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Abstract
This thesis is about a class of complex algebraic threefolds known as flops, which are
an important part of the Minimal Model Program in birational geometry. Threefold
flops are commonly studied via their enumerative invariants, and here we focus on one
such type of invariant: refined Donaldson–Thomas invariants. We develop theoretical
aspects of refined Donaldson–Thomas theory for threefold flops, which allow us to
understand their stability conditions and cyclic A∞-deformation theory. With these
new methods, we are able to sidestep common computational barriers in the field
and fully determine the Donaldson–Thomas invariants for an infinite family of flops,
which includes many new examples. Our results show that a refined version of the
strong-rationality conjecture of Pandharipande–Thomas holds in this setting, and also
that refined Donaldson–Thomas invariants are not sufficiently fine to determine flops.
Where possible we work motivically, computing invariants in the Grothendieck ring of
varieties, but we also produce Hodge theoretic realisations of the invariants.
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Chapter 1

Introduction

Although the field of algebraic geometry has undergone many changes over the years,
its main aim is still to understand algebraic varieties: spaces that are (locally) defined
by polynomial equations. One of the most effective ways to unravel the geometry of an
algebraic variety is to calculate an invariant: a quantity or structure that represents
some intrinsic aspect of the geometry of the space. Invariants provide a very concrete
picture of the geometry of a variety, and can be used to study how this geometry
behaves under deformations, birational transformations, and other such operations.

In this thesis we study Donaldson–Thomas invariants, which are virtual counts of
objects in the derived category of a complex variety of dimension 3. Classically, these
counts come in the form of a number, and can be calculated as a weighted Euler
characteristic on the moduli space of certain classes of objects. In recent years there has
been a great development in the refinement of these quantities: instead of a numerical
count, one can obtain a more interesting object that encodes new information about
the geometry of the moduli space. However, the road towards refinement is also full of
new hurdles, and one of the aims of this thesis is to overcome these.

We will focus our attention on flopping curves, a type of curve in a threefold that has
an associated birational transformation–a flop–which is crucial for the classification of
minimal models in the Minimal Model Program as developed in the ’80s and ’90s. In
the current millennium, flops are predominantly studied via noncommutative and cat-
egorical methods, and it has been discovered that the flopping behaviour can be nicely
captured as a symmetry of the derived category. We will show how this categorical
point of view is compatible with the DT theory of flops, and how the derived symme-
tries can be used to greatly simplify the calculation of invariants. In the process we
develop several novel techniques, which we will explain below. These techniques allow
us to completely determine the DT theory of a large class of flops, most of which are
new and will be constructed explicitly. Our results show the depth which the refine-
ment brings to DT theory and provide important evidence towards a conjecture on the
relation between the different invariants found in this context.
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§ 1.1 | Background and motivation

§ 1.1.1 | Threefold flops

Perhaps one of the greatest achievements of 20th century algebraic geometry is the
development of the minimal model program (MMP), first for surfaces by Castelnuovo
and Enriques [Enr49], and later for threefolds by Mori, Kollar, Reid [Rei83; Mor88;
KoM98], among many others. The aim of this program is to classify birational equiv-
alence classes of varieties by finding a suitable representative in each class. Such a
representative is given by a minimal model, a variety Y for which the canonical bundle
has nonnegative degree KY · C ≥ 0 on all embedded rational curves C ⊂ Y . Minimal
models are known to exist for smooth surfaces, and also for threefolds if one allows
them to have mild singularities.

A big difference between dimensions 2 and dimension 3 (and higher) is that the minimal
models of threefolds are not unique. Instead, minimal models are connected by flops:
if C ⊂ Y is a suitable curve with KY ·C = 0, then there exists a second minimal model
Y + and a diagram of birational maps as illustrated in the following cartoon:

Y C

Ycon

Y +C+

þ þ+

The flop Y 99K Y + is the composition of the flopping contraction þ, which contracts C
to a singular point p ∈ Ycon, followed by a resolution to a second curve C+ ⊂ Y +. One
can also flop back: the curve C+ also satisfies KY + · C+ = 0, and the flop Y + 99K Y

along C+ is inverse to Y 99K Y +. Hence, “flopping” is a symmetric operation, and this
symmetry makes flops very rich objects of study.

In this thesis we restrict ourselves to studying flops of smooth varieties Y , and in
particular focus on the class of simple flops, in which the flopping curve C ⊂ Y is
an irreducible rational curve C ' P1. Because flops are a local phenomenon, we
will moreover focus on local (and sometimes even formal) neighbourhoods of flopping
curves and of the singularities to which they contract. Because the flopping behaviour
is intrinsic to the geometry of Y (for a fixed C), we will henceforth also refer to the
space Y itself as “the flop”, and hope that the reader will forgive us this abuse of
terminology.

§ 1.1.2 | Invariants of flops

Various invariants have been constructed to categorise (simple) flops, including the
normal bundle invariants [Lau81], the ADE-type [Kaw94], the length invariant [Kol89],
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the width invariant [Rei83], and Gopakumar-Vafa invariants [Kat06].

The scheme-theoretic fibre of a flopping contraction þ : Y → Ycon is in general not
reduced, and its defining ideal sheaf has a length `: there is a chain of inclusions

C ⊂ 2C ⊂ . . . ⊂ `C,

of thickened curves iC ranging between C ' P1 and the fibre `C. Hence, the length is a
rough measure of the complexity of the exceptional locus: for ` = 1 the fibre is simply
a smooth curve `C = C = P1, while the cases ` ≥ 2 have more complicated geometry.

The flops of length ` = 1 were completely classified by Reid [Rei83] and form a family in
a single integer parameter known as the width. The width has an intrinsic interpretation
as a multiplicity associated to the class of the curve C in the appropriate Hilbert scheme
of Y . For higher length flops one can associate such multiplicities ni ∈ Z to each
thickened curve iC ⊂ Y . These invariants are known as (genus 0) Gopakumar-Vafa
(GV) invariants and derive from Gromov-Witten curve counts [BKC99]. Motivated by
the nice classification in the length ` = 1 case, one might hope that the `–tuples

(n1, n2, . . . , n`) ∈ Z`

completely classify the higher length flops, but a recent counter-example of Brown–
Wemyss [BW17] shows that this is false. Hence, GV invariants are insufficient to
completely capture the geometry of threefold flops, and a more intricate theory is
needed to fully understand them.

§ 1.1.3 | Donaldson–Thomas invariants

Another way of looking at Gopakumar-Vafa invariants is as numerical Donaldson–
Thomas invariants: Katz showed [Kat06] they correspond to virtual counts of sheaves
with K-theory class [iC] := [OiC]. If one wants to understand higher length flops, the
logical next step is look for new invariants in the framework of Donaldson–Thomas
theory, developed by Joyce–Song [JS08], Kontsevich–Soibelman [KS08], and others.

The rough setup for this theory is as follows. We consider the category Db
C(Y ) of objects

in the derived category of Y with (set-theoretic) support on the curve C ⊂ Y . The
K-theory class of such an object can be expressed as a pair (r, χ) of a rank and Euler-
characteristic, and there is a moduli space parametrising objects with that rank/Euler
characteristic. By integrating a certain measure on this moduli space space, one can
define a “virtual count” DTnum

(r,χ) ∈ Q of its points, yielding a partition function

Φnum(t) :=
∑
(r,χ)

DTnum
(r,χ) · t(r,χ).

The K-theory classes [iC] correspond to the rank/Euler pairs (i, 1), and the GV in-
variants can be recovered from the coefficients DT(i,1). However, the partition function
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can express more information, and one can potentially determine new invariants by
analysing this power series.

Not only are there more invariants to be found in Donaldson–Thomas theory, the
invariants can also be refined: whereas the GV invariants are integers, one can practice
DT theory in a richer ring of invariants, which allows one to better express the geometry
of the moduli spaces and of the flop itself. At the cutting edge of modern DT theory are
the motivic refinement, and refinement in monodromic mixed Hodge structures, each of
which is captured by their respective refined partition function

Φ(t) :=
∑
(r,χ)

DT(r,χ) · t(r,χ), Φmmhs(t) :=
∑
(r,χ)

DTmmhs
(r,χ) · t(r,χ).

These partition function have only been calculated for a limited number of flops: the
conifold/Atiyah flop [MMNS12] and the Pagoda flops [DM17], which together form the
class of length ` = 1 flops. The purpose of this thesis is to develop the Donaldson–
Thomas theory of higher length flops, and to determine the degree to which this theory
improves on the GV invariants. This motivates us to investigate two questions.

The first question is about the complexity of the partition functions: although Φ(t)
is a power series with infinitely many coefficients, one expects these coefficients to be
related by multiple-cover formulas and wall-crossing relations.

Question 1. On how much data do the (refined) partition functions depend?

In the numerical case, an expected answer is provided by the strong rationality con-
jecture of Pandariphande–Thomas [PT09], which is known to hold in certain cases by
work of Toda [Tod14]. Roughly, this conjecture proposes that the partition function
Φnum(t) can be expressed as a multiple-cover formula involving BPS invariants BPSnum

(r,χ)

which are independent of χ. This conjecture would therefore imply that the DT theory
can be reconstructed from invariants

BPSnum
[pt] , BPSnum

[C] , BPSnum
[2C] , . . . , BPSnum

[`C] ,

associated to the class [pt] with rank/Euler pair (0, 1), and to the classes [iC] with
rank/Euler pairs (i, 1), which yield the GV invariants. In other words, the numerical
DT theory of the flop is expected to be controlled by the GV invariants and a count of
points on the curve. We will investigate this conjecture for the numerical invariants as
well as in the refined setting, where an analogue of the strong rationality conjecture is
expected to hold.

Because the strong rationality conjecture predicts that the DT theory is controlled by
the GV invariants, we will also investigate if the refinements of these invariants give a
more precise description of the geometry. In particular we ask:
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Question 2. Do the refined BPS invariants distinguish simple flops?

The answer is naturally “yes” for ` = 1 flops, as the unrefined GV invariants are a
complete invariant for this family, but very little is known about the general case. We
will therefore go to the next level and try to answer these questions for length 2 flops.

§ 1.2 | Results on length ` = 2 flops
To start our analysis of ` = 2 flops we require a representative collection of examples.
Several candidates exist in the literature: the first examples were constructed by Laufer
[Lau81]; a few more examples have been constructed by Pinkham [Pin83]; and finally
there is the recent example of Brown–Wemyss [BW17]. In chapter 2 we construct an
infinite family {Yf} of length ` = 2 flopping contractions

þf : Yf → SpecRf

indexed by a parameter f ∈ C[y]. For specific choices of f this family recovers all the
examples mentioned above, but also contains many new1 examples.

By studying the stability conditions and deformation theory for noncommutative mod-
els of length ` = 2 flops, as explained below, we deduce that the partition function of
any flop can be presented as the following generating function:

Φ(t) = Sym
∑
k≥0

BPSk[pt]

L 1
2 − L−1

2
· t(0,k)

+
∑
k,n≥0

BPSk[C]

L 1
2 − L−1

2
· (t(k,kn) + t(−k,k(n+1)))

+
∑
k,n≥0

BPSk[2C]

L 1
2 − L−1

2
· (t(2k,k(n+1)) + t(−2k,kn))

,
(1.1)

where the exponents on t are rank/Euler pairs (r, χ), the factor L 1
2 −L−1

2 is the virtual
motive of the algebraic torus, and BPSk[pt], BPSk[C], and BPSk[2C] are the motivic BPS
invariants that express the deformation theory of, respectively, the point sheaves Op
for p ∈ C, and the structure sheaves OC,O2C of the curve C and thickened curve 2C.

We calculate these BPS invariants for the entire family {Yf}, and find that they depend
on two parameters a ∈ N and b ∈ N ∪ {∞} derived from the polynomial f .

Theorem A (Theorem 6.2). For a flop in the family {Yf} with parameters a, b derived
from f , the BPS invariants appearing in the expansion 1.1 are as follows.
1Recently, this family was also constructed and studied by Kawamata in independent work [Kaw20]
which appeared while writing this thesis.
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The BPS invariants associated to the point sheaves are

BPSk[pt] = L−
3
2 [P1] for k ≥ 1.

The BPS invariants associated to the curve class 2C are

BPSk[2C] =

L
−1

2 (1− [µa]) k = 1

0 for k > 1

The first BPS invariant associated to the curve class C is

BPS[C] =

L
−1(1− [D4a]) + 2 a ≤ b,

L−1(1− [D2b+1]) + 3 a > b.

where D4a and D2b+1 are curves of genus a resp. b with a monodromy action of µ4a

and µ2b+1 respectively. For k ≥ 2 the BPS invariants have the realisation

BPSmmhs
k[C] =

χmmhs
(
L−1

2 (1− [µa])
)

k = 2

0 for k > 2

in the Grothendieck ring of monodromic mixed Hodge structures.

Here L = [A1] denotes the Lefschetz motive, µn is the group scheme of nth roots of
unity, and χmmhs is a realisation map into monodromic mixed Hodge structures.

Theorem A confirms the strong rationality conjecture at the MMHS–level of refinement:
if we present the partition function as a generating function

Φmmhs(t) = Sym
∑

(r,χ)

BPSmmhs
(r,χ)

χmmhs(L 1
2 − L−1

2 )
· t(r,χ)


indexed by rank/Euler characteristic pairs (r, χ) then the results imply the following.

Corollary 1.1. The MMHS-refined BPS invariants BPSmmhs
(r,χ) do not depend on the

Euler characteristic χ, and are given by

BPSmmhs
(r,χ) =



BPSmmhs
[pt] r = 0

BPSmmhs
[C] r = ±1

BPSmmhs
2[C] r = ±2

0 otherwise

Hence, the strong rationality conjecture holds at this level of refinement.

Because the point count BPS[pt] is the same for all flops in the family {Yf}, the DT
theory is essentially controlled by the invariants BPSmmhs

[C] , BPSmmhs
[2C] , which are re-

finements of the GV invariants. We expect a similar result to hold in the motivic
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refinement, but were unable to compare the motivic invariants for the classes k · [2C]
corresponding to (r, χ) = (2k, k), with the invariants for the classes 2k[C] corresponding
to (r, χ) = (2k, 2k).

Our results also show the extent of the refinement: for the first time we obtain invariants
which carry interesting monodromy and Hodge structure, whereas the earlier ` = 1
examples yielded invariants of Lefschetz type [MMNS12] or invariants with monodromy
but only a very elementary Hodge structure [DM17]. However, this refinement is no
better at distinguishing flops than the GV invariants: for every a > 1 there are flops
in the family {Yf} with parameters

(a, b) = (a, a), . . . , (a, 2a− 1), (a,∞)

which are non-isomorphic, but for which the MMHS–refined BPS invariants are equal.

Corollary 1.2. The MMHS–realisations of the DT invariants do not determine flops.

This corollary strengthens the result of [BW17] and puts it in a wider context, as the
two examples they use form a subset of our family and their GV invariants can be
deduced from the refined invariants we find. As in [BW17], we also compare with the
noncommutative contraction algebra invariant of [DW16], which does distinguish these
flops. Corollary 1.2 suggests that, even when using a refinement, some essential aspect
of the noncommutative deformation theory is lost in the calculation of DT invariants.

§ 1.3 | Noncommutative methods
To obtain the above results we will work with a noncommutative model: for each
threefold Y in our family we find a quiver with potential (Q,W ) for which the Jacobi
algebra Jac(Q,W ) is derived equivalent to Y via a pair of R–linear functors

Db(coh Y ) Db(mod Jac(Q,W ))
Ψ

Ψ−1

Across this derived equivalence one can then perform noncommutative DT theory, as
developed in the work of Szendrői [Sze08] and Kontsevich–Soibelman [KS08]. Instead
of counting moduli of objects in Db(Y ), the DT invariants we calculate will count
Jac(Q,W )–modules for the family of quivers with potential shown in figure 1.1.

Q : 0 1
c

d
x

y

s

W = x2y − f(y) + y2cd− sdc+ 2feven
(
s

1
2
)

Figure 1.1: Our family of quivers with potential.
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As we are only interested in the objects Db
C(Y ) supported on C ⊂ Y , we will more-

over restrict to the nilpotent modules nilp Jac(Q,W ). This nilpotency corresponds
to a restriction to a formal neighbourhood of C, as the equivalence Ψ restricts to an
equivalence

Db
C(coh Y ) Db(nilp Jac(Q,W ))

Ψ

Ψ−1

The derived equivalence also induces an isomorphism between the K-theory groups
K0(nilp Jac(Q,W )) = Z[S0] ⊕ Z[S1] and K0(DC(Y )), which maps the classes of the
nilpotent simples S0, S1 to the classes of the corresponding objects in Db

C(Y ):

[S0] 7→ [O2C(−1)[1]], [S1] 7→ [OC(−1)].

Hence, we can calculate our DT partition function Φ(t) = ∑
δ DTδ · tδ in terms of

virtual counts DTδ of δ-dimensional nilpotent Jac(Q,W )–modules for each dimension
vector δ = δ0[S0] + δ1[S1], and then interpret the invariants DTδ as the virtual counts
DT(r,χ) of the objects in Db

C(Y ) for the corresponding rank/Euler pair

(r, χ) = δ0(−2, 1) + δ1(1, 0).

Although the reader may find this setup somewhat convoluted, the noncommutative
framework will have some strong advantages for the calculation of DT invariants.

Firstly, the moduli spaces of a quiver with potential have the natural structure of
a critical locus, which allows one to more easily define and analyse the refined DT
invariants. Secondly, the moduli spaces are obtained via a GIT construction, which
allows one to break them down by using stability conditions: a stability condition
induces a decomposition

Φ(t) =
y∏

θ∈(0,1]
Φθ(t),

where the product ranges over the phases θ of semistable objects, and each Φθ(t) is
a virtual count of semistable objects with phase θ. Because the moduli spaces of
semistable objects are usually easier to deal with, this can break down the calculation
of the partition function into manageable chunks. Each power series Φθ(t) can be
presented as a generating function

Φθ(t) =: Sym
 ∑
Θ(δ)=θ

BPSδ
L 1

2 − L−1
2
· tδ
 .

in terms of the refined BPS invariants for the dimension vectors with phase θ. Our goal
is therefore to identify stability conditions for the quivers with potential associated to
flops; to find the phases and dimension vectors of semistable objects; and to compute
the BPS invariants for these dimension vectors.
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The classification of stability conditions and semistable objects for a general quiver with
potential can be a hard problem, as the representation theory is often too complicated
to work out by hand. One of the main innovations in this thesis is that we develop a
way to overcome this problem for threefold flops, by showing a compatibility between
the DT theory of the quiver with potential and the tilting theory of its completed Jacobi
algebra.

Briefly, we show that there is a duality between the tilting complexes of the completion
Λ := Ĵac(Q,W ) of the Jacobi algebra Jac(Q,W ), and the semistable objects in the
category of finite dimensional modules

fdmod Λ ' nilp Jac(Q,W ).

This means that the dimension vectors of semistable modules can be deduced from
the K–theory classes of the tilting complexes, which are known by recent work of
Hirano–Wemyss and Donovan–Wemyss [HW19; DW19b], Moreover, we show that the
tilts induce isomorphisms between the moduli spaces that respect the critical locus
structure, which implies that BPS invariants associated to these spaces are the same.
As a result, we deduce that the DT theory of flops can be reconstructed from the
deformation theory of only three types of objects.

§ 1.3.1 | Stability & tilting theory

The tilting complexes of simple flops have recently been determined [HW19], and are
most conveniently represented in the form of the g-vector fan pictured (for ` = 2)
in figure 1.2a. This is a wall-and-chamber structure in the vector space K0(proj Λ)R,
wherein every chamber corresponds to a tilting object T = Ti⊕ Ti+1 and the g-vectors

[Ti], [Ti+1] ∈ K0(proj Λ)R,

of the summands span the walls that bound the chamber. Tilting objects that are
separated by a finite number of wall-crossings are related by a sequence of mutations,
a fact which is used in [HW19] to generate all tilting modules.

By construction, each tilting complex T ∈ Kb(proj Λ) defines a derived equivalence

−
L
⊗ T : Db(mod End(T )) ∼−−→ Db(mod Λ),

and hence any module for the endomorphism algebra induces an object in the derived
category of the flop. We show that these derived equivalences can be used to find the
stable objects in the subcategory fdmod Λ of finite dimensional modules with respect
to an appropriate stability condition. Concretely, if a summand Ti spans a wall in the
south-east quadrant of the hyperplane arrangement, we show that it can be completed
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K0(proj Λ)R

−[P0]

[P1]

(a) g-vectors of tilting complexes

K0(fdmod Λ)

[S1]

[S0]

(b) dimension vectors of semi-stables

Figure 1.2: For a generic stability condition, the dimension vectors of (semi-)stable
objects are on the rays 1.2b perpendicular to the tilting hyperplane arrangement 1.2a.
Each ray is spanned by the dimension vector of a twist/shift of OC (red), O2C (blue)
or Op for p ∈ C (green).

to a tilting complex T such that there exists a stable module

S
L
⊗End(T ) T ∈ Db(fdmod Λ)

where S denotes the simple End(T )–module which satisfies HomEnd(T )(Ti, S) = 0. By
construction, the class of [S

L
⊗ T ] in K0(fdmod Λ) is then perpendicular to the wall

spanned by [Ti] with respect to the Euler pairing

〈−,−〉 : K0(proj Λ)R ⊗K0(fdmod Λ)→ R,

giving the dual wall-and-chamber structure in figure 1.2b. The simples of the tilted
algebras were identified in [DW19b] and have a nice geometric interpretation: across the
equivalence Db(mod Λ) ' Db(coh Y ), they correspond to shifts/twists of the structure
sheaves OC, O2C of the curve and the scheme-theoretic fibre. Another class of stable
objects is given by the images of point sheaves Op for p ∈ C, which have a dimension
vector that is perpendicular to the accumulation ray in 1.2a. Together, these two
classes form the complete set of stable modules.

Theorem B (Theorem 4.1). There exists a Bridgeland stability condition on the tri-
angulated category Db(fdmod Λ) with heart fdmod Λ, for which the stable objects cor-
respond to the the following complexes of sheaves

Op for p ∈ C,
O2C(n), OC(n− 1) for n ≥ 0,

O2C(n)[1], OC(n− 1)[1] for n < 0,

via the equivalence Db(fdmod Λ) ' Db
C(Y ).

To prove that the the above set of stable modules is indeed complete, we move to the
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context of finite dimensional algebras. We show that the g-vectors and stable modules
of Λ coincide with those of a finite-dimensional fibre Λ/IΛ over a fat point SpecR/I.
With this reduction step, the theorem follows from a similar statement discovered by
finite-dimensional algebraists [BST19; Asa21].

We should remark that, although we give the proof of Theorem B for ` = 2 flops, the
techniques used to prove Theorem B do not explicitly depend on the length assumption.
In the general case, the stable modules correspond to point sheaves and the objects in
the “simples helix” of [DW19b].

§ 1.3.2 | Tilting preserves potentials

With the classification of stable objects in Theorem B, the DT partition function of the
flop can be put into a generating function involving the BPS invariants for the classes
of the stable objects. Indexed by rank/Euler pairs this yields the following:

Φ(t) = Sym
∑
k≥0

BPSk[pt]

L 1
2 − L−1

2
· t(0,k)

+
∑
k,n≥0

(
BPSk[OC(n−1)]

L 1
2 − L−1

2
· t(k,kn) + BPSk[OC(−2−n)[1]]

L 1
2 − L−1

2
· t(−k,k(n+1))

)

+
∑
k,n≥0

(
BPSk[O2C(n)]

L 1
2 − L−1

2
· t(2k,k(n+1)) + BPSk[O2C(−1−n)[1]]

L 1
2 − L−1

2
· t(−2k,kn)

).
The terms BPSk[pt] yield a count of 0-dimensional sheaves, which are extensions between
point sheaves, while the other invariants are virtual counts of the self-extensions of the
stable modules corresponding to

F = OC(n)[m] and F = O2C(n)[m].

For these stable modules, the contribution to the BPS invariants is determined by their
cyclic A∞–deformation theory, which is captured by a noncommutative potential. In
the setting of cluster algebras it is known that these potentials are preserved under
mutation [KY11]. The quivers we consider are not of cluster type, as they consist of
loops and 2-cycles, but we show an analogous result for the ‘mutation’ induced by the
tilting complexes.

If the flop Y → Ycon = SpecR is tilting equivalent to an R–algebra A, we show that
potentials are preserved by R–linear standard equivalences that satisfy a homological
condition: if an R–linear functor F : Db(modA) → Db(modA) lifts to a differentially
graded enhancement of the derived category there is an induced R–linear action

HH3(F ) : HH3(A)→ HH3(A),

on Hochschild homology. We show that F preserves potentials if this action is a scalar.
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Theorem C (Theorem 5.1). Let F : Db(modA) → Db(modA) be an R–linear stan-
dard equivalence such that HH3(F ) = λ ∈ C×. Then for every pair of nilpotent modules
M,N with simple endomorphism algebras, which are related by F (M) ' N , the poten-
tials WM and λ ·WN are equivalent.

Any functor induced by a tilting complex is automatically an R–linear standard equiv-
alence. Moreover, we show that the homological condition is always satisfied in our
setting and hence preserve the potentials of objects supported on the curve. This
is what allows us to show that the BPS invariants for the classes k[OC(n)[m]] and
k[O2C(n)[m]] do not depend on the twist by n or the shift by m, and therefore equal

BPSk[C] = BPSk[OC], BPSk[2C] = BPSk[O2C],

respectively. This greatly reduces the amount of classes for which we need to compute
DT invariants.

To prove Theorem C we follow the approach of Kontsevich–Soibelman [KS08; KS09]
by working with a cyclic A∞–enhancement (H,σ) of the derived category Db

nilp(A) of
nilpotent modules. The cyclic structure σ encodes the Calabi–Yau property of the
category Db

nilp(A) ' Db
C(Y ) and endows each object with its potential. The cyclic

structure is determined up to homotopy by its Hochschild cohomology class [σ] ∈
HH3(H,H∗) and any auto-equivalence of H which preserves this class also preserves
the potentials. The categories Db(modA) and Db

nilp(A) are related by duality, and at
the level of Hochschild (co-)homology this duality induces a map

Υ: HH3(A)→ HH3(H,H∗),

for which we follow the construction of Brav–Dyckerhoff [BD19]. We show that an R–
linear standard equivalence F : Db(modA) → Db(modA) induces an autoequivalence
of H whose action on HH3(H,H∗) is completely determined by the R–linear action of
F on HH3(A): there is a unique R–linear map making the diagram

HH3(A)

HH3(A)

HH3(H,H∗)

HH3(H,H∗)

HH3(F )

Υ

Υ

commute. In this way the homological condition in Theorem C translates to a preser-
vation of the cyclic structure up to homotopy, and from there to a preservation of
potentials.

If Y is Calabi–Yau, the proof can be interpreted in terms of Calabi–Yau structures: a
holomorphic volume form on Y defines a left CY structure in HH3(Y ) ' HH3(A), while
the cyclic structure σ defines a right CY structure. A functor satisfying the condition
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HH3(F ) = λ scales the Calabi–Yau volume linearly, and via the (weak) duality Υ
(which maps left CY structures to right CY structures) it induces the inverse scaling
on σ. However, Theorem C relies on a relative condition HH3(F ) = λ, which does not
require the existence of a volume form, and therefore holds even if Y is not globally
Calabi–Yau.

§ 1.4 | Outline of the thesis
Chapter 2 starts with a short review of the geometry of threefold flops, and then delves
into our construction of a family of length ` = 2 flops in Theorem 2.7.

Chapter 3 is a short introduction to (motivic) Donaldson–Thomas theory, which sets
up the methodology for calculating invariants for quivers with potential. In particular,
we stress the essential role played by stability conditions.

Chapter 4 explains the close relation between stability condition and tilting theory for
length ` = 2 flops. The result is Theorem 4.1, which completely classifies the moduli
of stable objects with support on the exceptional curve into three families.

Chapter 5 uses the framework of cyclic A∞-categories to develop a condition for derived
equivalences to interact nicely with the DT theory of a quiver with potential. The
main result is Theorem 5.1, which works in a very general setting, but we also provide
sufficient corollaries to apply the theorem to flops.

All paths converge in chapter 6, where we finally calculate the invariants of our family
of length ` = 2 flops using the techniques we developed in chapter 4 and chapter 5.

§ 1.5 | Notation and conventions
In this thesis we work over the field of complex numbers. All schemes will be separated,
locally of finite type over C, and we will use the term variety to mean a reduced
separated scheme of finite type over C. When X is moreover affine we will write C[X]
for its coordinate ring. We write cohX, QCohX for the abelian categories of coherent
and quasicoherent sheaves on a scheme X and abbreviate

D(X) := D(QCohX), Db(X) := Db(cohX), Dperf(X),

for the unbounded derived category, the bounded derived category, and the category
of perfect complexes. We will also use the notation Db

C(X) for the subcategory of
complexes with cohomology supported on a fixed curve C ⊂ X.

At several points we will also use stacks, by which we mean Artin stacks which are
locally of finite type over C. These will almost exclusively be quotient stacks X/G of
a scheme X by some linear algebraic group G. Contrary to the more popular notation
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we do not write square brackets around stack quotients, as this notation is reserved for
the corresponding motive. To make the distinction between stacks and schemes clear
we will write all stacks in “Euler script” font, e.g. X,Y,M,N, . . .

Unless specified otherwise, the term algebra will refer to a finitely generated unital
algebra over C which is not assumed to be commutative. If A is an algebra we write
ModA, modA, projA for its category of right modules, finitely generated right mod-
ules, and projective right modules respectively; when necessary, left modules will be
interpreted as right modules over Aop. We abbreviate

D(A) := D(ModA), Db(A) := Db(modA), Dperf(A) := Kb(projA),

as in the case of schemes. We also write fdmodA for the abelian category of finite
dimensional modules, and denote its derived category as Db

fd(A) = Db(fdmodA).

