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Abstract 

Since the pioneering work of Ivan Pavlov nearly a century ago, the empirical 

study of associative learning through classical conditioning has continued to 

grow. However, the high volume of classical conditioning investigations has 

resulted in an equal in magnitude methodological and analytical variation, which 

can often challenge cross-study comparisons, replicability and generalisability of 

findings (Haaker et al., 2019; Lonsdorf et al., 2017). Consequently, the field of 

conditioning has begun to focus on reducing excessive flexibility in data 

practices through increasing methodological rigour, consistency, and 

transparency. So far, research has concentrated on improving methods in areas 

such as the quantification of conditioned responding, analytical strategies, 

translational research and individual differences (Bach et al., 2018; Haaker et 

al., 2019; Korn et al., 2017; Lonsdorf et al., 2019; Lonsdorf & Merz, 2017; Ney et 

al., 2018; Sjouwerman & Lonsdorf, 2019). The aim of this thesis was to provide 

an additional contribution to recent methodological efforts in the field by 

focusing on an area that has not received as much empirical attention. 

Specifically, we discuss and examine the potential utility of multi-trial 

conditioning for studying psychophysiological indices of learning. In addition, 

throughout this thesis, we aimed to reinforce the value of transparent and 

robust data practises in aiding replicability and generalisability of conditioning 

research. 

In Chapter 2, we report findings from an indirect behavioural replication of an 

established multi-trial task (i.e., Multi-CS Conditioning,  Steinberg et al., 2013), 

accompanied by a discussion about the role of contingency awareness in 

conditioning. We also provide a re-analysis of a previous Multi-CS dataset 

(Rehbein et al., 2014) to highlight the value of robust and transparent data 

visualisation in guiding analytical decisions, and to illustrate how poor 

consideration of individual differences and underlying data distributions may 

explain the inconsistency in previous research using this task. Chapter 3 reports 

a novel visual blocked conditioning paradigm that delivers a high number of 

trials through attempting to elicit associative learning in multiple successive 

blocks. We investigated the potential utility of this task to overcome some of the 

technical and design challenges (e.g., detecting deep source activity, time-
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frequency analysis) present in magnetoencephalography (MEG) research, 

studying the cortical and subcortical oscillatory dynamics of learning and 

extinction. The findings from this study suggested that the task does not reliably 

elicit conditioning in any of the outcome measures that we considered (MEG, 

pupil size, valence, and arousal ratings). Nevertheless, the reported results 

identified several design modifications that can aid future paradigm 

development. These were related to aspects such as trial duration, the type of 

CSs employed, and maintaining attention and contingency awareness. Chapter 4 

reports findings from an auditory blocked conditioning task, modified based on 

the results from Chapter 3. The task was examined in the context of pupillary 

and subjective behavioural indices of conditioning, with a discussion of its 

application in future MEG designs. In addition, the study considers the potential 

of this multi-trial paradigm to offer better generalisability of findings when used 

in combination with robust analytical strategies (i.e., data-driven time window 

selection and design-appropriate mixed modelling).  Finally, Chapter 5 discusses 

the implications of the findings reported in this thesis for future multi-trial 

conditioning research. 
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1 Chapter 1 – Introduction 

1.1 Overview of associative learning 

The ability to learn about predictive relationships between stimuli and 

motivationally significant outcomes (i.e., associative learning) and to use cues to 

anticipate future events, allows organisms to continuously adapt within their 

dynamic environment (Esber & Haselgrove, 2011; Le Pelley, 2004). This form of 

adaptive responding is shared among many animal species, from invertebrates to 

humans (Hawkins & Byrne, 2015; Morand-Ferron, 2017). For example, worms 

learn to avoid surfaces based on odour associations that predict the presence of 

pathogenic bacteria (Ardiel & Rankin, 2010). A lizard would learn to avoid toxic 

prey after ingesting a non-toxic amount of it (Morand-Ferron, 2017), while a 

heron may use sudden ripples in the water as cues for the potential location of 

prey (Esber & Haselgrove, 2011).  

 

In humans, from an early age, emotions such as fear play an important role in 

supporting identification of motivationally significant threat-related events such 

as fearing separation from the primary caregiver in early childhood, or more 

socially relevant and abstract threats such as humiliation in adolescence 

(Shechner et al., 2014). Experiencing fear enables individuals to adaptively 

respond to and manage threat by forming and using associative memories of the 

relationship between threats and the cues that predict them.  For instance, 

prior knowledge of an upcoming threat such as a radio announcement of a traffic 

accident blocking the road can allow a driver to remain in control of their 

vehicle (Goodman et al., 2018). However, fear can become maladaptive when 

physiological and behavioural responses to potential threat are exaggerated or 

when fear cannot be effectively regulated. This can cause a persisting fear 

response to stimuli that no longer signal danger or to an overgeneralisation to 

non-threatening situations (Dunsmoor & Paz, 2015). Such excessive or 

exaggerated fear reactions can have a detrimental impact on an individual’s 

wellbeing and lead to the development of anxiety disorders. Given its crucial 

role in both adaptive and maladaptive functioning, it is unsurprising that 

associative learning has been a popular topic of scientific investigation for more 
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than a century, facilitating our understanding of how acquisition, expression and 

regulation of fear are acquired and of the treatment of anxiety disorders. 

 

1.2 Historical foundations of associative learning 
research 

The experimental study of learning began with the first associative learning 

theory proposed by Thorndike (1898), that was founded based on the idea that 

behavioural change occurs as a consequence of experience (Klein, 2019). In his 

work, Thorndike demonstrated that when a cat is placed in a puzzle box with 

food available outside, the cat gradually learns to engage in the behaviour that 

triggers the release mechanism of the box, allowing it to access the reward. The 

cat also learns to escape the box faster in subsequent trials, while other 

behaviours such as clawing and meowing that do not facilitate the release 

mechanism tend to decrease in frequency over time.  Based on these 

observations, Thorndike suggested that learning occurs as a result of the 

formation of associations between a stimulus (e.g., the box) and a response 

(e.g., pressing the release mechanism). These stimulus-response associations 

were proposed to occur through the experience of trial and error and to be 

strengthened through the delivery of a reward (see Klein, 2019 for a detailed 

discussion).  

 

Later work shifted attention away from stimulus-response associations and 

focused on the role of stimulus-stimulus contingencies in explaining associative 

learning processes. The influential research of Ivan Pavlov laid the solid 

theoretical and empirical foundations in associative learning that are still 

relevant to the present day. At the root of Pavlov’s theory was his research in 

animal digestion and the discovery of reflexive responses, beginning in 1898. A 

detailed account of his work, however, was not widely available until 1927 when 

an English translation of his book (Pavlov, 1927) detailing the previous twenty-

five years of his research was published (Boakes, 2003). In his work, Pavlov 

suggested that unconditioned reflexes are innate in both humans and animals 

and occur when an unconditioned stimulus (UCS) such as food, triggers an 

autonomic unconditioned response (UCR) such as salivation. He also suggested 

that reflexive responses can be learned through conditioning involving stimulus-
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stimulus associations (i.e., a conditioned reflex). He demonstrated this type of 

learning by measuring saliva from a dog’s salivary glands while presenting the 

animal with an initially neutral stimulus – the sound of a metronome. The sound 

served as a conditioned stimulus (CS) and was paired with meat powder acting 

as the UCS. While initially, the dog exhibited only an UCR by salivating in 

response to the UCS, the repeated CS-UCS pairings began to elicit a conditioned 

response (CR, i.e., salivation) to the CS which increased in magnitude over time 

(Klein, 2019). Another crucial discovery derived from Pavlov’s comprehensive 

investigations of associative learning was that CRs acquired during conditioning 

can be weakened through the process of extinction learning. Pavlov suggested 

that repeatedly presenting the CS without the UCS following conditioning 

creates a new, inhibitory CS-UCS association that overrides the earlier 

associative memory and subsequently diminishes the magnitude of the CR 

(Wasserman & Miller, 1997). 

 

These discoveries had a major impact on later contributions to learning research 

and the rise of behaviorism as pioneered by John Watson. Shifting the focus 

towards human research, he suggested that both adaptive and maladaptive 

behaviour could be learned (Klein, 2019). The infamous ‘Little Albert’ 

experiment provided empirical evidence for this by demonstrating that 

emotional responses such as fear, are also susceptible to conditioning  (Watson & 

Rayner, 1920). In their study, a 9-month-old infant who initially experienced no 

fear of rats, was exposed to a white rat (CS). The child was presented with the 

strike of a hammer against a steel bar (UCS) every time they reached for the rat. 

Following several CS-UCS parings, the child began to exhibit fear in response to 

the rat, evidenced by crying and crawling away. This fear was also found to 

generalise to other similar objects (Watson & Rayner, 1920). The work of Watson 

and Rayner was followed by the ‘Little Peter’ experiment by Mary Cover Jones 

demonstrating the elimination of conditioned fear through counterconditioning. 

In this study (Jones, 1924), a 3-year-old boy with a fear of rabbits was 

conditioned to associate the animal with a pleasurable activity. The rabbit (CS) 

was moved closer in proximity to Peter while he was eating candy (UCS), until 

the child was able to interact with the rabbit by holding and touching it. Her 

discovery laid the foundations of our understanding of the aetiology of anxiety 
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disorders and aided the development of behavioural interventions for their 

treatment, such as systematic desensitisation (Fullana et al., 2020). 

In later years, behaviourism focused on another form of learning (i.e., operant 

conditioning), which attempted to account for the impact of external stimuli on 

an organism’s behaviour (Akpan, 2020). The theory of operant learning as 

defined by Skinner, was inspired by Thorndike’s early work but incorporated the 

crucial role of reinforcement in determining conscious behaviour (Ruan & Wu, 

2013). Skinner showed that the consequences of one’s actions drive changes in 

behaviour (Zalta & Foa, 2012). For example, he demonstrated that a certain 

behaviour is more likely to occur if it causes a reduction in an unpleasant 

experience (i.e., negative reinforcement), (Zalta & Foa, 2012) or results in the 

delivery of a positive outcome (i.e., positive reinforcement), (Murphy & Lupfer, 

2014). These principles of reinforcement have since been used to explain human 

behaviour and learning in a wide range of contexts, such as language acquisition, 

addiction, as well as the maintenance of anxiety (Akpan, 2020; Zalta & Foa, 

2012).  

 

1.3 Clinical applications of conditioning principles in the 
20th century 

Until the 1970s, behaviourism was the predominant approach contextualising 

pathological fear. Initially, based on early research (Jones, 1924; Watson & 

Rayner, 1920), anxiety was understood as the consequence of simple classical 

conditioning involving a traumatic experience (Lissek et al., 2005; Mineka & 

Zinbarg, 2006; Zalta & Foa, 2012). In 1947, the conceptualisation of anxiety was 

refined by Mowrer’s two-factor theory to incorporate the influence of both 

classical and operant conditioning in the development and maintenance of 

anxiety (Mowrer, 1947). Mowrer suggested that in the context of fear, avoidance 

of the feared stimulus serves as a negative reinforcer by reducing physiological 

arousal. He further proposed that anxiety initially develops through classical 

conditioning (first factor), but it is subsequently maintained by operant 

conditioning (second factor) through avoidance of the feared situation. 

Specifically, avoidance was suggested to disrupt the development of extinction 

by preventing an individual from forming a safety associative memory that the 

CS does not signal danger (Krypotos, 2015). This discovery was fundamental for 



25 
 
the development of exposure-based interventions, by postulating that the 

treatment of anxiety should not only focus on extinction of the feared response 

through repeatedly exposing a patient to the feared event but also, on 

eliminating avoidance through sustained exposure until anxiety has subsided 

(Krypotos, 2015; Zalta & Foa, 2012).  

 

Later work by Wolpe (1968), focused on treatment strategies based on the 

principles of counterconditioning demonstrated by Jones (1924). According to his 

theory, anxiety could be reduced through the process of reciprocal inhibition, in 

which anxiety towards the feared stimulus (e.g., a rabbit) can be diminished 

through pairing the stimulus with a response that is incompatible with fear (e.g., 

eating candy). Extending Jones’ work, Wolpe initially tested this hypothesis in 

cats who were conditioned to fear their cage through associating it with an 

electric shock. Later, their fear response was reduced through 

counterconditioning by providing the cats with food while they were in their 

cages. Based on these findings, Wolpe began implementing systematic 

desensitisation treatment for anxiety in humans (see Vinograd & Craske, 2020 for 

a discussion). The procedure involved patients alternating between completing a 

task that is physiologically incompatible with fear (i.e., deep muscle relaxation), 

and a gradual exposure to feared stimuli through imagery, beginning with stimuli 

that only induce mild fear (Vinograd & Craske, 2020). While this intervention 

was found to be successful in reducing anxiety at least for specific phobias, the 

clinical interest in it declined as a result of further work showing superior 

effectiveness of real exposure over mental imagery and in the absence of 

relaxation techniques (Zalta & Foa, 2012). 

 

In the 1970s, criticisms of the behavioural approach to psychopathology emerged 

as it became apparent that conditioning alone could not account for factors such 

as individual differences. For instance, behavioural theories could not explain 

why anxiety disorders are not always triggered by conditioning or why traumatic 

conditioning does not always lead to the development of anxiety (Hofmann & 

Hay, 2018). The simple conditioning approach also failed to consider the impact 

of mental processes. With the rise of the “cognitive revolution”, investigations 

began into the contributing role of higher order factors such as memory and 

attention in the development of psychopathology (Kindt, 2014). The clinical 
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interest in behaviourism diminished with the shift towards cognitive theories 

explaining psychopathology as driven by disorder-specific cognitive biases (e.g., 

misinterpretation of physical sensations in panic disorder), (Hofmann, 2008).  

Nonetheless, exposure is still considered one of the most effective and critical 

aspects in the treatment of anxiety, with contemporary interventions combining 

both behavioural and cognitive approaches in the treatment of pathological fear 

(Kindt, 2014) .  

 

1.4 The shift from behaviourism to neuroscience and 
psychophysiology 

While the clinical interest in Pavlovian conditioning declined in the late 20th 

century, classical conditioning research continued to grow with a focus on the 

neurobiological mechanisms driving associative learning processes. Initial 

investigations aimed at establishing the biological basis of conditioning in 

animals (LeDoux, 2014), with early work focusing on understanding the role of 

stress hormones and a range of neurotransmitters on extinction processes (Milad 

& Quirk, 2012). Animal lesion research at the end of the 20th century began to 

provide insight into the functional role of the amygdala in the acquisition and 

expression of fear as well as into its anatomical connections with other brain 

regions (see Milad & Quirk, 2012 for a review). With technological advances in 

neuroimaging techniques (i.e., functional magnetic resonance imaging, fMRI), 

the interest in mapping the neural circuits of learning and extinction in humans 

began to grow substantially. (Fullana et al., 2020). The first neuroimaging 

evidence of amygdala involvement during human threat conditioning and 

extinction was provided by LaBar et al. (1998), corroborating neuropsychological 

findings showing that amygdala damage impairs the acquisition of conditioned 

responding in humans (e.g., Bechara et al., 1995).  Using fMRI, they observed 

increased amygdala activity in response to stimuli paired (CS+) with an electric 

shock compared to unpaired stimuli (CS-). These findings provided a major 

contribution to associative learning research, confirming that the crucial role of 

the amygdala in threat learning is conserved across species (LaBar et al., 1998).  

 

During the late 1980s, it was suggested that translating animal findings to 

studies in humans may also provide a means for gaining an insight into 
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psychopathology. As such, classical conditioning became a popular animal model 

of anxiety disorders, with findings from animal studies informing human research 

in clinical populations (Milad & Quirk, 2012). These studies have demonstrated 

that persistently high fear responses during extinction in individuals who have 

experienced trauma, may be caused by hyper- activation in regions involved in 

the encoding and expression of threat (e.g., amygdala and the anterior cingulate 

cortex), as well as hypo-activation in regulatory regions such as the 

ventromedial pre-frontal cortex (vmPFC), (Milad et al., 2009; Shin et al., 1999). 

 

These advances in animal and human conditioning research have allowed for the 

establishment of a comprehensive map of inter-related brain systems that 

detect and respond to threat-related information, often referred to as the ‘fear 

circuit’ (LeDoux, 2000; LeDoux & Pine, 2016). Today, it is widely agreed that 

this network of regions is translatable and preserved across mammals and 

involves the amygdala, hippocampus and the medial pre-frontal cortex (Fullana 

et al., 2020). For example, recent evidence from rodents has shown that 

information about the CS and UCS is initially encoded by the lateral amygdala 

(LA), (McCullough et al., 2016; Tovote et al., 2015) while behavioural and 

physiological fear reactions are triggered by the central amygdala (CeA), 

(LeDoux & Pine, 2016; McCullough et al., 2016). These defensive responses are 

mediated by cortical areas including the medial pre-frontal cortex (mPFC). In 

particular, the pre-limbic cortex (PL), part of the mPFC contains bi-directional 

projections to and from the amygdala, and is involved in fear expression, while 

the infra-limbic cortex (IL) projects to and downregulates basolateral amygdala 

(BLA) activity during the extinction of fear responses (McCullough et al., 2016; 

Tovote et al., 2015). The hippocampus (HPC) also plays an important role in the 

fear network as it is responsible for encoding of contextual and valence-specific 

information associated with the memory of the event (Lesting et al., 2011; 

McCullough et al., 2016).   

 

Human fMRI research has established a similar network of circuits implicated in 

associative learning and extinction processes (Fullana et al., 2016, 2018; 

Sehlmeyer et al., 2009). In meta-analyses of fear conditioning and extinction 

studies, the anterior cingulate cortex (ACC), corresponding to the PL in rodents, 

and the anterior insula have been identified as the most reliably activated 
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regions during threat processing and extinction (Fullana et al., 2016, 2018). 

When comparing responses to the CS+ relative to CS- during learning, a 

consistent deactivation of the vmPFC (corresponding to the IL in rodents), 

lateral orbitofrontal cortex (OFC) and the HPC is also observed.  

 

Cross-species investigations, however, have not always yielded consistent 

findings. For instance, the functional role of the vmPFC in humans is still 

debated. The vmPFC has traditionally been seen as a region involved in the 

down-regulation of negative affect in a range of experimental situations 

including extinction learning (Delgado et al., 2008; Diekhof et al., 2011), that 

has been corroborated in animal research and human studies of emotion 

regulation (Diekhof et al., 2011; Gonzalez & Fanselow, 2020). However, there is 

accumulating evidence suggesting that activity in this region in humans may also 

be related to the processing of safety signals (CS- trials), (Fullana et al., 2016). 

Direct evidence for the role of the vmPFC in safety processing has been provided 

by Harrison et al. (2017), who demonstrated that vmPFC activity is positively 

correlated with CS- valence ratings, and activation for CS- trials persists even 

following adjustments for baseline activity, typically present during resting state 

imaging. Such functional distinction in the context of extinction paradigms may 

be linked to cross-species procedural differences whereby human conditioning 

studies heavily rely on the use of a control condition (i.e., CS-) with strong 

safety properties. This can also explain the difficulties in reliably detecting 

vmPFC activity in humans, as contrasting a safety stimulus (CS-) with a 

previously threatening stimulus (CS+) that quickly adopts a safety property can 

be analytically challenging. Specifically, computing CS+ > CS- contrasts during 

extinction learning creates a situation in which comparisons are made between 

two stimuli that may not exhibit substantial differences to allow for the 

detection of robust vmPFC involvement in humans (Fullana et al., 2018).  

 

In addition, while animal studies have consistently demonstrated the crucial role 

of the amygdala during learning and extinction, human fMRI research has faced 

challenges in reliably detecting amygdala sources elicited from conditioning. 

Even though an early human meta-analysis revealed some evidence for detecting 

amygdala activity during learning (Mechias et al., 2010), later meta-analyses by 

Fullana et al. (2016, 2018) failed to detect a robust and consistent presence of 
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amygdala activity during either threat learning or extinction. The poor 

translation in the context of amygdala involvement can be linked to the 

difficulty in localising source activity from the amygdala, especially from a task 

that is shown to trigger responses only in a small number of neurons (Fullana et 

al. 2020). For example, across the fMRI literature, both increases in activity in 

response to the CS+ and the CS- have been reported (Fullana et al., 2018). This 

pattern may not be entirely inconsistent with rodent data, as studies have shown 

that during threat learning, a similar number of neurons exhibit excitatory and 

inhibitory responses to the CS+ (Ciocchi et al., 2010). During extinction, 

different cell populations of the LA have also been shown to exhibit 

simultaneous increases and decreases in activity (Repa et al., 2001). Therefore, 

it is possible that different human fMRI studies tap onto activity from distinct 

neuronal populations and that the spatial resolution of fMRI may be insufficient 

to detect such fine-grained patterns. Finally, fMRI studies often rely on 

detecting differences using time-invariant CS+> CS- contrasts, by averaging 

activity over the trial duration. This approach prevents examinations of time-

dependent neural differences in activity, that are likely to be present in the 

amygdala (Sehlmeyer et al., 2009). It is therefore possible that neural 

differences between CS+ and CS- are too subtle and rapidly extinguishing to be 

reliably and consistently detected with a method with very low temporal 

resolution such as fMRI (Lin et al., 2013).   

 

Recent years have seen a growing interest in understanding the temporal 

dynamics of neural indices of learning, using electro- and 

magnetoencephalography (E/MEG) (see Miskovic & Keil, 2012; Trenado et al., 

2018 for reviews). Yet, due to the inherent technical limitations of these 

measures (which restrict inferences primarily to the cortical surface) the focus 

of research has hitherto been predominantly on gaining insight into how 

conditioning is reflected in visual and auditory systems (Lonsdorf et al., 2017). In 

the past several years, however, efforts have been made to optimise these 

techniques (see Chapter 3) to allow inferences beyond the cortical surfaces, 

including structures deeper in the brain such as the amygdala (Attal et al., 2007; 

Balderston et al., 2013; Quraan et al., 2011a; Tzovara et al., 2019). A more 

detailed review of the E/MEG literature in learning and extinction will be 

provided in Chapter 3. 
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Another large body of research has focused on understanding the complex 

interplay between neural and autonomic activity and their relationship with 

behavioural, cognitive and affective processes. Consequently, a range of 

psychophysiological techniques assessing brain and autonomic nervous system 

(ANS) activity have been utilised in the study of classical conditioning (Gaffey & 

Wirth, 2014). Electrodermal activity (EDA) was the first measure used to index 

conditioning and to the present day, EDA measures such as the skin conductance 

response (SCR) have remained the most widely employed techniques (Lonsdorf 

et al., 2017). The startle eyeblink response derived from electromyography 

(EMG) and elicited through sudden sensory events, has been considered as the 

most reliable learning index in humans, and as such has also received a lot of 

empirical attention (Lonsdorf et al., 2017). Less commonly used physiological 

methods include pupillometry and heart rate changes, although pupil size has 

recently been employed more commonly and often in combination with SCR 

indices (Jentsch et al., 2020; Leuchs et al., 2019). An overview of the literature 

in SCR and pupil size as indices of learning and extinction will be discussed in 

Chapter 4. 

 

Finally, since for ethical reasons contemporary conditioning paradigms are 

unlikely to elicit extreme behavioural responses, such as escape, behavioural 

measures of conditioning are rarely employed (Lonsdorf et al., 2017). Instead, 

subjective measures assessing individuals’ affective and cognitive states are 

more commonly used, including measures of valence and arousal, and reports of 

CS-UCS expectancy and contingency. Since different outcome measures are 

shown to tap onto different aspects of learning mechanisms (Leuchs et al., 

2019), simultaneous recordings of multiple behavioural and psychophysiological 

outcome measures are beginning to be employed more frequently (Lonsdorf et 

al., 2017). 
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1.5 Variations in contemporary classical conditioning 
protocols 

 

There is an abundance of classical conditioning protocols that have been used 

across the literature to study associative learning processes. These differ in 

terms of the type of stimuli that are being employed and procedurally in terms 

of reinforcement rate, timing, trial number and many other factors, some of 

which will be briefly reviewed below.  

 

1.5.1 Type of stimuli 

Various stimulus types have been used as CSs in the associative learning 

literature. These are often neutral, although emotional stimuli are occasionally 

used (Burkhouse et al., 2019; Pischek-Simpson et al., 2009; Rowles et al., 2012). 

Detecting a CR using emotional stimuli (e.g., fearful faces), however, can be 

problematic since they inherently elicit affective responses even prior to 

conditioning, and can mask conditioned responses (Lonsdorf et al., 2017). Across 

the literature, visual CSs are the most commonly employed including a wide 

range of categories such as gratings, geometric shapes, coloured lights, abstract 

images, faces, and animals (Sehlmeyer et al., 2009). When auditory stimuli are 

used, these typically involve tones or natural sounds (Bröckelmann et al., 2011; 

Fullana et al., 2016; Sehlmeyer et al., 2009). Although less common, olfactory, 

tactile, and taste CSs have been reported (Lonsdorf et al., 2017). In terms of 

UCSs, the administration of a painful stimulus such as an electric shock is the 

most commonly employed (Lonsdorf et al., 2017), however, for ethical reasons 

this is not always suitable for use in vulnerable populations such as clinical 

groups and children. Consequently, other unpleasant stimuli have been utilised. 

Most frequently, these have been auditory stimuli such as white noise and human 

screams (Glenn et al., 2012; Sperl, Panitz, & Hermann, 2016), but other highly 

arousing sounds have been used as well (Junghöfer et al., 2015b). Other stimuli 

such as air-puffs, olfactory and affective visual stimuli have also been reported 

(Lonsdorf et al., 2017; Steinberg et al., 2013). 
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1.5.2 Cued conditioning 

Early conditioning studies (Jones, 1924; Watson & Rayner, 1920; Wolpe, 1968) 

typically used one CS (e.g. a rat,  cage, or rabbit) that was paired with an UCS 

(e.g. loud noise, electric shock, or candy). More recently, such single-cue 

protocols have increasingly been replaced with differential-cue protocols, 

particularly for human studies, because the latter provide better statistical 

power and control for the presence of processes unrelated to associative 

learning (Lonsdorf et al., 2017). In these protocols, one neutral stimulus (CS+) is 

paired with the UCS while another stimulus (CS-) remains unpaired with CRs 

representing the difference between responses to the CS+ compared to the CS-.  

Multiple-cue procedures (Junghöfer et al., 2015b; Rehbein et al., 2014; e.g. 

Steinberg et al., 2013) involving multiple different CS+ and CS- items have also 

been used, although not as commonly as traditional differential-cue tasks. Since 

differentiating between a large number of stimuli is cognitively demanding in 

nature, these tasks have been employed to study neural activity in higher-order 

brain regions such as the pre-frontal cortex (Rehbein et al., 2014). The cognitive 

demand of such procedures, however, creates a situation in which awareness of 

the CS-UCS contingency may be difficult to establish, which may affect the 

development of a CR (Lonsdorf et al., 2017), (see Chapter 2 for a detailed 

discussion of Multi-CS conditioning).   

 

In addition to variations in the number of CSs, procedures differ in relation to 

the timing between the presentation of the CS+ and the subsequent occurrence 

of the UCS. Specifically, in delay conditioning tasks the CS+ overlaps with or 

terminates with the onset of the UCS, while during trace conditioning a time 

interval in the range of 0.5 – 10 s separates the CS+ from the UCS, which is 

suggested to recruit working memory processes to a greater extent (Sehlmeyer 

et al., 2009). Furthermore, in both procedures, the UCS reinforcement rate 

(i.e., the probability of UCS occurrence) can be varied whereby in partial 

reinforcement protocols the CS+ is paired with the UCS only in portion of the 

trials. In 100% reinforcement procedures, the CS+ is always paired with the UCS. 

It is suggested that partial reinforcement produces a weaker CR during 

acquisition which takes longer to extinguish during extinction training (Lonsdorf 

et al., 2017). However, this procedure has its benefits as it can prevent UCS 
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habituation and eliminate any potential confounding influence of the UCS by 

allowing for the measurement of CS+ unpaired responses (Lonsdorf et al., 2017). 

Conditioning tasks can also be preceded by a habituation phase in which the CSs 

are presented without the UCS. Using a familiarisation phase can be useful for 

establishing a baseline response to each stimulus that can later be used to 

account for potential baseline differences between conditions, while enabling 

participants to become familiar with the general task procedures (Lonsdorf et 

al., 2017). 

 

1.5.3 Context conditioning 

In contrast to cued protocols, in context conditioning the UCS is not predicted 

by a discrete cue but rather by the environment in which conditioning takes 

place (Marschner et al., 2008), with resulting CRs occurring in a more sustained 

fashion compared to cued CRs (Kroes et al., 2017). It has therefore been 

suggested that context conditioning models sustained states of anxiety to 

uncued threats, typical for generalised anxiety disorders (Grillon et al., 2006). In 

animal research the context is usually the conditioning chamber, while in 

humans, different details in the experimental task environment are modified 

(i.e., usually a background image or movies). For example, these may include 

presenting different scenes as contextual CSs (e.g. a bedroom and living room), 

one of which is paired with an UCS (Kroes et al., 2017). Recent technological 

advances have also allowed for utilizing virtual reality in context conditioning 

studies (Kroes et al., 2017). The distinction between context and cues, however, 

can sometimes be unclear as often, details within a context can serve as cues in 

which cases the context might serve as an occasion setter, modulating the 

conditioning rather than eliciting a CR alone (Kroes et al., 2017; Lonsdorf et al., 

2017). 

 

1.5.4 Generalisation 

In addition to assessing how individuals acquire CRs during threat acquisition, 

the past decade has seen growing interest in gaining insights into how an 

acquired threat or fear towards one stimulus generalises to other similar stimuli. 

When threat generalisation occurs, the effects elicited by threat learning (e.g., 
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fear) extend to other similar events that individuals associate with the initial 

threat experience (Dunsmoor et al., 2009). This process is adaptive in nature as 

it allows individuals to recognise and adequately respond to potential threat of a 

novel stimulus through prior experience (Dunsmoor et al., 2009). Threat 

generalisation, however, can become maladaptive when overgeneralisation to 

non-threatening stimuli elicits a fear response. This overgeneralisation process 

has been suggested to be a crucial aspect underlying anxiety disorders (Dymond 

et al., 2015) and can be linked to perceptual similarities such as general physical 

properties (e.g., all dogs), to specific features that are perceived as threatening 

(e.g., sharp teeth), or to conceptual ones (e.g., a fear of all stimuli or situations 

that may be perceived as potentially life-threatening), (Bennett et al., 2015; 

Dymond et al., 2015). Experimentally, threat generalisation protocols based on 

perceptual similarities are the most commonly employed as these are easily 

quantifiable (Dunsmoor & Paz, 2015). In these tasks, following conditioning, 

responses to a series of generalisation stimuli (GSs) resembling the CS are 

measured. This form of generalisation has been tested using a range of stimuli 

varying in colour, shape or size (Dunsmoor & Paz, 2015). Conceptual forms of 

generalisation include, for example, using words as CSs and their synonyms as 

GSs, with semantically related stimuli eliciting a threat generalisation response 

similar to that elicited by the CS (Boyle et al., 2016). 

 

1.5.5 Extinction and return of fear 

During extinction training, the CSs are presented again without being paired with 

the UCS, allowing for a new memory trace to form which signals the newly 

acquired safety of the CS+.  In recent years, immediate extinction following 

acquisition within the same experimental session is the most frequently 

employed procedure in studies on humans (Lonsdorf et al., 2017). Delayed 

extinction, in contrast is more common in the animal literature whereby 

extinction training is delivered at a later point in time, usually 24 hours after 

conditioning (Lonsdorf et al., 2017). A recent review of the animal and human 

literature suggested that while successfully reducing the CR, immediate 

extinction often fails to secure long-term retention, causing spontaneous CR 

recovery within 24 hours of extinction training (Maren, 2014). Maren (2014) 

suggested that these extinction deficits occur since brain systems involved in the 
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acquisition of threat are still active immediately after conditioning and 

therefore, inhibit activity in extinction-related regions. This observation may 

suggest that immediate trauma interventions could be ineffective and that 

longer consolidation periods may be required for maintaining long-term 

extinction (Maren, 2014). Yet, immediate extinction procedures can still be 

informative for immediate treatment intervention research and can offer 

insights into the effects of consolidation interruption (Lonsdorf et al., 2017). 

Furthermore, such procedures can provide time and cost-effective means for 

studying the learning processes underlying extinction development and for 

developing new paradigms.  

The return of fear is experimentally manipulated in investigations attempting to 

model clinical relapse (Lonsdorf et al., 2017), which is a common problem in the 

treatment of anxiety (de Jong et al., 2019). Similar to the study of threat 

acquisition, a wide range of protocols are available for this purpose. 

Spontaneous recovery is typically studied in the absence of any experimental 

manipulations by re-exposing participants to the CSs at least 24 hours following 

extinction training (Lonsdorf et al., 2017). The return of fear can also be elicited 

through reinstatement protocols in which participants are re-exposed to the UCS 

or to a non-extinguished CS (Haaker et al., 2014; Halladay et al., 2012). From a 

clinical perspective these procedures can offer insights into the processes that 

drive aggravation of symptomatology following re-exposure to a traumatic event 

(Norrholm et al., 2006). Finally, fear renewal protocols provide contextual 

manipulations. For example, a CR acquired and extinguished in context A can be 

renewed in a new context B, or a CR elicited in context A can be extinguished in 

context B, but subsequently renewed in context A (Lonsdorf et al., 2017). 

 

1.5.6 Awareness  

Standard classical conditioning tasks rely on eliciting a CR through establishing a 

contingency awareness of the relationship between the CSs and the UCS. A 

perpetuating debate across the conditioning literature is whether contingency 

awareness is a necessary component in conditioning, and whether and under 

what conditions associative learning can occur in the absence of awareness (see 

Mertens & Engelhard, 2020 for a review and Chapter 2 for more details). 

Consequently, a number of tasks have been designed to determine the role of 
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awareness in conditioning. These frequently focus on diverting attention away 

from the contingency by implementing a secondary task that is cognitively 

demanding, such as requiring participants to discriminate between a series of 

tones (Dawson et al., 2007) or numbers (Tabbert et al., 2011) . Other procedures 

that do not require the implementation and potential confounding influence of a 

secondary task involve manipulations in the discriminability of CSs (Schultz & 

Helmstetter, 2010). In addition, subliminal conditioning is commonly 

implemented, which typically involves the presentation of CSs below the 

perceptual threshold using masking procedures (Balderston et al., 2014b; Raes & 

Raedt, 2011). Subsequently, a range of tasks can be utilised to assess the extent 

to which awareness has been established including CS discrimination tasks, 

online expectancy ratings and post-experimental questionnaires. However, the 

accuracy and sensitivity of some of these measures have been heavily criticised 

due to issues such as low power as a result of a small number of trials and 

prolonged delays between conditioning and the assessment of awareness. 

(Mertens & Engelhard, 2020).  

 

1.6 The current state of the art  

Research interest in classical conditioning has continued to grow over time. To 

date, it is fair to say that the paradigm has become one of the most common 

approaches for studying the underlying mechanisms of associative learning; for 

instance, a Google Scholar search for the term ‘fear conditioning’ reveals over 

15,000 results for the year 2020 alone. Areas of investigation involve both human 

and animal studies examining a wide range of topics including, but not limited 

to, development, psychopathology, pharmacology, neurobiology, and 

psychophysiology.  This dramatic increase in classical conditioning studies has 

also resulted in a great level of design and methodological variation (Lonsdorf et 

al., 2017), some of which was reviewed in the previous section. Furthermore, 

differences in methodology are often accompanied by equally varied analytical 

strategies. This high degree of methodological and analytical heterogeneity 

creates difficulty in comparing findings across studies in both human (Lonsdorf 

et al., 2017) and cross-species research (Haaker et al., 2019).  
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With the rise in awareness of the replicability crisis in psychology (Aarts et al., 

2015), a considerable amount of attention has been given to increasing 

reproducibility of psychological research through improving transparency and 

research practice. In the context of conditioning research, this inspired the 

formation of a multi-disciplinary research group (Research Network for the 

European Interdisciplinary Study of Fear and Extinction Learning as well as the 

Return of Fear, i.e., EIFEL-ROF) which has been making substantial efforts to 

improve the robustness of methods for studying fear and anxiety through the 

provision of methodological guidelines, reviews, meta-analyses and cross-

laboratory replications (European Meeting of Human Fear Conditioning, n.d.). 

One of the first papers (Lonsdorf et al., 2017) derived from this collaboration 

focused on providing a detailed review and a set of guidelines for novices for the 

design and statistical analysis of classical conditioning experiments, along with 

an extensive review of potential outcome measures for indexing conditioning 

including behavioural, psychophysiological and neural read-outs. Later work 

focused on improving methodology in relation to issues such as individual 

differences, exclusion criteria, SCR quantification, and translational research 

(Haaker et al., 2019; Lonsdorf et al., 2019; Lonsdorf & Merz, 2017; Sjouwerman 

& Lonsdorf, 2019). Outside of this research collaboration, there has been work 

focusing on improving analytical tools in classical conditioning research (Bach et 

al., 2015; Bach & Friston, 2013; Korn et al., 2017; Ney et al., 2018). Each of 

these issues will be briefly discussed below.  

 

1.6.1 Individual differences 

Individual differences in anxiety, which are also present when modelling threat 

responding experimentally, constitute a prominent topic in clinical practice and 

conditioning research. Despite the enormous efforts to gain insights into the 

development and maintenance of anxiety disorders in the previous century, 

there are still significant gaps in our understanding of why exposure to a 

traumatic event does not always lead to the development of anxiety and why 

the effectiveness of interventions varies across individuals. In the context of 

clinical models of anxiety such as classical conditioning, a similar pattern is 

observed where, even when identical procedures are employed, individual 

differences in the magnitude of conditioned responding are common (Lonsdorf & 
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Merz, 2017). To contextualise this issue, Lonsdorf and Merz (2017) provided a 

detailed review of the role of biological, genetic, psychological, procedural and 

analytical variation that may contribute to the likelihood of observing individual 

differences in threat learning (Lonsdorf & Merz, 2017).  

 

In terms of methodology, Lonsdorf and Merz (2017) suggested that a special 

consideration should be paid in relation to factors that can mediate the 

manifestation of individual differences such as the strength of the experimental 

manipulation, baseline response differences across populations, sample 

characteristics and exclusion criteria. In addition, they argued that since 

different read-outs my tap onto distinct aspects of learning, capturing response 

variability may be facilitated by indexing conditioning using multiple outcome 

measures. Furthermore, the authors encouraged the use of adequate statistical 

tools suitable for inferences about individual differences such as ensuring direct 

between-group comparisons, including potential covariates in the analyses, 

avoiding artificial dichotomisation of variables through procedures such as 

median-splits, and being aware of the risks of selection bias through arbitrary 

data exclusion. 

 

1.6.2 Exclusion criteria  

More recently, Lonsdorf et al. (2019)  provided an empirical illustration of the 

major  impact that data exclusion practices and researcher degrees of freedom 

have on the inferences and conclusions that are drawn from conditioning data. 

Since it is believed that a considerably large and robust CR is a prerequisite for 

studying learning and extinction processes, data exclusion of participants who 

have failed to develop a CR or were non-responsive to the experimental stimuli 

(i.e., non-learners and non-responders respectively) is common (Lonsdorf et al., 

2019). These practices, however, are often arbitrary and highly variable across 

the literature. Specifically, Lonsdorf et al. (2019) showed that 22% of the 

reviewed literature adopted performance-based exclusion of individuals who did 

not exhibit a CR, and each of these studies adopted a different definition of non-

learners. Similarly, 32% of the literature employed data exclusion of non-

responders, with a similar degree of variability in the definitions. 
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In addition, through re-analyses of example datasets from previous conditioning 

research, the paper pointed out several issues arising from heterogeneous 

definitions and analytical practices. First, inferences were shown to differ 

greatly depending on the adopted definition of non-learners. In addition, it was 

found that if one outcome variable failed to exhibit a CR, then this was not 

necessarily paralleled in other outcome variables. It was further demonstrated 

that arbitrary data exclusion criteria may impact on statistical inferences by 

creating sampling bias. For instance, in one of the reported example datasets, 

individuals with high trait anxiety exhibited lower differential CRs. Exclusion of 

those participants would thus, introduce a sampling bias towards a population 

with low trait anxiety. The considerable variation in the conclusions that can be 

drawn from the same dataset was suggested to pose a significant risk to the 

replicability and generalisability of findings to different samples, but also to 

clinical translation. Consequently, Lonsdorf et al. (2019) offered comprehensive 

guidelines and solutions to these problems, by encouraging transparent reporting 

of exclusion criteria through open science practices and adequate data 

visualisation tools that capture all of the available data. They further argued 

that data exclusion should be justified theoretically as well as practically 

through manipulation checks ensuring that participants truly failed to learn the 

CS-UCS contingency. 

 

1.6.3 SCR Quantification 

Another source of significant methodological and analytical variation is the 

definition and quantification of the most commonly used index of conditioned 

responding, the SCR (Sjouwerman & Lonsdorf, 2019). In addition, common, 

current practices used to define stimulus-induced SCR latencies rely on early 

empirical work characterising SCR response patterns that today may be seen as 

outdated due to recent technological advances allowing for more precise data 

acquisition and temporal resolution (Sjouwerman & Lonsdorf, 2019). Adding a 

further contribution to recent aims of improving the robustness of conditioning 

research, Sjouwerman and Lonsdorf (2019) provided up-to-date 

recommendations for SCR quantification. In this study, they examined the 

temporal trajectory of SCR responses across different modalities and the 

modulating role of additional factors. They demonstrated that SCR latencies are 
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modulated by cognitive factors such as CS-UCS contingency awareness as well as 

by individual characterstics such as sex but not personality traits. Consistent 

with earlier recommendations, they showed that the typical latency of the SCR 

is best captured between 1 – 4 s post stimulus onset, however response latencies 

were found to vary according to the stimulus modality. For example, tactile 

stimuli were found to have the shortest latencies while visual stimuli elicited the 

largest latencies and audotiry stimuli exhibited mid-range latencies. Based on 

these data, the authors proposed a refined set of  modality-specific guidelines 

for SCR quantification aimed at increasing analytical sensitivity.  

 

1.6.4 Analytical tools 

The choice of analytical tools in the study of classical conditioning, specifically 

in relation to psychophysiological outcome measures is as heterogeneous as that 

of methodological and procedural aspects, without the availability of a 

universally accepted approach. Currently, a wide range of procedures are 

employed to reduce data from physiological measures such as peak scoring and 

area under the curve in pre-defined time windows (Korn et al., 2017). These 

methods have several disadvantages (see Chapter 4 for a discussion) and finding 

an optimal balance between sensitivity and specificity of the time window of 

interest can be extremely difficult (Bach et al., 2018). Consequently, in parallel 

with studies by the EIFEL-ROF network, several investigations have focused on 

improving estimates of psychophysiological outcome measures. For example, the 

Dominik Bach’s laboratory has offered an alternative to conventional ways of 

making inferences about unobservable psychological constructs (e.g., threat 

anticipation) from measurable physiological responses (e.g. SCR), (Bach et al., 

2018). The approach relies on psychophysiological modelling (PSPM) to estimate 

the values of psychological constructs (e.g. anticipation) given the observed 

physiological signal, while also providing a goodness-of-fit measure through 

estimating how well a psychological construct can be predicted from a given 

physiological measure (i.e., retroactive validity analysis), (Bach & Melinscak, 

2020). The PSPM approach has been applied to a number of physiological 

responses including SCR, pupil size, and heart rate and has been shown to often 

outperform conventional methods for psychophysiological analysis (Korn et al., 

2017; Ojala & Bach, 2020). Nonetheless, the PSPM method is still relatively novel 
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and as stated by the authors, requires further investigations and across a wider 

range of experimental settings (Ojala & Bach, 2020). 

 

In contrast, Ney at al. (2018) offered a different set of recommendations that 

may be more suitable to researchers with less extensive mathematical 

background that also aims at increasing replicability and improving inferences of 

physiological data derived from conditioning research. In their review, Ney at al. 

(2018) identified a number of major issues in the analysis of psychophysiological 

data, including lack of power, researcher degrees of freedom in relation to 

analytical choices, post-hoc selection of analytical tools and removal of data, 

lack of transparency in reporting, and poor estimation of individual variability 

due to data reduction. The proposed solution to these problems was a transition 

towards the use of analytical tools such as time-series analysis, predictive and 

multi-level modelling accompanied by more liberal multiple comparisons 

correction techniques that boost power (e.g., FDR). Furthermore, it was 

suggested that increasing the number of trials may increase the reliability and 

accuracy of findings while transparent data reporting, including making all data 

available was argued to provide a solution to the problem of arbitrary data 

exclusion.  

 

1.6.5 Translational research  

Classical conditioning has long been used as a translational tool for bridging the 

gap in our understanding of anxiety disorders, by allowing the translation of 

underlying mechanisms observed in animals to more complex processes in 

humans (Haaker et al., 2019). Cross-species differences in methodology, 

however, can introduce significant problems when comparing animal and human 

data. Consequently, the methodological review by Haaker et al. (2019) provides 

a comprehensive account of factors complicating cross-species comparisons, that 

require consideration when drawing conclusions from the existing literature, or 

when designing new experiments aimed at measuring comparable cross-species 

processes.  These include procedural and paradigm differences, variation in the 

outcome measures employed as well as challenges associated with the cross-

species translation of individual differences.  
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Regarding procedural variation, several factors that have the potential of 

triggering slightly different or additional underlying processes were considered. 

One of the most notable differences identified was that of the control conditions 

used to dissociate associative and non-associative processes. In human research, 

control conditions are established using within-subject differential protocols in 

which one CS is paired with the UCS while another is not. In contrast, animal 

studies rely either on single-cue between-subject protocols or when differential 

procedures are employed, presentation of the CSs is conducted on different 

days. This is a crucial difference since unlike single-cue protocols, differential 

procedures in which a CS- is presented, deploy both threat and safety learning 

processes (Haaker et al., 2019). It was also suggested that attention should be 

paid in respect to the UCS. While electric shocks have been shown to produce 

comparable sensory effects, it was highlighted that the potential effects of 

certain procedural differences such as UCS intensity should not be ignored. As a 

result, Haaker et al. (2019) recommended that due to the uncommon use of high 

intensity UCS in humans, cross-species comparisons should only be made based 

on animal studies using moderate UCS intensity.  

 

Another major difference suggested to pose a translational challenge is that 

procedural instructions are only administered in human studies. The presence of 

instructions subsequently changes the underlying process indexed by the CR, 

with instructed and uninstructed protocols reflecting fear expression and 

learning respectively. Therefore, it was recommended that cross-species 

comparisons should be limited to human studies that used a minimal amount of 

instruction. In terms of measurement, Haaker et al. (2019) argued for a careful 

consideration of the degree to which different outcome measures used in animal 

and human studies tap onto similar learning mechanisms, especially since 

different indices of learning in humans alone do not necessarily converge.  

 

A final point discussed by Haaker et al. (2019) was that of the translational 

challenges of individual differences research and of the associated cross-species 

differences in the factors that typically influence the magnitude of CRs. For 

example, they raised the importance of considering sex sample variation when 

comparing studies, specifically in relation to cross-species differences in the 

temporal dynamics of sex hormone concentrations and the tendency for animal 
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studies to report data based on male animals and for human data to be based on 

mixed-sex samples. Recommendations of additional factors to be considered also 

included the difficulty in mapping developmental differences between species, 

ethical constraints in relation to the study of acute stressors, and the significant 

difficulty in translating human personality traits to animal species. In 

highlighting the practical and methodological constraints of translational 

research while also providing potential solutions for maximising cross-species 

comparability, this extensive review offers an important perspective of 

translational research that is rarely considered.  

 

1.6.6 Outstanding issues  

One design feature that has received considerably less attention is that of trial 

number. The majority of conditioning tasks rely on a relatively small number of 

items and trials per condition to index learning and extinction, in order to 

prevent habituation of response measures or to the UCS (Lonsdorf et al., 2017). 

