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I N T R O P U C T I O N

This thesis reviews work done on stability of 
laminar flows of non-conducting fluids and makes 
extensions where possible to perfectly conducting 
fluids in the presence of a magnetic field parallel 
to the flow.

Pissipative effects are not studied, so that 
the fluids have no viscosity or electrical resistance. 
The fluids are incompressible.

The object is to classify the velocity and 
magnetic profile's of the laminar flows into stable 
and unstable groups. In spite of the simplicity 
of the systems studied, simple rules are difficult 
to find. Those available are summarised in the 
appendix.

The remaining results have the disadvantage 
that they involve the frequencies and amplitudes of 
the possible disturbances.



CHAPTER 1

REVIEW

1. The stability problem

The system to be studied is a laminar flow of an 
incompressible inviscid fluid with density jO pressure p, 
and velocity field ] f  given by 

V  = LtCy)x
between flat plates located at y = y^ and y = y2 . (See 
figure 1)

\— X

Piv^ure 1

The flow is completely described by its velocity 
profile U(y), and is always a proper equilibrium because the 
fluid equations

dw" V  - O
are satisfied for arbitrary U(y), provided there is no 
equilibrium pressure gradient. An equilibrium pressure ' 
gradient could occur only in association with a temperature 
gradient, but this effect will be ignored. Any instabilities
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detected are solely due to the velocity gradient.
Small perturbations v ‘̂ (̂x,y , z,t ), p̂ *̂ (x,y, z,t ) 

are superposed on the equilibrium, and their time dependence 
deduced from the fluid equations. Since the perturbations 
are small they are linearly.related, and any/One perturbed 
quantity gives full information. Eliminating all quantities 
except Vy^‘Hx,y,z ,t ) in the fluid equations,

5x = O  . Ci) *
Since the coefficients are independent of x and z it is 
useful to Fourier transform.

■■■ - IA"îv“' = o üi)
Assuming exponential time dependence,

v "  - ( k ^ i - w " - i - ) 1/ =  O  (t'lO
The stability problem can now be formulated as 

an eigenvalue problem. The physical boundary conditions 
are that v^^'Hx,y,z,t ) vanishes when y = yq and y = y2 • It 
follows that the correct boundary conditions on v(y) are

v(yq) = v(y2 ) = 0 
If c / U(yq) equation (iii) is regular at y = yq and there 
exists a solution v(y,c) such that v(y^) = 0 thus satisfying

* Equations in the Review Chapter only are numbered by small 
Roman numerals (i), (ii), (iii)....
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one boundary condition. If there exists a value of c = c(k,m) 
such that v(y^ ) = 0 and v(y) is regular in the real interval 
(yq, y^) then c is an eigenvalue with corresponding eigen­
function v(y ).

If c is complex (c = c^ + ic^) where kc. > 0 then 
the solution V(y )exp(-ikct ) Increases unboundedly with time 
and the equilibrium is unstable. If no such c exists then 
the flow is stable, at least to modes of oscillation with 
exponential time dependence. (Non exponential time dependence 
is considered on page gi)

No difference is made to the stability problem if 
k^ + m^ is replaced by k^ and only two dimensional perturbations 
like v(y)exp(ik (x-ct) ) considered. It is not necessary in 
general to consider the sign of Cq, because the existence of 
an eigenfunction v(y,c ) implies the existence of the eigen­
function v*(y,c*).

The stability problem, then, is to find eigen­
values c (ci / 0) of the equation

V "  = o
subject to the boundary conditions v(yq) = ^(y^) = 0. This 
problem was examined by Rayleigh (1880-),

2. Rayleigh's Inflexion Condition

It is clear, that the most useful aim is to find 
conditions on U(y) necessary or sufficient for stability.
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Conditions i n v o l v i n g k  or c are less illuminating.
Rayleigh (1880) discovered the necessary condition for in­
stability that U(y) must have a point of inflexion. That 
is, for some y^ in the real interval (y%, Y2 ), U"(ÿo) =0.

Rayleigh's condition is easily proved from (iv)
L(v) - O  

.1 v^L(y) - V  =  O

By inspection of the integrand U" must change sign if the 
integral is to vanish. Assuming U(y) is a regular function 
of y, it follows that U" must have a zero, which confirms 
that Rayleigh's condition is necessary for instability. It 
is difficult to find any further conditions to match Rayleigh's 

; condition in simplicity and power. No complete division 
? of profiles U(y) into stable and unstable classes exists.

Rayleigh's condition can be derived in such a way as 
to make its physical meaning clearer.* i ^he fluid equation

P ^
can be rewritten to display momentum flux g-g at a point in 
space,

+ otlV P  ^  0Ob —

where the pressure tensor P d.s-given by

 ̂This derivation is repeated in detail on page 33 in the case of 
a magnetofluid in the presence of a magnetic field.
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Pij = H q  1-pViV/j
In the present case
u  = Ucy) +

where is periodic in x, z and t, so that the mean x- 
momentum density growth in a plane of fixed y is

where the mean value is with respect to x and z 

where W[yJ = v * v '  — v* ' v.

By momentum conservation, the total x-momentum arriving 
between the walls is zero

o  = C
As before, U" must have a zero if the integral is to vanish

3. Viscous Flows

The present work is entirely on inviscid fluids.
In this section viscous flows are considered only to show the 
fundamental changes caused by the introduction of viscosity. 
These are such as to forbid tentative use of inviscid results 
in the presence of even vanishingly small viscosity.

A paradox in the relationship between viscous and 
inviscid laminar flows arose with Rayleigh's inflexion
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condition. Inviscid laminar flows v;ith parabolic velocity 
profile (Plane Poiseuille flow) are stable because they have 
no point of inflexion. The seemingly plausible physical 
argument that viscous forces will tend to stabilise by damping 
out disturbances indicates that viscous plane Poiseuille flows ■ 
should be stable also. But Reynolds had shov;n by theory and 
experiment that they are not. Although this paradox was 
explained by Prandtl (1922) who showed that the viscous forces 
near the walls caused instability,much more work had to be 
done subsequently on the behaviour of viscous flows in the 
limit of vanishing viscosity.

The difficulty arises from the change in order of 
the governing perturbation equations when viscosity vanishes.
The viscous perturbation equation for v(y) is the fourth order 
Orr-Sommerfeld equation

-  i k R l U - c ) V ^ v  ~ k /:>

where the Reynolds number R tends to infinity as the coefficient 
of viscosity tends to zero. As. R , Rayleigh's second
order equation (iv) is recovered. The .asymptotic solutions 
of (v) for large R do not necessarily tend to solutions of (iv). 
Nor are all possible solutions of (iv) expressible as the limit 
of a solution of (v) as R — $>-00 .

Lin (1955) reviewed work done on asymptotic 
solutions of the Orr - Sommerfeld equation. In general, 
an asymptotic solution expanded about a singularity in the
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cornplex plane of y does not have the same form in all sectors 
of the plane. (Stoke’s phenomenon). When Cq > 0, the 

I asymptotic solutions of (v) do tend to solutions of (iv) in 
I the whole real line (y^, y^ ), hut when Cq < 0 they do not.

a uniform mathematical theory, therefore, solutions of
(iv) with Cq < -0, and valid on (y^, yg) are rejected. It
then ceases to he true that solutions of (iv) occur in complex 
conjugate pairs, hut results obtained for real c in the limit 
ci —^ 0 become independent of the direction of the limit (cq >  0 
or Cq < 0), because the branch of the solutions is properly 
defined.

This reinterprétâtion of the inviscid solutions never 
leads to a changed decision on stability or instability of the 
inviscid flows, but adequately clarifies the relationship with 
viscous flows. In the present work finite viscosity (and 
conductivity) are never considered so that the ideal equations 
can be used naively, without fear of contradiction arising.

f 4- Tollmien's sufficient conditions for instability

Tollmien (1935) described Rayleigh's work, and commented 
on the absence of sufficient conditions for instability. He
showed that symmetric velocity profiles with a point of 
inflexion are unstable. (Symmetric here means symmetric 
about the centre of (y^, y^) ) His method was to search for 
complex eigenvalues near known real eigenvalues, and he in
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fact found two sets of .complex eigenvalues near two different 
real eigenvalues.

One of the real eigenvalues was = U(y^ ) (U" (y^ ) = 0.). 
From equation (i-v) for v(y),

V "  V  = O  uV)
the choice c = U(y^) ensures that no singularities occur.
Tollmien showed that for some = kg^ a symmetric real 
eigenfunction v^ exists, and then developed a perturbation 
theory to produce an expansion for c = c(k^) near kQ^, 
which showed that complex eigenvalues exist near c^. The 
expansion is •

c - Co + Ac^ + i àci

‘a - V  -  K  Ç  i c ,

" " A  -
This type of expansion is not useful for a 

magnetofluid in the presence of a parallel magnetic field
because the real eigenvalue c^ exists only when very restrictive
conditions are applied to the velocity and magnetic profiles.

Tollmien also considered the well known real solution 
2V = U(y) (k = 0) which is an eigenfunction when c = U(yq)

(=0 say), and showed that it is the only real eigenfunction 
occuring for all symmetric profiles (with or without inflexion) 
for all values of k2. His'perturbation theory in this case 
showed that nearby complex eigenvalues exist whenever U"(y^)>0.
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Since U(y) is symmetric this condition implies that U" has a 
zero. But inflexions can exist even when U"(y^)<, 0, so a 
smaller class of profiles is being shown to possess unstable 
modes near this real mode. The expansion for c = c(k^) is

r -  -  K ik'V   ̂ (yiUCv - u

The real solution v = U(y) (k = 0) exists for magnetofluid 
flows. A perturbation theory similar to Tollmien's is 
developed later (page 67) and a sufficient condition for 
instability obtained in terms of the velocity and magnetic 
profiles. ^

5• Lin's work on laminar flows

In a series of three papers Lin (1945) studied 
laminar flows of viscous and inviscid fluids, paying special 
attention to the relationship between the two. To obtain a 
unified viscous - inviscid theory , he accepted inviscid 
solutions only when they were valid asymptotic forms of the 
Orr - Sommerfeld equation. As already indicated, no attempt 
will be made to imitate Lin's procedure, as this work deals solely 
with inviscid fluids.

Lin established a new class of unstable flows by 
perturbation about a neutral solution v q with eigenvalue 
Cq = U(yQ) (U"(yo) = 0) in the case where Ü'(y) >  0 and
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Given these conditions, and a sufficient negative upper bound 
on -.7 ■ - the existence of the real eigenfunction is assured.
When the real eigenfunction exists, a nearby complex solution 
always exists for k^< ko^, and its eigenvalue c is given by

; e - ,

Once more there is little opportunity to extend relations 
like (viii) to magnetofluid.flows because the existence of 
real eigenfunctions imposes undue restrictions on the velocity 
and magnetic profiles.

Lin also gave a physical mechanism for instability 
based on vorticity conservation and displaying the role of the 
point of inflexion. Since vorticity is not conserved in the 
presence of a magnetic field, this interpretation cannot be 
extended.

6 . Recent results for inviscid laminar flows

Rosenbluth and Simon (1964) solved the eigenvalue 
2problem when k = 0, and U*(y)> 0. They made use of the 

equation
[(U - c)2f'|i k2(u - c)2f = 0 ■ C'O

obtained from (iv) by the transformation v = (U-c)f.
When k^ = 0 ,
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and c is an eigenvalue if and only if
= ffyj =

has complex zeros. Using the standard method of the Nyquist 
Diagram for searching for zeros of complex functions,they showed 
that G(c) has a complex zero whenever

f I ^ Q  (x)~Lu'(:u-u*)Jy. A, (x'̂Ca-u-a) ^ ^
where U ’q = 0. ' That (x) should hold is a necessary and sufficient 
condition for the existence of complex eigenvalues with = 0,
and therefore is a sufficient condition for instability. In
the particular case where U*’(y) has just one zero Lin's result 
that Instability occurs for k^< k^^ (k̂  ̂̂  0) showed that (x)
is necessary and sufficient for instability.

, Rosenbluth and Simon's method is imitated (page3 8  )
' for the case of a magnetofluid with U*(y) >  0 in the presence 
I of a constant magnetic field parallel to the flow, to produce 
}a generalisation of the sufficient condition (x). There is 
.no special result corresponding to the necessary and sufficient 
condition.

