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Abstract 

Zika virus (ZIKV, Flaviviridae), like other emerging arboviruses, poses a 

considerable threat to human health. It is estimated that approximately half of 

the world’s population is at risk from contracting a mosquito-borne arboviral 

infection, and this was exemplified during the 2015/16 ZIKV outbreak in the 

Americas. ZIKV infection is thought to be largely asymptomatic, although ZIKV 

disease has previously been characterised by mild symptoms such as a 

maculopapular rash, conjunctivitis, and fever. However, recent outbreaks have 

been associated with an increased incidence of Guillain-Barré syndrome, and a 

pattern of neurological and developmental symptoms in neonates which is now 

termed congenital Zika syndrome. Despite intense efforts, no therapeutic or 

vaccine has been developed. As such, it is vital that further fundamental research 

is conducted to discover novel host-virus interactions in both vector and 

mammalian host systems, which may allow development of targeted 

interventions.  

 

Here, multiple approaches were used to generate basic tools for ZIKV research, 

and siRNA screens and data from mass-spectrometry based proteomics were 

utilised to uncover important host interactors of ZIKV. A study investigating the 

Aedes aegypti immune response was conducted, and the classical RNAi effector 

Argonaute 2 (Ago2) was not found to be antiviral, whereas PIWI 4 was. Data from 

a previous proteomics experiment suggested that glucose-regulated protein 78 

kDa (GRP78) may interact with ZIKV E. In this study, co-immunoprecipitation and 

immunofluorescence was used to verify that GRP78 interacts with ZIKV E in both 

mammalian and Aedes aegypti cell culture. GRP78 is a key modulator of the 

unfolded protein response (UPR), and while small-molecule inhibitors (EGCG and 

HNK) of the GRP78-mediated UPR did not inhibit ZIKV infection, EGCG was able to 

inhibit ZIKV entry independent of GRP78, likely through direct binding of the 

virion. Further study of GRP78 revealed that while it is not important for entry, 

replication, or egress of ZIKV, it did aid viral translation. Depletion of GRP78 with 

siRNA resulted in a loss of coordination of viral replication factories and relieved 
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a virus-specific inhibition of host translation. Furthermore, STRING analysis of 

GRP78 host-interactors followed by a targeted siRNA screen revealed that DnaJC1 

is also a pro-viral factor. DnaJC1 has previously been shown to coordinate GRP78 

localisation to ribosome exit tunnels, and so may contribute to ZIKV infection 

through GRP78, though this was not assessed in this study. Additionally, by using 

a circular polymerase extension reaction (CPER) system, a reverse genetics ZIKV 

was generated. This CPER ZIKV represents a genetically stable source of virus 

which can be easily modified and can support future research. 

 

Collectively, the data herein informs on important ZIKV interactions in both 

arthropod vector and mammalian systems, and highlights tools and techniques 

that can be used to conduct future fundamental ZIKV research. 
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Chapter 1.  Introduction 

1.1  Flaviviridae 

1.1.1 Taxonomy  

The Flaviviridae family of viruses covers 4 separate genera (Flavivirus, 

Hepacivirus, Pestivirus and Pegivirus) and contains approximately 90 known virus 

species (Simmonds et al., 2017).  

 

The largest genus, Flavivirus, consists of over 50 members which are primarily 

arthropod-borne viruses (arboviruses) (Huang, Higgs and Vanlandingham, 2019). 

These viruses are generally transmitted to vertebrate hosts by both mosquito and 

tick species and includes viruses such as Japanese encephalitis virus (JEV), West 

Nile virus (WNV), dengue virus (DENV), Zika virus (ZIKV), and tick-borne 

encephalitis virus (TBEV) (Guzman et al., 2010; Petersen, Brault and Nasci, 2013; 

Petersen et al., 2016; Pulkkinen, Butcher and Anastasina, 2018). The first 

discovered member of the Flavivirus genus was yellow fever virus (YFV), which 

gave its name to both the family and genus; flavus means ‘yellow’ in Latin, and 

YFV patients can display a yellow pigmentation of skin (Clements and Harbach, 

2017). Many of these viruses are important human and animal pathogens which 

represent an ongoing threat to health (Pierson and Diamond, 2020). However, 

some flaviviruses have no known vertebrate target, and as such are termed insect-

specific flaviviruses (ISF) (Blitvich and Firth, 2015). These ISF divide into two 

classes; those which phylogenetically associate to the classical 

vertebrate/mosquito viruses, and a more genetically dissimilar group; whether 

these viruses truly lack a vertebrate host remains to be verified. Additionally, 

some flaviviruses have no known vector and have only been isolated from either 

rodents or bats (Blitvich and Firth, 2015). These include Yokose virus, a bat virus 

closely related to YFV, and a rodent-associated virus called Modoc virus (Tajima 

et al., 2005; Adams et al., 2013). It is thought that these viruses can persist in 

their host via vertical transmission from mother to progeny, although this has not 
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been definitely proven (Adams et al., 2013). The relationship between selected 

flaviviruses is highlighted in a phylogenetic tree shown in Figure 1-1. 

 

The important human pathogen hepatitis C virus (HCV) is the primary member of 

the Hepacivirus genus (Hartlage, Cullen and Kapoor, 2016). There are a large 

subset of HCV genotypes and subtypes, all of which are derived from human 

infections and are causative agents of chronic and acute liver disease (Smith et 

al., 2014). Until 2011, there was only one other known Hepacivirus. Since then, a 

wide range of zoonotic hepaciviruses have been discovered and expanded this 

genus, though whether these represent a new class of human disease has yet to 

be elucidated as they cause no known disease (Williams et al., 2020). 

 

Pestivirus is a genus containing viruses currently only known to infect mammals 

and includes the economically important Bovine viral diarrhoea virus (BVDV) 

(Houe, 1995). Recently, there have been proposed changes to the naming 

conventions of pestiviruses to incorporate newly discovered related species (Smith 

et al., 2017).  

 

The last genus, Pegivirus, represent a growing list of viruses that persistently 

infect a large range of mammals although they have not conclusively been 

associated with any disease (Berg et al., 2015; Miao et al., 2017).  

 

The following sections will discuss flaviviruses in more detail before focusing on 

the primary topic of this thesis, Zika virus. 
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Figure 1-1: Phylogenetic analysis of the flavivirus genus. 

A figure highlighting the unrooted phylogenetic relationship between important 

flaviviruses. The PhyML 3.0 extension for Geneious was used to create a 

maximum-likelihood tree using the GTR+G substitution model with 4 gamma 

categories and 100 bootstrap replicates. Results are displayed as a Neighbor-

Joining tree and scale-bar represents substitutions per site. Sequences were 

obtained from GenBank (KJ776791.2, DQ859059.1, KX197192.1, MN869914.1, 

L48961.1, KF192951.1, M12294.2, JN628279.1, KU725663.1, NC001475.2, 

NC002640.1) or European Nucleotide Archive (AAB53095). 
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1.1.2 Flavivirus Genomic RNA  

Flaviviruses encode a single-stranded, positive sense RNA genome approximately 

11 kb in length which is translated into a single polyprotein as illustrated in Figure 

1-2 (Chambers et al., 1990). The genome contains a single open reading frame 

(ORF) flanked by a 5’ and 3’ untranslated region (UTR) of approximately 100 bp 

and 500 bp respectively, although species specific variations in length occur (Ng 

et al., 2017). The 5’ UTR has a N7 methylated (me7)-guanosine cap to protect the 

genome from exonuclease degradation and to enable translation of the 

polyprotein (Saeedi and Geiss, 2013). Flavivirus genomes are not poly-adenylated, 

and the 3’ UTR contains a series of conserved RNA hairpins that terminates with a 

stem loop (Saeedi and Geiss, 2013; Göertz et al., 2018). These RNA structures are 

illustrated in Figure 1-2. The 3’ UTR also contains a circularisation signal (CS). This 

signal can form a long range RNA:RNA interaction with RNA found in the capsid 

coding region, promoting circularisation of the genome which is essential for 

minus-strand viral RNA synthesis (Alvarez et al., 2005; Manzano et al., 2011). In 

Kunjin virus (KUNV, now known as West Nile virus Kunjin subtype (Gray et al., 

2011)), the CS is 8 nucleotides long and if mutated will abrogate the elongation of 

viral RNA, though compensatory mutations can restore replication (Khromykh et 

al., 2001). While circularised genomes are clearly important, studies of DENV have 

suggested there needs to be a balance between circular and linear forms of the 

genome (Villordo, Alvarez and Gamarnik, 2010). The swap between circular and 

linear genome forms may regulate the production of minus or positive RNA strands 

(Mazeaud, Freppel and Chatel-Chaix, 2018).  

 

Complex secondary structures in the 3’ UTR also protect the RNA from complete 

5’-3’ digestion by the cellular XRN1 exoribonuclease, which results in the 

production of subgenomic flavivirus RNA (sfRNA) (Pijlman et al., 2008; Mazeaud, 

Freppel and Chatel-Chaix, 2018). sfRNA ranges from 300 to 700 nt in length and 

contains multiple stem-loops and pseudoknots which stall and capture XRN1, 

inhibiting its cellular function (Mazeaud, Freppel and Chatel-Chaix, 2018). 

Additionally, sfRNA is a highly abundant RNA molecule in the infected cell which 
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can function to inhibit type-1 interferon (IFN) responses in many flaviviruses 

(Schuessler et al., 2012; Manokaran et al., 2015; Donald et al., 2016). There are 

several potential mechanisms behind this. DENV sfRNA has been shown to inhibit 

the deubiquitination of tripartite motif 25 (TRIM25), which prevents the activation 

of retinoic acid-inducible gene 1 (RIG-I) and therefore subsequent type-1 IFN 

production is inhibited (Manokaran et al., 2015). ZIKV sfRNA has also been shown 

to inhibit IFN-β activity, likely through a similar mechanism as seen for DENV 

(Donald et al., 2016). Alternatively, JEV sfRNA can inhibit the phosphorylation and 

nuclear translocation of the upstream regulator of IFN-β, interferon regulatory 

factor 3 (IRF3) (Chang et al., 2013). sfRNA is also important for flaviviruses 

infection in their mosquito vectors as depletion of ZIKV sfRNA reduced viral 

dissemination in Aedes aegypti, and similarly WNV requires sfRNA for efficient 

transmission in Culex spp. mosquitoes (Göertz et al., 2016; Slonchak et al., 2020). 

This could be in part due to sfRNA-mediated suppression of mosquito RNA 

interference (RNAi) pathways, as has been demonstrated for DENV and KUNV 

(Moon et al., 2015).  
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Figure 1-2: Flavivirus genome organisation 

A figure depicting a generalised genome of a flavivirus. A 5’ and 3’ UTR, complete 

with signature secondary structures, flank the contiguous protein coding region. 

The 5’ UTR has a N7 methylated (me7)-guanosine cap, as indicated. The images 

for the 5’ and 3’ UTR were adapted (Neufeldt et al., 2018), and the complete 

final figure was created in Inkscape.  
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1.1.3 Flavivirus protein expression 

The polyprotein contains 3 structural proteins (capsid [C], membrane [M] and 

envelope [E]) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B 

and NS5) (Lindenbach and Rice, 2003). The polyprotein is threaded through the 

endoplasmic reticulum (ER) membrane via a series of transmembrane domains 

(TMD) found in several of these proteins. Proteins are liberated from the 

polyprotein by a combination of viral (NS2B-3) and host-cell (furin, signal 

peptidase) proteases, though the identity of at least one factor required for 

complete processing has not yet been discovered (Apte-Sengupta, Sirohi and Kuhn, 

2014; Tan et al., 2020). An illustration of the flavivirus polyprotein is shown in 

Figure 1-3. 
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Figure 1-3: A schematic of the polyprotein of flaviviruses.  

A figure displaying the constituent parts of the flavivirus polyprotein and 

generalized topology. Structural proteins (capsid [C], precursor membrane [prM] 

and envelope [E]) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 2K, 

NS4B and NS5) are indicated, and sites of cleavage are indicated with red lines. 

Created in BioRender.  
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The C protein performs a structural role for the virus; multiple copies of C 

encapsulate the viral genome to form the ribonucleoprotein (RNP) complex 

(otherwise known as the nucleocapsid) which can then be packaged into the virion 

(Oliveira et al., 2017). C is the first protein to be translated and is formed of a 

highly-positively charged, disordered loop which precedes 5 α-helices (helix 1-5), 

the 5th of which is embedded in the ER membrane and is known as the capsid 

anchor (CA) (Rana et al., 2018). Host signal peptidases in the ER lumen cleave the 

C-terminus of C from precursor membrane (prM), and the viral protease NS2B-NS3 

cuts between α-helices 4 and 5 to liberate the mature C protein, leaving CA behind 

(Tan et al., 2020). Mature C exists as a homodimer, and in this form it can bridge 

viral RNA with the ER lipid membranes decorated with prM and E to help form 

immature virions (Tan, Fibriansah and Lok, 2020). ZIKV C has a longer N-termini 

disordered loop than other flaviviruses, made possible by 2 additional proline 

residues that disrupt α-helix 1 and repositions it perpendicular to the helix 2 

instead of parallel, as is seen for most other flaviviruses (Shang et al., 2018). 

Interestingly WNV, another neurotropic flavivirus, also has this unusual helical 

assembly, though whether this orientation contributes to pathogenicity or disease 

phenotypes is currently unknown (Dokland et al., 2004).  

 

The M protein is one of two viral proteins, the other being E, which span the host-

derived lipid bilayer to make up the viral membrane (Smit et al., 2011). 

Translation and initial proteolytic cleavage liberates a full length prM protein from 

the polyprotein. prM is incorporated in immature virions by forming a heterodimer 

with E, before undergoing a further cleavage event during virus export in the 

acidic Golgi network to yield a fully matured virus particle (Randolph, Winkler and 

Stollar, 1990). The initial formation of an immature virion is thought to prevent 

the pre-emptive fusion of the virus particle in cellular compartments during 

export, and the conversion of prM to M allows E to form the homodimers that coat 

the virion surface and prime it for infection (Zhang et al., 2003). prM is one of the 

least conserved flavivirus proteins, and substantial changes to the polarity or 

structure of amino acid (aa) residues exist between different flaviviruses, and 

even between different strains of ZIKV (Prasad et al., 2017). In ZIKV, prM is 168 
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aa long, of which the first 93 aa make up the precursor domain (Cox, Stanton and 

Schinazi, 2015). Mutations in Zika prM have been associated with an increase in 

neurovirulence. For example, a S17N mutation found in 2015/16 South American 

ZIKV isolates (but not in an earlier 2010 Cambodian isolate) significantly enhanced 

viral infectivity in both human and mouse neuronal progenitor cells (NPCs), and 

also increased the incidence of microcephaly in fetal mice (Yuan et al., 2017). 

While the mechanism behind the enhancement of neurovirulence is not known, 

changes in prM protein sequence could potentially alter the rate of maturation or 

the final structure of the virion. Additionally, flavivirus particles are known to 

exist as a pleomorphic population, in part due to varying degrees of prM 

processing. These immature flavivirus particles are known to retain some 

infectivity through the use of antibody-dependent entry (Rodenhuis-Zybert et al., 

2010; Dejnirattisai et al., 2016). Mutations in prM could potentially alter the rate 

or route of these alternative infection methods. 

 

The E protein is the major structural protein which coats the surface of the virion, 

and is therefore integral to viral entry, assembly, and egress. E is a class II fusion 

protein consisting of 3 primarily β-sheet ectodomains (EDI, II and III), and two TMD 

which serve to anchor E in the membrane and direct NS1 localisation into the ER 

lumen (White et al., 2008; Zhang et al., 2017). Alhough EDI is formed from the N-

terminus of E, it is centrally located in the 3D architecture of the protein and acts 

to stabilise and facilitate conformational changes in EDII and EDIII (Zhang et al., 

2017). Glycosylation often occurs at N154 in EDI; however, this is not conserved 

between all flaviviruses, or even within strains of the same virus. For example, 

DENV E is unusual in that it contains two glycosylation signals at N67 and N153, 

instead of the more common N154 site (Lee et al., 2010). Additionally, Asian 

lineage strains of ZIKV all seem to share N154 glycosylation, however strains of 

African lineages do not (Carbaugh and Lazear, 2020). These differing glycosylation 

states can certainly impact upon cell tropism; simple E glycosylation structures 

bind either dendritic cell-specific intercellular adhesion molecule-grabbing 

nonintegrin (DC-SIGN) or DC-SIGN related protein (DC-SIGNR), and more complex 

glycans preferentially attach to DC-SIGNR (Carbaugh and Lazear, 2020). EDI and 
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EDII are connected via a flexible hinge, mutations in which can alter the dynamics 

of conformational changes and pathogenicity of flaviviruses (Goo et al., 2017). 

EDII contains a highly conserved, small peptide loop with a highly hydrophobic tip 

known as the fusion loop. The fusion loop is absolutely essential for insertion of E 

into target membranes, and is therefore required for viral uncoating and genome 

release (Modis et al., 2004). This fusion loop interacts with, and is hidden by, prM 

in immature virions to prevent premature interaction with cellular membranes. 

Following prM maturation in the Golgi, the fusion is loop is said to be activated 

and is as such available to facilitate binding (Roby et al., 2015). EDIII adopts an 

immunoglobulin-like fold and contains the cell receptor-binding sites and is 

therefore vital for entry into host cells. Entry is initiated through receptor-

mediated endocytosis following EDIII binding to a cellular receptor (Smit et al., 

2011; Zhang et al., 2017). Many different cellular proteins have been identified 

as entry factors during flavivirus infections including C-type lectin receptors (CLR) 

(S. T. Chen et al., 2011), αvβ3 integrins (Chu and Ng, 2004; Zaitsev et al., 2014; 

Fan et al., 2017), TYRO3, AXL and MER (TAM), and T-cell immunoglobulin and 

mucin domain (TIM) (Meertens et al., 2012; Niu et al., 2018; Oliveira and Peron, 

2019; Ghosh Roy, 2020). Additionally, EDIII is highly antigenic and most of the host 

neutralising antibody response is directed against epitopes found in this domain 

(Volk et al., 2007; Esswein et al., 2020). The antibodies directed against EDIII tend 

not to be cross-reactive across flaviviruses, perhaps due to relatively low sequence 

identity in this region (Sun, Chen and Lai, 2018). However, antibodies that are 

generated to recognise EDI and EDII can be cross-reactive, such as those which 

neutralise both DENV and ZIKV. This is perhaps due to sequence similarity in 

highly-conserved epitopes found in EDI and EDII such as the fusion loop. (Barba-

Spaeth et al., 2016; Fernandez et al., 2017; Rathore and St. John, 2020).  

 

The non-structural proteins fulfil a variety of roles, ranging from immune 

antagonism to protease functions and polymerase activities. NS1 is a highly 

conserved flavivirus protein that has diverse functions in the viral life cycle, 

including as a co-factor in virus replication, as a host immune response antagonist, 

and in disease pathogenesis (Muller and Young, 2013; Rastogi, Sharma and Singh, 
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2016). NS1 is translated and translocated into the ER membrane and then 

proteolytically cleaved by ER-resident host proteases (Falgout and Markoff, 1995). 

Immediately following this, NS1 is glycosylated at two asparagine residues (N130 

and N207) that are conserved across most flaviviruses, although additional sites 

for glycosylation exist (Yap et al., 2017). Subsequent oligomerisation occurs and 

is influenced by the glycosylation state of NS1; intracellular NS1 tends to display 

high-mannose glycosylation, and trimming of these sugars with the addition of 

complex glycans in the Golgi allows formation of soluble hexameric NS1, which 

can then be excreted from the cell (Muller and Young, 2013; Rastogi, Sharma and 

Singh, 2016). Although NS1 lacks a TMD, the β-roll protrusions of dimeric NS1 are 

hydrophobic and can interact with cellular membranes (Akey et al., 2015). This 

intracellular, dimeric NS1 can remodel liposome structure and acts as an 

important co-factor to viral replication. Indeed, NS1 has been shown to be able to 

remodel ER membranes to form replication factory-like compartments (Ci et al., 

2020). While mutations in the hydrophobic β-roll that increase its charge do not 

alter liposome remodelling kinetics, this modified NS1 is no longer able to aid viral 

replication and is also exported more readily from the cell (Akey et al., 2015). 

Hexameric NS1 can be exported from both vertebrate and invertebrate cells, 

though export from invertebrate cells requires interactions with the chaperone 

caveolin complex. This interaction is not required in vertebrate systems for NS1 

export (Rosales Ramirez and Ludert, 2018). During human infection, a large 

amount of NS1 can be secreted and so detection of NS1 has been used as an early 

diagnostic marker. This has primarily used for DENV detection, but assays for other 

flaviviruses have also been developed (Ricciardi-Jorge et al., 2017; Tan et al., 

2019). Secreted NS1 from various flaviviruses have also been shown to increase 

endothelial membrane permeability in vitro and in vitro, possibly aiding viral 

dissemination and contributing to pathogenicity (Puerta-Guardo et al., 2019).  

 

NS2A is a hydrophobic membrane-associated protein which can associate with the 

viral 3’ UTR and is important for replication and immune antagonism (Leung et 

al., 2008). Cleavage by an unknown protease and the viral NS2B/NS3 protease 

liberates NS2A from the viral polyprotein, generating a protein of 224 amino acids 
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with 5 predicted TMD (Xie et al., 2013). While critical sequences of NS2A are 

conserved between flaviviruses, there is some difference in the predicted 

membrane topology. For example, ZIKV and DENV may have reversed 

transmembrane topology to YFV. In the case of the former pair, a vital N-terminal 

stretch of amino acids can be located in the ER, whereas for the latter these 

residues are found in the cytoplasm (Barnard et al., 2020). Mutations in ZIKV NS2A 

have been linked to viral virulence, whereby variations at a single residue (alanine 

(A) or valine (V) 117) can result in dramatically different infection outcomes in 

mice models (Ávila-Pérez et al., 2019). Another A to V switch at residue 175 was 

also shown to attenuate ZIKV in both in vitro and in vivo systems (Márquez-Jurado 

et al., 2018). NS2A has been shown to be important for viral RNA synthesis, and 

virion assembly and maturation (Xie et al., 2013). Specifically, NS2A can 

selectively bind and recruit prM, E, NS2B/NS3 and viral 3’ UTR to sites of assembly, 

and mutations which disrupt these interactions leads to an abrogation of virion 

assembly (X. Zhang et al., 2019; Xie et al., 2019). For some flaviviruses, such as 

YFV, a truncated form of NS2A is generated through partial cleavage by NS2B/NS3 

at an internal site producing a 190 amino acid variant which also seems to be 

essential to infectious virion production, although the mechanism behind this has 

not yet been fully explored (Kümmerer and Rice, 2002). As such, NS2A is a critical 

factor in flavivirus assembly. In addition to its role in assembly, NS2A has been 

shown to inhibit innate immune responses by inhibiting IFNβ signalling during 

KUNV infection and blocking TBK1/IKKε signaling in DENV infection (Chen et al., 

2017). ZIKV NS2A has also been shown to disrupt RIG-I signaling, providing another 

mechanism for immune evasion (Ngan et al., 2019).  

 

NS2B is an essential co-factor for NS3 protease activity, and mutations in the 

central hydrophilic region will abrogate this activity (Li et al., 2016). Indeed, the 

hydrophilic region alone, which is flanked by TMD, is necessary and sufficient for 

NS3 protease functions. The TMD may serve to help anchor the viral protease in 

host membranes and may improve protease efficiency (Chambers et al., 1993). As 

few solved structures for NS2B exist, the number of TMDs are sometimes reported 

differently. DENV NS2B reportedly contains 4 TMDs (Y. Li et al., 2015) and JEV 
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NS2B has 3 (Li et al., 2016). This, like the differences observed in NS2A membrane 

topology highlights important differences between related viruses. These TMDs, 

while not required for NS2B/NS3 protease activity, have been implicated in virus 

replication and virion assembly (Li et al., 2016).  

 

As discussed above, NS3 has protease activity when coordinating with NS2B 

(NS2B/NS3pro), the action of which is essential for polyprotein processing (Li, 

Zhang and Li, 2017). Additionally, NS3 is also vital for replication and forms the 

helicase of the viral polymerase (NS3hel), with which NS5 makes up the RNA-

dependent RNA polymerase (RdRp) (Papageorgiou et al., 2016). The trypsin-like 

serine protease activity of NS3 is encoded in the N-terminus of the protein. This 

domain contains the catalytic triad (N-Histidine (H)-Serine (S)) conserved through 

all flaviviruses (Assenberg et al., 2009). The N-terminal protease domain is joined 

to the larger helicase domain by a short, flexible linker (Luo et al., 2008). Without 

binding a substrate, NS2B/NS3pro adopts an open conformation. Substrates bind to 

the NS3 active site before NS2B encloses the NS3-substrate core (Brecher et al., 

2017). NMR spectroscopy also revealed that binding of inhibitors to DENV 

NS2B/NS3pro switched the conformation of the protease from open to closed (Zhu 

et al., 2015). The flavivirus protease is highly conserved and essential, and as 

such is a promising target for developing therapeutics (Lee et al., 2017; Z. Li et 

al., 2017; Yao et al., 2019). The larger C-terminal domain has helicase, adenosine 

triphosphatase (ATPase) and RNA triphosphatase activities (RTPase) and may be 

required to resolve viral genomic RNA secondary structures to allow NS5-mediated 

negative-sense RNA synthesis. Additionally, NS5 unwinds duplex RNA using energy 

generated from ATP hydrolysis (Swarbrick et al., 2017). The RTPase activity of 

NS3, along with the guanylyltransferase/methyltransferase activities of NS5 are 

essential for transferring the N7 methylated (me7)-guanosine cap to nascent viral 

RNA (Saeedi and Geiss, 2013). While NS3 does not seem to be packaged in the                                                                      

virion, NS3 may be required to help deliver viral RNA to virions and is important 

for virus assembly independent of its enzymatic activities (Liu et al., 2002; Patkar 

and Kuhn, 2008; Barnard et al., 2020).  
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NS4A is another small, hydrophobic protein containing multiple TMD and is one of 

the least well understood proteins in the viral lifecycle. It is flanked by NS3 and a 

small, so called ‘2K’ peptide. Cleavage between 2K and NS4A by NS2B/NS3pro is 

required for subsequent release of NS4B from 2K (Lin et al., 1993). NS4A has been 

shown to induce ER membrane rearrangements, and associate with NS1 and the 

viral replication complex; these interactions are vital for infection (McLean et al., 

2011). In DENV, NS1 has also been shown to interact with the NS4A-2K-NS4B 

precursor molecule, an interaction which was vital for RNA replication but not 

related to membrane reassortments (Płaszczyca et al., 2019). DENV NS4A has been 

shown to oligomerise, a feature which is vital for function and is mediated through 

intermolecular interactions in the first TMD. Mutations in DENV NS4A (such as E50A 

and G67A) can reduce oligomerisation and stability, and subsequently attenuate 

viral replication (Lee et al., 2015). NS4A localises to sites coincident with dsRNA 

staining, and NS4A lacking 2K is sufficient to induce membrane rearrangements to 

produce structures resembling viral replication compartments. This is most likely 

achieved through induction of membrane curvature following insertion of TMDs 

into lipid bilayers and subsequent oligomerisation (Miller et al., 2007). Indeed, 

the cytosolic N-terminus of NS4A has been shown to preferentially bind curved 

lipid membranes, and mutations in this region impair viral replication (Hung et 

al., 2015). As such NS4A is vital for forming the replication factories that are 

characteristic of flavivirus infections. In addition, NS4A has been linked to immune 

antagonist functions, as ZIKV NS4A is able to suppress type 1 IFN production 

through RIG-I inhibition (Ma et al., 2018; Ngan et al., 2019). JEV NS4A can also 

inhibit phosphorylation of STAT1/2, thus suppressing type 1 IFN (Lin et al., 2008).  

 

NS4B is hydrophobic protein of around 30kDa which is predicted to contain 5 

integral, transmembrane domains. The 2K signal peptide is required to direct NS4B 

translocation through the ER membrane, though it is dispensable for most other 

functions and is cleaved following membrane insertion (Zmurko, Neyts and 

Dallmeier, 2015). WNV and DENV NS4B has been shown to dimerise, and mutations 

in regions which mediate dimerisation are lethal to the viruses (Zou et al., 2014). 

As with NS4A, NS4B has been shown to localise to sites of dsRNA staining and is 
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likely to be involved in viral RNA replication, although the exact mechanism 

behind this has yet to be elucidated (Zmurko, Neyts and Dallmeier, 2015). Like 

other non-structural proteins, NS4B is part of the flavivirus anti-immune 

repertoire. NS4B from DENV has been shown to inhibit STAT1 phosphorylation, a 

function that is conserved in both WNV and YFV and is generated through the N-

terminus of the protein (Muñoz-Jordán et al., 2005). Mutations in this section of 

ZIKV NS4B have been shown to result in an attenuated virus, which induces 

stronger type-1 interferon and T-cell immune responses in challenged mice than 

a wild-type (WT) virus (Li et al., 2019).  