By convention, a quiver Q will consist of a finite set of vertices Q0 and a finite set of
arrows Q1. If v0, . . . , vn ∈ Q1 is a sequence of vertices and ai : vi−1 → vi are arrows
between them, we will write an · · · a1 for the associated path from v0 to vn. If R is a
commutative algebra, we write RQ for the path algebra of Q over R and R̂Q for its
completion with respect to path length. We write CQcyc for the vector space of paths
in CQ up to cyclic permutation and ĈQcyc for its completion. The term potential will
be used both for an element of CQcyc (respectively ĈQcyc), and for a lift of it to a linear
combination of cycles in CQ (respectively ĈQ); we assure the reader that confusing
the two does not lead to any problems.

Given a quiver Q, we let ∆ = NQ0 denote the monoid of dimension vectors. By a rep-
resentation of dimension δ ∈ ∆ with values in a commutative algebra R, we will mean
an RQ0-linear map ρ : RQ→ EndR(⊕v∈Q0 R

⊕δv)op. Every representation corresponds
to a right RQ-module in the natural way, and we make a habit of identifying the two.
We denote the representation variety of Q by

Repδ(Q) :=
∏

a : v→w∈Q1

Matδw×δv(C),

and identify its R-points with the set of R-valued representation of dimension δ in
the natural way. The representation variety is acted on by the linear algebraic group
GLδ := ∏

v∈Q0 GLδv via conjugation, and we write

MQ,δ := Repδ(Q)//GLδ, Mθ
Q,δ := Repδ(Q)//θGLδ, MQ,δ := Repδ(Q)/GLδ,

for the scheme-theoretic quotient, the GIT quotient with respect to a linear character
θ : ∆ → R as in [Kin94], and the stack-theoretic quotient. We will drop the quiver Q
from the notation if it is clear from context, and will drop the dimension vector δ from
the notation to indicate the disjoint union over all dimension vectors.
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All other notation will be explained in due course.
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Chapter 2

Constructing Flops

§ 2.1 | Threefold flops
The goal of the minimal model program is to reduce any suitable variety to a minimal
representative in its birational equivalence class: there should be a minimal model Y ,
a normal variety with at most mild singularities such that the canonical divisor has
non-negative intersection KY ·C ≥ 0 with every rational curve C ⊂ Y . This is achieved
via an algorithm consisting of a series of birational modifications based on contractions
of curve classes, as described by Kollar–Mori [KoM98]. Because we will not run the
MMP explicitly, we will not keep track of the curve classes that are contracted and use
the following simplified definition of a contraction morphism.

Definition 2.1. Let Y be a normal variety. Then a contraction onto a normal variety
Ycon is a morphism of varieties þ : Y → Ycon which is projective, surjective, and satisfies
the condition Rþ∗OY = OYcon .

There are several types of contractions used in the MMP, such as fibre-type contrac-
tions, divisorial contractions, and small contractions, which include flips and flops.

Definition 2.2. We say a contraction þ : Y → Ycon is small if it is birational, and the
components of the exceptional locus Ex(þ) ⊂ Y are of codimension ≥ 2 in Y .

In the setting of threefolds, a small contraction þ : Y → Ycon contracts curves to isolated
points. This is because the condition þ∗OY ' OYcon guarantees that for every point
p ∈ Ycon the fibre f−1(p) is connected. Hence, each fibre f−1(p) is either a single point
(in which case þ is an isomorphism over p), or f−1(p) is a connected curve contained
in Ex(þ), which can only happen for finitely many points.

Definition 2.3. Let þ : Y → Ycon be a small contraction of threefolds and assume the
canonical divisor KY is Q-Cartier,1 then þ is a flopping contraction if every exceptional
curve C ⊂ Ex(þ) has intersection KY · C = 0.
1This guarantees that the intersection number is well-defined. It is automatic if Y is smooth.
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Every threefold flopping contraction from a variety with mild (terminal) singularities
gives rise to a unique flop [KoM98, Theorem 6.14]. Namely, there exists a normal
variety Y + with mild singularities and a (nontrivial) birational map Y 99K Y + called
a flop which factors as

Ycon

Y Y +

þ þ+

where þ+ : Y + → Ycon is a second flopping contraction. Because of the condition
KY · C = 0, flopping a minimal model produces a new minimal model, and in fact all
birational minimal models are connected by a finite sequence of flops [Kaw08].

In this thesis we focus on simple flopping contractions þ : Y → Ycon, where Y is smooth
and C ⊂ Y is a rational curve C ' P1, contracted to a point p ∈ Ycon. Simple flops
are categorised by their length invariant: the scheme-theoretic fibre Y ×Ycon {p} is in
general not reduced, and the length ` is defined by Kollar [Kol89] as the length of its
structure sheaf over the generic point of C. Moreover, there exists (see [BKC99]) a
chain of subschemes

C ⊂ 2C ⊂ . . . ⊂ `C

which interpolates between C and the scheme-theoretic fibre `C.

§ 2.1.1 | The universal flop

It follows from a theorem of Reid [Rei83, Theorem 1.1] that the base of a smooth
flopping contraction is a compound Du Val (cDV) singularity, which means that a
general hyperplane section through the singularity is a Du Val surface singularity.
For (smooth) simple flops, Katz–Morrison [KaM92] show that the ADE-type of the
Du Val singularity is determined by the length invariant. Moreover, in their proof
they show that the base of every simple threefold flop appears as a deformation of
the associated Du Val singularity and therefore appears in a semi-universal family of
such deformations. Curto–Morrison [CM13] explicitly construct this family for flops
of length 2, which they call the universal flop of length ` = 2. It is a resolution
π : Y → Ycon of the affine hypersurface Ycon := SpecR with equation

u2 − rw2 + 2zvw − sv2 + (rs− z2)t2 ∈ C[r, s, t, u, v, w, z].

Similar universal flops for lengths ` ≥ 3 were also constructed by Karmazyn [Kar19].

Besides a commutative resolution, the base of the universal flop also has a noncom-
mutative resolution: Curto–Morrison [CM13] use a matrix factorisation to construct a
reflexive module N ∈ modR such that the algebra

Λ := EndR(R⊕N)
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is a noncommutative crepant resolution (NCCR) as defined in the work of Van den
Bergh [VdB04a]. This means that Λ is an R-algebra with global dimension equal to
dimR, which is Cohen-Macaulay as an R-module. The algebra map R → Λ can be
thought of as the analogue of the resolution π : Y → Ycon, and has similar homological
properties.

One can make the analogy between the commutative resolutions and noncommutative
resolutions more precise. Van den Bergh [VdB04b] shows that if f : X → Xcon is a
contraction with fibres of dimension ≤ 1, then there exists a tilting bundle OX ⊕ F
on X such that F∗ is generated by global sections, and this tilting bundle induces a
derived equivalence

Db(X) Db(EndX(OX ⊕F)),
RHomX(OX⊕F ,−)

−
L
⊗X(OX⊕F).

For the universal flop Y one can choose the tilting bundle to be a lift of R⊕N : there
exists a vector bundle N ∈ cohY such that T := OY ⊕ N is a tilting bundle, N ∗

is generated by global sections, and which lifts N in the sense that π∗N = N . One
checks, as in [VdB04b], that there is an isomorphism EndY(T ) ' Λ, so that T provides
a bridge between the commutative and noncommutative realms.

Noncommutative resolutions are the lifeblood of the homological approach to the MMP
developed in [DW16; Wem18], which aims to recover the birational operations of the
MMP via mutations of NCCRs and derived functors. A particularly important ingre-
dient in this approach is the contraction algebra.

Definition 2.4 ([DW16]). Let f : X → SpecR be a birational contraction with fibres
of dimension ≤ 1, and let A denote the endomorphism algebra of the Van den Bergh
tilting bundle OX ⊕F described above. Then the associated contraction algebra is

Acon := A/[OX ],

where [OX ] is the two-sided ideal of maps factoring through addOX .

By [DW19a, Theorem 1.1], the support of the contraction algebra is precisely the image
of the exceptional locus on the base, and can therefore be used to detect the dimension
of the contracted locus. In particular, the universal flop of length 2 has a contraction
algebra

Λcon := EndY(OY ⊕N )/[OY ] ' EndR(R⊕N)/[R],

which is a finite R-algebra with SuppYcon Λcon = SingYcon.

Our aim for this chapter is to construct explicit families of threefold flops, in both their
commutative and noncommutative form by taking a threefold slice of the universal flop
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over a ring map R → R. To choose such a slice appropriately we require an explicit
expression for Λ and Y as (noncommutative) spaces over R.

§ 2.1.2 | The universal flop as a quiver with relations

An explicit form for Λ was constructed by Karmazyn [Kar19, Example 5.1], which we
recall here in our choice of notation. Let H := C[r, s, t, T ], then Λ is isomorphic to the
quiver algebra HQ/I for the following quiver and relations:

Q : 0 1
c

d
x

y
dc = t · 10, x2 = r · 11, y2 = s · 11

(cd+ x+ y − 1
2t · 11)2 = T · 11

 I

where we write 1 = 10 + 11 for the idempotent splitting of the unit. Under this
isomorphism, the base ring R acts via a map ϕ : R → HQ/I defined on generators as

ϕ(r) = r, ϕ(s) = s, ϕ(t) = t,

ϕ(u) = 1
2d[x, y]c+ 1

2([x, y]cd+ cd[x, y]− t · [x, y])
ϕ(v) = dxc+ (xcd+ cdx− t · x),
ϕ(w) = dyc+ (ycd+ cdy − t · y),

ϕ(z) = 1
2(ϕ(v) + ϕ(w) + r + s− T + 1

4t
2) · 10 − 1

2(xy + yx),

where [x, y] = xy − yx denotes the commutator. From now on we will identify Λ =
HQ/I as R-algebras via the above structure.

In [Kar19, Example 5.1] it is shown that the universal flop Y is isomorphic to a moduli
scheme of stable representations of Q. Consider the dimension vector δ = (1, 2), then
the space Repδ(Q) parametrises representations of Q via the tautological family τ:

τ(x) =
x00 x01

x10 x11

 , τ(y) =
y00 y01

y10 y11

 , τ(c) =
c0

c1

 , τ(d) =
(
d0 d1

)
,

of which the coefficients generate the coordinate ring C[Repδ(Q)]. Let ∆ denote the
lattice of dimension vectors for Q, and consider θ, θ+ : ∆→ R

θ : (a, b) 7→ 2a− b, θ+ : (a, b) 7→ b− 2a.

as King-stability conditions on Repδ(Q). This gives rise to two moduli spaces

Mθ
δ(Λ) := (SpecH×Mθ

δ(Q)) ∩ {τ(I) = 0},
Mθ+

δ (Λ) := (SpecH×Mθ+

δ (Q)) ∩ {τ(I) = 0},

which come equipped with maps to SpecR by restricting a representation to the sub-
algebra 10Λ10 ' R. This moduli construction recovers the universal flop.
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Proposition 2.5 ([Kar19, Proposition 3.9]). The following diagrams are equivalent:

Y Y+

Ycon

π π+ '

Mθ
δ(Λ) Mθ+

δ (Λ)

SpecR

In the following paragraph we will describe the structure ofMθ
δ(Λ) explicitly by gauge

fixing. We will not give any proofs, but refer the reader to [Kar19, Example 5.1] for a
full treatment. Given a field extension K ⊃ C, a K-valued representation ρ is stable
for θ exactly if the images of ρ(c), ρ(yc), ρ(xc) : K → K2 span K2. Hence, the stable
locus Repθδ(Q) is the union of the open subspaces

Vx := {det(ρ(c) | ρ(xc)) 6= 0} , Vy := {det(ρ(c) | ρ(yc)) 6= 0} .

These subspaces are trivial GL2-torsors Vx ' GL2×U ′x, Vy ' GL2×U ′y over affine
spaces U ′x, U ′y ' A8 with respect to the action of GL2 ' {Id} × GL2 ⊂ GLδ. Here
U ′x, U

′
y ⊂ Repδ(Q) are described by the family ρx, ρy of representations

ρx(c) =
1

0

 , ρx(d) =
(
d0 d1

)
, ρx(x) =

0 x01

1 x11

 , ρx(y) =
y00 y01

y10 y11

 ,
ρy(c) =

1
0

 , ρy(d) =
(
d0 d1

)
, ρy(x) =

x00 x01

x10 x11

 , ρy(y) =
0 y01

1 y11

 .
It follows thatMθ

δ(Q) ' U ′x ∪ U ′y is a gluing of two affine charts. As a resultMθ
δ(Λ)

can be obtained by extending each chart to H and imposing the relations generating
the ideal I. On U ′x these relations reduce to the following system of equations:

x11 = 0, y00 + y11 = 0, t = d0, r = x01,

s = y2
00 + y01y10, T = (y00 − 1

2d0)2 + (1 + y10)(d1 + x01 + y01),

which eliminate the generators of H and impose the condition tr(τ(x)) = tr(τ(y)) = 0,
yielding a subspace Ux ⊂ U ′x isomorphic to A6. Similarly the system of equations

x00 + x11 = 0, x11 = 0, t = d0, r = x2
00 + x01x10

s = y01, T = (x00 − 1
2d0)2 + (1 + x10)(d1 + y01 + x01),

cuts out a subspace Uy ' A6 in U ′y, and it follows thatMθ
δ(Λ) is a gluing of two copies

of A6. The map Ux → SpecR is described by the ring map

r 7→ x01, s 7→ y2
00 + y01y10, t 7→ d0, u 7→ d1y00 + 1

2d0(x01y10 − y01),
v 7→ d1, w 7→ d0y00 + d1y10, z 7→ x01y10 + y01,

(2.1)
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and similarly, the map Uy → SpecR is described by the ring map

r 7→ x2
00 + x01x10, s 7→ y01, t 7→ d0, u 7→ d1x00 + 1

2d0(x01 − y01x10),
v 7→ d0x00 + d1x10, w 7→ d1, z 7→ x01 + y01x10.

(2.2)

The above is a sufficiently explicit description for the construction of our flops below.

§ 2.2 | Slicing the universal flop
We will now construct a family of length 2 flops based on a choice of quiver with
potential, which is to serve as a model for the contraction algebras of these flops.
Because the contraction algebra is supported over the image of the exceptional locus,
it is finite dimensional if and only if that image is a set of points. Hence, the finiteness
of the contraction algebra can be used as a condition for a contraction to be small.

Let f = f(y) ∈ C[y] be a polynomial divisible by y3 and define the potential

Wf := x2y − f(y),

on the two loop quiver Q2. The associated Jacobi algebra has the form

Jac(Q2,Wf ) = C〈x, y〉
(xy + yx, x2 − f ′(y)) ,

where f ′ denotes the first derivative of f . Let feven, fodd ∈ C[y] denote the polynomials
of even and odd parity respectively such that f = feven + fodd.

Lemma 2.6. Suppose feven 6= 0, then Jac(Q2,Wf ) is finite dimensional.

Proof. Let f ∈ C[y] be a polynomial divisible by y3 and Jac(Q2,Wf ) the Jacobi algebra
defined by the relations

xy + yx = 0 and x2 = f ′(y).

We will use a proof analogous to [BW17, Lemma 4.6] to show that the Jacobi algebra is
a finite dimensional algebra. Firstly, observe that the two relations allow us to rewrite
any element of Jac(Q2,Wf ) as an element of the span

span {yi, yjx | i, j ≥ 0}.

Let f ′even(y), f ′odd(y) denote the derivatives of the even part and odd parts of f . Then
f ′even(y) anti-commutes with x because it has odd parity, and f ′odd commutes with x.
Hence, multiplying the second relation by x on the left and on the right yields:

f ′even(y)x+ f ′odd(y)x = (f ′(y))x = x3 = x(f ′(y)) = −f ′even(y)x+ f ′odd(y)x,

which implies f ′even(y)x = 0 in Jac(Q2,Wf ). With the assumption feven 6= 0, this
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gives a linear dependence relation in Jac(Q2,Wf ) for the leading term of f ′even(y)x,
and it follows that one can eliminate yjx from the spanning set for j ≥ deg f ′even(y).
Multiplying the relation just found by x yields

0 = f ′even(y)x2 = f ′even(y)f ′(y),

which also allows us to write the leading term of f ′even(y)f ′(y) as a linear combination
of lower degree terms. This shows that yi can be eliminated from the spanning set for
i ≥ deg f ′even(y)f ′(y). It follows that any element of Jac(Q2,Wf ) is contained in

span {yi, yix | 0 ≤ i ≤ deg f ′even(y) + deg f ′(y), 0 ≤ j < deg f ′even(y)}.

Because this is finite, it follows that the Jacobi algebra is finite dimensional.

In the remainder of this section we show that Jac(Q2,Wf ) is in fact the contraction
algebra of a certain slice of the universal flop. Indeed, given a parameter f ∈ C[y] we
define a slice þf : Yf → SpecRf , where Rf is an R-algebra of the form2

Rf = C[r, s, u, v]
(u2 + r(r − f ′odd(s 1

2 ))2 − sv2 + r(f ′even(s 1
2 )2).

and claim that it has an NCCR Λ := Λ ⊗R Rf with contraction algebra isomorpic to
Jac(Q2,Wf ). Moreover, we will show that this NCCR can itself be expressed as a quiver
with potential. After checking all the necessary technical details in the following three
subsections, we then obtain a family of length 2 flops, yielding the following theorem.

Theorem 2.7. Let f ∈ C[y] be divisible by y3 with feven 6= 0. Then

• the map þf : Yf → SpecRf is a flopping contraction of curves in a smooth three-
fold Yf ,

• the length over the origin is ` = 2,
• T ⊗R Rf ∈ coh Yf is a tilting bundle with endomorphism algebra Λ ' Λ⊗R Rf ,
• there is an isomorphism Λ ' Jac(Q,Wf ).

§ 2.2.1 | Slicing the NCCR

Fix a polynomial f(y) = feven(y) + fodd(y) ∈ C[y] divisible by y3, and consider the
following quiver with potential:

Q : 0 1s
c

d
x

y

Wf = x2y − f(y) + ycd+ cdy − sdc+ 2feven
(
s

1
2
)

2Although we write a fractional exponent s
1
2 in this definition, the reader may verify that the relations

are in fact polynomial due to the parity of feven and fodd.
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The Jacobi algebra Jac(Q,Wf ) is the quotient of the path algebra CQ by the ideal
generated by the cyclic derivatives of Wf , which are as follows:

∂sWf = f ′even(s 1
2 )s−1

2 , ∂cWf = dy2 − ds, ∂dWf = y2c− sc,

∂xWf = xy + yx, ∂yWf = x2 − f ′(y) + ycd+ cdy.

In this subsection we show that this Jacobi algebra can be obtained as a base change of
the NCCR Λ of the universal flop over a ring Rf := R/J , for J = (g1, g2, g3) generated
by the following sequence

g1 = z, g2 = r − w − f ′odd(s 1
2 ), g3 = t− f ′even(s 1

2 )s−1
2 . (2.3)

The following lemma verifies that Λ := Λ⊗RRf does indeed recover the Jacobi algebra.

Lemma 2.8. There is a CQ-algebra isomorphism

Jac(Q,Wf ) ' Λ/JΛ ' Λ

Proof. We will give a direct proof by constructing two homomorphisms

ϕ : CQ→ Λ/JΛ, ψ : Λ→ Jac(Q,Wf ),

showing they descend along the quotients CQ→ Jac(Q,Wf ) and Λ→ Λ/JΛ ' Λ, and
find that this yields a pair of mutually inverse maps between Jac(Q,Wf ) and Λ.

The map ψ is the CQ-algebra homomorphism defined on the generators of H as

ψ(r) = x2 + dyc+ f ′odd(s 1
2 ), ψ(s) = s+ y2, ψ(t) = f ′even(ψ(s))ψ(s)−1,

ψ(T ) = (cd+ x+ y − 1
2ψ(t))2 + dxc+ s+ f ′odd(s 1

2 ) + 1
4ψ(t)2 · 10.

To verify that this is a homomorphism, we should check (1) that r, s, t, T are mapped
into the centre of Jac(Q,Wf ), (2) the defining relations of the universal flop hold. We
check both conditions, starting with (1). The centrality of ψ(s) follows easily from the
relations xy + yx = 0, y2c = cs, and dy2 = sd:

[ψ(s), s] = [s, s] = 0, [ψ(s), x] = y2x− xy2 = 0, [ψ(s), y] = y3 − y3 = 0,
[ψ(s), c] = y2c− cs = 0, [ψ(s), d] = sd− dy2 = 0.

Because ψ(s) is central, so is any polynomial expressed in terms of ψ(s), and in partic-
ular ψ(t) is central. Next, the element ψ(r) commutes with x,y, and s by the identity

[ψ(r), x] = x3 − x3 = 0, [ψ(r), y] = x2y − yx2 = 0,
[ψ(r), s] = dycs− sdyc+ [f ′odd(s 1

2 ), s] = dycs− dy3c = 0.
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From the relation dc = ψ(t) · 10, it follows that

[ψ(r), c] = x2c− c(dyc+ f ′odd(s 1
2 ))

= f ′(y)c− ycdc− cdyc− cdyc+ cf ′odd(s 1
2 ) = [ψ(t), yc] = 0

and similarly for d. Finally, we check that ψ(T ) is central. The commutator with s is

[ψ(T ), s] = [dxc, s] + [s+ f ′odd(s 1
2 ) + 1

4ψ(t)2 · 10, s]
= dxy2c− sdxc = dy2xc− sdxc = 0.

Next, the relation x2 − f ′(y) + ycd+ cdy implies

[ψ(T ), x] = cdyx+ ycdx− xcdy − xycd−ψ(t)[x, y]
= (−ycdx− x3 + f ′(y)x) + ycdx+ (xycd+ x3 − xf ′(y))− xycd
− xf ′even(y) + f ′even(y)x

= f ′odd(y)x− xf ′odd(y) = 0.

and [ψ(T ), y] vanishes by a similar computation. Lastly, there is the identity

ψ(T )c = cdxc+ xcdc+ cdyc+ ycdc+ x2c+ y2c−ψ(t)(x+ y)c+ 1
4ψ(t)2c

= cdxc+ cdyc+ (xc+ yc)(dc− f ′even(s 1
2 )s−1

2 ) + (f ′(y)− ycd+ cdy)c
+ cs+ 1

4cψ(t)2

= c(dxc+ s+ f ′odd(s 1
2 ) + 1

4ψ(t)2) + yc(f ′even(s 1
2 )s−1

2 − dc) = cψ(T ),

which shows that ψ(T ) commutes with c, and a similar computation for d shows that
ψ(T ) is indeed central.

For (2) the relations s · 11 = y2, r · 11 = x2 and T · 11 = (cd+ x+ y − 1
2t)

2 hold in the
image by construction, while cd = feven(s 1

2 )s−1
2 = ψ(t·10) is one of the defining relations

of Jac(Q,Wf ). It follows that ψ : Λ → Jac(Q,Wf ) is a well-defined homomorphism,
which is moreover surjective because the generators x, y, c, d, s are in the image. By
construction, its kernel contains the ideal JΛ because the image of the generators of J
vanish:

ψ(z) = (xy + yx) + (dxc+ dyc+ψ(r · 10) +ψ(s · 10)−ψ(T ) + 1
4ψ(t)2 · 10) = 0

ψ(r − dyc+ ycd+ cdy − ty − f ′odd(s 1
2 )) = (x2 − f ′(y) + ycd+ cdy) = 0

ψ(t− feven(s 1
2 )s−1

2 ) = 0.

It follows that ψ descends to a surjective homomorphism ψ : Λ/JΛ → Jac(Q,Wf ).
Conversely, the map ϕ : CQ → Λ/JΛ is simply the CQ-algebra homomorphism that
sends the additional loop s to ϕ(s) = s · e0, which is clearly well-defined. We claim
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that the kernel contains the relations of Jac(Q,Wf ):

ϕ(f ′even(s 1
2 )s−1

2 − dc) = f ′even(s 1
2 )s−1

2 · 10 − dc = t · 10 − dc = 0
ϕ(dy2 − sd) = ds− sd = 0
ϕ(y2c− cs) = sc− sc = 0
ϕ(xy + yx) = z · 11 = 0

ϕ(x2 − f ′(y) + cdy + ycd) = (r − f ′odd(s 1
2 ) + cdy + ycd− f ′even(s 1

2 )) · 11 = 0.

Hence ϕ descends to a homomorphism ϕ : Jac(Q,Wf )→ Λ/JΛ. One checks explicitly
that it is an inverse for ψ, so that Jac(Q,Wf ) ' Λ/JΛ as CQ-algebras.

Because the contraction algebra of Λ is obtained by deleting the vertex 0 in the quiver,
we now also find that the algebra Λcon := Λcon⊗R Rf has a superpotential description

Λcon ' Jac(Q2,Wf ),

where Wf is restricted to the subquiver Q2 generated by x and y. By Lemma 2.6, this
algebra is finite dimensional if the parameter f satisfies feven 6= 0.

We wish to compare the Rf -algebra Λ to the base change of the commutative resolution
π : Y → Ycon. Let Ycon = SpecRf then we obtain a map þ = þf : Y → Ycon from the
fibre product Y = Y ×Ycon Ycon. A priori it is not clear if the map þ : Y → Ycon is a
flop, or even a contraction morphism, nor that the tilting bundle T induces a derived
equivalence between Db(Λ) and Db(Y ).

§ 2.2.2 | Sufficiently nice slices

In this subsection we formulate a criterion that guarantees that a map þ : Y → Ycon

cut out from the universal flop π : Y → Ycon is a contraction morphism, and that the
tilting bundle T restricts to a tilting bundle on Y . To do this we break the base change
up into a sequence of codimension 1 slices.

Setup 2.9. Let f : X → Xcon be a projective, surjective map between integral varieties.
Then by a slice we will mean a diagram

X

Xcon

X

Xcon

f |Xcon f

where Xcon ↪→ Xcon is an integral closed subvariety cut out by a nontrivial element
g ∈ H0(Xcon,OXcon), such that X := X ×Xcon Xcon is also integral.

Lemma 2.10. Let f : X → Xcon be a map between integral varieties which is projective,
surjective, and satisfies Rf∗OX ' OXcon. Then for every slice as in Setup 2.9 the map
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f |Xcon : X → Xcon also satisfies these three conditions.

Proof. Surjectivity and projectivity are preserved under arbitrary base change (see
e.g. [Stacks, Section 02WE]), so every slice f |Xcon : X → Xcon is again a surjective,
projective map between integral varieties. Hence it suffices to show that it satisfies the
condition R(f |Xcon)∗OX = OXcon . Let g ∈ H0(Xcon,OXcon) be a regular section which
cuts out Xcon ↪→ Xcon, then g can be viewed as a nontrivial section on X via

H0(X ,OX ) ' HomX (f ∗OXcon ,OX ) ' HomXcon(OXcon , f∗OX ) ' H0(Xcon,OXcon).

Because X is integral, for each open U ⊂ X the ring OX (U) is a domain and the
map OX (X ) → OX (U) is injective. In particular, for each U the restriction g|U is a
nonzerodivisor and induces an injective map g|U · : OX (U) → OX (U). Hence, there is
a short exact sequence

0→ OX
g·−→ OX → OX → 0, (2.4)

which defines the structure sheaf of X. Applying Rf∗ yields the long exact sequence

. . .→ Rnf∗OX → Rnf∗OX → Rnf∗OX → Rn+1f∗OX → . . . .

Because Rf∗OX = OXcon , the entries Rnf∗OX vanish for n ≥ 1, and it follows that

Rf∗OX ' OXcon/gOXcon ' OXcon .

Hence, the criterion in Setup 2.9 is almost sufficient to show that a contraction slices
out to a contraction: one only needs to verify that the varieties X and Xcon are normal.
It is also sufficient to guarantee that tilting bundles restrict to tilting bundles.

Lemma 2.11. Let f : X → Xcon be a map as in Lemma 2.10, and suppose there exists
a tilting bundle F ∈ cohX . Then for every slice as in Setup 2.9 the bundle F ⊗X OX
is again tilting on X, and

EndX(F ⊗X OX) ' EndX (F)/g EndX (F),

where g ∈ H0(Xcon,OXcon) denotes the section defining Xcon.

Proof. Let g ∈ H0(Xcon,OXcon) be a regular section defining Xcon ↪→ Xcon. Because F
is a tilting bundle, it locally free and the functor F ⊗X − preserves the short exact
sequence in (2.4), yielding

0→ F g·−→ F → F ⊗X OX → 0.

The tilting property moreover implies that ExtiX (F ,F) = 0, so that the corresponding

https://stacks.math.columbia.edu/tag/02WE
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entries in the long exact sequence

. . .→ ExtiX (F ,F)→ ExtiX (F ,F)→ ExtiX (F ,F ⊗OX)→ Exti+1
X (F ,F)→ . . . ,

of RHomX (F ,−) vanish. It follows by adjunction that

ExtiX (F ,F ⊗X OX) ' ExtiX(F ⊗X OX ,F ⊗X OX) = 0

for all i > 0, and EndX(F ⊗X OX) ' EndX (F)/g EndX (F). To show that F ⊗X OX
is tilting it therefore suffices to show that it is a generator in D(X) = D(QCohX), in
the sense that

RHomX(F ⊗X OX ,G) = 0 =⇒ G = 0,

for all G ∈ D(X). This follows by adjunction: let i : X ↪→ X denote the closed
immersion of X as a subscheme of X , then because F is a generator in D(X )

0 = RHomX(F ⊗X OX ,G) ' RHomX(Li∗F ,G) ' RHomX (F ,Ri∗G) =⇒ Ri∗G = 0,

and hence G = 0 because i is affine. The result follows.

§ 2.2.3 | Slicing out flops

For the rest of this section we fix a parameter f ∈ C[y] which is divisible by y3, and
consider the associated map þ : Y → Ycon = SpecRf . By construction, Ycon is generated
by a sequence g1, g2, g3 ∈ R, so that þ fits into a diagram

YY1Y2Y = Y3

SpecRSpecR1SpecR2Ycon = SpecR3

þ π (2.5)

where Rk = R/(g1, . . . , gk) and Yk = Y×SpecRSpecRk. We first verify that each square
in this diagram is a slice as in Setup 2.9. It suffices to show that all the spaces in the
diagram are integral.