I
I In an interesting pedagogic papbr Case (i960)
I complained that the literature on fluid stability tended to 
: ignore the possibility that perturbations could have time 
1 dependences other than exponential. He examined the asymptotic
I
I  time dependence of non-exponential modes for laminar flows,
II and showed them to be stable.- Case pointed out that this was 
I known to Lord Rayleigh, but was worth expressing in modern
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terms. Instead of assuming exponential time dependence of 
the Fourier transform :v(I)(y,t ), governed hy equation (ii), 
the Laplace transform

is examined hy means of the new equation (replacing (iv) )
(XÜ

where v^^ny,d) is the initial perturbation fixed arbitrarily 
at t = 0. A new definition of instability is required. The 
 ̂flow is unstable whenever the asymptotic time dependence of 
v^l)(y,t) for large t is unbounded, for any given choice of 
initial disturbance. Case solved equation (xi) for v^ in 
terms of the Green's funtion, inverted the Laplace transform 
and deduced the asymptotic time dependence of v(l)(y,t). 
Ignoring exponential growth or decay (which also emerges in : 
this procedure) the result was at worst a sinusoidal vibration 
with constant amplitude. Laminar flows are therefore stable 
to non exponential modes.

Case's procedure is cq.rried out in detail for 
magnetofluid flows, in Chapter 5*

7. Laminar magnetofluid flo.v s

The linearised magnetofluid equations for lamimr 
flow of a finitely conducting and viscous incompressible 
magnetofluid in the presence of a magnetic field parallel to
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the flow were written down by Michael (1953)* For equilibrium 
velocity, profiles U(y) and magnetic profiles H(y) the perturbation 
equations take the form

0 ( ^ 1 1 + - p u ' v  = 7
, } (X'U

V t L  J
where the complex amplitudes h(y) and v(y) represent the y- 
components of the magnetic and velocity perturbation^ (full 
form h(y)exp(i(kx rh-mz) + iwt), v(y)exp(i(kx + mz) + iwt ) ) r  

^ is the coefficient of viscosity and 0“ is the electrical 
conductivity. It is, of course, more usual to express 
equations (xii) in dimensionle ss form.

Michael did not use his equations except to show 
that purely magnetic perturbations (v = 0) are always stable.

It is'.interesting that the equilibrium profiles, 
which may.be chosen arbitrarily when ^ = (T" = 0,are now 
subject to the severe restrictions

U»*'(y) = 0 
H'*(y) = 0 .

which simplify the equations (xii). This is an additional 
factor complicating the comparison of perfect (non-dissinative) 
magnet of luid s v/ith viscous, resistive ones. When Lin* 
discusses this point for non conducting fluids he justifies 
arbitrary choice of U(y) because , of course, the magnetofluid 
equations plainly allow it for inviscid fluids and also because

* Book (1958) pll5
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nearly parallel flows of viscous fluids can have almost 
arbitrary velocity profiles. This has to be justified for 
each case on its merits.

Some work has been done recently with equations- 
similar to (xii) in both cartesian and cylindrical geometries. 
For example Drazin (i960,) and Hunt (1965) have done stability 
calculations for extreme values of the parameters ^ and (T" •

A parallel magnetic field tends to stabilize laminar flows in 
most cases but both workers report exceptional circumstances 
in ;vhich the magnetic field is a destabilising influence.

No work seems to have been published specifically 
on laminar flm s of perfect magnetofluids, but some relevant 
work has been done on general flows of perfect magnetofluids, 
and is described in the next section.

8. General formalism for stability of Lagrangian Systems

Recent literature on stability of magnetofluid flows 
has placed the problem on a general basis applicable to any 
Lagrangian system, that is any system governed by equations 
second order in time derivatives and derivable from a Lagrangian.

Frieman and Rotenberg (i960) made a study of the 
stability of a compressible non-dissipative magnetofluid.
A system with flow field U  and magnetic field h is an 
equilibrium (stationary) flow provided only that it satisfies 
the magnetofluid equations with 0. (The magnetofluid :/
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equations and their linearisation is discussed in detail for 
laminar flows on page 2 2  ). The equilibrium is subjected to 
small perturbations which are governed by the linearised 
magnetofluid equations in their full form 0 now). The
equation for the displacement field^(x,t) from the equilibrium
position ^  at time t takes the form /

N ^ + 2 i P | | + Q ^ O  • ( d ' O

where N, iP and Q are hermitian operators (N positive definite) 
containing space differentiations and the equilibrium fields.
All information about the perturbed quantities is contained in &  
Introducing the time dependence exp iwt, (xiii) becomes

H C w r X  = o  ( K w )

where^ =A(x)expivrt and H = -w^N + 2iwP + Q. The operator
H(w) is non hermitian when w is complex.

V/hen the flow field -v 5 0, P = 0 and the static 
magnetofluid problem then has an equation of the form

F 'X “ - oü^p 9(
where F is hermitian. Thus, w^ is real and w, if complex, 
must be pure imaginary. The introduction of the flow is 
seen to cause the possibility of overstability (strictly 
complex w) associated with the non hermitian operator. The 
rapid progress made in static stability problems using the self 
adjoint equation (xv) is not possible with flow problems using 
(xiv). In particular (xv) can be expressed as a variational 
problem leading to the "Energy principle" formalism of 
Bernstein et al (1958)
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Frieman and Rotenberg established a general sufficient 
condition for stability. From (xiv), taking the scalar 
product I H (“TC > and solving the resulting quadratic equation 
for q

<,-XKPlX>' ^ ,
"  = ---------------

Since the operators N, iP and Q are hermitian the scalar 
products are real. Therefore v; is real and the system is 
stable if

: Since N is positive definite this condition can be replaced by 
the apparently less powerful but simpler condition
: <  14  ( 'X ̂  >  O  (KV/Ü
In Frieman,-and Rotenberg*s’paper, Q is given by

; where is the ratio of the specific heats of the (compressible) 
magnetofluid and p is the magnetofluid pressure and p its 
density.

Frieman and Rotenberg also developed a perturbation 
theory for small f1ow velocities to show that if a static 
: equilibrium is stable then any flow equilibrium formed by super-i
1 posing a small flow field is also stable. Their method was 
I to expand in powers of a small parameter 6 representing i f / U s  

I or where \ f ^ and are respectively the equilibrium
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soimd and alfven velocities. Solutions near a static solution
Wo are written

f- 6 X. •
ixj - LL>0 t- 6 t W>2. t • ' *

By the hermitian nature of the static problem is real.
If Wq 2 / 0 w has the same nature as w^ and stability (or 
instability) persists. When W q = 0 the persistence of stability 
is not assured since

^  Z ^  _  <0^C I (PCVii'O
' < Xo I N I To

Stability persists if I Qx( <  0, instability occurs
if <( X o l O i u l ^  0 and the next order must be examined if 

(3i.l = 0.
The procedure of establishing a real mode of oscillation 

of a stable equilibrium to see whether stability persists was 
I placed on a general basis by Low (1961). Given a system 
: whose equations of motion are s econd order in time and derivable 
' from a Lagrangian, stability does persist except for a 
: circumstance depending only on the original equilibrium, and 
: its stable mode of oscillation. The most general Lagrangian 
i giving rise to the required equation of motion is

: where the operators N, iP and Q are hermitian and dot means
!

• partial time derivative, 
i The equation of motion is

W f 1- li Pf Q.5 - o
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and if the time dependence is like exp(ivjt) the expression 
(xvi ) is reproduced for w. If /d >  0 it follows that a 
small change in the equilibrium (and, therefore, in N, iP 
and Q) and a small change in the stable mode %,leave A  > 0 
and stability persists. However if A  = 0 the small changes 
could well make A  < 0 whence complex values of w and 
instability. A real neutral mode with real eigenvalue 
wq and with the extra property that A  = 0 is called a 
marginally stable mode. A necessary and sufficient condition 
that a mode be marginal is

The usefulness of Low's result is that no stable 
mode need be examined for a nearby instability unless A = 0. 
"Nearby" has two senses : -
(1) A nearby perturbation about the same equilibrium : 
e.g., represented by a small change in.wave number k.
(2) A nearby perturbation about a slightly different 
equilibrium : e.g., represented by the introduction of 
a small parameter provided the Lagrangian nature of the 
system is not destroyed. Thus the introduction of small 
viscosity is not permissible.

Completely new modes may arise for the new equilibrium 
and no information is available about them. It is also useful 
that Low's result is so general, applying equally for non-dis­
sipative magnetofluids and to a collision free gas of charged 
particles interacting through their own (self consistent) average 
electric field and governed by the Collisionless Boltzmann
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equation.
Low interpreted his result in terms of a conserved 

'energy' emerging naturally from the Lagrangian formulation.
The quantity

is a constant of the motion. Its time average is
E ^ i  lovaiNioo 1-l<'xial'x>

whereS = 'X (x)expivrt . From expression (xvi) for w
_ <iO(l P'jq^^ + ± 2A.<XIP|1( >

<q W  q > ̂
It follows that

E = -gw A
I It is therefore usually true that a stable mode can only have 
 ̂a possible nearby unstable mode when it has zero energy 
associated with it. This is not necessarily true when w =0,I ■ ^  ,
I unless the marginally stable solution "Xo is unique (non- 
idegenerate).

Lov; was unable to prove that the marginally stable 
: modes actually possess unstable modes nearby, but he conjectured 
ithat this might be the case.

Laval et al (1964) took the matter further and 
■ succeeded in developing a perturbation theory which quantitatively 
evaluated the squared frequency change (Aw)^ due to a small 
change A cjC in an arbitrary parameter of the equilibrium or 
its marginally stable mode . • The result showed that
(Aw) / AiX , when non zero, has a sign independent of the sign
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of AiX. , so that one sign or other of predicts (Aw)^< 0 and 
the introduction of-unstable modes.

The result was achieved by expanding about the marginally 
stable solution ( Wo,0Ct>) in terms of a small parameter 6.
Thus

Xc. = Xo ^ '

For consistency |Aoc| - 5 ^  . From the linearised magnetofluid 
equation (xiv)

H Cu,) X  = 0
it follows that

Hô'X, - - i^.(fu))û'Xo
I Ha .
I
I  Excluding the possibility of degeneracy of , solutions 
i exist if and only if 'Xo is orthogonal to the right sides.
I Hence,

; and (Aw)^< 0 for one choice of the sign of AoC .
Exceptional circumstances invalidating (xx)arise 

when Xc7 is degenerate, when the operators possess singularities, 
v;hen the numerator or denominator in (xx) is zero, and when the 
sign of AoC- is restricted (e.g., if cC = and 0 ^ ^ =  0 then
it is unphysical that AoC < 0)

Laval et al examined the case of two fold degeneracy
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and showed that (Â vv)̂  is positive or negative for all values 
of AoC according as the expression-

is positive or negative. Degeneracy is usual in laminar 
flows because of the degree of symmetry.

The occurrence of singularities in the operators is 
not discussed in the general analysis hut they are invariably 
present in the case of lamimr flows discussed in the succeeding 
chapters.
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LAMINAR FLOWS OF A PERFECT MAGI'IETOFLUIL

Magnet of luid eq^uations - linearised perturbation 
equations - necessary conditions for instability 
- physical interpretation - real eigenvalues - 

almost real eigenvalues - large .

1. Magnetofluid equations

The results reviev/ed in Chapter 1 will now be 
adapted, where possible, to the case of a perfectly conducting 
magnetofluid in the presence of a parallel magnetic field.
The equilibria studied are laminar flows

y -
of a perfectly conducting, inviscid, incompressible magneto-
fluid between flat plates located at y = ŷ  ̂and y = y2 , in
the presence of a magnetic field

X  -= H(y) X
The magretic field may be expressed in terms of the associated
Alfven velocity a  - ^  so that,

j  p

&  = A(y) X
where = permeability of free space

p = magnetofluid density.
All the quantities y', U(y ), gu and A(y) now have dimensions 
of velocity. In particular, the magnetic field is expressed 
as a velocity field.

These equilibria are fully specified by the flow
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and magnetic profiles U(y) and A(y). The profiles may he 
chosen arbitrarily because they always satisfy the magneto-

- f  a

a 0  = (I)
^  d u r  V  - O

^ c L ù r  S\> -=- O
cLOif' J(\, -=. o ‘

where p(y) = magnetofluid static pressure. It is noteworthy 
that the presence of the magnetic field naturally leads to 
an equilibrium pressure grah^ient. The magnetofluid equations 
can be modified to eliminate p and display a useful symmetry 
between 'U’ and a.

v ' l  -

(JlO J A I O
ciuT ^  — O
The form of (2) is not altered by both of the 

interchanges
y'. \7 -t- ^  ^  ^  (-3 )

X T  <a <X

Physically, the real velocity field has been inter­
changed with the Alfven velocity field, and total time 
rates of change along the flow ( ̂  ^  IT, V  ) interchanged
with convective rates of change along the Alfven "flovP'

The symmetry ceases to be valid when finite con­
ductivity or finite viscosity are introduced.
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2♦ Linearised perturbation equations

The mathematical stability problem is formulated 
by superposing on the equilibrium values of the quantities 
U, a, P small perturbations p̂ *̂ and examining their
subsequent time growth or decay by means of the magnetofluid 
equations. If the perturbations are very small they are 
linearly related, so that all but one quantity can be eliminated 
from the magnetofluid equations, leaving one linear partial 
differential equation in the variables, x, y , z and t .

