24 

Measurement, AFM force distance fit 

on load region interaction, Figure 90 

MEMS strain rate, s-1 1.711×10-9 
Measurement, MEMS strain rate fit on 

load region interaction, Figure 94 

Resultant MEMS elasticity, 

kMEMS, N m-1 
0.24 

Calculation, springs in series analogy, 

Eq. 42 

Strain rate to elasticity 

relation factor,  

ck, N s m-1 

138515488 Calculation, Eq. 44 

 

The complete signal transformation is summarised schematically in Figure 95, showing the 

measurement input, processing and output stages. This parameter driven signal 

transformation ensured that the elasticity profiles obtained could be compared with other 

measurements, independent of instrumentation configuration. 
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Figure 95. MEMS device instrumentation output interpretation logic for the interaction 

force and elasticity measurement. 
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5.5 Conclusion  

The data presented in this chapter demonstrated that the complex composition and 

geometry MEMS devices comply well with the applied analytical and FE method 

descriptions. This means that any further development could be devised to specification 

(mechanical compliance and electrical strain sensitivity) solely by theoretical efforts. The 

attractive performance potential of the metal film sensor was indicated via a survey of its 

behaviour in a real-life scenario by employing it in-situ AFM laboratory environment. The 

measurement device exhibited a highly linear relationship during probe interaction loading, 

as determined by contrasting the signals with the known linear elasticity AFM probe. It 

demonstrated the capacity for force sensing without requiring extensive load and 

deformation dependant mapping - which was demonstrably unachievable with the 

available tools. Most importantly, the proof of concept demonstration of the ability of the 

MEMS sensor and instrumentation hardware (Figure 96) to transduce AFM relevant 

mechanical forces as a detectable electrical signal was successfully showcased. The device 

force calibration is also supportive of alternative approaches that may benefit from 

accuracy and traceability by the means of identified state of the art indenters and force 

balances. The MEMS tool can therefore provide a continuous AFM cantilever force and 

force rate characterisation throughout the interaction in a simple and non-destructive force-

distance ramp operation. 
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Figure 96. MEMS force measurement setup schematic, showing the vertical (Z-axis) 

cantilever motion exerting point force load on the strain measuring MEMS device. The 

purpose designed instrumentation conditions the strain gauge signal form which the elastic 

interaction behaviour can be interpreted.  

Such a feature is often not supported when using alternative methods or is limited when 

utilising optical lever systems due to the characteristic photodiode detector non-linearities 

and saturation at large displacements - as evident from a simultaneous capture of both 

signal sources shown in Figure 97 and elaborated further in section 6.1.4. The clear 

detection of load-unload and tip-substrate stiction regions was also captured by the sole 

means of strain measurement which may be utilised in additional AFM probe mechanical 

behaviour investigations independent of the metrology within the AFM - as explored in the 

following chapter 6. 
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Figure 97. Synchronously captured signals of the user setup 1.99 Hz and 5.795 µm 

amplitude saw-tooth Z-axis ramping routine (green). The interaction between AFM 

cantilever and MEMS device is detected by the AFM’s own optical lever photodiode 

readout (blue). The elastic exchange is also independently recorded by the MEMS device 

produced strain signal (red). The typical to cantilever-sample interaction characteristics 

are clearly distinguished by both methods, showcasing the idle non-contact separation, 

progressive displacement during contact and the tip-substrate adhesion regions.  
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Chapter 6 - MEMS tool application for AFM probe elasticity 

characterisation  

The following chapter describes application of the developed MEMS tool in AFM 

cantilever elasticity characterisation. The device measurement performance is then 

compared to conventional elasticity determination techniques, establishing the tools 

application as an alternative method for quantification of AFM cantilevers with unknown 

spring constant. The investigation focus is further extended to characterise AFM probes 

with diverse composition and discontinuous geometry, whose characterisation by 

conventional methods is otherwise challenging. The demonstrated novelty of a high 

resolution in-situ force measurement tool and supporting elasticity characterisation 

methodology is anticipated to be a practical solution for many quantitative measurement 

focused AFM users and AFM probe manufacturers.   



176 

6.1 Complex composition batch produced AFM cantilever elasticity characterisation 

It was decided that an appropriate demonstration of the MEMS device being used in a 

realistic scenario would be to employ it in the characterisation of complex, yet identically 

batch fabricated AFM probes. The demonstration’s purpose was two-fold – first, the 

practical illustration of the device’s ability to obtain an elasticity profile for each structure 

that could be judged in reference to others. Secondly, to demonstrate the tool’s ability to 

provide the elasticity determining value (spring constant) for each tested structure without 

additional dimensional knowledge. This could then be further compared against values 

obtained by established mechanical characterisation methods – dimensional assessment, 

calibration (reference spring) grid and dynamic or resonance profile-based 

characterisation. 

The investigated AFM probes were 5 pre-internal quality assurance (not for sale) units of 

KNT-SThM-2an (Figure 98, further referred individually as Probe 1, 2, 3, 4 and 5), 

obtained from a single production wafer11 at random. The manufacturer is concerned with 

consistent control of probe mechanical behaviour and currently employs dimensional and 

dynamic behaviour-based quality assurance techniques to assess their product, rejecting 

units that are out of specification. The device composition is depicted in Figure 9 for reader 

familiarisation purposes only, since accurate dimensional and structural values are 

proprietary information and not a prerequisite to the MEMS measurement technique used. 

However, the figure does highlight the features and structural complexity that are essential 

to the probe’s operation. Specifically, SThM probes are used to provide thermal 

 
11 The probe units were provided by Dr. R. Rajkumar and Dr. Y. Zhang from Kelvin Nanotechnology Ltd, 

Glasgow, UK  [182]. 
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information about the scanned substrate by employing a tip-based metal thermal sensor 

whilst operating as an ordinary contact mode AFM cantilever. The multitude of features - 

metallic (palladium, platinum and gold) thermal sensor and mirror, as well as the silicon 

nitride base with the localised mechanical stiffener (groove section), serve as a great 

illustration for the structural complexity present in scanning probe microscopy art, together 

with the production challenges related to ease and clarity of characterisation. The variation 

in mechanical behaviour of functionalised and complex AFM probes is often difficult to 

classify or control even when structures undergo identical substrate level processing due 

to the tolerance stack up in the multi-layer fabrication sequence. 

 

Figure 98. Schematic representation of the KNT-SThM-2an [211] probes, showcasing 

their structural composition and non-uniformity features in a) top (in-situ AFM placement 

visible side) and b) bottom (fabrication and ex-situ imaging placement) orientations. 
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6.1.1 Visual inspection 

Prior to mechanical characterisation, the investigated structures were imaged using 

conventional cleanroom metrology tools that provide a range of dimensional information. 