 

NS5 is the largest flavivirus protein at around 900 amino acids in length and 

contains a N-terminal methyl-transferase domain and is connected via a short, 

flexible linker to the previously mentioned, C-terminal RdRp (Zhou et al., 2007; 

Zhao et al., 2017). Nascent viral RNAs are capped by NS3 and NS5 to increase 

stability in the cytoplasm through the prevention of cellular exoribonuclease 

digestion, and enables efficient translation (Sanford et al., 2019). The NS5 RdRp 

is loaded onto a conserved viral RNA sequence at the 5’-terminus of the genome 

termed stem-loop A (SLA), and is then transferred to the 3’ end following 

cyclisation of the RNA genome. Viral RNA can then be copied in the 3’ to 5’ 

direction to generate negative-sense template strands to produce more positive-

sense RNA for use in translation of virus assembly (Fajardo et al., 2020). The 

mechanism behind the switch from replication to translation is not well 

understood, however some evidence suggests the binding of nascent NS5 to SLA 

following initial translation inhibits further translation, and switches the priority 

to replication (Fajardo et al., 2020). NS5 has also evolved potent type 1 IFN 

suppression mechanisms, although different flavivirus NS5 proteins have divergent 

mechanisms for dealing with the immune response (Best, 2017). For example, both 

ZIKV and DENV NS5 bind to, and prevent activation of, human STAT2 (Wang et al., 

2020).  
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1.1.4 Virus structure 

Flaviviruses form icosahedral virions around 500 Å in diameter which, when 

mature, are coated with 180 copies of E arranged in 90 homodimers, and 180 

copies of M which sits just below the surface of the virion as shown in Figure 1-4 

(Kuhn et al., 2002). In these particles, E and M are anchored via their C-terminal 

domains into a lipid bilayer derived from the ER (Zhang et al., 2003). Three E 

dimers lie parallel to each other and so form a total of 30 rafts. Half of each raft 

forms each of the 60 asymmetric units that make up the virion (Sirohi and Kuhn, 

2017). This encases an internal nucleocapsid core, made up of the RNA genome 

encapsulated by multiple copies of C. Immature particles are made up of 180 

prM:E heterodimers, and furin-mediated (or a furin-like protease) cleavage 

removes the pre-peptide of prM, generating the mature particle described above 

(Prasad et al., 2017).  
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Figure 1-4: Illustration of Zika virus. 

Envelope proteins are indicated by red and yellow, and glycosylated asparagine 

residues are indicated in turquoise. Membrane is coloured purple and mostly 

hidden beneath the surface. Adapted from an image from the Protein Data Bank 

(PBD), adapted from (Sirohi et al., 2016).  
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1.1.5 Geographical distribution and vectors 

 

As mentioned, most members of the Flavivirus genus are arboviruses, and as such 

are generally transmitted to a vertebrate host and limited in geographical range 

by their vector host (Gould et al., 2003). Dissemination of flaviviruses from a 

vector to a vertebrate host is termed horizontal transmission, and flaviviruses can 

be maintained solely in vector populations through transgenerational (vertical) 

transmission (Rosen, 1988). Vertical transmission has been suggested as a way for 

flaviviruses to persist in periods unfavourable to transmission, such as during 

winter, though the importance of this has been questioned (Lequime and 

Lambrechts, 2014). This controversy has largely stemmed from discrepancies 

between laboratory and field experiments, and estimated rates of vertical 

transmission may not be sufficient to maintain arboviruses (Lequime, Paul and 

Lambrechts, 2016). Nevertheless, recent reviews, such as by Ferreira et al, 

highlight that vertical transmission of viruses such as DENV is widely found in 

nature (Ferreira-De-Lima and Lima-Camara, 2018). The principal vectors of 

flaviviruses are blood-feeding mosquitoes and ticks. Culex and Aedes genera of 

mosquitoes are the primary vector for the majority of mosquito-borne flaviviruses 

where, broadly speaking, Culex species primarily transmit flaviviruses such as WNV 

and JEV while Aedes species transmit viruses such as DENV, YFV and ZIKV (Huang 

et al., 2014). Often, these viruses are maintained naturally through sylvatic cycles 

where humans are considered a dead-end host. A typical cycle will see 

transmission to, and amplification of the arbovirus in, a susceptible vertebrate 

host. Subsequent blood-meals taken from an infected host can transfer the virus 

to the mosquito vector, and the virus can quickly penetrate the mosquito midgut 

and spread to other tissues such as the salivary gland via the haemolymph in 

preparation for further transmission (Salas-Benito and De Nova-Ocampo, 2015). So 

while vector-human transmission is often accidental for some flaviviruses, the 

increasing urbanisation of tropical regions and the presence of highly 

anthropophilic mosquitos such as Aedes aegypti can results in human-only 

transmission cycles, as has been seen for DENV, YFV and possibly ZIKV (Weaver 
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and Reisen, 2010; Gregory et al., 2017; Douam and Ploss, 2018). For ZIKV, gaps in 

understanding of transmission cycles remain, although the 2015/16 outbreak in 

the Americas showed that human-only cycles are possible. 

 

These mosquito species are now prevalent over a wide expanse of the globe 

following recent rapid expansion events. Aedes aegypti originates in Africa and is 

thought to have spread to the Americas through the Atlantic slave trade, while 

Aedes albopictus more recently spread from Asia into the pacific islands and 

further into the Americas (Kraemer et al., 2015). Additionally, as Aedes albopictus 

can tolerate a wider range of temperatures than Aedes aegypti and it has recently 

expanded into southern Europe. The difference in geographical range between 

Aedes aegypti and Aedes albopictus is illustrated in Figure 1-5. A large amount of 

people are therefore exposed to the diseases borne by Aedes mosquitoes. For 

example, an estimated 53% of the world’s population now live in areas that are 

suitable for DENV transmission, a figure that is likely to increase (Messina et al., 

2019). Factors that predict the suitability of an environment to Aedes habitation 

include temperature, precipitation, vegetation and urban coverage (Kraemer et 

al., 2015). As such, phenomena such as climate change and urbanisation are 

rendering large areas of the tropics more amenable to mosquito survival and 

propagation.  
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Figure 1-5: Global distribution of Aedes species mosquitoes.  

Figure showing the global distribution of Aedes aegypti (A) and Aedes albopictus 

(B). The heatmap represents predicted range of the selected mosquitoes, with 

block dots representing confirmed mosquito isolations as identified in the 

literature. Adapted from (Kraemer et al., 2015).     
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1.1.6 Economic and health burden 

Flavivirus infections cause massive damage to human health and economies world-

wide, often in areas that are least able to endure it.  

 

For example, DENV is responsible for an estimated 390 million infections every 

year, causing significant morbidity (Bhatt et al., 2013; Brady and Hay, 2020). 

While most DENV infections are asymptomatic, there are a significant amount of 

cases that manifest clinically, with symptoms ranging from a mild fever to 

potentially deadly manifestations like dengue haemorrhagic fever (now termed 

severe dengue) (Brady and Hay, 2020). While severe dengue is rare, the sheer 

volume of DENV cases represents a large economic and health burden on many 

health systems. In Brazil alone, DENV was thought to cost over $1200 million a 

year as measured in 2013 (Martelli et al., 2015). Because of this, DENV has been 

the focus of intense efforts to develop a vaccine for many years, culminating with 

the licensing of a live-attenuated virus vaccine (termed Dengvaxia) in 20 countries 

(Thomas and Yoon, 2019). Despite conferring protection at the population level, 

it was observed that patients who were seronegative for DENV at the time of 

vaccination were at an increased risk for subsequently suffering from severe 

dengue (The Lancet Infectious Diseases, 2018). As such, people seronegative for 

DENV are not now administered Dengvaxia. An alternative live-attenuated 

vaccine, TAK-003, has recently reported promising protection levels, and has been 

shown to be safe to seronegative patients (López-Medina et al., 2020).  

 

WNV was first isolated in Uganda in 1937 and is now endemic in nearly every area 

of the world (Chancey et al., 2015). The primary non-vector host for WNV is birds, 

and though both humans and horses can be infected and suffer disease they are 

regarded as dead-end hosts (Murray, Mertens and Desprès, 2010). Like ZIKV, WNV 

is a neurotropic virus (Murray et al., 2006). Infection is usually asymptomatic or 

results in a mild, febrile illness, but can sometimes manifest with severe 

meningitis, encephalitis, and death. Recovery can be slow from both severe and 

mild diseases, with prolonged periods of weakness and fatigue potentially 
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resulting in either case (Symptoms, Diagnosis, & Treatment | West Nile Virus | 

CDC, 2018). Though the rate of severe neurological disease is thought to be low 

(around 1 in 150), as of yet there are no specific anti-viral therapies available and 

treatments must be supportive in nature (Kemmerly, 2003). As such there can be 

substantial costs associated with treating WNV infections. Though few studies 

have looked at the impact of WNV in the developing world, WNV cost around $800 

million in North America from 1999-2012. This is likely a conservative estimate 

because the effect of mild disease on workplace productivity was not accounted 

for (Barrett, 2014; Shing et al., 2019).   

 

The distribution of YFV is largely localised to sub-Saharan Africa, although sylvatic 

cycles exist in Latin-America (Shearer et al., 2018). Infection is usually 

symptomless or includes fever, nausea, and muscle pain, although a small 

proportion of patients suffer a second wave of more serious symptoms (jaundice, 

abdominal pain, and bleeding) after the initial recovery. Half of patients who 

suffer from the severe, second wave of symptoms subsequently die (Yellow fever, 

2019). Unlike other flaviviruses, there is an effective vaccine for YFV which has 

aided in reducing both infections and deaths, although recent lapses in vaccination 

pipelines threaten to unwind past progress (Garske et al., 2014). For example, in 

2013 there was an estimated 78,000 deaths from YFV in Africa, though this was 

predicted to have been reduced by 27% by the use of vaccinations (Garske et al., 

2014).  
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1.1.7 Infection cycle 

Flavivirus infection begins with E binding to cellular receptors and initiating 

clathrin-mediated endocytosis (Laureti et al., 2018). Following this, the virus 

particle is trafficked through the endosomal pathway, where reduction in the pH 

of endosomes induces conformation changes in the virion and results in the 

formation of E homotrimers. The detection of endosomal pH changes may be 

facilitated through the protonation of conserved histidine residues in E, although 

observations in WNV suggest this may not be the case for all flaviviruses (Nelson 

et al., 2009; Stiasny et al., 2011). Regardless, the switch to E homotrimers 

facilitates the insertion of E into the endosomal membrane and subsequent fusion 

of the lipid bilayers, creating the fusion pore (Stiasny et al., 2011). The RNA 

genome can then translocate into the cytoplasm through the fusion pore. It is 

thought that ubiquitination of C is required to allow uncoating of the viral RNP 

and facilitate release of the genome (Byk et al., 2016). Cellular proteins such as 

vasolin-containing protein (VCP) have been shown to be involved in the 

disassembly of the viral RNPs (Ramanathan et al., 2020) (Gestuveo et al., 2021).  

 

Incoming viral RNA initially engages cellular translational machinery to create the 

polyprotein, which is processed by host proteases and the viral NS2B/NS3pro to 

liberate individual viral proteins. The viral RNA is used as a template for both 

further polyprotein translation and for RNA replication. To efficiently coordinate 

these processes and resources in space and time, flaviviruses induce large-scale 

re-arrangements of ER membranes to create replication factories (RF), a feature 

common to most positive-sense viruses, although the source of membranes can 

differ (Spuul et al., 2011; Mazeaud, Freppel and Chatel-Chaix, 2018). Additionally, 

as viral RNA is highly immunogenic, sequestering RNA in RF can reduce detection 

by intracellular immune responses (Arakawa and Morita, 2019). As discussed, NS3 

and NS5 cooperatively act to transcribe virus RNA from 3’ to 5’, generating 

negative-sense RNA that can be used as a template for positive-sense genome 

production. Together, NS3 (through its RTPase activity) and NS5 (through its 

guanylyltransferase/methyltransferase activities) can confer a 5’ N7 methylated 
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(me7)-guanosine cap to nascent RNA to enable further translation and for 

packaging into the virion (Fajardo et al., 2020).  

 

Newly synthesised RNA is first exported from RF through a pore and can be used 

as a template for negative-strand replication or protein synthesis, be degraded to 

generate sfRNA, or is packaged into newly forming virions. C specifically 

encapsidates the full length genomic viral RNA, although if any specific packaging 

signals mediate this process or whether electrostatic interactions alone are 

sufficient is not yet fully understood (Pong et al., 2011; Diosa-Toro et al., 2020). 

A recent study using DENV has shown that specific residues in NS2A are able to 

specifically bind the 3’ UTR of viral genomic RNA and is thought to do so 

immediately following RNA synthesis to shuttle the RNA to sites of assembly (Xie 

et al., 2019). NS2A can also bind and recruit prM/E and NS2B/NS3pro to sites of 

assembly, and prM/E can form the viral envelope to package the readily available 

RNPs (Nicholls, Sevvana and Kuhn, 2020). These newly formed immature virions 

are exported through the Golgi network, where the declining pH induces reversible 

conformational changes which allows furin to proteolytically cleave prM, and so 

form a mature virion (Nicholls, Sevvana and Kuhn, 2020). Following this, a Golgi 

vesicle can fuse with the plasma membrane, releasing a fully matured virion into 

the extracellular milieu. Figure 1-6 depicts this cycle.  
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Figure 1-6: General lifecycle of flaviviruses 

A schematic illustrating a simplified lifecycle of flaviviruses. Infection is initiated 

following engagement of cellular receptors, and trafficking through the endocytic 

pathway allows release of the viral genome into the cytoplasm. Translation of 

the genome produces a polyprotein which is processed into constituent parts by 

both cellular and viral proteases. Viral proteins induce structural rearrangements 

in the ER to form sites of viral replication. Following replication and further 

translation, progeny virions can assemble and bud into the ER and traffics to the 

Golgi apparatus. Flaviviruses undergoes proteolytic maturation in the Golgi and 

are subsequently exported from the cell. Created in Biorender. 
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1.2  ZIKV: historical perspective and properties  

1.2.1 Discovery and spread 

ZIKV was first discovered in 1947, when it was isolated from a rhesus macaque in 

Uganda’s Zika forest, before being first identified in humans there in 1962/63 

(Simpson, 1964; Haddow et al., 2012). The WHO says that the first known human 

ZIKV infection was reported in 1952, likely based on a report from MacNamara, 

however it seems that this infection was rather the closely related Spondweni 

virus (Kucharski and Riley, 2016; ‘WHO | The history of Zika virus’, 2019). 

Following this discovery, serological studies revealed widespread exposure to ZIKV 

across equatorial Africa, and through the 60’s to the 80’s ZIKV spread to equatorial 

Asia (Duong, Dussart and Buchy, 2017). In 2007, the first outbreak of ZIKV disease 

was documented on the island of Yap in the federal states of Micronesia (Duffy et 

al., 2009). While there were no deaths or cases of neurological complications in 

this outbreak, it was estimated that approximately 73% of the population were at 

one point infected with ZIKV. The reasons for such high prevalence is currently 

unknown, especially in the absence of any particular mutations that could explain 

the difference in pathogenicity, but the lack of natural immunity to ZIKV in an 

otherwise naïve population could explain the rapid circulation on Yap island (Duffy 

et al., 2009). Previous similar outbreaks of ZIKV may have occurred but could have 

been masked by the similar clinical manifestations of similar diseases like DENV 

and the alphavirus chikungunya (CHIKV).  

 

Following the Yap island outbreak, in late 2013-14 there were more outbreaks 

across several pacific islands including Easter Island, Cook Islands, New Caledonia 

and French Polynesia, where a high proportion of populations were reportedly 

infected (Delatorre, Fernández and Bello, 2018; Musso et al., 2018). Among these 

outbreaks were the first signs of the clinical manifestations that would come to 

define future ZIKV outbreaks. Among these clinical manifestations were more 

serious symptoms with associated with ZIKV, primarily demonstrated by an 

increase in the reports of Guillain-Barré syndrome higher than what would be 

expected (Simon et al., 2018). Concurrently, ZIKV was first associated with sexual 
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transmission, as ZIKV was found shedding in sperm of a man in Tahiti (Musso et 

al., 2015). Additionally, in late 2013 there was some evidence for potential 

transplacental transmission (Besnard et al., 2014). The biological mechanisms 

behind these defining clinical phenotypes will be discussed further below (Chapter 

1.2.3). By the spring of 2015, Brazil first reported an unidentified illness which 

caused a rash, but phylogenetic and molecular clock analysis suggests that ZIKV 

arrived much early than this, possibly even as early as August of 2013 and was 

likely imported from the Pacific islands, possibly during the 2013 Confederations 

Cup (Costa et al., 2020). As such it seems unlikely that the FIFA 2014 World Cup 

was responsible for the introduction as some have previously speculated.  

 

Zika was formally identified in May of 2015 in Brazil, and other south American 

countries like Colombia report ZIKV-like illnesses circulating at this time (Tolosa 

et al., 2017; Lowe et al., 2018). By 2016, ZIKV had expanded into most of Brazil 

(excluding some of the more remote areas of the Amazon), and seroprevalence 

reached as high as 63% in some places. On the 1st February 2016, the WHO declared 

ZIKV a public health emergency (Netto et al., 2017). As this might suggest, in 2016 

there was a huge amount of ZIKV infections, with 200,000 suspected infections in 

Brazil alone as reported by the Pan American Health Organisation (PAHO) 

(PAHO/WHO Data - ZIKA, 2021). Since then however, the number of suspected 

ZIKV cases across the Americas has consistently fallen year-on-year from 

approximately 650,000 cases in 2016, to approximately 19,000 cases in 2020 

(PAHO/WHO Data - ZIKA, 2021). While this is not an insignificant number of 

infections, it does demonstrate that as the world was ramping up a response to 

ZIKV, the virus was already disappearing. Since then, there has been some 

continued transmission in the Americas, as well as localised outbreaks in Asia. For 

example, Rajasthan state, India, first identified ZIKV cases in September 2018 and 

a total of 159 cases were reported during September and October of that year 

(Yadav et al., 2019). These cases were focused in the capital city of Jaipur and 

seem to be caused by endemic Asian strains. Around the same time, the was also 

an outbreak in Madhya Pradesh state, where 130 cases were reported mainly 
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during November 2018 (Gupta et al., 2019). Interestingly, neither outbreak seems 

to be associated with any neurological defects.  

 

While the dynamics of ZIKV spread during the 2016 pandemic, and the symptoms 

associated with it, are well understood there are questions remaining as to the 

reasons underpinning the rapid propagation and subsequent sudden decline in 

infections. Seroprevalence studies in Brazil have shown there is a high positivity 

rate for ZIKV antibodies which may impart herd immunity on these populations 

(Netto et al., 2017). Although there are many areas, such as India, that support 

Aedes mosquito populations they presumably contain a largely naïve population 

and yet have not suffered such a large outbreak. While recent serological data is 

missing for the Indian subcontinent, historical data suggests there is a low 

population seroprevalence for ZIKV antibodies (Khaiboullina et al., 2018). So, 

what caused the outbreak in the Americas to be on a scale larger than anything 

seen previously? One answer could lie in weather patterns. El Niño is an irregular, 

complex weather event that occurs every few years and leads to unusually warm 

temperatures. This event was particularly strong in 2015, with areas several 

degrees warmer than usual. Studies have shown that there is a strong overlap 

between ZIKV incidence and extreme weather associated with El Niño, perhaps 

with the warmer weather creating ideal conditions for virus spread (Paz and 

Semenza, 2016; Rao et al., 2019). Indeed, the 2015 El Niño event resulted in 

Uruguay and southern South America being colder than expected, and these are 

areas that did not experience as many cases. Therefore, the aforementioned lack 

of herd immunity, combined with the unusual and extreme weather, may have 

created the perfect storm for ZIKV to propagate rapidly. As discussed in 1.1.2, 

global temperatures are likely to influence the range and activity of the main 

vector of ZIKV transmission, Aedes mosquitoes.  
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1.2.2 Transmission 

ZIKV is mainly spread to humans by the urban mosquito Aedes aegypti, though 

there have been many studies investigating the role of other vectors in the 

transmission of ZIKV (Ciota et al., 2017; Du et al., 2019; Gutiérrez-Bugallo et al., 

2019; Gomard et al., 2020) Error! Reference source not found.. While Aedes 

albopictus can replicate ZIKV to high titres, there seems to be a barrier to 

transmission. Additionally, Culex species do not appear to replicate ZIKV or 

transmit it to high levels. This has been shown in several studies, including where 

mosquitos from Reunion island (2 species of Culex quinquefasciatus, Aedes 

albopictus and, Aedes aegypti), were infected with African (Dak84) or Asian 

(PaRi_2015 and MAS66) ZIKV lineage. In this study, the Culex strains were not 

infected by any ZIKV strain, whereas both Aedes species were poorly infected, but 

Aedes aegypti had a higher transmission efficiency (Gomard et al., 2020). 

Similarly, another study took ZIKV strains from the 2016 outbreak and a strain 

isolated in 2010 from Cambodia and tested the vector competence of Aedes 

aegypti and albopictus. As in the previous study while Aedes albopictus seemed 

to be infected to similar levels to Aedes aegypti, the latter was better able to 

transmit the virus (Ciota et al., 2017). These reports suggest that while there are 

several candidate vectors for ZIKV transmission in urban areas, Aedes aegypti 

seems likely to be the primary vector. 
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Figure 1-7: Zika transmission cycle.  

There are two reported transmission cycles for ZIKV. A) A sylvatic cycle, whereby ZIKV is 

maintained through infections of non-human primates with arboreal Aedes mosquitoes. 

B) Amplification of ZIKV in humans following transmission by Aedes mosquitos, and a 

human-to-human cycle where ZIKV is sexually transmitted. Adapted from Rather et al 

(2017). 
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Additionally, Aedes aegypti displays several traits that are beneficial to human 

transmission; they can readily breed in standing-water found in urban 

environments, are generally day-biting while residing indoors, and can take 

multiple blood meals within a short period of time (Scott and Takken, 2012). 

Although Aedes aegypti is the primary human vector in urban centres, different 

aedes species, such as Aedes africanus, are responsible for the arboreal cycle 

which largely involves the infection of non-human primates (Berthet et al., 2014). 

Large swathes of South America are at high risk for ZIKV transmission due to 

suitable environmental factors for the vector populations (Cunze et al., 2019). As 

discussed earlier, the predicted habitable area for these vectors is likely to expand 

in the coming years and decades, exposing previously naïve populations to 

infection, potentially with similar effects to those as seen in Brazil in 2016. 

 

In addition to mosquito transmission, it has become clear that ZIKV can be sexually 

transmitted (Moreira et al., 2017). ZIKV RNA has been found in the semen of up 

to 50% of men infected with ZIKV, and for as long as 370 days following the onset 

of symptoms, although viral clearance from semen is estimated to be on average 

close to 25 and 38 days (Barzon et al., 2018; Medina et al., 2018). The occurrence 

of male-to-female sexual transmission is usually most commonly reported, though 

there have also been reports of female-to-male and male-to-male transmission 

(Mead, Hills and Brooks, 2018). While sexual transmission clearly represents an 

important transmission route for ZIKV, it is not clear what impact this may have 

had on the rapid spread seen in the Americas in 2016. Indeed, the incidence of 

sexual transmission in ZIKV has estimated to be around 3% of total viral spread, 

which is not thought to significantly increase the basic reproduction number (R0) 

of the virus, but may have extended the duration of the epidemic (Gao et al., 

2016). As well as semen, the presence of ZIKV RNA and infectious particles have 

been detected in blood, breast milk and urine (Gourinat et al., 2015; Sotelo et 

al., 2017; Magnus et al., 2018). A meta-analysis of the prevalence of ZIKV in 

donated blood has been conducted, which found that in collated studies, 1.02% of 

pooled, blood samples were positive for ZIKV RNA (Liu et al., 2019). While several 

of the donors were symptomatic none of the blood recipients developed 
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symptoms, although some did develop anti-ZIKV IgG responses. It is not clear 

therefore, whether blood-transfusion contributes to the spread of ZIKV.  

 

ZIKV has been shown to disseminate in breast milk, in one case for a month before 

and 9 days following birth of the child (Sotelo et al., 2017). Here, breastfeeding 

was not commenced until after ZIKV was no longer detectable and at no point did 

the baby test positive for ZIKV. Additionally, a study of 4 other breastfeeding 

mothers with confirmed ZIKV infection revealed that while ZIKV RNA and 

infectious particles could be isolated from breast milk, there was no detectable 

transmission to children (Cavalcanti et al., 2017). These results may tentatively 

suggest that transmission from breast milk is unlikely and may not represent a 

major route of transmission. ZIKV RNA is readily detectable in patient urine, often 

for longer and to higher levels than in serum and as such provides an easy way to 

test for the presence of ZIKV (Gourinat et al., 2015). Additionally, in some cases 

infectious ZIKV particles have been extracted from patient urine, although it is 

doubtful whether this represents a major transmission pathway (F. C. Zhang et 

al., 2016).  

 

One of the hallmarks of the recent ZIKV outbreaks was the incidence of fetal 

abnormalities, and as such the mechanisms behind maternal-fetal vertical 

transmission have been thoroughly examined. It became apparent that maternal 

infection in earlier trimesters was associated with a higher risk to the fetus (Cao, 

Diamond and Mysorekar, 2017). Indeed, a recent report analysing 7 other 

prospective studies of ZIKV in pregnancy found that the estimated risk of vertical 

transmission fell from 47% in the first trimester to 25% in the third. This correlated 

with a decline in the estimated risk of developing congenital Zika syndrome (CZS) 

(Chapter 1.2.3) of 9% to 1% in the same trimesters (Ades et al., 2020). Although 

this study used reports from diverse settings and sometimes incomplete data sets, 

it is in accordance with other reports (Pomar et al., 2018; Teixeira et al., 2020). 

While the exact mechanism behind vertical transmission has not yet been 

elucidated, the transplacental route of infection is possible because ZIKV displays 

tropisms for many placental cell types as shown through infections of primary 
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cultures or tissue explants, especially those that make up the placental in the first 

trimester (El Costa et al., 2016). Additionally, primary human trophoblasts (PHTs) 

from full-term placentas release type-III IFN’s that restrict ZIKV infection (Bayer 

et al., 2016; Corry et al., 2017). It may be possible that as the placenta develops, 

increasing PHTs can provide protection against infection resulting in the reduction 

of vertical transmission and CZS cases as pregnancy advances. While maternal-

fetal vertical transmission in ZIKV infections may not be unique in flaviviruses 

(Platt et al., 2018), it is clearly an important route of disease spread and the cause 

of severe fetal abnormalities termed CZS which is discussed, along with other 

symptoms of infection, described in detail in section 1.2.3, below.  

 

1.2.3  Health implications 

Most ZIKV infections are symptomless, with many publications suggesting that 80% 

of ZIKV patients are asymptomatic based on the analysis of the 2007 Yap Island 

outbreak (Duffy et al., 2009). However, a large scale meta-analysis conducted in 

2018 reported that the incidence of symptomless infection ranged from 29% to 

82% in analysed studies, with discrepancies in sample sizes and study design 

frequently reported (Haby et al., 2018). These inconsistencies could be due to the 

differences in study design or perhaps reveal variances in susceptibilities of 

different populations to ZIKV infection. Either way, a substantial number of ZIKV 

infections are asymptomatic. Patients with symptoms often present with a 

maculopapular rash, fever, conjunctivitis and arthralgia which usually appears 

after an incubation period of between 1-2 weeks (Duffy et al., 2009). However, in 

more serious cases, patients can present with Guillain-Barré syndrome. Guillain-

Barré syndrome is a rare (1 or 2 in 100,000), immune-related disease which usually 

follows an infection and is not due to direct damage caused by a pathogen. It 

causes inflammation of the peripheral nervous system (PNS) and patients present 

with progressive weakening of the arms, legs, and often cranial muscles, with 

severe disease leading to respiratory failure (Leonhard et al., 2019). ZIKV-

associated GBS occurs 5-12 days after symptom-onset and results in around 40% of 

patients being admitted to intensive care units (Leonhard et al., 2020). While 
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some have suggested that ZIKV-associated GBS may be caused by a direct viral 

affect (Muñoz, Parra and Pardo, 2017), the delay in symptom onset does not 

necessarily support that. The symptoms of ZIKV-associated GBS are undoubtedly 

severe and is a major cause of ZIKV morbidity and an economic burden, though 

recent estimates suggest the incidence of GBS was relatively low at only 0.0061% 

(He et al., 2020). Though this may be low, a meta-analysis suggests that the 

2015/2016 ZIKV epidemic increased GBS incidence by up to 2.6 fold in the 

Americas (Capasso et al., 2019).  

 

As discussed in 1.2.2, ZIKV can be vertically transmitted from mother to fetus and 

abrogate fetal development. As such, ZIKV was added to the list of TORCH 

(Toxoplasmosis, Other, Rubella, Cytomegalovirus and Herpes simplex virus) 

agents; these are pathogens that can cause debilitating congenital disease 

(Kovacs, 2020). ZIKV induces congenital defects such as microcephaly (where the 

head circumference is significantly smaller than expected for age and sex), 

collapsed skull, eye damage and decreased brain tissue (Moore et al., 2017). While 

the list of symptoms is not exhaustive or descriptive of each case, together they 

represent a pattern of neurological and developmental defects that are commonly 

ascribed to neonates, and collectively are known as congenital Zika syndrome 

(CZS) (Pereira et al., 2020). ZIKV infection has been shown to downregulate genes 

which regulate the cell-cycle and mitosis, as well as downregulate expression of 

genes associated with neural stem cells and neuronal cell development (N. Zhang 

et al., 2016; Rombi et al., 2020). Through these interactions, ZIKV may be able to 

generate the disease phenotypes seen in CZS. While microcephaly became the 

defining feature of CZS, it is not the default for clinical manifestations of neonatal 

ZIKV infection and severe neurological disease can be present without a reduced 

head circumference (Aragao et al., 2017). While the full extent of the damage 

caused by CZS to infants is not yet known, it is clear that the socio-economic 

burden of ZIKV will continue into the future (Kuper et al., 2019).  
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1.2.4  Replicative cycle 

 

ZIKV entry to cells is primarily initiated through clathrin-mediated endocytosis 

following binding of ZIKV E to a cellular receptor. While the identity of the cellular 

receptor has been quite contentious, AXL has been proposed as a primary entry 

receptor in various cell types, along with other TAM and TIM kinases (Persaud et 

al., 2018; Ghosh Roy, 2020). This has been disputed, as some studies have 

suggested that AXL instead inhibits an anti-ZIKV IFN response. Chen and colleagues 

found that AXL depletion did not inhibit entry but rather facilitated the activation 

of IFN responses which inhibited infection (Chen et al., 2018). When this IFN 

response was also removed, even with AXL depletion infection was reinitiated. 