For this system it is convenient to eliminate all 
but two quantities Vy‘\x,y, zi't ) and (x,y,2,t ), where the 
subscript y denotes the y-component of the appropriate 
vector, to obtain the coupled pair of linear partial 
differential equations

Solutions obtained from (4 ) are acceptable only 
if they satisfy the magnetofluid equations (l) and are finite 
for all values of x, y, z, t. All the derivatives involved 
in generating the other perturbed quantities must also be 
finite. It is not necessary that all derivatives involved 
in elimination of the other perturbed quantities be finite.
For example the terms neglected in the first of equations 
(4 ) are
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which. involve "third order space derivatives. But even if these
•V

are infinite the solution will be acceptable provided 
all the other (six) quantities occurring in the magneto- 
fluid equations can be generated without infinities, 

and satisfy the magnetofluid equations.
Since the coefficients in (4 ) are independent of 

X and z it is useful to Fourier transform with respect to 
X and z ...

-// ; y , w e d < ^  .
Rewriting equations (4 ) in terms of the transforms with 
independent variables y and t...

= C5)
{ U +-3 c 5 ë - ) ^

At this stage the assumption is made that and 
v j'^ ^ are exponentially varying in time. That is, for some

o), ,x ,
complex number c = c_ + ic.r 1

(yX3 =  acy) e

(Non exponential time variation is considered in Chapter 5.) 
Substituting in (5) and eliminating (X(y), a single linear 
second order differential equation is obtained for v(y)...

I [1 v 'l .  '  - ^ f . )  +  =  O  (fc )

As the magnetic field vanishes (A-^0) Rayleigh* s
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equation (iii), pige 2, is recovered...

Lt-c
The interchanges now take the form
V" - f j V = O (i‘V

U, - c » A (̂"7j
V cu

As an example of the power of these interchanges, the equation 
forcx(y) can he generated by inspecting (6)...
[L< - Û.'] i - r J CL = o

From physical considerations it is clear that
Vŷ ‘Kx,y, z, t ) must vanish at the solid walls, i.e. when y = y^
and y = y^. This occurs if and only if v(y) = 0 at y = y^
and y = y2 . It follows, by the way, that the y-component
of the magnetic field also vanishes at the walls, independently
of the electrical properties of the walls.

A statement of the mathematical problem is nov;
2 2possible. Let m and k be fixed non negative numbers. 

Provided U(y^) - c / A(y^), equation ( 4 ) for v(y) is regular 
at y^ and a solution v(y, c) vanishing at y = y^ exists. If 
for some value of c = c(k, m), v(y, c) vanishes also at y = y2 
and v(y, c)is regular in the real interval (y^, y2 ) then c is 
an eigenvalue with corresponding eigenfunction v(y, c) 
representing a valid physical disturbance. The, time 
dependence of this disturbance is exp(-ikct) so that 
instability occurs when kcq > 0 .  If no such eigenvalue 
exists for any values of k and m, the equilibrium under 
consideration is stable at least to exponential modes. In 
practice it will not be necessary to show k c >  0 explicitly
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because, from (6), Y i c ^ )  = (v(c) )* is also an eigenfunction, 
so that any complex eigenvalue { c ± / 0) will establish 
instability.

No difference is made to the outcome of the stability 
problem if + m^ is replaced by k^ in equation (6) and 
only two dimensional perturbations independent of z considered. 
That is, the perturbations are proportional to exp ik(x-ct) 
and propagate in the x-direction with speed ĉ .̂, wavelength 
27T/k and growth rate kc^.

It will be convenient to have available two equivalent 
• forms of equation (6). Transforming to the function f(y) =
; v(y)/(U(y) -c) equation (6) becomes

[[CU-cJ"-Am f'r - khCU-c3"-A"Jf - O  C & )
subject to boundary conditions (U(y^) - c) f(y^) = 0 and

I (U(yp ) - c) f (y^ ) = 0. The function f(y) usually behaves
I ^ ^0)I like,S(y)j the amplitude of the displacement 3y(x,y,z,t)
; of a fluid element from equilibrium in the direction of y .I
; More precisely,

v^<y)

Thus, the function f(y)= v(y)/(U(y) - c) may have 
a first order pole when U(y) = c but still represent a 
valid physical disturbance.

Transforming to the function F(y) = X^f(y) equation 
(5) bee one s



-28-

F'' - [ k %  = O  ^9)

•where X = (U c)‘- - A^,
subject to the boundary conditions X'^(y^)(U(y^) - c)P(y^) = 0 
and X"^ (y2 )(U(y2 ) ’c)F(y2 ) = 0.

3• Necessary conditions for instability

A number of necessary conditions for instability 
(whence corresponding sufficient conditions for stability) 
can be established by assuming c is a complex eigenvalue 
with Cj_ ^ 0 and examining the consequences.

One powerful sufficient condition for stability
is

A^(y) >  U^(y) (f)
for all values of y in the interval (y^, y^). This 
condition is derived at the end of this section. The 
physical relevance is probably that the Alfven speed is 
large enough to propagate disturbances ahead of the moving 
fluid. The result (f) is well known as a special case of 
the sufficient condition published by Frieman and Hotenberg 
(i960), and illustrates the general principle that large 
enough magnetic fields tend to stabilise magnetofluid flows.
For lower values of the magnetic field instabilities do exist, 
and sometimes the magnetic field exhibits a destabilising effect 

Three other simple results can be obtained directly
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froïïi (8)/
f ̂ J-f ~ 0  C Q ) ,

Assuming O f  is regular in the interval
! y-, , y so that (8) may be multiplied by f * and integrated 1 ^ 2
i from y^ to y^.

[Therefore, integrating by parts

' since f (y^) = f (ŷ )̂ =0.
Takinr real and imaginary parts,

k'fflddy = O  
and + k̂ 'l-fF) - O
If these integrals are to vanish, U - and (U - - A^ -
must both change sign in (y^, y^ ). Thus

0^ = U(y) somewhere ... (a)
placing upper and lower bounds on c^, and revealing that 
unstable disturbances must travel at the flow speed somewhere. 
Also,

cq^ = (U(y) - C j ; , - A(y)2 somewhere ....(b) 
placing an upper bound on (See figure 2.)
If (b) is to be attained then

A^ty) <  (U(y) - c X  .
for some values of y.

' ‘ A  <1 LLL v̂ Ĉ̂K - Uwm’ia,) • ' ‘
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Figure 2.

Two more necessary conditions can be obtained directly 
from equation (9),

F "  - [ k’- + ] F ■= 0  . (9)

Assuming / 0, it follows that X / 0 in the real 
interval (y^, y^ ), equation (9) has no singularities and 
F is regular in that interval.

r k ' F '  I k S  = 0

■'■ ■C’f'P‘0 +[!<’<■ - o
since F(y^) = F(y2 ) =0.
Taking real and imaginary parts,

r^flP^"' + [/r + I ] dy -  O
and

- _ o .
'it, U' 4X
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By inspection of the integrands two more necessary 
conditions for instability are

somev7here (d )

I 2 ^ r . r) ^ \,nd K f xyz j for some values of y. (e)

In the limit of vanishing magnetic field (A—^0) 
the result (d) coincides with Rayleigh * s necessary condition 
for instability (page 3), that U"(y) = 0 somewhere. To 
display this fact,

^ 1  4K^ J  2. IX /

- O cy) =. i f  ̂x” i
- 2 A A ^ ( U - C i )

[(U-c^-A)’"* Cv̂ Ji -t-
Condition (d) states that G(y) has a turning point for some
value of y in the interval (y^, y^ ). As A —*-0,

— *~CiiJL' /. G-'h/) — ^  Ci L L "
. . L L — C  soiA/i&wkg'NL.
Condition (d) places no restriction on A(y) and 

U(y) when c^ is very small. For when (U - ^r - A)bj->.cp
(k i j )  -  O iC i)

but at points where U - Cp =tA, at least one of which 
exists in (y^, y^ ) from, condition (c),

CrCy) -  ± A ( u ' -A ' )
so that G(y) rises’and•falls rapidly (see figure 3), G'(y) 
must have a turning point and (d) cannot fail to be satisfied.
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y«
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Figure 3.

y

For larger values of Cj_, (d) is a restrictive 
condition but does not seem to yield simple general results 
restricting the profiles A(y) and U(y) independently of the 
value of c .

Frieman and Rotenberg's general sufficient condition 
for stability ( (xvii), page 16 ) takes a simple form for 
laminar flows. Expressing equation (8) for f(y) in the form

f - o
and taking the scalar product J gl-j-fdy the resul.ting 
quadratic equation for c has discriminant

[/yu(ifr-.kifi>Uyr- 0'r.eifrjdy.('ïu'-Ay(if'r.k'ifr)ay

The reality of c (and therefore stability) is assured by
Frieman and Rotenberg's condition

 ̂ \ shcac^i Ca^c

and hence also by the condition
3.2 (y) > Ij2(y) for all y in (y%, y2 ) (f).

Condition (f) applies no matter what the frame of
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reference in which U(y) is measured. If A(y) has a zero(f)
; . ,[will not be satisfied unless U(y) is defined to be zero in 
ithe same place. If A(y) has more than one zero it is not 
I possible in general to satisfy (f). Condition (f) is more 
powerful than condition (a), but not necessarily more 
: powerful than the frequency, dependent results from which 
i(a) was derived.

4. Physical Interpretation

In Chapter 1 a physical interpretation of Rayleigh's 
necessary condition was given, in terms of momentum conservation. 
Condition (d) has a somewhat similar interpretation, as follows.

Returning to the magnetofluid equation of motion 
for general velocity and magnetic fields, V  ̂  h'

p -  -  y  |0 i- JXii X

'SXand rewriting to display momentum flux ^  at a point in 
space,

I t  (tv P  = 0
where the pressure tensor P  is given by

cîij + p W  y  -yUoX-Vij

The growth of momentum at a point in space is due 
0 the rate of inflov; of fluid momentum the rate of

momentum creation by the electromagnetic forces, and
the pressure forces which are partly hydrostatic
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and lurtly magnetic.
The momentum flux in the x-direction is

g t  = f -yUoXXj
For the particular fields under study 

Y  = ^ f- y"'
m - H(y> X + m .

v;here v^‘Mx,y,z,t) h (x,y, z,t ) are periodic in x, z and 
t, the mean x-momentum growth in a plane of fixed y is

II -,
where the mean va.lue is with respect to z, and a. =

The total momentum growth between the walls is 
4» a.nd is trivially zero from the facj that the integrand
is a complete differential and from the boundary conditions.
; However, the integrand can be written in terms of the profiles 
I U(y) and A(y) to derive the restricting condition (d) on the 
; profiles.
; Although it has been shown that stability decisions
I based on equation (6) are not changed by putting m = 0, it 
[is not true that is unaltered by putting m = 0. For
i general m, v̂ ‘̂̂ (x,y, z,t ) can be expressed in terms of  ̂(x,y, z, t ),
[from the magnetofluid equations.

Vy = V C
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A Y " -à Æ Lki. via* , _u/_ ivi'i
z  ImN-k^ i k  L l - c  i k  J

J where W[v] — [ / ^ i / ^  —  ̂ iS ^

Similarly, using the interchanges (?)

^  F T v

= - ; { ; ̂1 W Id] -r fvî2i -fvvv fl̂l̂J J
^ i k i i w S k  )  ̂

It is still trivial that the momentum integral 
vanishes, hut iVCvü can he expressed in terms of the profiles, 
from (6) / \/ Ai /

V"- t '̂  = O  (6)

;, Siin/'w] o

(U-cT «̂ ■‘•'’(-1-<CTO0

'. W ’[ y ] (' - J I > - (Cfej- J
This linear first order differential equation for 

y\/[v] has integrating factor j | and has the solution

Using the interchanges (?) the corresponding solution 
for W(a] is immediate...

W M  ^ Z A , ( j ^ l j  RW-c/-a h ] cly
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C  ê

 ̂ fiXi-ÿ-ilf (‘dy.
gvhe re , as before % s  (U - c and = v/(U - 0 ) 5  C l/A.

It is now clear that x-momentum conservation demands

X v w - O  somewhere (d)

The possibility that | U(y2 ) - c| ̂  = A^(y2 )‘is 
unimportant as this may only occur for an isolated value of c. 
Since the perturbation equations are regular on the real 
axis when ĉ  ̂ / 0 any complex eigenvalue c ( c ±  ^  0 ) must have
neighbouring eigenvalues for which -|u(y2 ) - c| ̂  A^ (y2 ) and
for which (d) holds. Thus by continuity of 
with respect to c, (d) is not excused from holding when it
happens that (u(y2 ) - cj^ = A^(y2 ).