This design constraint, however, can pose significant limitations on the 

mechanisms that can be investigated and the tools that can be used to study 

conditioning in humans. For example, the measurement of psychophysiological 

signal is often accompanied by high level of noise elicited through a range of 

environmental and random factors (Ney et al., 2018). Consequently, increasing 

the number of trials per condition can offer potential means for improving 

estimations in these methods. The extent to which a large number of trials is 

required for dealing with measurement noise is not uniform across measures and 

is also dependent on the analysis of choice. Certain techniques such as electro- 

and magnetoencephalography and the demands of certain analytical tools such 

as time-frequency analysis or the detection of deep brain sources require a large 

number of trials as a prerequisite for establishing a sufficient signal-to-noise 

ratio (Quraan et al., 2011a; Steinberg et al., 2013; Tzovara et al., 2019). In 

contrast, for other psychophysiological measures the use of a great amount of 

trials is not a standard practice but it has been suggested as a possible strategy 

for increasing reliability and accuracy (Ney et al., 2018).  

 

In the context of conditioning, there are two approaches that can be taken to 

achieve a high number of trials - increasing the number of repetitions of a single 
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CS+ and CS- items or increasing the number of unique items per condition. The 

risks associated with greater repetitions is habituation of the CR or to the UCS, 

although studies have successfully implemented this type of design previously in 

the context of E/MEG (Dolan et al., 2006; Kluge et al., 2011; Moses et al., 2005, 

2007; Tesche et al., 2007; Tzovara et al., 2019). In the latter case, the main risk 

with introducing a great variation of CSs is hampering with the development of 

contingency awareness which may prevent CR acquisition or reduce its 

magnitude (Lonsdorf et al., 2017). Nonetheless, previous research in E/MEG has 

shown that employing such multi-cs conditioning tasks allow for the detection of 

conditioned responding in the absence of awareness (Junghöfer et al., 2017; 

Rehbein et al., 2014, 2015; Steinberg et al., 2013). The main benefit of such an 

approach is that it can offer potential means for improving the generalisability 

of inferences as it allows for the implementation of analytical tools that 

simultaneously model random variability not only among participants but also 

across items.  In contrast to traditional conditioning protocols, both of these 

approaches have so far been used in a limited number of experimental contexts 

and have provided variable support for their utility.  

 

1.7 Aims of the thesis 

Since the development of the classical conditioning paradigm in the 1920s, an 

extensive body of research has examined the physiological, behavioural, neural 

and neurobiological mechanisms underlying a range of associative learning-

related processes. This has provided an enormous contribution to our ongoing 

understanding of how humans perceive and regulate threat, of the potential 

causes for the development and maintenance of anxiety disorders, and of their 

treatment.  The growing amount of methodological work in the field has also 

highlighted various procedural and analytical aspects that may constrain the 

inferences we draw about learning and extinction, while also offering means for 

improving the rigour and replicability of conditioning research.  

 

The aim of this thesis is to contribute to recent methodological efforts and 

theoretical debates in the field of conditioning in several ways. First, the thesis 

examines the utility of three potential approaches for increasing trial number in 

conditioning tasks that may facilitate future studies utilising noisy 
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psychophysiological measures. Within these investigations, this work also 

attempts to add a contribution to two ongoing debates in the literature related 

to the role of contingency awareness in conditioning, and the feasibility in 

detecting deep structure activity using MEG and a conditioning task with a large 

number of trials. Finally, throughout the different chapters, this thesis also 

takes into account recent recommendations for the use of analytical strategies 

in conditioning, aimed at increasing transparency and replicability (Lonsdorf et 

al., 2019; Lonsdorf & Merz, 2017; Ney et al., 2018) as well as for improving 

generalisability of findings in psychological research in general (Barr et al., 2013; 

Yarkoni, 2020). 

Specifically, Chapter 2 will examine an already established multi-trial paradigm 

(i.e., Multi-CS Conditioning, see Steinberg et al., 2013) that relies on acquiring a 

large number of trials through the use of a high number of unique items per 

condition. In this chapter, we provide data from an indirect behavioural 

replication of the Multi-CS conditioning task that has previously provided 

inconsistent evidence for its ability to elicit subjective behavioural CRs (i.e., 

valence and arousal ratings), despite detecting differential neural activation 

(Bröckelmann et al., 2011, 2013; Rehbein et al., 2014; Steinberg et al., 2012).  

 

We discuss our findings in the context of the ongoing debate about the role of 

contingency awareness in associative learning, since the use of a great number 

of items in this task prevents individuals from learning the relationship between 

the CSs and the UCS. In addition, we employed statistical tools designed to 

improve generalisability of inferences.  Through a re-analysis of a published 

Multi-CS dataset (Rehbein et al., 2014), we also demonstrate how the use of 

transparent data visualisation strategies may facilitate our understanding of the 

potential factors that may explain our results as well as the inconsistency in 

previous findings. Finally, we offer a set of recommendations that may improve 

inferences in future Multi-CS conditioning research, including increasing clarity 

when defining constructs and their measurement, encouraging the use of 

generalisable statistical tools that model by-item and by-subject random 

variability when using a large number of items, and of transparent data 

visualisation, and improving the outcome measures used to assess valence and 

arousal.   
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Chapter 3 focuses on a novel visual blocked conditioning task. The aim was to 

utilise a high number of trials while at the same time establishing a balance 

between risk of habituation (due to item repetition) and poor contingency 

awareness (due to many unique items). This task was tested in the context of 

MEG, as this is one of the approaches for which the implications of multi-trial 

conditioning are potentially considered to be the greatest. In particular, the 

study detailed in this chapter investigates a niche in the field that suffers from 

significant constraints both technically and from a design perspective. One of 

those constraints is linked to recent efforts in attempting to detect deep 

structure brain sources (e.g. the amygdala) using MEG (Dumas et al., 2011; 

Quraan et al., 2011b; Tzovara et al., 2019). Additionally, however, the human 

conditioning literature so far has struggled to provide a comprehensive account 

of the role of neural oscillations, specifically at the theta range in threat 

learning and extinction. Such investigations have potentially been limited by 

experimental design constraints as in order to understand the temporal dynamics 

of oscillatory activity and analyse effects at the time and frequency domain 

simultaneously, a large number of trials is typically required. As such, this 

chapter attempts to examine the feasibility in studying the role of theta 

oscillations in cortical and subcortical structures in humans through maximising 

the SNR with a high number of trials and employing analytical techniques that 

have previously been shown to detect deep structure activity. In addition, we 

assessed conditioned responding in several other outcome variables, including 

subjective valence and arousal ratings, as well as pupil size.  

 

The findings reported in Chapter 3 provided poor evidence for the reliable 

detection of conditioned responding in any of the investigated outcome 

measures and thus, limited the desired quantification of the oscillatory 

mechanisms driving learning and extinction. However, the results from this study 

provided a degree of confidence that the blocked nature of the task was not the 

primary cause for the poor CR elicitation and highlighted a number of potential 

design factors that may increase the likelihood of detecting a CR in future work 

employing a blocked conditioning task. These included aspects such as trial 

duration, the use of less complex CSs, and the importance of maintaining 

participants’ attention.  
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In light of these findings, the study detailed in Chapter 4 aimed to re-design the 

blocked conditioning task in the auditory domain. In part due to technical and 

time constraints, the work moved away from MEG measurement and towards 

discussing the utility of multi-trial paradigms in psychophysiological measures in 

general, with a particular focus on pupil size, while also measuring valence and 

arousal conditioned responding. The study also discusses the potential of this 

task in combination with suitable analytical techniques for improving inferences, 

by expanding on the issue of generalisability discussed in earlier chapters. In 

particular, the analyses of this study avoided potential issues arising from 

arbitrary time window selection by utilising robust data-driven time window 

selection methods. Furthermore, statistical inferences were based on design-

appropriate mixed effects models that considered by-subject and by-item 

variability of effects simultaneously, thus ensuring optimum generalisability of 

results. While this approach is less sophisticated than the PSPM method 

discussed earlier in this introductory chapter, it can offer certain benefits in 

terms of analytical consistency across measures, ease of use, flexibility in 

relation to data pre-processing and suitability for users with less extensive 

mathematical background.  

 

Finally, chapter 5 provides a summary of the findings from the experimental 

chapters with a discussion of their implications for future work in multi-trial 

conditioning research.  
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2 Chapter 2 - Can associative learning without 
awareness be elicited using Multi-CS 
conditioning? An indirect behavioural paradigm 
replication. 

2.1 Introduction 

 
A widely debated issue in the conditioning literature is whether associative 

learning processes and related conditioned responding are dependent on the 

conscious awareness of the CS-UCS contingency. Theoretically, this debate has 

been informed by the single and dual process accounts of learning. The dual-

process framework suggests that implicit (affective) and explicit (expectancy) 

learning are dissociated and can occur independently of one another, and as 

such, this model proposes that conditioning can occur in the absence of CS-UCS 

contingency awareness (Schultz & Helmstetter, 2010). In contrast, the single-

process account suggests that affective and expectancy learning are driven by 

the same underlying mechanism and consequently, experimental manipulations 

should elicit qualitatively similar implicit and explicit responses (Lipp & Purkis, 

2005). Indeed, this model assumes that contingency awareness is necessary for 

establishing a CR (Lovibond & Shanks, 2002). 

 

Early evidence and a commonly used example to support the dual-process model 

originates from lesion studies showing that hippocampal damage disrupts the 

memory of the CS-UCS relationship but not autonomic responses such as the SCR. 

On the other hand, amygdala damage prevents the acquisition of an autonomic 

CR in the presence of contingency awareness (Schultz & Helmstetter, 2010 but 

see Bechara et al., 1995). Later empirical work has focused on examining the 

effects of awareness using a masking procedure on the CSs or a distraction task 

that interfere with the development of contingency awareness (Mertens & 

Engelhard, 2020; Schultz & Helmstetter, 2010). Such studies often report the 

acquisition of CRs in the absence of explicit awareness, at least in some outcome 

measures and conditioning protocols (Schultz & Helmstetter, 2010; Sevenster et 

al., 2014; Weike et al., 2006), although findings to the contrary and in support 
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of the single-process model are also available (Dawson et al., 2007; Lipp & 

Purkis, 2005; Weidemann et al., 2016). 

 

Some insight into the factors that may drive the mixed evidence in support of 

the dual-process account come from a recent systematic review and meta-

analysis of unaware conditioning in physiological outcome measures (Mertens & 

Engelhard, 2020). The review found that the majority of findings in the 

literature were derived from tasks that suffer from significant methodological 

limitations, where the likelihood of observing contingency-unaware conditioning 

decreases with greater methodological quality (Mertens & Engelhard, 2020). 

Specifically, it was shown that poor masking procedures and contingency 

awareness measures, publication bias, and researcher degrees of freedom are 

commonly present across studies, limiting the conclusions that can be drawn 

from them  (Mertens & Engelhard, 2020). 

 

In addition, trial-order effects were found to be largely uncontrolled for in 

studies reporting unaware CRs. (Mertens & Engelhard, 2020). A common practice 

in conditioning studies is to use a pseudo-random presentation order with the 

common restriction of presenting the same stimulus no more than twice in 

succession. Such a procedure ensures that the CS+-UCS pairings are not 

presented in multiple successive trials. This approach, however, can facilitate 

expectancy especially when events appear to occur randomly, leading 

individuals to seek predictability (Singh et al., 2013). As a result, even if 

participants are unaware of the CSs and their relationship with the UCS, the 

mere presentation of one stimulus type (e.g. a CS- ) increases the probability 

that the next trial will contain the other stimulus type (e.g. a CS+), which 

subsequently affects UCS expectancy (Mertens & Engelhard, 2020). This 

expectancy, driven by trial-order contingency is shown to induce a CR without 

awareness of the CS-UCS relationship. (Singh et al., 2013; Wiens et al., 2003), 

although some evidence that not all outcome measures are susceptible to such 

effects has also been reported (Sevenster et al., 2014).  

 

Disentangling the role of behaviour in unaware conditioning has also been 

challenging. From a theoretical standpoint, the dual-process model of learning 

suggests that subjective feelings about a stimulus are directly driven by 
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conscious, cognitive processes, but that affective responses can also arise 

automatically outside of conscious awareness when non-consciously acquired 

associative memories trigger defensive responses such as physiological arousal. 

These defensive responses are suggested to indirectly trigger subjective 

experiences (LeDoux & Pine, 2016). Therefore, a subjective experience of threat 

should occur regardless of whether a threat-related associative memory is 

acquired consciously or non-consciously. For example, a phobia of dogs would 

result in a subjectively perceived threat and fear of dogs irrespective of whether 

the person has experienced a conscious negative event with a dog (e.g. being 

bitten by a dog as a child) or an non-conscious association between a dog and 

the threat of being bitten. By this logic, explicit online and offline subjective 

behavioural measures of conditioning should still elicit a differential CR.  

 

However, similar to findings in physiological measures, the evidence supporting 

unaware conditioning in offline behavioural outcome measures such as valence 

and arousal judgements is mixed. Studies examining the behavioural effects of 

standard differential conditioning paradigms using masking or attention-

distracting procedures to prevent awareness are limited, potentially because it 

is suggested that online physiological measures can be more sensitive in 

detecting unaware conditioning than offline subjective behavioural measures 

(Corneille & Mertens, 2020). Results from such studies have shown that while 

unaware participants exhibit differential activity in the fear network in the brain 

(e.g. the amygdala, hippocampus, orbitofrontal and anterior cingulate cortices), 

they show no conditioned responding in offline valence and arousal ratings or 

SCR (Klucken et al., 2009; Tabbert et al., 2011). These findings contradict the 

dual-process account suggesting that  due to their automatic and defensive 

nature, physiological responses should occur in the absence of awareness and 

trigger subjective experiences of threat (LeDoux & Pine, 2016). Research in 

evaluative conditioning (i.e.,  changes in the likeness of CSs as a result of pairing 

them with affective UCSs) has shown some support for unaware conditioning 

(Hütter et al., 2012), although evidence to the contrary is also available 

(Kattner, 2012). In addition, it has been demonstrated that contingency 

awareness is crucial for evaluative conditioning to occur, regardless of whether 

implicit or explicit measures are used (Pleyers et al., 2007). A detailed review of 

the evaluative conditioning literature also concluded that there is little 
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empirical support for eliciting changes in subjective evaluative responses in the 

absence of awareness, and that findings supporting the dual-process account of 

learning are limited to specific experimental procedures (Corneille & Stahl, 

2019).  

 

This large body of conflicting findings across physiological and behavioural 

measures reinforces recent observations from reviews of the available evidence 

(Corneille & Stahl, 2019; Mertens & Engelhard, 2020), suggesting that 

methodological and procedural issues perpetuate the unresolved debate 

regarding the dissociative nature of conscious and non-conscious learning 

processes. Methodological problems, however, are not specific to this debate, 

but an ongoing problem identified in threat conditioning research in general, 

which has received a considerable amount of attention in recent years. 

Specifically, efforts have been placed in improving methodological practices that 

can maximise replicability and reliable inferences, such as reducing researcher 

degrees of freedom through pre-registrations, improving research and reporting 

transparency and eliminating excessive data analysis flexibility (Lonsdorf et al., 

2017, 2019; Ney et al., 2018). These lie at the core of improving inferences 

drawn from unaware conditioning as well, combined with the necessity for 

systematically investigating the conditions and outcome measures under which 

such an effect may be observed. 

 

Consequently, the present chapter aims to contribute to the ongoing dual-

process model debate and recent efforts in improving inferences in threat 

learning. In this chapter, we provide an indirect behavioural replication of an 

established multi-trial paradigm (i.e., Multi-CS conditioning), proposed to elicit 

conditioned responding in the absence of contingency awareness (Steinberg et 

al., 2013). Unlike more traditional methods for studying unaware conditioning in 

which masking, secondary attention-distracting or cognitively demanding tasks 

are used to interfere with the perception of the CSs, in Multi-CS conditioning a 

large number of unmasked CS+ and CS- stimuli are used to elicit threat learning. 

In this task, each stimulus is presented only a limited number of times and for a 

relatively short duration (20-800 ms). This creates a highly demanding 

environment in which multiple complex and perceptually similar stimuli have to 

be differentiated, which prevents the acquisition of contingency awareness 
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(Steinberg et al., 2013). The use of a large number of CSs that are repeated a 

very limited number of times was implemented to allow for the investigation of 

rapid cortical activation in noisy electrophysiological measures which require a 

large number of trials to achieve an acceptable signal-to-noise ratio, while also 

reducing the likelihood of observing CR habituation due to high number of 

stimulus repetitions (Steinberg et al., 2013).  

 

Findings from Multi-CS conditioning studies have indeed shown some fast 

differential activation patterns in response to visual and auditory CSs paired with 

a range of UCSs (e.g. electric shock, unpleasant sounds, white noise), in pre-

frontal and sensory regions following as well as during conditioning  

(Bröckelmann et al., 2011, 2013; Rehbein et al., 2014, 2015; Steinberg et al., 

2013). However, there are concerns about the degree to which the findings from 

some of these investigations (Bröckelmann et al., 2011, 2013; Steinberg et al., 

2012, 2013) indeed reflect the acquisition of a CR. Specifically, the results from 

these studies are compromised by a technical discrepancy with standard 

conditioning research in that they failed to examine the typical signatures of 

conditioned responding, i.e., the differences between CS+ and CS- conditions 

during learning. Instead, statistical comparisons were based on neural activity 

during non-reinforced presentations typically used to study the process of 

extinction. A re-analysis (Rehbein et al., 2014) of one of the datasets in the 

study by Steinberg et al. (2013), however, argued against the likelihood of this 

activity reflecting extinction, as they observed similar pre-frontal activity during 

(reinforced) and after conditioning (non-reinforced). Nonetheless, these results 

may not be sufficient to support this claim, as recent meta-analyses examining 

the networks involved in threat learning and extinction have demonstrated that 

pre-frontal regions are engaged in both processes (Fullana et al., 2016, 2018).  

 

The issue of what underlying process is measured by this task is even more 

prominent with respect to the derived behavioural CR indices in all of the Multi-

CS conditioning studies. Since offline rating data were not collected immediately 

after conditioning, statistical comparisons were only made between ratings 

obtained following extinction and prior to habituation. Therefore, these 

subjective ratings of valence and arousal in fact reflect the extinction of CRs 

rather than their acquisition. Considering that some conditioning studies report 
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resistance to extinction in subjective evaluative judgements (Gawronski & 

Mitchell, 2014; Sehlmeyer et al., 2011; Winn et al., 2018), it is likely that any 

reported significant subjective behaviour effects from these investigations are 

linked to a CR resistant to extinction. Furthermore, the derived behavioural 

results from these comparisons are not as consistent as the reported neural 

findings. For example, for auditory CSs presented for 20 ms, valence CRs were 

observable only in an implicit affective priming task (Bröckelmann et al., 2013) 

but not in explicit subjective measures (Bröckelmann et al., 2011; Junghöfer et 

al., 2015b). For neutral face CSs, Rehbein et al. (2014) reported a change in 

subjective valence for CS- trials from habituation to post-conditioning 

(extinction) only (although this effect was only approaching significance ), and 

no subjective arousal or implicit behavioural effects. Steinberg et al.(2012) 

showed only a valence but not an arousal effect while Roesmann et al. (2020) 

demonstrated both valence and arousal threat generalisation effects after 

conditioning (extinction). In addition, the study by Rehbein et al. (2015) showed 

that conditioning effects may partly depend on individual’s perceived 

contingency rather than the actual contingency. They found that CS trials that 

were perceived as CS- were rated as more pleasant after extinction than 

habituation, while both perceived and actual CS- trials were rated as less 

arousing after extinction than habituation. Such inconsistency in behavioural 

effects raises concerns about the inferences and interpretations that can be 

drawn about neural activity in isolation, and in the absence of a behavioural or 

physiological measure that offers some degree of corroboration, confirming the 

likelihood that this activity truly reflects unaware conditioning.  

 

The discrepancy between neural and behavioural measures cannot be explained 

by some of the above-mentioned methodological problems such as poor masking 

or procedural differences, since findings from these studies are based on tasks 

with very similar experimental procedures involving unmasked stimuli. Trial 

order effects are also unlikely to explain the pattern of results since some of the 

studies reported findings based on neural measurements that were derived from 

non-reinforced CS presentations during/after extinction (Bröckelmann et al., 

2011, 2013; Steinberg et al., 2012, 2013). Trial sequencing cannot drive the 

behavioural effects from Multi-CS conditioning studies either, since these were 

based on offline ratings collected following extinction which would not be 
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susceptible to trial order effects.  Since these experimental parameters cannot 

explain the inconsistency in behavioural findings, other factors must be 

mediating the likelihood of observing a conditioning effect from this task.  

 

For example, analytical decisions may be equally important and can have 

dramatic impact on the inferences we make and their reliability and 

generalisability. The reported behavioural findings from Multi-CS conditioning 

research were derived using repeated measures ANOVA (rm ANOVA) tests on 

data averaged at the participant level. Similarly, the results regarding the 

reported differential neural activity were also based on rm ANOVAs on 

aggregated data. This approach is shown to inflate test statistics and lead to 

anticonservative inferences (Judd et al., 2012; Westfall et al., 2017; Yarkoni, 

2020) as it only considers by-subject variability, but fails to account for by-item 

variability (or conflates the latter with trial-level measurement error, 

respectively). Assuming that all items would be affected by the experimental 

manipulation to an equal degree can be problematic, even more so when 

eliciting effects using a large number of unique, complex, highly dimensional 

stimuli such as faces, that show high degree of heterogeneity both within and 

between individuals (Jenkins et al., 2011). While the results reported from 

Multi-CS conditioning with faces (Rehbein et al., 2014, 2015; Roesmann et al., 

2020) relied on the same face databases, it is unclear whether the same visual 

stimuli were used across experiments. Even if the same stimuli were employed 

(e.g. Bröckelmann et al., 2011, 2013), it is possible that by-subject and by-item 

interactions can cause varying sensitivity to the experimental conditions, which 

can lead to poor effect replicability between studies. Therefore, to reduce the 

risk of Type I error and ensure that results not only generalise to a new 

population of participants but also to new sets of stimuli of the same type, it is 

important to simultaneously consider both by-subject and by-item random 

variability and their relationships within the experimental manipulation (Barr et 

al., 2013; Judd et al., 2017).  

 

A related problem is the common adoption of data visualisation of condition 

means using tools such as bar or line graphs, that accompany the statistical 

results. Since this approach does not represent the raw data underlying the 

presented measure of central tendency, it can lead to gross over or under-
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estimation of the magnitude of effects. Summarising data in this manner can 

also obscure important patterns in the data, differences in the distributions and 

in the case of within-subjects designs, it fails to provide information regarding 

the consistency of patterns across individuals (Rousselet et al., 2017; 

Weissgerber et al., 2015). In the context of Multi-CS conditioning, we cannot be 

certain whether the variability in effects is driven by for example, a subset of 

individuals or if the analysis of means adequately captures the underlying 

distribution. To increase transparency and improve inferences, recent efforts 

have focused on improving the use of robust data visualisation tools that can 

reveal important information about individual differences, outliers and other 

interesting or unexpected data patterns (Allen et al., 2018). For example, the 

use of rainclouds can be extremely informative as along with central tendency 

summary measures, they provide information about the underlying distribution 

as well as individual data points (Allen et al., 2018). 

 

2.1.1 The present study 

The indirect behavioural replication of the Multi-CS conditioning paradigm aimed 

to gain a better insight of the factors that drive the inconsistent behavioural 

findings derived from Multi-CS conditioning, with a particular focus on providing 

more generalisable inferences. We made only minimal and necessary 

modifications to the original task while closely following the design presented by 

Rehbein et al. (2015), specifically in relation to parameters such as CS and UCS 

inter-stimulus and inter-trial intervals. We used white noise as the UCS, 

presented at approximately 80-85 dB, which was slightly lower than that used by 

Rehbein et al. (2015), and with a 50 ms longer duration. In addition, since 

attention is shown to play an important role in facilitating and enabling CR 

acquisition (Field & Moore, 2005), and passive viewing may risk participants’ 

attention drifting away, we included a few catch trials per block to maintain 

task engagement.  

 

In order to disentangle the role of extinction processes in previous Multi-CS 

conditioning studies, we recorded ratings following habituation, acquisition and 

extinction phases, unlike previous studies (Rehbein et al., 2014, 2015) which 

measured valence and arousal before habituation (pre-learning) and after 
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extinction (post-learning). Since the behavioural ratings are measured offline 

after each experimental phase, it appears safe to assume that any valence and 

arousal CRs are not affected by trial sequencing and, if present, will reflect a 

genuine change in the perception of the stimuli and not a simple UCS expectancy 

response.  

 

The most significant deviation from the original task was in the response scale 

we used. The research employing Multi-CS conditioning has relied on the Self-

Assessment-Manikin (SAM) scale (Bradley & Lang, 1994). The scale was used 

either in its original 9-point discrete format (Bröckelmann et al., 2011; 

Junghöfer et al., 2015b; Rehbein et al., 2015; Roesmann et al., 2020) or as a 

modified interval scale (Rehbein et al., 2014, ranging from -300 to 300), 

although it is unclear how a continuous transformation was applied to a discrete 

9 point pictorial scale. While the SAM scale is still widely used in psychological 

research, it is difficult to implement in computerised tasks and it is relatively 

outdated, particularly in the graphics domain in which the pictorial affective 

states representations can today be perceived as unintuitive and ambiguous 

(Betella & Verschure, 2016). As a result, the present study used a standard 7-

point Likert scale to measure subjective valence and arousal which we believe 

should be less ambiguous but qualitatively similar to the discrete SAM scales 

used previously, as both measure emotionality on an ordinal scale. 

 

In addition, we used a different set of neutral faces serving as the CSs and 

employed design-appropriate mixed modelling that simultaneously accounts for 

by-item and by-subject random variability, combined with transparent data 

visualisation. We conducted two sets of analyses. Our main analysis focused on 

modelling changes in valence and arousal by first accounting for potential 

baseline differences during habituation, by subtracting habituation ratings from 

acquisition and extinction ratings. Since this baselining procedure distorts the 

ordinal nature of the data, we modelled the data using linear mixed effects 

(LME) models. In our secondary analyses, we aimed to corroborate our main 

results by considering the three-phased data in its original ordinal format and 

applying cumulative-link mixed models which take into account the ordinal 

nature of the data. We also conducted several secondary analyses. First, similar 

to Rehbein et al. (2015), we examined the impact of perceived contingency on 
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conditioned responding. In addition, we re-analysed one of the Multi-CS 

conditioning datasets (Rehbein et al., 2014) to demonstrate how the use of 

transparent data visualisation can improve and guide our understanding of 

experimental effects. 

 

 

2.2 Methods 

 

2.2.1 Participants 

Twenty-three participants (16 females) aged 19-29 (mean = 21.3, SD = 2.6) took 

part in the study. Three participants were excluded from the contingency 

awareness task as they gave the same response on all trials, however, all 23 

participants were included in the valence and arousal analyses. Participants 

were recruited by undergraduate students at the Psychology Department, as part 

of a group research project, and received £6 per hour for their participation. 

The study was approved by the College of Science and Engineering ethics 

committee (300170261). Written informed consent was obtained from each 

participant.  

 

2.2.2 Stimuli 

Conditioned stimuli (CS) were 104 neutral, frontal view faces (52 females) of 

White background, obtained from the Chicago Face Database (Ma, Correll & 

Wiitenbrink, 2015). Stimuli from the database are normed both in terms of 

physical and subjective properties of each facial identity (see Ma et al., 2015). 

The stimulus selection process ensured that faces were similar in luminance or 

levels of attractiveness, trustworthiness, and emotionality. Stimuli were colour 

photographs scaled to 510 x 510 pixels.  For each subject, 52 of the faces were 

randomly selected and assigned as CS+ while the remaining 52 served as CS-.  

 

A 150 ms white noise of approximately 80-85 dB was used as the Unconditioned 

Stimulus (UCS), since it is shown to produce a stronger and more reliable 

affective learning and extinction in experimental designs containing high number 
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of trials (Sperl et al., 2016). This was also the UCS type used by Rehbein et al. 

(2015).  

 

2.2.3 Procedure 

The task contained three experimental phases – Habituation, Acquisition, and 

Extinction (see Figure 1). During each phase, a total of 156 CS+ and 156 CS- trials 

were presented in three separate blocks (52 CS+ and 52 CS- per block). Each CS 

was presented together with a black fixation cross, positioned at the centre of 

the image (the nose), for 800 ms. The inter-trial interval (ITI) had a duration of 

1300 ms ±300 ms and was accompanied by a black fixation cross in the centre of 

the screen. Participants were asked to maintain fixation at the centre of the 

screen at all times. Trial order was randomised across participants with the 

restrictions that the first trial was always a CS- and no more than three trials of 

the same stimulus type (e.g., a CS+) could occur consecutively.  To maintain 

subjects’ attention on the task, 2-3 trials were randomly selected in each block 

and presented twice in succession at a random time point in each block. 

Participants were instructed that they will be presented with a series of faces 

that they have to view while maintaining fixation at the centre of the screen and 

respond using a button press when the same face occurs twice in a row. As such, 

participants were not informed of the CS-UCS contingency. During the 

Acquisition phase, CS+ trials were paired with the UCS, which occurred 650 ms 

post CS+ onset, while CS- trials were never paired with the UCS. During 

Habituation and Extinction, the CSs were presented alone, without the UCS. At 

the end of each phase, participants completed a face rating task where they 

were asked to rate each CS on valence and arousal using a 7-point Likert scale (1 

not at all pleasant/arousing to 7 extremely pleasant/arousing). The task scripts 

can be found at https://osf.io/c6uhy/.  

 

At the end of the experiment, participants completed a surprise contingency 

awareness task, consisting of 24 trials. For each subject, 12 CS+ (6 female faces) 

and 12 CS- (6 female faces) stimuli were randomly selected from the total 

number of stimuli. On each trial, a fixation cross was presented for 600 ms 

followed by the CS, which was presented for 800 ms. Trial order was randomised 

across participants. On each trial, participants were asked to indicate whether 

https://osf.io/c6uhy/
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the face they were presented with was paired with a sound during Phase 2 of the 

experiment. In addition, participants were asked to indicate how confident they 

were in their judgement using a 7-point Likert scale (1 not at all confident to 7 

extremely confident). 

 

Figure 1 
Paradigm and trial structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Permission to re-use the sample of images from the CFD (Ma et al., 2015) 

was obtained from the copyright holder, the University of Chicago, Center for 

Decision Research. 

 

 

2.3 Results 

All analyses were performed in R. Analysis scripts are available at 

https://osf.io/c6uhy/. Data are only available upon request, due to a section of 

the participant’s information sheet, restricting public data sharing.  

 

https://osf.io/c6uhy/
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2.3.1 Valence and Arousal Ratings 

Figure 2 shows the percentage of responses belonging to each Likert scale point 

(1-7) as well as the median score across the experimental phases and stimulus 

type. As seen in Figure 2, for valence ratings, around 30% of responses had a 

rating of 4 and 50% of responses had a rating below 4. During Habituation and 

regardless of Stimulus Type, valence ratings were 2-6% higher than those during 

Acquisition and Extinction.  For arousal ratings, approximately 20% of responses 

had a rating of 4 and ~60 % had ratings below 4, irrespective of Stimulus Type or 

Experimental Phase. Ratings above 4 in response to both CS+ and CS- stimuli 

were also 1- 4% more prevalent during Habituation than during Acquisition and 

Extinction. This descriptive summary suggests that overall, stimuli were 

predominantly perceived as neutral in valence and low in arousal. This pattern 

was also reflected in the median ratings. 

 

Prior to quantifying any potential differences between conditions, we baselined 

the data with respect to the Habituation phase to account for any potential 

baseline differences. The habituation-adjusted data was obtained by subtracting 

each item's rating during Habituation from the same item's rating during the 

Acquisition and Extinction. Next, we used linear-mixed effects (LME) modelling 

to predict valence and arousal ratings. For each rating type, the model consisted 

of a 2 Experimental Phase (Acquisition vs Extinction) by 2 Stimulus Type (CS+ vs 

CS-) fixed effects design. We used mean-centred contrasts for the two 

categorical fixed effect predictors. The models included by-subject and by-item 

random intercepts, and by-subject and by-item random slopes for both main 

effects and the interaction (see Supplementary Materials 1 for random effects 

summary). We assessed main effects and interactions using type III Wald chi-

square tests (see Table 1). The tests revealed no significant effects for valence 

ratings, and a significant main effect of Experimental Phase for arousal ratings. 

Note, however, that the p-value of this main effect is large (p < 0.049) and 

approaching 0.05. Post-hoc marginal mean contrasts (package emmeans) were 

performed after averaging over the levels of Stimulus Type. These showed that 

faces were perceived as more arousing during Acquisition than Extinction, 

however, this effect was not statistically significant (p = 0.065), (see Table 2). 

This is not surprising considering that the confidence intervals and distributions 
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of ratings during Acquisition and Extinction overlap significantly (see Figure 4), 

and the strength of association (effect size) for all main effects and interactions 

is approaching 0 (see Table 2).  

 

Since the non-baselined data were measured on an ordinal scale, we validated 

our LME findings in a secondary analysis on the three-phased dataset using 

cumulative link mixed (CLM) models (package ordinal), (see Supplementary 

Materials 2). The CLM results are comparable to the LME modelling findings. 
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Figure 2 

Distribution of valence and arousal ratings across conditions 

 

 

 

 

Note. Percentage of ratings (Top) belonging to each Likert point (1-7) and 

median rating (Bottom) for CS+ and CS- stimuli across the experimental phases 

for A) Valence and B) Arousal ratings. 
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Table 1 

Type III Wald Chi-square tests and R-squared values for the valence and arousal 

model and each of the fixed effects. 

 

 
 

Table 2 

Estimated marginal means and related contrasts derived for the arousal model. 

Note. Contrasts were computed using Kenward-Roger method for degrees of 
freedom approximation. 
  

 Chisq Df P-value R² Fixed (CI) 

Valence     

Full Model    0 (0 – 0.03) 

Experimental Phase 0.78 1.000 0.37 0 (0 – 0.000) 

Stimulus Type 0.03 1.000  0.85 0 (0 – 0.002) 

Experimental Phase X Stimulus 
Type 

0.39 1.000 0.53 
0 (0 - 0.001) 

Arousal     

Full Model    0.001 (0-0.004) 

Experimental Phase 3.86 1.000 0.049 0.001 (0 – 0.004) 

Stimulus Type 0.01 1.000 0.92 0 (0– 0.001) 

Experimental Phase X Stimulus 
Type 

0.16 1.000 0.68 
0 (0 – 0.001) 

Experimental Phase Estimated Marginal Means 

Experimental 
Phase 

Emmean SE df Lower CI     Upper CI 

Acquisition 0.13 0.10 23.79 -0.34        0.07 

Extinction -0.22 0.09 23.64 -0.42       -0.02 

Contrasts      

Contrast Estimate SE df Lower CI Upper CI              P-value 

Acquisition – 
Extinction  

0.09 0.04 19.90 -0.01 
      0.18                      
0.06 
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Figure 3 

A summary of valence fixed effects 

 
Note. A) Distribution of mean valence ratings of Habituation-baselined data. B) 

Estimated marginal means per condition derived from the linear mixed effects 

model of valence ratings (error bars represent 95% CIs for the means conditioned 

on the random effects). C) Fixed effect estimates (labelled dots) derived from 

the linear mixed effects model of valence ratings; bars represent 95% CIs for the 

estimates. 
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Figure 4 

A summary of arousal fixed effects 

 
Note. A) Distribution of mean valence ratings of Habituation-baselined data. 

Estimated marginal means from the linear mixed effects model of arousal ratings 

for B) Experimental Phase and C) Stimulus Type (error bars represent 95% CIs for 

the means conditioned on the random effects). D) Fixed effect estimates 

(labelled dots) derived from the linear mixed effects model of arousal ratings; 

bars represent 95% CIs for the estimates. 

 

 

2.3.2 Contingency awareness  

Figure 5 shows the percentage accuracy in correctly identifying faces that were 

paired with the UCS and associated confidence ratings. As seen in the figure, 

60% of participants had accuracy below 50% and the maximum accuracy rate was 

58%.  The low accuracy rate is also reflected in the relatively low confidence 

ratings. Contingency awareness was also evaluated by computing d-prime (d’) 

estimates of participants’ ability to correctly discriminate between CS+ and CS- 

faces (package sdt.rmcs). To calculate d-prime, participants’ responses were 

divided into hits – correctly identifying a CS+ face, correct rejections – correctly 

identifying a CS- face, false alarms – incorrectly classifying a CS- face as CS+, 

and misses, incorrectly classifying a CS+ face as CS-. A sensitivity index d’ was 



66 
 
calculated (see Figure 6) by taking the difference of the z values for the hits and 

misses. To assess whether participants had a bias towards preferentially 

responding to either one of the stimuli, a bias index c was also computed. This 

represented the number of standard deviations from the midpoint of the 

difference between the z values of the hits and misses. Finally, a one-sample t-

test was performed to assess whether d-prime and bias estimates were 

significantly greater than 0. Confirming the descriptive results, these revealed 

that participants did not perform above chance on the contingency awareness 

task (t (19) = -1.4, p < 0.17) and there was no significant bias in responding (t 

(19) = 0.57, p < 0.57). Note, that these analyses excluded three subjects who 

gave the same contingency awareness response in all trials. Overall, these 

findings suggest that participants failed to acquire an awareness of the 

contingency between the CSs and UCS. Furthermore, our exploratory analyses 

suggest that the perceived CS-UCS contingency did not influence conditioned 

responding (see Supplementary Materials 3).   
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Figure 5 

Contingency accuracy and associated confidence rating. 
 

 
Note. Percentage accuracy was calculated by summing the number of correct 
responses and dividing by the overall number of trials * 100.  
 
 
Figure 6 

Distribution of sensitivity and bias estimates. 
 

 
 
 
 

2.3.3 Re-analysis of the Rehbein et al. (2014) dataset 

In this secondary analysis, we used the valence rating data provided by Rehbein 

et al. (2014) since they reported a small in magnitude conditioned response in 

valence ratings. These analyses aimed to demonstrate the utility of robust and 
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transparent graphical tools in providing valuable information that can be 

complementary to but also guide statistical inferences.  

 

Figure 7A shows a traditional plot that often accompanies result sections across 

the literature, similar to that employed by Rehbein et al. (2014) to support their 

findings in relation to the valence CR. The figure shows the average valence 

rating per condition. In contrast, Figure 7B represents the same mean ratings per 

condition, accompanied by the individual data points, boxplots including the 

median valence, as well as split-violin plots. As seen in the figure, multiple 

patterns can be seen in the data. First, even providing confidence intervals 

around the mean can be informative in relation to the magnitude of the 

observed effects. For example, while the mean difference between CS+ and CS- 

post-extinction are larger than those obtained pre-habituation, the uncertainty 

around each condition is very similar and overlapping. Visualising the full range 

of data points further emphasises that the magnitude of effects is very small, 

the range in ratings is very large, and that there are a few outliers in the data.  

 

Another interesting pattern that emerges is that the mean and median ratings 

change the direction of condition differences. For example, when looking at the 

mean during post-extinction, we can see that CS- faces (mean =2.92) were rated 

as more pleasant than CS+ (mean = -1.08) faces, similar to what is depicted in 

Figure 7A. However, when looking at the median which is a measure of central 

tendency that is more robust to outliers (Rousselet et al., 2017), we can see that 

CS+ faces (median = 2.14) are rated as more pleasant than CS- faces (median = -

1.37). The magnitude of the mean and median differences is also very similar. 

Finally, looking at the boxplot and split-violin plots, we can see that the 

distributions overlap substantially between conditions, further confirming the 

small effects. 

 

Visualising the data in this transparent manner suggests various patterns that if 

considered, can guide analytical strategies and lead to more robust inferences, 

even if traditional analytical strategies that do not consider by-item variability 

are employed.  First, observing the full data distribution and the presence of 

outliers suggests that the mean may not be suitable in providing robust estimate 

of condition differences, since it is highly sensitive to small changes in 
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distributions and the presence of outliers (Rousselet et al., 2017). In this case, if 

an rm ANOVA or a t-test is performed to test for differences between conditions, 

20% trimming of the mean would be a more reliable alternative as it provides 

more power in the presence of outliers (Wilcox, 2017). To illustrate, Table 3 

provides a comparison between the results of a standard paired t-test and a 

robust t-test using 20% trimming of the mean. Here, we compared the CS- 

ratings between pre-habituation and post-extinction, since this was the main 

effect reported by Rehbein et al. (2014). As seen in the table, the results from 

the paired t-test give identical results from those provided in the original paper, 

with a p-value ‘approaching’ the significance level of 0.05. However, the results 

from the robust t-test suggest that there are no differences between the two 

conditions. These findings confirm that the presence of outliers can shift the 

pattern of results and dramatically impact the inferences we make and clearly 

demonstrates the value of appropriate data visualisation tools in guiding robust 

inferences. 

 

Table 3 

Comparison between the outputs derived from a t-test and a robust t-test on 

trimmed means. 

method estimate statistic p-value df Lower CI Upper CI 

t-test 6.98 -1.98 0.054 47 -14.8 0.11 

robust t-test -4.79 -1.21 0.236 29 -12.9 3.11 
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Figure 7 

Comparison of graphical tools. 

Note. A) Mean valence ratings per condition. B) The coloured dots represent the 

average valence rating for each individual, the black dot and associated error 

bars depict the mean and 95% confidence intervals, and the boxplot and split-

violin plots convey information about the underlying data distribution. 

 

The large variability in responses also raises the question of whether individual 

differences can explain the small effects observed from this dataset. This 

question can be easily answered by visualising the effects at a within-subject 

level (see Figures 8 and 9). When looking at the largest effect from this dataset 

(see Figure 8), i.e., the lower mean valence for CS- faces in pre-habituation 

compared to post-extinction, we can indeed see that this is the case for a subset 

of participants. However, it is also visible that other participants show an effect 

in the opposite direction or no effect at all. This is the case for CS+ trials as 

well. This pattern is not surprising since individual differences in conditioned 

responding have been well established, with the issue of non-responders having 

been extensively discussed (Lonsdorf et al., 2019; Lonsdorf & Merz, 2017). When 

visualising paired differences between conditions within each experimental 

phase (see Figure 9), another pattern emerges. The great variance in responses 

suggests that the stimuli were not simply neutral and at least in some 

individuals, there are baseline valence differences between CS+ and CS- trials 

during pre-habituation. This can cause additional uncertainty when making 

inferences regarding changes in valence elicited by the conditioning 

manipulation when prior differences may already be present. Overall, the 
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visualisation of paired differences across individuals confirms that the response 

to the experimental manipulation differed across participants, which further 

highlights the necessity of modelling random by-subject and by-item variability 

and their dependencies within the experimental conditions.  

 

Figure 8 

Within-subject differences when comparing the differences between pre-

habituation and post-extinction for each stimulus type. 

 

Figure 9 

Within-subject differences when comparing the differences between CS+ and 

CS- trials within each experimental phase. 
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2.4 Discussion 

The goal of this study was to contribute to the ongoing efforts in understanding 

whether threat learning can develop in the absence of contingency awareness, 

through a replication of a Multi-CS conditioning paradigm that so far, has 

provided conflicting evidence regarding the feasibility of eliciting subjective 

behavioural CRs (Bröckelmann et al., 2011; Rehbein et al., 2014, 2015). 

Specifically, we aimed to gain an insight into the factors that may contribute to 

these inconsistent reports by utilising robust and transparent analytical and data 

visualisation strategies. An additional complication affecting the interpretability 

of these findings was the presence of technical differences in defining what 

constitutes a measure of a CR, as the results from Multi-CS conditioning tasks 

were derived from statistical comparisons following extinction, instead of from 

differences between conditions following threat acquisition. Any changes in 

evaluative judgements observed from these comparisons, however, were 

interpreted as behavioural indices of learning rather than indices of a non-

extinguished CR following extinction. While technically, observing a non-

extinguished CR suggests that conditioned responding/associative learning has 

occurred at some point in time, it does not provide direct evidence for it. To 

provide clarification of this issue, the replication focused on disentangling the 

extent to which the paradigm can measure the acquisition of threat related CRs 

as well as their extinction. To do so, we measured ratings of valence and arousal 

following habituation, threat acquisition and extinction.  

 

Like some of the previous Multi-CS conditioning investigations (Bröckelmann et 

al., 2011; Rehbein et al., 2014, 2015) our analyses revealed that participants 

had no subjective awareness of the CS-UCS contingency. Our descriptive 

analyses suggested limited evidence for unaware conditioning, driven by high 

response variability across conditions in both valence and arousal ratings. 

Furthermore, we used linear mixed effects modelling to provide a generalisable 

quantification of the presence of learning and extinction indices, but we found 

no evidence for conditioned valence or arousal responses during either 

acquisition or extinction. This was the case in our main analysis which controlled 

for potential baseline habituation differences as well as when ordinal modelling 

was performed on the raw data (see Supplementary Materials 2). In addition, 
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unlike Rehbein et al. (2015), we demonstrated that the perceived contingency 

had no influence on valence and arousal ratings (see Supplementary Materials 3). 

These results, provide some support for the single process account of learning 

(Mertens & Engelhard, 2020) which argues that contingency awareness is a 

prerequisite for the development of a conditioned response. Nonetheless, it is 

also possible that our contingency awareness measure was not sensitive enough 

to detect a relationship between awareness and the rating data. 

 

Although our findings are consistent with evidence supporting the role of 

contingency awareness in threat learning (Dawson et al., 2007; Klucken et al., 

2009; Lipp & Purkis, 2005; Tabbert et al., 2011; Weidemann et al., 2016), it is 

still important to establish why at least some of the previous Multi-CS 

conditioning studies report differential CRs (Bröckelmann et al., 2013; Rehbein 

et al., 2015; Steinberg et al., 2012). These studies have observed significant CRs 

in experimental contexts that typically challenge the successful detection of 

conditioning, such as utilising a cognitively demanding task and employing 

offline behavioural measures that are generally considered to be less sensitive 

(Corneille & Mertens, 2020). In addition, these studies have reported effects 

following extinction training which is prone to rapid CR habituation (Dunsmoor et 

al., 2019; Leuchs et al., 2019). This suggests that some form of implicit 

processing effect that is large enough to be detectable is taking place. 

Consistent with previous research (Luck & Lipp, 2015a, 2015b; Wendt et al., 

2020), this implicit process appears to create evaluative CRs that are resistant to 

extinction.  

 

A potential reason for failing to detect differential CRs in the present study, as 

well as for the inconsistency in previous behavioural results from Multi-CS 

conditioning, may be the issue of generalisability and differences in the 

analytical strategies that drive inferences. It is highly probable that previous 

results about valence and arousal CRs, based on conventional analyses using data 

averaged up to participant level, simply do not generalise to a different set of 

stimuli of the same type. The p-values, test statistics and any subsequently 

drawn conclusions from such analyses can only apply to the stimulus set 

employed in the study (Westfall et al., 2017). Consequently, utilising a different 

set of similar stimuli can produce an effect in the opposite direction that is 
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driven by different levels of random item variability rather than by the 

experimental manipulation (Yarkoni, 2020). To account for this issue, our results 

were derived from a new set of face stimuli and design-appropriate, 

simultaneous modelling of the random variability observed at the item as well as 

the subject levels. Employing this approach increases the confidence that our 

findings can generalise to other populations of people and stimuli of the same 

type, and that the chance of observing a false positive is significantly reduced.   

