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" INTRODUCTION

This thesis reviews work done on stability of
laminaxr flows of non-conducting fluids and makes
extensions where possible to pérfectly conducting'
fluids in the presence of a magnetic field parallel
to the flow.

| Dissipative effects are not studied, so that
the fluids have no,viscosity or electrical resistance.
The fluids are incompressible.

The object is to classify the velocity and
nagnetic profiles of the laminar flows into stable
and unstable groups. In spite of the simplicity
of the systems studied, simple rules are difficult
to find. Those available are sﬁmmarised in the
appendix. |

The remaining results have the disadvantage
that they involve the frequenciles and amplitudes of

the possible disturbances.
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REVIEW

1. The stability problen

The system:to be studied is a laminar flow of an
incompressible inviscid fluid with density'P pressure p,

and velocity field U given by

v = Uk

between flat plates located at y = ¥y and y = ¥oo (See
figure 1)
? WO.,U. Lé :t}'
: e :
Uyl —_—
B — ] —
—.—b ' ‘;', B '
wa {l :;.' — '(ét = (41_
Pigure 1

The flow is cdmpletely described»by its velocity

profile U(y), and is always a proper equilibrium because the

fluid equations
dy
Pze = ~Vb

duwv = O
are satisfied for arbitrary U(y), provided there is no

eguilibrium pressure gradient. An equilibrium pressure -

gradient could occur only in association with a temperature

gradient, but this effect will be ignored. Any instabilities



detected are solely due to the velocity gradient.
Small perturvations v*(x,y,z,t), ?'x,y,z,t)

are superposed on the equilibrium, and their time dependence
deducéd from the fluid equations. Since the periurbations
are small they are linearly related, and any.ome .perturbed
quantity gives full information. Elimirating all quantities
except yy“%x,y,z,t) in the fluid equations, o

(B +ud)Vin® - U g v = 0. (i *
Since the coefficients are independent of x and z it is
useful to Fourier transform.

70008 = [[ vy, 2,6) €T olxd 2

GRS &) o ~ugp =0 G0

Assuming exponential time dependence,

Pyt = viy) 7T

v = (ke )y = O B

The stability problem can now be formulated as

an eigenvalue problem. The physical boundary conditions

are that v;”(x,y,z,t) vanishes when y = y; and y = y2. It

follows that the correct boundary conditions on v(y) are
viy;) =viyy) =0

If ¢ £ U(yy) equation (iii) is regular at y = y1 and there

exists a solution v(y,c) such that v(yl) = 0 thus satisfying

*¥ Equations in the Review Chapler only are numbered by small
Roman numerals (i), (ii), (iii)....
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one boundary condition. If there exists a value of ¢ = c¢(k,m)
such that v(yz) = 0 and v(y) is regular in the real interval
(y1s y2) then ¢ is an eigenvalue with corresponding eigen-
function v(y).

If ¢ is complex (c = c. + ici) where kci>.0 then
the solution V(y)expéikct) increases unboundedly with time
and the egquilibrium is unstable. If no such c eéxist¥s then
the flow is stable, at least to modes of oscillation with
exponential time dependence. (Non exponential time dependence
is consi dered on page 91) |

No -difference is made to the stability problem if
k2 + m? is replaced by kzland only two dimensional perturbations
‘like v(y)exp(ik (x-ct) ) considered. It is not necessary in
general to consider the sign of Cy because the existence of
an eigenfunction v(y,c) implies the existence of the eigen-
function v*(y,c*). |
H The stability problem, then, is to find eigen-

values ¢ (c; # O) of the equation

v - (k*+ % )v =0 (iv)
w-c

subject to the boundary éonditions.v(yl) = v(yz) = 0. This

problem was examined by Rayleighv(1880-).

2. Rayleigh's Inflexion Condition

It is clear that the most useful aim is to find

conditions on U(y) necessary or sufficient for stability.

LRI,




Conditions involving v, k or ¢ are less ;11uminating.

Rayleigh (1880) discovered the necessary condition for in-

stability that U(y) must have a point of inflexion. That

is, for some y, in the real interval (y71, yé); U (yo) =0.
Rayleigh's condition is easily proved from (iv)

Liv) = O v
C.oveley~v LX) = O '
R v L) = 0

4
~2ic, [t = O

;By inspection of the integrand U" must change sign if the

integral is to vanish. Assuming U(y) is a regular function
of y, it follows that U" must have a gzero, which confirms
that Rayleigh's condition is necessary for instability. It
is difficult to find any further conditions to match Rayleigh's
- condition in simplicity and poWer. No complete division
5 6f‘profiles U(y) into stable and unstable classes exists.
Rayleigh's condition can be derived in such a way as

to make its physical meaning clearer.¥*

4
PEE = -Vp

é can be rewritten to display momentum flux

The fluid equation

O Q)
ﬁkﬁ

at a point in
; space, |

; E)I ) [ R

g C')—E‘(‘dW_L —O

~ where the pressure tensor P ds’given by

¥ This derivation is repeated in detail on page33 in the case of
a magnetofluid in the presence of a magnetic field.



0 . = k.. .
i= PJLJ i—‘OV,_\/J
In the present case
, Ug) +v"(x,y,2,t)
where v is periodic in x, z and t, so that the mean x-
momentum density nrowth in a plane of fixed y is
DI NIOINTE

where the mean value 1s with respect to x and z

,. OJ - @lkcc 1y 71 Y
S P '4pu<<mz+t<l) [k WLvT e m*2i Wl 5 ]
where W{v] = v*v' -« v* ' v, |

L% paettht e auver (LL“M‘

T 9t T 2k(m ) k U~ l* ¥ (U=—cl™ ]

By momentum conservation, the total x-momentum arriving -

between the walls is zero -
’ — 7 a:{:& '}
¢ o O ol y’ a b CLy
ke2kst (M UWIvIE g,
2 (m+ k> WU=el™
As before, U" must have a zero if the integral is to wvanish.

3. Viscous Ilows

The present work is entirely on inviscid fluids.

In this section viscous flows are considered only to show the
fundamental changes caused by the iﬂtroduction of viscosity.
These are such as to forbid tentative use of inviscid resuits
in the presence of even vanishingly small viscosity.

A paradox in the relationship between viscous and

inviscid laminar flows arose with Rayleigh's inflexion




—6-

condition. Inviscid laminar flows with parabolic velocity
profile (Plane Poiseuille flow) agre stable because they have

no point of inflexion. The seemingly plausible physical
argumeht that viscous forces will tend to stabilise by damping
out disturbances indicates that.viscous plane Poiseuille flows -
should be stable also. Buthe&nolds had shown by theory and
experiment that they are not. . Although this raradox was

explained by Prandtl (1922) who showed that the viscous forces

near the walls caused»instability,much more work had to be

done subsequently on the behaviour of viéoous'flows in the

'1imit of vanishing viscosity.

The difficulty arises from the change in‘order of

~the governing perturbation equations when viscosity vanishes.

The viscous perturbation equation for v(y) is'fheAfburth order
Orr-Sommerfeld equation
’ 2 ] a
VAUt = kR IU-IV v - WV %)

where the Reynolds number R tends to infinity as the coefficient

~of viscosity tends to zero. As R—+» 0 , Rayleigh's second

‘order equation (iv) is recovered.. The ~asymptotic solutions

of (v) for large R do not necessarily tend to so.lutions of (iv).
Nor are all possible solutions of (iv) expfessible as the limit
of a solution of (v) as R—*>e0. |

Tin (1955) reviewed work done on ésymptotic
solutions of the Orr - Sommerfeld equation. In general,

an asynptotic soiution expanded about a singularity in the
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complex plane of y does not have the same form in ali sectors
of the plane.  (Stoke's phenomenon). When c; > 0, the
asymptotic solutions of (v) do tend to solutions of (iv) in
the whole real line (yl, yz), but when c; < O they do not.

For a uniform mathematical theory,.therefofe, solutions of
(iv) with ci<<-O, and valid on(yl, y2) are rejected. it

then ceases to be true that solutibns of (iv) occur in complex
conjugate pairs, but results obftained for real ¢ in the limit
ci— O become independent of the direction of the limit (ci:> 0
or ¢, < 0), because the branch of the solutions is properly
defined.

This reinterpretation of the inviseid solutions never
leads to a changed decision on stability or instability of the
inviscid flows, bul adequately clarifies the relationship with
viscous flows. In the present work finite viscosity (and
conductivity) are never considered so thdt the ideal equations

can be used naively, without fear of contradiction arising.

4., Tollmien's sufficient conditions for instability

Tollmien (1935) described Rayleigh's work, and commented
on the absence of sufficient conditions for instability. He
showed that symmetric velocity profiles with a boint of
inflexion are unstable. (Symmetric here means symmetric
about the centre of (yl, yz) ) His method was to search for

complex eigenvalues near known real eigenvalues, and he in



fact found two sets of complex eigenvalues near two different

real eigenvalues.

One of the real eigenvalues was c, = U(yo) (U"(yo) 0).

From eouatlon(1® for v(y),
- (k*+ u‘! )_\/ = O V)

the choice ¢ = U(yo) ensures that no singularities occur.

Tollmien showed that for some k2 = k,° a symmetric real

eigenfunction v exists, and then developed a perturbation

0
theory to produce an expansion for c = c(kz) near koz,
wnich showed that complex eigenvalues exist near co. The
expansion is .

¢ = Cot+ ACe+ TACK i)

here Wt T Ak; 2
e e T = - 4 ey

Nyt == — uo’z T Acy

L_ - 70 Ya LL /\// ZC(vy

and where

71 U-cl*

This type of expansion is not useful for a
magnetofluid in the presence ofva rarallel magnetic field
because the real eigenvalue C, exists only when very restrictive
conditions are applied to the velocity and magnetic profiles.

Tollmien also considered the well known real solution
v = U(y) (k2~= 0) which is an eigenfunction when ¢ = U(yl)

(=0 say), and showed that it is the only real eigenfunction
occuring for all symmetric profiles (with or without inflexion)
for all values of k2;'. His;perturbation theory in this case

showed that nearby complex eigenvalues exist whenever U"(yl)>>0.
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Since U(y) is symmetric this condition implies that U" has a
zero. But inflexions can exist even when U"(yl)<; 0, so a
smaller class of profiles is being shown to possess unstable

modes near this real node. The expansion for ¢ = c(kz) is

- k*
Cyr = .ZLL, fL’ LL cf.y

C: = (b&uc”c* | (vii)
The real solution v = U(y) (k2 = 0) exists for magnetofluid
flows. A perturbation theory similar to Tollmien's is
developed later (page 67) and a'sufficieﬁt condition for
| instability obtained in terms of the velocity and magnetic

profiles. N

5. TLin's work on laminar flows

In a series of three papers Lin (1945) studied
laninar flows of wviscous and inviscid fluids, paying special
attention td the relationship between the two. To obtain a
unified viscous - inviscid theory , he accepted inviscid
solutions only when they were valid asymptotic forms of the
Orr - Sommerfeld equation.'— As already indicated, no attempt
will be made to imitate Lin's procedure, as this work deals solely
with inviscid fluids.

Lin established a newkclass of unstable flows by
perturbation about’a_neutral‘solution vo with eigenvalue

/
oy = U(yo) (U"(yo) = 0) in the case where U'(y) > O and Zz%.?’“'
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Given these conditions, and a sufficient negative upper bound

/”
on M% the existence of the real eigenfunction is assured.
When the real eigenfunction exists, a nearby complex solution

always exists for k2< k02 and its eigenvalue c¢ is given by

de | (Ari )" i
o Uy R TU",
A= 7{9// U-c,) dy J 6 7 ° .

Once more there is little opportunity to extend relations

where

like (viii) to magnetofluid flows because the existence of

‘real eigenfunctions imposes undue restrictions on the velocity

and magnetic profiles.

Lin also gave‘a phyéical mechanism for instability
based on vorticity conservation and displaying the role of the
point of inflexion. Since vorticity is not conserved in the
presence of a magnetic field, this interpretation cannot be

extended.

6. Recent results for inviscid laminar flows

Rosenbluth and Simon (1964) solved fhe eigenvalue
problem when K% = 0, and U'(y)> O. They made use of the
equaﬁion | | _

{kU - c)2f§i.k2(u - ¢c)ef =0 Lix)
obtained from (iv) by the transformation v = (U-c)f.

When k2 = C,

f@w ='pr dy '4”

i Cu‘c-)z' ’
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and ¢ is an eigenvalue if and only if
f Ge) = fly) = f;}j‘_%)‘z_
ﬁhas complex zeros. Using the standard method of the Nyquist
%Diagram for searching for zeros of complex functions,they showed
;that G(c) has a complex zero whenever
v 7 V4 .

], - L TS >0 -9
where U"y = O. °~ That (x) should hold is a necessary and sufficient
condition for the existence of complex eigenvalues with k% = o,
and therefore is a sufficient condition for instability. In

the particular case where U"(y) has just one zero Lin's result

that inotability ocours for k< ko (k. > 0) showed that (x)

' is necessary and sufficient for instabflity.

, | Rosenbluth and Simon's method is imitated (pagek8)
?for the case of a magnetofluid with U'(y) > O in the presence
Eof a constant magnetic field parallel to the flow, to produce
éa generaiisation of the sufficient condition (x). There is
‘no special'result corresponding to the necessary and sufficient
condition.

in an interesting pedagogic paper Case (1960)

écomplained that the literature on fluid stability tended to
iignore the possibility that perturbations could have time
édependences other thaﬁ exponential. - He examined the asymptotic

@time dependence of non-exponential modes for laminar flows,
| . .

| .
and showed them to be stable.- Case pointed out that this was

known to Lord Rayleigh, but was worth expressing in modern



N

~12-

terms. Instead of assuming exponential time dependence of
the Fpurier transformvv(l)(y’t), governed by equation (ii),
the Laplace transform

Vi (y) = focv“’(y,t)é"'wdt

is examined by means of the new eguation (replacing (iv) )

" (2. -k*) 'y, o) .
Vo )VP— TR(U+ E) (xV

where v(l)(y o) is the 1n1t1a1 perturbatlon fixed arbitrarily

at t = 0. A new definition of instability is required. The
flow is unstable whenever the asymptotic time dependence of
v(l)(y,t) for large t is unbounded, for any given choice of
initial disturbance. Case solved equation (xi) for vy in
terms of the Green's funtion, inverted the Laplace transform
and deduced the asymptotic time dependence of v(l)(y,t).
Ignoring exponential growth or decay (which also emerges in

this procedure) the result was at worst a sinusoidal vibration

with constant amplitude. Taminar flows are therefore stable

t0 non exponential modes.