Lemma 2.12. The rings R1, R2, R3 are integral domains.

Proof. By inspection, each generator contains a different linear term. Therefore each
generator eliminates a different generator of R, yielding the quotients:

R1 '
C[r, s, t, u, v, w]

(u2 − rw2 − sv2 + rst2)

R2 '
C[r, s, t, u, v]

(u2 − r(r − f ′odd(s 1
2 )2 − sv2 + rst2)

R3 '
C[r, s, u, v]

(u2 − r(r − f ′odd(s 1
2 )2 − sv2 + r(f ′even(s 1

2 ))2)
.
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Each of these quotients is defined by a single equation of the form u2 − h for some
polynomial h which has degree 0 in u. Such a hypersurface is reducible if and only if h
is a square, but this is clearly not the case as the r-degree of h is odd. It follows that
the rings R1, R2, and R3 are domains.

Lemma 2.13. The space Y1, Y2, Y3 are smooth and connected, hence integral.

Proof. As recalled in §2.1.2, the space Y is covered by two charts Ux and Uy which are
both isomorphic to A6. Each space Yk is therefore covered by the base change of these
two charts over R → Rk. Because SpecRk contains the origin for each k, it follows
that Yk contains the curve C ⊂ Y supported over it. Hence, the base changes of Ux and
Uy still have a nonzero intersection in Yk, which implies Yk is connected. It remains to
check that Ux and Uy remain smooth after base change.

The ring map R → C[Ux] in (2.1) maps the generators g1, g2, g3 ∈ J to

g1 7→ u1 := y01 + x01y10,

g2 7→ u2 := d0 − f ′even((y2
00 + y10y01) 1

2 )(y2
00 + y10y01)−1

2 ,

g3 7→ u3 := x01 − (d0y00 + d1y10)− f ′odd((y2
00 + y01y10) 1

2 ).

The first two equations have independent linear terms and cut the chart down to the
rings C[Ux]/(u1) ' C[d0, d1, x01, y00, y10] and C[Ux]/(u1, u2) ' C[d1, x01, y00, y10], which
are regular. Eliminating these variables from u3 yields

u3 = x01 − f ′even((y2
00 − x01y

2
10) 1

2 )(y2
00 − x01y

2
10)−1

2y00 + d1y10 − f ′odd((y2
00 − x01y

2
10) 1

2 ).

A short argument shows that the critical locus of u3 in SpecC[d1, x01, y00, y10] is trivial:
setting ∂d1u3 = y10 to 0 yields (∂x01u3)|y10=0 = 1. It follows that C[Ux]/(u1, u2, u3) is
also regular, so that Ux ∩ Yk is smooth for k = 1, 2, 3.

The smoothness on the other chart is verified in a similar way. The ring mapR → C[Uy]
in (2.2) maps the relations g1, g2, g3 to

g1 7→ v1 := x01 + y01x10,

g2 7→ v2 := d0 − f ′even(y
1
2
01)y−

1
2

01 ,

g3 7→ v3 := x2
00 + x01x10 − d1 − f ′odd(y

1
2
01).

In this case, the polynomials v1, v2, and v3 each contain an independent linear term,
so that C[Uy]/(u1) ' C[d0, d1, x00, x10, y01], C[Uy]/(u1, u2) ' C[d1, x00, x10, y01], and
C[Uy]/(u1, u2, u3) ' C[x00, x10, y01] are all regular. The result follows.

Corollary 2.14. The squares in (2.5) are slices as in Setup 2.9.

Because π : Y → Ycon is a contraction, Lemma 2.10 now guarantees that þ : Y →
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SpecR is a projective surjective map with Rþ∗OY = OYcon . To show that it is a small
contraction we have to show that it is also a birational map between normal varieties
with Ex(þ) of codimension 2. These additional requirements are satisfied if Ycon has a
sufficiently small intersection with SingYcon.

Lemma 2.15. Suppose Ycon ⊂ Ycon intersects SingYcon in a finite set of points, then
þ : Y → Ycon is a small contraction.

Proof. Because þ satisfies Rþ∗OY = OYcon , it follows that R = Γ(Ycon, þ∗OY ) =
Γ(Y,OY ) is a normal integral domain, as Y is an integral normal scheme. Hence
Ycon is again normal and it follows that þ : Y → Ycon is a contraction. We check that it
is small.

Let U = Ycon\SingYcon, then π : Y → Ycon restricts to an isomorphism π|U : π−1(U) ∼−→
U . Hence the restriction

þ|Ycon∩U = π|Ycon∩U : þ−1(Ycon ∩ U)→ Ycon ∩ U

is also an isomorphism. Because the complement of Ycon∩U is precisely the intersection
Ycon∩SingYcon, which is a finite number of points by assumption, the exceptional locus
consists of the 1-dimensional fibres over these points. It follows that þ is small.

The condition of Lemma 2.15 can be checked easily by using the base change of the
contraction algebra.

Lemma 2.16. Suppose the parameter f ∈ C[y] satisfies feven 6= 0, then Ycon∩SingYcon

is a finite set of points which contains the origin.

Proof. By [DW19a, Theorem 1.1] the support of the contraction algebra Λcon is given
by SuppYcon Λcon = SingYcon. Hence, the base change Λcon ⊗R Rf has support

SuppYcon(Λcon ⊗R Rf ) = Ycon ∩ SuppYconΛcon = Ycon ∩ SingYcon.

It follows from Lemma 2.8 that Λcon⊗R Rf ' Jac(Q2,Wf ), which is finite dimensional
by Lemma 2.6. It follows that SuppYcon Λcon ⊗R Rf is a finite set of points. Moreover,
the singularity at the origin o ∈ Ycon is clearly contained in this because the generators
in (2.3) are contained in this maximal ideal.

Using the above lemmas, the proof of the theorem is now straightforward.

Proof of Theorem 2.7. By Corollary 2.14 the map þ : Y → Ycon is constructed from
a sequence of slices, hence Lemma 2.10 implies that þ is projective, surjective, and
satisfies Rþ∗OY = OYcon . Because the parameter f ∈ C[y] satisfies the assumptions
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of Lemma 2.16, it follows that Ycon ∩ SingYcon is a finite number of points. Hence,
Lemma 2.15 implies that þ is a small contraction.

Because Ycon is a hypersurface, it has Gorenstein singularities and it follows that the
canonical sheaf ωYcon is a line bundle. The spaces Y and Ycon are normal, so the line
bundles ωY and ωYcon are determined by their restriction to the complement of the
codimension ≥ 2 subsets Ex(þ) and þ(Ex(þ)). Because þ is an isomorphism on these
complements, it follows that ωY = þ∗ωYcon . For every exceptional curve C ⊂ Ex(þ) the
line bundle ωYcon is trivial on some neighbourhood U 3 þ(C). Hence

ωY |þ−1(U) ' þ∗(ωYcon|U) ' þ∗(OYcon|U) ' OY |þ−1(U).

Because þ−1(U) is an open neighbourhood of C, it follows that KY ·C = 0. This shows
that þ is a flopping contraction.

The fibre of þ over the origin coincides with the fibre of the universal flop over the
maximal ideal o = (r, s, t, u, v, w, z) ⊂ R. The image of o along the map R → C[Ux] is

(x01, y
2
00 + y01y10, d0, d1y00 + 1

2d0(x01y10 − y01), d1, d0y01 − d1y00, y01 + y10x01)
= (x01, d0, d1, y01, y

2
00),

which cuts out a line of multiplicity 2 in the chart Ux ⊂ Y . Hence the scheme theoretic
fibre has length 2 at the generic point of C ⊂ Y , and þ has length ` = 2 over this point.

Finally, it follows from Lemma 2.11 that T ⊗R Rf is a a tilting bundle on Y with
endomorphism algebra Λ, which is isomorphic to Jac(Q,Wf ) by Lemma 2.8.

We remark that the proof Lemma 2.13 implies that the family we have constructed has
the following curious property, which will be helpful for the calculation of DT invariants
in a later chapter.

Lemma 2.17. The singularity Ycon has absolute units R×f = C×.

Proof. The map þ : Y → Ycon is surjective and therefore in particular a dominant map.
Because Y and Ycon are moreover integral, there is an injective ring homomorphism

Rf = OYcon(Ycon)→ OY (Uy) ' C[x00, x10, y01]

Because any ring homomorphism maps units to units, there is an induced injective
map R×f ↪→ C[x00, x10, y01]× = C×. Since R×f contains C×, the result follows.

§ 2.2.4 | New examples of length 2 flops

Having constructed our family of flops, we now wish to verify that the family actually
contains (analytically) new examples: we wish to find parameters f ∈ C[y] for which the
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formal neighbourhood of the origin in SpecRf is distinct from earlier known examples.
Consider the following choices of parameters:

fn(y) = 1
2ny

2n, fn,m(y) = 1
2ny

2n + 1
2m+1y

2m+1,

for n ≥ 2, 1 ≤ m < 2n − 1. Then these parameters have nontrivial even part, and
hence give rise to a flopping contraction þf : Yf → SpecRf , with Rf defined by the
hypersurface equations

Un = u2 + r3 − sv2 + rs2n−1, Un,m = u2 + r(r − sm)2 − sv2 + rs2n−1.

For n = 2 this recovers existing examples from the literature: the flop U2 is Laufer’s flop
[Lau81] which formed the first example of a length 2 flop, U2,1 is Pinkham’s deformation
[Pin83], and U2,2 is the flop constructed by Brown–Wemyss [BW17]. The (classical)
enumerative invariants of these two deformations behave differently: the former is
distinguished from Laufer’s example by its GV invariants, while [BW17] shows that
the latter is not. The families {Un} and {Un,m} extends this triumvirate: for each n
there is a quasihomogeneous singularity Un, and two regimes of non-quasihomogeneous
singularities Un,m for m < n and m ≥ n respectively. In this section, we will show that
each of these is an analytically distinct hypersurface singularity by comparing their
Tjurina numbers. The classical and refined invariants will be analysed in chapter 6.

Definition 2.18. Let g ∈ C[[x1, . . . , xn]], then its Tjurina number is defined as

T (g) := dimC
C[[x1, . . . , xn]]

(dg, g) ,

where (dg, g) = (∂ig | i = 1, . . . , n) + (g) is the ideal of the formal critical locus.

To compute these invariants we construct a standard basis, following the example of
Hironaka [Hir64]. Standard bases are the local/analytic analogue of Gröbner bases
used in polynomial rings, and similar algorithms and tricks apply to them; for these
we use the papers of Becker [Bec90; Bec93], which also offer a good introduction.

Let ≺ denote the degree-lexographical order on the set of monomials in C[[x1, . . . , xn]]:
this is the unique relation such that 1 ≺ x1 ≺ . . . ≺ xn and such that xa ≺ xb implies
m · xa ≺ m · xb for all monomials m. For a polynomial g = ∑

a cax
a we denote its least

monomial lm(g) = xa, which is the the ≺-smallest monomial for which ca 6= 0. We also
write lt(g) = cbx

b = cb lm(g) for the least term, which includes the nonzero coefficient.

Definition 2.19. Let I ⊂ C[[x1, . . . , xn]] be an ideal, and G ⊂ I a generating set.
Then G is a standard basis if for all h ∈ I there exists g ∈ G such that lm(g) | lm(h).
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From the definition, it is clear that a standard basis G = {g1, . . . , gm} of I satisfies

dimC
C[[x1, . . . , xn]]

I
= dimC

C[[x1, . . . , xn]]
(lm(g1), . . . , lm(gm)) .

Because the algebra on right hand side is a quotient by monomial relations, this makes
the dimension much easier to compute that the left hand side. In particular, this is
useful for computing Tjurina numbers. To find standard bases, we use the S-series of
the generators:

Sij := gi
lcm(lm(gi),lm(gj))

lt(gi) − gj lcm(lm(gi),lm(gj))
lt(gj) ,

for all pairs i, j with 1 ≤ i < j ≤ m. By [Bec90, Corollary 2.3] the set G is a standard
basis if and only if each S-series has a standard representation with respect to G: that
is there exist coefficients qk ∈ C[[x1, . . . , xn]] such that

Sij =
m∑
i=1

qkgk with lm(Sij) � lm(qkgk) for all k with qk 6= 0.

The following two criteria guarantee that Sij has a standard representation: firstly
Sij = 0 if gi and gj are unit multiples of a monomial, and secondly there is the
product criterion proved in [Bec93, Theorem 3.1], which states that Sij has a standard
representation with respect to {gi, gj} if gcd(lm(gi), lm(gj)) = 1.

Returning to our setting, we want to construct a standard basis for the ideals (dUn, Un),
(dUn,m, Un,m) associated to the hypersurfaces in C[[u, v, r, s]] considered above.

Lemma 2.20. The ideal (dUn, Un) has standard basis

G = {g1, . . . , g6} := {u, sv, 3r2 + s2n−1, v2 − (2n− 1)rs2n−2, rs2n−1, s4n−2}.

Proof. The equations g1, g2, g3, g4 are (up to scaling) the derivatives of Un, and therefore
generate (dUn), and because Un is quasihomogeneous they also generate (dUn, Un) =
(dUn). The S-series

S24 = v · g2 − s · g4 = (2n− 1)rs2n−1 = (2n− 1) · g5

produces the element g5, and likewise, the element g6 is obtained from the S-series

S35 = 1
3s

2n−1 · g3 − r · g2 = −1
3s

4n−2 = −1
3 · g6.

The set G = {g1, . . . , g6} now forms a standard basis: G clearly generates (dUn, Un);
S24, S35 have a standard representation by construction; and all other S-series are
guaranteed to have a standard representation by monomial and product criterion.

With this standard basis, the Tjurina number can be calculated as the dimension of

C[s, r, v, u]
(u, vs, r2, v2, rs2n−1, s4n−2) .



34. CHAPTER 2. CONSTRUCTING FLOPS

This algebra has a monomial basis {1, v, r, vr, rs, . . . , rs2n−2, s, . . . , s4n−3}, so that

T (Un) = dimC
C[s, r, v, u]

(u, vs, r2, v2, rs2n+1, s4n+2) = 6n− 1.

The standard bases for the family Un,m are split depending on the regime.

Lemma 2.21. Let n ≥ 2 and 1 ≤ m < 2n − 1. Then (dUn,m, Un,m) has a standard
basis G = {g1, g2, g3, g4, g5, g6} where

g1 = u, g2 = sv, g3 = 3r2 − 4rsm + s2m + s2n−1,

g4 = v2 + 2mr2sm−1 − 2mrs2m−1 − (2n− 1)rs2n−2,

g5 =

rs
2n−1 n ≤ m,

2mrs2m − 3(2n− 1)rs2n−1 − 2ms3m m < n
,

g6 = s2n+m−1.

Proof. We will only consider the regime n ≤ m for simplicity, the other regime is
similar. The polynomials g1, g2, g3, g4 are again (up to scaling) the derivatives of Un,m
and hence generate (dUn,m). Because the polynomial Un,m is not quasihomogeneous,
the generalised Euler operator with weights 1

2 ,
3m−1

6m , 1
3 ,

1
3m gives a nontrivial generator:

(1
2u∂u + 3m−1

6m v∂v + 1
3r∂r + 1

3ms∂s)Un,m = Un,m + 2n−2m−1
3m rs2n−1.

Hence, the set {g1, g2, g3, g4, g5 = rs2n−1} generates (dUn,m, Un,m). The element g6 =
s2n+m−1 can be obtained from the S-series S24:

S24 = sv2 − s · g4 = −2mr2sm + 2mrs2m + (2n− 1)rs2n−1

= 2m
3 · g3 + (2n− 1 + 2m

3 s
2m−2n+1) · g5 + (1− 2m

3 s
2m−2n+1) · g6,

and hence g6 ∈ (dUn,m, Un,m) because 1 − 2m
3 s

2m−2n+1 is a unit. Moreover, this is a
standard representation of S24 with respect to G as lm(S24) = lm(g3) ≺ lm(g5) ≺
lm(g6). By inspection, the only other S-series not eliminated by the criteria is S35,
which has standard basis

S35 = 1
3s

2n−1 · g3 − r2s2n−1 = −4
3rs

2n+m−1 + 1
3s

2n+2m−1 + 1
3s

4n−2

= −4
3s
m · g5 + (1

3s
m + 1

3s
2n−1) · g6,

as lm(S35) = lm(−4
3s
mg5) ≺ lm((1

3s
m + 1

3s
2n−1)g6). It follows that G is indeed a

standard basis for (dUn,m, Un,m).

The Tjurina numbers of the hypersurfaces Un,m can now be calculated as the dimension
of the algebras

C[[s, r, v, u]]
(u, sv, r2, v2, rs2n−1, s2n+m−1) ,

C[[s, r, v, u]]
(u, sv, r2, v2, rs2m, s2n+m−1) ,
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for the respective regimes n ≤ m and m < n, which have monomial bases of cardinali-
ties 4n+m and 2n+ 3m respectively. Hence,

T (Un,m) =

2n+ 3m m < n

4n+m n ≤ m

Fixing n, this yields 2n− 1 hypersurfaces Un,m, Un with different Tjurina numbers:

regime Un,m (1 ≤ m < n) Un,m (n ≤ m < 2n− 1) Un

Tjurina numbers 2n+ 3, . . . , 5n− 3 5n, . . . , 6n− 2 6n− 1
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Chapter 3

The DT Toolbox

In this chapter we set up the machinery of DT theory for quivers with potential.

Let Q be a finite quiver with monoid of dimension vectors ∆ = NQ0. As before, we
write Repδ(Q) for the affine space of representations, which is acted on by the linear
algebraic group GLδ = ∏

v∈Q0 GLδv . It is well-known that the orbits of the GLδ-action
correspond to isomorphism classes of representations, and therefore the quotient stack

Mδ := Repδ(Q)/GLδ,

parametrises isomorphism classes of representations, or equivalently of CQ-modules, of
dimension vector δ. We drop the subscript to denote the disjoint union M := ∐

δ∈∆Mδ,
which is the moduli stack of fdmodCQ. For each δ, there is a map Mδ → Mδ onto
the coarse moduli scheme Mδ, which parametrises semisimple modules. For v ∈ Q0

let Sv ∈ modCQ denote the unique nilpotent simple at the vertex v, then Nδ ⊂ Mδ

denotes the fibre of Mδ →Mδ over the semisimple module ⊕v∈Q0 S
δv
i . Again, we drop

the subscript to denote the disjoint union N = ∐
δ∈∆Nδ.

If W ∈ CQcyc is a potential, the trace of W defines a GLδ-equivariant function tr(W )
on Repδ(Q) for each δ ∈ ∆, and hence a regular function tr(W ) on M. This function
has a well-defined stacky critical locus MQ,W , whose intersection with N we denote by

C = CQ,W := MQ,W ∩N.

The closed points C(C) correspond to the isomorphism classes of the nilpotent CQ-
modules that satisfy the relations in the Jacobi algebra, i.e. Jac(Q,W )-modules.
The goal of motivic Donaldson–Thomas theory is to assign a motivic invariant which
“counts” these classes. To do this, one constructs a motivic vanishing cycle φtr(W ) in
some ring of motivic measures. Integrating the vanishing cycle over the components
Cδ defines a generating function

Φ(t) = ΦQ,W (t) :=
∑
δ∈∆

∫
Cδ

φtr(W ) · tδ,
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with motivic coefficients. This generating function is the DT partition function and its
coefficients the DT invariants, which are a motivic refinement of the enumerative DT
invariants of Joyce–Song [JS08]. The partition function can be greatly simplified using
stability conditions and a multiple-cover formula.

§ 3.1 | Refined invariants
The intention of motivic Donaldson–Thomas theory is to refine enumerative invariants.
Instead of the ring of integers, the desired invariant ring for a motivic theory is a version
of the Grothendieck ring of varieties K(Var/C): the ring generated by isomorphism
classes of reduced separated schemes of finite type over C subject to the cut-and-paste
relations

[X] = [Z] + [X \ Z] for Z ⊂ X a closed subvariety,

with multiplication [X] · [Y ] = [X × Y ] and unit [pt] = [SpecC]. This is however not
quite the right target ring for motivic DT theory: besides some technical modifications,
it is crucial to keep track of monodromy. The invariants are therefore defined in some
equivariant version Motµ̂(C) of the ring of varieties. The invariants will be defined via
motivic integration, and we therefore also work in a relative setting: we require a ring
of motivic measures Motµ̂(M) over a suitable stack M, and a method of integrating
these with respect to relative classes K(St/M). We briefly recall this generalisation
here, and point the reader to [DM15b] for a more complete treatment.

Let St denote the category of Artin stacks, locally of finite type over C, having affine
stabilisers. A stack with monodromy, is an X ∈ St equipped with a good action of
the group-scheme µn of nth roots of unity, i.e. an action such that the orbit of any
closed point is contained in an affine neighbourhood. It is convenient to interpret the
monodromy as an action of the limit µ̂ of the inverse system {za : µan → µn}a,n∈N
formed by these groups. Given a stack M ∈ St, interpreted as a stack with trivial
monodromy, we consider finite type morphisms X→M from stacks with monodromy
X to M. We will call two such morphisms f : X → M and g : Y → M equivalent if
there is µ̂-equivariant isomorphism h : X→ Y such that f = g ◦h. If M ∈ St is of finite
type we let Kµ̂(St/M) denote the abelian group generated by the equivalences classes
[X→M] of such maps, subject to the relations

[X f−→M] = [Z f |Z−−→M] + [X \ Z
f |X\Z−−−→M],

0 = [Y f◦g−−→M]− [Ar × X
f◦prX−−−→M]

for closed substacks Z ⊂ X, and µ̂-equivariant vector bundles g : Y→ X of rank r. For
M ∈ St not of finite type, the above defines a group Kµ̂

pre(St/M) and we define

Kµ̂(St/M) := Kµ̂
pre(St/M)/ ∩U⊂M Kµ̂

pre(St/(M \ U)),
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where the intersection ranges over the open substacks U ⊂M which are of finite type.
We also let K(St/M) ⊂ Kµ̂(St/M) denote the subgroup generated by classes [X→M]
for which X carries the trivial µ̂ action. Any finite type map j : M → N induces a
push-forward j∗ : Kµ̂(St/M)→ Kµ̂(St/N) and a pull-back j∗ : Kµ̂(St/N)→ Kµ̂(St/N)
via

j∗[f : X→M] = [j ◦ f : X→ N], j∗[f : X→ N] = [j∗f : X×N M→M].

For Z ⊂M a substack we write |Z for the pullback along the inclusion.

Any variety X can be interpreted as a finite type stack, and the classes [X → M]
generate a subgroup Kµ̂(Var/M) ⊂ Kµ̂(St/M). In particular, for M = SpecC one
obtains the absolute motives Kµ̂(Var/C), which have a ring structure with an exotic
product (see [Loo02], where this product is called the “join”), which restricts to the
usual product on K(Var/C) ⊂ Kµ̂(Var/C). We write absolute motives simply as [X],
ignoring the structure morphism, and use the notation

L := [A1] ∈ K(Var/C) ⊂ Kµ̂(Var/C)

for the Lefschetz motive. With the exotic product on Kµ̂(Var/C) the Lefschetz motive
moreover has a square root which is of the form (see e.g. [DM15b, Example 4.3])

L
1
2 = 1− [µ2] ∈ Kµ̂(Var/C).

The ring Kµ̂(Var/C) acts on Kµ̂(St/M) and Kµ̂(Var/M) for any M ∈ St. For a class
[X] with trivial monodromy, this action is simply

[X] · [Y→M] = [X × Y→M].

In particular it makes sense to define a localisation

Motµ̂(M) := Kµ̂(Var/M)
[
[GLn]−1 | n ∈ N

]
,

and write again Motµ̂(C) = Motµ̂(SpecC). This localisation already recovers the stacky
version: by [DM15b, Proposition 2.8] the map Motµ̂(M)→ Kµ̂(St/M) which sends

[GLn]−1 · [X →M] 7→ [pt/GLn×X →M].

is an isomorphism of Kµ̂(Var/C)-modules. We will refer to elements of Motµ̂(M) as
motivic measures, as they have well-defined integrals: for i : X → M a stack over M

with a : X→ SpecC of finite type over C, the integral of m ∈ Motµ̂(M) is∫
X
m := a∗i

∗m ∈ Motµ̂(C),

and one can show that this integral only depends on the class [i : X→M] in K(St/M).
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We will collect our motivic invariants in generating series, expressed as elements of a
ring of multi-variate motivic power series: if S = NS0 is a free monoid on a finite set
S0 we let

Motµ̂(C)[[S]] = Motµ̂(C)[[ts | s ∈ S0]].

Such rings have an additional pre-λ-ring structure [DM15b, §3], defined by a map

Sym: Motµ̂(C)[[S]]→ 1 + Motµ̂(C)[[S]],

called the plethystic exponential, which satisfies the exponential identities

Sym(0) = 1, Sym(a+ b) = Sym(a) Sym(b),
Sym(a · ts) = 1 + a · ts + . . . higher order terms . . .

The plethystic exponential allows one to systematically derive multiple-cover formulas
for motivic invariants: starting with an ansatz Sym(∑s∈S ast

s), one can re-write any
power series with constant term 1 as a plethystic exponential by computing the as
term-wise.

§ 3.1.1 | Motivic vanishing cycles

The motivic vanishing cycle is a rule which assigns to a regular function f : M → A1

on a smooth stack M a motivic measure φf ∈ Motµ̂(M), and provides a measure of
the critical locus of f . Its construction proceeds in successive levels of generality.

1) For a regular function f : M → A1 on a smooth scheme M Denef–Loeser [DL99]
construct the vanishing cycle via a certain rational function, defined by the (ho-
mogeneous) lifts fn : L(M)→ A1 of f to the arc-space of M .

2) For a regular function f : M → A1 on a quotient stack M = M/G of a smooth
scheme M by a linear algebraic group G one can define as in [DM15b]

φf = LdimG/2 · [BG] · q∗φf◦q ∈ Motµ̂(M),

where q : M →M is the quotient, and φf◦q ∈ Motµ̂(M) is defined as above.
3) For a general M ∈ St, the vanishing cycle φf is recovered from an open cover of

M by suitable quotient stacks, via the cut-and-paste relations.

To compute the motivic measure on a smooth scheme M explicitly, Denef–Loeser
[DL99] provide the following algorithm.

Let f : M → A1 be a nonconstant regular function on a smooth scheme of pure
dimension d, and write M0 := f−1(0) for the associated divisor. Let p : M̃ →M be an
embedded resolution of M0, i.e. p is an isomorphism away from M0 and the pull-back
E := p∗M0 = m1E1 + . . .+mnEn has normal crossings1in a neighbourhood of p−1(M0).
1This is weaker than the simple normal crossing (snc) condition, as we allow multiplicities.
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For any non-empty I ⊂ Irr(E) of the set Irr(E) = {E1, . . . , En} let

EI :=
⋂
Ei∈I

Ei, E◦I := EI \
⋃

Ei∈Irr(E)\I
Ei.

The spaces E◦I form a stratification2 of p−1(X0), and for each stratum there exists a
cover DI → EI , étale over E◦I , with Galois group µmI

for mI := gcd{mi}Ei∈I . By the
construction in [Loo02], the action of µmI

on the cover DI is canonical. The vanishing
cycle is then computed by the following formula [DL99; Loo02]:

φf = L−
dim M

2

(
[M0 ↪→M0]−

∑
∅6=I⊂Irr(E)

(1− L)|I|−1 [D◦I →M0 ↪→M ]
)
, (3.1)

where D◦I is understood to carry the monodromy defined by the µmI
-action. We will

use this identity explicitly in one of our computations.

The motivic integration formula can be quite difficult to use in practice, as it is often
hard to find embedded resolutions explicitly. There are several results which can reduce
this complexity, the first of which concerns the case where the function is homogenous.

Theorem 3.1 ([DM15b, Theorem 5.9]). Let M be a smooth variety of dimension
dimM = d with a sufficiently nice Gm-action, and suppose f : M → A1 is homogenous
of order n. Then the motivic measure is equal to

φf = L−d/2
(
[f−1(0)→M ]− [f−1(1)→M ]

)
,

where f−1(1) carries the residual µn-action and the monodromy on f−1(0) is trivial.

Next we recall the motivic Thom-Sebastiani identity which will be indispensable in
what follows.

Theorem 3.2 ([GLM06]). Let f : M → A1 and g : M′ → A1 be functions on smooth
stacks, and X ⊂M, X′ ⊂M closed substacks, then∫

X×Y
φf+g =

∫
X
φf ·

∫
Y
φg.

Consider the homogeneous function z2 : A1 → A1, which has absolute vanishing cycle∫
A1
φz2 = L−

1
2 (1− [µ2]) = 1.

By repeated use of the the Thom-Sebastiani theorem, one can use the above identity
to derive the following statement about quadratic forms.

Corollary 3.3. Let q : An → A1 be a nondegenerate quadratic form, then
∫
An φq = 1.

2Here and in the rest of the paper, by a stratification of a space we simply mean a decomposition into
locally closed subspaces.
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§ 3.2 | The motivic Hall algebra
Let Q be a quiver with moduli stack M as before. Given a potential W ∈ CQcyc :=
CQ/[CQ,CQ], the critical locus MQ,W of tr(W ) : M → A1 parametrises those CQ-
modules that satisfy the relations in the Jacobi algebra

Jac(Q,W ) := CQ/(∂W/∂a | a ∈ Q1),

where ∂W/∂a ∈ CQ denotes the cyclic derivative of W with respect to an arrow a.
Because mod Jac(Q,W ) is an abelian category, the points ofMQ,W are related by short-
exact sequences, which endow K(St/MQ,W ) with an algebra structure, the motivic Hall
algebra [Joy07]. A helpful introduction to motivic Hall algebras can be found in [Bri12].