 

It is also likely that reports of behavioural CRs following extinction training, 

derived from at least some Multi-CS conditioning studies are driven by a small 

proportion of participants. Through re-visualisation of the effects observed by 

Rehbein et al. (2014) (see Supplementary Materials 4) we indeed showed that 

participants were influenced by the experimental manipulation to a different 

degree, and sometimes in a divergent manner. This is in line with other 

investigations in standard conditioning protocols (Lonsdorf & Merz, 2017) 

showing that CRs are highly susceptible to individual differences. Our secondary 

analysis also revealed several other factors that can affect inferences and 

conclusions. We found that interpreting condition differences resulting from the 

experimental manipulation can be complicated by the presence of baseline 

differences between CS+ and CS- faces, at least in some individuals. We also 

showed that the choice of central tendency measure for assessing condition 

differences can be crucial in driving the direction of results. Furthermore, we 

demonstrated that visualising the data beyond the mean and including the full 

range of responses can contextualise the magnitude of effects but also guide 

analytical strategies. For example, comparing mean differences using a 

traditional t-test in the presence of outliers in the dataset by Rehbein et al. 

(2014), was found to produce potential condition differences. However, the 

presence of significant effects driven by outliers and slight changes in 

distributions were diminished when using a robust alternative, even with a tool 

that does not account for by-item variability (i.e., a t-test on trimmed means), 

(see Rousselet et al., 2017). These results highlight the utility of robust 

graphical tools in improving inferences through facilitating our understanding of 

underlying data patterns.  
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An additional factor that can affect replicability and should be considered is the 

measurement itself. Previous Multi-CS conditioning studies relied on interval or 

discrete SAM scales.  The present study used a 7-point Likert scale to assess 

subjective valence and arousal. This was done to avoid the use of a measure that 

can be less intuitive to participants (we assume that most participants are used 

to Likert scales these days, even in non-academic contexts). While there are no 

systematic investigations examining the comparative reliability and validity of 

SAM and standard Likert scales, it is reasonable to assume that no drastic 

discrepancies should be present since both measure ordinal responses. The 

differences in the scale ranges also should not have posed a significant problem 

since previous research has demonstrated minimal changes in reliability between 

7 and 9-point scales, at least in Likert measures (Preston & Colman, 2000). 

Likert scale responses, however, are typically subject to participant response 

bias patterns (i.e., a tendency to use neutral values or extremes), (Sung & Wu, 

2018). This was potentially the case in our data, as we observed that a large 

proportion of responses belonged to the neutral response category for valence 

ratings and to the not arousing response categories for arousal ratings, even 

after the conditioning manipulation was applied.  Response biases of this type, 

therefore, may disrupt the detection of potential effects. In contrast, interval 

measures, such as visual analogue scales, may offer a more sensitive alternative, 

as they are suggested to increase the likelihood of obtaining a more exact 

measure and to capture a greater variability in responses (Reips & Funke, 2008; 

Sung & Wu, 2018). Evidence for such improved sensitivity in the context of Multi-

CS conditioning is unconvincing, since the only study using an interval scale 

found no significant condition differences (although a marginally significant 

valence effect was reported), (Rehbein et al., 2014). Furthermore, in this study, 

the original ordinal SAM scale was transformed to an analogous scale. However, 

since no details were available regarding how the – 300 to 300 continuous values 

were modified within a 9-point pictorial representation scale, it is unclear 

whether the SAM interval measure was truly interval. Nonetheless, determining 

whether response variability can be increased using an interval scale, and 

whether this would facilitate the detection of CRs using Multi-CS conditioning 

would be beneficial for understanding the role of measurement in unaware 

conditioning. 
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2.4.1 Future recommendations 

Based on our findings, we provide several recommendations focusing on 

technical, methodological, and analytical factors that can improve inferences 

from Multi-CS conditioning. Our first recommendation is related to increasing 

clarity when defining concepts and their measurement. In the general 

conditioning literature, the use of measures that may not assess the underlying 

construct that they intended to measure fuels and perpetuates the debate 

regarding the role of contingency awareness in conditioning. In the context of 

Multi-CS conditioning, this problem is aggravated by the poor differentiation 

between the processes of learning and extinction. It is therefore crucial for 

future studies to clearly distinguish between measures of associative learning 

and acquisition of a CR, and of extinction and the extinguishment of the CR. 

Consequently, conclusions based on inferences drawn from statistical tests 

should reflect as closely as possible the construct that was intended to be 

measured. This would ease comparisons between studies and facilitate 

quantification of other factors that may be relevant when attempting to elicit 

conditioning without awareness. 

 

Second, efforts for improving replicability of conditioning effects in the absence 

of awareness using multiple CSs should focus on ensuring generalisability of 

inferences beyond single studies and minimising the occurrence of false 

positives. This can be achieved by moving away from analytical strategies relying 

on subject-level aggregated data and towards employing design-appropriate 

modelling of random variability across subjects as well as items. In addition, 

whenever possible findings should be accompanied by transparent data 

visualisation at the participant rather than average level, as this can facilitate 

understanding of the underlying distribution and response variability and guide 

analytical decisions and interpretation.  

 

Finally, we recommend that future studies focus on establishing a reliable and 

sensitive offline measure of behavioural CRs, to ensure that the processes 

elicited through the experimental manipulation are measured as accurately as 

possible. We encourage the use of measures that reflect more contemporary 

graphical interfaces that are intuitive to participants over the use of outdated 
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measures of emotional constructs, although it is worth noting that this is not a 

problem specific to this paradigm. In fact, the original SAM scale paper (Bradley 

& Lang, 1994) was cited nearly 5000 times in the past 5 years alone (Google 

Scholar search), suggesting its continuous and wide-spread use. Nonetheless, 

there are no recent investigations examining its validity and reliability. 

Consequently, relying on measures due to their popularity rather than validity, 

can prove detrimental for measuring rapidly habituating processes and small 

effects. Since Likert scales can pose an additional set of problems relating to 

response biases and poor response variability, future work should focus on 

examining the utility and sensitivity of continuous measures, such as visual 

analogue scales in measuring associative learning processes using Multi-CS 

conditioning.  
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2.5 Chapter 2 Supplementary Materials  

2.5.1 Supplementary Materials 1: Random effects summaries 
derived from mixed models 

 
Valence 
 
Supplementary Table 1 

Summary of fixed estimates and random effect variance for the valence model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
 
 
 
 
 

  Mean Valence 

Predictors Estimates CI p 

(Intercept) -0.10 -0.22 – 0.02 0.091 

Experimental Phase 0.03 -0.04 – 0.10 0.375 

Stimulus Type -0.01 -0.09 – 0.08 0.857 

Interaction -0.04 -0.16 – 0.08 0.530 

Random Effects 

σ2 1.0667 

τ00 Subject 0.0506 

τ00 Item 0.0631 

τ11 Subject: Phase 0.0033 

τ11 Subject: Stimulus Type 0.0328 

τ11 Subject: Interaction 0.0019 

τ11 Item: Phase 0.0065 

τ11 Item: Stimulus Type 0.0098 

τ11 Item: Interaction 0.0001 

N Subject 23 

N Item 104 

Observations 4784 

Marginal R2  0.000  
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Supplementary Figure 1 

By-subject and by-item random coefficients and intercept for the valence 
model. 
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Arousal 
 
Supplementary Table 2 

Summary of fixed estimates and random effect variance for the arousal model. 
 

  Mean Arousal 

Predictors Estimates CI p 

(Intercept) -0.18 -0.36 – 0.01 0.069 

Experimental Phase 0.09 0.00 – 0.18 0.049 

Stimulus Type 0.01 -0.13 – 0.14 0.926 

Interaction -0.03 -0.18 – 0.12 0.685 

Random Effects 

σ2 1.6833 

τ00 Subject 0.0331 

τ00 Item 0.1977 

τ11 Subject: Phase 0.0002 

τ11 Subject: Stimulus Type 0.1091 

τ11 Subject: Interaction 0.0007 

τ11 Item: Phase 0.0139 

τ11 Item: Stimulus Type 0.0494 

τ11 Item: Interaction 0.0026 

N Subject 23 

N Item 104 

Observations 4784 

Marginal R2  0.001  

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Figure 2 

By-subject and by-item random coefficients and intercept for the arousal 
model. 
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2.5.2 Supplementary Materials 2: CLMM Modelling of the three-
phased rating data 

 
Due to the ordinal nature of the data, the rating data were analysed again using 

cumulative link mixed models (package ordinal). We examined the interaction 

between Stimulus Type (CS+/CS-) and Experimental Phase (Habituation, 

Acquisition, Extinction) predicts arousal and valence ratings. The models 

included arousal/valence ratings as the outcome variable, Stimulus Type and 

Experimental Phase and the interaction between them as the fixed effects. The 

random effect structure included Subjects and Items as random intercepts and 

by-subject and by-item random slopes for the Stimulus Type and Experimental 

Phase interaction. In each model, mean-centred (deviation coding) contrasts 

were used for the two categorical fixed effects. For the Experimental Phase 

fixed effect, the Habituation phase was used as the baseline level.  The“nlminb” 

optimizer was used to maximise the marginal likelihood function. Main effects 

and interactions were assessed using type II Likelihood-ratio test (package 

RVAideMemoire).  

 

The likelihood-ratio tests did not reveal any significant effects at the level of 

0.05 for either valence or arousal ratings (see Supplementary Table 3 and 

Supplementary Figure 3 and 4). In terms of arousal, these results suggest that 

the differences between Acquisition and Extinction observed using the LME 

modelling on habituation-baselined data are much smaller when and ordinal 

model is fitted to the data without baselining in respect to the Habituation 

phase. Therefore, it is possible that some minor baseline condition differences 

may exist during Habituation or that accounting for the ordinal nature of the 

data reduces the magnitude of observed differences. 

 

The predicted probabilities for each ratings category for valence and arousal 

across experimental phases and stimulus type can be visualised in Supplementary 

Figure 3A and 4A. For both CS+ and CS- stimuli and across experimental phases 

the predicted response probability for valence ratings was highest for ratings of 

3 and 4, suggesting that the stimuli were largely perceived as neutral in valence. 

For arousal, ratings below 4 had the highest probability, suggesting that the 

stimuli were largely perceived as not arousing. 
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Supplementary Table 3 

Type II Likelihood-ratio test of main effects and interactions.  

 LR Chisq Df P-value 
McFadenn 
Pseudo R²  

Negelkerke 
Pseudo R² 

Valence Ratings    0.0001 0.0005 

Experimental Phase 2.68 2.000 0.27   

Stimulus Type 0.19 1.000 0.65   

Experimental Phase X 
Stimulus Type 

0.44 2.000 0.80 
  

Arousal Ratings    0.0003 0.001 

Experimental Phase 5.19 2.000 0.07   

Stimulus Type 1.38 1.000 0.24   

Experimental Phase X 
Stimulus Type 

0.72 2.000 0.69 
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Supplementary Figure 3 

A summary of valence fixed effects. 

 
 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of valence ratings B) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. C) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. 
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Supplementary Figure 4 

A summary of arousal fixed effects. 

 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of arousal ratings B) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. C) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. 
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2.5.3 Supplementary Materials 3: Mediating role of perceived 
contingency on conditioned responding 

To determine whether conditioned responding is influenced by participants’ 

subjective perception of the CS-UCS contingency, a second set of LME modelling 

was performed for both valence and arousal, in which participant’s subjective 

report of the CS-UCS contingency was added as an interacting factor, similar to 

previous reports by Rehbein et al. (2015). Since the contingency awareness task 

was performed on a random subset of 24 CSs per participants, the modelling was 

performed by using only habituation-baselined rating data for these stimuli. 

Specifically, the models included a 2 Experimental Phase (Acquisition vs 

Extinction) by 2 Stimulus Type (CS+ vs CS-) by 2 Perceived Contingency (CS+ vs 

CS-) fixed effects design, with mean-centred contrasts for the two categorical 

fixed effect predictors. The models included by-subject and by-item random 

intercepts, together with by-subject and by-item random slopes for all main 

effects and interactions. Main effects and interactions were assessed using Type 

III Wald Chi Square tests. Those revealed no significant effects for either valence 

or arousal ratings (see Supplementary Table 4).  
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Supplementary Table 4 

Type III Wald Chi-square tests and R-squared values for the valence and arousal 

models and each of the fixed effects. 

 Chisq Df P-value 

Valence    

Experimental Phase 0.220 1.000 0.639 

Stimulus Type 0.006 1.000 0.937 

Contingency Report 0.124 1.000 0.725 

Experimental Phase X Stimulus Type 0.008 1.000 0.928 

Experimental Phase X Contingency Report 0.216 1.000 0.642 

Contingency Report X Stimulus Type 0.005 1.000 0.942 

Experimental Phase X Stimulus Type X Contingency 
Report 

0.145 1.000 0.703 

Arousal    

Experimental Phase 0.157 1.000 0.692 

Stimulus Type 0.565 1.000 0.452 

Contingency Report 0.620 1.000 0.431 

Experimental Phase X Stimulus Type 0.378 1.000 0.539 

Experimental Phase X Contingency Report 0.126 1.000 0.723 

Contingency Report X Stimulus Type 0.001 1.000 0.981 

Experimental Phase X Stimulus Type X Contingency 
Report 

0.271 1.000 0.603 
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3 Chapter 3 - Oscillatory, behavioural and 
pupillary signatures of associative learning and 
extinction derived using visual blocked 
conditioning 

 

3.1 Introduction 

 
There has been an increasing amount of evidence suggesting that synchronised 

neural oscillations at different frequency bands may play an important role in 

supporting information processing and integration, by facilitating communication 

between brain regions (Keil & Senkowski, 2018). In the context of associative 

learning and extinction, rodent studies have demonstrated that oscillations 

within the theta frequency band (4-8 Hz) are important for coordinating activity 

across the fear network (Karalis et al., 2016; Lesting et al., 2011; McCullough et 

al., 2016). Local field potentials studies have revealed that theta synchrony 

between the basal amygdala (BA) and the medial pre-frontal cortex (mPFC) are 

linked to CS+>CS- discrimination during learning, while that between the lateral 

amygdala (LA) and the hippocampus (HPC) are associated with fear expression 

(Likhtik et al., 2014; Seidenbecher et al., 2003). Furthermore, theta coherence 

within and across the CA1 part of the HPC, the infralimbic cortex (IL) and lateral 

amygdala (LA) correlate with behavioural CRs, i.e., conditioned freezing in 

rodents (Lesting et al., 2013). During extinction, theta synchronisation between 

the CA1, LA and IL, is shown to decrease, with this pattern of decreased 

oscillatory activity being driven by top-down influences of the mPFC (Lesting et 

al., 2011). 

 

The literature on oscillatory dynamics of learning and extinction in humans, 

however, is relatively sparse due to a number of technical and design constraints 

that can limit the range of mechanisms that can be studied.  For instance, while 

detecting signal originating from the amygdala has been a challenge in fMRI 

conditioning research (Fullana et al., 2016, 2018), detection of subcortical 

activity with MEG can be even more problematic, for several reasons. First, 

reliably localising amygdala sources can be difficult due to its small size and 
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deep location (Tzovara et al., 2019), especially since the spatial resolution of 

MEG decreases considerably with increasing distance from the sensors (Meyer, 

Rossiter, et al., 2017). A common pitfall that can further complicate localisation 

of activity from weak sources in deep structures using MEG is leakage from other 

regions. For example, visual paradigms tend to elicit strong, evoked occipital 

responses that can leak into other sources, thereby masking their signal (Mills et 

al., 2012). In addition, simulation studies have shown that detecting deep 

structure activity using MEG requires a very large number of trials to achieve an 

adequate SNR, (Quraan et al., 2011a; Steinberg et al., 2013; Tzovara et al., 

2019). This is also the case when investigating oscillatory dynamics, which 

requires the simultaneous examination of trial-level source activity along the 

time and frequency domains (this will be discussed in more detail below). The 

use of many trials in conditioning studies, however, is uncommon since 

conditioned responding habituates rapidly over repeated CS presentations 

(Lonsdorf et al., 2017; Ojala & Bach, 2020). 

 

Due to these technical and design limitations, only a handful of MEG conditioning 

investigations examine or report activity in subcortical structures or investigate 

the oscillatory signatures of learning (Balderston et al., 2014b; Lithari et al., 

2015, 2016; Moses et al., 2007; Tzovara et al., 2019). Instead, the majority of 

E/MEG research has focused on the learning and extinction indices in sensory 

regions reflected by evoked brain activity (Bröckelmann et al., 2013; Dolan et 

al., 2006; Kluge et al., 2011; Lithari et al., 2015, 2016; Moratti et al., 2006, 

2017; Moratti & Keil, 2005; Moses et al., 2005; Tesche et al., 2007). This has left 

a significant gap in our understanding of the temporal and oscillatory dynamics 

of learning within the fear network. As such, the goal of this study was to design 

a multi-trial task and test its utility for examining the cortical and subcortical 

oscillatory dynamics of associative learning. The design of the paradigm was 

informed by the existing body of MEG investigations attempting to localise deep 

structure activity during emotion processing, as well as by the current E/MEG 

evidence of the neural correlates of learning and extinction. These are reviewed 

below.  

 

In terms of deep source localisation, an accumulating body of simulation and 

empirical research has focused on the optimisation of methodological and 
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analytical parameters that may allow for the reliable detection of activity deep 

in the brain using MEG. For instance, it has been shown that coupled with a 

sufficient number of trials, source reconstruction tools such as minimum-norm 

estimation (MNE) and beamforming can successfully detect activity originating 

from the amygdala and the HPC (Attal & Schwartz, 2013; Mills et al., 2012). 

More recent research has transitioned towards a modelling approach of source 

reconstruction, which attempts to estimate whether models including deep 

sources explain the data better than a purely neocortical model (i.e., generative 

models), (Meyer, Rossiter, et al., 2017; Tzovara et al., 2019). In addition, 

technological advances are now beginning to allow for more precise spatial 

measurements, using high-precision approaches such as individualised 3D head 

casts and wearable on-scalp systems (Meyer, Bonaiuto, et al., 2017; Tierney et 

al., 2020).  

 

Only recently, a high-precision MEG has been implemented (Tzovara et al., 2019) 

in the study of the neural correlates of conditioning. The remainder of the 

existing literature has so far mostly focused on delivering a high number of trials 

and/or on the use of beamforming, MCE, and MNE estimation tools for detecting 

deep brain sources (Balderston et al., 2014b; Lithari et al., 2016; Moses et al., 

2007). One of the first studies reporting amygdala activity used a partial 

reinforcement protocol (Moses et al., 2007). They showed that specifically 

during acquisition, the amygdala exhibited a stronger peak amplitude around 

300 ms for the unpaired CS+ than the CS-. However, these findings could not be 

replicated in a paradigm employing a shorter CS presentation (Tesche et al., 

2007), suggesting that trial duration may be another factor influencing the 

detection of amygdala activation. Furthermore, Moses et al. (2007) 

demonstrated that amygdala activity for the unpaired CS+ was linked to both the 

onset and offset of the CS+, supporting the role of the amygdala in the encoding 

of affective, contingency information as well as in anticipatory processes. Such 

evoked bi-phasic amygdala activity in response to CS+ compared to CS- has been 

elicited during threat acquisition without awareness as well (Balderston et al., 

2014b). Neural activity in other subcortical structures has been reported using 

fearful faces as CSs (Lithari et al., 2015). Directed functional connectivity 

showed that conditioning mediated thalamic connections to the fusiform and 

parahipocampal gyrus. However, information flow to the amygdala from the 
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occipital areas, fusiform and parahipocampal gyri was not driven by threat 

acquisition as this connectivity pattern was observed across all phases and thus, 

was potentially driven by processing of the fearful stimuli. 

 

The temporal dynamics of other well-established regions in the fear network are 

not yet well understood as the limited number of MEG conditioning 

investigations (N ~ 20) do not report consistent patterns of activation. For 

example, Tesche et al. (2007) reported greater activation in the mPFC during 

acquisition in latencies starting around 350 ms to 550 ms for unpaired CS+ 

compared to CS-. This activation was suggested to be linked to anticipation of 

the UCS. Activation was also greater for unpaired CS+ compared to paired CS+ at 

latencies following UCS onset, suggesting that this activity may reflect an 

omission response. In addition, differential activity in the left orbito-frontal 

cortex has been observed but only for individuals who exhibited declarative 

heart rate changes to the CS+ during acquisition (Moratti & Keil, 2005). Studies 

using multiple CSs to elicit conditioning have reported an increased activation 

for CS+ during learning compared to habituation in the right inferior frontal PFC, 

around 50-80 ms post CS onset. However, this effect was non-significant when 

comparing CS+ and CS- trials during acquisition (Rehbein et al., 2014). A right 

dorsolateral PFC and pre-motor cortex activation at a latency between 87-118 

ms post CS onset, has also been reported in response to CS+ compared to CS- 

during learning, but only for individuals with high and not low trait anxiety 

(Rehbein et al., 2015). Evidence regarding the temporal dynamics of extinction 

processes is even sparser, as only a small number of MEG studies included an 

extinction phase. In studies that directly compare CS+ and CS- during extinction, 

a differential vmPFC  in evoked steady state response (SSR) activity to CS+ has 

been observed  (Moratti et al., 2017), although reports of no differential source 

activity during extinction are also available (Lithari et al., 2015; Rehbein et al., 

2015). 

 

More consistent evidence of differential activation during threat acquisition have 

been reported in sensory regions. For visual paradigms, studies have reported 

greater activation post CS onset for CS+ than CS- in the occipital areas and the 

fusiform gyrus, across SSR (Lithari et al., 2015; Moratti et al., 2006, 2017; 

Moratti & Keil, 2005), and evoked activity paradigms  (Dolan et al., 2006). The 
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onset of these effects, however, has been dependent on the type of protocol 

employed. In SSR studies using gratings as CSs presented with long presentation 

times (~ 4 -13 seconds), differential activation has been reported at time 

windows starting after 1.3 seconds post-CS onset  (Moratti et al., 2006; Moratti & 

Keil, 2005). In contrast, evoked activity paradigms using faces, presented for a 

short duration (800 ms) elicit visual responses much earlier, around 150 ms 

(Balderston et al., 2014b; Dolan et al., 2006; Rehbein et al., 2015). This 

activation pattern is consistent with the N/M170 response suggested to underlie 

face perception (Liu et al., 2002). However, the detection of M170 has not been 

consistently associated with condition differences, with studies reporting both 

the presence (Dolan et al., 2006; Rehbein et al., 2015) and the absence 

(Balderston et al., 2014b) of an M170 CR.  

 

Similarly, EEG evoked activity studies examining the N170 component have 

found no evidence of condition differences (Stolz et al., 2019), while others 

have reported both decreased (Sperl et al., 2021) as well as increased (Camfield 

et al., 2016) activity in response to the CS+. Such inconsistency may be 

explained by procedural differences, awareness, and the type of CSs that were 

used. More consistent findings of conditioned responding in the EEG literature 

have been observed during later time windows. Specifically, enhanced evoked 

activity towards CS+ has been reported (Ferreira de Sá et al., 2019; Pastor et 

al., 2015; Sperl et al., 2021) in time windows associated with the late positive 

potential (LPP), suggested to reflect high arousal and stimulus salience (Sperl et 

al., 2021). 

 

In the auditory domain, MEG conditioning studies have reported enhanced 

activity in regions such as Heschl’s gyrus in response to CS+ than CS- stimuli. In 

Multi-CS conditioning tasks, these CRs have been observed in both in early (20-50 

ms) and mid (100 – 150 ms) latencies (Bröckelmann et al., 2011, 2013). In 

standard conditioning protocols effects have been reported at mid (85- 115 ms) 

and late (180 – 270 ms) latencies, although an early component (30-50 ms) that 

exhibited an amplitude reduction in response to the CS+ has also been observed. 

(Kluge et al., 2011). Furthermore, an enhanced differential activation has been 

observed in partial reinforcement protocols, in response to the UCS during the 

unpaired CS+ presentation (Moses et al., 2005; Tesche et al., 2007). However, it 
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is likely that the latter reflects an omission response like that observed in 

auditory studies where an unexpected sound omission elicits post-omission 

auditory activity (Raij et al., 1997). 

 

The literature on the oscillatory signatures underlying threat learning and 

extinction using MEG is even more limited. Lithari et al. (2016) reported 

increased alpha and beta power for CS+ compared to CS- during learning in the 

somatosensory cortex and the insula. More recently, Tzovara et al. (2019) 

provided direct evidence for the feasibility in detecting deep structure sources 

using high precision MEG. Their generative modelling suggested that models 

including subcortical sources explained the data better than those including 

cortical sources only.  Their analysis demonstrated reduced theta power around 

130 ms post CS onset in the amygdala for CS+ compared to CS- trials during 

acquisition. In addition, they found no significant differences during extinction. 

Neural synchrony between the amygdala and the HPC was also found to increase 

during learning. When examining average oscillatory power, theta but not 

gamma power predicted threat in the form of lower theta for CS+ than CS- 

during learning, in both the amygdala and the HPC. However, this pattern is in 

the opposite direction of that reported in the rodent literature. One explanation 

for this cross-species discrepancy is that theta oscillations may have a divergent 

functional role in humans. According to the authors, however, it is also possible 

that the divergent results may be driven by procedural differences. Specifically, 

they argued that the greater theta power in response to CS- might have been 

elicited by the absence of an UCS, serving as a reward.  

 

The sparse number of studies investigating the oscillatory mechanisms of 

conditioning in humans can be partly explained by the methodological 

constraints of the conditioning paradigm, that are at odds with the analytical 

demands of time-frequency decomposition. As mentioned earlier, standard 

conditioning tasks employ a small number of trials to elicit learning and 

extinction, due to amplitude reductions resulting from repeated stimulus 

presentation (Lonsdorf et al., 2017; Ojala & Bach, 2020). Yet, 

electrophysiological measures often benefit from a larger number of trials in 

reducing the SNR. For example, in the analysis of event-related fields, an 

average over trials is typically computed, averaging out random noise and 
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activity that is not phased-locked to the stimulus onset (Herrmann et al., 2014). 

With increasing number of trials, such random activity approaches zero, 

retaining only the evoked response (Roach & Mathalon, 2008). Examining activity 

over time and at different frequencies, that varies on a trial-by-trial basis (i.e., 

induced activity not time-locked to the stimulus onset), (Herrmann et al., 2014) 

requires trial-level time-frequency decomposition. It would therefore be 

expected that even a larger number of trials than that needed for ERF analysis is 

required to detect a reliable oscillatory signal from trial-level computations. For 

example, Cohen (2016) recommended utilising 100 trials per condition for time-

frequency investigations. More importantly, trial number is crucial for accurate 

source localisation of deep structure activity. For example, simulation studies 

have shown that localisation accuracy of hippocampal activity is relatively poor 

(~11 mm away from the source) even with 50 trials but substantially increases 

when 100 trials are used, with 150 trials providing the optimal SNR (Quraan et 

al., 2011a)  

 

In most MEG studies employing a large number of trials to study conditioning 

mechanisms, researchers often opt for repeating the same single CS+ and CS- 

stimuli many times (>=100 trials), (Dolan et al., 2006; Kluge et al., 2011; Moses 

et al., 2005, 2007; Tesche et al., 2007; Tzovara et al., 2019). This method, 

however, can pose a significant risk for habituation of the CR. An alternative 

approach that attempts to resolve this issue is Multi-CS conditioning (Junghöfer 

et al., 2017; Rehbein et al., 2014, 2015; Steinberg et al., 2013). In this task, 

conditioning is elicited using many different CSs (40-60 per CS type) in an 

attempt to prevent habituation to the stimuli by limiting repetitions and 

increasing the number of unique CSs. As such, this method relies on establishing 

a CR without awareness. Yet, there is little agreement in the literature 

regarding the feasibility of eliciting CRs in the absence of awareness. For 

example, a recent systematic and meta-analytic review concluded that there is 

little evidence for unaware conditioning since methodological quality and a 

number of factors including trial order effects and publication bias question the 

reliability of evidence on unaware conditioning (Mertens & Engelhard, 2020). A 

potential solution to the limitations of the above-mentioned approaches would 

be to obtain a better balance between stimulus repetitions and the number of 

unique stimuli. This may minimise the negative effects of habituation and poor 



97 
 
contingency awareness and enhance the likelihood of detecting 

electrophysiological signatures of threat learning. 

 

The aim of this study was to  test the utility of a novel paradigm in allowing for 

the characterisation of the role of theta band oscillations in cortical and 

subcortical regions previously identified as underlying threat learning and 

extinction (Karalis et al., 2016; Lesting et al., 2011; McCullough et al., 2016). 

We focused on three key analytical and design components that can optimise the 

likelihood of detecting reliable signal from deep sources. First, we employed a 

visual blocked conditioning task in which learning and extinction were 

established several times, in 9 consecutive blocks, each containing the three 

standard conditioning phases (Habituation, Acquisition and Extinction) but a 

different set of neutral faces serving as CSs. Therefore, our paradigm attempts 

to maximise SNR through a large number of trials, minimise repetition-related 

habituation effects through a lower number of repetitions per unique CS, while 

increasing the likelihood of establishing awareness of the CS-UCS contingency 

through a small number of unique CSs per block. Employing a larger number of 

trials through using a greater range of CSs, however, also requires adequate 

consideration of item-related random variability, to ensure that any effects are 

generalisable not only to populations of subjects but also items of the same 

type. As such, following recommendations by Barr et al. (2013), our analyses 

used design-appropriate mixed modelling and wherever possible, accounted for 

both by-subject and by-item random variability.   

 

Second, based on previous recommendations suggesting the use of subtraction of 

control conditions to reduce the impact of leakage from other regions with 

stronger activity patterns (Mills et al., 2012; Quraan et al., 2011a), we 

subtracted source activity during Habituation from that during Acquisition and 

Extinction. Finally, similar to previous research demonstrating the feasibility in 

detecting subcortical activity using MEG (Attal et al., 2007; Attal & Schwartz, 

2013; Dumas et al., 2013), we maximised the accurate estimation of neural 

currents in deep sources, by using anatomical segmentation of limbic structures 

for each participant. Furthermore, we used depth weighted MNE for source 

reconstruction. The benefit of MNE is that unlike beamforming approaches which 

assume that sources are not temporally correlated, this method is not affected 
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by correlations between sources (Sánchez & Halliday, 2013). In addition, unlike 

standard MNE which suffers from biases towards superficial sources, depth-

weighted MNE is suggested to increase sensitivity in detecting deep brain activity 

(Attal et al., 2012). 

 

We measured conditioned responses using multiple outcome measures, including 

MEG (sensor level ERFs and source level time frequency decomposition), pupil 

size and offline behavioural ratings (valence and arousal). Consistent with the 

animal literature, we expected to observe an increase in theta power for CS+ 

relative to CS- trials during learning, across the fear network.1 We focused on 

regions-of-interest (ROIs) including the amygdala, HPC, thalamus, the rostral and 

caudal ACC and insula. Since human electrophysiological studies (Dolan et al., 

2006; Lithari et al., 2015; Moratti et al., 2006, 2017; Moratti & Keil, 2005; 

Rehbein et al., 2014) have also identified sensory regions as differentially 

responding during learning, we expected to see an increase in theta power in 

the lateral occipital cortex and the fusiform gyrus. Based on previous E/MEG 

findings demonstrating the potential sensitivity of the M170 component to the 

encoding of face stimuli during conditioning (Camfield et al., 2016; Rehbein et 

al., 2015; Sperl et al., 2021), we expected to see evidence for such effects 

around 200 ms post-CS onset. In line with recent evidence suggesting that the 

mPFC in human conditioning may be involved in safety processing (Harrison et 

al., 2017), we predicted an increased theta power in the mPFC (lateral and 

medial OFC) in response to safety cues (CS- compared to CS+) during learning, 

and a diminishing difference during extinction. We also expected a decrease in 

differential CS+>CS- activation in the rest of the fear network, during extinction. 

Finally, since there is some evidence to suggest that human conditioning involves 

oscillatory activity within other frequencies (Lithari et al., 2016), we performed 

a set of exploratory analyses focusing on understanding the potential additional 

contributions of other frequency bands (i.e., alpha, beta, and gamma) across the 

whole brain. In terms of behavioural and pupillary signatures, we expected to 

observe a larger pupil size, lower valence and an increase in subjective arousal 

when comparing CS+ to CS- trials during learning and a reduction in this 

 
1 This hypothesis was generated prior to the findings of Tzovara et al. (2019) who reported the 

opposite activation pattern. 
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difference during extinction. Table 4 provides a summary of the main research 

questions the analyses performed to test our hypothesis and the main 

conclusions drawn from these.  
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Table 4 

A summary of main research questions and related hypotheses and analyses. 

Research question(s) Hypotheses Outcome 

Measure(s) 

Analysis type Main conclusion 

Is the M170 component 

sensitive to conditioning using 

face CSs? 

 

Is there evidence for sensor-

level conditioning across 

sensors and over time? 

Differences between 

CS+ and CS- conditions/ 

peak ERFs will be 

evidenced around 200 

ms post CS onset 

MEG sensor 

level: ERFs 

0.01 – 20 Hz 

Cluster-based Monte- Carlo 

permutation across time 

and sensors to: 

-  examine differential 

M170 responses in peak 

occipital sensors 

-  confirm that the 

paradigm successfully 

elicits M170 due to the use 

of face stimuli 

-  examine differential 

responses over time and 

across sensors 

The task successfully elicits 

an M170 component, but this 

is not sensitive to the 

conditioning manipulation.  

No condition differences in 

any sensors or time points 

Is there evidence for theta 

power differential activity 

during conditioning and 

-  Increased theta 

power across the fear 

network and occipital 

MEG:  

-  Source level 

 

-  Monte- Carlo permutation 

across time, theta 

 

-  No evidence for 

conditioning in ROIs in any of 



101 
 

extinction across the fear 

network and sensory regions? 

Is there evidence for theta 

power differential activity 

during conditioning and 

extinction across the fear 

network and sensory regions? 

regions for CS+ >CS- 

during learning. 

-  Increased theta 

power in the lateral 

and medial OFC in 

response to CS- >CS+ 

during learning 

-  Reduction of CS+>CS- 

differences during 

extinction in ROIs 

time 

frequency 

decomposition 

in ROIs 

 

-  Source level 

mean theta 

power across 

time in ROIs 

 

frequencies in ROIs to 

detect potential time and 

frequencies that may be 

sensitive to learning and 

extinction.  

 

-  LME modelling of mean 

theta power across time 

and frequencies to further 

examine potential 

condition differences. Mean 

power over time was 

computed since the 

permutation test did not 

show any significant time 

points or frequencies. 

the frequencies or time 

points 

 

 

 

 

-  No evidence for 

conditioning in ROIs in mean 

theta power 

Is there evidence for 

differential power activity 

during conditioning and 

extinction in other brain 

regions and frequency bands? 

Exploratory analyses 

with no concrete 

predictions 

MEG source 

level:  

Monte- Carlo permutation 

across time, frequencies, 

and brain regions to 

explore potential condition 

differences across the brain 

and frequencies 

No evidence for conditioning 

across the whole brain and 

other frequency bands 
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Is there evidence for 

conditioning and extinction in 

pupil size? 

Larger pupil size for 

CS+>CS- during 

learning, reduction 

during extinction 

Pupil size LME modelling to examine 

potential condition 

differences. 

Overall pupillary 

constriction, potentially 

reflecting the pupillary light 

reflex. 

Greater constriction during 

acquisition than extinction 

Is there evidence for 

conditioning and extinction in 

valence and arousal? 

Lower valence and 

higher arousal for 

CS+>CS- during 

learning, reduction 

during extinction 

Valence and 

arousal 

ratings 

LME modelling to examine 

potential condition 

differences in habituation-

baselined data. 

 

CLMM modelling on raw 

data to account for the 

ordinal nature of the data 

Baseline valence differences 

that diminish following 

baseline correction, No 

valence differences during 

learning and extinction 

Some evidence of 

conditioning in arousal 

ratings, reflected by a 

greater arousal during 

acquisition than extinction 

and for CS+ compared to CS- 

faces, but no interaction 

 

 

 



103 
 

3.2 Methods 

 

3.2.1 Participants 

Twenty English native speakers aged between 18 and 30 took part in the study 

(see Table 5 for demographic information). All participants had normal or 

corrected-to-normal vision, normal hearing, no metal on their body and no 

diagnosis of psychological or neurodevelopmental disorders. Pupil data from one 

participant is missing due to a technical problem during data saving. Participants 

were recruited from the University of Glasgow’s Subject Pool. They provided a 

written informed consent to take part in the study and received £6 per hour for 

their time. The study was approved by the College of Science and Engineering 

ethics committee (300170261).  

 

Table 5 

Demographic information. 

 

 

 

3.2.2 Psychological Assessment 

Participants were asked to complete a range of self-report measures of 

psychological functioning. These included, 1) The Emotion Regulation 

Questionnaire (ERQ),(Gross & John, 2003), 2) the Spielberger State Trait Anxiety 

Inventory (STAI), (Spielberger et al., 1983) 3) the Raven’s Standard Progressive 

Matrices (RSPM), (Raven, 1941) providing a measure of non-verbal cognitive 

ability and 4) the Symptom Checklist-90 Revised (SCL), (Vaurio, 2011) which 

provides a measure of  general psychopathology. These were included in a 

Sex 

N  
(N 

Pupil*) 

Mean 
Age 

  

Age 
Range 

  

Mean 
STAI-Trait 

 (SD) 

Mean 
STAI-
State  
(SD) 

Mean ERQ 
Reappraisal 

(SD) 

Mean ERQ 
Suppression 

(SD) 

Mean RSPM 
(SD) 

  

 
Females 

 
11 (10) 

 
22  

 
18-30 

 
44.2 (7.5) 

 
37 (9.3) 

 
5.7 (0.7) 

 
3.6 (0.9) 

 
59.8 (18.4) 

 
Males 

 
9 (9) 

 
21.2 

 
18-26 

 
37.7 (7.3) 

 
29.3 
(3.6) 

 
5.2 (0.9) 

 
3.4 (1.08) 

 
75.9 (14.3) 



104 
 
secondary analysis examining the potential mediating role of psychological 

factors on conditioned responding, although we found limited evidence for this 

(see Supplementary Materials 4). In addition, participants reported their 

demographic information, such as age sex and years of education. 

 

3.2.3 Stimuli 

Conditioned stimuli (CSs) were 36 neutral, frontal view faces (18 females) of 

White background, obtained from the Chicago Face Database (Ma, Correll & 

Wiitenbrink, 2015). Stimuli from the database are normed both in terms of 

physical and subjective properties of each facial identity (see Ma et al., 2015). 

The stimulus selection process ensured that female and male faces were similar 

in levels of attractiveness or emotionality (happiness, anger and fear). Stimuli 

were colour photographs scaled to 340 x 340 pixels.  For each subject, 18 of the 

faces were randomly selected and assigned as CS+ while the remaining 18 served 

as CS-.  The assignment of faces as CS+ and CS- was counterbalanced across 

participants. Specifically, for each block a different set of 4 CSs were randomly 

selected from the total of 36 faces. Two of these were randomly assigned to the 

CS+, and the remaining two – to CS- condition. This procedure was repeated 10 

times, creating 10 stimulus sets for each block. An additional 10 sets were 

created by swapping the CS+/CS- assignment of the original 10 sets. Stimuli were 

presented on a mirrored projection screen with width of 80 cm and height of 65 

cm, at a distance of 160 cm. 

 

A 200 ms alarm sound of approximately 85-90 dB was used as the Unconditioned 

Stimulus (UCS). The UCS was selected based on a separate auditory norming 

study (N = 14, see Supplementary Materials 5 and https://osf.io/u6qza/ for 

results, stimuli, and task and analysis code). The UCS was delivered through 4m 

plastic tubes and earpieces with band pass frequency of 4 kHz. 

 

3.2.4 Procedure 

The experiment was conducted within two separate sessions. In session A, 

participants completed the psychological assessment measures and underwent 

T1-weighted MRI scan if they did not already have one available for access. In 

https://osf.io/u6qza/
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session B, participants completed the blocked conditioning task while MEG and 

eye tracking data were recorded. Session A was conducted at least two days 

before or following Session B, to avoid MRI-induced magnetic noise (J. Gross et 

al., 2013). The task was comprised of 9 blocks, each containing three 

experimental phases – Habituation, Acquisition, and Extinction (see Figure 10). 

Each block contained a different subset of 2 CS+ and 2 CS- faces, randomly 

selected from the total randomised set. Each CS was presented 9 times (a total 

of 162 trials per condition across blocks) on a gray screen, together with a black 

fixation cross, positioned at the centre of the image (the nose) for 850 ms. The 

inter-trial interval (ITI) had a duration of 1300 ms ±300 ms and was accompanied 

by a black fixation cross. To minimise ocular artefacts, participants were asked 

to maintain fixation at the centre of the screen at all times. Trial order was 

randomised across participants with the restrictions that the first trial was 

always a CS- and no more than two trials of the same stimulus type (e.g., a CS+) 

could occur consecutively.  To maintain subjects’ attention during each block, 

participants were required to respond to two catch trials by pressing a button on 

the response pad. Catch trials were two additional faces surrounded by a green 

frame, randomly selected from a total of 8. Participants were instructed that 

they will be presented with a series of faces that they have to view while 

maintaining fixation at the centre of the screen and respond to faces surrounded 

by a green frame. During the acquisition phase, CS+ trials were paired with the 

UCS, which occurred 650 ms post CS+ onset for 200 ms, while CS- trials were 

never paired with the UCS. During the habituation and extinction phases, CSs 

were presented alone without the UCS. At the end of each phase, participants 

completed a face rating task where they were asked to rate each CS on valence 

and arousal using an 8-point Likert scale (1 not at all pleasant/arousing to 8 

extremely pleasant/arousing). At the end of the Acquisition phase, participants 

also rated the UCS on valence and arousal. Note that for arousal, participants 

were instructed to only rate stimuli in terms of the negative aspects of arousal 

associated with feelings of fear or unpleasant experience. Task scripts are 

available at https://osf.io/nxt68/.  

 

 

 

https://osf.io/nxt68/
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Figure 10 

Visual Blocked Conditioning block example. 

 

 

 

Note. Permission to re-use the sample of four images from the CFD (Ma et al., 

2015) was obtained from the copyright holder, the University of Chicago, Center 

for Decision Research. 

 

3.2.5 Data acquisition  

 
Pupil response was recorded using EyeLink 1000 long-range eye tracker. Data 

were recorded continuously during each trial presentation, with initial sampling 

rate of 1000 Hz. MEG data were acquired in a magnetically shielded room using a 

whole-head, 248-channel system (MAGNES® 3600WH, 4D-Neuroimaging, CA, 

USA).  Prior to the MEG recording, five coils were attached to the participant’s 

head. These coils were then used to digitise the head shape (FASTRACK, 



107 
 
Polhemus Inc., VT, USA) of each subject. This was done to allow for co-

registration with participants’ T1-weighted MRI (3D MPRAGE) as well as to 

monitor head position before and after each block.  

 

3.2.6 Pre-processing 

 
3.2.6.1 Pupil  

Initial pre-processing was performed in Matlab 2017a using functions provided by 

Urai et al. (2017) in combination with the Fieldtrip Toolbox (Oostenveld et al., 

2011). Raw .edf files were converted to .asc format (edf2asc) and data were 

reduced to trials with a length of -100 to 1700 ms with respect to CS onset.  

EyeLink-identified and peak-detected blinks (>3SD from mean pupil size) were 

padded with 200 ms on either side and linearly interpolated (blink_interpolate). 

Data were exported to R for further pre-processing. First, data were down 

sampled to 100 Hz by taking every 100 ms of data and discarding remaining data 

points. Any remaining missing data points were linearly interpolated using 

package imputeTS. Next, pupil data were log10 transformed and multiple linear 

regression was performed for each participant (log pupil size as outcome, and X 

and Y eye position as predictors) in order to remove small eye movement-related 

artifacts. The residual pupil size during each trial and time point was extracted 

from the regressions and used in subsequent analyses. Log10 pupil size change 

from baseline (mean pupil size between -0.1 and 0 s) was then calculated for 

each trial and time point using the formula change = pupil size-baseline.  

Finally, to obtain a measure of proportional change from baseline we calculated 

the inverse of the baselined pupil data. The resulting data were averaged across 

CS+ and CS- trials. To examine effects in relation to the conditioned response 

(CR), for each subject, data were averaged across the entire time window 

before UCS onset (0-0.6s)  

 

3.2.6.2 MEG  

Raw data were pre-processed using the Fieldtrip Toolbox (Oostenveld et al., 

2011) in Matlab 2017a. Power line noise at 50 Hz was removed using a discrete 

Fourier transform. Environmental noise was reduced by performing principal 
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component analysis (PCA) on the MEG reference channels using ft_denoise_pca. 

For each phase, CS+ and CS- epochs of – 0.9 to 0.9 ms with respect to CS onset 

were extracted from the continuous data. Data were then down sampled to 500 

Hz. For each subject, eight channels producing excessive noise were removed. 

Trials containing a maximum amplitude above +/- 4pT were rejected following 

which PCA was performed to detect and remove subject-specific noisy channels 

and system-related artifacts. Cardiac and ocular artifacts were projected out 

(N= 2:5) of the data using a 50-step independent component analysis (ICA, 

runica). A final visual inspection was performed and trials containing a maximum 

amplitude of +/- 3pT were removed. Sensors that were discarded during any of 

the pre-processing stages were repaired using spline interpolation 

(ft_channel_repair).   

  

3.2.6.3 Source estimation 

MEG-MRI co-registration was performed using the subject’s digitised head shape 

and landmark information (nasion and peri-auricular points). Gray and white 

matter, and deep brain structures (the amygdala, HPC and thalamus) were 

automatically segmented using Freesurfer (Dale et al., 1999). Source estimation 

was conducted using the Brainstorm Toolbox (Tadel et al., 2011). A mixed 

surface (~18,000 vertices) was created for each individual by merging the 

segmented cortical and subcortical structures. The segmented cortical and 

subcortical structures were downsampled (~15,000 and ~3,000 vertices 

respectively) and merged into a mixed surface (~18,000 vertices). To compute 

the head (forward) model, a whole-brain volume was then created using an 

overlapping sphere model in which a local sphere is fitted for each sensor. We 

used a constrained approach for both cortical and subcortical structures. The 

inverse model was calculated for each trial using depth-weighted Minimum Norm 

Estimation (MNE). To avoid contamination caused by slow shifts in the data, the 

noise covariance matrix was computed for each block separately from the 

baseline window of -900 ms to -2 ms. An exploratory source estimation using 

LCMV beamforming was also performed to ensure the consistency of results 

across source reconstruction methods (see Supplementary Materials 9). The 

results from the LCMV beamforming revealed comparable findings to those 

derived from the MNE. 
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3.2.6.4 Sensor level event-related fields analysis 

Since the paradigm employed neutral faces as CSs, we expected to observe task-

related activity at sensor level, in channels reflecting visual activity. To examine 

this, we computed sensor level Event-related fields (ERFs) between 0.01 and 20 

Hz. We chose 20 Hz as the upper limit as this frequency limit has previously been 

employed in MEG conditioning studies using face CSs (Balderston et al., 2014b). 

For each subject, we computed an average across trials in each condition. Since 

band-pass filtering typically results in signal smearing and onsets of effects can 

be distorted (see Rousselet, 2012; VanRullen, 2011 but also Supplementary 

Materials 6), data were trimmed to a time window that does not include the UCS 

(-0.64 to 0.64 s). This was done to ensure that any observed effects are not 

contaminated by signal associated with the sound. Averaged data were band-

pass filtered (0.01-20 Hz) using a FIR causal filter. The filter was selected based 

on an exploratory analysis of filtering artifacts (see Supplementary Materials 6). 

To ease interpretation, planar transformation was performed prior to 

visualisation and statistical analysis. 