This suggests that in this system, AXL was either not an entry receptor or not the 

only one. Indeed, there have been several other suggested receptors that may act 

in concert or alone depending on cell/tissue type (Nowakowski et al., 2016; F. Li 

et al., 2017; Meertens et al., 2017; Lee et al., 2018). Despite the contention, AXL 

clearly plays an important role in ZIKV entry. It may not be the only, or indeed 

the primary receptor in every system as ZIKV seems capable of engaging multiple 

cellular receptors. For example, in human skin cells, which are first encountered 

by ZIKV following mosquito bites, AXL silencing significantly abrogated ZIKV 

infection (Hamel et al., 2015). Additionally, although Sertoli cells (SC), which form 

an important part of the testes, can be infected with ZIKV, blockade of AXL 

binding reduces but does not eliminate ZIKV infection (Strange et al., 2019). In 

this study, it was found other testicular cells such as Leydig cells (LC) are resistant 

to ZIKV infection. While LC express less surface AXL than SC, this difference does 

not seem to account for the differential phenotype. Interestingly, LC also display 

a higher basal expression of antiviral genes, such as IFIT1, compared to SC, which 

alone or in combination with the reduction of surface AXL makes them refractory 

to infection (Strange et al., 2019). AXL has also been implicated in ZIKV entry in 

primary astrocytes (Ojha et al., 2019). Additionally, this study found that ZIKV 

infection upregulated TLR3, depletion or inhibition of which reduced infection. 

ZIKV has also been shown to preferentially infect through the apical membrane of 
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polarised cell culture, and egress through the basolateral side. Polarised cells 

make up epithelial membranes that ZIKV would encounter in skin (Tamhankar and 

Patterson, 2019). Interestingly, ZIKV can potentially encounter such membrane 

barriers in the gut if transferred through breastfeeding, and there is some 

evidence that ZIKV can cross intestinal membranes (Hubert et al., 2020). Though, 

as mentioned earlier, while ZIKV can be shed in breastmilk there is no evidence 

that this represents a viable route of transmission (Cavalcanti et al., 2017). 

 

Following internalisation, ZIKV traffics through the endosomal pathway whereby 

a drop in pH facilitates fusion with the late endosomal membrane. Inhibition of 

endosome acidification with bafilomycin A1 prevents fusion and thus leads to virus 

degradation, presumably in lysosomes (Owczarek et al., 2019). Interesting NH4CL 

treatment, which is thought to similarly inhibit endosomal acidification, results in 

ZIKV recycling out of the cell in recycling endosomes (Owczarek et al., 2019). A 

drop in pH as encountered in the endosome is required to facilitate fusion between 

the ZIKV membrane and endosome. A study using DNA-linked lipids as a surrogate 

for virions found that a pH of 6 or below is sufficient to trigger fusion, although 

further decreases do not increase the rate of fusion as there is an unknown rate-

limiting step (Rawle et al., 2018). Endosomal proteins, such as Rab5C and Rab11A, 

have been shown to be important for ZIKV replication, and the interaction with 

Rab11A could suggest that ZIKV utilises recycling endosomes during entry 

(Takahashi et al., 2012; Srivastava et al., 2020). Following fusion and uncoating 

of the virion, the nucleocapsid disassociates releasing viral RNA into the 

cytoplasm. This disassociation probably happens following ubiquitination of C as 

is the case for DENV (Byk et al., 2016) (Gestuveo et al., In press, 2021).  

 

Following nucleocapsid uncoating, the viral genome is used as a template for 

translation and progeny viral proteins can induce of rearrangements and 

invaginations of ER membranes, forming vesicle packets (VP) or RF (Cortese et al., 

2017; Rajah, Monel and Schwartz, 2020). These RFs allow spatial and temporal 

concentration of metabolites required for replication and to protect viral RNA 

from innate immune sensing. Pores in the RFs allow controlled export of RNA for 
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translation, or assembly in sites that appear to be juxtaposed to the sites of 

replication (Cortese et al., 2017). The organisation of these structures seems to 

be aided by disruption to microtubule structures in ZIKV infected cells; 

microtubule stabilising drugs are antiviral against ZIKV and microtubule disrupting 

drugs enhance DENV replication (Chen et al., 2008; Cortese et al., 2017).  

 

As mentioned, ZIKV assembly occurs in viral induced structures near RFs, implying 

that RNA encapsidation and assembly are coordinated as is the case for DENV 

(Welsch et al., 2009). ZIKV prM and E alone are sufficient to produce empty virus-

like particles (VLPs) which are exported from the cell (Garg et al., 2017). How 

production of these empty particles is linked to nucleocapsid packaging is not 

clear, but studies have shown ZIKV NS2A can interact with and recruit viral RNA, 

NS2B/NS3 and C-prM-E, coordinating proteolytic cleavage of C and prM-E, allowing 

encapsidation of viral RNA (X. Zhang et al., 2019). Following assembly, immature 

virions bud into the ER and are transported to the Golgi apparatus. Maturation 

occurs in the Golgi, when furin (or a furin-like protease) cleaves prM to M and 

allows structural changes to E which exposes the fusion loop. It is thought that 

maturation is delayed to prevent pre-emptive fusion and uncoating of the virion 

in cellular membranes (Sirohi et al., 2016). The secretory pathway following 

assembly has not yet been fully defined. However, it appears that 

autophagosomes play an important role for ZIKV secretion as inhibition of 

autophagy in mice models reduced vertical transmission (Cao et al., 2017; S. 

Zhang et al., 2019). Additionally, Src-family kinases (SFKs), which are known to 

be important for regulating KDEL-dependent secretion pathways, also seem to be 

important for ZIKV egress. Indeed, some SFKs display increased activation 

following ZIKV infection, and pharmacological or genetic blockade of these SKFs 

reduces the egress of virions and VLPs (Li et al., 2020).  
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1.2.5  Antivirals and vaccine development 

While there are no currently licensed therapies or vaccines for the treatment of 

ZIKV, work is ongoing. According to the WHO pipeline tracker, there are currently 

(as of time of writing: Q1 2021) 16 ongoing trials for a ZIKV vaccine, of which only 

2 have reached phase II (‘WHO | WHO vaccine pipeline tracker’, 2016). These 

vaccines include inactivated virus, DNA and peptides, with most immunogens 

being either the whole virus or prM/E. There are several characteristics to 

consider when designing a vaccine. Ideally one dose should provide long term 

immunity, administered regardless of age and pregnancy status, require no cold 

chain and long term storage, and provide protection for a fetus (Wilder-Smith et 

al., 2018). There are several important issues that have hindered vaccine 

development so far. As a primary target for a potential vaccine is pregnant 

women, extra care must be taken to ensure safety to both mother and fetus, and 

there are ethical issues with including such a population in trials. Additionally, the 

current lack of infections and the large number of asymptomatic infections means 

there is a paucity of patients who can be recruited to demonstrate a vaccines 

efficacy (Abbink, Stephenson and Barouch, 2018). This means it is vital to develop 

good animal models for the study of ZIKV and the effect of infection on pregnancy 

(Caine, Jagger and Diamond, 2018).  

 

In addition to a vaccine, therapeutics to treat ongoing cases are also needed. 

Several small molecules have been investigated for their anti-ZIKV efficacy. One 

such small-molecule inhibitor is Arbidol, which was originally designed to treat 

seasonal influenza infections but has been reported to inhibit a wide range of 

primarily enveloped viruses, including ZIKV (Fink et al., 2018). The mechanism of 

action has not been fully explored but seems to be through the blocking of 

glycoprotein mediated attachment to host cells (Fink et al., 2018). Another 

promising approach has been to modulate the host response at the site of a 

mosquito bite with a topical application of immune agonists (Bryden et al., 2020). 

This activated skin-resident macrophages and protected local cellular targets from 

infection in mice models and explanted tissues and was found to be effective 
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against several different arboviruses. There have been several other promising 

small molecule inhibitors identified, some of which are reviewed by Baz and Boivin 

(Baz and Boivin, 2019).  The mechanisms of action of these inhibitors vary and 

while some directly target viral proteins, some target the host cell. As such, it is 

vitally important to further our understanding of ZIKV and the pathways and 

proteins it interacts with during infection.   

 

1.2.6  Interactions with the host cell  

Investigating ZIKV interactions with a host cell is vitally important for elucidating 

important factors in the viral lifecycle. There are several ways to approach this, 

but large-scale, high-throughput methods are effective. In particular proteomic 

studies have been vital for investigating and revealing important pathways for 

ZIKV infection, including putative entry receptors and uncovering pathways of 

disease pathogenesis (Jiang et al., 2018; Scaturro et al., 2018; Scaturro, Kastner 

and Pichlmair, 2019; Srivastava et al., 2020). While these studies have mainly 

focused on ZIKV NS proteins, there are some important ZIKV E interactors 

identified. For example, proteomic analysis of chemically labelled ZIKV E has been 

used to capture putative cellular-factors important in the early stages of infection 

and identified several hundred such proteins, including Neural Cell Adhesion 

Molecule 1 (NCAM-1) (Srivastava et al., 2020). Further analysis revealed that 

NCAM1 is an important entry factor for ZIKV in Vero (African Green monkey kidney 

cells) and U-251 MG (human glioblastoma cells). Other studies have looked at the 

whole ZIKV interactome and identified cellular proteins important in cell 

signalling, as well as neural and neuronal development (Scaturro et al., 2018). 

Notably, such studies have identified doublecortin (DCX) as a protein that was 

down-regulated by ZIKV infection (Jiang et al., 2018). DCX is a protein involved in 

neural progenitor cells proliferation and defects in the DCX gene lead to 

malformation of the cerebral neocortex. Following identification of DCX by Jiang 

and colleagues, other groups have shown that ZIKV can reduce the number of DCX 

positive cells in vivo (W. Zhang et al., 2019).  
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Additionally, the use of RNAi and CRISPR screening approaches have also been 

used to uncover important host factors in ZIKV infection (Savidis et al., 2016). 

Here, depletion of proteins with diverse functions, such as ligand binding, 

endocytic trafficking and protein processing were identified. Other studies have 

used CRISPR to identify factors which protect cells from ZIKV infection, such as 

interferon alpha-inducible protein 6 (IFI6) and interferon lambda 2 (IFN-λ2) 

(Dukhovny et al., 2019). These selected examples highlight how proteomics and 

RNAi screens can be a powerful discovery tool for identifying novel host-virus 

interactions. 
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1.3 GRP78  

1.3.1 Zika virus E protein may interact with GRP78 

As described, proteomic experiments can be important investigative tools for 

discovering host-virus interactions. A previous proteomic study carried out by 

Carolina Ramírez-Santana (Center for Autoimmune Diseases Research-CREA, 

School of Medicine and Health Sciences, Universidad del Rosario, 110010 Bogotá, 

Colombia. This experiment is described with her permission) in the Kohl lab, 

identified several putative interactors of ZIKV E (Royle et al., 2020). One of these 

presumed interactors was the multi-faceted, ER-resident chaperone, glucose-

regulated protein 78kDa (GRP78). GRP78 has been shown to be unable to bind 

maturing proteins with N-linked glycans within 38 aa of the N terminus, however 

mutation of these sites to prevent glycosylation results in GRP78 binding (Molinari 

and Helenius, 2000). As discussed in Chapter 1.1.3, ZIKV E contains a glycosylation 

site beyond the N terminus at residue 154. Therefore, GRP78 may be able to bind 

ZIKV E due to the absence of earlier glycosylation sites (Fontes-Garfias et al., 

2017). The interaction between GRP78 and ZIKV E is discussed in more detail in 

Chapter 5 and forms the basis for the investigation described there.  

 

Here, I shall describe the normal function of GRP78, and its interactions with other 

viruses.  

 

1.3.2 The structure and function of GRP78 

GRP78, also known as heat-shock 70kDa protein A5 (HSPA5), or binding 

immunoglobulin protein (BiP) is an ER-resident chaperone protein responsible for 

both protein folding quality-control systems and activation of ER stress response 

signalling pathways (Foti et al., 1999; Wang et al., 2009; Ni, Zhang and Lee, 2011; 

Pfaffenbach and Lee, 2011). As a mainly ER resident protein, GRP78 contains a C-

terminal lysine, aspartic acid, glutamic acid and leucine (KDEL) ER retention motif 

which is important for proper ER localisation (Munro and Pelham, 1986). GRP78 is 

a member of the heat-shock protein 70 (HSP70) family, a large family of cellular 
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chaperones with functions that are essential for many different pathways 

(Brocchieri, Conway De Macario and Macario, 2008). These proteins often have 

multiple designations and nomenclatures which can sometimes lead to confusion. 

For example, HSP70 (the prototype protein of the family GRP78 is a member of) 

has been found to mediate ZIKV entry and egress in mammalian cells (Pujhari et 

al., 2019). This paper was incorrectly used as a basis for a study modelling the 

interaction between ZIKV E and GRP78, despite there being no mention of GRP78 

in original study (Elfiky and Ibrahim, 2020). Therefore, to avoid confusion, I shall 

exclusively use GRP78 throughout.  

 

GRP78 is a highly conserved protein that can be found in many orders of life (Ting 

and Lee, 1988). This homology is highlighted in Figure 9-1, which shows how GRP78 

displays a high level of protein sequence identity in diverse organisms. Of note for 

this thesis, Figure 9-1 shows that GRP78 of Homo sapiens and Aedes aegypti share 

81.40% protein sequence identity. In humans, the GRP78 gene is found on 

chromosome 9 and in humans codes for a 633 amino acid protein. Additionally 

there is a non-functional pseudogene which does not contribute to transcription 

(Hendershot et al., 1994; Brocchieri, Conway De Macario and Macario, 2008). 

Transcription is largely regulated via the interaction of transcription factors such 

as ATF6-(N) and YY-1 with the ER stress element (ERSE) of the grp78 promoter (Li 

et al., 2000; Shi-Chen Ou et al., 2011). Grp78 transcription is increased in 

conditions of cell stress, as cell stress activates ATF6-(N) and allows recruitment 

of YY-1 to ERSE’s (Baumeister et al., 2005). 

 

GRP78 is separated into 2 domains; the nucleotide-binding domain (NBD) between 

residues 25-408 where ATP binding and hydrolysis take place, and the substrate-

binding domain (SBD) between resides 419-633 (Yang et al., 2015; Sagara et al., 

2018). A short flexible linker sequence from 409 to 418 connects the two domains. 

This structure is illustrated in Figure 1-8. There are two different conformations: 

(1) The open conformation, when ATP is bound, and the NBD and SBD are tightly 

coupled. This state is characterised by accelerated protein binding and release 

kinetics but an overall low affinity for proteins. (2) The closed confirmation is 
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adopted in the presence of ADP, or the Apo (nucleotide-free) state. Here, the NBD 

and SBD have limited interaction and the SBD has a strong affinity for proteins, 

although the binding and release kinetics are slower (Yang et al., 2015). In this 

manner, the disparate domains of GRP78 work in concert to orchestrate its vital 

cellular functions.  

 

One such function of GRP78 is to act as a key sensor of the unfolded protein 

response (UPR), a pathway which is activated in response to conditions of stress 

in the ER (Hetz, 2012). Under stress conditions, accumulation and sensing of 

misfolded proteins by the SBD of GRP78 triggers ATP to ADP hydrolysis in the NBD, 

which induces a conformational switch to the closed conformation described 

previously (Sagara et al., 2018). This switch allows both binding of misfolded 

proteins to the SBD and the release of UPR effector molecules. Under normal 

conditions GRP78 binds to and prevents the activation of 3 effector molecules; 

activating transcription factor 6α/β (ATF6), inositol requiring enzyme 1α/β (IRE1), 

and PKR-like ER kinase (PERK) (Harding et al., 2000; Calfon et al., 2002; Shen et 

al., 2002; Chen and Brandizzi, 2013; Adams et al., 2019). Following GRP78 

disassociation, ATF6 translocates from the ER membrane to the Golgi (Shen et al., 

2002). In the Golgi, ATF6 is proteolytically processed and the liberated segment 

can relocate to the nucleus and where it acts to upregulated ER stress genes 

transcription, including grp78 as mentioned earlier, and CHOP. When IRE1 

disassociates from GRP78 it can splice X-box-binding protein 1 (XBP-1) into XBP-

1s. In this spliced conformation, XBP1s acts as a transcription factor to upregulate 

production of UPR members (Calfon et al., 2002; Chen and Brandizzi, 2013; Adams 

et al., 2019). PERK can phosphorylate eukaryotic initiation factor 2 alpha (eIF2α) 

to halt translation (Harding et al., 2000). Additionally, ATF4 transcription factor 

is preferentially transcribed following PERK activation and leads to upregulation 

of proapoptotic factors such as CHOP, and genes involved with amino acid 

metabolism and resistance to oxidative stress (Luhr et al., 2019). Together, these 

factors act to positively upregulate stress pathways and to halt translation to 

prevent further cell damage, though if cellular homeostasis cannot be restored 

they can initiate controlled apoptosis (Sano and Reed, 2013). 
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Figure 1-8: Resolved structure of human GRP78.  

Schematic of GRP78 nucleotide (ATP) binding domain, with the red colour 

representing the N terminus and the transition to yellow following the C 

terminus. Figure taken from Avila et al (2013). 
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1.3.3 GRP78 and virus lifecycles 

 

As GRP78 is such a ubiquitously expressed and vitally important protein for cell 

survival, it is perhaps unsurprising that it is implicated in many human diseases 

including cancer and Alzheimer’s, and is an important co-factor for a wide array 

of other viruses at many different stages of infection (Booth et al., 2015; Casas, 

2017). GRP78 can localise to the surface of some cell types and as such has been 

shown to mediate the entry of several viruses (Quinones, de Ridder and Pizzo, 

2008; Ni, Zhang and Lee, 2011; Conner et al., 2020). 

 

For example, GRP78 can localise to the plasma membrane of several neuronal cell 

types in vitro and facilitate the entry of JEV in these cells (Nain et al., 2017). 

Similarly, another flavivirus, TMUV, requires GRP78 for efficient entry into BHK-

21 cell culture (Zhao et al., 2018). Flaviviruses are not the only ones to utilise 

GRP78 for entry. Several viruses in the Betacoronavirus genera of coronaviruses, 

including Middle-East respiratory syndrome (MERS) virus use GRP78 as an 

attachment factor through an interaction with the viral spike protein to enhance 

entry (Chu et al., 2018). Following these discoveries, it has been proposed that 

GRP78 may also act as an attachment factor for severe-acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) via interactions with the viral spike protein, and while 

this interaction has been computationally modelled it has as of yet not been 

experimentally proven (Ibrahim et al., 2020). There is some evidence to suggest 

that peptides that bind to the predicted GRP78 binding site on SARS-CoV-2 spike 

protein reduces infection (Allam et al., 2020). However, this binding site overlaps 

with the binding site of other proposed receptors such as ACE2, so it is not yet 

clear what the mechanism of action behind these peptides are. Despite the lack 

of evidence, there have already been suggestions that this potential interaction 

could be a target for therapeutic intervention in SARS-CoV-2 infection or provide 

the basis for a vaccination scheme, though the feasibility or efficacy of such 

studies cannot be determined on the current evidence (Elfiky et al., 2020; 

Palmeira et al., 2020).  
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GRP78 is also important for the proper maturation and production of some viral 

proteins. For Sendai virus, the HN glycoprotein has been proposed to transiently 

associate with GRP78 to allow proper folding and disulfide bond formation during 

maturation (Roux, 1990). Additionally, variants of the respiratory syncytial virus 

(RSV) F glycoprotein which did not mature properly were found to bind to GRP78 

for longer than those which matured, though whether the association with GRP78 

resulted in differing maturation or whether GRP78 binds because of misprocessing 

is not known (Anderson, Stott and Wertz, 1992). Influenza neuraminidase (NA) 

protein also transiently associates with GRP78 during maturation (Hogue and 

Nayak, 1992). DENV has been shown to upregulate GRP78 during infection, and 

that toxin-mediated depletion of GRP78 reduced DENV viral antigen production 

(Wati et al., 2009). Interestingly, there are conflicting reports on whether DENV 

utilises GRP78 as an entry co-factor, though these discrepancies could be due to 

differences in the cell-line used (Jindadamrongwech, Thepparit and Smith, 2004; 

Wati et al., 2009).  

 

Given that GRP78 is a major cellular chaperone it is perhaps unsurprising that 

GRP78 is involved in the folding and maturation of glycoproteins like those 

mentioned, but it does highlight the vital role it plays in the lifecycles of many 

viruses. 
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Virus Stage of infection Reference 

DENV Entry/translation/assembly (Jindadamrongwech, 

Thepparit and Smith, 

2004; Limjindaporn et 

al., 2009; Wati et al., 

2009) 

JEV Entry (Wu et al., 2011) 

TEMV Entry (Zhao et al., 2018) 

Influenza A Egress (Hogue and Nayak, 

1992) 

MERS Entry (Chu et al., 2018) 

SARS-CoV-2 Entry?  (Allam et al., 2020) 

Sendai virus Assembly (Roux, 1990) 

HCMV Assembly, Egress (Buchkovich et al., 

2008; Shi-Chen Ou et 

al., 2011) 

RSV Assembly/Maturation  (Anderson, Stott and 

Wertz, 1992) 

Ebola Transcription and 

translation 

(Patrick Reid et al., 

2014) 

Table 1-1: Selected known interactions between GRP78 and viruses.  

A table listing some of the known interactions between viruses and GRP78 and 

listing the stage of infection that GRP78 is thought to be required for. Sources 

for information are listed in the table under references.  
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With that information in mind, GRP78 seemed like an ideal candidate to explore 

in the context of ZIKV infection.  

 

• GRP78 has been implicated in the infection of related viruses, such as DENV 

and JEV, and so it seemed likely to be important for ZIKV. 

 

• GRP78 is a highly conserved protein and so its function could be 

investigated in both mammalian and mosquito systems. 

 

• As a highly studied protein, molecular tools (such as small-molecule 

inhibitors, siRNA and antibodies) are readily available and would facilitate 

any investigation. 
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Chapter 2.  Aims 

 

The molecular biology and host-cell interactors of ZIKV are not well understood. 

Proteomics and high-throughput RNAi experiments have been shown to be 

powerful tools to dissect host-virus interactions. While several studies have looked 

at the interaction of flavivirus non-structural protein with mammalian cells, not 

much is known about the interactome of E protein. Additionally, most molecular 

studies have focused on mammalian, rather than vector systems.  

 

With this in mind, this project aimed to identify cellular factors that are important 

for ZIKV infection. To do this, diverse approaches were employed. The aims of 

this project were:  

 

i. To perform a large-scale siRNA knockdown of host genes, including immune 

related, in the Aedes aegypti cell line, Aag2, and investigate the possible 

role of any hits in regulating ZIKV infection. 

 

ii. To validate the putative interaction between ZIKV E and GRP78. 

 

iii. To dissect the role that GRP78, and cellular interactors of GRP78, may play 

in the ZIKV lifecycle.  

 

iv. Generate reverse genetics tools for ZIKV to facilitate future studies.  
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Chapter 3.  Materials and Methods 

3.1 Materials 

3.1.1 Cell culture  

A549 cells: Human alveolar carcinoma cells, A549 (ECACC, 86012804), were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Thermo Fisher 

Scientific) supplemented with 10 % (v/v) fetal bovine serum (FBS) (Gibco). These 

cells were kept at 37 oC with 5 % CO2. A549 cells expressing bovine viral diarrhea 

virus (BVDV) N-terminal protease (NPro), abbreviated A549-NPro cells (kindly 

provided by R. E. Randall, University of St Andrews), were maintained as described 

as above and with the addition of 2 µg/mL blasticidin to select BVDV NPro 

expressing cells. BVDV NPro inhibits IRF3 signalling and thereby reduces type 1 

interferon induction (Hilton et al., 2006). 

 

Aag2 cells: Cells derived from homogenised embryos of Aedes aegypti (received 

from P. Eggleston, Keele University, UK) and were grown in L-15 (Life 

Technologies) and supplemented with 10% Tryptose Phosphate Broth (Life 

Technologies), 10% (v/v) FBS, and 100 units/mL of penicillin and 100 µg/mL of 

streptomycin. Cells were maintained at 28 oC with no CO2.  

 

HEK293T: Human embryonic kidney (HEK) cells that express a SV40 large T antigen 

(kindly provided by the Palmarini group, CVR). Cells were maintained in DMEM 

supplemented with 10 % (v/v) FBS, 0.1 mM non-essential amino acids (Thermo 

Fisher Scientific) and kept at 37 oC with 5 % CO2.  

 

Huh7: A hepatocyte-derived carcinoma cell line. Cells were maintained in DMEM 

supplemented with 10 % (v/v) FBS and kept at 37 oC with 5 % CO2. 

 

Vero E6 cells: African green monkey, Vero E6 (ATCC, CCL-81™), cells were 

maintained in DMEM supplemented with 10 % (v/v) FBS and kept at 37 oC with 5 % 

CO2. 
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3.1.2 Cell culture reagents 

Table 3-1: A list of cell culture reagents used and their suppliers. 

 

3.1.3 Viruses  

ZIKV PE243: ZIKV/H.sapiens/Brazil/PE243/2015. A ZIKV isolate obtained from a 

patient in Recife in Brazil, 2015. First described and characterised in the Kohl lab, 

this virus was amplified in C6/36 cells and Vero cells before use in this study 

(Donald et al., 2016). 

 

Reagent utilised Source 

Avicel  FMC BioPolymer 

Blasticidin Sigma-Aldrich 

Puromycin Sigma-Aldrich 

Tryptose Phosphate Broth (TPB) Gibco 

Non-essential amino acids (NEAA) Thermo Fisher Scientific 

Dulbecco Modified Eagle Medium (DMEM) Gibco 

Leibovitz’s L-15 Gibco  

Opti-Minimum Essential Medium (Opti-MEM) Thermo Fisher Scientific 

Phosphate buffered saline (PBS) Sigma 

Versene in PBS E&O Laboratories 

Trypsin Thermo Fisher Scientific 

Dimethyl sulphoxide (DMSO) Sigma 

DharmaFECT2 Horizon Discovery 

Polyethyleneimine (PEI) Kindly provided by Dr Margus 

Varjak (University of Tartu) 

TransIT-LT1 transfection reagent MirusBio 

Formaldehyde (FA) Sigma 

Paraformaldehyde (PFA) Sigma 

Fetal bovine serum (FBS) Gibco 
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ZIKV Nanoluc: A chimeric ZIKV strain based upon the BeH819015 South American 

strain and encodes the 5’ and 3’ UTR’s from PE243 (Mutso et al., 2017). This virus 

has a Nanoluciferase (Nanoluc) molecule preceding a duplicated capsid and is 

followed by a foot and mouth disease virus (FMDV) 2A autoprotease. The full 

polyprotein then follows this construct. 

 

WT ZIKV PE243: A reverse genetics version of ZIKV PE243. This contains no 

sequence differences from the aforementioned ZIKV PE243 and is encoded on 5 

separate plasmids noted in Chapter 3.1.4. 

 

HiBiT ZIKV PE243: A reverse genetics version of ZIKV PE243, containing a HiBiT 

moiety in the N terminus of NS1. This virus was tested in this study but was 

ultimately not viable.  

 

3.1.4 Plasmids 

Plasmid name Description 

pU57_Linker_CPER 

pU57_S1_CPER 

pU57_S2_CPER 

pU57_S2_HiBiT_CPER 

pU57_S3_CPER 

pU57_S4_CPER 

 

Plasmids used to assemble the CPER generated WT 

and HiBiT ZIKV PE243 viruses. To generate HiBiT ZIKV 

PE243, S2_HiBiT_CPER was substituted for S2_CPER, 

and no other changes were made.  

pCCI-SP6-Zika_Nanoluc Plasmid encoding full ZIKV Nanoluc (kindly provided 

by Andres Merits, University of Tartu). 

pCCI-SP6-

ZikaReplicon_Nanoluc 

Plasmid encoding the ZIKV Replicon Nanoluc 

polyprotein. This protein lacks all structural proteins 

except the last 30 aa of E (kindly provided by Andres 

Mertis, University of Tartu). 
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pGL4.13 FLuc A firefly luciferase under control of a CMV promoter 

(Promega). 

pVSV-G Lentivirus helper vector that expresses the VSV 

envelope protein (kindly provided by Dr Sam Wilson, 

Centre for Virus Research, Glasgow) 

pNLGP Lentivirus helper vector that expresses Gag and Pol 

(kindly provided by Dr Sam Wilson, Centre for Virus 

Research, Glasgow) 

LentiCRISPR v2 Backbone for guide RNA insertion. (Addgene plasmid 

# 52961) 

Table 3-2: A list of Plasmids used. 

A table documenting the plasmids used in this study and a short description of 

each. 