Let ∆ = NQ0 denote the monoid of dimension vectors of Q. Given dimension vectors
δ1, δ2 ∈ ∆, there is a moduli stack Extδ1,δ2 whose S-points for an C-algebra S, are the
isomorphism classes of short-exact sequences

0→M1 → N →M2 → 0

for [Mi] ∈ MQ,W,δi
(S) and [N ] ∈ MQ,W,δ1+δ2(S). There are three projections, of the

form
pi : Extδ1,δ2 →MQ,W,δi

, q : Extδ1,δ2 →MQ,W,δ1+δ2 ,

which map a s.e.s. to the respective modules Mi, N . Given a pair of finite-type maps
fi : Xi →MQ,W,δi

, there is a pullback diagram

Y Extδ1,δ2 MQ,W,δ1+δ2
g q

X1 × X2 MQ,W,δ1 ×MQ,W,δ2

g p1×p2

f1×f2

(3.2)

The convolution product ? : K(St/MQ,W,δ1) × K(St/MQ,W,δ2) → K(St/MQ,W,δ1+δ2) of
the classes [fi : X→MQ,W,δi

] is defined by the top row in the diagram:

[X1
f1−→MQ,W,δ1 ] ? [X2

f2−→MQ,W,δ2 ] = [Y q◦g−−→MQ,W,δ1+δ2 ].

This endows K(St/MQ,W ) with the structure of an algebra over K(St/C). Restricting
to the nilpotent locus C = N ∩MQ,W , we obtain a subgroup K(St/C) ⊂ K(St/MQ,W )
which is closed under the convolution product. The motivic Hall algebra of C is the
pair

H(Q,W ) := (K(St/C), ?)

Let Motµ̂(C)[[∆]] denote the ring of motivic power series over the monoid ∆ of dimension
vectors. Any class [X→ C] ∈ K(St/C) has a decomposition [X→ C] = ∑

δ∈∆[Xδ → Cδ]
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over the components of C. Hence, there is a well-defined integration

[X→ C]→
∫

[X→C]
φtr(W )|C :=

∑
δ∈∆

∫
Xδ

φtr(W ) · tδ.

Remarkably, the integration map
∫
•φtr(W )|C : H(Q,W ) → Motµ̂(C)[[∆]] obtained this

way is a K(St/C)-algebra homomorphism: this follows from [DM15a, Proposition 6.19]
with the proof [Thu15] of the integral identity in [KS08]. The Donaldson–Thomas
partition function of (Q,W ) is the integral over the canonical element [Id : C→ C]:

Φ(t) =
∫

[Id : C→C]
φtr(W )|C

With this setup, the partition function is controlled by the algebraic identities in the
Hall algebra: and any decomposition of the canonical element gives a decomposition
of the partition function.

§ 3.2.1 | Decomposition through stability

Definition 3.4. Let A be an abelian category of finite rank: K0(A) ' Z⊕n. Then
a stability condition on A is a group homomorphism Z : K0(A) → C such that any
nonzero object of M ∈ A is mapped to a nonzero vector Z([M ]) with phase

Θ([M ]) := Arg(Z([M ])) ∈ (0, π].

A nonzero object M ∈ A is semistable if for every subobject N ↪→ M there is an
inequality

Θ([N ]) ≤ Θ([M ]) ≤ Θ([M/N ]).

The object M is stable if this inequality is strict for N 6∈ {0,M}. The semistable
objects of a phase θ ∈ (0, π] together with the zero-object, form an abelian subcategory
Aθ ⊂ A.

For the abelian category A = nilp Jac(Q,W ) of nilpotent modules, the Grothendieck
group K0(nilp Jac(Q,W )) is the Grothendieck construction on the monoid ∆ of dimen-
sion vectors. Moreover, every object has a finite composition series, i.e. nilp Jac(Q,W )
is a finite length category. The finite length property implies the existence of Harder-
Narasimhan filtrations: if Θ is a phase function for a stability condition, then for any
M ∈ nilp Jac(Q,W ) there exists a unique filtration

0 = M0 ⊂M1 ⊂ . . .Mn = M

where the subquotients Mi/Mi−1 are semistable and the phases satisfy an inequality

Θ(M1/M0) > Θ(M2/M1) > . . .Θ(Mn/Mn−1).

The HN-filtration is unique, and hence defines a constructible function on C which
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associates to a module the tuple (θ1, . . . , θn) of phases of its semistable subquotients,
which defines a stratification of this stack [Rei02]. For θ ∈ (0, π] let Cθ ⊂ C denote
the (open) substack of semistable modules of phase θ, then the stratification gives the
following identity in the motivic Hall algebra:

[C→ C] = [C0 ↪→ C] +
∑
n∈N

∑
θ1>...>θn

[(Cθ1 \ C0) ↪→ C] ? · · · ? [(Cθn \ C0) ↪→ C]. (3.3)

For each phase θ, the integration map sends the element [Cθ ↪→ C] to a power series

Φθ(t) :=
∫

[Cθ↪→C]
φtr(W )|C =

∑
δ∈∆

∫
Cθ
δ

φtr(W ) · tδ,

and the identity (3.3) translates to the following result of Kontsevich–Soibelman [KS08].

Lemma 3.5. The following equality holds in the ring of motivic power series:

Φ(t) =
y∏

θ∈(0,π]
Φθ(t), (3.4)

where the product is taken clock-wise over all phases.

The identity (3.3) depends only the Harder-Narasimhan filtrations induced by the
stability condition and not on the specific homomorphism Z : K0(nilp Jac(Q,W )) →
C chosen. We therefore fix the following notion of equivalence, which preserves the
decomposition (3.4).

Definition 3.6. Two stability conditions Z,Z ′ : K0(nilp Jac(Q,W )) → C are equiva-
lent if they induce the same Harder-Narasimhan filtration on every nonzero represen-
tation.

Not every choice of stability condition will give a good decomposition of the partition
function. For instance, the stability condition Z : K0(nilp Jac(Q,W ))→ C that maps
all modules onto a single ray with phase θ gives the trivial relation Φ(t) = Φθ(t). We
make the following genericity assumption, which guarantees that the decomposition is
optimal.

Definition 3.7. Let Z : K0(nilp Jac(Q,W )) → C be a stability condition with Θ its
phase function, then Z is generic if for every pair of Z-semistable representations N,M

Θ(N) = Θ(M) ⇐⇒ [N ] = q · [M ] ∈ K0(nilp Jac(Q,W )) for some q ∈ Q.

Let Z be a generic stability condition, and θ a phase for which a semistable module
exists. Then the genericity implies that the dimension vectors of semistable modules
M with Θ(M) = θ are multiples of a common, indivisible dimension vector δ ∈ ∆.
Using the plethystic exponential, one may therefore expand the partition function of
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phase θ as

Φθ(t) =: Sym
∑
n∈N

BPSnδ
L 1

2 − L−1
2
· tnδ

 ,
where the quantities BPSnδ are the motivic BPS invariants for the phase θ.

§ 3.3 | Formal noncommutative functions on a point
In chapter 4 we identify a stability condition and a set of phases for the quiver with
potential of length 2 flops. With one exception, there exists a unique stable module
M for each of these phases θ. In this setting the semistable locus Cθ parametrises
the extensions of M , and the DT/BPS invariants are determined by the deformation
theory of M : one has

Φθ(t) = ΦQM ,WM
(t[M ]).

for some potential WM on a “noncommutative neighbourhood” of M described by an
N -loop quiver QM . The potential WM is defined, up to a formal coordinate change,
by a cyclic minimal A∞-structure on Ext•(M,M). We will prove a few results that
allow us to work with formal coordinate changes, saving the A∞-deformation theory
for chapter 5.

Lemma 3.8. Let f, g : Y → A1 be nonconstant regular functions on a smooth scheme,
and Z ⊂ Y a closed subscheme with X ⊃ Z a formal neighbourhood in Y . Suppose
there exists an automorphism t : X → X that identifies the germs f |X ◦ t = g|X , then∫

Z
φf =

∫
Z
φg.

Proof. By the definition of the vanishing cycle in [DL99], the integral of
∫
Z φf is the

(well-defined) value at T =∞ (see [DM15b, §5]) of a generating series
∑
n≥1

∫
Ln(Y )|Z

φfn · T n =
∑
n≥1

L−(n+1) dimY/2
(
[(fn|Z)−1(0)]− [(fn|Z)−1(1)]

)
· T n

where Ln(Y )|Z is the space of order n arcs in Y with support on Z, and

fn|Z : Ln(Y )|Z
Ln(f)|Z−−−−→ Ln(A1) ' An (z1,...,zn)7→zn−−−−−−−−→ A1,

is the nth homogeneous component of the lift of f to the arc spaces. Every arc in with
support on Z can be identified with an arc in a thickening of Z in Y . The automorphism
t : X → X restricts to an automorphism on every finite thickening of Z and hence
induces an automorphism tn : Ln(Y )|Z → Ln(Y )|Z which satisfies fn|Z ◦ tn = gn|Z . In
particular,

[(fn|Z)−1(λ)] = [t−1
n ((gn|Z)−1(λ))] = [(gn|Z)−1(λ)] ∈ Motµ̂(C),

for λ = 0, 1. It follows that the generating series for fn and gn coincide, and hence
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their values
∫
Z φf and

∫
Z φg at T =∞ are equal.

Let (Q,W) be a quiver with potential and I = (a | a ∈ Q1) the two-sided ideal
generated by its arrows. Then the path algebra has an I-adic completion ĈQ =
limnCQ/In and the potential has a well-defined noncommutative cyclic germ Ŵ ∈
ĈQcyc := limn(CQ/In)cyc. Given two potentials W ,W ′ it therefore makes sense to ask
if the germs Ŵ and Ŵ ′ are related by an I-adic endomorphism ψ ∈ End(ĈQ). We
have the following.

Lemma 3.9. Let Q be a quiver with potentials W ,W ′ ∈ (CQ)cyc, Suppose there exists
an I-adic automorphism ψ : ĈQ → ĈQ such that ψ(Ŵ) = Ŵ ′ then

ΦQ,W(t) = ΦQ,W ′(t).

Proof. Fix a dimension vector δ, and let {X(n) → X(m)}m≥n denote the directed system
of subschemes X(n) ⊂ Repδ(Q) defined by all powers Im of I. Any cyclic path a ∈
(CQ/In)cyc has a well-defined trace tr(a) : X(n) → A1, which satisfies

tr(Wn) = tr(W)|X(n) ,

for Wn ∈ (CQ/In)cyc the value of W in the quotient. An endomorphism ψn ∈
End(CQ/In) induces a map tn : X(n) → X(n) such that tr(a) ◦ tn = tr(ψn(a)). In
particular

tr(W)|X(n) ◦ tn = tr(Wn) ◦ tn = tr(ψn(Wn)).

The I-adic isomorphism ψ ∈ End(ĈQ) consists of a compatible sequence (ψn)n≥1 of
isomorphisms of CQ/In for each n such that ψn(Wn) =W ′n. LetX be the colimit of the
X(n), and let t : X → X be the isomorphism associated to the sequence tn : X(n) → X(n)

of isomorphisms induced by the ψn. Then for each n

tr(W)|X(n) ◦ tn = tr(ψn(Wn)) = tr(W ′n) = tr(W ′)|X(n) ,

which shows that tr(W)|X ◦ t = tr(W ′)|X . Let Cδ ⊂ Repδ(Q) be the nilpotent part of
the critical locus, i.e. Cδ = Cδ/GLδ. Then X is a formal neighbourhood of Cδ, and it
follows from Lemma 3.8 that∫

Cδ

φtr(W) =
Ldim GLδ/2

∫
Cδ
φtr(W)

[GLδ]
=

Ldim GLδ/2
∫
Cδ
φtr(W ′)

[GLδ]
=
∫
Cδ

φtr(W ′)

The equality ΦQ,W(t) = ΦQ,W ′(t) follows by comparing coefficients for each δ.

Using formal coordinate changes, the potential on an N -loop quiver can be brought
into a simplified standard form, which consists of a minimal and quadratic part: let Q
be an N -loop quiver with loops x1, . . . , xn, y1, . . . , yN−n then we consider potentials of
the form Wmin + q, where such that Wmin is a polynomial which consists of degree ≥ 3
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terms in the xi and q is a nondegenerate quadratic form in the yi. This quadratic form
does not contribute to the invariants.3

Lemma 3.10. Let Q be an N-loop quiver with a potential W = Wmin + q as above,
then

ΦQ,W(t) = ΦQmin,Wmin(t),

where Wmin is interpreted as a potential on the quiver Qmin with loops x1, . . . , xn.

Proof. For each k ∈ N the variety Repk(Q) decomposes as a product Repk(Qmin) ×
AN−n and tr(W) is the two terms in tr(Wmin) + tr(q) restrict to the respective fac-
tors. The trace of a noncommutative nondegenerate quadratic form is a nondegenerate
quadratic form in the usual sense, hence by Thom-Sebastiani 3.2 and Corollary 3.3∫

CQ,k

φtr(Wmin+q) =
∫
CQmin,k

φtr(Wmin) ·
∫
AN−n

φtr(q) =
∫
CQmin,k

φtr(Wmin).

and the equality ΦQ,W(t) = ΦQmin,Wmin(t) follows by comparing coefficients.

§ 3.4 | Intermediate refinements
The motivic theory we described so far is a motivic refinement of the Donaldson–
Thomas theory of Joyce–Song [JS08]. In their framework the partition function is an
ordinary powerseries with rational coefficients that can be written as function in numer-
ical BPS invariants, which are integers. In the motivic setup something similar happens:
the motivic BPS invariants lie in the “integral” subring Kµ̂(Var/C) ⊂ Motµ̂(C) (see
[DM15a, Conjecture 6.5, Corollary 6.25]).

There are various intermediate refinements between Z and Kµ̂(Var/C), which are more
closely related to vanishing cycle cohomology. Following [Dav19], we will consider the
following hierarchy of invariant rings

Kµ̂(Var/C) χmmhs−−−→ K0(MMHS)
χmmhs

hsp−−−→ Z[u±1
n , v±

1
n | n ∈ N] χ

hsp
wt−−→ Z[q±1

2 ] χwt
−−→ Z.

Here K0(MMHS) is the Grothendieck ring of the category of monodromic mixed Hodge
structures, and the map χmmhs assigns to [X] ∈ Kµ̂(Var/C) the class

χmmhs([X]) = [Hc(X,Q)],

of the mixed Hodge structure on the compactly supported cohomology, with a mon-
odromy induced by the action onX. The map χmmhs

hsp assigns to each monodromic mixed
Hodge structure its Hodge spectrum: if H is a pure Hodge structure of dimension d

3In general such a quadratic form encodes orientation data on the A∞-vector bundle associated to
a family of modules. Here our family is a single module, i.e. a point, and the orientation data is
immaterial.
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with an action of µn, then the Hodge spectrum of its class [H] is defined as

χmmhs
hsp ([H]) =

∑
p+q=d

(−1)d dimCH
p,q,0
C upvq +

∑
a6=0

∑
p+q=d

(−1)d dimCH
p,q,a
C up+

a
nvq+

n−a
n

where⊕p+q=dH
p,q
C ' HC is the Hodge decomposition and Hp,q,a

C ⊂ Hp,q is the subspace
on which µn acts with weight a. Extending linearly yields a map defined on all of
K0(MMHS). The map χhsp

wt assigns the weight-polynomial

χhsp
wt (h(u, v)) = h(q 1

2 , q
1
2 ).

The map χwt is the evaluation at q 1
2 = 1, and the composition χ : Kµ̂(Var/C)→ Z cal-

culates the classical Euler characteristic of a variety. We will find all these intermediate
invariants for length 2 flops in chapter 6.



Chapter 4

Classifying Stable Objects

Let þ : Y → Ycon = SpecR be a simple length 2 flopping contraction over a complete
local ring (R, o), let Λ be its NCCR and write

Ψ : Db(Y )→ Db(Λ)

for the associated derived equivalence induced by Van den Bergh’s tilting bundle
[VdB04b] as in Chapter 2. This derived equivalence restricts to an equivalence Db

C(Y ) '
Db

fd(Λ) between the complexes of sheaves with support on the exceptional curve C, and
complexes of finite dimensional modules.1 The category fdmod Λ therefore forms a
noncommutative model for the objects supported on C.

The goal of this chapter is to classify the stable modules in fdmod Λ for a generic
stability condition. Our approach relies on a close connection between stability and
tilting theory: as shown in [HW19] the summands of tilting bundles on Y generate an
affine hyperplane arrangement in the real Grothendieck group K0(proj Λ)R, determining
a wall-and-chamber structure. We show that each hyperplane determines a unique
stable module, and find the complexes of sheaves on Y that maps to them.

Theorem 4.1. Suppose that Z : K0(flmod Λ) → C is a generic stability condition,
such that the phase function Θ satisfies Θ(S0) > Θ(S1). Then the Z-stable modules
are the images of the following objects under the equivalence Ψ : Db(Y )→ Db(Λ):

Op for p ∈ C,
O2C(n), OC(n− 1) for n ≥ 0,

O2C(n)[1], OC(n− 1)[1] for n < 0.

The proof uses the main result of [BST19], which shows a connection between stability
and wall-and-chamber structures generated by silting complexes for finite dimensional
algebras. Their theorem applies in particular to the fibres Λ/IΛ ' Λ ⊗R R/I of the
NCCR over thickenings of the closed point of SpecR defined by an ideal I ⊂ o. We
1These are exactly the subcategories of homologically finite objects in their respective categories.
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show that for one such thickening, the wall-and-chamber structure induced by the
silting complexes of Λ/IΛ coincides with the wall-and-chamber structure induced by
the tilting bundles on Y .

§ 4.1 | King stability
Let A be an algebra. Then HomA(−,−) defines a K-theory pairing between the K-
theory of projA with real coefficients and of the category fdmodA:

〈−,−〉 : K0(projA)R ⊗Z K0(fdmodA)→ R, 〈[P ], [Mj]〉 = dimC HomA(Pi,Mi).

This pairing is known to be nondegenerate if A is either finite dimensional or if A is
finite over a complete local commutative ring. Any element v ∈ K0(projA)R induces a
group homomorphism Zv : K0(fdmodA)→ C which maps a class M ∈ fdmodA to

Zv([M ]) = dimCM · i+ 〈v, [M ]〉.

Because the image of any M lies in the upper half-plane, this is a well-defined central
charge on the abelian category fdmodA, and hence defines a stability condition. These
stability conditions are closely related to King’s stability conditions [Kin94]: a nonzero
module M is King-(semi)stable for v ∈ K0(projA)R if and only if it is Zv-(semi)stable
and 〈v, [M ]〉 = 0. We will therefore refer to the elements of K0(projA) as King-stability
parameters. Every King stability parameter defines a thick abelian subcategory

Sv(A) := {M |M is Zv-semistable, 〈v, [M ]〉 = 0} ∪ {0},

and by the finite length property, each Sv(A) is the thick subcategory of fdmodA
generated by the King-stable modules for the parameter v.

Returning to our setting, we consider the NCCR Λ of a simple ` = 2 flop over (R, o).
The Grothendieck group K0(fdmod Λ) is generated by the two simple modules S0, S1,
and K0(proj Λ) is generated by the projective covers Pi � Si. As shown below, there
are (up to equivalence) only two generic stability conditions on fdmod Λ, which are
described by King stability parameters v = v0[P0] + v1[P1] with v0 < v1 and v0 > v1.

Lemma 4.2. A King-stability parameter v = v0[P0] + v1[P1] defines a generic stability
condition Zv in the sense of 3.7 if and only if v0 6= v1.

Proof. Suppose v0 = v1, then Zv([S0]) = Zv([S1]). Since [S0] is not a rational multiple
of [S1] in K0(fdmod Λ), Zv is not generic. Conversely, suppose v0 6= v1 and let a =
a0[S0] + a1[S1], b = b0[S0] + b1[S1] be classes such that Zv(a) = r · Zv(b) for some
r ∈ R>0. Then

(a0 + a1) · i+ (a0 + a1)v0 + a1(v0 − v1) = r(b0 + b1) · i+ r(b0 + b1)v0 + rb1(v0 − v1).
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which implies a0 + a1 = r(b0 + b1) and a1(v0 − v1) = rb1(v0 − v1). Because v0 − v1 6= 0
by assumption, it follows that a = r · b, hence Zv is generic.

Lemma 4.3. Let Z : K0(fdmodA) → C be a generic stability condition and M a Z-
stable module. Then there exists a King stability parameter v ∈ K0(proj Λ) such that
Z is equivalent to Zv and M ∈ Sv(Λ).

Proof. Let v = v0[P0] + v1[P1] be a nonzero vector that is perpendicular to [M ]. If Z
is generic, then Z([S0]), Z([S1]) form an R-linear basis for C and there is an R-linear
transformation mapping the basis vectors to i−v0, i−v1. Let Θ : K0(fdmodA)→ [0, π)
be the phase function of Z, then Θ(a) ≤ Θ(b) for a, b ∈ K0(fdmodA) if and only if the
signed area of the parallelogram spanned by Z(a), Z(b) is positive. Any orientation
preserving R-linear transformation of C preserves the sign of the area, hence Z is
equivalent to Zv if the ordered basis i−v0, i−v1 has the same orientation as the ordered
basis Z([S0]), Z([S1]), and is equivalent to Z−v otherwise. In particular, M ∈ Sv(Λ) or
M ∈ S−v(Λ) depending on this orientation.

Consider an ideal I ⊂ o such that R/I is artinian, i.e. SpecR/I is a fat point. Then
the fibre of Λ over SpecR/I is the finite dimensional algebra

Λ/IΛ ' Λ⊗R R/I.

The categories mod Λ and mod Λ/IΛ are related by the pair of adjoint functors

−⊗Λ Λ/IΛ: mod Λ� mod Λ/IΛ :(−)Λ,

of extension and restriction of scalars. Because I is contained in the radical o ⊂ R, the
functor −⊗Λ preserves/reflects projectives and (−)Λ preserves/reflects simples. Hence
there are induced isomorphisms between the K-theory spaces:

ζ : K0(proj Λ)R → K0(proj Λ/IΛ)R, [(−)Λ] : K0(fdmod Λ/IΛ)→ K0(fdmod Λ),

which are adjoint with respect to the K-theory pairing 〈−,−〉. The first isomorphism
identifies King stability parameters on Λ and Λ/IΛ, and as the following lemma shows,
the second identifies the dimension vectors of stable modules.2

Proposition 4.4. Let v ∈ K0(proj Λ)R, then (−)Λ identifies ζ(v)-stable Λ/IΛ-modules
with v-stable Λ-modules. In particular

Sv(Λ) = thick(Sζ(v)(Λ/IΛ)Λ)

Proof. Let Θv and Θζ(v) denote the phase functions of Zv and Zζ(v). The exact functor
(−)Λ embeds fdmod Λ/IΛ into fdmod Λ as a Serre subcategory in mod Λ. Hence, for
2This same result was observed in [DM17] and used to compute stable modules for length 1 flops.
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any module N ∈ fdmod Λ/IΛ the submodules of its image NΛ are precisely the images
of its of submodules. It moreover follows from the adjunction that Zv((−)Λ) = Zζ(v)(−):

Zv([NΛ]) = dimCNΛ · i+ 〈v, [NΛ]〉 = dimCN · i+ 〈ζ(v), [N ]〉 = Zζ(v)([N ]).

for all N ∈ fdmod Λ/IΛ. Hence NΛ is King (semi)stable for v if and only if N is King
(semi)stable for ζ(v), and the functor (−)Λ restricts to an exact embedding

(−)Λ : Sζ(v)(Λ/IΛ)→ Sζ(v)(Λ/IΛ)Λ ⊂ Sv(Λ),

By the finite length property, Sv(Λ) is generated via extension by its stable modules,
so it suffices to show that any stable module in Sv(Λ) is in the image of Sζ(v)(Λ/IΛ).
SupposeM ∈ fdmod Λ is Zv-stable and let c ∈ I. Because c is central in Λ it induces an
endomorphism f : M → M . The submodule im f ⊂ M satisfies Θv([im f ]) ≤ Θv([M ])
by semistability, and because im f is also a quotient

0→ ker f →M → im f → 0,

it follows that Θv([im f ]) = Θv([M ]). Hence im f = M or im f = 0. Because I
is contained in the radical o ⊂ R and c ∈ I, it follows from Nakayama’s lemma
that im f = cM 6= M , which implies that f acts trivially on M . It follows that
M ' (M/IM)Λ lies in the image of (−)Λ, which finishes the proof.

§ 4.2 | Tilting theory of the length 2 flop
In what follows A denotes an algebra for which the homotopy category of projectives,
which we will write as Kb(projA), is Krull-Schmidt.

Definition 4.5. A complex T ∈ Kb(projA) is

• basic if its Krull-Schmidt decomposition has no repeated summands,
• a 2-term complex if T is concentrated in degrees −1 and 0,
• partial tilting if ExtiA(T, T ) = 0 for all i 6= 0,
• tilting if it is partial tilting and T generates Kb(projA) as a triangulated category.

The set of basic 2-term tilting complexes is denoted tiltA.

A famous result of Rickard [Ric89] shows that any tilting complex T determines a
derived equivalence between A and the endomorphism algebra of T , via the functors

RHomA(T,−) : Db(A)� Db(EndD(A)(T )) : −
L
⊗EndD(A)(T ) T.

If a module M ∈ modA has a projective resolution that is a 2-term tilting complex,
then we say that M is a (classical) tilting module.
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The tilting theory of NCCRs for Gorenstein threefold singularities is now well under-
stood [IR08; IW10; IW11; Wem18]. Let refR denote the set of reflexive modules: recall
that a moduleM ∈ modR is reflexive if the natural mapM →M∗∗ is an isomorphism,
where (−)∗ := HomR(−, R) denotes the R-linear dual. By [IW11, Theorem 1.4] any
NCCR of R is isomorphic to Γ = EndR(M) for some reflexive M ∈ refR, and the
NCCRs are connected by tilting modules, since HomR(M,−) : refR → mod Γ defines
a bijection

{L ∈ refR | EndR(L) an NCCR} ∼−−−−→ {tilting modules in ref Γ} (4.1)

where ref Γ ⊂ mod Γ denotes the set of modules that are reflexive over R.

Let þ : Y → SpecR be a length 2 flop, and let OY ⊕ N be its Van den Bergh tilting
bundle. Hirano–Wemyss [HW19] show that there are NCCRs Λi := EndR(Mi) for all
i ∈ Z, corresponding to the reflexive modules

M2k := þ∗OY (k)⊕ þ∗N (k), M2k−1 := þ∗OY (k − 1)⊕ þ∗N (k).

The bijection in (4.1) relates the NCCRs Λi to our preferred NCCR Λ0 ' Λ, via
the tilting modules HomR(M0,Mi). For i ∈ Z, let Ti ∈ Kb(proj Λ) be the minimal
projective resolutions

T2k � HomR(M0, þ∗OY (k)), T2k−1 � HomR(M0, þ∗N (k)),

of the summands. Likewise, the modules HomR(Mi,M0) are tilting in Kb(proj Λop)
with endomorphism algebra Λop

i . Let Fi ∈ Kb(proj Λop) denote the minimal projective
resolutions

F2k � HomR(þ∗OY (k),M0), F2k−1 � HomR(þ∗N (k),M0),

and write Ei ∈ Kb(proj Λ) for the shifted dual Ei = (Fi)∗[1].

Lemma 4.6. The complexes Ti−1 ⊕ Ti and Ei−1 ⊕ Ei are in tilt Λ for all i ∈ Z.

Proof. Because the tilting module HomR(Mi,M0) is reflexive, it follows from the gen-
eralised Auslander-Buchsbaum formula [IW10, Lemma 2.16] that HomR(Mi,M0) has
projective dimension ≤ 1. Hence its minimal resolution Ti−1 ⊕ Ti is a 2-term tilting
complex, which is furthermore basic since

EndD(Λ)(Ti−1 ⊕ Ti) ' Λi = EndR(Mi),

is a basic algebra. It follows from [IR08] that for each i the dual M∗
i of Mi defines an

NCCR
EndR(M∗

i ) ' EndR(Mi)op = Λop
i ,

and HomR(M∗
0 ,M

∗
i ) ' HomR(Mi,M0) is a tilting Λop-module. It follows from a similar
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argument that Fi−1 ⊕ Fi is a basic 2-term tilting complex in Kb(proj Λop). By [IR08,
Corollary 3.4], the R-linear dual (−)∗ defines an exact duality

(−)∗ : Kb(proj Λop)� Kb(proj Λ) :(−)∗,

which implies Ei−1 ⊕ Ei = (Fi−1 ⊕ Fi)∗[1] is also a basic 2-term tilting complex.

[P0] 2[P0]

[P1]

Figure 4.1: Wall-and-chamber structure of the ` = 2 flop.

For a basic complex U ∈ Kb(proj Λ) with decomposition U = U1 ⊕ . . . ⊕ Un, the
indecomposable summands define g-vectors [Uj] ∈ K0(proj Λ)R, which span the cone

cone(U) := {∑i λi · [Ui] | λi ≥ 0} ⊂ K0(proj Λ)R.

If U ∈ tilt Λ, then by [AI12, Theorem 2.8] the g-vectors of U form a basis of K0(proj Λ)R.

In particular, U has exactly rk K0(proj Λ) = 2 indecomposable summands and the
interior cone◦(U) is a non-empty open subspace of K0(proj Λ)R. In this way, one obtains
a wall-and-chamber structure in K0(proj Λ)R whose walls correspond to the partial
tilting complexes Ei and Ti and whose chambers correspond to the interior cones of
tilting complexes. Using the results of [HW19], we find that this wall-and-chamber
structure is the hyperplane arrangement of figure 4.1. Explicitly, the g-vectors are as
follows.

Lemma 4.7. The g-vectors of the complexes Ti are

[Ti] =

[P0] + n · (2[P0]− [P1]) if i = 2n

[P1] + 2n · (2[P0]− [P1]) if i = 2n− 1.

and [Ei] = −[Ti].

Proof. As shown in [HW19], there is an isomorphism ε : Λ2n
∼−→ Λ for all n ∈ Z.