Case's procedure is cgrried out in detail for

magnetofluid flows, in Chapter 5. | S -

7. Taminar magnefofluid Flov s

The linearised magnetofluid equations for laminar
flow of a finitely conducting and viscous incompressible

magnetofluid in the presence of a magnetic field parallel to
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the floﬁ were written down by Michael (1953). For equilibrium
velocity profiles U(y) and magnetic profilesH(y) the perturbation
equations take the form :
plUs )T - pU'y = TR + ;L V7
plue W) A = wHv ""tr‘z“,k Vi
where the éomplex amplitudés h(y) and v(y) represent the y-

(xii)

components of the magnetic and velocity pertuﬁbations (full
form h(y)exp(i(kx +-mz) + iwt), v(y)exp(i(kx + mz) + iwt) ),
Vl ié the coefficient of viscosity and ¢ is the electrical
conductivity. It is, of ooursé, more usual to express
equations (xii) in dimensionle ss form.

IIichael did not use his equations excepti to show

that Purely magnetic perturbations (v = 0) are always stable.

It is .interesting that the egquilibrium profiles,

which may.be chosen arbitrarily when.7 =(T’='O>are now
subject to the severe restrictions

(y) =0

H''(y) = 0.
which simplify the equations (xii). Thié is an additional
factor complicating the comparison 6f peffect (non-dissipative)
magnetofluids with viscous, resistive ones. When Lin*
discusses this point for non‘conduoting fluids he justifies
arbitrary choice of U(y) because , of course, the magnetofluid

equations plainly allow it for inviscid fluids and also because

* Book (1958) p115
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nearly parallel flows of viscous fluids can have almos?d
arbitrary velocity profiles. This has to be Jjustified for
each case on its merits.

Some ‘work has been done recently with equations
similar to (xii) in both cartesian and cylindrical geometries.
For example Drazin (1960) and Hunt (1965) have done stability
calculations for extreme values of the parameters 7 and G .

A parallel magnetic field tends to stabilize laminar flows in
most cases but both workers.report exceptional circumstances
in which the magnetic field is a destabilising influence.

No work seems to have been published specificaily
on laminar flovs of perfect magnetofluids, b@t some relevant
- work has been done on general flows of perfeét magnetofluids,

; and is described in the next section.

? 8. General formalism for stability of Lagrangian Systems

Recent literature on stability of magnetofluid flows
é‘has placed the problem on a general basis applicable fo any

f Tagrangian system, that is any system governed by equations
second order in time derivatives and derivable from a Lagrangian.
Frieman and Rotenberg (1960) made a study of the
stability of a compressible non-dissipative magnetofluid.

4 system with flow field ¥ and magnetic field h is an

: equilibrium (stationary) flow provided only that it satisfies

the magnetofluid equations with.giE.O. (The magnetofluid :-
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equations and their linearisation is discussed in detail for
laminar flows on pageizz-). The equilibrium is subjected to
small perturbations which are governed by the linearised

magnetofluid equations in their full form (a%;é O now). The

equation for the displacement field:§(§,t) from the equilibrium

position x at time t takes the form /
: . a:.s ~ ‘a ' _ . vee
N SE f 2P 5% + Q = @) (xu)

where N, 1P and Q are hermitian operators (N positive definite)
containing space differentiations and the equilibrium fields.
A11 information about the perturbed quahtities is contained in:§‘.
Introducing the time dependence exp iwt, (xiii) becomes

‘ Hw)X =0 - (Xiv)
~where § =X (x)expiwt and H = —w2N + 2iwP + Q. The operator
"H(w) is non hermitian when w is complex.

" When the flow fieldy= O, P = O and the static
émagnetofluid problem then has an equation of the form _

FX = -wp X | ' (V)
i»where F is hermitian. Thus, w2 is real-and w, if complex,
imust be pure imaginary. The introduction of the flow is

Eseen to cause the poséibility of overétability (strictly
;complexzu) associated with the non hermitian operator. The
‘rapid progress made in static stability problems using the self
‘adjoint equation (xv) is not possible with flow problens using
(xiv). In particwlar (xv) can be.expressed as a variational

" problen leacing to the "Energy principle" formalism of

Bernstein et al (1958)
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Frieman and Rotenberg established a general sufficient
condition for stability, From (xiv), taking the scalar
product <XIH1X> and solving the resulting guadratic eguation

for w, L
<XILPIXY" - {<’XI£PI7<>1+A ,.<®<lwl'><><')<lcu’x>?; x
XIN|X >

(xv1)

Since the operators N, iP and Q are hermitian the scalar
products are real. Therefore w is real and the system is
' stable if

A =<XLEPIXST+ xXINIXS<XIQIX> 3O
‘Since N is positive definite this condition can be replacéd by
the apparently less powerful bul simpler condition
| <xXlQIx>s >0 i)
‘In Frieman .and Rotenberg's' paper, Q is given by

QX = G(YPTX + X-Tp -H. ZR(Xx)) + 1T (T x(Yx 1)
+Ux<). TH + D(pX v.0Y -pyY-TX)
gwhere ¥ is the ratio of the specific heats of the (compressible)
imagnetofluid and P is the magnesofluid pressure and p its
idensity.
; Frieman and Rotenberg also developed a pertiarbation
theory for small flow velocities to show that if a static
éequilibrium is stable then any flow equilibrium formed by super-

fposing a small flow field is also stable. Their method was
%

ito expand in powers of a small parameter € representing_if/ug
;orfufﬁh wnere U, and U, are respectively the equilibrium
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sound and alfven velocities. Solutions near a static solution
Ko, Wo are written

K = X, +r€eX, +e*Xt- "

W = We + W re>Wyrt--
By the hermitian nature of the static problem w02 is real.

If wo? #£ O w has the same nature as w, and stability (or

0
instability) persists. When wg = O_the persistence of stability

is not assured since
</Xc ] Q).l /)(D> | (xviit)
< Xol N ( Ko ™>

Stability persists if <X A Q. XD < 0, instability occurs

W=

1f <XolQulXe> > 0 and the next order must be examined if
LK1l >= 0.

| | The procedure of establishing a real mode of oscillation
- of a stable equilibrium to see wheither stability persists was

% placed on a general basis by Low (1961). Given a system
fwhose equations of motion ére second order in time and derivable
é from a Lagrangian, stability does'persist except for a

; circunstance depending only on the original equilibriuﬁ, and
iits stable mode of oscillation. The most general Lagrangian
%giving rise to the required equation of motion is

L = LEINES +<Elirles - &glales (Xix)
iwhere the operators N, iP and Q are hermitian and dot means

- partial time derivative.

| | The equation of motion is

NE + 2iPE +@5 = O

o

{ym
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and if the time dependence 1is 1ike exp(iwt) the ezpression
(xvi) is reproduced for w. If A >0 it follows that a

small change in the equilibrium (and, therefore, in N, iP

and Q) and a small change in the stable mode X,leave A >0

and stability persists. However if A = 0 the small changes
could well make.Au< O whence complex values of w and
instability. A real neutral mode with real eigenvalue

wo and with the extra property that A = 0 is called a
marginally stable mode. A necessary and sufficient condition

that a mode be marginal is

L <XliPIX >
<7(0'Nl%5 )
The usefulness of Low's result is that no stable

Wo

mcde need be examined for a nearby instability unless A = O.
"Nearby" has two senses : -

(1) A nearby perturbation about the same equilibrium :
e.g., represented by a small change in.wave number k.

(2) A nearby perturbation about é slightly different
equilibrium : e.g., represented by the introduction of

a small parameter provided the Lagrangian nature of the
system is not destroyéd. Thus the introduction of small
viscosity is not permissible.

Completely new modes may arise for the new equilibrium
and no information is available about them. It is also useful
that Low's resulf is so general, applying eQually for non-dis-
sipative magnetofluids and to a collision free gas of charged
pvarticles interacting through their own (self consistent) average

electric field and governed by the Collisionless Boltzmann
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equation.

Low interpreted his result in terms of a conserved
‘energy' emerging naturaliy from the Lagrangian formulation.
The quantity

£ = {<é\m\§,> r1<glQlg>
is a constant of the motion. | Its time average 1is

E =+ w>XnNx> + Lxlalxs :

where é:’?‘( (x)expiwt. From expression (xvi) for w

XEPiIx>% + A* £ 2A<xIP{x>
<XINX> .

w? =
It follows that

E=2wd
EIt is therefare usually true that a stable mode can only have
éa possible nearby unstabvle mode when it has zero energy
gassociated with it. This is not necessarily true when w, =0,
éunless the marginally stable solution Xo is unique (non- |
gdegenerate).
K Low was unable to prove that the marginally stable
émodes actually possess unstable modes nearby, but he conjectured
?that this might be the case.
L Laval et al (1964) took the matter further and
succeeded in developing a perturbation theory which quantitatively
‘evaluated the squared frequency change (Aw)? due to a small
change Ao( in an arbitrary parameter  of the equilibrium or
its marginally stable mode X,. - The result showed that

(Aw)g/Ao(, when non zero, has a sign independent of the sign



*

-20~-

of Ax , SO0 that one sign or other of Ax predicts (Aw)2< 0 and
the introduction of-unstable modes.

The result wa.s achieved by expanding about the marginally
stable solution (X.; Wo,Kg) in terms of a small parameter & .
Thus v |
Xo = XoteX v &%y v+
For consistency [A«x| = &%*. TFrom the linearised magﬂetofluid
equation (xiv) .
Hw X = O (x)
it follows that

1o, = - wi (B8), X

o X, = gl;)oo(o a“}X - (au) Xo + W NXs

Excluding the possivility of degeneracy of‘xg, solutions

exist if and only if X; is orthogonal to the right sides.

- Hence,

4/)( ,(()ot.‘ l'?(o
(A 3 <x INFYS + WX I Hal X > Ao -

and (Aw)?< O for one choice of the sign of AKX .

Exceptional circumstances invalidating (xx)arise
when’Xo is degenerate, when the operators possess singularities,
when the numerator or denominator in (xx) is zero, and when the
sign of A« is restricted (e.g., ifol = k° and Kg= O then
it is unphysical that Ay < 0) A‘

Laval et al examined the case of two fold degeneracy
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and showed that (Aw)2 is positive or negative for all values
of'Ax according as the expression.
XSRS > < XPNQIKES — <K Q%S >*

is positive or negative. Degeneracy is uswal in laminarx
flows because of the degree of symmetry.

The occurrence of singularities in the opgrators is
not discussed in the general analysis but they are ipvariably
present in the case of lamimr flows discussed in the succeeding

chapters.




 where Mo

CHAPTER 2

LAMINAR TFLOWS OF A PERFECT IIAGNETOFLUID

Magnetofluid equations - linearised perturbation

equations — necessary conditions for instability

— physical interpretation - real eigenvalues -
almost real eigenvalues - large k2.

1. Magnetofluid eguations

The results reviewed in Chapter 1 will now be
adapted, where possible, to the case of a perfectly conducting
magnetofluid in the @esence of a parallel magnetic field.

The equilibria studied are laminar flows

¥y = Uy x |
of a perféctly conducting, inviscid, incompressible magneto-
fluid between flat plates located at y = y1 and y = yp, in
the presence of a magnetic field '

A= Hy 2

The magretic field may be expressed in terms of the associated

Klfven velocity g = ///%‘-" A so that,
. « ’
& = Ay X

permeavility of free space

P = magnetofluid density.
A1l the guantitiesqf, U(y), @ and A(y) now have dimensions

of velocity. In particular, the magnetic field is expressed

as a velocity field.

These equilibria are fully specified by the flow

.
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and magnetic profiles U(y) and A(y). The profiles may be
chosen arbitrarily because they always satisfy the magneto-

fIUld equatltfu

. -V
ddt = ?Eir(iw&gxg

g A

3,5% = Culxa)
dewry = O

Dilow b = @)

GLW’J{\,: O .

where p(y) = magnetofluid static pressure. It is noteworthy

(1)

that the presence of the magnetic field naturally leads to

an equilibrium pressure grakdient. The magnetofluid equations

can be modified to eliminate p and display a useful symmetry
between A and d.
ot {07+ ) vl = Catfa Vo §

v.7+&)a a.V

(2)

div g =0
- dunr o = O
The form of (2) is not altered by both of the
interchanges |
v+ 5 «.¢ &)

v o &
Physically, the real velocity field has been inter-

changed with the Alfven velocity field, and total time

rates of change along the flow (%Eg){;ﬁl&fﬂ]) interchanged

with cdnvective rates of change along the Alfven "flow"

(6.V). The symmetry ceases to be valid when finite con-

ductivity or finite viscosity are introduced.
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2. TLinearised vnerturvation eguations

The mathematical stability problem is formulated

by superposing on the equilibriwn values of the quantities

U, @, P small perturbations v, o, p“’and examining their

(4 -

subsequent time growth or decay by means of the magnetofluid

egquations. If the perturbations are very small they are

linearly related, so that all but one quantity can be eliminated

from the magnetofluid equations, leaving one linear partial
differential equation in the variables, x, ¥y, z and t.

For this system it is convenient to eliminate 211
but two quantities v;”(x,y,z,t) and as)(x,y,z,t), where the
subscript y denotes the y-component of the appropriate’
vector, to obtain the coupled pair of linear partial
differential equations

(@t u%)vz W _ xvy(l) @72 al A”ﬁa - O
(3%141 )OH:’ Axﬁkvy O )

o

Solutions obtained from (4) are acceptable only
if they satisfy the magnetofluid equations (1) and are finite
for all values of x, y, 2, t. All the derivatives involved
in generating the other perturbed quantities must also be |
finite. It is not necessary that all derivatives involved
in elimination of the other perturbed gquantities be finite.
For example the terms neglected in the first of equations

(4) are

2 dinly®. Ty®) = V(2.7 %)
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which involve third order space derivatives, But even 1if these

N

are infinite the solution V;“

all the other (six) quantities occurring in the magneto-

will be acceptable provided

fluid equations can be generated without infinities,
and satisfy the magnetofluid equations.
Since the coefficients in (4) are independent of
x and z it i1s useful to Fourier transform with requct.to
" x and Ze..

wloyzt) = [ ke y,6) T 2 dk din
a;’C{(,B,Z,t) :ff qﬁu)(k,w; Ly t)e 1kx +wm Z)c(k dun .