5. Real eigenvalues

In the study of non-conducting laminar flows, 
progress was cade by establishing the existence of a real 
eigenvalue and searching for nearby complex eigenvalues.
However, in the presence of a parallel magnetic field there 
are not usually any real eigenvalues. To prove this, and 
for other purposes, it is important to know how the perturbation 
amplitudes beha.ve near singularities of the appropriate 
;I i f f e r 0 n t i a 1 equation.
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Working with. +(y ), fron (8),
(Xf')( - k'Xf - O (8)

where X ( y )  = (U(y) - c )2 .- jg(y)

= i  ̂+ H  ~ =  O (to)
Singularities occur at values of y (in general complex) for 
which X(y) = 0. Since X has been defined for real ÿ, an 
analytic continuation to the complex y-plane is implied.
If X(y^) = 0, then the series expansion for £ in terms of 
"1 = y - yo> given by

is a solution of (8) for some value of p , where the and
p depend on the order (n) of the zero of X. To obtain this

X'solution a series expansion o f i s  required.

The coefficients oC^ are known in terms of the profile values
A(yQ ), U(yo) and their derivatives, and also depend on n.
In particular
i ,  IXo = — L  . yxc.hi-i x m
where the subscripts on the right side refer to values at y 
but the subscript in o(c, means S = 0. If it happens that 
X(y) has a single zero at yQ (X* (y^ ) / 0 and n = l) then
I
; V — J_ _  j A& Ao + A c ^
I "  ^  X o '  ^  ( U . - c ) U / - A o A /
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X ̂Substituting the series expansion for into (10)

wnere
ciiĈJ - %_ oC ,̂y ( P i r s O ^ '  .' 5 Vi''-5 ^

-'- = pCprn- i )Co( f>)  -i- [ ( p T O ( p + i ^ ) C , ( j } ) - i - S
" I  -

4- Z  [ ( ^  rS ri.3 C |ïtS ’H ^ i+ 0C itxC p ; +  n

^Defining

It follows that

so that one solution to the equation S [ f ]  = 0 is given by 

p=OjCo=ijC, - O
hÔ) - Z  CiCo) (j| a,) ̂-Ù ^

To obtain a second solution, define 
Cc(p)-o j C,(f>) =

■■ -e£tp] = 
-■ xTC^Ip.-.] - o

Thus, a second solution is given by,
P = -n , ̂ .(pi = 0, C,(p)̂

111) Li>5*) Olb)
S -=̂  ^ -6

The solution is always infinite when ^ = 0(y=yQ ). 
This observation is now checked for all n / 2. The special
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case n = 2 is considered later.
!i When n = 1

t  = I +■ i •

fi. - r L<Ŝ  (] £ I V -  J
Ç*SO that has a logarithmic singularity.
When n > 2

f' q  I +- ŸAX) •

h  = - ;:|è7 "mïT-. ' ■ ■ + 1 £ f H <-" ]
so that has a pole of order n - 1.

These singularities, if they occur on the real
interval (y^, y^) make inadmissible. Any eigenfunction 
must then behave like near y = y^.

For complex values of c (ĉ  ̂ / 0) the zeros of 
X  H (U - c - A^ occur in the complex plane of y , so that 
is regular in the real interval (yq, y^ ) # Whenever f (y^)
= j-Cyp) = 0^j-(y) is bound to be an eigenfunction representing
a valid physical disturbance (i.e., to be finite withI
sufficient finite derivatives in (y_, y ) )., 1 2
I But for real values of c, all quantities in equation
;(8) are real and zeros of X^ occur only on the real axis. If
c is t o b e  a real eigenvalue (with k^ / 0) then at least one
'^ero of X must occur in the interyal (y^, y ). This follows
r , •  ̂ P,by comparing (8) with the general equation for a function j(y)

G ( y ) f  y  +  qcyjf = o

[which is well known to be non oscillating, and therefore
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to possess at most one zero, in regions vjhere p (y ) and cp(y )
are non zero with opposite sign. In, equation (8 ) j o ( y )  = X(y)
and olv) = -k^X(v). If X(v) ^  0 and k^ 9̂ 0 in (v̂  . )

then f(y) has at most one zero in (y^, y ) and cannot be anV V J \ tj / V ̂ «-A# w V W V V V U V ̂ V  ̂̂ J >-Aâ**Vr\, V WW ̂ Jb.b ̂ W W W V S# U.
eigenfunction.
Thus, when k^ / 0, the existence of a real eigenvalue c
implies the existence of a point y in the interval /y , y )

* 2
such that X(y^) = 0. The series solutions (ll ) then apply 
at y = y^.

Assuming X(y^) = 0 is either a first order zero, or 
, greater than second order zero, it has been shown any eigen­
function must behave like near y^, because ) ds
infinite. It follows that no eigenfunction exists. To 

: prove this, consider the behaviour of any solution (y) of (8 )
I in the region (y^, y2 )> assuming without loss of generality
; that y^ is the first singularity to the left of y2 . Near
I
I y = xo

iVy) fiCb =
> - •= I : / ̂ J = o  .

Either j- (y ) >  0 for all y ̂  y^ or there exists a unique 
point ŷ  such that J (ŷ  ) = 0 and f ( y )  >  0 for all y with 

Y < Yp, * Suppose y^ exists and y^ < ŷ  ^ y^.' .
From (8 )

^  ^'■Xf (v ̂  w )
Since, in the interval y < y ^  y , X(y) / 0 and f (y) t> 0, 
it follows X~f has the sign of X f  in that interval.
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{ has the sign o f  j - (positive) for Yq < y <  

0 = f (ŷ  )>f (Yq ) = 1 , which is false.
Yp^if it exists, is greater than Y2 
;f (y )> 0 in the interval (ŷ , ŷ  )
f (Y2) / 0
^ is not an eigenfunction (see figure 4 ).

Figure 4

; The possibility that y^ = Yp has not been examined, but
I clearly ^ 0 when ^ = 0 and no eigenfunction exists
! in this special case.

It has now been established that no real eigenvalue 
: c can exist unless there exists a point y^ in the interval 
I (Yx > Yp) such that
i Xq/û - X̂ Vi) - ^ J X o

Even assuming that such a point y^ exists for some 
real value of c, it is exceptional that c should be an eigen­
value. To prove this,’ the series expansions for n = 2 are 
necessary.

When n = 2, the series solutions can be written
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where ù!^ ~ )C.■ a

Ey arguments similar to the case of n / 2 no real 
eigenvalues exist due to the infinity in > provided
Ovc / 0.

But when (Xc = 0, i.e., = 0.

^ , ( i v  = I + i / a ' p ...
h a )  ^  ■ > - 1  • • • ■

and there is a circumstance in which these solutions could re- 
: present a valid physical disturbance. By definition J- (y) 5=
; v(y)/ (U(y) - c) may have a first order pole when U(y) = c, 
i so that is physical if c = U(y^).
I 2Î Summing un, for k / 0, no real number c is an
I
[ eigenvalue unless there is a point y^ in (y^, y^) such that
I Xo =: x 2  - x g ' m  o ,

j  and c = U q .
I That is ,• unless
i A q = 0 1

n^"uJ-Ao"A j - O  '

and c = Uq ^
The conditions (12) are very restrictive on the profiles A(y) 
and ü(y), and even if satisfied do not ensure the existence of



- A

a real eigenvalue. Conditions (l2) actually ensure that 
equation (6) for v(y) is not singular at y = yo• That 
is, the functions appearing in

w } ' ] V  --0 (6)
are all regular at y = y^. Similarly, equation (9) for 
P(y) has no singularity at y = y^.

In the limit of vanishing magnetic field ( A(y)*-?-0 ) 
conditions (12) reduce to Rayleigh’s necessary condition 
for the existence of a real eigenvalue c

and c = U(yo) J .
Also, eq̂ uatiion (6) reduces to Rayleigh's equation

V "  -  ( l<^+ T C ^  ) v  =  O
which clearly has no singularity at Yq , It has been shown 
in the literature (see Chapter 1) that when (12’) is 
satisfied there are both real and complex eigenvalues for 
a class of profiles U(y).

When A(y)^ 0 the corresponding system subject to 
conditions (l2) does possess real and complex eigenvalues 
for some profiles U(y) and A(y)*. But conditions (12) are

* For example if A ( y ) y^XU(y), (X. = const.,, and U"/U< ‘-B^ 
where the constant 3^ > TC / then the system possesses
a real eigenvalue o - 0 for some k2 - and complex 
eigenvalues nearby.
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so restrictive tho-t a detailed discussion is probably not 
I justified. If a real eigenvalue Cq and its solution 
I are known then the prescription of Laval et al (page 19)
[allows an immediate decision on the existence of neighbouring 
I complex eigenvalues. The complex neighbours exist if and

I The case of k ^  = 0 has not been considered. When
k^ = 0 equation (6) has solutions

v,(yi - - c

For real c^Vp(y) is not admissible. The solution v^(y) is 
regular and is an eigenfunction if and only if U(y^) = U(yp). 
The eigenvalue in this case is c = U(y^) = U(yp). Such 
eigenvalues, representing physical disturbances with long 
wavelength and speed of propagation equal to the flow velocity 
at. the walls always exist for symmetric velocity profiles,
; independently of the magnetic profile A(y). • In Chapter 3 
iit is shown that for suitable A(y) unstable eigenvalues 
always exist nearby, even when no instability exists for 
A(y) =  0.
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6. A1 m0 s t Re a]. Eige nva 1 ue s

j  Although real eigenvalues do not usually exist,
I complex eigenvalues with unboundedly small imaginary part
I may. It is shown in this section that the existence of
I . 9I any complex eigenvalue for a given value of la- implies the
; existence of "almost real" eigenvalues for larger values of
Î ? *: k . As these eigenvalues approach the real axis, the
' correspending eigenfunctions become badly behaved, and when
I the real axis is reached they cease to be physical because
of the singular point in the real interval (ŷ  , yg).

The existence of almost real eigenvalues can be
‘ exploited to show that for unstable systems X(y) usually has
two ^eros in (y^, yp) for some value of c^. The exceptions
for which one zero of Z(y) suffices include the systems
satisfying the restrictions (12) which were shown necessary

: for the existence of a real eigenvalue.
Suppose now that a complex eigenvalue c = c(im )(c./O)1 1 1

 ̂exists for a fixed value of k^ of k . Since the pertui'bation 
' equations are regular in the real interval (y^, y^ ) when 
\ X 0, their solutions are regular in that interval. For 
, example, equation (8) for f(y,c,k)

f ̂ j - k f  “ O
is regular on the real axis when c^ ^ 0 so that its solutions 
f(y,c,k) are regular functions of y , c and k on (y^, y^).
Thus there exists a regular solution f(y,c,k) va^nishing at y^,
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and c is an eigenvalue if and only if

where G is a regular funcfion of c and k. By the implicit
function theorem it follows that c is a regular function of -
k . As k increases from the value k^, c moves continuously
from the value c^. The necessary conditions (a) and (h)
show that c must remain in the region < c < U mcvx'>r
0 <  Cj_ < _ The present purpose is to
show that c must come arbitrarily near to the real axis.

As k^ increases c either continues to exist for
indefinitely large k^, or ceases to exist for values of k^

2greater than some value k^ . In the next section, the case 
2of large k is' studied and an upper bound of the order k~*̂

is placed on c^, so that c is almost real. The only other
possibility is that there is a k^2 such that c(k^) exists

2 o 2for k^ ^ ^ <  k^ , but does not exist in a right hand 
neighbourhood of k^.^. Suppose c_ = c(i<}. This
limit must exist since c is a regular function of k^ for 
k^< But c^ need not. be an eigenvalue. The only
possible location of c^ is the real axis, because a complex
value of c -would imply that the function c = c(k^) was
regular at k^^, so that values of c v;ould exist for k^ ̂  k^^.
It follows that c can be brought arbitrarily close to the

9 2real axis by choosing k̂" sufficiently close to k^ .
The existence of two zeros of X(y) for some value

of c^ can now be. derived as a necessary condition for instability.
Suppose the flow is unstabl.e . The complex eigenvalues c 
exist and, as shown above, almost real values of o oxict.
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When is small, there is a point in the 
complex plane of y, and very close to the real line (y^, y^) 
such that X(y^) = 0. This can be diown from the definition
of X ^ (U - 0^)2 - + 2(U - c^ )ic^ and condition (b ),
page 2 9, which states that Re[x] vanishes in (y^^ y^ ) if 
c is to be an eigenvalue. Where (b ) holds (at y , say ),
Re [x^] - ^ 3.nd = 2(U - c^ )Cĵ  (small) so that X
nearly has a %ero. It follows that the analytic continuation
of X to complex values of y has a zero nearby, in fact distant
approximately j from y^ , where p -
and m is the order of the first non zero derivative of X(y)
at y = y^.

From equation (9) for F it has been shovm that

Ice) = = o
P pv/here, as before, X = (U - c) - A .

Since almost real eigenvalues exist it follows that
f - 0  .Cc ^

To evaluate the limit, the prescription in the footnote is 
employed. Since the integrand contains a factor it is

ootnome

The plus sign is applicable when a >  0 and &  % and a
factor (-1) occurs for each condition altered.