Moreover, the isomorphism defined by the tilting module HomR(M0,M2n)

K0(proj Λ) [RHomΛ(HomR(M0,M2n),−)]−−−−−−−−−−−−−−−−−→ K0(proj Λ2n) ε−→ K0(proj Λ),

maps the class [T2n] to [P0] and the class [T2n−1] to [P1]. By [HW19, Theorem 7.4,
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Lemma 7.6] this isomorphism can be presented in the basis [P0], [P1] as the matrix−1 −4
1 3

n =
1− 2n −4n

n 1 + 2n

 . (4.2)

The g-vectors of T2n and T2n−1 can then be computed from the inverse:

[T2n] = (1 + 2n)[P0]− n[P1], [T2n−1] = 4n[P0] + (1− 2n)[P1].

Likewise, each tilting module HomR(M2n,M0) defines an isomorphism

K0(proj Λ) ε−1
−−→ K0(proj Λ2n)

[RHomΛ2n
(HomR(M2n,M0),−)]

−−−−−−−−−−−−−−−−−−→ K0(proj Λ),

which maps [P0] to [F ∗2n] and [P1] to [F ∗2n−1]. This isomorphism can also be presented
as the inverse of the matrix (4.2) by [HW19, Rem. 7.5], hence

[Ei] = −[F ∗i ] = −[Ti].

§ 4.3 | From tilting to silting on the fibre
In [BST19] and [Asa21] it is shown how to recover the subcategories Sv(A) of semistable
modules over a finite dimensional algebra A using silting theory.

Definition 4.8. Let A be an algebra such that Kb(projA) is Krull-Schmidt. Then a
complex U ∈ Kb(projA) is called

• pre-silting if HomKb(projA)(U,U [i]) = 0 for i > 0,
• silting if it is pre-silting and generates Kb(projA) as a triangulated category.

The set of isomorphism classes of basic 2-term silting complex is denoted siltA.

Clearly, the set tilt Λ of tilting complexes is contained in silt Λ, so that silting is suitable
generalisation. The set silt Λ is moreover partially ordered: one considers U ≤ V if
and only if HomKb(projA)(U, V [i]) = 0 for all i > 0.

To apply the results of [BST19] and [Asa21] to our geometric setting, we will relate
the silting theory of Λ with that of a finite dimensional fibre Λ/IΛ.

Proposition 4.9. There exists an ideal I ⊂ o for which Λ/IΛ is finite dimensional,
such that the functor −⊗R R/I : Kb(proj Λ)→ Kb(proj Λ/IΛ) induces a map of posets

silt Λ→ silt Λ/IΛ

Proof. Because R is a Gorenstein local of dimension 3, the maximal ideal o contains
an ideal I ⊂ o generated by a regular sequence g1, g2, g3 ∈ I. Hence, R/I is artinian
and Λ/IΛ ' Λ ⊗R R/I is finite dimensional. Because Λ is an NCCR, it is moreover
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a maximal Cohen-Macaulay over R, and so g1, g2, g3 is also a regular sequence for any
projective Λ-module. As a result, if U = U1 → U0 is a basic 2-term silting complex of
projective Λ-modules, there are induces short exact sequences in chain complexes:

0 U/Ik−1U U/Ik−1U U/IkU 0
gk

(4.3)

where the successive quotients by Ik = (g1, . . . , gk) slice down to yield a 2-term complex
of projectives over the finite dimensional algebra Λ/IΛ. Applying HomD(Λ)(U,−) yields
the following long exact sequence in cohomology:

. . . HomD(Λ)(U,U/Ik−1U [i]) HomD(Λ)(U,U/IkU [i])

HomD(Λ)(U,U/Ik−1U [i+ 1]) HomD(Λ)(U,U/Ik−1U [i+ 1]) . . .
gk

Because U is silting, HomD(Λ)(U,U [i]) = 0 for i > 0 and it also follows by (finite)
induction that HomD(Λ)(U,U/IkU [i]) = 0 for i > 0. In particular, there is an adjunction

HomD(Λ/IΛ)(U/IU, U/IU [i]) ' HomD(Λ)(U,U/IU [i]) = 0 ∀i > 0,

which implies that U/IU is a 2-term pre-silting complex in Kb(proj Λ/IΛ), and that
the map −⊗R R/I : EndΛ(U)→ EndΛ/IΛ(U ⊗R R/I) induces an algebra isomorphism

EndD(Λ)(U)/I EndD(Λ)(U) ∼−→ EndD(Λ/IΛ)(U/IU) (4.4)

Because EndD(Λ)(U) is a complete algebra and I is contained in the radical, it follows
that idempotents lift over the quotient R → R/I. Hence, any indecomposable sum-
mand of U remains indecomposable in the quotient U/IU . Because U is a basic 2-term
silting complex, it has exactly rk K0(Λ) = 2 indecomposable summands, and therefore
U/IU is a basic presilting complex with 2 indecomposable summands. By [AIR14,
Proposition 3.3] a basic presilting complex for a finite dimensional algebra is silting if
and only if it has the maximal number of indecomposable summands. Hence U/IU is
in fact silting, because Λ/IΛ is finite dimensional.

The above shows that −⊗R R/I restricts to a map silt Λ→ silt Λ/IΛ, which we claim
to be a morphism of posets. To see this, consider U, V ∈ silt Λ with V ≥ U , then by
applying HomD(Λ)(V,−) to the short exact sequence (4.3) one sees that

HomD(Λ/IΛ)(V/I, U/IU [i]) ' HomD(Λ)(V, U/IU [i]) = 0 ∀i > 0

which shows that V/IV ≥ U/IU in silt Λ/IΛ as claimed.

Remark 4.10. In independent work by Kimura [Kim20], which appeared while writing
this thesis, it is shown that the above map is a bijection in a much more general setting.

Using the map silt Λ → silt Λ/IΛ, the results of [BST19] and [Asa21] now yield the
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following proposition.

Proposition 4.11. Let U = U1 ⊕ U2 ∈ silt Λ, then for any stability parameter v,

• if v ∈ cone◦(U) then the subcategory Sv(Λ) is trivial,
• if v ∈ cone◦(Ui) then the subcategory Sv(Λ) contains a unique stable module.

Proof. It follows from Proposition 4.9 that U/IU ∈ silt Λ/IΛ with g-vectors

[Ui/IUi] = ζ([Ui]) ∈ K0(proj Λ/IΛ).

If v lies in cone◦(Ui) then ζ(v) lies in cone◦(Ui/IUi), so it follows from [BST19, Theorem
1.1] that Sζ(v)(Λ/IΛ) contains a unique stable module N . By Proposition 4.4

Sv(Λ) = thick(NΛ),

so that NΛ is the unique stable module in Sv. Likewise, if v ∈ cone◦(U), then [BST19,
Theorem 1.1] implies Sζ(v)(Λ) = 0 and hence Sv(Λ) = 0 is trivial.

Suppose U, V ∈ silt Λ share a summand U1 = V1 and U > V , then the larger silting
complex U is called the Bongartz completion of U1, as in [AIR14].

Proposition 4.12. Suppose U ∈ silt Λ is the Bongartz completion of a summand U1,
then HomD(Λ)(U,−) restricts to an abelian equivalence

S[U1](Λ) ∼−→ fdmod EndD(Λ)(U)/(e),

where (e) denotes the two-sided ideal of the idempotent e : U → U1 → U .

Proof. Let M ∈ S[U1](Λ) be the unique stable module, then M = NΛ for some stable
module N ∈ S[U1/IU1](Λ/IΛ) by Proposition 4.4. By Proposition 4.9 the complex
U/IU is in silt Λ/IΛ and is the Bongartz completion of U1/IU1. Because Λ/IΛ is finite
dimensional, the silting version [Asa21, Proposition 4.1] of [BST19, Theorem 1.1] then
implies that

HomD(Λ/IΛ)(U/IU,N [i]) =

S if i = 0,

0 otherwise.

where S is the simple Γ := EndD(Λ)(U/IU)-module that is killed by the idempo-
tent e : U/IU → U1/IU1 → U/IU . By (4.4) the algebra Γ is a quotient of Γ :=
EndKb(proj Λ)(U) by an ideal contained in the radical, hence (−)Γ : fdmod Γ→ fdmod Γ
maps S to a simple module SΓ. Because Γ is I-adically complete, the idempotent e ∈ Γ
lifts to the idempotent e : U → U1 → U . By adjunction,

HomD(Λ)(U,M [i]) = HomD(Λ/IΛ)(U/IU,N [i])Γ =

SΓ if i = 0,

0 otherwise.
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Because S[U1](Λ) is generated by its stable modules and fdmod Γ/(e) ⊂ fdmod Γ is
generated by SΓ, it follows that U defines an additive functor

HomD(Λ)(U,−) : S[U1](Λ)→ fdmod Γ/(e),

which is exact by the vanishing of HomD(Λ)(U,M [i]) for i 6= 0.

§ 4.4 | Identifying the stable modules
The results of the previous section imply that the hyperplane arrangement of figure
4.1 controls the stability of Λ: if v ∈ K0(proj Λ)R is a King stability parameter such
that Sv(Λ) is nontrivial, then either

v = [Ti] or v = [Ei]

for some i ∈ Z, or v lies on the accumulation hyperplane spanned by 2[P0] − [P1]. In
the former case Sv(Λ) contains a unique stable module M and Sv(Λ) = thick{M}.
The objects in Db(Y ) corresponding to these stable modules have been identified in
[DW19b], and hence we may conclude the following.

Lemma 4.13. Let vi denote the g-vector vi = [Ti], then for all n ≥ 0,

Sv2n(Λ) = thickΨ(OC(n− 1)), Sv2n+1(Λ) = thickΨ(O2C(n)).

Likewise, let wi denote the g-vector wi = [Ei], then for all n < 0.

Sw2n(Λ) = thickΨ(OC(n− 1)[1]), Sw2n+1(Λ) = thickΨ(O2C(n)[1]).

Proof. Let i ≥ 0. By the construction in [HW19], the tilting complexes Ti−1 ⊕ Ti and
Ti ⊕ Ti+1 are obtained via finite sequence of mutations:

P0 ⊕ P1 99K . . . 99K Ti−1 ⊕ Ti 99K Ti ⊕ Ti+1,

from the largest element3P0 ⊕ P1 in the silting order to Ti ⊕ Ti+1. The silting order is
known to be monotonic with respect to mutation, see e.g. [IW20, Theorem 9.34], which
shows that Ti−1 ⊕ Ti > Ti ⊕ Ti+1. Therefore T = Ti−1 ⊕ Ti is the Bongartz-completion
of Ti, and Proposition 4.12 implies that

Svi
(Λ) = thickS

L
⊗Λi

T

for S ∈ mod Λi the simple that is annihilated by the idempotent T → Ti → T . The
3Note that Ext1(P0 ⊕ P1,−) = 0 because Pi are the projectives
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images of these simples were calculated in [DW19b, Theorem 4.13]; explicitly:

S
L
⊗Λi

T '

Ψ(OC(n− 1)) if i = 2n

Ψ(O2C(n)) if i = 2n+ 1

We proceed similarly for the case i < 0 using the complexes Ei = F ∗i [1]. The tilting
complexes Fi are again related by a sequence of mutations in Kb(proj Λop)

Fi−1 ⊕ Fi 99K Fi ⊕ Fi+1. 99K . . . 99K P
op
0 ⊕ P

op
1 ,

so that Fi ⊕ Fi+1 > Fi−1 ⊕ Fi with respect to the silting order. Because (−)∗ is an
exact duality between Kb(proj Λop) and Kb(proj Λ), it follows that

Ext1
Λ(Ei−1 ⊕ Ei, Ei ⊕ Ei+1) ' (Ext1(Fi ⊕ Fi+1, Fi−1 ⊕ Fi+1))∗ = 0,

which shows that E = Ei−1 ⊕ Ei is the Bongartz-completion of Ei in tilt Λ. Hence, it
follows from Proposition 4.12 that

Swi
(Λ) = thickS

L
⊗Λi

E

for S ∈ mod Λi the simple module that is annihilated by the idempotent E → Ei → E.
Because Λ is 3-CY [IR08, Theorem 3.8] shows that there are natural isomorphisms

(−)
L
⊗Λi

E ' RHomΛi
(RHomΛop

i
(E,Λop

i ),−)
' RHomΛi

(E∗,−)
= RHomΛi

(Fi−1 ⊕ Fi,−)[1].

For i < 0 the image of S under the functor RHomΛi
(Fi−1 ⊕ Fi,−) was also calculated

in [DW19b, Proposition 4.13]. Shifting their results by [1] then yields

S
L
⊗Λi

E =

Ψ(OC(n− 1)[1]) if i = 2n

Ψ(O2C(n)[1]) if i = 2n+ 1.

For v on the ray spanned by 2[P0] − [P1], the vector v is perpendicular to the class
of the module Ψ(Op) where Op is structure sheaf of a point p ∈ C. These modules
are stable, and we can show that these are the only stable modules in Sv(Λ) in a way
similar to the proof of Nakamura’s conjecture in [BKR01, §8].

Lemma 4.14. For p ∈ C let Op denote the skyscraper sheaf on p. If v ∈ K0(proj Λ)R
is a positive real multiple of 2[P0]− [P1], then

Sv(Λ) = thick{Ψ(Op) | p ∈ C}.

Proof. Because the projectives P0, P1 are the images of the bundles OY and N respec-
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tively, for each p ∈ C the skyscraper sheaf Op is mapped to an object which satisfies

RHomΛ(P0,Ψ(Op)) ' RHomY (OY ,Op) ' C,

RHomΛ(P1,Ψ(Op)) ' RHomY (N ,Op) ' CrkN = C2.

Hence Ψ(Op) is a module of dimension vector (1, 2). A module of this dimension vector
is King stable for a multiple of 2[P0] − [P1] if 〈v, [N ]〉 < 0 for any proper submodule
N , or equivalently that the dimension vectors of its proper submodules are a multiple
of (0, 1). The module Ψ(Op) cannot contain a submodule of dimension vector (1, 1),
because any such submodule would induce a nontrivial quotient map Ψ(Op)� S1, but

HomΛ(Ψ(Op), S1) ' HomY (Op,OC(−1)) = 0

shows that this is not possible. Likewise, Ψ(Op) cannot contain S0 as a submodule:

HomΛ(S0,Ψ(Op)) ' HomY (O2C(−1)[1],Op) ' Ext−1(O2C(−1),Op) = 0.

It follows that Ψ(Op) is indeed a stable module in Sv(Λ) for every p ∈ C.

Now suppose there exists a module M ∈ Sv(Λ) which is not isomorphic to Ψ(Op) for
any p ∈ C. We claim that HomΛ(M,Ψ(Op)) = 0 for all p ∈ C. If f : M → Ψ(Op) is a
homomorphism, then im f is a submodule of Ψ(Op), which implies 〈v, im f〉 ≤ 0, but
im f is also a quotient module of M , which implies 〈v, im f〉 ≥ 0. Hence im f = Ψ(Op)
and f is an isomorphism, which contradicts the assumption, or f = 0.

By [Bri02] the complex Ψ−1(M) is a perverse sheaf of perversity 0 and is thus quasi-
isomorphic to a complex of sheaves supported in degrees −1, 0. However, the vanishing
of HomΛ(M,Ψ(Op)) for all p implies that the cohomology sheaf H0(Ψ−1(M)) ∈ coh Y
satisfies

H0(Ψ−1(M))p ' HomY (Ψ−1(M),Op) ' HomΛ(M,Ψ(Op)) = 0,

over every point p ∈ C. Hence, H0(Ψ−1(M)) has empty support and it follows that
Ψ−1(M) is quasi-isomorphic to F [1] for some sheaf F ∈ coh Y .

Because Y is quasiprojective, there is an embedding j : Y ↪→ Ȳ into a projective variety,
and the sheaf j∗F ⊗Y L has Euler characteristic χ(F ⊗Y L) ≥ 0 for some sufficiently
ample line bundle L on Ȳ . The King stability condition 〈v, [M ]〉 = 0 implies that
[F ] = −n[Op] for some n ≥ 0, so that by the positivity

0 ≤ χ(F ⊗Y L) = −nχ(Op ⊗Y L) = −nχ(Op) = −n,

which implies n = 0. It follows [M ] = −[F ] = 0, so thatM is a module with dimension
vector (0, 0), and is therefore not stable by definition. It follows that all stable modules
in Sv(Λ) are isomorphic to Ψ(Op) for some p ∈ C, which yields the equality.
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The proof of the main theorem is now immediate.

Proof of Theorem 4.1. Let Z : K0(fdmod Λ) → C be a stability condition for which
the phase function Θ satisfies Θ([S0]) > Θ([S1]) as in the assumption of the theorem.
Then for every Z-stable module M ∈ fdmod Λ it follows from Lemma 4.3 that

M ∈ Sv(Λ) for some v = v0[P0] + v1[P1], v0 > v1.

If v is a multiple of 2[P0] − [P1], it follows from Lemma 4.14 that M ' Ψ(Op) for
some point p ∈ C. Otherwise, it follows from Proposition 4.11 that v lies on one of
the hyperplanes in the lower-right quadrant of figure 4.1. But then Lemma 4.7 implies
that v is a multiple of vi for i ≥ 0 or wi for i < 0, and it follows that

Sv(Λ) = Svi
(Λ) or Sv(Λ) = Swi

(Λ).

Hence it follows by Lemma 4.13 thatM is isomorpic to one of the objects Ψ(OC(n−1)),
Ψ(O2C(n)) for n ≥ 0, or one of the objects Ψ(OC(n−1)[1]), Ψ(O2C(n)[1]) for n < 0.
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Chapter 5

Calabi-Yau Structures

Let þ : Y → SpecR be a flopping contraction as before, which is (at least in a neigh-
bourhood of the flopping curve C) described by a Jacobi algebra A = Jac(Q,W ). In
this chapter we relate the DT theory of objects in Db

C(Y ) ' Db
nilp(A) to their defor-

mation theory, which is captured by a Calabi–Yau enhancement. The Calabi–Yau
structure endows every module M ∈ nilpA ⊂ Db

nilp(A) with a quiver with minimal
potential (QM ,WM), which determines its contribution to the DT theory of (Q,W ).

In this model it becomes possible to compare potentials of different objects M and N
related by N ' F (M) via a standard derived equivalence F , i.e. a derived equivalence
that lifts to an enhancement of Db(A). This includes in particular all tilting functors
defined in chapter 4. Any standard equivalence has an action on Hochschild homology

HH•(F ) : HH•(A)→ HH•(A).

We formulate the following sufficient condition for the potentials to be preserved by F
in terms of the action HH3(F ) on Hochschild homology.

Theorem 5.1. Suppose F : Db(A)→ Db(A) is an R-linear standard equivalence which
acts on Hochschild homology as HH3(F ) = λ ∈ C×. Then for every pair of nilpotent
modules M,N ∈ nilpA such that EndA(M) ' EndA(N) ' C and F (M) ' N , the
associated minimal potentials WM and λ · WN are equivalent.

In chapter 6 we will consider the DT theory contributions of certain stable modules
M ∈ nilpA, which will be obtained as a motivic integral over the stack PM = ∐

k≥0PM,k

of extensions ofM . The theorem has the following consequence for these contributions.

Corollary 5.2. Let M,N ∈ nilpA be modules with EndA(M) ' EndA(N) ' C, and
suppose F : Db(A) → Db(A) is a functor that satisfies the condition of Theorem 5.1
and maps M to F (M) ' N . Then for all k ≥ 0 there is an equality∫

PM,k

φtr(W ) =
∫
PN,k

φtr(W ).
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In Chapter 6 we will use this corollary to compute the partition functions Φθ(t) when
the stack Cθ = PM parameterises extensions of a stable module M .

For the family of length 2 flops we work with, the units R× of the base are absolute,
and the homological condition is automatically satisfied.

Proposition 5.3. Suppose R has absolute units R× ' C×, then the assumptions of
Theorem 5.1 are satisfied by every R-linear standard derived auto-equivalence of Db(A).

To prove the theorem requires us to relate the Hochschild homology of a smooth DG-
enhancement A of Db(A) with (a version of) the Hochschild cohomology of a proper
DG-enhancement N of Db

nilp(A), and to show that this relation is compatible with
derived equivalences. This relation comes from a pairing on Hochschild homology
reviewed in §5.1 and is related to Koszul duality as we show in §5.2. The potentials
are defined on the minimal model of N , which as we explain in §5.3.1 is given by a
cyclic A∞-category of twisted complexes. The cyclic inner product on this category
expresses the Calabi–Yau property, and is the crucial additional structure which allows
one to define the potentials as we recall in §5.3.

§ 5.1 | Hochschild homology
We recall the notion of Hochschild (co-)homology and Calabi–Yau structures on DG-
categories and A∞-categories. Detailed introductions to the theories of DG and A∞

categories can be found in [Kel06] and [Lef03] respectively. In what follows we work
over the base-field C, all DG-/A∞-categories are assumed to be small and all A∞-
categories are assumed to have strict units. If C is a DG-/A∞-category we write PerfC
for its DG-category of perfect complexes.

Given a DG-/A∞-category C, the Hochschild complex is (see e.g. [Kel06, §5.3])

C(C) :=
⊕
k≥0

⊕
ci∈Ob C

C(c1, c0)⊗ (C(c2, c1)⊗ . . .⊗ C(c0, ck)), b


where the differential b is given by application of the composition ◦ and differential d
if C is a DG-category, and involves also the higher multiplications in case C is an A∞-
category (see e.g. [Gan13] or the appendix to [She16]). Its homology is the Hochschild
homology of C:

HH•(C) := H−•C(C).

The complex C(C) is an explicit model for the derived tensor product C
L
⊗Ce C of C as a

bimodule over itself. If C is a smooth DG-category, i.e. a DG-category that is perfect
as a Ce-module then the elements of HHk(C) can be interpreted as morphisms:

HHk(C) ' H0(C
L
⊗Ce C[−k]) ' HomD(Ce)(C!, C[−k]),
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where C! := RHomCe(C, Ce) denotes the derived bimodule dual.

Write (−)∗ = HomC(−,C) for the linear dual, then the Hochschild cohomology with
coefficients in C∗ is the cohomology of the dual complex:

HH•(C, C∗) := H•(C(C)∗)

Recall that C is proper if the cohomology H•C(c, c′) of the underlying complex is finite
dimensional for all c, c′ ∈ Ob C. For proper DG-/A∞-categories one can identify the
cohomology classes in HH•(C, C∗) with morphisms through the adjunction:

HHk(C, C∗) ' HkHomC(C
L
⊗Ce C,C) ' HomD(Ce)(C, C∗[k]).

The Hochschild (co-)homology can be used to define the two (dual) versions of the
Calabi-Yau property.

Definition 5.4. A (weak) left k-Calabi–Yau structure on a smooth DG-category C is
a cycle ν ∈ Ck(C) such that [ν] ∈ HomD(Ce)(C!, C[−k]) is an isomorphism.

Definition 5.5. A (weak) right k-Calabi–Yau structure on a proper DG-/A∞-category
C is a cocycle ξ ∈ (Ck(C))∗ such that [ξ] ∈ HomD(Ce)(C, C∗[−k]) is an isomorphism.

Suppose F : C → D is a DG-/A∞-functor, then application of F defines a chain map
C(F ) : C(C)→ C(D). For a DG-functor the map C(F ) is defined pointwise:

C(c1, c0)⊗ . . .⊗ C(c0, ck) F⊗...⊗F−−−−−→ D(F (c1), F (c0))⊗ . . .⊗D(F (c0), F (ck)),

and for an A∞-functor F = (Fk)k≥1 it also involves the higher maps (see [Gan13, §2.9]).
We denote its dual as C(F )∗ : C(D)→ C(C), and write

HH•(F ) : HH•(C)→ HH•(D), HH•(F ) : HH•(D)→ HH•(C).

for the induced maps on (co-)homology. If a DG category C is smooth and proper, it
admits a perfect pairing HH•(C) ' HH•(C, C∗) which is compatible with DG-functors
(see [Shk13]), and identifies left and right Calabi–Yau structures. This is the DG-
categorical analogue of the Mukai pairing for smooth projective schemes [Cal03].

In the noncompact Calabi-Yau setting we work in, all DG-categories of interest (e.g.
enhancements of Db(Y )) are smooth but not proper. There nonetheless exists a pairing
when restricting to a subcategory N ⊂ C of compactly supported objects, as shown in
[BD19]. Recall that an object p ∈ C is compactly supported if C(c, p) ∈ PerfC for all
c ∈ C. If N ⊂ C is the full DG-subcategory on a set of compactly supported objects,
then the diagonal bimodule C defines a DG-functor

C(−,−) : Cop ⊗N → PerfC,
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into PerfC, and the Hochschild complex construction yields a morphism C(Cop ⊗
N ) C(C(−,−))−−−−−−→ C(PerfC). Recall (see e.g. [Lod97, §4.2.1]) that there is a shuffle product
∇ : C(Cop) ⊗ C(N ) → C(Cop ⊗ N ), which maps a pair of classes f = f0[f1 | . . . | fn],
g = g0[g1 | . . . | gm] (written in bar notation) to the class

∇(f,g) =
∑
σ

±(f0 ⊗ g0)[σ1| . . . |σm+n]

where the sum is over the (n,m)-shuffles of the terms f1⊗1, . . . fn⊗1, 1⊗g1, . . . , 1⊗gm.
Using the shuffle product, one defines a pairing between the Hochschild complexes

C(Cop)⊗C(N ) ∇−→ C(Cop ⊗N ) C(C(−,−))−−−−−−→ C(PerfC), (5.1)

and this yields a pairing on cohomology:

〈−,−〉N : HH•(Cop)⊗ HH•(N )→ HH•(PerfC) ' HH•(C) ' C.

If ν ∈ HHd(C) ' HHd(Cop) is the Hochschild class of a (weak) left Calabi-Yau structure
on C, then its dual 〈ν,−〉 ∈ (HH•(N ))∗ ' HH•(N ,N ∗) is the class of a (weak) right
Calabi-Yau structure onN (see [BD19, Theorem 3.1]); although not every right Calabi–
Yau structure arises in this way. Just as the Mukai-pairing of a smooth projective
variety is preserved under Fourier-Mukai transforms (see [Cal03]), so is the above
pairing preserved under suitable DG-functors.

Lemma 5.6. Suppose F : C → D is a quasi-fully-faithful DG-functor that maps a com-
pactly supported subcategory N to N ′, then 〈HH•(F op)(−),HH•(F )(−)〉N ′ = 〈−,−〉N .

Proof. First, note that the map C(F op ⊗ F ) is given by term-wise application, and
therefore commutes with the shuffle product:

∇ ◦ (C(F op)⊗C(F )) = C(F op ⊗ F ) ◦ ∇.

Because F is quasi-fully-faithful, for all M ∈ C, N ∈ N there are quasi-isomorphisms

FM,N : C(M,N)→ D(F (M), F (N)),

which are natural in M,N . This data defines a DG-natural transformation between
the functors C(−,−) and D(−,−) ◦ (F op ⊗ F ), which is a homotopy equivalence. It
follows that the DG-functors C(C(−,−)) ◦ ∇ and C(D(−,−)) ◦ ∇ ◦ C(F op ⊗ F ) are
homotopic, from which the claim follows by [Kel99, Lemma 3.4]:

〈HH•(F op)(−),HH•(F )(−)〉N ′ = H0(C(D(−,−)) ◦ ∇ ◦ (C(F op)⊗C(F )))
' H0(C(D(−,−)) ◦C(F op ⊗ F ) ◦ ∇)
' H0(C(C(−,−)) ◦ ∇) = 〈−,−〉N .
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Some of the DG-categories we consider are defined over a commutative C-algebra R. To
avoid technical issues, we will however only work with DG-categories and Hochschild
homology over C and view them as being equipped with a compatible R-linear struc-
ture. This R-action still induces an R-module structure on the Hochschild homology:
given f0[f1 | . . . | fn] ∈ C(C) (in bar notation) the action of r ∈ R is simply

f0[f1 | . . . | fn] 7→ rf0[f1 | . . . | fn].

The action is compatible with the Hochschild differential, so that HH•(C) is a graded R-
module. If a DG-functor F : C → D is R-linear, the induced chain map C(F ) : C(C)→
C(D) is also R-linear, and similarly for the maps HH•(F ) and HH•(F ). The R-linear
structure is compatible with the pairing in Lemma 5.6 in the following sense.

Lemma 5.7. If C is an R-linear DG-category N ⊂ A a subcategory of compactly
supported objects, then the pairing is R-linear: 〈r · −,−〉N = 〈−, r · −〉N for all r ∈ R.

Proof. For clarity, we write G : Cop ⊗N → PerfC for the functor that maps a pair of
morphisms (f : c′ → c, g : p→ p′) in Cop ⊗N to the map

G(f, g) : C(c, p)→ C(c′, p′), h 7→ g ◦ h ◦ f.

By inspection this satisfies G(r · f, g) = G(f, r · g) because the composition commutes
with the R-action. Applying the shuffle product now yields

(C(G) ◦ ∇)(r · f ,g) =
∑
±G(rf0, g0)[G(σ1) | . . . | G(σn+m)]

=
∑
±G(f0, rg0)[G(σ1) | . . . | G(σn+m)]

= (C(G) ◦ ∇)(f , r · g).

The same identity then holds in cohomology, making 〈−,−〉N an R-linear pairing.

§ 5.2 | Koszul duality
Let A be a (module-)finite algebra over a commutative Noetherian C-algebra R, and
assume it is homologically smooth over C. Then the DG-category of perfect complexes
A := PerfA is a smooth DG-category which is moreover R-linear. Given a maximal
ideal m ⊂ R there is a full DG-subcategory N ⊂ A of objects with cohomology
supported on m ∈ SpecR, i.e. H0N = Dperf

m (A) ⊂ Dperf(A). These are compactly
supported objects and hence induce a pairing 〈−,−〉N as in (5.1).