 

3.1.5 Primers 

Primer Sequence 

GRP78_Guide_1F CACCGCAAGATGAAGCTCTCCCTGG 

GRP78_Guide_1R AAACCCAGGGAGAGCTTCATCTTGC 

GRP78_Guide_2F CACCGCAGCAGCATCGCGGCCACCA 

GRP78_Guide_2R AAACTGGTGGCCGCGATGCTGCTGC 

GRP78_Guide_3F CACCGGCTGAGCAGCAGCAGCATCG 

GRP78_Guide_3R AAACCGATGCTGCTGCTGCTCAGC C 

GRP78_Guide_4F CACCGGATGCTGCTGCTGCTCAGCG 

GRP78_Guide_4R AAACCGCTGAGCAGCAGCAGCATCC 

GRP78_Guide_5F CACCGTGGCAAGATGAAGCTCTCCC 

GRP78_Guide_5R AAACGGGAGAGCTTCATCTTGCCAC 

U6_F GAGGGCCTATTTCCCATGATTC 

Post_Guide_R CACTCCTTTCAAGACCTAGCTAGC 

Linker_F GCGGCGGCCGGTGTGGGGAAATCCATGGGTCTGGGTCGGCA

TGGCATC 
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Linker_R CGCAGTCTGATTCACACAGATCAACAACTCGGTTCACTAAACG

AGCTCTGCTTATATAGACCTCCC  

S1_F AGTTGTTGATCTGTGTGAATCAGACTG 

S1_R GACATTCCTCCAAACAATGATTTGAAAGCTGC 

S2_F GCAGCTTTCAAATCATTGTTTGGAGGAATGTC 

S2_R CCTTTTTCCAGTCTTCACGTATACGTACCAC 

S3_F GTGGTACGTATACGTGAAGACTGGAAAAAGG 

S3_R ACGTCTCTTGACCAAGCCAGCGTTTCTTGT 

S4_F ACAAGAAACGCTGGCTTGGTCAAGAGACGT 

S4_R AGACCCATGGATTTCCCCACACCGGCCGCCGC 

Ago2_F GTAATACGACTCACTATAGGCAGTTCAAGCAGACGAACCA 

Ago2_R GTAATACGACTCACTATAGGTGATGTAGACGCGTCCTCTG 

eGFP_F GTAATACGACTCACTATAGGGGGCGTGCAGTGCTTCAGCCGC 

eGFP_R GTAATACGACTCACTATAGGGGTGGTTGTCGGGCAGCAGCAC 

PIWI4_F GTAATACGACTCACTATAGGGCCGTATATCCGAAAAAGTGCTG 

PIWI4_R GTAATACGACTCACTATAGGGAGAGTCCACTCGATGTGTTTCA 

AAEL013045_T7F GTAATACGACTCACTATAGGGGTGCAAATTGGGAGTTTTCAG

C 

AAEL013045_T7R GTAATACGACTCACTATAGGGAGACGTACTCCTTCAAGCAGAT 

AAEL011087_T7F GTAATACGACTCACTATAGGGCATTTTCAGCCGCAGAATCAAC 

AAEL011087_T7R GTAATACGACTCACTATAGGGCAAAACAGTTATGCAGCTCAGC 

AAEL007921_T7F GTAATACGACTCACTATAGGGGAAGATATTGCCGAGGATGAC

G 

AAEL007921_T7R GTAATACGACTCACTATAGGGCTGAGTTCGCAATGATCACACT 

AAEL003245_T7F GTAATACGACTCACTATAGGGGTCCCTGATGATGAACAAGGT

G 

AAEL003245_T7R GTAATACGACTCACTATAGGGTGTACACCATTCGATCTCCCAT 

AAEL004121_T7F GTAATACGACTCACTATAGGGAGATGATGTGGCAGAAGAAAG

C 

AAEL004121_T7R GTAATACGACTCACTATAGGGTCTCCTTCAGTAGCACCAGATC 

AAEL012717_T7F GTAATACGACTCACTATAGGGACATTTGTCACGTGTGTTCAGT 
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AAEL012717_T7R GTAATACGACTCACTATAGGGCTCCAGAATGTTGTTCCTCGTC 

AAEL005437_T7F GTAATACGACTCACTATAGGGCTCCAGAATGTTGTTCCTCGTC 

AAEL005437_T7R GTAATACGACTCACTATAGGGGTCCAAACCATTCGATAGCCAA 

AAEL014529_T7F GTAATACGACTCACTATAGGGTTCCAGTTGAAATCGAGCATCC 

AAEL014529_T7R GTAATACGACTCACTATAGGGGATTTGTCCTCGTCCTTCTTCG 

pCCI-SP6-Zika_F CGATTAAGTTGGGTAACGCCAGGGT 

pCCI-SP6-Zika_R TAGACCCATGGATTTCCCCACACC 

qPCR_GAPDH_F TGCACCACCAACTGCTTAGC 

qPCR_GAPDH_R GGCATGGACTGTGGTCATGAG 

qPCR_ZIKV_F GTTGTCGCTGCTGAAATGGA 

qPCR_ZIKV_R GGGGACTCTGATTGGCTGTA 

Table 3-3: A table of the names and sequences of all primers used in this study 

 

 

3.1.6 siRNA 

siRNA Source (Thermo Fisher Scientific for all) 

siN (Neg control siRNA 2) 4390846  

siG S6980  

siG a S6981  

siDnaJB11 s28579  

siDnaJC1 s34557  

siDnaJC10 s28953  

siHSP90B s14373  

siERN1 s200432  

siKDELR1 s547  

siKDELR2 s21689  

siKDELR3 s21691  

Table 3-4: A table of the siRNA used in this study and their source. 
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3.1.7 Antibodies 

Antibody Western 

blot 

Immunofluo

rescence 

Immunopre

cipitation 

Rabbit anti- GRP78 (Ab21685, 

Abcam) 

1:2000 1:1000 1:100 

Mouse anti-ZIKV E (AZ 1176, Aalto 

bio) 

1:1000 1:1000 1:100 

Rabbit anti-β Actin (Ab8227, 

Abcam) 

1:5000   

Anti-rabbit 

Alexa Fluor 488 

(35552, Invitrogen) 

 1:1000  

Anti-rabbit 

Alexa Fluor 405 

(A35551, Invitrogen) 

 1:1000  

Anti-mouse 

Alexa Fluor 568 

(A11019, Invitrogen) 

 1:1000  

Anti-rabbit IgG 

(H and L) 

DyLight 680 

(35568, Thermo Fisher 

Scientific) 

1:5000   

Anti-mouse IgG 

(H and L) DyLight 800 (35521, 

Thermo Fisher Scientific). 

1:5000   

Rabbit J2 anti-dsRNA IgG2a (Scicons)  1:2000  

Table 3-5: A table showing the antibodies used in this study. 

The source of each antibody is shown alongside the working concentrations of 

each. 
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3.1.8 Commercial kits and general reagents 

Name  Source 

EndoFree Plasmid Maxi Kit Qiagen 

PureLink HiPure Plasmid 

Filter Maxiprep Kit 

Invitrogen  

QIAEX II® Gel Extraction Kit Qiagen 

QIAquick PCR Purification 

Kit 

Qiagen 

QIAprep Spin Miniprep Kit Qiagen 

Fast SYBR Green Master mix Applied Biosystems 

Nano-Glo Dual-Luciferase Reporter 

Assay System 

Promega 

Phosphate buffered saline  Sigma Aldrich 

Passive Lysis Buffer Promega 

CellTitre-Glo Luminescent Cell 

Viability Assay 

Promega 

Nano-Glo Luciferase Assay System Promega 

MEGAScript RNAikit Ambion 

SeeBlue Plus2 Protein standard Thermo Fisher Scientific 

4X Bolt LDS Sample Buffer  Thermo Fisher Scientific 

10× Bolt Sample Reducing Agent Thermo Fisher Scientific 

Toluidine blue Sigma Aldrich 

Amersham Protran 0.45 nitrocellulose 

membrane 

GE Healthcare  

Bolt 20x MES running buffer Thermo Fisher Scientific 

Semi-dry transfer buffer Thermo Fisher Scientific 

Dynabead Protein G Thermo Fisher Scientific 

GeneRuler 1kb Plus ladder Thermo Fisher Scientific 

6x DNA Loading Dye Thermo Fisher Scientific 

UltraPure agarose Invitrogen 
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TAE buffer Thermo Fisher Scientific 

Ethidium bromide Promega 

Ampicillin sodium salt Thermo Fisher Scientific 

Kanamycin sulfate Sigma Aldrich 

LB broth E&O Laboratories 

LB agar E&O Laboratories 

Skimmed milk powder  Marvel 

S.O.C. Media Invitrogen 

Halt protease inhibitor cocktail Thermo Fisher Scientific 

Prolong Diamond Antifade Mountant  Thermo Fisher Scientific 

Vectorshield HardSet Antifade 

Mounting Medium 

Vector Laboratories 

DRAQ7  Abcam 

Trizol Thermo Fisher Scientific 

Tween 20  Millipore 

dNTP mix (10 mM) Thermo Fisher Scientific 

Random Primers Promega 

m7G cap analogue Promega 

Table 3-6: A table documenting commercial kits and reagents used.  

 

 

3.1.9 Buffers 

Several buffers were made in-house for this study. These were: 

 

PBST: 0.1% (v/v) Tween 20 in PBS. 

 

Western blot blocking buffer: 2% (w/v) skimmed milk powder in PBST. 

 

Immunofluorescence blocking buffer: 5% (v/v) FBS in PBS. 

 

Freeze/thaw buffer: 10% (v/v) FBS in PBS 
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Immunoprecipitation lysis buffer: 150 mM NaCl, 5 mM MgCl2, 20 mM HEPES (pH 

7.4), 0.5% Triton X-100, 1:100 Halt protease inhibitor cocktail. 

 

Immunoprecipitation wash buffer: 150 mM NaCl, 5 mM MgCl2, 20 mM HEPES (pH 

7.4), 1:100 Halt protease inhibitor cocktail. 

 

Protein sample buffer: 1x Bolt LDS Sample Buffer, 1x Bolt Sample Reducing Agent 

in H2O 

 

3.1.10 Enzymes 

 

Name  Source 

GoTaq G2 Flexi DNA polymerase Promega 

Phusion® High-Fidelity DNA Polymerase New England BioLabs 

KOD Hot start DNA polymerase Merck Millipore 

SuperScript III reverse transcriptase Thermo Fisher Scientific 

SP6 RNA Polymerase New England BioLabs 

InFusion HD enzyme premix Takara Bio 

Table 3-7: A table listing the enzymes used in this study. 

 

3.1.11 Bacteria 

For general cloning techniques, DH5α competent cells (genotype; F - Φ80lacZΔM15 

Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 λthi1 gyrA96 

relA1 )(Thermo Fisher Scientific) were used.  

 

Plasmids generated from In-Fusion reactions or use in the CPER reactions were 

amplified in Stellar Competent cells (genotype; F–, endA1, supE44, thi-1, recA1, 

relA1, gyrA96, phoA, Φ80d lacZΔ 

M15, Δ (lacZYA - argF) U169, Δ (mrr - hsdRMS - mcrBC), ΔmcrA, λ–). 
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3.2 Methods 

3.2.1 Cell culture maintenance 

 

Mammalian cell lines were maintained in T75 vented, tissue-culture flasks in the 

appropriate media (Chapter 3.1.1) at 37 oC and in 5 % CO2. To passage these cells, 

the media was removed, and cells were washed in 5 ml PBS Versene before 

addition of 3 ml Trypsin in PBS Versene for 5 mins. Detached cells were then re-

suspended in a further 7 ml of the appropriate media, and a 1 ml aliquot of this 

was taken to seed new flasks. Aag2 cells were maintained in T25 non-vented, 

tissue-culture flasks in L-15 media at 28 oC with no CO2. Once confluent, these 

cells were scraped into the media and were split 1:3.  

 

For cell seeding, cells were counted with a TC20™ Automated Cell Counter (Bio-

Rad). Cell seeding densities and media volumes are shown in Table 3-8. Unless 

stated otherwise, cells were seeding the day prior to experimentation.  

Cell culture 

vessel 

Cells seeded 

(mammalian) 

Cells seeded 

(A549 for IF) 

Cells seeded (Aag2) Media 

(ml) 

T25 1 x 106 

cells/flask 

 2 x 106 cells/flask 5 

6 well plate 4 x 105 

cells/well 

 1 x 106 cells/well 3 

12 well plate 2 x 105 

cells/well 

1 x 105 

cells/well 

5 x 105 cells/well 2 

24 well plate 1 x 105 

cells/well 

 2 x 105 cells/well 1 

48 well plate 5 x 104 

cells/well 

  0.5 

96 well plate 2 x 104 

cells/well 

 5 x 104 cells/well 0.1 

Table 3-8: A table showing the seeding densities and medium volumes used in 

this study. 
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3.2.2 Cell culture transfection 

In this study, several transfection methods were used. For the transfection of RNA 

(including siRNA and dsRNA) DharmaFECT2 was used, whereas LT1 or PEI were 

used for the transfection of DNA. Here, transfection reactions were assembled as 

follows. 

 

RNA: siRNA/dsRNA 

For transfection of a 24 well plate with siRNA or dsRNA:  

• Reaction 1: 50 µl Opti-Mem + 2 µl DharmaFECT 2 

• Reaction 2: 50 µl Opti-Mem + 1 µl siRNA (100 nM) / 300 ng dsRNA 

For transfection of a 96 well plate with siRNA or dsRNA: 

• Reaction 1: 12.5 µl Opti-Mem + 0.5 µl DharmaFECT 2 

• Reaction 2: 12.5 µl Opti-Mem + 0.25 µl siRNA (100 nM)  

 

RNA: In vitro transcribed RNA for virus rescue 

For transfection of a T25 flask: 

• Reaction 1: 500 µl Opti-Mem + 20 µl DharmaFECT 2 

• Reaction 2: 500 µl Opti-Mem + 10 µl in vitro transcribed RNA 

 

 

DNA: for the rescue of CPER constructs 

For transfection of a T25 flask: 

• Reaction 1: 500 µl Opti-Mem + 5 µl LT1  

• Reaction 2: 500 µl Opti-Mem + 25 µl CPER product 

 

 

DNA: transfection of non-CPER plasmids 

For transfection of a T25 flask: 

• Reaction 1: 500 µl Opti-Mem + 5 µl LT1  

• Reaction 2: 500 µl Opti-Mem + 150ng plasmid 

For transfection of a 24 well plate:  
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• Reaction 1: 50 µl Opti-Mem + 2 µl LT1 

• Reaction 2: 50 µl Opti-Mem + 50 ng plasmid 

 

 

DNA: for the generation of lentiviral vectors 

For the transfection of a T25 flask: 

• Reaction 1: 500 µl Opti-Mem + 44 µl PEI 

• Reaction 2: 500 µl Opti-Mem + 5 µg LentiCRISPR v2 + 5 µg pNLGP + 1 µg VSV-

G 

 

Reaction 1 and 2 were incubated separately for 5 mins, before being added 

together for a further 25 mins. Meanwhile, cells previously seeded as described in 

Chapter 3.2.1 had the media replaced with the same volume of media containing 

2% FBS. Finally, the reaction mix was added to cells. The following day, cell 

supernatant was again replaced with the same volume of media containing 2% FBS 

or as required for the specific experiment. 

 

3.2.3 Lentivirus production and transduction of cells 

HEK293T cells were seeded in T25 (Chapter 3.2.1) to 80% confluency and 

transfected with a transfer vector containing guide RNA and packaging vectors 

(Chapter 3.2.2). The following morning, cell media was replaced with 5 ml DMEM 

containing 10% (v/v) FBS and 1 µg/ml puromycin. Supernatant was harvested 72 

hrs later and filtered to remove cellular debris before being aliquoted and stored 

at -80 oC.  

 

To transduce cells, A549 were seeded in T25 flasks (Chapter 3.2.1) and 1 ml of 

filtered lentivirus was applied to cells for 48 hrs. Following, media was replaced 

with 5 ml DMEM containing 10 % (v/v) FBS and 1 µg/ml puromycin. Cells were then 

serially diluted in 6 well plates and left for 5 days, and individual cell colonies 

were ‘picked’ with sterile pipette tips and transferred into a 96 well plate for 
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expansion. Colonies were then assessed by immunofluorescence and Western 

blotting.  

 

3.2.4 Virus rescue and amplification  

 

ZIKV Nanoluc: In vitro transcription was performed on the pCCI-SP6-ZIKV_Nanoluc 

plasmid to generate RNA. The reaction was assembled on ice as follows: 

ATP/CTP/UTP/m7G cap analogue (2 µl of each), GTP (0.5 µl), MEGAscript SP6 

transfection buffer 10 x (2 µl), MEGAscript SP6 enzyme (2 µl), pCCI-SP6-

ZIKV_Nanoluc (100 ng) and topped to 20 µl with ddH2O. This reaction was then 

performed at 37 oC for 4 hrs before transfection into Vero E6 cells in T25 cells 

(Chapter 3.2.2). 

 

7 days after transfection (or until CPE is observed, whichever was sooner), cell 

supernatant was harvested and aliquoted, and either stored at -80 oC or 

transferred onto A549 Npro cells for 1 hr (seeded at a density of 1x107 cells in a 

T225 flask). Following, the supernatant was removed and replaced with DMEM 

containing 2 % (v/v) FBS for a further 7 days or until significant CPE is observed, 

whichever was sooner. Supernatant can then be clarified by centrifugation at 1000 

x g and aliquoted for storage at -80 oC.  

 

ZIKV PE243: An aliquot of virus (kindly provided by Dr Claire Donald) was adsorbed 

onto A549 NPro cells, seeded at a density of 1x107 cells in a T225 flask, for 1 hr. 

Following, the supernatant was removed and replaced with DMEM containing 2 % 

(v/v) FBS for a further 7 days or until significant CPE is observed, whichever was 

sooner. 
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3.2.5 Circular polymerase extension reaction 

 

To rescue the reverse genetics ZIKV PE243, 5 segments of the PE243 were 

commercially synthesised. These segments include:  

• A linker (pU57_Linker_CPER), which contains a hepatitis D virus ribozyme 

(HDVR), SV40 poly(A) signal, junk DNA, a CMV promoter and shares an ~30 

bp overlap with S1 and S5. This segment circularises the segments, and the 

junk DNA allows for de-coupling of RNA polymerase II and prevent a run-off 

into the 5’ end of the genome.  

• Segment 1 (pU57_S1_CPER), which covers the 5’ UTR through to the just 

before the start of NS1, overlaps with the linker and S2. 

• Segment 2 (pU57_S2_CPER), NS1 through to the start of NS3, overlaps with 

S1 and S3. 

• Segment 3 (pU57_S3_CPER), NS3 through to the start of NS5, overlaps with 

S2 and S4. 

• Segment 4 (pU57_S4_CPER), NS5 and the 3’ UTR, overlaps with S3 and the 

linker. 

• Segment 2 HiBiT (pU57_S2_HiBiT_CPER), a variant of S2, where the first 4 

aa of NS1 are duplicated and followed by a HiBiT moiety, a 4GS linker, and 

the rest of NS1 as normal. This segment shares the same overlaps as S2.  

 

Individual segments were amplified from these plasmids in a PCR reaction as 

follows: Plasmid template (1 µl), forward and reverse primer (1 µl each) (Chapter 

3.1.5), dNTPs (1 µl), DMSO (1.5 µl), GC buffer (10 µl), Phusion polyermase (0.5 µl), 

topped up to 50 µl with water.  
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Conditions for the PCR: 

Initial: 

• 95 oC for 5 mins. 

 

30 cycles: 

• 95 oC for 30 s 

• 55 oC for 30 s 

• 72 oC for 3 mins 

 

Final: 

• 72 oC for 5 mins 

 

Products were separate on a 1 % agarose gel at 90V for 1 hr, and bands of correct 

size were excised from the gel and purified using a QIAEX II® Gel Extraction Kit 

following the manufactures instructions. Purified bands were then used in a final 

circular polymerase extension reaction (CPER) as follows: Excised templates (0.1 

pmol of each segment), forward and reverse primer for each segment (1 µl each) 

(Chapter 3.1.5), dNTPs (1 µl), DMSO (1.5 µl), GC buffer (10 µl), Phusion polymerase 

(0.5 µl), topped up to 50 µl with water. 

 

Conditions for the CPER PCR: 

Initial: 

• 95 oC for 5 mins. 

 

20 cycles: 

• 95 oC for 30 s 

• 55 oC for 30 s 

• 72 oC for 10 mins 

 

Final: 

• 72 oC for 15 mins 
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Vero E6 cells seeded in a T25 were then transfected as described in Chapter 3.2.2. 

3.2.6 Large scale siRNA screen 

Aag2 cells were seeded in 96 well plates with 100 µl media (Chapter 3.1.1) and 

left to settle overnight. siRNA plates were provided by Ambion in a 96 well plate 

format, with 3 individual siRNAs against a specific target pooled in a single well, 

at a 1000 nM concentration of siRNA. From these master plates, working plates 

were created by taking 7.5 µl siRNA and supplemented with 17.5 µl of Opti-mem 

(siRNA concentration 300 nM). 25 µl Opti-mem and 2 µl DharmaFECT 2 per well 

was made up and added to the working plates to incubate for 30 mins (siRNA 

concentration 150 nM). The final 50 µl transfection mixture was added to the Aag2 

for 24 hrs for a final siRNA concentration of 50 nM. Cells were then infected with 

ZIKV Nanoluc at an MOI 5 for 48 hrs, before media was removed and cells were 

lysed, and luciferase measured with Nano-Glo Luciferase Assay System as per the 

manufacturer’s instructions.  

 

3.2.7 Plaque assays 

Harvested supernatants were serially diluted onto A549 NPro cells seeded in 12 

well plates (Chapter 3.2.1) and overlaid with DMEM supplemented with 2% FBS and 

1.2% Avicel for 5 days at 37 oC. 4% formaldehyde was used to fix cell monolayers 

for 20 min prior to staining with toluidine blue to visualise viral plaques. 

 

3.2.8 Luciferase assays 

Cell viability assay: To determine cell viability, a DMSO control, EGCG or HNK was 

serially diluted onto A549 cells seeded in a 24 well plate (Chapter 3.2.1) for 26 

hrs. The media was removed, and CellTitre-Glo Luminescent Cell Viability Assay 

reagent was then added to cells following the manufacturer’s instructions. A 

GloMax luciferase machine (Promega) was used to measure luminescence, and an 

integration time of 5 seconds was used.  
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Nanoluciferase assay: A549 cells were seeded in a 24 well plate (Chapter 3.2.1) 

and treated with DMSO or small-molecule inhibitors for 2 hrs prior to and/or (as 

specified) throughout a 24 hr infection with ZIKV Nanoluc at a MOI 0.1. For the 

virus pre-treatment assay, ZIKV Nanoluc was incubated with either 10 µM EGCG or 

DMSO for 2 hrs in DMEM plus 2% FBS prior to infection of cells. To the Nanoluc 

expressed by ZIKV Nanoluc, cells were first lysed in Passive Lysis Buffer before 

treatment with Nano-Glo Luciferase Assay System as per the manufacturer’s 

instructions. Alternatively, A549 cells seeded in a 24 well plate were transfected 

with 10 or 25 µg of in vitro transcribed ZIKV replicon RNA for 24 hrs in the presence 

of 10 µM EGCG or DMSO. GloMax luciferase machine was used to measure 

luminescence, and an integration time of 5 seconds was used. 

 

Dual luciferase assay: A549 cells, seeded in a 24 well plate (Chapter 3.2.1) were 

treated with siRNA (Chapter 3.2.2) for 72 hrs prior to infection with ZIKV Nanoluc 

at a MOI 5 for 48 hrs. 24 hrs into infection, 100 ng of pGL4.13 FLuc was transfected 

into cells (Chapter 3.2.2) for the remaining time of infection. The Firefly 

luciferase gene in pGL4.13, FLuc, is under the control of a CMV promoter. Cells 

were harvested and luciferase values were measured using the Nano-Glo Dual-

Luciferase Reporter Assay System following the manufacturer’s instructions. A 

GloMax luciferase machine was used to measure luminescence, and an integration 

time of 5 seconds was used. 

 

3.2.9 Freeze/thaw assay 

A549 cells were treated with siRNA (Chapter 3.2.1) and then infected with ZIKV 

PE243 at MOI 5 for 24 h. Supernatant was harvested from cells and split into two 

fractions. The first fraction was serially diluted and titrated on A549-NPro cells 

(Chapter 3.2.7). The second was subject to 3× freeze/thaw (f/t) cycles, whereby 

supernatants were cyclically frozen on dry ice for 5 min and thawed at 37 °C for 

2 min and virus plaques counted on A549-NPros. Cell monolayers from 

corresponding cell supernatants were then washed with 1× trypsin and with 3× PBS 

washes to remove residual virus particles. These cells were scraped into 10 % (v/v) 
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FBS in PBS and subject to 3× f/t cycles, before cellular debris was pelleted at 4000 

× g for 10 min. This clarified supernatant was serially diluted onto A549-NPros to 

calculate viral titre. 

 

3.2.10 Western blot analysis 

Proteins were harvested from cells in Passive Lysis Buffer with 0.1% Halt protease 

inhibitor cocktail and incubated on ice for 20 mins. Cell lysates were then clarified 

to remove cellular debris and were separated on Bolt 4–12% Bis-Tris Plus gels in 

MES running buffer at 100V for 1 hr 30 mins. These gels were then transferred to 

Protran 0.45 NC membranes using the Trans-Blot SD semi-dry transfer cell (Bio-

Rad). The membrane was then blocked for 1 hr in 5% (w/v) milk in 0.1% PBST 

before incubated overnight at 4 °C in 5% (w/v) milk in 0.1% PBST containing the 

appropriate antibody (Chapter 3.1.73.1.7). Membranes were then washed for 3 x 

10 mins 0.1% PBST before incubation with the appropriate fluorescent secondary 

antibody (Chapter 3.1.73.1.7). This again was followed by three 10 min washes 

with 0.1% PBST, a final 10 min wash in ddH20, and fluorescently labelled antibodies 

were imaged on an Odyssey CLx (LI-COR Biosciences). 

 

3.2.11 Immunofluorescence 

A549 cells were seeded onto 13 mm coverslips (Chapter 3.2.1) and allowed to 

settle overnight. For infection, cells were infected with ZIKV PE243 an MOI 0.1 for 

24 hrs and fixed with 4% formaldehyde for 20 min at room temperature. If no 

infection was performed, cells were fixed in the morning following. Cells were 

then permeabilised with 0.5% (v/v) Triton X-100 in PBS for 10 min and blocked 

with 5% (v/v) FBS in PBS for 1 hr. For any non-permeabilising conditions, cells were 

instead fixed in 8% (v/v) paraformaldehyde in PBS (as this is not stabilised with 

methanol) and no permeabilising buffer was used. Relevant antibodies (Chapter 

3.1.7) were diluted in 5% (v/v) FBS in PBS and incubated with cells for 2 hrs at 

room temperature. Staining with secondary antibodies (Chapter 3.1.7) were also 

diluted in 5% (v/v) FBS in PBS was performed for 1 hr. Coverslips were mounted 



88 
 

 

 

 

onto glass microscope slides with HardSet Antifade Mounting Medium with 4′,6-

diamidino-2-phenylindole (DAPI). Alternatively, where indicated, DRAQ7 nuclear 

stain was applied in the last FBS in PBS wash and coverslips were mounted using 

Prolong Diamond Antifade without DAPI. Images were taken on a Zeiss LSM 710 

inverted confocal microscope (Carl Zeiss). 

 

3.2.12 RNA extraction and RT-qPCR 

A549 cells were seeded in a 24-well plate (Chapter 3.2.1) and RNA was harvested 

with 333 µl Trizol, with triplicate wells pooled to isolate total RNA. This RNA was 

purified with the addition of 200 µl chloroform/mL of Trizol, and the sample was 

vortexed for 15 seconds. Samples were centrifuged for 15 min at 12,000 x g at 

4°C. 500 µl of isopropanol and 0.5 µl RNAse free glycogen (10 mg/ml) was added 

to the upper aqueous phase and this mix was incubated at room temperature for 

10 min, before a further centrifugation for 15 min at 12,000 x g at 4°C. The RNA 

pellet was then washed with 70% (v/v) ethanol and centrifuged for a further 15 

min at 12,000 x g. 

 

To synthesise cDNA, 1 µg of purified RNA was used as template for Superscript III 

reverse transcriptase (RT) with random primers. Quantitative RT-PCR for ZIKV and 

the housekeeping gene GAPDH were detected with specific primers (Chapter 

3.1.5). Amplification signal was detected using SYBR green Mastermix using an 

ABI7500 Fast qPCR machine according to manufacturer’s protocol. Results were 

analysed using the ΔΔCt method (Livak and Schmittgen, 2001). 

 

3.2.13 dsRNA synthesis 

Cellular RNA was harvested and purified from Aag2 cells using Trizol as described 

in Chapter 3.2.12, and cDNA was created with Superscript III RT with random 

hexamer primers following the manufacturer’s instructions. Genes of interest 

were amplified from cDNA in a PCR using primers that included a T7 gene sequence 

(Chapter 3.1.5). PCR products were purified using a QIAquick PCR Purification Kit, 
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and 1 µg of product was used as a template for dsRNA synthesis using a MEGAScript 

RNAi Kit following the manufacturer’s instructions, and concentration of dsRNA 

was measured using a NanoDrop ND-1,000 spectrophotometer (Thermo Fisher 

Scientific).  

3.2.14 Co-Immunoprecipitation  

A549 or Aag2 cells were seeded (Chapter 3.2.1) and infected with ZIKV PE243 at 

an MOI 1 for 24 hrs or 48 hrs respectively. Supernatants were removed, cells were 

washed with PBS, and then cells were resuspended in IP lysis buffer (Chapter 

3.1.9). After lysis, 1/50 of sample was taken for Western blot analysis (Chapter 

3.1.10). Remaining immunoprecipitation samples were kept on ice for 20 min and 

centrifugated at 15,000 x g at 4 oC for 20 min. The supernatant was transferred 

into fresh tubes on ice and incubated with mouse anti-ZIKV E antibody or rabbit 

anti-GRP78 antibody for 2 hr at 4 oC. Following this, protein G magnetic beads 

were equilibrated in cold IP wash buffer (Chapter 3.1.9) and then added to 

supernatants for 1 hr at 4 oC, before 4 washes with cold washing buffer. Beads 

were re-suspended in protein sample buffer (Chapter 3.1.9) and subjected to 

proteomic analysis (as performed by Carolina Ramírez-Santana (Center for 

Autoimmune Diseases Research-CREA, School of Medicine and Health Sciences, 

Universidad del Rosario, 110010 Bogotá, Colombia) or boiled to elute proteins from 

beads prior to Western blot analysis (Chapter 3.2.10).  