-48-

small , except near zeros of Z. Near ( Z(yg) = 0 ) 
expansions can be made in terms of ^ = y - y .

I _  _j2_ (n-z) b yh) ~ *1 ,
[ 4X^ 4H- I ^ ̂  -Î- u a j! ' ‘ Ki ri V 017E '^C
I where n is the order of the zero of X.
i The behaviour of F(^) ~ X^(îl)'fClJ is already known (page 
L 38).
I The exoression is examined separately
; for the three cases n = l, n = 2, n > 2 .

When n = 1,
FC1) -  Leg 1

which does not exist. If 1(c) is to be zero, at leas
one other zero of X must exist to allow cancellation of the
inimitiés.

When n = 2
X

dw  Hi Q VV

which does not exist unless X^"rO, in which case the limit 
does exist and is zero. Thus, if  ̂ ^ 0 there are tv70
zeros of X, but if X q ’*' = 0  one zero of X may suffice for
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the existence of nearly real eigenvalues. The necessary 
conditions (12) for the existence of a real eigenvalue include 
the condition Xo’’  ̂ = 0.

When n ■> 2

%

 ̂  ̂ 4-^p si [^/

which does not exist.
The conclusion is that instabilities cannot occur 

unless there are two zeros of X(y) in (y^, y^), for some
value of c^, except in the unusual circumstance in which X 
possesses a second order zero coinciding with a zero of X * '’♦

The existence of two zeros of X(y) for some value 
of Cp (when cq = 0) has consequences on the flow profiles.
There exist two points y^, y-̂j in (yq, y2 ) such that Xg = X^ = 0 
for some value of c^.

/. Us"Chw = t A s 
U fc- 'Cv = 1 Afc «

A rapid decision on the stability of a given pair of profiles 
is possible if graphs of A(y) and -A(y) fail to intersect 
a graph of U(y) — Cp where c^ varies such that Umin < Cp <  Ihiax. 
(See figure 5.)
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y

Exdw\|)!(ZL A ^ ) j  ('L(y) -Suctv 't \̂c\.'t X (^ ]  Cctia»̂ <ii"
: hiJi\/z two 2:eTx>s -for a*\^ Vcttue o f  Cf. b^t^eciA. o/yyd, Cltuax •

Fi;f̂ ure 5

Since X = Xj. = 0 it follov^s that X* = 0 for some y-
value be tv; e en and y^ .

(u-c.)a'- AA' = o
between y and y . . It may be possible to construct a graph

A A/of to examine whether it intersects the graph of U(y) - ĉ
for any value of the parameter Cp. If not, X(y) cannot have
two zeros.

The non existence of real eigenvalues, demonstrated 
in the last section frustrated any attempts to find real 
eigenvalues and search for nearby complex ones, as has been 
done in the literature for non conducting fluids. Assuming 
that complex eigenvalues do exist for some magnetofluid
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flo.7 s, this section demonstrates the existence of real values 
of c which allow a singular solution of the boundary problem. 
These are not eigenfunctions but do have complex (regular) 
eigenfunctions nearby.

It might be possible to find such real singular 
solutions and develop a perturbation theory to search for 
nearby complex eigenfunctions. »

No such theory is developed in this work, but 
real singular solutions are discussed briefly below. For 
the special case of symmetric flows, instabilities are found 
by searching near an unphysical real solution (page 67 ).

If F(y) is a real solution of (9) satisfying the 
boundary conditions at y^ and yg, but not regular in the 
interval (y^, y2 ) it is easy to show that two singularities 
occur in (y^, yg).

From (9) the Wronskian function UJ/pcx) 
for any two linearly independent solutions of (9 ) is constant, 
except at singularities of (9 ) where, discontinuities may 
occur. Singularities of (9) occur only at zeros of X(y), 
and the behaviour of F is known (page 3 8 ) in terms of ^ and 
n.

When n = 1
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Hence , Y/ has a discontinuity ± %  1. tC. *^,-7T .
But W = 0 at each end point, therefore two singularities must 
occur to allow cancellation of the discontinuities.

When n = 2
vq i J ptiJ ̂   ̂Leg 1 (^o - ^0 ' )

• I W  'V/ •— ^  T poi^S .
I "" —Hence, W has a discontinuity X iĉ o ̂  j and two singularities 

are necessary for cancellation unless oĈ  = 0.
 ̂ /  4 — ——When n > 2 W has a discontinuity %  C&\(:n) l (L where 

c^* (-n) occurs in the series solution for F(^), and has a 
complicated dependence on the profiles A(y), U(y).

The necessary conditions for the occurrence of 
two zeros of X(y) now become necessary conditions for the 
existence of singular real solutions, except when there 
exists a point y^ such that X(y_) = X'(y^) - X‘** (y^) = 0,

 ̂In the absence of some treatment like Bin * s (page 6) for 
: non conducting fluids the sign is ambiguous and depends on 
whether the real solution is treated as the limit C i oiT o - . 
(Alternatively, on the choice of the branch of Log ).
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7. Large . (Short wavelength)

When k^ soothe system is stable f or ̂ all profiles 
IJ(y) and A(y). This can be proved from (8),

(xf'y - (ĉ xf - o . fô)
When k2 = oo , Xf = 0 and non zero f occurs only when Z H 0, 
i.e., (U - c )̂  - A^ 5= 0. This cannot occur unless U(y)±
A(y) is constant, when Alfven waves may propagate with 
real velocity c = U ±  A. In any event, the system is 
stable.

The object of this section is to prove that the 
system is stable for sufficiently large (finite) values of , 
k ^ , dependent only on the profiles A(y) and U(y). The 
necessary condition for instability^ (e), page 31, viz.,

E <  0 for some y in (ŷ  , y^ ) . , .. (e)
where E = k2 + Ajc{—  j> is difficult to satisfy when
k2 is large. But ^  J unboundedly large near
zeros of Z(y), and as cp—^ 0  these zeros approach the 
real axis of y . Investigation will show that (e) always 
does hold for sufficiently small values of ' c , no matter how 
large k^. Although this allows no decision on stability 
or instability an upper limit on ĉ  ̂ is obtained, and further 
investigation shows complete stability for large k^.

First, expression E is examined remote from zeros 
of Z(y, c) to see for what values of c, it may be negative, 
even when k^ is large. It is already known (page 22) that
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coïïiplex eigenvalues c must lie in the region <• Cp < ^
0 < c ^ <  ( (U^^- c?)2 _ A„h). Let Be a fixed upper 
bound for 123ZZ" - X'^l as y, a,nd Cj_ vary within (known) 
finite real domains. (Such a hound does not exist when 
X(y) is discontinuous 5 i.e., when U(y) or A(y) is dis­
continuous; hence discontinuous profiles examined in

2Chapter 4 may he unstable for large k .)
Let (5 be a fixed small positive nuinber. V/hen

Cj_ ^ 6 > 0 ,
(Xi"^ - A ^ ) ^  r 4 - C U - U j ^ C i ^

^  4" f ( f C t  C"f j i/ •
SO that E can be made positive for all c-̂  in (U.X '■ mi ? tvicx /
and all y in (ŷ  , y^ ) by choosing k ^ ~ Z f  provided Cj_
6 >  0. Inverting this argument, a large value of k ensures
that (e) cannot be satisfied unless Cj^c é: - ^ '

When 6 Cĵ t> 0 the singularities of E (zeros of X) 
lie close to the real axis. In the neighbourhood of the 
singularities,

nt-1 '
where X has an nth order zero at y and *7 = y — y • Variation0 * 0
only of ^ need be considered because varies like y

u.nd like c^. The value of Cjf. fixes the position y^
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of the singularity.
In the three separate cases n = 1, n = 2 and n >  2 

it will he sho'vn that E is negative for a range of values 
of so that condition (e) is always satisfied and no
decision on stability is possible. But in each case the 
stronger necessary condition for instability

^ E  Ih l^ J  cdy -  O  • C / S )

from which (e) was derived (page 31) cannot be satisfied, 
whence stability for large is assux*ed.

When n = 1

When , k2 still dominates and K  ̂
when < *1v-< it is negative for (/. «  )
and positive for H { (See figure 6.)

n

£  inegcLfivC fo-A Safj^ic/Bi\4{j^ Cl (̂ i) w 6 c k i n -

Figure 6
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But the integral (15) can be examined, for - ̂  ^
and ^ i «  , with a knowledge of ?(^). Since n = 1

F M )  - L(^ 1

/. yJllF'f" f E l F l d d v

E i F l ^ v

>zXl{ - l<C^k)^l

>  Ô  .
When n = 2

■ E - it:'
The expression B is positive when ^  “ĵ  * Depending on
the sign of E is negative when «  //k for
one sign of and positive for the other.

The integral (15) is plainly positive because
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^ --ir ~

> C a 3

h> O Since, Hi- «  1. •

When n > 2
p  _ . n Cn-z) ( J

*  4 M | V
which is positive for all ^ 4- > o.nd negative only when
X  >  Hi •» .

But F /V/ ̂  ̂  ^ and

i^hlF'rv E IFlW^y

>  T '  f S À Z H f 1-jw.^  I 4_|^|2.nt5 ^

yi r * / ^ k  ' / j n t  I )
- k L . ^  |i,||  ̂ ^

> O  Since ih > 2. .

The conclusion is that the necessary condition for 
instability

C ( j F ' F ^  (ku n  IP IW ac/ = o
can never be satisfied for values of chosen sufficiently large.



CHAPTER 3

LONG WAVE INSTABILITIES

Sufficient condition for instability - magnetic 
field stabilises or destabilises? - instability

of symmetric flows

1. Sufficient condition for instability

Rosenbluth and Simon (1964) solved the stability
problem for laminar, flow of an inviscid incompressible

2non-conducting fluid when k =0, and hence wrote 
down a sufficient condition for instability (chapter 
1 3 page 10). Their method can be extended to perfectly 
conducting fluids in the presence of a magnetic field.
To obtain a simple sufficient condition (namely (l6) ) 
it will be supposed that 

U'(y) > 0 
A (y) = constant.
In these circumstances, Rayleigh’s condition 

that U(y) has a point of inflexion will emerge as a 
necessary condition for instability when k^ = 0.
This ceases to be true when k^ / 0 or when A(y) / 
constant, and recourse must be made to the more complicated 
(frequency dependent) necessary condition for instability
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(d), page 31. The condition
A  ^ 8livviv\ )

also.emerges as a necessary condition for instability 
2when k =0 ,  This too ceases to be true for other 

values of k or for arbitrary A(y), but the weaker 
condition (c ) which states A < - U»vv,*w does hold.

Violation of (c) ensures stability,probably 
because the alfven speed is then sufficiently large 
to allow propagation of a disturbance beyond (faster 
than) .the flow. This interpretation survives the 
strengthening of (c) to,(c)', for the special k^ = 0 
modes of this section, because violation of (c)’ allows 
propagation beyond the flow in at least one direction.

The derivation of the sufficient condition (l6), 
below^now begins. From equation (8) for f(y, c),

pwhen k = 0,
[ L C U - c r - A W f ' T  =  o

since f(y,, c) = 0.
The system is unstable to long wave modes 

(k^ = 0) if and only if G(c)= f(y2 , c) has complex 
^eros with cq / 0. The relation

(2(c) - _L rh— dim—  — L — dim—2.A Jv. U-c-A 2A U “C1-A
can be used to plot the variation of G(c) as c is 
varied around the contour of figure 7. G (c) has
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2‘eros inside this contour if and only if the plot of G 
encloses the origin.

Figure .7
Ux * - UtMüx
Ui ^ = UwMw.

The variation of G can he sketched (figure 8) 
from the following information, remembering that U'(y) 
> 0  and A(y) is constant.
( i )  C  -  R e ’’ ® ( R I a w - g e ) . . .

(j_i ) — oo < Cf. - A < Cf + A. < LI I J — E ...
a u i C c i ' > o , < f w v f & i ~ + 6 .

( i i i )  C f . -A < C f  +  A —  m y , ) . • *

^ IjiX c A  ~  +<0 J I ^  ^
( i ’v )  Cf-A < U, < C.f f A  < Uj.

-  1  )  d ^ x ^ i C r ] > 0
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SIIHER A <

(v)
C f - A  ~ u ,  <  C f t A  <

d e i C r ] ' ^  - o o  j =• ?

(vi)
U ( < ~ A < Cy. f A < (J j.

- ? j S *n lC r l - ?

(vii) Cf-A -Ut

' -<0 , “ ?
(viii) Ug_ < Cf-A

* 7 j < O

^  A  ̂ “UvWlXxj

(v)
C/̂ -A U( < Cw^+A '̂ U %

J ̂  :> ' ^ ^ i G r ï = ?

(vi)
- A U 2. <c + A 

l̂ (Cr? < 0  ; d l r ^ l C j  -  ?

(vii) Cf-A Uz.