 

3.2.6.5 Source-level time-frequency analyses 

Trial-level sources derived from the Desikan-Killiany atlas were exported from 

Brainstorm to Fieldtrip. Prior to computing the time-frequency (TF) maps, trial-

level source activity within each region was averaged over the two hemispheres 

(results were comparable in analyses without hemisphere averaging). Since 

accurate detection of low frequency oscillations requires several cycles within 

the analysis time window (i.e., ~1.5 – 2 seconds), and the trial length in our 

dataset is 1.2 s prior to computing the TF maps, each trial was zero-padded with 

2 second on each side. TF analysis was performed for each trial, in each ROI. 

Similar to previous research examining subcortical activity, we used Morlet 

wavelets (Tzovara et al., 2019). Specifically, we used 5-cycle wavelets during a 

time window of -2.64 to 2.64 s with a 3 ms resolution and in frequencies 

between 1 and 120 Hz with a 1 Hz resolution. Similar to previous studies 

examining oscillations in subcortical structures in humans (Khemka et al., 2017; 

Tzovara et al., 2019), our confirmatory analyses focused on differences in theta 
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power, specifically in the range between 1 and 8 Hz as this range has been 

shown to functionally correspond to the 4-10 Hz responses observed in rodents 

(Jacobs, 2014). In addition, we performed a set of exploratory analyses that 

examined the potential contributions of frequencies above 8 Hz.  
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3.3 Results 

 
All scripts necessary to reproduce the analyses and results outputs are available 

at https://osf.io/nxt68/. Data are only available upon request, due to a section 

of the participant’s information sheet, restricting public data sharing. 

 

3.3.1 Sensor Level Event-related fields 0.01 – 20 Hz 

 
Since there is evidence to suggest that conditioning in humans can be 

manifested within sensory regions (Dolan et al., 2006; Lithari et al., 2015; 

Moratti et al., 2006, 2017; Moratti & Keil, 2005; Rehbein et al., 2014), we 

examined potential condition differences in occipital sensor-level ERFs.  Due to 

employing faces as CSs, we expected to also observe evidence for the M170 

component, suggested to drive the encoding of facial stimuli (Liu et al., 2002). 

 

Figure 11 shows the topography of the average ERFs across conditions, 

demonstrating clear activity in occipital sensors.  Before examining potential 

condition differences, we baselined the data by subtracting the acquisition and 

extinction ERFs from those during habituation. Next, to quantify potential 

differences between CS+ and CS- trials, for each experimental phase, we 

conducted a two-tailed cluster-based Monte-Carlo permutation test across all 

sensors and during 0 – 0.65 s post CS onset. We used 2000 permutations and an 

alpha level of 0.025, and cluster alpha of 0.05. FDR multiple comparisons 

correction was applied in both the time and sensor domain. The tests revealed 

no significant differences (see Figure 12). The analysis was also repeated on the 

data prior to habituation baselining, and again no significant condition 

differences were observed during either acquisition or extinction. 

 

 

 

 

 

 

 

https://osf.io/nxt68/
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Figure 11 

Grand average ERFs across all conditions. 

 

 
 

Figure 12 

Habituation-baselined grand average ERFs, contrasting the difference between 

CS+ and CS- conditions during Acquisition and Extinction. 
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As seen in Figure 11, the peak sensor level activation is observed at around 200 

ms. To examine this further, we extracted the ERFs from sensors that exhibited 

the highest activation in the grand average ERFs during the time window 

between 0.2 and 0.25 post CS onset. Across both the left (A162) and right (A188) 

hemispheres, these were located in the posterior region, likely reflecting 

occipital activity. As seen in Figure 13, across conditions and in both left and 

right hemispheres, the ERFs clearly peak just before 200 ms. This activation 

pattern is likely to reflect the M170 component. However, as seen in the figure, 

there are no indications of differences between conditions, evidenced by the 

clear overlap in ERFs and their CIs. This was confirmed in paired two-tailed 

permutation t-tests in latencies between 140 and 200 ms (2000 permutations, 

FDR correction in time domain, alpha = 0.025). This time window was selected 

as the M170 is suggested to occur within these latencies (Lueschow et al., 2015). 

The permutation tests were performed separately for Acquisition and Extinction 

for the left and right peak sensors.  

 

Figure 13 

Peak sensor grand average ERFs across conditions. 

 
 
Note. The shaded area indicates the standard error of the mean.  
 

These analyses suggest that there are no significant condition differences within 

the M170 component but also within any sensor or time point during the CS 

presentation. Nonetheless, we still pursued the source level analyses since 
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reducing the dimensionality of the data by examining differential activity only 

within theta and specific ROIs, may increase the SNR sufficiently to detect 

conditioning.  

 

3.3.2 MEG time-frequency analyses 

We performed time frequency decomposition to examine the role of theta power 

in conditioning and extinction in ROIs. TF maps were averaged over trials, within 

conditions and similar to the ERF analysis, were baselined against the 

Habituation phase (see Figure 17, time frequency maps for each condition can 

be seen in Supplementary Materials 7). As seen in the figure, the average power 

within the theta range (2-8 Hz) in the caudal ACC is greater for CS+ than CS- 

trials during Acquisition and Extinction. The opposite pattern of lower theta 

power for CS+ trials is observed for most other regions, with the amygdala 

exhibiting most pronounced difference in theta power. A pattern of increased 

mean power in frequencies between 10 and 20 Hz is also observed for CS+ trials 

compared to CS- trials, in most ROIs.  

 

3.3.2.1 Cluster-based permutation 

To identify potential time points and frequencies within theta that may be 

sensitive to the conditioning manipulation, we performed a confirmatory two-

tailed Monte-Carlo permutation t-test in the ROIs, on the differences between 

CS+ and CS- conditions within Acquisition and Extinction. We looked at 

frequencies between 2 and 8 Hz during the time window of 0 to 0.64 s post CS 

onset. We used 2000 permutations, alpha level of 0.025 and applied FDR 

correction in the time, frequency, and signal domain to correct for multiple 

comparisons. The test revealed no statistical differences (see 

https://osf.io/nxt68/ for permutation outputs). Similar findings were obtained 

when computing permutation tests examining differences between CS+ and CS- 

using separate t-tests for acquisition and extinction and when analysing the TF 

data before habituation-baselining (see https://osf.io/nxt68/ for permutation 

outputs). 

 

https://osf.io/nxt68/
https://osf.io/nxt68/
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To examine potential differences in other frequency bands, our exploratory 

analysis focused on frequencies above theta (9 to 120 Hz), during the time 

window of 0 to 0.64 s. Again, we computed a two-tailed Monte-Carlo 

permutation t-test in the ROIs, on the differences between CS+ and CS- trials 

within Acquisition and Extinction. Similar, to the confirmatory analysis, no 

statistical differences were observed (see Supplementary Materials 8 for TF 

maps in frequencies above 30 Hz).  We obtained similar results when computing 

TF maps on LCMV source reconstructed data (see Supplementary Materials 9). 

 

Since the upper frequency bands of theta can sometimes overlap with the lower 

bands of alpha, we examined this further by computing a Fast Fourier 

Transformation in frequencies up to 20 Hz. This allowed us to gain a more 

refined understanding of the specific frequencies that may potentially be more 

sensitive to condition differences (see Supplementary Materials 10). 

Nonetheless, none of these analyses revealed any significant differences 

between conditions. 
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Figure 14 

Habituation-baselined grand average time frequency maps, contrasting the 

difference between CS+ and CS- conditions during Acquisition and Extinction. 
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3.3.2.2 LME modelling of mean theta power 

We performed linear mixed-effects (LME) modelling in R (package lme4) to 

further quantify any potential differences between conditions. We performed a 

separate model for each ROI, with mean theta power as the outcome variable. 

Initially, the goal of this analysis was to use the time windows and frequencies 

identified by the permutation test performed in section 2.8.2.1. However, since 

the permutation test did not identify any potential time windows of interest, we 

averaged power in each trial across all theta frequencies (2-8 Hz) and the entire 

trial time window (0 – 0.64 s) in ROIs.  For each ROI, the models comprised of a 2 

Experimental Phase (Acquisition vs Extinction) by 2 Stimulus Type (CS Positive vs 

CS Negative) fixed effects design. The random effect structure included Subjects 

as random intercepts and by-subject random slopes for each main effect and the 

three-way interaction. During the pre-processing of the MEG data, some trials 

were manually and automatically removed due to excessive noise. However, 

during this process only information regarding the condition was retained. Since 

information about trial number and items was not retained in this dataset, we 

were unable to consider by-item random variability in our model. Main effects 

and interactions were assessed using a Type III Wald chi-square test. There were 

no significant effects at the level of 0.05 (see Table 6 and Figure 18B). 

Considering that even in its simpler form, the model revealed no significant 

differences, it is unlikely that including item random variability would have 

changed this pattern of findings. As seen in Figure 18A, consistent with the 

results from the permutation and the LME modelling, there is a significant 

overlap in the distributions between conditions within each experimental phase 

and ROIs.  
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Table 6 

Type III Chi-square test for each of the fixed effects derived from the mean 
theta power LME mode within each ROI. 

 Chisq Df P-value R² Fixed 

caudalanteriorcingulate 0.0001 

Experimental Phase 0.044 1.000 0.834  

Stimulus Type 0.630 1.000 0.427  

Experimental Phase X Stimulus Type 0.035 1.000 0.851  

rostralanteriorcingulate 0.0001 

Experimental Phase 0.073 1.000 0.788  

Stimulus Type 0.356 1.000 0.551  

Experimental Phase X Stimulus Type 0.283 1.000 0.595  

lateralorbitofrontal    0.0001 

Experimental Phase 0.548 1.000 0.459  

Stimulus Type 0.014 1.000 0.907  

Experimental Phase X Stimulus Type 0.704 1.000 0.402  

medialorbitofrontal    0.0001 

Experimental Phase 0.466 1.000 0.495  

Stimulus Type 0.417 1.000 0.518  

Experimental Phase X Stimulus Type 0.411 1.000 0.522  

fusiform    0.0001 

Experimental Phase 0.127 1.000 0.722  

Stimulus Type 0.279 1.000 0.597  

Experimental Phase X Stimulus Type 0.058 1.000 0.810  

lateraloccipital    0.0004 

Experimental Phase 0.170 1.000 0.680  

Stimulus Type 1.320 1.000 0.251  

Experimental Phase X Stimulus Type 0.992 1.000 0.319  

insula    0.0002 

Experimental Phase 0.161 1.000 0.688  

Stimulus Type 1.049 1.000 0.306  

Experimental Phase X Stimulus Type 0.395 1.000 0.530  

amygdala    0.0003 

Experimental Phase 0.132 1.000 0.716  

Stimulus Type 3.542 1.000 0.060  

Experimental Phase X Stimulus Type 0.341 1.000 0.559  

HPC    0.0001 

Experimental Phase 0.261 1.000 0.610  

Stimulus Type 0.705 1.000 0.401  

Experimental Phase X Stimulus Type 0.006 1.000 0.938  
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 Chisq Df P-value  

thalamus    0.0002 

Experimental Phase 0.000 1.000 0.992  

Stimulus Type 1.407 1.000 0.236  

Experimental Phase X Stimulus Type 0.382 1.000 0.537  
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Figure 15 

Distribution of mean theta power of Habituation-baselined data and fixed effect estimates derived from the multiple regression 

models in ROIs.  
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3.3.3 Summary of MEG results 

The results from the MEG analyses we performed revealed no indication of 

neural conditioning or extinction effects. This was the case for our primary 

analyses focusing on sensor-level ERFs and theta power within ROIs as well as for 

our secondary analyses exploring potential source level differences across the 

brain and frequencies above theta. These findings raise questions of whether 

this task can successfully induce conditioning, at least that is detectable at 

neural level.  

 

3.3.4 Pupil size 

To account for potential baseline differences during Habituation, the pupil size 

data during Habituation was subtracted from that Acquisition and Extinction. 

First, a mean pupil size across time and trials was calculated during Habituation. 

This was performed for each subject, block, and item separately. This baseline 

Habituation pupil size was then subtracted from each time point during 

Acquisition and Extinction. The average proportional pupil size change from 

baseline during the three experimental phases as well as in the habituation-

baselined data can be seen in Figure 19. As seen in the figure, a clear UCR is 

seen shortly following UCS offset (~0.85 s) in the form of a larger mean pupil size 

in response to CS+ than CS- trials. It can also be seen that the pupil time course 

across the three-phased data for the duration of the CR (0-0.65 s) is 

characterised by constriction rather than dilation. However, minimal condition 

differences in pupil size are observed during Acquisition and Extinction across 

the three-phased as well as habituation-baselined data.  

 

The development and extinction of the CR in the habituation-baselined data was 

examined inferentially in an LME model (package lme4). The model comprised of 

a 2 Experimental Phase (Acquisition vs Extinction) by 2 Stimulus Type (CS+ vs CS) 

fixed effects design. The outcome variable was the mean pupil size over the 

duration of the CR (0 – 0.6 s post CS onset, see Figure 20A). This was computed 

for each subject, block and trial. The model included mean-centred contrasts 

(deviation coding) for the two categorical fixed effects. In order to account for 

random variation between subjects and items a maximal model was fitted as per 
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recommendations provided by Barr et al. (2013). Specifically, Subjects and Items 

were added as random intercepts. Due to the within-items and within-subjects 

experimental manipulations, by-subject and by-item random slopes for each 

main effect and the interaction were also included (see Supplementary Materials 

11 for random effects summary). A type III Wald chi-square test performed on 

the model (see Table 7 and Figure 20C for model estimates) revealed a 

significant main effect of Experimental Phase at the level of p < 0.05. Post-hoc 

analysis of the main effect performed using estimated marginal means contrasts 

(see Table 8) and Kenward-Roger method for degrees of freedom estimation 

(package emmeans) revealed a larger mean pupil size during Extinction than 

during Acquisition, significant at the level of 0.05 (t (19.8) = -2.65, p = 0.016).  

 

Table 7 

Type III Wald chi-square tests and R-squared values for the pupil dilation model 

and each of the fixed effects. 

 

Table 8 

Estimated marginal means and related contrasts derived for the pupil model. 
 

Estimated Marginal Means  

Experimental Phase Estimate SE df Lower CI  Upper CI   

Acquisition -0.005 0.002 13.7 -0.009 -0.001  

Extinction 0.001 0.002   13.9 -0.003 0.004  

Contrasts       

Contrast Estimate SE df Lower CI Upper CI P-value 

Acquisition - 
Extinction 

-0.006 0.002 19.8 -0.01 -0.001 
0.016 

 

 

 

 Chisq Df P-value 
R² Fixed (CI) 

 

    0.001 (0 – 0.003) 

Experimental Phase 8.34 1.000 0.004 0 (0 – 0.001) 

Stimulus Type 0.08 1.000 0.78 0 (0 – 0.001) 

Experimental Phase X Stimulus 
Type 

0.41 1.000 0.52 
0 (0 – 0.003) 
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Figure 16 

Proportional mean pupil size over time. 

 

 

Note. The vertical bars indicate the standard error of the mean. The vertical 

dashed line indicates the US onset. A) Change in mean pupil size from baseline 

across Habituation, Acquisition and Extinction. B) Habituation - baselined mean 

pupil size. Acquisition and Extinction time courses reflect the difference 

between Acquisition and Habituation and Extinction and Habituation, 

respectively.  
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Figure 17 

A summary of pupil size fixed effects 

 

Note. A) Distribution of mean pupil size between 0 and 0.6 s post CS onset of 

Habituation-baselined data. B) Estimated marginal mean pupil size derived from 

the pupil model. C) Fixed effect estimates derived from the pupil model. 

 

3.3.4.1 Summary of pupil size results 

The findings from the pupil size analyses provided poor evidence for conditioning 

or extinction at a pupil level. When visualising the three-phased data, we 

observed an overall pupil constriction across conditions during the first second 

post-CS onset. When examining the data following habituation baselining, the 

constriction remained evident only during acquisition. This was also reflected in 

the results from the LME modelling, which showed an overall larger (and 

constricted) mean pupil size during extinction compared to acquisition. The 

observed constriction pattern may be suggestive that the trial duration was not 

sufficiently long to allow for the pupil to dilate.   
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3.3.5 Valence and arousal ratings 

To examine potential valence and arousal related CRs, we fit two sets of mixed 

models to the rating data. Similar to the pupil size data, the analyses reported 

here was performed on the Habituation-baselined data. To derive this baselined 

data, each item's rating during Habituation was subtracted from that item's 

rating during the Acquisition and Extinction. Valence and arousal ratings were 

predicted using an LME model, consisting of a 2 Experimental Phase (Acquisition 

vs Extinction) by 2 Stimulus Type (CS+ vs CS-) fixed effects design. Mean-centred 

contrasts were used for the two categorical fixed effect predictors. By-subject 

and by-item random intercepts were added, together with by-subject and by-

item random slopes for both main effects and the interaction (see 

Supplementary Materials 11 for random effects summary). Main effects and 

interactions were assessed using Type III Wald chi-square tests. Since the 

valence and arousal data were measured on an ordinal scale (1-8), a second set 

of analyses were performed on the three-phased dataset using cumulative link 

mixed (CLMM) models (package ordinal), (see Supplementary Materials 12). 

These models revealed findings comparable to LME modelling findings. 

 

When descriptively examining valence ratings, a potential indication of baseline 

differences can be seen, with 44% of ratings in response to CS- faces belonging 

to scores of 4 and above, in comparison to 37% in response to CS+ faces (see 

Figure 21). In other words, during Habituation, at least descriptively, CS+ faces 

were perceived as less pleasant than CS- faces. This pattern is maintained across 

Acquisition and Extinction. When condition differences were assessed 

inferentially using LME modelling on the Habituation-baselined data, there were 

no fixed effects significant at the level of 0.05 (see Table 9 and Figure 22). 

However, differences were present in the CLM modelling of the three-phased 

data in the form of a main effect of stimulus type, confirming the presence of 

baseline valence effects (see Supplementary Materials 12). The potential source 

of these baseline differences was explored in Supplementary Materials 13. These 

analyses revealed that factors such as stimulus sex as well as normative ratings 

of attractiveness and perceived anger of the neutral faces influenced valence 

ratings, however, these did not mediate the condition differences.  
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In terms of arousal ratings, compared to Habituation there was a slight increase 

in the percentage of responses belonging to ratings of 4 and above (39%) for CS+ 

compared to CS- faces during Acquisition. The difference between CS+ and CS- 

faces during Acquisition (11%) is also larger than that during Habituation (4%) 

and slightly larger than that during Extinction (9%), (see Figure 18).  The results 

from the LME model (see Table 9 and Figure 23), however, showed that only the 

main effects of Experimental Phase and Stimulus Type reached statistical 

significance at the level of 0.05. Post-hoc contrasts revealed that CS+ faces were 

rated as more arousing than CS- faces and that faces were rated as more 

arousing during Acquisition compared to Extinction (see Table 10). A similar 

pattern of results was observed in the CLM modelling (see Supplementary 

Materials 12).  
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Figure 18 

Valence and arousal ratings. 

 

Note. A) Valence and B) Arousal ratings. Top: Percentage of responses belonging 

to each of the 8 response categories. Bottom: Median ratings across subjects. 
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Table 9 

Type III Wald Chi-square tests and R-squared values for the complete valence 

and arousal model and each of the fixed effects. 

 

 
 
 
Table 10 

Estimated marginal means and related contrasts derived for the arousal model. 

Note. Contrasts were computed using Kenward-Roger method for degrees of 
freedom approximation. 
  

 Chisq Df P-value R² Fixed (CI) 

Valence     

Full Model    0.001 (0 – 0.01) 

Experimental Phase 0.38 1.000 0.95 0 (0 – 0.005) 

Stimulus Type 0.39 1.000  0.53 0.001 (0 – 0.006) 

Experimental Phase X Stimulus 
Type 

0.55 1.000 0.46 
0 (0 - 0.005) 

Arousal     

Full Model    0.05 (0.03-0.07) 

Experimental Phase 8.83 1.000 0.003 0.01 (0 .003– 0.025) 

Stimulus Type 6.48 1.000 0.01 0.035 (0.02 – 0.06) 

Experimental Phase X Stimulus 
Type 

2.54 1.000 0.11 
0.003 (0 – 0.01) 

Stimulus Type Estimated Marginal Means 

Stimulus Type Emmean SE df Lower CI     Upper CI 

CS+ 0.23 0.16 21.3 -0.11        0.57 

CS- -0.26 0.08 26.6 -0.43       -0.09 

Contrasts      

Contrast Estimate SE df Lower CI Upper CI              P-value 

CS+ - CS- 0.49 0.19 21.4 0.09       0.88                     0.02 

      

Experimental Phase Estimated Marginal Means 

Experimental 
Phase 

Emmean SE df Lower CI     Upper CI 

Acquisition 0.12 0.10 21.71 -0.08        0.33 

Extinction -0.15 0.09 23.03 -0.35       0.05 

Contrasts      

Contrast Estimate SE df Lower CI Upper CI              P-value 

Acquisition – 
Extinction  

0.28 0.09 17.44 0.08 0.47                            0.01 
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Figure 19 

A summary of valence fixed effects. 

 
Note. A) Distribution of mean valence ratings of Habituation-baselined data. B) 

Estimated marginal means per condition derived from the linear mixed effects 

model of valence ratings (error bars represent 95% CIs for the means conditioned 

on the random effects). C) Fixed effect estimates (labelled dots) derived from 

the linear mixed effects model of valence ratings; bars represent 95% CIs for the 

estimates. 
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Figure 20 

A summary of arousal fixed effects 

 
Note. A) Distribution of mean valence ratings of Habituation-baselined data. 

Estimated marginal means from the linear mixed effects model of arousal ratings 

for B) Experimental Phase and C) Stimulus Type (error bars represent 95% CIs for 

the means conditioned on the random effects). D) Fixed effect estimates 

(labelled dots) derived from the linear mixed effects model of arousal ratings; 

bars represent 95% CIs for the estimates. 

 

3.3.5.1 Summary of rating data results 

The visualisation and analysis of valence effects in the three-phased data (see 

Supplementary Materials 12) indicated baseline differences during habituation 

that perpetuated during acquisition and extinction. When habituation-baselining 

was performed, we observed no significant valence differences. We found some 

evidence for conditioning in the arousal ratings, evidenced by an increase in 

arousal for CS+ than CS- faces and during acquisition compared to extinction. 

However, we observed no significant interaction between Experimental Phase 

and Stimulus Type.  
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3.4 Discussion 

In this study, we report findings from a novel conditioning paradigm that aimed 

to maximise the reliable detection of oscillatory dynamics in cortical and 

subcortical structures underlying threat learning and extinction. In addition, we 

measured conditioned responses not only at neural level but physiologically 

(pupil size) and behaviourally (subjective valence and arousal ratings). Our 

findings indicate that at its current form, the paradigm does not evoke reliable 

signatures of conditioned responding. Nonetheless, the results from the present 

study are informative in highlighting several factors that can potentially enhance 

the detection of CRs when using tasks with a large number of trials.  

 

3.4.1 MEG 

In our initial analyses, we investigated the extent to which the visual blocked 

conditioning can elicit differential activity at sensor level, by performing cluster-

based permutation across time and sensors. This analysis revealed no significant 

condition differences. In addition, we aimed to confirm that the paradigm can 

reliably elicit the M170 component that underlies face encoding. As expected 

and similar to other E/MEG studies employing face CSs (Balderston et al., 2014b; 

Dolan et al., 2006; Rehbein et al., 2015; Sperl et al., 2021; Stolz et al., 2019), 

we observed a clear M170 in peak occipital sensors around 200 ms post-CS onset 

across conditions. However, the M170 was not sensitive to the experimental 

manipulation. Since across the literature, the M170 has not been consistently 

shown to index a CR, it is possible that detecting a CR in this component is 

dependent on specific experimental and procedural parameters. Yet, it is also 

highly likely that conditioning in this task was simply not established considering 

that none of our MEG analyses detected any evidence for a CR. 

 

Our source level analyses aimed to determine the role of theta oscillations in 

learning and extinction by performing trial-level time frequency decomposition. 

To quantify potential condition differences, we employed cluster-based 

permutation to identify time windows that may be sensitive to the experimental 

manipulation, in ROIs implicated in threat processing. In addition, we examined 

the average theta power differences during the entire trial duration using LME 
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modelling.  The results from these analyses, however, did not reveal any 

differences in ROIs. While Yet, descriptively, we observed a similar activation 

patterns in deep structures to that reported recently in the amygdala and the 

HPC (Tzovara et al., 2019). For instance, similar to Tzovara et al. (2019) our 

secondary analyses (see Supplementary Materials 10) examining the power 

distribution within frequencies below 20 Hz, showed that oscillatory power was 

highest in the lowest frequencies, between 2 and 4 Hz. However, in our data this 

pattern was maintained across conditions without any substantial differences. In 

addition, we observed a small peak in power in frequencies between 8 and 12 Hz 

across all conditions, although these findings cannot be compared against the 

data provided by Tzovara et al. (2019) since their mean power analysis only 

focused on frequency bands up to 8 Hz.  

 

Furthermore, in line with recent findings (Tzovara et al., 2019), at a descriptive 

level we found that the average theta oscillatory power was lower in response to 

the CS+ compared to the CS- in deep structures.  Such pattern contrasts the 

consistently observed increase in theta power to the CS+ in the rodent literature 

(Karalis et al., 2016; Lesting et al., 2011; McCullough et al., 2016).  This 

discrepancy can partly be explained by procedural differences in human and 

animal investigations. For example, rodent studies use a wide range of protocols 

to provide a control condition to the CS+, including between and within-subject 

designs, fixed and pseudo-random CS order presentations, and differential cue 

protocols that typically present the CS+ and CS- on separate days (Haaker et al., 

2019). Ultimately, however, these procedures rarely elicit multi-process 

competition. In contrast, human conditioning research largely relies on 

differential cue protocols that create an environment in which aversive and 

safety learning processes may compete. While still highly speculative, observing 

a higher theta power to the CS- in deep sources may be qualitatively similar to 

the patterns reported in fMRI studies in which activation in the  mPFC is greater 

in response to the CS-, reflecting safety learning (Harrison et al., 2017). The 

presence of these competing processes can engage different learning 

mechanisms to those observed in rodent research, which in turn can complicate 

the direct comparison between animal and human findings (Haaker et al., 2019). 

Considering that human conditioning paradigms are also potentially far less 

aversive than those used in rodents for ethical reasons, it is possible that 
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variations in the employed task parameters can lead to distinct patterns of theta 

oscillations in humans and animals. Another possibility is that the functional 

properties of oscillatory activity within the theta range during learning may 

differ in humans and rodents. Yet, this may be difficult to determine without 

first disentangling the impact of cross-species procedural differences. 

 

Procedural variation can also complicate the direct comparison between the 

results from the present study and that by Tzovara et al. (2019), for a number of 

reasons. First, the results provided by Tzovara et al. (2019) were based on 

analyses of data that were not baselined with respect to a habituation phase. In 

contrast, we only observed lower theta power to the CS+ in deep structures in 

the habituation-baselined data, which was performed to account for potential 

leakage from other sources and for baseline differences. When only considering, 

non-habituation baselined TF activity, the opposite pattern was observed, at 

least in the amygdala and the HPC (see Supplementary Materials 7). These 

findings suggest that the direction of results can shift substantially in the 

presence of a baseline habituation procedure, although it is unclear whether this 

change may be driven by baseline differences or due to the leakage correction. 

Furthermore, our analyses included a substantially higher number of ROIs than 

Tzovara et al. (2019) and a less precise deep source estimation procedure, both 

of which would reduce the likelihood of detecting significant differential 

activation.  

 

3.4.2 Physiological and behavioural measures 

With respect to the pupillary signatures of conditioning, when examining the 

three-phase data it was evident that the pupil size time course across conditions 

was characterised by constriction rather than dilation. This was likely driven by 

the short trial duration (0.65 s) in the present design which would have 

prevented the full resolution of the pupil (baseline - constriction – dilation - 

baseline). In standard pupillometry studies, the pupil size typically peaks at 

around 1 s after stimulus onset. In cases where multiple stimuli are presented in 

close succession, peak latencies are even larger (van Rij et al., 2019). 

Therefore, it is likely that the observed pupil constriction reflects only the initial 

stage of the pupil resolution cycle, specifically the pupillary light reflex (i.e., 
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the rapid pupil constriction in response to light (Becket Ebitz & Moore, 2017). 

Following habituation baselining this overall constriction was only observed 

during acquisition and evidenced by a main effect of experimental phase 

whereby pupil size was larger during extinction than acquisition. This is an 

opposite pattern to the initially expected and typically observed increase in 

pupil size during acquisition (Jentsch et al., 2020; Kluge et al., 2011; Korn et al., 

2017; Leuchs et al., 2019; Tzovara et al., 2018). Considering the identified issue 

of trial duration, this effect is difficult to interpret. 

  

Partly in line with our predictions, the analysis of arousal ratings, revealed an 

overall higher arousal for CS+ than CS- ratings as well as higher arousal during 

acquisition than extinction. However, the interaction between the experimental 

phase and stimulus type was non-significant. These findings provide some 

evidence that conditioning may have taken place. This was evidenced by the 

presence of a CR that potentially did not fully habituate during extinction and by 

the acquisition phase itself being perceived as more arousing. In terms of 

valence, there were no significant effects during acquisition or extinction when 

ratings were baselined with respect to the habituation. There were, however, 

indications of baseline differences leaking into the experimental phases when 

descriptively examining the data before baselining. These differences were 

corroborated by the CLM modelling (see Supplementary Materials 12) but 

diminished in the habituation-baselined analysis. A secondary analysis attempted 

to better understand the sources of variability in valence during Habituation (see 

Supplementary Materials 13). We found limited evidence that the 

counterbalancing procedure influenced the baseline effects. However, we 

showed that the ratings of attractiveness and perceived anger of faces provided 

in the normative database of the stimuli, correlated with the valence ratings 

obtained in the present study. Specifically, there was a positive correlation 

between valence and attractiveness and a negative correlation between anger 

and valence. Female faces were also rated as more pleasant than male faces. 

However, these factors did not moderate the difference in valence between CS+ 

and CS- faces. According to these findings, the faces used in the present study 

were not perceived as completely neutral which could explain the variation in 

valence ratings. Therefore, despite controlling for baseline effects, it is still 
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possible that the initial variation in the perceived valence of the stimuli 

influenced the formation of the CR across outcome measures. 

 

 

3.4.3 Methodological considerations 

This study aimed at increasing the likelihood of detecting conditioned 

responding in deep sources by paying special consideration to both design and 

analytical aspects. Our study employed a blocked conditioning task in which 

learning and extinction were established in multiple consecutive blocks. This 

aimed to maximise the SNR by obtaining the large number of trials required for 

deep structure detection (Quraan et al., 2011a), while increasing the likelihood 

of establishing contingency awareness by presenting a small number of unique 

CSs in each block. In terms of source reconstruction, we used a combination of 

techniques that have been shown to be successful at detecting subcortical 

activity using MEG (Balderston et al., 2014b; Dumas et al., 2013). We derived 

realistic anatomical information of limbic structures, through using anatomical 

segmentation from each participant’s MRI, and combined those with the 

participant’s cortical surface. Next, we used depth-weighted MNE to reconstruct 

sources in our ROIs which has the advantages over both MNE and beamforming in 

that it does not assume lack of temporal correlation between sources and 

increases sensitivity in detecting subcortical activity (Attal et al., 2012). Finally, 

we reduced the impact of leakage from other sources through subtracting 

baseline activity during habituation from that during acquisition and extinction. 

As such, we can be relatively confident that we have maximised the accurate 

detection of subcortical activity to a reasonable level and provided some control 

over source leakage.  

 

Our analyses also offered a more generalised account of conditioning effects, 

especially at a behavioural and pupil level where we modelled both by-subject 

and by-item random variability. Unfortunately, however, we were unable to 

model random by-item variation in our MEG average theta power analysis, since 

item information during data pre-processing was not retained. Considering that 

the non-maximal model we used failed to reveal any statistically significant 

effects, it is unlikely that a more complex random structure including by-item 
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random variability would have caused a substantial change in the findings. 

Consequently, due to the time-consuming nature of the pre-processing pipeline, 

we opted against the re-analysis of the raw MEG data.    

 

While our MEG and pupil results showed little evidence for the acquisition of a 

CR, a clear but small increase in self-reported arousal was observed for the CS+ 

compared to the CS-. This suggests that the paradigm may indeed be capable of 

inducing conditioning but that any effects were too small to be reliably detected 

in noisy psychophysiological measures. Since this is the first time a blocked 

conditioning paradigm has been used to investigate fear conditioning, it is 

important to consider the factors that may drive the observed small effects. For 

example, it is possible that the magnitude of the CR differed over blocks. This 

may be the result of a CR habituation over blocks due to the repetitive exposure 

to the conditioning task. Alternatively, although less likely, the repetitive 

elicitation of conditioning could result in a learning effect whereby CRs become 

stronger over blocks. In either case, the overall CR we observed would be 

significantly reduced by the presence of blocks with minimal condition 

differences. Our supplementary analyses (see Supplementary Materials 14) 

examining the pupillary and behavioural patterns for each block, however, 

revealed limited evidence for the presence of learning or habituation effects.  

 

We also found no evidence to suggest that the poor CR acquisition was driven by 

low aversiveness of or habituation to the UCS. In particular, unlike previous 

studies using a UCS that was not validated against the perceived aversiveness of 

other stimuli, the choice of an aversive stimulus in the present study was 

informed by a separate control study (see Supplementary Materials 5). 

Furthermore, participants in the present study showed no evidence of response 

habituation to the UCS as they consistently rated the UCS as unpleasant across 

blocks (see Supplementary Materials 15). This was also corroborated when 

examining the pupil time course at a block level, where the UCR was visible in 

all blocks and remained relatively stable (see Supplementary Materials 14).  

 

Another candidate for explaining the lack of a CR at least at a pupil level is the 

trial duration. Studies employing classical conditioning in fMRI or 

psychophysiologically (pupil size or SCR), typically involve long trial duration (3-8 
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s) and ITI (7-17 s), (e.g. Jentsch et al., 2020; Korn et al., 2017; Tzovara et al., 

2018) that enable the pupil to reach its peak dilation. However, to allow for the 

desirable large number of trials, the trial duration was reduced to 0.85 s in order 

to maintain an acceptable experiment duration. While trial duration can 

enhance the detection of a pupillary CR, previous studies using Multi-CS 

conditioning (Junghöfer et al., 2017; Rehbein et al., 2015; Steinberg et al., 

2013) have demonstrated conditioning effects at both behaviourally (although 

not consistently) and in MEG, with a similar number of trials and trial duration. 

Similarly, the use of a short trial duration in EEG conditioning studies is not 

uncommon (Camfield et al., 2016; Ferreira de Sá et al., 2019; Pastor et al., 

2015). Therefore, it is likely that other factors have contributed to the observed 

effects in the present study.  

 

For example, it is possible, that inducing conditioning effects using a social 

stimulus such as a face is more difficult than when basic stimuli such as shapes 

and simple sounds are employed. Faces are highly complex and multi-

dimensional stimuli and as such, involve the processing of multiple socially 

relevant components including identity, sex, age, emotion, attractiveness and 

gaze (Leopold & Rhodes, 2010; Rossion, 2014). As it has been shown (Carter et 

al., 2003), higher-level cognitive processes during conditioning can have a 

significant impact on the establishment of a CR, with greater levels of cognitive 

demand interfering with CR elicitation. While the present study did not involve 

additional cognitive or attention distracting tasks, the mere requirement for 

face discrimination in the presence of a weak effect may have been sufficient to 

hamper its detection.  

 

A related contributing factor is that of attention and contingency awareness. As 

previously discussed, contingency awareness has been shown to be crucial for 

the process of associative learning (Mertens & Engelhard, 2020). An essential 

component facilitating the acquisition of contingency awareness is that of 

attention, with poor attention to the relationship between conditioned and 

unconditioned stimuli interfering with CR development (Weidemann et al., 

2016). To reduce the impact of additional cognitive demands from a secondary 

attention-demanding task, the present paradigm employed a low cognitive load 

component to sustain participant’s attention during the experiment. In each 
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block we implemented two catch trials in which participants responded in the 

presence of a face surrounded by a green frame. However, this manipulation 

was aimed at sustaining overall attention, and thus did not guarantee that 

participant attended to the relationship between stimuli. In addition, the 

present study relied on the assumption that presenting a limited number of 

unique CSs in each block will ensure contingency awareness, but our task did not 

explicitly measure participants’ acquisition of contingency. Therefore, it is likely 

that the poor differentiation between CS+ and CS- stimuli in most of our 

outcome measures was driven by low contingency awareness and/or poor 

attention.  

 

3.4.4 Conclusions 

 
The present study lays the foundations for the development of a classical 

conditioning paradigm that can successfully and reliably measure 

psychophysiological and neural signatures of associative learning and extinction. 

Since these measures are inherently noisy and the detection of subcortical 

structures driving these processes in non-invasive human imaging is challenging, 

we paid particular attention to maximising source localisation through 

experimental design (large number of trials, validated aversive UCS) and 

analytical strategies (baseline subtraction, individual anatomical segmentation 

and source reconstruction suitable for deep structure detection). 

 

While the paradigm did not elicit reliable neural and pupillary conditioning 

signatures, the establishment of a CR through subjective arousal ratings suggests 

that the blocked design of the task does indeed have the potential to elicit 

associative learning, but that any effects were too negligible to be detected via 

noisy physiological outcome measures. The results from the present study 

suggest that the blocked design was not a primary cause for the observed small 

effects and highlight a number of other design parameters that require further 

consideration in order to enhance the detection of CRs when using a large 

number of trials. Future work should focus on optimising the balance between 

number of trials and trial duration, if a pupillary CR is to be studied. The 

implementation of simpler CSs such as basic shapes or tones could potentially 



139 
 
enhance CR development by eliminating the confounding influence of complex 

social cognition processes. The use of simpler CSs can also reduce the likelihood 

of observing baseline subjective behaviour effects by reducing variability in 

multiple dimensions (i.e., emotionality and appearance). Alternatively, if face 

stimuli are utilised, these should be first normed independently to ensure that 

they elicit similar ratings of attractiveness and emotionality.  

 

More importantly, a consideration should be paid in measuring and ensuring 

contingency awareness through sustaining participants’ attention to the 

relationship between conditioned and unconditioned stimuli. A potential solution 

would be to include a low cognitive load task following each trial, where 

participants make simple perceptual judgements. Combined with the analytical 

and design strategies implemented in the current study, addressing these 

methodological issues should theoretically be sufficient to allow for the reliable 

measurement of the neural and psychophysiological signatures of conditioning.  
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3.5 Chapter 3 supplementary materials  

 

3.5.1 Supplementary Materials 4: Relationship between 
conditioning measures and psychological self-report 
measures 

 

We assessed potential relationship between measures of conditioning as well as 

with self -reported measures of psychological functioning. Specifically, we 

separately examined the variables that may moderate the interaction between 

experimental phase and stimulus type in predicting pupil size as well mean theta 

power.  

 

The relationship between pupil size, valence and arousal during acquisition and 

extinction and self-reported anxiety, emotion regulation, general 

psychopathology and non-verbal ability can be seen in Supplementary Figure 5 

and 6 in the form of scatterplots accompanied by Pearson’s r correlations by 

stimulus type where applicable. Note that these correlations are provided for 

descriptive purposes only and are not accompanied by significance testing. As 

seen in the figures, during Acquisition, there seems to be a moderate, positive 

correlation between pupil size and arousal ratings for CS- trials. In terms of self-

report measures, there is a moderate negative correlation between pupil size 

and trait anxiety for CS+ trials, which is even larger for state anxiety. Both, 

expressive suppression, and cognitive reappraisal exhibit a negative correlation 

with pupil size for CS- trials, while general psychopathology is positively 

correlated with pupil size for CS+ trials. Finally, a negative and positive 

correlations for CS+ and CS- trials respectively are observed between non-verbal 

ability and pupil size. During Extinction, there was a moderate negative 

correlation between pupil size and arousal for CS+ trials, and between pupil size 

trait, state anxiety, expressive suppression, and cognitive reappraisal for both 

CS+ and CS- trials.  

 

To examine these differences inferentially we used a linear mixed effect model 

in which pupil size was added as the outcome variable. The model included the 
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fixed effects and interaction between Experimental Phase and Stimulus Type 

and the fixed effects of valence, arousal ratings, state and trait anxiety, 

cognitive reappraisal, expressive suppression, and non-verbal ability. Data from 

the general psychopathology measure and state anxiety was not included since 

these were highly correlated with the trait measure of anxiety. The model also 

included all two and three-way interactions between the covariates and 

Experimental Phase and Stimulus Type. Type III Wald chi-square tests revealed 

no significant main effects or interactions (see Supplementary Table 5). 
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Supplementary Table 5 

Type III Wald Chi-square tests for each of the fixed effects derived from the 

LME pupil model. 

 

 Chisq Df 
P-

value 
R² Fixed  

Full Model    0.017  

Experimental Phase 0.231 1.000 0.631  

Stimulus Type 0.284 1.000 0.594  

Valence 1.599 1.000 0.206  

Arousal 0.206 1.000 0.650  

STAIT 0.097 1.000 0.756  

ERQS 0.757 1.000 0.384  

ERQR 1.044 1.000 0.307  

RSPM 0.223 1.000 0.637  

Experimental Phase X Stimulus Type 0.424 1.000 0.515  

Experimental Phase X Valence 0.377 1.000 0.539  

Experimental Phase X Arousal 0.919 1.000 0.338  

Experimental Phase X STAIT 0.417 1.000 0.519  

Experimental Phase X ERQS 0.209 1.000 0.647  

Experimental Phase X ERQR 0.024 1.000 0.876  

Experimental Phase X RSPM 0.000 1.000 0.993  

Stimulus Type X Valence 0.000 1.000 0.998  

Stimulus Type X Arousal 0.354 1.000 0.552  

Stimulus Type X STAIT 2.378 1.000 0.123  

Stimulus Type X ERQS 0.036 1.000 0.850  

Stimulus Type X ERQR 0.047 1.000 0.829  

Stimulus Type X RSPM 0.199 1.000 0.656  

Experimental Phase X Stimulus Type X 
Valence 

1.278 1.000 0.258 
 

Experimental Phase X Stimulus Type X 
Arousal 

0.001 1.000 0.972 
 

Experimental Phase X Stimulus Type X STAIT 0.180 1.000 0.672  

Experimental Phase X Stimulus Type X ERQS 0.065 1.000 0.799  

Experimental Phase X Stimulus Type X ERQR 0.043 1.000 0.835  

Experimental Phase X Stimulus Type X RSPM 0.586 1.000 0.444  
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Supplementary Figure 5 

Relationship between conditioning effects and psychological self-report measures during Acquisition. 
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Supplementary Figure 6 

Relationship between conditioning effects and psychological self-report measures during Extinction
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To examine potential moderators of the interaction between Experimental 

Phase and Stimulus Type in predicting mean theta power in ROIs, we conducted 

separate multiple linear regressions for each ROI. Since no trial information was 

retained during the MEG data cleaning it was not possible to conduct an LME 

model accounting for item and subject variability. The regression model 

included mean theta power as the outcome variable and the fixed effects and 

interaction between Experimental Phase and Stimulus Type as well as the fixed 

effects of valence, arousal ratings, trait anxiety, cognitive reappraisal, 

expressive suppression, and non-verbal ability and their interaction with 

Experimental Phase and Stimulus Type. We only focused on interactions 

including Stimulus Type since only these are theoretically relevant. None of the 

three -way interactions were significant in any of the ROIs (see Supplementary 

Table 6). A Stimulus Type X Non-verbal ability interaction was significant in the 

caudal and rostral ACC, lateral OFC and FFA models.  The Stimulus Type X 

Arousal and the Stimulus Type X Reappraisal interactions were significant in the 

caudal ACC. The Stimulus Type X Trait Anxiety interaction was significant for 

the rostral ACC, lateral occipital area and the amygdala. The Stimulus Type X 

Valence interaction was significant in the lateral and middle OFC. The Stimulus 

Type X Pupil size interaction was significant in the lateral occipital area and the 

amygdala (see Supplementary Table 6). Post-hoc simple contrasts for those 

interactions were performed using package emmeans, however none of the 

contrasts were statistically significant (see Supplementary Table 7). These 

findings suggest that psychological self-report measures and behavioural and 

pupil measures of conditioning may be moderating some of the conditioning 

effects in mean theta power. However, considering that the effects within these 

interactions were very small and the confidence intervals very large (see 

Supplementary Figure 7), it is likely that the study is underpowered for 

disentangling any such effects.  
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Supplementary Figure 7 

Predicted values of mean theta power by stimulus type.  
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Note. Predicted mean theta power for each ROI and stimulus type in the 

interaction between Stimulus Type and A) Pupil Size, B) Valence, C) Arousal, D) 

Trait Anxiety, E) Reappraisal and F) Non-verbal ability. Visualisaiton was 

performed for all ROIs if an interaction with Stimulus Type was significant in any 

one ROI.   
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Supplementary Table 6 

Type III Wald Chi-square tests for each of the fixed effects derived from the 

multiple regression models of mean theta power within each ROI. 