- Rewriting equations (4) in terms of the transforms with

independent variables y and t... |
U+ $) (aa,,Pk S I LWy,
= A(ay ”—m")flg” -A'a” (5)
: 12 '
(u'*' U(B‘U‘)agu) = A va

At this stage the assumption is made that ag’and

? vj“ are exponentially varying in tinme. That is, for sone
complex number ¢ = C, + ic. :
) —2keb

u) -2ke€

\/‘a (yJ’t') = VQ{)@ _

(Non exponential time variation is considered in Chapter 5.)
Substituting in (5) and eliminating G(y), a single linear-

second order differential equatlon is obtained for V(y)eeo

g[t &Ala_] z —-[(w\ (- i o)) (Lt(l cu-c)l)]\, — (L)

As the magnetic field vanlshes (A= 0) Rayleigh's
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equation (iii), page 2, is recovered...

wo_ L 2 w -0 (iit)
v (K*+m* ¢ u_c.JV

The interchanges now take the form
h-e A | 7)

As an example of the power of these interchanges, the equation

fora (y) can be generated by inspecting (6)...

{U - QLL}\;‘?)L]G‘/} /_ [(.mlf kl)(i _(l_//i_?.))-) + (A'Cl I‘;‘d%)ll)_llcb :O

From physical considerations it is clear that

| v;“(x,y,z,t) must vanish at the solid walls, i.e. when y = Ngl

and y = y,. This occurs if and only if v(y) = Oat y = vl
and y = Yo - It follows, by the way, that the y-component
of the magnetic field also vanishes at the walls, independently
of the electrical properties of the walls.
A statement of the mathematical problem is now

possible. Let m2 and k2 be fixed non negative numbers.

~ Provided U(yl) - ¢ # A(yq), equation (#) for v(y) is regular

at ¥4 and a solution v(y, ¢) vanishing at y = y, exists. If

~ for some value of ¢ = c(k, m), Vv(y, c) vanishes also at y = Yo

and v(y, ¢)is regular in the real interval (yl, yo) then ¢ is
an eigenvalue with corresponding eigenfunction ?(y,-c)
representing a valid physical disturbance. The time
dependence of this disturbance is exp(-iket) so that
instability occurs when kci > O. If no such eigenvalue
exists for any values of k and m, the eguilibrium under
consideration is stable at least to exponential modes. In

practice 1t will not be necessary to show kci:> 0 explicitly



—27—

because, from (6), v(c*) = (v(¢c) )* is also an eigenfunction,
so that any complex eigenvalue (ci # 0) will establish
instability.

No difference is made to the outcome of the stability
problem if k2 + m? is replaced by k2 in equation (6) and
only two.dimensional perturbations indevendent of z éonsidered.
That is, the perturbations are proportional to exp ik(xz-ct)
and propagate in the x-direction with speed cy,- wavelength
2T/ Xk and growth rate kej.

It will be convenient to have available two equivalent
~ forms of eguation (6). Transforming +to the function f(y) =
v(y)/ (U(y) -c) equation (6) becomes |
[W-0=A*T £ - k*u-o>~Adf = O (8)

i subject to boundary conditions (U(yi) -c) f(yl) = 0 and

| (U(y2) -c) f(yg) = 0. The function f(y) usually behaves
; 1ike £5(y), the amplitude of the displacement .ég%x,y,z,t)
- of a fluid element from equilibrium in the direction of y.

- More precisely,

Ey) = f Ve (k+o, Uy) #<¢)

l: l (LUH) "C) .

Vi) o - L) =
l o (k=0 o~ Ugy)=¢)

Thus, the function f(y)= v(y)/(U(y) - c¢) nay have

a first order pole when U(y) = ¢ but still represent a
valid physical disturbance.
= . b e $ 3
Transforming to the function F(y) = X=f(y) equation

(5) becones
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F7 - Lk’w ZX};/;(—,_XIZ JF = 0 (9)

where X = (U = ¢)? = 42,
subject to the houndary conditions X'i(yl)(U(yl) - ¢)P(y;) =0
and X7 (y,)(U(y,) - ¢)F(yp) = O.

3. Necessary conditions for instability

A number of necessary conditions for instavility

(whence corresponding sufficient conditions for stability)

can be established by assuming ¢ is a complex eigenvalue

~with ey # O and examining the conseguences.

One powerful sufficient condition for stability
is
2y > () ()
for all values of y in the interval (yl, y2). This
condition is derived at the end of this section. The
physical relevance is probably that the Alfven speed is

large enough to propagate disturbances ahead of the moving

fluid. The result (f) is well known as a special case of

%the suf ficient condition published by Frieman and Rotenberg

i (1960), and illustrates the general principle that large

~enough magnetic filelds tend to stavilise magnetofluid flows.

For lower values of the magnetic field instabilities do exist,

and sometires the magnetic field exhibits a destabilising effect.

Three other simple resulis can be obtained directly
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- from (8),

(RS T N TRS S TR O
Assuming c; # O f is regular in the interval
gyl, y, SO that (8) may be multiplied by £#* and integrated

;from y1 %o Yoo
[ Hu-o=na £ ~ kP luo? Alhfl
éTherefore, integrating by parts
[y - AT (1 17+ KF1*) dy = O
“since £(y;) = £(y,) = O. |
- Taking real and imaginary parts,
; f””(u-cf)({’l + k*f))dy = 0O
and [P Usct- et -ATT T K*1%) = O
If theoe integrals are to vanish, U - cp and (U - cr)2 A% - c4°
Tmust both change sign in (yl, yz). Thus
c, = U(y) somewhere .ee (a)
1p1acing upper and lower bounds on Cpy and revealing that
unstable disturbances must travel at the flow speed somewhere.
' Also, | - |

ci? = (U(y) = ep)? — A(y)? somewhere...;;(b)
placing an upper bound on Ci2' (See figure 2.)
f (b) is to be attained then

Ay < (U -ea”

for some values of y.

"'.o Azim.dv\, <‘-(.uw\a\x" L(Mfw)l | ,,,(‘C)
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Figure 2.

Two more necessary conditions can be obtained directly

from equation (9),

Fro - (ke XX X" 1E - Q)

Assuming c; # O, it follows that X # O in the real

‘interval (yl, y2),'equat10n (9) has no singularities and

F is reguLar in that interval.

LR ke SR ER dy -
o LTRE [k *%215—3 Fl*3dy = ©

since F(yl) = F(yz) = 0.

Taking real and imaginary parts,
f"{nfw e ke RePRCXET I dy =

and

[ K] >
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By inspection of thne integrands two more necessary
rconditions for instability are

j,m ZXX” X /2 -0

T 4x* somewhere (a)
and { 4X2. < 0 for some values of y. (e)

In the limit of vanishing magnetic field (4-—0)
the result (d) coincides with Rayleigh's necessary condition

}for instability (page 3), that U"(y) = O somewhere. To

display this fact, , (~
| \{l«n 2XX"-X"" = _ij{-l’(i%_:{
4X* -’— [X(
CGy = LI K F
TRE c,J G EeAR) — 2AA(U- )
3@JQ A)+c“jI@LG+M1+c’j*

Condition (d) states that G(y) has a turning point for some

évalue of y in the interval (yy, yz). As A —0,
‘ Gy —=c; W Gy — o WY

LL”@) = O somewhere.

Condition (d) places no restriction on A(y) and
iU(y) when c; is very swall. For when (U~ cp & A)S>cy

Gy = O(c) |
;but at points where U —.cr =t A, at least one of which
;exists in (yl, y2) fromlcondition'(p),

G = t A(U-A)

shat G(y) rises’and falls rapidly (see figure 3), G'(y)

must have a turning point and (d) cannot fail to be satisfied.
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G must have o g pemt when Cp ts sSmall. iHence
cenditiznm @) nmmast alweuys be SatisFed when Cy ts Small .

Figure 3. '

e e e o e s P I I

For larger values of ci, (d) is a restrictive

condition but does not seem To yield simple general results

‘restricting the mofiles A(y) and U(y) independently of the

value of c.

Frieman and Rotenberg's general sufficient condition

for stability ( (xvii), page 16 ) takes a simple form for

laminar flows. Expressing egquation (8) for f(y) in the form

H@J;{ = O
. -y
and taking the scalar productfhf Fffdy the resulting
3

quadratic egquation for ¢ has discriminant

U ueretme)dy] = [Hree)ay . [ue-a)(f 1) dy

Y Y
The reality of ¢ (and therefore stability) is assured by

Frieman and Rotenberg's condition

- speaial case
LA e ) dy >0 - efOii),
and hence also by the.condition o
£2(y) > UP(y) for all y in(yy, ¥2) ().

Condition (f) applies no matter what the frame of
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F

reference in which U(y) is measured. If A(y) has a zero(f)

/

will not be satisfied unless U(y) is defined to be zero in

;Ehe same place. If A(y) has more than one zero it is not
possible in general to satisfy (f).
?powerful than condition (a), but not necessarily more

Condition (f) is more

Epowerful than the frequency dependent results from which

(2) was derived. '

4. Physical Interpretation

In Chapter 1 a physical interpretation of Rayleigh's

necessary condition was given, in terms of momenitum conservation.

Condition (d) has a somewhat similar interpretation, as follows.

Returning to the magnetofluid equation of motion

for general velocity and magnetic fields, W, h

dy _ . \
PZE = '—Vp T/La&.ﬁf\e{bx& |
and rewriting to display momentum flux g%;at a point in

space,
oF .
gzt*d,WE :'O

where the pressure tensorl? is given by
. 2 - ' .
Pi’j :(p-l' ‘}_‘}Qﬂlt ]diJ 'f‘t)'U.;U‘J -ﬂoiwl«\,
The growth of momentum at a point in space is due

to the rate of inflow of fluid momentum Ptﬁlﬁ the rate of

nomentun creation by the electromzgnetic forces, Pf@i%:and

the pressure forces ;>+%7uﬁk£ which are partly hydrostatic
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v

and wrtly magnetic.

3
l
}
}

The momentum flux in the x-direcviion is
'a—'i: = aax (p 'i"%'gh( ) An S—yq)vad "/uc;/{/txfg\y) + 5_2.(‘0'\4{;\/; "'/UO/E-K/K.Z)

For the particular fields under study

1

Ugr R+ ¢
= Hep &+ A7 .

where v (x,y,z,t) hL”(x,y,z t) are periodic in x, z and

> 2

%, the mean x-momentum growth in a plane of fixed y is

gik PS}(VG)V ©_ gl )

~where the mean value is with respect to z, and ¢ ﬁ?

The total momentuwa growih vetween the walls is

‘Ia.'\ .
j;‘a%(iy and is trivially zero from the fact that the integrand

is a complete differential and from the boundary conditions.
§However, the integrand can be written in terms of the profiles
‘U(y) and A(y) to derive the restricting condition (d) on the

‘profiles.

|
;
,

| Although it has been shown that stability decisions

.basea on egquation (6) are not changed by pubting m = 0, i3

;1s not true that g%? is unaltered by putting m = O. For

G N . e i
general 1, v*)(x,y,z,t) can be expressed in terms of v;)(x,y,z,t),

from the magnetofluid equations.

v = [_ _omr W v ]ezk(x-ct)-rzw\z
| ; vl zk i - ¢ 1k

| ~ Lk -cE) iz
: th“ = \/ét.L
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R RVIVED

_ )J(C t @/ V/V*‘ l M—L LL( t\i‘l}
= f:a ik wmwks U-c 2k

|

| (

E _ @zkc-t [klwiﬁv] + m*23 i"”{a%_cj lefi I
|

i

E

4:J<(m k)

where W([v] = v*v/’ ~-vxiy,

Similarly, using the interchanges (7)

|
| 2kt Al
= -< * m* 21 lal
4ll<(m+w)[_l< Wl + 1 { A } ]

It is still trivial that the momentum integral
vanishes; but W[v] can be expressed in terms of the profiles,
from (6) ( = \/

oo ML e WO-£50"1, - 0 (o)
l*(——/f\;_-)z % [< +m® T(L(~c)(g M w)]

i Zz,jm{v”v_? szm{‘@_%’}g/ V'v*} 21 CZM (LL(I M‘C}l }W‘ =
AL t 25

! -l -

This linear first order differential eguation for

W(v] has integrating factor {i —-Jﬁiul and has the solution

-C z) U '2 - A x
WLl = "i”'{(u : } Ty ﬁj"{ﬁaﬁiﬁf" 1] T dy

Using the interchanges (7) the corresponding solution

for W(a] is immediate.

CbL al 2 ) 2
W[‘_a.] = 2 \ZM[J:'_J } (M 1At jmf((bl-() -A )/]((/Im)"—A‘!}, I

<) A“l LU=-0)*-Ar

5L(ﬂy
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s f‘h D'J'L d,y

9 Ot
T (I CIZ ) [ K
o Mllhocl 207 (g, ﬂxr lifidy

where, as before X = (U - 0)2 - A2 and{:;: v/(U —'c)f_:a./A.

It is now clear that x-momentum conservation demands

Y .
\Z‘vn[)x’ ‘5)2"} =0 - somewhere (a)

F : '
3 .
g The possibility that [U(yz) - 0’2 = Az(yz)'is

;unLMPOWuant as this may only occur for an isolated value of c.
fSince the perturbation eguations are regular on the real

?axis when c; # O any conplex eigenvalue ¢ (ci # 0) must have
‘neighbouring eigenvalues for Which IU(y2) - 0[2 # A2(y2) and
for which (d) holds. Thus by continuity of iwﬂx(%}

with respect 4o ¢, (d) is not excused from holding when it

happens that (U(yp) - 0)2 = Az(yg).

5. Real eigenvalues

- In the study of non-conducting laminor flows,

progress was mde by establishing the existence of a real
eigenvalue and searching for nearby complex eigenvalues.
However, in the presence of a parallel magnetic field thefe

are not usuvally any real eigenvalues; To prove this, and

for other purposes, 1t is important To know how the rerturbation
ampiitudes behave near singularities of the appropriate

Pifferontial equation.
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Working with -f(y), from (8),

(XfY' -k*x§ = o 8)

vwhere Z(y) =U0(y) = ¢)2 - A2(Y)

Ll = LY =0 Go)
Singularities occur at values of y (in general complex) for
which X(y) = O. Since X has been defined for real ¥, an
»analytio continuvation to the complex y-plane is implied.

If X(y,) = O; then the series expansion for f in terms of
y[ =Y - Yo, &lven ’r_aoy
fe.n) = Z a1t
is a solution of (8) for some value of P where the Cg and
@ depend on the order (n) of the zero of X. To obtain this

/
solution a series expansion of-zi is required.