^ ^ G r ]  J é * y \^ Q \ - ?
(viii) Ut < Cf- A

^ { G ( \  = ? J i \ » ^ l C t l < 0  .

Piprure 8
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In one of the regions (v), (vi), (vii)
vanishes and. there is a zero of G(c) ( the origin is
encircled ) if and only if >  0 there. When

■ A > ), ( iL lQ ] < 0 in all three regions,
implying no zero, hence stability. Thus the condition
A <  ) has emerged as a necessary condition

.
for instability.

When A <  , (Z i - lC r ] may have either
sign in the region (vi), so that instability is possible 
if S ^ ^ C r } é o e s  vanish in region (vi) and "> 0 there.
If S ^ [ C r j vanishes at (v) or (vii), then  ̂v-oO and 
no instability occurs. Thus, for instability, it is 
necessary that = 0 in region (vi), and this
implies Rayleigh’s condition, because ...'

- O in region (vi)
^  ^^ - t - i 4 O i ~

zAU'Cyj) z.AU'fi/fc)

where U(y ) = c - A
U(y^) = + A,

-=̂  there are two distinct points ŷ, y. in the 
interval ŷ , y« such that 

U'(yg) = Ü'(y^)
U" (yg) = 0 for some ŷ  in (ŷ, ŷ ), q,.e.d.
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The sufficient condition for instability can 
now be stated.

If there exist two points y^, y^ such that 
Us - U-t = 2A
U' - Uf = 0 s t

and c is defined by 

°r = ^(^8 +
c j_ = 0

and if
«'y X  o  0 6 )

then instability occurs.
The instability occurs when = 0. If it is 

understood that k = 0, the condition is necessary and 
sufficient for instability. The constraints on c^, y^, 
y^ ensure that the integral is real.

As the magnetic field vanishes (A-^0) the 
condition reduces to Rosenbluth-and Simon’s

p  = I - _ u " d u  „^ - U'CU-Cr) 4, ^ ̂
where c^ = U(y^)
and U"(y^) = 0 .
This limit is better displayed when (l6) is 

rewritten in the form
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M  -  . [ J - l ü f M L ] ' -' ~ lü' 2 A jy.
„ , f ii-Ct t A 7_ c;~-/s:i ^ o

~  4. z A

2. Magnetic, field stabilises or destabilises?

It has been shown that any flow U(y) is always 
stabilised by a magnetic field A(y) such that |A(y)| >|U(y)| 
for all y. It is'tempting to oonjeoture that an 
increasing magnetic field is always a stabilising 
influence. This will be shown untrue, at least for 
long wave modes.

When U*(y)>  0 and A is constant, M(A) >  0 
"is a necessary and sufficient condition for instability 
of = 0 modes. The sign of will reveal whether 
or not increasing A has a stabilising effect.* In the 
case of marginal stability (M = 0) for a given value of

* Strictly speaking, knowledge of the sign ofd/W/iAis 
useless unless M = 0. The sign of M merely indicates 
whether or not the plot of G(c; (figure 8) encircles 
the origin. Thus ifdM/dA>0 for a given value of Awhere H <  0̂  
no difference is made to stability unless dM/dA-> 0 
over a finite range of values of A sufficient to cause 
M to change sign. When dM/d A >0 it will be said that 
the magnetic field tends to stabilise.
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A, the sign of is crucial to the stability problem, 
because an infinitesimal change in A causes stability 
or causes instability.

v^here U+ - U = 2A TÎ s
+ U3 = 2c^

UJ - U' = 0s
It follows that c (a) = } where

^ “ U*r
differentiation with respect to A is denoted by dot, 
and differentiation with respect to y by dash.

Keeping A ^ 0 at first, M(A) can be obtained 
by formal differentiation ...

The integrals on the right do not exist, but formally 
represent the proper expression

A m u - U t X u - U i l l y , A ~4. U ' ^ ( n - U i } ( u - U s )

Provided M(A) / 0 a change A A in A causes a
change M. A  A in M. The factor A  A / A  appears, and 
ensures that the change in M does not depend on the 
direction of the magnetic field, but only on the change 
in magnitude. This had to be the case because the 
perturbation equations do not depend on the sign of A. 
Increasing the magnitude of A is a destabilising influence 
only if M. A.A >  0. In particular if M(A) = 0 the
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flow is marginally stable and an increase A A in the 
magnitude of A causes instability if and only if

> oL uYu-Ut)(u-Us)Jy^ 4

where = (Ug" + U^")/(Ug" - U^" ).
Now examining the case A = 0, it happens that 

• *M(0) = 0. The points y , and y^ coincide at y whereu s 0
U"(y^) = 0 and c^(0) = 0. It is necessary to calculate 
second derivatives and these are given formally by

where Or (0) = —  U ^  / S U e U j " . In terms , of integrals 
which exist, M(0) is given by

.
The introduction of a small magnetic field AA 

to a field—free flow causes a change iM(0)(AA)^.in 
M and hence tends to destabilise only, if M(0) >  0.
In the special case when M(0) = 0 (i.e., R = 0) the 
introduction of actually causes instability if and 
only if

- , y ,  ^  U »

where = 0. The sign of the boundary term is 
strictly negative, and always makes a stability^ 
contribution.
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3. Instability of symmetric flows

Specialising to symmetric flows, a sufficient 
condition for instability can be established. The 
condition is interesting because it shows that any 
such flov/ that is stable in the absence of a magnetic 
field can be made unstable by the superposition of a 
suitable magnetic field parallel to the flow.
IPor convenience yp = 0 and y2 = 2b. The following 
are the conditions on the profiles.
(a) The velocity profile, U(y), is symmetric,

■ U(y) = U(2b - y).
'(b.) The magnetic field profile is symmetric,

A(y ) = A(2b - y )..
{0 ) The magnetic field vanishes at the walls,

A q
'(d) The fluid velocity vanishes at the walls,

Uo = 0-
(e) The local flow energy exceeds the local magnetic 

energy, U^(y) >  A^(y).
Given these conditions, the system will be 

shown unstable whenever
u." > AJ' oe)
The derivation of (is) crucially depends on (a), 

((b) and (c). No generality is lost by imposing (d),
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and (e) could have been relaxed for some but not 
all values of y. If (e) were relaxed for all values 
of y, that is if (y ) U^(y) for all y, then condition
(1 8 ) for instability cannot be established, which is 
not surprising because in those circumstances the flow 
must be stable, according to the sufficient’condition 
for stability (f), page 32.

The sufficient condition for instability (I8 ) 
bears an interesting relation to known results in 
ordinary (non-conducting) fluid dynamics.* As the 
magnetic field vanishes (1 8 ) becomes Uq">  0 , which 
result was obtained by Tollmien as a sufficient 
condition for instability of non-conducting fluids.
If Uq’* is positive it follows by symmetry of U(y) that 
U"(yQ) = 0 for some critical y^, so that U(y) satisfies 
Rayleigh's necessary condition for instability of any 
laminar flow (not necessarily symmetric) of inviscid \ 
incompressible non-conducting fluids. Thus all of 
Tollmien's unstable flows are seen to .satisfy Rayleigh's 
necessary condition (see figure 9)

* Discussed in chapter 1.
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WdO

Cûi) O : (ooTnf o f  inflexion musi  o c c u r  f o r

CW O; looi'nf of ihf(c/ion or iviAy oceuX".
Figure 9

But Rayleigh*s condition may be violated by 
some flows for which UJi < 0. Such flows are stable 
in the absence of a magnetic field, but can always be 
made unstable by superposing a magnetic field such that 
(l8) is satisfied. For example, inviscid incompressible 
laminar flow with parabolic profile, well known to be 
stable in the absence of a magnetic field, can be made 
unstable in this way (see figure 10).



r-70-

^ y
Magi/i&iic ficlci {srjfiie Suihnh lc for t^akmg f>arakolic V<Llociiy 

jorofi/d ui^skxb/c.
Figure 10

Working with eq[uation (8) for f(y)
f C(U-cr-A^]f 7  ̂ - k’’£(Ll-cJ’'-AU f = O (8)

subject to the boundary conditions (U - c)f = 0 when 
y = 0 and y = 2b, it is easy to spot the real eigen- 
solution (f ; k, c) = (l; 0, 0). This solution is 
marginally stable (definition, page 18) but is not 
covered by the general theory of Latal et al. The 
solution (l; 0, 0) is barely physical, since it implies 
an unbounded fluid velocity in the x  direction. This 
is demonstrated by noting that v = Ü and div v = 0, so 
that the x velocity is -xU* which is unbounded as x 
increases. But no difficulty will arise provided the 
nearby unstable solutions are properly physical.
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Instability will be demonstrated by finding a 
complex solution (f; k, c) near the marginally stable 
solution (l; 0, 0)  ̂ The complex solution f will be 
near 1 for most of the range 0 y <  2b. But near 
y = 0, f must rapidly fall to zero, to satisfy the 
boundary condition there. This will be facilitated 
by the presence of two singularities of the perturbation 
equation (8) in the complex y plane at those values of 
y for i^hioh U(y) = c ± A(y). For the marginally stable 
solution, 0 = 0 and Uq = = 0 so that these * singularities
ooinciddat y = 0» If is a fixed small positive 
number and c is fixed arbitrarily as a complex number 
with small modulus and non-zero imaginary part, the 
perturbation equation (8) is regular at y = 0. A 
solution f(y) vanishing at y = 0 must exist and so 
already satisfies the boundary condition at y = 0.
By symmetry the same solution can be started from the 
second wall and the two parts joined in the middle 
(y = b ). Of course,, the derivative at the join is 
unlikely to be continuous, but by demanding f*(b-) = 
f * (b + ) = 0 at the join, f becomes an eigenfunction 
and c is fixed.

It is not possible to solve the perturbation 
equation (8) for completely arbitrary c, so that some 
initial information about c is necessary. Rather than 
seek this information in a laboriously logical way.
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the present purpose seems best served by assuming the 
result c in advance, solving for f, then solving for 
c again to see if the initial "assumption*' was valid. 
This scheme will be shown to be self-consistent when­
ever condition (l8) holds. Thus (l8) is a sufficient 
condition for instability.

So, the following properties are tentatively 
ascribed to c :-

(i) 0%. oC k ^ t  (ii) oC k4,
(iii) Cp > 0, (iv) >  0.

Integration"of the perturbation equation (8) is 
further divided into two regions. First in the region 
0 <  y < e  near the wall, which is influenced by the
singularities, and then in the region 6 < y < "b remote
from the singularities where f(y) is likely to be close 
to the marginally stable solution f = 1. It will prove 
convenient to choose 6 = kf^

From (8), for all y,

When 0 < y < <c , the second term on the right 
is small compared with the first, which will be 
justified in retrospect. Therefore,
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_ const.___
~ CU-c-AJfU-c<-A)
_ _  C o n & T .

y(üû^“Aô J - t A o ^ ' ) - c

' '+A;j+iyKu.'VAo") -c t' ■" >y<:u Io

by Taylor expansion in the range 0 <  y < e  where 
Integrating this expression exactly, and demanding 
f(0) = 0, the following are the important terms of 
the solution f

’  ^ ( % U . 4 A J / W / - A / J

Z-iTTCw A«YU."U/ - Ac"Ac')________ _
( U o ' A/ [(Uo'+ Ao'J/CUo'-A/J]

I ( z c a :+ — (Ao'Uo" - A/'U.O Aÿ[(U.'+A.O/̂ ü/-A«Oj

_ / U c V A / \ V  f üA ' t A / j - l] I ( 2 0 )
Ut.̂  A»'  ̂  ̂ ^ j j *

As c tends to zero f tends non-uniformly to 1,
and the marginally stable solution is recovered.
Remembering ĉ  «  c_, and c. >  0, c >  0 so tliatr j. r



-74-

the branch of the logarithmic functions is v;ell defined,
let . Then

I » ,  , ziK Ao"Aj)
^ (IL' '-/L'y C ( k , ' + ]
+■ +-

%provided that 6*»- . The choice 6 = k makes 6r
small enough for the Taylor series expansion to hold

k"̂ ) and large enough to escape influence of
the singularities ( 6 »  k^ ).

It is already apparent that the neglect of
the integral in (19) is justified. In the region
0 < y< (C , f] is bounded above by a constant 
multiple of -log k^ and is bounded above by a
constant multiple of 1. Returning to (19) with this 
knowledge, and v/ith the value of the constant of integration
-fty) = —  ̂ - 2 . A J c_______ ________ ]

(U-cJ^-A^

cu-ô - A 
0(t) . ù i k ^ )  + i O ( k V  .

SO that the second term is indeed negligible.
In the region <É <  y < b all terms on the

right side of (19) can be ignored and the perturbation
equation (8) has the simpler solution

f(y) = const + O(k^) + iO(k^),
provided the constant is chosen as 0(1) + iO(k^).