  

Caudal anterior cingulate 
 Sum Sq Df F value P-value 

(Intercept) 0.257 1.000 2.849 0.099 

Experimental Phase 0.144 1.000 1.600 0.213 

Stimulus Type 0.003 1.000 0.032 0.859 

Pupil 0.066 1.000 0.737 0.395 

Valence 0.452 1.000 5.022 0.030* 

Arousal 0.114 1.000 1.267 0.266 

STAIT 0.000 1.000 0.001 0.975 

ERQS 0.381 1.000 4.226 0.046* 

ERQR 0.010 1.000 0.107 0.745 

RSPM 0.110 1.000 1.218 0.276 

Experimental Phase X Stimulus Type 0.003 1.000 0.030 0.864 

Experimental Phase X Pupil 0.025 1.000 0.281 0.599 

Experimental Phase X Valence 0.556 1.000 6.168 0.017* 

Experimental Phase X Arousal 0.096 1.000 1.070 0.307 

Experimental Phase X STAIT 0.102 1.000 1.135 0.292 

Experimental Phase X ERQS 0.119 1.000 1.322 0.256 

Experimental Phase X ERQR 0.011 1.000 0.125 0.726 

Experimental Phase X RSPM 0.101 1.000 1.122 0.295 

Stimulus Type X Pupil 0.069 1.000 0.762 0.388 

Stimulus Type X Valence 0.076 1.000 0.847 0.362 

Stimulus Type X Arousal 0.785 1.000 8.716 0.005* 

Stimulus Type X STAIT 0.037 1.000 0.407 0.527 

Stimulus Type X ERQS 0.323 1.000 3.589 0.065 

Stimulus Type X ERQR 0.379 1.000 4.205 0.046* 

Stimulus Type X RSPM 0.000 1.000 0.000 0.984 

Experimental Phase X Stimulus Type X Pupil 0.501 1.000 5.557 0.023* 

Experimental Phase X Stimulus Type X Valence 0.077 1.000 0.858 0.359 

Experimental Phase X Stimulus Type X Arousal 0.020 1.000 0.221 0.641 

Experimental Phase X Stimulus Type X STAIT 0.015 1.000 0.162 0.689 

Experimental Phase X Stimulus Type X ERQS 0.033 1.000 0.364 0.549 

Experimental Phase X Stimulus Type X ERQR 0.018 1.000 0.203 0.655 

Experimental Phase X Stimulus Type X RSPM 0.033 1.000 0.371 0.546 

Residuals 3.963 44.000   
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rostralanteriorcingulate 
 Sum Sq Df F value P-value 

(Intercept) 0.028 1.000 0.262 0.611 

Experimental Phase 0.099 1.000 0.916 0.344 

Stimulus Type 0.633 1.000 5.838 0.020* 

Pupil 0.209 1.000 1.926 0.172 

Valence 0.105 1.000 0.965 0.331 

Arousal 0.076 1.000 0.701 0.407 

STAIT 0.142 1.000 1.313 0.258 

ERQS 0.443 1.000 4.085 0.049* 

ERQR 0.515 1.000 4.752 0.035* 

RSPM 0.000 1.000 0.000 0.990 

Experimental Phase X Stimulus Type 0.002 1.000 0.016 0.899 

Experimental Phase X Pupil 0.005 1.000 0.048 0.827 

Experimental Phase X Valence 0.002 1.000 0.014 0.907 

Experimental Phase X Arousal 0.001 1.000 0.006 0.939 

Experimental Phase X STAIT 0.002 1.000 0.018 0.893 

Experimental Phase X ERQS 0.024 1.000 0.217 0.644 

Experimental Phase X ERQR 0.045 1.000 0.412 0.524 

Experimental Phase X RSPM 0.098 1.000 0.907 0.346 

Stimulus Type X Pupil 0.008 1.000 0.075 0.786 

Stimulus Type X Valence 0.023 1.000 0.217 0.644 

Stimulus Type X Arousal 0.034 1.000 0.314 0.578 

Stimulus Type X STAIT 0.456 1.000 4.205 0.046* 

Stimulus Type X ERQS 0.025 1.000 0.233 0.632 

Stimulus Type X ERQR 0.000 1.000 0.001 0.972 

Stimulus Type X RSPM 0.740 1.000 6.826 0.012* 

Experimental Phase X Stimulus Type X Pupil 0.074 1.000 0.685 0.412 

Experimental Phase X Stimulus Type X Valence 0.005 1.000 0.049 0.826 

Experimental Phase X Stimulus Type X Arousal 0.106 1.000 0.974 0.329 

Experimental Phase X Stimulus Type X STAIT 0.104 1.000 0.958 0.333 

Experimental Phase X Stimulus Type X ERQS 0.034 1.000 0.314 0.578 

Experimental Phase X Stimulus Type X ERQR 0.002 1.000 0.014 0.906 

Experimental Phase X Stimulus Type X RSPM 0.001 1.000 0.006 0.939 

Residuals 4.767 44.000   
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lateralorbitofrontal 
 Sum Sq Df F value P-value 

(Intercept) 0.000 1.000 0.002 0.961 

Experimental Phase 0.019 1.000 0.205 0.653 

Stimulus Type 0.527 1.000 5.683 0.022* 

Pupil 0.730 1.000 7.870 0.007** 

Valence 0.046 1.000 0.498 0.484 

Arousal 0.013 1.000 0.146 0.705 

STAIT 0.000 1.000 0.000 0.999 

ERQS 0.010 1.000 0.111 0.740 

ERQR 0.002 1.000 0.023 0.880 

RSPM 0.022 1.000 0.241 0.626 

Experimental Phase X Stimulus Type 0.049 1.000 0.531 0.470 

Experimental Phase X Pupil 0.137 1.000 1.479 0.230 

Experimental Phase X Valence 0.260 1.000 2.804 0.101 

Experimental Phase X Arousal 0.024 1.000 0.260 0.613 

Experimental Phase X STAIT 0.023 1.000 0.246 0.623 

Experimental Phase X ERQS 0.006 1.000 0.069 0.795 

Experimental Phase X ERQR 0.004 1.000 0.040 0.843 

Experimental Phase X RSPM 0.024 1.000 0.254 0.617 

Stimulus Type X Pupil 0.013 1.000 0.136 0.714 

Stimulus Type X Valence 0.781 1.000 8.428 0.006** 

Stimulus Type X Arousal 0.147 1.000 1.584 0.215 

Stimulus Type X STAIT 0.020 1.000 0.214 0.646 

Stimulus Type X ERQS 0.117 1.000 1.265 0.267 

Stimulus Type X ERQR 0.127 1.000 1.366 0.249 

Stimulus Type X RSPM 0.555 1.000 5.987 0.018* 

Experimental Phase X Stimulus Type X Pupil 0.003 1.000 0.037 0.849 

Experimental Phase X Stimulus Type X Valence 0.038 1.000 0.411 0.525 

Experimental Phase X Stimulus Type X Arousal 0.149 1.000 1.610 0.211 

Experimental Phase X Stimulus Type X STAIT 0.012 1.000 0.129 0.721 

Experimental Phase X Stimulus Type X ERQS 0.001 1.000 0.010 0.922 

Experimental Phase X Stimulus Type X ERQR 0.000 1.000 0.003 0.957 

Experimental Phase X Stimulus Type X RSPM 0.054 1.000 0.583 0.449 

Residuals 4.080 44.000   
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medialorbitofrontal 
 Sum Sq Df F value P-value 

(Intercept) 0.002 1.000 0.018 0.892 

Experimental Phase 0.002 1.000 0.014 0.907 

Stimulus Type 0.263 1.000 2.359 0.132 

Pupil 0.084 1.000 0.754 0.390 

Valence 0.028 1.000 0.251 0.619 

Arousal 0.002 1.000 0.017 0.897 

STAIT 0.238 1.000 2.137 0.151 

ERQS 0.034 1.000 0.308 0.581 

ERQR 0.192 1.000 1.727 0.196 

RSPM 0.007 1.000 0.060 0.808 

Experimental Phase X Stimulus Type 0.017 1.000 0.154 0.697 

Experimental Phase X Pupil 0.000 1.000 0.000 0.996 

Experimental Phase X Valence 0.082 1.000 0.739 0.395 

Experimental Phase X Arousal 0.004 1.000 0.035 0.852 

Experimental Phase X STAIT 0.016 1.000 0.143 0.707 

Experimental Phase X ERQS 0.068 1.000 0.610 0.439 

Experimental Phase X ERQR 0.078 1.000 0.701 0.407 

Experimental Phase X RSPM 0.011 1.000 0.095 0.760 

Stimulus Type X Pupil 0.173 1.000 1.550 0.220 

Stimulus Type X Valence 1.000 1.000 8.976 0.004** 

Stimulus Type X Arousal 0.041 1.000 0.366 0.548 

Stimulus Type X STAIT 0.005 1.000 0.045 0.833 

Stimulus Type X ERQS 0.246 1.000 2.208 0.144 

Stimulus Type X ERQR 0.175 1.000 1.567 0.217 

Stimulus Type X RSPM 0.281 1.000 2.526 0.119 

Experimental Phase X Stimulus Type X Pupil 0.003 1.000 0.026 0.874 

Experimental Phase X Stimulus Type X Valence 0.042 1.000 0.374 0.544 

Experimental Phase X Stimulus Type X Arousal 0.033 1.000 0.298 0.588 

Experimental Phase X Stimulus Type X STAIT 0.090 1.000 0.807 0.374 

Experimental Phase X Stimulus Type X ERQS 0.025 1.000 0.226 0.637 

Experimental Phase X Stimulus Type X ERQR 0.001 1.000 0.005 0.944 

Experimental Phase X Stimulus Type X RSPM 0.011 1.000 0.103 0.750 

Residuals 4.901 44.000   
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fusiform 
 Sum Sq Df F value P-value 

(Intercept) 0.002 1.000 0.013 0.909 

Experimental Phase 0.012 1.000 0.102 0.751 

Stimulus Type 0.488 1.000 4.141 0.048 

Pupil 0.007 1.000 0.063 0.803 

Valence 0.000 1.000 0.004 0.949 

Arousal 0.042 1.000 0.357 0.553 

STAIT 0.306 1.000 2.601 0.114 

ERQS 0.080 1.000 0.680 0.414 

ERQR 0.078 1.000 0.660 0.421 

RSPM 0.010 1.000 0.086 0.770 

Experimental Phase X Stimulus Type 0.068 1.000 0.581 0.450 

Experimental Phase X Pupil 0.019 1.000 0.164 0.687 

Experimental Phase X Valence 0.043 1.000 0.365 0.549 

Experimental Phase X Arousal 0.001 1.000 0.010 0.920 

Experimental Phase X STAIT 0.034 1.000 0.286 0.595 

Experimental Phase X ERQS 0.041 1.000 0.348 0.558 

Experimental Phase X ERQR 0.064 1.000 0.543 0.465 

Experimental Phase X RSPM 0.014 1.000 0.122 0.729 

Stimulus Type X Pupil 0.036 1.000 0.309 0.581 

Stimulus Type X Valence 0.011 1.000 0.094 0.760 

Stimulus Type X Arousal 0.013 1.000 0.114 0.737 

Stimulus Type X STAIT 0.432 1.000 3.667 0.062 

Stimulus Type X ERQS 0.066 1.000 0.563 0.457 

Stimulus Type X ERQR 0.038 1.000 0.320 0.574 

Stimulus Type X RSPM 0.561 1.000 4.763 0.034* 

Experimental Phase X Stimulus Type X Pupil 0.093 1.000 0.787 0.380 

Experimental Phase X Stimulus Type X Valence 0.054 1.000 0.463 0.500 

Experimental Phase X Stimulus Type X Arousal 0.063 1.000 0.538 0.467 

Experimental Phase X Stimulus Type X STAIT 0.030 1.000 0.257 0.615 

Experimental Phase X Stimulus Type X ERQS 0.016 1.000 0.135 0.715 

Experimental Phase X Stimulus Type X ERQR 0.059 1.000 0.505 0.481 

Experimental Phase X Stimulus Type X RSPM 0.037 1.000 0.314 0.578 

Residuals 5.181 44.000   
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lateraloccipital 
 Sum Sq Df F value P-value 

(Intercept) 0.002 1.000 0.014 0.906 

Experimental Phase 0.028 1.000 0.209 0.650 

Stimulus Type 0.030 1.000 0.221 0.641 

Pupil 0.035 1.000 0.257 0.615 

Valence 0.000 1.000 0.000 0.984 

Arousal 0.054 1.000 0.394 0.534 

STAIT 0.544 1.000 3.981 0.052 

ERQS 0.211 1.000 1.543 0.221 

ERQR 0.139 1.000 1.018 0.319 

RSPM 0.012 1.000 0.087 0.770 

Experimental Phase X Stimulus Type 0.012 1.000 0.087 0.770 

Experimental Phase X Pupil 0.238 1.000 1.743 0.194 

Experimental Phase X Valence 0.146 1.000 1.068 0.307 

Experimental Phase X Arousal 0.004 1.000 0.029 0.866 

Experimental Phase X STAIT 0.046 1.000 0.337 0.565 

Experimental Phase X ERQS 0.249 1.000 1.827 0.183 

Experimental Phase X ERQR 0.015 1.000 0.111 0.741 

Experimental Phase X RSPM 0.030 1.000 0.217 0.644 

Stimulus Type X Pupil 0.919 1.000 6.733 0.013* 

Stimulus Type X Valence 0.061 1.000 0.445 0.508 

Stimulus Type X Arousal 0.143 1.000 1.048 0.311 

Stimulus Type X STAIT 1.009 1.000 7.390 0.009* 

Stimulus Type X ERQS 0.074 1.000 0.540 0.466 

Stimulus Type X ERQR 0.079 1.000 0.580 0.450 

Stimulus Type X RSPM 0.006 1.000 0.045 0.832 

Experimental Phase X Stimulus Type X Pupil 0.237 1.000 1.733 0.195 

Experimental Phase X Stimulus Type X Valence 0.000 1.000 0.000 0.985 

Experimental Phase X Stimulus Type X Arousal 0.007 1.000 0.048 0.828 

Experimental Phase X Stimulus Type X STAIT 0.007 1.000 0.053 0.819 

Experimental Phase X Stimulus Type X ERQS 0.000 1.000 0.000 0.989 

Experimental Phase X Stimulus Type X ERQR 0.002 1.000 0.013 0.908 

Experimental Phase X Stimulus Type X RSPM 0.015 1.000 0.113 0.738 

Residuals 6.007 44.000   
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insula 
 Sum Sq Df F value P-value 

(Intercept) 0.211 1.000 2.151 0.150 

Experimental Phase 0.024 1.000 0.243 0.624 

Stimulus Type 0.031 1.000 0.311 0.580 

Pupil 0.000 1.000 0.002 0.960 

Valence 0.119 1.000 1.212 0.277 

Arousal 0.064 1.000 0.652 0.424 

STAIT 0.010 1.000 0.101 0.752 

ERQS 0.135 1.000 1.374 0.248 

ERQR 0.290 1.000 2.952 0.093 

RSPM 0.203 1.000 2.069 0.157 

Experimental Phase X Stimulus Type 0.077 1.000 0.788 0.380 

Experimental Phase X Pupil 0.086 1.000 0.875 0.355 

Experimental Phase X Valence 0.023 1.000 0.231 0.633 

Experimental Phase X Arousal 0.029 1.000 0.291 0.592 

Experimental Phase X STAIT 0.017 1.000 0.173 0.680 

Experimental Phase X ERQS 0.005 1.000 0.052 0.820 

Experimental Phase X ERQR 0.115 1.000 1.171 0.285 

Experimental Phase X RSPM 0.011 1.000 0.111 0.740 

Stimulus Type X Pupil 0.002 1.000 0.025 0.876 

Stimulus Type X Valence 0.120 1.000 1.218 0.276 

Stimulus Type X Arousal 0.002 1.000 0.020 0.890 

Stimulus Type X STAIT 0.161 1.000 1.638 0.207 

Stimulus Type X ERQS 0.088 1.000 0.900 0.348 

Stimulus Type X ERQR 0.006 1.000 0.058 0.811 

Stimulus Type X RSPM 0.008 1.000 0.086 0.770 

Experimental Phase X Stimulus Type X Pupil 0.027 1.000 0.272 0.604 

Experimental Phase X Stimulus Type X Valence 0.006 1.000 0.060 0.808 

Experimental Phase X Stimulus Type X Arousal 0.028 1.000 0.290 0.593 

Experimental Phase X Stimulus Type X STAIT 0.016 1.000 0.163 0.689 

Experimental Phase X Stimulus Type X ERQS 0.011 1.000 0.109 0.743 

Experimental Phase X Stimulus Type X ERQR 0.001 1.000 0.013 0.911 

Experimental Phase X Stimulus Type X RSPM 0.106 1.000 1.079 0.305 

Residuals 4.319 44.000   
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amygdala 
 Sum Sq Df F value P-value 

(Intercept) 0.001 1.000 0.007 0.935 

Experimental Phase 0.135 1.000 1.301 0.260 

Stimulus Type 0.001 1.000 0.011 0.916 

Pupil 0.301 1.000 2.895 0.096 

Valence 0.131 1.000 1.260 0.268 

Arousal 0.001 1.000 0.008 0.928 

STAIT 0.246 1.000 2.367 0.131 

ERQS 0.039 1.000 0.376 0.543 

ERQR 0.067 1.000 0.650 0.424 

RSPM 0.014 1.000 0.140 0.710 

Experimental Phase X Stimulus Type 0.034 1.000 0.326 0.571 

Experimental Phase X Pupil 0.054 1.000 0.524 0.473 

Experimental Phase X Valence 0.039 1.000 0.376 0.543 

Experimental Phase X Arousal 0.012 1.000 0.114 0.737 

Experimental Phase X STAIT 0.017 1.000 0.167 0.685 

Experimental Phase X ERQS 0.010 1.000 0.101 0.752 

Experimental Phase X ERQR 0.214 1.000 2.061 0.158 

Experimental Phase X RSPM 0.111 1.000 1.067 0.307 

Stimulus Type X Pupil 0.460 1.000 4.435 0.041* 

Stimulus Type X Valence 0.126 1.000 1.213 0.277 

Stimulus Type X Arousal 0.012 1.000 0.112 0.740 

Stimulus Type X STAIT 0.445 1.000 4.284 0.044* 

Stimulus Type X ERQS 0.006 1.000 0.053 0.818 

Stimulus Type X ERQR 0.014 1.000 0.132 0.718 

Stimulus Type X RSPM 0.028 1.000 0.272 0.605 

Experimental Phase X Stimulus Type X Pupil 0.209 1.000 2.016 0.163 

Experimental Phase X Stimulus Type X Valence 0.020 1.000 0.195 0.661 

Experimental Phase X Stimulus Type X Arousal 0.007 1.000 0.064 0.802 

Experimental Phase X Stimulus Type X STAIT 0.020 1.000 0.195 0.661 

Experimental Phase X Stimulus Type X ERQS 0.085 1.000 0.819 0.370 

Experimental Phase X Stimulus Type X ERQR 0.000 1.000 0.000 0.989 

Experimental Phase X Stimulus Type X RSPM 0.014 1.000 0.134 0.716 

Residuals 4.568 44.000   
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hippocampus 
 Sum Sq Df F value P-value 

(Intercept) 0.088 1.000 1.397 0.244 

Experimental Phase 0.186 1.000 2.938 0.094 

Stimulus Type 0.063 1.000 0.990 0.325 

Pupil 0.041 1.000 0.653 0.423 

Valence 0.262 1.000 4.142 0.048* 

Arousal 0.102 1.000 1.609 0.211 

STAIT 0.088 1.000 1.384 0.246 

ERQS 0.913 1.000 14.426 0.000*** 

ERQR 0.317 1.000 5.009 0.030* 

RSPM 0.022 1.000 0.354 0.555 

Experimental Phase X Stimulus Type 0.085 1.000 1.346 0.252 

Experimental Phase X Pupil 0.003 1.000 0.040 0.843 

Experimental Phase X Valence 0.132 1.000 2.090 0.155 

Experimental Phase X Arousal 0.129 1.000 2.047 0.160 

Experimental Phase X STAIT 0.011 1.000 0.171 0.681 

Experimental Phase X ERQS 0.012 1.000 0.185 0.669 

Experimental Phase X ERQR 0.000 1.000 0.008 0.930 

Experimental Phase X RSPM 0.166 1.000 2.619 0.113 

Stimulus Type X Pupil 0.135 1.000 2.140 0.151 

Stimulus Type X Valence 0.178 1.000 2.818 0.100 

Stimulus Type X Arousal 0.029 1.000 0.461 0.501 

Stimulus Type X STAIT 0.126 1.000 1.988 0.166 

Stimulus Type X ERQS 0.006 1.000 0.099 0.754 

Stimulus Type X ERQR 0.026 1.000 0.415 0.523 

Stimulus Type X RSPM 0.031 1.000 0.491 0.487 

Experimental Phase X Stimulus Type X Pupil 0.145 1.000 2.293 0.137 

Experimental Phase X Stimulus Type X Valence 0.001 1.000 0.017 0.895 

Experimental Phase X Stimulus Type X Arousal 0.053 1.000 0.830 0.367 

Experimental Phase X Stimulus Type X STAIT 0.023 1.000 0.361 0.551 

Experimental Phase X Stimulus Type X ERQS 0.010 1.000 0.163 0.688 

Experimental Phase X Stimulus Type X ERQR 0.002 1.000 0.029 0.865 

Experimental Phase X Stimulus Type X RSPM 0.073 1.000 1.156 0.288 

Residuals 2.783 44.000   
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thalamus 
 Sum Sq Df F value P-value 

(Intercept) 0.008 1.000 0.093 0.762 

Experimental Phase 0.017 1.000 0.201 0.656 

Stimulus Type 0.003 1.000 0.042 0.839 

Pupil 0.072 1.000 0.874 0.355 

Valence 0.153 1.000 1.851 0.181 

Arousal 0.042 1.000 0.508 0.480 

STAIT 0.328 1.000 3.978 0.052 

ERQS 0.168 1.000 2.037 0.161 

ERQR 0.000 1.000 0.001 0.976 

RSPM 0.013 1.000 0.158 0.693 

Experimental Phase X Stimulus Type 0.025 1.000 0.308 0.582 

Experimental Phase X Pupil 0.032 1.000 0.385 0.538 

Experimental Phase X Valence 0.006 1.000 0.070 0.792 

Experimental Phase X Arousal 0.011 1.000 0.136 0.714 

Experimental Phase X STAIT 0.152 1.000 1.848 0.181 

Experimental Phase X ERQS 0.018 1.000 0.220 0.641 

Experimental Phase X ERQR 0.013 1.000 0.161 0.690 

Experimental Phase X RSPM 0.009 1.000 0.109 0.743 

Stimulus Type X Pupil 0.031 1.000 0.379 0.542 

Stimulus Type X Valence 0.000 1.000 0.001 0.982 

Stimulus Type X Arousal 0.022 1.000 0.272 0.605 

Stimulus Type X STAIT 0.024 1.000 0.294 0.591 

Stimulus Type X ERQS 0.013 1.000 0.160 0.691 

Stimulus Type X ERQR 0.151 1.000 1.831 0.183 

Stimulus Type X RSPM 0.006 1.000 0.068 0.796 

Experimental Phase X Stimulus Type X Pupil 0.086 1.000 1.045 0.312 

Experimental Phase X Stimulus Type X Valence 0.007 1.000 0.088 0.768 

Experimental Phase X Stimulus Type X Arousal 0.048 1.000 0.577 0.452 

Experimental Phase X Stimulus Type X STAIT 0.003 1.000 0.033 0.856 

Experimental Phase X Stimulus Type X ERQS 0.000 1.000 0.002 0.962 

Experimental Phase X Stimulus Type X ERQR 0.013 1.000 0.163 0.688 

Experimental Phase X Stimulus Type X RSPM 0.059 1.000 0.721 0.400 

Residuals 3.630 44.000   
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Supplementary Table 7 

Simple contrasts for the significant two-way interactions in ROIs. 

Pupil size 

contrast Pupil estimate SE df lower.CL upper.CL t.ratio p.value 

lateraloccipital         

CS+>CS- -0.002 -0.200 0.113 44.000 -0.429 0.028 -1.766 0.084 

amygdala         

CS+>CS- -0.002 -0.162 0.099 44.000 -0.361 0.037 -1.636 0.109 

 
Valence 
 

contrast 
Valenc

e 
estimat

e 
SE df 

lower.C
L 

upper.C
L 

t.rati
o 

p.valu
e 

lateralorbitofronta
l 

        

CS+>CS- 0.001 0.011 
0.09

3 
44.00

0 
-0.177 0.200 0.120 0.905 

medialorbitofronta
l 

        

CS+>CS- 0.001 -0.032 
0.10

2 
44.00

0 
-0.238 0.175 -0.311 0.757 

 
Arousal 
 

contrast 
Arousa

l 
estimat

e 
SE df 

lower.C
L 

upper.C
L 

t.rati
o 

p.valu
e 

caudalanteriorcingula
te 

        

CS+>CS- -0.011 0.082 
0.09

2 
44.00

0 
-0.103 0.268 0.892 0.377 

 
Trait Anxiety 
 

contrast 
STAI

T 
estimat

e 
SE df 

lower.C
L 

upper.C
L 

t.rati
o 

p.valu
e 

rostralanteriorcingulat
e 

        

CS+>CS- 
0.04

0 
0.010 

0.10
1 

44.00
0 

-0.194 0.213 0.095 0.925 

lateraloccipital         

CS+>CS- 
0.04

0 
-0.200 

0.11
3 

44.00
0 

-0.429 0.028 
-

1.766 
0.084 

amygdala         

CS+>CS- 
0.04

0 
-0.162 

0.09
9 

44.00
0 

-0.361 0.037 
-

1.636 
0.109 
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Reappraisal  
 

contrast 
ERQ

R 
estimat

e 
SE df 

lower.C
L 

upper.C
L 

t.rati
o 

p.valu
e 

caudalanteriorcingulat
e 

        

CS+>CS- 
-

0.03
7 

0.082 
0.09

2 
44.00

0 
-0.103 0.268 0.892 0.377 

 
Non-verbal ability 
 

contrast RSPM 
estimat

e 
SE df 

lower.C
L 

upper.C
L 

t.rati
o 

p.valu
e 

caudalanteriorcingulat
e 

        

CS+>CS- 
68.78

9 
-0.009 

0.08
8 

44.00
0 

-0.187 0.169 
-

0.101 
0.920 

rostralanteriorcingulat
e 

        

CS+>CS- 
68.78

9 
0.010 

0.10
1 

44.00
0 

-0.194 0.213 0.095 0.925 

lateralorbitofrontal         

CS+>CS- 
68.78

9 
0.011 

0.09
3 

44.00
0 

-0.177 0.200 0.120 0.905 

fusiform         

CS+>CS- 
68.78

9 
0.006 

0.10
5 

44.00
0 

-0.206 0.218 0.059 0.953 
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3.5.2 Supplementary Materials 5: Auditory Control Experiment 1 

Historically, the most commonly used Unconditioned Stimulus (UCS) was an 

electric shock but due to the ethical issues of its administration to vulnerable 

populations (e.g. children), other forms of UCSs are now frequently employed 

(Lonsdorf et al., 2017). Auditory UCSs such as white noise and screams, have 

become a popular choice, potentially since other unpleasant stimuli such as 

odours and air puffs often present a procedural difficulty as they require 

specialised equipment for administration.  While there have been some, 

comparative studies on the use of air puffs, odours, verbal and auditory stimuli 

as an alternative to electric shock (Busch & Evans, 1977; McEchron et al., 1992; 

Neumann & Waters, 2006a; Sperl, Panitz, Hermann, et al., 2016), a 

comprehensive investigation or normative data of sounds typically used as UCSs  

is lacking. Therefore, the goal of this study was to derive an unpleasant UCS 

based on participants’ subjective evaluative judgements.  

 

In addition, a crucial difference between an electric shock and auditory stimuli 

is that while an electric shock elicits only an expectancy response to an aversive 

stimulus, an auditory stimulus can also induce responses that purely driven by 

sound processing. For example, the acoustic properties of sounds such as 

intensity, pitch and frequency have been shown to drive physiological reactions 

such as pupil size and SCR changes (Gomez & Danuser, 2007; Liao et al., 2016), 

and to influence ratings of valence arousal (Bradley & Lang, 2000; Gomez & 

Danuser, 2007; Ma & Thompson, 2015; Västfjäll, 2013). In addition, sound 

intensity has been shown to modulate the relationship between pupil size and 

subjective sound perception, such as annoyance (Liao et al., 2016). 

Consequently, the present study also examined whether stimulus valence can 

predict pupil size, valence and arousal changes for sounds of short duration and 

of controlled, high intensity, under conditions similar to classical conditioning 

experiments. In addition, we examined whether the fundamental frequency of 

sounds can potentially mediate any such effects. 
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Methods 
 
Participants 
 
Fourteen subjects aged between 22 and 33 (M = 25.6, SD = 3.2, 3 males) took 

part in the study. One subject was excluded from the data analyses due to a 

corrupted eye tracking file. All participants had normal or corrected-to-normal 

vision and hearing. 

 

Stimuli 
 
A total of seventeen auditory stimuli were used in the control experiment. 

Seventeen of these were environmental or human sounds (12 negative, 5 

positive), such as female scream and metal scrapes as well as bird chirping, 

bubbles, previously shown to elicit negative and positive valence respectively 

(Kumar et al., 2008). These stimuli were obtained from three online databases 

(Freesfx, Freesound and the CNBC Stimuli Repository). The remaining two stimuli 

were an unfiltered and low-pass filtered (1-3 kHz) white noise, created in Matlab 

R2016a. All sounds were trimmed to a length of 200 ms. To equalise the intensity 

of sounds, each sound was mean centred and then normalised to the same, 

maximum root mean square (RMS)  amplitude without clipping using a RMS 

equaliser (The Phonetics Lab, University of Washington, 

https://depts.washington.edu/phonlab/resources/rmsLeveler.m).  The first 20 

ms of the signal of all stimuli was gradually faded in. The resulting normalised 

sounds were presented at a maximum intensity of approximately 85 -90 dB as 

measured by TENMA 72-6635 sound meter. The average fundamental frequency 

of each sound was computed in Matlab 2020b using the Audio Toolbox. Task 

scripts are available at https://osf.io/u6qza/.  

 
Procedure 
 
The task contained a total of 180 trials. Each sound was presented 8 times in a 

random order, with an additional 8 trials during which silence was presented. 

The auditory stimuli were administered through 4m plastic tubes and earpieces 

with a band pass frequency of 4 kHz. On each trial, a black fixation cross was 

presented on a gray background for 650 ms followed by the sound, with an inter-

trial interval (ITI) of 1300 ms ±300 ms, comprising of a black fixation cross on a 

gray background. The sound was delivered through 4m tubes. To maintain 

https://depts.washington.edu/phonlab/resources/rmsLeveler.m
https://osf.io/u6qza/
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subjects’ attention, 3-4 trials were randomly selected and presented twice in 

succession. Participants were instructed to press a button when a sound was 

repeated. At the end of the task, all sounds were presented 3 times in random 

order and participants completed an auditory rating task where they were asked 

to rate each stimulus on valence and negative arousal using an 8-point response 

pad (1 not at all pleasant/arousing to 8 extremely pleasant/arousing). 

 

Pupil response acquisition and pre-processing 
 
Pupil response was recorded using EyeLink 1000 long-range eye tracker and pupil 

size was recorded continuously during each trial presentation with initial 

sampling rate of 1000 Hz. Pupil pre-processing was performed in Matlab 2017a 

using the Fieldtrip Toolbox (Oostenveld et al., 2011) and functions provided by 

Urai et al. (2017)  using the same procedure as in chapter 3.  

 

Results 
 
All analyses were performed in R. Analysis scripts are available at 
https://osf.io/u6qza. 
 
Selection of unconditioned stimuli 
 
As seen in Supplementary Figure 8, the average pupil size gradually increases 

post stimulus onset with a peak around 1.1 seconds. This trajectory is 

comparable across different sounds and regardless of the sound valence. 

Similarly, the mean pupil size across time for the different sounds does not 

appear to differ, at least a descriptive level. When looking at the behavioural 

ratings (see Supplementary Figure 9 and 10), a similar pattern emerges where all 

sounds regardless of their valence were rated as unpleasant in at least 70% of 

responses with the exception of the alarm sound which was rated as unpleasant 

in 97% of responses. In terms of arousal, the responses have a greater spread 

with approximately 40-50% of responses to sounds being not arousing with the 

remaining percentage belonging to arousing. Only one sound (drilling) was rated 

as arousing by 70% of responses. Since none of the measures elicited major 

differences between sounds, the most consistently rated sound on the valence 

scale (the alarm) was selected as the unconditioned stimulus. 

 
 

https://osf.io/u6qza


164 
 
Supplementary Figure 8 

Pupil size responses to different sounds 
 

 
Note: A) Mean pupil size over time. Vertical gray bars indicate the standard 
error of the mean B) Median of the mean pupil size across time. 
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Supplementary Figure 9 

Distribution of valence ratings 

 
Note: A) Percentage of ratings belonging to each Likert point (1-8) and B) 

median valence rating for each sound. 
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Supplementary Figure 10 

Distribution of arousal ratings 

 
Note: A) Percentage of ratings belonging to each Likert point (1-8) and B) 

median arousal rating for each sound. 
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Relationship between stimulus valence and fundamental frequency in 
predicting pupil size valence and arousal 

As seen in Supplementary Figure 11A and 11B, pupil size is slightly larger for 

positive than negative stimuli, however, this difference is small due to the 

substantial overlap in the distributions between conditions. The fundamental 

frequency of sounds also does not appear to correlate with pupil size (see 

Supplementary Figure 11C). We performed linear mixed effects (LME) models 

(package lme4), to determine if the mean pupil size across the trial duration can 

be predicted from stimulus valence and the fundamental frequency of stimuli. 

The model included Stimulus Valence (Positive vs Negative) and Fundamental 

Frequency as fixed effects. Subjects were added as random intercepts with a 

random slope for Stimulus Valence. A random intercept was included for Items, 

accompanied by a random slope for the Fundamental Frequency. We observed 

no significant main effects or interactions (see Supplementary Table 8 and 

Supplementary Figure 11D), confirming that the valence and fundamental 

frequency of stimuli did not influence pupillary responses. 

 

Supplementary Table 8 

Type III Wald chi-square tests and R-squared values for the pupil model and 

each of the fixed effects. 

 

 

  

 Chisq Df P-value 
 

R² Fixed (CI) 
 

Pupil     

Full model    0.009 (0.002-0.06) 

Stimulus Valence 0.445 1.000 0.505 0.006 (0.00-0.04) 

Fundamental Frequency 0.007 1.000 0.933 0.002 (0.00-0.03) 

Stimulus Valence X Fundamental 
Frequency  

0.254 1.000 0.614 
0.001 (0.00-0.02) 
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Supplementary Figure 11 

Summary of pupil size effects by valence and fundamental frequency of stimuli 
 
 

 
Note. A) Proportional mean pupil size change from baseline over time. The 

vertical dashed line indicates sound onset. B) Mean pupil size averaged over 

time. C) Pupil size predicted from the valence and fundamental frequency of 

stimuli. D) Fixed effect estimates (labelled dots) derived from the linear mixed 

effects model of pupil size; bars represent 95% CIs for the estimates. 

 

 
For valence and arousal ratings, instead LME models, we conducted cumulative-

link mixed (CLM) models (package ordinal) to account for the ordinal nature of 

the data. The models included the same random effects structure as the pupil 

model. Again, we observed no significant main effects or interactions (see 

Supplementary Table 9 and Figures 12 and 13 C-D). As seen in Supplementary 

Figures 12A and 13A, the predicted probabilities for each rating category do not 

differ between positive and negative sounds for either valence or arousal 

ratings. Similarly, the fundamental frequency of sounds does not mediate the 
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relationship between ratings and the stimulus valence (see Supplementary 

Figures 12B and 13B). 

 

 
Supplementary Table 9 

Type II Likelihood-ratio tests and R-squared values for the valence and arousal 

models and each of the fixed effects.  

 LR Chisq Df P-value 
 

McFadenn 
Pseudo R²  

 
Negelkerke 
Pseudo R² 

Valence      

Full model    0.0001 0.0003 

Stimulus Valence 0.112 1.000 0.738   

Fundamental 
Frequency 

0.035 1.000 0.852   

Stimulus Valence X 
Fundamental 
Frequency  

0.039 1.000 0.843   

Arousal      

Full model      

Stimulus Valence 0.349 1.000 0.555 0.0003 0.001 

Fundamental 
Frequency 

0.225 1.000 0.635   

Stimulus Valence X 
Fundamental 
Frequency  

0.113 1.000 0.736   
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Supplementary Figure 12 

Summary of valence effects by valence and fundamental frequency of stimuli 
 

 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of valence ratings. B) Scatterplot of the 

relationship between valence ratings and fundamental frequency C) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. D) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. 
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Supplementary Figure 13 

Summary of arousal effects by valence and fundamental frequency of stimuli 

 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of arousal ratings. B) Scatterplot of the 

relationship between arousal ratings and fundamental frequency C) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. D) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. 
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Overall, the findings from these analyses showed that sounds of short duration 

and high intensity cannot be differentiated by their valence from subjective 

ratings of valence and arousal or pupil size. The fundamental frequency of these 

sounds also does not appear to correlate with any of the outcome measures. 

These results suggest that the sounds and consequently their valence, may have 

been undistinguishable due to their short duration or that the high-volume 

intensity of the stimuli led them to be all perceived as unpleasant and arousing. 

This may also potentially limit the impact of the fundamental frequency on the 

sound perception. It is also possible that the combination of short stimulus 

duration and high intensity amplified the perceived low valence of the stimuli.  

 

3.5.3 Supplementary Materials 6: Selection of an appropriate filter 
based on an examination of filtering artifacts 

 

Applying a filter to E/MEG data is a widespread practice during pre-processing 

and analysis, aimed at reducing noise in the data. For example, high-pass 

filtering is used to remove slow drifts from the signal, while band-pass filters are 

often used to examine signals originating from specific frequencies (de 

Cheveigné & Nelken, 2019). However, filtering is shown to cause significant 

distortions of the shape and the timing of the signal.  Specifically, non-causal 

filters, are typically applied forward and backward which can minimise phase 

delays but can introduce considerable time shifts and therefore, cause onsets to 

appear earlier (Subramaniyam, 2018). Such artifacts have been observed in both 

low-pass filtering (VanRullen, 2011b) and high-pass filtering (Acunzo et al., 2012; 

Rousselet, 2012). For high-pass filtering, the distortions are also shown to 

increase with an increase in the cut-off frequency (Acunzo et al., 2012). 

Consequently, some have argued against the use of filtering in general if 

examining onset latencies (VanRullen, 2011b), while others have suggested that 

the issue can be resolved through the application of filters based on an adequate 

consideration of the effects of filtering, specific to the data in question 

(Widmann et al., 2015). According to Rousselet (2012), causal filters which are 

often applied only forward may minimise timing artifacts and should the 

preferred option when attempting to make inferences regarding the onset of 

effects.  
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In the case of the present study, filtering may be even more problematic since 

for CS+ trials during Acquisition, the visual CS is followed by an auditory UCS. 

Therefore, two separate processes associated with two onsets are observed in a 

single trial, introducing the significant risk of detecting effects within the time 

window of the CR (before UCS onset) that may be driven by the UCR (after UCS 

onset). In an attempt to prevent this and to select the most appropriate filter 

that offers the least amount of signal distortion, we followed advice by Widmann 

et al. (2015) and filtered the data using different filtering parameters and filter 

types. 

 

First, we applied a band-pass filter between 1 and 8 Hz using the default filter in 

Fieldtrip (a Butterworth IIR twopass filter, filter order=4). We chose this filter 

and high cut-off, high-pass frequency since based on the previous research 

discussed above, it would be a likely candidate for introducing significant timing 

distortions. The filter was applied on the pre-processed sensor level data for 

each subject and on each trial between -0.65 to 0.9 seconds. Trial-level data 

were baseline corrected using a baseline period of -0.65 to 0 seconds. A planar 

gradient transformation was then applied to facilitate interpretation of the MEG 

fields. To account for potential baseline differences during the Habituation 

phase, for each subject and condition, we subtracted the signal during 

Habituation from that during Acquisition. Next, we performed a two-tailed 

Monte-Carlo permutation paired t-test comparing CS+ and CS- trials during 

Acquisition. The test was performed in the time window between 0 and 0.65 s 

post-CS onset and thus, did not include the UCS presentation (i.e., only 

examined the CR effects). The results revealed two significant clusters of 

activation somewhere in the time windows between 0.15 and 0.45 s and 

between 0.52 and 0.65s (see Supplementary Figure 14). When comparing the 

time courses of CS+ and CS- trials in the channels identified as significant in the 

cluster-based permutation (see Supplementary Figure 15) these differences and 

may suggest that activity that this activity reflects an anticipation of the 

upcoming aversive stimulus. However, when looking at the topography of the 

unfiltered signal during the time when the UCS was presented (see 

Supplementary Figure 16), it becomes apparent that the topography is very 

similar to that observed in Supplementary Figure 14, around the significant time 
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windows identified by the cluster-based permutation. This suggests that the 

filtering may have shifted the onset of the UCS, producing and artificial effect. 

 

Supplementary Figure 14 

Topographical representation of the average ERFs between 1 and 8 Hz from 

around 0.15 to 0.65 seconds reflecting the CR. 

 

Note. The white stars indicate clusters significantly different at the level of 0.05 
between CS+ and CS- trials during Acquisition. 
 
Supplementary Figure 15 

Average ERF time course between 1 and 8 Hz for CS+ and CS- trials during 
Acquisition. 

 
Note. ERFs were averaged across the significant channels identified across the 
two significant clusters. 
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Supplementary Figure 16 

Topographical representation of the ERFs between 0 and 8 Hz from 0.65 to 0.85 

seconds reflecting the UCR.  

 
 
 
 
To investigate this further and to find the least distortive filter parameters, we 

applied several infinite impulse response (IIR) and finite impulse response (FIR) 

causal, and non-causal filters within the theta frequency band. For the purposes 

of the present analysis, we define causal filters as those that are applied only 

forward (one-pass) and non-causal filters as filters that are applied forward and 

backward (two-pass). Specifically, we applied the following in addition to the 

initial Butterworth two-pass filter: 

 

1) A low-pass Butterworth IIR two-pass filter (0 – 8 Hz) 

2) A band-pass Butterworth IIR one-pass filter (1 – 8 Hz) 

3) A low-pass FIR two-pass filter (0– 8 Hz) 

4) A band-pass FIR one-pass filter (0.01 – 8 Hz) 

5) A band-pass FIR one-pass filter (0.1 – 8 Hz) 

6) A band-pass FIR one-pass filter (1 – 8 Hz) 

7) A band-pass FIR two-pass filter (0.01 – 8 Hz) 

8) A band-pass FIR two-pass filter (0.1 – 8 Hz) 

9) A band-pass FIR two-pass filter (1 – 8 Hz) 

 

These filters were applied using the same procedure as described for the initial 

filter (1-8 Hz Butterworth IIR two-pass filter).  Here we present, the filtering 
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effects for the CS+ and CS- conditions during Acquisition. To descriptively 

compare the impact of the different filtering parameters, for each filtered 

dataset, we down sampled the data to 50Hz and extracted sensor-level data 

from the channels that were identified as significant by the cluster-based 

permutation for the ERFs filtered using the 1-8 Hz Butterworth IIR two-pass 

filter. Each filter was then plotted against the unfiltered data (see 

Supplementary Figure 17 and 18).  

 

To ease visualisation of the different onsets, Figure 17A includes the average 

ERFs during the CS+ trials and part of the UCS presentation (-0.2 to 0.75 s), thus 

reflecting both the CR and UCR. Figure 17B focuses only on the CR (-0.2 to 0.65 

s). When examining the figure, several patterns emerge. First, the causal FIR 

filtering appears to cause large distortions, predominantly on the onset of 

effects. As seen in Figure 17A, compared to the unfiltered signal and the non-

causal FIR filters, the onsets of peaks within the ERFs are shifted later in time by 

about 200 ms. The filters with high cut-off frequency of 1 Hz show high level of 

signal distortion that is also dependent on the filter type. The initially computed 

Butterworth non-causal filer leads to a shift of peak onsets earlier in time by 

around 100-200 ms but it also increases the amplitude of these peaks. The causal 

FIR and IIR (Butterworth) filters follow a similar trajectory to that of the causal 

FIR filters with lower cut-off frequencies. Finally, the non-causal FIR 1-8 Hz 

filter distortions mostly affect the amplitude of the peaks. 

 

In contrast, the non-causal FIR filters with lower high-pass cut off frequency up 

to 0.1 seconds show the least amount of distortion and similar to the low-pass 

filters. When focusing on the CR only (-0.2-0.65 seconds, Figure 17B), however, 

a small amplitude difference can be seen between the filtered and unfiltered 

signal, immediately prior to UCS onset. When examining the average ERFs for CS- 

trials where no UCS was presented, no distortions are observed. This may 

suggest, that even with those filters, a signal leakage from the presentation of 

the UCS may be present in the CS+ condition which could contribute to observing 

an artificial difference between the two conditions. 

 

To formally test this descriptively, we performed the same filtering procedures 

but prior to filtering, we trimmed the data to -0.65 to 0.65 ms, thus excluding 
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the onset and duration of the UCS. As seen in Figure 19, the small distortions 

that were observed for the low-pass and low cut-off band pass FIR filters earlier 

are no longer present.  

 

Therefore, based on the present data, for trials that contain only one onset of 

interest low-pass filters do not cause significant distortion to the shape or timing 

of effects. Similar effects are also observed for band-pass filters with cut-off 

frequency of 0.01 and 0.1 Hz, with the exclusion of causal FIR filters which 

cause significant timing distortions. This is contrary to Rousselet’s (2012) 

observation of high levels of distortion for causal high-pass filters and suggests 

that filter causality may have different impact on high compared to band pass 

filters. Finally, band-pass filters with a high cut-off frequency of 1 regardless of 

whether causal or non-causal also produce large artifacts. The distortions we 

observed using band-pass filtering are consistent with previous research on 

filtering artifacts suggesting that high-pass filtering creates distortions to the 

data that increases with the increased in the high-pass cut-off frequency 

(Acunzo et al., 2012; Rousselet, 2012; Widmann et al., 2015). 
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Supplementary Figure 17 

Comparison of filtered and unfiltered event-related fields for CS+ trials 
including A) both the CR and UCR (-0.2 to 0.75 s) and B) only the CR (-0.2 to 0.65 
s) 
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Supplementary Figure 18 

Comparison of filtered and unfiltered event-related fields for CS- trials  
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Supplementary Figure 19 

Comparison of filtered and unfiltered event-related fields for CS+ trials 
trimmed to 0.65 s prior to filtering. 
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Overall, our findings suggest that a combination of factors can influence the 

shape and onset of events, including the cut-off frequency, filter causality as 

well as whether finite or infinite impulse filters. Furthermore, trials that contain 

the presentation of more than one stimulus require even more caution, as signal 

smearing can be observed between the onsets of the two events. These results 

demonstrate that when it comes to filtering, there is no one-size-fits-all and 

highlight the necessity to cautiously examine and select the most appropriate 

filter specific to data under investigation.  

 

Based on the present results and recommendations by Widmann et al. (2015) for 

using low high-pass cut-off frequencies of 0.01 to 0.05, we selected the 0.01-8 

Hz FIR causal (two-pass) filter for all analyses of ERFs. In addition, before 

filtering was performed, data were trimmed to -0.65 to 0.65 s to ensure that 

there would not be any signal smearing originating from the UCS.  
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3.5.4 Supplementary Materials 7: Source level visualization for 
each condition and experimental phase 

 
Supplementary Figure 20 

Mean ERFs in ROIs across experimental phases 
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Supplementary Figure 21 

TF maps for CS+ and CS- trials during Habituation 
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Supplementary Figure 22 

TF maps for CS+ and CS- trials during Acquisition 
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Supplementary Figure 23 

TF maps for CS+ and CS- trials during Extinction 
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3.5.5 Supplementary Materials 8: TF maps in higher frequencies 
(30-120 Hz) 

Supplementary Figure 24 

Habituation-baselined grand average time frequency maps, contrasting the 

difference between CS+ and CS- conditions during Acquisition and Extinction. 

 

 

 
  



188 
 

3.5.6 Supplementary Materials 9: Source reconstruction using 
LCMV beamforming on virtual channels 

 

To validate the results obtained using MNE in Brainstorm, we performed a 

secondary source estimation using virtual channel LCMV beamforming in 

Fieldtrip. The two methods mainly differ in the assumptions they make in 

characterising sources, with MNE often being the preferred approach when 

attempting to localise deep structure activity such as the amygdala (Balderston 

et al., 2013; Dumas et al., 2011) as sources are reconstructed based on precisely 

defined subcortical regions and false detection of deep activity is less common 

than with other methods (Attal & Schwartz, 2013). In contrast, the main benefit 

of beamforming is that it estimates activity in a location of interest while 

blocking signals from other sources (Bourgeois & Minker, 2009).  

 

MEG-MRI co-registration was performed using subject’s digitised head shape and 

landmark information (nasion and peri-auricular points) using Fieldtrip. We used 

a single shell method for computing the head model. The inverse model was 

calculated for each trial using LCMV beamforming by reconstructing the sensor 

level data from MNI coordinates to regions from the AAL atlas (Tzourio-Mazoyer 

et al., 2002).  Time frequency maps were computed at a trial-level in ROIs 

derived from the AAL atlas.  Specifically we included the the anterior and 

median cingulate gyri (ACG and DCG), inferior and middle frontal gyri (ORBinf, 

ORBmid),  middle and superior occipital gyri (MOG, SOG), fusiform gyrus (FFG), 

the amygdala, thalamus and hippocampus.(Amyg, Tha, Hip).  We used an 

identical procedure for the computation of time frequency maps as that in the 

main analysis. As seen in Supplementary Figure 25 and 26, the pattern of results 

remains relatively similar to that observed from the MNE source estimation, 

specifically in the amygdala and the ACG. Similar to our main analyses, the 

cluster-based permutation on the habituation-baselined data also revealed no 

significant differences between conditions during either acquisition or 

extinction, not only at the theta band but across frequencies as well. These 

findings suggest that our results were not driven by the source reconstruction 

method. 
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Supplementary Figure 25 

Habituation-baselined grand average time frequency maps in frequencies below 

30 Hz, contrasting the difference between CS+ and CS- conditions during 

Acquisition and Extinction. 
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Supplementary Figure 26 

Habituation-baselined grand average time frequency maps in frequencies above 

30 Hz, contrasting the difference between CS+ and CS- conditions during 

Acquisition and Extinction. 
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3.5.7 Supplementary Materials 10: Average oscillatory power in 
lower frequencies 

  
To examine the specific frequencies that most strongly contribute to task-

related changes, we performed a Fast Fourier Transformation (FFT) at trial 

level.  The analysis used a hanning taper and was performed in the time window 

between 0 and 0.64 s post CS onset for frequencies between 1 and 20 Hz 

(frequency resolution of 1 Hz and frequency smoothing of 1 Hz). Supplemenrary 

Figure 27 shows mean oscillatory power for each condition and in each 

experimental phase. We employed a normalisation procedure similar to that 

adopted by Tzovara et al. (2019), in which the trial-level mean oscillatory power 

per frequency, was normalised by the maximum trial-level power across 

frequencies. This was performed for each ROI, condition, and participant. As 

seen in the Figure, the power is highest in the lowest frequencies, ranging 

between 2 and 4 Hz, with a small peak occurring between 8 and 12 Hz. This 

pattern is observed for all three experimental phases and for both CS+ and CS- 

conditions.  