X

7/ o

The coefiicients oy are known in terms of the profile values
A(yo), U(yo) and their derivatives, and also depend on n.
In particular '

| (n+y)
3 e = L Ko

n+i XM

Mhere the subscripts on the right side refer to values at y =y,
but the subscript in &, means S = O. If it happens that
X(y) has a single zero at yo(X'(yy,) # O and n = 1) then

LX) MU = ARG+ Ut AL

n
= Xol < (U4"C) U‘-,' - vAO Ao,
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Xi

Substituting the series expansion for 5Y into (10)
y W = 20 (prsyCprern-o capaPf=?
«fH(P U] bZ:G(p s) )O'Q -0 Csp V) -
"’st(f’-’ qpi-s«l _ kzL Cs(P)lefs
S=o S>>0 '
whexre

dipy = 20 Ao (PesIcs

Ss'zg
ZH:(P)‘?)] = [J(F+n~:)co(P) V,P'l + [(p+:)(p+njc,({o)+ /Oa!gcc.sa)} h p=i
+ 52:; [(F'i'SfL)(Fi’Si'ni-l)Csf.\({)) + d,,-.(f’) - k’cs(p)] i/](“—s“

Defining

k*c@) - dsiip)
C 2 = =
slf) P rsr(prsenst) (832

it follows that

 Zlfen] = poem-acap’ e [propmic) + ptucapp 1P

so0 that one sclution to thne equation.Zf[F]:: O is given by

P:O)Cﬁzi) C‘:O

f@) = 2 con® (la)
To obtain a second soclution, define
coqa)}o ; Cp) = _g.gi
1o < i
Jf[é)f’] = 2%{&)1—14) V}P+§
-'. Z[E%f‘{o;-h] ‘;O

Thus, a second solution is given by,

- 5 P
P=-n, Cu(pr=0, C,p) = ‘%T.

~ (= = s
L) =2l clem'™ ¢ Leg¥ 2 cemd]™™ (1)
S=o ' s =0
The solution f; is always infinite when W = 0(y=yq).

This observation is now checked for all n # 2. The special
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case n = 2 is considered later.

When n = 1.

fo= e e

foo= =l Log¥ L1+ LK™ e |
so that Jfl has a logarithmic singwlarity.

When n > 2

f =0+ '2_(7}:3 U R -
Jﬁ,_ = —J-—,‘—V-‘ﬁ-‘ +L::3V”:C.‘(-n) i-CW,,(-m)VI i-]

50 that f; has a pole of oxder n - 1.

These sinzularities, if they occur on the real
interval (yq, y2) make f; inadmissible.  Any eigenfunction
must then behave like f near Vv =Y,

For conplex values of ¢ (c; # O) the zeros of
X:E (U - ¢)2 = A2 occur in the complex plane of y, so that-&y)
is regular in the re¢al interval (yq, Yé>' Whenever f(yl)

{(yz) =0 f(y) is bound to be an eivenfunctibn represent ing
a valid physical disturbance (i.e., to be finite with
:sufflclenu finite derivatives in (yl, yz) ).
i | But for real values of c, all quantities in eguation
;(8)'are real and zeros of‘X;occur only on the real axis. If
ic is tobe a Teal eigenvalue (with k2 # 0O) then at least one
inero of X must occur in the 1nterya1 (yl, Y, ). This follows

i
by comparing (8) with the general eaaatlon for a function f(y)

i' CP@)F’) + gy f

which is well known to be non oscillating, and therefore

|
|
|
1
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to possess at most one zero, in regions where p(y) and qu)

are non zero with opposite sign. In equation (8) p(y) = X(y)

and a.(v) = -%°X(v). If %(v) £ 0 and X2 £ 0 in (v.. v.)

then 7(y) has at most one zero in (yl, v ) and cannot be an
: ) s oeaman v we un

hebainhadiah N BN WV AR ML S e _\J:L, 02
feigenfunction.

Thus, when k< # 0, the existence of a real eigenvalue c
implies the existence of a point y_ in the interval,(yl, y2)
such that X(y,) = 0. The series solutions (11) then apply
at y = Yor

Assuming X(y,) = O is either a first order zero, or

. greater than second order gzero, it has been shown any eigen-—
function must behave like fiﬂ) near y , because,fl@?) is
- infinite. It follows that no eigenfunction exists. To
i prove thié, consider the bvehaviour of any solutionuf(y) of (8)
in the region (yo, y2), assuning without loss of generality
that Yo is the first singuwlarity to the left of oo Near
; Yy = Yo
| f ~ H0) = 115k (1=y-ye)
| Lfe =t faa=o0.
Either f(y) > 0 for all y>» y, or there exists a‘unique
point y, such that f(y}) = 0 and f(y):> O for all'y with
Vo€ ¥ < y}b . Suppose Ip exists and Vo< ¥y £ Voo
Prom (8) | : :
XE' = [CkXF (v> 90
Since, in the interval Vo€ ¥< Yps X(y) # 0 and {(y)f> 0,

- / R
it follows X4 has the sign of Xf in that interval.
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. y
L } has the sign of‘f (positive) for y,< ¥ £ p
.0 =]C(yp.)'>]c(yo) = 1, which is false.

yp)if it exists, is greater than Jo

VL f (y)> 0 in the interval (yo, y2)

S ey £ o

' f is not an eigenfunction (see figure 4).

Ya.

(c( +
v
<

clearly f&ﬂ) # 0 when ’1 = 0 and no eigenfunction exists

-in this special case.

It has now been established that no real eizenvalue
¢ can exist unless there exisls a opoint Yo in the interval
(yl, v.) such that

2 .
/ ” - )

Xew = Xy = O & X'@y+0  (n=2

Even assuning that such a point Yo exists for some
real value of ¢, 1t is exceptional that ¢ should be an eigen-

value. To prove this, the series expansions for n = 2 are

Ynen n = 2, the series solutions can be written
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ﬂ@U = l*—é;klﬂl.”.'
£.0) = 7‘-{ - 2y < +d°Lc~dV1[g+_—é—quh.,.]
: 1174

where ¥, = Xeo

3 X" T
By arguaents similar to the case of n £ 2 no real

- eigenvalues exist due to the infinity in l.ﬁ) , Dprovided

o # 0.

But when o, = O, i.e., X/, = O.

L6 = 1+ Lt

* ) X

}Jﬂ)='# + 3l ol )] -
and there is a circumstance in which these solutions could re-
present a valid physical disturbance. By definition J:(y) =
v(y)/(U(y) = ¢) may have a first order pole when U(y) = c,
so that flﬁl) is physical if ¢ = U(yo).

Swaming up, for k2 Z 0, no real number c is an
eigenvalue unless there is a point Yo in (yl, y2) such that

y /

XO:XL =XQ”"—'~O;

and ¢ = Ug.

That is, unless

Ao = O
UL~ A" A = O 4z)
and c = UO

Phe conditions (12) are very restrictive on the profiles A(y)

and U(y), and even if satisfied do not ensure the existence of



¢ Tor exa.nple if A(J) =

—4 3

a real eigenvalue. Conditions (12) actually ensure that

<3

equartion (6) for v(y) is not singular 2t y = yg. That

is, the functiono aprearing in

{0 251 v -kl + X (’ s )y = SV

are all regular at y =y . Similarly, equation (9) for

F(y) has no 51pmularlty at ¥y =y,

In the limit of vanishing magnetio field ( A(y)—=0 )
conditions (12) reduce to Rayleigh's necessary condition
for the existence of a real eigenvalue c
" —_—

/
and ¢ = U(y,) (?2)

Also, equaiion (6) reduces to Rayleigh's egquation

i
v —(l<+uLLLC )V;O -‘

which clearly has no singularity at y,. It has been shown

in the literature (see Chapter 1) that when (12') is
sotisfied there are both real and complex eigenvalues for
a class of profiles U(y).

When A(y)§é O the corresponding system subject to

conditions (12) does possess real anil complex eigenvalues

for some vrofiles U(y) and A(y)*. But conditions (12) are

X ), & = const., and U"/U< -B2
where the constant B > 102/ (Y, yd, then the system possesse
2 real elcenvwluu ¢ = O for some k2 = ky% and complex
gi~envalues neardy. .
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50 restrictive that a detalled discussion is probably not
JuSthled. If a real eicenvalue c, and its solution f;

are known then the prescription of Taval et al (pzge 19)
allows an immedicte decision on the existence of neighbouring

E
|
:
{
|
l . q - . . ]
complex eigenvalues. The complex neighbours exist if and
|

l

only if sl fon p

[ . - j (U((ﬁﬂk”rl")dy |

(H'/l “’kl Pl)‘)clJ

| The case of ¥“ = 0 has not been considered. When

%2 = 0 equation (6) has solubions
Viyy = Ugyy-c¢
Y oy

)_Qf.) = (U(,j) C) (u )1. A?.

vFor real c)vg(y) is not admissible.  The solution vl(y) is
‘regular and is an eigenfunction if and only if U(yl) = U(yz).
The eigenvelue in this case is ¢ = U(yl) = U(y2). Such
‘eigenvalues, representing physical disturbances with long
iwavelength and speed of propagation equal to the flow velocity
jat the walls always exist for symzetric veloolty profiles,
;independently of the magnetic profile A(y). . In Chavter 3

it is shown that for suitable A(y) unstable eigenvalues

\
f
\

always exist nearby, even when no instability exists for

Aly)= 0




the real axis 1s reached

6. Almost Real Ticenvalues

ol

Although real eilgenvalues do not usuallyexisd,

conplex eigenvalues with unboundedly small iracinary part

nay, It iz shown in this section that the existence of
2

.

any comnlex eigenvalue for a ziven value of k“ implies the

exizstence of "almosgt real" eigenvalues for larger values of
k=. Ls Tthese elgenvalues approach the real axis, tﬁe
corresponding eisenfunctions become badly behaved, and when
they cease 10 be physicai because
of the singular ncint in the real interval (yl, yg).

The existence of almost real eigenvalues can be

- exploited to show that for unstable systens X(y) usually has

two meros in (yl, yv>) for some value of c... The exceptions

r

~for which one zero of X(y) suffices include the systeums

satisfying the restrictions (12) which were shown necessary

for the existence of a real eigcenvalue.

Suppose now that a complex eigenvalue c, = o(kl)(ci#O)

exists for a fixed value of kl of k. Since the perturvation

equations are regular in the real interval @1, y2) when

c; # 0, their solutions are regular in that interval.  For
exanple, equation (8) for f(y,c,k)

flil-0=a24 3" - kK Lu-o>A1f = © (®)
is regular on the real axis when cy # 0 so that its solutions
f(y,c,k) are regular functions of y, ¢ and k on (yl, yg).

Thus there exists a regular solution f(y,c,k) vanishing at Yy
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and ¢ is an eigenvalue if and only if
W N .
G[C)k.) = ;F(V;Lg‘-)k) —O,
wnere G is a regular function of ¢ and k. By the implicit

function theoren it follows that ¢ is a regular function of-
k. As Xk increases from the value kl’ ¢ moves continuously
from the value Cq - The necessary conditions (a) and (b)

show that ¢ must remain in the region Umim. < ¢ < Umax,
. , 2 2 .
0 < c; < (uwm‘~LL%;\) ~ Rmin - The present purwvase 1is to

show %hat ¢ must come arbitrarily near to the real =zxis.

As k2 increases ¢ either continues to exist for

indefinitely large kg, or ceases %0 exist for values of k4

greater than some value k In the next section, the case

o .

2 . . . ) -
of large k~ is studied and an upper bound cof the order k =
is placed on C;y 8O that ¢ is almost real. The only other

possibility is that there is a k02 such that c(k2) exists

2

for kq < k< ko2’ but does not exist in a right hand

. 2 '
neizhbourhood of ko2. Suppose C, = iéiwmk c:dﬁ). This
- ko

linit must exist since ¢ is a regular function of X2 for
k< k °.  Buy c, need not be an eigenvalue. The only

possible location of s i1s the real axis, because a complex:

-

value 07 'would imply that the function ¢ = c(k2) was

°o
regular at kOZ, s0 that values of ¢ would exist for k> k ©.
It follows that ¢ can be brought arbitrarily close o the

. . 2 . 2
real axis by choosing k7 sufficiently close to ko .

The existence of two zeros of X(y) for some value

of Cn Can now be. derived as a neéessary condition for instabili

Supvose the flow is unstable. The complex eigenvalues ¢
.t

exist ard, as shown above, almost real values of ¢ =micsh,
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When c; is small, there is a pocint Yo in the

comvlex plane of y, and very close to the real line (yl, y2)

such that K(yo) = 0, This can be shown from the definition
2 .

of X = (U -~ c..)?

2 o .
Pl = eyT = AT+ 2(U - cr)lci and condition (b),

page 29, wnich siztes that Re{Xz vanishes in (yl, yz) if

¢ is %o be an eizenvaluwe. Vhere (b) holds (=% Yor S2Y),
Re{Xc} = 0 and jm{XC§ = 2(U - Cr)ci (small) so that X

nearly has a zero. It follows that the analytic convinuation
of X to complex values of y has & zero nearvy, in facs diotant
avproximately [_m ! 243 iCL/XCCM)JJ"-" from Yo, vhere @ = [C + A *
and m is the order of the first non zero derivative of X(y)

at y = yc.

From equation (9) for F it has been shown that

| Tey = [™q, [2x"-xX'*
| L?) =y, g%a( N }lfl
i 2

where, as before, X = (U - - 4%

Since almost real eigenvalues exist it follows that
: {I(;)} =0 .
% C ->o
To evaluvate the 1imit, the prescription in the footnote is

employed. Since the integrand contains a factor ¢y it 1is

ootnote : -( £
E : 2. o {B)d —
éjji“gfg (£-x)%+ a* ~ £ 75

The plus sign is applicable when a > 0 and E,> f, and a
factor (-1) occurs for each condition altered.




D 2 A A S i N R A I i ol sttt e S s

~-48—-

small, except near zeros of X. Tear y, ( X(y,) =0 )
expansions can be made in terms of 1=y - y,.

By v )
ZXX”;X[: n_ (-2 + ‘l‘;g;'r) f\bw d
L;-X i1 2 )/ Gati)
4‘1 i I41-l )( ‘~"7

own)

where n is the order of the zero of X.
- . { .
The behaviour of F(Y) = X*(4) {1} is already known (page
38 ) L4 »
The expression Zﬁwquayfls examined sevparately
1 G >o
~ for the three cases n =1, n =2, n>2.

When n = 1,

FOD ~ Y= Leg
' . — , }I,;r bR
Lin Tey = Ko [ dmfie =X L 00Leg i Pl + OU1;)

-
2o Vi.._:,o Yo~

Har i7—/‘ Xc” .
= Zim | G S Ml 17 + 00

oo "

S 2
= ”1,‘ 7 L\,
4,59 j; ZLL" . ‘)”’- / 7 U d 1+

- which does not exist. If Zi%a I(c) is to be zero, at least
‘ _ G—=o0

one otner zero of X must exist to allow cancellation of the
- infinities.