The objects in Dperf
m (A) have finite length: they are obtained as a finite extension

of shifts of the simple A-modules supported over m. Hence Dperf
m (A) is generated by

some finite sum S = ⊕
i Si of simple modules. Let pS ∈ N be the associated perfect
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complex, so that the DG-algebra

E := A(pS,pS),

computes REndA(S). Because S generates, the embedding E → N is a Morita equiv-
alence, hence defines a quasi-isomorphism C(E) → C(N ) between the Hochschild
complexes. Likewise, Aop is Morita equivalent to Aop(A,A) ' A, giving a quasi-
isomorphism C(A) → C(Aop). The pairing therefore restricts to a pairing between
Hochschild homologies of (DG-)algebras

〈−,−〉N : HH•(A)⊗ HH•(E)→ C,

and by adjunction this gives a morphism of R-modules

Υ: HH•(A)→ HH•(E)∗ = HH•(E,E∗)

In general this map fails to be an isomorphism (certainly for flops) but this is to be
expected: we may as well have replaced A by a suitable localisation. In fact, one can
replace A by its m-adic completion, in which case the analogous map is an isomorphism
due to Koszul duality [VdB10, Corollary D.2].

Proposition 5.8. The map Υ factors through the completion of HH•(A) as

Υ: HH•(A)→ HH•(A)⊗R R̂ ' HH•(E,E∗).

Proof. As remarked before, the Hochschild homology and its dual compute derived
bimodule morphisms: there are R-linear isomorphisms

HH•(A) ' RHomAe(A!, A), HH•(E,E∗) ' RHomEe(E,E∗).

It follows from the proof of [BD19, Theorem 3.1], the composition of these isomorphisms
with the map Υ: HH•(A)→ HH•(E,E∗) is induced by the following derived functor

RHomA(S,RHomA(−, S)) : Dperf(Ae)→ Dperf(Ee)op,

which maps A to E and A! to E∗. Let R̂ be the completion of R at m, then because R
is Noetherian we may identify the completion M̂ of any finitely generated R-moduleM
with M ⊗R R̂. In particular, the completion of A is the base-change Λ ' A⊗R R̂. This
completion is a pseudocompact algebra, which Van den Bergh shows [VdB10] is Koszul
dual to E. Let Dperf

pc (Λe) denote the category of perfect complexes of pseudocompact
Λ-bimodules (see e.g. the appendix of [KY11]). By Koszul duality, the functor

RHomΛ(S,RHomΛ(−, S)) : Dperf
pc (Λe)→ Dperf(Ee)op, (5.2)

is an equivalence of triangulated categories. In particular, it defines an isomorphism
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RHomΛe(Λ!,Λ)→ RHomEe(E,E∗), making the following diagram of R-modules com-
mute:

RHomAe(A!, A)

RHomΛe(Λ!,Λ) RHomEe(E,E∗)

RHomA(S,RHomA(−,S))

RHomΛ(S,RHomΛ(−,S))
−⊗RR̂

where − ⊗R R̂ is the map induced by the completion functor (which is exact). The
R-module RHomAe(Λ!,Λ) is obtained by base-change from the Hochschild homology:

RHomΛe(Λ!,Λ) ' RHomAe(A!, A)⊗R R̂ ' HH•(A)⊗R R̂.

LetK denote the composition of this isomorphism with (5.2), then Υ is the composition

HH•(A) −⊗RR̂−−−−→ HH•(A)⊗R R̂ K−−→ HH•(E,E∗).

Suppose F : A → A is an R-linear quasi-equivalence preserving N , then it induces R-
linear endomorphisms HH•(F ) on HH•(A) ' HH•(Aop) and HH•(F ) on HH•(E,E∗) '
HH•(N ,N ∗). By the previous proposition, the actions are related as follows:

Proposition 5.9. Let F : A → A be an R-linear quasi-equivalence preserving N , then

HH•(F ) = K ◦ (HH•(F )−1 ⊗R R̂) ◦K−1

for K : HH•(A)⊗R R̂→ HH•(E,E∗) the isomorphism from the previous proposition.

Proof. By Lemma 5.6 the pairing 〈−,−〉N is invariant under the simultaneous action
of HH•(F ) on both arguments. Hence, by adjunction the map Υ satisfies

HH•(F ) ◦Υ ◦ HH•(F ) = Υ,

for any quasi-fully faithful functor F . If F is a quasi-equivalence, then HH•(F ) is
moreover invertible, so that

HH•(F ) ◦Υ = Υ ◦ HH•(F )−1. (5.3)

Let c : HH•(A)→ HH•(A)⊗R R̂ denote the completion map. Then by Proposition 5.8
above, there is a factorisation Υ = K ◦ c, and we can consider the following diagram
of R-modules

HH•(A) HH•(A)⊗R R̂ HH•(E,E∗)
c K

HH•(A) HH•(A)⊗R R̂ HH•(E,E∗)
c K

HH•(F )−1 HH•(F )−1⊗RR̂ HH•(F )

The outer compositions agree by (5.3), and by the universal property of the completion
HH•(F )−1⊗R R̂ is the unique map which makes the left inner square commute. Hence
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the right-inner square also commutes and the result follows.

Corollary 5.10. Suppose F : A → A is an R-linear quasi-equivalence and which acts
on HHd(A) as multiplication HHd(F ) = r· by a unit r ∈ R×. Then HH−d(F ) = r−1·.

Remark 5.11. In the context of CY structures, Proposition 5.8 shows that any right
CY structure for the objects N supported on m is determined by a left CY structure
defined in a formal neighbourhood of m, and that a ‘global’ left CY structure restricts
to this formal neighbourhood. Although not every right CY structure for N is the
image of a global left CY structure, Proposition 5.9 shows that the action of a global
equivalence on the right CY structures on N is nonetheless determined by its action
on the global left CY structures.

§ 5.3 | Cyclic A∞-categories
We would like to endow the properly supported objects in our 3-CY categories with a
potential that expresses their deformation theory, and compare the potentials of objects
related by a derived auto-equivalence. To this end we use A∞-categories equipped with
a cyclic structure which are a strict version of a right Calabi–Yau structure. Because
we can, we assume that all A∞-categories/functors/modules are strictly unital.

Given an A∞-category C, we write C
∞mod C for its DG-category of A∞-bimodules. The

Hom-complex between bimodules M,N ∈ C ∞mod C is of the form

C ∞mod C(M,N) :=
(⊕

i,j≥0 HomC(C⊗i ⊗M ⊗ C⊗j, N), d
)
,

and so any degree k bimodule map α : M → N [k] is given by its components αi,j. Any
A∞ category C is a bimodule over itself, and so is its linear dual C∗ by pre-composition.
Given an A∞-functor F : C → D there is a pullback F ∗ : D ∞modD → C ∞mod C, which
identifies F ∗M(c, c′) = M(F (c), F (c′)). The functor also gives a morphism F : C →
F ∗D in a natural way, so that we may complete any bimodule morphism α : D → D∗

to a bimodule morphism C → C∗ via the diagram

C F ∗D

C∗ F ∗D∗

F

α

F ∗

in C ∞mod C. By slight abuse of notation we denote the dashed vertical arrow as F ∗α.
In this bimodule formalism, a cyclic structure is defined as follows.

Definition 5.12. Let C be a finite dimensional A∞-category, by which we mean that
C(c, c′) is a finite dimensional vectorspace for all c, c′ ∈ Ob C. A cyclic structure on C
is an A∞-bimodule homomorphism σ = (σi,j) : C → C∗[−3] such that:
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1) the higher maps σi,j for (i, j) 6= (0, 0) vanish,
2) for all a, b ∈ Ob C the map σ0,0(a, b) : C(a, b)→ C(b, a)∗ is an isomorphism,
3) the dual σ∗ : C∗∗[3] → C∗ is identified with σ via the isomorphism C ' C∗∗ and

obvious shift

Under these conditions the pair (C,σ) is a cyclic A∞-category. A cyclic A∞-functor
F : (C,σ)→ (D,σ′) is given by the those A∞-functors F : C → D such that F ∗σ′ = σ.

Objects in a cyclic A∞-category are endowed with a potential. Let (C,σ) be a cyclic
A∞-category and T ∈ Ob C an object with endomorphism A∞-algebra CT := C(T, T ),
which has a cyclic structure σ|T : CT → C∗T given by the restriction of σ. Then the
potential of T is the noncommutative formal function

W =WT ∈
(⊕

k≥1(C1
T )⊗k

)∗
which maps the k + 1 tuple f0 ⊗ . . .⊗ fk of degree 1 elements to

W(f0, . . . , fk) := σ(f0)(mk(f1, . . . , fk)). (5.4)

Let N = dimC C1
T and define QT to be the N -loop quiver, then W may be regarded

as a formal potential W ∈ ĈQcyc. If F : (C,σ) → (D,σ′) is a cyclic A∞-functor then
Kajiura [Kaj07, Proposition 4.16] shows that there is an induced formal homomorphism
ĈQF (T ) → ĈQT of the quiver algebras which maps the potential WF (T ) to WT .

For a general A∞-functor F the pullback F ∗σ of a cyclic structure fails to be cyclic, but
can be made cyclic via a perturbation, as Kontsevich–Soibelman [KS09] have shown.
Given a cyclic A∞-category (C,σ), the map σ = σ0,0 defines an cochain in the dual
Hochschild complex via the isomorphism1

⊕
c,c′∈Ob C

HomC(C(c, c′), C∗(c, c′)) '
⊕

c,c′∈Ob C
HomC(C(c, c′)⊗ C(c′, c),C) ⊂ C(C)∗,

and its homotopy class coincides with a class [σ] ∈ HH−3(C, C∗). If F : C → D is an
A∞-functor onto a second cyclic A∞-category (D,σ′), then HH•(F )[σ′] corresponds to
the homotopy class of the bimodule morphism F ∗σ′. One can therefore ask that the
condition F ∗σ′ = σ holds up to homotopy:

HH•(F )[σ′] = [σ].

If this condition holds, there exists an automorphism of C that perturbs F ∗σ to σ.
These automorphisms are described in [CL10] in the setting of A∞-algebras.

Lemma 5.13. Let (C,σ) and (D,σ′) be minimal cyclic A∞-algebras with an A∞-
homomorphism f : C → D. Suppose HH•(f)([σ′]) = [σ], then there exists an A∞-
1N.B. one checks that this isomorphism is compatible with the Hochschild and bimodule differential.
It extends to a quasi-isomorphism C(C)∗ → C ∞mod C(C, C∗), see e.g. [Gan13].
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automorphism g : C → C such that the composition f◦g is a cyclic A∞-homomorphism.

Proof. See the proof of [CL10, Proposition 7.4].

This result applies to the endomorphismA∞-algebras of objects in a cyclicA∞-category.

Lemma 5.14. Let (C,σ) and (D,σ′) be minimal cyclic A∞-categories and F : C → D a
quasi-fully-faithful A∞-functor which satisfies HH•(F )[σ′] = [σ]. Then for everyM ∈ C
there exists a cyclic A∞-algebra isomorphism (CM ,σ|M)→ (DF (M),σ

′|F (M)).

Proof. If an A∞-functor between minimal A∞-categories is quasi-fully-faithful, then
the restrictions F |M : CM → DF (M) are A∞-isomorphisms. By the perturbation Lemma
5.13 it suffices to shows that this preserves the Hochschild cohomology classes of the
cyclic structures. Let iF (M) and iM denote the inclusion functors of DF (M) and CM ,
then

HH•(F |M)[σ′|F (M)] = HH•(iF (M) ◦ F |M)[σ′] = HH•(iM)(HH•(F )[σ′]) = [σ|M ].

Although the lemma allows one to compare cyclic structures of an object with its image,
we are usually interested in objects up to quasi-isomorphism. The following lemma tells
us that the cyclic structure (hence the potential) is preserved under quasi-isomorphism.

Lemma 5.15. Let (C,σ) be a minimal cyclic A∞-category and M,N ∈ Ob C. If M
and N are isomorphic in H0C, then (CM ,σ|M) ' (CN ,σ|N) as cyclic A∞-algebras.

Proof. Consider the DG-envelope D of C, i.e. a DG-category with the same set of
objects with C as its minimal model. Let u ∈ C(M,N) and u−1 ∈ C(N,M) be the lifts
of the isomorphism in H0D = H0C and its homotopy inverse. There is an induced map

u ◦ − ◦ u−1 : DM → DN ,

which gives rise to DG-bimodule morphisms u : DM → DN and u∗ : D∗N → D∗M . If
α : D → D∗[k] is a DG-bimodule morphism, with restrictions α|N and αM , then

(u∗ ◦ α|N ◦ u)(f)(g) = α(u ◦ f ◦ u−1, u ◦ g ◦ u−1)
= α(f ◦ u−1 ◦ u, g ◦ u−1 ◦ u).

Because u−1 ◦u is homotopic to the identity, it follows that for any such α : D → D∗[k]

[α|M ] = [u∗ ◦ α|N ◦ u] = HH•(u)[α|N ].

The same holds for the induced map CM → CN on the minimal model, so the result
follows from the perturbation Lemma 5.13.
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Remark 5.16. Note that the existence of a quasi-isomorphism M ' N in C is much
stronger than the existence of a A∞-isomorphism CM ' CN , as the latter is not guar-
anteed to satisfy the homotopy-cyclic condition.

§ 5.3.1 | Cyclic minimal models

There is a standard cyclic A∞-category associated to a choice of quiver with potential.

Definition 5.17. Let (Q,W ) be a quiver with potential and for vertices v, w ∈ Q0

denote by Q(v, w) the set of arrows from v to w. The A∞-category D = DQ,W has
objects ObD = Q0 and morphism spaces

D(v, w) =

C1v ⊕ CQ(w, v)∗[1]⊕ CQ(v, w)[2]⊕ C1∗v[3] v = w

CQ(w, v)∗[1]⊕ CQ(v, w)[2] otherwise

The higher products are required to have 1v as strict units, for each a ∈ Q(v, w)

m2(a∗, a) = 1∗v, m2(a, a∗) = 1∗w,

and for any chain of arrows a1, . . . , ak in Q where a1 ∈ Q(v, w′) and ak ∈ Q(v′, w),

mk(a∗k, . . . , a∗1) =
∑

a∈Q(w,v)
caa1···ak

· a,

where caak··· ,a1 is the coefficient of a1 · · · ak in the cyclic derivative ∂W/∂a ∈ CQ of the
potential. All other compositions are zero, and in particular D is minimal.

As Kontsevich and Soibelman show [KS09], there is a cyclic structure on D defined by
choice of trace: given a linear map trQ : ⊕v∈Q0 D3(v, v)→ C the pairing

σ(f)(g) = trQ(m2(f, g)),

is a cyclic structure σ : D → D∗. In particular, we may fix the trace which sends the
generators 1∗v 7→ 1 ∈ C, so that σ(a∗)(a) = σ(a)(a∗) = a∗(a) = 1 for all arrows. With
this choice of cyclic structure, the potential of the cyclic A∞-category (D,σ) agrees
with W as an element of the completed path algebra ĈQ and hence encodes the same
data as the quiver with potential.

We now wish to extend D to a cyclic A∞-model for nilpotent modules, so that we may
describe the DT invariants in terms of a local potential. This model is provided by
the A∞-category of twisted complexes twDQ,W , a definition of which can be found in
[Lef03, §7]. It is quasi-equivalent to the DG-category PerfDQ,W of perfect complexes,
but in contrast to PerfDQ,W the A∞-category twDQ,W is finite dimensional and admits
a cyclic structure. The cyclic structure extends the cyclic structure on DQ,W , and we
will therefore again denote it by σ. If W is a finite potential then the potential WT is
also finite for any T ∈ twDQ,W .
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Theorem 5.18 (see [Dav11, Theorem 7.1.3]). Let M ∈ nilp Jac(Q,W ) be a module
with EndJac(Q,W )(M) ' C and let P ⊂ M denote locus of repeated self-extensions of
M . Then there exists a twisted complex T such that∫

[P→C]
φtr(W )|C = ΦQT ,WT

(t[M ]), (5.5)

where QT is the N-loop quiver of T with potential WT as defined in (5.4).

The potential WT of a twisted complex is too coarse of an invariant to track under
derived quasi-equivalences and we will instead consider the minimal potential.

Let T be a twisted complex in C := twDQ,W corresponding to a nilpotent module
M with EndA(M) ' C. The cyclic decomposition theorem [Kaj07, Theorem 5.15]
gives a splitting of the cyclic endomorphism A∞-algebra CT of T : there is a cyclic
A∞-isomomorphism

(CT ,σ|T ) ∼−→ (H•CT ,σmin)⊕ (LT ,σ′), (5.6)

where (H•CT ,σmin) is the cyclic minimal model, a cyclic minimal A∞-algebra structure
on the cohomology of CT , and (LT ,σ′) is a linearly contractible A∞, i.e. a cyclic
A∞-algebra with mk = 0 for k ≥ 2. There is an associated splitting of the set of loops

(QT )1 = {x1, . . . , xn} t {y1, . . . , yN−n} (5.7)

of theN -loop quiverQT , so that xi form a basis for the cohomology H1CT . LetQmin,T be
the subquiver of QT generated by the n-loops {x1, . . . , xn}, then the minimal potential

Wmin,T =Wmin,T (x1, . . . , xn),

on Qmin,T is the noncommutative formal function of (H•CT ,σmin) as in (5.4). Likewise,
the linearly contractible summand (L,σ′) has a potential q = q(y1, . . . , yN−n), which
is a nondegenerate quadratic form. The splitting (5.6) induces formal isomorphism
ψT : ĈQT → ĈQT such that ψT (WT ) =Wmin,T + q.

IfWmin,T is again a finite potential, then the partition function ΦQmin,T ,Wmin,T
(t) is well-

defined, and Lemma 3.10 implies that it is equal to the partition function ΦQT ,WT
(t).

Even if the minimal potential is a formal powerseries, it can still be used to compare
the partition functions associated to two twisted complexes.

Lemma 5.19. Let T1, T2 ∈ Ob C be twisted complexes corresponding to nilpotent mod-
ulesM,N ∈ nilpA with simple endomorphism algebras as above. If there exists a formal
isomorphism ψ : ĈQmin,T1 → ĈQmin,T2 between their complete path algebras such that

ψ(Wmin,T1) = λ · Wmin,T2 ,
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for some scalar λ ∈ C×, then the partition functions of T1, T2 are equal:

ΦQT1 ,WT1
(t) = ΦQT2 ,WT2

(t). (5.8)

Proof. Without loss of generality, we can identify the first n loops in the N1-loop quiver
QT1 with the first n loops in the N2-loop quiver QT2 , and write the splitting in (5.7) as

(QT1)1 = {x1, . . . , xn} t {y1, . . . , yN1−n}, (QT2)2 = {x1, . . . , xn} t {z1, . . . , zN2−n},

so that ψ is a formal automorphism of the quiver generated by the variables xi. The
potentials Wmin,T1 , Wmin,T2 are functions in the variables xi, and the quadratic terms
q1, q2 of the linearly contractible summands for T1 and T2 are functions in the variables
yi and zi respectively. Let Q be the N1 +N2 − n-loop quiver with loops

Q1 = {x1, . . . , xn} t {y1, . . . , yN1−n} t {z1, . . . , zN2−n}.

Then the formal isomophisms ψT1 , ψT2 , ψ lift to formal automorphisms of the com-
pleted path algebra ĈQ in the obvious way, and satisfy:

ψT1(WT1 + λ · q2) =Wmin,T1 + q1 + λ · q2,

ψ(Wmin,T1 + q1 + λ · q2) = λ · Wmin,T2 + q1 + λ · q2,

ψT2(λ · WT2 + q1) = λ · Wmin,T2 + q1 + λ · q2.

By inspection, the composition ψ−1
T2 ◦ψ ◦ψT1 maps WT1 + λ · q2 to λ ·WT2 + q1. Hence,

Lemma 3.9 and Lemma 3.10 imply that

ΦQT1 ,WT1
(t) 3.10= ΦQ,Wmin,T1+λ·q2(t) 3.9= ΦQ,λ·Wmin,T2+q1(t) 3.10= ΦQT2 ,λ·WT2

(t).

The partition function of (QT2 , λ · WT2) is independent of λ as the vanishing cycle of
tr(λ · WT2) = λ · tr(WT2) depends only on the zero locus of the function.

In view of the above, it suffices to work with the cyclic minimal model H•twDQ,W of
the cyclic A∞-category twDQ,W .

§ 5.3.2 | Cyclic minimal models associated to finite R-algebras

We return to the setting of §5.2 where A is an algebra over a commutative Noetherian
C-algebra R, which is smooth over C. We let Λ = A⊗R R̂ denote the completion of A
at a choice of maximal ideal m ⊂ R, and let E denote the Koszul dual of A in m.

If the completion is isomorphic to a completed Jacobi algebra of a quiver with potential
(Q,W ), then the following theorem of Van den Bergh relates the Koszul dual to the
A∞-category of (Q,W ).

Theorem 5.20 (See [VdB10, Theorem 12.1]). Suppose the completion Λ is isomor-
phic to Ĵac(Q,W ) for some quiver with potential (Q,W ). Then DQ,W is A∞-quasi-



76. CHAPTER 5. CALABI-YAU STRUCTURES

isomorphic to the DG algebra E.

If A satisfies the conditions of the theorem we then obtain the following chain of quasi-
equivalences

U : H ∼q.e−−→ twDQ,W
∼q.e−−→ PerfDQ,W

∼q.e−−→ PerfE ∼q.e−−→ N .

where H := H•twDQ,W is the cyclic minimal model of twDQ,W and N ⊂ A = PerfA
is the DG-subcategory of objects supported on the maximal ideal m ⊂ R as in §5.2.
Via the equivalence U we can relate the Hochschild actions of autoequivalences on H
and N , yielding the following.

Proof of Theorem 5.1. Let A be an algebra with a completion isomorphic to Ĵac(Q,W ),
and write A = PerfA as before. If F : A → A is an R-linear quasi-equivalence, such
that HH3(F ) = λ ∈ C×, then by Corollary 5.10 it acts on HH−3(N ,N ∗) as

HH−3(F ) = λ−1 · .

By [Lef03, Theorem 9.2.0.4], the A∞-functor U : H → N has a quasi-inverse U−1 : N →
H. Then the composition F ′ := U−1 ◦F ◦U is a quasi-auto-equivalence on H and acts
as

HH−3(F ′) = HH−3(U−1) ◦ HH−3(F ) ◦ HH−3(U) = λ−1,

on HH−3(H,H∗). This shows that the functor F ′ satisfies the homotopy-cyclic condi-
tion

HH−3(F ′)([λ · σ]) = [σ],

with respect to the cyclic structures σ and λ · σ on H. Let T ∈ ObH be a twisted
complex, then Lemma 5.14 shows that there exists a cyclic A∞-algebra isomorphism

(HT ,σ|T )→ (HF (T ), λ · σ|F ′(T )). (5.9)

Now suppose M,N ∈ nilpA are modules with EndA(M) ' EndA(N) ' C such that
there exists a quasi-isomorphism F (M) ' N in the derived category Dm(A) ' H0N .
Then they can be represented by the twisted complexes T1, T2 ∈ ObH such that
U(T1) 'M and U(T2) ' N . Because F (M) ' N , it then it also follows that F ′(T1) '
T2 in H0H. Combining the map (5.9) with Lemma 5.15, we obtain a cyclic A∞-
isomorphism

(HT2 , λ · σ|T2)→ (HF (T1), λ · σ|F ′(T1))→ (HT1 ,σ|T1).

In particular, there is an isomorphism ψ : ĈQmin,T1 → ĈQmin,T2 of the completed path
algebras which maps WM = Wmin,T1 to the potential defined by the noncommutative
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formal function associated to the minimal cyclic A∞-algebra (HT2 , λ · σ|T2):

ψ(WM)(f0, . . . , fi) =
∞∑
i=2

(λ · σ|T2)(f0)(mi(f1, . . . , fi))

= λ ·
∞∑
i=2
σ|T2(f0)(mi(f1, . . . , fi))

= λ · Wmin,T2(f0, . . . , fi).

Hence ψ(WM) = λ · Wmin,T2 = λ · WN as claimed.

With Theorem 5.1 established, the proof of the corollary now follows almost directly
from Theorem 5.18 and Lemma 5.19.

Proof of Corollary 5.2. By assumption M ∈ nilpA and F (M) ∈ nilpA are modules
with EndA(M) ' EndA(F (M)) ' C, so Theorem 5.18 implies that

∑
k≥0

∫
PM,k

φtr(W ) · t[M ] = ΦQT1 ,WT1
(t[M ]),

∑
κ≥0

∫
PF (M),k

φtr(W ) · t[F (M)] = ΦQT2 ,WT2
(t[F (M)]),

for some twisted complexes T1, T2 ∈ twDQ,W corresponding to M and F (M) respec-
tively. Theorem 5.1 shows that there exists a formal isomorphism between the com-
pleted path algebras of Qmin,T1 and Qmin,T2 which maps Wmin,T2 to λ ·Wmin,T1 for some
scalar λ ∈ C×. Hence, Lemma 5.19 show that

∑
k≥0

∫
PM,k

φtr(W ) · t[M ] = ΦQT1 ,WT1
(t[M ]) = ΦQT2 ,WT2

(t[M ]) =
∑
k≥0

∫
PF (M),k

φtr(W ) · t[M ],

and the result follows after comparing coefficients.

§ 5.4 | The case of flops
Let Y be a threefold and suppose þ : Y → SpecR a small contraction. Then the
bounded complexes of locally free sheaves form an R-linear DG-category PerfY , which
forms an enhancement of Dperf(Y ).

Lemma 5.21. Let Y be a smooth quasi-projective threefold Y , then PerfY is a smooth
DG-category with Hochschild homology HH3(PerfY ) ' H0(Y, ωY ).

Proof. The smoothness of PerfY follows from [Orl16; Lun10]. As shown in [Kel98] the
Hochschild homology HH•(PerfY ) coincides with the geometric Hochschild homology
HH•(Y ). Because Y is smooth, the Hochschild-Kostant-Rosenberg theorem (see e.g.
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[Lod97, Theorem 3.4.4]) induces a decomposition

HHd(Y ) '
⊕
j−i=d

Hi(Y,Ωj
Y )

where Ωj
Y denotes the sheaf of differential j-forms on Y . Because Y is a threefold, it

then follows that HH3(Y ) ' H0(Y,Ω3
Y ) = H0(Y, ωY )

Lemma 5.22. Suppose þ : Y → SpecR is a contraction with R Gorenstein, then

AutR(HH3(PerfY )) ' R×.

Proof. Because R is Gorenstein, it has a canonical line bundle ωR with ωY = þ!ωR.
Moreover, Rþ∗OY ' R because þ is a contraction, which implies HH3(PerfY ) is

H0(Y, ωY ) = H0 RHomY (OY , þ!ωR) ' H0 RHomR(Rþ∗OY , ωR) ' H0(SpecR,ωR).

Because ωR is a line bundle, the R-linear endomorphism group is

EndR(H0(SpecR,ωR)) = EndSpecR(ωR) ' R,

and the automorphisms are the invertible elements R× ⊂ R.

Now let þ : Y → SpecR be a flopping contraction of a curve C ⊂ Y in a smooth
threefold onto a maximal ideal m ⊂ R with R Gorenstein. Suppose Y admits a tilting
bundle P with A = EndY (P), and write A = PerfA and N ⊂ A as before. Then there
are R-linear quasi-inverse quasi-equivalences

−⊗A P : A → PerfY, (PerfY )(P ,−) : PerfY → A,

which identifies H0N with Db
C(Y ). If moreover, Â ' Ĵac(Q,W ) for some quiver with

potential (Q,W ), then the (minimal) potentials of objects in H compute DT-invariants
for objects in Db

C(Y ).

Proof of Proposition 5.3. If the base ring R satisfies R× = C×, then it follows from
Lemma 5.22 that the Hochschild homology of A has R-linear automorphisms

AutR(HH3(A)) ' AutR(HH3(PerfY )) ' R× ' C×.

Suppose F : A → A is an R-linear quasi-equivalence, then HH3(F ) is an R-linear
autoequivalence of HH3(A) and is therefore given by a nonzero scalar λ ∈ C×.



Chapter 6

Donaldson-Thomas Invariants

In this chapter we will finally compute the Donaldson–Thomas partition function of the
length 2 flops we constructed in chapter 2. Our computation relies on the methods we
introduced in chapter 4 & chapter 5, which reduce the computation to a finite number
of cases. Because these methods work in a wider context than the family constructed
in 2 we will first work in a more general setup.

Let þ : Y → Ycon = SpecR be a flopping contraction of a length 2 curve C ⊂ Y in
a smooth threefold onto o ∈ SpecR, and suppose that there is an R-linear tilting
equivalence

Ψ : Db(Y )→ Db(Jac(Q,W )),

where (Q,W ) is a quiver with potenital such that Jac(Q,W ) is an NCCR over R. We
moreover assume that Q has vertices Q0 = {0, 1}, and that the vertex simples S0, S1

are the images of the objects O2C(−1)[1] and OC(−1) respectively. Then the category
nilp Jac(Q,W ) of nilpotent modules is naturally identified with the category fdmod Λ
of finite dimensional modules over the completion Λ := ̂Jac(Q,W ) at o. Hence the
Donaldson–Thomas partition function

Φ(t) = ΦQ,W (t) ∈ Motµ̂(C)[[t0, t1]],

counts objects in fdmod Λ for each dimension vector in ∆ = NQ0. In what follows
we identify ∆ with the positive cone N[S0] ⊕ N[S1] ⊂ K0(fdmod Λ), and identify the
K-theories K0(fdmod Λ) ' K0(Db

C(Y )) via the equivalence Ψ.