 

Similar findings of a reduction in oscillatory power with increasing frequencies 

within the theta band (2-8 Hz) was also reported by Tzovara et al. (2019) in the 

amygdala and the hippocampus. In addition, they showed that mean theta power 

was greater for CS- compared to CS+ trials. However, when quantifying 

differences in our data within Acquisition and Extinction, the two-sided paired 

Monte-Carlo permutation paired t-tests (2000 permutations, FDR corrected, 

alpha = 0.025), revealed no significant differences within any of the frequency 

bands. These analyses were performed on Habituation-baselined data as well as 

without baselining the data in respect to habituation, with similar findings across 

the two approaches. 
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Supplementary Figure 27 

Mean oscillatory power between 1 and 20 Hz for each condition and 

experimental phase 
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3.5.8 Supplementary Materials 11: Random effects summaries 
derived from mixed models 

Supplementary Table 10 

Summary of fixed estimates and random effect variance for the pupil model. 
 

  Mean Pupil 

Predictors Estimates CI p 

(Intercept) -0.00 -0.00 – 0.00 0.761 

Experimental Phase -0.01 -0.01 – -0.00 0.004 

Stimulus Type -0.00 -0.01 – 0.00 0.771 

Interaction 0.00 -0.00 – 0.01 0.522 

Random Effects 

σ2 0.0082 

τ00 Subject 0.0009 

τ00 Item 0.0000 

τ11 Subject: Phase 0.0000 

τ11 Subject: Stimulus Type 0.0000 

τ11 Subject: Interaction 0.0064 

τ11 Item: Phase 0.0387 

τ11 Item: Stimulus Type 0.0000 

τ11 Item: Interaction 0.0049 

N Subject 0.1238 

N Item 0.0000 

Observations 0.0649 

Marginal R2  0.0477 

τ00 Subject 19 

τ00 Item 36 

τ11 Subject: Phase 11808 

τ11 Subject: Stimulus Type 0.001 / NA 

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
 
 
 
 
Supplementary Figure 28 
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By-subject and by-item random coefficients and intercept for the pupil model. 
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196 
 
Supplementary Table 11 

Summary of fixed estimates and random effect variance for the valence model. 
 

  Mean Valence 

Predictors Estimates CI p 

(Intercept) -0.00 -0.11 – 0.10 0.950 

Experimental Phase -0.03 -0.13 – 0.07 0.534 

Stimulus Type -0.06 -0.23 – 0.12 0.528 

Interaction -0.08 -0.28 – 0.12 0.459 

Random Effects 

σ2 0.8954 

τ00 Subject 0.0309 

τ00 Item 0.0273 

τ11 Subject: Phase 0.0012 

τ11 Subject: Stimulus Type 0.0603 

τ11 Subject: Interaction 0.0120 

τ11 Item: Phase 0.0041 

τ11 Item: Stimulus Type 0.0767 

τ11 Item: Interaction 0.0042 

N Subject 20 

N Item 36 

Observations 1440 

Marginal R2  0.002 

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Figure 29 

By-subject and by-item random coefficients and intercept for the valence 
model. 
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Supplementary Table 12 

Summary of fixed estimates and random effect variance for the arousal model. 
 

  Mean Arousal 

Predictors Estimates CI p 

(Intercept) -0.01 -0.18 – 0.16 0.871 

Experimental Phase 0.28 0.09 – 0.46 0.003 

Stimulus Type 0.49 0.11 – 0.86 0.011 

Interaction 0.30 -0.07 – 0.67 0.111 

Random Effects 

σ2 1.2516 

τ00 Subject 0.0366 

τ00 Item 0.1141 

τ11 Subject: Phase 0.0007 

τ11 Subject: Stimulus Type 0.0898 

τ11 Subject: Interaction 0.0172 

τ11 Item: Phase 0.1027 

τ11 Item: Stimulus Type 0.6107 

τ11 Item: Interaction 0.4302 

N Subject 20 

N Item 36 

Observations 1440 

Marginal R2  0.063 / NA 

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Figure 30 

By-subject and by-item random coefficients and intercept for the arousal 
model. 
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3.5.9 Supplementary Materials 12: CLM modelling of the three-
phased ordinal data 

 

To account for the ordinal nature of the ratings we re-analysed the data using 

cumulative link mixed (CLM) models (package ordinal) on the three-phased 

datasets. Each model included a 3 Experimental Phase (Habituation, Acquisition 

vs Extinction) by 2 Stimulus Type (CS+ vs CS-) fixed effects design with mean-

centred contrasts for the two categorical fixed effects. For the Experimental 

Phase fixed effect, the Habituation phase was used as the baseline level. 

Subjects and Items were added as random intercepts with a by-subject and by-

item random slopes for the main effects and the interaction. Main effects and 

interactions were assessed using type II Likelihood-ratio test (package 

RVAideMemoire).  

 

For valence, the only fixed effect significant at the level of 0.05 was the main 

effect of Stimulus Type (see Supplementary Table 13 and Figure 31). Post-hoc 

contrasts computed using asymptotic degrees of freedom approximation 

(package emmeans) showed that CS+ faces were rated as less pleasant than CS- 

faces (z(inf) = -5.1, p < 0.001), (see Supplementary Table 14). These findings are 

consistent with the descriptive analyses and confirm the likelihood of baseline 

differences between CS+ and CS- faces during Habituation. These findings also 

support the use of LME modelling on habituation-baselined data as means for 

partly accounting for these baseline differences. The results from the CLM 

arousal model were consistent with those from the LME model (see 

Supplementary Table 14 and Figure 32) and showed that significant main effects 

of Experimental Phase and Stimulus Type at the level of 0.05. Post-hoc contrasts 

revealed that CS+ faces were rated as more arousing than CS- faces and that 

faces were rated as more arousing during Acquisition compared to Habituation 

and Extinction and less arousing during Extinction compared to Habituation (see 

Supplementary Table 15 and Table 16). As seen in Supplementary Figure 32 

showing the predicted probabilities for each rating category, these effects are 

driven by the higher probabilities for lower arousal ratings for CS- faces. 
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Supplementary Table 13 

Type II Likelihood-ratio tests and R-squared values for the valence and arousal 

models and each of the fixed effects. 

 LR 
Chisq 

Df P-value 
McFadenn 
Pseudo R²  

Negelkerke 
Pseudo R² 

Valence      

Full Model     0.004 0.01 

Experimental Phase 0.333 2.000 0.847   

Stimulus Type 26.677 1.000 0.000   

Experimental Phase X 
Stimulus Type 

1.231 2.000 0.540 
  

 
Arousal 

   
  

Full Model      

Experimental Phase 12.383 2.000 0.002 0.009 0.03 

Stimulus Type 46.667 1.000 0.000   

Experimental Phase X 
Stimulus Type 

5.497 2.000 0.064 
  

 
 
 

Supplementary Table 14 

Estimated marginal means and related contrasts derived for the main effect of 
Stimulus Type in the valence model. 

Estimates 

Stimulus Type Cut Estimate SE df Lower CI Upper CI 

CS Unpaired 1|2 -4.469 0.265 Inf -5.061 -3.877 

CS Paired 1|2 -4.068 0.263 Inf -4.656 -3.480 

CS Unpaired 2|3 -2.304 0.230 Inf -2.818 -1.790 

CS Paired 2|3 -1.903 0.228 Inf -2.413 -1.392 

CS Unpaired 3|4 -0.839 0.225 Inf -1.342 -0.336 

CS Paired 3|4 -0.438 0.224 Inf -0.939 0.063 

CS Unpaired 4|5 0.341 0.224 Inf -0.161 0.842 

CS Paired 4|5 0.742 0.225 Inf 0.239 1.244 

CS Unpaired 5|6 1.821 0.228 Inf 1.311 2.331 

CS Paired 5|6 2.222 0.229 Inf 1.709 2.735 

CS Unpaired 6|7 3.253 0.242 Inf 2.712 3.793 

CS Paired 6|7 3.653 0.244 Inf 3.108 4.199 

CS Unpaired 7|8 4.521 0.280 Inf 3.894 5.147 

CS Paired 7|8 4.921 0.282 Inf 4.290 5.553 

Contrasts       

Contrast Estimate SE df Z ratio  P value 
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Estimates 

Stimulus Type Cut Estimate SE df Lower CI Upper CI 

CS Paired – CS Unpaired -0.401 0.078 Inf -5.167 <0.001 

 
 
Supplementary Table 15 

Estimated marginal means and related contrasts derived for main effect of 
Experimental Phase in the arousal model. 
 

Estimated Marginal Means  

Experimental Phase Cut Estimate SE df Lower CI Upper CI 

Habituation 1|2 -2.951 0.427 Inf -3.971 -1.930 

Acquisition 1|2 -3.128 0.428 Inf -4.149 -2.107 

Extinction 1|2 -2.790 0.427 Inf -3.809 -1.771 

Habituation 2|3 -0.858 0.420 Inf -1.862 0.146 

Acquisition 2|3 -1.035 0.420 Inf -2.039 -0.031 

Extinction 2|3 -0.697 0.420 Inf -1.700 0.306 

Habituation 3|4 0.250 0.420 Inf -0.752 1.253 

Acquisition 3|4 0.073 0.420 Inf -0.929 1.075 

Extinction 3|4 0.411 0.420 Inf -0.591 1.413 

Habituation 4|5 1.263 0.420 Inf 0.259 2.266 

Acquisition 4|5 1.085 0.420 Inf 0.083 2.088 

Extinction 4|5 1.423 0.420 Inf 0.419 2.427 

Habituation 5|6 2.112 0.422 Inf 1.105 3.119 

Acquisition 5|6 1.934 0.421 Inf 0.929 2.940 

Extinction 5|6 2.272 0.422 Inf 1.265 3.280 

Habituation 6|7 3.191 0.425 Inf 2.175 4.206 

Acquisition 6|7 3.013 0.425 Inf 1.999 4.027 

Extinction 6|7 3.351 0.426 Inf 2.334 4.368 

Habituation 7|8 4.851 0.444 Inf 3.792 5.911 

Acquisition 7|8 4.674 0.443 Inf 3.616 5.732 

Extinction 7|8 5.012 0.444 Inf 3.951 6.073 

Contrasts  
 

Contrast Estimate SE df Z ratio  P value 

Acquisition - 
Habituation 

0.178 0.097 Inf 1.839 0.157 

Extinction - 
Habituation 

-0.160 0.097 Inf -1.661 0.221 

Extinction - 
Acquisition 

-0.338 0.096 Inf -3.508 0.001 
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Supplementary Table 16 

Estimated marginal means and related contrasts derived for main effect of 
Stimulus Type in the arousal model. 
 

Estimated Marginal Means 

Stimulus 
Type 

Cut Estimate SE df 
Lower 

CI 
Upper CI 

CS Unpaired 1|2 -2.686 0.425 Inf -3.636 -1.736 

CS Paired 1|2 -3.227 0.426 Inf -4.180 -2.274 

CS Unpaired 2|3 -0.593 0.418 Inf -1.528 0.343 

CS Paired 2|3 -1.134 0.419 Inf -2.071 -0.197 

CS Unpaired 3|4 0.515 0.418 Inf -0.420 1.450 

CS Paired 3|4 -0.026 0.418 Inf -0.960 0.908 

CS Unpaired 4|5 1.528 0.419 Inf 0.591 2.464 

CS Paired 4|5 0.986 0.418 Inf 0.051 1.922 

CS Unpaired 5|6 2.377 0.420 Inf 1.437 3.317 

CS Paired 5|6 1.836 0.419 Inf 0.898 2.773 

CS Unpaired 6|7 3.456 0.424 Inf 2.507 4.404 

CS Paired 6|7 2.914 0.423 Inf 1.969 3.860 

CS Unpaired 7|8 5.116 0.443 Inf 4.126 6.107 

CS Paired 7|8 4.575 0.441 Inf 3.589 5.561 

Contrasts       

Contrast Estimate SE df Z ratio P value 

CS Paired – CS 
Unpaired 

0.541 0.080 Inf 6.801 <0.0001 

 
  



206 
 
Supplementary Figure 31 

A summary of valence fixed effects. 

 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of valence ratings B) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. C) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of valence ratings; bars represent 95% CIs for the estimates. 
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Supplementary Figure 32 

A summary of arousal fixed effects. 

 
Note. A) Predicted probability of each rating point per condition derived from 

the cumulative-link mixed effects model of arousal ratings B) Fixed effect 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. C) Threshold 

estimates (labelled dots) derived from the cumulative-link mixed effects model 

of arousal ratings; bars represent 95% CIs for the estimates. 
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3.5.10 Supplementary Materials 13: Exploring baseline 
differences in valence ratings 

 

The following exploratory analyses examine the potential factors driving the 

baseline valence differences between CS+ and CS- trials. We considered several 

potential factors, including variability of valence ratings per item, the 

counterbalancing procedure, and the normative ratings provided by the face 

database the stimuli were selected from. 

 

Supplementary Figure 33 shows the median valence ratings per item. As seen in 

the figure, there are several items that had a median valence rating above the 

grand median (horizontal red line), with a few items below the grand median. 

This suggests that these stimuli were not perceived as neutral.  

 

Supplementary Figure 33 

Valence ratings per item. 

 

 

Note. The horizontal red line indicates the grand median valence rating.  
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To investigate this further, we examined the mediating role of a number of 

ratings obtained from the normative database, including attractiveness, 

dominance, stimulus sex, and emotionality of the stimuli (anger, sadness, 

happiness, fear). These were included as interacting factors with the fixed 

effect of Stimulus Type in a linear mixed effects model. The outcome variable in 

this model was valence ratings during Habituation. The model also included 1) a 

by-subject random intercept, together with a random slope for the main effect 

of Stimulus Type, and 2) a by-item random intercept, with a random slope for 

the main effect of stimulus type and the main effects of the normative ratings. 

The model revealed no significant interactions. However, there were significant 

main effects of attractiveness, anger, and stimulus sex (see Supplementary 

Table 17). As seen in Supplementary figures 34-36, there was a positive 

correlation between valence and attractiveness, a negative correlation between 

valence and anger, and female faces were rated as slightly more pleasant than 

male faces. While these factors were not found to mediate the condition 

baseline differences, they can explain why some stimuli were rated as more or 

less pleasant as indicated in Supplementary Figure 33. These findings confirm 

that the faces were not perceived as completely neutral, even though they were 

selected so that they do not vary substantially. 

  



210 
 
Supplementary Table 17 

Type III Wald Chi-square tests for the main effects and interactions in the 

model examining the mediating role of normative ratings. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 Chisq Df P-value 

Stimulus Type  0.168 1.000 0.682 

Attractive 5.970 1.000 0.015 

    

Dominant 3.680 1.000 0.055 

Trustworthy 1.502 1.000 0.220 

Angry 6.052 1.000 0.014 

Sad 0.026 1.000 0.873 

Happy 0.252 1.000 0.615 

Afraid 0.811 1.000 0.368 

Stimulus Sex 5.062 1.000 0.024 

Stimulus Type X Attractive 0.031 1.000 0.860 

Stimulus Type X Dominant 1.742 1.000 0.187 

Stimulus Type X Trustworthy 0.041 1.000 0.839 

Stimulus Type X Angry 2.723 1.000 0.099 

Stimulus Type X Sad 0.486 1.000 0.486 

Stimulus Type X Happy 0.254 1.000 0.615 

Stimulus Type X Afraid 0.595 1.000 0.440 

Stimulus Type X Stimulus Sex 1.022 1.000 0.312 
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Supplementary Figure 34 

Scatterplot of the relationship between valence and attractiveness ratings per 

stimulus type. 

 

 

Supplementary Figure 35 

Scatterplot of the relationship between valence and anger ratings per stimulus 

type. 
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Supplementary Figure 36 

Valence ratings per stimulus sex and stimulus type. 

 

 
  

Finally, we examined the potential impact of the counterbalancing procedure. 

The counterbalancing involved creating 10 stimulus sets within which stimuli for 

each block were randomly selected and randomly assigned to either the CS+ or 

the CS- condition. The assignment of stimuli to each condition was then 

counterbalanced across participants. Therefore, two participants completed 

each of the 10 stimulus sets. However, it is worth noting, that while the 

assignment of stimuli per block and condition was random, all participants were 

exposed to all stimuli at some point in the experiment. Yet, since the 

assignment of stimuli to each set was completely random, we examined whether 

the stimulus set that participants were assigned mediated the baseline valence 

differences. This was done using a linear mixed effects model with Stimulus 

Type and Counterbalancing Group as the fixed effects. We also included a by-

item and by-subject random intercept together with a random slope for the 

main effect of Stimulus Type. As seen in Supplementary Table 18 and Figure 37, 

there were no significant differences, suggesting that the randomisation 

procedure did not mediate the baseline differences.  
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Supplementary Table 18 

Type III Wald Chi-square tests for the main effects and interactions for the 

model examining the mediating role of the randomisation procedure.  

 Chisq Df P-value 

Stimulus Type 0.200 1.000 0.655 

Counterbalancing Group 13.284 8.000 0.102 

Stimulus Type X Counterbalancing Group 7.029 8.000 0.534 

 

 

 

 

Supplementary Figure 37 

Valence ratings per counterbalancing group. 
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3.5.11 Supplementary Materials 14: Development and 
habituation of pupillary and behavioural conditioning and 
extinction effects over blocks 

 
The blocked conditioning paradigm is a 9-time multiplication of a standard fear 

conditioning set up, where each block represents a stand-alone experiment with 

a number of stimuli mirroring that of most available studies. As such, despite 

using different CSs in each block, it is possible that learning effects over time 

may occur. Supplementary Figure 38 explores the development and extinction of 

conditioned pupillary responses over the nine experimental blocks.  

 

When examining the CR over blocks (pupil size before UCS onset), small changes 

in pupil size between conditions is observed, whereas for certain blocks pupil 

size is slightly larger for CS+ trials, while for other the opposite pattern (e.g., 

Block 2 and 6) is observed. However, overall, condition differences remain 

minimal and the magnitude of these differences remains relatively stable across 

blocks. A similar pattern of results is seen during extinction. When visualising 

the average pupil size across the CR, no differences are seen between blocks 

with a significant overlap in the distributions between conditions (see 

Supplementary Figure 39).  

 

When examining the UCR over blocks (pupil size after UCS onset), the magnitude 

of the difference between CS+ and CS- during acquisition is also relatively stable 

suggesting low level of habituation to the UCS. During extinction, both increases 

and decreases in response to the CS+ can be seen, however, these differences 

are minimal in most blocks apart from blocks 2,5,7, and 9. Furthermore, these 

differences are negligible in magnitude when examining the mean pupil size over 

the entire time window of the UCR (see Supplementary Figure 40). If any 

learning or habituation effects were observed in either the conditioned or 

unconditioned responding, we would have expected to see a gradual decrease or 

increase in the magnitude of differences between conditions over time (blocks).  

 

Finally, no evidence for block-related learning effects can be seen when looking 

at the subjective valence and arousal ratings across conditions and blocks (see 

Supplementary Figure 41 and 42).  



215 
 
Supplementary Figure 38 

Proportional mean pupil size over time and across blocks.
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Supplementary Figure 39 

Mean pupil size over the CR (0 – 0.6 s) over blocks.  

 
 
Supplementary Figure 40 

Mean pupil size over the UCR (0.65 – 1.7 s) over blocks.  
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Supplementary Figure 41 

Valence ratings over blocks.  

 

 
 
Supplementary Figure 42 

Arousal ratings over blocks.  
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3.5.12 Supplementary Materials 15: Ratings of valence and 
arousal for the UCS over blocks 

 
We examined participants’ subjective ratings of valence and arousal for the UCS, 

to determine whether the UCS remained unpleasant over the duration of the 

experiment. The sound was rated on the scale of 1 to 8 ranging from not 

pleasant/not arousing to extremely pleasant/extremely arousing. As seen in 

Supplementary Figure 43, the median valence ratings remained at around 2 with 

relatively low variance that persisted over blocks. Arousal ratings also remained 

relatively high although there was a greater variance in responses, with a 

median arousal rating raging between 5 and 7. This suggests that the UCS 

remained arousing and unpleasant over the duration of the experiment. 

 
Supplementary Figure 43 

Valence and arousal UCS ratings for each block 
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4 Chapter 4 The more, the better: Auditory threat 
conditioning using multiple conditioned and 
unconditioned stimuli over many trials 

 

4.1 Introduction 

A wide range of physiological outcome measures have been employed to 

evidence the acquisition and extinction of threat related conditioned responses 

(CRs). The most commonly used CR readout (Lonsdorf et al., 2017) is the skin 

conductance response (SCR), which is an index of sympathetic nervous system 

activity and can be elicited through arousal (Jentsch et al., 2020; Tzovara et al., 

2018). Studies have consistently demonstrated a larger SCR to CS+ than CS- 

during acquisition and a diminishing difference from early to late trials of 

extinction (Hopkins et al., 2015; Jentsch et al., 2020; Leuchs et al., 2019; 

Morriss et al., 2015; Reinhardt et al., 2010; Tzovara et al., 2018). Pupil size is a 

related, but in the context of conditioning, less frequently employed autonomic 

measure of arousal, reflecting both sympathetic (dilation) and parasympathetic 

(constriction) activation (Lonsdorf et al., 2017; Ojala & Bach, 2020).  Previous 

pupillometry studies have reported patterns of conditioned responding similar to 

those in SCR (García-Palacios et al., 2018; Hopkins et al., 2015; Jentsch et al., 

2020; Kluge et al., 2011; Korn et al., 2017; Leuchs et al., 2017, 2019; Reinhard & 

Lachnit, 2002; Tzovara et al., 2018; Visser et al., 2015, 2016, 2013). Specifically, 

these have shown more dilated pupils in response to CS+ than CS- trials, and a 

reduction in this difference during extinction. However, there is a large variety 

in the methods used for quantifying the CR in both SCR and pupil measurements, 

relying, for instance, on calculating peak responses, mean responses or areas 

under the curve within pre-defined time windows (Jentsch et al., 2020; Korn et 

al., 2017). For trials with longer durations, it is also common to subdivide trials 

into first (FIR) and second (SIR) interval responses2, using pre-defined time 

 
2 Trial subdivisions into FIR and SIR have been motivated by early work suggesting that 

multiple CRs reflecting different underlying processes may be observable within a trial (Prokasy 

& Ebel, 1967). However, the empirical basis for such a distinction has been debated (Pineles et 

al., 2009). 
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windows that, again, vary greatly across studies (Jentsch et al., 2020; Pineles et 

al., 2009). Inconsistencies in pre-defining time windows of interest can make 

comparisons between outcomes from different studies extremely difficult. A 

potential solution to this problem, which we will apply in our own analyses, is to 

select time windows of interest using a purely data-driven approach. 

 

Along with online (neuro)physiological measures of conditioning, behavioural CR 

indices are also commonly employed. These are typically obtained offline 

following conditioning and after extinction and include, but are not limited to, 

subjective ratings of valence and arousal (Bröckelmann et al., 2011; Gawronski 

& Mitchell, 2014; Glotzbach et al., 2012; Junghöfer et al., 2015a; Reinhardt et 

al., 2010; Sehlmeyer et al., 2011; Steinberg et al., 2013; Wendt et al., 2020) as 

well as self-reported fear/anxiety (Abend et al., 2020; Glotzbach et al., 2012; 

Morriss et al., 2015). Following conditioning, such studies typically (but see, 

e.g., Bröckelmann et al., 2011) report that CS+ trials are perceived as more 

unpleasant, arousing or fear-inducing than CS- trials (Gawronski & Mitchell, 

2014; Glotzbach et al., 2012; Sehlmeyer et al., 2011; Morriss et al., 2015). This 

difference can diminish following extinction (Abend et al., 2020; Morriss et al., 

2015). However, under certain conditions, cases of resistance to extinction have 

also been reported in both valence and arousal ratings (Gawronski & Mitchell, 

2014; Sehlmeyer et al., 2011; Winn et al., 2018).  

 

This extensive body of conditioning research is accompanied by common 

methodological practices that may affect both the replicability of previous 

affective conditioning research and the inferences that can be drawn from it. In 

recent years, there has been a growing interest in improving the methodological 

consistency, replicability, and validity of inferences drawn from conditioning 

studies. Efforts have focused on increasing data and reporting transparency, 

reducing excessive ‘arbitrary’ data reduction (e.g., through statistical modelling 

that incorporates all available data), and using evidenced-based data exclusion 

criteria  (Lonsdorf et al., 2019; Ney et al., 2018). In this paper, we examine an 

additional set of inter-related experimental design and analytical decisions that 

may challenge the generalisability of findings both within and across studies. 
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While these will be discussed in the broad context of psychophysiological 

conditioning research, the study focuses specifically on pupillary and behavioural 

(valence and arousal) indices of learning. 

 

First, many of the previous affective conditioning studies suffer from limitations 

in the generalisability of results across different items. This is because learning 

and extinction are typically investigated using only a single stimulus for CS+ and 

CS-, both of which are repeated over several trials (see Lonsdorf et al., 2017). 

Indeed, the use of several different CS-items within the same experiment is 

rather uncommon, because this may disrupt the acquisition of contingency 

awareness and thus delay, prevent, or reduce the CR of interest (Lonsdorf et al., 

2017). However, the latter argument raises the question of whether results from 

studies with only one item per stimulus category are truly indicative of affective 

conditioning (which is thought of as an implicit process) or indeed of the 

potentially more strategic process of establishing contingency awareness.  

 

More critically, experiments with such a limited number of items per condition 

cannot assess whether and to what extent results generalise to the population of 

items one could use for the same purposes (see Yarkoni, 2020 for a general 

discussion). This issue purely concerns the process of learning the initial 

association and is qualitatively different from the concept of generalisation of 

learning to related, unseen stimuli that have not previously been paired with an 

UCS (Dymond et al., 2015). Indeed, the point we are addressing here is that any 

conditioning effects observed between one CS+ (e.g., a circle) and one CS- (e.g., 

a triangle) are specific to those two items and any observed learning effects may 

not necessarily generalise to all shapes or even all triangles.  

 

The problem with generalisability also applies to the UCS which in the context of 

threat conditioning is usually one unpleasant stimulus such as a mild electric 

shock or white noise 3 (Sperl, Panitz, & Hermann, 2016). Indeed, there is limited 

research examining how different UCSs would affect the CR. The available 

evidence so far suggests that white noise leads to a more sustained CR compared 

 
3 The differential effects of positive and negative UCSs on neutral CSs have also been studied in a 

form of classical conditioning often referred to as evaluative conditioning (De Houwer, 2007), 
however, there is little agreement on whether the two are qualitatively different. 
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to electric shocks, at least for studies that employ a very large number of trials 

(Sperl, Panitz, & Hermann, 2016). In standard paradigms, it has been shown that 

a fearful scream may be less effective than an electric shock (Glenn et al., 

2012), whereas an unpleasant metal scrape sound can be as effective as white 

noise and/or electric shock in eliciting CRs (Neumann & Waters, 2006b). 

Nevertheless, these studies only used one item per condition, which cannot 

guarantee observing the same effect with another, similar item of the same 

category (e.g., female vs male scream).  

 

Using a very limited set of items in the experimental design also extends to an 

analytical issue known as the items-as-fixed-effect-fallacy (Clark, 1973), i.e., 

failure to appropriately account for stimulus variability in the statistical analysis 

when participants are presented with multiple items per condition. Specifically, 

analytical approaches that rely on aggregating data up to the participant level 

(e.g., within-subjects t-tests and ANOVA) prevent the assessment of by-item 

generalisability even in experiments where several items per condition are being 

used. This is because analyses on by-subject means conflate by-item variability 

with residual noise. As a consequence, such analyses can lead to 

anticonservative inferences that do not generalise to new sets of stimuli of the 

same type. Such tests are also likely to produce ‘too narrow’ confidence 

intervals or ‘too small’ p-values, respectively  (Judd et al., 2012; Yarkoni, 2020). 

For example, inflation of test statistics in standard ‘by-subject only’ analyses 

has been estimated to reach 50% or more in a number of publicly available fMRI 

datasets (Westfall et al., 2017), and up to 60% in simulated datasets (Judd et 

al., 2012). Simultaneously modelling participants and items as random factors, 

as well as all dependencies with the experimental conditions is a necessary 

requirement for generalising findings to populations of stimuli and participants 

as well as for reducing the risk of a Type I error (Barr et al., 2013; Judd et al., 

2017). This is particularly important when the aim is to gain insights into general 

learning mechanisms that may underlie certain anxiety disorders, intended to 

inform generally applicable interventions in this domain.  

 

A final point concerns the number of trials used within experiments. Since 

psychophysiological measures (e.g., SCR) can exhibit amplitude reductions with 

repeated stimulus presentations (Leuchs et al., 2019; Lonsdorf et al., 2017; 
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Ojala & Bach, 2020), studies usually employ a small number of trials (5-20 trials 

per condition, Lonsdorf et al., 2017) to prevent such habituation of the CR. At 

the same time, psychophysiological approaches are often noisy and therefore, 

require a large number of trials to achieve an acceptable signal-to-noise ratio 

(Ney et al., 2018; Steinberg et al., 2013; Tzovara et al., 2019). However, 

guidance for how to adequately consider the trade-off between signal-to-noise 

ratio and CR habituation is limited. For SCR, piloting is recommended as a 

method for estimating the number of observations required for the detection of 

a CR (Lonsdorf et al., 2017), while for pupillometry, there are no systematic 

investigations examining the precise effect of number of trials required to 

detect an effect, not only in the context of emotion and fear processing but in 

psychophysiological research in general.  

 

The necessity of using many trials to compensate for intrinsically noisy signals 

also extends to M/EEG measures, where detecting activity in subcortical 

structures (e.g., amygdala, thalamus, hippocampus) suggested to underlie fear 

and emotion processing (Duvarci & Pare, 2014; Fossati, 2012; Fullana et al., 

2016) can require hundreds or even thousands of trials (Attal et al., 2007). For 

example, a simulation study by Quraan et al. (2011) demonstrated that while 

evoked hippocampal activity can be detected with 10 trials, the localisation 

accuracy is very poor (i.e., 18 mm away from the actual source for 10 trials and 

10 mm for 50 trials). Therefore, it is unlikely that employing a traditional 

conditioning paradigm with a small number of trials would allow for an accurate 

detection of neural learning and extinction-related processes.  In addition, as 

discussed in Chapter 3, the currently available MEG paradigms offering large 

enough number of trials may risk hampering CR detection due to issues related 

to CR habituation and poor contingency awareness. A potential solution to these 

issues was recently reported in an EEG investigation by Sperl et al. (2021), who 

used a novel sequential conditioning task, in which learning was established 

three consecutive times using a different set of one CS+ and one CS- items. This 

was followed by a sequential extinction on the following day. This task was 

successful at eliciting differential CRs across multiple outcomes measures, 

including valence, arousal, SCR, heart rate changes and ERPs.  
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The goal of the present study was to test a qualitatively similar conditioning 

paradigm to that used by Sperl et al. (2021), that attempts to overcome many of 

the above methodological issues and to provide a means for measuring 

associative learning and extinction mechanisms robustly, using multiple outcome 

measures. We used continuous pupil size recordings, as well as ratings of 

valence, arousal, and contingency awareness to examine threat conditioning and 

extinction. The procedure was an auditory blocked conditioning in which 

learning and extinction were established several times using different sets of 

conditioned (pure tones) and unconditioned stimuli (environmental sounds). Both 

CSs and UCSs were auditory rather than visual since sounds were expected to 

interfere less with the measurement of pupil size. Since the present task used a 

different set of UCSs in each block, instead of exposing participants to 

successive acquisition blocks followed by successive extinction blocks (as in Sperl 

et al., 2021), in the present task each block contained the standard three 

experimental phases – habituation, acquisition, and extinction.  In addition, to 

ensure that the CRs are driven by aversive anticipation rather than by valence-

unspecific expectancy, we used both pleasant and unpleasant UCSs. To maximise 

the distinction between the UCSs, positive and negative stimuli were presented 

at low and high intensity levels, respectively. Establishing learning and 

extinction several times in this blocked design can offer a potential solution to 

the issue of small numbers of items and trials in conditioning research. And 

while the present study does not employ M/EEG, the design can theoretically be 

applied to neurophysiological measures as well, and potentially offer enough 

trials to make investigations of learning effects in deep structures viable.  

 

To make inferences about pupil size changes in response to conditioning and 

extinction, we used a data driven approach to identify significant time windows 

of interest for averaging over time. Unlike traditional methods, this approach 

does not rely on prior knowledge for time-window selection, allows for using all 

available data, and maximises detection of unpredicted effects (Huang & Zhang, 

2017). At the same time, the method also provides a powerful control of both 

Type I and Type II error (Sassenhagen & Draschkow, 2019). We then used design-

appropriate linear mixed effects modelling to examine differences between 

conditions in the most generalisable manner for both the behavioural and 

pupillometry data. Finally, we demonstrate the potential risk of alpha inflation 
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when using statistical tests that fail to account for both item and subject 

variation, by comparing our mixed model findings to the results from 

conventional repeated-measures ANOVA analyses. 

 

We expected that during acquisition, the mean pupil size in the time window of 

interest would be greater for CS trials paired with a negative UCS (CS Negative) 

than for those paired with a positive UCS (CS Positive). During extinction, we 

expected this difference to be reduced in magnitude or completely eliminated. 

We also descriptively compared CRs during early and late trials during each 

experimental phase, to examine potential indications of a gradual increase 

(acquisition) and decrease (extinction) of the CR over time. For the behavioural 

ratings, we predicted lower valence and higher reported arousal for CS Negative 

than CS Positive trials during acquisition. In analogy to the pupil size predictions, 

we expected these differences to diminish in magnitude during extinction. 

Finally, we collected self-reported data on measures of state and trait anxiety 

and emotion regulation. These were used for descriptive and exploratory 

purposes that were not critical to the main hypotheses being tested.  

 

4.2 Method 

4.2.1 Participants 

We collected data from 30 participants, whose general demographic 

characteristics are shown in Table 11. All participants had normal or corrected-

to-normal vision and normal hearing. Participants were recruited through the 

University of Glasgow Psychology Subject pool and received £6 per hour for their 

time. Prior to participation, they provided written consent to take part. The 

study was ethically approved by the College of Science and Engineering ethics 

committee (300190006).  

 

Two participants completed only 3 out of 4 blocks (either because of technical 

problems or because they cut the experiment short) but their data were 

retained for all analyses. Five participants had to be excluded because of 

excessive measurement error in the pupil size data (more details further below). 

Hence, only 25 participants were included in the pupil size analyses, whereas all 
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30 participants were included in the behavioural analyses (valence and arousal 

ratings). 

 

Table 11 

Demographic information. 

Sex N  
(N 

Pupil*) 

N Native 
Speakers 

Mean 
Age 

Age 
Range 

Mean  
STAI-
Trait  
(SD) 

Mean  
STAI-
State 
(SD) 

ERQ-
Reappraisal 

(SD) 

ERQ-
Suppression 

(SD) 

Female 15  
(12) 

8 22.93 19 - 31 45.53 
 (9.8) 

35.07  
(10.2) 

4.5 
 (0.65) 

3.15 
 (1.63) 

Male 15  
(14) 

7 22.67 19 - 29 39.93 
 (11.4) 

32.13 
 (8.9) 

4.88  
(1.28) 

3.5  
(1.48) 

 

*N Pupil: Number of participants in the pupil size dataset after exclusion 

 

 

 

4.2.2 Psychological Assessment 

 

Participants were asked to complete a basic demographic information 

questionnaire as well as the State Trait Anxiety Inventory (STAI) (Spielberger et 

al., 1983)  and the Emotion Regulation Questionnaire (ERQ), (J. J. Gross & John, 

2003). Descriptive, exploratory analyses of the relationship between 

psychological and conditioning measures can be seen in Supplementary Materials 

16.  Overall, correlations between conditioning and psychological measures were 

low to moderate, but none were statistically significant.  

 

4.2.3 Stimuli 

Conditioned stimuli (CSs) were 16 sine-wave tones of 4 second duration. Eight 

tones had low (200 – 400 Hz, 28.57 Hz steps) and 8 had high (600 – 800 Hz, 28.57 

Hz steps) constant frequency. Stimuli were created in Matlab 2017a using 

Psychtoolbox (makeBeep). Unconditioned Stimuli (UCSs) were 4 positive (bongos, 

guitar, harp, and bird chirping) and 4 negative (metal squeak, knife scrape, 
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drilling, and a female scream) sounds with a duration of 1 second. The latter 

were selected based on their valence ratings (high and low respectively) in a 

separate norming study (N=30, different from the participants in the main study, 

see https://osf.io/dehxa/ and Supplementary Materials 17 for details about the 

stimuli). Positive sounds were selected based on the highest 25th percentile 

valence rated at 60 dB, whereas negative sounds were selected based on the 

lowest 75th percentile valence rated at 90 dB. To equalise the intensity of the CS 

and UCS stimuli, each audio file was mean-centred and then normalised to the 

same, maximum root mean square (RMS) amplitude, without inducing clipping, 

using a RMS equaliser (The Phonetics Lab, University of Washington, 

https://depts.washington.edu/phonlab/resources/rmsLeveler.m). The first and 

last 50 ms of the signal of all stimuli was gradually faded in and out in Audacity 

2.1.2 (https://www.audacityteam.org/). The normalisation procedure was 

applied separately for CSs and UCSs. The resulting normalised CSs were 

presented at a maximum intensity of approximately 50 dBA. Positive and 

Negative UCSs were presented at approximately 60 dBA and 90 dBA, 

respectively. Sound intensity was measured by Cadrim sound level meter. All 

stimuli used in the present study can be found at https://osf.io/pnyrh/. 

 

4.2.4 Procedure 

Prior to completing the main task, participants were asked to fill in the self-

report measures (see Psychological Assessment). The main task comprised 4 

blocks, each containing three experimental phases – Habituation, Acquisition, 

and Extinction (see Figure 24). Each block contained a different subset of 2 low 

and 2 high frequency sine tones, selected from the total set so that the 

minimum difference between high and low frequency tones was 286 Hz, and the 

minimum difference within low or high frequency tones was 114 Hz. For 

example, one block contained low frequency tones of 200 and 314 Hz, and high 

frequency tones of 600 and 714 Hz. Assignment of low and high frequency tones 

to the CS Negative condition was Latin square counterbalanced, resulting in 4 

stimulus sets. Four additional sets were constructed by swapping the assignment 

of low and high frequency tones to the CS Positive condition, leading to a total 

of 8 different stimulus sets (see Supplementary Materials 18). Block order and 

https://osf.io/dehxa/
https://depts.washington.edu/phonlab/resources/rmsLeveler.m
https://www.audacityteam.org/
https://osf.io/pnyrh/
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assignment of the 4 UCS positive and 4 UCS negative sounds to each block were 

also Latin square counterbalanced.  

 

Each CS was presented together with a black fixation cross, positioned at the 

centre of the screen for 4 seconds. The inter-trial interval (ITI) had a duration of 

2.3 sec ± 300 ms and was accompanied by a black fixation cross. To minimise 

ocular artifacts, participants were asked to always maintain fixation at the 

centre of the screen. In each block and phase, each stimulus was presented 10 

times, resulting in a total of 20 trials per condition per block (a total of 80 trials 

per condition across blocks).  Trial order was randomised across participants 

with the restrictions that the first trial was always a CS Positive and no more 

than two trials of the same stimulus type (e.g., a CS Negative) could occur 

consecutively.  To maintain participants’ attention during each block, they were 

asked to perform a tone judgement task. Participants were instructed that they 

will complete a 3-part task in which they will be presented with a series of tones 

that they have to listen to while maintaining fixation at the centre of the screen 

and indicate whether each tone is high or low in pitch (75% of trials) or hard or 

soft (25% of trials). They were informed that the only difference between the 

three parts would be that during part 2, the tones would be paired with positive 

and negative sounds. Participants were not informed about the contingency 

between CS and UCS. During Habituation and Extinction, the sine tones were 

presented on their own, and during Acquisition, CSs were paired with the UCSs, 

which occurred at CS offset for a duration of 1 second. At the end of each phase, 

participants completed a sound rating task where they were asked to rate each 

CS on valence ranging from unpleasant to pleasant and arousal ranging from 

boring to exciting using a slider scale ranging from -100 to 100. At the end of the 

Acquisition phase, participants also rated the UCS on valence and arousal (see 

Supplementary Materials 19). In order to determine participants’ awareness of 

the relationship between CSs and UCSs, at the end of each block, participants 

completed a contingency awareness task in which they were asked to decide 

whether each pure tone was paired with a positive or a negative sound. 

Participants were also asked to provide a confidence rating on a slide scale 

ranging from “not at all confident” (-100) to “confident” (100).  

 

 



229 
 
Figure 21 

Auditory blocked conditioning scheme for each of the three experimental 

phases (Habituation, Acquisition, and Extinction). 

 

 

 

4.2.5 Pupil data acquisition and pre-processing 

Pupil size data were obtained using an EyeLink 1000 eye tracker and recorded 

continuously during each trial presentation, with initial sampling rate of 250 Hz. 

 

Raw .edf data were exported into .txt format using DataViewer and imported 

into R. Pre-processing was performed separately for each participant and block 

using the PupilPre package in R and following the recommended guidelines 

provided by the package (see https://bit.ly/3iBYCAR). Raw, continuous data 

were transformed into time series with a trial length of -0.5 to 5.5 s relative to 

CS onset. The first trial in each block was removed, leaving 119 trials per block. 

This was necessary since the continuous pupil size recording began at the onset 

of the first trial which meant that no baseline window could be acquired for this 

trial.  

 

Blink removal and artifact correction were performed in several steps. First, 

blinks identified by the EyeLink software were padded with 150 ms on either 

side. Within the padded blink window, data were examined in two stages, using 

https://bit.ly/3iBYCAR


230 
 
the clean_blink function. First, data points within the padded window were 

removed if the difference between subsequent pupil size values was larger than 

5 (i.e., pupil size at time point 1 – pupil size at time point 2 > 5, package 

default). Next, any small runs of data points that were surrounded by missing 

values were identified and removed. Specifically, within the padded window, 

any 40 ms segment of data, surrounded by at least 2 missing values (default) on 

each side was removed.  

 

Detected artifacts (extreme data points) were also removed using the 

clean_artifact function. Artifacts were detected using the defaults provided in 

the package vignette. First, to identify potential outliers, each trial was divided 

into bins of 100 ms within which the median absolute deviation (MAD) of the 

pupil size data was calculated. A bin was marked extreme if it had a sensitivity 

threshold (MAD constant) > 2 standard deviations of the pupil dilation. The larger 

the threshold, the more extreme data point is required to be considered as an 

outlier. Each extreme bin included 200 ms of padding within which a 

multidimensional distributional distance (Mahalanobis distance) was calculated 

using the horizontal and vertical velocity and acceleration of the pupil. A pupil 

size was marked as extreme if the Mahalanobis distance exceeded 2 SD. Runs of 

data points surrounded by missing values were removed in 2 stages again, using 

the same procedure as for blink removal.  

 

Finally, remaining small blinks and artifacts that were undetected by the 

automatic cleaning procedure were manually removed (user_cleanup_app). 

Following artifact removal, sparse trials were identified and removed. A trial 

was discarded if it contained less than 20% of baseline (at least 0.1 s) and less 

than 70% of post-baseline data (at least 3.85 s). Five participant data sets were 

discarded from the analyses altogether because more than 50% of their trials 

showed excessive blinks or movement artifacts and were removed during 

cleaning. For the remaining 25 participants, the average data loss after cleaning 

was 12%. The missing values in the corresponding trials were replaced using 

spline interpolation (function interpolate_nas in PupilPre).  

 

The cleaned and interpolated pupil size data were log10 transformed. Next, 

multiple linear regression was performed for each participant and block (log 
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pupil size as outcome, and X and Y eye position as predictors) to remove small 

eye movement-related artifacts. From these regression analyses, the residual 

pupil sizes per trial and time point were extracted and used in subsequent 

analyses. Log10 pupil size change from baseline (mean pupil size between -0.5 

and 0 s) was then calculated for each trial and time point using the baseline 

function (change = pupil size - baseline). The inverse of the baselined pupil was 

then calculated to obtain a measure of proportional change from baseline. 

Finally, data were down sampled to 10 Hz. 

 

4.3 Results 

All analyses were performed in R version 4.0.2. The code and data associated 

with these analyses can be found at https://osf.io/pnyrh/.  

 

4.3.1 Pupil size 

Figure 25 shows, for each phase (Habituation, Acquisition, and Extinction) the 

average proportional pupil size change from baseline over a 5.5 s time window 

including both CS presentation (0- 4 seconds) and UCS presentation (4 – 5 

seconds). As seen in the figure, differences in mean pupil size between CS 

Positive and CS Negative trials during Acquisition become apparent from around 

1 s post CS onset, reflecting the conditioned response (CR) and increase in 

magnitude following UCS onset (4 s), reflecting the unconditioned response (UR). 

Since any anticipatory processes should occur prior to the onset of the UCS, the 

confirmatory analysis focused on the CR only (0- 4 s). To quantify the effects of 

the conditioned stimuli across the experimental phases, the analysis was 

performed in two stages. As explained in more detail below, we first employed a 

cluster-based permutation test to identify time windows of interest in a data-

driven manner. Second, to account for subject and item-related random 

variation, a linear mixed effects (LME) model was built in which the mean pupil 

size across each time window of interest was used as the dependent variable. 

Since cluster-based permutation tests can presently only handle designs that are 

no more complex than 2 x 2, the current 3 x 2 design was reduced to 2 x 2 by 

calculating pupil size changes from Habituation. For each participant, block and 

item, a mean pupil size during Habituation was calculated across time and trials 

https://osf.io/pnyrh/
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which was then subtracted from each time point during Acquisition and 

Extinction (see Figure 25B). The LME modelling was also performed on 

Habituation-baselined data. 
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Figure 22 

Proportional mean pupil size over time. 

 

 

 

Note. A) Changes in mean pupil size from baseline over time for each condition 

(green: CS Positive; orange: CS Negative) and in each of the three experimental 

phases (Habituation, Acquisition and Extinction). B) The same data for the 

Acquisition and Extinction phases after subtracting the Habituation phase 

baseline (reflecting the difference between Acquisition and Habituation and 

between Extinction and Habituation, respectively). Vertical, light-coloured bars 

indicate standard errors of the means. The vertical dashed lines indicate UCS 

onsets. 
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4.3.2 Identifying time window of interest using cluster-based 
permutation  

The cluster-based permutation analysis was carried out using the R packages 

clusterperm and exchangr and involved the following steps. First, an 

Experimental Phase (Acquisition vs Extinction) * Stimulus Type (CS Positive vs CS 

Negative) within-subjects ANOVA (aov_by_bin) was performed for each time bin 

(0 – 4 s). Adjacent time bins with a p < 0.05 were combined into clusters, with 

the sum of the F values within each cluster serving as the cluster statistics for 

the two main effects and the interaction (detect_clusters_by_effect). Next, a 

Monte-Carlo test with 2000 permutations was performed (cluster_nhds) in which 

a cluster statistic was computed on trials that were randomly assigned to each 

condition within subjects, resulting in 2000 cluster statistics. For each of the 

main effects and the interaction, the permuted cluster statistics were compared 

against the observed statistic. Clusters were considered significant if they fell 

within the highest or lowest 2.5 % of the null distribution. The results from the 

cluster-permutation test can be seen in Table 12 and is visualised in Figure 26. 