Whnen n = 2

FMY v~ .,
" e 2
. z ) T — .....L N .
. Pretes L(C) - 2 ")'2‘0—,', V’L }jc,'- (74‘1"“ ,71. 1)3/1_

which does not exist unless XJ'#Q, in which case the 1limit
does exist and is zero. Thus, if X ''' # O there are two

zeros of X, but if Xg''' = O one zero of X may suffice for
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the existence of nearly real eigenvalues. The necessary

conditions (12) for the existence of a real eigenvalue include

the condition Xpo'''!' = 0.
WThen n > 2
F)~ e
< {J:-"' ( __‘)
A Zi»« Ty = ZiMA f~ ‘7 {HELil;E‘} ri‘ ¢l
C.~o Vli_aa Y, L 4_017- ll/”lm-} : Vld‘

which does not exist.

The conclusion is that instabilitvies cannot occur
unless there are two zeros of X(y) in (yl, ¥o), for some
value of G except in the unusual circumstance in which X
possesses a second order zero coinciding with a zero of X''!',

The existence of two zeros of X(y) for some value
of ¢, (when ¢4y = 0) has consequences on the flow profiles.
There exist two points yg, y4 in (y1, y2) such that Xg = X, =0
for some value of cp.

.. ué—c¢ =1 As

Ue - =T Ae .

A rapic decision on the stability of a given pair of profiles
is possible if graphs of A(y) and -A(y) fail to intersect

a graph of U(y) — ¢y where c, varies such that Umin < cp< Unax.

T
(See figure 5.)
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Y =

Example .siuow{nﬁ pm—filas A(H)J (L) such that X(y) Cannct

have h».lq zemsfor any value of ¢+ betweenn Umin amd Luwax -

Figure 5

Since X = Xt = 0 it follows that X' = O for sone \-
S .

value between ys and Vi

SoUedW - ART= 0
bet%eep ys'and Ve It may be possible to construct a graph
for any value of the parameter cp. If not, X(y) cannot have

0 to examine whether it intersects the graph of U(y) - ¢

T
two zeros.

The non existenée'of real eigenvalues, denmonstrated
in the 1ast'section frustrated any attempts fto find real
eigenvalues and search for nearby complex ones, as has been
done in the literature for non conducting fluids. Assunming

that complex eigenvalues do exist for some magnetofluid
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flovs, this section demonstrates the existence of real wvalues
of ¢ which allow a singular solution of the boundary probvlen.
These are not eigenfunctions but do have complex (regular)
eigenfunciions nearby.

It might be possibvle fo find such real singular
solutions and develop a perturbation theory to search for
nearby complex eigenfunctions. ,

No such theory 1s developed in this work, but
real singular solutions are discussed briefly below. For
the special case of symmeﬁriC'flows, instabilities are found
by searching near an unphysical real solution (page 67 ).

If F(y) is 2 real solution of (9) satisfyins the
boundary conditions at yy and y2, but not regular in the
interval (yq, yp) it is easy %o show that two siﬁgularities
occur in (yy, ¥5).

From (9) the Wronskian function f:U)/FGJ-F“)FGJ/
for any two linearly independent solutions of (9) is constant,
except &t singularities of (9) where discontinuities may
occur. Singuwlarities of (9) occur only at zeros of X(y),
and the behaviour of F is known (page 38) in terms of /| and
n.

When n = 1

"‘G) ‘/IL ; "'(.1]~ V} L& Iq

J

'.,W“’ {La*d .
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] . . . { -
Hence, W has a discontinuity T - v il., *
But ¥V = 0 at each end point, therefore two singularities must
occur to allow cancellation of the discontinuities.

Yhen n = 2

r—U')VV]',l_ ; i‘:(LJ_‘;V]“:l._" o(bb’lit,{_‘dalfi (c,[o: )(Om/gy.el)

o
W oy Leg v+ pokes.

Hence, W has 2 discontinuity T muo i IC, and two singularities

are necessary for cancellation unless Ko = O.

When n> 2 W has a discontinuity f;C;én)i;TE where
¢,'(-n) occurs in the series solution for F(']), and has a
complicated dependence on the profiles A(y), U(y).

The necessary conditions for the occurrence of
two zeros of X(y) now become necessary conditions for the
existence of singular real solutions, except when there

exists 2 point Ys such that X(y,) = X' (y,) = X" (y,) = 0.

* In the absence of some treatment like TLin's (page 6) for
non conducting fluids the sign is amblguous and depends on
whether the real solution is treated as the limit ¢; =0+ o™ O-.
(Alternasively, on the choice of the branch of LogvT)
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7. Tarce k2. (Short wavelensth)

When k° =oo the system is stable for.all profiles
U(y) and A(y). This can be proved from (),

XL -k*Xf = 0. 8)
hen k¢ =00, Xf = 0 and non zero f occurs only when X = O,
i.e., (U-2c¢c)? - A2= 0. This cannot.ocour unless U(y)=

»

A(y) is constant, when Alfven waves may propagate with
real veloclty c = U:t'A. In any event, the systen is
stable.

The object of this secition is to prove that the
system is stable fof sufficiently large (finite) values of
k2, dependent only on the profiles A(y) and U(y). The

necessary condition for instability (e), page 31, viz.,

E< O for some y in (yl, y?) .. (e)
{Z)(X” Xll} -

where E = k2 , 1s difficult to satisfy when

. il_y/*
k2 is large. But e {;jﬁgaﬁL_fls unboundedly large near

zeros of X(y), and as ci~= O these zeros approach the

real axig of y. Investigation will show that (e) always

does hold for sufficiently small values of'ci, no natter how

large k2, Alvhough this allows no decision on stability
or instability an upper 1imit on ¢y is obtained, anda Ifurther
inwvestigation shows combleue stability for large k2.

FPirst, expression E is examined remote from zeros

15}

of X(y, ¢) to see for what values of ¢ it may be negative,

even when %X° is large. It is already known (page 22) that



complex eigenvalues ¢ must lie in the region U,;. <cr < U
0 < ¢« ( (Up- cp)2 = A2 ). et B? be a fixed upper
vound for |oxr - X'*| as vy, cy and ci'vary within (known)
finite real dorains. (Such a bound does not exist when
X(y) is discontinuous, i.e., when U(y) or A(y) is dis-
convinuous; nence discontinuous profiles examined in
Chapber 4 may be unstable for large k%5 ) | -

Let € be a fixed small positive nuaber. then
ci =& > 0,

X117 = (Umey™- e - A%)F ¢ 4l-c)® i

Z ,z)
= (U-co-A) P+ ) (U-cov A) T+ Co

> o5
= &% ]EO‘F,'CL(/{ Cr, VY.

so that E can be made positive for all c, in (U

53

2&%?

&> 0. Inverting this argument, a large value of k e
L
P

U

Wi ) mu)

and 211l y in (yj, 32) by choosing k >+3=, provided c.

jai I—’
0]
Pyl
]
(¢
0

L]

. td
that (e) cannot be satisfied unless cj< & :(ﬁ%:
When € > c; > O the singularities of E (zeros of X)

lie close to the real axis. In the neighbourhbod of the

singularities,

E = k*+ #e

2 fe Xo(n-n) )
W ez 4 Anm0 Xeo 11+ om

. -
' N+t X

wnere X has an nth order zero at Yo and’T =Y = Yy Variation

only of’f need be considered because qr varies like y

cnd ly 1ike c;. The value of ¢, fixes the position y,

max



e e ———

~55—

of the singularity.

In the three separzte cases n =1, n =2 and n> 2

it will bve shown that I is negative for a fanae of values
of Y]+, so that condition (e) is always satisfied and no
decision on stability is possible. But in each case the
stronger necegsary condition for instablility
~/1 2 = (==~ i — g
[ v BRI dy =0 L (15)
Yy '
from which (e) was derived (page 31) cannot be satisfied,
whence stabllity for large k¢ is assured.

YThen n = 1

- Lz, MM Ly
E = k 1-4(‘1_11 V?:;')z + O(l"l{)

When IVL‘“I >—£‘K , k2 still dominates and Py << M ( << g_iK)

when -t < 1< sz it is neoatlve for M; << ( << ;K)

2k
and positive for ‘1p < ], (See figure 6.)
P -

| 2t

~CE e

Figure 6

:
i
2K

= q,lw;xgs nzgaﬁv@. fo"r' Sa{fléfeuﬂy small c; ("] L) when n =1,
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But the interral (15) can be examined, for -~L—K<VL\4 2

znd V]i« 1« , with a knowledge of F(1). Since n = 1

orie

The e

FO1) ~ 1% Log 1
S LHE - E Py
> f:‘ E\F(dy

s T AP Cmran, (S00)

o 4(41::.1' ‘?flj.‘::/z_ 3"43 wlerities

1 tf2 -1,
{‘/c; 4(11 % q ’-)°/?-( "3"/“) s -f = Z:; V; )J/,_(Lm]l’/“) dqr}

C&mw )f

>22 .

_/ 1,0, e 121 ) >
4(,1 b L] 1)311. ( 7% {i(/) Y , :_):/2_ J }}

|
>27 | gf‘i——) k(g k)™

> O .
When n = 2
5( i VI?‘ |
E = kl.‘_ ( + OO)
SXe" TE T U
xyrecssion & is positive when Vl,r = -lz . Dezending on
sign of XJ¥ /X E is negative wnen (M14] << i/lk  for

sign of Vi-r and positive for the other.

Tre integral (15) is plainly vpositive because
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o

o LE s (e S SR FC) dy
Y2 ..‘.. _L r{lil
f ('W(B + K>+ 53{* ‘ ‘B)dt’l

> 0 Since Vl+ << i.

Wnen n > 2

= _ Lz An(n-z.](vlrl‘qil)
S AT

which is vositive for 2ll T, >"1, and nezative only when

‘;’2 > >> e,

But F fv"li ' ang
f;f“”(:Ffm E IF1™) dy
(/JJ< (C"""‘) W(M-L)(V’rz-"l;l) )d‘/‘v

l/)_k ll/l‘lﬂ'f" . 4—‘V]llh+3

tfo g '.l gl >
- Z f_i/:( (bn 4.n+l)‘12:+?:- Znt+1) Yl; dn,
| 411
> O Stnce 1 >2 .

The conclusion is that the necessary condition for

instability

[2GF2 + (s R[S VFIM)dy = O

can never be satisfied for values of k2 chosen sufficiently large.



R e e e A

CHAPTER 3

LONG WAVE INSTABILITIES

Sufficient condition for instability - magnetic
field stabilises or destabilises? - 1nstab111ty
of symmetric flows

»
/

1. Sufficient condition for instability

Rosenbluth and Simon (1964) solved the stability
problem for laminar flow of an inviscid incompressible
non-conducting fluid when k2 = 0, and hence wrote
down a sufficient condition for instability (chapter
1, page 10). Their method can be extended to perfectly
conducting fluids in the presence of a magnetic field.
To obtain a simple sufficient condition (namely (16) )
it will be supposed that

U'(y)> 0

A (y) = constant.

In these circumstances, Rayleigh's condition

that U(y) has a point of inflexion will emerge as a

necessary condition for instability when k2 = 0,
This ceases to be true when k2 £ 0 or when A(y) #
constant, and recourse must be made to the more complicated

(frequency dependent) necessary conditign for instability
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(d), page 31. The condition
A < £ (Uonax = Uomin) - ()’

also emerges as a necessary condition for instability
when k2 = 0. This too ceases to be true for other
values of k° or for arbitrary A(y), but the weaker
condition (c) which states A < Umax ~Umin does hold.

Violation of (c) ensures stability, probably
because the alfven speed is then sufficiently large
to allow propagation of a disturbance beyond (faster
than)<the flow. This interpretation survives the
strengthening of (c) to (e¢)', for the special ke = 0
modes of this section, because violation of (c¢)' allows
propagation beyond the flow in at least one direction;

The derivation of the sufficient condition (16),

below,now begins. From egquation (8) for £(y, c),

when k2 = O, .
fu-)*-A*1f'§' =0
L v d | '
.. {CU)C) = [y.‘(U-C_JLgAZ since f(y, ¢) = O.

The system is unstable to long wave mbdes
(k2 = 0) if and only if G(c) = f(yz, ¢) has complex

zeros with ¢y # O. The relation

— 2 dy . (Y= ‘dy
G@)-_ZA y, U-c-A - 2A£; U-c+ A

can be used to plot the variation of G(c) as ¢ is

[}

varied around the contour of figure 7. G(e) has
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geros inside this contour if and only if the plot of G

encloses the origin,

(iv)=lvit)

(i) ! Wviidy 4

: : e
Hy Uz
U-‘_ = U(y;_\ = ulM('nK
. F, U; =U(H.) =u“‘“"~
igure 7 .

The variation of G can be sketched (figure 8)

‘from the following information, remembering that U'(y)

>0 and A(y) is constant.
(1) c = Re*® (R fa+3e)..-.
G ~e-2i¢/R>.
(ii) —0 <&-AccrA<c Uy ; cs=€ ...
RefiGl >0, dmiGi~+€.
(iii) cpr-A < CetA = UWY) ...
RfGY ~+0, dm (GE =@ where O hg T
(iv) co-A < U, < co+A < u.',_ | |

Kefet =7, ImiGi >0
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EITHER A < £(Umac-Umid B A 3 L Unae ~Umin) .

(v) (v)

Cr-A ~U, < (T”A < Uy Co-A < U, < CorA ~U,
RefGinv =00, GmfGd = 7 RefCi~ -0, dmiGd = ?
(vi) © (vi)

U < Co~A<Cer A< U, Co-A < Uz < Cet A

KofGl = 1, ImiGH '-\‘ ! | MC& <o , ImiGi="1
(vii) Ce-A ~Uy (vii) Cp-A~ U,

ReiGei =00 , iG] = 1 RedGin=s0, ImfGE = 1
(viii) U, < C+=A | (viii) Un < C--A |
LlGl=7, dmll<0  LiGE=7, dmiGi<o .

Figure 8
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In one of the regions (v), (vi), (vii) 4%4{2}2
vanishes énd there is a zero of G(e) ( the origin is
encircled ) if and only if ®{GJ] > O there. When
A> 3(Upae = Upind ) #ofG5 < 0 in all three regioms,
implying ﬁo zero, hence stability. Thus the condition
A< 3(Upax~ Upin ) has emerged as a necessary condition
for instability. '

When 4 < 5(Upex~ Unind)s &{Gi may .have either
sign in the region (vi), so that instability is possible
if JL483gdoes vanish in region (vi) and &L&}f*>-o there.
1t JmiG3 vanishes at (v) or (vii), then &{G§~-00 and
no instability occﬁrs. Thus, for instability, it is
necessary that ImiGs = O in region (vi), and this
implies Rayleigh's condition, because ...