 

3.2.15 Mass spectrometry analysis 

 

The mass spectrometry analysis described in Chapter 5 was performed by Carolina 

Ramírez-Santana (Center for Autoimmune Diseases Research-CREA, School of 

Medicine and Health Sciences, Universidad del Rosario, 110010 Bogotá, Colombia) 

and presented here with full permission. For completeness, the mass spectrometry 

analysis she undertook is described here.  
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Peptides were solubilised in 1% acetonitrile (ACN) (Rathburn Chemicals) with 

0.05% formic acid (FoA) (Sigma-Aldrich) and were separated using an UltiMate 

3000 RSLC nano liquid chromatography system (Thermo Fisher Scientific). This was 

conducted prior to analysis with electrospray ionisation (ESI) mass spectrometry 

on an LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Peptide 

samples were desalted and concentrated on a C18 trap column (5 mM × 300 µM ID, 

5 µM, 100 Å) (Thermo Fisher Scientific), for 4 min and washed for 7 min with 1% 

ACN with 0.05% FA at a flow rate of 25 µl/min. Subsequently, samples were 

separated through an Acclaim PepMap 100 C18 Column (150 mm × 75 µm ID, 3 µm, 

100 Å) (Thermo Fisher Scientific) with a gradient flow rate of 300 nl/min, and was 

4–40% of 80% ACN in 0.08% FA over 90 min, then 40–100% of 80% ACN in 0.08% FA 

over 14 min, held at 100% for 5 min, and then re-equilibrated to 4% of 80% ACN in 

0.08% FA for a total of 125 min. Peptide ions were detected in the Orbitrap mass 

spectrometer with a precursor scan at 60,000 resolving power within the mass 

range of m/z 400–2000. Tandem mass spectrometry (MS/MS) was performed on 

the 20 most intense ions detected in the precursor scans. Singly-charged ions were 

excluded from selection. MS/MS by collision-induced dissociation (CID) was carried 

out and detected in the linear ion trap (LTQ). A dynamic exclusion of 180 s was 

used to prevent repeat analyses of high intensity ions. 

 

3.2.16 Bacterial transformation 

 

50 µl of either DH5α or Stellar competent cells were incubated with 1-2 µl of 

selected plasmid on ice for 20 mins prior to a 30 s heat shock at 42 oC. Cells were 

then incubated on ice for 2 minutes before they were added to 200 µl of S.O.C 

growth media. Bacterial cells were subsequently placed at 37 oC and rotated at 

180 rpm for 1 hr. Cells were spread on LB agar plates containing either ampicillin 

or kanamycin, depending on the plasmid, (100 µg/mL) and incubated at 37 oC 

overnight.  
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3.2.17 Plasmid purification 

Colonies were picked from LB agar plates generated in Chapter 3.2.17 and were 

used to create starter cultures by shaking at 37 oC at 180 rpm for 8 hrs in 10 ml of 

LB anti-biotic free medium. Subsequently, this starter culture was added to 100 

ml of LB broth with 100 µg/mL of antibiotic, and shaken overnight at 37 oC at 180 

rpm. Amplified bacterial cells were harvested via centrifugation at 1000 rpm for 

20 mins. The cell pellet was lysed and purified by using either EndoFree Plasmid 

Maxi Kit or PureLink HiPure Plasmid Filter Maxiprep Kit, following the 

manufacturer’s instructions in either case.  
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Chapter 4.   Investigating Aedes aegypti immune factors 

that regulate ZIKV infection 

4.1 Introduction   

 

ZIKV persists in the environment through maintenance in competent mosquito 

species, and is spread to humans through transmission by different members of 

the Aedes mosquito genus, primarily Aedes aegypti (Musso and Gubler, 2016). Due 

to the lack of therapeutics or available vaccines against most arboviruses, the 

primary disease control mechanism has often been the use of insecticides to limit 

vector populations (Dos Santos et al., 2020). However, vector populations are 

increasingly found to be resistant to the insecticides being deployed and therefore 

their further usefulness is questioned (Kupferschmidt, 2016). The release of 

genetically modified mosquitoes is also being considered and trialed, the most 

recent example being a large Oxitech pilot scheme, which plans to release many 

modified mosquitoes into the Florida Keys in 2021. In the past this system 

engineered male mosquitoes with a germline dependency on tetracycline, without 

which they and their progeny theoretically cannot survive (Phuc et al., 2007). 

These releases are predicted to dramatically reduce the local mosquito 

populations, thereby reducing transmission of arboviruses such as ZIKV. Early 

reports from trial releases in Brazil however indicate that a subsection of the 

released Aedes aegypti mosquitoes were biologically fit enough to survive without 

tetracycline, and went on to reproduce with native mosquitoes (Evans et al., 

2019). If this phenomenon is observed with future releases of modified 

mosquitoes, the usefulness of these programs will likely be questioned. 

 

Similarly, persistent infection of mosquito vectors with the endosymbiont bacteria 

Wolbachia pipientis has shown promise in reducing the transmission competence 

of these infected mosquitoes (Chouin-Carneiro et al., 2020). Here, Wolbachia is 

maternally transmitted, and so released Wolbachia mosquitoes can integrate and 

introduce a chosen Wolbachia strain into native populations (Schultz et al., 2017). 
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The mechanism of action of viral suppression is thought to be multifaceted and 

virus specific, though several studies have shown that Wolbachia-mediated 

reduction of lipid/cholesterol availability is important (Geoghegan et al., 2017; 

Schultz et al., 2018). Concerns surrounding efficacy, mosquito survival, 

resistance, and ethical issues have all been raised in response to the generation 

and release of these mosquitoes, and much work remains to be done (Meghani and 

Boëte, 2018).  

 

Understanding the relationship between the mosquito immune response and 

infection is therefore vital to facilitate the development of new strategies to 

control arbovirus spread. The primary defense of arthropods against arbovirus 

infection is the RNA interference (RNAi) response (Lee et al., 2019) and is shown 

in part in Figure 4-1. The 3 main types of small RNAs produced are exogenous 

small interfering RNA (exo-siRNA), PIWI-interacting RNA (piRNA) and microRNAs 

(miRNA), all of which have been implicated in regulating ZIKV infection. (Saldaña 

et al., 2017; Varjak, Donald, et al., 2017; Varjak, Maringer, et al., 2017; Göertz 

et al., 2019). Exo-siRNAs are traditionally considered to be the primary anti-viral 

pathway in Aedes aegypti. Exo-siRNAs are produced in the exo-siRNA pathway 

following the splicing of viral dsRNA intermediates by Dicer 2 (Drc2), which 

generates precise, 21 nucleotide (nt) long, double-stranded RNA (dsRNA) 

intermediates, which are then loaded onto the RNA-induced silencing complex 

(RISC) (Carthew and Sontheimer, 2009). The RISC is made up of proteins such as 

Argonaute 2 (Ago2) which process the 21 nt dsRNA into single stranded siRNA, 

which can target the complementary viral RNA and facilitate its degradation (Van 

Rij et al., 2006). piRNAs, generated from the piRNA pathway, are longer than 

siRNA, being 25-29nt in length. They are produced via the ‘ping-pong’ 

amplification loop and show a bias for a characteristic uridine residue at position 

1 in anti-sense sequences, and an adenine residue at position 10 in sense 

sequences (Varjak, Leggewie and Schnettler, 2018). miRNA, like siRNA, are non-

coding RNA sequences of around 22 nt that are derived from dsRNA and can elicit 

gene silencing following processing by Dicer 1 and subsequent loading onto the 

RISC complex with Argonaute 1 (Lee et al., 2019). Unlike siRNA, virus specific 
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miRNAs are unlikely to be produced in response to flavivirus infection because 

some of the machinery required for miRNA processing are located within the 

nucleus, where positive sense viral RNA is unlikely to reach. However, virus 

specific modulation of host miRNA has been shown to influence infection for 

several flaviviruses, including ZIKV (Saldaña et al., 2017).  

 

In ZIKV infected Aedes aegypti cells, virus specific siRNAs are produced and cells 

which lack Dcr2 support ZIKV replication to higher levels (Varjak, Donald, et al., 

2017). Conversely, silencing of Ago2 does not upregulate ZIKV infection in these 

cells as shown by Varjak and colleagues. Here, ZIKV differs from many other RNA 

viruses that see relief from restriction following Ago2 silencing (Sánchez-Vargas 

et al., 2009; S. Chen et al., 2011; Sasaki et al., 2017; Varjak, Maringer, et al., 

2017). Additionally, Varjak et al found that while piRNAs are produced, they did 

not contain the specific signatures that are usually associated with them, and 

silencing of piRNA producing proteins such as Ago3, PIWI5 and PIWI 6 did not 

enhance ZIKV replication. PIWI 4, which is not associated with canonical piRNA 

pathways was, however, found to be antiviral, a finding that has been repeated 

for viruses other than ZIKV (Varjak, Maringer, et al., 2017). While these findings 

are well established at the time of writing, upon commencement of the study they 

were not known. 
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Figure 4-1: Mosquito anti-viral RNAi responses.  

There are three different RNA interference (RNAi) pathways involved in response to virus 

infection: exogenous small interfering RNA (exo-siRNA), PIWI-interactiong RNA (piRNA) 

and microRNA (miRNA) pathways. Figure adapted from Lucas et al, 2013 (Lucas, Myles 

and Raikhel, 2013).  
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Other major factors involved in regulating the mosquito immune response to 

flaviviruses include the Toll and Janus kinase/signal transducer and activator of 

transcription (JAK/STAT) pathways (Angleró-Rodríguez et al., 2017; Harsh and 

Eleftherianos, 2020). Activation of these pathways in response to infection can 

lead to expression of various antimicrobial peptides to protect against infection 

(Kumar et al., 2018). There are flavivirus-specific differences in the response of 

Toll and JAK/STAT to infection, where activation of Toll signalling in Aedes 

aegypti seemed to be stronger in response to ZIKV infection, whereas JAK/STAT 

activation appears more pronounced in DENV infected mosquitoes (Souza-Neto, 

Sim and Dimopoulos, 2009; Angleró-Rodríguez et al., 2017). Although some studies 

have investigated the wider mosquito immune response to ZIKV infection, most 

research has focused on DENV and therefore there is a broader base of knowledge 

(Mukherjee et al., 2019).  

 

As such there is a need to further investigate and identify key elements in the 

mosquito response, as well as other relevant host factors, to ZIKV infection. This 

knowledge could allow for targeted intervention in a key stage of ZIKV 

transmission.  
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4.1.1 Aims 

 

The main aim of this study was: 

 

• To investigate the wider mosquito immune response to ZIKV infection, and 

other host factors requited for infection, by performing a large-scale siRNA 

knockdown screen in Aag2 cells. This screen consists of pools of siRNAs 

targeting 998 host genes.  

 

To facilitate this, there were several milestones to achieve first. These included: 

 

• To rescue a ZIKV luciferase (ZIKV Nanoluc) reporter virus. 

 

• To characterise the luciferase production kinetics of this reporter virus 

 

• To test whether ZIKV Nanoluc can be used to assess the effect of siRNA-

mediated knockdown of important cellular factors.  
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4.2 Results 

4.2.1 Characterisation of a ZIKV reporter virus 

The overall aim of the investigation described in Chapter 4 was to identify Aedes 

aegypti host factors which can regulate ZIKV infection using a previously 

established siRNA screen which targets 998 host genes. However, prior to 

commencement of the screen, several steps were taken to produce the reagents 

required and to establish experimental conditions. Firstly, I aimed to rescue a 

nanoluciferase (Nanoluc) tagged ZIKV virus (ZIKV Nanoluc) and characterise the 

virus to establish optimal conditions for future experiments. Nanoluc is a 

bioluminescent enzyme that produces light from chemical processing of a 

substrate. While Firefly or Renilla luciferases are often used, Nanoluc has several 

advantages which include a smaller size, increased stability and brighter 

luminescence (England, Ehlerding and Cai, 2016). When encoded in the viral 

polyprotein a Nanoluc reporter can provide a sensitive, high throughput readout 

for infection, with an increase in luciferase signal presumably correlating linearly 

with an increase in virus (Ramanathan et al., 2020). The template DNA for the 

Nanoluc reporter virus (and subsequently described replicon) was generously 

provided by Prof Andres Merits (Institute of Technology, University of Tartu), and 

has previously been described (Mutso et al., 2017). The structure of this reporter 

virus is based on a Brazilian isolate termed BeH819015. This virus did not have the 

5’ and 3’ UTR sequence available at the time of assembly and so these sequences 

were taken from PE243, another Brazilian isolate which is also used extensively in 

the Kohl lab. The Nanoluc moiety is encoded in the polyprotein following a 

duplicated capsid, and precedes a foot-and-mouth disease virus (FMDV) 2A 

autoprotease, which is required for cleavage of the Nanoluc moiety from the 

subsequent complete ZIKV polypeptide (Donnelly et al., 2001). This construct is 

displayed in Figure 4-2 alongside a ZIKV Nanoluc replicon which is used in 

subsequent studies described in this thesis (Chapter 5.2.3, Figure 5-8). This 

replicon encodes the same luciferase moiety, but full M and E proteins are lacking 

to prevent generation of infectious virions. The last 30 residues of E are retained 

to facilitate the insertion of NS1 and the subsequent polyprotein into the ER 
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membrane (Falgout, Chanock and Lai, 1989). A so called wild-type (WT) virus, 

lacking the Nanoluc and autoprotease moieties was also rescued. 
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Figure 4-2: Diagram showing the structure of a ZIKV reporter virus.  

(A) The Brazilian ZIKV strain termed BeH819015 was used as a basis for 

constructing a reporter virus that was used in this study. The 5’ and 3’ 

untranslated regions (UTR) are taken from the PE243 Brazilian isolate. A 

duplicated capsid (C) precedes the Nanoluc moiety, which is cleaved from the 

polyprotein by a FMDV 2A autoprotease (*). The subsequent polyprotein is not 

modified. (B) A similarly constructed replicon is shown, where the structural 

proteins have been replaced with the last 30 residues of envelope.  
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These constructs are cloned into a pCCI backbone with a SP6 promoter, and the 

genomic sequence can be linearised for RNA synthesis either by restriction enzyme 

or conducting PCR amplification on the backbone. This sequence is then used as a 

template for SP6 RNA polymerase-mediated in vitro production of mRNA, and the 

inclusion of a 7-methylguanosine cap in the reaction promotes the 5’ capping of 

mRNA, which is essential for translation (Cowling, 2010). A successful in vitro 

reaction results in the formation of distinct bands on an agarose gel, shown in 

Figure 4-3. Following RNA purification, mRNA is then transfected into Vero E6 cells 

and amplified for up to 7 days or until significant cytopathic effects (CPE) are 

observed. Significant variations in the time taken for CPE to form were observed, 

which is likely due to variable efficiencies of both RNA transcription and 

transfection. As such flexibility was needed in determining when to harvest virus 

from these cells. Cell media was harvested and clarified before aliquots of this 

master stock were made. Plaque assays were performed to assess the titre of the 

master stock (Figure 4-3). A549 NPro cells were used to further amplify virus stocks 

for 5 days. The production of virus was confirmed following further plaque assays 

and the luciferase activity of WT and Nanoluc virus was measured in A549 NPro 

cells (Figure 4-3).   
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Figure 4-3: ZIKV Nanoluc virus can be rescued from plasmid DNA and amplified 

in cell culture.  

(A) Agarose gel showing in vitro transcribed RNA encoding ZIKV WT (lane 1) and 

ZIKV Nanoluc (lane 2). (B) A549 NPro cells were infected with ZIKV Nanoluc and 

ZIKV WT for 48 hrs at MOI 1. Cells were lysed at luciferase levels measured. Data 

represents triplicate independent experiments and errors bars are standard error 

of the mean. (C) Plaque assays showing successful rescue of ZIKV Nanoluc and 

ZIKV WT. 
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As the viruses produced above would be used in both mammalian and mosquito 

systems it was important to establish the kinetics of their replication, especially 

with regards to luciferase production by the reporter virus, in cell lines that were 

to be utilised. To this end, A549 and Aag2 cells were infected with ZIKV Nanoluc 

for 24, 48 or 72 before cells were lysed and luciferase levels were measured 

(Figure 4-5). Luciferase levels increased steadily, though luciferase production 

was observed to be slower in Aag2 cells compared to the mammalian cells lines, 

though both displayed comparable readings. This is consistent with other studies 

which show ZIKV replication in mosquito cells is slower than mammalian cells 

(Moser et al., 2018). From this it was established that a 24 hr infection was 

sufficient to get high levels (a least 1 log10 above background) of luciferase 

readings for infection in mammalian cells, though a 48 hr time point or later should 

be used as the minimum in Aag2 cells (Figure 4-5).  
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Figure 4-4: ZIKV Nanoluc replicates faster in mammalian cells than mosquito 

cells. 

(A) A549 and Aag2 cells were infected with ZIKV Nanoluc at an MOI 0.1 for 

indicated time periods. Results indicated data from triplicate, independent 

experiments, and error bars represent the standard error of the mean.  
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4.2.2 Performing a large-scale siRNA screen 

The siRNA screen described here had been previously designed and used in the 

Kohl lab to investigate the molecular interactors of SFV in Aag2 cells. This screen 

target 998 host factors involved in the Aedes Aegypti immune response, as well as 

other essential pathways. Targets included genes involved with ubiquitin/SUMO, 

Serpins, Rho, Rab/importins, DEAD-box helicases, Apoptosis, RNAi, IMD, 

JAK/STAT, Toll, WD-repeat proteins, Autophagy, and Prophenoloxidase pathways.    

 

Before undertaking the siRNA screen, I endeavored to show that siRNA silencing 

of cellular factors can aid or restrict ZIKV infection, a change which can be 

quantified using luciferase levels as a readout. Although very little information 

was available with regards to important ZIKV cellular factors I could investigate 

as a positive control, two genes that are often vital for the antiviral RNAi response 

against related RNA viruses, Ago2 and PIWI4, were selected (Sánchez-Vargas et 

al., 2009; Sasaki et al., 2017; Tassetto et al., 2019). siRNA against Ago2, PIWI4 

and an eGFP control were transfected into Aag2 cells 24 hr prior to infection with 

ZIKV Nanoluc before cells were lysed and luciferase measured (Figure 4-5). Despite 

the vital role Ago2 plays in regulating infection of other flaviviruses, siRNA 

silencing had no effect on ZIKV luciferase activity when compared with the eGFP 

control. This phenotype had been confirmed in other studies (Varjak, Donald, et 

al., 2017). Conversely, PIWI4 knockdown significantly increased ZIKV luciferase 

readings when compared with the eGFP control, indicating that it restricts ZIKV 

infection, although this effect was not very large. This finding has also been 

validated in another independent study (Varjak, Maringer, et al., 2017). While the 

results of the Ago2 knockdown were initially surprising, the observed predicted 

effect of PIWI4 silencing indicated that the use of siRNA silencing in Aag2 cells 

could produce a measurable effect on ZIKV Nanoluc.  
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Figure 4-5: PIWI4 knockdown increases ZIKV replication 

A) Aag2 cells were transfected with siRNAs against Ago2, PIWI4 or eGFP as a 

control for 24 hrs. Cells were then infected with ZIKV Nanoluc at MOI 0.1 for 48 

hrs before cells were lysed and luciferase levels measured, results given relative 

to the eGFP control. Results are compiled from triplicate independent repeats 

and error bars represent the standard error of the mean. An unpaired Student’s 

t-test with Welch’s correction was used to determine statistical significance 

where n.s = not significant, * p-value < 0.05. 
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Using the infection and knockdown parameters previously established, I proceeded 

to carry out the siRNA screen. siRNAs were generated by Ambion (now part of 

Thermo Fisher Scientific) and were provided in a 96 well plate format, with each 

well containing a pool of 3 siRNA targeting a specific gene. Aliquots were made 

from these master plates and transfected into Aag2 cells seeded in 96 cells plates. 

Following infection, these cells were lysed, and luciferase readings were taken for 

every plate. This procedure was carried out 3 times and the results of each 

independent screen were later compiled. Due to the design of the plates and the 

absence of negative control siRNA wells, individual well luciferase readings were 

normalised against the plate average, under assumption that the majority of genes 

on the plate have neutral role in infection. While plate to plate variations might 

be anticipated, any outliers (those which are significantly anti- or pro-viral) were 

expected to be detected reliably. To be considered for further analysis, wells 

which had luciferase readings 2 standard deviations above or below the plate 

average were highlighted and compared to the comparable plate in each of the 

other repeats.  

 

Using the above criteria, a total of 152 such hits were identified across the 3 

repeats of the screen (by repeat: #1 – 43 hits, 2# – 58 hits, 3# – 41 hits). However, 

only 13 of these were common between any 2 screens, and there were 0 hits 

conserved across all 3 repeats of the screen. This is shown in the Venn diagram in 

Figure 4-6. There are several potential reasons for this observation, one being bias 

introduced through normalisation of values to plate averages, potentially hiding 

true effects if a given plate contains predominately pro-viral or anti-viral factors. 

Also, as seen in Figure 4-4, the effect of Piwi4 knockdown in a more controlled 

setting, while significant, was not very large and therefore the reporter virus used 

in the screen may not have been sensitive enough. Because of that, any potential 

hits could have been random outliers. 
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Figure 4-6: Venn diagram displaying the hits obtained from screen.  

A) Potential hits were identified if they were 2 standard deviations above or 

below the plate average when luciferase readings were measured. Using this 

criteria, 43 hits were found in repeat #1, 41 in repeat #2 and 58 in repeat #3. The 

number of hits overlapping between each repeat are indicated. 
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Regardless, 8 of the 13 potential hits were taken forward for validation, and these 

factors are listed in Table 4-1. The hits listed here were identified as being 2 

standard deviations above or below the plate average in 2 repeats of the screen 

and ‘trended’ in the same direction from the plate average in the third screen.  

 

 

Accession 

No.  

Gene name Average luciferase 

readings relative to plate 

averages (+/- SEM) 

AAEL013045  exosome complex exonuclease RRP41 

 

1.327 (+/- 0.097) 

AAEL011087 DNA-directed RNA polymerase II  1.349 (+/- 0.140) 

 

AAEL003245 IMD pathway signalling I-Kappa-B Kinase 1 1.351 (+/- 0.065) 

 

AAEL007921 Zinc finger protein 394  1.150 (+/- 0.094) 

 

AAEL004121 ubiquitin-conjugating enzyme E2 q 1.217 (+/- 0.082) 

 

AAEL012717 WD-repeat protein 1.520 (+/- 0.195) 

 

AAEL005437 transient receptor potential channel  1.646 (+/- 0.379) 

 

AAEL014529 Ran-binding protein 1.535 (+/- 0.171) 

 

Table 4-1: A list of the hits identified from the siRNA screen.  

Listed in the table are the Accession number (No.) and gene name of hits that were 

identified in the screen. Average luciferase readings normalised to individual plate 

averages are shown. The standard error of the mean (SEM) is also displayed.   
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4.2.3 Validation of potential regulators of ZIKV infection 

 

To further investigate the potential of these hits of playing a role in ZIKV infection, 

dsRNA was synthesised against these targets and transfected into Aag2 cells along 

with a dseGFP negative control and dsPIWI4 as a positive control. Following, the 

Aag2 cells were infected with ZIKV Nanoluc before cells were lysed and luciferase 

levels measured and plotted relative to the controls (Figure 4-7). Additionally, 

RNA was harvested from control and knockdown samples and reverse transcription 

was performed. Following PCR amplification with gene specific primers, semi-

quantitative agarose gel analysis showed that dsRNA effectively silenced the 

target, and an actin loading control is present for each sample (Figure 4-7). From 

this analysis, no significant difference was observed in viral luciferase levels 

between any of the hits, though PIWI4 knockdown did increase ZIKV luciferase. 

DNA-directed RNA polymerase II (hit – 2) displayed an elevated luciferase levels, 

though variability in independent repeats meant this did not achieve statistical 

significance as judged by an unpaired Student’s t-test with Welch’s correction (p 

value = 0.16).  
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Figure 4-7: A validation screen using dsRNA found no significant difference in 

viral activity between hits and control. 

A) Aag2 cells were treated with dsRNA against hits identified in the screen and 

GFP and PIWI4 as a positive and negative control, respectively. Following, cells 

were infected with ZIKV Nanoluc for 48 hrs. An unpaired Student’s t-test with 

Welch’s correction was used to determine statistical significance, where n.s = not 

significant, * p-value < 0.05. B) RNA was extracted from cells following dsRNA 

treatment and infection, and a RT-PCR was performed to amplify specific gene 

products and an actin loading control. The samples were separated on an agarose 

gel. 
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4.3 Discussion 

 

The aim of this study was to rescue and characterise a ZIKV Nanoluc reporter virus 

for use in a large-scale siRNA screen to identify mosquito host-factors required for 

ZIKV infection. As an emerging arbovirus, it vital to understand the interactions 

between the virus and vector to aid development of control strategies. Here I 

show the successful rescue of the ZIKV reporter virus and its use in mosquito Aag2 

cells, and that siRNA mediated knockdown of the known anti-viral agent PIWI4 was 

able to be measured using luciferase (Varjak, Maringer, et al., 2017). However, 

no hits identified from the screen could be reliably verified as important for ZIKV 

infection following a validation screen. 

 

The ZIKV Nanoluc reporter was rescued from plasmid DNA generously provided by 

Andres Merits, and its generation has been described by his group (Mutso et al., 

2017). Here I have shown that this virus can be propagated in Vero E6 cells prior 

to amplification in A549 NPro cells. A549 NPro cells contain BVDV NPro, which 

targets IRF-3 for proteasomal degradation resulting in a diminished innate immune 

response and can therefore supports ZIKV replication to a higher titre (Hilton et 

al., 2006; Xia et al., 2018). While being highly susceptible to infection, in my 

hands A549 NPro cells proved difficult to transfect with in vitro transcribed RNA 

or could not be used to rescue virus RNA, and so Vero E6 cells were chosen for 

initial rescue of the virus. Once harvested, the virus was propagated in A549 NPro 

cells. 

 

Following amplification and establishing titre of the rescued virus, the replication 

and luciferase production kinetics of ZIKV Nanoluc were tested in both mammalian 

(A549) and mosquito (Aag2) cells. The replication of ZIKV in mammalian A549 cells 

was observed to be faster than Aag2 cells. My experiments established conditions 

for use in future experiments, where high levels of luciferase can be detected 24 

hr after infection of mammalian cells, and 48 hrs or later for Aag2 cells. This 

reduction in virus replication kinetics in Aedes aegypti cell culture has been 
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observed for ZIKV in other studies, and is perhaps not surprising due to the 

propensity of these viruses to persistently infect their vector host (Salas-Benito 

and De Nova-Ocampo, 2015; Moser et al., 2018), as well as robust RNAi responses. 

Persistent infection of vectors seems to be due to a mixture of viral and cellular 

factors, such as the production of defective interfering particles, and appears to 

be vital for viral transmission (Goic and Saleh, 2012). 

 

When testing the siRNA knockdown protocol with ZIKV Nanoluc, very little 

information was available regarding factors that could influence ZIKV infection in 

mosquito cells. Initially two well-known anti-viral proteins were selected. Ago2 

and PIWI4 have both been implicated in the anti-viral response for many diverse 

positive sense RNA viruses such as DENV, JEV, Semliki Forest virus (SFV) and 

Schmallenburg virus (Sánchez-Vargas et al., 2009; Schnettler et al., 2013; Dietrich 

et al., 2017; Sasaki et al., 2017; Varjak, Maringer, et al., 2017). Here, cells 

treated with siRNA against Ago2 did not significantly increase ZIKV luciferase 

compared to control sieGFP cells. This was surprising and may suggest that the 

exo-siRNA pathway does not restrict ZIKV infection, or that ZIKV already encodes 

the ability to disarm this pathway. Although the mechanism behind this has not 

yet been uncovered, it has been independently confirmed in other experiments 

(Varjak, Donald, et al., 2017). In contrast, PIWI4 knockdown did significantly 

increase ZIKV luciferase levels, a finding that has also been reported (Varjak, 

Donald, et al., 2017). This demonstrated that the siRNA protocol used can 

successfully identify important host factors.  

 

I then performed the large-scale siRNA screen. The targets for the screen had been 

designed prior to the commencement of this project to target genes that are 

potentially involved in Aedes aegypti immune responses as well as other host 

processes. Here, siRNAs were produced by a commercial vendor and were provided 

in a 96 well format, where each well contained a pool of 3 different siRNA targeted 

against a single gene. Aliquots were taken from the master plates to create 

daughter plates. From this, transfection mixes were assembled before siRNA was 

added to Aag2 cells. Following this, virus was applied to cells and nanoluciferase 
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readings taken. Nanoluciferase readings were normalised to plate averages and 

hits were characterised as being 2 standard deviations above or below the plate 

average. From this analysis protocol, no hits were conserved across all 3 repeats, 

and 13 repeats were identified in 2 separate screens. There are several potential 

reasons for the lack of conserved hits.   

 

Firstly, it could be the case that none of the factors probed in the siRNA screen 

played a role in ZIKV infection. This seems highly unlikely considering the large 

number of targets (998 genes) and the fact that PIWI4, which I previously 

demonstrated to be anti-viral, was a target of the screen. In the test experiments, 

PIWI4 silencing significantly increased ZIKV luciferase readings by 47 %, which 

contrasts with the screen, where the average luciferase value was 0.2 % higher 

than the plate averages. 

 

Secondly, a large amount of variability could have been introduced by the 

experimental and analysis protocol. From cell seeding to final luciferase readings 

a total of six pipetting actions were performed with multi-channel pipettes, often 

involving very small volumes. While great care was taken to perform the 

experiment diligently, there would still likely be a large amount of variation 

introduced by these pipetting actions. Additionally, due to the lack of negative 

control siRNA wells, analysis was performed by normalising individual well values 

to the plate average. This could potentially introduce bias, as plates containing 

several anti-viral (or pro-viral) factors could skew the average, disguising these 

effects. It seems likely a combination of these factors introduced a high level of 

variability that potential masked putative factors. Regardless, there were large 

variabilities between replicates. 

 

Thirdly, the efficacy of each siRNA was not calculated. Though each well 

contained a pool of siRNAs against each target, the gene expression levels were 

untested, thus, it is possible that they were not effective in silencing the targeted 

gene. Similarly, while viral luciferase levels were measured 72 hrs after siRNA 

transfection (and 48 hrs after infection), it is possible that the expression of stable 



115 
 

 

 

 

proteins would not be affected in this timeframe, and so the contribution these 

may play in ZIKV infection would not be captured.  

   

Lastly, another issue might be that ZIKV Nanoluc is not sensitive enough for the 

screen. As showed earlier, while silencing of PIWI4 in the test assay did result in 

40% higher reads, knock down of PIWI4 has been shown to increase the number of 

released ZIKV particles by approximately 4-fold (Varjak, Donald, et al., 2017). It 

may be the case that ZIKV-Nluc is not sensitive enough and cannot sufficiently 

capture the benefits/pitfalls of a specific gene silencing. While this is unlikely to 

be the sole shortcoming of this experiment, it may have contributed.  