The test revealed two significant time clusters for the Experimental Phase * 

Stimulus Type interaction: around 1.2 and 1.7 seconds and around 3 and 3.4 

seconds, respectively. Since this test is only suggestive of where in time an 

effect may be observed (without providing clues about its generalisability across 

items and participants), the suggested interactions in these time clusters were 

further assessed inferentially using LME modelling (see below).  
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Table 12 

Cluster-based permutation results. 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 

 
 

Figure 23 

Significant Experimental Phase X Stimulus Type time cluster derived from the 

cluster-based permutation test. 

 

 

Note. The vertical, light-coloured lines indicate the standard error of the mean.  

Effect B0 B1 Sign Cms P-value 

Experimental Phase 0 100 -1 11.29 1 

Experimental Phase 800 900 -1 11.908 0.583 

Stimulus Type 1500 2100 1 39.324 0.065 

Experimental Phase X Stimulus Type 0 0 1 4.301 0.143 

Experimental Phase X Stimulus Type 1200 1700 1 31.855 0.024* 

Experimental Phase X Stimulus Type 2300 2400 1 8.819 0.09 

Experimental Phase X Stimulus Type 3000 3400 1 27.68 0.028* 

Experimental Phase X Stimulus Type 3900 3900 1 4.146 0.151 
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4.3.3 Linear mixed effects modelling of data within the identified 
time clusters 

To examine the development and extinction of anticipatory learning, an LME 

model (R package lme4) was built for each of the two significant time clusters 

identified in the cluster-based permutation analysis. From this point onward, the 

effect in the time window between 1.2 and 1.7 s post CS onset would be 

referred to as the first interval response (FIR) and that between 3 and 3.4 s post 

CS onset as the second interval response (SIR).  For each subject, block and trial, 

a mean pupil size was calculated for the FIR (see Figure 27A) and SIR (see Figure 

28 A). These served as the dependent variables in the two models. Each model 

consisted of a 2 Experimental Phase (Acquisition vs Extinction) by 2 Stimulus 

Type (CS Positive vs CS Negative) fixed effects design. The models included 

mean-centred contrasts (deviation coding) for the two categorical fixed-effect 

predictors. Following Barr et al. (2013), models with design-appropriate maximal 

random effects structure were fitted. Specifically, Subjects and CS Items were 

added as random intercepts. Since experimental manipulations were both 

within-subjects and within-items, the model also included by-subject and by-

item random slopes for each main effect as well as for the interaction (see 

Supplementary Materials 20 for random effects summary). Since each item was 

presented multiple times, an interaction between the Subjects and CS Items 

random intercepts was also included, coupled with the main effects and the 

interaction of the by-subject and by-item random slopes. Random variability due 

to UCS Item variability was not modelled since UCSs were only present during 

Acquisition and not during Extinction. However, separate models, accounting for 

UCS variability were conducted on the Acquisition phase only (see 

Supplementary Materials 21). P-values for the fixed effects were determined via 

Type III Wald Chi-square tests. Table 13 shows the fixed-effects results and 

Figure 27C shows the model estimates, with associated 95% CIs. As shown, the 

interaction between Experimental Phase and Stimulus Type in the FIR model was 

significant. Simple effect analysis of the interaction was performed using 

estimated marginal mean simple contrasts (package emmeans) with 

Satterthwaite method for degrees of freedom approximation. Consistent with 

the descriptive data, these contrasts confirmed a reliably larger mean pupil size 

for CS Negative than CS Positive trials during Acquisition (t (56.6) = 3.2, p = 
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0.003), but no clear simple effect of Stimulus Type during Extinction (t (22.2) = -

0.3, p = 0.79), (see Supplementary Materials 20 and Figure 27B). In addition, a 

larger mean pupil size was also observed for CS Positive trials during Acquisition 

compared to CS Positive trials during Extinction (t (22.6) = -2.4, p = 0.024). 

Similarly, the interaction between Experimental Phase and Stimulus Type in the 

SIR model was also significant. Again, the simple contrasts revealed a larger 

pupil size for CS Negative than CS Positive trials during Acquisition (t (23.3) = 

2.42, p = 0.023), but no significant simple effects during Extinction (t (15.9) = -

0.3, p = 0.75), (see Supplementary Materials 20 and Figure 28B).  

 

Table 13 

Type III Wald Chi-square tests and R-squared values for the complete pupil 

models and each of the fixed effects for the first and second interval responses. 

 Chisq Df P-value 
R² Fixed (CI) 

 

FIR     

Full Model (Fixed)    
0.003 (0.001 – 

0.006) 

Experimental Phase 2.29 1.000 0.13 0.001 (0-0.002) 

Stimulus Type 2.10 1.000 0.15 0.001 (0-0.003) 

Experimental Phase X Stimulus 
Type 
 

6.08 
 

1.000 
 

  0.01* 
 

0.001 (0-0.004) 
 

SIR     

Full Model (Fixed)    0.002 (0 – 0.005) 

Experimental Phase 0.79 1.000 0.37 0.000 (0-0.002) 

Stimulus Type 1.44 1.000 0.23 0.001 (0-0.002) 

Experimental Phase X Stimulus 
Type 
 

5.51 
 

1.000 
 

  0.02* 
 

0.001 (0-0.003) 
 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 24 

A summary of pupil size fixed effects for the first interval response (FIR) 

 

 

Note. A) Distribution of mean pupil size between 1.2 and 1.7 s post CS onset of 

Habituation-baselined data. B) Estimated marginal means per condition derived 

from the mixed effects model of pupil size (error bars represent 95% CIs for the 

means conditioned on the random effects). C) Fixed effect estimates (labelled 

dots) derived from the mixed effects model of pupil size; bars represent 95% CIs 

for the estimates. 
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Figure 25 

A summary of pupil size fixed effects for the second interval response (SIR) 

 

 

Note. A) Distribution of mean pupil size between 3 and 4 s post CS onset of 

Habituation-baselined data. B) Estimated marginal means per condition derived 

from the mixed effects model of pupil size (error bars represent 95% CIs for the 

means conditioned on the random effects). C) Fixed effect estimates (labelled 

dots) derived from the mixed effects model of pupil size; bars represent 95% CIs 

for the estimates. 

 

4.3.4 Valence and arousal ratings 

For comparability with the pupil size analysis, the rating-data analysis was 

performed on Habituation-baselined valence and arousal data (see Figure 29B 

and 26D). Since each item was rated once per block, the baseline-adjustment 

was performed by subtracting a given item's rating during the Habituation phase 

from the same item's rating during the Acquisition and Extinction phases, 

respectively. As seen in Figure 29A and B, mean valence ratings were slightly 

lower for CS Negative than CS Positive trials during both Acquisition and 

Extinction, although the distributions overlapped to a substantial degree. The 

difference in the means between the two stimulus types was even more 

pronounced when the valence data were put in relation to the Habituation-phase 
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baseline. Mean arousal ratings (Figure 29C and D) were slightly higher for CS 

Negative than CS Positive trials, but only after adjusting for the Habituation-

phase baseline (Figure 29D).  

 

In analogy to the pupil size analyses, we fitted two LME models - one predicting 

the valence ratings and the other one predicting the arousal ratings after 

subtracting the Habituation-phase baseline ratings. As with the pupil size model, 

each of the two rating models employed 2 Experimental Phase (Acquisition vs 

Extinction) by 2 Stimulus Type (CS Positive vs CS Negative) fixed effects design, 

using mean-centred contrasts for the two categorical fixed effect predictors. By-

subject and by-item random intercepts were added, together with by-subject 

and by-item random slopes for both main effects and the interaction (see 

Supplementary Materials 20 for random effects summary).  

 

For valence ratings, a Type III Wald Chi-square test (see Table 14 and Figure 30A 

for model estimates) revealed a significant Stimulus Type main effect. Since the 

interaction was non-significant, the estimated marginal means contrasts were 

computed by averaging over the levels of Experimental Phase. These revealed 

(see Supplementary Materials 20 for contrasts table) that overall, CS Negative 

trials had lower valence than CS Positive trials (t (18.03) -8.5, p = 0.0215). In 

terms of arousal ratings, no significant main effects or interactions were 

observed (see Table 14 and Figure 30C).  
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Table 14 

Type III Wald Chi-square tests and R-squared values for the complete valence 

and arousal models and each of the fixed effects. 

 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Chisq Df P-value R² Fixed (CI) 

Valence     

Full Model    0.014 (0.004 – 0.03) 

Experimental Phase 0.27 1.000 0.6 0 (0 – 0.006) 

Stimulus Type 6.46 1.000   0.01** 0 (0 – 0.007) 

Experimental Phase X Stimulus 
Type 

0.21 1.000 0.64 
0.013 (0.003 - 0.032) 

Arousal     

Full Model    0.005 (0.001-0.02) 

Experimental Phase 0.029 1.000 0.866 0 (0 – 0.005) 

Stimulus Type 1.519 1.000 0.218 0 (0 – 0.006) 

Experimental Phase X Stimulus 
Type 

0.095 1.000 0.757 
0.005 (0 – 0.017) 
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Figure 26 

Mean valence and arousal ratings 

 
 

 

Note. A) and C) Mean valence and arousal ratings across Habituation, Acquisition 

and Extinction phases. B) and D) Habituation-baselined mean valence and 

arousal ratings.  
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Figure 27 

A summary of valence and arousal fixed effects. 
 

 

 
Note. Fixed effect estimates (labelled dots) derived from the mixed effects 

model of valence (A) and arousal (C) ratings; bars represent 95% CIs for the 

estimates. Estimated marginal means per condition derived from the mixed 

effects model of valence (B) and arousal (D) ratings (error bars represent 95% CIs 

for the means conditioned on the random effects).  
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4.3.5 Contingency awareness  

Detailed descriptions of the contingency awareness data, and related analyses 

can be seen in Supplementary Materials 22. Overall, we found that participants 

were clearly aware of the CS-UCS contingency. Importantly, however, there was 

no clear evidence for a relationship between contingency awareness and the 

conditioned response in any of our outcome measures. 

 

4.3.6  Conventional Analysis approaches 

For comparison, Table 15 shows the results from by-subject repeated-measures 

ANOVAs performed on pupil size, valence ratings, and arousal ratings as 

dependent variables. As seen in the table, the general pattern of results is 

consistent with that of the mixed effects modelling. However, in most instances 

the strength of association (standardized ‘effect size’) is larger, and associated 

p-values much smaller in the ANOVA outputs than in the mixed effects model 

analyses. These differences are particularly noticeable for the interaction 

effects, where the p-value for the pupil FIR and SIR interactions have decreased 

from 0.01 and 0.02 in the LME to 0.007 and 0.005 in the ANOVAs, respectively. 

The p-value for the main effect of valence rating has also decreased from 0.01 

to 0.008. As seen in Figure 31, this is also reflected in the confidence intervals 

(CIs), whereas across outcome measures, the CIs derived from the mixed models 

tend to be wider. While the consistent patterns are reassuring, there is a 

suggestion of more anticonservativity in the ANOVA analyses, potentially 

because the latter only take by-subject but not by-item variability of effects 

into account (unlike our LME analyses which considered both simultaneously). 

  



245 
 
Table 15 

Repeated measures ANOVA and Generalised eta-squared for each effect. 

Effect DFn DFd MSE F p ges 

Pupil Size FIR       

Experimental Phase 1 24 0.001 3.3 0.08 0.03 

Stimulus Type 1 24 0.001 2.4 0.14 0.03 

Experimental Phase X 
Stimulus Type 

1 24 0.002 8.5 
   

0.008** 
0.05 

Pupil Size SIR       

Experimental Phase 1 25 0.002 1.52 0.3 0.01 

Stimulus Type 1 25 0.001 1.98 0.2 0.02 

Experimental Phase X 
Stimulus Type 

1 25 0.001 9.8 
   

0.005** 
0.04 

Valence       

Experimental Phase 1 29 79.4 0.769 0.388 0.003 

Stimulus Type 1 29 244.9 8.251 
   

0.008** 
0.1 

Experimental Phase X 
Stimulus Type 

1 29 89.7 0.392 0.536 0.002 

Arousal       

Experimental Phase 1 29 88.4 0.039 0.845 0 

Stimulus Type 1 29 294.3 2.021 0.166 0.027 

Experimental Phase X 
Stimulus Type 

1 29 86.9 0.158 0.694 0.001 

Note. The measure of effect size is generalised eta squared (ges).  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 28 

Estimated marginal means and 95 % confidence intervals derived from the 

repeated-measures ANOVAs and LME models, computed on the pairwise stimulus 

type contrasts for each experimental phase 
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4.4 Discussion 

 

The aim of this study was to assess the feasibility of a conditioning paradigm 

that uses multiple conditioned and unconditioned stimuli and many trials to 

examine learning and extinction mechanisms. A related objective was to 

determine the generalisability of results across both participants and items, thus 

going beyond previous studies in this area, which primarily only considered by-

participant variation in their designs and analyses. Our paradigm demonstrated 

variable success in the detection of associative learning and extinction effects, 

depending on the outcome measure.  

 

4.4.1 Pupil Data 

During Acquisition, the task elicited a clearly measurable conditioned response, 

as manifested in significantly more dilated pupils for CS Negative than CS 

Positive stimuli before UCS onset. Our results corroborate previous findings 

(based on standard conditioning paradigms) whereby the CS+ elicits more pupil 

dilation than the CS- (Jentsch et al., 2020; Kluge et al., 2011; Korn et al., 2017; 

Leuchs et al., 2019). It has been argued that pupillary responses during threat 

conditioning reflect a valence-unspecific anticipation of the UCS, as pupil 

dilation-correlates with anterior cingulate activity have been independently 

observed during both threat and reward learning tasks (Leuchs et al, 2019). 

However, by showing larger pupil responses to CSs paired with unpleasant rather 

than pleasant UCSs, the present study provides direct, within-task evidence for 

valence-specific pupillary anticipation effects. 

 

Importantly, instead of taking an average (or peak) pupil size over the entire 

trial period, or within pre-defined time bins (García-Palacios et al., 2018; 

Jentsch et al., 2020; Koenig et al., 2017; Leuchs et al., 2017), the differential 

pupil CRs we observed held true for time windows that were derived from the 

data themselves. 

 

The cluster-based permutation results identified two temporal clusters of 

interest, a first interval (FIR) occurring between around 1.2 and 1.7 seconds, and 
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a second interval (SIR) observed around 3 to 3.4 seconds. These findings were 

corroborated when mixed effects modelling was performed on the average pupil 

size within these windows, showing reliably increased pupil dilation for CS 

Negative than CS Positive trials during Acquisition in both the FIR and SIR. These 

results partly contrast with previous findings (using pre-defined time windows) 

which suggested only a single CR in pupillometry data, but a dual (FIR, SIR) 

pattern in skin conductance responses (Jentsch et al., 2020) - with the latter 

being more comparable to the present findings. It seems plausible that data-

driven time window selection yields greater power for detecting multiple CRs in 

pupillometry data. At the same time, it is unclear to what extent early and late 

responses are qualitatively different, and how they compare across physiological 

measures. In the context of SCR, it has previously been suggested that early CRs 

(FIR) may reflect novelty responses as well as associative processes, whereas 

late CRs (SIR) could reflect the acquisition of the CS-UCS contingency and 

temporal prediction of UCS occurrence (Jentsch et al., 2020). Yet, despite SCR 

studies consistently reporting multiple CRs within pre-defined time windows, 

there is little or mixed empirical evidence to support a qualitative distinction 

between early and late responses. While Jentsch et al. (2020) provided some 

evidence for distinct underlying processes involved in FIR and SIR (i.e., only the 

early SCR was susceptible to extinction), they did not directly examine the 

relationship between the two CRs. In contrast, Pineles et al.(2009) showed that 

FIR and SIR derived from SCRs are correlated (Pineles et al., 2009). Similarly, in 

the present study we observed a high correlation (r=0.8) between the pupillary 

FIR and SIR (see Supplementary Materials 16), suggesting that at least in the 

context of pupillometry, these responses may not necessarily reflect 

independent processes.  

 

Similar to Leuchs et al. (2019), we found no significant differences between CS 

Positive and CS Negative trials during the Extinction phase, indicating that the 

aversive association established during Acquisition was successfully extinguished. 

Studies attempting to trace the development of extinction commonly either 

compare the first and last extinction trials (Dunsmoor et al., 2019; Morriss et al., 

2015; Sperl et al., 2018) or arbitrarily bin trials into small groups (Jentsch et al., 

2020; Reinhard & Lachnit, 2002). For comparative purposes with previous 

research, the current dataset was examined descriptively by splitting trials into 
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blocks of 5 (see Supplementary Materials 23), where we found no clear evidence 

of ‘extinction development’ in the form of gradually fading conditioned 

responses. However, there was a clear pattern in the development of the 

conditioned response during Acquisition, which appeared to be strongest from 

the 6th until the 15th repetition, following which the response appeared to 

diminish. We conjecture that the pupillary CR had already habituated by the 

time extinction was assessed, and that a slightly lower number of stimulus 

repetitions during acquisition may be preventative of such habituation. 

 

It is also plausible that the extinction of the CR, as well as its acquisition, were 

influenced by type of instruction. In the present study, participants were told 

that the conditioned stimuli will only be paired with positive and negative 

sounds during the learning phase without receiving information about the CS-UCS 

contingency. As a result, participants expected positive and negative UCS 

delivery during learning but were aware that no UCS would be administered 

during extinction. Recent studies have demonstrated the differential impact of 

instruction type on cognitive and affective systems during extinction. In 

particular, lack of explicit instructions about the removal of the UCS results in a 

typical pattern of gradual reduction in the conditioned UCS expectancy, SCR and 

startle over time (Sevenster et al., 2012). However, the conditioned SCR and 

UCS expectancy diminish immediately if participants are instructed that the UCS 

will no longer be presented even when the device delivering the UCS (i.e., an 

electrode) is not removed. In contrast, the startle response diminishes at a 

slower rate compared to other measures (Sevenster et al., 2012), but physical 

removal of the UCS electrode facilitates its extinction (Wendt et al., 2020). 

According to Sevenster et al. (2012), these observations fit within the dual-

process framework of fear learning and suggest the involvement of separate 

cognitive and affective systems.  Within this context, the SCR may reflect 

anticipatory responses driven by the established CS-UCS contingency, while the 

startle response may be a more automatic, affective response linked to the 

valence of the CS, elicited through the UCS. (Sevenster et al., 2012). Assuming 

that the pupillary responses detected in the present study are anticipatory in 

nature (comparable to the SCR), such an “extinction by instruction” account 

may explain why we were unable to detect any sign of gradual attenuation of 

the pupillary conditioned response during the Extinction phase.  
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More recently, it has been shown that the CS+/CS- discrimination during learning 

is largest when explicit instructions about the CS-UCS contingency are provided, 

with the magnitude of the difference being smallest when no explicit 

contingency instruction is used (Mertens et al., 2020). Since our protocol 

combined “uninstructed acquisition” with “instructed extinction”, the relatively 

small effects we observed may not be overly surprising. Nevertheless, it is also 

worth noting that because we accounted for by-participant and by-item 

variability of effects simultaneously (see crossed random effects in our mixed 

effects models) our significance tests were arguably less anticonservative than 

the more traditional within-subjects ANOVA approach used in previous research. 

In particular, the latter approach had been shown to increase the risk of false 

positives when data are from populations in which effects vary not only across 

participants but also across stimuli, which is a very plausible general assumption 

(see, e.g., Barr et al., 2013; Clark, 1973; Yarkoni, 2020). We will return to this 

point further below. 

 

Finally, to ensure that repetitively eliciting associative learning and extinction 

several times does not hamper the conditioning task, we examined the effect of 

block number on the elicitation of the conditioned response (see Supplementary 

Materials 23). We found no evidence of block-related learning effects during 

either acquisition or extinction which suggests that the blocked design of the 

study does not have a negative impact on the development of associative 

memories. 

 

4.4.2 Rating Data 

Indirect evidence for successful conditioning at the behavioural level was 

obtained from the contingency awareness task, suggesting that participants were 

likely aware of the relationship between conditioned and unconditioned stimuli. 

On the other hand, we found limited evidence in support of a relationship 

between the different measures of conditioned responding and contingency 

awareness (see Supplementary Materials 22).  Even though a small proportion of 

participants failed to develop contingency awareness, all data were retained in 
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the analyses to avoid introducing selection bias through exclusions based on 

arbitrary criteria (Lonsdorf & Merz, 2017).  

 

In terms of evaluative signatures of conditioning and extinction, we found that 

arousal ratings did not significantly differ across CS Positive and CS Negative 

trials during either learning or extinction. This is not surprising, since the arousal 

measurement (‘boring’ to ‘exciting’) was valence-unspecific and therefore 

related to positive and negative stimuli in equal measures. This is consistent 

with the well-established U-shaped relationship between valence and arousal, in 

which arousal is high for extremely positive and negative stimuli but remains low 

for neutral-valence stimuli (Bradley et al., 1992; Bradley & Lang, 2000). In 

contrast, we observed a main effect in the valence ratings, with CS Negative 

trials being rated as more unpleasant than CS Positive trials regardless of 

experimental phase. This suggests that the valence differences elicited during 

learning did not (or at least not fully) extinguish during extinction training. This 

observation supports previous studies (Luck & Lipp, 2015a, 2015b; Wendt et al., 

2020) which suggested the presence of independent processing systems where 

valence may reflect an evaluative process that is more difficult to extinguish, 

even when explicit extinction-supporting instructions are provided. Specifically, 

online conditioned valence ratings show resistance to extinction at the beginning 

of extinction training regardless of instruction type and even following removal 

of physical threat (Luck & Lipp, 2015a, 2015b). When ratings are obtained offline 

and regardless of instruction type, CS+ trials are still perceived as less pleasant, 

although there is some evidence to suggest that this resistance may be more 

prominent when no instructions are delivered (Wendt et al., 2020).   

 

Across the literature, mixed findings have been reported when using subjective 

valence and arousal as measures of the conditioned response. Standard 

paradigms assessing only one CS+ and one CS-, typically demonstrated a 

reduction in valence and an increase in arousal for CS+ trials during learning 

(Gawronski & Mitchell, 2014; Reinhardt et al., 2010; Sehlmeyer et al., 2011). In 

contrast, Multi-CS conditioning paradigms in which many different stimuli are 

used, elicit much smaller and less consistent effects (Bröckelmann et al., 2011; 

Junghöfer et al., 2015a; Rehbein et al., 2014; Steinberg et al., 2013) which is 

more consistent with the findings of the present study. Indeed, inferences about 
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associative memory mechanisms may not be very robust and generalisable when 

based on only two stimuli. On the other hand, when many different stimuli must 

be evaluated and/or contingency awareness is poor, subjective metacognitive 

judgements of affect may not be sufficiently powerful to detect the presence of 

learning and extinction.  

 

Like the pupil size data, the valence and arousal effects observed in the present 

study were small, but comparable to previous findings based on larger trial 

numbers and varying stimuli. In particular, a reanalysis of the valence ratings 

from a study by Rehbein et al. (2014), who used a Multi-CS conditioning task to 

elicit learning, revealed an effect size for the Experimental Phase X Stimulus 

Type interaction that was comparable to that in the present study, even when a 

traditional repeated-measures ANOVA on aggregated data was performed (see 

Supplementary Materials 24). 

 

4.4.3 Methodological considerations and conclusions  

The present study offers a potentially more generalisable alternative to the 

hitherto available associative learning paradigms in the literature. In line with 

recent reports using a similar task (Sperl et al., 2021), we demonstrated that a 

blocked design in which learning and extinction are established several times, 

may allow for the use of a greater range of CSs and UCSs while still allowing for 

the development of a contingency awareness that seems crucial for the 

development of a CR (Mertens & Engelhard, 2020). Since there was no evidence 

that the blocked nature of the paradigm would negatively influence the 

development of a conditioned response, the task can theoretically also be 

applied to other noisy measurement modalities (such as M/EEG) and expanded to 

include a greater range of stimuli and number of trials.  

 

In line with other investigations emphasising the necessity of modelling random 

variation across both subjects and items (Barr et al., 2013; Judd et al., 2012, 

2017; Westfall et al., 2017; Yarkoni, 2020), the present study also indicated that 

conventional analysis methods, when applied to our design, may cause inflation 

of the test statistic. While it is reassuring that in our data, employing an analysis 

on aggregated data did not change the overall interpretation of the results, 
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these analyses highlight the possible risk of making anti-conservative inferences 

at the expense of more generalisable conclusions. Furthermore, while the 

effects reported here appear weaker than those typically found in the threat 

conditioning literature, the present study offers a much greater degree of 

generalisability based on (a) data-driven identification of time windows of 

interest and (b) statistical modelling that takes both by-participant and by-item 

variation of effects into account.  

 

We show that both early and late pupillary conditioned responses can be 

detected during acquisition, and that these vanish almost immediately during 

extinction. We show that early vs. late interval responses may not be reflecting 

independent processes as they are highly correlated. Yet, future work should 

aim at establishing the degree to which these findings can generalise across 

other physiological outcome measures. While our descriptive analysis suggests 

that habituation may have already developed during learning, it is possible that 

the type of instructions delivered to participants for the extinction phase also 

contributed to the quick onset of CR habituation. Future work should focus on 

establishing precisely how instructed versus uninstructed protocols affect the 

acquisition and extinction of conditioning using many conditioned and 

unconditioned stimuli. In addition, the paradigm may potentially benefit from a 

slight reduction in the number of stimulus repetitions, to avoid habituation of 

the CR prior to extinction. Finally, we show that our subjective measure of 

arousal was not sensitive enough to detect associative learning processes while 

subjective valence may potentially be less susceptible to extinction. Overall, our 

findings confirm previous suggestions (Lonsdorf et al., 2017; Sevenster et al., 

2012) that different outcome measures may tap onto different processes related 

to associative learning and extinction.  

  



254 
 

4.5 Chapter 4 Supplementary Materials 

 

4.5.1 Supplementary Materials 16: Relationship between 
psychological and conditioning measures 

The relationship between pupil size, valence and arousal during acquisition and 

extinction and self-reported anxiety and emotion regulation can be seen in 

Supplementary Figure 44 and 45 in the form of scatterplots and Pearson’s r 

correlations. Overall, relationships between measures were low to moderate, 

but no correlations between CR and psychological measures were significant 

following Holm’s multiple comparison corrections (see Supplementary Table19 

and 20). There was, however, a positive correlation between FIR and SIR 

pupillary responses.  
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Supplementary Figure 44 

Relationship between conditioning effects and measures of state and trait anxiety 
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Supplementary Figure 45 

Relationship between extinction effects and measures of state and trait anxiety 
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Supplementary Table 19 

Correlation coefficients and p-values within the Acquisition Phase.  

CS Negative         

Pearson’s r         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 1.0 0.8 0.0 -0.2 -0.1 0.5 -0.2 -0.1 

Pupil SIR 0.8 1.0 0.1 -0.1 -0.1 0.3 0.0 0.0 

Valence 0.0 0.1 1.0 -0.5 -0.3 0.0 -0.1 0.1 

Arousal -0.2 -0.1 -0.5 1.0 0.2 -0.2 0.3 -0.3 

STAIS -0.1 -0.1 -0.3 0.2 1.0 0.4 -0.1 0.0 

STAIT 0.5 0.3 0.0 -0.2 0.4 1.0 -0.3 0.3 

ERQR -0.2 0.0 -0.1 0.3 -0.1 -0.3 1.0 0.1 

ERQS -0.1 0.0 0.1 -0.3 0.0 0.3 0.1 1.0 

P-value         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 0.00 0.00 1.00 1.00 1.00 0.33 1.00 1.00 

Pupil SIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valence 0.95 0.68 0.00 0.36 1.00 1.00 1.00 1.00 

Arousal 0.39 0.49 0.01 0.00 1.00 1.00 1.00 1.00 

STAIS 0.73 0.78 0.16 0.41 0.00 0.82 1.00 1.00 

STAIT 0.01 0.16 0.99 0.44 0.03 0.00 1.00 1.00 

ERQR 0.00 0.00 1.00 1.00 1.00 0.33 1.00 1.00 

ERQS 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

         

CS Positive         

Pearson’s r         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 1.0 0.8 -0.2 -0.4 0.1 0.4 -0.1 0.0 

Pupil SIR 0.8 1.0 -0.2 -0.3 0.1 0.3 0.0 0.1 

Valence -0.2 -0.2 1.0 0.1 0.4 -0.1 0.1 -0.1 

Arousal -0.4 -0.3 0.1 1.0 0.1 0.1 -0.2 0.1 

STAIS 0.1 0.1 0.4 0.1 1.0 0.4 -0.1 0.0 

STAIT 0.4 0.3 -0.1 0.1 0.4 1.0 -0.3 0.3 

ERQR -0.1 0.0 0.1 -0.2 -0.1 -0.3 1.0 0.1 

ERQS 0.0 0.1 -0.1 0.1 0.0 0.3 0.1 1.0 

P-value         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Pupil SIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valence 0.30 0.42 0.00 1.00 1.00 1.00 1.00 1.00 

Arousal 0.05 0.15 0.61 0.00 1.00 1.00 1.00 1.00 

STAIS 0.61 0.76 0.08 0.54 0.00 0.89 1.00 1.00 

STAIT 0.06 0.20 0.53 0.76 0.03 0.00 1.00 1.00 

ERQR 0.81 0.93 0.60 0.43 0.50 0.12 0.00 1.00 

ERQS 0.83 0.60 0.62 0.68 0.88 0.17 0.68 0.00 

Note. Multiple comparisons adjustment was performed for each condition 

separately. 
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Supplementary Table 20 

Correlation coefficients and p-values within the Acquisition Phase.  

CS Negative         

Pearson’s r         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 1.0 0.8 0.3 -0.1 -0.3 0.1 0.1 -0.2 

Pupil SIR 0.8 1.0 0.3 -0.2 -0.2 0.0 0.0 -0.2 

Valence 0.3 0.3 1.0 -0.4 -0.1 0.1 0.1 0.1 

Arousal -0.1 -0.2 -0.4 1.0 -0.3 -0.4 0.1 0.1 

STAIS -0.3 -0.2 -0.1 -0.3 1.0 0.4 -0.1 0.0 

STAIT 0.1 0.0 0.1 -0.4 0.4 1.0 -0.3 0.3 

ERQR 0.1 0.0 0.1 0.1 -0.1 -0.3 1.0 0.1 

ERQS -0.2 -0.2 0.1 0.1 0.0 0.3 0.1 1.0 

P-value         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Pupil SIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valence 0.12 0.14 0.00 1.00 1.00 1.00 1.00 1.00 

Arousal 0.54 0.31 0.05 0.00 1.00 1.00 1.00 1.00 

STAIS 0.19 0.46 0.67 0.20 0.00 0.89 1.00 1.00 

STAIT 0.63 0.94 0.51 0.04 0.03 0.00 1.00 1.00 

ERQR 0.70 0.97 0.75 0.58 0.50 0.12 0.00 1.00 

ERQS 0.32 0.36 0.57 0.69 0.88 0.17 0.68 0.00 

         

CS Positive         

Pearson’s r         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 1.0 0.7 0.0 -0.2 0.0 -0.2 0.1 -0.2 

Pupil SIR 0.7 1.0 -0.1 -0.2 0.0 -0.1 0.0 -0.2 

Valence 0.0 -0.1 1.0 -0.2 -0.1 -0.1 0.4 0.3 

Arousal -0.2 -0.2 -0.2 1.0 0.0 -0.3 0.0 -0.2 

STAIS 0.0 0.0 -0.1 0.0 1.0 0.4 -0.1 0.0 

STAIT -0.2 -0.1 -0.1 -0.3 0.4 1.0 -0.3 0.3 

ERQR 0.1 0.0 0.4 0.0 -0.1 -0.3 1.0 0.1 

ERQS -0.2 -0.2 0.3 -0.2 0.0 0.3 0.1 1.0 

P-value         
 Pupil FIR Pupil SIR Valence Arousal STAIS STAIT ERQR ERQS 

Pupil FIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Pupil SIR 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Valence 0.96 0.70 0.00 1.00 1.00 1.00 1.00 1.00 

Arousal 0.40 0.23 0.30 0.00 1.00 1.00 1.00 1.00 

STAIS 0.96 0.82 0.62 0.95 0.00 0.89 1.00 1.00 

STAIT 0.40 0.58 0.57 0.15 0.03 0.00 1.00 1.00 

ERQR 0.53 0.96 0.06 0.97 0.50 0.12 0.00 1.00 

ERQS 0.43 0.35 0.21 0.36 0.88 0.17 0.68 0.00 
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4.5.2 Supplementary Materials 17: Auditory Control Experiment 2 

 

The main goal of this study was to derive normative data for positive and 

negative sounds of low and high-volume intensity, to allow the selection of UCSs 

for the auditory blocked conditioning task. A secondary goal was to explore the 

relationship between stimulus valence and sound intensity in predicting ratings 

of valence and arousal. since exploratory analyses in the first auditory control 

experiment found that at short duration (0.1 s) and high intensity (~90 dB), 

positive and negative sounds do not differ in valence, arousal, or pupil size. To 

test whether intensity alone is sufficient to reduce valence of positive stimuli, in 

Experiment 2, sounds were played both at low (60 dB) and high (90 dB) intensity 

level, however at a longer duration (1 s). We hypothesised that if high sound 

intensity alone causes positive sounds to be perceived as unpleasant and 

arousing as negative sounds, the same pattern should be observed for sounds 

with longer duration (1 s), presented at high intensity. Consequently, positive, 

and negative sounds of long duration but low intensity should differ at least in 

valence ratings. 

 
 

Methods 
 

Participants 
Thirty-one adults aged between 18 and 30 will take part in the study. One 

subject was discarded from the analyses as they continuously removed their 

headphones during the task. 

Stimuli 
A total of twenty auditory stimuli were used in the control experiment. Stimuli 

were comprised of environmental, human and animal sounds (10 negative, 10 

positive), such as female scream and metal scrapes as well as bird chirping and 

bubbles, which have previously been shown to elicit negative and positive 

valence respectively (Kumar et al., 2008). These stimuli were obtained from 

different online databases (Freesfx, Freesound, Free sound effects, the CNBC 

Stimuli Repository and IADS-2/IADS-2E). All sounds had a duration of 1 sec. To 

equalise the intensity of sounds, each stimulus was mean centred and then 

normalised to the same, maximum root mean square (RMS) amplitude without 

inducing clipping using a RMS equaliser (The Phonetics Lab, University of 
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Washington, https://depts.washington.edu/phonlab/resources/rmsLeveler.m).  

The first and last 50 ms of the signal of all stimuli were gradually faded in and 

out. The resulting normalised sounds were presented at 2 different maximum 

intensity levels (~60 and 90 dBA) as measured by Cadrim sound level meter. 

Procedure 
The task contained 2 blocks (for each intensity level) with a total of 60 trials in 

each block. Block order was counterbalanced across participants. Each sound 

was presented 3 times in a random order, with the restriction that no sound was 

presented twice in succession. The auditory stimuli were administered through 

Sennheiser HD-202 headphones. On each trial, a black fixation cross was 

presented on a gray background for 500 ms followed by the sound (1 s duration), 

with an inter-trial interval (ITI) of 1300 ms ±300 ms, comprising of a black 

fixation cross on a gray background. Following each presentation, participants 

were required to rate each sound on valence and arousal using a slider scale 

ranging from boring/unpleasant to exciting/pleasant.  

 

Results 
 
Selection of unconditioned stimuli 
 
For each participant, a median valence was calculated for each item and 

intensity level based on which the unconditioned stimuli were selected. Arousal 

ratings were not used in the selection process since pleasant stimuli could be 

perceived as both arousing as well as boring/calming (see Supplementary Figure 

46 and 47).  To ensure maximum difference between the pleasant and 

unpleasant stimuli, the selection of positive sounds was based on their valence 

ratings at 60 dB while of that of negative sounds was based on their valence at 

90 dB. Specifically, for positive sounds, the four sounds in the highest 25th 

percentile were chosen. As seen in Figure 46A those were bongos, guitar, harp 

and a bird chirping. For, negative sounds the 4 sounds with the lowest 75th 

percentile valence were selected as negative unconditioned stimuli (knife, 

scrape, drilling, and a scream, see Supplementary Figure 46B). In terms of 

arousal ratings of the selected sounds, while negative unconditioned stimuli 

were also rated as highly arousing, positive stimuli were rated as arousing or 

neutral (see Supplementary Figure 47). Finally, the distribution of valence and 

arousal ratings for the selected stimuli appear to remain similar across item 

https://depts.washington.edu/phonlab/resources/rmsLeveler.m
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repetitions, suggesting lack of rapid habituation of perceived valence (see 

Supplementary Figure 48).  

 

Supplementary Figure 46 

Distribution of median valence for individual positive and negative sounds rated 

at low and high intensity. 

 

Note. The horizontal line indicates the overall median valence across items and 

intensity levels.  
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Supplementary Figure 47 

Distribution of median arousal for individual positive and negative sounds rated 

at low and high intensity. 

 

 

 

Note. The horizontal line indicates the overall median arousal across items and 

intensity levels.  
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Supplementary Figure 48 

Valence and arousal ratings across repetitions.  
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Relationship between stimulus valence and sound intensity 
 
The results from the first auditory control experiment showed no differences in 

valence ratings between positive and negative sounds played at high intensity (~ 

90 dB) for a brief period (0.1 s). These findings suggested that at a high volume 

and short duration, the valence of positive sounds may become as low as that of 

negative sounds. To test whether intensity alone is sufficient to reduce valence, 

in the second auditory control study, sounds were played both at low (60 dB) and 

high (90 dB) intensity level, however at a longer duration (1 s). Descriptively, as 

shown in Figure 49, the difference in median valence ratings appears to be 

driven to a greater extend by sound valence (positive/negative) than sound 

intensity (low/high).  In contrast, sound valence and intensity do not elicit 

strong median differences in arousal ratings. 

 

 In order to quantify these differences, an LME model (package lme4) was built 

for valence and arousal separately. Each model comprised of a 2 Stimulus 

Valence (Positive vs Negative) by 2 Sound Intensity (Low vs High) fixed effects 

design. The model included mean-centred contrasts (deviation coding) for the 

two categorical fixed effects. A maximal model was fitted following guidelines 

by (Barr et al., 2013). Specifically, Subjects and Items were added as random 

intercepts. By-subject random slope was added for both main effects and a by-

item random slope was added for sound intensity only (stimulus valence was not 

included as an item can only be positive or negative). Main effects and 

interactions were tested using type III Wald chi-square tests. Post-hoc analyses 

of main effects/interactions were performed using estimated marginal means 

contrasts (package emmeans) with Satterthwaite method for degrees of freedom 

approximation. 

 

In terms of the valence model, a type III Wald chi-square test (see 

Supplementary Table 21 and Figure 50 for model estimates) revealed significant 

main effects at the level of p < 0.05 for stimulus valence and sound intensity but 

the interaction was non-significant. Post-hoc contrasts showed that sounds were 

rated as lower in valence if they were negative compared to positive (t (18) = 

13.5, p < 0.0001). Sounds were also rated as more unpleasant when they were 

presented at high than low intensity (t (18) = 12.65, p < 0.001), (see Table 22 
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and Figure 52). As seen from the model estimates and R² values in 

Supplementary Table 22, most of the variance of the fixed effects in the model 

is explained by stimulus valence, and only ~6% by differences in sound intensity.  

 

For arousal, the type III Wald chi-square test revealed a significant Stimulus 

Valence X Sound Intensity interaction at the level of 0. 05. (see Supplementary 

Table 21 and Figure 50 for model estimates). Post-hoc planned contrasts (see 

Supplementary Table 23) showed that sounds of high intensity were rated as 

more arousing than those of low intensity for sounds for both negative (t (27.1) = 

-6.58, p < 0.001) and positive sounds (t (27.1) = -2.9, p =0.03). At 90 dB, 

negative sounds were also rated as more arousing than positive sounds (t (19.3) 

=2.5, p < 0.02) but there was so no significant difference for sounds presented at 

60 dB (t (18.9) = 1.06, p < 0.302.  However, according to Wagenmakers et al 

(2012) this type of interaction which lacks a crossover effect, may be unstable 

and influenced by transformations of the measurement scale. Therefore, the 

observed effects may not reflect the underlying construct of arousal and should 

be interpreted with caution. 

 

Summary of Results 
 
In the first auditory control study, we found no valence and arousal differences 

for sounds of short duration and high intensity while the present study showed 

that when sounds are presented at a longer duration, valence and arousal 

differences between positive and negative stimuli can be observed. This suggests 

that short trial duration may prevent the identification of sounds and their 

valence. 

 

In addition, we found that compared to low intensity sounds, high intensity 

sounds were also perceived as more unpleasant and arousing but sound intensity 

and stimulus valence did not interact in predicting subjective ratings. These 

findings suggest that the stimulus valence and its intensity independently 

influence evaluative judgements. Furthermore, when sounds are presented for 

long enough to be clearly distinguished, it appears that the effect of stimulus 

valence is more pronounced that of volume intensity. Therefore, sound duration 
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may be a key factor to consider when designing auditory experiments that 

attempt to elicit response changes using positive and negative stimuli.  

 

Supplementary Figure 49 

Distribution of valence and arousal ratings across positive and negative sounds 

rated at low and high intensity level. 
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Supplementary Table 21 

Type III ANOVA and R-squared values for the complete model and each of the 

fixed effects. 

 Chisq  Df  P-value  
R² Fixed (CI) 

 

 
Valence 
  

    

Full Model (Fixed)  
   0.586 (0.57-0.6) 

Stimulus Valence  181.102 1 0.000 0.575 (0.56 – 0.59) 

Sound Intensity  160.085 1 0.000 0.059 (0.045-0.075) 

Stimulus Valence X Sound 
Intensity  

0.362 1 0.547 0.000 (0 – 0.002) 

 
Arousal 
  

    

Full Model (Fixed)  
   0.047 (0.03-0.06) 

Stimulus Valence  3.206 1 0.073  0.026 (0.02-0.04) 

Sound Intensity  62.619 1 0.000 0.020 (0.012 – 0.03) 

Stimulus Valence X Sound 
Intensity  

5.265 1 0.022 0.003 (0.001 – 0.008) 
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Supplementary Figure 50 

Fixed effects estimates and estimated marginal means. 
 

 
Note. A) Fixed effect estimates derived from the pupil model. B) Estimated 

marginal mean pupil size derived from the pupil model.  
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Supplementary Table 22 

Estimated marginal means and related contrasts derived for the valence model. 
 

Main effect Emmean SE df Lower CI Upper CI  

Estimated Marginal 
Means 

     
 

Stimulus Valence: 
Negative 

-63.461 5.648 25.182 -75.090 -51.833 
 

Stimulus Valence: 
Positive 

34.695 5.648 25.182 23.066 46.323 
 

Sound Intensity: Low -3.792 4.234 32.255 -12.414 4.830  

Sound Intensity: High -24.975 4.548 30.021 -34.262 -15.688  

Contrasts       

Contrast Estimate SE df Lower CI Upper CI P value 

Negative – Positive -98.156 7.294 18.000 -113.480 -82.832 0.000*** 

60 dB – 90 dB 21.183 1.674 18.000 17.666 24.701 0.000*** 

Notes. * p<0.05, ** p<0.01 *** p <0.001 
 
 
Supplementary Table 23 

Estimated marginal means and related contrasts derived for the arousal model. 

Estimated Marginal Means 

Stimulus Valence  
Sound 

Intensity  
Emmean SE df Lower CI Upper CI 

Negative 60 dB 16.716 7.944 27.898 0.442 32.990 

Positive 60 dB 6.040 7.886 27.274 -10.134 22.214 

Negative 90 dB 36.479 6.968 30.471 22.258 50.699 

Positive 90 dB 14.766 7.032 31.257 0.429 29.104 

Notes. * p<0.05, ** p<0.01 *** p <0.001 
  

Contrasts       

Contrast Estimate SE df Lower CI Upper CI P-value 

negative,60 dB - positive,60 
dB 

10.676 10.061 18.920 -10.387 31.740 
0.302 

negative,90 dB - positive,90 
dB 

21.712 8.598 19.264 3.733 39.691 0.020* 

negative,60 dB - negative,90 
dB 

-19.762 3.004 27.083 -25.926 -13.599 
0.000*** 

positive,60 dB - positive,90 
dB 

-8.726 3.004 27.083 -14.890 -2.563 
0.007** 
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4.5.3 Supplementary Materials 18: Counterbalanced sets for 
pairing CS and UCS items. 

 

Supplementary Table 24 

Counterbalanced sets for pairing low and high frequency tones to positive and 

negative sounds. 

Participant/ 
Stimulus 

Set 

Block 1 Block 2 Block 3 Block 4 Tone pair 

1 low low high high Paired with UCS Negative 
2 low low high high Paired with UCS Positive 
3 low high high low Paired with UCS Negative 
4 low high high low Paired with UCS Positive 
5 high high low low Paired with UCS Negative 
6 high high low low Paired with UCS Positive 
7 high low low high Paired with UCS Negative 
8 high low low high Paired with UCS Positive 

… n = 30      

 
 

 

 

4.5.4 Supplementary Materials 19: Valence and arousal ratings of 
unconditioned stimuli 

 
Supplementary Figure 51 show the valence and arousal ratings for each of the 

positive and negative UCSs. As the figure suggests, the positive sounds were 

consistently rated as pleasant whereas negative sounds were rated as 

unpleasant. In contrasts, arousal ratings show little variability, with the bulk of 

responses being centred around 0, suggesting that the sounds were not 

perceived as arousing. 
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Supplementary Figure 51 

Valence and Arousal ratings to the unconditioned stimuli 

 

 
Note. A) and B) Valence ratings for positive and negative sounds, C) and D) 
Arousal Ratings for positive and negative sounds 
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4.5.5 Supplementary Materials 20: Random effects and estimated 
marginal means summaries derived from mixed models 

Supplementary Table 25 

Summary of fixed estimates and random effect variance for the FIR pupil model 

FIR  Mean Pupil Dilation 

Predictors Estimates CI p 

(Intercept) 0.01 -0.00 – 0.02 0.183 

Experimental Phase -0.01 -0.02 – 0.00 0.130 

Stimulus Type 0.01 -0.00 – 0.02 0.147 

Interaction 0.03 0.01 – 0.05 0.014 

Random Effects 

σ2 0.0269 

τ00 Subject 0.0000 

τ00 Item 0.0002 

τ00 Subject: Item 0.0001 

τ11 Subject: Item: Phase 0.0002 

τ11 Subject: Item: Stimulus Type 0.0064 

τ11 Subject: Item: Interaction 0.0008 

τ11 Subject: Phase 0.0003 

τ11 Subject: Stimulus Type 0.0003 

τ11 Subject: Interaction 0.0007 

τ11 Item: Phase 0.0000 

τ11 Item: Stimulus Type 0.0001 

τ11 Item: Interaction 0.0002 

N Subject 25 

N Item 16 

Observations 6749 

Marginal R2  0.003  

Note.  σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Figure 52 

By-subject and by-item random coefficients and intercept for the FIR pupil size 
model. 
 