5ﬁéf}z¥-() in region (vi)

- (Y Cidy _ L (7 cidy -
= éﬁ-:t) {"A Vi Uh-Ce-AY 2 24 Vc(.U‘C**AJz'*'CiL} =9,
T T _n
2. A Uty,) z A U'(ye) ’

where U(ys) =c, - 4

U(yt)-# c, + 4,

'=> there are two distinct points Ygr ¥y in the

* interval yq, yé such that

U'(ys) U'(yt) _
= U"(y,) = 0 for some y, in (yg, Yg)s q.e.d.
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The sufficient condition for instability can
now be stated.

If there exist two points Ygr Yy such that

Ug - U = 24 '

Ug = Ug=0

and ¢ is defined by

op = H(U, + TU)
Ci =0
and if -
— ‘42._ dy
M = fy G-w-ar O ae)

then instability occurs.

The instability occurs when k° = 0. If it is

understood that K = 0, the condition is necessary and

sufficient for instability. The constraints on c., yg,

Yy ensure that the integral is real.
As the magnetic field vanishes (4 —=0) the

condition reduces to Rosenbluth and Simon's

_ --—_l—__‘_ _ Vi u”de
R = ul(u__c‘_) v, ull(u‘_g) > O

where o, = U(yo) .
and U"(yo) = 0. |
This limit is better displayed when (16) is

rewritten in the form



U-te+A
M —_ - [1_ LW{U—Q‘A J ]VZ
L u’ 2 A Y
0 gU—GrA]
(Y teume Al
Y ull ZA

2. lMagnetic field stabilises or destabilises?

It has been shown that any flow U(y) is always
stabilised by a magnetic field A(y) such that [A(y)|>[U(y)|
for all y. It is tempting to oonjecture that an
increasing magnetic field is always a stabilising
influence. This will be shown untrue, at 1east for
long wave modes. |

When U' (y) > 0 and A is constant, M(4A) > O
is a necessary and sufficient condition forlinstability
of'k2 = O modes. The éign.of’ﬁ%% will reveal whether
or not increasing A has a stabilising effect.* In the

case of marginal stabilitj (M = 0) for a given value of

¥ Strictly speaking, knowledge of the sign ofthﬁAls
useless unless M = O, The sign of M merely indicates
whether or not the plot of G(c% (flgure 8) encircles
the origin. Thus if dM/dA>0 for a given value of Awhere 1< O,
no difference is made to stability unless dM/dA > O
over g finite range of values of A sufficient to cause
M to change sign.  When dM/dA>O it will be said “ahat
the magnetic field tends to stablllse. _
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A, the sign of ;ﬂ‘g is crucial to the stability problem,

because an infinitesimal change in A causes stability

dr causes instability.

—_— __L Yo chi __-_’L Y2
M(A) - ZA [y, U'ub 2'A v u uS

where U.t - US = 2A

- U' =0
U‘b U u ”+ u 17
It follows that c (A) = —=_ "t where
u.s = Ut—

differentlatlon with respect to A is denoted by dot,
and differentiation with respect to y by dash.
Keeping A # O at first, M(A) can be obtained

by formal differentiation ...

. _ __.M f:«lt v dy L C‘s Ya dy
M&) = -x * 34 fy.(u U f W-u)™ .

- The integrals on the right do not exist, but formally

represent the proper expression

He = - Mo L[ACaU-ce Lo (Al U W ey
M(A) - A ’(u"ut)(U'UsJ p-/ ull(u -Ue) (u us)

Provided M(4) 7.‘ 0 a change AA in A causes a

change M.AA in M. The factor AA/A appears, and
ensures that the change in M does not depend on the
direction of the magnetic field, but only on the change
in magnitude. This had to be the case because the
perturbation equations do not depend on the sign of A.
Increasing the magnitude of A is a destabilising influence

only if M.AA > 0. In particular if M(4) = O the
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flow is mafginally stable and an increase AA in the

magnitude of & causes instability if and only if

_[ Aépf-U'Cr]V"__ ]Q[V‘Cllc.ffLFCr)U«”d
u'(U-ua(u-ug)dy, W' u-ue) (U=Us)

where ¢, = (Ug" + Uy" )/ (U = U,

>0

- Now examining the case A = O, it happens that
1M(0) = 0. The points y, and y  coincide at y_ where
U"(yo) = 0 and ér(O) = 0. It is recessary to calculate

second derivatives and these are given formally by

oo 9;. d yl-
Q) =
where op(0) = = ué”/suo’u “, In ‘aerms,of integrals

which exist, h(O) is given by
Qv) 4

. ; « 7% e Mo, 4 U
2o = [zl P 4

The introduction of a small magnetic field AA

to a field-free flow causes a change %M(O)([XA)Z.in
M and hence tends to destabilise only if M(0) > O.
In the special case when M(0) = O'(i.e., R = O)_the'

introduction of A4 actually causes instability if and

only if
s Y. 0("” uv -
. ] 3uud Tyt S
L Tp[ldRe e L )
U'U-uo)34y, 799 (U~-u)3
where U," = O. The sign of the boundary term is

strictly negative, and aiways makes a stability

contrivution.
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3. Instability of symmetric flows

Specialising to-symmetric flows, é sﬁfficient
condition for instability can be established. The
conditionlis interesting because it shows that any
such flow that is stable in the absence of a magnetic
field can be made unstable by the superposition of a
suitable magnetic field parallel to the flow.

For convenience yj; = O and y, = 2b. The following
are the conditions'on the profiies. |
(a) The velocity profile, U(y), is symmefric,
Uly) = U(2b - §).

(h) The magnetic field profile is symmetric,.

A(y) = 42> - y).. -
(c) The magnetic field vanishes at the walls, "

Ao = 0.
(d) The fluid velocity vanishes at the walls,

U =O'

o)
(e) The local flow energy exceeds the local magnetic
energy, UZ(y)> A%(y).
Given these conditions, the system will be
shown unstable whenever '
. > Beipr | (18)
The derivation of (18) crucially depehds on (a),

(b) and (c¢). No generality is lost by imposing (aj,
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and (e) could have been relaxed for some but not

all values of y. If (e) were relaxed for all values

of y, that is if A2(y0->.U2(y).fqr all y, then conditioﬁ
(18) for instability cannot be established, which is

not surprising because in those circumstances the flow
must be staﬁle, according to the sufficient condition
for stability (f), page 32.

The sufficient condition for instability (18)
bears an intereéting relation to known‘results in
ordinary (non-conducting) fluid dynamics.* As the
magnetic field Vanighes (18) becomes U," > 0, which
result was obtained by Tollmien as a'sufficient-
condition for instability of non—cdﬁdueting fluids.

If Uyp" is positive it follows by symmetry of U(y) that
U" (yg) = O for some critical Yo» SO that U(y) satisfies
Rayleigh's necessary condition for instability of any
laminar flow (not.necessarily‘symmetric) 6f inviscid
incompressible non—conducting fluids. Thus all of

Tollmien's unstable flows are seen to satisfy Rayleigh's

necessary condition (see figure 9)

* Discussed in chapmef 1.
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wall @ wall | wall (b) wall
s Uy) § Uly)
/‘\ /”‘
) \
, \\ ’,’ N
/ it TN
/ \\ N
/ \ \ *
’ \ \
Uo”>0 \\\ Ua"<0 ‘\
== . . A =3
S ' 24 Yy o b Vi

@) Us">0 2 point of inflexion must accut for symmetiy.,
by Us'< 0 boint of inflexion may or may not oceudt.
| ' Figure 9 :
But Rayleigh's condition may be violated by
some flows for which U < 0. ~Such flows are stable

in the absence of a magnetic field, but can always be

made unstable by superposing a magnetic field such that

(18) is satisfied. For example, inviscid incompressible

laminar flow with parabolic profile, well known to be
stable in the absence of a magnetic field, can be made

unstable in this way (see figure 10).
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7 )
i Ao "
> s—
Yo Uy Ao

o 25 > Y

prrofdc unstable.

! o Flgure 10
!
{

Working wifh equation (8) for f(y)
{((u -)* A"-IF‘?’ -krua=Alf=0 . @

subjeet to the boundary conditions (U - c)f 0 when

y =0and y = 2b, it'is easy to spot the real eigen—
solution (f; k, ¢) = (1; O, Q). This éolution is
marginaliy stable (definition, page 18) but is not
covered by the general theory of La?al et al. The
éolution (1; 0, O) is barely physical, since it implies
an unbounded fluid velocity in the x direcﬁion. This
is demonstrated by noting that v = U and div v = 0, so

that the x velocity is -xU' which is unbounded as x

Ma nethie Fldd brofile suttable -F:H‘ (Mctkmg f:a/ra.looltc. Ve,{ocdy |

increases. But no difficulty will arise provided the

neérby unstable solutions are properly physical.
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Instability will be demonstrated by finding a
complex solution (f; k, ¢) near the marginally stable
solution (1; O, O). The complex solution f will be
near 1 for most of the rangevo-f vy < 2b. But near
y = 0, £ must rapidly fall to zero, to satisfy the
boundary condition there. This will be facilitaﬁed
by the presence of two singularities of the perturbation
equation (8) in the complex y plane at those values of
vy for vhich U(y) = ¢ + A(y). For the marginally stable-
solution, ¢ = 0 and U, ; A, = 0 so that these-singularities
coincidedat y = 0, I k? is a fixed small posi;tive,
number and ¢ is fixed arbitrarily as a complex number
with small modulus and non-zero imagihary part, the
perturbation equation (8) is regular at y = 0. ~ A
solution f(y) vanishing at y = O mustvexist and so

already satisfies the boundary condition at y = O.

By symmetry the same solution can be started from the

'second wall and the two parts joined in the middle

(y =Db). Of course,, the derivative at the join is
unlikely to be cbntinuous, but by demanding f'(b-) =
f'(b+) = 0 at the join, f becomes an eigenfunction
and ¢ is fixed.

It is not possible to solve the perturbation
equation (8) foricompletely arbitrar& c, so)that some

initial information about ¢ is necessary. Rather than

- seek this information in a laboriously logical way,
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the present purpose seems best served by assuming the
result ¢ in advance, solving for f, then soiving for
¢ again to see if the initial "assumption" was valid.
This scheme will be shown to be self-consistent when-
ever condition (18) hoids.- Thus (18) is a sufficient
condition for instability.

So, the following properties are tentatively
ascribed to ¢ :- |

(1) cp ¢ k2, (i1) c; o k4,

(iii) cp > O, -~ (div) c; > O.

Integration of the perturbation equation ®) is
further divided into two regions. First in the region
0< y < €& near the wall, which is influenced by the
singularities, and then in the region €< y < b remote
from the singularities where f(y) is likely to be close
to the marginally'stable solubtion f = 1. It will prové
3/

convenient to choose € = k.

From (8), for all y,

; on . * v - —A*
J-/st _ -C :1‘ — 4+ (< f (CU (;.) A J ]C
U-c) > A Cu-c.) -At

When O0< y< & , the second term on the right

(19)

is small compared with the first, which will be

justified in retrospect. Therefore,
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{‘ {'z ) = consT.
| T Oe-A) (U-c+A)

consT.

y(uol“Ao/J + "JE' V"(UA”‘ Ao” ) -C

. ' . | 3
Yy (Uo'+ AL +'i'§/"(u°”1_'Ao") c [l + Oly )J ,

by Taylor expansion in the range O< y < & where &€ ®<«< C;
Integrating this expression exactly, and demanding
£(0) = O, the following are the important terms of

the solution £ :-

{19) - 1 -

Aoy [(v- u?—A.{)/(V B uo'C+A,’)] | :
- g (U AL/ U= A |
2T Cpe Ao/(uo”u'al - Ao”AoI)
(u°1 2_ A/ z.)z /&_3 [_(UQ,“'AolJ /(uo"'Aal)]

o | /lC Ao’ ‘
(Ao, Us" - A"Ue’) ﬂ?‘g[(uo '+A—°I)/(U°'{"Ad’)]

+

+

(A g [ A ]

ub'- ADI <

' 2 ' )
__( uo""Ao”) @n [ iz(uo,*'/*ol) - 1] } : (20)
Us'+ A, < ‘

As ¢ tends to zero f tends non-uniformly to 1, -
and the marginally stable solution is recovered.

Remembering Cj <& Cny and ci'>-0, c.> O so that
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the branch of the logarithmic functions is well defined,

let y—¢& . Then ‘
21({CCy Aol(ulz”u.o/" AO(IAOI)

o = 1 (Us' = A ™) * Aoy [Uo'+A)/ Ua-Ao1) ]
+ Olk*aglk) + i0(1<41&3 l<)

3 .
provided that €>> cp. The choice € = k/7fnakes &

small enough for the Taylor series éxpansion to hold
(€3« k4) and large enough 10 escape influence . of
the singularities (& >>k2).

It is already apparent that the negléct of
the integral in (19) is justified. In the region
0< J< &, &,EF} is bounded above by a constant
mdtiple of -log k2 and Jmif{ is bounded above by a
constant multiple of 1.  Returning to (19) with this

knowledge, and with the value of the constant of integration
‘F,(':/} - -2 Au’C . 1 .
Lo (U A L) (Ua'-Ao") ] U-c)2-A >
+ _Olk*e (e*+21ecy) (- Ly lc*+ 1)
U-0)>- A™ )
- Ok) . Olk®) + 1 Ok ®)
= U-e) =A™ U-))*-A*

so that the second term is indeed negligible.

3

In the region & <L y<£ b all terms on the
right side of (19) can be ignored and the perturbation
equation (8) has the simpler solution |

f(y) = const + 0(k2) + i0(k#4),
provided the constant is chosen as 0(1) N i0(k2).

By joining the solutions at y =€, and neglecting

real terms of order k2 and imaginary terms of order k4
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a solution valid for O0< y < b is obtained .
'FQ{) = l + .’ 2illcr A'Ol(uonuo/ A—o"/‘\o’)
ual‘z n):./e‘rg [,(uo I+A_°i)/at°{_A°,)] )

The function f derived in the region O< y< &

and given by (20) is therefore valid for all'y in the
range O < y <« b, to a sufficient approximation. 1if,
further, £'(b) = O exactly and £(y) = £(2b - y) in the
range b <« y £ 2b, f becomes an eigenfunction of the
perturbation equation which can now be solved for c.

From (8),

[(u-er*- a9 ]e = k[, U-0™>A9) fdy
sl = K (f e [°) -o=r) fdy.