 

Of note, the screen previously performed for SFV did not detect hits that were 

conserved across all 3 repeats. In that screen, there were 84 hits conserved 

between any 2 repeats (Melanie Mcdonald, University of Glasgow. Personal 

communications). While this number is higher than the 13 detected in the study 

described here, the lack of repeatable hits suggests that there are flaws in the 

screen design independent of the virus under investigation, and that alternative 

designs should be used to conduct similar experiments in the future. 

 

Despite these shortcomings, hits that were conserved across 2 screens (and 

trended in the same direction in the 3rd) were selected for further validation. 

Validation was conducted in a 12-well format to minimize the variations 

introduced by pipetting small volumes. Additionally, a negative control (dseGFP) 

and a positive control (PIWI4) were included so appropriate comparisons could be 

made. Analysis of triplicate independent repeats of the validation experiment 

revealed that silencing of the screen hits did not significantly impact ZIKV 

replication, though RNA expression of each target was indeed reduced by dsRNA 

transfection. Again, this experiment showed PIWI4 acts as an anti-viral factor in 

ZIKV infection.  

 

In conclusion, this study established the replication kinetics of a ZIKV Nanoluc 

reporter virus in both mammalian and mosquito cell lines. This virus was used to 
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show that while Ago2 is not anti-viral for ZIKV, PIWI 4 is. Additionally, this reporter 

virus (along with the replicon that was also described) was used extensively in the 

subsequent chapters and as such is a vital tool. A large-scale siRNA screen was 

attempted, though it appears that ZIKV Nanoluc is not a viable option for a screen 

conducted in the format presented here. 
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4.4 Summary  

 

• A ZIKV Nanoluc reporter virus can be reliably rescued from plasmid DNA and 

kinetics of luciferase production were investigated in mammalian and 

mosquito cell culture. 

 

• ZIKV Nanoluc can be used as an investigative tool for uncovering host-virus 

interactions, though sensitivity of luciferase detection may be an issue. 

 

• A large-scale siRNA screen was conducted, though no conclusive hits were 

identified. 

 

• Ago2 is not an anti-viral factor in ZIKV infection in Aag2 cells, but PIWI4 is. 
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Chapter 5.   GRP78 interacts with ZIKV E and is required 

for a productive infection 

5.1 Introduction 

 

The envelope (E) proteins of flaviviruses are vitally important structural proteins. 

E, along with matrix (M) protein, coat the surface of the virion. E protein engages 

with cellular receptors to initiate virus entry, and the fusion loop of E facilitates 

fusion with endosomal membranes, allowing nucleocapsid release into the 

cytoplasm. Additionally, as a structural protein, E is essential for virus assembly 

(Zhang et al., 2017). Therefore, most research into the role of E in infection has 

focused on identifying entry receptors and elucidating the structure of E and the 

role it plays in facilitating entry and assembly, often with a view to designing 

therapeutic interventions (Perera-Lecoin et al., 2013; Metz et al., 2017; Shi et 

al., 2018; Agrelli et al., 2019; Qu et al., 2020). Consequently, very little is known 

about the role E protein, especially ZIKV E, may play in the intermediate stages 

of infection. For example, recent reviews and interactome studies of ZIKV host-

cell interactions contain little regarding ZIKV E interactions outside of the purview 

of entry, and focus predominantly on the non-structural proteins (Shah et al., 

2018; Lee and Shin, 2019; Scaturro, Kastner and Pichlmair, 2019; Golubeva et al., 

2020). There are some exceptions to this, as ZIKV E has been shown to co-localise 

with proteins involved in stress granule formation such as Ras-GTPase activating 

binding protein 1 (G3BP-1), though no direct interaction has yet been identified 

(Bonenfant et al., 2019).  

 

With that in mind, this investigation aimed to broaden the knowledge base related 

to ZIKV E in infection by focusing on investigating cellular interactors of E. A 

proteomic experiment previously undertaken in the Kohl lab by Carolina Ramírez-

Santana (currently at the Center for Autoimmune Diseases Research-CREA, School 

of Medicine and Health Sciences, Universidad del Rosario, 110010 Bogotá, 

Colombia (Royle et al., 2020)) uncovered a potential interaction between ZIKV E 
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and GRP78. In this study, E was immunoprecipitated from ZIKV PE243 infected 

A549 cells and analysed by electrospray ionization, mass spectrometry to identify 

cellular interactors. Results from this is listed in Table 5-1, where the presence or 

absence of each putative interactor in triplicate repeats (infected samples and 

mock control samples) are shown. ZIKV PE243 is a virus isolated from a patient in 

Recife, Brazil, and has been described previously (Donald et al., 2016).  

 

 

 

Protein  UniProt   

Accession  

Infection 

1  

Infection   

2  

Infection   

3  

Control   

4  

Control   

5  

Control 

6  

LMNA  P02545  Yes  Yes  Yes  No  Yes  No  

PGAM5  Q96HS1  Yes  Yes  No  Yes  No  No  

GRP78  P11021  Yes  Yes  Yes  No  No  No  

OASL  Q15646  Yes  Yes  No  No  No  No  

TAO1  Q7L7X3  Yes  Yes  Yes  No  No  No  

Table 5-1: Potential interactors of Zika (ZIKV) Envelope (E) as identified via 

proteomic analysis of infected A549 cells.  

A549 cells were infected with ZIKV PE243 and E protein was immunoprecipitated 

to isolate cellular interactors. This was performed in triplicated alongside 

uninfected control cells, before electrospray ionization, mass spectrometry was 

used. The table lists the Protein acronym, UniProt Accession number, and 

whether, following analysis, these proteins were found in each of the infection 

or control samples.   
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As shown in Table 5-1, there were several hits identified as E interactors. Some of 

these, such as Oligoadenylate synthase-like (OASL), have previously been 

identified as virus interactors. OAS have been shown to be interferon stimulated 

gene (ISG), and OASL is a member of that family and has previously been 

implicated in WNV and HCV disease severity (Yakub et al., 2005; Ishibashi, Wakita 

and Esumi, 2010). While this may appear a compelling candidate, it was not found 

in every infected sample. Another identified protein was a serine/threonine-

protein kinase, encoded by the TAOK1 gene, and is also known as thousand and 

one amino-acid protein 1 (TAO1). This protein is a mitogen-activated protein 

kinase kinase kinases (MAP3K) involved in DNA-damage repair and immune 

suppression (Zhang et al., 2018). While this protein was found in all 3 infection 

samples (and absent in all the control samples), to the best of my knowledge there 

is no known implication of TAO1 with any virus infection though it is implicated in 

some cancers (Fang et al., 2020). 

 

The most interesting hit, however, was glucose-regulated protein 78kDa (GRP78). 

GRP78 is a multifaceted protein and a prominent ER-resident chaperone. It is a 

key mediator of the UPR, whereby in the presence of cellular stress, GRP78 and 

its effector molecules are activated to ensure the proper folding of proteins, the 

regulation and halt of translation, and the initiation of controlled cell-death if 

cellular stress is not resolved (Ibrahim, Abdelmalek and Elfiky, 2019). The 

molecular mechanisms of GRP78 are discussed in Chapter 1.3.2.  

 

Of particular interest for this study, GRP78 has been implicated in the lifecycles 

of various viruses, including flaviviruses such as JEV, DENV and duck Tembusu virus 

(TMUV) (Wati et al., 2009; Wu et al., 2011; Zhao et al., 2018). Interestingly, 

GRP78 seems to act at different stages of infection for even these related viruses, 

as is discussed in more detail in Chapter 1.3.3. Additionally, GRP78 is implicated 

in several types of cancers and there is substantial interest in developing 

therapeutics and small molecule inhibitors for use GRP78 mediated disease (Lu, 

Luo and Zhu, 2020). These small molecule inhibitors, such as Epigallocatechin 

gallate (EGCG) and Honokiol (HNK), function by inhibiting the GRP78-mediated 
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UPR response. EGCG and HNK compete with ATP for binding to the NBD of GRP78, 

thereby maintaining GPR78 in an open confirmation preventing the release of 

effector molecules and the binding of substrates. The use of these inhibitors in 

cell culture is well-documented (Martin et al., 2013; Sagara et al., 2018). These 

inhibitors, along with the availability of other molecular tools such as antibodies, 

meant fundamental research could be easily conducted.  

 

For these reasons, GRP78 was selected for further study to uncover the role it 

plays in ZIKV infection.  

 

5.1.1 Aims 

 

I therefore had several aims for this study. 

 

• Firstly, to verify the interaction between ZIKV E and GRP78 using 

immunoprecipitation experiments. 

 

• Secondly, to use the available small-molecule inhibitors to block GRP78 

function and assess the effect this has on ZIKV infection. 

 

• Thirdly, deplete GRP78 expression with specific siRNA, and similarly 

investigate the effect on ZIKV infection. 

 

• Lastly, to use evidence from the above experiments to propose a model for 

the role of GRP78 in ZIKV infection. 
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5.2 Results 

5.2.1 GRP78 and ZIKV E interact and co-localise  

Previous work (Table 5-1) identified several putative cellular interactors of ZIKV 

E, including GRP78. My first aim was to verify the interaction between ZIKV and 

GRP78, and to do this a co-immunoprecipitation (IP) experiment using ZIKV E as 

bait was performed. Here, ZIKV infected A549 cells were lysed and incubated with 

a specific anti-E antibody. E antibody-protein complexes were extracted with 

magnetic beads and eluted from beads by boiling in protein sample buffer. These 

eluted complexes were probed by western blot with GRP78 antibodies alongside 

cell lysates collected prior to IP (Figure 5-1). GRP78 was identified in the lysates 

of all samples but only in the infected cell IP experiment, and not in mock infected 

cells in IP samples. This confirmed the proteomic results which indicated the 

GRP78 could interact with ZIKV E. Further evidence may be provided by looking 

at the sub-cellular localisation of ZIKV E and GRP78 during by infection by 

visualising infected or mock infected A549 cells with immunofluorescence (IF) 

microscopy, as shown in Figure 5-1. This showed that while GRP78 normally 

displays diffuse, primarily cytoplasmic localisation, upon infection it re-localised 

to perinuclear sites coincident with ZIKV E staining. However, as both GRP78 and 

E may be expected to co-exist in the ER, the IF images do not provide proof of co-

localisation between these proteins, especially as the resolution achieved is 

insufficient to provide conclusive evidence of a direct interaction. 
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Figure 5-1: ZIKV E protein interacts with GPR78 in A549 cells. 

 

A) A549 cells were infected with ZIKV PE243 MOI 1 for 24 hrs and cell lysate 

samples were taken, and Western blot analysis was performed for GRP78, E and 

a tubulin loading control. B) An IP was performed on cell lysates with an E 

antibody, and this was probed for GRP78 and E staining by Western blot analysis. 

A549 cells were C) mock infected or cell infected with ZIKV PE243 MOI 0.1 for 24 

hrs and stained with E (white) and GRP78 (green) antibodies and the nucleus was 

labelled with DAPI (blue). Images are representative of triplicate experiments 

and were taken on an LSM 710 confocal microscope.  
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5.2.2 EGCG treatment inhibits ZIKV infection 

 

As the interaction between GRP78 and ZIKV E had been confirmed, the next aim 

was to uncover the role GRP78 may play in infection.  

 

Small molecule inhibitors, such as EGCG and HNK can competitively bind to the 

NBD, thereby maintaining GPR78 in an inactive confirmation preventing the 

release of effector molecules or the binding of substrates, and effectively inhibits 

activation of the ER stress response (Martin et al., 2013; Sagara et al., 2018). By 

using these inhibitors in the context of a ZIKV infection, I aimed to establish 

whether inhibition of the GRP78-mediated ER stress response impacted ZIKV 

replication. Initially, the viability of A549 or Huh7 cells treated with EGCG or HNK 

was assessed. This would allow a distinction between drug specific effects and 

cell health effects on virus replication to be made. The initial range of EGCG and 

HNK concentrations was determined following analysis of other relevant studies. 

Both EGCG and HNK have been commonly used in the µM range, and so the viability 

of cells were tested based on this (Zhou, Wang and Feng, 2014; Lv et al., 2016). 

This data is shown in Figure 5-2, and provided a range of concentrations to use 

when testing the effect of these drugs on ZIKV. Using these concentrations, A549 

and Huh7 cells were pretreated with EGCG and HNK for 2 hours before cells were 

infected with ZIKV Nanoluc. The drugs were maintained in media throughout the 

24 hr infection period. As shown in Figure 5-3, EGCG treatment significantly 

reduced ZIKV luciferase readings at all the concentrations tested, however this 

effect was not seen for HNK treatment. The difference in results between the 

drug treatments was surprising and suggested that EGCG may be having an off-

target effect, or that HNK was failing to inhibit GRP78 contrary to the literature 

reports. To investigate further, I planned to delineate the mechanism of action of 

EGCG. The specific concentration of EGCG selected for future experiments was 

the maximal concentration that maintained 90% cell viability, 10 µM. 
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Figure 5-2: The cell viability of mammalian cells treated with EGCG or HNK 

A549 or Huh7 cells were treated with varying concentrations of either a DMSO 

control and either A) EGCG or B) HNK for 26 hrs. Following this, cells were lysed 

and cell viability measured using CellTitre glo assays. Luciferase readings are 

plotted relative to controls, and error bars represent the standard error of the 

mean from triplicate independent experiments.  
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Figure 5-3: EGCG treatment reduces luciferase activity of a ZIKV Nanoluc 

reporter virus. 

A549 or Huh7 cells were pretreated with either A) EGCG or B) HNK for 2 hrs prior 

to infection with ZIKV Nanoluc at MOI 1 for 24 hrs. The drugs were maintained on 

the cells throughout. Following, cells were lysed and Nanoluc activity measured 

relative to untreated ZIKV infected cells. Error bars represent triplicate 

independent experiments and error bars represent the standard error of the 

mean. An unpaired Student’s t-test with Welch’s correction was used to 

determine statistical significance where n.s = not significant, * p-value < 0.05. 
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5.2.3 EGCG treatment inhibits ZIKV infection independently of GRP78 

inhibition 

 

As demonstrated above, addition of EGCG throughout ZIKV infection significantly 

reduced viral luciferase readings. To dissect which step is affected, I performed 

ZIKV Nanoluc infections in A549 cells with EGCG added alongside the virus, or 1 hr 

or 4 hrs following removal of inoculum, before measuring luciferase at 24 hpi. 

Under these conditions, EGCG had no effect on viral luciferase readings if added 

even as early as 1 hpi (Figure 5-4). This again was surprising, as it suggested that 

EGCG was having an effect either directly on the virus in the early stages of 

infection, or that inhibition of GRP78-mediated stress responses in the first hour 

were rendering the cell refractory to infection.  

 

To test the possibility that EGCG was acting directly on the virus, I pre-treated 

both A549 cells and ZIKV Nanoluc particles with either EGCG or DMSO vehicle 

control for 2 hrs, before applying EGCG or DMSO treated viral inoculum to both 

EGCG or DMSO treated cells for 1 hr. Cells were thoroughly washed before and 

after addition of the virus, and the media was replaced with DMSO or EGCG 

containing medium (depending on which they were treated with initially) for the 

remainder of infection (Figure 5-4). Strikingly, ZIKV Nanoluc treated with EGCG 

before infection displayed reduced luciferase regardless of the treatment state of 

the cells. Conversely, ZIKV Nanoluc treated with DMSO did not show a reduction 

in infection, even in cells which were pre-treated with, and subsequently 

maintained in, media containing EGCG. This strongly indicated that EGCG acted 

directly on the virion and was probably not inhibiting viral replication following 

cellular entry or inhibiting entry via effects on the cell.  
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Figure 5-4: EGCG inhibits ZIKV independent of GRP78. 

A) A549 cells infected with ZIKV Nanoluc at MOI 0.1 for 24 hrs and were treated with 

EGCG either during inoculation and throughout infection (indicated as “Throughout”), 

or 1 hr or 4 hrs following inoculum removal. Cells were lysed and luciferase levels were 

measured relative to a DMSO control for each timepoint. Bars represent results from 

triplicate independent experiments and error bars represent the standard error of the 

mean. B) ZIKV and A549 cells were separately incubated with either EGCG or a DMSO 

vehicle control for 2 hrs. Following, DMSO or EGCG treated A549 cells were infected with 

either DMSO treated or EGCG treated virus at MOI 0.1 for 24 hrs before cell lysis and 

luciferase levels were measured and plotted relative to the DMSO treated virus, DMSO 

treated cell control. Bars represent results from triplicated independent experiments 

and error bars represent the standard error of the mean. An unpaired Student’s t-test 

with Welch’s correction was used to determine statistical significance where n.s = not 

significant, * p-value < 0.05, ** p-value < 0.01 and *** p-value < 0.001.  
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To further verify the finding that EGCG was acting independent of viral 

replication, I transfected cells with a ZIKV Nanoluc replicon (a construct missing 

the flavivirus structural proteins but with all non-structural proteins necessary for 

replication, as outlined in Chapter 4.2.1) and treated these cells with EGCG. 

Compared to a DMSO control, there was no significant change in luciferase 

readings generated by the replicon, further indicating that EGCG treatment has 

no effect on ZIKV replication (Figure 5-5). When transfecting higher levels (25 µg) 

of the ZIKV Nanoluc replicon, some cell death was also observed. These results 

suggest that inhibition of ER-stress responses do not affect ZIKV infection in A549 

cell culture.  
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Figure 5-5: EGCG treatment does not affect replication of a ZIKV replicon 

A549 cells were transfected with a ZIKV Nanoluc replicon for 24 hrs. EGCG was 

added to the cells 4 hpt for the remainder. Cells were lysed and luciferase levels 

were measured and plotted relative to a DMSO treated control. Bars represent 

results from triplicated independent experiments and error bars represent the 

standard error of the mean. An unpaired Student’s t-test with Welch’s correction 

was used to determine statistical significance where n.s = not significant. 
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5.2.4 GRP78 silencing impairs ZIKV infection 

 

While inhibition of GRP78 mediated stress responses with small-molecule 

inhibitors did not impact viral replication, I next sought to investigate the 

potential of GRP78 to directly influence ZIKV infection. Indeed, knockdown of 

GRP78 had been shown to impact infection of related flaviviruses such as DENV, 

JEV and TMUV (Wati et al., 2009; Nain et al., 2017; Zhao et al., 2018). To this 

end, specific siRNAs (siG and siGa) were used to knockdown GRP78 expression, 

and protein levels were determined with Western blot analysis (Figure 5-6). This 

knockdown effect was quantified with densitometry relative to an actin loading 

control and plotted relative to a scrambled siRNA (siN) control (Figure 5-6). Both 

siRNA’s significantly reduced GRP78 expression, and siG was selected for further 

experiments. 
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Figure 5-6: GRP78 can be depleted with specific siRNA. 

A) A549 cells were treated with scrambled siRNA (siN), or two different GRP78 

siRNA (siG and siGa) for 72 hrs prior to harvesting of cell lysates. Lysates were 

analysed by Western blot for GRP78 and an actin loading control. B) Densitometry 

analysis was performed on triplicate independent blots where values were 

plotted relative to loading controls and normalised to siN, and error bars 

represent the standard error of the mean. An unpaired Student’s t-test with 

Welch’s correction was used to determine statistical significance where n.s = not 

significant, * p-value < 0.05, ** p-value < 0.01. 
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Next, I aimed to assess the effect of this siRNA on ZIKV during infection of A549 

cells. Following a 48 hr infection, cell supernatant was harvested from ZIKV PE243 

infected siG or control cells, and plaque assays were performed to calculate virus 

titer (Figure 5-7). This experiment showed there was a significant reduction in 

virus titer following GRP78 knockdown, indicating that it plays an important role 

in ZIKV infection. Additionally, siN or siG treated cells were also infected with 

ZIKV Nanoluc (Figure 5-7). Similarly, Nanoluc readings were significantly reduced 

following GRP78 silencing, further indicating that GRP78 is important for ZIKV 

infection. While the above results confirmed the importance of GRP78 for ZIKV 

infection, they provide little indication of how and why this  may be the case. I 

therefore endeavored to identify the stage(s) at which ZIKV requires GRP78 for 

infection by probing entry, replication, protein expression and assembly, and 

egress in turn.  
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Figure 5-7: GRP78 depletion reduces ZIKV luciferase and viral titres 

A) A549 cells were treated with siRNA for 72 hrs prior to a 24 hr infection with 

ZIKV PE243 at MOI 0.1. Following infection, cell supernatant was harvested, and 

virus titre calculated from plaque assay on A549 Npro cells. B) Titres from 

triplicate independent experiments were analysed and plotted relative to siN 

control cells. C) Additionally, A549 cells treated with siRNA (as described for A) 

were infected with ZIKV Nanoluc for 24 hrs at MOI 0.1. Results from triplicate 

independent repeats are shown and error bars represent the standard error of 

the mean. An unpaired Student’s t-test with Welch’s correction was used to 

determine statistical significance where n.s = not significant, * p-value < 0.05 
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The impact of GRP78 on ZIKV entry to host cells was examined first. While GRP78 

is classically regarded as a ER resident chaperone, it has also been found to be 

present in mitochondria, the nucleus, the cytoplasm, excreted from cells, and 

importantly, localise to the cell surface of some cell-types (Jindadamrongwech, 

Thepparit and Smith, 2004; Sun et al., 2006; Ni, Zhang and Lee, 2011). Indeed, as 

mentioned earlier GRP78 has also been implicated as an attachment/entry factor 

for some viruses (Nain et al., 2017; Chu et al., 2018). Therefore, I stained A549 

cells with a GRP78 specific antibody under non-permeabilising conditions to detect 

cell surface GRP78 (Figure 5-8). This staining confirmed the presence of surface 

GRP78 in A549 cells as has been previously described (Kang et al., 2016). Next, 

A549 cells were treated with siG or siN prior to a high MOI ZIKV PE243 infection, 

and RNA was harvested after 2 hrs. This is before viral replication has been 

initiated and, in this way, only incoming viral genomes would be detected. RT-

qPCR analysis showed there was no difference in the amount of incoming ZIKV RNA 

between siN or siG cells, suggesting that GRP78 does not play a role in ZIKV entry 

in A549 cells (Figure 5-9). To verify this finding, GRP78 antibodies and an 

unrelated antibody (actin) were incubated with A549 cells prior to infection with 

ZIKV Nanoluc. While this method was used to show that GRP78 is an important 

entry factor for JEV, antibody mediated blockade of GRP78 did not reduce ZIKV 

entry as there was no significant difference in luciferase readings following 

infection, supporting the RT-qPCR analysis (Figure 5-9) (Nain et al., 2017). 

Together this data suggests that GRP78 is not important for ZIKV entry. 
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Figure 5-8: GRP78 localises to the plasma membrane of A549 cells.  

A549 cells were seeded onto coverslips and left to adhere overnight. Subsequently 

cells were stained with the live-cell nuclear stain Hoechst 33342 (blue) and fixed 

with formaldehyde under non-permeabilising, or permeabilising conditions as 

indicated. Where indicated, a GRP78 antibody was used to visualise surface 

GRP78, and all cells were stained with a secondary antibody regardless. Images 

were taken on an LSM 710 confocal microscope and are representative of 

duplicate experiments. Scale bars represent 10 µm.  
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Figure 5-9: GRP78 is not required for ZIKV entry. 

A) A549 cells were treated with siRNA for 72 hrs prior to infection with ZIKV 

PE243 at MOI 5 for 2 hrs. Following infection, RNA was harvested from cells and 

RT-qPCR analysis was performed. Results represent the expression fold change of 

RNA relative to a GAPDH control and is normalised to the siN treated control 

sample. Data from triplicate independent repeats are shown and error bars 

represent the standard error of the mean. B) A549 cells were incubated with a 

GRP78 antibody or an unrelated actin antibody for 2 hrs prior to infection with 

ZIKV Nanoluc at MOI 0.1 for 24 hrs. Cells were lysed and luciferase readings were 

taken and plotted relative to cells treated with an actin antibody. Data from 

triplicate independent repeats are shown and error bars represent the standard 

error of the mean. An unpaired Student’s t-test with Welch’s correction was used 

to determine statistical significance where n.s = not significant. 
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The next step in the viral lifecycle I examined was the role GRP78 may play in 

replication of the viral genome. Following uncoating of the genome and initial 

translation, ZIKV replication occurs in sites juxtaposed to the ER in so called 

‘vesicle packets’ that are presumably derived from the ER membrane early in 

infection (Cortese et al., 2017). A549 cells were treated with siN or siG before 

infection with ZIKV PE243. RNA was extracted from these cells at several 

timepoints following infection, and the relative fold-increase in viral RNA was 

plotted (Figure 5-10). This analysis showed there was no significant decrease in 

viral RNA levels over infection in cells treated with siN or siG, indicating that 

GRP78 may not be important for ZIKV replication. This also indirectly supports the 

entry data, as any defect in viral entry would presumably result in reduced RNA 

levels.  
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Figure 5-10: GRP78 depletion does not affect ZIKV RNA production. 

A) A549 cells were treated with siN or siG for 72 hrs prior to infection with ZIKV 

PE243 at MOI 0.1. RNA samples were harvested at 4, 8, 16 and 24 hpi and qPCR 

analysis was performed. Viral RNA copy number was measured by RT-qPCR 

relative to a GAPDH control and was normalised to viral RNA detected at 0 hr in 

the control. Results are plotted from triplicate independent experiments and 

error bars represent the standard error of the mean.  
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Subsequently, I probed the potential for GRP78 to be involved in viral protein 

production. As a protein chaperone, it is plausible that ZIKV could co-opt GRP78 

to facilitate viral protein folding or translation. Indeed as mentioned previously, 

it is thought that GRP78 is required by DENV to facilitate viral translation (Wati et 

al., 2009). To test this, A549 cells were transfected with siN or siG and infected 

with ZIKV PE243. Cell lysates were harvested, and Western blot analysis was 

performed to visualise levels of ZIKV E and NS5 protein, both of which were 

observed to be lower in GRP78 depleted cells (Figure 5-11). This suggests that 

GRP78 depletion reduced the translation of the viral polyprotein. Additionally, 

when siN or siG treated A549 cells were infected with ZIKV Nanoluc for 16 hrs (a 

time point prior to ZIKV egress from a549 cells in my hands), luciferase levels were 

observed to be reduced (Figure 5-12). This indicated that the reduction in 

luciferase readings was not due to reduced secondary infections and must have 

occurred during a single cycle.  
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Figure 5-11: GRP78 depletion reduces viral protein expression. 

A) A549 cells were treated with siN or siG for 72 hrs prior to infection with ZIKV 

PE243 at MOI 0.1 for 48 hrs. Cell lysates were harvested and Western blot analysis 

was performed for NS5, E and an actin loading control. Image is representative 

of triplicate experiments.  
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Figure 5-12: GRP78 depletion reduces ZIKV Nanoluc levels during a single 

round of infection. 

A) A549 cells were treated with siN or siG for 72 hrs before infection with ZIKV 

Nanoluc at MOI 0.1 for 16, 24 or 48 hrs. Cells were lysed, and luciferase levels 

were plotted relative to siN values at the comparable timepoints. Values 

represent results from triplicate individual experiments and error bars represent 

the standard error of the mean. An unpaired Student’s t-test with Welch’s 

correction was used to determine statistical significance where n.s = not 

significant, * p-value < 0.05, ** p-value < 0.01. 
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Although I observed that viral translation was perturbed following GRP78 

depletion, it was also conceivable that GRP78 could also play a role in virion 

transport and egress. GRP78 has been shown to aid the assembly and egress of 

Human cytomegalovirus (Buchkovich et al., 2008). Additionally, studies have 

shown that JEV infection utilises GRP78 and its interaction with the KDEL receptor 

(KDELR) to assist virion trafficking through the ER-Golgi apparatus (Wang et al., 

2016). The KDELR shuttles between the ER and Golgi and recognises proteins with 

a KDEL motif to trigger retrograde transport to the ER, and JEV through an 

interaction with GRP78 can hijack this system (Capitani and Sallese, 2009). While 

a similar mechanism might be possible for ZIKV, DENV interacts with KDELR 

through a direct interaction with prM, and WNV does not require KDELR for egress 

at all (M. Y. Li et al., 2015). This again highlights important differences between 

related flaviviruses. To investigate the potential for a block in egress following 

GRP78 depletion, A549 cells were treated with siN or siG and infected with ZIKV 

PE243. Following removal of the inoculum, cells were thoroughly washed and 

replaced with fresh medium. After infection, supernatant samples were taken 

from both siN and siG cells (labelled siN S and siG S respectively) and plaque assays 

were performed. Additionally, remaining cells were scraped into PBS and 3 

freeze/thaw cycles were performed to release intracellular virions. These samples 

were clarified, and plaque assays performed (labelled siN C and siG C). The titre 

of these samples is plotted on Figure 5-13. This shows that there was a significant 

reduction in supernatant viral titre following GRP78 depletion (as was observed 

earlier in Figure 5-7) and that there was a similar reduction in intracellular virus 

levels. The fold reduction of viral titre between siN and siG (from both 

supernatant and cytoplasm) is also plotted, and there was no significant difference 

in this fold reduction between supernatant and cytoplasm samples (Figure 5-13). 

This indicates that there was no block in the egress of infectious virus particles 

following GPR78 knockdown; if there was you might expect an increase of 

intracellular virus in the siG relative to the intracellular siN sample. Additionally, 

I investigated the possibility that KDELR may be important for ZIKV egress due to 

the joint role they play in JEV egress along with GRP78. Here, A549 cells were 

treated with siRNA specific against 3 isoforms of KDELR (KDELR1, 2 and 3) and 
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cells were infected with ZIKV Nanoluc (Figure 5-14). No significant difference was 

seen in a multicycle infection, suggesting that KDELRs are not important during 

ZIKV infection as is the case for WNV. Together, these data show that GRP78 is 

not important for ZIKV egress and highlight vital differences in the egress 

mechanism of ZIKV from mammalian cells.  
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Figure 5-13: GRP78 depletion does not lead to an accumulation of intracellular 

ZIKV particles. 