Whilst visual inspection does not reveal the mechanical behaviour and elasticity of a 

cantilever, the relative structural deviations evident between the imaged structures can be 

useful in explaining any mechanical deviations subsequently measured. The top-down, 

shared-scale, SEM images (Figure 99) of the five tested structures clearly indicated 

geometric variance in the stiffener feature (groove) location as well as inconsistencies in 

the underlying silicon base defined in the release etch step  - akin to process described in 

4.5. The first observation suggests a potential asymmetry in the cantilever elastic 

behaviour, whilst the latter may be inferred to mean that Probes 3 and 4 exhibit a shorter 

effective bend length and could expected to have higher elasticity values. 
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Figure 99. The five tested structures imaged by SEM, highlighting the plainly identifiable 

variations between the structures – groove alignment in relation to gold mirror and 

triangular shade at the base indicating an incomplete anisotropic silicon release. 

Further non-uniformity can be seen near the functionalised tip region, as shown in Figure 

100. This close-up comparison draws attention to two major irregularity types – the vertical 

position of the curved bend in relation to the tip apex and the inconsistent metallic feature 

alignment, with suspected leftover fabrication contamination. Unlike the simplest AFM 

cantilevers (e.g. Figure 28) which have a pyramid shaped tip acting as rigid load transfer 

point to the cantilever, this kind of probe has a tip formed as an angled ‘beak’ on the 

continuous silicon nitride cantilever that may be expected to act as a hinge and introduce 

its own component into the structure’s elastic characteristics. Therefore, the bend location 

may be a significant contributor to the probe’s mechanical behaviour even with the typical 

(to photolithography) variance – e.g. 2 µm amplitude witnessed in the tested structures. 
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Furthermore, the inherent variance in multi-level lithography alignment that is necessary 

for probe fabrication is visible in Probe 1 and Probe 3, where the tip resistors display 

asymmetry and do not share the consistency shown by the most symmetrical subject - 

Probe 2. Finally, Probe 4 and Probe 5 exhibit varied degrees of tip contamination either 

left over from the fabrication processing or unintentionally attached during handling. Such 

variation at the tip may result in an inconsistent contact point and variance in physical tip 

mass, possibly affecting the dynamic technique characterisation results. 

 
Figure 100. Close-up of the structurally complex region - the tip apex, revealing the 

composition variation and planar feature asymmetry. 

Although effective at identifying global features (lateral dimensions, lithographic defects), 

this SEM inspection could not easily visualise deviations in the overall flatness of the 

cantilevers. Since these cantilevers are extremely soft (manufacturer reported nominal 

elasticity of 0.4 N m-1 [211]), surface profiling with a physical tip was not possible due to 
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contact adhesion/breakage risk. A non-destructive topographical assessment by optical 

profiling was therefore one of the few characterisation methods suitable for this challenge 

- procedure previously introduced in 4.5.3. Comparing the scanned topography of the five 

structures (Figure 101) revealed that Probe 2 and Probe 5 exhibited opposing height 

gradients (low to high z distance of ~1.2 µm), possibly indicative of internal stress caused 

free-state deformation. Probe 4 also displayed an upward, albeit lesser magnitude curvature 

that was in line with the bend axis (low to high z distance of ~0.5 µm). Probes 1 and 3 

showed little curvature at the free end perimeter and could therefore be considered as 

deviating least from nominal design structures. A firm conclusion on the relative impact 

topological variation has on structure elasticity is difficult to draw since the exact thickness 

of each layer (silicon nitride, gold, palladium etc.) of the structures was unknown, however, 

assuming a small variance, it may be anticipated that the largest curvature and thus internal 

stress magnitude probes (2 and 4) may be stiffer than the rest of the group. 
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Figure 101. Optical profiler (Bruker Contour GT [212]) obtained surface topology scans, 

showcasing the non-uniform free-standing structure topology – product of non-intentional 

fabrication deviations and localised internal stresses. 

In summary, inspection of the five nominally identical structures, produced using a 

common fabrication process, revealed five unique topologies. SEM imaging and 

topological mapping revealed information about the relative deviations of the investigated 

group of cantilevers but did not allow definitive conclusions on their structural behaviour 

to be drawn. This indicated that these structures were likely to exhibit unique mechanical 

behaviours and return variant elasticity constants, making them ideal candidates for a 

relative characterisation trial. 
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6.1.2 Elasticity assessment with the MEMS tool 

To employ the MEMS tool for experimental assessment of the AFM probes’ mechanical 

behaviour and determine their cantilever spring constants the five probes were 

consecutively mounted in the AFM system and brought into contact with the MEMS 

structure at a determined offset point of known elasticity (Figure 102). Identical parameters 

were used for each indentation and the instrumentation output was recorded as described 

previously in 5.4.2. Interaction information was recorded as time and voltage change 

(Figure 103) but was then subject to the processing schematically described earlier  (Figure 

95) to obtain relative resistance change. This allowed results to be expressed as time and 

force magnitude (per calibration conversion in Eq. 43 and Eq. 44), permitting for elasticity 

modulus determination. Plotting the engagement profile obtained for each structure 

allowed for elasticity constant extraction in not only the load and unload region, but also 

for visualisation of tip exerted force behaviour throughout the entire indentation – a feature 

that can be immensely useful for post fabrication quality assurance purposes. 

 

Figure 102. AFM-MEMS contact point determination with the aid of Vernier alignment 

markings (AFM camera).  
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Figure 103. MEMS strain sensor signals for each cantilever. The linear fits over the 

loading and unloading (approach and retract in AFM terms) regions and their averaging 

provide characterisation for the measured elasticities in strain (d[dR/Rabs]/dt, s-1) terms, 

which can be transformed to elasticity units (kAFM, N m-1) by undergoing conversion with 

a pre-determined calibration constant. 

The experiment was designed so that probes came in and out of contact during the 

indentation, providing an opportunity to capture tip-sample engagement-separation 

behaviour. Whilst all 5 measurements employed identical parameters, some differences in 

magnitude and interaction duration remained due to natural variations in the environment 

and AFM holder positioning as seen in the small variation of engagement duration. The 

plot of MEMS strain against AFM registered displacement provided information about the 

interaction in the native relative strain rate units - s-1. When the elastic rate correlation 

coefficient (ck) was applied, the rate of change values could then be converted to the  

N m-1 units as used in conventional elasticity expressions. Upon applying the spring-on-

spring analogy to extract the probe elasticity component from the measured interaction 

elasticity, the individual gradients were obtained as summarised (Table 17). These show a 
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124% deviation in mechanical elasticity between the 5 tested structures over the range 

0.173-0.389 Nm-1. For supposedly identical, batch produced structures, aimed at 

quantitative measurement this is a staggering variation, further illustrating the problematic 

use of nominal elasticity constant, particularly in multi-layer microfabricated structures. 

The probes at the upper limit do lie close to the manufacturer indicated nominal value of 

0.4 N m-1 [211], indicating that the overall design is compatible with the quoted 

compliance, indicating that Probes 2 and 5 do not meet the manufacturer’s tolerances. 