Since &&i{f is bounded above by a constant
multiple of -log kz and'j;éy?'by a constant multiple
of 1 in the region 0K y<k¢, the first intégral on
‘the right béhaves at worst like _

e (e*+ 2iec)(~dagk*+1) = Ok + 2 O(K®) |
while the second integral is of order k2 + ik%.
Thus the integral from O to &€ may be neglected, and

the follbwing solution obtained for ¢ :-

C+q = /ZBQC(W:';ACI)/&O 'Avl)-]szb(u:._Al.) dy + O(k‘l-)

L AWM AAY) 2, ok
= @ou n.) 1%@%‘*&’)/&0/-14.0’)] v

It remains to check that this solution for ¢

Ci

satisfies the initial assumptions (i) - (iv), page T72.
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Assumptions (i) - (iii) are obviously satisfied.
Also c; > 0 if Udqu':> Ao“ o" that is if condition
(18) holds. Thus the foregoing scheme is self-
consistent whenever |
Uo” > (Al Ue") A" (18)
so that (18) is a sufficient condition for instability.
If it hadlinitially been assumed that ¢, < 0,
then the above expression for Cy would appear with |

opposite sign, so that (18) would remain wnaltered.



CHAPTER 4

VACUUM BOUNDARIES

Boundary conditions - conditions for stability
- an example - arbitrary density profile.

1. Boundary conditions

Still studying laminar flows between flat walls,
it is possible for the magnetofluid to be kept off the
walls by a magnetic field - an effect not éﬁ all per-
missible for non-conducting flows.

A possible equilibrium (figure 13) is a magneto-
fluid flow (still inviscid, incompressible and perfectly
conducting) given by |

s = Uk (~b<y<b)
parallel to a magnetic field given by

4 = Hopx (-b<y<b)

»and contained by a vacuunm magnetic field

A, = Hops (B-b<lyl< B)

Equilibrium demands that Hy is harmonic and has
the same value at both. interfgces. The magnetofluid

could flow nearer to one wall than the other.



~-78~-

y=8

Vacuum — 1Y) ;
; . /' 7 ./ - 7 7 7 / ‘d = b
R e N A S

vacuumwa —_— Hyys
? y=-8 §
| .;'
|
’ Figure 13

—i

In the magnetofluld region, the perturbed équilibrium |
is described by the same equations as before. Only the

boundary conditions change. The new boundary conditions

~are derived in this section.

When the equilibrium is perturbed, the vacuum
. ' CA O
field is easily calculated. It becomes ,£, = Hdp X + oy

where .
/gau'f{/é«v: CL&U"/’{LV.= O .

)

Each component of Ev is harmonic, so that

the y-component h;; can be written

»fwgm = « sinhk(8-y) ¢ tkix-et)
which satisfies the boundary condition b,y = O
at the wall y = B.’ Physically, this occurs when the
wallé are perfectly conducting. Previously, wheﬁ the
magnetofluid touched the walls, it was not necessafy

to make any assumptidns about the electrical properties
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of the walls. As before, only two dimensional
perturbations are studied (m = 0). Allowing m > d
does not change the boundary conaitions, and only
trivially alters the perturbation equations (replacing
k2 by k2 + m?). |
At the fluid-vacuum interfaces pressure balance
must be maintained. Thus for the equilibrium or the
perturbed flow .
Pl = L H* | (25)
at the interfaces. In particular Hy > H for equilibrium.
Linearising, |
PU) */MH«AUJ __/%H J\v(“
using the notation of page 24 for the perturbed quantities.
In terms of complex amplltudes (i.e., coefficients
of exp( 1k(x -ct) ) the pressure balance condition
becomes |
1kp - uHA" = —/Lnwaw/
A second boundary condition is required to
eliminafe the constant K. In both regions the

magnetlc field is paralle] to the perturbed boundary

s /Q‘ ) /g\u)
.. VY =

He 'S
) _/eﬂ :-/—B—"-
H
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The new magnetofluid boundary condition is

therefore

_— / 29 |
ikp o HA' = — Mellehs e

at each interface, and can‘be rewritten in terms of
any éne magnefofluid’amplitude according to the
perturbation equation being studied.
For example, equation (8) for f(y)
(((u-c)"-/\") -F»')"— k= (U~ "*A“)F = O (8)
must now be solved subject to the boundary conditions
(U-)*A) £ - nr f a0 (Y=b) } (26)
@-0=A")F' +aaf =0 (y=-b)

where

.Jl-LK) = /u°u”

ﬁM¢ddB b) -

2. Conditions for stability

The necessary cdnditiéns for instability
(a) - (c¢), page 29, stiil hold. Having assumed that
a‘complex eigenvalue ¢ exists (ci'# 0), any conseguence
is a necessary condition for instability. Proceeding
as for rigid boundaries, when cy # O f is regular in
the interval (-b, b). From equation (8) for f,

using the new boundary conditions (26),
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IR +‘<"l}cl°’)dy
"[(Ql-c) -AD) £ X :(-
= _n (lffel* Fl{eb]) @

where 1
i<

- 4
M= Y i)

Taking real and imaginary parts,

[7U-c) (F 1+ 1M dy = O
and

‘ f_f(w-c,)‘- A"—c,-»,’-)(h‘“l’nr k*fI™)dy > O.

Since the first integral vanishes, U - c,

must change sign in (-b, b). Thus,
. op=lly) somewhere (a)
placing upper and lower limits on cy and revealing
that unstable disturbances must travel at the flow speed
somewhere. These remarks are identical to those made
for rigid boundaries on page 29.
Since the second integral is positive (U - cp)2
- ¢ij2 - A2 must be positive for some values of y. It
is also negative for other values of y (since U - cp
has a gzero) and hence is ,ero somewhere. Thus
ci? = (U‘- cp)? - A2 somewhere. (b))
placing an upper bound on c¢iZ. .‘ '
In particular if (b) is to be attained
AW < Umex = Umin) ™ , )

for some values of y.



Conditions (d) and (e) do not hold under the
new boundary conditions. The physical interpretation
of (d) in terms of momentum conservation is lost
because the magnetofluid now interacts with the vacuum
field.

Condition (f) derived on page 32, from Frieman
and Rotenberg's general sufficient condition for stability.
is strengthened by the introduction of f€ee boundaries.

Equation (27) is formally a quadratic equation in ¢

- with discriminant

(15 ulrskefdy ] )y
18 @A e ke dy - Adf ]

¢ is real if and only if the discriminant
is positive. Real c,and therefore stability,is assured
if

f(A" Wi IFI")dy >-_ll(h‘3a,lL [f-ul*)

In the case of rigid boundarles, the right hand side
vanishes. In either case, stability always occurs if

R2(y) > By) (1)

for all y.

The stability criterion for long waves (k2 = 0)

is slightly altered by the new boundary conditions, which
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make the system more stable. From equation (8)

for f(y), when x° = 0

{
fin = f:%{-—-‘i- g + -

Oy = XL (R )
From the boundary conditions (26),

XLF;'=-1LF5
where JL. = /L(AH.,Z/P.\ l/(B-b).
The long wave modes are unstable if and only if G(c¢)
(“’ﬂ, X“ N has a complex zero (ci # O). G(e) is
given by’ |

Ge) = fu - “Xh'ﬂ‘
= X- L‘f /(f )

The case of rlgld boundaries 1s recovered by letting
N —~on that is by letting the vacuum field become
infinitely large. When SLis finite, U'(y) > O and

A is constant, zeros of G(c) inside the countour of

- figure 7, (page 60) occur less readily because the

plot of G(ec), figure 8, is displaced %o the left by
the amount f%; and is 1essilike1y to encircle the
origin.

| The sufficient condition for Stability given
for rigid boundéries (page 63) can now be restated for
free boundaries :- Profiles for waich U'(y) > O and

A = constant are unstable whenever
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= dy 2

with same definitions and restrictions as before.

3. An example

The case of trivial profiles (4, U,'HV all
constant ) was ‘studied by Haas and Taylor* (1963)
and shown to be stable. It is against intuition that

a real flow should be stable for all velocities. The

magnetofluid stream resembles a jet and instability

might be conjectured for sufficiently high velocity.
But the system here is so idealised gebmefrically that
no physical frame of reference exists, and in fact all

veloéities U are indistinguishable in the stability

‘problem. ' Haas and Taylor showed that the flow is made

unstable, for velocities greater than a certain critical.

velocity, by a small dent in the rigid walls. | The

dent has the effect of introducing a frame of reference.
.In this section the ideal (stable) problem is

repeated and it is shown that a frame of reference is :

equally well provided by the introduction of a " low

Their work is unpublished, but this sectlon contains
all the relevant details.
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density magnetofluid into one of the vacuum regions.
Also, it is already apparent from the last section that
a slight inhomogeneity in the velocity U(y) also causes
instability provided condition (28) is satisfied.

For the ideal problem with two vacuum regions

equation (8) for f£(y) becomes

f' - k2f = 0 ~ (or U= c =t4)
which has general solution « smhlky + Fceakktd.
The boundary conditions (26) then yield four. real

eigenvalues given by

X =k @9)
X = 1,

Whete | o By tomhkb
L, = TP TS

s AbTeathigen) cothkb
Since all six eigenvalues are real, the

.system is stable, and this is Haas and Taylor's result.

It is not to be expected that small changes
in'the system might cause inétabilit& beqause none of
the four modes represented by X =, X =JL, is
marginally stable (definition, page 18); This is
shown from equation (27) |

L XUt Ay = L )
which is fprmally a quadratic equation for ¢ with

discriminant
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A = (12U krddy] - LOOF1 5 LFI) dy
N C WA IR dy - A “elfu ]

For example, when f==xsd4kj<y, which corresponds to

the real mode X = JL,
A e« A*+ L, # O.

Thus the modes are not marginally sfable, and no complex
normal modes exist nearby. It will be shown, however,
that linear instability may be causeé by 'a slight change
in the equilibrium.

If a megnetofluid with density P"and velocity
U7 is introduced into one of the vacuum regions equation
(8) for £f(y) has to be solved in the two regions —b~<.y'< b
and b < y< B.

In the outer magnetofluid region b < y < B,

f" - X2f = 0 (or U1 - c =%43)

and from the boundary'condition (Ul - ¢) f(B) = O the
solutian is £ = ¥Yaimhk(y - B), where ¥ is a constant.

In the inner magnetofluid region -b < y < b

£1 - k2f = 0  (rU-c —+4)

=MSMLqu+Fawkkg |

where « and ‘:', are constants. The three constants o [5
axm.X'cen be eliminated by means of three boundary
conditions. . At the magnetofluid interface where y = b
the pressure (PXf') is continuous and the displacement

(f) is continuous. At the vacuum interface where y = ~b
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there is pressure balance as described by (26). Thus,

Xa ceohkb +Xpamhkb =X, X‘ﬁi cahk@-b)=0 )
(20)

& Amhkb + puchkb + Yaomhk@B-b6) =0O
X-) & = tanhlbE-2.) 4 =0
where Xy = (U - ¢)2 - 4%,

The eliminant of these equations is

I
G

X coahleh  Xsimh kb —'—%'x,
 mhkb ok kb tonh k(B-b)
X~db,  -tamhkb(X-4N,) O

When fh = 0 the problem with two vacuum regions

is recovered and thé eliminant becomes
2 taud kB ) mh kb, (X - )X -L1,) = O

which yields the.four real eigenvalues of the ideal

© problen.

The effect of increasing‘P‘ from zero on the X =L,

mode may be deduced by differentiating the full eliminant

(fh £ 0) with respect to P « Assuming that the magnetic
field Hy does not change with P, that is that the
magnetofluid is introduced with z€ro pressure, the result
is, _ |

oX (Ut
Plpma 7 2mH

Changes in X, and therefore in c, are real unless Ui =

for the stable mode. That is,
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(U - 1)2 = A° & "
in which case all derivatives of X with respect-to f,
vanish and the mode persists unchanged for all |
values of P,.

But completely néw modes arise and the
system will be shown to possess a linear instability.
It is necessary to return to equation (30) where X and
Xi are now operators (X = (U + 1%,{;% Y2 —~ A2) and
are time dependent.* Solving equation (30) for «(t)..

[2()(- Doe-1,) (aa ey ((x._n. ).{LL +(x—_n.u)ﬂ.)] « (€] =

Linear instabilities occur when the fourth
order equation in g% has a double root. Rather than study
this problem, extra symmetry is'caused by introducing
‘a magnetofluid of density p‘ in both vacuum regions.
Then equations. (30) apply with ’3 O and the equation
for o) becomes

o, 2ik(p,U +pAw) D k(iR -p U ,OA‘u‘JJ )
[at‘ * P.JL. +/>A1 | 3t—+ Pl ‘1_10,47- Xt)=0

which predicts a linear instability when
1 S
W-u)?* = (1 + 54 J ()

Thus, when P' 1s small, high relative wvelocities

* <x, ) X’ have Jost their exponential time dependence.
This situation is dealt with fully in Chapter 5.
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U - U; lead to linear instability for some value of L (k).

Similar modes arise fronm equations (30) with o = O.

4. Arbitrary density profile

The effect of the magnetic field in keeping the
magnetofluid clear of the rigid walls is a special case
of the more general effect that magnetic fields can
support an equilibrium - pressure gradient. The pressure
gra&iént may well be associated with'a dénsity gradient,
especially in the case of a conducting gas.

Assuming that ny is non constant, but that
the fluid is incompressible (—49 = 0) the equation (8)
for f(y) can be rewritten in the form

(px£') = ¥R pXE = O (33)
Clearly, reﬁlacing PX by X equations (8) and (33) are
formally identical. Assuning p(y) > O, the magnetofluid

makes contach with the rigid walls, and the o1d voundary

conditions (page 27) apply.

The necessary conditions (a), (b) and (c¢), page

29, for instability still hold without alteratlon since

L plaa=w)f 17+ k) dy = o

The necessary conditions (d) and (e) for instability

hold if X is understood to mean X. Thus, from (d)

/ 25 .
\z»’l ilDXé)O/ CDX) ! } as a zero
4@0O™ e
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and from (e) | 3
2 e QPX(P)()”-((JX)’Z
Kk +&1 '490)(),_ ? <O

for some values of y.
Condition (f) also holds unchanged because the

discriminant ZX is ensured'positive whenever

f:h P CA=u=)(f' *+ k1Y) dy > ©
and hence whenever A%(y) > UZ(y) for all Ve

The conditions (12) on the existence of real
eigenvalues become , |

PoaXs = (a¥o) = (paXa)"= O 5 c=Uo
‘that is, ' : . |

Us-c = Ae =0 |

pe /(U AL + W U= A A = O

As the magnétic field wvanishes (4 —0) the second
condition reduces to F%‘Uof + U," .= 0 in vhich the
variable density has caused a'modification. to Rayleigh's
result UY = 0. The modification is trivial since p )
would normélly tend to a constant value as A—>0, and
therefore 'P/(y) = 0.