A) A549 cells were treated with siN or siG for 72 hrs prior to ZIKV PE243 infection at MOI 

0.1 for 24 hrs. Supernatant was harvested from cells are plaque assays were performed 

(siN S and siG S). Cells were thoroughly washed before cells were scraped into PBS and 

subject to 3 sequential freeze/thaw cycles. These cells were then clarified, and plaque 

assays were performed on these samples (siN C and siG C). The effect of freeze/thaw 

cycles on virus titre was also assessed, where supernatant virus samples were subjected 

to same conditions as siN C and siG C (f/t siN S and f/t siG S). B) The fold reduction in 

titre between siN and siG samples were calculated and plotted. Results were collated 

from triplicate independent experiments and error bars represent the standard error of 

the mean. An unpaired Student’s t-test with Welch’s correction was used to determine 

statistical significance where n.s = not significant, * p-value < 0.05, ** p-value < 0.01. 
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Figure 5-14: KDELR depletion does not significantly reduce ZIKV infection.  

A) A549 cells were treated with siRNA against KDELR 1,2 and 3 for 72 hrs before 

infection with ZIKV Nanoluc at MOI 0.1 for 48 hrs. Cell lysates were harvested 

and viral luciferase was measured relative to a siN control. Results represent 

results from triplicate independent experiments and error bars represent the 

standard error of the mean. An unpaired Student’s t-test with Welch’s correction 

was used to determine statistical significance where n.s = not significant. 
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5.2.5 GRP78 depletion may induce a specific reduction in viral 

translation 

 

The previous experiments suggested that GRP78 may be involved with ZIKV protein 

translation and/or assembly as suggested by the reduction of viral protein levels. 

Additionally, GRP78 depletion had no significant impact on other parts of the virus 

replication cycle. Initially, I proceeded to investigate whether GRP78 was involved 

in translation. The results in Figure 5-11/Figure 5-12 suggest that viral protein 

production was reduced following GRP78 depletion, and while there was no 

noticeable difference in the cellular actin loading control, this experiment did not 

rule out the possibility that GRP78 silencing was causing a cell wide translation 

shut-off, rather than a virus specific effect. It could also be the case that GRP78 

depletion reduces the stability of viral proteins, resulting in the observed 

reduction in protein levels. To investigate this further, siN and siG treated A549 

cells were either transfected with a firefly luciferase plasmid under control of a 

CMV promoter (T), infected with ZIKV Nanoluc (I), or both (T+I). Following 

infection, cell lysates were harvested and firefly and/or nanoluciferase readings 

were recorded (Figure 5-15). These data reveal several aspects of GRP78 

involvement in ZIKV infection. 

 

• Firstly, this confirms that GRP78 depletion reduces viral nanoluciferase 

readings (Nanoluc: siN I vs siG I).  

 

• Secondly, this data suggests that in control cells ZIKV infection reduces host 

translation as shown by a significant reduction of firefly readings (Firefly: 

siN T vs siN T+I).  

 

This is perhaps unsurprising as several viruses are known to induce host shut-off, 

including famously Influenza A virus (Levene and Gaglia, 2018). Additionally, DENV 

and ZIKV have both been shown to block host translation, though the mechanism 

behind this was not discovered in the study by Roth and colleagues (Roth et al., 

2017). This experiment is not a perfect proxy for investigating host translation 
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shut-off, however. A transfected firefly reporter plasmid must first be 

transcribed, and RNA exported from the nucleus. It could be that ZIKV infection 

is interfering with the transcription or nuclear export process. This possibility 

should be considered when interpreting the results shown here.   

 

• Thirdly, GRP78 depletion did not significantly affect host-cell specific 

protein levels (Firefly: siN T vs siG T) which suggests that the reduction of 

viral translation observed here is a specific effect.  

 

• Fourthly, and perhaps most interesting, was the observation that GRP78 

depletion apparently relieved the blockade of host-cell translation which 

was previously observed in the control cells (Firefly: siN T+I vs siG T+I). As 

mentioned, ZIKV infection could be reducing transcription or export of the 

Firefly transcripts, and it could be that GRP78 depletion reducing viral 

protein levels via another mechanism, results in the relief in that 

restriction. 

 

This perhaps indicates that GRP78 is required by ZIKV to re-direct host translation 

machinery or resources to viral protein production. Simply, in infected cells, 

GRP78 depletion reduced viral protein production and may have restored host 

translation, although other experiments are required to investigate the possibility 

of other mechanisms underpinning the reduction in Firefly production.  
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Figure 5-15: GRP78 depletion does not reduce host-cell translation but ZIKV 

infection does. 

A549 cells were treated with siN or siG for 72 hrs. Cells were then either transfected 

with pGL4.13 FLuc expressing plasmid (labelled ‘Trans’), infected with Nanoluc at MOI 5 

(labelled ‘Inf’) or both (labelled ‘Both’). Following, cells were lysed and A) Nanoluc 

readings or B) FLuc readings were measured. ZIKV-Nanoluc readings were plotted relative 

to siN ‘Inf’, while FLuc readings are plotted relative to siN ‘Trans’. Results are 

representative of triplicate independent experiments and error bars show the standard 

error of the mean. An unpaired Student’s t-test with Welch’s correction was used to 

determine statistical significance where n.s = not significant, * p-value < 0.05, ** p-value 

< 0.01. 
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Due to the observation that GRP78 is important for ZIKV protein levels, and the 

fact that GRP78 re-localises to a perinuclear location which could be consistent 

with viral replication factories, I investigated the state of ZIKV dsRNA, a 

replication intermediate which is known to reside inside these compartments. 

A549 cells were seeded on coverslips and transfected with either siN or siG prior 

to infection. These cells were then immunostained for GRP78 and dsRNA, and then 

labelled with DAPI (Figure 5-16). In siN cells, dsRNA is seen to tightly localise in a 

perinuclear location which correlates with GRP78 staining. However, in siG cells 

dsRNA localisation is altered and is seen to be diffuse throughout the cytoplasm. 

This may indicate that GRP78 is required for the proper localisation of dsRNA, and 

therefore replication factory localisation, in infected cells.  
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Figure 5-16: GRP78 depletion results in re-localisation of viral dsRNA. 

A549 cells were seeded onto coverslips and left to adhere overnight. Cells were 

then treated with either siN or siG for 72 hrs prior to infection with ZIKV PE243. 

GRP78 (green) and dsRNA (white) were labelled with specific antibodies and 

nuclear DNA was stained with DAPI. Images were taken on an LSM 710 confocal 

microscope and are representative of triplicate experiments. Scale bars represent 

10 µm.  
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5.2.6 GRP78 interacts with ZIKV E in mosquito cell culture and is 

required for infection 

 

As an arbovirus, ZIKV is transmitted to humans primarily by Aedes aegypti 

mosquitos, as previously discussed (Chapter 1.2.2). It is therefore important to 

investigate the cellular partners of ZIKV in Aedes aegypti systems, similar to the 

investigation performed in Chapter 4. Of importance, GPR78 is a remarkably 

conserved protein and there is an 82.7% sequence identity between human and 

Aedes aegypti GRP78. It seems likely that ZIKV would seek to target proteins which 

are conserved between the vector and mammalian host to make efficient use of 

its limited coding capacity. Therefore, I decided to investigate whether GRP78 

may also facilitate ZIKV infection in Aedes aegypti cell culture.  

 

To test whether ZIKV E interacts with GRP78 in this system, Aag2 (and A549) cells 

were infected with ZIKV PE243 before cell lysates were harvested. Lysates were 

co-immunoprecipitated with a GRP78 antibody and probed for E and GRP78 

expression by Western blot analysis. In infected cells, GRP78 pull-down samples 

immunoprecipitate with ZIKV E, suggesting that Aedes aegypti GRP78 can also 

interact with E (Figure 5-17). Silencing of GRP78 with specific dsRNA reduced 

luciferase readings of Aag2 cells infected with ZIKV Nanoluc compared with 

control cells, confirming that the GRP78 is important for ZIKV in both vector and 

host (Figure 5-17). 
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Figure 5-17: Mosquito GRP78 interacts with ZIKV E and is a pro-viral factor 

A) A549 or Aag2 cells were infected with ZIKV PE243 at MOI 5 for 72 hrs. Cells were 

harvested and co-immunoprecipitation with an GRP78 antibody was performed. Western 

blot analysis was performed on samples for E and GRP78. Images are representative of 

triplicate experiments. B) Aag2 cells were treated with dsRNA against GRP78 (dsG) or 

eGFP (dseGFP) as a control. Cells were then infected with ZIKV Nanoluc for 48 hrs before 

cells were lysed and luciferase levels were measured. Luciferase is plotted relative to 

dsGFP and results are from triplicate independent experiments, where error bars 

represent the standard error of the mean. An unpaired Student’s t-test with Welch’s 

correction was used to determine statistical significance where n.s = not significant, * p-

value < 0.05. 
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5.3 Discussion 

 

This study aimed to verify and characterise the interaction between GRP78 and 

ZIKV E. To do this, small molecule inhibitors of GRP78-mediated stress responses, 

and siRNA directed against GRP78, were employed to elucidate the role this 

protein plays in ZIKV infection. Classically, E protein has mainly been considered 

as a structural protein that facilitates entry and virion assembly. Here, it was 

shown that ZIKV E interacts with GRP78, and that GRP78 contributes to ZIKV 

protein translation and replication factory localisation.  

 

The proteomics results were verified with co-immunoprecipitation and 

immunofluorescence experiments. While I did not investigate the mechanics 

underpinning this interaction, EDIII of DENV is known to interact with GRP78 and 

this mechanism could conceivably be conserved in ZIKV E (Limjindaporn et al., 

2009). Indeed, computational modelling has predicted that residues located in 

ZIKV EDIII can potentially dock with GRP78 (Elfiky and Ibrahim, 2020). More 

recently, this has been confirmed in a yeast-2-hybrid screen where GRP78 was 

identified as an interactor ZIKV EDIII (Khongwichit et al., 2021). While these 

results were published too late to inform the direction of this study, they do serve 

to confirm the observed interaction described here. I will further discuss the study 

by Khongwichit et al, 2021 in more detail where appropriate, as this work has 

subsequently replicated several of the findings described here, though with some 

notable differences.  

 

I went on to investigate whether GRP78 was important for ZIKV infection. I initially 

looked at the impact of two small-molecule inhibitors (EGCG and HNK) that are 

known to bind to and prevent GRP78 ATPase functions, and therefore prevent 

GRP78 coordination of the UPR (Sagara et al., 2018). EGCG has previously been 

shown to inhibit the infection of viruses including Ebola (Patrick Reid et al., 2014). 

Here, EGCG was found to inhibit ZIKV infection in A549 cells, though HNK did not, 

and EGCG was found to act before the first hour of infection. One possibility was 
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that EGCG was exerting its antiviral effect on cell surface GRP78, and thereby 

maintaining GRP78 in an open confirmation and thereby reducing ZIKV binding 

efficiency. Indeed, EGCG binding to GRP78 at the cell surface has also been 

postulated as the mechanism of action behind EGCG-mediated SARS-CoV-2 

inhibition (Sagara et al., 2018; Allam et al., 2020). If this were the case however, 

HNK may have been expected to produce the same phenotype as the mechanisms 

of action are conserved between both molecules (Martin et al., 2013). Another 

possibility was that EGCG was having an off-target effect, either on another 

cellular protein or perhaps even ‘off-target’ directly on the virus. Indeed, by 

incubating ZIKV with EGCG and infecting cells which had not been exposed to 

EGCG, I could recapitulate the inhibition of ZIKV infection. Conversely, DMSO 

treated ZIKV was not inhibited upon infection of cells pre-treated with EGCG. 

Concurrent with these observations, a separate study was published by Carneiro 

and colleagues documenting a similar phenotype (Carneiro et al., 2016). Carneiro 

et al showed that pre-treating Vero cells with EGCG did not protect cells from 

ZIKV infection, however pretreatment of ZIKV did significantly reduce infection. 

This study used a log10 higher concentration of EGCG than described here (100 µM 

vs 10 µM) and a different cell line (Vero E6 vs A549) and no mechanism was 

provided. Subsequently, another study showed that EGCG was able to directly bind 

to ZIKV E protein, potentially inhibiting cell attachment (Sharma et al., 2017). 

Together these data suggest that EGCG and HNK inhibition of GRP78-mediated cell 

stress responses do not impact ZIKV infection. While the activation of cell-stress 

pathways, including those associated with GRP78 (IRE1 and ATF6), is well 

documented in ZIKV infections, it is not clear whether these pathways were 

activated in the systems I tested (Gladwyn-Ng et al., 2018; Tan et al., 2018; Alfano 

et al., 2019). Khongwichit et al, 2021 documented an increase in UPR in A549 cells 

infected with ZIKV, though the functional relevance of this finding in relation to 

infection was not investigated further (Khongwichit et al., 2021). While my data 

may suggest that UPR inhibition does not affect ZIKV infection in A549 cells, there 

is always the possibility of cell-type and/or model specific differences.  
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Following the observation that GRP78 ATPase inhibition had no effect on ZIKV 

infection, I investigated the possibility that GRP78 could influence infection via 

other means. Using siRNA, GRP78 was specifically depleted from A549 cells. During 

ZIKV infection of these cells I observed that virus titre and the activity of a 

Nanoluciferase reporter virus were significantly reduced. This showed that GRP78 

was important for ZIKV infection, and to further investigate how this may be the 

case I examined each stage of the virus lifecycle in turn. 

 

Initially, I focused on the role GRP78 may play in ZIKV entry. GRP78 has been 

implicated in the entry of several diverse viruses, such as JEV, TMUV and MERS 

(Nain et al., 2017; Chu et al., 2018; Zhao et al., 2018). This is perhaps partly as a 

consequence of high levels of GRP78 surface expression in cell-lines that are 

commonly used for these studies, including A549 cells, but it nevertheless clear 

that GRP78 can also re-localise to cell surfaces in stress conditions (Zhang et al., 

2010; Kang et al., 2016; Tseng, Zhang and Lee, 2019). Indeed, here I affirm that 

A549 cells express GRP78 at the plasma membrane. Despite this, in ZIKV-infected, 

GRP78 depleted cells, there was no significant difference in the quantities of 

internalised viral RNA shortly after infection compared to control cells. 

Additionally, incubating GRP78 antibodies with A549 cells prior to infection had 

no effect on ZIKV replication in my hands. This contrasts with findings reported 

by Khongwichit et al, 2021, where treatment of A549 cells with antibodies 

directed against the N-terminus of GRP78 marginally, but statistically 

significantly, reduced ZIKV infection. Antibodies directed against the C-terminus 

of GRP78 had no such effect in this study. The experimental design here was 

similar, though Khongwichit and colleagues used a 10x fold higher concentration 

of GRP78 antibody (Khongwichit et al., 2021). There is a potential that the 

incomplete silencing of GRP78 with siRNA still left enough GRP78 to facilitate 

entry, or that the amount of GRP78 antibody I used was insufficient to block viral 

attachment. However, on balance, I believe these observations suggest that 

GRP78 is not a major route of entry for ZIKV in A549 cells.  
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Subsequent experiments performed here established that GRP78 was important 

for ZIKV protein expression, a phenotype that has been reported for a related 

flavivirus, DENV, and again more recently for ZIKV (Wati et al., 2009; Khongwichit 

et al., 2021). Additionally, I showed that this reduction of viral protein levels was 

virus specific, as GRP78 depletion potentially did not reduce cellular translation 

in uninfected cells. Interestingly, in infected cells there was a significant 

reduction in a Firefly reporter expression, a phenotype possibly indicative of viral 

hijacking of host translational machinery and one that has been described 

previously for ZIKV (Roth et al., 2017). Despite this, GRP78 expression was not 

only maintained but increased in ZIKV cells, though the mechanism behind this 

remains elusive. This finding was also reported by Khongwichit et al, 2021, where 

they observed an increase in GRP78 mRNA and protein levels as infection 

progressed, implying there is a specific upregulation of GRP78 expression rather 

than maintenance of existing GRP78. 

 

One of the most interesting findings was that GRP78 depletion in virus infected 

cells restored Firefly reporter expression to control levels. This is particularly 

fascinating as it potentially suggests ZIKV requires GRP78 to hijack cellular 

translational machinery. Without GRP78, viral protein expression dropped, and 

cellular translation increased relative to an infected cell. To further investigate 

this phenotype, I looked at the localisation of viral replication factories as 

visualised by dsRNA. dsRNA is a replication intermediatory produced during 

replication of flavivirus genomes (Cortese et al., 2017). No dsRNA can be seen in 

uninfected A549 cells, and in infected cells dsRNA tightly localises to a perinuclear 

location consistent with the predicted location of ZIKV replication factories 

(Cortese et al., 2017). In these infected cells, GRP78 can be seen to cluster to 

these locations coincident with dsRNA and ZIKV E. Following GRP78 depletion, 

dsRNA staining loses the clustered organisation and instead displays a diffuse 

phenotype. While the mechanism behind this change is not entirely clear, it is 

tempting to speculate that GRP78 is required to coordinate the localisation of 

replication factories in space and time to facilitate efficient translation. Without 

GRP78, the amount of viral RNA does not change as measured by qPCR, and indeed 



158 
 

 

 

 

the total staining of dsRNA does not appear to change. While speculative, it is 

possible that the initial rounds of viral translation (before replication factory 

formation) in GRP78 depleted cells are still sufficient to produce sufficient NS3 

and NS5 to facilitate viral replicase formation and explain the lack of reduction in 

viral RNA levels (Sanford et al., 2019). Therefore, one explanation could be that 

in cells without GRP78, if the viral replication factories are not coordinated near 

the ER it is possible that viral transcripts cannot efficiently access translational 

machinery. This could explain both the reduction in viral protein expression and 

the apparent rescue of host-cell protein production following GRP78 depletion. 

However, it is also possible that GRP78 depletion reduces the stability of viral 

proteins, lowering protein levels. Another possibility is that without the spatial-

temporal organisation of replication factories in GRP78 depleted cells, viral RNA 

is more exposed to cellular innate immune responses (Arakawa and Morita, 2019). 

This explanation does not necessarily reconcile with the lack of difference 

between viral RNA levels in siN and siG cells, although further experimentation is 

required to investigate this.  

 

While the effect of GRP78 on viral protein levels was clear, it was also possible 

that GRP78 could play an additional role in facilitating the egress of ZIKV. GRP78 

has been shown to be important for the egress of Influenza A virus and helps traffic 

HMCV (Hogue and Nayak, 1992; Buchkovich et al., 2008; Shi-Chen Ou et al., 2011). 

Therefore, I investigated whether GRP78 depletion resulted in an intracellular 

accumulation of infectious virus, which may explain the reduction in virus titre. 

To do this, control cells and GRP78 depleted cells were infected and subjected to 

multiple freeze/thaw cycles before these samples were assessed by plaque assay. 

The titre of these samples was compared to the titre of virus in the extracellular 

medium prior to freeze/thaw. Here, I observed that the relative fold difference 

in excreted virus between control and siGRP78 cells was not significantly different 

to the comparable intracellular samples. This indicated that there was no 

accumulation of intracellular virus.  
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In addition to the experiments in mammalian cell-culture, I also investigated the 

role that the GRP78 may play in Aedes aegypti cells infected with ZIKV. GRP78 is 

highly conserved between species as shown in Chapter 9, I therefore hypothesised 

and went on to show that ZIKV E interacts with Aedes aegypti GRP78 and is a pro-

viral factor. As a virus that infects diverse hosts, it could be expected that ZIKV 

may have evolved to target cellular factors that are conserved between targets 

organisms. This seems to hold true for GRP78, and future discovery studies could 

look towards other highly conserved proteins for inspiration.  

 

In conclusion, this study expands the knowledge surrounding ZIKV E cellular 

interactors and hints at a potential role for GRP78 in ZIKV replication factory 

formation.  
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5.4 Summary 

 

• A previously conducted proteomic study was used as a basis to 

identify potential ZIKV E interactors. 

 

• GRP78 was found to interact with ZIKV E and co-localise in 

mammalian cells. 

 

• EGCG, an GRP78 ATPase inhibitor, impaired ZIKV infection by acting 

directly on the virus and so independent of GRP78 inhibition. Another 

drug, HNK, had no effect. 

 

• Silencing of GRP78 reduced ZIKV infection via reduced ZIKV protein 

expression, as measured by Western blot and the luciferase activity 

of a reporter virus. Parameters associated with viral entry, RNA 

production and egress were also measured following GRP78 

depletion, and no effect on the virus was observed. 

 

• The reduction in ZIKV translation was virus specific, and host 

translation was not affected. However, GRP78 expression was seen 

to be upregulated in infected cells. 

 

• Viral replication factories, as visualised by proxy (dsRNA 

immunostaining), were seen to co-localise with GRP78 during 

infection and clustered in a perinuclear location.  
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Chapter 6.   Developing tools to further investigate the 

role of GRP78 in ZIKV infection  

6.1 Introduction  

 

6.1.1 ZIKV reverse-genetic systems 

 

There are limited tools available for the study of emerging viruses such as ZIKV. 

An important requirement for such research is a supply of virus of known genetic 

heritage. The primary virus used in the study described in Chapter 5 was an ZIKV 

isolate termed PE243, which as previously noted was isolated from a patient in 

Recife, Brazil during the 2015/16 epidemic (Donald et al., 2016). As described by 

Donald et al, this virus was initially amplified in C6/36 Aedes albopictus cells and 

followed by further amplification in Vero cells to generate a master stock of virus 

for research. Generation of more virus requires further amplification in cell 

culture, and given that a low number of passages through cell culture can 

introduce mutations and phenotypic differences into ZIKV, there is a finite amount 

of patient-isolate virus available (Duggal et al., 2019). As such, there is a need to 

develop a reverse-genetics (RG) system for ZIKV PE243 to allow reliable 

recapitulation of the original virus isolate and could also allow for generation of a 

patient isolate from scratch, avoiding the need for multiple passages for 

propagation. RG systems have been created for ZIKV Nanoluc, as described in 

Chapter 4.2.1, as well as several other ZIKV viruses, though to the best of my 

knowledge no such system exists for ZIKV PE243 (Widman et al., 2017; Ávila-Pérez 

et al., 2018; Münster et al., 2018).  

 

While useful, ZIKV Nanoluc has limitations. Primarily, as a recombinant virus 

consisting of sequences from both PE243 and BeH819015, ZIKV Nanoluc does not 

truly represent a virus found naturally (Mutso et al., 2017). Therefore, one aim of 

this study was to generate an RG system for ZIKV PE243. To do this I aimed to 
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employ a bacterium-free circular polymerase extension reaction (CPER) method 

to generate a circularised ZIKV DNA backbone from multiple linear fragments. 

CPER was first described by Quan et al, and has since been used to rescue viruses 

such as WNV, YFV and another ZIKV strain (Quan and Tian, 2009; Edmonds et al., 

2013; Setoh et al., 2017; Sanchez-Velazquez et al., 2020).  

 

Additionally, as described in Chapter 4.3, ZIKV Nanoluc was not as useful as first 

imagined when used in the siRNA screen as this virus struggled to capture 

differences in virus infection kinetics. The proposed ZIKV PE243 RG virus would be 

capable of being modified with other luciferase tags, which might better reflect 

a WT virus and perform more favourably in screens. Nanoluc, while significantly 

smaller than other luciferase molecules such as Firefly luciferase, is still ~ 19 kDa 

(England, Ehlerding and Cai, 2016). A NanoBiT binary tag is a split-tag based on 

Nanoluc and consists of a large subunit (LgBiT) and a 11 aa peptide tag (HiBiT) 

(Liang et al., 2020). An 11 aa tag might be expected to incur a smaller fitness cost 

for ZIKV than a Nanoluc tag and could create a more suitable reporter virus. This 

tag has been successfully incorporated into a YFV reporter virus, and so I aimed 

to employ this same strategy for ZIKV (Sanchez-Velazquez et al., 2020). These RG 

viruses would not only be important for this current study but could be useful for 

future ZIKV work.  

 

6.1.2 GRP78 knockout cell line 

 

Another tool I was interested in generating to further investigate the role of GRP78 

in ZIKV infection was a grp78 knockout (K/O) cell line. In Chapter 5.2.4, siRNA was 

employed to reduce GRP78 expression. This treatment reduced GRP78 expression 

by approximately 70% but did not abrogate it completely and the remaining GRP78 

could potentially still provide some of the functionality that ZIKV requires. For 

this reason, I aimed to generate a grp78 K/O cell line.  
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Additionally, production of this cell line could facilitate the generation and use of 

grp78 mutants (Tsai et al., 2015). There are several conceivable ways to employ 

such mutants. For example, the inability to bind nucleotides or substrates could 

be engineered which would enable further mechanistic studies into the role of 

GRP78 in ZIKV infection. For example, a T229A mutation has been shown to 

significantly reduce ATPase activity, preventing the switch from an open to closed 

confirmation and thus reduces the peptide binding affinity of GRP78 (Yang et al., 

2015). Other mutations in the NBD, such as at R197, also impair the ability of 

GRP78 to bind interactors, such as DnaJ co-chaperones (Awad et al., 2008). To 

the best of my knowledge, no grp78 K/O cell line currently exists, although there 

are several inducible grp78 K/O mice genotypes that have been generated (Luo et 

al., 2006; Wey et al., 2012; Zhu et al., 2013).   

 

 

6.1.3 Cellular partners of GRP78 

 

While Chapter 5 indicated that GRP78 interacted with ZIKV E and was important 

for infection, questions remained about the mechanisms behind GRP78’s role in 

infection. GRP78 is known to be a prolific chaperone and interacts with many 

cellular proteins; some of these interactions were previously outlined in Chapter 

1.3.2. I hypothesised that cellular partners of GRP78 may also play a role in 

facilitating ZIKV infection. I aimed to perform a Search Tool for Retrieval of 

Interacting Genes/Proteins (STRING) analysis to identify potential GRP78 cellular 

interactors, and investigate the role, if any, these proteins may play in ZIKV 

infection (Szklarczyk et al., 2019). To do this, I aimed to use the ZIKV PE243 RG 

viruses introduced in Chapter 6.1.1 to perform a targeted screen of GRP78 

partners. Additionally, the role of these interactors could be further explored in 

the absence of GRP78 by using the grp78 K/O cell-line proposed in Chapter 6.1.2, 

analysing whether there is cooperativity between these host-factors in facilitating 

ZIKV infection.  
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6.1.4 Aims 

 

• To generate a RG system for ZIKV PE243, ideally for both, a WT and a 

reporter virus, variant. 

 

• To create a grp78 K/O cell-line using CRISPR/Cas9 technology.  

 

• Finally, to use these tools cooperatively to conduct further studies into the 

interaction between GRP78 and ZIKV. 

 

 

6.2 Results 

 

6.2.1 Generating a ZIKV PE243 reverse genetics system 

 

The initial aim of this study was to generate a ZIKV PE243 RG system. The design 

of the RG system was based on the CPER system, and this has previously been used 

to recreate a different ZIKV strain (Setoh et al., 2017). As shown in Figure 6-1, 

PE243 was separated 5 segments of roughly equal size. Plasmids containing these 

fragments were synthesized by GeneArt (Thermo Fisher Scientific), and PCR 

amplification of these fragments generated linear DNA moieties for use in the final 

CPER reaction. To enable the linking and circularisation of the complete PE243 

genome, DNA fragments share a short overlap with neighbouring fragments. 

Different versions of segment 2 were produced; one encoding the WT virus 

sequence (to create the WT ZIKV PE243), and one with a HiBiT (to create a HiBiT 

ZIKV PE243, Chapter 6.1.1) moiety incorporated into the N-terminus of NS1. The 

first 4 aa of NS1 were duplicated before the insertion of HiBiT, and this is followed 

by a 4GS linker, and subsequently the full length NS1. This design was chosen as 

it has previously been used to generate a HiBiT YFV reporter virus (Sanchez-
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Velazquez et al., 2020). Therefore, 2 CPER reactions were performed to generate 

a WT and a HiBiT ZIKV PE243 sequence. Vero E6 cells were transfected with these 

circularised constructs. Five days post-transfection, cell lysates were harvested 

and titrated on A549 NPro cells to confirm the presence of infectious virus. While 

the WT ZIKV PE243 samples formed plaques on A549 NPro cells, there were no 

plaques formed by HiBiT ZIKV PE243 (Figure 6-2). This experiment was repeated 

in triplicate, and no plaques were formed following HiBiT ZIKV PE243 CPER 

transfection in any repeat. Luciferase readings and RNA were also taken from 

HiBiT ZIKV PE243 and WT ZIKV PE243 and are shown in Figure 6-2. Here, no 

luciferase readings above background levels were detected, and only cDNA for the 

WT virus was generated. Additionally, no cDNA was detected in the samples where 

no reverse transcriptase step was performed, showing that input transfection DNA 

was not being detected. This indicated that while the rescue of WT ZIKV PE243 

using CPER was successful, no HiBiT ZIKV PE243 was recovered.  
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Figure 6-1: Design of a ZIKV reverse genetics system.  

A) Schematic showing the structure of the ZIKV reverse genetic system. ZIKV 

PE243 genome was separated into 5 segments, the lengths of each are shown 

here. B) An additional variant of segment 2 is included, which contains a HiBiT 

fragment and was substituted for WT segment 2 for generation of HiBiT ZIKV 

PE243.  
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Figure 6-2: WT ZIKV PE243 can be rescued from a CPER reverse genetics 

system.  

A) CPER reactions were performed to produce annealed WT ZIKV PE243 and HiBiT 

ZIKV PE243. These constructs were transfected into Vero E6 cells for 5 days and 

the supernatant was subsequently harvested. The supernatant was serially 

diluted onto A549 NPro cells and plaque assays were performed, and fold dilutions 

are indicated. B) 5 days after transfection of WT ZIKV PE243 and HiBiT ZIKV PE243 

constructs into Vero E6 cells, lysates were harvested, and luciferase levels were 

measured and plotted relative to values of cells transfected with unannealed 

segments as a control. Cell lysates were harvested, and luciferase levels 

measured relative to the siN control. C) RNA was extracted from transfected cells 

and cDNA was either generated or no reverse transcriptase (RT) step was 

performed as a control to detect input DNA. cDNA was separated on an agarose 

gel. A sample of known ZIKV heritage (+ve) was included as a positive control. 