Additionally, thanks to the previously established linear response of the MEMS device 

(Figure 94), non-linearities revealed in the data can be directly attributed to the AFM 

cantilever. Such non-linearities could stem from structural defects, akin to those seen in 

probes 2 and 5 back in 5.1.1, which also exhibit increases in their elasticity gradient around 

halfway through the indentation – indicating deflection dependant ‘hardening’. Possible 

explanations for such behaviour could be dual mode bending - e.g., initial elastic 

deformation of the probe beak that is followed by the more compliant main structure.  
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Table 17. Summary of the probe elastic interaction gradients expressed as relative strain 

rate and elasticity figures, interpreted from loading and unloading regions12. 

 
Probe 

1 

Probe 

2 

Probe 

3 

Probe 

4 

Probe 

5 

d[dR/Rabs]/dt, load, s-1×10-10 9.839 7.289 10.80 10.79 7.245 

d[dR/Rabs]/dt, unload, s-1×10-10 10.56 8.090 10.84 9.903 7.348 

d[dR/Rabs]/dt, average, s-1×10-10 10.20 7.690 10.82 10.35 7.297 

kinteraction, load, N m-1 0.1363 0.1010 0.1496 0.1495 0.1004 

kinteraction, unload, N m-1 0.1463 0.1121 0.1502 0.1372 0.1018 

kinteraction, average, N m-1 0.1413 0.1065 0.1499 0.1433 0.1011 

kAFM, load, N m-1 0.309 0.172 0.387 0.386 0.171 

kAFM, unload, N m-1 0.365 0.207 0.390 0.313 0.175 

kAFM, average, N m-1 0.337 0.190 0.389 0.350 0.173 

Furthermore, the high strain sensitivity and sampling rate (1 GHz) allowed for a detailed 

visualisation of the adhesion region (Figure 104), where the MEMS device displays 

negative force amplitude, indicating a compression driven reduction in resistance. The 

clear difference in adhesion force for each individual probe was visible, demonstrating the 

high resolution (<10 nN) force measurement of the MEMS device. For instance, the highest 

pull-away force (~40 nN) was shown by Probe 5, which correlates with its differing tip 

geometry and composition compared to the remainder structures (Figure 100). This result 

suggests the tool could also be applied to tip contact and adhesion quantification – a highly 

relevant property for contact mode scanning techniques. 

 
12 The gradient differences in load and unload regions are deemed non-systematic and are suspected due to 

the not sufficiently rigid mounting setup of the MEMS device on AFM scanning stage - which is simply 

resting on a copper plate. Strain in connecting wires and mechanical movement due to thermal effects may 

be attributed to these random errors, therefore permanent device implementation should seek a rigid but 

serviceable mounting solution with the help of fasteners or clamps. 
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Figure 104. Adhesion region comparison displaying the compressive strain region during 

the tip-sample adhesion and release caused compressive strain returning to neutral strain 

plane.  

To conclude, the MEMS device assessment of complex AFM probe interactions provided 

high-resolution characterisation of their elastic profiles – without prior knowledge of the 

tested structure properties. The information contained inside the uninterrupted interaction 

profile may therefore be used for extended structural characterisation and fabrication 

quality assessment – e.g., identifying non-symmetric and non-linear elasticity behaviour in 

the discrete load-unload and adhesion regions – applications of which are explored in the 

following text. 
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6.1.3 Indirect elasticity assessment via dynamic behaviour observation 

Techniques that employ probe dynamic behaviour to determine elasticity are popular 

amongst AFM users due to their speed and operational simplicity - as enabled by their 

presence in most modern AFM systems. Specifically, motion spectrum analysis can be 

conducted using most AFM systems supporting the thermal tune method. This approach 

relies on motion curve interpretation for oscillatory energy dissipation – the theory and 

application of which was described in 2.3. Additionally, the spectrum also provides easily 

identifiable natural resonance values that may be used for relative elasticity estimation for 

structures that undergo Euler-Bernoulli described beam bending – this method was 

reviewed and demonstrated in sections 3.1.1 and 5.1.3. Therefore, power spectrum analysis 

of the SThM probe test structures was undertaken using an AFM system with the dynamic 

characterisation capacity in order to compare the results with those determined using the 

MEMS device. 

The power spectrum density profiles obtained for the 5 structures (Figure 105) show that 

Probes 1, 3 and 4 displayed similar natural resonance frequencies (f0) - 6.4% difference 

between smallest and largest. However, much larger discrepancies were evident between 

the structures’ thermal tune elasticity results (kTT), as obtained via curve integral (area) 

interpretation, resulting in magnitude variation of 64% within the set of three. Furthermore, 

the remainder structures - Probes 2 and 5, natural frequency peaks were closely matched 

(5.1%), however the thermal tune interpretation displayed a several fold difference in the 

estimated structure elasticity (569%). 
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Figure 105. In-situ AFM (Bruker Dimension Icon, USA [25]) motion spectrum analysis of 

the tested structures, highlighting the natural frequency (f0) and the determined elasticity 

by thermal tune method (kTT). 

It is reasonable to expect that such drastic differences in mechanical behaviour would result 

from identifiable structural features that would have been highlighted during the previous 

visual inspection efforts. This leads to the conclusion that these differences in dynamic 

response cannot confidently represent the static structural behaviour of these probes. 

Possible causes of the deviation could be the non-uniform internal stresses or the different 

tip compositions acting as mass dampener, reducing the idealised thermal energy 

dissipation modelling used by the approach (further details in section 2.3). The identified 

outlier highlights the caution required when using the dynamic technique on probes with 

non-uniform composition. Like the previous visual assessment, conflicting conclusions can 

be drawn from both dynamic behaviour metrics (frequency and power spectrum integral), 

however one useful conclusion is the indication that Probes 1, 3 and 4 behave in a 

dynamically similar fashion, and therefore may be expected to show similar elastic 

deformation in their static applications.  
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Table 18. Summarised dynamic behaviour study outcomes. 

 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 

f0, Hz 38786 25628 39576 37613 26974 

kTT, N m-1 0.553 0.216 0.337 0.370 1.446 
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6.1.4 Elasticity assessment with a calibrated reference spring 

The final elasticity determination technique tested was the spring-on-spring approach 

employing an off-the-shelf cantilever13 of known elasticity (Figure 106). This approach 

employed an experimental setup and interpretation that is analogous to the methodology 

described previously in 2.4. This method is relatively popular amongst users due to its in-

situ characterisation, relative ease of access and the fact that it is indiscriminatory of the 

AFM cantilever geometry and structural composition - making it suited to the 

characterisation of complex structures. The technique uses an AFM system to compare the 

mounted cantilever mechanical response against a rigid surface and then the known 

elasticity cantilever, providing characterisation of the mechanical loading response that is 

reliant on the AFM’s optical lever.  

 

Figure 106. Integrated AFM camera snapshot of the investigated SThM structure and 

calibration grid cantilever (Bruker CLFC, [116]) contact point during the spring-on-

spring experiment interaction. 

 
13 Bruker CLFC, Wafer No: A002/01 box 5 - Probe 5 [108]. 
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Figure 107. Probe 2 elastic deformation profile and resultant linear fit comparison from 

two detection methods – approach regions of the AFM optical lever (black) and MEMS 

strain signal (red). 