  
 

  
Note. A) By-subject random effects and B) By-item random effects. 
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Supplementary Table 26 

Estimated marginal means and related contrasts derived from the mixed effects 

models of pupil size for A) first interval responses (FIR) and B) second interval 

response (SIR). 

 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 
  

A) FIR 
 

 

Estimated Marginal Means  

Stimulus 
Type 

Experimental 
Phase 

Emmean SE df Lower CI    Upper CI 
 

CS Negative Acquisition 0.014 0.007 21.76 -0.001      0.028  

CS Positive Acquisition -0.009 0.007 21.00 -0.023      0.005  

CS Negative Extinction 0.009 0.006 22.80 -0.003      0.021  

CS Positive Extinction 0.012 0.008 20.92 -0.006      0.029  

Contrasts        

Contrast Estimate SE df Lower CI Upper CI P-values 

CS Negative Acquisition –  
CS Positive Acquisition 

CS Negative Extinction –  
CS Positive Extinction 

0.023 0.007 56.595 0.008 0.038 
   

0.003** 

-0.003 0.010 22.199 -0.023 0.018 0.793 

CS Negative Extinction –  
CS Positive Extinction 

0.005 0.009 28.065 -0.008 0.027 0.438 

CS Positive Acquisition –  
CS Positive Extinction 

-0.021 0.009 22.696 -0.039 -0.003 0.024* 

B) SIR 
 

 
     

Estimated Marginal Means  

Experimental 
Phase 

Emmean SE df Lower CI    Upper CI 
 

Acquisition 0.021 0.009 23.91 0.002       0.040  

Acquisition -0.002 0.008 22.65 -0.019       0.016  

Extinction 0.015 0.007 37.26 0.000       0.029  

Extinction 0.018 0.008 16.32 0.000       0.035  

Contrasts       

Contrast Estimate SE df Lower CI Upper CI P-values 

CS Negative Acquisition – 
 CS Positive Acquisition 

0.023 0.009 23.326 -0.003 0.042 0.023* 

CS Negative Extinction –  
CS Positive Extinction 

-0.003 0.010 15.923 -0.025 0.018 0.753 

CS Negative Acquisition –  
CS Negative Extinction 

0.006 0.009 28.086 -0.012 0.025 0.497 

CS Positive Acquisition –  
CS Positive Extinction 

-0.020 0.010 19.284 -0.039 0.000 0.20 
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Supplementary Table 27 

Summary of fixed estimates and random effect variance for the SIR pupil model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

 SIR Mean Pupil Dilation 

Predictors Estimates CI p 

(Intercept) 0.01 0.00 – 0.02 0.022 

Experimental Phase -0.01 -0.02 – 0.01 0.372 

Stimulus Type 0.01 -0.01 – 0.03 0.230 

Interaction 0.03 0.00 – 0.05 0.019 

Random Effects 

σ2 0.0413 

τ00 Subject 0.0000 

τ00 Item 0.0004 

τ00 Subject: Item 0.0000 

τ11 Subject: Item: Phase 0.0001 

τ11 Subject: Item: Stimulus Type 0.0127 

τ11 Subject: Item: Interaction 0.0002 

τ11 Subject: Phase 0.0008 

τ11 Subject: Stimulus Type 0.0001 

τ11 Subject: Interaction 0.0002 

τ11 Item: Phase 0.0000 

τ11 Item: Stimulus Type 0.0000 

τ11 Item: Interaction 0.0002 

N Subject 25 

N Item 16 

Observations 6749 

Marginal R2  0.002  
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Supplementary Figure 53 

By-subject and by-item random coefficients and intercept for the SIR pupil size 
model. 
 

 
 

 
Notes. A) By-subject random effects and B) By-item random effects. 
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Supplementary Table 28 

Summary of fixed estimates and random effect variance for the valence model 
 

  Mean Valence 

Predictors Estimates CI p 

(Intercept) 3.21 0.90 – 5.52 0.006 

Experimental Phase -1.29 -6.17 – 3.58 0.603 

Stimulus Type -8.51 -14.69 – -2.33 0.007 

Interaction -2.20 -11.70 – 7.29 0.649 

Random Effects 

σ2 1310.9466 

τ00 Subject 0.0000 

τ00 Item 0.0000 

τ11 Subject: Phase 0.4668 

τ11 Subject: Stimulus Type 69.1598 

τ11 Subject: Interaction 1.1487 

τ11 Item: Phase 9.8813 

τ11 Item: Stimulus Type 33.3728 

τ11 Item: Interaction 19.4397 

N Subject 30 

N Item 16 

Observations 944 

Marginal R2  0.014  

Note: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Table 29 

Estimated marginal means and related contrasts derived for the valence model. 
 

Note. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
  

Estimated Marginal Means 

Stimulus Type Emmean SE df Lower CI     Upper CI 

CS Negative -1.043 1.97 10.07 -5.42       3.34 

CS Positive 7.467 1.97 16.50 340       11.63 

Contrasts      

Contrast Estimate SE df Lower CI Upper CI              P-value 

CS Negative – 
CS Positive 

-8.51 3.15 18.03 -15.14 
      -1.88                   
0.015* 
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Supplementary Figure 54 

By-subject and by-item random coefficients and intercept for the valence model 
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Supplementary Table 30 

Summary of fixed estimates and random effect variance for the valence model 
 

  Mean Arousal 

Predictors Estimates CI p 

(Intercept) -1.52 -4.30 – 1.26 0.285 

Experimental Phase -0.36 -4.58 – 3.86 0.866 

Stimulus Type 4.48 -2.64 – 11.59 0.218 

Interaction 1.39 -7.43 – 10.20 0.757 

Random Effects 

σ2 993.1611 

τ00 Subject 28.6754 

τ00 Item 0.0000 

τ11 Subject: Phase 1.0020 

τ11 Subject: Stimulus Type 175.3835 

τ11 Subject: Interaction 88.8345 

τ11 Item: Phase 6.3467 

τ11 Item: Stimulus Type 49.9351 

τ11 Item: Interaction 6.8804 

N Subject 30 

N Item 16 

Observations 944 

Marginal R2  0.005  

Notes: σ2 Mean Random Effect Variance, τ00 Random Intercept Variance, τ11 

Random Slope Variance  
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Supplementary Figure 55 

By-subject and by-item random coefficients and intercept for the arousal 
model.  
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4.5.6 Supplementary Materials 21: Modelling UCS Item variability 
during Acquisition 

In the main Experimental Phase by Stimulus Type mixed models, it was only 

possible to account for Subjects and CS Items but not and not UCS Items random 

variability, since the UCSs were delivered only during Acquisition and not during 

Extinction. To ensure generalisability across UCSs as well, we built a second set 

of models focusing on the main effect of Stimulus Type during Acquisition on 

pupil dilation first and second interval responses, valence and arousal ratings. In 

all models, Stimulus Type was included as the fixed effect. Subjects and CS 

Items were added as random intercepts, accompanied by random slopes for the 

main effects of stimulus type. In addition, we included US Items as a random 

intercept. For the pupil model only, we added a Subjects by CS Items interaction 

intercept together with a random slope for Stimulus Type, as well as a Subjects 

by UCS Item interaction intercept. P-values for the fixed effects were 

determined via Type III Wald Chi-square tests (see Supplementary Table 31). 

Estimated marginal means and contrasts for the significant main effects were 

computed using emmeans and Satterthwaite method for degrees of freedom 

approximation (see Supplementary Table 32). As seen from the tables, the 

Acquisition-only models accounting for both CS and UCS item variability mirror 

the effects observed in the main models.   

 
Supplementary Table 31 

Type III Wald Chi-square tests and R-squared values for the Acquisition-only 

mixed models. 

 Chisq  Df  P-value  
R² Fixed (CI) 

 

Pupil FIR     

Stimulus Type 10.63 1.000 0.001 0.006 (0.003 -0.01) 

Pupil SIR     

Stimulus Type 6.56 1.000 0.010 0.004 (0.002-0.008) 

Valence     

Stimulus Type 8.25 1.000 0.004 0.002 (0.005 -0.04) 

Arousal     

Stimulus Type 1.13 1.000 0.3 0.006 (0.000 -0.02) 
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Supplementary Table 32 

Estimated marginal means and related contrasts derived for each model. 

Pupil FIR 

Estimated Marginal Means 

Stimulus 
Type 

Experimental Phase Emmean SE df Lower CI    Upper CI 

CS Negative Acquisition 0.014 0.007 20.9 -0.001       0.029 

CS Positive Acquisition -0.010 0.006 19.4 -0.024       0.004 

Contrasts       

Contrast Experimental Phase Estimate SE df Lower CI 
  Upper CI    P-

value 

CS Negative – 
CS Positive 

Acquisition 0.024 0.007 50.7 0.01 
    0.039          
0.002 

Pupil SIR       

Estimated Marginal Means 

Stimulus 
Type 

Experimental Phase Emmean SE df Lower CI    Upper CI 

CS Negative Acquisition 0.022 0.009 23.8 0.003       0.027 

CS Positive Acquisition -0.004 0.008 23.5 -0.021       0.66 

Contrasts       

Contrast Experimental Phase Estimate SE df Lower CI   Upper CI    P-
value 

CS Negative – 
CS Positive 

Acquisition 0.025 0.01 23.5 0.005     0.046          
0.02 

 
Valence 

      

Estimated Marginal Means 

Stimulus 
Type 

Experimental Phase Emmean SE df Lower CI    Upper CI 

CS Negative Acquisition -2.1 3.06 24.8 -8.41       4.19 

CS Positive Acquisition 7.42 2.24 18.8 2.73       12.12 

Contrasts       

Contrast Experimental Phase Estimate SE df Lower CI 
  Upper CI    P-
value 

CS Negative – 
CS Positive 

Acquisition -9.54 3.32 
  
26.75 

-16.35     -2.72          0.01 

Arousal       

Estimated Marginal Means 

Stimulus 
Type 

Experimental Phase Emmean SE df Lower CI    Upper CI 
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4.5.7 Supplementary Materials 22: Contingency awareness 
analyses. 

 

As seen in Supplementary Figure 56, only a small proportion of participants (~13%) 

were less than 50% accurate or showed negative average confidence ratings. This 

suggests that most participants were aware of the CS-UCS contingency. In order 

to corroborate these descriptive results, contingency awareness was estimated by 

calculating the detection of CS Negative trials using d-prime. First, trials were 

sorted into hits, misses, false alarms, and correct rejections in the following way. 

Correctly identified CS Negative trials were classed as hits, while correctly 

identified CS Positive trials as correct rejections. CS Positive trials falsely 

identified as CS Negative were classed as false alarms while CS Negative trials 

falsely identified as CS Positive were classed as misses. Next, two indices were 

calculated (package sdt.rmcs): a sensitivity index (d’), representing the 

difference of the hit-rate (zH) and miss-rate (zM) z-values and a bias index (c), 

representing the number of standard deviations from the midpoint between zH 

and zM (see Supplementary Figure 57). Finally, one sample t-tests were performed 

to determine whether d-prime and c indices were significantly greater than 0. 

These revealed that participants performed above chance at detecting CS 

Negative trials (t (df) = 6.25, p < 0.001) and that there was no significant bias 

towards CS Negative or CS Positive judgements (t (df) = 0.37, p < 0.71). Overall, 

these results suggest that participants were aware of the CS-UCS contingency.  

  

CS Negative Acquisition 0.85 3.78 31.7 -6.84       8.55 

CS Positive Acquisition -4.34 2.68   22.9 -9.88       1.2 
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Supplementary Figure 56 

Distribution of contingency awareness and confidence ratings 

 

 
 Notes. Percentage accuracy was calculated by summing the number of correct 

responses and dividing by the overall number of trials * 100.  

 
Supplementary Figure 57 

Distribution of sensitivity and bias estimates 
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To examine whether conditioned responding is related to contingency 

awareness, we built another set of models focusing on the Acquisition phase 

only. The first set included the main effect of Stimulus Type (CS Positive/ CS 

Negative) and Accuracy (Correct/Incorrect) as well as their interaction. The 

second set included the main effect of Stimulus Type (CS Positive/ CS Negative) 

and participants’ confidence ratings in relation to their contingency judgement 

as well as their interaction. The models were built for pupil dilation first and 

second interval responses, valence and arousal ratings. In all models Subjects 

and CS Items were added as random intercepts, accompanied by random slopes 

for the main effects and the interaction. P-values for the fixed effects were 

determined via Type III Wald Chi-square tests. In terms of contingency accuracy, 

there were no significant effects at the level of 0.05 (see Supplementary Table 

33 and Figure 58). For, the models including the confidence ratings, the only 

significant effect was the main effect of valence (see Supplementary Table 34 

and Figure 59). 

 

If contingency awareness had an impact on the development of the CR on any of 

the outcome measures, we would have expected to detect a significant 

interaction between Stimulus Type and the contingency awareness measures. If 

contingency awareness did not influence CRs, we would have expected to only 

observe a main effect of Stimulus Type. The latter, was only the case for the 

model examining valence and confidence, suggesting that confidence in 

contingency responses had no relationship with the valence CR. The failure to 

observe any effects in the other models might be simply because there is no 

actual relationship between contingency awareness and conditioned responding 

using the current paradigm. It is also likely that our offline measures of 

awareness may not be sensitive enough to truly assess contingency awareness as 

participants completed those at the end of each block. Alternatively, since the 

main effects of Stimulus Type observed in our main models diminished when 

modelling the additional contribution of contingency information, it is possible 

that we did not have sufficient power to detect such a relationship. 
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Supplementary Figure 58 

Relationship between contingency accuracy and mean CR across measures. 

 
 
Supplementary Figure 59 

Relationship between mean confidence in contingency judgements and mean CR 
across measures. 
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Supplementary Table 33 

Type III Wald Chi-square tests for each effect derived from the contingency 
accuracy response model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Chisq  Df  P-value  
FIR    

Accuracy 1.9 1.000 0.15 

Stimulus Type 3.5 1.000 0.06 

Accuracy X Stimulus Type 
 

0.9 
 

1.000 
 

  0.33 
 

SIR    

Accuracy 0.002 1.000 0.96 

Stimulus Type 3.3 1.000 0.07 

Accuracy X Stimulus Type 
 

0.93 
 

1.000 
 

  033 
 

Valence    

Accuracy 3.4 1.000 0.06 

Stimulus Type 3.1 1.000 0.07 

Accuracy X Stimulus Type 
 

1.9 
 

1.000 
 

0.16 
 

Arousal    

Accuracy 0.3 1.000 0.56 

Stimulus Type 1.3 1.000 0.24 

Accuracy X Stimulus Type 
 

0.2 
 

1.000 
 

  0.61 
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Supplementary Table 34 

Type III Wald Chi-square tests for each effect derived from the confidence 
ratings model. 
 

 
   Chisq  Df  P-value  

FIR    

Confidence 0.01 1.000 0.91 

Stimulus Type 0.5 1.000 0.47 

Confidence X Stimulus Type 
 

0.6 
 

1.000 
 

  0.44 
 

SIR    

Confidence 0.2 1.000 0.6 

Stimulus Type 1.4 1.000 0.24 

Confidence X Stimulus Type 
 

0.03 
 

1.000 
 

  0.87 
 

Valence    

Confidence 1.4 1.000 0.23 

Stimulus Type 4.4 1.000  0.04* 

Confidence X Stimulus Type 
 

0.5 
 

1.000 
 

0.46 
 

Arousal    

Confidence 0.4 1.000 0.53 

Stimulus Type 0.9 1.000 0.35 

Confidence X Stimulus Type 
 

0.1 
 

1.000 
 

  0.73 
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4.5.8 Supplementary Materials 23: Descriptive exploratory 
analysis of pupil and behavioural effects 

 

A series of exploratory analyses were carried out to gain insight into the factors 

that may modulate conditioning and extinction effects. Any results reported 

here should be interpreted with caution due to their explorative nature and 

potential power limitations.  

 

Development and habituation of pupillary conditioning effects over stimulus 

repetition 

The conditioned response during fear acquisition elicited in experimental 

settings had previously been shown to habituate over repeated presentations, at 

least for some outcome measures (Leuchs et al., 2019). Likewise, when the UCS 

is removed, new associations are formed rapidly, resulting in fast extinction of 

the conditioned response (Lonsdorf et al., 2017). We therefore descriptively 

examined the trajectory of acquisition and extinction effects over stimulus 

repetitions in our study (Supplementary Figure 60).  

 

Specifically, we calculated the mean pupil size over time across every 5 trials 

(i.e., trials 1-5, 6-10, 11-15 and 16-20). This was computed separately for CS 

Positive and CS Negative trials. As expected, during Acquisition the difference in 

average pupil size between CS Positive and CS Negative trials before UCS onset 

(the conditioned response) became apparent from trials 6-10. This Stimulus Type 

contrast increased during trial 11-15, but decreased again (to almost zero) 

during the final trials 16-20. Interestingly, the difference in average pupil size 

between CS Positive and CS Negative trials after UCS onset (the unconditioned 

response) appeared to decrease over trial repetitions in a more monotonic 

fashion.  

 

During Extinction, a small difference between CS Positive and CS Negative trials 

may be expected during the first few stimulus repetitions. However, the average 

pupil size over time appeared to remain similar between CS Positive and CS 

Negative trials, at least at a descriptive level.  

 



291 
 
 
Supplementary Figure 60 

Proportional mean pupil size over time and across repetitions of conditioned 

stimuli.  

 

Note. The light-coloured areas indicate the standard error of the mean and the 

and the dashed vertical lines indicate UCS onset. 

 

Development and habituation of pupillary conditioning and extinction effects 

over blocks 

Since the current task represents a standard conditioning paradigm repeated 4 

times over 4 blocks, it is possible that learning or repetition effects may have 

occurred despite the use of different conditioned and unconditioned stimuli in 

each block. Supplementary Figure 61 explores the trajectory of acquisition and 

extinction over the four experimental blocks.  

 

In terms of the conditioned response (before stimulus onset), the difference in 

average pupil size between CS Positive and CS Negative trials was most apparent 

in block 1 and 3 and very small in block 2 and 4. If a repetition effect was to be 

present, any reduction in average difference would likely manifest in a more 

continuous manner. In contrast, the mean difference between CS Positive and CS 

Negative trials in the unconditioned response (after stimulus onset) was largest 

and occurred at the earliest timepoint during block 1 but reduced in magnitude 

during later blocks, suggesting a possible learning or habituation effect.  
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It is unlikely that this pattern was caused by differences in valence across US 

items as the order of US items across blocks was Latin-Square counterbalanced 

and randomised. During extinction, the average difference between CS Positive 

and CS Negative trials over time and blocks appears to remain comparable in 

magnitude.  

 

Supplementary Figure 61 

Proportional mean pupil size over time and blocks. 
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4.5.9 Supplementary Materials 8: Secondary analysis of valence 
and arousal ratings in Rehbein et al. (2014) 

 

For comparative purposes, a re-analysis of the open dataset provided by Rehbein 

et al. (2014) was performed in order to obtain a measure of effect size. Identical 

to, the original analysis, a repeated measures ANOVA was performed for valence 

and arousal ratings separately, accompanied by generalized eta-squared 

estimates of effect size (see Supplementary Table 35).  

 

 
 
Supplementary Table 35 

Repeated measures ANOVA and Generalised eta-squared for each effect. 
 

Effect DFn DFd SSn SSd F p ges 

Valence        

Experimental Phase 1 47 943.57 
22924.9

0 
1.93 0.171 0.005 

Stimulus Type 1 47 102.73 
10062.4

6 
0.48 0.492 0.001 

Experimental Phase X 
Stimulus Type 

1 47 311.99 2857.21 5.13 0.028 0.002 

Arousal        

Experimental Phase 1 47 1.46 
21559.6

9 
0.003 0.95 0 

Stimulus Type 1 47 121.86 
13121.2

6 
0.437 0.51 0.0003 

Experimental Phase X 
Stimulus Type 

1 47 108 4603.60 1.10 0.29 0.0003 

 
 
 

 



294 
 
 

6 Chapter 5 - General Discussion 

 
The goal of this thesis was to provide a contribution to recent research aiming at 

improving methodological and analytical practices in the study of threat 

learning. The present work focused on establishing the potential utility of 

several multi-trial classical conditioning tasks for the investigation of 

psychophysiological and behavioural indices of learning and extinction. In 

addition, we discussed these paradigms in the context of a number of widely 

debated theoretical and methodological topics in conditioning and psychological 

research in general, including the role of contingency awareness in learning, the 

role of neural oscillations as an underlying mechanism of learning, the potential 

for detecting deep structure learning indices using MEG, as well as improving 

generalisability of inferences through employing data-driven tools and analytical 

approaches which consider random variation between individuals and 

experimental items.  

 

6.1 Summary of main findings 

Chapter 1 provided a historical overview of the empirical study of threat 

learning, fear, and anxiety that has laid the foundations of our ongoing 

understanding of adaptive and maladaptive learning, and of the potential 

treatments for anxiety disorders. The chapter also reviewed more recent work in 

the area, aiming to improve replicability and inferences derived from classical 

conditioning, through raising awareness of theoretical and practical limitations 

in the field, and increasing methodological and analytical consistency, 

transparency, and open science practice.  

 

Chapter 2  provided an indirect behavioural replication of the Multi-CS 

conditioning paradigm (Steinberg et al., 2013), and considered the extent to 

which contingency awareness is a necessary component for establishing a CR in a 

task with a large number of items and trials. Our study failed to replicate the 

results of previous investigations that have observed valence and arousal effects 

using this paradigm (e.g., Bröckelmann et al., 2011, 2013; Rehbein et al., 2014; 

Steinberg et al., 2012). The present findings appeared to offer support for 
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theoretical and empirical contributions (Lipp & Purkis, 2005; Lovibond & Shanks, 

2002; Mertens & Engelhard, 2020) suggesting that conditioned responding can 

only develop if there is a subjective awareness of the CS-UCS relationship. In 

line with recent findings indicating that methodological limitations can equally 

explain the variation in empirical support for unaware conditioning (Mertens & 

Engelhard, 2020), Chapter 2 examined several methodological and analytical 

factors that may contribute to the inconsistent evidence for eliciting subjective 

behavioural CRs using Multi-CS conditioning (Bröckelmann et al., 2011; Rehbein 

et al., 2014, 2015). First, we raised awareness of how differences in construct 

operationalisation can complicate cross-study comparisons. Next, we discussed 

the issue of conventional analyses on aggregated data in preventing 

generalisability of inferences to populations of items of the same type, and 

offered design-appropriate linear mixed effects modelling as a potential 

alternative, suggested to provide a better control of false positive rates 

(Westfall et al., 2017). In addition, we considered the role of individual 

variability, in line with recent work raising awareness of the high level of 

individual differences in learning about and responding to CS-UCS contingencies 

(Lonsdorf et al., 2019; Lonsdorf & Merz, 2017). Specifically, we re-examined a 

Multi-CS conditioning dataset provided by Rehbein et al. (2014) using robust and 

transparent graphical representations that go beyond depicting mean 

differences. We showed that the inconsistency in reported findings may be 

driven not only by the presence of individual differences in conditioned 

responding but also by insufficient consideration of the underlying data 

distributions. Specifically, we demonstrated the utility of detailed data 

visualisation in revealing important patterns in the data (e.g., baseline 

differences and outliers), and in guiding analytical decisions and interpretation. 

Finally, we discussed the possibility that the measurements that were used both 

in previous research and in our study may not be sensitive enough to detect 

subtle condition differences in the absence of CS-UCS contingency awareness.  

 

Chapter 3 examined the potential utility of a novel visual blocked conditioning 

paradigm as a means for providing a large number of trials. The task was 

designed with the goal of aiding MEG investigations of the cortical and 

subcortical oscillatory dynamics of learning, which so far have been limited by 
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significant technical challenges. In addition, we took into account previous 

suggestions of the benefits in employing multiple outcome measures in classical 

conditioning research (Lonsdorf et al., 2017). As such, we examined pupil size, 

subjective valence, and arousal ratings as additional potential indices of 

learning. The task employed a large number of trials and attempted to establish 

learning and extinction successively in multiple blocks, using a different set of 

CSs in each block. However, our findings provided limited support for 

conditioned responding in any of the measures.  

 

The results obtained from the MEG data were based on a comprehensive set of 

analyses aimed at understanding the role of theta oscillations in learning and 

extinction across the fear network. While these analyses failed to observe any 

differential brain activation patterns, they are informative both from a 

theoretical and from a design perspective, as they revealed several aspects that 

may be important to consider in future investigations. For instance, our 

descriptive results in the time-frequency domain aligned with those provided by 

a recent high-precision MEG study (Tzovara et al., 2019) showing a reduced 

theta power to CS+ stimuli in deep structures such as the amygdala. Chapter 3 

discussed the theoretical and methodological implications of this observation 

due to its inconsistency with the typical pattern of increased theta power found 

in the rodent conditioning literature (Karalis et al., 2016; Lesting et al., 2011; 

McCullough et al., 2016).  We argued that this discrepancy may be indicative of 

potential cross-species functional differences in the theta range or can be 

representative of an instance in which cross-species procedural differences may 

hamper comparisons between human and animal data.  

 

In terms of pupillary signatures of conditioning, we found little evidence of a CR 

in pupillary responses, even though the measure was clearly able to detect a 

UCR during the Acquisition phase. Failure to detect a CR was potentially due to 

the short trial duration. For subjective ratings of valence, we observed no 

significant differences in responding. However, we found increased arousal 

ratings for CS+ trials and during Acquisition. While the results in relation to 

arousal were not modulated by an interaction between experimental phase and 

stimulus type, they were suggestive of the paradigm's potential to elicit 



297 
 
 
conditioning. Yet, as presently observed, these effects were too weak to allow 

for any firm conclusions.  

 

Importantly, our exploratory evaluation of the task showed no evidence that the 

blocked nature of the design itself (potentially causing UCS-habituation via 

repeated exposure) was responsible for the lack of clear conditioning effects. 

Instead, we argued that the findings reported in Chapter 3 highlight several 

other design factors that may require consideration in future paradigm 

development. These include 1) the necessity for increasing trial duration, 

especially for enabling the detection of pupil size and time-frequency 

decomposition effects, 2) considering the implementation of simple CSs to avoid 

the potential confound of complex, higher-order processes involved in face 

discrimination, and 3) utilising a better strategy for maintaining participants’ 

attention and ensuring the presence of contingency awareness. 

 

These design factors were considered in Chapter 4. The study reported in this 

chapter aimed at refining the blocked conditioning task and examine its utility in 

the context of pupil size and subjective behavioural indices of learning vs. 

extinction (with an eye on potential MEG investigations in the future). At the 

same time, the study in Chapter 4 paid closer attention to the issue of 

generalisability, specifically in relation to the benefits of employing a greater 

variety of items (and consequently, a higher number of trials) and to the 

potential of this paradigm to allow for more reliable inferences through the use 

of robust analytical tools. The study adopted simple auditory stimuli as CSs and 

unlike the visual blocked conditioning, it included both positive and negative 

UCSs in attempt to elicit a more pronounced CR. In addition, the duration of 

both the CSs and the UCSs were extended significantly from 0.65 and 0.2 s to 3 

and 1 s respectively. The paradigm also included a secondary tone 

differentiation task designed to maintain participants’ attention. 

 

In terms of analysis, we employed a robust data-driven approach to determine 

time windows of interest in the pupil size data. Moreover, inferential analyses 

for all measures (pupil size as well as rating data) were based on design–
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appropriate linear mixed-effects models taking both by-participant and by-item 

variation into account.  

 

As a result of the above design and analysis features, we found clearly 

measurable CRs which were simultaneously generalisable across participants and 

items. In the context of pupil size, we reported both early and late pupillary CRs 

that were highly correlated, potentially indexing the same underlying 

mechanism. These CRs were found to have already disappeared during extinction 

training. Considering the latter, we discussed a slight reduction in the number of 

trials per condition as a potential solution for allowing the detection of more 

‘gradual’ extinction learning processes. In the discussion, we also considered 

other factors that may influence extinction effects such as the type of 

instructions provided to participants. In terms of ratings, while subjective 

arousal judgements were insensitive to the critical experimental manipulations, 

the study revealed a valence CR that appeared to be resistant to extinction. 

These effects were discussed in the context of previous findings suggesting that 

evaluative judgements may be less susceptible to extinction (Luck & Lipp, 

2015a, 2015b; Wendt et al., 2020), and that different outcome measures may be 

sensitive to different aspects of learning (Lonsdorf et al., 2017; Sevenster et al., 

2012). The findings in this chapter also provided some further evidence for the 

importance of contingency awareness. Although awareness was not found to 

modulate any of the CR indices, it was found that the majority of participants 

were aware of the CS-UCS relationships.  

 

Finally, considering the important role of individual differences in 

contextualising conditioned responding (Lonsdorf et al., 2019; Lonsdorf & Merz, 

2017), we conducted a set of exploratory analyses (in both Chapters 3 and 4) to 

establish potential links between the strength of conditioned responding on the 

one hand and differences on various participant-specific dimensions on the 

other. These dimensions included trait as well as state anxiety, use of emotion 

regulation strategies (i.e., expressive suppression and cognitive reappraisal), 

and non-verbal ability (the latter was examined in Chapter 3 only). We found 

hardly any evidence in support of a relationship between any of these person-

specific variables and CR outcome measures (including pupil size, theta activity 
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in ROIs, and valence and arousal ratings). This, however, does not necessarily 

suggest that psychological variables are irrelevant for conditioned responding. 

Note, for example, that we observed relatively low variability across 

participants in any of the psychometric variables considered. A less 

homogeneous participant sample (I.e., with more inter-individual variation on 

these dimensions) would increase the prospect of uncovering potential 

relationships between person-specific variables and the strength of conditioning.  

 

6.2 Limitations  

One of the most limiting factors on reproducibility, as well as the quality and 

reliability of statistical inferences, is the sample size used in an empirical study 

(Clayson et al., 2019; Lakens, 2021; Larson, 2020; Szucs & Ioannidis, 2019). A 

common approach for justifying sample sizes is power analysis, whereby one can 

estimate the minimum sample size that is needed to detect an effect of a 

certain magnitude. Yet, conducting power analysis can be challenging, especially 

for repeated-measures designs and for certain types of measurement (e.g., 

neuroimaging). Moreover, the availability of power estimation tools for linear 

mixed-effects modelling is still rather limited, although recent efforts have been 

made towards the development of statistical packages for simulating data with 

crossed random effects (DeBruine & Barr, 2019), which can allow for power 

estimation in designs like the ones used in this thesis and related literature. To 

be truly valid, however, a large amount of prior information on various (usually 

unknown) population parameters is needed to give such simulations (or power 

analyses in general) sufficient credibility. Such parameters include, for instance, 

expected effect sizes and various population variances (and co-variances) at 

participant and item level. These parameters are difficult to obtain without 

prior research, a problem that has an analogue in determining priors for 

Bayesian analysis. In addition, the relevant tools are still under development and 

limited to relatively simple experimental designs and models. Indeed, currently 

available tools cannot effectively account for complex fixed and random effect 

structures (and their correlations) in experimental designs that go beyond 2 x 2 

complexity. The issue of power estimation is even more prominent in the 

context of neuroimaging, where the degree of unknown parameters is even 

higher due to the multivariate nature of the data. Furthermore, while such tools 
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are more widely available for fMRI (Mumford, 2012), this is not the case for MEG 

research, which only very recently has seen attempts to develop such tools 

(Chaumon et al., 2019).  

 

Due to the complexity of our designs, and in the absence of strong prior 

expectations in terms of effect magnitude and other population parameters for 

the paradigms we have used, the sample sizes for the experiments in this thesis 

were not based on power analyses. Instead, our decisions were guided by 

common practice in the fields under investigation, as well as by resource and 

time constraints due to the extensive duration of each experiment (ranging 

between 2 to 5 hours per participant). Specifically, the sample size for the 

Multi-CS conditioning and visual blocked conditioning tasks were based on the 

sample sizes of previous MEG investigations as reviewed in Chapters 2 and 3 

(mean ~ 19, median ~ 19, range 5 - 48).  The sample size for the auditory 

blocked conditioning task was guided by other pupillometry studies in the field 

(mean ~37, median ~ 25, range 18-135). Also note that while the initially 

intended sample size for this study was 40 participants, we were only able to 

collect data from 30 participants, because government restrictions in relation to 

the Covid-19 pandemic came into effect before the study was completed. Due to 

measurement noise, only data from 25 participants were used in the pupil size 

analysis. Even though we did not acquire the desirable number of participants in 

this study, the sample is still representative of the median sample size used in 

pupillometry conditioning studies and is also of a size similar to that used by 

Tzovara et al. (2018), who also employed mixed effects modelling in their 

analyses. While adopting a ‘rule of thumb’ approach is not always optimal in the 

context of paradigm development, choices are often limited to standard 

practices when there is insufficient prior knowledge and limited time. With the 

successful development of the auditory blocked conditioning task, however, 

there are now estimates of both fixed and random effects parameters that can 

be used when planning sample size in future investigations using this design. 

 

It is also worth considering the design and analytical limitations of the studies 

presented in this thesis. Experiment 2 (Chapter 3) suffered from a set of design 

limitations which we attempted to account for in the subsequent experiment. 
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These were related to the short trial duration which may have prevented the 

detection of a CR in the time-frequency domain and in the pupil size 

measurements. In the subsequent chapter, we demonstrated that increasing the 

trial duration may be beneficial for pupillary CR detection, which makes sense 

considering the dynamics of pupillary responses in general. Another substantial 

limitation in Experiment 2 was that it relied on the assumption that contingency 

awareness had been established. Specifically, since we employed only two 

unique items per condition, we expected that it will be easy for participants to 

remember the relationship between the CSs and the UCS. However, contingency 

awareness was not explicitly measured to avoid prolonging the already 

substantial experimental duration (~5 hours per participant). Again, this was 

rectified in Experiment 3 where the measurement demands were not as 

substantial as those in MRI and MEG data collection, and where a better balance 

between trial duration and trial number was achieved to allow for the inclusion 

of a contingency awareness task. 

 

In addition, we found that the visual blocked conditioning task in Experiment 2 

(Chapter 2) elicited baseline differences in valence ratings. It was not clear, 

however, what caused these differences given that the face stimuli were 

selected from a normative database of ‘neutral’ faces similar in valence and 

arousal norms. While all analyses were performed on habituation-baselined data 

that aimed to account for the potential of such baseline differences, it cannot 

be guaranteed that the initial differences in the perceived valence of the stimuli 

had no impact on the responses in the other outcome measures.  

 

In terms of the MEG analysis and the detection of subcortical activity, our source 

estimation approach was not as sophisticated as some of the more recently 

developed approaches (i.e., Tzovara et al., 2019), but nonetheless, it is a 

commonly accepted technique that is considerably more cost- and time-

effective. Indeed, the option of adopting high-precision methodology in this 

study was considered and briefly tested. However, we estimated that such an 

approach would not be feasible in relation to the resources we had, since 

developing a high-precision MEG pipeline and the 3D printing of individual head 
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casts is incredibly time consuming and requires additional equipment that comes 

at a high cost.  

 

The main limitation in the study reported in Chapter 4 is related to the use of 

positive and negative UCSs in the absence of a completely neutral control 

condition (i.e., CS trials that are not followed by a UCS). This can be 

problematic since both positive and negative UCSs elicit an UCR and therefore, 

any inferences about differential responses to CSPos and CSNeg conditions are 

relative to a valent stimulus (either of positive or negative valence). This may 

create a situation in which the absence of a differential CR, as evidenced by a 

non-significant difference between CSPos and CSNeg, does not necessarily imply 

absence of a CR. In particular, it is likely that a differential CR may be obtained 

if comparing responses to CSs paired with valent UCSs to responses that were 

unpaired or paired with a truly neutral stimulus. From a design perspective, 

however, including a third stimulus type (e.g., CS Neutral or CS-) may be 

impractical due to the challenges in designing neutral experimental stimuli that 

clearly vary and can be distinguished along three dimensions. Requiring 

participants to distinguish between multiple items within three conditions may 

also prove problematic for establishing contingency awareness. A more practical 

alternative would be to use a partial reinforcement protocol whereby the CSs 

are not always followed by a UCS. The utility of such a design modification needs 

to be studied in more detail in future work.  

 

It is important to consider yet another set of design constraints that are present 

when studying conditioning in a blocked design manner. For instance, our design 

may make cross-study comparisons difficult as it is still unknown exactly how the 

CRs obtained from our task compare to more conventional tasks or other multi-

trial conditioning tasks. This issue also applies to the simultaneous use of 

positive and negative UCSs, as this is not a common practice in the related 

literature. More importantly, the blocked design prevents the investigation of 

other commonly studied mechanisms in associative learning research that have 

important implications for the treatment of anxiety disorders, such as long-term 

extinction and the conditions under which fear can return (i.e., spontaneous 

recovery, reinstatement, and renewal protocols). Notwithstanding, our task was 
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not designed for these purposes, as its primary aim was to allow for the study of 

conditioned responding and the development of extinction in a specific set of 

experimental contexts that require many trials. The next section will discuss two 

alternative multi-trial paradigms that may allow for the examination of non-

immediate extinction effects. These are based on the design of the blocked 

conditioning we reported in Chapter 4 and the recently developed sequential 

conditioning task (Sperl et al., 2021). 

 

6.3 Contributions and implications for future research 

The present thesis contributes to methodological research in threat learning in 

several ways, as discussed below.  

 

6.3.1 Replicability and transparency  

In the context of Multi-CS conditioning and the inconsistent evidence for 

conditioned responding without subjective awareness, our findings largely agree 

with previous reports on unaware conditioning (Mertens & Engelhard, 2020), and 

suggest that different methodological practices may confound the perpetuating 

nature of the debate regarding the role of contingency awareness in threat 

learning. The findings from our replication study and secondary analysis of the 

Rehbein et al. (2014) dataset also add to the body of research highlighting the 

importance of using transparent data practices in overcoming the issue of 

replicability in threat learning. Based on the observations derived from these 

analyses, we proposed a set of recommendations that may guide future Multi-CS 

conditioning research. These were aimed at improving clarity when 

(operationally) defining constructs and their measurement, analytical and data 

visualisaiton practices as well as measurement methods. We believe that such 

guidelines can improve the accuracy and reliability of future studies utilising not 

only this task but any threat learning paradigm. Consequently, throughout this 

thesis, an important goal was to provide a highly transparent reporting through 

adequate visualisation tools (providing more than just means per condition) and 

offer clarity regarding the magnitude of the observed effects. Furthermore, we 

conducted our experiments in a reproducible manner by providing open access 

to the code necessary to reproduce our findings as well as experimental tasks.  
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6.3.2 Informed and generalisable analytical practice  

Throughout this thesis, we reinforced the benefits of using analytical tools that 

can potentially improve the generalisability and reliability of findings in several 

ways. In Chapter 2, we focused on the utility of robust estimates of central 

tendency (Rousselet et al., 2017; Wilcox, 2017) as a means to deal with issues 

related to outliers when performing conventional analysis on aggregated data. 

Across chapters, we also discussed the importance of modelling both by-item 

and by-participant random variability, especially in the case of multi-trial 

paradigms using a large number of unique items. We emphasised the potential 

risks of making anti-conservative inferences that may not generalise beyond the 

study under investigation, when employing conventional analytical strategies 

relying on aggregated data (e.g., repeated-measures ANOVAs and t-tests). This 

focus on the utility of mixed effects modelling was based upon on an increasing 

body of research highlighting the ongoing issues of poor generalisability of 

findings across studies, driven by analytical tools that produce inflated test-

statistics and narrow confidence intervals, ultimately giving poor control over 

false positives (Barr et al., 2013; Judd et al., 2012, 2017; Westfall et al., 2017; 

Yarkoni, 2020). 

 

In line with recent research highlighting the consequences of variable and often 

arbitrary criteria for data exclusion in the analysis of psychophysiological data 

(Lonsdorf et al., 2019), Chapter 4 offered means to avoid arbitrary selection of 

time windows of interest in pupil size data analysis. Specifically, we adopted a 

data-driven cluster permutation approach to identify time windows that exhibit 

true cross-condition differences. While this approach is not novel and frequently 

adopted for the analysis of neuroimaging data, it is not commonly applied to 

other psychophysiological measures. As detailed in Chapter 4, a data-driven 

approach can increase cross-study comparability by reducing the excessive 

arbitrariness in time window selection that currently prevails in the literature. 

Moreover, it facilitates detection of unpredicted effects while appropriately 

controlling for Type I and Type II errors (Huang & Zhang, 2017; Sassenhagen & 

Draschkow, 2019). While the combination of data-driven time window selection 

and mixed effects modelling for inferential analysis in psychophysiological 
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measures is an approach that may not necessarily be as sophisticated as other 

recently proposed techniques for estimating learning indices (i.e., PSPM, Bach et 

al., 2018), it offers considerable benefits over more common approaches. 

Compared to PSPM, our approach also provides a higher degree of flexibility as it 

does not constrain data pre-processing and analysis to a specific software.  

 

6.3.3 Multi-trial paradigm development  

As evidenced by the work detailed in this thesis, the design of a multi-trial 

paradigm to assess threat learning has proven a significant technical and 

resource-intensive challenge, which may explain the limited popularity of such 

tasks across the literature. A significant barrier to multi-trial paradigms is the 

issue of experimental length. Specifically, utilising a large number of trials 

where the minimum trial duration is restricted by the demands of 

psychophysiological processes, can often be impractical both in terms of time 

and costs to both the experimenter and participants. Consequently, it can be 

difficult to obtain a balance between trial number and trial duration, that allows 

for the detection of reliable learning indices in multiple outcome measures and 

results in an experiment with an acceptable duration. As demonstrated in this 

thesis, the optimisation of such a task may often require multiple revisions. 

Nonetheless, as discussed extensively throughout this thesis, there are 

significant benefits in establishing a reliable measure of conditioning in a multi-

trial context, particularly in relation to improving generalisability via a greater 

range of unique items and the SNR in noisy psychophysiological measures.  

 

To this end, we believe that the results obtained in the last experimental 

chapter of this thesis are encouraging, in that they demonstrate the possible 

utility of auditory blocked conditioning as a means for investigating associative 

learning in a multi-trial context. Unlike other commonly employed multi-trial 

paradigms that repeat the same CS+ and CS- stimulus many times, this task can 

potentially offer greater generalisability across stimuli by providing a higher 

degree of variability in unique CSs as well as UCSs, while also allowing for this 

variability to be modelled at the analytical stage. 
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While the results obtained in Experiment 3 were promising, the task may still 

benefit from additional design modifications, such as reducing the number of 

stimulus repetitions within a block to reduce CR habituation and to allow for the 

examination of extinction training effects. To maintain the number of trials 

provided currently, however, this repetition reduction will require the inclusion 

of an additional block including a new set of stimuli. Furthermore, there remains 

a considerable amount of future work to be done on validating the reliability of 

this task in different design contexts, and to replicate its findings across 

psychophysiological and behavioural outcome measures. As identified in Chapter 

4, it is also important to explicitly consider the role of instructions in mediating 

learning and extinction effects. This can be achieved in a between-subjects 

design, similar to previous studies (e.g., Luck & Lipp, 2015b) in which the level 

of instruction is manipulated across groups.   

 

In addition, future work should establish whether the effects observed in the 

auditory domain would generalise to CSs in other modalities such as visual 

stimuli, as these are the most commonly adopted across the conditioning 

literature. Importantly, it will be beneficial to examine how design variation in 

relation to the UCS will affect the blocked conditioning task. For example, it is 

important to consider whether the results can be replicated with other types of 

UCSs (e.g., olfactory, electric stimulation) and across different reinforcement 

protocols (e.g., partial reinforcement), but also in the absence of a positive 

UCS, resembling more closely the blocked design detailed in Chapter 3 and the 

sequential conditioning task in the study by Sperl et al. (2021).  

 

In relation to the pupillary signatures of conditioning, further research should 

focus on systematically examining the conditions under which multiple interval 

CRs are detectable, specifically in relation to trial duration. In the context of 

SCR, it has been shown that early and late intervals are only observable in trials 

with longer duration (Jentsch et al., 2020). It is therefore possible that this may 

occur in pupil size measurement as well. If this is the case, then reducing the 

trial duration will diminish the presence of multiple interval CRs while increasing 

the trial duration should not affect their detectability. It is worth noting, 

however, that a significant reduction of the trial duration beyond what was 
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implemented in Chapter 4 may pose a significant risk to the detectability of the 

pupillary CR, similar to the problems observed in Chapter 3. In line with recent 

efforts in understanding the commonalities and differences between pupillary 

and SCR learning indices (Jentsch et al., 2020; Leuchs et al., 2019), future work 

should also consider whether these early and late interval pupillary CRs would 

replicate when using SCR as an outcome measure.  

 

Another future avenue of research should evaluate the potential utility of an 

inter-mixed CSs and UCSs design as an alternative to the blocked design 

presented in this thesis. Specifically, examining conditioning in a single block 

where multiple different CSs and UCSs are presented would resolve the caveat of 

the blocked design in preventing the investigation of long-term extinction as 

well as the return of fear. Alternatively, the task can also be modified to 

resemble more closely the design utilised by Sperl et al. (2021), where 

sequential conditioning across multiple blocks was followed by sequential 

extinction the following day. It is worth noting that this design may not allow for 

the use of multiple UCSs, as it is unknown whether participants can feasibly 

acquire and retain information about multiple different CS-UCS contingencies. In 

addition, both of the proposed task modifications would require a substantial 

amount of work to optimise the balance between number of unique items and 

the preservation of contingency awareness.  

 

6.3.4 Threat learning using MEG 

The work presented in this thesis has laid solid foundations for the study of the 

oscillatory signatures of learning and extinction in cortical and subcortical 

regions. While the technical limitations of the visual blocked conditioning task 

(Chapter 3) prevented the reliable quantification of the neural signatures of 

associative learning and extinction, there was limited evidence that the 

analytical strategy itself was ineffective. In particular, the use of realistic 

anatomical information of deep brain structures, depth weighted MNE source 

estimation and baseline subtraction to reduce the effects of leakage have 

already been successful in localising amygdala and hippocampal activity (Attal & 

Schwartz, 2013; Balderston et al., 2014a; Quraan et al., 2011a). However, 

considering that the magnitude of previously reported effects using high-
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precision MEG (Tzovara et al., 2019) were small even though consistent with 

some of the present descriptive findings, it is likely that the strategies used in 

our study to maximise deep structure detection may not be sufficiently sensitive 

to detect very small effects in deep structures. Future work attempting to 

localise deep source activity in MEG should also examine the extent to which 

depth weighted MNE and baseline subtraction alone are sufficient to deal with 

the issue of leakage, by comparing its effectiveness to the generative models 

used by Tzovara et al. (2019), as these were shown to exhibit high sensitivity to 

individual anatomies, evidenced by poor model fits when minimal displacement 

of deep structures was performed.  

 

Last but not least, the results reported in Chapter 4 are encouraging in the 

context of future multi-trial MEG investigations and consistent with recent 

findings (Sperl et al., 2021), demonstrating that measurable physiological CRs 

can be elicited in a blocked design context. In addition, the current design may 

hold potential benefits compared to the sequential conditioning paradigm 

proposed by Sperl et al. (2021) since it allows for a greater range of unique CSs 

as well as for the use of more than one UCS. In its current form, however, the 

task will not provide a trial number large enough for studying the MEG correlates 

of learning and extinction, especially in deep structures. Theoretically, it would 

be possible to increase the number of blocks since the exploratory analyses of 

this study revealed no evidence that the blocked nature of the conditioning had 

any impact on the magnitude of the CRs. Such increase in blocks should provide 

the desirable number of trials, although this would also require conducting the 

MEG recordings over multiple testing sessions. Resource-intensive, multi-day 

recordings are not uncommon in classical conditioning research. Such recordings 

are also common in the context of MEG, precisely because obtaining high 

number of trials in any MEG task typically requires a considerable time 

commitment.  
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