Error bars represent the standard error the mean. 
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Next, I compared the growth kinetics of the rescued WT ZIKV PE243 with the 

patient isolated PE243. Any discrepancies here might indicate the RG rescued virus 

would not be suitable for further studies. A549 cells were infected with both 

viruses at low MOI, and RNA was harvested from cells at regular time intervals 

before RT-qPCR was performed. These growth curves are shown in Figure 6-3 and 

show there was no significant difference in the kinetics of viral RNA production. 

This reverse genetic generated WT ZIKV PE243 virus was therefore suitable for use 

in future experiments and for future ZIKV studies.  
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Figure 6-3: ZIKV PE243 from patient isolates or from CPER reverse genetics 

have similar replication kinetics.  

A) A549 cells were mock-infected or infected with ZIKV PE243 or WT ZIKV PE243 

at MOI 0.1 for 48 hrs. RNA was harvested and RT-qPCR was performed. RNA levels 

were normalised to 0 hr ZIKV PE243 samples and displayed relative to a GAPDH 

internal control. The experiment was independently repeated in duplicate, and 

while error bars which represent the standard error the mean were plotted, they 

are too small to be displayed. 
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6.2.2 Generating a GRP78 knockout cell line 

 

A useful tool for further investigating the role of GRP78 in ZIKV infection would 

be the generation of a GRP78 K/O cell line. This would allow recapitulation of 

A549 cells with grp78 mutants, which could lack ATPase activity, lack the ability 

to bind its partners, or be unable to bind ZIKV E. Therefore, I used a lentivirus to 

deliver CRISPR/Cas9 constructs to K/O GRP78 in A549 cells (Shalem et al., 2014). 

Constructs for lentivirus production were kindly provided by Dr Sam Wilson (Centre 

for Virus Research, Glasgow). Five separate guide strand oligomers (gsRNA) 

targeting exon 1 of GRP78 were synthesized and ligated into a lentivirus CRISPRv2 

plasmid containing a puromycin resistance marker. This plasmid was transfected 

into HEK293T cells alongside packaging vectors pVSV-G (encoding VSV-G) and 

pNLGP (Gag and Pol) to produce lentivirus. Lentivirus was harvested and aliquoted 

from HEK293T cells. A549 cells were seeded and transduced with lentivirus 

containing the gsRNA against GRP78 (GRP78 1 – 5), as well as an empty control 

plasmid. Cells were subsequently treated with a puromycin to select for 

transduced cells before they were serially diluted, and single-cell colonies were 

selected and amplified. Surviving colonies were assessed for GRP78 expression by 

immunofluorescence, as shown in Figure 6-4. While the immunofluorescence 

analysis was inconclusive, promising colonies were further expanded and GRP78 

expression was probed by Western blotting (Figure 6-4). From this analysis, no 

surviving colonies showed a reduction in GRP78 expression when compared to 

control cells.  
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Figure 6-4: Lentiviral CRISPR/Cas9 generation of a GRP78 K/O cell line.  

A549 cells were transduced with lentivirus containing CRISPR/Cas9 gsRNA against 

GRP78 or an empty vector control. Following puromycin selection, cells were 

serially diluted, and single cell colonies were expanded. A) Surviving colonies 

were labelled with GRP78 antibodies. B) Surviving colony cell lysates were 

harvested and probed for GRP78 expression via Western blot analysis, 

densitometry of which is shown.  
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6.2.3 DnaJC1 is an important factor for ZIKV infection  

 

To further understand the role that GRP78 plays in ZIKV infection, I aimed to 

investigate whether any of the functional cellular partners of GRP78 were also 

important using the rescued WT ZIKV PE243 from Chapter 6.2.1. To do this, I first 

performed a STRING analysis of GRP78 interactor partners, which is shown in 

Figure 6-5. A subsection of these candidates, which are listed in Figure 6-5, were 

selected for further analysis by performing a targeted siRNA screen. 
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Protein  Function References 

DnaJB11 Cooperates with GRP78 to aid protein folding. (Shen, Meunier and 

Hendershot, 2002) 

DnaJC1 Coordinates GRP78 to the cell surface and 

ribosomal exit tunnel. Can halt translation in 

the absence of GRP78. 

(Dudek et al., 2005; 

Misra et al., 2005; 

Benedix et al., 2010) 

DnaJC10 Works with GRP78 to enhance the ER-

associated degradation pathway. 

(Hagiwara et al., 2011) 

HSP90B1 Shares some function with GRP78 and 

participates in protein folding, often more 

selective than GRP78. 

(Zhu and Lee, 2015) 

ERN1 (IRE1) Binds GRP78 in inactive state, when released 

acts to upregulate transcription of UPR 

members. 

(Adams et al., 2019) 

Figure 6-5: STRING analysis of GRP78 interactors. 

A) STRING analysis of GRP78 (HSPA5) interactors. Highest confidence (0.900) 

interactors demonstrated from text-mining and experiments were listed, with 

edge thickness representing the confidence of an interaction and vertices 

representing the nodes of the network. B) Selected proteins from the STRING 

interaction web are listed, with the name and function of these proteins. 
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Of the potential GRP78 interactors identified in the STRING analysis, DnaJ heat 

shock protein family (Hsp40) proteins were heavily represented, and were chosen 

for further analysis because of the association with both HSP70-mediated protein 

folding, and a role in some virus infections (Xu, 2018). For example, DnaJB6 

interacts with JEV NS3 protein and is inhibitory to infection (Cao et al., 2019). 

Additionally, both GRP78 and DnaJB11 (which was selected for further analysis in 

this study) are important for Simian Virus 40 (SV40) infection (Goodwin et al., 

2011). Goodwin and colleagues showed that GRP78 binds to SV40 capsid to 

facilitate exit from the ER, and that this binding was dependent on DnaJB11. In 

addition to DnaJ proteins, heat-shock protein 90 B1 (HSP90B1) was also selected. 

HSP90B1, together with GRP78, has been shown to be upregulated in caprine-

parainfluenza virus type 3 (CPIV3) infections (Zhong et al., 2019). Finally, 

endoplasmic reticulum to nucleus signaling 1 (ERN1), also known as IRE1, was 

selected. IRE1 has previously been shown to be upregulated during ZIKV infection 

of neural cells, and the UPR generally has been shown to be activated as a result 

of ZIKV infection (Tan et al., 2018). Despite this, in Chapter 5.2.2 I described how 

small-molecule inhibitors of the GRP78-mediated UPR had no effect on ZIKV 

infection in A549 cells, and so I aimed to investigate the role of IRE1 further. To 

explore the role of the candidates listed in Figure 6-5, I performed an siRNA 

screen.  

 

A549 cells were transfected with siRNA against the candidate interactors, with siN 

and siG present as a negative and positive control, respectively. Following, A549 

cells were infected at a low MOI for 48 hrs with WT ZIKV PE243 before RNA was 

harvested from the cells. RT-qPCR was performed on these samples and viral RNA 

was measured relative to the siN sample and normalised to GAPDH levels (Figure 

6-6). This analysis showed that silencing of DnaJC1 significantly reduced viral RNA 

production in a multi-cycle, low MOI infection. Aside from silencing of DnaJC1 

(and the GRP78 control) no other significant effects were observed. This screen 

was also conducted with ZIKV Nanoluc infection, and DnaJC1 silencing was found 

to significantly reduce viral luciferase readings relative to the siN control sample. 

Similar to the results described in Chapter 4, ZIKV Nanoluc was not as sensitive to 
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changes in viral replication as a WT virus is. In this case, WT ZIKV PE2434 RNA 

levels were reduced by ~65% in siDnaJC1 compared to the siN control, whereas 

nanoluciferase readings reduced by ~50% when making the same comparison. 
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Figure 6-6: siRNA screen of GRP78 interactors reveals DnaJC1 is a pro-ZIKV 

factor.  

A549 cells were treated with siRNA against identified GRP78 interactors. Following, cells 

were infected with either WT ZIKV PE243 or ZIKV Nanoluc at MOI 0.1 for 48 hrs. A) RNA 

was harvested, and RT-qPCR was performed to measure viral RNA. Viral RNA levels are 

displayed relative to the siN control and are normalised to GAPDH levels. B) Cell lysates 

were harvested, and luciferase levels measured relative to the siN control. Triplicate 

independent repeats were performed. Error bars represent the standard error the mean. 

An unpaired Student’s t-test with Welch’s correction was used to determine statistical 

significance where n.s = not significant, * p-value < 0.05, ** p-value < 0.01. 
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These results indicated that DnaJC1 was a pro-viral factor. DnaJC1, also known as 

human tumour cell DnaJ-like protein 1 (HTJ1) or ER j domain protein 1 (ERdj1) is 

an accessory protein and co-chaperone for GRP78. The mouse homolog of DnaJC1, 

murine tumour cell DnaJ-like protein 1 (MTJ1) has been shown to interact with 

GRP78 and facilitate the migration of GRP78 to the plasma membrane (Misra et 

al., 2005). Additionally, DnaJC1 has been shown to recruit GRP78 to the ribosome 

exit tunnel. Of note, in the absence of GRP78, DnaJC1 can bind to the ribosome 

and inhibit translation (Dudek et al., 2005; Benedix et al., 2010). Therefore, 

DnaJC1 is implicated in the localisation of GRP78 and the regulation of translation. 

As such, and because GRP78 seems to play an important role in viral translation 

and relocalised during infection (Chapter 5.2.5, Chapter 5.2.1), DnaJC1 presented 

an attractive target for further study.  

 

I therefore investigated whether siRNA mediated knockdown of DnaJC1 could 

produce a similar phenotype as seen following GRP78 depletion. Of interest was 

the effect of DnaJC1 on the localisation of viral dsRNA. With that in mind, A549 

cells seeded on coverslips were treated with siN or siRNA against DnaJC1 

(siDnaJC1) and infected with WT ZIKV PE243. These cells were then labelled for 

DnaJC1 or dsRNA and stained with DAPI (Figure 6-7). This showed that following 

DnaJC1 depletion there was no change in dsRNA localisation, implying that DnaJC1 

may have a mechanism of action in ZIKV independent of GRP78. Further work 

would be needed to dissect this phenotype further. 
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Figure 6-7: DnaJC1 depletion does not affect dsRNA localisation.  

Cells were treated with siN or siDnaJC1 and infected with WT ZIKV PE243. Cells 

were labelled for DnaJC1 (green), dsRNA (white), and stained with DAPI (blue). 

Error bars represent 10 µm, and images were taken on a ZEISS LSM 710 confocal 

microscope and represent duplicate repeats. 
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6.3 Discussion  

 

One aim of this study was to produce a ZIKV PE243 RG system to provide a sensitive 

virus for experimental screens and to ensure the longevity of a genetically stable 

PE243 virus. To the best of my knowledge such a system for this strain of ZIKV 

does not exist. To do this, I employed a CPER system to anneal overlapping 

segments in a single reaction, a technique that has previously been used for 

another ZIKV strain (Setoh et al., 2017). Here, I attempted to create both a WT 

virus and a virus containing a HiBiT moiety in the N-terminus of NS1. The first 29 

aa of the N terminus of flavivirus NS1 forms what is known as a β-roll, a 

hydrophobic stretch of residues that is needed for viral membrane insertion (Akey 

et al., 2014; Rastogi, Sharma and Singh, 2016). While clearly important, this 

region of NS1 has been shown to be able to tolerate the addition of reporter 

moieties in several flaviviruses. Notably, Sanchez-Velazquez et al and Tamura et 

al generated a YFV HiBiT-NS1 virus, and a JEV HiBiT-NS1 virus, respectively. 

(Sanchez-Velazquez et al., 2020; Syzdykova et al., 2021). Both the YFV and JEV 

HiBiT-NS1 reporter viruses were produced using the same cloning strategy I 

employed as described in Chapter 6.2.1. While I successfully rescued and 

characterised WT ZIKV PE243 using the CPER system, I was unable to rescue the 

HiBiT virus, which produced neither plaques nor luciferase readings. There could 

be several potential reasons for this. While similarity exists between flavivirus 

NS1 (full length: ZIKV PE243 and JEV, strain Jaoars982 = 56.82% identity), this 

increases when looking only at the β-roll domain (β-roll domain: ZIKV PE243 and 

JEV, strain Jaoars982 = 60.71% identity). Chapter 9, Figure 9-2 shows the 

alignment of several flavivirus NS1 sequences, highlighting that sequence 

conservation is shared across the flavivirus family. Despite this, the β-roll domain 

of DENV NS1 has been shown to be intolerant to insertions in a genome-wide 

mutagenesis study, suggesting that the cloning strategy employed for YFV and JEV 

may not work with DENV (Eyre et al., 2017). Furthermore, a similar study 

conducted by Fulton and colleagues, whereby 15 nt insertions were introduced 

across the ZIKV genome, revealed that while the C-terminal β-ladder domain of 
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NS1 could tolerate insertions, the β-roll domain could not (Fulton et al., 2017). 

This analysis also revealed that ZIKV E was highly tolerant of insertions, all of 

which occurred in the ectodomain of E and the majority of which were found in 

the highly variable region of EDII. Therefore, further attempts to create a ZIKV 

HiBiT virus should utilise information from studies such as that conducted by 

Fulton et al, and target regions of high plasticity such as EDII or the β-ladder 

domain of NS1.  

 

Although I did not manage to rescue a ZIKV HiBiT reporter virus, I did rescue a WT 

ZIKV PE243. This virus displayed similar replication kinetics to the ZIKV PE243 

amplified from a patient isolate and so provides a genetically stable source of 

virus for future research. 

 

To further aid the investigation into GRP78 and potential interaction partners, I 

attempted to create a K/O cell line using a CRISPR/Cas9 lentivirus delivery system. 

5 different gsRNA were generated, all of which targeted exon 1, to maximise the 

chances that a functional silencing of grp78 was achieved. Following transduction 

of A549 cells with the lentiviruses and subsequent puromycin selection, cells were 

serially diluted, and 96 colonies were selected and expanded for each gsRNA. 

While these colonies had survived the initial transduction and puromycin 

treatment, very few colonies survived further expansion. This suggested that, 

while cells could survive the transient loss of grp78, a persistent loss was 

ultimately fatal; these cells had not yet been assessed for GRP78 expression at 

this point and so this suggestion is speculative. The cells that did survive colony 

expansion were assessed for GRP78 expression via Western blot analysis and 

immunofluorescence. While immunofluorescent analysis was inconclusive for 

some colonies, Western blot analysis revealed there was no K/O cell line 

generated. Surviving colonies therefore most likely had gsRNA integration in sites 

that provided puromycin resistance but were unable to exert their silencing 

effect. While data from the first attempt is shown in Chapter 6.2.2, this process 

was repeated for a second time with similar results. 
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To the best of my knowledge there is no grp78 K/O cell line available. There are 

several mice models, but these are either inducible and not constitutive models, 

or heterozygous models where only one allele of grp78 has been silenced (Wang 

et al., 2010; Ji et al., 2011; Zhu et al., 2013). Indeed, it has been reported that 

homozygous grp78 K/O is lethal to embryos (Luo et al., 2006). Therefore, it seems 

likely that GRP78 function is absolutely essential to the long-term survival of cell 

culture or developing embryos, and this could explain the lack of cell culture K/O 

model available. Future attempts to create a grp78 cell culture model should aim 

to use a inducible K/O system, such as some recently developed inducible 

CRISPR/Cas9 based methods (Nishimura and Fukagawa, 2017).  

 

Despite the lack of K/O cell-line, I proceeded in the investigation of GRP78 

interactors in the context of a ZIKV infection. I therefore used the WT ZIKV PE243 

in a targeted screen of GRP78 interactors to investigate the potential for these to 

also influence ZIKV infection. A STRING analysis of GRP78 interactors was 

performed and identified several promising candidates, including a number of 

DnaJ co-chaperones and members of the UPR response. Silencing of these 

interactors with specific siRNA revealed that DnaJC1 is a pro-ZIKV factor. In a low 

MOI ZIKV PE243 multi-cycle infection, DnaJC1 silencing significantly reduced viral 

RNA production. Also, DnaJC1 silencing reduced luciferase production of a ZIKV 

Nanoluc reporter virus, though similar to the results seen in Chapter 4.2.2, 

luciferase measurements from the Nanoluc virus seemed to be less sensitive to 

effects on viral replication than other metrics. Nevertheless, these experiments 

show that DnaJC1 is a pro-viral factor.  

 

DnaJC1 has been shown to be able to interact with GRP78 and facilitate the 

localisation of GRP78 to both the plasma membrane and the ribosomal exit tunnel 

(Dudek et al., 2005; Misra et al., 2005; Benedix et al., 2010). The observation that 

DnaJC1 is important in GRP78 localisation is therefore intriguing, especially 

considering the observation that GRP78 relocalises to presumed ZIKV replication 

factories in infected cells as shown in Chapter 5.2.1 and Chapter 5.2.5. Thus, I 

thought it was conceivable that DnaJC1 may impart its pro-viral effect in concert 
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with GRP78. If this were the case, I expected that DnaJC1 silencing may produce 

a similar phenotype to GRP78 silencing, and that ZIKV dsRNA perinuclear 

localisation would be disrupted. When I explored this hypothesis, I found that 

DnaJC1 silencing did not produce the same phenotype as seen for GRP78, 

suggesting that it may exert its pro-viral effect independent of GRP78 or via 

another mechanism. Thus, it would be interesting in the future to carry out further 

experiments on GRP78 interaction partners and on their roles in flavivirus 

infection.  

 

 

6.4 Summary 

 

• A CPER-based RG system was used to create a WT PE243 virus. 

 

• A STRING analysis of GRP78 interactors revealed potential targets for a 

targeted siRNA screen using the RG virus. 

 

• DnaJC1 was identified as a pro-ZIKV factor. The mechanism behind this 

effect is currently unknown. 
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Chapter 7.  Summary 

 

7.1 General discussion and project outcomes 

 

During this project, I aimed to inform on novel ZIKV-host interactions. As an 

arbovirus, it is important to investigate ZIKV in both a mammalian and mosquito 

setting. To do this I planned to use discovery platforms, such as siRNA screens, 

and data obtained from mass-spec based proteomic approaches, to maximise the 

chances of success. 

 

The first major aim was to investigate immune and other host factors than can 

regulate ZIKV infection in Aedes aegypti cell culture by utilising a pre-existing 

siRNA screen (Chapter 4). This siRNA screen consisted of 998 targets potentially 

involved in the Aedes aegypti immune response and other host processes and had 

previously been designed in the lab. Initially, I characterised a ZIKV Nanoluc virus 

rescued by use of reverse genetics, with an aim to use it in the siRNA screen 

(Chapter 4.2.1). From this, I showed that Ago2 silencing did not impact ZIKV 

replication. This was surprising, as Ago2 has been considered a classical restriction 

factor for positive sense RNA viruses in arthropod vectors. Additionally, I also 

showed that PIWI4 silencing did significantly increase luciferase readings of the 

ZIKV Nanoluc virus, though this was a relatively marginal increase. Both of these 

findings expand knowledge surrounding the RNAi response of Aedes aegypti to ZIKV 

infection, and have been verified in another study by Varjak et al (Varjak, Donald, 

et al., 2017). In the study by Varjak et al, PIWI4 depletion was seen to reduce 

ZIKV infectious particle release by ~4 fold, substantially higher than I observed 

when using the Nanoluc expressing reporter. Retrospectively, this was perhaps the 

first indication that ZIKV Nanoluc did not provide enough sensitivity for use in a 

screen.   
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Nevertheless, following the characterisation of ZIKV Nanoluc and the 

establishment of a positive control, I conducted the siRNA screen (Chapter 4.2.2). 

Here, I identified several potential hits that were conserved across 2 repeats of 

the screen, though none of which were conserved in all 3. I therefore selected all 

hits which were found in 2 screens, and trended in the same direction in the third, 

for further analysis. These genes were depleted with specific dsRNA, and semi-

quantitative analysis of cellular RNA levels revealed that these successfully 

depleted the targets. Despite this, only knockdown of PIWI4, which was included 

as a positive control and was not identified in the screen despite its inclusion, 

significantly changed ZIKV Nanoluc levels. This indicated that none of the hits 

from the screen regulate ZIKV infection to a significant degree.    

 

Concurrent with this investigation, I attempted to uncover the nature of the 

interaction between GRP78 and ZIKV E. A previous mass-spec based proteomic 

study conducted by Carolina Ramírez-Santana (Center for Autoimmune Diseases 

Research-CREA, School of Medicine and Health Sciences, Universidad del Rosario, 

110010 Bogotá, Colombia) had identified this potential interaction in A549 cells 

(Chapter 5). I initially verified this interaction by co-immunoprecipitating ZIKV E 

and probing for GRP78 in mock-infected and infected cells. Additionally, I showed 

that GRP78 relocalises to sites co-incident with ZIKV E staining during infection 

(Chapter 5.2.1). Of importance to a study which takes the viral vector and host 

into account, GRP78 was found to similarly interact with ZIKV E in mosquito cells 

(Chapter 5.2.6).   

 

The next step I took was to investigate the functional role of GRP78 during ZIKV 

infection. Small-molecule inhibitors of GRP78-mediated stress response did not 

inhibit ZIKV infection, although EGCG was seen to inhibit ZIKV infection most likely 

through direct action on the virion (Chapter 5.2.2 and Chapter 5.2.3). This finding 

has been independently verified in other studies and may present an opportunity 

for devising a therapeutic intervention for ZIKV infection (Carneiro et al., 2016; 

Sharma et al., 2017).  
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While inhibition of the GRP78-mediated stress responses did not impact ZIKV 

infection, siRNA mediated depletion of GRP78 significantly reduced ZIKV 

replication. The mechanism behind the pro-viral function of GRP78 was thoroughly 

dissected by taking each stage of infection in turn. Entry, RNA replication, and 

egress of ZIKV was not affected by GRP78 depletion, but there was a significant 

reduction in viral protein levels (Chapter 5.2.4). These results are largely in 

agreement with a study subsequently published by Khongwichit et al (Khongwichit 

et al., 2021). The reduction in viral protein expression was shown to be specific 

to ZIKV, as production of a firefly luciferase reporter under a CMV promoter was 

unaffected by GRP78 knockdown (Chapter 5.2.5). 

 

A particularly interesting observation was that GRP78 depletion may relieve the 

restriction of host translation as seen in ZIKV infected cells, implying that GRP78 

is required by ZIKV to co-opt cellular translational machinery. However, the 

reduction in Firefly levels could be due to a reduction in mRNA transcription or 

export, and an alternative method of measuring protein production should be used 

to confirm this. Further , I observed that viral dsRNA (which is thought to localise 

to viral replication factories) tightly clustered to a perinuclear site in infected 

cells, and that this localisation is disrupted following GRP78 depletion (Chapter 

5.2.5). Both findings suggest that GRP78 is instrumental in organising viral 

translation and sheds light on the replication factory formation process, though 

the exact mechanisms underpinning these data needs to be elucidated.  

 

To further explore the role of GRP78 in ZIKV infection, I decided to perform a 

screen of known GRP78 interactors identified in a STRING analysis. Prior to this, 

as ZIKV Nanoluc had proven to be less than ideal for sensitive screen experiments, 

and to guarantee a genetically stable supply of ZIKV, I endeavored to create a 

PE243 reverse genetic system. I successfully used a CPER-based system to recreate 

WT ZIKV PE243 (Chapter 6.2.1). This is an important asset for future ZIKV research, 

and I used this virus to identify DnaJC1 as important pro-ZIKV factor (Chapter 

6.2.3). Whether DnaJC1 acts cooperatively with GRP78 to influence ZIKV 

infection, or whether it is independent of GRP78 remains to be discovered. 
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Nevertheless, to the best of my knowledge this is the first evidence that links 

DnaJC1 to a viral infection.     

7.2 Future Studies 

 

Despite the decline of the South American ZIKV epidemic over the last few years, 

the threat posed by a re-occurrence of ZIKV disease has not been eliminated. The 

expansion of competent mosquito vectors to naïve host populations, as well as the 

lack of therapeutic interventions to prevent or treat ZIKV disease means it is 

imperative to further delineate vital virus-host interactions.  

 

To that end, this study uncovered vital ZIKV host factors, namely GRP78 and 

DnaJC1, developed a reverse genetic system to facilitate ZIKV research, and shed 

light on the mosquito RNAi response to ZIKV infection. While important findings, 

there are several ways in which these discoveries could be expanded on. 

 

My work here validated the interaction of ZIKV E and GRP78 and uncovered a 

mechanistic relationship between them. Importantly, several other putative 

interactors of ZIKV E were discovered in the initial proteomics experiment (Table 

5-1). Some of these interactors, such as OAS, have been implicated in other virus 

infections and are therefore ideal candidates for further study (Yakub et al., 

2005). For these studies, a similar experimental flow as has been described in 

Chapter 5 could be utilised.  

 

With regards to GRP78, there are still several unanswered questions. These 

include: 

 

• How is the interaction between GRP78 and ZIKV E functionally important? 

 

While GRP78 is clearly important for ZIKV infection, whether this is dependent on 

a physical interaction with E was not fully assessed. It is entirely possible that 

mutations in either GRP78 or E which abrogate their interaction could replicate 
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the phenotype seen after siG treatment. Conversely, the interaction between 

them could be coincidental and not important in the context of infection. The 

predicted binding site between E and GRP78 has been computationally modelled 

by Elfiky et al, and mutations to implicated residues in ZIKV E could be introduced 

using the WT ZIKV PE243 RG system described in Chapter 6.2.1 (Elfiky and Ibrahim, 

2020). Alternatively, mutations in the relevant residues in GRP78 could be made 

and these constructs could be introduced to a (conditionally) GRP78 K/O cell line 

if one can be successfully produced. 

 

• How does GRP78 hijack host translational machinery and coordinate viral 

replication factory localisation? 

 

As shown in Chapter 5.2.5, GRP78 depletion may relieve a restriction in host 

translation that usually occurs following ZIKV infection. This result implied that 

GRP78 is required to facilitate viral requisitioning of host translational machinery. 

Additionally, I showed that GRP78 depletion resulted in the dispersion of viral 

dsRNA (stained as a proxy for replication factories), implying that GRP78 could 

organise or impact their localisation. Whether these phenotypes are linked was 

not discovered in this investigation. One possibility could be that GRP78 is required 

to coordinate replication factory localisation, without which ZIKV does not have 

efficient access to host translational machinery, reducing the restriction to host 

translation. Further work should look to investigate this prospect. Through the use 

of electron microscopy, the structure of these replication factories could be 

examined in more detail as has been previously described earlier (Cortese et al., 

2017). 

 

• Does DnaJC1 work cooperatively with GRP78 to regulate ZIKV infection? 

 

While DnaJC1 was shown to be important for ZIKV infection, I did not establish 

whether it coordinated with GRP78 to achieve this phenotype. Considering the 

clear link between GRP78 and ZIKV translation regulation, and considering the 

regulation of GRP78 localisation to ribosomes by DnaJC1, it seems plausible that 
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some aspect of this relationship is important for ZIKV translation (Dudek et al., 

2005). Despite this possibility, DnaJC1 silencing was not seen to disrupt viral 

replication factory localisation as GRP78 silencing did (Chapter 6.2.3). 

Nevertheless, DnaJC1 certainly represents a promising target for further study, 

and together with more research into GRP78, could inform on the regulation of 

ZIKV translation.  

 

• Could a GRP78 knockout cell line be produced? 

 

In Chapter 6.2.2, I attempted to create a GRP78 K/O A549 cell line using a 

lentivirus delivered CRISPR/Cas9 system. Despite several attempts and the rescue 

of puromycin resistant colonies, no GRP78 K/O cells were produced. This may not 

be entirely surprising, as to the best of my knowledge there is no K/O cell line 

available and only inducible or heterozygous K/O animal models exist (Zhu et al., 

2013). Therefore, future attempts to create such a cell line should focus on using 

conditional K/O systems (Nishimura and Fukagawa, 2017).  

 

One of the key outcomes of this study was the production of a ZIKV PE243 reverse 

genetics system. I also attempted to create a reporter virus variant encoding a 

HiBit moiety, however the choice of insertion position, while viable for related 

viruses like YFV, did not support ZIKV replication (Sanchez-Velazquez et al., 

2020). Studies have highlighted regions in the ZIKV genome that are more tolerant 

to insertions, and these should be utilised for the creation of a HiBiT ZIKV which 

may be more suitable for use in sensitive screens. With this virus, a modified siRNA 

screen (like the one described in Chapter 4.2.2) with the inclusion of siN and 

positive controls on each plate could be performed.  
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7.3 Key outcomes 

 

ZIKV still poses a significant threat to human health, and as a newly emerging 

virus, fundamental research is still required to elucidate vital host interactions 

and generate research tools. This study achieved several key outcomes: 

 

• Ago2 does not regulate ZIKV infection, but PIWI4 does.  

 

• ZIKV entry can be inhibited with the small-molecule inhibitor, EGCG. 

 

• GRP78 is an important host interactor for ZIKV and may be required to 

hijack host translational machinery. 

 

• DnaJC1, a GRP78 interaction partner, is also important for ZIKV infection. 

 

• An easy-to-handle reverse genetics system was adopted to facilitate future 

ZIKV research. 
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Chapter 9. Appendices  

9.1 Sequence alignments 
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Figure 9-1: Protein sequence alignment of GRP78 

GRP78 sequences were obtained from GenBank and aligned using the Clustal 

Omega tool from EMBL-EBI (ANO39920.1, ABF18258.1, CAA05361.1, 

NP_001068616.1, CAA61201.1). Sequence identity, when compared to human 

GRP78, is as follows. Aedes aegypti = 81.40%, Aedes albopictus = 81.71%, Bovine 

= 98.02%, Mouse = 97.86%.  
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Figure 9-2: Protein sequence alignment of flavivirus NS1  

NS1 sequences were obtained from GenBank and aligned using the Clustal Omega 

tool from EMBL-EBI (ANC90426.1, AFN80339.1, AAA81554.1, AGO04419.1, 

AFX61608.1).  
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