The assumption of elastic linearity in load and unload gradients for these structures is 

evidently challenged by the rate of change non-linearity in the interaction plot as seen in 

the comparison between MEMS and AFM data in Figure 107. It is worth mentioning that 

all of the interaction gradients obtained contained a notable degree of non-linearity, 

however for the purpose of clarity the example shown is of the Probe 2 loading region, as 

it was the most pronounced in the tested set. These non-linearities are naturally less distinct 

in the stiffer cantilever interactions, that involve much smaller displacements - such as in 

the case study described in 2.4. However, the cause of the first order non-linearity may not 

necessarily be a cause of non-linear mechanical behaviour, but an optical lever detection 

artefact. Split photodetector systems can indeed display such behaviour (e.g. [213]) and the 

methods of mitigation involve photodiode characterisation against a purpose built linear 

sensor – necessitating an additional calibration step for high compliance AFM cantilevers.  
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Table 19. The processed elasticity figures from the complex composition AFM probe 

characterisation by the calibration reference grid experiment, highlighting the load and 

unload region output and their averaged values for each structure. 

 Probe 1 Probe 2 Probe 3 Probe 4 Probe 5 

kREF, load, N m-1 0.318 0.155 0.367 0.325 0.171 

kREF, unload, N m-1 0.301 0.145 0.360 0.301 0.165 

kREF, average, N m-1 0.310 0.150 0.364 0.313 0.168 

In conclusion, elasticity of the probes obtained using the reference spring method indicate 

that Probes 1, 3 and 4 have closely matched magnitudes (within 15.4%), whilst Probes 2 

and 5 are the outlier structures with roughly half the elasticity of the first group (Table 18). 

Notably, an inter-experimental agreement is witnessed - the elasticity figures align with the 

stiffness trends provided by the MEMS device output as well as by the natural resonance 

value comparison. Additionally, the optical topology maps obtained earlier (Figure 101) 

also suggest that the topologically inconsistent structures (Probes 2 and 5) display 

anomalous elastic behaviour when compared to the rest of the set. This consistency 

indicates that the reference spring method is a suitable and reliable technique for 

assessment of probe elastic behaviour, albeit with the potential for non-linearity detection 

attributed to the optical lever output.  
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6.1.5 Experimentally obtained elasticity modulus comparison 

Whilst all of the methods explored provided unique insights into the complex AFM 

cantilever composition, the key AFM feature being sought was bend displacement to 

exerted force quantification - as expressed by the elasticity constant. Therefore, a 

comparison between the test methods was conducted, contrasting the results in Figure 108 

and Table 20. For interpretation simplicity, only the averaged elastic constants are 

considered where a choice of load/unload (or approach/retract) regions was available. 

 

Figure 108. Summarised elasticity assessment results distinguished by characterisation 

method. 

  



195 

Table 20. The frequency and elasticity result summary corresponding to the five 

investigated AFM cantilevers, averaged figures used where multiple load and unload 

gradients were available. 

Characterisation 

method 

Probe 

1 

Probe 

2 

Probe 

3 

Probe 

4 

Probe 

5 

f0, Hz 38786 25628 39576 37613 26974 

kTT, N m-1 0.553 0.216 0.337 0.370 1.446 

kREF, N m-1 0.310 0.150 0.364 0.313 0.168 

kMEMS, N m-1 0.337 0.190 0.389 0.350 0.173 

A strong agreement in the measured elasticity is exhibited between the natural frequency, 

reference spring and MEMS device results. Outlier structures identified by visual 

inspection and natural frequency trends – Probes 2 and 5, are also accordingly singled out 

by the physical characterisation methods – MEMS tool and reference spring. The reference 

spring and MEMS device results are in close agreement about 1, 3 and 4, while returning 

a consistent offset for Probes 2 and 5. Such amplitude offset with the maintained 

proportionality trend, may be attributed to the non-linear nature of the photodiode 

displacement employed by the reference spring method. The thermal tune method provided 

values for Probes 2, 3 and 4 that are also closely matched to the remaining methods, 

however the results for Probes 1 and 5 are in disagreement with the physical interaction 

methods and natural frequency figures. This indicates that the thermal tune method may 

display limited applicability to complex, but nominally identical structures, as 40% (2 out 

of 5) of the obtained results are in significant disagreement with the other techniques. The 

notably simple natural resonance characterisation also proved itself to be a capable 

technique suited for relative elasticity comparison, where knowledge of absolute elasticity 

magnitude is not required.  

The positive correlation between the three methods inspires confidence in the merits of the 

MEMS device, while its application can also be extended beyond elastic gradient 
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determination. Specifically, a single measurement is densely packed with data applicable 

to discrete mechanical phenomenon permitting a multitude of approaches towards data 

interpretation - this may compete or provide supporting data to simple visual inspection 

methods and allow identification of fabrication related process variations and failure 

modes. Emphasising the above conclusion, the following sections demonstrate possibilities 

of the MEMS device enabling AFM probe elasticity determination extending beyond the 

characterisation capabilities provided by conventional solutions. 
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6.2 MEMS tool application for AFM probe structural modification characterisation  

Another potential application of the MEMS device is in exploring changes in mechanical 

behaviour introduced by probe modification. As an example, the impact of adding a 20 nm 

thick aluminium coating by physical vapour deposition to the previously studied batch of 

5 KNT-SThM-2an [211] probes (Figure 109). This modification is conducted by the AFM 

probe manufacturer in order to improve the reflective properties of the largely optically 

transparent silicon nitride cantilever. The result is a functionally improved device when 

utilised in a conventional optical lever reliant AFM system, where the top cantilever face 

is utilised as a mirror. It is expected that this alteration will affect the probe’s elastic 

behaviour and the MEMS measurement tool could be employed to detect any changes in 

the pre and post deposition elasticity gradients – summarised in Table 21. 

 

Figure 109. Schematic representation of the directionally coated cantilever by physical 

aluminium vapour deposition process. 
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Table 21. Investigated modified AFM cantilever probe elastic interaction gradients in 

instrumentation native relative strain expression and the approximated SI unit expression. 

The percentage change is the result of elasticity magnitude comparison against unmodified 

structures characterised in previous section. 