Let P0, P1 ∈ mod Λ be the projective covers of S0 and S1 as before and fix the stability
parameter v = 2[P0]− [P1]. Then Theorem 4.1 implies that the Zv-stable modules are

Ψ(Op),
Ψ(OC(n− 1))
Ψ(O2C(n))

 for n ≥ 0,
Ψ(OC(n− 1)[1])
Ψ(O2C(n)[1])

 for n < 0,

The central charge Zv : K0(fdmod Λ)→ Cmaps the classes of these stable modules into
the upper half-plane, as depicted in figure 6.1. Let Θ : K0(fdmod Λ) → (0, 1] denote
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K0(fdmod Λ)

[S1]

[S0]

C

Zv([S1])Zv([S0])

Figure 6.1: The dimension vectors of semistable modules (left) are mapped into the
upper half-plane by the central charge Zv of the parameter v = 2[P0]− [P1]. Semistable
objects on the same coloured ray filter by a stable module of type OC (red), O2C (blue)
or Op (green).

the phase function of Zv, and write the phases of the stable objects as θpt = Θ([pt]),

θC,n =

Θ([OC(n− 1)]) n ≥ 0

Θ([OC(n− 1)[1]]) n < 0
, θ2C,n =

Θ([O2C(n)]) n ≥ 0

Θ([O2C(n− 1)[1]]) n < 0
,

Then Lemma 3.5 yields a decomposition of the partition function into an ordered
product

Φ(t) :=
−1∏

n=−∞

(
Φθ2C,n(t) ·ΦθC,n(t)

)
·Φθpt(t) ·

∞∏
n=0

(
Φθ2C,n(t) ·ΦθC,n(t)

)

where Φθ(t) :=
∫

[Cθ↪→C]φtr(W )|C denotes the partition function counting semistable
nilpotent modules of phase θ as defined in §3.2.1. Because Zv is generic, each of
these partition functions expands as a function of the BPS invariants

Φθ(t) = Sym
∑
k≥1

BPSkδ
L 1

2 − L−1
2
tkδ

 ,
where δ denotes the unique K-theory class (or dimension vector) of the stable modules
with phase θ. Hence, the DT partition function is completely determined by the BPS
invariants associated to the sheaves OC(n)[m], O2C(n)[m] and Op for p ∈ C.

If the base SpecR has absolute units R× = C× (as is the case for our family by Lemma
2.17) then the main theorem of chapter 5 implies that the BPS invariants do not depend
on the twist/shift by n and m.

Proposition 6.1. Suppose R× = C×, then for all k ∈ N and n,m ∈ Z such that the
object Ψ(OC(n)[m]) lies in fdmod Λ, there is an equality of motivic BPS invariants

BPSk[OC(n)[m]] = BPSk[C],
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where [C] := [OC] denotes the class of the curve. Likewise, for all k ∈ N and n,m ∈ Z
such that the object Ψ(O2C(n)[m]) lies in fdmod Λ, there is an equality

BPSk[O2C(n)[m]] = BPSk[2C],

where [2C] := [O2C] denote the class of the scheme fibre.

Proof. Fix n,m ∈ Z such that M = Φ(OC(n− 1)[m]) is stable. By Theorem 4.1 every
semistable objects of phase θC,n is a repeated self-extensions of this stable module,
which implies that CθC,n is equivalent to the stack PM parametrising the self-extensions
of M as in Theorem 5.18, and it follows that

Sym
∑
k≥1

BPSk[M ]

L 1
2 − L−1

2
tk[M ]

 = ΦθC,n(t) =
∑
κ≥0

∫
PM,k

φtr(W ) · tk[M ].

The derived functor F = Φ◦ (−
L
⊗OY (1−n)[−m])◦Φ−1 mapsM to the stable module

F (M) ' Φ(OC), and lifts to a DG enhancement of Db(Λ) because it is a composition
of tilting functors. By Proposition 5.3 the action HH3(F ) on Hoschild homology is a
scalar multiplication, so that Corollary 5.2 implies that

Sym
∑
k≥1

BPSk[M ]

L 1
2 − L−1

2
tk[M ]

 =
∑
k≥0

∫
PM,k

φtr(W ) · tk[M ]

=
∑
k≥0

∫
PF (M),k

φtr(W ) · tk[M ]

= Sym
∑
k≥1

BPSk[C]

L 1
2 − L−1

2
tk[M ]

 .
Hence the equalities BPSk[M ] = BPSk[C] follow after comparing coefficients. The proof
for the curve class [2C] is analogous.

Hence, in this general setup the motivic DT partition function is controlled by the
invariants BPSk[pt], BPSk[C], and BPSk[2C] associated to the point class [pt] = [Op] and
the curve classes [C] and [2C].

Now we return to the family constructed in Theorem 2.7. Fix a parameter f ∈ C[y]
divisible by y3 such that feven 6= 0, let þ : Y → Ycon = SpecRf be the associated flop,
and (Q,Wf ) its quiver with potential, as pictured in figure 6.2. Let a, b ∈ N ∪ {∞}

Q : 0 1s
c

d
x

y

Wf = x2y − f(y) + ycd+ cdy − sdc+ 2feven
(
s

1
2
)

Figure 6.2: The family (Q,Wf ), repeated for the reader’s convenience.
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denote the maximal integers such that y2a divides feven(y) and y2b divides fodd(y),
where we set b = ∞ if fodd = 0. Then we compute BPS invariants BPSk[pt], BPSk[C]

and BPSk[2C] at the following levels of refinement.

Theorem 6.2. The BPS invariants associated to the point sheaves on C are

BPSk[pt] = L−
3
2 [P1] for k ≥ 1. (6.1)

The BPS invariants associated to the curve class 2C are

BPS[2C] = L−
1
2 (1− [µa]), BPSk[2C] = 0 for k > 1. (6.2)

The first BPS invariant associated to the curve class C is

BPS[C] =

L
−1(1− [D4a]) + 2 a ≤ b,

L−1(1− [D2b+1]) + 3 a > b.
(6.3)

where D4a and D2b+1 are curves of genus a resp. b which carry a monodromy repre-
sentation of µ4a and µ2b+1 respectively. The other BPS invariants have the realisation

BPSmmhs
2[C] = χmmhs

(
L−

1
2 (1− [µa])

)
, (6.4)

BPSmmhs
k[C] = 0 for k > 2, (6.5)

where BPSmmhs
δ := χmmhs(BPSδ) denotes the realisation in the ring K0(MMHS) of

monodromic mixed Hodge structures.

Proof. The proof is split over the rest of the chapter: identity (6.1) is shown in Propo-
sition 6.13, identity (6.2) is shown in Lemma 6.8, identity (6.3) is shown in Proposition
6.22, identity (6.4) is shown in Proposition 6.19, and identity (6.5) in Lemma 6.15.

Corollary 6.3. K0(MMHS)-refined DT-invariants do not determine flops.

Proof. The Tjurina-number calculation in §2.2.4 shows that for each a ≥ 2, the flops
defined by the parameters

f(y) = y2a, f(y) = y2a + y2a+1, . . . f(y) = y2a + y4a−1,

are not all pairwise non-isomorphic (even analytically). By inspection, Theorem 6.2
shows that K0(MMHS)-refined BPS invariants only depend on a and is not influenced
by the perturbations y2a+1, . . . , y4a−1 in the potentials. Because the BPS invariants
determine the DT partition function, the result follows.

As remarked in the introduction, the derived equivalence Ψ induces an isomorphism
[Ψ] : K0(Db

C(Y )) ∼−→ K0(Db(fdmod Λ)) in K-theory, which identifies the dimension vec-
tors δ ∈ ∆ ⊂ K0(fdmod Λ) with K-theory classes [Ψ]−1(δ) ∈ K0(Db

C(Y )). From a
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geometric point of view, a natural way to present K0(Db
C(Y )) is as pairs of rank and

Euler-characteristic: there is an isomorphism K0(Db
C(Y )) ∼−−→ Z2 which maps

[F ] 7→ (r, χ) = (rkF , χ(F)),

for every sheaf F supported on C. The rank/Euler characteristic of the sheavesOC, O2C

were computed in [Kat06], and are (r, χ) = (1, 1), (r, χ) = (2, 1) respectively. Moreover,
one can check that the twist OY (1)⊗− acts on these pairs as (r, χ) 7→ (r, χ+r). Hence,
the classes of S0 and S1 are mapped to the following (r, χ) pairs:

[Ψ−1(S0)] = [O2C(−1)[1]] 7→ (r, χ) = (−2, 1),
[Ψ−1(S1)] = [OC(−1)] 7→ (r, χ) = (1, 0).

In general, any dimension vector δ can be represented as a pair (r, χ) = (δ1 − 2δ0, δ0).
Indexing the BPS invariants BPSδ as BPS(r,χ) for (r, χ) corresponding to δ, we arrive
at the strong-rationality conjecture (see [Tod15] and [Dav19] for the refined version)
which proposes that BPS(r,χ) is independent of χ. Theorem 6.2 allows us to verify this
conjecture for our family at the MMHS level of refinement.

Corollary 6.4. Let Y = Yf be a length 2 flop as in Theorem 6.2, and consider a pair
(r, χ) corresponding to some dimension vector δ ∈ ∆. Then

BPSmmhs
(r,χ) =



BPSmmhs
[pt] r = 0

BPSmmhs
[C] r = ±1

BPSmmhs
2[C] r = ±2

0 otherwise

In particular, BPSmmhs
(r,χ is independent of χ, and the strong rationality conjecture holds

in the MMHS–refinement.

Remark 6.5. We expect that the identities (6.4) and (6.5) lift to the motivic refine-
ment, which would imply Corollary 6.4 also holds at this level. However, to produce the
identities (6.4) and (6.5) we require the theory of monodromic mixed Hodge modules,
which categorify K0(MMHS). One might hope to lift the proof to the motivic setting
via a similar categorification, but such a thing is currently not present in the literature.

Other refined invariants can be deduced by first determining the Hodge structure and
monodromy on the curves D4a and D2b+1. The monodromy is concentrated on the
middle cohomology and, as we show in §6.3.2, has the following form.

Proposition 6.6. The Hodge decomposition of H1(D4a,Q) consists of representations

H1,0(D4a) = H1(D4a,OD4a) '⊕a
j=1 ξ

2j−1+2a,

H0,1(D4a) = H0(D4a,Ω1
D4a

) '⊕a
j=1 ξ

2j−1.
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where ξ denotes the primitive µ4k–representation. Likewise, the Hodge decomposition
of H1(D2b+1,Q) is the following direct sum of µ2b+1-representations

H1,0(D4a) = H1(D2b+1,OD2b+1) '⊕b
j=1 ξ

b+j,

H0,1(D4a) = H0(D2b+1,Ω1
D2b+1

) ' ⊕b
j=1 ξ

j.

From the above, one can calculate the Hodge spectrum hspk := χhsp([BPSk[C]).

Corollary 6.7. The nontrivial Hodge spectrum realisations are

hsp1(z1, z2) =


1 +∑a

j=1

(
z

2j−1
4a

1 z
− 2j−1

4a
2 + z

− 2j−1
4a

1 z
2j−1

4a
2

)
a ≤ b

2 +∑b
j=1

(
z

j
2b+1
1 z

− j
2b+1

2 + z
− j

2b+1
1 z

j
2b+1
2

)
a > b

and
hsp2(z1, z2) =

a∑
j=1

z
j
a
1 z

a−j
a

2 − 1

By inspection, the weight-polynomial wtk(q) = hspk(q
1
2 , q

1
2 ) is constant in each case,

and coincides with the numerical BPS invariants

wt1(q) = hsp1(q 1
2 , q

1
2 ) = min{2a+ 1, 2b+ 2} = χ([BPS[C]]),

wt2(q) = a− 1 = χ([BPS2[C]]).

The numerical BPS invariants determine the Gopakumar-Vafa numbers of the flop: for
each i = 1, . . . , ` this curve counting invariant is given by (see [Tod15])

ni = χ([BPS[iC]]).

By the above calculation the Gopakumar-Vafa numbers of Y are therefore

(n1, n2) =

(2a+ 1, a− 1) a ≤ b

(2b+ 2, a− 1) a > b

As shown by Toda [Tod15], the GV invariants also determine the dimension of the
contraction algebra and of its abelianisation, which we can now easily compute:

dimC Λcon = n1 + 4n2 =

6a− 3 a ≤ b

4a+ 2b− 2 a > b
,

dimC Λab
con = n1 = min{2a, 2b+ 1}+ 1.

These same dimensions were also found independently by Kawamata [Kaw20] via a
direct calculation.

We proceed with the calculation of the invariants.
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§ 6.1 | Motivic invariants for the class [2C]
By Proposition 6.1, the BPS invariants BPSk[2C] are equal to the BPS invariants asso-
ciated to the class [S0] = [O2C(−1)[1]]. Fix the phase θ = θ2C,−1 = Θ([S0]), then the
BPS invariants are obtained via the motivic powerseries

Sym
∑
k≥0

BPSk[2C]

L 1
2 − L−1

2
tk0

 = Φθ(t) :=
∑
k≥0

∫
Cθ

(k,0)

φtr(Wf ) · tk0,

where Cθ = Mθ
Q,W ∩N denotes the closed substack of Mθ which parametrises nilpotent

semistable Jac(Q,W )-modules of phase θ, as defined in chapter 3.

Fix a dimension vector δ = (k, 0). Then every representation ρ ∈ Repδ(Q) is trivial on
all paths in Q that factors through the vertex 1, and is therefore completely determined
by its value ρ(s) ∈ Matk×k on the loop s. Moreover, the module corresponding to such
a representation is automatically semistable, so that

Mθ
δ = Mδ ' Matk×k /GLk 'MQ,k,

where MQ,k is the moduli stack of the one-loop quiver Q with loop s. This isomorphism
identifies φtr(Wf ) with the vanishing cycle φtr(W) of the potential W = 2feven(s 1

2 ), and
maps Cθδ to the closed substack CQ,k ⊂MQ,k which parametrises nilpotent Jac(Q,W)-
modules. It follows that

Φθ(t) =
∑
k≥0

∫
CQ,k

φtr(W) · tk0 = ΦQ,W(t0).

The DT partition function ΦQ,W(t) of a one-loop quiver with potential was found by
Davison-Meinhardt [DM15b], and the BPS invariants for the class [2C] follow directly
from their computation.

Lemma 6.8. Let a ∈ N be the maximal integer such that sa divides 2feven(s 1
2 ), then

Φθ(t) = Sym
L−1

2 (1− [µa])
L 1

2 − L−1
2
· t0

 .
In particular BPS[2C] = L−1

2 (1− [µa]) and BPSk[2C] = 0 for k > 1.

Proof. By [DM15b, Theorem 6.4] the right hand side is exactly ΦQ,W(t0).

§ 6.2 | Motivic point count
Next we calculate the BPS invariants for the phase θ = θpt = Θ([pt]). As in chapter 3,
we let Mθ denote the moduli stack of semistable modules of phase θ, let C = MQ,Wf

∩N
be the stack of nilpotent representations satisfying the relations of the Jacobi algebra
Jac(Q,Wf ), and write Cθ = C∩Mθ. The BPS invariants for the phase θ are determined
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by the partition function

Φθ(t) =
∫

[Cθ→C]
φtr(W )|C =

∑
k≥0

∫
Cθ

(k,2k)

φtr(W ) · tk0t2k1 ,

associated to the class [Cθ → C] in the Hall algebra on C. By Lemma 4.14 the only
stable modules of phase θ are the images Ψ(Op) of point sheaves supported on p ∈ C
under the derived equivalence Ψ : Db

C(Y )→ Db
fd(Λ). All other semistable modules are

extensions of stable modules, and therefore correspond to the images of finite length
sheaves supported on C.

We will show how the partition function decomposes along the support of these finite
length sheaves. Fix a point p ∈ C, and define Cp to be the closed substack of Cθ

parametrising semistable modules M such that Ψ−1(M) is a skyscraper sheaf on p.
Likewise, let C◦ be the open substack of Cθ parametrising finite length sheaves with
support in the complement C \ {p}. Consider the partition functions

Φ◦(t) =
∫

[C◦→C]
φtr(Wf )|C, Φp(t) =

∫
[Cp→C]

φtr(Wf )|C,

obtained by integrating the vanishing cycle over the two substacks. Then we have the
following.

Lemma 6.9. There is a decomposition Φθ(t) = Φ◦(t) ·Φp(t).

Proof. Because the integration map is a homomorphism, it suffices to show the identity

[Cθ → C] = [C◦ → C] ? [Cp → C] (6.6)

in the motivic Hall algebra. Consider the substack Y ⊂ Ext, parametrising those short
exact sequences

0→M◦ →M →Mp → 0,

with M◦ in C◦ and Mp in C
p
δ2 . The right hand side of (6.6) is then the class [Y → C]

of the map Y ↪→ Ext → C which maps a short-exact sequence to its middle term.
Because an extension of semistable modules of phase θ is again semistable of phase θ,
this map factors as Y → Cθ ↪→ C, and we claim that this factorisation identifies the
classes [Y → C] and [Cθ ↪→ C] in K(St/C). By [Bri12, Lemma 3.2] it is sufficient to
check that functor Y(C) → Cθ(C) on C-points is an equivalences of categories. The
support property guarantees that this is true: a semistable module M of phase θ is
the image M = Ψ(F) of a finite length sheaf on C, hence it is the unique extension
M 'M◦ ⊕Mp of the modules

M◦ := Ψ(F|A1), Mp = Ψ(F|p),

in C◦(C) and Cp(C). Hence any object of C(C) lifts uniquely to Y(C).



CHAPTER 6. DONALDSON-THOMAS INVARIANTS 87.

The explicit construction for the substacks Cp and C◦ is analogous to the construction
in §2.1.2. The moduli space Repθ(1,2)(Q) of semistable representations is covered by two
open charts Repθ(1,2)(Q) = Uy ∪ Ux, where

Uy = {ρ | det(ρ(c) | ρ(yc)) 6= 0}, Ux := {ρ | det(ρ(c) | ρ(xc)) 6= 0}.

The curve C parametrises the nilpotent representations of Repθ(1,2)(Q), so we can stratify
accordingly: we fix the point p to correspond to the unique nilpotent representation
in the complement of Uy, which is the semistable nilpotent representation ρp such
that ρp(yc) = 0. With this choice of p, the stack C◦ parametrises semistable nilpotent
Jac(Q,W )-representations ρ such that the matrix det(ρ(c) | ρ(yc)) is invertible. Hence,
C◦ is precisely the intersection of the nilpotent locus N with the critial locus of tr(W )
restricted to the open substack

M◦ :=
∐
k≥0

{
ρ ∈ Rep(k,2k)(Q) | (ρ(c) | ρ(yc)) is invertible

}
/GL(k,2k) .

To compute the partition function Φ◦, it is convenient to rewrite M◦ as the moduli
stack of a different quiver. Consider the quiver Q with a unique vertex and 9 loops

Q1 = {α1,α2,α3,β1,β2,β3,γ1,γ2,γ3}.

Let locy : CQcyc → CQcyc be the composition of the trace map trQ : Mat3×3(CQ) →
CQ with the homomorphism CQ→ Mat3×3(CQ) defined on generators as

s 7→


γ3 0 0
0 0 0
0 0 0

 , c 7→


0 0 0
1 0 0
0 0 0

 , d 7→


0 β1 β2

0 0 0
0 0 0

 ,

x 7→


0 0 0
0 γ2 β3 − γ1γ3

0 γ1 α3 − γ2

 , y 7→


0 0 0
0 0 α1 + γ3

0 1 α2

 .
(6.7)

Then W = locy(Wf ) ∈ CQcyc is a potential on Q, and we have the following.

Lemma 6.10. There is an isomorphism M◦
∼−→MQ that pulls back tr(Wf ) to tr(W).

Proof. Fix δ = (k, 2k) and consider the tautological representation τ on Repδ(Q): the
C[Repδ(Q)]-valued representation corresponding to the identity across the isomorphism

Repδ(Q)(C[Repδ(Q)]) ' HomSch(Repδ(Q),Repδ(Q)).

Let A =
(
τ(c) τ(yc)

)
denote the C[Repδ(Q)]-valued 2k × 2k-matrix obtained by

adjoining the block matrices τ(c) and τ(yc). Then M◦ is the stack quotient U/GLδ of
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the invariant subspace

U = SpecC[Repδ(Q)][(detA)−1] ⊂ Repδ(Q).

There is a closed subspace V ⊂ U defined by the vanishing of the (2k)2 entries in
the matrix A− Id2k×2k. We claim that U is a GL2k-torsor over V with respect to the
action of subgroup GL2k ' {Id} × GL2k ⊂ GLδ. To show this, consider the invertible
C[U ]-valued matrix

g =
 Idk×k 0

0 A−1

 ∈ GLδ(C[U ]).

then the family g ·τ of representations satisfies
(
g ·τ(c) | g ·τ(yc)) = Id2k×2k and hence

defines a map U → V . The GL2k-action restricts to a free & transitive action on the
fibres of this map, which shows that U is indeed a GL2k-torsor over V . It follows that

M◦ ' U/GLδ ' V/GLk .

Because V is affine, any k-dimensional representation of Q with values in C[V ] de-
termines a map V → Repk(Q) via Repk(Q)(C[V ]) ' HomSch(V,Repk(Q)). We can
construct one such C[V ]-valued representation as follows. The tautological representa-
tion τ restricted to the space V is of the form

τ(s), τ(c) =
 Idk×k

0

 , τ(d) =
(
d0 d1

)
,

τ(x) =
 x00 x01

x10 x11

 , τ(y) =
 0 y01

Idk×k y11

 ,
where τ(s), d0, d1, x00, x01, x10, x11, y01, y11 are C[V ]-valued k× k matrices. Hence there
is a representation σ ∈ Repk(Q)(C[V ]) which maps the loops in Q to

σ(α1) = y01 − τ(s), σ(α2) = y11, σ(α3) = x11 + x00,

σ(β1) = d0, σ(β2) = d1, σ(β3) = x01 + x10τ(s),
σ(γ1) = x10, σ(γ2) = x00, σ(γ3) = τ(s).

One checks that this map is a GLk-equivariant isomorphism, and therefore yields an
isomorphism M◦ ' V/GLk ' MQ,k of moduli stacks. Moreover, by comparing the
above with (6.7) one sees that the isomorphism identifies the functions tr(Wf ) and
tr(W) on the two spaces. Repeating this process for all k and taking the disjoint union
gives the required isomorphism.

The contribution of the stratum C◦ can now be calculated as follows.
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Lemma 6.11. The contribution of the stratum C◦ is

Φ◦(t) = Sym
∑
k≥1

L− 3
2 [A1]

L 1
2 − L−1

2
· tk0t2k1


Proof. The potential W = locy(Wf ) ∈ CQcyc has the following form:

W = locy(x2y − f(y) + cdy2 − sdc+ 2feven(s 1
2 ))

= α1β1 + α2β2 + α3β3 + [γ1,γ2]γ3 + α1([γ1,γ2] + α3γ1)− α3γ1γ3

+ α2((α3 − γ2)2 + γ1β3 − γ2
1γ3)− trQ

(
f
(

0 α1+γ3
1 α2

))
+ 2feven(γ

1
2
3 ).

We will construct an automorphism ψ : CQ → CQ which maps W to the simplified
form ∑

i=1,2,3 αiβi +Wmin, for some minimal potential Wmin = Wmin(γ1,γ2,γ3). By
inspection, the potential can be written as

W = α1β1 + α2β2 + α3β3 + α1 · u1 + α2 · u2 + α3 · u3

+ [γ1,γ2]γ3 − trQ
(
f
(

0 γ3
1 0

))
+ 2feven(γ

1
2
3 ).

for nc-polynomials ui of order ≥ 2 such that ui only depends on the γ-variables and
on αj, βj for j > i. Consider the automorphisms ψ1,ψ2,ψ3 : CQ → CQ which map

ψi(βi) = βi − ui,

and send the other generators to themselves. Then ψi(uj) = uj for j > i, and one sees
that the composition ψ := ψ3 ◦ψ2 ◦ψ1 mapsW to ψ(W) = ∑

i=1,2,3 αiβi+Wmin where

Wmin = [γ1,γ2]γ3 − trQ
(
f
(

0 γ3
1 0

))
+ 2feven(γ

1
2
3 ).

is the minimal potential on the loops γ. By inspection the last two terms cancel:

trQ
(
f
(

0 γ3
1 0

))
= trQ

(
feven(γ

1
2
3 ) 0

0 feven(γ
1
2
3 )

)
+ trQ

(
0 fodd(γ

1
2
3 )γ

1
2
3

fodd(γ
1
2
3 )γ

−1
2

3 0

)
= 2feven(γ

1
2
3 )

so that Wmin is simply given by the cubic term [γ1,γ2]γ3.

Let J ⊂MQ be a finite type substack of MQ, then by motivic Thom-Sebastiani∫
J
φtr(Wf ) =

∫
J
φtr(ψ(W)) =

∫
J∩{αi=βi=0}

φtr([γ1,γ2]γ3).

In particular, this applies to the images Jk of the strata C◦(k,2k) ⊂ M◦ under the iso-
morphism M◦ ' MQ in Lemma 6.10. It then follows from the main result of [BBS13]
that the partition function Φ◦(t) is a motivic count of the points on A1 ⊂ A3, which is

Φ◦(t) =
∑
k≥0

∫
Jk∩{αi=βi=0}

φtr([γ1,γ2]γ3) · tk0t2k1 = Sym
∑
n≥1

L− 3
2 [A1]

L 1
2 − L−1

2
· tk0t2k1

 .
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For the second partition function we proceed in a similar fashion. As in Lemma 6.10,
for each δ = (k, 2k) define the matrix A =

(
τ(c) τ(xc)

)
where τ still denotes the

tautological representation. Then there is an open neighbourhood U of Cpδ in Mθ
δ of the

form U ' U/GLδ, where

U = SpecC[Repδ(Q)][detA−1].

As before, U is a GL2k-torsor over the closed subspace V ⊂ U defined by the entries of
the matrix A− Id2k×2k, so that U ' V/GLk. The restriction of τ to V is of the form

τ(s), τ(c) =
 Idk×k

0

 , τ(d) =
(
d0 d1

)
,

τ(x) =
 0 x01

Idk×k x11

 , τ(y) =
 y00 y01

y10 y11

 ,
for C[V ]-valued k× k-matrices τ(s), d0, d1, x01, x11, y00, y01, y10, y11. and there is a GLk-
equivariant isomorphism V → Repk(Q) determined by the family of representations
σ ∈ Repk(Q)(C[V ]) which takes the following values on generators:

σ(α1) = −d0, σ(α2) = x01, σ(α3) = x11,

σ(β1) = τ(s)− y2
00 − y01y10, σ(β2) = y00 + y11, σ(β3) = y01,

σ(γ1) = y10, σ(γ2) = y00, σ(γ3) = d1,

Again, the isomorphism of stacks Vk ' MQ,k identifies tr(Wf ) with the trace of the
potential W = locx(Wf ) on Q, where locx : CQcyc → CQcyc is the composition of the
trace trQ : Mat3×3(CQ) → CQ with the homomorphism CQ → Mat3×3(CQ) which
maps the generators of Q to

s 7→


β1 + γ2

2 + β3γ1 0 0
0 0 0
0 0 0

 , c 7→


0 0 0
1 0 0
0 0 0

 , x 7→


0 0 0
0 0 α2

0 1 α3

 ,

d 7→


0 −α1 γ3

0 0 0
0 0 0

 , y 7→


0 0 0
0 γ2 β3

0 γ1 β2 − γ2

 .
One can check that the isomorphism identifies Cp with the critical locus CQ,W .

Lemma 6.12. There is an equality

Φp(t) = Sym
∑
n≥1

L− 3
2 [pt]

L 1
2 − L−1

2
· tn0 t2n1

 .
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Proof. As in Lemma 6.11, we calculate the motivic contribution via the potential

W = locx(x2y − f(y) + cdy2 − sdc+ 2feven(s 1
2 ))

= α1β1 + α2β2 + α3β3 + γ3[γ1,γ2] + α2α3γ1 + α2
3(β2 − γ2) + γ3β2γ1

+ 2feven((β1 + γ2
2 + β3γ1) 1

2 )− locx(f(y)).

on the completed quiver ĈQ. Below, we will construct a formal automorphism of ĈQ
that mapsW to a potential of the form ∑

i αiβi+γ3[γ1,γ2]. Note that this is sufficient
to yield the required identity: the isomorphism U 'MQ identifies Cp with the nilpotent
locus N ⊂MQ, and the theorem of [BBS13] again yields

Φp(t) =
∞∑
k=1

∫
C

p
(k,2k)

φtr(Wf )t
k
0t

2k
1 =

∞∑
k=1

∫
Nk

φtr(
∑

i
αiβi+γ3[γ1,γ2])t

k
0t

2k
1

= Sym
∑
k≥1

L−3/2[pt]
L 1

2 − L−1
2
· tk0t2k1

 .
To construct the automorphism, we first write W as

W = α1β1 + α2β2 + α3β3 + γ3[γ1,γ2] + u · β1 + α2(α3γ1) + α3(−α3γ2)
+ w · β3 + (α2

3 + γ1γ2 + v) · β2 + 2feven(γ2)− trQ
(
f(γ2) 0
... f(−γ2)

)
,

(6.8)

for u = u(β1,β3,γ1,γ2) of order ≥ 1, and v = v(β2,β3,γ1,γ2), w = w(β3,γ1,γ2) of
order ≥ 3. Note moreover, that that the last two terms in (6.8) cancel by a parity
argument:

trQ
(
f(γ2) 0
... f(−γ2)

)
= feven(γ2) + feven(−γ2) + fodd(γ2) + fodd(−γ2) = 2feven(γ2).

Let ψ1,ψ2,ψ3 : CQ → CQ be the automorphisms which map

ψ1(α1) = α1 − u, ψ2(β2) = β2 − α3γ1, ψ3(α2) = α2 − α2
3 − γ1γ2 −ψ2(v),

and act as the identity on the other generators. By construction, these map W to

ψ3(ψ2(ψ1(W))) = α1β1 + α2β2 + α3β3 + γ3[γ1,γ2]
+ w · β3 + α3 · (−α3γ2 − γ1α

2
3 − γ2

1γ2 − γ1ψ2(v)).