By joining the solutions at y =£ , and neglecting 
real terms of order k^ and imaginary terms of order Ic4
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a solution valid for 0 < y < b is obtained.
r ^  I 2 i K c ^ A / ( U o " u / - A o ' ' A c O

tc/j I dUa''-Ao'^J^^C(Uo'+A^'J/(tU'-Ao';J
The function f derived in the region 0 <  y < <5- 

and given by (20) is therefore valid for all y in the 
range 0 < y < b, to a sufficient approximation. If, 
further, f*(b) = 0 exactly and f(y) = f(2b - y ) in the 
range b c y < 2b, f becomes an eigenfunction of the 
perturbation equation which can now be solved for c.

From (8),

Since ( /L iX f^ is bounded above by a constant 
multiple of -log and by a constant multiple
of 1 in the region 0 < y < 6 , the first integral on 
the right behaves at vjorst like

( e S  2 i é c ) ( : - i ^ k V i )  = O(kt) + 1 O C k ^ )  ,
while the second integral is of order k^ + ik^.
Thus the integral from 0 to G may be neglected, and 
the following solution obtained for c

'-A. ' ; ] o C k V
2- Aô Û

It remains to check that this solution for c 
satisfies the initial assumptions (i) - (iv), page 72.
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Assumptions (i) - (iii) are obviously satisfied.
Also >  0 if >  A^" A^ * , that is if condition
(1 8 ) holds # Thus the foregoing scheme is self- 
consistent whenever

SO that (1 8 ) is a sufficient condition for instability.
If it had initially been assumed that o^<  0, 

then the above expression for c^ would appear with 
opposite sign, so that (I8 ) would remain unaltered.
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VACUUTvî BOIMDARIES

Boundary conditions - conditions for stability 
- an example - arbitrary density profile.

1. Boundary conditions

Still studying laminar flows between flat walls, 
it is possible for the magnetofluid to be kept off the 
walls by a magnetic field - an effect not at all per­
missible for non-conducting flows.

A possible equilibrium (figure 13) is a magneto- 
fluid flow (still inviscid, incompressible and perfectly 
conducting) given by

J/ = U(y)x (-b < y < b }
parallel to a magnetic field given by

A  = (-b < y  < b J
and contained by a vacuum magnetic field

x&y = ■ ( B - b  < ly 1 < 6  )
Equilibrium demands that Hy is harmonic and has 

the same value at both, interfq-ces. The magnetofluid 
could flow nearer to one wall than the other.
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Vacuttivx  ^ Hy(ŷ
~7--7"mcî ncHofiuicl __ ^ Ucy) j H(y3 /   ^

^ ^ ^ ^  y '

VaciAaw»  w.
y -- 6

Figure 13

0)
V

In the magnetofluid region, the perturbed equilibrium 
is described by the same equations as before. Only the 
boundary conditions change. The new boundary conditions 
are derived in this section.

When the equilibrium is perturbed, the vacuum
field is easily calculated. It becomes = Hy^)X
where

- O .
Each component of ĥ '̂  is harmonic, so that

the y-component h^y can be written
= o( smkk(B-y) e

which satisfies the boundary condition = 0
at the wall y = B. Physically, this occurs when the 
walls are perfectly conducting. Previously, when the 
magnetofluid touched the walls, it was not necessary 
to make any assumptions about the electrical properties
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of the walls. As before, only two dimensional 
perturbations are studied (m = 0). Allowing m > 0 
does not change the boundary conditions, and only 
trivially alters the perturbation equations (replacing 

by + m2).
At the fluid-vacuum interfaces pressure balance 

must be maintained. Thus for the equilibrium or the 
perturbed flow

at the interfaces. In particular Hy-> H for equilibrium. 
Linearising,

using the notation of page 24 for the perturbed quantities.
In terms of complex amplitudes (i.e., coefficients 

of exp( ik(x - ct) ) the pressure balance condition 
becomes

ik - j j u  H A  - -̂ <.0
A second boundary condition is required to 

eliminate the constant In both regions the
magnetic field is parallel to the perturbed boundary

Al' - A2'H V H
A v  _ i|v ' ' Hv H '
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The new magnetofluid “boundary condition is 
therefore

i k j D  - / u H A ' '  =  —  A

at each interface, and can be rewritten in terms of 
any one magnetofluid amplitude according to the 
perturbation equation being studied.

For example, equation (8) for f(y)
- k̂ rCU-0 '̂Â )f - o (8J

must now be solved subject to the boundary conditions
f ̂ - JUk) -f = o C y * b J  j . ^

( ( ^ — c)'"— A ' " J  "f ^ +- - A - C W  p ■— o Cy “ " b )  j
where

2. Conditions for stability

The necessary conditions for instability 
(a) - (c), page 29, still hold. Having assumed that 
a complex eigenvalue c exists ( o ±  ^  0), any consequence 
is a necessary condition for instability. Proceeding
•as for rigid boundaries, when c^ 0 f is regular in
the interval (-b, b). From equation (8) for f, 
using the new boundary conditions (26),
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4VcJ"-Â Xll'/Vk-|fr)d;/ 
=[(4i-o'-A'jrf *]-b

n ^  , u. I<  ̂ ^
^  P +mkk(6~b)

Taking real and imaginary parts,

A

and . ̂
I»
Since the first integral vanishes, U - c.

must change sign in (-b, b ) . Thus,
- or»U60 somewhere (a)

placing upper and lower limits on and revealing 
that unstable disturbances must travel at the flow speed 
somewhere. These remarks are identical to those made 
for rigid boundaries on page 29.

Since the second integral is positive (U - c^)2 
- C]_2 _ A2 must be positive for some values of y. It 
is also negative for other values of y (since U - c^ 
has a zero) and hence is ^̂ ero somewhere. Thus

ci^ = (u - Cp)2 - a 2 somewhere, (b)
placing an upper bound on o ± ^ .

In particular if (b) is to be attained
< (Um&K - (c:)

for some values of y.
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Conditions (d) and (e) do not hold under the 
new boundary conditions. The physical interpretation 
of (d) in terms of momentum conservation is lost 
because the magnetofluid now interacts with the vacuum 
field.

Condition (f) derived on page 32, from Prieman 
and Rotenberg* s general sufficient condition for stability, 
is. strengthened by the introduction of free boundaries.
Equation (27) is formally a quadratic equation in c 
with discriminant

uClf'l tk ' l f r jd ÿ ]  ^
L, —(g

. ( u ^ - A V Û - f - _n-((fbr+ If-bT)/

c is real if and only if the discriminant 
is positive. Real c^and therefore stability^is assured
if

-L
In the case of rigid boundaries, the right hand side 
vanishes. In either case, stability always occurs if

A2(y) >  U2(y) (f)
for all y .

The stability criterion for long waves (k^ = 0) 
is slightly altered by the new boundary conditions, which
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make the system more stable. From equation (8) 
for f(y)» when k^ = 0

fiv) -  C  -4- f - b
.7 Rb) = x-tfi-dt'’ "7^ x ^ t r )  •

From the boundary conditions (26),

Xtfb - m.fb
where =. yU*l4vV"p * ( /Î6 "b).
The long wave modes are unstable if and only if G(c) 
( ̂  A  ^ complex zero (cq / 0). G-(c) is
given by G-&) - fb

=  X-bf-bl/.t ^  ~ ^  i
The case of rigid boundaries is recovered by letting 
J\_ co that is by letting the vacuum field become 
infinitely large. When JL is finite, U'(y) >  0 and 
A is constant, zeros of G-(c) inside the countour of 
figure 7, (page 60) occur less readily because the 
plot of G(c), figure 8, is displaced to the left by 
the amount and is less likely to encircle the
origin.

The sufficient condition for stability given 
for rigid boundaries (page 63) can now be restated for 
free boundaries Profiles for vhich U* (y) >  0 and 
A = constant are unstable whenever
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“ A  ^ ^
with same definitions and restrictions as before.

3 • An example

The case of trivial profiles (A, U, all 
constant) was studied by Haas and Taylor* (1963) 
and shown to be stable." It is against intuition that 
a real flow should be stable for all velocities. The 
magnetofluid stream resembles a jet and instability 
might be conjectured for sufficiently high velocity.
But the system here is so idealised geometrically that 
no physical frame 'of reference exists, and in fact all 
velocities U are indistinguishable in the stability 
problem. ' Haas and Taylor showed that the flow is made 
unstable, for velocities greater than a certain critical 
velocity, by a small dent in the rigid walls. The 
dent has the effect of introducing a frame of reference.

In this section the ideal (stable) problem is 
repeated and it is shown that a frame of reference is 
equally well provided by the introduction of a low

* Their work is unpublished, but this section contains 
all the relevant details.
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density magnetofluid into one of the vacuum regions. 
Also, it is already apparent from the last section that 
a slight inhomogeneity in the velocity U(y) also causes 
instability provided condition (28») is satisfied.

For the ideal problem with two vacuum regions 
equation (8) for f(y) becomes

f" - k2f = 0 (or U - c = tA)
which has general solution oC s ^ k  k ̂  i- p ceaA k y  ,
The boundary conditions (26) then yield four, real 
eigenvalues given by

^  ^  a s )
X  -

- p ,̂ +4vj.k(e-bj
C^fkk(6-W C ü tK k to  .

Since all six eigenvalues are real, the
system is stable, and this is Haas and Taylor's result.

It is not to be expected that small changes 
in the system might cause instability because none of 
the four modes represented by X =JI,, X = is
marginally stable (definition, page l8). This is
shown from equation (2 7)

which is formally a quadratic equation for c with 
discriminant
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A - - XfeOfl
. [ C ( u ‘-A'->êfr<-kw<iv-j^ür<-ifj') ].

For example, when f =o(Suak/<J/» which corresponds to 
the real mode X ” dL |

A oc ^ o .
Thus the modes are not marginally stable, and no complex 
normal modes exist nearby. It will be shown, however,

I
that.linear instability may be caused by a slight change 
in the equilibrium.

If a magnetofluid with density and velocity 
Uq is introduced into one of the vacuum regions equation 
(8) for f(y) has to be solved in the two regions -b < y < b 
and b < y < B .

In the outer magnetofluid region b < y < B, 
f" - k^f = 0 (or Uq - c =±.Aq)

and from the boundary condition (U^ - c ) f(B) = 0 the 
solution is f = î(><LÛvUk(y - B ), where jT is a constant.

In the inner magnetofluid region -b < y < b 
f" - k^f = 0 (or U - c =±A)
f = OC l< y + p CàoA U  y

where oC and p  are constants. The three constants 
and ^  can be eliminated by means of three boundary 
conditions. . At the magnetofluid interface where y = b 
the pressure ( p X f )  is continuous and the displacement 
(f) is continuous. At the vacuum interface where y = -b
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there is pressure balance as described by (26). Thus,

X oC CôüA/kk + X p  kk XI y kiè̂ bj — O
OC XUnAkb +- p cWvlc*o f- V>Ojuw/\kCfi"tj “ O

(X - oC — P “ O
where Xq = (Û  ̂ - c )2 - .

The éliminant of these equations is

XooAkb kb -4'x, = o
XlÂwkkb X^okkb fWv/c(S“'bJ

X - JL, - O

When pj = 0 the problem with two vacuum regions 
is recovered and the éliminant becomes

which yields the.four real eigenvalues of the ideal 
problem.

The effect of increasing p, from zero on the X = J % , 
mode may be deduced by differentiating the full eqiminant 
( pt ^ P) with respect to ^ Assuming that the magnetic 
field H y does not change with p, , that is that the 
magnetofluid is introduced with zero pressure, the result 
is.

C3o)

d p .

_TL, (U,-c3
Hv^

Changes in X, and therefore in c, are real unless 
for the stable mode. That is.

= c
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(U - ü^)2 = + JL,
in which case all derivatives of Z with respect to p, 
vanish and the mode persists unchanged for all 
values of pi.

But completely new modes arise and the 
system will he shown to possess a linear instability.
It is necessary to return to equation (30) where Z and
Z^ are now operators (Z (U + )2 - A^) and
are time dependent. * Solving equation (30) for . .

2 J + tlkUj j JLi. XCt] - O .
Linear instabilities occur when the fourth 

order equation in has a double root. Rather than study 
this problem, extra symmetry is caused by introducing 
a magnetofluid of density in both vacuum regions.
Then equations. (30) apply with |3 = 0 and the equation 
for becomes

a e  ^ f X t p ^  2 t ^  -JôCitJ-o

which predicts a linear instability when
C u - u j ^  =  ( I  +-

Thus, when is small, high relative velocities

* have lost their exponential time dependence.
This situation is dealt with fully in Chapter 5-
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U - lead to linear instability for some value of Jlj(k). 
Similar modes arise from equations (30) v/ith = 0.

4. Arbitrary density profile

The effect of the magnetic field in keeping the 
magnetofluid clear of the rigid v̂ âlls is a special case 
of the more general effect that magnetic fields can 
support an equilibrium pressure gradient. The pressure 
gradient may well be associated v;ith a density gradient, 
especially in the case of a conducting gas.