 
Probe 

1 

Probe 

2 

Probe 

3 

Probe 

4 

Probe 

5 

d[dR/Rabs]/dt, load, s-1×10-10 11.18 7.636 11.15 11.01 8.238 

d[dR/Rabs]/dt, unload, s-1×10-10 10.91 8.393 11.16 10.48 8.140 

d[dR/Rabs]/dt, average, s-1×10-10 11.05 8.015 11.16 10.75 8.189 

kinteraction, load, N m-1 0.1549 0.1058 0.1544 0.1525 0.1141 

kinteraction, unload, N m-1 0.1511 0.1163 0.1546 0.1452 0.1128 

kinteraction, average, N m-1 0.1530 0.1110 0.1545 0.1488 0.1134 

kAFM_Al, load, N m-1 0.424 0.187 0.421 0.407 0.214 

kAFM_AL, unload, N m-1 0.397 0.222 0.421 0.358 0.210 

kAFM_Al, average, N m-1 0.410 0.204 0.421 0.383 0.212 

kAFM, average, N m-1 (no al, Table 17) 0.337 0.190 0.389 0.350 0.173 

Change: dkAFM, average, % +21.8 +7.57 +8.31 +9.30 +22.5 

 

A theoretical expression of the anticipated elasticity change may be calculated using the 

Eulerean cantilever bending expression (Eq. 22) solved with the moment of inertia for a 

rectangular cross-section (Eq. 22, repeated below for clarity). This dictates that a cubed 

cross-section thickness (𝑡) to stiffness (𝑘) relationship (𝑘~𝑡3) is present in uniform 

composition cantilever beams. The unmodified structure thickness is stated in the 

manufacturer specification sheet (400 nm), allowing for a rough conclusion that the 20 nm 

addition increases the cross-section thickness to 5%, resulting in a stiffness increase of 

15.76%. However, this estimation disregards the geometric non uniformity, stresses and 

variation in material elastic moduli through the cross-section and is therefore only provided 

as guidance illustrating that such a change may typically fall outside the advertised 

tolerance and repeatability of some of the conventional methods reviewed previously 

[112]. 
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The MEMS instrumentation provided post aluminium coating values showing a consistent 

stiffness increase when compared to the pre-deposition structures, a behaviour in alignment 

with structural mechanics theory - increase in bending resisting cross sectional area. The 

degree of variation in the relative elasticity increase was large – between 7.57 % and 22.5 

%, however it agreed well to the analytically expected increase value – an average of 13.9 

% across all structures. It is unlikely that this variation is due to inconsistent deposition 

parameters since all of the structures were coated simultaneously and any placement effects 

within the evaporation chamber are considered to be insignificant in comparison - as 

witnessed previously when employing the tool for analogous process in 4.5.3. It is therefore 

attributed to positioning errors in the contact point between AFM probe and the MEMS 

device, something that could be reduced by employing a higher-resolution AFM camera 

system. Furthermore, the consistent trend of increased elasticity when compared to the pre-

modification values reassures the measurement detected the subtle structural changes – e.g. 

the contrast of Probe 1 load elasticity behaviour change shown in Figure 110. Whilst small 

AFM elasticity changes may also be detected by the passive calibrated reference spring 

method, the previously witnessed photodiode artefacts and changed reflection conditions 

mean that linear fitting and comparison of pre and post data could result in deviations which 

are similar to or exceed the variation introduced by the modification. Dynamic behaviour 

‘before and after’ comparisons may also be obscured by the addition of mass and surface 

stresses, meaning the demonstrated static physical interaction should be theoretically the 

best representation of the probe modifications effect on real-world performance. 
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Figure 110.  MEMS captured load gradient comparison of the Probe 1 structure before 

and after structural modification by aluminium thin film deposition. 
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6.3 Complex AFM probe characterisation 

The exploration of MEMS device application was then extended to assessing the spring 

constant of some conventional AFM probes and obtaining elastic characterisation profiles 

of some complex and non-linear elasticity structures that cannot be sufficiently described 

by the conventionally used single scalar value elasticity modulus expressions. 

6.3.1 Non-linear elasticity AFM probe characterisation 

Continuing efforts to develop AFM based functionalised sensing often result in structurally 

complex probes that challenge conventional elasticity and force measurement techniques. 

To illustrate this, the MEMS device was employed to characterise a highly specialised and 

unorthodox prototype AFM cantilever structures14. This probe was designed to have two 

isolated tips, one acting as a heat source, the other a thermometer which could be used to 

probe thermal conductivity at the nanoscale [214]. This probe was expected to show non-

linear elastic behaviour due to the presence of two, vastly differing cantilever beams 

(Figure 111). Currently, no conventional, optical lever equipped AFM system supports in-

situ elasticity characterisation of this probe. This is because optical lever systems rely in 

displacement detection through cantilever movement, from which the force exerted at the 

tip is inferred.  

 
14 Structure supplied and investigated by permission from Y. Zhang, P. S. Dobson and J. M. R. Weaver 

from the AFM and Hyperlithoraphy group at Glasgow University. 



202 

 

Figure 111. The dual cantilever functionalised AFM probe equipped with two individual 

tip located sensors (SEM) - an example of non-uniform elastic behaviour exhibiting AFM 

cantilever. The highlighted offset between relative tip heights results in distinct, vertical 

displacement dependant engagement properties. 

Conventional single point detection methods are unsuited to this multi-cantilever probe, 

since the planar surface area offered by the thin outer beam is insufficient for a detectable 

laser reflection. To study this probe, a cyclic indentation sequence was performed on the 

MEMS device loading site and the resultant strain/force versus time plot shown in Figure 

112. The resultant interaction profile displays a distinct and repeated step change in 

gradient visible at the halfway point in both load and unload directions, indicating the 

anticipated change in elastic behaviour. This sudden increase in elasticity can be attributed 

to the second elastic structure contacting the MEMS sensor and exerting an additional load 

contribution. This occurs at the same displacement rate as the first cantilever due to the 
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shared vertical actuation. The resultant interaction may be understood using springs in 

parallel analogy as shown in Figure 113 and Eq. 45, where the combined elastic component 

is the sum of each individual spring elasticity. This two-variable relationship may be 

resolved with knowledge of the outer and combined elasticity magnitudes provided by the 

single MEMS device measurement.  

 
Figure 112. MEMS captured elasticity characterisation plot, displaying the discrete 

elasticity gradient change throughout the interaction, caused by load transfer via second 

engaged tip. NB. the outer cantilever does not separate from the MEMS device in the 

presented interaction, therefore its adhesion properties are not visible. 
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Figure 113. Springs in parallel analogy used to represent the two varied elasticity 

structures (kouter and kinner cantilever), which act as a compound system with its own 

elasticity constant (kcombined), when exposed to system wide force and displacement. 

𝑘𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑘𝑜𝑢𝑡𝑒𝑟 + 𝑘𝑖𝑛𝑛𝑒𝑟 Eq. 45 

A single indentation cycle of the in-situ interaction provides further insight into the 

elasticity exchange parameters between the structures. The plot of the first order rate of 

change profile – expressed as the interaction elasticity (Figure 114), clearly shows the 

displacement dependant elasticity magnitude, as well as the engagement and 

disengagement rates. For example, the loading region elasticity change has a gradual 

transition to the seven-fold elasticity increase, as compared to the more abrupt transition of 

the unload region. Such behaviour is attributed to the differing modes of contact formation 

and breaking – the gradual approach caused repulsive engagement in loading versus a 

sudden, snap-out separation that occurs in unloading. This is analogous to the commonly 

witnessed tip-sample adhesion/separation profile differences in conventionally observed 

AFM cantilever force-distance curves.  