Because the terms on the bottom line are of order≥ 3, one can use a recursive algorithm
analogous to [DWZ08, §3] to further reduce the cross-terms order by order: one defines
automorphisms ψn : CQ → CQ, trivial up to order n−1, a sequence of nc-polynomials
w(n)(β1,β3,γ1,γ2), v(n) = v(n)(β1,γ1,γ2), andW(n)

min(γ1,γ2) of orders ≥ n−1, ≥ n−1,
and ≥ n respectively, such that ψn(ψn−1(· · ·ψ1(W))) is of the form

α1β1 + α2β2 + α3β3 +W(3)
min + . . .+W(n)

min + w(n)β3 + α3v
(n).
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The existence of the above data can be shown by induction on the base case

W(3)
min = γ3[γ1,γ2], w(3) = w, v(3) = −α3γ2 − γ2α

2
3 − γ2

1γ2 − γ1ψ(v).

Suppose the data ψn,W(n)
min, v(n), w(n) as above are given for n ≤ N , then we construct

the automorphism ψN+1 by letting

ψN+1(α2) = α2 + w(N), ψN+1(β3) = β3 + v(N),

and sending all other generators to themselves. By assumption, this satisfies

ψN+1(· · · (ψ1(W))) = α1β1 + α2β2 + α3β3 +W(3)
min + . . .+W(N)

min

+ w(N)v(N) −ψN+1(w(N))v(N) − w(N)ψN+1(v(N)).
+ (ψN+1(w(N))− w(N))β3 + α3(ψN+1(v(N))− v(N)).

The bottom two lines contain only terms of order≥ (N−1)2 ≥ N+1. Hence, these lines
can be written (up to cyclic permutation) asW(n)

min +w(n)β3 +α2v
(n) for nc-polynomials

of the claimed form. By induction the required data then exists for all n ≥ 4.

The limit ψ = limn→∞ψn ◦ · · · ◦ψ1 is a well-defined formal automorphism ĈQ → ĈQ,
and maps W to the nc-powerseries

ψ(W) =
3∑
i=1
αiβi +Wmin =

3∑
i=1
αiβi + γ3[γ1,γ2] +W ′min,

where W ′min a nc-powerseries in the variables γ1,γ2. Because ψ is an automorphism
on ĈQ, it induces an isomorphism Jac(Q,ψ(W)) ' Jac(Q,W) ' C[[OY,p]] onto the
ring of formal functions at p. In particular, the Jacobi algebra is commutative, so that
the cyclic derivatives of Wmin are contained in the (completed) commutator ideal. In
particular, because W ′min is only a function of γ1,γ2 we find:

∂γ1W ′min ≡ 0 mod ([γ1,γ2])top, ∂γ2W ′min ≡ 0 mod ([γ1,γ2])top, ∂γ3W ′min = 0.

Amoment of reflection shows1thatWmin = γ3[γ1,γ2]+q·[γ1,γ2] for some nc-polynomial
q of order ≥ 2. One final automorphism γ3 7→ γ3− q then maps Wmin to γ3[γ1,γ2], as
required. The result follows.

Adding up the contributions of C◦ and Cp now yields the desired DT invariants.

Proposition 6.13. The BPS invariants are BPSk[pt] = L−3
2 [P1] for all k ≥ 1.

Proof. By Lemma 6.9 the partition function decomposes as Φθ(t) = Φ◦(t) ·Φp(t), so it
follows from Lemma 6.11, Lemma 6.12 and the properties of the plethystic exponential
1One can for example, apply the Euler identity

∑
i γi∂γiH = n ·H to the homogeneous parts.
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that

Φθ(t) = Sym
∑
k≥0

L− 3
2 ([A1] + [pt])
L 1

2 − L−1
2

tk0t
2k
1

 .
Remark 6.14. In the framework of [BBS13] the BPS invariants are interpreted as a
virtual count of points, and are defined as the restriction of the virtual motive of Y :

[Y ]virt |C = L−3/2[P1].

The proposition shows that the invariants BPSk[pt], which we compute in the framework
of [KS08], are in fact given by this virtual motive.

§ 6.3 | Invariants for the class [C]
Finally we calculate the BPS invariants BPS[C]. By Proposition 6.1 these invariants
are equal to BPSk[S1] (as [S1] = [OC(−1)]) and can therefore be calculated via:

Sym
∑
k≥1

BPSk[C]

L 1
2 − L−1

2
· tk1

 = Φθ(t) =
∑
k≥0

∫
Cθ

(0,k)

φtr(Wf ),

where θ = θC,0 = Θ([S1]). As in §6.1, we see that the stability condition is trivial
on the space Rep(0,k)(Q), and the moduli space Mθ is isomorphic to the moduli space
MQ of a quiver Q with a unique vertex and loops Q1 = {x, y}. The potential restricts
to W = x2y − f(y) ∈ CQcyc and the BPS invariants are determined by the partition
function of (Q,W) via

Φθ(t) =
∑
k≥0

∫
CQ,k

φtr(W) · tk1 = ΦQ,W(t).

To calculate this partition function explicitly, one would have to use the integration
formula of Denef–Loeser, which requires one to find an embedded resolution of the zero
locus {tr(W) = 0} in Repk(Q). We are able to find such an embedded resolution for
k = 1, but for k > 2 the dimension of Repk(Q) is at least 8 and finding a suitable
embedded resolution is rather complicated.

Instead, we will determine the realisations BPSmmhs
k[C] := χmmhs(BPSk[C]) in the Grothen-

dieck ring of monodromic mixed Hodge structures. As shown in [DM20], this realisation
coincides with the class [BPSk] of a monodromic mixed Hodge structure

BPSk := Hc

(
MQ,k,

(
φmmhs

tr(W) ICMQ,k

)nilp
)
,

where Mk → MQ,k := Repk(Q)//GLk(C) is the associated coarse moduli scheme of
MQ,k, and the cohomology with compact support takes values in the image of the
intersection complex ICMQ,k

under the vanishing cycle functor φmmhs
tr(W), restricted to the

nilpotent locus. The following follows from the main result of [Dav19].
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Lemma 6.15. BPSk vanishes for k > 2.

Proof. By [Dav19, Theorem B] the monodromic mixed Hodge structures BPSk are all
concentrated in degree 0, and by [Dav19, Proposition 5.2] the dimension dimC(BPSk)
of their degree 0 part is given by the Gopakumar-Vafa invariant nk of the flop. Because
Y is a length ` = 2 flop, the GV invariant nk vanishes if k > ` = 2 and BPSk is therefore
trivial for k > 2.

Corollary 6.16. BPSmmhs
k[C] = 0 for k > 2.

§ 6.3.1 | The realisation for k = 2

The coarse moduli spaceMQ,2 is a smooth scheme.

Lemma 6.17. MQ,2 ' A5

Proof. As shown by Procesi [Pro84], the ring of GL2-invariant functions on the space
of representations Rep2(C〈x1, . . . , xn〉) of the free algebra C〈x1, . . . , xn〉 is the ring of
trace functions tr(p) : ρ 7→ tr(ρ(p)) of noncommutative polynomials p ∈ C〈x1, . . . , xn〉,
subject to the relations

tr(p1p2p3) + tr(p1p3p2) = tr(p1p2)tr(p3) + tr(p1p3)tr(p2)
+ tr(p1)tr(p2p3)− tr(p1)tr(p2)tr(p3).

(6.9)

for any triple of noncommutative polynomials p1, p2, p3. In the case of two generators
the trace ring is the polynomial ring (see [LP87, Proposition II.3.1]), hence

M2(Q) = Rep2(Q)//GL2 ' SpecC[tr(x), tr(y), tr(x2), tr(y2), tr(xy)].

Because MQ,2 is smooth, its intersection complex ICM2(Q) is trivial, and we can cal-
culate the BPS invariant of the function tr(W) on the coarse scheme.

Lemma 6.18. Let {0} ⊂ MQ,2 denote the origin, then there is an equality

BPSmmhs
2[C] = χmmhs

(∫
{0}
φtr(W)

)
,

where on the right-hand side tr(W) is regarded as a function onMQ,2.

Proof. BecauseMQ,2 ' A5 is smooth of dimension 5, its intersection complex is simply

ICMQ,2 = Q[dimMQ,2] = Q[5],

where Q denotes the constant sheaf with value Q on MQ,2. It then follows from the
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monodromic version of [DL98, Theorem 4.2.1] (see [Dav19, §2.7]), that

χmmhs

(∫
{0}
φtr(W)

)
=
[
Hc

(
MQ,2,

(
φmmhs

tr(W)Q[5]
)nilp

)]
.

and the right hand side of the equation is precisely [BPS2] = BPSmmhs
2[C] .

Proposition 6.19. Let a be the maximal integer such that y2a divides feven(y), then

BPSmmhs
2[C] = χmmhs

(
L−

1
2 (1− [µa])

)
.

Proof. Substituting p1 = p2 = y and p3 = yn into (6.9), there is a relation

2 · tr(yn+2) = tr(y2)tr(yn) + 2 · tr(yn+1)tr(y)− tr(y)2tr(yn),

in the coordinate ring of MQ,2 for every n > 0. Therefore, there exists a polynomial
v(tr(y), tr(y2)) so that tr(f(y)) is of the form

tr(f(y)) = tr(y) · v(tr(y), tr(y2)) + feven(tr(y2)).

Likewise, substituting p1 = p2 = x, p3 = y into equation (6.9) gives an expression

2tr(x2y) = tr(x2)tr(y) + 2tr(xy)tr(x)− tr(x)2tr(y),

which gives an expression for tr(x2y) as a polynomial in the traces of degree 2 terms.
Choosing the coordinates

a1 = 1
2tr(x2)− 1

2tr(x)2 − v(tr(y), tr(y2)), b1 = tr(y),
a2 = tr(xy), b2 = tr(x), z = tr(y),

one finds that tr(W) can be written as the polynomial

tr(x2y − f(y)) = a1b1 + a2b2 − feven(z 1
2 ).

By assumption feven(γ 1
2 ) = u(γ) · γa for u(γ) invertible on some neighbourhood of the

nilpotent locus. Then it follows from the Thom-Sebastiani identity that∫
{0}
φtr(W) =

∫
{0}
φa1b1+a1b2+u(z)·za =

∫
A1

z

φza = L−
1
2 (1− [µa]).

§ 6.3.2 | The BPS invariant for k = 1

The first BPS invariant BPS[C] is the linear term in the partition functionΦQ,W(T ): the
plethystic exponential has the first order expansion Sym(∑k>1 ak ·T k) = 1+a1 ·T + . . .

so the partition function is of the form

ΦQ,W(T ) = 1 + BPS[C]

L 1
2 − L−1

2
· T + (. . . higher order terms in T . . .).
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Hence BPS[C] can be calculated as the motivic integral of φtr(W) on the origin in
Rep1(Q) ' A2. The function tr(W) = x2y − f(y) ∈ C[x, y] has an isolated singularity
at the origin, so we can fix an open neighbourhood U ↪→ Rep1(Q) of the origin {0} ⊂
A2 ' Rep1(Q) which does not contain any other singularities. Then

BPS[C] = (L 1
2 − L−

1
2 ) ·

∫
CQ,1
φtr(W) =

∫
{0}
φtr(W) =

∫
U
φtr(W)|U .

To calculate the right-hand side we construct an embedded resolution h : X → U of
the divisor Z := {tr(W) = 0} such that h∗Z has normal crossings: i.e. every prime
component of h∗Z is a smooth codimension 1 subvariety of X and the intersection of
any set of components is defined by a regular sequence.

As before let a, b ∈ N be the maximal integers such that y2a divides feven(y) and such
that y2b divides fodd(y). Then the embedded resolution depends on a and b as follows.

Proposition 6.20. If a ≤ b there exists an embedded resolution h : X → U such that

h∗Z = L1 + L2 +
a∑
k=2

(2k − 1) · E2k−1 + 2a · E2a + 4a · E4a,

where L1 and L2 are the components of the strict transform of Z and the Ei are excep-
tional curves. These components intersect each other as follows:

L1

E3

E5

E2a−1

L2

E4a

E2a

Proposition 6.21. If a > b there exists an embedded resolution h : X → U such that

h∗Z = L1 + L2 +
b∑

k=2
(2k − 1) · E2k−1 + (2b+ 1) · E2b+1,

where L1 and L2 are the components of the strict transform of Z and the Ei are excep-
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tional curves. These components intersect each other as follows:

L1

E3

E5

. . .

E2b−1

L2

E2b+1

The resolutions can be found via a sequence of blowups of points, a straightforward
but somewhat long computation which we include in appendix A.

To compute the motives we use the formula of Denef–Loeser recalled in §3.1.1. Write
h∗Z as a sum ∑

i∈I miEi of prime divisors Ei with multiplicity mi > 0 ranging over an
index set I, and let EJ and E◦J be the strata for subsets J ⊂ I. Looijenga [Loo02] defines
the following degree mI = gcd{mj | j ∈ J} cover DJ → EJ of EJ : let g : X̃ → A1 be
the normalisation of the base-change

A1 ×A1 X X

A1 A1z 7→zmI

tr(W)◦h

X̃ → X is a µI-fold cover of X, and DJ → EJ is the restriction to EJ ⊂ X. This cover
has a canonical µmI

-action via its action on A1. We will also denote by D◦J → E◦J the
restriction to the open subspace E◦J , which is a regular cover with Galois group µmJ

.
To ease notation, we write Dj, etc. instead of D{j}, etc. if J = {j} is a one-element
set.

Proposition 6.22. The BPS invariant is

BPS[C] =

L
−1(1− [D4a]) + 2 a ≤ b

L−1(1− [D2b+1]) + 3 a > b
.

where D4a has genus a with an µ4a-action and D2b+1 is genus b with an µ2b+1 action.

Proof. Given a resolution as above, the Denef-Loeser formula for the motivic integral
is

LdimU/2 ·
∫
U
φtr(W) = [Z]−

∑
∅6=J⊂I

(1− L)|J |−1[D◦J ],

where D◦J carries the µ̂ action induced from the µmJ
-action. For the case a ≤ b, the

explicit expression can then be read off from the diagram in 6.20: write E1 = L1 and
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E2 = L2 and let I = {1, 2, 3, 5, . . . , 2a− 1, 2a, 4a} then the formula expands to

L ·
∫
U
φtr(W) = [Z]− [D◦1]− [D◦2]

− (1− L)[D◦{1,3}]− (1− L)[D◦{2,4a}]

−
a∑
i=2

[D◦2i−1]− (1− L)
a−1∑
i=2

[D◦{2i−1,2i+1}]

− [D◦2a]− [D◦4a]− (1− L)[D◦{4a,2a}]− (1− L)[D{2a−1,4a}].

We will reduce this expression line by line. The divisor L1 appears with multiplicity
m1 = 1, so that D1 = L1 is a trivial cover and D◦1 ⊂ L1 is the complement of the
intersection point, which lies above the singularity of tr(W); similarly for L2. Because
L1 t L2 is the strict transform of Z, it is isomorphic to Z outside the singular locus,
so that

[Z]− [D◦1]− [D◦2] = ([Z]− 1)− ([L1] + [L2]− 2) + 1 = 1.

Likewise, the intersection points of L1 ∩ E3 and L2 ∩ E4a have a trivial cover, so that

−(1− L)[D◦{1,3}]− (1− L)[D◦{2,4a}] = 2L− 2.

For i = 2, . . . , a − 1, the exceptional E2i−1 ' P1 has multiplicity m2i−1 = 2i − 1 and
intersects E2i+1 in a point with multiplicity gcd(2i−1, 2i+ 1) = 1. It follows that each
cover D2i−1 → E2i−1 is connected, and therefore restricts to a regular covering

D◦2i−1 → E◦2i−1 ' Gm,

for each i = 2, . . . , a. The only connected cover is D◦2i−1 ' Gm, which means that
the map D◦2i−1 → E◦2i−1 is an equivariant isomorphism. Hence in Motµ̂(C) there is an
equality

[D◦2i−1] = [E◦2i−1] = L− 1.

It follows that these curves and their intersections contribute

−
a∑
i=2

[D◦2i−1]− (1− L)
a−1∑
i=2

[D◦{2i−1,2i+1}] = (a− 1)(1− L)− (a− 2)(1− L) = 1− L

Likewise, D2a−1 intersects D4a in a point with multiplicity gcd(2a − 1, 4a) = 1 and
contributes

−(1− L)[D{2a,4a}] = L− 1.

The curve E2a only intersects E4a in a single point, so that E◦2a ' A1, which has only
the trivial µ2a-cover D◦2a = (A1)t2a → A1 for which µ2a permutes the sheets. Hence
there is an equivariant isomorphism D◦2a ' A1×µ2a, and it follows that [D2a] = L[µ2a].
Likewise, the intersection E2a∩E4a is a point which is covered by E{2a,4a} = µ2a because
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the multiplicity is gcd(2a, 4a) = 2a. Adding these two contributions gives:

−[D◦2a]− (1− L)[D◦{2a,4a}] = −L[µ2a]− (1− L)[µ2a] = −[µ2a].

The curve E4a intersects L2 and E2a−1 in a point of multiplicity 1 and E2a in a point
of multiplicity 2a, so D4a → E4a is a connected cover with Euler characteristic

χ(D4a) = 4aχ(E◦4a) + (2 + 2a) = 4aχ(P1 − 3pt)− (2 + 2a) = 2− 2a.

Hence, D4a is a smooth projective curve of genus a with equivariant motive

[D4a] = [D◦4a] + 2 + [µ2a].

Collection the terms found above, it follows that the motivic integral is∫
U
φtr(W) = L−1 (1 + 2L− 2 + (1− L) + (L− 1)− [µ2a]− [D4a] + 2 + [µ2a])

= L−1(1− [D4a]) + 2.

The case a > b proceeds in much the same way, and yields the motivic integral

L
∫
U
φtr(W) = 1 + (b− 1)(1− L) + (b+ 2)(L− 1)− [D2b+1] + 3

= (1− [D2b+1]) + 3L,

where D2b+1 is a genus b curve with an µ2b+1 action.

To complete the calculation, we will make the Hodge structure and monodromy on the
curves D4a and D2b+1 explicit. We recall some generalities.

Suppose Cg is a smooth projective curve of genus g over C with ρ : µi ↪→ Aut(Cg) an
action of µi. The components of its integral (co-)homology

H•(Cg,Z) ' Z⊕ Z2g[1]⊕ Z[2] ' H•(Cg,Z),

carry an induced action Hi(ρ,Z) of µi. Because the action preserves effective classes, it
is trivial on H0(Cg,Z) and H2(Cg,Z), so we may concentrate on the middle cohomology.
The middle cohomology of a smooth projective curve has a pure Hodge structure

Hn(Cg,Z)⊗Z C = Hn(Cg,C) '⊕p+q=n Hp,q(Cg),

with Hp,q(Cg) ' Hq,p(Cg). The summands Hp,q(Cg) are isomorphic to Hq(Cg,Ωp
Cg

) by
the degeneration of the Hodge-to-de Rham spectral sequence, and the action of µi
restricts to each summand in the Hodge decomposition

H1(Cg,C) ' H1(Cg,OCg)⊕ H0(Cg,Ω1
Cg

),

Each summand is a g-dimensional complex representation of µi, which decomposes as
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a direct sum of irreducible representations labeled by their characters ξj. Moreover,
H1(Cg,OCg) ' H0(Cg,Ω1

Cg
) as dual representations.

Proof of Proposition 6.6. The curve D4a is a ramified cover q : D4a → P1 of degree 4a.
By Birkhoff-Grothendieck, the push-forward q∗OD4a splits as a direct sum ⊕4k

i=0 Li of
line bundles Li on P1. It follows from [Ste77, Lemma 3.14] that this decomposition
can be chosen to be invariant with respect to the monodromy action, with µ4a acting
with weight i on Li. Furthermore, the degrees of these linebundles are determined by
the multiplicities of the components that intersect E4a in the diagram of proposition
6.20. The components E4a intersects the components L2, E2a, E2a−1 of multiplicities
1, 2a, 2a− 1 each in a single point, so Steenbrink’s formula yields

Li := OP1

(
−i+

⌊
i

4a

⌋
+
⌊2a · i

4a

⌋
+
⌊

(2a− 1) · i
4a

⌋)
,

where b−c : Q → Z is the floor function. Some pleasant modular arithmetic shows
that

Li '


OP1(−1) i = 2j,

OP1(−1) i = 2j − 1, j ≤ a,

OP1(−2) i = 2j − 1, j > a.

Because the morphism q : D4a → P1 is affine, H1(D4a,OD4a) ' H1(P1, q∗OD4a) and the
Hodge decomposition contains exactly a summand ξi for each i such that Li ' OP1(−2):

H1(D4a,OD4a) = ξ2a+1 ⊕ ξ2a+3 ⊕ · · · ⊕ ξ4a−3 ⊕ ξ4a−1.

The second summand H0(D4a,Ω1
D4a

) is obtained by duality. Likewise, the curve D2b+1

is a ramified cover q : D2b+1 → P1 of degree 2b + 1 and the decomposition q∗OD2b+1 =⊕2b+1
i=0 Li can be chosen invariantly, with µ2k+1 acting on Li by weight i. Because the

curve E2b+1 intersects E2b−1 of multiplicity 2b − 1 and has a double intersection with
the curve L2, which has multiplicity 1, these line bundles are

Li := OP1

(
−i+ 2

⌊
i

2b+ 1

⌋
+
⌊

(2b− 1) · i
2b+ 1

⌋)
'

OP1(−1) i ≤ b,

OP1(−2) i > b.

Taking the first cohomology once more, one finds

H1(D2b+1,OD2b+1) = ξb+1 ⊕ ξb+2 ⊕ · · · ⊕ ξ2b−1 ⊕ ξ2b,

with H0(D2b+1,Ω1
D2b+1

) being the dual representation.



Appendix A

Blowup calculations

Here we prove propositions 6.20 and 6.21 by constructing an embedded resolution over
U ⊂ A2 of the divisor Z ⊂ U defined by

Z := {0 =W = x2y − f(y)}.

In what follows we decompose the parameter f as f(y) = yk+1 · u(y) for k ≥ 2 such
that the factor u(y) is invertible on the neighbourhood U .

We construct an embedded resolution via a sequence of blowups. Consider the blowup
π : BlA2 → A2 of the origin, which is a gluing BlA2 = A2 ∪ A2 of two affine charts,
and write

πx : A2 → A2, πx(x, y) = (xy, y), πy : A2 → A2, πy(x, y) = (x, xy),

for the restriction of π to these charts. Let N =
⌊
k
2

⌋
, then blowing up N times gives a

resolution with N + 1 charts, on which the resolution restricts to the maps

πy, πx ◦ πy, πx ◦ πx ◦ πy, . . . , πN−1
x ◦ πy, πNx .

The pullback of Z through the resolution is locally given by

(πjx ◦ πy)∗Z =
{
y2j+1x2j+3(1− xk−2−2jyk−2j · u(xy)) = 0

}
.

for j < N on the first N charts and on the remaining chart by the equation

(πNx )∗Z =
{
y2N+1(x2 − yk−2N · u(y)) = 0

}
.

Then the pullback is normal-crossing on the former N charts.

Lemma A.1. The divisor (πjx◦πy)∗Z has normal-crossing singularities when restricted
to the pre-image of U ⊂ A2.
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Proof. The pullback of Z is the sum of the following prime divisors with multiplicity

(πjx ◦ πy)∗Z = (2j + 1) · {y = 0}+ (2j + 3) · {x = 0}+ {1− xk−2−2jyk−2j · u(xy) = 0}.

Each of the prime divisors appearing in this sum is smooth on (πjx ◦ πy)−1(U), so it
suffices to check that their intersections are generated by a regular system of param-
eters. The only intersection to consider is the intersection of the axes {y = 0} and
{x = 0} in the origin. This is clearly normal-crossing because x, y is a regular system
of parameters for the equation xy = 0.

Lemma A.2. If k = 2N then (πNx )∗Z is normal-crossing on (πNx )−1(U).

Proof. For k = 2N , the pullback of Z is following sum of divisors with multiplicity

(πNx )∗Z = 2N · {y = 0}+ {x2 − u(y) = 0}.

Note that x2 − u(y) is not necessarily irreducible, but nonetheless defines a smooth
reduced curve in (πNX)−1(U). It therefore suffices to show that the intersections of this
curve with the x-axis are generated by a regular system of parameters. Let c be one
of the square roots of u(0) 6= 0, then the curve intersects the x-axis at the points (c, 0)
and (−c, 0). The defining equation of the curve can be put into the form

x2 − u(y) = x−x+ − (u(y)− c2).

where x± := x± c. Then x+ is invertible at the point (0, c) and

y, x−x+ − (u(y)− c2)

is a regular system of parameters for the equation y(x−x+ − u(y) − c2) in O(0,c). It
follows that (πNx )∗Z is normal crossing at (0, c), and similarly it is normal crossing at
(0,−c).

The proof of proposition 6.21 now follows easily from the previous two lemmas.

Proof of proposition 6.21. The condition a > b implies that y2b+1 is the lowest term in
f(y), so that the divisor Z is defined by the equation

y(x2 − y2b · u(y)),

where u(y) is invertible with a leading term that is odd. Hence, we set N = b, and
define h : X = ⋃N

j=0Xj → U as the gluing of the N + 1 charts

X0 = π−1
y (U), . . . , XN−1 = (πN−1

x ◦ πy)−1(U), XN = (πNX)(U),

as schemes over U via the maps πjx ◦ πy and πNx . Then the previous two lemmas show
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that h∗Z is a normal-crossing divisor, and it remains to show that h∗Z is the sum
of the prime divisors L1, E3, . . . , E2N+1, L2 with the stated multiplicities and
intersections. On the chart X0 the divisor h∗Z restricts to π∗yZ, which is a sum of three
prime divisors

L1 = {y = 0}, E3|X0 = {x = 0}, L2|X0 = {1− xk−2yku(xy) = 0}

with multiplicities 1, 3 and 1 respectively. The lines L1 and E3|X0 meet in the origin
and do no intersect L2|X0 . On the charts Xj for j = 1, . . . , N − 1 the divisor h∗Z
restricts to (πjx ◦ π∗yZ), which is a sum of prime divisors

E2j+1|Xj
= {y = 0}, E2j+3|Xj

= {x = 0}, L2|Xj
= {1− xk−2−2jyk−2ju(xy) = 0}

with multiplicities 2j + 1, 2j + 3 and 1 respectively, with the former two intersecting
in the origin. On the chart XN the divisor h∗Z restricts to (πNx )∗Z, which is a sum of
two prime divisors

E2N+1|XN
= {y = 0}, L2|XN

= {x2 = u(y)},

with multiplicities 2N + 1 and 1 respectively. By inspection, E3, . . . , E2N+1 form a
chain of intersecting rational curves meeting eachother in a single point. Likewise L1

meets E3 in a single point, while L2 meets E2N+1 in two points, which are the distinct
solutions of x2 = u(0).

For the defining equation in 6.20 the parameter k = 2N + 1 = 2a − 1 is odd, and
(πNx )∗Z is not normal crossing. One needs to blowup twice more.

Lemma A.3. The following divisors are normal-crossing on the pre-images of U :

(πNx ◦ πy)∗Z = { y2N+2(x2y − u(y)) = 0 }
(πN+1

x ◦ πy)∗Z = { y2N+1x4N+4(1− y · u(xy)) = 0 }
(πN+2

x )∗Z = { y4N+4x2N+2(x− u(xy)) = 0 }

Proof. In all three cases the axes {y = 0} and {x = 0} are smooth and intersect only
in the origin. By assumption the polynomial u has a constant term, which implies
the curves x2y = u(y), 1 = yu(xy), and x = u(xy) are smooth. The (πNx ◦ πy)∗Z is
therefore normal-crossing, because the intersection

{y = 0} ∩ {x2y − u(y) = 0} = ∅.

The radical of the defining equation for the second divisor is xy(1 − y · u(xy)). The
curve {1 = y · u(xy)} does not intersect the axis {y = 0} and intersects {x = 0} in the
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point p = (0, 1/u(0)). The variable y is invertible in the local ring Op, so

x, y(y − 1/u(0)),

is a regular system of parameters defining xy(1 − y · u(xy) in Op. It follows that
the second divisor is normal-crossing. The radical of the third defining equation is
yx(x − u(xy)). The curve {x = u(xy)} does not intersect the axis {x = 0} and
intersects {y = 0} in the point p = (u(0), 0). The intersection is again normal crossing,
as yx(x− u(xy)) has the regular system of parameters

y, x(x− u(xy)),

because u(0) 6= 0 implies x is invertible in Op.

The proof of proposition 6.20 now follows analogously to the proof of proposition 6.21.

Proof of proposition 6.20. The divisor Z is defined by the equation

y(x2 − y2a−1 · u(y)),

for u(y) invertible on U . Set N = a− 1 and define h : X = ⋃N+2
j=0 Xj → U as the gluing

of the N + 3 charts

X0 = π−1
y (U), . . . , XN+1 = (πN−1

x ◦ πy)−1(U), XN+2 = (πN+2
X )(U),

as schemes over U via the maps πjx ◦ πy and πN+2
x . As in the proof of 6.21 we obtain a

curve L1 of multiplicity 1 in X0 and a chain of exceptional P1’s E3, . . . , E2N+1 of mul-
tiplicities 3, . . . , 2N + 1 glued from the lines in the charts X0, . . . , XN . The remaining
terms are E4N+4, which is glued from

E4N+4|XN+1 = { x4N+4 = 0 }, E4N+4|XN+2 = { y4N+4 = 0 },

and has multiplicity 4N + 4 = 4a, the divisor E2N+2, which is glued from

E2N+2|XN
= { y4N+2 = 0 }, E2N+2|XN+2 = { x2N+2 = 0 },

and has multiplicity 2N + 2 = 2a, and the curve L2 which is given by the equation
x = u(xy) on the chart XN+2. By inspection, E4N+4 meets L2 and E2N+2 in separate
points on the chart XN+2 and meets E2N+1 on the chart XN+1. The components L2

and E2N+2 do not intersect any other divisor.
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