Assuming that jO(y) is non constant, but that 
the fluid is incompressible ( = 0) the equation (8)
for f(y) can be rewritten in the form

( pXf')' - k̂ . p X f  = 0 (33)
Clearly, replacing pZ by Z equations (8) and (33) are 
formally identical. Assuming p(y) >  0, the magnetofluid 
makes contact with the rigid walls, and the old boundary 
conditions (page 27) apply.

The necessary conditions (a), (b) and (c), page 
29, for instability still hold without alteration since

The necessary conditions (d) and (e) for instability
hold if Z is understood to mean pZ. Thus, from (d)
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and from (e)

for some values of y.
Condition (f) also holds unchanged because the 

discriminant A is ensured positive whenever

and hence whenever A^(y) >  U^(y) for all y.
The conditions (12) on the existence of real 

eigenvalues become
p.Xft = ( p o ^ J ^ - ( p c X a J ' ‘'''= O  J C ^ U o

that is,
U a  - C  =  Ao -  O

+ Uo"U/-Ao''Ac' = O

As the magnetic field vanishes (A-^0) the second 
condition reduces to = 0 in which the
variable density has caused a modification to Rayleigh's 
result = 0. The modification is trivial since p(y) 
would normally tend to a constant value as A —^ 0, and 
therefore p^(y) = 0 .

The conclusion is that arbitrary continuous 
density profiles are simple to deal with and make no 
great modification to the stability problem. In the 
remaining sections only discontinuous density profiles 
with vacuum boundaries are considered.
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CHAPTER 5

NOIT EXPONENT I AL' TIîŒ VARIATION

Inhomogeneous perturbation equations - rigid 
magnetofluid boundaries - free magnetofluid boundaries

1. Inhomogeneous perturbation equations'

After derivation of the linearised equations 
(5), page 25, the assumption of exponential time dependence 
v/as made. It is easy to avoid this assupmption and study 
at least the asymptotic time dependence of non exponential 
modes. A slightly more general definition of stability 
is required. An initial perturbation is specified at 
t = 0. Instability is defined to occur whenever the 
subsequent perturbation is unbounded as t-^co.

When the initial values are specified the equations 
(5) can be laplace transformed.

VV|,-U'V,, =• A'7^a(s-A"û^ +
(3 5 )= Av,, +

where '
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and

The existence of the integrals is assured when ( ^ ^ l ^ ] > 0  

Eliminating either Vp ordj^, an inhomogeneous 
second order linear differential equation is obtained. 
For convenience both Vp and cUp are replaced by f^, 
the laplace transform of the function f^(y, t ; k, m) 
defined by = v^. It follows that

When Ü + p/ik ^ 0, fp can safely be used instead of 
Vp, but when U + p/ik = 0, it will be necessary to 
return to Vp before making any stability decisions.

The equation for fp is

whe re X = ( U + p/ ik ) 2 -* a2 , •
If p/ik is replaced by -c, the homogeneous 

equation corresponding to (36) is just equation (8) 
for the complex amplitude f, obtained on the assumption 
of exponential time dependence. The laplace transform 
technique is therefore complete in that exponential time 
modes arise from the hom.ogeneous equation, and all other 
modes from the inhomogeneous eqiation. . The inhomogeneous
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eqijiation can be solved, for given boundary conditions, 
in terms of the relevant Green's Function, which exists 
whenever the homogeneous equation has no eigensolution.
(Of course, if the homogeneous equation does have an 
eigensolution the corresponding exponential mode can 
be examined, but to solve the non-homogeneous equation then 
requires more general treatment.)

If equation (56) is written in the form

where p  is a function of fo and y , then solutions fp(y) 
can be expressed in-terms of the Green's Function G(y,<^). 
This arises from the Green's Identity for any two solutions 

, v(!̂ ) of the 'self adjoint equation L(f) = 0,

(u L(y ) - V L(u) ) ci *1  ̂- V u
Replacing v(1) by G(y, ^ ) and u(^) by f^(^) and choosing 
G to satisfy the conditions

L(G) = dT(y-‘1J 
G(*1) continuous when ^ = y 
G'(1) discontinuity l/X(y) when *1 = y,. 

it follows that f^ is given by

G ( y ,  13 p C D d l  +■ -  G -
The boundary conditions for G are chosen such 

as to make fp(y) satisfy its boundary conditions. If
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a boundary condition of f^ is of the general form

then the correct condition on G is 
oL Cr Gc - O
For fixed p, the singularities of the integrand 

as ^ varies can be deduced from the differential equation 
These cause similar singularities of f^, as p varies 
v;ith y fixed. Knowledge of the singularities of f^ in 
the complex plane of p (figure 14) allows immediate 
inversion of the laplace transform to find the asymptotic 
time dependence of Vy(y, t, k, m).

p * [3 lane

X. discrete efgeMi/aiues. 
—* confiiauûus ,

SmguUritie,^ aÇ fp occur wkerc (o * ik("U±A) ̂  hchce gencfcLting 
a fmc as y . Discix.4̂  larit/es ̂ not y -det>ende*̂ t̂  occuT
at Values of p uikicix a%e laoyv\ô eua.ttus «(̂ ao,tiûrv\ lias a Sofatr^n.

Figure 14

Although v^ is the fourier transform of the physical 
perturbation v̂ '̂̂  (x, y, z, t), the stability problem 
ends at this point, since itself a possible
physical disturbance. The flow is unstable whenever
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V (t) is unbounded as t-^oo for any single initially
^  s

prescribed perturbation.
It is interesting to note that the non-exponential 

modes include localised disturbances, since the laplace 
transform is inverted for a fixed value of y . The 
exponential time modes had the same time variation in 
all layers of the fluid, and so exhibited growth (or 
decay) of the initial perturbation in all parts of the 
flow. A further distinction is that the exponential 
modes are discrete while the non exponential modes are 
continuous. The continuous spectrum of eigenvalues is 
absent for viscous fluids (Lin (1961) ).

In the remaining sections of this chapter, 
asymptotic time dependences are obtained for various 
systems.

2. Rigid magnetofluid boundaries

This section shows, in the case of laminar 
magnetofluid flows in contact with the walls, that the 
non exponential modes are usually stable. The physical 
boundary condition is that the transverse velocity 
perturbation v^ (x, y , z, t) must vanish at the walls. 
Since fŷ '̂  is defined by the equation =• it
follows that fp(y, k, m) must satisfy the condition
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(U + “ Tkfylt-o
when y = and y = y^. Eqimtion (36) for has to 
he solved subject to these boundary conditions.

The first step is to construct the Green's 
function for the problem. Suppose ^(y), ^ ( y ) are 
linearly independent solutions of the .homogeneous form 
of (3 6 ) such that V| satisfies the boundary condition 
at y = y^ and 1/̂  satisfies the condition at y = y^. Such 
functions exist, and are linearly independent whenever 
no eigensolution of the homogeneous problem exists. The 
defining eqations of the Green's function are satisfied

where ŷ  meanâ the lesser of y,*^ , and y^ the greater.
As shown on page 93,

G(y,IJpdlcll + - G

= pcij d 1 ,
In this case the boundary term vanishes. All the 
functions in the integrand depend on p although the , 
notation does not display this. Information about the 
initial value of the perturbation is contained in p.
( |3 appears on the right hand side of eq^uation (36), 
page92, but its precise form is unimportant).
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At first, to carry out the.integration, let p 
be fixed with the value p^. Singularities in the ̂  *s 
occur only at singularities of the differential^ equation, 
that is at points where ) = 0 and the zero is of
order n:^ 1. As before, X is defined by

X  - (U t ( : > / .
Keeping y fixed, the worst possible behaviour of the 
integrand is arranged by choosing jS(̂ ) so that

where y^ now means the lesser of y and , and y> is 
the greater. The delta function initial perturbation 
does not imply that any physical quantities are infinite 
or even localised at the point y = . A smooth
function with a finite discontinuity in fy' would suffice

The behaviour of the solutions near has 
already been found. • In the case n = 1 where X(̂ j> ) = 0 
but X' ( *7̂ ) / 0, the solutions for f^, ±2 on page 3 3  show 
that the highest possible singularity of the ' \p  ̂q ± s  

log(^ ) ' Choosing y = *1̂  “to obtain the highest 
order singularity in f^ it follows that

for values of p near p .0
Inverting the laplace transform 

and this is the asymptotic time dependence. The
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system is therefore stable.
In the case where n ̂  2 the behaviour of the 's

is at worst ^  I /("‘I '*1û) * so that
f|d 1 /

The nature of the singularity depends on the cause of 
the zero of
Por, ( U ^ J  i - l ^ / i k J ^ - A ^  -  O

/ . UO*) +- t̂ /ik = ± A
x ' i n j  = z ( u & , ) +  i ^ f i i < ) ( u ' é i ù ± A ' & o ) ) .

The zero in X' can be due to a zero of U + j^/ik (and 
therefore to a zero in A —  a null point in the magnetic 
field) or to a zero of U' Î. A' . In the former case

V (3 - I
VyCt) ^ =

^ 261-2.J (% >2j
implying stability when n = 2 but instability when n >  2, 
while in the latter case 

Vt, .

/. Vytt) ^  t
implying instability for all n ̂  2. «

The conclusion for the present system is that 
the non exponential modes are usually stable. But 
flow profiles may be unstable if they satisfy certain
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restrictions, the simplest of which is 
U' (y) ± A'(y) = 0 

for any value of y. The instability grows fastest 
near the point where the restriction holds.

3. Free magnetofluid boundaries

When the magnetofluid is kept off the walls by 
a vacuum magnetic field new non-exponential modes arise 
but normally no difference is made to the stability 
decision. The non-exponential modes are usually stable.

The boundary conditions were derived for the 
case of exponential.time dependence and appear on page 80 
Heplacing iTi ̂  >

where the minus sign holds at the magnetofluid-vacuum 
interface y = b and the plus sign at the interface y = -b. 
As before, the walls are situated at y = ±B.

By laplace transform the boundary conditions on
f are

X f /  Î +4|t)-fy Ifo

X -CU+ j -fLCt<) = •
The Green's function G(y, ) is constructed as 

in the previous section, but the functions satisfy
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the new boundary conditions (in homogeneous form).
The solution for fp is

Since the behaviour of the integral has been 
discussed (last section) it remains only to examine the 
boundary terms. Singularities arise only in the 
functions V i ̂  V x  a,nd therefore only at singularities 
of the differential equation. The resulting time 
dependence is similar to that arising from the integral, 
but there is no need to introduce delta function per­
turbations . For example, choosing y = b , X(b) = 0,
%' (b) / 0 (n = 1)

fj, ~

|ÿ(i:)~ !  tr
and the system is stable.
When n >  1 with A(b) = 0

implying stability when n = 2 and instability v;hen n >  2, 
but with U'(b)î A'(b) = 0

VjCt) -
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implying instability for all n 3̂. 2.
The growth of instability is normally independent 

of the initial perturbation but (in the simplest case) 
depends on Ü* ±  A* having a ^ero at the magnetof1uid- 
vacuum interface. The instability is localised in the 
region of the interface.

It appears that trivial flov; profiles .( U(y),
H(y), Hy(y) all constant ) may be unstable, since U' 1: A*
= 0 everywhere. But further examination is necessary 
because X" = 0, and shows complete stability. The 
inhomogeneous perturbation equation reduces to

k*‘fi.) - lfc=o
subject to boundary conditions

X f /  ±  Jllk ) f k -  i k ( z u t  h / i k f
when y = b .

The Green's function is G (y, ^

where
-V, - ^ 1  xiAvk -f" p,

^ V k  y t- ji ̂  k  y

and the oL ' s and p  *s are chosen to satisfy the boundary 
conditions. The solution f_ is given by

+ 111 + f f . 1
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No singularities arise from the 1// 's (because the
differential eqmtion now has no singularities) so
that singularities of f^ arise only from X(p)P

~ I where U -t- ̂o/ik - ± A ̂  Q
“  “ T—  I f cfor values of p near P^^TItvus^ V ^ ( t ]  ^

indicating stability whenever A / 0.
If A = 0,

■(-(o f where Ut* l ^ i k  - O

V|o -V \ / Cjp-jpo)

ŷ ctJ - c
again indicating stability.



—103—

A P P E N D I X

CLASSIFICATION OP PROFILES A(y), U(y)

STABLE UNSTABLE

A2(y) >  U2.(y) p.32
U* (y)> 0 A = const. 
and M(a ) >  0A(y) > U„;„ p.29

A s  0
u" (y) / 0 p.3

U(y) and A(y) symmetric,
U"U*-A"A‘*>0 at walls

p.67

U* (y) ± A*(y) has a zero
p.99

t.................. ....

A = 0, Ü' (y)>0
R > 0 p.11
..... 1 . 1

The above table summarises the available 
results classifying lajninar flows according to 
their velocity and magnetic profiles. Classification 
is far from complete.
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