Finally, the individual elasticities of each cantilever beam could be resolved and are 

summarised in Table 22. An elasticity magnitude of 0.376 N m-1 for the inner (wider) beam 

is within expectations due to its geometrical and composition similarity to the previously 

investigated SThM probe structures. The elasticity of the outer beam of 0.06 N m-1 is also 
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within expectations due to its much smaller cross-sectional area when compared to the 

stiffer structure. Additionally, elasticity magnitude of the latter structure is at or near the 

compliance limit of commercially available AFM cantilevers (to be introduced in 6.3.3), 

indicating that the MEMS tool is capable of characterising an extremely wide range of 

elasticities making it suitable for the characterisation of most AFM probes. 

 

Figure 114. The elasticity profile plotted with the rate of change gradient – or displacement 

specific elasticity. Differences in rates of elasticity value change is distinct in load and 

unload regions. The elasticity sign change corresponds the loading direction – positive for 

load/approach, negative for unload/retract. 

Table 22. Elasticity gradient summary, detailing the measured outer and mutual (both) 

cantilever elasticities. A subtraction operation allows to apply springs in parallel analogy 

and determine the inner elasticity gradient and constant. 

 Combined  Outer 
Inner Cantilever 

= Combined – Outer 

d[dR/Rabs]/dt, load, s-1×10-10 11.77 3.550 8.220 

d[dR/Rabs]/dt, unload, s-1×10-10 10.83 3.417 7.413 

d[dR/Rabs]/dt, average, s-1×10-10 11.30 3.484 7.817 

kinteraction, load, N m-1 0.1630 0.0492 0.1139 

kinteraction, unload, N m-1 0.1500 0.0473 0.1027 

kinteraction, average, N m-1 0.1565 0.0483 0.1083 

kAFM, load, N m-1 0.4913 0.0616 0.4297 

kAFM, unload, N m-1 0.3894 0.0587 0.3307 

kAFM, average, N m-1 0.437 0.060 0.376 
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6.3.2 Additional complex composition probe characterisation 

Some other prototype SThM probe structures with suspected non-linear properties were 

also characterised using the MEMS tool.  

A set of two investigated structures were in-development thermal microscopy AFM probes 

with different geometry near tip cut-outs, designed for thermal mass reduction and heat 

dissipation optimisation (detailed in [163]). The through-cuts in the silicon nitride 

tip/cantilever result in a truss-like structure connecting the sensor to the remainder of the 

cantilever (Figure 115). The anticipated elastic behaviour is that the major carrier structure 

is more rigid and the tip region - is less, therefore the tips may ‘collapse’ or adhere to the 

scanned surface, thus exhibiting non-linear engagement and disengagement elastic 

behaviour. Nonetheless, the actual elasticity profiles obtained using the MEMS device 

exhibited highly linear behaviour, with differences in magnitude attributed to fabrication 

variations - e.g. the unintentionally present silicon support at the cantilever underside. This 

suggests that the tip area is in fact much more rigid than the remainder of the cantilever. 

This is supported by a simple, yet not necessarily instantly obvious conclusion - the inverse 

cube length to elasticity relationship (k~L-3, detailed earlier in 5.1.3), meaning the much 

shorter tip can indeed be stiffer than the remainder of the cantilever, even with the 

drastically reduced cross-section volume. 
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Figure 115. Prototype thermal AFM (SThM) probes with two different style cut-outs (top 

and bottom) - structures provided by Dr. Rory Lambert, AFM and Hyperlithography 

Group, Glasgow [53]. 

Another curious structure was investigated in supplement to the earlier study - a triple-

cantilever SThM probe. The structure was equipped with three discrete complex 

composition cantilevers (Figure 116) – one major structure at the centre and thinner 

members placed symmetrically outside the main structure.  The tips of each are at offset 

width wise but are of equal height, if compared to the structure described in Figure 111. 

This composition yielded a unique indentation behaviour, where a distinctly two-step 

engagement occured (k1 and k2) and a singular (constant) disengagement (k3 ~ k2). This 

may be challenging to predict, since a three-step engagement and disengagement may make 

the most sense. However, it appears that the thin members engage almost simultaneously 

and are only then followed by the major member engagement, while their combined 

elasticity is maintained until a complete separation from MEMS device occurs. The 

separation region behaviour is also interesting, as it displays a two-step interaction, likely 

the result of external and internal members disengaging at separate times. Therefore, the 
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full interaction elasticity characterisation is once more proven as a useful feature that can 

define complex AFM probe behaviour beyond the singular elasticity modulus. 

 

Figure 116. Triple cantilever prototype AFM (SThM) probe with its elasticity profile, 

showcasing asymmetric engagement and disengagement behaviour. Structures provided 

by Dr. Yuan Zhang, AFM and Hyperlithography Group, Glasgow [53]. 
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Chapter 7 - Conclusions and future work  

7.1 Conclusions 

In its most common manifestations, AFM provides users with a highly sensitive tool for 

monitoring the interaction between a nano-scale tip and a surface by using beam deflection 

and a simple and inexpensive optical system. As a result - it can produce remarkably high-

resolution topography imaging. However, that excellent sensitivity is not matched by 

AFM’s accuracy in force measurements. This is due to the fact that interpretation of the 

cantilever’s deflection as a direct measure of applied force relies on understanding the 

AFM probe’s elastic behaviour. Elasticity characterisation of a complex AFM probe is a 

challenging endeavour. Existing techniques have been demonstrated to produce good 

estimates for probes made from a single material having a simple shape, however those 

that deviate strongly from idealised models are poorly represented. This is combined with 

the fact that the complexity of SPM probes and their functionalisation by compositional or 

structural modification is constantly increasing. These developments present a need for an 

accessible, in-situ elasticity determination method, which can support the complex 

composition AFM probes. The work in this thesis uncovered the invested research effort 

into a suitable solution in the form of of a microfabricated MEMS device. The device 

consisted of a high-resolution, e-beam lithography defined, metal wire strained conductor 

that was fabricated on a load strained beam appropriately sized for in-operation interaction 

within an AFM. The instrumentation’s simplicity, potential for operational sensitivity and 

consistent wafer scale manufacturability of the device compared favourably to capacitive 
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and piezoresistive alternatives, combined with the fact that it could be realised using 

standard cleanroom procedures.  

The successful fabrication of a highly strained sensing device with a low spring constant 

was the result of design and processing optimisations in several crucial areas. Confidence 

in finite element methods developed by comparisons with experimental observations 

allowed the design of the device to deviate from idealised and simplistic cantilever 

structures and the use of geometrical optimisations in response to the observed fabrication 

limitations. These included rotated fixed-end boundaries for wet etching and stress raiser 

mitigating radii, which were adopted whilst maintaining a complete picture of the 

anticipated structural behaviour. An optimised polymer-only etch mask was demonstrated 

to be satisfactory for the through-silicon nitride film etch, without the metal masking 

traditionally employed, resulting in reduced fabrication complexity. Significant effort was 

focused on addressing the causes of failure witnessed in-processing. Two particularly 

significant causes were metal stress and collapse of structures due to capillary forces on 

drying. These were remedied through the development of a low stress PVD metal 

deposition process and refining the drying practices used for these fragile structures.  