The conclusion is that arbitrary continuous
density profiles are simﬁle to deal with and make no
great modification to the stability problem. In the
remaining sections 6nly discontinuqus density profiles

with vacuum boundaries are considered.
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CHAPTER 5

NON EXPONENTIAL TIME VARIATION

Inhomogeneous perturbéﬁion equations - rigid
magnetofluid boundaries - free magnetofluid boundaries

1. Inhomogeneous perturbation equations:

After derivation of the linearised equatiohs
(5), page 25, the assumption of exponential time dependence
was made. It is easy to avoid this assupmption and study
at least the asymptotic time depehdence of non exponential
modes. A slightly more generai definition of stability
is required. An initial perturbation is specified at
% = 0.~ Instabiiity ig defined to occur whenever the
subsequent perturbation is uhbounded aS't—foo.

When the initial values are specified the equations

(5) can be laplace transformed.

t t=0

(Us £) V- Uy = AV ap-Alay + & 7214 |
| : (35)
(Uegap = Ave + 7 0y,

where

Vb(?)kﬂ“) = f;"’ Oy (H,t:; l<,m_)C{_‘l°edt
ap g, kom) = [ @, (4,5 kymle Poele .
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and
2 D _(kreym®
AN G
The existence of the integrals is assured when &({P}>O
Eliminating either Vp drclp, an inhomogeneous
second order linear differential equation is obtained.
For convenience both Vp and a, are replaced by fp,

the laplace transform of the function fy(y, t; k, m)

defined by géf = vy. It follows that

X _1 -
U+ b fe -Holees = Ve
When U + p/ik # 0, fp'can safely be used instead of
Vps, but when U + p/ik = 0, it will be necessary %0
return to Vp before making any stability decisions.

The equation for fp.is
KE) ~KXfe = dleucbice £ IV v2uf)] o G

where X = (U + p/ik)? = a2, .

If p/ik is replaced by -c, the homogenéous
equation corresponding to (36) is just equation (8)
for the complex amplitude f, obtained on the assumption
of exponential time dependence. The laplace ftransform
technique is therefore conmplete in thaf exponential time
modes arise from the hompgeneous equation, and all other

modes from the inhomogeneous equation. . The inhomogeneous
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equation can be golved, for given boundary conditions,
in terms of the relevant Green's Function, which exists
whenever the homogeneous equation has no eigensolution.
(Of course, if the homogeneous equation does have an
eigensolution the corresponding exponential mode can
be examined, but to solve the non-homogeneous equation then
requires more generél treatment. )
If eqﬁation (36) is written in the form
L{e) = p
where 3 is a function of p and y, then solutions fp(y)
can be expressed in-terms of the Green's Function G(y,).
This arises from the Green's Identify for any two solutibns
U), v(*]) of the ‘self adjoint equation L(f) = O,
f:’(u Levy = v L(u)')c("l =[2([uv’- vu’ztf
Replacing v(M) by G(y, " ) and u(1) by fp(ﬂ) and choosing
G to satisfy the conditions '
L(6) = dg-"1)
G(1) continuous when ¥ =y
G'(M) discontinuity 1/X(y) when Y] = y,.

it follows that fp is given by

folp = f;‘ Gly,) pedn + K & - G %fﬁ]:

The boundary conditions for G are chosen such

as to make fp(y) satisfy its boundary conditions. If



a boundary condition of f_is of the general form

afp + pfe =¥

then the correct condition on G is
, )
«G +pG =0

For fixed p, the singwlarities of the integrand

b

as W varies can be deduced from the differential equation.
These cause,similar sl ngularities of fp, as p varies

with y fixed.  Knowledge of the singuwlarities of fp in
the complex plane of p (figure 14) allows immediate

inversion of the laplace transform to find the asymptotic

time dependence of vy(y, t, k, m).

T | p-blome

x discrete e.tgenvalues.
bt Continuous e;genvalues.

Singularities of fp occur where b =1ik(UzA), hence genetating
| a line as y varies . Discrete singulatities, not y -debendent, occur
. at values of p for which the komogmws equq‘HO'v\' has o sclutten.

Figure 14

Although vy is the fourier transform of the physical
perturbation vyy’(x, ¥, 2, t), the stability problem
ends at this point, sinceﬂiﬁ@eﬁ*ﬁfis itself a possible

physical disturbance. The flow is unstable whenever
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vy(t) is unbounded as t o0 for any single initially
prescribed perturbation. ‘

If is.interesting'to note thﬁt the non-exponential
modes include localised disturbances, since the laplace
transform is inverted for a fixed value of y. The
exponential time modes had the same time variation in
allﬁlayers of the fluid, and so exhibited growth (or
decay) of the initial perturbation in all parts of the
flow. A further distinection is that the exponential
modes are discrete while the non exponential modes are
continuous., The continuwous spectrum of eigenvalues is
absent for viscous fluids (Lin (1961) ).

In the remaining sections 6f this chapter,
asymptotic time dependences are obtained for various

systems.

2. Rigid magnetofluid boundaries

This section shows, in the case of laminar
magnetofluid flows in contact With,the walls, that the
non exponential modes are usually stable. | The physical
boundary condition is that the transverse velocity

perturbation v, (x, ¥y, z, %) must vanish at the walls.

y 0 -
. 1)) . . ' . . d - wl .
Since fy!" is defined by the equation 'a}¥ = Vy it

follows that fp(y, k, m) must satisfy the condition




(U +p/l.l<.){'b = —{_'E {ylt-.o =0

when y = y; and y = Y,- Equation (36) for fp has to
be solved subject to these boundary conditions.

The first step is to construct the Green's
function for the problem. Suppose YW (y), Yly) are
linearly independent solutiéns of the homogeneous form
of (36) such that W, satisfies the boundary condition
at ¥y = ¥y and Y, satisfies the condition at y = Yo Such
functions exist, and are linearly independent whenever
no eigenéolution of the homogenequs problem exists. The

defining eqations of the Green's function are satisfied
by o o :

G(y,"1) = V<) Voly>)

where y. means the lesser of v, and 'y, the greater.

As shown on page 23,
o = [ Compent - e - S
= ,(;/yl wl(yé) VL(H>)> P@)d VI . |

In this case the boundary term vanishes. All the
functions in the iﬁﬁegrand depend on p although the .
notation does not displa& this. Information about the
initial value of the perturbation is contained in (3.

( p appears on the fight hand side of egquation (36),

page92, but its precise form is unimportant).



At first, to carry out the integration, let p
be fixed with the value p,. Singwlarities in the Y 's
occur only at singularities of the differentialﬁequation,
that is at points ’L,whereJX(ﬂo)‘= 0 and the zero is of
order n>» 1. As before, X is defined by

= U+ blk)* - A%,

Keeping y fixed, the worst\possible-behaviour of the
integrand is arranged by choosing F(ﬂ}::dhj-ﬂ) s0 that

fo = Vi Valys)
where y_ now means the lesser of y and ¥, , and y, is
the greater. The delta function initial perturbation
does not imply that‘any physical quantities are infinite
or even localised at the point y =¥ . A smooth
function with a finite discontinuity inffm' would suffice.

The behaviour of the solutions'y'héar 15 has
already been found.v- In the case n = 1 where X(¥,) = O
but X'(%,) # O, the solutions for f;, f, on page 39 show
that the highest possible singularity of the Y 's is

108(M-Y). Choosing y =Y, to obtain the highest

order singuwlarity in f it follows that

fo ~ [Log (b c.)J

for values of p near P,-

Inverting the laplace transform

fu€) ~logt/t

and this is the asymptotic time dependence. The
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system is therefore stable.

In the case where n > 2 the behaviour of the W/ 's
is at worst ~ | /(M-1.)""  so that |

fp ~ V/(p-p2™*

Y Ve~ (Ul) + blik) Kb-b)* TR
The nature of the singwlarity depends on the cause of
the zero of X' ("la)‘.
For, (UMG)+ b/ik)l'Al»f- o
SLoubd+blik = tA |

XM = 2 U@+ plik)UUd £ A'U)) .
The zero in X' can be due to a zero of U + b/ik (and
therefore to a zero in A—a null point in the magnetic
field) or to a zero of U':t A'. 1In the former case

Vo~ 1 [(p-pe)*3

SV &) ~ (g Pt (n=2) ... po=-tkU")
+ n-2) (h>2)

implying stability when n = 2 but instability when n > 2,
while in the latter case
Ve ~ A/ (prpe) *7?
SoVyE) A~ 73
implying ins’cability for all n> 2. s
The eonclusion for the present system is that
the non exponential modes are usually stablé, But

flow profiles may be unstable if they satisfy certain .
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restrictions, the simplest of which is
U (y) £t &(y) =0 |
for any value of'&. The instability grows fastest

near the point where the restricfion holds.

3. Free magnetofluid boundaries

When the magnetofluid is kept off the walls.by
a -vacuum magnetic field new non-exponential modes arise
but normaliy no difference is made tothe stability
decision. The non-exponential modes are usually stable.
The boﬁndar& conditions were derived for the

case of exponential time dependence and appear on page 80

Replacing -c by 1—"2 F)at > | .
, .
((U+ L 2)5 A, £ JUf= O

-where the minus sign nolds at the magnetofluid-vacuunm

interface y = b and the plus sign at the interface y = -b.
As before, the walls are situated at y =t B.

By laplace transform the boundary conditions on
f_ are |
D

X]Cb/ t N fp = ;L‘;(ZLHP/ik +'ill'<’aat){y L::-o _ (37)
whete X =U+ plik)*-A* 1 D) = /‘MPHV'L@ML\I:@-—I::): .

‘The Green's function G(y," ) is constructed as

in the previous section, but the functions VY ,,V, satisfy
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the new boundary conditions (in homogeneous form).

The solution for fp is
’ | |
fon = [ Wga v puNdn + 268 (20 blisc +F R, Vi)

A

i (2Utb + blik + LR ) fyeb], ., Uy).

Since the behaviour of the inftegral has been
discussed (last section) it remains only to examine the
boundary terms. Singuvlarities arise dnly in the
functions Y, , W, and therefore only at singularities
of the differential equation. - The resulting time
dependence is similar to that arising from the integral,
but there is no need to introduce delta function per-
turbations.  For example,'choosing ¥y =b, X(b) = O,

X' (b) #0 (n=1) |

fo ~ [hog (p-pa)]”

%ﬂt)~ i%at?/t'
and the system is stable.

When n> 1 with A(b) = O
Vy(t) ‘_v{‘zl:’ot (n=2) Voo po = -2k U(L)
L2 (n>2)
implying stability when n = 2 and instability when n > 2,

but with U'(b) X A'(b) =0

An-3%
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implying instability for all n>=2.

The growth of instability is normally independent
of the initial perturbation but (in the simplest case)
depends on U'Xx A' having a ero at the magnetofluid-
vacuun interface. The instability is localised in the
region of the interface.

It appears that trivial flow profiles ( U(y),
H(y), By(y) all constént ) may be unstable, since U' L A!
= 0 everywhere. But further examination is necessary
because X" = 0, and shows complete stability. The
inhomogeneous perturbation equation reduces to

X~k ) = gk (U blik + 2 2) V¥ oo
subject to boundary conditions

XA Tt = %k (2u+ blik+ &) fyle=
when y =% b. |

The Green's function is G(y,‘1 ) = Yy ) VoY)

where

Y, = 8 Al ky + prashicy
V) = &y Ak ey lektd

and the & 's and {3's are chosen to satisfy the boundary

conditions. The solution fp is given by

Fij) = )(q,)f ’\(’(H--) 'V/;.('d>)flm)cl n

2U + Phk+ 8
' 1;ﬂ:kj+ [‘C"d’n‘b(L)w(‘i)*{aﬁw'\l’.“»)’\/)..(y)]
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No singularities arise from the \Y's (because the

differential equation now has no singularities) so

that singularities of‘fp arise only from X(p)
| ‘Flo ~ ’/(P"bo) where U+ Ppofik = XN+ Q.

for values of p near pO;TTkus, V@(t} f»éZP°t:
indicating stability whenever A # O.

If A = 0,

7CP ~ ‘/(PT'}?P)L | where Uf [q/ik = 0O
S Ve v 1 (phe) |
Vyt) ~ 2 pet

again indicating stability.
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APPENDTIZX

CLASSIFICATION  OF PROFILES A(y), U(y)

STABLE UNSTABLE
L —_— , -
A2(y) > Ue(y) p.32 .
U'(y)> 0 4L = const.
A(y)> U= Umn D-29 | and M(A)> O p.63
A= 0 - U(y) and A(y) symmetric,
U Ur—AN A0 0 + ]
o (y) % 0 p.3 A > 8. Wa1£?67
UNSTAGLE ' -
A= 0, U'(y)>0 o U (y)t 4'(y) has a zero
R>0  p.11 ~ .99

The above table summarises the available
results classifying laminar flows according to
their velocity and mégnetic profiles. Classification

is far from complete.




~104—

REFEREDNCES

BERNSTEIN, FRIEMAN, KRUSKAT and KULSRUD, Proc. Roy. Soc.
(London) 4244, 17 (1958).

CASE, Phys. Fluids 3, [4.3 (1960).
DRAZIN, J. Fl. Mech. 8, 130 (1960).

_ FRIEUAN and ROTENBERG, Revs. Mod. Phys. 32, 898 (1960).

HUNT, J. F1. Meoh. 21, 577 (1965).

LAVAL, PELLAT, COISAFTIS and TRCCHERIS, Nuclear Fusion 4,

25 (1964).
1IN, Quart. App, Math. 3, 218 (1945) S
TIN, "Theory of Hydrodynamic Stability"»C;U.P. (1955).
LIN, J. Fl. Mech. 10, 430 (1961). |
LOW, Phys. Fl. 4, 842 (1961).
MICHAEL, Proc. Comb. Phil. Soc. 49, 166 (1953).
PRANDTL, Phys. Z. 23, 19.(1922).

RAYLEIGH, Scientific Papers, C. J. Clay & Sons,
Cambridge, Vol. I, 474 (1880).

ROSENBLUTH and SIMON, Phys. Fl. 7,557 (1964).

 TOLLMIEN, Nachr. Ges. Wiss. Gottingen,'Math. - Phys. Kl.,

Fachgruppen I, 79 (1935)



-105-

ACKNOWLEDGMEDNTS

I am grateful to Professor J. C. Gumm for
facilities and support received during this work,
and to Dr. E. W. Laing for frequent criticism,
direction and encoﬁragement.

Financial support came frém the Science

| Research Council.