The importance of considering complex structures at the system level and in the context of 

their operating environment was highlighted in the observation of device thermal 

behaviour. Metal film strain sensors have the beneficial property of linear variation of 

resistance with temperature. This relationship was characterised on rigid and flexible 

surfaces, capturing the drastically different behaviour in these two cases. Characterisation 

of the mode relevant to the operation of the sensor, that of conductor placed on a flexible 
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surface, allowed the identification and quantification of the effects and artefacts caused by 

stray light from the AFM laser and optical microscope illumination source. 

The interaction of the MEMS device within an AFM environment with a probe having 

known characteristics proved the ability of the device to perform rapid, high-resolution 

force and force rate measurements, allowing for capture of the probe elastic character. In 

this work, it was also used as a demonstration of a convenient and readily transferrable 

calibration procedure. The device force calibration procedure is also supportive of 

alternative approaches that may benefit from improved accuracy and traceability such as 

calibration against indenters and force balances. The MEMS device was then utilised to 

scrutinise a broad range of AFM probes of extreme complexity, providing continuous 

resolution of their mechanical behaviour throughout the force-distance ramp interaction. 

The demonstrated ability of the system to characterise structures in the 0.06 - 8.18 N m-1 

range at sub 10 nN resolution captures the broad application range of this tool 

configuration. Finally, the novel insights provided into the behaviour of multi-cantilever 

sensing probes may be considered as the ultimate demonstration of the tool’s 

indiscriminate functionality for probe mechanical assessment.   

It can therefore be concluded that the objective of this work, that of the mechanical 

behaviour characterisation of complex AFM probes, was achieved by the demonstrated 

MEMS device in relative probe elasticity measurements. However, the goal of absolute 

force or elasticity measurements, traceable to a metrological standard was not achieved due 

to sensitivity limitations in the available equipment and lack of access to alternative 

calibration options, although this does not represent a fundamental limitation of the 

hardware developed. Nevertheless, the demonstrated precision, range and resolution of the 
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system, combined with the low-cost batch friendly production methods used to fabricate 

the sensor form an attractive proposition for AFM probe characterisation to AFM probe 

manufacturers and users alike. In terms of metrological integrity, the system may be placed 

somewhere between the convenient in-situ calibrated spring grid and the metrologically 

more competent but inconvenient ex-situ force meters and nano-indenters. As the tool 

incorporates an independent force sensor which is not reliant on the AFM beam deflection 

system and is sensibly independent of its influence it may be used freely in any AFM, 

regardless of the force sensing mechanism or environment. 
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7.2 Future work 

As is normal in a PhD project, many more relevant research and development venues could 

have been explored beyond those described. In order to make the most of the developed 

system the focus of this work was placed on demonstrating the capability of the tool in 

real-world applications. This resulted in comparative neglect of work in determination of 

the measurement uncertainty. Further work on uncertainty characterisation could develop 

the described MEMS technology from a relative to an absolute force measurement 

instrument, giving it metrological credibility. This would require access to a compatible 

tool within the SI measurement chain and would most likely necessitate collaborative effort 

with a national measurement institute. While the effects of environmental thermal changes 

were characterised, experimental quantification of other anticipated sources of uncertainty 

was cut short by the 2020s pandemic. These sources, including variance in electronic 

instrumentation, data capture and fitting procedures, transduction constants and contact 

point positioning errors could be accounted for in full with the current setup, if provided 

with additional experimental time.  

A simple application modification to the current device would transform it into a 

tribological AFM tip-sample study tool. The MEMS device is quite insensitive to lateral 

load location, estimated by FE methods to be 0.12 % sensitivity change in elasticity over a 

10 µm scan line, as shown in Figure 117. Therefore, a matrix array of tribologically 

interesting films could be deposited in a segmented fashion shown in Figure 118. The 

adhesion properties of exposed materials, which are directly related to the change of strain 

during lateral contact mode scanning could therefore be investigated with the MEMS 
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device. An electrically active resistive sensor device (SThM probe) having similar 

composition to the current device has been recently demonstrated [164] to operate under 

aqueous solution, introducing another potential class of surface science studies under 

varied media that could be enabled by this easy to use tool. 

 
Figure 117. FEA contact point study results highlighting the ±5 µm positionality effect on 

the relative elasticity (k) at and around the perceived contact point.  

 
Figure 118. Lateral friction force investigation configuration of the MEMS force device. 

A double side clamped beam arrangement for AFM elasticity measurement should also be 

explored. For the current sensor, the biggest sources of error are believed to arise from the 

significant longitudinal positioning errors, also shown in Figure 117 , which directly affect 

the interpretation accuracy of the point load on the measured beam displacement. Whilst 

guiding markers and good optics on an AFM system help mitigate some of this variance, 

its existence prevents achievement of the highest possible accuracy. A possible solution 
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would be careful scanning of the MEMS sensor by the AFM probe under test to locate the 

ideal position for measurement, which runs counter to the requirement for a quick and easy 

to use solution. A double end clamped beam, theoretically, would be highly insensitive to 

load positioning at its centre location. FE trials indicate that a 10 by 10 µm landing pad at 

the centre of the beam experiences a 0.4 % sensitivity caused by uncertainty in the location 

of the load within the plane, which is far superior to that of an equivalent cantilever (~ 20% 

or 50 times worse, per Figure 118). Additionally, the strained sensor quantity may be 

doubled – by placing one sensor at each side, increasing the sensitivity without additional 

fabrication complexity and allowing the use of a double bridge which would also confer 

linearity of bridge measurement of resistance change. The strain response to load is 

significantly reduced, however, amounting to about 1/11th of the value provided by the 

single end cantilever (8.8%, as determined by study in chapter 3, Figure 24), but this may 

be compensated in part by employing higher density (but more fragile) strain gauges. 

Furthermore, such a beam could be made much thinner to increase sensitivity, without 

suffering the differential expansion bending and stiction failures described in 4.5.3. 

Fabrication of such device is the same as that used for the introduced MEMS tool - simply 

involving joining the dual opposing cantilevers in the dry etch step masking, as shown in 

the preliminary experiment shown in Figure 119. 
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Figure 119. Double clamped beam configuration, next to the analogously fabricated single 

clamped dual cantilevers. 

While a fabricated prototype following this concept was able to detect forces exerted by 

stiffer AFM probes (>1 µN range), it did not receive further investigation since its strain 

(and hence resistance) response to load was no longer linear with applied load. As a result, 

the output of the sensor was impossible to quantify without suitable characterisation 

involving high-resolution signal to load-displacement mapping. As suitable indentation 

equipment and/or calibration path was not identified during this project, further 

investigations related to the double clamped structure application were not undertaken. The 

author anticipates that, subject to sufficient calibration and development efforts, this 

configuration would provide significantly improved positional insensitivity in 

measurements of elasticity and force. 

If more removed opportunities are to be discussed, the demonstrated high density metal 

film strain gauge sensor should be considered for integration on an actual AFM cantilever. 

This could enable non-silicon based self-sensing probes that would provide desirable 

design freedom (such as insensitivity to optical illumination or temperature) and a reduced 

cost solution, when compared to existing conventional self-sensing piezoresistive 
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cantilevers. Such features may prove extremely desirable in SThM and microfluidic 

probes, where the independent, high resolution and thermally unobtrusive monitoring of 

contact force would be of great significance and in the production of extremely compact 

AFM-based microscopes where the lack of any need for a large optical system and its 

alignment would be compelling. 
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Appendix A - MEMS Instrumentation Schematic 

 

The resistance bridge circuit was designed to filter and amplify the output from a high 

impedance 4-terminal resistive MEMS sensor having large lead resistances. The 

instrumentation assembly contained the signal processing board (Figure A-1) and the 

power supply unit (Figure A-2) which were designed and developed by Prof. Jonathan M. 

R. Weaver of AFM and Hyperlithography Group. The key component functions are 

described as follows: 

Constant current biasing of the balance resistor (A4  and A3/2) and the MEMS sensor using 

A3/1 and A2, along with active establishment of ground potential at the low end of the 

sensor by A1/2 allows for 4-terminal measurement without the need for explicit matching 

of lead resistances. A6/1 and A6/2 have low input bias current and are used to buffer the 

input of instrumentation amplifier A5 since the MEMS device has a high resistance (100 

kΩ- 1 MΩ range). A1/1 sets the equal currents going through sensor and the MEMS device, 

and A5 amplifies the difference between the voltages across the balance resistor and 

MEMS sensor. A7/1 suppresses the ground loops when connecting the output of A5 to the 

rest of the system. A7/2 buffers the output of the passive 50 Hz twin-T notch filter.  

The instrumentation is powered by a low noise power circuit supplied by two 12 V lead 

acid batteries, and all components are contained in a screened metal enclosure. 
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Figure A-1. Instrumentation schematic, showcasing the four-terminal sensor input and 

amplified and filtered bridge output (designed and drawn by J.M.R Weaver). 
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Figure A-2. Instrumentation power supply circuit for the 2x12V lead-acid battery supply, 

contained in the enclosure (designed and drawn by J.M.R Weaver). 
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Appendix B - MEMS Device Fabrication Process Details 

The microfabrication of the conceived MEMS system consists of 10 distinct steps, grouped 

into two lithography and metallisation layers for alignment marker and sensor definition, 

followed by lithography and dry etching layer for elastic structure definition and completed 

by the wet etching step releasing the instrumented cantilever from underlying substrate. 

Process Table 1. Marker layer fabrication. 

1.  Mask creation:  

1.1. Mask material deposition no. 1: Allresist PMMA, AR-P 632.06, thickness: 100 

nm, mol. weight: 50 kg mol-1, 60 s spin at 4000 rpm; Oven bake at 180 °C, 30 

mins. 

1.2. Mask material deposition no. 2: PMMA, AR-P 679.01, thickness 30 nm, mol. 

weight: 950 kg mol-1, 30 s spin at 5000 rpm. Oven bake at 180 °C, 30 mins. 

1.3. Mask pattern writing: electron-beam vector job, Vistec VB6. 

1.4. Mask development: Development in MIBK and IPA solution (2.5:1), 25 s, 23 °C, 

stopped in IPA, rinsed in RO water and dried with Nitrogen. 

2. Metal deposition with PVD tool (Plassys): 

2.1. Nichrome evaporated on substrate, at 0.4 nm s-1 rate for 10 nm total thickness. 

2.2. Gold evaporated on substrate, at 0.4 nm s-1 rate for 75 nm thickness.  

3. Lift off: metallised pattern reveal by dissolving the underlying mask in acetone, 30 

minutes at 50 °C. 

  



222 

Process Table 2. Sensor layer fabrication. 

1. Mask creation (PMMA and VB6):  

1.1. Mask material deposition no. 1: Allresist PMMA AR-P 632.06, thickness: 100 nm, 

mol. weight: 50 kg mol-1, 60 s spin at 4000 rpm; Oven bake at 180 °C, 30 mins. 

1.2. Mask material deposition no. 2: Allresist PMMA AR-P 679.01, thickness 30 nm, 

mol. weight: 950 kg mol-1, 30 s spin at 5000 rpm. Oven bake at 180 °C, 30 mins. 

1.3. Mask pattern writing: electron-beam vector job, Vistec VB6. 

1.4. Mask development: Development in MIBK and IPA solution (2.5:1), 25 s, 23 °C, 

stopped in IPA, rinsed in RO water and dried with Nitrogen. 

2. Metal deposition with PVD tool (Plassys):  

2.1. Titanium evaporation with blanked substrate for 60 seconds to decrease chamber 

pressure. 

2.2. Nichrome evaporation with blanked substrate for 60 seconds to condition crucible 

and remove oxidation and foreign contaminants before depositing on substrate. 

2.3. Nichrome evaporated on substrate, at 0.04 nm s-1 rate for 30 nm thickness. 

3. Lift off: metallised pattern revealed by dissolving the underlying mask in acetone, 120 

minutes at 50 °C. 

 

Process Table 3. Beam and etch pit mask definition on Silicon Nitride.  

4. Mask creation:  

4.1. Mask material deposition: Allresist PMMA AR-P 642.15, thickness: 1260 nm, 

mol. weight: 200 kg mol-1, 60 s spin at 4000 rpm; Oven bake at 180 °C, 30 min. 

4.2. Mask pattern writing: electron-beam vector job, Vistec VB6. 

4.3. Mask development: Development in MIBK and IPA solution (2.5:1), 25 s, 23 °C, 

stopped in IPA, rinsed in RO water and dried with Nitrogen. 

5. Plasma etch: 

5.1. Oxygen plasma clean. Oxford RIE 80 Plus. Gas – O2 (Oxygen) at 6.5 Pa, 20 °C 

and 50 W plasma power. A 30 second etch to remove surface contaminants. 

5.2. Masked Silicon Nitride etch. Oxford RIE 80 Plus. Gas - C2F6 (Halocarbon R116) 

at 2.0 Pa, 20 °C and 125 W plasma power. Experimentally obtained Allresist mask 

etch rate of 40-43 nms-1 and Silicon Nitride etch rate of 19-21 nm s-1. A 21-minute 

run to clear the nitride in the supplied substrate.  

5.3. Solvent clean (acetone, methanol, IPA), rinsed in RO water and dried with 

Nitrogen. 
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Process Table 4. Elastic structure release. 

6. Etching in temperature-controlled solution: 29% Water-KOH (Potassium Hydroxide) 

at 105 °C for 70 minutes (solution etch rate for silicon - 4-4.2 µm per minute). 

7. Drying:  

7.1. Acid (partial) neutralisation - in still RO water for 15 minutes, then wetted transfer 

to methanol, where the sample is removed from holder jig and remain submerged 

for 10 minutes.  

7.2. Drying - very gentle and slow Nitrogen drying for 10-15 minutes until all etch pits 

cleared of liquid (5 minutes).  
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